
TLFeBOOK

with C++

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Front Matter
Blind Folio FM:i

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Front Matter
Blind Folio FM:i

P:\010Comp\LearnTo\535-1\FM.vp
Tuesday, October 08, 2002 9:42:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

This page intentionally left blank.

TLFeBOOK

with C++

John Smiley

McGraw-Hill/Osborne
New York Chicago San Francisco Lisbon London Madrid Mexico City

Milan New Delhi San Juan Seoul Singapore Sydney Toronto

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Front Matter
Blind Folio FM:iii

P:\010Comp\LearnTo\535-1\FM.vp
Tuesday, October 08, 2002 9:42:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Copyright © 2003 by The McGraw-Hill Companies, Inc.]. All rights reserved. Manufactured in the United States
of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher.

0-07-223040-1

The material in this eBook also appears in the print version of this title: 0-07-222535-1

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occur-
rence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark
owner, with no intention of infringement of the trademark. Where such designations appear in this book, they
have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for
use in corporate training programs. For more information, please contact George Hoare, Special Sales, at
george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all
rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act
of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse
engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish
or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your
own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work
may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES
OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE
OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED
THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WAR-
RANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation
will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for
any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no cir-
cumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, conse-
quential or similar damages that result from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatso-
ever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0072230401

ebook_copyright 7.5x9.qxd 7/8/03 8:54 AM Page 1

TLFeBOOK

This book is dedicated to my wife, Linda.

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Front Matter
Blind Folio FM:v

P:\010Comp\LearnTo\535-1\FM.vp
Tuesday, October 08, 2002 9:42:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Front Matter
Blind Folio FM:vi

About the Author
John Smiley, a Microsoft Certified Professional (MCP) and Microsoft Certified
Solutions Developer (MCSD) in Visual Basic, has been programming and
teaching for more than 20 years. He is the President of John Smiley and
Associates, a computer consulting firm serving clients both large and small in
the Philadelphia metropolitan area. John is an adjunct professor of Computer
Science at Penn State University, Philadelphia University, and Holy Family
College, and also teaches in a variety of Internet venues, including SmartPlanet
and ElementK.

On the writing front, John is the author of the immensely popular Learn to
Program with Visual Basic 6, along with Learn to Program with Visual Basic
Examples, Learn to Program Databases with Visual Basic 6, Learn to Program
Objects with Visual Basic 6, Learn to Program with Java, Learn with Program with
Visual Basic .NET, and Learn to Program with C#. He has also done technical
editing on a number of Visual Basic titles for Wrox and Que, in addition to being
a popular guest on TechTV’s ScreenSavers program.

Feel free to visit John’s website at www.johnsmiley.com or contact him via
e-mail at johnsmiley@johnsmiley.com. He religiously answers all his e-mails,
although not necessarily instantaneously!

P:\010Comp\LearnTo\535-1\FM.vp
Tuesday, October 08, 2002 9:42:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Contents at a Glance

1 Where Do I Begin? . 1

2 Getting Comfortable with C++ . 39

3 Data . 65

4 Selection Structures . 137

5 Loops . 187

6 Creating Your Own Functions . 231

7 Creating Objects from Instantiable Classes . 285

8 Controlling Access to the Data in Your Object . 347

9 Inheritance . 389

10 Arrays . 439

11 Pointers . 485

12 Errors and Error Handling . 533

Index . 589

vii

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Front Matter

P:\010Comp\LearnTo\535-1\FM.vp
Tuesday, October 08, 2002 9:42:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

For more information about this title, click here.

TLFeBOOK

This page intentionally left blank.

TLFeBOOK

Contents

Acknowledgments . xiii
Introduction . xv

1 Where Do I Begin? . 1
Where Do I Begin? · 2
Programming the Easy Way · 3

Planning a Program Is Like Planning a House 4
We Receive a Call from Our “Client” . 5
We Meet with Our Client . 5

The Systems Development Life Cycle (SDLC) · 9
Phase 1: The Preliminary Investigation . 12
Phase 2: Analysis . 13
Phase 3: Design . 16
Phase 4: Development . 35
Phase 5: Implementation . 36
Phase 6: Audit and Maintenance . 37

Where to from Here? · 37
Summary · 38

2 Getting Comfortable with C++ . 39
Sit Down and Get Cozy with C++ · 40

Writing Our First C++ Program . 41
Elements of a C++ Program . 49

Summary · 64

3 Data . 65
Computer Data · 66

Variables . 66
Constants . 81

C++ Data Types · 84
Numeric Data Types . 85
Nonnumeric Data Types . 92

ix

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Front Matter

P:\010Comp\LearnTo\535-1\FM.vp
Tuesday, October 08, 2002 9:42:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For more information about this title, click here.

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
TLFeBOOK

x Learn to Program with C++

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Front Matter

Operations on Data · 98
Arithmetic Operations . 98
Comparison Operators . 115
Logical Operators . 119

Summary · 134

4 Selection Structures . 137
Selection Structures · 138

Getting Input into Your Program . 139
The Sequence Structure—Falling Rock . 146
The C++ Selection Structure: The If Statement 149
The If…Else Statement . 154
The Switch Statement/Structure . 163

Continuing with the Grade Calculation Project · 171
Summary · 186

5 Loops . 187
Why Loops? · 188

The For Loop . 189
While Loops . 205

Adding a Loop to the Grade Calculation Project · 219
Summary · 229

6 Creating Your Own Functions . 231
Modular Programs Are Easier to Maintain and Understand · · · · · · · · · · · · 232

What Is a Function? . 234
Creating Your Own Functions . 235
Using Functions to Fine-tune Your Code 258
Function Overloading . 269

Summary · 283

7 Creating Objects from Instantiable Classes 285
Creating Objects from Instantiable Classes · 286

Creating Classes Is an Extension of Modular Programming 287
Creating Objects from Your Classes . 293
Creating Multiple Objects from Your Classes 299
Class Constructors . 300

P:\010Comp\LearnTo\535-1\FM.vp
Tuesday, October 08, 2002 9:42:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Front Matter

Class Contracts . 305
Overloaded Constructors . 307
Static Variables . 310
Destroying an Object . 318
Class Destructors . 318
Working with Objects . 321

Summary · 346

8 Controlling Access to the Data in Your Object 347
Controlling Access to Your Object’s Data · 348

Member Variables: Public or Private? . 359
Using the Get() and Set() Methods . 361

Summary · 387

9 Inheritance . 389
Inheritance · 390

Before Inheritance Came Along… . 392
Creating Classes from Other Classes Using Inheritance 397
Planning Your Object Hierarchy in Advance 410
Creating a Base Class and Derived Classes in the Grades

Calculation Project . 423
Summary · 437

10 Arrays . 439
Why Arrays? · 440

What’s an Array? . 447
Declaring an Array . 448
Adding Data to the Elements of an Array 449
The Wonders of Array Processing . 454
Using an Array for Averaging . 458
Problems with Arrays . 463
Multidimensional Arrays . 464
Creating Arrays of Objects . 476

Summary · 483

Contents xi

P:\010Comp\LearnTo\535-1\FM.vp
Tuesday, October 08, 2002 9:42:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

11 Pointers . 485
Why Pointers? · 486

The Classic Example: The Swap Program 486
Summary · 531

12 Errors and Error Handling . 533
Errors and Error Handling · 534

Common Beginner Errors . 535
Compiler Errors . 535
Runtime Errors and Logic Errors . 558
Dealing with Errors in Your Program . 572
Should We Modify the Grades Calculation Project

to Include Error Handling? . 583
Testing the Program . 583
Delivering and Implementing the Grades Calculation Project 585

Summary · 587
Index . 589

xii Learn to Program with C++

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Front Matter

P:\010Comp\LearnTo\535-1\FM.vp
Tuesday, October 08, 2002 9:42:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Acknowledgments

I want to thank first and foremost my wife, Linda, for her love and support.

This is the eighth book I’ve written, and the process is no easier on the family of the author than
the first book—there are still pleas for quiet, which is almost impossible with three children. My thanks
also go to my three wonderful children, Tom, Kevin, and Melissa. Each one contributed in a way to
this book. Tom and Kevin, as budding programmers, provided me with ideas for questions that
beginning C++ programmers might need answered. Melissa, who at the time I wrote my first book
spent time on my lap asking me to read Snow White to her, is now a 6-year-old who once again
frequently kept me company while writing this book.

Many thanks go to the great people at StudioB for their faith in the continuing viability of my
books. Special thanks go to David Rogelberg and David Talbott for their assistance in finding a new
“home” for my books, and for their belief in the uniqueness of the way in which I teach beginners
to program.

At McGraw Hill/Osborne, I want to give special thanks to Wendy Rinaldi, who also shares the
vision and belief that books written in my style can help beginners learn like no others. Your enthusiasm
and support, Wendy, have meant much to me. Many thanks also go to Tim Madrid and Patty Mon
for their tireless efforts in working out the details of the Learn to Program series for Osborne, and in
keeping everything on schedule. Many thanks to my Technical Editor Zach Martin, who did a great
job testing and verifying all the code in the book, and making suggestions for improvements along
the way.

Books aren’t produced in a vacuum. Behind the scenes there are reviewers, technical editors, artists,
layout specialists, copy editors, indexers, and a group of marketing experts, all working toward the goal
of making the book a success. My thanks to all of you.

I also want to thank the many readers of my first seven books who took the time to write to me
about the books. I truly appreciate hearing from you, and I want you to know that I read and respond
to each e-mail I receive.

Thanks to the many members of my C++ study group, who worked with the manuscript for this
book, evaluating it, testing the code, and making suggestions for improvements, especially Catherine
Cramer, Jim Combs, Linda Mason, Shaom Wang, Catherine Kinslow, Wayne Green, Thelma Chenault,
Lon Anderson, Joe Churchman, Efren Aguilar, Mark Spalding, David Smith, Martin Perez, and
Bruce Neiger. Special thanks to Bruce Neiger for his meticulous reading of the manuscript, and for
his many suggestions.

xiii

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Front Matter

P:\010Comp\LearnTo\535-1\FM.vp
Tuesday, October 08, 2002 9:42:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
TLFeBOOK

I want to thank all the members of my family for their belief in and support of me over the years,
in particular my mother, who continues to say several hundred novenas for the success of my books,
and who has probably said just as many for this one I’m sure. Special thanks to Bob and Pat for giving
my books priority placement in bookstore windows whenever they can!

Finally, I want to acknowledge my father, who although not physically here to see this book, is
surely flipping through the pages of it now. It’s been over 25 years since I last saw you—and your role
in the writing of this and my others books can never be understated. You and mother have been a
great inspiration and role model for me. As I’ve said before, I know that the God who made us all
will someday permit us to be together again.

xiv Learn to Program with C++

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Front Matter

P:\010Comp\LearnTo\535-1\FM.vp
Tuesday, October 08, 2002 9:42:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Introduction

Why I Wrote the Book
A few years ago I had the occasion to talk to a very successful author whose beginner-level book I was
using to teach introductory programming at my university. He asked me how I was making out using
his book in my class, and I told him that the students in my class with no prior programming experience
were having a hard time with it. He told me that didn’t surprise him—and furthermore, he didn’t
offer any apologies for or seem upset by it. This was my first inkling that in the world of computer
books, many books claim to be aimed at the beginner market, but often it’s a lukewarm effort. Most
beginner-level books are aimed at the reader or learner who already has some programming experience
under their belts.

I encountered a similar attitude in a faculty meeting some years back when one of my fellow instructors
seemed to derive great delight in having one-third of her class drop the course. It was as if the large
number of withdrawals somehow proved that the course she was teaching was extremely difficult.
When I replied that, as a teacher, I felt like a failure if even one student dropped the course because
he or she couldn’t keep up, I felt like a maverick.

Shortly thereafter I decided to take matters into my own hands, producing a manuscript for Visual
Basic that I knew would never lose anyone. I boldly proclaimed that, using my book, I could teach
anyone to program in Visual Basic, and so far that’s been the case. I also developed an unusual delivery
for my book—presenting the book as a simulated classroom, complete with a professor willing to teach
and 18 students eager to learn. Some of them ask smart questions, some of them ask questions you
might consider “dumb”—but amazingly, just about every question you would ask yourself during the
course of reading the book is anticipated and answered for you.

As a reader once wrote me, so many technical books talk down to the reader—my books make it
“OK” and even fun to be a real beginner learning to program.

Who the Book Is For
This book presumes you have absolutely no programming experience. If that’s you, and you want to
learn how to write a computer program using what can be a very difficult language to learn, C++, then
this book is definitely for you.

If you have some programming experience and want to learn how to program in C++, this book
is also for you. Experienced programmers tell me that my thorough, methodical method of teaching
works for them as well.

xv

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Front Matter

P:\010Comp\LearnTo\535-1\FM.vp
Tuesday, October 08, 2002 9:42:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
TLFeBOOK

Either way, as one of my readers wrote me, my books make it OK not to understand something
the first time you read it. My patient method of teaching ensures that you will learn the material
eventually.

Organization/Conventions Used in the Book
Each chapter of this book follows a session in my fictitious classroom. Read along and learn the

material with the rest of the students. Most chapters have examples that I present to the students. Feel
free to follow along and code them yourself. Each chapter also provides practice exercises for you
to complete, most of which lead to the completion of a class “project”—in this case, the Grades
Calculation Project.

xvi Learn to Program with C++

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Front Matter

P:\010Comp\LearnTo\535-1\FM.vp
Tuesday, October 08, 2002 9:42:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter

1
Where Do
I Begin?

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1
Blind Folio 1:1

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
TLFeBOOK

2 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

Where do I begin? is a question I am frequently asked by my students, and this
seems like a good question to tackle right at the beginning of this book. In this
first chapter, we’ll look at the development process of an actual working program

through the eyes and ears of my university programming class, and you will also be introduced to
our “class project.” By the end of the book, we’ll have taken a real-life application from the
concept all the way to the finished product!

NOTE
Occasionally, my students get disillusioned when they hear that we won’t be diving
straight in and coding our application. However, when I remind them that programming
is much the same as writing a report (in other words, it is a two-stage process of
planning and then producing), they tend to settle down.

Where Do I Begin?
As part of answering the question Where do I begin?, this chapter looks at the Systems Development
Life Cycle (SDLC), which is a methodology that ensures systems are developed in a systemic,
logical, step-by-step approach. We’ll be looking at the SDLC in quite a bit of detail because the
majority of this book will be spent developing a real-world application. In this chapter, we’ll meet
with a prospective client and conduct a preliminary interview with him. From that interview (and
a subsequent one), we’ll develop a Requirements Statement, which provides details as to what the
program should do. This Requirements Statement will form the basis of the application we will
develop throughout the rest of the book.

NOTE
From this point on, you will follow me as I lead a group of my university students
in an actual class on C++. If I do my job right, you will be a part of the class,
learning along with the other students as we complete a multiweek course
about programming in C++.

Many books on computer programming have the reader, perhaps as early as the first chapter,
code a program which “cutely” displays a message box that says “Hello World.” Then the author
will point to the fact that within the first few minutes of reading their book, the reader has already
written a working program. I’m not so naive as to believe that writing such a program makes you a
programmer. Therefore, we’ll opt for a slower approach. Simple programs, although great for the
ego, are not the programs found in the real world. Real-world programs are written to meet someone’s
needs. These needs are frequently complex and difficult to verbalize. In this book, you and I will

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

embark on a journey together that will see us complete the prototyping stage of a real-world
project. I believe that this is the best way to learn programming.

In my university classes, I don’t usually introduce the class project until several weeks into the
semester. When I finally do, I give the students in my class a Requirements Statement. I never tell
my students exactly how the application should look or how to program it. I tell them only what is
required. In other words, I complete the hard part for them: gathering the user requirements.

Programming the Easy Way
When I first began to teach programming, some of my students would tell me that they just didn’t
know where to start when they began to work on their programming assignments. They would
start to program the application, then stop. Some of them would find themselves rewriting their
code and redesigning their application several times. Then they would change it again. Face to
face, I could usually clear things up for them by giving them a gentle nudge or hint in the right
direction. However, their work showed a definite lack of direction. What was the problem? They
lacked a plan.

As soon as I realized this, I began to teach them more than just programming. I began to teach
them the Systems Development Life Cycle (SDLC), the methodology I mentioned earlier. You
see, people need blueprints or maps. They need something tangible, usually in writing, before they
can begin a project. Just about all my students agree that having a blueprint of some kind makes
the development process much easier.

Sometimes I meet former students of mine at the university and ask them how their other
programming classes are coming along. Occasionally, they tell me that they’re working on a great
real-world assignment of some kind, but they just don’t know where to begin. At that point, I
remind them of what I told them in class—that they should begin with the design of the user
interface, observe the behavior of the interface, and then add code to fill in the gaps. That’s not
the problem, they tell me. The problem is that they don’t know how to gather the user requirements
for the system. They don’t really know what the system should do.

Often the real problem is that the client isn’t prepared to give the programmers a detailed
enough Requirements Statement. In class, the professor distributes a well-defined Requirements
Statement, but in the real world, programmers need to develop this themselves. Unfortunately,
they may not know how to sit down with the prospective user of their system to determine what
is required to satisfy the user’s needs.

That skill—to listen to the user and determine their needs—is something that I now teach to
some extent in all my computer classes, whether they are programming courses, courses on systems
analysis and design, or courses on database management.

Chapter 1: Where Do I Begin? 3

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Planning a Program Is Like Planning a House
A friend of mine is a general contractor and homebuilder. His job is similar to that of a programmer
or system designer. He recently built an addition to a customer’s house. He wouldn’t think of
beginning that work without first meeting with the owners of the house to determine their needs.
He couldn’t possibly presume to know what the owners want or need. The builder’s role, in meeting
with the owners, is largely to listen and then to advise.

My friend the homebuilder tells me that certain homeowners may want a design that is
architecturally unsound—either because their ideas and design are unsafe and would violate
accepted building code regulations or because they would violate local zoning regulations for their
neighborhood. In some cases, he tells me, owners ask for features that he is certain they will later
regret—and probably hold him responsible for. His role as an advisor demands that he inform the
homeowners of these problems.

As soon as my friend believes that he understands what the owners want, he prepares a set of
blueprints to be reviewed by the homeowners. Frequently the owners, after seeing their own vision
on paper, will decide to change something, such as the location of a window or the size of a closet.
The concrete characteristics of the blueprints make it easier to arrive at an agreement between the
builder and owners. The same can be said of a concrete plan for the writing of a program or the
development of a system.

The big advantage of developing a plan on paper is that, while the project is still on paper, it’s
relatively painless to change it. Once the house has been assembled and bolted together, it becomes
much more of a problem to change something.

The same is true of a computer program. Although it’s not physically nailed or bolted together,
once a programmer has started to write a program, changing it becomes very labor intensive. It’s
much easier to change the design of a system prior to writing the first line of code.

In the world of software development, you would be surprised how many programmers begin
work on an application without really having listened to the user. I know some programmers who
get a call from a user, take some quick notes over the phone, and deliver an application without
ever having met them! It could be that the user’s requirements sound similar to something the
programmer wrote last year, so the developer feels that will be good enough for the new client.

Other developers go a step further and may actually meet with the client to discuss the user’s
needs. Nevertheless, sometimes the developer may not be a good listener, or just as likely, the user
may communicate their needs poorly. The result may be that the user receives a program that
doesn’t come close to doing what they wanted it to do.

In this course, we’ll develop a prototype for a real-world application called the Grade
Calculation Project, and then take it through to the complete product. As we progress through the
course together, we will work through one possible solution, but I want you to know that in C++

4 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 1: Where Do I Begin? 5

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

programming, the number of solutions are almost infinite. As I tell my students all the time, there
are many ways to paint a picture. One of the things I love about teaching C++ is that I have never
received the same solution to a project twice. Everyone brings their own unique qualities to the project.

I want you to feel free to take the Grade Calculation Project and make your solution different
from mine. In fact, I encourage it. However, you should stick close to the Requirements Statement
we are going to develop in this chapter.

We Receive a Call from Our “Client”
During my fall semester Visual Basic class, I was lucky enough to be contacted by a client, Joe
Bullina, owner of the Bullina China Shop, who needed a fairly high-tech computer program
written to produce price quotations for the customers in his shop, and I used the development
of his program as the class project for my Visual Basic course.

C++, by its very nature, is much more difficult to learn than Visual Basic, and although I knew
I could ask the students in my C++ class to write the same program in C++, I also knew that
incorporating every feature—particularly the Windows user interface—found in the Visual Basic
version of the China Shop program would be difficult to squeeze into a one-semester C++ course.
Furthermore, I also knew that many of those same Visual Basic students would be present in the
C++ class, and most likely they would be in the mood for a fresh challenge, not a rehash of the
China Shop program.

So I was glad when, one Monday morning, about a week before meeting with my C++ class for
the first time, I received a phone call from Frank Olley, a fellow professor at the university and
dean of the English department. Frank and I knew each other well—in fact, at one time he had
been a teacher of mine. Frank was wondering if I could write a program that he could use to
calculate student grades.

I asked Frank if he had considered using a spreadsheet program such as Excel to do the
calculations—it seemed like a fine application for his requirements.

He told me he had considered Excel, but he ultimately wanted the program to be able to prompt
the user for the correct grade “pieces” necessary to calculate the student’s final grade—something
he didn’t know how to do in Excel.

Frank and I agreed to meet on Tuesday afternoon in his office.

We Meet with Our Client
I arrived at Frank Olley’s office around 2 P.M. on a sunny Tuesday afternoon. Going into the
Liberal Arts building, a large brick building, brought back pleasant memories of my college years.
I hadn’t been in the Liberal Arts building since I graduated some years back—the Computer
Science building was now my haunt.

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

6 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

I found Frank’s office and was greeted by his secretary.
“Hi, I’m John Smiley, I’m here to meet Frank Olley.”
“Just a minute Mr. Smiley. Mr. Olley is expecting you.”
A few moments later, Frank came out of his office.
“Sorry to keep you waiting, John,” Frank said, warmly extending his hand. “I was on the phone

with Robin Aronstram and David Burton. I believe you know who they are.”
Indeed I did. Robin Aronstram is the chairman of the Mathematics department, and David

Burton is the chairman of the Science department.
“I hope you don’t mind if Robin and David attend our meeting,” Frank continued, “I think

they may want to piggyback some requirements of their own on top of mine.”
“Piggyback?” I asked.
“That’s right, John,” Frank replied. “I saw them both in the faculty dining room today at

lunch, and I mentioned to them that you were coming over to discuss writing a program to
calculate student grades. They were wondering if you could include their requirements in the
program also.”

“I don’t see why not,” I said. Just then, Robin and David arrived. During the course of the
next 20 minutes or so, the three of them laid out for me their unique requirements. There was a
commonality in that each one required a program that could calculate the final grade for a student
in their own department—English, Math, or Science. On the other hand, each had their own
requirements.

NOTE
This project, though “real world,” has been simplified a bit for learning purposes.
Most notably, it will not have a Windows interface but will take the form of a C++
console application.

“The English department,” Frank Olley explained, “calculates the final grade for a student
taking an English course as 25 percent of their midterm grade, 25 percent of their final examination
grade, 30 percent for a semester-long research paper, and—because we expect our students to be
able to speak in public and make oral presentations—20 percent for a half-hour-long class
presentation.”

“The Science department is similar,” David chimed in, “except that we don’t require a class
presentation. We calculate the grade for a student taking a science course as 40 percent of their
midterm grade, 40 percent of their final examination grade, and 20 percent for a semester-long
research paper.”

Robin then explained that for a student taking a math course, only a midterm and final examination
grade entered into the equation. “Each counts 50 percent toward their final grade,” she said.

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Those requirements don’t seem terribly complicated,” I assured them. “Do you have any
details in mind as to what you want the program to look like?”

“Not really,” Frank said. “I guess we were really hoping that you could take care of those
details. Don’t get us wrong. We know what we want the program to do—that is, calculate a
student’s grade. Beyond that, our biggest requirement is that the program be simple to use.”

“Can you think of anything else?” I asked.
“Eventually, we’d like to have the program be accessible from the Web,” David added. He

hesitated for a moment and then added hopefully, “What do you think? The program doesn’t
sound too difficult, does it?”

Famous last words, I thought to myself. “No David, it doesn’t,” I said, “I could probably write
this program in an hour or so….”

Robin noticed that my voice had trailed off.
“What’s wrong?” she asked.
“Nothing’s wrong,” I said, “I was just thinking.”
I explained to Frank, Robin, and David that on Saturday I would be meeting with my Introduction

to Programming with C++ spring semester class for the first time. I then went on to explain to
them that in my fall semester Visual Basic course, the class and I had developed a real-world
application for a client in West Chester.

“Perhaps,” I said, “this time around, I could have them work on your requirements as their
class project.”

Frank looked excited and nervous at the same time. “How would that work?” he asked.
“Well,” I said, “each semester I give my C++ programming students a project to work on. C++

is a bit more complicated than Visual Basic, so although I was tempted to have them work on the
same project as my fall semester Visual Basic students, I really thought that might be too much for
a first C++ class. However, your project sounds ideal, and I think it will excite them. It’s better than
anything I could ever dream up, because it’s real with a real client—you—expecting real results.
And your requirements, though they seem simple enough from a user point of view, have a few
quirks that will make it pretty challenging from a C++ programming perspective.”

I looked at the group for a reaction. I saw a look of unease on David’s face.
“I can take these requirements,” I continued, “distribute them to my students on Saturday, and

over the course of the semester, they can write the program for you. By the end of the semester,
you’ll have your program, and they’ll have some real experience under their belts. Unless of course,
you’re in a huge hurry.”

“No,” Frank said. “As long as they finish the program by the end of the spring semester, we can
use the program to calculate the grades in each of our departments. Of course, I’m guessing that
the program your students write won’t be as sophisticated as one that you would write. After all,
your students are just beginners.”

Chapter 1: Where Do I Begin? 7

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

8 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

“To some degree that’s true, Frank,” I said. “Most notably, the program we produce for you
won’t have a Windows user interface. It will be something that in the C++ world we call a console
application.”

“Like an old DOS program?” Robin chimed in.
“That’s right, Robin,” I said. “Developing a Windows user interface in an introductory C++

program is really way beyond the scope of the class, but bearing in mind that you eventually want
this program to be available on the Web, and that’s something we can easily do in the JavaScript
class I’ll be teaching this summer.”

“So we’ll start out with a C++ console application to calculate the spring semester grades,”
Frank said, “and then have a Web version available for the fall semester?”

“That shouldn’t be a problem, Frank,” I said. “And I’ll be working with them every step of the
way. You can expect a top-notch program, and I have no doubt that we can finish the first version
on time for you to use in May.”

I must have said the magic words; at this, Frank smiled, extended his hand and said, “That sounds
like a deal to me.”

“There’s just one more thing, Frank,” I said sheepishly.
“What’s that, John?” he asked.
“Would it be possible to pay my students something for the development of the program?”

I asked. “It doesn’t have to be much, but paying them will permit them to legitimately cite this
experience as paid professional experience.”

“I’m sure there’s something in the English department budget to pay them,” Frank said smiling.
“How about the Math and Science departments?”

“That shouldn’t be a problem,” Robin said. “You mentioned that your fall semester Visual Basic
class wrote a program for a local business. How much did you charge him?”

“He paid us $450,” I said. “I was able to give each one of my students $25.”
“Sounds like a bargain to me,” David said. “I’m sure each of our departments will be able to

kick in $150 for your students work—sounds like a great idea to me.”
As I prepared to leave, I warned the group that what we had done this afternoon merely

represented the first step—the tip of the iceberg, so to speak—in a six-step process known as the
Systems Development Life Cycle (SDLC). The first phase, the Preliminary Investigation, had
begun and ended with our initial interview. Five phases of the SDLC remained.

As I walked to the door, Frank and I mutually agreed that I would deliver to him, in a week or so,
a Requirements Statement drawn from the notes taken at today’s meeting. I warned the group that
when they read the Requirements Statement, the possibility existed that they would find some things
that I had misinterpreted, and perhaps some things that they would be sure they had mentioned
wouldn’t appear at all. I told them that the Requirements Statement would act as a starting point for
their project. Until I received a confirmation from them confirming the requirements, neither my
student team nor I would proceed with the development of the program.

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 1: Where Do I Begin? 9

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

As I walked out the door of Frank’s office, we all exchanged warm good-byes. Frank, David,
and Robin are all genuinely likable people, and I hoped this experience would be a rewarding one
for them and the students in my class. I left Frank, Robin, and David discussing an upcoming
freshman social, and I headed off to teach a late-afternoon class at the university.

The Systems Development Life Cycle (SDLC)
During my walk to my class, I gave a lot of thought to Frank’s program. The more I thought
about it, the more I believed that having my students write the program was a great idea, and I
was sure they would think so too. Working on a real-world application would be a great practical
assignment for them. Even more so than something I made up, this project would give each of
them a chance to become deeply involved in the various aspects of the SDLC. For instance:

� Someone in the class would need to work on the user requirements.

� Someone else would be involved in a detailed analysis of the grading program.

� Everyone would be involved in coding the program.

� Some students would work on installing the software.

� Some students would be involved in training and implementation.

Four days later, on Saturday morning, I met my Introduction to Programming with C++ class
for the first time. For the last few semesters, my university has been using both Visual Basic and
C++ as the introductory programming languages. Probably nothing is as easy as Visual Basic to
learn, and probably nothing is as flexible and platform independent as C++.

As is my custom during my first class, I took roll and asked each of the students to write a brief
biography on a sheet of paper. Doing this gives me a chance to get to know them without pressuring
them to open up to a room full of strangers, although many of them will become good friends
during the course of the class.

I only called out their first names, because I like to personalize the class as much as possible. Usually,
I have some duplicated first names, but this semester, that wasn’t a problem.

“Valerie, Peter, Linda, Steve, Katherine Rose.”
“If you don’t mind, just call me Rose,” she said.
“Rhonda, Joe, John.”
“Jack, if you don’t mind.”
“Barbara, Kathy, Dave, Ward, Blaine, Kate, Mary, Chuck, Lou, Bob.”
That makes 18 students.

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

10 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

After giving them 15 minutes to write, I collected their biographies and began to read them. A
few had some programming experience using languages that were a bit dated. A number were looking
to get into the exciting world of computer programming, either because they had an opportunity
at work or believed one would open up shortly. A couple of them were people looking to get into
the workforce after years away from it. One of the students, Chuck, was just 15, a local high
school student. Another student, Lou, was permanently disabled although he didn’t look it, and
he wrote that his disability would probably end up restricting him to a wheelchair.

My classroom is about 40 feet by 20 feet, and there are three rows of tables containing PCs.
Each student has their own PC, and at the front of the room I have my own, cabled to a projector
that enables me to display the contents of my video display.

My first lecture usually involves bringing the class up to a common level so that they feel
comfortable with both the terminology and methodology of using a PC-based environment. This
time, however, instead of waiting a few weeks before introducing the class project, I could hardly
wait to tell them. In the first few minutes of class, I introduced the students to the Grade Calculation
Project. Just about everyone in the class seemed genuinely excited at the prospect of developing a
real-world application. They were even more excited after I offered to split the profits with them.
For most of the class, this was their first programming course—and at its conclusion, they would
all be paid as professionals, with a legitimate project to add to their resumes.

“You mean this course isn’t going to be the usual ‘read the textbook and code the examples’
course?” Ward asked.

“Exactly,” I said. “We’ll be developing a real-world application and getting paid for it!”
“How will we know what to do?” Rose asked nervously.
I explained that in today’s class, we’d actually develop a Requirements Statement.
“A Requirements Statement,” I said, “is just an agreement between the contractor (in this case,

us) and the customer (in this case, Frank, Robin, and David) that specifies in detail exactly what
work will be performed, when it will be completed, and how much it will cost.”

I continued by explaining that at this point, all we had were my notes from my initial interview
with them. For the most part, this was just a quick sketch of the program. Although we might very
well have produced a quick sketch of the user interface in the following hour or so, the students still
did not know how to write a single line of code in C++. There was still much to learn! Furthermore,
although we could probably pretty easily come up with a sketch of what the program would look
like, we still needed to concern ourselves with the processing rules (for example, the grade
components) that Frank, Robin, and David had given to me during our meeting.

TIP
Processing rules are also known as either business rules or work rules.

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Can you give us an example of a business rule?” Peter asked.
“Sure, Peter,” I answered. “A good example would be a Web-based ticket-purchasing site, where

customers are typically restricted from ordering large quantities of tickets. The web site might
have a business rule that prohibits the same customer from purchasing more than four tickets to
the same event.”

“That very thing happened to me just last week,” Valerie said. “I tried to purchase an entire
row of tickets to the upcoming Elton John concert, but the web site restricted me to just four.”

I pointed out that I had agreed to drop off the Requirements Statement to Frank Olley
sometime before we met for class next Saturday. I told my class that there was the possibility that
the Requirements Statement would have some mistakes in it, and even some missing items. Frank
might very well see something on the Requirements Statement that will cause him to think of
something else he wants to the program to do. I cautioned the class not to be too hasty at this
point in the project. There was still a lot of planning left to do!

“Such hastiness,” I said, “is exactly why the Systems Development Life Cycle was developed.”

TIP
The SDLC was developed because many systems projects were developed that did not
satisfy user requirements and because the projects that did satisfy user requirements
went over budget or over time.

I saw some puzzled looks. I explained that the Systems Development Life Cycle (SDLC) is a
methodology that ensures that systems are developed using a logical, step-by-step approach. There
are six steps, known as phases, in the Systems Development Life Cycle:

NOTE
Different companies may have different versions of the SDLC. The point is that just
about everyone who does program development can benefit from one form or other
of a structured development process such as this one.

� The Preliminary Investigation phase

� The Analysis phase

� The Design phase

� The Development phase

� The Implementation phase

� The Audit and Maintenance phase

I continued by explaining that out of each phase of the SDLC, a tangible product, or deliverable,
is produced. This deliverable may consist of a Requirements Statement, or it may be a letter

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

Chapter 1: Where Do I Begin? 11

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

informing the customer that the project cannot be completed within their time and financial
constraints. An important component of the SDLC is that at each phase in the SDLC, a conscious
decision is made to either continue development of the project or drop it. In the past, projects
developed without the guidance of the SDLC were continued well after common sense dictated
that it made no sense to proceed further.

“Many people say that the SDLC is just common sense,” I said. “Let’s examine the elements of
the SDLC now. You can judge for yourself.”

Phase 1: The Preliminary Investigation
I told my class about my meeting with Frank, Robin, and David, which essentially constituted
the Preliminary Investigation phase of the SDLC.

“This first phase of the SDLC,” I said, “may begin with a phone call from a customer, a
memorandum from a vice president to the director of systems development, or a letter from a
customer to discuss a perceived problem or deficiency or a requirement for something new in an
existing system. In the case of the Grade Calculation Project, it was a desire on the part of Frank
Olley to develop a program to calculate the grades of English students in his department—of
course, you already know how it’s quickly grown beyond that to include the Math and Science
departments.”

I continued by explaining that the purpose of the Preliminary Investigation phase is not to
develop a system but to verify that a problem or deficiency really exists, or to determine whether
a brand-new requirement makes sense to pursue.

The duration of the preliminary investigation is typically very short—usually not more than
a day or two for a big project—and in the instance of the Grade Calculation Project, it was about
an hour.

The end result, or deliverable, from the Preliminary Investigation phase is either a willingness
to proceed further or the decision to call it quits. What influences the decision to abandon a potential
project at this point? There are three factors, typically called constraints, that result in a go or
no-go decision:

� Technical The project can’t be completed with the technology currently in existence.
This constraint is typified by Leonardo da Vinci’s inability to build a helicopter even
though he is credited with having designed one in the sixteenth century. Technological
constraints made the construction of the helicopter impossible.

� Time The project can be completed, but not in time to satisfy the user’s requirements.
This is a frequent reason for the abandonment of the project after the Preliminary
Investigation phase.

12 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

� Budgetary The project can be completed on time to satisfy the user’s requirements, but
the cost is prohibitive.

“In the case of the Grade Calculation Project,” I told my students, “Frank and I never came
close to dropping the project. This is a project that all of us really want to pursue. And paying us
something to do the programming is just icing on the cake!”

Needless to say, the students and I formally decided to take on the project and proceed with the
second phase of the SDLC.

Phase 2: Analysis
The second phase of the SDLC, the Analysis phase, is sometimes called the Data Gathering phase.

I told my students that in this phase we study the problem, deficiency, or new requirement in
detail. Depending on the size of the project being undertaken, this phase could be as short as the
Preliminary Investigation phase, or it could take months.

I explained that what this meant for my class was potentially another trip to the Liberal Arts
building to meet with Frank, Robin, and David to gather more detailed requirements or seek
clarification of information gathered during the preliminary investigation.

I warned my students that as developers, we are inclined to believe that we know everything
we need to know about the project from our preliminary investigation. However, you would be
surprised to find out how much additional information we can glean if we spend just a little more
time with the user.

You might be inclined to skip portions of what the SDLC calls for, but it forces you to follow a
standardized methodology for developing programs and systems. As you’ll see shortly, skipping
parts of the SDLC can be a big mistake, whereas adhering to it ensures that you give the project
the greatest chance for success.

I told the class that although some developers would make the case that we have gathered enough
information in Phase 1 of the SDLC to begin programming, the SDLC dictates that Phase 2 be
completed before the actual writing of the program begins.

Chapter 1: Where Do I Begin? 13

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“The biggest mistake we could make at this point would be to begin coding the program. Why is
that? As we’ll see shortly, we need to gather more information about the business from the ‘owners’—in
this case Frank, Robin, and David. There are still some questions that have to be asked.”

In discussing the SDLC with the class, I discovered that one of my students, Linda, had some
systems-analysis experience. Linda offered to contact Frank Olley to set up an appointment to spend
part of the day with the person who currently calculates the grades for the English department.
This meeting would fulfill the data-gathering component of the Analysis phase. In the short time
I had spent with Linda, I sensed she had a great communicative ability, so I felt very comfortable
having Linda tackle the Analysis phase of the SDLC.

Typically, our first class meeting is abbreviated, and because we were basically frozen in time
until we could complete Phase 2 of the SDLC, I dismissed the class for the day. Prior to Linda’s
meeting with Frank Olley, I sent him the following e-mail.

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

14 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

Hi Frank,
I want to thank you for taking the time to meet with me last Tuesday afternoon. As I

discussed with you at that time, it is my desire to work with you in developing a program
that can calculate student grades for the English, Math, and Science departments.

The program will be developed as part of my Introduction to Programming with C++
computer class at the university. As such, your costs will be $450, payable upon final
delivery of the program. In return, you agree to allow me to use your contract to provide
my students with a valuable learning experience in developing a real-world application.

Sometime during the coming week, one of my students, Linda Schwartzer, will be
contacting you to arrange to spend some time meeting with the person or persons who
currently calculate grades in the English department. Although you may not see the necessity
of this additional meeting, it will satisfy the next phase of the Systems Development Life Cycle
I discussed with you at our meeting. Adhering strictly to the SDLC will result in the best
possible program we can develop for you.

I’d like to take this opportunity to highlight the major points we discussed last week. We
will develop a PC-based program, for you, with an eye toward Web-enabling it in my summer
JavaScript course. Here are the major functions that the developed program will perform:

1. This program will provide the user with a console application C++ interface for
calculating a student’s grade.

2. The user will be requested to designate the type of student—English, Math, or
Science—for which they wish to calculate a grade.

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

This e-mail, in essence, will become the Requirements Statement that we will formally develop
shortly. The next day I received the e-mail on the following page from Frank Olley.

Complicate the program? Sure, a bit. I was sure Linda would more than likely find other surprises
as well. This new requirement was about par for the course. I checked my notes, and Frank was
correct—he never mentioned it. Of course, a good developer can anticipate requirements such as
these. I just missed it.

Linda called me on Monday morning to tell me that she had arranged to meet with Frank
Olley on Thursday morning. That Thursday evening, Linda called to tell me that her observations
of the English, Math, and Science departments current operations had gone well. Contrary to
what I expected, she saw nothing in her observations of their day-to-day operation that contradicted
the notes I took during my preliminary investigation.

Chapter 1: Where Do I Begin? 15

3. If the user indicates they wish to calculate the grade for an English student, the
program will prompt them for a midterm examination grade, a final examination
grade, a research paper grade, and a presentation grade. The final grade will be
calculated as 25 percent of the midterm examination grade, 25 percent of the final
examination grade, 30 percent of the research paper grade, and 20 percent of the
presentation grade.

4. If the user indicates they wish to calculate the grade for a science student, the
program will prompt them for a midterm examination grade, a final examination
grade, and a research paper grade. The final grade will be calculated as 40 percent of
the midterm examination grade, 40 percent of the final examination grade, and 20
percent of the research paper grade.

5. If the user indicates they wish to calculate the grade for a math student, the program
will prompt them for a midterm examination grade and a final examination grade.
The final grade will be calculated as 50 percent of the midterm examination grade
and 50 percent of the final examination grade.

6. Once calculated, the final grade will then be displayed.

I think I’ve covered everything that we discussed last Tuesday. If I have missed anything,
please let Linda know when she arrives in your office.

Regards,
John Smiley

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

16 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

Linda reported that nothing out of the usual occurred and that it was obvious, from her
observations, that the program would pay for itself in no time. All three departments had work
study students performing the calculations manually—and making lots of mistakes.

That Saturday, I again met with our class. After ensuring that I hadn’t lost anyone in the
intervening week (yes, everyone came back), we began to discuss the third phase of the SDLC—
the Design phase.

Phase 3: Design
“Phase 3 of the SDLC is the Design phase,” I said.

I explained that design in the SDLC encompasses many different elements. Here is a list of the
different components that are “designed” in this phase:

Dear John,
I reviewed your e-mail, and everything looks fine.
One thing we forgot to mention last Tuesday is that the numeric grades need to be converted

to letter grades for report card purposes. Complicating matters is that the letter grade equivalents
of all the departments are different. Here is a table explaining the breakdown.

Grade English
Department

Math
Department

Science
Department

A 93 or greater 90 or greater 90 or greater

B 85 to 93 83 to 90 80 to 90

C 78 to 85 76 to 83 70 to 80

D 70 to 78 65 to 76 60 to 70

F Less than 70 Less than 65 Less than 60

Regards,
Frank Olley

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Typically,” I said, “too little time is spent on the Design phase. Programmers love to start
programming.” I continued by saying that you can hardly blame them; writing a program is
exciting, and everyone wants to jump in and start writing code right away. Unfortunately,
jumping immediately into coding is a huge mistake.

“After all,” I said, “you wouldn’t start building a house without a blueprint, would you? You
simply cannot and should not start programming without a good solid design.”

I pointed out that critics of the SDLC agree that it can take months to complete a house, and
making a mistake in the building of a house can be devastating; writing a C++ program, on the
other hand, can be accomplished in a matter of hours, if not minutes. If there’s a mistake, it can
be corrected quickly.

Even though at this point the class knew very little about C++, they were already familiar with
computer applications of one kind or another—either Microsoft Windows, Macintosh, Linux, or
Web-based programs (a knowledge of one of these is a requirement for the course). Designing and
developing the look of an application program is really independent of the tool that you’ll use to
program it.

I should point out here that my role in the Design phase was to act as a guide for my students.
Frank Olley told us what he wanted the program to do. Like any client, he described his program
requirements in functional terms that he understood. My students were already familiar with
computer applications, but at this point in our course, they were not C++ experts and their
programming knowledge was not sufficient for them to know how to translate Frank Olley’s
requirements into C++ programming terms. Ultimately, it was my job to help them translate
those requirements into C++ terms.

Critics of the SDLC further argue that time constraints and deadlines can make taking the “extra”
time necessary to properly complete the Design phase a luxury that many programmers can’t afford.

“I answer that criticism in this way,” I said to the class, citing a familiar phrase that you have
probably heard before. “It seems there is never time to do something right the first time, but
there’s always time to do it over.”

The exceptional (and foolish) programmer can begin coding without a good design. Programmers
who do so may find themselves going back to modify pieces of code they’ve already written as they
move through the project. They may discover a technique halfway through the project that they wish
they had incorporated in the beginning, and then go back and change code. Worse yet, they may
find themselves with a program that runs but doesn’t really work, with the result that they must go
back and start virtually from the beginning.

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

Chapter 1: Where Do I Begin? 17

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“With a good design,” I said, “the likelihood of this nightmare happening will be reduced
dramatically. The end result is a program that will behave in the way it was intended and,
generally, a shorter overall program-development time.”

Armed with our notes from the preliminary investigation, Linda’s notes from the detailed
analysis, and Frank Olley’s e-mails, my students and I began the Design phase of the SDLC in
earnest. By the end of the Design phase, we hoped to have a formal Requirements Statement for
the program and perhaps even a rough sketch of what the user interface will look like.

I reminded everyone that the Requirements Statement would form the basis of our agreement
with Frank, Robin, and David. For some developers, the Requirements Statement becomes the
formal contract to which both they and the customer agree and sign.

Linda began the Design phase by giving the class a summary of the three or four hours she
spent in the English, Math, and Science departments. Linda said that she felt comfortable in
stating that nothing she had observed that day contradicted the view expressed in my notes and
in my e-mail to Frank Olley.

Not everyone in the class had had the benefit of seeing my notes or the e-mail, so I distributed
to the class copies of my notes, my e-mail to Frank Olley, and his reply e-mail to me. I gave
everyone a few minutes to review and digest the material.

We began to discuss the program requirements. I could see there was some hesitation as to where
to begin, so I began the process with a question. “Let’s begin by making a statement as to what we
are trying to accomplish here,” I said.

“We need to write a program to display the calculated final grade for a student in either the
English, Math, or Science department,” Dave said.

“Excellent,” I said. Dave had hit the nail squarely on the head. The primary purpose of the
program was to calculate a student’s grade. To be sure, there would be more to the program than
that, but from Frank Olley’s point of view, all he needed the program to do was to display a
student’s grade.

“To clarify,” Kate said, “we should probably state the student’s letter grade as opposed to the
student’s numeric grade.”

“Good clarification, Kate,” I said. “Frank did add that in his e-mail, didn’t he?”
Frequently, new programmers are unable to come to grips with where they should begin in the

Design phase. I suggested to my class that most programs are designed by first determining the
output of the program. The reasoning behind starting with the output is that if you know what
the output of the program should be, you can pretty easily determine the input needed to produce
that output. Once you know both the output from and the input to the program, you can then
determine what processing or calculations need to be performed to convert that input to output.

18 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Output Design
I told my students that we were fortunate in that the class’s first project was one where the output
requirements could be stated so simply: a grade calculation.

“Where will the grade calculation go?” I asked.
“To a printer?” Jack suggested.
“On the computer screen,” Rose countered.
“I agree with Rose,” I said. “Probably to the computer screen.”
Some of the students seemed perplexed by my answer. “Probably?” Dave asked.
I explained that Frank Olley and I had never formally agreed where the grade calculation would

be displayed. The issue had never really come up.
“Let’s be sure,” I said, “to explicitly specify a display of the grade calculation in the

Requirements Statement. Speaking of which, would anyone care to volunteer to begin to write up
the specifications for it?” Dave volunteered to begin writing our Requirements Statement, so he
opened Microsoft Word and started typing away.

Rhonda made a suggestion for the color and font size for the program’s grades display, but Peter
said that it was probably a bit premature to be talking about colors and font sizes at this point in
our design. I agreed, pointing out that in this class, we would be creating a C++ console application.

“Do you mean a DOS program?” Peter asked.
“That’s one way of looking at it, Peter,” I answered. “For this introductory-level C++ class,

writing a Microsoft Windows program is definitely beyond its scope. We need to concentrate on
learning good fundamental, object-oriented programming techniques. There are advanced courses
here at the University that can teach you how to develop a program that has a Microsoft Windows
user interface; however, in this class, you’ll learn to write a C++ console application, which will
resemble an old-time DOS program.”

“Will there be any other output from the program?” Rhonda asked, after several moments went by.
“I’d like to suggest that we display the date and time on the computer screen,” Valerie suggested.
“Good idea,” Mary said.
However, Linda disagreed, arguing that the display of the date and time was unnecessary

considering the fact that the PCs at the university were all running Windows and displayed the
current time on the Windows taskbar anyway.

“We could display the current date and time,” I said, “but I’m inclined to agree with Linda—
all the PCs at the university that will run our program are Microsoft Windows–based PCs and are
capable of displaying a date and time on their own. And although it’s true that the beauty of the
C++ programs you will learn how to write in this class is that they can run on virtually any
operating system—and also within a web page—I can’t think of any environment in which the
user can’t be aware of the current date and time if they so desire.”

The majority of the class agreed.

Chapter 1: Where Do I Begin? 19

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Getting back to the display of the grade,” Peter said. “Do you think it would be a good idea to
display the calculated numeric grade as well as the letter grade?”

“Yes, I think that’s a great idea,” Kathy agreed.
Taking a moment to consider, I said, “I agree also. So we now have two output requirements: a

grade calculation that displays both the calculated numeric grade for the student and the corresponding
letter grade. I can’t think of anything else from an output point of view, can you?”

“What about the individual components that make up the grade?” Rhonda asked. “Should we
display those?”

“Great idea, Rhonda,” I said.
“But won’t the user be inputting those values?” Blaine responded. “Is it really necessary to

repeat them.”
“I think it’s a good idea to display the values that the user has input,” I said. “That way, the

user can be sure what component pieces make up the final grade that is being displayed.”
I waited to see whether there were any questions, but there were none.
“I think we now have enough information to proceed to our next step,” I said. “What’s that?

Anyone?”
Barbara suggested that because we seemed to have the output requirements identified—the

component grade pieces that the user has entered, along with a calculated final grade—we should
move on to a discussion of processing.

“As I explained earlier, it will be easier for us if we discuss input into the program prior to
discussing processing,” I said. “It’s just about impossible to determine processing requirements
if we don’t know our input requirements.”

Input Design
“So does anyone have any suggestions as to what input requirements we need?” I asked the class.

Dave quickly rattled off several input requirements: a midterm grade, a final examination
grade, a research paper grade, and a presentation grade.

“Excellent,” I said. “Of course, those requirements will vary depending on the type of student
whose grade is being calculated.”

“Is that another piece of input?” Mary suggested. “The type of student whose grade is being
calculated?”

“Excellent observation, Mary,” I said. “Only for an English student will all four grades be
required. A science student’s final grade is comprised of three component pieces—midterm, final
examination, and research paper—and a math student’s final grade is comprised of only two
pieces—the midterm and final examination grades.

“Anything else?” I asked.

20 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“How will the input be entered into the program?” Kathy asked. “How will the user of the
program let the program know what type of student they are entering?”

Designating the Type of Student Several students suggested that the user of the
program could designate the type of student by entering the type using the computer’s keyboard.

“My motto is to have the user do as little typing as possible,” I said. “If we ask the user of the
program to use the keyboard to enter the type of student into the program, we’re going to have to
insist that each user of the program type it consistently—that’s something we can’t count on. For
instance, one user may type ‘Math,’ another may type ‘Mathematics,’ and still a third may type
‘Calculus.’”

“I see what you mean,” Rhonda said. “But what’s our alternative?”
I could see that some of the students were perplexed about the alternatives to entering the type

of student via the PCs keyboard.
“Can we prompt the user to enter a number instead?” Kathy asked.
“What do you mean, Kathy?” Rhonda asked.
“Well,” Kathy said, “instead of asking the user to type ‘English,’ ‘Math,’ or ‘Science,’ why not

have them type the number 1 for English, the number 2 for Math, and the number 3 for Science?
There’s only one way to type the numbers 1, 2, and 3—that should cut down on user input error.”

“Excellent, Kathy,” I said. “That’s certainly one way—and probably the best way—to handle
this dilemma.”

Designating the Component Grades “OK,” Ward said. “Now that we have come up
with a way for the user to identify the student type, what happens next?”

“I’d like to suggest,” Dave said, “that depending on the value the user enters—1, 2 or 3—that
the program then prompt the user for the appropriate component grades—midterm examination,
final examination, research paper, and presentation.”

“What do you mean by appropriate component grades, Dave?” Rhonda asked.
“Well,” Dave replied, “if the user tells the program that they wish to calculate the grade for

an English student, then the program needs to prompt for all four component pieces—midterm
examination, final examination, research paper, and presentation. If the user tells the program that
they wish to calculate the grade for a math student, then the program needs to prompt for just
two component pieces—midterm examination and final examination. Finally, if the user tells the
program that they wish to calculate the grade for a science student, then the program needs to
prompt for three component pieces—midterm examination, final examination, and presentation.”

“Excellent, Dave,” I said.

Chapter 1: Where Do I Begin? 21

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

22 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

“This sounds like it’s all going to be a lot of fun,” Rhonda said. “I just wish I could envision
what the interface will look like. Do we have to wait until we write the program to see what the
interface will actually look like?”

“Good question, Rhonda,” I said. “No, we don’t have to wait that long. There’s no rule that
says we can’t sketch the user interface using pencil and paper well before that.”

“How can we have an interface if we aren’t designing our program as a Windows program?”
Kate asked.

“I see your point, Kate,” I answered, “but even though our program won’t have a Windows
look and feel, we still need to make some design decisions about how the program will interface
with the user of our program. Without a good interface—whether it be Windows or not—a
program is doomed to failure.”

The First Interface Design As it turned out, during the course of our discussions,
Barbara had been sketching a preliminary interface design. Upon hearing my remarks about
sketching the interface, she offered to show the class what she had sketched so far, and I displayed
it on the classroom projector.

“That looks great, Barbara,” Rhonda said. “Seeing the interface design on paper really makes
this easier for me to envision.”

“I agree, Rhonda,” I said. “And you’ll find that having a blueprint like this will make
programming the interface much easier later on.”

I then asked Barbara if she would mind explaining the interface design to the rest of the class.
“It’s kind of basic,” she said, “but based on our previous discussion, I figured the first thing

we would want to do is to ask the user the type of grade they wished to calculate. I did that by

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 1: Where Do I Begin? 23

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

displaying a message asking them to enter 1 for an English student, 2 for a math student, and 3
for a science student. In the sketch, I’ve presumed they’ve selected 1 for an English student, and
after they’ve typed the number 1, the program then prompts them to enter the component grade
pieces for an English student. I hope this is OK.”

“It’s really great, Barbara,” I said, “exactly what I had in mind. Does anyone have any
suggestions? Don’t be shy now—this sort of collaborative effort is the way things are frequently
done in the real world.”

“I have a suggestion, but I don’t want to appear to be picky,” Blaine said.
“Go ahead, Blaine,” Barbara answered. “I realize this is a bit rough.”
“I was going to suggest that there’s no title or identifying caption for the program,” he answered.

“Someone walking by the PC wouldn’t know what the user was working on. I guess the interface,
while perfectly functional, just seems a bit ‘unfriendly’ to me.”

“Blaine’s right,” Barbara answered. “I didn’t include any such element in the sketch. Should I
be that detailed here?”

“It can’t hurt,” I said. “It’s one less thing to forget when it comes time to actually write our code.”
“I can fix that,” Barbara said, and in a minute, version 2 of the interface design was displayed

for everyone to see—this one having a user-friendly message, thanking the user for using the program.

“Anything else?” I asked.
“I’d like to suggest,” Dave said, “that we repeat the grades that the user has entered, and that we

right justify both the grades and the calculated answer.”
“I’m not sure what you mean, Dave,” Barbara said. “Why don’t you take over here?” She then

handed Dave her sketchpad.

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“I’m not much of an artist,” Dave said, but in a minute or two he had modified Barbara’s
sketch to look like this.

“Oh, I see,” Rhonda said, “Dave’s changes have ‘neatened up’ the interface quite a bit.”
“This is starting to shape up quite nicely,” Steve said.
That seemed to be the majority opinion of the class. I waited to see if there were any other

suggestions.
“I have a question.” Chuck said. “Is the program going to end after the user calculates just one

grade? Shouldn’t we ask the user if they have any more grades to calculate?”
“Chuck’s right,” Barbara said, “I never thought of that!”
“That’s a great point, Chuck,” I said, “I’d like to suggest that the first thing we do is ask the

user if they have a grade to calculate. If they answer ‘No,’ we immediately thank them for using
the program, and end it. If they answer ‘Yes,’ then we ask them the type of student they wish to
calculate. After prompting them for the appropriate data, we display the final grade, and then ask
them if they have another grade to calculate. If they answer ‘Yes,’ then once again we prompt
them to tell us the type of student they wish to calculate….”

“And we repeat the process all over again,” Ward chimed in. “Sounds like a perfect application
for a loop?”

“A what?” Rhonda asked.
“A loop is a programming structure,” I said smiling, “and it’s something that you’ll learn about

a few weeks from now. Until then, please don’t worry about it.”

24 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 1: Where Do I Begin? 25

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

I noticed that Barbara had finished making my suggested changes to her sketch, and I took it
from her and displayed it on the classroom projector.

“That really is beginning to shape up,” Ward said. “Did we forget anything?”
“I can’t think of anything,” I said. “But the great thing about doing the design on paper first

is that if you do forget anything, it’s a matter of making some changes to a sheet of paper, not to
your program code.”

I waited to see if there were any questions, but there were none.

The Requirements Statement We had been working pretty intensely and, in my
opinion, making some excellent progress, so I suggested that we take a break. Before adjourning,
I asked Dave, the student who was developing the Requirements Statement, to let us see what he
had developed so far. I made copies of his work. After the break, I handed these out to the rest of
the class for discussion. On the following page is the copy of the Requirements Statement I gave
to everyone.

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

26 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

REQUIREMENTS STATEMENT
Grades Calculation Program

General Description
The program will consist of an interface in which the user will be asked if they have a grade
to calculate.

� If the answer is No, the program will thank them and immediately end.

� If the answer is Yes, the program will prompt them for the type of student for which
they wish to calculate a grade. Depending on the answer, the user will then be
prompted to enter the appropriate component grades (see Business Rules below).

After displaying both a calculated numeric and letter grade, the program will ask the user if
they have another grade to calculate.

� If the answer is Yes, once again the program will prompt the user for a student type
and the appropriate grade component pieces.

� If the answer is No, the program will thank them and immediately end.

Output from the System
The student’s final numeric grade and letter grade will be displayed. In addition, the
program will indicate the type of student for which it has displayed a grade, and repeat (or
echo back) the values it used to calculate the grade.

Input to the System
The user will specify the type of student whose grade is to be calculated by entering 1 for an
English student, 2 for a math student, or 3 for a science student.

� If an English student, the midterm, final examination, research paper, and class
presentation grades will be prompted for and entered by the user.

� If a math student, the midterm and final examination grades will be prompted for
and entered by the user.

� If a science student, the midterm, final examination, and research paper grades will
be prompted for and entered by the user.

Business Rules
An English student’s grade is calculated as 25 percent of the midterm grade, 25 percent of
the final examination grade, 30 percent of the research paper grade, and 20 percent of the
class presentation grade.

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 1: Where Do I Begin? 27

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

I explained to the class that the Requirements Statement can easily form the basis of a contract
between the customer and the developer of the program. The Requirements Statement should list
all the major details of the program. You should take care not to paint yourself into any unnecessary
programming corners by including any window dressing. These can just get you into trouble later.
For instance, notice here that we didn’t specify the exact text of how we would thank the user for
using our program, and we didn’t mention the welcome message the program would display
(although we did include these details on our sketch). Suppose, for instance, we later decided
against displaying a welcome message—theoretically, deviating from the Requirements Statement
could be construed as a violation of contractual terms.

I asked for comments on the Requirements Statement, and everyone seemed to think that it
was just fine. Everyone agreed that the project was coming along quite nicely, but as they say, the
proof is in the pudding. It’s only the customer’s opinion that counts, and we’d have to see how
Frank, Robin, and David felt about it. With no more comments or suggestions on the user interface
or the Requirements Statement, we set about completing the Design phase of the SDLC by
looking at processing.

Processing Design
“Processing is the conversion of inputs to outputs, the conversion of data to information,” I said.
“At this point in the Design phase of the SDLC, we should now have identified all the output

A math student’s grade is calculated as 50 percent of the midterm grade and 50 percent
of the final examination grade.

A science student’s grade is calculated as 40 percent of the midterm grade, 40 percent of
the final examination grade, and 20 percent of the research paper grade.

Each department has unique letter grade equivalents for the student’s calculated final
numeric average. Here is a table of the letter grade equivalents:

Grade English
Department

Math
Department

Science
Department

A 93 or greater 90 or greater 90 or greater

B 85 to 93 83 to 90 80 to 90

C 78 to 85 76 to 83 70 to 80

D 70 to 78 65 to 76 60 to 70

F Less than 70 Less than 65 Less than 60

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

28 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

from the program—a calculation of the student’s grade—and all the input necessary to produce
that output—the component pieces of the grade.”

I explained that a good novel will typically have several subplots; a C++ program is no exception.
It contains several processing “subplots” as well.

We have the main plot (the calculation of the student’s grade), but we also have several subplots:

� Determining the type of student whose grade is being entered

� Selectively displaying the appropriate prompts for component grades based on the
student type selected

� Ensuring that valid data is entered as a response to the prompts

� Making the appropriate calculation

� Displaying the calculated grade

It’s important to note that in processing design, we don’t actually write the program. That’s
done later. In processing design, we specify the processes that need to be performed to convert
input into output.

Looking at Processing in Detail “Let’s look at a simple example that isn’t part of the
Grade Calculation Project and that most of you are probably familiar with,” I said. “The calculation
of your paycheck.”

I continued by saying that if you want to calculate your net pay, you need to perform several
steps. Here are the steps or functions necessary to calculate your net pay:

1. Calculate gross pay.

2. Calculate tax deductions.

3. Calculate net pay.

NOTE
Programming is done in the next phase of the SDLC, the Development phase.
Specifying how processing is to occur is not as important in this phase as specifying
what is to occur. This sequence identifies the “what” of processing, not the “how.”
The how is a part of the Development phase.

These functions can be broken down even further. For instance, the calculation of your gross
pay will vary depending on whether you are a salaried employee or an hourly employee. If you are
an hourly employee, your gross pay is equal to your hourly pay rate multiplied by the number of
hours worked in the pay period. The specification of these functions is exactly what the designer
must detail in the Processing Design phase of the SDLC.

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 1: Where Do I Begin? 29

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

When it comes to processing design, documenting the processing rules is crucial because translating
processing rules into a narrative form can sometimes result in confusion or misinterpretation. Over the
years, systems designers have used various tools to aid them in documenting the design of their systems.

Some designers have used tools called flowcharts. Flowcharts use symbols to graphically
document the system’s processing rules. Here are the net pay processing rules we discussed earlier
depicted by a flowchart. (My apologies to any accountants reading this; these calculations have
been simplified for illustration purposes.)

Other designers favor pseudocode. Pseudocode is an English-like language that describes in
nongraphical form how a program should execute. Here are the same net pay processing rules
depicted using pseudocode:

Assumption: Pay is calculated on a weekly basis (52 pay periods per year).
Assumption: Salaried employee pay is annual salary divided by 52.
Assumption: Hourly employee pay is hourly rate multiplied by hours worked.

1. If employee is salaried, go to step 4.

2. If employee is hourly, calculate gross pay equal to hourly wage rate multiplied by hours
worked in pay period.

3. Go to step 5.

4. Employee is salaried, so calculate gross pay equal to annual salary divided by 52.

5. Calculate federal tax withheld equal to gross pay multiplied by 0.28.

6. Calculate state tax withheld equal to gross pay multiplied by 0.03.

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

7. Calculate total tax withheld equal to federal tax withheld plus state tax withheld.

8. Calculate net pay equal to gross pay less total tax withheld.

NOTE
Both of these techniques found favor in the era of the procedural program. A
procedural program is one that executes from top to bottom, virtually without
interruption. A procedural program ordains to the user exactly how they will interact
with your program. For instance, in the Grade Calculation Project, the user will select
a type of student and then enter values for component grade pieces, such as the
midterm or final examination grade. I frequently find students who have strong
programming backgrounds writing procedural programs. Procedural programming
(using languages such as Basic, Fortran, and COBOL) is like taking a ride on a tour
bus, where all the destination stops are predetermined and preordered.

Windows programs are event-driven programs. Event-driven programs (using
languages such as Visual Basic, Java, and C++) don’t force the user to behave in a certain
way; rather, the program reacts to the user. An event-driven program presents users
with a visual interface that permits them to interact with the program. This is more
like someone choosing the rides at a carnival. Once entry has been gained, the rides
they go on and the order in which they ride them are entirely up to the patrons. An
event-driven program must be able to work and respond to any eventuality.

“In my classes,” I said, “I don’t require the use of either flowcharting or pseudocode. All that I
ask from you is that you give careful thought to the processing that is necessary to solve the problem
before beginning to code in C++.”

I could see some happy faces, and I continued by saying that, invariably, this means working
out a solution on a piece of paper prior to coding it. Some students are more visually oriented
than others and prefer to design their solution in graphical terms. Others are less visual, and their
solutions look very much like the pseudocode you saw earlier. The point is, without some written
plan, the programming process can go awry.

I cited an example. Several years ago, I was teaching a class on another language called
COBOL, and I gave my students the following programming problem:

Write a program to calculate the net wage of a laborer who works 40 hours at a pay rate of $5 per
hour. Income tax at the rate of 20 percent of the gross pay will be deducted. What is the net pay?

The correct answer is $160. Forty hours multiplied by $5 per hour results in a gross pay of $200. The
income tax deduction is 20 percent of $200, which is $40. $200 less the $40 income tax deduction
results in a net pay of $160.

30 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

A number of students calculated the net pay as $240. Instead of deducting the income tax
deduction of $40 from the gross pay, they added it instead. When I questioned the methodology
behind their incorrect answer, most of them told me they thought the problem had been so simple
that they hadn’t bothered to work out the solution on a piece of paper ahead of time. They just
started coding. Had they taken the time to work out the solution on paper first, they would have
known what the answer was and wouldn’t have submitted a program to me that calculated the
results incorrectly.

“This is what I’m suggesting to you,” I said to the C++ class. “Take the time to work out the
solution on paper. You’ll be happy that you did.”

Back to the Grade Calculation Program We continued by discussing processing
design. I reminded my students that, in general, design is an iterative process. It’s rare that the
designer or programmer hits the nail perfectly on the head the first time. It’s very possible that
after going through the processing design, you will discover you are missing some crucial piece of
input necessary to produce a piece of output. In that case, you would need to look at your input
processing again. For instance, with the Grade Calculation Program, we could have forgotten to
ask the user to specify the type of student whose grade they wished to calculate—such an omission
would have catastrophic consequences.

As a starting point in our processing discussion, we agreed to begin with our primary goal: to
calculate a student’s grade. We had already determined that in order to calculate a grade, we needed
to know the type of student and, once we knew that, the individual grade components that made
up the final grade.

We started with a hypothetical user entering a hypothetical student’s information.
“Can anyone tell me,” I asked, “what the final grade for an English student would be if they

scored an 88 on their midterm examination, a 90 on their final examination, an 85 on their research
paper, and a 75 on their class presentation? Plus, can you tell me how you arrive at the result?”

“If I were solving this problem using pencil and paper,” Ward said, “I would take the score for
the student’s midterm grade, 88, and multiply it by .25, giving me a result of 22, which I would
then set aside. I would then take the score for the final examination, 90, and multiply it by .25,
giving me a result of 22.5, which I would then set aside. I would then take the score for the
student’s research paper, 85, and multiply it by .3, giving me a result of 25.5, which I would then
set aside. I would then take the score for the class presentation, 75, and multiply it by .2, giving
me a result of 15, which I would then set aside. Finally, I would take the four set-aside results—
22, 22.5, 25.5, and 15—and add them together to arrive at a sum of 85—which, if we refer to the
Requirements Statement, equates to the letter grade B for an English student.”

“That’s excellent, Ward,” I said.

Chapter 1: Where Do I Begin? 31

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

32 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

“I think we’ve got a problem here,” Chuck said. “I went through the same process Ward just
did, but I come up with a letter grade of C.”

Sure enough, we did have a problem. In looking over the Requirements Statement, it indicated
that for an English student, the numeric grade of 85 equated to both the letter B and the letter C.

“How did that happen?” Kate asked.
“Those are the numbers that Frank Olley supplied in his e-mail,” I said. “Unfortunately, I

missed catching this. Right now, we have a little problem, but I happen to know that Frank is
in his office today. Let’s hope he can give us a quick solution to the problem.”

I pulled out my cell phone (ah, the wonders of modern life!) and gave Frank a quick call. I
explained that in his e-mail to me outlining the numeric grade-letter equivalents, he had used the
phrase “78 to 85” to describe the letter grade of C for an English student and the phrase “85 to
93” to describe the letter grade of B. What happens if the student scores a final numeric grade of
85 right on the nose?

I had to explain the problem once more for Frank and then he apologized and explained that a
numeric grade of 85 was the starting point for a B. Anything less than 85 was a C. I asked him if
the same applied to the other categories, because we also had overlapping there. He said that it did.
Based on our discussion, the class and I reworked that table from the Requirements Statement to
look like this:

Grade English Math Science

A Greater than or
equal to 93

Greater than or
equal to 90

Greater than or
equal to 90

B Less than 93 AND
greater than or
equal to 85

Less than 90 AND
greater than or
equal to 83

Less than 90 AND greater
than or equal to 80

C Less than 85 AND
greater than or
equal to 78

Less than 83 AND
greater than or
equal to 76

Less than 80 AND greater
than or equal to 70

D Less than 78 AND
greater than or
equal to 70

Less than 76 AND
greater than or
equal to 65

Less than 70 AND greater
than or equal to 60

F Less than 70 Less than 65 Less than 60

“That’s better,” I said, admiring my work.
“Maybe for you,” Rhonda responded, “but this reminds me of Algebra, and I think the table

is a lot more difficult to read this way. Do we really have to express the rules for the letter grade
computations this way? Those less-than and greater-than symbols always confused me.”

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 1: Where Do I Begin? 33

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

“In the long run, we’ll be better off,” I said. “The way we’ve phrased the rules for forming the
letter grades isn’t much different from the C++ code we’ll write. Plus, these are expressed in certain
terms, unlike the previous version of the table, which had the overlapping values.”

“Have we missed anything with the grade calculation?” I asked. “Suppose,” I added, “the user
selects a student type of English and enters values for a midterm, a final examination, and a research
paper but fails to enter a value for the class presentation—what should the program do?”

“How can that happen?” Kate asked. “I mean, doesn’t the user have to respond to the prompts
that are displayed?”

“That’s true Kate,” I said, “but it’s possible for the user to simply press the ENTER key, thereby
not providing a value for that particular grade component.”

Everyone agreed that we needed to display some sort of error message if we didn’t have all the
ingredients necessary to arrive at a valid grade calculation—either because the user simply pressed
the ENTER key or because they entered an invalid value (a value less than 0 or greater than 100).
An error message is another form of output.

Now it seemed as though we were gaining momentum. As I mentioned earlier, during the course
of processing design, we may uncover holes in the input or output design, such as the overlapping
grade. That had been the case here. Although it’s certain that we would have eventually noticed
these holes when we were coding the program, fixing these flaws while we were still in the design
phase of the SDLC is much easier and cheaper than fixing them in the midst of programming the
application.

In large projects particularly, portions of a project may be given to different programmers or
even different teams of programmers for coding. It could be some time before flaws in the design
are uncovered—in some cases weeks or even months. The longer it takes to discover these flaws,
the more likely it is that some coding will have to be scrapped and redone. A well thought-out
Design phase can eliminate many problems down the line.

We’d plugged the hole in the grade calculation processing—now it remained to be seen if there
were any other processing design issues.

“What about ending the program?” Steve asked. “Do we need to write code for that?”
I explained that we would need to write a few lines of C++ code to end the program, but that

there was no need to formally state that in the Requirements Statement. After a few moments of
silence, it seemed that we were finished with the Design phase of the SDLC. On the following
page is the final Requirements Statement that the class approved.

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

34 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

REQUIREMENTS STATEMENT
Grades Calculation Program

General Description
The program will consist of an interface in which the user will be asked if they have a grade
to calculate.

� If the answer is No, the program will thank them and immediately end.

� If the answer is Yes, the program will prompt them for the type of student for which
they wish to calculate a grade. Depending on the answer, the user will then be
prompted to enter the appropriate component grades (see Business Rules below).

After displaying both a calculated numeric and letter grade, the program will ask the user if
they have another grade to calculate.

� If the answer is Yes, once again the program will prompt the user for a student type
and the appropriate grade component pieces.

� If the answer is No, the program will thank them and immediately end.

Output from the System
The student’s final numeric grade and letter grade will be displayed. In addition, the
program will indicate the type of student for which it has displayed a grade and repeat (or
echo back) the values it used to calculate the grade.

Input to the System
The user will specify the type of student whose grade is to be calculated by entering 1 for an
English student, 2 for a math student, or 3 for a science student.

� If an English student, the midterm, final examination, research paper, and class
presentation grades will be prompted for and entered by the user.

� If a math student, the midterm and final examination grades will be prompted for
and entered by the user.

� If a science student, the midterm, final examination, and research paper grades will
be prompted for and entered by the user.

Business Rules
An English student’s grade is calculated as 25 percent of the midterm grade, 25 percent of
the final examination grade, 30 percent of the research paper grade, and 20 percent of the
class presentation grade.

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 1: Where Do I Begin? 35

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

I polled the class to see if everyone agreed with the Requirements Statement and then revealed
that we were done with the Design phase of the SDLC. I once again reminded everyone that the
Design phase of the SDLC tends to be an iterative process and that we might find ourselves back
here at some point. We then moved on to a discussion of the fourth phase of the SDLC: the
Development phase.

Phase 4: Development
I told my class that we wouldn’t spend a great deal of time discussing the Development phase here
because the rest of the course would be spent in developing the Grade Calculation Project, in
which they would play an active role!

“The Development phase,” I said, “is in many ways the most exciting time of the SDLC.
During this phase, computer hardware is purchased, if necessary, and the software is developed.
Yes, that means we actually start coding the program during the Development phase. And in this
class, we’ll be using C++ as our development tool.”

A math student’s grade is calculated as 50 percent of the midterm grade and 50 percent
of the final examination grade.

A science student’s grade is calculated as 40 percent of the midterm grade, 40 percent of
the final examination grade, and 20 percent of the research paper grade.

Each department has unique letter grade equivalents for the student’s calculated final
numeric average. Here is a table of the letter grade equivalents:

Grade English
Department

Math
Department

Science
Department

A Greater than or
equal to 93

Greater than or
equal to 90

Greater than or equal to 90

B Less than 93 AND
greater than or
equal to 85

Less than 90 AND
greater than or
equal to 83

Less than 90 AND greater
than or equal to 80

C Less than 85 AND
greater than or
equal to 78

Less than 83 AND
greater than or
equal to 76

Less than 80 AND greater
than or equal to 70

D Less than 78 AND
greater than or
equal to 70

Less than 76 AND
greater than or
equal to 65

Less than 70 AND greater
than or equal to 60

F Less than 70 Less than 65 Less than 60

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

I explained that during the Development phase, we’d constantly examine and reexamine the
Requirements Statement to ensure that we were following it to the letter, and I encouraged all of
them to do the same on their own. I explained that any deviations (and there may be a surprise or
two down the road) would have to be approved either by the project leader (me) or by our clients
(Frank, Robin, and David).

Everyone in the class seemed anxious to begin, but they promised me they would remain
patient while I discussed the final two phases of the SDLC.

Phase 5: Implementation
The Implementation phase is the phase in the SDLC in which the project reaches fruition. I
explained to my students that after the Development phase of the SDLC is complete, we begin to
actually implement the system. In a typical project, what this means is that any hardware that has
been purchased will be delivered and installed in the client’s location.

“In the instance of our clients,” I said, “they already have the equipment. So instead, during the
Implementation phase, the C++ program that we write will be loaded to their PCs.”

Not surprisingly, everyone in the class agreed that they wanted to be there for that exciting day.
Barbara raised the issue of program testing. During the Implementation phase, both hardware

and software are tested. We agreed that students in the class would perform most of the testing of
the program because we agreed that it would be unreasonable and unfair to expect our clients to
test the software that we had developed in a live situation. Naturally, our goal was that when the
software is installed in the English, Math, and Science departments, the program should be bug
(problem) free.

On the other hand, I cautioned them, almost invariably the user will uncover problems that
the developer was unable to generate. We would discuss handling these types of problems in more
detail in our class on error handling.

“I’ve heard the term ‘debugging’ used among the programmers at work,” Valerie said. “Is that
something we’ll be doing?”

“Most definitely, Valerie,” I said. “Debugging is a process in which we run the program,
thoroughly test it, and systematically eliminate all the errors that we can uncover. We’ll be doing
this prior to delivering the program to Frank, Robin, and David.”

I then explained that during the Implementation phase, we would also be training the users of
the program—most likely work study students in the English, Math, and Science departments,
but perhaps Frank, Robin, and David as well. Again, everyone in the class wanted to participate
in user training. Linda noted that she thought that there needed to be two levels of training
performed—one level for Frank, Robin, and David, and a more detailed level of training for
the person or persons actually working with the program.

36 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Several students thought that it would be a good idea to have a student observing the users of
the program during its first week of operation to assist users in the operation of the system and to
ease any computer anxiety that the users might be suffering. I thought this was a great idea and
also pointed out these observations would provide valuable feedback on the operation of the
program from the most important people in the loop—the end users.

In fact, the mention of the word “feedback” led quite naturally into a discussion of the final
phase of the SDLC—the Audit (sometimes called Feedback) and Maintenance phase.

Phase 6: Audit and Maintenance
Phase 6 of the SDLC is the Audit and Maintenance phase. In this phase, someone (usually the
client but sometimes a third party, such as an auditor) studies the implemented system to ensure
that it actually fulfills the details of the Requirements Statement. The bottom line is that the
system should have solved the problem or deficiency or satisfied the desire that was identified
in Phase 1 of the SDLC—the preliminary investigation.

More than a few programs and systems have been fully developed that, for one reason or
another, simply never met the original requirements. The maintenance portion of this phase
deals with any changes that need to be made to the system.

Changes are sometimes the result of the system not completely fulfilling its original requirements,
but they could also be the result of customer satisfaction. Sometimes the customer is so happy
with what they have got that they want more. Changes can also be forced upon the system because
of governmental regulations, such as changing tax laws, while at other times changes come about
due to alterations in the business rules of the customer.

As I mentioned in the previous section, we intended to have one or more members of the C++
class in the English, Math, and Science departments during the first week of system operation.
That opportunity for the user to provide direct feedback to a member of the development team
would more than satisfy the Audit portion of Phase 6.

In the future, we hoped that Frank, Robin, and David would be so happy with the program
that we had written for them that they would think of even more challenging requirements to
request of the class.

Where to from Here?
It had been a long and productive session for everyone. I told my students that in our next meeting
we would start to discuss how a computer works, and we would actually begin to work with C++.

Ward asked me how the progression of the project would work—that is, would we finish the
project during our last class meeting or would we be working on it a little bit each week? I said

Chapter 1: Where Do I Begin? 37

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

that I thought it was important that we develop the program incrementally. Each week we met, we
would attempt to finish some portion of the project. Developing the project in steps like this would
hold everyone’s interest and give us a chance to catch any problems well before the last week of class.

Summary
The aim of this chapter was to tackle the question Where do I begin? You saw that the design of
an application is best done systematically with a definite plan of action. That way, you know that
everything has been taken into account.

A good place to begin is with a Requirements Statement, which is a list of what the program
has to be able to do. Usually, you get the information for this from whoever is asking you to write
the program. It’s a good idea to keep in continuous contact with this person so that any changes
they want can be tackled before it becomes too much of a problem.

A good systematic approach is embodied in the Systems Development Life Cycle (SDLC),
which consists of six phases:

� The Preliminary Investigation phase Involves considering the technical, time, and
budgetary constraints and deciding on the viability of continuing development of the
application

� The Analysis phase Involves gathering the information needed to continue

� The Design phase Involves creating a blueprint of the program’s appearance and
program structure without actually starting any programming

� The Development phase Involves creating the application, including all interface
and code

� The Implementation phase Involves using and testing the program

� The Audit and Maintenance phase Involves making refinements to the product to
eliminate any problems or to cover new needs that have developed

Using the SDLC method can make any problems you encounter in your design more obvious,
making it easier for you to tackle them at a more favorable point in your design, rather than
changing existing code.

38 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 1

P:\010Comp\LearnTo\535-1\ch01.vp
Monday, October 07, 2002 1:45:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter

2
Getting
Comfortable
with C++

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2
Blind Folio 2:39

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
TLFeBOOK

In this chapter, we follow my computer class as the students take their first look at the
C++ environment. The purpose of this chapter is to give you an overview of how to create
a C++ program using Windows Notepad, how to compile it, and how to run it.

Sit Down and Get Cozy with C++
I began our second class by getting straight to the point.

“In today’s class,” I said, “we’re going to concentrate on writing our first C++ program. Let’s
do that now.”

I then started Windows Notepad.
“Are you going to write this program using Notepad?” Ward asked. “Doesn’t C++ have an

Integrated Development Environment—an IDE—like Visual Basic?”
“That’s a loaded question,” I said. “C++ is a language for which many compilers have been

developed. Some of these compilers can be downloaded for free from the Internet, and some
are commercial products that you can purchase here at the University bookstore. There are two
major commercial compilers available—one from Microsoft, and one from Borland. In this class,
we’ll be using the Borland compiler, but the code we write can also be compiled and run successfully
by the Microsoft compiler because both compilers are written to adhere to the ANSI C++ standard.”

“What’s ANSI?” Rhonda asked. “Is that the coding scheme for bits and bytes?”
“No, Rhonda,” I said. “You’re thinking of ASCII. ANSI stands for the American National

Standards Institute. This institute, among other things, provides oversight for various programming
languages that have been developed. ANSI publishes standards for the C++ language, and if
a compiler is developed that adheres to these standards, ANSI provides its ‘stamp of approval.’
Both Borland and Microsoft have produced ANSI standard C++ compilers.”

“Why are we using the Borland product then?” Peter asked. “In our other classes, we used
Microsoft products.”

“We’re using Borland’s C++ compiler in this course,” I explained, “because Borland has made
a version of its compiler available as a free download. Therefore, you won’t have to incur any cost
to use the Borland C++ compiler.”

NOTE
You can download the free Borland compiler from http://www.borland.com/
bcppbuilder/freecompiler/cppc55steps.html. For instructions on installing
it, check out the C++ web page on Professor Smiley’s web site at http://
www.johnsmiley.com/c++/c++.htm.

40 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“The free Borland C++ compiler will be perfectly fine to enable us to produce the console
applications we’ll be creating in this class. Both the Microsoft and Borland commercial C++
compilers permit you to write code in an Integrated Development Environment, such as the
Windows environment, but most C++ students learn by writing their code using an editor such
as Windows Notepad and using a command prompt for the Windows Run button to compile
and run their programs.”

NOTE
The programs we write during this course will also run using the batch compiler
(lc.exe) provided with Microsoft’s Visual C++ package.

“Are you talking about the MS-DOS prompt,” Rhonda said with a worried look on her face.
“I know next to nothing about DOS.”

“Don’t worry, Rhonda,” I said. “Once you have the C++ compiler installed, compiling and
executing your programs isn’t difficult. I’ll be showing you how to do that today—and you’ll
have some exercises of your own to complete later on in the class for reinforcement.”

I waited to see if I was about to lose any of my students. No one got up in a panic to leave
the classroom (you think I’m kidding, but I’ve seen it happen!), and so I began again.

Writing Our First C++ Program
“Creating a C++ program is a three-step process,” I said.

1. Create the source file with a filename extension of .cpp.

2. Use the C++ compiler to create an executable file with a filename extension of .exe.

3. Run the program.

Create the Source File with a Filename Extension of .cpp
“First, we use a text editor—Notepad is easiest in the Microsoft Windows environment—to create
what is known as a source file. The source file is just an ordinary text file containing C++ code. We
then save the C++ source file to the hard drive of our PC, giving it virtually any name of our choice.
However, the name of a C++ source file should end with a period, followed by the letters cpp. This
is called its filename extension. For instance, shortly we’ll create a C++ source file whose name is
ILoveCPlusPlus.cpp…”

Chapter 2: Getting Comfortable with C++ 41

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

TIP
It’s recommended that a C++ source file end with the extension .cpp, but it is
NOT required.

“…where the period followed by the letters cpp is the filename extension.”
I paused to see if I had lost anyone. “Once we use a text editor to create a source file,” I continued,

“we then use a C++ compiler to convert or ‘compile’ that source file into what is called an
executable file.”

NOTE
A C++ compiler that runs on a Windows platform will generate an executable whose
filename extension ends in .exe. A C++ compiler that runs on a Unix or Linux system
creates an executable file, but it need not end in an extension of .exe.

“Is a C++ executable file just like the kind of executable file we created last semester in our
Visual Basic class?” Dave asked.

“That’s right, Dave,” I said. “But remember, a Visual Basic program can run only on a PC that
is running Windows. C++ compilers have been written for just about every operating system in
existence. C++ code is very transportable, which means code written for the Borland compiler in
this class can easily be compiled to run on a Unix or Linux system.”

Again I paused to see if there were any questions before continuing. “Using Notepad to write
our first C++ program is a snap,” I said. “Let’s write a C++ program that will display the message,
‘I love C++!’”

I then entered the following code into Notepad.

42 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Before I discuss this code,” I said, “let’s save this file first by selecting File | Save As from
Notepad’s menu bar, which will then display this window.”

“I like to save all my files in a folder called CPPFiles,” I said, “which is why I’m specifying
‘CPPFiles’ in the ‘Save in:’ drop-down list box. Notice how I have sandwiched the name of my
C++ source file within quotation marks, ensuring that the filename extension ends in cpp. I also
need to specify ‘All Files’ in the ‘Save as type’ drop-down list box. After clicking the Save button,
you should notice that Notepad reflects the new filename.”

“Now that we have a good C++ source file,” I said, “our second step is to compile this source
file into an executable file. To do that, we need to bring up an operating system command prompt.
The command prompt can appear in a number of different places. For instance, it can be a shortcut

Chapter 2: Getting Comfortable with C++ 43

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

44 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

on the Desktop or it can appear in the Control Panel. If you can’t find it, you can just click the
Windows Start | Run button, enter COMMAND.COM or CMD…”

“…and then click the OK button. This will launch the Command Prompt application, and
when the application launches, it should look like this.”

“The prompt shows you the current directory, which is usually ‘Windows’ for Windows 95/98
or ‘WINNT’ for Windows NT. To compile our source code file, we need to change the current
directory to the folder where our C++ source code file is located. To do that, we enter

CD C:\CPPFILES

at the command prompt and press ENTER. The prompt will now change to this.”

“At this point, we can confirm the location of our C++ source file by entering

DIR

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

at the command prompt and pressing ENTER.”

Compile the C++ Source File into an Executable File
“Now we can compile our source file into an executable file,” I said, “which is a file that we can
then execute to see the results of our program. To do that, we enter

bcc32 ILoveCPlusPlus.cpp

at the command prompt and then press ENTER.”

“What happened?” Linda asked. “Are those error messages?”
“We’re OK,” I answered. “These are normal compiler messages. Generating an executable file

from a C++ source file, behind the scenes, is really a two-step process—compilation and then linking.
First, the compiler does its work, and that’s what the first message is telling us. Then something
called a linker does its work—and that’s what the second message is telling us. Any problems with
the C++ source file would manifest themselves in the form of explicit error messages here. We can

Chapter 2: Getting Comfortable with C++ 45

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

46 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

confirm that our C++ source file has been compiled into an executable file by executing the DIR
statement we executed earlier.”

“Notice that our source file has been compiled into an executable file—one ending with the
extension .exe.”

“What does a linker do?” Blaine asked.
“We’ll look at the code in a bit more detail in a moment or two, Blaine,” I answered, “but

you’ll see that writing programs in C++ is frequently a matter of using code that someone else has
already written. This code is found in Standard C++ libraries, and the function of a linker is to
examine your code for references to those libraries and ensure that your executable file can access
those libraries at runtime—in other words, when we run our program.”

“What are those other files,” Kathy asked, “the ones ending in .obj and .tds”?
“The .tds file is something called a debugging file,” I said, “which is a file that can be used to

help you discover logic errors in your program. All compilers provide a way to debug your program,
but the .tds file is unique to the Borland compiler we’re using here in the classroom, and we won’t
be discussing it here in the class.”

“What about the .obj file?” Mary asked.
“The .obj file,” I continued, “is an intermediate file produced by the compiler and is the direct

result of the compiler’s actions on our C++ source file. Do you remember the two messages we
receive when we compile a C++ source file? One is from the compiler, and one from the linker.
The compiler produces the .obj file, and the linker reads it, adds some additional instructions to
it, and then produces the final executable file.”

“So there’s no way to directly execute the .obj file?” Dave asked.
“Exactly, Dave,” I said. “There’s no way to execute an .obj file. The linker must first read the

.obj file, add some instructions to it, and create an .exe file—that’s the file we ultimately execute.”

Common Compiler Errors “I’ve been following along with you,” Rhonda said, “but
when I tried to compile my source file, I didn’t have much luck. I received an error message—

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 2: Getting Comfortable with C++ 47

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

something about not being able to find my file. Does my source file need to be named with the
extension .cpp?”

Oops—Could Not Find File “No, that’s not required,” I said. “The compiler we’re using
here in class—and every C++ compiler I’ve used for that matter—does not require that your C++
source file end in the extension .cpp. Let me check this out for you.”

I took a quick walk to Rhonda’s workstation. The error was simple enough to fix. She had
typed the name of her source file incorrectly. Instead of typing ILoveCPlusPlus, she had typed
ILoveCPlusCPlus. The error message indicated that the compiler simply couldn’t find the file.

“Wow, thanks. I bet I would have stared at that all morning and not have figured out what was
wrong,” Rhonda admitted.

“We’ll take a look at C++ syntax and language errors as we go through the class,” I said, “but
compiler errors—when the compiler simply refuses to work as it did here—are pretty rare. The
error you just triggered, Rhonda, by trying to compile a source file that doesn’t exist, is probably
the most common type of compiler error you’ll encounter.”

Oops—Can’t Find the Compiler “The second most common error is when the
operating system can’t find the C++ compiler—and that’s really a setup issue. In that case, you’ll
receive this error message when you attempt to compile your source file.”

I then intentionally caused the error message that would be displayed if Windows cannot find
the C++ compiler.

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

48 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

“If you receive this error message, it means the ‘path’ to your C++ compiler is not properly
registered on your computer. This is an installation issue, and you’ll need to review the instructions
for the setup and installation of your C++ compiler.”

NOTE
The Borland C++ compiler that we are using in this class requires that you manually
update the PATH environmental setting of the Windows operating system and that
you create two configuration files. Instructions for doing so can be found at my web
site (http://www.johnsmiley.com/c++/c++.htm).

Run the C++ Program
“Now that we have a C++ executable file—that’s the .exe file,” I said, “we can now run the
program simply by executing this statement at the command prompt.”

“That worked!” I heard Rhonda say excitedly.
“Why didn’t we code ‘.exe’ at the end of the filename?” Kate asked.
“It’s not necessary,” I answered, “although we could have done it that way. Also, although we

went to some trouble to name our program using mixed case—that is, a mixture of upper- and
lowercase letters to make the name more readable—we could type the name of the executable like
this and the program would still run.”

“Is it the compiler that’s executing our program now?” Peter asked.
“No, it’s the operating system,” I said. “In this class, we’re compiling our source code into

a Windows executable file. It’s actually Windows that is running the program when we type
its name at the command prompt.”

“Are you going to explain this code?” Rose asked.

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 2: Getting Comfortable with C++ 49

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

“You bet, “ I answered.
I suggested that because we had been working for a while, it would be a great time to take a break.

Elements of a C++ Program
Fifteen minutes later, I debated with myself as to whether I should begin my discussion of the
code with a full-fledged entry into object-oriented programming or whether I should simply
explain what the code was doing and then relate it to object-oriented programming—something
that can be confusing to beginner students but is something that C++ excels at. Finally, I decided
to begin with a simple discussion of the code, so I displayed it on the classroom projector.

/*

This program displays "I Love C++" to the Standard Output

*/

#include <iostream>

int main()

{

std::cout << "I Love C++";

return 0;

}

Program Comments
“These first three lines of code,” I said, “are program comments. Program comments are
explanatory statements that you can include in the C++ code that you write. All programming
languages allow for some form of comments. The trick is how to tell C++ that the statement you
are entering is a comment and not a C++ command. In C++, there are two ways to specify that
the code that follows is a comment.”

“Is that what the asterisks indicate?” Mary asked. “They remind me of the comments from C.”
“That’s right, Mary,” I said. “These three lines of code do look like comments in the C language.”

/*

This program displays "I Love C++!" to the standard output.

*/

“This type of comment,” I said, “is used whenever your comment spans more than one line,
and it’s sometimes called a block comment. There’s also this form of comment in which you tell
the compiler to ignore everything that follows the double slash until the end of the line.”

// This program displays "I Love C++!" to the standard output.

// This program written by John Smiley

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

50 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

“In this case, the compiler ignores everything from the double forward slashes to the end of the line.”
“Can a comment only appear on a line by itself,” Dave asked, “or can it follow a C++ statement?”
“You can place a comment after a C++ statement,” I answered. “Just follow the C++ statement

with the double forward slash characters, like this.”

std::cout << "I Love C++"; //Displays an output message

“Is there a standard format for comments?” Rose asked. “Should they always appear at the top
of the code, or can they appear anywhere?”

“I wouldn’t say there’s a real standard,” I answered. “Some programmers include a comment
at the ‘top’ of their code, indicating the author of the program, the date the program was written,
and anything else they—or someone reading it later—might find useful. Some programmers never
comment their code. Myself, I use comments whenever I write code that I needed to look up in a
help file or a reference manual. I figure that if I needed to look it up, then a comment explaining
the code will be helpful the next time I or someone else views the code. Some programmers really
make their comments elaborate by using asterisks to draw something that is known as a ‘flower
box’ in their code, like this.”

/**

* Programmer: John Smiley

* Date Written: May 1, 2001

* This program displays "I love C++!" to the standard output.

**/

“I know you said earlier that we would be doing exercises of our own for practice,” Kathy said.
“Will we be coding comments in the exercises that we do?”

“I’ve already noticed,” I said, “that some of you are not the fastest typists in the world, so our
exercises will not explicitly include comments. I’ll leave the comments up to you to insert as you
complete the exercises.”

“Getting back to the intricacies of a comment,” Rhonda said, “are you saying that the first
three lines of code in our C++ program really don’t mean anything? Does C++ just ignore them?”

“Exactly right,” I answered. “As far as C++ is concerned, those first three lines of code are
meaningless. When the C++ compiler evaluates these lines of code, it doesn’t translate them into the
executable file. As a result, when we run our executable file, these lines of code are effectively ignored.”

No one had any other questions about comments.

The Include Statement
“Let’s take a look at the next line of code,” I said. “It may be the most important line of code in
a C++ program.”

#include <iostream>

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 2: Getting Comfortable with C++ 51

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

“What are we including?” Mary asked. “I presume that’s what the word ‘include’ indicates?”
“You’re right, Mary,” I said. “Do you remember a little while ago when I indicated that much

of what we do in C++ involves executing code that is included in other libraries? That’s what is
going on here—we’re telling the compiler to include the code in the file iostream, just as if we
had typed it in ourselves.”

“How does the compiler know where to find this file?” Steve asked.
“Files like this,” I answered, “called include files, are found in a special directory that is

established when you install your compiler. Therefore, the C++ compiler knows where to find
them. By the way, these include files are also known as header files.”

“Are there other files that can be included besides iostream?” Valerie asked. “And what would
happen if we didn’t include it here? What kind of code is in there?”

“Good question, Valerie,” I replied. “There are easily over 1,000 include files containing nearly
a million lines of code that have been installed on our PCs here in the classroom, each one providing
the programs we write with a different piece of functionality that otherwise we would have to
write ourselves. As to the particulars of iostream—the letters io in iostream refer to input-output,
which is a computer term that describes how data is input into our programs and how we get
information out of them. If we fail to include the iostream file in our program, we wouldn’t be
able to display the words ‘I Love C++’ on our computer monitors. Let me show you.”

I then deleted the line of code in my source file referencing iostream and recompiled the
program. The following was displayed on the classroom projector.

“What’s that mean?” Rhonda asked. “It seems to be saying there’s a problem with the word ‘std.’”
“The problem,” I said, “is that std is something called a namespace—and it’s included in the

file iostream. Because I deleted the reference to iostream, the C++ compiler doesn’t know what std,
and more importantly, the statement cout, means—and that line of code is how we display our
message to the computer’s monitor.”

“Will you be talking more about namespaces?” Dave asked. “My C++ buddies at work have
mentioned that word more than once.”

“Yes, we’ll be discussing namespaces in just a few more minutes,” I replied, “but first I want
to discuss the main() function.”

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

52 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

The main() Function “I should mention,” I continued, “that the program we’ll be
producing for Frank Olley and the others will actually consist of more than one C++ file. In fact,
we’ll probably have close to ten files in the final program. One of these files—and one file only—
will look similar to the C++ source file we just produced here to display the phrase ‘I Love C++’
on the computer monitor, in that it will contain a line of code containing the word main. In C++
terms, this is the header for the main() function, and at least one C++ file in the collection of files
making up a program must contain a main() function.”

“So you’re saying that you can have more than one file in a program?” Joe asked.
“That’s right, Joe,” I said. “In complex C++ programs, you can have thousands. The point is

that one of those files—the one we execute from the command prompt—must contain a function
called main().”

“What about the other files?” Dave asked. “What will they contain?”
“Those files will contain class definitions,” I said. “Something you’ll be learning about in future

classes. Files containing nothing but class definitions are not required to contain a main() function.”
“What exactly is a function?” Lou asked.
“In programming terms,” I said, “a function is a line or lines of code that performs a single

task. As you’ll learn later on in the course, it’s possible—in fact, desirable—to write functions
of our own. The main() function is a little different. C++ demands that the executable file we
execute from the command prompt—what I call the startup file—contain a main() function.
We have no choice but to code one in the startup file. Let’s take a closer look at the header for
the main() function now.”

int main()

“What’s ‘int’?” Linda asked.
I hesitated as I debated the merits of taking this single line of code apart. I had done so in

previous C++ courses I had taught, and the discussion dragged and dragged, so I decided against
it. After the fact, my students told me that in the beginning of a C++ class, it’s best to keep things
moving, and dissecting this single line of code frequently involved many minutes of discussion.

“int refers to something called the return value of the main() function,” I said. “Later on in the
course, you’ll learn that each function we write must do something called ‘return a value,’ which
is similar to a friend calling you on the telephone to tell you they’ve arrived safely from a long
journey. In this case, we’re telling C++ that when the main() function wraps up, it will return
a value in the form of an integer, which is a whole number.”

I looked around for signs of confusion before adding, “If this doesn’t make perfect sense to you, don’t
worry a great deal about it—we’ll be examining functions in more detail later on in the course. For now,
take my word for it that this line of code is one you must have in each C++ program you write.”

“Those lines of code between the curly brackets of the main() function,” Kate pointed out.
“Are they the actual program?”

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 2: Getting Comfortable with C++ 53

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

“That’s right, Kate. Everything between the left curly bracket and the right curly bracket here
represents the instructions in the main() function,” I said. “There are two lines of code in this main()
function. This first line of code, when executed, results in the phrase ‘I Love C++’ being displayed in
the console window. Take note that C++ statements must end in a semicolon, as this one does.”

std::cout << "I Love C++";

“What is ‘cout’?” Peter asked.
“cout is actually something called a C++ object,” I answered, “and it enables us to direct output

to the computer’s monitor—or in technical terms, the standard output.”
“What do the two less-than symbols indicate,” Linda asked.
“The two less-than symbols comprise an output-redirection symbol,” I said. “When C++ sees

them, it knows to direct whatever is on the other side of them—in this case the characters within
the quotation marks—to the computer’s monitor.”

I waited a moment before continuing. “Look at the next line. Do you remember what I said
earlier about the return value of the main() function?”

“I do,” Lou said. “You said that because of the word int in the main() function header, the
main() function must return an integer value.”

“That’s excellent, Lou,” I said. “And that’s exactly what this line of code is doing—returning
an integer value of 0. Notice again that we end the line with a semicolon.”

return 0;

“C++ statements must be terminated with a semicolon.”

NOTE
All C++ statements must end with a semicolon (;).

“Finally, the last line of code completes our work.”

}

“Notice that we have one right curly bracket to mark the end of the main() function.”
I paused before continuing.
“Ordinarily,” I continued, “there would be more than just two C++ statements in the main()

function. The main() function is a section of code where the major instructions of a C++ program
are placed. Quite frequently, within the main() function, we instantiate objects from classes that
have been compiled in other source files.”

“Objects?” Joe asked. “Like the cout object we coded here.”
“The cout object is one already defined for us and is available as part of the C++ environment,”

I said. “Later on in the course, you’ll learn that we can define objects of our own. We’ll define

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

54 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

these objects in something called a class and then create ‘instances’ of our objects from the class,
much like cookies are created from a cookie cutter. For instance, in our Grade Calculation Project,
we’ll define a Student class and then create an instance of a Student object from that class.”

NOTE
When you instantiate a class, you create an instance of its object.

I could see some puzzled faces, and so I drew this illustration on the class projector.

“Most likely,” I said, “we’ll create a Student class and compile it into a special file called an
hpp file. An hpp file is similar to the C++ file we just created, except that it contains only a class
definition without a main() function. We’ll then create a C++ file—perhaps we’ll call it Grade—
and within the main() function of that file, instantiate a Student object from the Student class.”

“So if I understand you correctly,” Dave said, “we’ll be working with more than one file.”
“That’s right, Dave,” I said. “In C++, just about everything is a class and an object. They form

the building blocks of our programs. It’s not unusual for a C++ program to work with dozens of
classes and objects—that’s fundamental to the language. In a workplace environment, you might
have a team of several programmers, each creating classes that form pieces of the larger puzzle.
Although everyone in this course will create all the classes and objects for the Grade Calculation
Project, because C++ is object oriented, we could assign the creation of the classes that will make
up our project to different teams of students, who could each work fairly independently to arrive
at the solution to their piece of the puzzle.”

“I think I understand,” Rhonda said, “but I do have a question. Will all the objects with which
we’ll work in our C++ program be objects that we create on our own?”

“Not all of them, Rhonda,” I answered. “C++ has a bunch of already built classes from which
we can instantiate objects. We’ve already seen one—the cout object. That’s one of the reasons the
C++ language is so powerful. Suppose tonight, when you open your front door at home, your
doorknob were to break. Imagine the dilemma you would face if you couldn’t just drive down to
your local hardware store and pick up a replacement doorknob. Many of the parts in a home are
made from readily available components that can be used to customize a home. The same is true

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 2: Getting Comfortable with C++ 55

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

of C++. C++ classes and objects are like the ‘objects’ you see in a home. Using them is just a matter of
knowing what they are, where to find them, and how to install them and work with their
attributes and methods.”

“There’s a new term,” Ward said. “What’s a method?”
“A method is a function that is contained within a class,” I said. “That’s the only difference.”

NOTE
A method is a function defined within a class.

“Is there a list of these already-built C++ objects anywhere?” Blaine asked.
“There are hundreds of these already-built C++ objects,” I said. “The compiler you are using

will undoubtedly have some documentation included with it—although the free version we’re
using here in class, even though it has a help file, doesn’t provide a lot of guidance on these
objects. But you don’t need to concern yourself with that too much in this class. I’ll be pointing
out and giving you directions on the objects you’ll need to use.”

“Can we get back to the code you wrote?” Linda asked. “You didn’t mention what the word std,
appearing in front of cout, means.”

“Good question, Linda,” I answered. “std refers to something known as the Standard namespace,
which is contained in the iostream library. Namespaces are subdivisions in libraries and are created
to handle potential conflicts with objects and functions within them having identical names. In
order to refer to the cout object here in our code, we need to preface the object name with the
namespace in which it is contained within the iostream library. There is an alternative to doing
this—we can include a namespace directive or declaration in our code instead, like this.”

I then displayed this code on the classroom projector.

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

56 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

“The line of code

using namespace std;

contained in the main() function is called a namespace declaration. It allows us to refer to the cout
object without prefacing the name of the std namespace.”

cout << "I Love C++";

“C++ experts will tell you, however, that the namespace directive

using namespace std::cout;

is even better in that it restricts the scope of the namespace included in our program. This line of
code allows us to use cout without having to include ‘std’ in front of it, but doesn’t do the same
for any other objects in that namespace—in programming terms, you want to include in your
program only as much additional information as necessary.”

“You used two new terms—declaration and directive. Did you make a mistake?” Linda asked.
“Good observation, Linda,” I said. “When you use the using statement with an entire

namespace, that’s called a ‘using directive.’ When you restrict the namespace the way we just did
here with cout, that’s called a ‘using declaration.’ It’s a fine distinction, but you may come upon
it in the C++ documentation.”

“How important is indentation?” Ward asked. “And you mentioned that C++ is case sensitive—
I guess my question is, How case sensitive is it?”

“C++ is very case sensitive,” I replied. “You need to be very careful about the spelling of object
names in C++. For instance, the line of code

std::cout << "I Love C++";

is not the same as this line.”

std::Cout << "I Love C++";

“Spelling ‘cout’ as ‘Cout’ will cause C++ not to be able to find its definition in the std library,”
I said, “thus resulting in a compiler error.”

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

“In the same way, spelling ‘std’ as ‘Std’ will result in the same error. I tell my students that if
they receive a compiler error indicating that an object is not a member of something, or that an
object is not a class or namespace, check the spelling of those object names immediately—they
must match exactly the way they are specified in the C++ help files. Later on, when we learn more
about functions, you’ll find that C++ is equally ‘picky’ about the spelling of those names also.”

“What about indentation?” Ward asked. “I noticed that some of the code is indented?”
“Indentation and blank lines in code are ignored by the C++ compiler,” I said. “For instance, I know

it’s a far-fetched example, but we could have written this entire program as a single line of code.”
“How important is indentation?” Blaine asked.
“Indentation is important for readability,” I said. “That is, you want other programmers to be

able to read your code as easily as possible, and indenting the way we did here can make it easier
for someone who understands the language to more easily pick out where a class definition begins
and ends, and the functions within a class.”

“What is white space?” Kate asked. “Some of the C++ programmers in work refer to this from
time to time.”

“White space refers to space between C++ statements, and blank lines in the code,” I answered.
“You can use white space, as you can with indentation, to make your code more readable. For
instance, the code

std::cout << "I Love C++";

using white space could look like this and still function in the same way.”

std::cout << "I Love C++"; return 0;

“The thing to remember is that you don’t want to go to one extreme or another with this.
Although it’s possible to write a C++ program on a single line, it would be very difficult to read
it. And although you can insert lots of white space in your program, most programmers like the
condensed nature of their program code, so you won’t see a lot of blank lines and spaces in their code.”

“Will we be learning about inheritance, encapsulation, polymorphism, and some of those other
object-oriented terms I’ve heard about?” Bob asked.

“We will,” I said, “but not in today’s class. We’ll save those for a few weeks down the line.”
“Is there a continuation character in C++ like there is in Visual Basic?” Rose asked. “In

Visual Basic, if we want to split up a long line of code into two pieces, we use an underscore.
Does C++ have something similar?”

“Because of the ‘white space’ nature of C++ code,” I answered, “if you want to split up a single
line of code into two or more lines, just hit the ENTER key—C++ doesn’t care. For instance,
the line of code

std::cout << "I Love C++";

Chapter 2: Getting Comfortable with C++ 57

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

can be broken up into two lines of code, like this.”

std::cout <<

"I Love C++";

“The only place you can’t ‘split’ the line is within the middle of a quoted string—the code
between the quotation marks that is displayed on the console. For instance, this code would
result in a syntax error.”

std::cout << "I

Love C++";

I waited to see if there were any other questions, but no one seemed to have any more.
“What I’d like to do now,” I said, “is to give you a chance to write, compile, and run a C++

program of your own—with my assistance. As we’ll do during the remainder of the course,
I have a series of exercises for you to complete that will lead you through the process.”

I then distributed this exercise for the class to complete.

Exercise 2-1 Coding Your first C++ Program—Grades.cpp

In this exercise, you’ll write your first C++ program, which will form the basis of
our class project.

1. Create a folder on your hard drive called \CPPFiles\Grades. This will be the
“home” of our class project, the Grades Calculation Project.

2. Using the editor of your choice (if you are using Windows, use Notepad),
enter the following code (be extremely careful of the capitalization):

//Grades.cpp

#include <iostream>

int main ()

{

using namespace std;

cout << "It's not much, but it's a start!";

return 0;

}

3. Save your source file as Grades.cpp in the \CPPFiles\Grades folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension “cpp”.

58 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 2: Getting Comfortable with C++ 59

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

Discussion Aside from some people in the class who didn’t seem very familiar with
Notepad, this exercise went pretty smoothly. In just a few moments, everyone
in the class had completed coding their first C++ program—the Grades program.
This source file, although very simplistic, would eventually form the basis of the
program we would give to Frank, Robin, and Dave.

“Is this the program we’ll be using to calculate grades for the English, Math,
and Science departments?” Mary asked. “It looks like all this does is display
a message to the console.”

“That’s right, Mary,” I said. “Have you heard the expression that the journey
of a thousand miles begins with the first step? This is the first step—the creation of
the Grades class. From there, everything else will be built. And even though
displaying this message isn’t part of the user requirements, I want the program
to do ‘something’ when you compile and run it—just to prove to you that there
is some activity going on in there.”

There were no questions about the actual coding of the class. It was almost identical to the
example we had been working on. So, I distributed this exercise for the class to complete.

Exercise 2-2 Compiling Grades.cpp

In this exercise you’ll compile the C++ source file you created in Exercise 2-1,
Grades.cpp, into an executable file called Grades.exe.

1. Bring up the MS-DOS command prompt. You can do this in a number
of ways—one easy way is to select Start | Run and enter cmd in the
Open text box.

2. At the command prompt, change to the directory (folder) containing your
Grades.cpp source file by entering

CD C:\CPPFILES\GRADES

and pressing the ENTER key (pressing the ENTER key is necessary for all of the
command-prompt steps).

NOTE
If you saved your source file to another drive, substitute that drive letter for C.

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

60 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

3. Confirm the existence and location of your C++ source file by entering

DIR

at the command prompt and pressing ENTER. You should see an entry for
Grades.cpp, similar to the following illustration.

If you don’t see your source file, something went wrong in Exercise 2-1,
and you will need to verify your work there before proceeding.

4. Compile your Grades.cpp file by entering

bcc32 Grades.cpp

at the command prompt and pressing ENTER. You should see two informational
messages—one from the compiler and one from the linker. The absence of
any error messages will indicate that your source file has been compiled
into an executable file.

5. Confirm the existence of your C++ executable file by entering

DIR

at the command prompt and pressing ENTER. You should see an entry for
Grades.exe, as in the following illustration.

Discussion As smoothly and easily as the first exercise had seemed to have gone, this one
was the opposite—over half of the students in the class had problems of one

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 2: Getting Comfortable with C++ 61

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

form or other compiling their first C++ program. The typical errors were the
ones I had warned everyone about just a few minutes earlier, but warning
students about problems is different from having them experience them on
their own—experience is the great teacher—and so I gave everyone a lot of
time to try to complete this exercise on their own.

“I just can’t get this thing to compile,” Rhonda complained. “This exercise
seemed simple enough—I can’t believe I’m having so much trouble with it.
The compiler keeps telling me I haven’t coded cout, but it’s there.”

I took a quick walk to Rhonda’s workstation. In her Command Prompt
window was the following message.

“That one’s easy, Rhonda,” I said. “Although most beginners wouldn’t notice
this, you’re referencing cout, but you forgot to tell C++ where to find it. You
haven’t coded the using namespace statement. Either that, or you need to
explicitly tell C++ where to find the cout object by changing the line of code

cout << "It's not much, but it's a start!";

to this.”

std::cout << "It's not much, but it's a start!";

Sure enough, as soon as Rhonda coded the using namespace statement,
her C++ source file was successfully compiled into an executable file, and
a big smile appeared on her face.

Next was Ward. This is the error message his PC was displaying.

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

62 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

Dave, who had successfully compiled his source file already, knew
immediately what the problem was.

“I see the problem,” Dave said.

“Well, don’t just stand there, Dave,” Ward said smiling, “what is it?”

“You spelled ‘cout’ with a capital C,” Dave said. “The C++ cout object is
spelled in all lowercase letters—same thing happened to me.”

“I think,” Ward added “that’s because we’re used to objects in some of the
other languages we’ve used—such as Java—beginning with an uppercase letter.”

Dave was right, and I took this opportunity to call out to the rest of the class
that attention to case sensitivity would be crucial during the class. Ward brought
up Notepad, made the change to his source file, and then compiled it. He, too,
was shortly happy, as his program compiled successfully.

On the way back to my PC at the front of the classroom, I passed Kate’s PC
and saw her staring at this error message.

“Need help?” I asked her.

“I’ve been trying to correct this for the last ten minutes,” she said. “This isn’t
nearly as easy as Visual Basic, is it?”

“C++ requires a lot more attention to detail,” I said, “Actually, this is a fairly
common error. Remember, in C++, statements need to end with a semicolon.
This error message indicates that somewhere in your program you didn’t end
a statement with one.”

Kate smiled, then found the line of code missing the semicolon, added it,
and recompiled her program successfully. Everyone else in the class who had
been having problems managed to fix them on their own, and for the most
part, they were either the errors I noted here or variations thereof.

I did spot something in Steve’s source file that had not prevented the program from compiling
but that might cause a problem down the road. At this point, everyone had a compiled executable
file, and they were anxiously looking forward to running their program. I then distributed this
exercise for them to complete.

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Exercise 2-3 Executing (Running) Grades.exe

In this exercise you’ll run the program you created in Exercise 2-2, Grades.exe.

1. Bring up the MS-DOS Command Prompt application.

2. At the command prompt, change to the directory (folder) containing your
Grades.cpp source file.

3. Run your program by entering

Grades

at the command prompt, and pressing ENTER. You should see the following
displayed in your Command Prompt window.

Discussion As dejected as some members of the class had been while completing the previous
exercise, this one produced just the opposite effect—just about everyone’s
program ran on their first attempt. The only one who had a problem was Peter,
who apparently had missed a compiler error message and believed he had
a compiled file that he could execute. His problem was relatively easy to fix.
Like Kate, he had missed a semicolon, and after correcting this mistake and
compiling his program, it worked fine.

“I know we haven’t done all that much,” Rhonda said, “but I feel pretty
good about what we’ve done so far. My programming friends all told me how
difficult C++ was—but so far, so good.”

“C++ can be difficult,” I said, “but as you know, here at the university we
have a reputation for doing a pretty good job with beginners. One step at a
time, I always say, and the next logical step in next week’s class will be to give
you a C++ code overview to show you what the language can do.”

It had been a very productive class—everyone now had the beginnings of the Grades Calculation
Program in place. It had also been a pretty long class, and as I glanced up at the clock on the wall,
I realized our class was over. I then dismissed class for the day.

Chapter 2: Getting Comfortable with C++ 63

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Summary
In this chapter you were exposed to the “nitty-gritty” of the C++ environment. You saw that
writing a program in C++ is pretty basic. You use an editor to create a C++ source file, compile
the program from a command prompt using the C++ compiler, and then run the program from
that same command prompt by typing in the name of the executable file.

In the next chapter, you’ll learn about computer data—and how your C++ program works with it.

64 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 2

P:\010Comp\LearnTo\535-1\ch02.vp
Monday, October 07, 2002 11:35:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter

3
Data

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3
Blind Folio 3:65

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
TLFeBOOK

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

In a computer program, data is extremely important. As you learned in Chapter 1, data is input
into a computer program to be processed into meaningful output. In this chapter, we’ll discuss
the concept of data in a computer program. You’ll learn about program variables, constants, the

different types of C++ data types, and the many operations that can be performed on that data.

Computer Data
“Data can be a very complex topic,” I said to the class at our third meeting, “but it’s an extremely
important one. Failure to understand data can lead to problems with your programs down the
line. What you learn today may seem very theoretical to you, but it will be vital for your future
programming career. Even if you don’t see an immediate application for it, look at the information
you receive today as something that you can tuck into your programming back pocket for future use.”

Variables
“In the C++ programs that we write,” I said, “the data with which we work will come from three
places: the user, in the form of selections that they make, either via a console program or selections
from objects in a window; external sources, such as disk files or databases; and sometimes internal
sources in the form of variables.”

“Variables?” Rhonda asked.
I explained that variables are placeholders in the computer’s memory where we can temporarily

store information. Values—numbers and characters, for example—are stored in variables while the
program is running. As the name implies, the values of the variables can change at any time.

“I’m a little confused as to why we would create a variable in the first place,” Barbara said. “Isn’t
all the data that we need—especially in the program we’re writing in this class—entered by the
user? Why do we need to store anything temporarily?”

“That’s a good question, Barbara,” I said. “And to a great degree, you’re right. Most of the data
that computer programs need is entered by the user, or it comes from a disk file or database.
However, there may be times when your program will need to create and use a variable to store the
answer to a question that you have asked of the user or the result of a calculation, or, as you’ll see a
little later on in today’s class, to keep track of a counter, which is a variable that counts something.”

“You said that variables enable us to store information temporarily,” Kate said. “I assume that
means until our program ends. A variable can’t last beyond the running of a program, can it?”

“For the most part that’s true, Kate,” I said. “In most other programming languages, variables
are born when the program in which they appear starts to execute and die when that program
ends. But C++ is a little different. C++ has a special type of variable called a static variable, which
you’ll see a little later on in the course when you learn how to create classes. Today, we’ll be
concentrating our learning efforts on the local variable, which is a variable declared in a function.

66 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 67

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

There are three other types of variables that you can create in C++: global variables, which are
variables declared outside of a function; class variables, technically called member variables, which
are variables declared in a C++ class; and static variables, as I just mentioned.”

Our First Variable: The Local Variable
I asked everyone to consider a hypothetical program that I hoped would illustrate the need for
variables in a program.

“Let’s write a C++ program,” I said, “to take two numbers and display their sum in the console.
Later on in the course (next week, in fact), you’ll learn that there are ways for the user to communicate
with our running program, but for now, the best we can do is to declare two numeric variables,
assign values to them, and then display their sum in the console. I should warn you that most of
what you will see in this program you haven’t learned yet, but you will today.”

I then displayed this program on the classroom projector:

//Example3_1.cpp

#include <iostream>

int main()

{

using namespace std;

int number1;

int number2;

number1 = 12;

number2 = 23;

cout << (number1 + number2);

return 0;

}

I saved the program as Example3_1.cpp, compiled it, and ran it for the class. The following
screen was displayed on the classroom projector:

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

68 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

“Let me explain what’s going on here,” I said. “The first thing we did was to tell C++ that we
would be using the iostream library in our program.”

#include <iostream>

“After that comes the first line of the main() function. Every C++ program that runs directly
from the command prompt must have a function named main().”

int main()

“What exactly do you mean by that?” Kate asked. “Are you implying there are some C++
programs that won’t be executed directly from the command prompt?”

“That’s right, Kate,” I answered. “As you’ll see later on in the course, some C++ code we’ll write
will be classes, which are not required to contain a main() function. Classes can’t be run directly
from the command prompt. Last week we created our first piece of the class project puzzle, the
Grades.cpp file, which we compiled into the Grades.exe file. As you saw last week, the Grades
executable file is executed from the command prompt. As the course progresses, and you begin to
learn more about the object-oriented nature of C++, we’ll create C++ class files called Student,
EnglishStudent, MathStudent, and ScienceStudent. The Grades executable file will instantiate
objects from these classes but won’t actually have the code for the classes included in it.”

NOTE
It is possible to include the code for classes in your C++ executable file. However, in
the real world of programming, code for classes is kept in separate files. This makes
changing or updating the behavior of the class much easier.

“In other words,” Dave said, “the code in the classes won’t be executed directly from the
command prompt.”

“Exactly, Dave,” I said. “A C++ application may consist of many files, but only one of them,
the C++ file containing the main() function, will be executed directly from the command prompt.
Others, such as the class files I cited here, will have objects instantiated from their classes from
within the executable file.”

I waited to see if anyone had any other questions before continuing.
“The next line of code we saw last week,” I said. “It’s the line of code that tells the compiler

that we’ll be using the std namespace in our program. Using the namespace statement means we
won’t need to preface our C++ statement with the word std.”

using namespace std;

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 69

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

Declaring a Variable
“This next line of code,” I said, “declares an integer type variable called number1. We’ll be discussing
exactly what an integer is in just a few moments. In C++, we need to notify the compiler that we
intend to use some of our computer’s memory to hold data—and that’s what it means to declare
a variable.”

int number1;

“In a similar way, this next line of code declares an integer type variable called number2.”

int number2;

Assigning a Value to a Variable
“Now that we’ve informed C++ that we wish to have two integer variables in our program called
number1 and number2, these next two lines of code assign values to those variables.”

number1 = 12;

number2 = 23;

“Because both of these variables are declared within a function—the main() function—they are
called local variables. That means that the variables and the values they contain can only be seen
or accessed by code within the main() function. In fact, this next line of code is doing exactly that—
accessing the values of the variables number1 and number2, adding them together, and displaying
the result in the console using the cout object you learned about last week.”

cout << (number1 + number2);

return 0;

}

“What’s going on with those parentheses?” Rhonda asked. “Last week when we used the cout
object, we had ‘I love C++!’ inside quotation marks. This is different. And why didn’t the words
number1 and number2 appear in the console?”

“In this case, Rhonda,” I answered, “we are telling C++ to take the value of the variables
number1 and number2, add them together, and then display them in the console. The parentheses
tell C++ to perform the addition prior to displaying the values in the console.”

“That makes sense,” Blaine said. “Although I must confess, I’m still not totally clear on this
concept of a variable.”

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

NOTE
In C++, variable names must start with either a letter or an underscore and may not
contain spaces.

“I like to compare a variable,” I said, “to a post office box. When you rent a post office box,
you are assigned a box number. When mail for your box arrives, the postal clerk places your mail
in your box according to the number you’ve been assigned. If you need to retrieve your mail, you
can use your key to access it because you know the number of your box. Variables in C++ are very
similar. When you declare a variable, you use the syntax

int number1;

which tells C++ that you wish to declare an integer type variable with the name number1. This
is similar to going to the post office and renting a box. The great thing about C++ (and other
programming languages as well) is that you can give the variable an easy-to-remember name that
you can recognize later. You don’t need to work with a hard-to-remember post office box number.
Thereafter, whenever you need to interact with the variable, you use its easy-to-remember name,
as we did when we assigned a value to number1 using the C++ assignment statement.”

number1 = 12;

“We also did this when we used the variables with the cout object.”

cout << (number1 + number2);

“Do you need to assign a value to a variable after you’ve declared it?” Chuck asked. “In other
words, do you have to initialize it? I presume you have to declare a variable before you use it.”

NOTE
Assigning an initial value to a variable is called initialization.

“Excellent question,” I said. “You’re right, Chuck. You must first declare a variable before you
can use it, and although it’s good practice to initialize the values of your variables, the C++
compiler doesn’t force you to do so.”

NOTE
The Borland C++ compiler won’t complain at all if you don’t initialize your variables.
The Microsoft C++ compiler will display a warning message but still compiles
your program.

70 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“What would happen if we didn’t initialize the variables number1 and number2 ?” Mary asked.
“Would the number 0 be displayed? Are each of the variables considered to have a value of zero?”

“Some languages are like that,” I replied, “but C++ is different. Let me show you.”
I then modified our program to look like this:

//Example3_2.cpp

#include <iostream>

int main()

{

using namespace std;

int number1;

int number2;

cout << (number1 + number2);

return 0;

}

“Notice how I’ve removed the two lines of code that initialize the values of our variables,”
I said. I then saved the program as Example3_2.cpp, compiled it, and ran it for the class. The
following screen was displayed on the classroom projector:

“What happened?” Ward asked. “Shouldn’t the answer be zero?”
“You’re assuming Ward,” I said, “that the value of an uninitialized variable in C++ is zero. In

reality, in the C++ world, the value of an uninitialized variable, as we see here, can be anything.”

NOTE
Depending on the compiler you are using, you may not see the results you see in this
screenshot.

Chapter 3: Data 71

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

72 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

“So the lesson to be learned here,” Blaine said, “is never to forget to initialize your variables.”
“That’s right, Blaine,” I said. “Some languages do initialize the value of variables for you, but

C++ doesn’t. You need to do that for yourself. Having to be responsible for details like this is very
common in C++. As your experience in C++ grows, you’ll find that the language gives you much
more control than other programming languages. On the other hand, it also expects you to take
much more responsibility for the ‘little things’ that other programming languages do for you.”

Declaration and Assignment Combined
“I think some languages permit you to combine the declaration and assignment of a value to a
variable,” Dave said. “Can you do that in C++?”

“Yes, you can combine them, Dave.” I answered. “Here’s Example3_1 using that technique.”
I entered and displayed this program on the classroom projector:

//Example3_3.cpp

#include <iostream>

int main()

{

using namespace std;

int number1 = 12;

int number2 = 23;

cout << (number1 + number2);

return 0;

}

“Programmers,” I said, “frequently look for ways to streamline their code. This is one way to do it.”

int number1 = 12;

“One more thing I’d like to show you,” I said, “is how to make our output in the console a
little more user friendly.” I displayed this code on the classroom projector:

//Example3_4.cpp

#include <iostream>

int main()

{

using namespace std;

int number1 = 12;

int number2 = 23 ;

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 73

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

cout << "The answer is \n";

cout << (number1 + number2);

return 0;

}

I then saved the program as Example3_4.cpp, compiled it, and ran it for the class. The following
screen was displayed on the classroom projector:

“I’m pretty confused with this,” Rhonda said. “What’s going on?”
“In this case,” I said, “we’re using the cout object to display both a message—‘The answer

is’—and the value of a variable to the console.”
“I’m okay with that,” Kate said. “I presume that the text contained within the quotation marks

is displayed on the console. Is that right?”
“Exactly, Kate,” I said. “Text that appears within quotation marks is called a string literal, and as

the name implies, it’s displayed literally on the console.”
“What’s the purpose of the backslash and the letter n ?” Barbara asked.
“That combination of characters is called a newline character,” I said, “it’s the text representation

for hitting the ENTER key in your program—it tells C++ to insert a new line after the word is. The
result is that the number 35 is printed on a line by itself.”

“I was wondering how that happened,” Ward said. “So far, you’re right. It seems that C++
doesn’t do anything without you explicitly telling it to. I was wondering how we managed to get
the number 35 on a new line.”

“So without the ‘backlash n,’ the newline character,” Rhonda said, “the number 35 would
appear on the same line with the text?”

“That’s right, Rhonda,” I said. “Let me show you.”
I then displayed this code on the classroom projector:

//Example3_5.cpp

#include <iostream>

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

74 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

int main()

{

using namespace std;

int number1 = 12;

int number2 = 23 ;

cout << "The answer is ";

cout << (number1 + number2);

return 0;

}

I then saved the program as Example3_5.cpp, compiled it, and ran it for the class. The
following screen was displayed on the classroom projector:

“Notice,” I said, “that the number 35—the result of the addition of the values of the variables
number1 and number2—is displayed on the same line as the phrase ‘The answer is.’ That’s the
difference not including the newline character makes.”

“I’ve been following along with you and doing pretty well so far,” Rhonda said, “but when I
compile and run my version of the program, I don’t have a space between the word is and number
35. Can you tell me what I did wrong?”

“Did you include a space after the word is in your string literal?” I asked. “I bet you put your
ending quotation mark right after the word is. My version looks like this.”

cout << "The answer is ";

“I bet yours looks like this.”

cout << "The answer is";

“You’re absolutely right,” Rhonda said. “I guess I thought C++ might insert that space
automatically.”

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 75

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

“As Blaine pointed out a little while ago,” I replied, “C++ doesn’t do anything you don’t tell
it to do. If you want text to appear on a new line in the console, you need to use the newline
character. If you want a space to appear between a word and the value of your variable, you need
to include a space somewhere.”

“Could we combine the code that writes to the console onto one line?” Rose asked.
“Sure thing, Rose,” I said, as I displayed this code on the classroom projector.

//Example3_6.cpp

#include <iostream>

int main()

{

using namespace std;

int number1 = 12;

int number2 = 23 ;

cout << "The answer is " << (number1 + number2);

return 0;

}

“Do you see how we used the redirection symbol here?” I asked. “The line of code

cout << "The answer is " << (number1 + number2);

takes the place of the previous version, which required two lines of code to do the same thing.”
“Which version is better?” Kate asked.
“C++ programmers tend to think that less is best,” I said. “However, from my perspective as a

teacher, I prefer that my students write code that they will understand a week from now—which
version that is, is entirely up to you.”

“Is it possible to declare more than one variable on the same line of code?” Steve asked.
“Yes, you can, Steve,” I said. “In fact, you can declare and initialize more than one variable on

the same line of code, provided they are all the same data type, like this.”

int number1 = 12, number2 = 23;

“What are the rules for naming a variable?” Jack asked.
“Variables can begin with any letter of the alphabet or with an underscore,” I said, “but may

not begin with a number, although a name can contain a number. Variable names can be of any
length. But remember this: Variables with long names make coding more difficult, because
invariably you’ll need to refer to the variable again somewhere in your code. Make your variable

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

76 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

names short but meaningful. You should also avoid single-character variable names such as x,
unless it’s what programmers sometimes refer to as a throwaway variable—that is, a variable that
is used locally only within a function and has no meaning outside of it.”

I waited to see if there were any other questions before proceeding.
“You mentioned that there are three other types of variables that we can declare in C++,”

Barbara said. “Will you be showing us those today?”
“We’ll be examining the global variable in a minute,” I said. “We’ll look at the other two—class

variables and static variables—when we start to get deeper into creating our own classes and objects.”

A Quick Look at the Global Variable
“The global variable,” I continued, “as the name implies, is a variable that can be seen ‘globally.’ In
the case of a C++ program, that means the variable is declared outside of any function, and because
of that, the variable can be accessed—updated and retrieved—from any function in the program. In
order to demonstrate a global variable, I’ll need to create a program with two functions—one called
main(), the other smiley()—and show you why global variables are important.”

I then displayed this code on the classroom projector:

//Example3_7.cpp

#include <iostream>

void smiley(); //function prototype

int main()

{

using namespace std;

smiley();

cout << "The value of number within main is " << number;

return 0;

}

void smiley()

{

using namespace std;

int number = 44;

cout <<"smiley has executed and \n";

cout <<"the value of number is " << number << "\n";

}

“There are a couple of new things I’ve introduced here,” I said. “The first is, when you create a
function other than main() in your program, you need to do something called ‘create a function

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 77

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

prototype.’ This lets the compiler know that the function smiley() will appear later on in our code.
We’ll discuss this in more detail later on in the course, but here is the function prototype for the
function smiley().”

void smiley(); //function prototype

“Again, we’ll discuss creating our own functions—and function prototypes—later on in the
course. Here’s the code for the smiley() function itself.”

void smiley()

{

using namespace std;

int number = 44;

cout <<"smiley has executed and \n";

cout <<"the value of number is " << number << "\n";

}

“Notice that we’ve declared a local variable called number and assigned it a value of 44. No
problem there—the problem comes in the main() function when we try to refer to the variable
declared in smiley().”

int main()

{

using namespace std;

smiley();

cout << "The answer is " << number;

return 0;

}

“If we compile this program, the C++ compiler will give us an error message.”
I did exactly that, and the following error message was displayed on the classroom projector:

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

78 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

“What’s the problem?” Blaine asked. “It looks like you’re executing the smiley() function,
which then assigns a value to number. Why can’t we refer to the value of the number variable
declared in smiley() within the main() function?”

“You’re right, Blaine,” I said. “We are executing the smiley() function. However, in C++,
variables declared in a function are local to that function, which means the variable and its value
cannot be accessed from outside the function.”

“So what are we to do?” Kate asked. “I can foresee needing to see the value of a variable in
another function.”

“If you need to ‘share’ variables across functions like this,” I replied, “you can use a global
variable, which is a variable declared outside of a function. Global variables, and their values,
can be accessed from all the functions in your program. Look at this code.”

I then displayed the following code on the classroom projector:

//Example3_8.cpp

#include <iostream>

int number;

void smiley(); //function prototype

int main()

{

using namespace std;

smiley();

cout << "The value of number within main is " << number;

return 0;

}

void smiley()

{

using namespace std;

number = 44;

cout <<"smiley has executed and \n";

cout <<"the value of number is " << number << "\n";

}

I then saved the program as Example3_8.cpp, compiled it, and ran it for the class. The
following screen was displayed on the classroom projector:

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 79

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

“As you can see,” I said, “we received no error messages when we compiled the program. Also,
when we ran our program, both the main() function and the smiley() function were able to access
the same variable—that’s the beauty of a global variable.”

“So number is a global variable because it appears above the main() function?” Rhonda asked.
“That’s right, Rhonda,” I said. “In C++, global variables are declared outside of any function,

and they must be located ‘above’ the main() function if you want to use them in the main function.
That’s generally true, by the way. In C++ you have to alert the compiler to what’s coming before
you use it.”

“Is that sort of the reason why you had to include that function prototype?” Kate asked.
“Pretty much,” I replied, “but don’t worry, I’ll still show that to you later, as promised.”

Variable Scope and Lifetime
“I think I understand what a variable is and what it’s used for,” Rhonda said. “But what do the
programmers I work with mean when they talk about variable scope and lifetime?”

“Scope and lifetime?” Chuck asked, adding emphasis to Rhonda’s question.
“Scope,” I said, “refers to what parts of your C++ program can see the variable you’ve declared.

As we just saw here, a variable declared in the smiley() function has local ‘scope’—it can’t be ‘seen’
from within the main() function. Global variables, on the other hand, can be ‘seen’ by code in
any function. As I’ve mentioned, some C++ programs that we write will consist of a program
containing a main() function, which then creates or instantiates objects from special C++ files
called classes. Classes can also contain variables—these technically are called data members. In the
case of a class, scope also describes whether a class variable—a data member—declared in Class1
can be seen from the main() function that creates an object from it, or whether a data member
declared in Class2 can be seen from Class1. Unlike the behavior of a local variable, which is always
‘local,’ and unlike the behavior of a global variable, which is always ‘global,’ variables declared in a
class (data members) can be declared so that they can either be seen or not be seen outside the class,
depending upon whether they are declared with the Private or Public keyword.”

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

80 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

NOTE
Confused? Don’t be too concerned at this point. We’ll be discussing classes later on
in the book, and I guarantee you’ll be comfortable with the notions of Private and
Public at that point.

“Sounds confusing,” Peter said. “All this talk of classes—what exactly are they, and when will
we learn about them?”

“Classes are what make C++ object oriented,” I said. “You’ll learn about classes during the last
half of the course.”

“I’m a little confused,” Rhonda said. “Is local scope a good thing or a bad thing?”
“The rule of thumb,” I said, “is to give your variable as narrow a scope as possible. Provided

your variable’s value does not need to be accessible to code in other functions, local scope is a good
thing. On the other hand, if you need to have the value of that variable accessible from another
function in your program, then that’s…”

“…a bad thing!” Rhonda answered, finishing my sentence, and obviously understanding what I
was getting at. “Okay, I think I’m beginning to understand. Declaring variables requires a bit more
thought than I believed.”

“If you wanted to make the value of that variable visible to other functions in your class,” Steve
said, “that’s when you would declare it outside of your functions, above the main() function.”

“What about lifetime?” Lou asked.
“Lifetime refers to how long a variable, once declared, lives,” I said. “Again, as was the case with

scope, this will depend on the type of variable that you declare. Local variables exist for as long as
the function is executing. As soon as the function ends, the variable—and its value—goes away.
Global variables exist for as long as the program itself is running. And variables declared inside of
a class exist for as long as the object, created from the class, exists. And static variables are the most
interesting of all: These variables exist as long as any object created from their template or blueprint
exists. You’ll learn more about these in a future class.”

“Can I ask a question that I’m not entirely sure is on-topic?” Barbara asked. “You keep talking
about objects—and I know I’ll become more comfortable with these as time goes by—but where
exactly do these objects exist?”

“Objects exist in the computer’s memory,” I said. “I know the name sounds intimidating, but
you’ll see, when we start creating objects of our own, that objects actually consist of data and
functions (instructions) that are designed to operate on that data. When objects are created from
a class, they are set up in the computer’s memory, much like a variable, with space made available
for their data and for their functions. As long as a program maintains a reference to an object—
that is, the program is using the object in some way by executing its code or referring to its
data—the computer’s operating system maintains a reference to it. When no programs are
referring to the object any longer (it’s possible for more than one program to refer to the same

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 81

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

object), the operating system decides the object is no longer being referenced and uses the space it
occupied in memory for something else. Does that help?”

NOTE
A reference is a pointer to an object in the computer’s memory.

“That’s a little better,” Barbara answered, “but, like a lot of things, your answer has generated
more questions in my mind. But I’ll hold off on those for a while.”

I didn’t dissuade her. C++ is highly object oriented, and when it comes to objects, everyone
(beginners and experienced programmers alike) need some time to acquire a comfort level. My
experience teaching C++ indicated that time and practice would eventually give my students this
comfort level.

Constants
“So far,” I said, “we’ve spent most of this class looking at variables, which are placeholders in
memory, given an easy-to-remember name. Variables contain values that can change. Now it’s
time to take a look at constants.”

“Constants?” Linda asked. “That sounds like they should be the opposite of variables.”
“You’re absolutely right, Linda,” I said. “Still, a constant is similar to a variable in that it is a

placeholder in the computer’s memory that’s given an easy-to-remember name and holds a value.
Unlike a variable, however, once you assign a value to a constant, its value can never be changed.”

“How are constants declared?” Peter asked.
“You declare a constant in a manner similar to a variable,” I answered. “In C++, you use the

keyword const to designate a constant, like this.”
I entered the following code and displayed it on the classroom projector:

//Example3_9.cpp

#include <iostream>

int main()

{

using namespace std;

int number1 = 12;

const int BOOSTER = 100;

cout << "The answer is " << (number1 + BOOSTER);

return 0;

}

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

82 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

I then saved the program as Example3_9.cpp, compiled it, and ran it for the class. The
following screen was displayed on the classroom projector:

“It’s this line of code that tells C++ that BOOSTER is a constant,” I said.

const int BOOSTER = 100;

“In many languages” I continued, “constants are named using all capital letters, and that’s my
preference with C++. Once we’ve declared and initialized the constant, we can use it in our code
in the same way we would a variable. In this case, we take the value of the constant BOOSTER,
add it to the value of the variable number1, and display the result in the console.”

“What’s the purpose of a constant?” Steve asked. “That is, when should you use one?”
I thought for a moment. “One good rule of thumb is this: Whenever you find yourself

declaring a variable and assigning it a value that never changes, it should probably be a constant.
Also, if you use numeric literals in your code—a numeric literal is just a number—consider using
a constant instead. It can save you some headaches down the road.”

“I was going to ask,” Kate said, “why you didn’t simply take the number 100 and add it to the
value of the variable number1 instead? Is it more efficient to use a constant?”

“Using a constant makes your program more readable and easier to modify,” I answered.
“Can you give us an example to illustrate why a constant is more readable?” Linda asked.
“Sure thing, Linda,” I replied. “Let’s say you are writing a program to calculate payroll. Let’s

assume that there’s a state income tax rate equal to 1 percent of an employee’s gross pay. Somewhere
in your program, you are going to need to multiply the gross pay amount by 0.01, and in C++,
that would look something like

GrossPayAmount * .01

where GrossPayAmount is a variable in which you’ve stored the employee’s gross pay. Now, further
suppose you perform this same calculation in several different places in your program, each time
multiplying the value of the GrossPayAmount variable pay by the number 0.01. Now let me ask
this question: What happens to your program if the state income tax rate changes from 1 percent
to 2 percent?”

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 83

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

“Obviously,” Dave said, “we would have to change the number we’ve been using from 0.01 to 0.02.”
“That’s right, Dave,” I agreed, “and because we have that number hard-coded in several places

in our program, we would need to go through each and every line of code in our program looking
for the value 0.01 and then change it to 0.02.”

“How can a constant help here?” Steve asked.
“Instead of using the number 0.01 in our calculations a number of times,” I answered, “we

could instead declare a constant called STATETAXRATE, assign it the value of 0.01, and then
use the constant in all our calculations instead, like this.”

GrossPayAmount * STATETAXRATE

“I see now,” Rhonda said. “So if the state tax rate changes, because we used the name of the
constant, not the number 0.01 in our calculation, we only need to change the declaration statement
for the constant to reflect the new value.”

“That’s perfect, Rhonda, “ I said.
“Couldn’t we just use a search-and replace feature in our editor?” Blaine asked. “Even Notepad

gives us search-and-replace.”
“You might, Blaine,” I responded, “but I would be a bit nervous. The code might have a couple

of ‘0.01’ terms that I didn’t want to replace, and Notepad wouldn’t know the difference.”
“Can we see that constant declaration?” Barbara asked. I displayed the declaration on the

classroom projector:

const float STATETAXRATE = .01;

“As I mentioned before,” I said, “by convention, constants are named using all capital letters.
This makes it pretty easy to identify constants in your code.”

“I see what you mean,” Dave said, “about a constant being very similar to a variable. In fact,
they don’t seem very different at all. I guess the primary difference is that a constant, once assigned
a value, can never be changed.”

“What’s a float?” Kate asked.
“Good question, Kate,” I said. “A float is a data type capable of storing a number with a fractional

part—unlike an int, which can only store whole numbers.”
“Wow, I had no idea working with data could be so complicated,” Peter said.
“For the most part,” I said, “it’s not usually a problem. But the choice of a variable’s data type—

and the data you place in it—is something to be mindful of, and we’ll be discussing that shortly.”
“I have a question,” Rhonda said. “In your example of the state tax rate, couldn’t you have

declared a variable, assigned it a value, and then used that variable in all your calculations?”
“You’ve raised an interesting point,” I said. “In fact, that’s what a lot of programmers do. However,

if you declare a variable, assign it a value, and find that the value of the variable never changes, it
really should have been a constant instead. Using a constant can have enormous benefits in our

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

program, because the value of a constant cannot be changed once it has been declared. This can
prevent disastrous results in a program where a programmer accidentally changes the value of a
variable that really should have been declared a constant in the first place. The bottom line is this:
If you declare a variable, assign it a value, and there is no reason for the value of that variable to
ever change, what you have then is a constant, and you should declare it as such.”

I realized that we had been working pretty intensely for some time and, because there were no
more questions, I suggested that we take a break.

C++ Data Types
Resuming after a 15-minute break, I said, “Let’s take a closer look at the available data types in
C++. An understanding of the C++ data types and their characteristics is essential. We saw earlier
that in order to declare a variable or a constant, we need to designate its data type. In our simple
examples this morning, we used int for an integer data type. Now it’s time to learn what the
others are.”

“How many data types are there in C++?” Rose asked.
“There are 11 data types,” I said, “that are known as fundamental data types and are declared

using special keywords such as int and float. In addition to the 11 fundamental data types, as I’ve
mentioned, C++ also allows you to work with objects.”

“What type of objects?” Rhonda asked.
“Objects,” I said, “such as the cout object we’ve used to output in the console and also objects

that we’ll create from classes that we build. In order to work with objects of our own, we first need
to declare a variable of that object’s class name. For instance, as we progress in working with our
class project, we’ll eventually create a class called Student. You’ll see that in order to create an
instance of a Student object, we will first need to declare a variable of type Student. We’ll discuss
how to do that in just a few weeks.”

I could see some confusion on my students’ faces, but they seemed to trust me enough to wait
for a fuller explanation until then.

“The choice of a data type for your variable,” I said, “can be crucial to the proper operation of
your program. Each C++ data type has unique memory requirements, along with capabilities and
operations that you can perform on them. Declaring a data type that is not appropriate for the
data you wish to store in it is a common beginner’s error and can result in a range of problems—
from your program not compiling at all, to it compiling and running but giving incorrect results.”

I then displayed this list of the 11 C++ fundamental data types on the classroom projector:

84 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Data Type Storage Size Value Range

short 16 bits -32,768 to 32,767

unsigned short 16 bits 0 to 65,535

int 32 bits -2,147,483,648 to
2,147,483,647

unsigned int 32 bits 0 to 4,294,967,295

long 32 bits -2,147,483,648 to
2,147,483,647

unsigned long 32 bits 0 to 4,294,967,295

float 32 bits 1.2 × 10-38 to 3.4 × 1038

double 64 bits 2.2 × 10-308 to 1.8 × 10308

char 8 bits 256 character values

wchar_t 16 bits 65,535 character values

bool 8 bits False or True

“As you can see,” I said, “each data type has specific storage requirements in the computer’s
memory and different range values. For the next half-hour or so we’ll discuss all these data types in
detail. Let’s start with the data types that are used to store numbers.”

Numeric Data Types
I began to discuss the C++ numeric data types—the first eight data types listed in the table. “You
should declare your variable as one of the C++ numeric data types,” I said, “when you know you
will be using that variable to store a number that will later be used in a mathematical calculation.”

“Like we did when we declared number1 and number2 variables of the int data type?”
Blaine asked.

“That’s right, Blaine,” I said. “In C++, there are two categories of numeric data types: integers,
which are whole numbers, such as 1 or 2, and floating-point numbers, which are numbers with a
fractional part, such as 1.2 or 2.4. Plus, within the integer category you have a choice of a data
type that supports both negative and positive numbers or positive numbers only.”

“What about a telephone number or a social security number?” Ward asked. “Those both
contain numbers but are usually written with dashes in them. Should we use a numeric data
type to store these?”

Chapter 3: Data 85

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“A String data type is a better choice for those two,” I said. “Although both of the examples you
cite contain numbers, neither one of them is likely to be used in a mathematical calculation, and
as you pointed out, both contain hyphens, or dashes, which aren’t numbers at all.”

“I don’t see a String data type in the list of data types you displayed,” Linda said. “Did you
forget to include it in your table?”

“Good question, Linda,” I said. “The String data type is technically not a fundamental data
type. The String data type is actually an object—but don’t worry, we’ll be discussing the String
data type later on in today’s class.”

Here are some general recommendations on the numeric data types:

� Choose short, unsigned short, int, unsigned int, long, and unsigned long data types to store
whole numbers (called integers) such as 23, 45, and 34470. short, int, and long allow for
both positive and negative numbers. unsigned short, unsigned int, and unsigned long are
‘unsigned’ data types and permit positive numbers only. On the other hand, because they
lack the capability to store a sign, their upper storage limits are higher.

� Choose float or double data types to store numbers with fractions such as 3.1416, 23.12,
45.22, and 357644.67. In C++, the decimal data type is the most precise data type you can
select, having a precision of 28 digits. On the other hand, its storage requirements are
much higher—16 bytes to store the number as opposed to 4 bytes for the float and 8 bytes
for the double. The bottom line: If precision is important, select the decimal data type.

� Select a data type appropriate for the values you wish to store in the variable. If the data
type has a range much larger than you will need, you will waste valuable computer memory.
If the data type has a range smaller than the value you attempt to store in it, your program
may bomb—or worse yet, produce erroneous results.

“What do you mean when you say the program will bomb?” Rhonda asked.
“That’s a term that means the program will come to an abnormal termination,” I said.

“Actually, sometimes you’re lucky if that’s what happens; other times, your program will just
produce incorrect results, and that can be worse. For instance, look at this code in which I’ve
declared a short data type variable, and I am attempting to assign a value to it beyond the range
for a short data type.”

I displayed the following code:

//Example3_10.cpp

#include <iostream>

int main()

{

86 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 87

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

using namespace std;

short number1 = 32768; //short upper range is 32,767

cout << "The value of number1 is " << number1;

return 0;

}

NOTE
When assigning a numeric value to a variable, don’t include commas in the number.
For example, 5,028 should be coded as 5028.

I then reminded everyone that the upper range for a short data type is 32,767. I then saved the
program as Example3_10.cpp, compiled it, and ran it for the class. The following screen was
displayed on the classroom projector:

“What happened?” Rhonda asked. “I thought we assigned a value of positive 32,768 to the
variable—a negative number is being displayed.”

“What you’re seeing,” I said, “is the result of assigning a value to a variable that exceeds the
range of its data type. Unlike some other programming languages, which will warn you that you’re
about to do so, C++ allows you to assign an inappropriate value to a variable—the results can be
disastrous. In this case, when we exceeded the upper limit of the short data type by just one
number, instead of giving us a positive 32,768, C++ actually ‘wrapped around’ to the lowest value
possible, a negative 32,768. If we had tried to assign a value of positive 32,769, C++ would have
assigned a value of negative 32,767. This is called an out-of-bounds, or out-of-range error. As I
have said, you take responsibility for what happens in your C++ program, and that certainly
includes selecting the appropriate data types for your variables, and ensuring that you don’t assign
inappropriate values to them.”

NOTE
You may want to experiment on your own, assigning values beyond the range for a
short data type and observing the incorrect values that result.

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

88 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

“I’ve seen the same thing in C,” Dave said. “I guess this points out the need to be super careful
when you declare the type of a variable.”

“Absolutely, Dave,” I said. “C++ is a very powerful language, but in this regard, it can be
unforgiving.”

short
“So what kind of variables are candidates to be short data types?” Bob asked.

“The short data type can hold only whole numbers; it can’t be used to store a number with a
fractional part. The size of the number that you can store in a short data type is not very large—from
–32,768 to 32,767. Only use the short data type if you are certain that the number you will store in
it is within that range; otherwise, you will get the incorrect results that you saw here.”

“Can you give us a real-world example for an short data type?” Kate asked.
“How about the number of students on this campus?” I suggested. “The university itself would

exceed the storage capacity for a short data type, but I know for a fact that the upper limit of
32,767 is more than enough for our campus.”

unsigned short
“unsigned short is the unsigned version of the short data type,” I said.

“Unsigned?” Blaine asked.
“Unsigned means that the data type is incapable of storing a negative number,” I answered. “As

a result of that, it’s storage capacity is just about twice that of the short data type: 0 to 65,535.”
“Am I correct in saying that unsigned short would be the best data type to store the number of

students on our campus?” Linda asked. “I don’t think we can have a negative number of students.
Doing so would also allow us to store a value greater than 32,767, provided it didn’t exceed
65,535. Is that right?”

“I couldn’t have said it better myself, Linda,” I answered. “unsigned short is a better choice.”

int and long
“Next up is the int data type,” I said, “which stands for integer. int is a larger version of the short
data type. Like all the numeric data types we’ve discussed so far, the int data type can store only
whole numbers. Its storage range is pretty large: –2,147,483,648 to 2,147,483,647.”

“Something that confused me when I saw your chart a minute ago,” Dave said, “is that it
appears that the range for an int is the same as it is for a long—same with the unsigned int and
unsigned long. Is that a typo in your chart?”

“Good observation, Dave,” I said. “The designers of C++ wrote the standards for the language
in such a way that C++ compilers must ensure that the int data type is larger than the short.
However, there is no requirement that a long data type be larger than the int, only that it be equal

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 89

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

to or greater. In the original C++ compilers, an int data type was implemented using 16 bits of
memory, and its storage range was correspondingly smaller. However, most modern C++ compilers
implement the int using 32 bits of memory—the same as for a long. As a result, typically you will
see this peculiarity. The int has the same value range as a long—same with the unsigned int and
the unsigned long.”

“So which one should we choose if we need to store a larger number?” Kate asked. “int or long?
You say there’s no difference?”

“That’s right, Kate,” I replied, “with the compiler we’re using here in class, there is no
difference, so it’s your choice. But my preference is to use the long. If for some reason you wind
up compiling your source code on an older compiler, choosing long can prevent you from having
the same kind of erroneous behavior we saw in Example3_10.”

“What happens if you try to store a number with a fractional part in a variable declared as an
int?” Dave asked.

“Good question, Dave,” I said. “Let’s see.”
I displayed the following code on the classroom projector:

//Example3_11.cpp

#include <iostream>

int main()

{

using namespace std;

short number1 = 12.75; //short may contain only whole numbers

cout << "The value of number1 is " << number1;

return 0;

}

I then saved the program as Example3_11.cpp, compiled it, and ran it for the class. The
following screen was displayed on the classroom projector:

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“C++ truncated the decimal portion of the number,” I said. “Notice that C++ didn’t round the
value of 12.75 before assigning it to the variable number1. Instead, it actually ‘chopped’ the decimal
portion off the number.”

“I see what you mean by C++ being unforgiving,” Ward said. “It did that without so much as a
warning message.”

“That’s right, Ward,” I answered. “Even more reason to be very careful in your choice of data
type—it must match exactly the type of data that will ultimately be assigned to it.”

unsigned int and unsigned long
“If the pattern holds true,” Dave said, “then I presume that the unsigned int data type is the
unsigned version of the int data type, which means it cannot hold negative numbers and it
therefore has a larger range than the int?”

“Exactly, Dave,” I said. “unsigned int can be used to store larger whole numbers than the
int—but only positive numbers.”

“Would it hurt to declare all our numeric variables as an int?” Linda asked.
“Declaring a variable larger than it needs to be is a waste of storage,” I said. “As you can see

from our table, the int data type requires 32 bits (or 4 bytes) of storage. That may not seem like
a big deal, but if you know that the range of values you’ll be storing in a variable requires only a
short data type, which consumes only 16 bits (or 2 bytes) of storage, you should declare the
variable as a short. This type of attention to detail can make your program run faster, reduce its
runtime memory requirements, and will be something that a prospective employer will be looking
for when examining any sample code you write or bring to a job interview.”

“Can you give us some examples of when we would want to use the various data types?”
Rose asked.

“Sure thing, Rose,” I said. “As I mentioned, we could use the short data type to store the
number of students on this campus of the university. For that matter, we could also use the short
data type to store the number of students in this class. However, because there are more than
32,767 students in total at the university, we would need to use an int data type to store that
number. We could also use the int data type to store the total number of people in the United
States. However, we couldn’t use an int data type to store the total number of people in the world,
because there are more than 2,147,483,647 of us—in fact, there are over 6 billion, which also
makes the unsigned int and the unsigned long bad choices, too.”

“Wow, I’m starting to get a headache just thinking about this,” Rhonda said. “I had no idea
this could be so complicated.”

“Wait a minute,” Ward said. “What can we use to store the number of people in the world?
You said unsigned int and unsigned long can’t store a large enough value.”

90 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 91

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

“In that case,” I said, “we need to use either the float or double data type.”
“Shouldn’t we use a data type that supports only whole numbers?” Kathy asked.
“We don’t really have a choice,” I replied. “If we need a data type to store very large numbers,

such as the number of people in the world or even the number of stars in the sky, we have to use
one of the two data types that permits the storage of numbers with fractional parts. Those data
types are the only ones capable of storing a number that large.”

float
“The difference between the float and double data types and the integer data types that we’ve
examined so far is that float and double can store values that mathematicians call real numbers,
which are numbers with fractional parts. You may also hear these data types referred to as
floating-point data types.”

“I explained that variables declared as float data types require 32 bits (or 4 bytes) of computer
memory to hold them. Values for the float data type can range from 1.2 × 10-38 to 3.4 × 1038. If
you need to store a value with a fractional part in a variable, you’ll need to use one of these two
data types.”

“What kind of number is that?” Peter asked. “What does 1.2 × 10-38 mean?”
“Unless you’re fresh from a math class,” I said, “you may have trouble making sense of that

range, because it’s expressed in a format known as scientific or exponential notation, which is a
special notation used to represent very large numbers. The positive range for this number is read
as ‘3.4 multiplied by 10 raised to the 38th power.’ That’s a pretty large number, and if we were to
write out the upper positive limit in normal notation, it would look like this:”

340,000,000,000,000,000,000,000,000,000,000,000,000

“Notice,” I continued, “that there are 38 digits that follow the leading 3—that’s the significance
of the exponent or power in 1038. Trying to write out the upper positive limit for the double data
type is a great deal more difficult, since it has 308 zeroes in it. Quite honestly, we wouldn’t have
room on a piece of paper to write that number—that’s why larger numbers like this are best
represented with exponential or scientific notation.”

“I’m sold,” Kate said laughing. “I guess any way you look at it, those are huge numbers. I’m not
likely to think of a number that requires those values.”

double
“Just as the long data type is really a bigger version of the int data type,” I said, “so too the double
data type is a bigger version of the float.”

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

92 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

I explained that variables declared as double data types require 64 bits (or 8 bytes) of computer
memory. Values for the double can range from 2.2 × 10-308 to 1.8 × 10308.

“If you take the upper limit for the float data type,” I said, “and add about 270 zeros to it, that
will give a good idea for the upper limit of the double!”

I doubted that there was anyone in the class who could think of a value that would exceed the
range for the double data type.

Finished with our discussion of numeric data types, we then moved on to the bool data type.

Nonnumeric Data Types
“We’ve discussed 8 of the 11 fundamental data types that C++ has to offer,” I said. “We’ll finish
our discussion of data types by looking at the special bool data type, followed by two character
type data types: the char data type and the wchar_t data type. Finally, we’ll look at the special case
of the String.”

bool
“bool data types,” I said, “can have only two possible values: True and False.”

I displayed this code on the classroom projector:

//Example3_12.cpp

#include <iostream>

int main()

{

using namespace std;

bool married = true;

bool retired = false;

cout << "The value of married is " << married << endl;

cout << "The value of retired is " << retired ;

return 0;

}

I then saved the program as Example3_12.cpp, compiled it, and ran it for the class. The
following screen was displayed on the classroom projector:

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 93

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

I explained that I had declared two bool variables—one called married and the other
retired—and then assigned the values True and False to the respective variables.

“What we’ve done here,” I said, “is to declare two bool variables: one to represent someone’s
marital status and the other to represent their retirement status. The bool variable is ideal to use
when the value of the variable can only be a true/false or yes/no outcome. Notice how the assignment
of True or False to a bool variable is made without enclosing it within quotation marks or apostrophes,
which is something that beginning students sometime do.”

“What about the output to the console?” Ward asked. “Why is it that the values 1 and 0 are
output, not True and False.”

‘Traditionally, in both C and C++,” I said, “the number 1 has been used to represent True, and
0 to represent False. In fact, the compiler actually interprets the values ‘true’ and false as if they
were one and zero respectively. Unfortunately, when we use the cout object to display the value of
our Boolean variables to the console, the numbers are displayed, not the values True and False.”

“Is there anything we can do about this?” Steve wondered.
“Yes, there is,” I said, “and it’s something that starts to lead us to a realization as to how ‘object

oriented’ C++ is.”
“What do you mean?” Lou asked.
“Before we redirect the value of our Boolean variables to the cout object,” I said, “we can first

redirect them to a special C++ object called boolalpha, which will output the Boolean True and
False values and then redirect those values to the cout object. Let me show you.”

I then displayed this code on the classroom projector:

//Example3_13.cpp

#include <iostream>

int main()

{

using namespace std;

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

bool married = true;

bool retired = false;

cout << "The value of married is " << boolalpha << married << endl;

cout << "The value of retired is " << boolalpha << retired ;

return 0;

}

I then saved the program as Example3_13.cpp, compiled it, and ran it for the class. The
following screen was displayed on the classroom projector:

“That’s better,” Ward said. “Now it shows the value of the Boolean variables as either True
or False.”

“That’s right, Ward,” I said. “These two lines of code did the trick by redirecting the value of
the Boolean variables to a special C++ object called boolalpha.”

cout << "The value of married is " << boolalpha << married << endl;

cout << "The value of retired is " << boolalpha << retired ;

“I just noticed something,” Dave said. “What’s ‘endl’ doing at the end of that first line of code?
Is that a replacement for the backslash+n we were using earlier?”

“That’s excellent, Dave,” I said. “I knew I couldn’t sneak that one by you. endl is another kind
of C++ object—by redirecting it to the cout object, in effect we are generating the same carriage
return and line feed we generate by redirecting the backslash+n to the cout object. The biggest
difference is that the compiler interprets the backslash+n as a character—that’s why we had to
enclose it in double quotes. Since endl actually refers to an object, it’s handled differently.”

I waited to see if there were any more questions before moving onto a discussion of the char
data type.

94 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 95

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

char and wchar_t
“The char data type is used to store a single character,” I continued. “The storage requirement
for the char data type is 8 bits and its value range is 0 to 255.”

“I thought this was a character data type,” Kate said. “Why is the value range expressed
in numbers?”

“We’re not talking about storing numbers per se here,” I said. “We’re talking about storing numbers
that equate to a character, such as the letter C or any of the characters you see on the keyboard.”

“What’s the wchar_t data type?” Lou asked.
“wchar_t stands for wide character,” I said. “Essentially, it’s the same as the char data type, used

to store character data, except that it’s 16 bits and its value range is 0 to 65,535.”
Why do we need a data type so large to store a single character?” Ward asked. “As I recall,

ASCII code is used to represent characters, and the ASCII values range from 0 to 255, just like
the char data type.”

“That’s true, Ward,” I said. “Many languages use the ASCII code to represent characters, but
ASCII is an older coding scheme. Because C++ is a relatively new programming language, it is
capable of using the new Unicode standard, which is capable of displaying character sets from
every language and alphabet in existence—some of which have thousands of characters in their
alphabet. As a result, the wchar_t data type requires an extra byte of storage, which is why its
range of values is so high.”

“Would an assignment to a char data type be the same as the assignment of a number?”
Linda asked.

“Assigning values to a char data type is different from assigning values to a numeric or bool
variable,” I said. “Let me show you.”

I entered the following code on the classroom projector:

//Example3_14.cpp

#include <iostream>

int main()

{

using namespace std;

char character1 = 'a';

cout << "The value of character1 is " << character1;

return 0;

}

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

96 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

I then saved the program as Example3_14.cpp, compiled it, and ran it for the class. The
following screen was displayed on the classroom projector:

“Assignments to a char data type are done by enclosing the character within apostrophes, not
quotation marks,” I said.

“Can you assign more than one character to a char data type?” Mary asked.
“No, you can’t, Mary,” I said. “The char data type is limited to storing a single character. If you

try to assign more than one character to a char data type, only the first character will be assigned
to the char variable.”

The String Object
“Suppose you need to store more than one character in a variable then?” Blaine asked.

“If you need to store more than one character in a variable,” I said, “you’ll need to declare
a String data type instead. Strictly speaking, a String is not a fundamental data type. In C++, a
String is an object, but a String variable is declared just like any other data type. However, the
assignment of characters to a String variable is slightly different from the char data type. Let me
show you.”

I entered the following code:

//Example3_15.cpp

#include <iostream>

#include <string> // include for C++ standard string class

int main()

{

using namespace std;

string string1 = "John Smiley";

cout << "The value of string1 " << string1;

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 97

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

return 0;

}

I then saved the program as Example3_15.cpp, compiled it, and ran it for the class. The
following screen was displayed on the classroom projector:

“Just a couple of things to note here,” I said. “Although it’s not absolutely required with the
C++ compiler we’re using here in the classroom, I’ve included a reference to the C++ ‘string’
library. That’s the particular library that contains the code that allows us to use the string object.
Some C++ compilers will complain that they can’t find the string object if you don’t include a
reference to the library.”

#include <string> // include for C++ standard string class

“Secondly, assignments to a String data type are done by enclosing the character within
quotation marks, not apostrophes, as we used with the char data type.”

“I just realized,” Rhonda said, “that when we assign values to a numeric variable, we don’t use
apostrophes or quotation marks.”

“That’s right, Rhonda,” I said. “Numeric literals—numbers—are not sandwiched in any way.”
I then displayed this code on the classroom projector:

int number1 = 12;

“char variables are assigned using apostrophes, like this.”

char character1 = 'a';

“And String variables are assigned using quotation marks, like this.”

string string1 = "John Smiley";

No one had any other questions about C++ data types, and so, after a quick break, we moved
onto a discussion of data operations.

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

98 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

Operations on Data
“Because you now all know something about C++ data types,” I said, after the break, “it’s time to
learn how to perform operations on that data. Let’s start with arithmetic operations.”

Arithmetic Operations
I explained that arithmetic operations are performed on data stored in numeric variables or
numeric constants.

“You can’t perform arithmetic operations on any other kind of data,” I said. “If you try, you’ll
either get a compiler error or a runtime error. Now let’s look at the various arithmetic operations
available in C++.”

I paused a moment before continuing.
“Before I begin,” I said, “it’s important to note that most operations are performed on

operands. Operands appear on either side of an operator, and when the statement is executed,
some result is generated. You have several choices as to what to do with this result. You can choose
to ignore it or discard it. You can assign it to a variable, or you can use it in an expression of some
kind, as we did earlier today when we displayed the result of an addition operation in the console
by using it with the cout object.”

Here’s a list of the C++ arithmetic operators:

Operator Meaning Example

+ Addition 11 + 22

– Subtraction 22 – 11

* Multiplication 5 * 6

/ Division 21 / 3

% Remainder 12 percent 2

The Addition Operator
“The addition operation (+) adds two operands,” I said, as I displayed this example of the addition
operation on the classroom projector:

number3 = number1 + number2;

“In this example, we’re taking the result of the addition of the variables number1 and number2
and assigning that value to the variable number3. Notice that I didn’t say that the addition
operation adds two numbers—that’s not necessarily the case, as it isn’t here. In C++, an expression

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

can be a number, a variable, a constant, or any expression that results in a number. Ultimately, as
long as C++ can evaluate the expression as a number, the addition operation will work.”

“What do you mean when you say evaluate?” Kate asked.
“When C++ evaluates an expression,” I replied, “it examines the expression, substituting actual

values for any variables or constants that it finds.”
I took a moment to emphasize that C++ performs operations on only one pair of operands at

one time, which means that even a complex expression like this will be done one step at a time:

number4 = number1 + number2 + number3;

“We’ll learn more about complex expressions like this later,” I promised.
“What’s an operand, again?” Ward asked.
“An operand is something to the left or right of the operator symbol,” I said. “In the assignment

statement I just showed you, number1, number2 and number3 are all operands. No matter how
many operators appear in an expression, C++ performs an operation on just two operands at a time.”

“That’s a little surprising to me,” Rhonda said. “Are you saying that no matter how fast my PC
is, it still performs arithmetic the way I was taught in school, one step at a time?”

“That’s right, Rhonda,” I said. “One operation at a time—at the speed of light!”
I then displayed this program from Example3_6 to my students once more:

//Example3_6.cpp

#include <iostream>

int main()

{

using namespace std;

int number1 = 12;

int number2 = 23 ;

cout << "The answer is " << (number1 + number2);

return 0;

}

“Remember this one?” I asked. “Here we’re taking the result of the addition operation of
number1 and number2 and using it as an expression with the cout object. The parentheses around
the addition operation ensure that it is executed first prior to it being passed to the cout object for
display on the console.”

Chapter 3: Data 99

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“In this example,” Linda said, “you first assigned values to variables and then performed the
addition operation on the value of the variables. Is it possible to perform the addition on numeric
literals?”

“Yes, you can,” I said, as I displayed this code:

//Example3_16.cpp

#include <iostream>

int main()

{

using namespace std;

cout << "The answer is " << (12 + 23);

return 0;

}

I then saved the program as Example3_16.cpp, compiled it, and ran it for the class—once
again, the number 35 was displayed in the console.

“What are the numeric literals that Linda was talking about?” Rhonda asked. “Are those the
numbers within the parentheses?”

“Exactly, Rhonda,” I replied. “Numeric literals are literally just numbers.”
I waited to see if there were any other questions before moving onto the subtraction operator.

The Subtraction Operator
“As you may have guessed,” I said, “the subtraction operator (–) works by subtracting one operand
from another and returning a result. In actuality, it subtracts the operand on its right side from the
operand on its left. Look at this example.”

I showed the following code on the class projector:

//Example3_17.cpp

#include <iostream>

int main()

{

using namespace std;

int number1 = 44;

int number2 = 33;

int result = 0;

100 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

result = number1 - number2;

cout << "The answer is " << result;

return 0;

}

I then saved the program as Example3_17.cpp, compiled it, and ran it for the class. The
following screenshot was displayed on the classroom projector:

NOTE
Depending on the compiler you are using, you may receive a warning message
indicating that the variable result is assigned a value that is never used. This is
because of our decision to initialize the value of the result variable—it’s nothing to
worry about.

“As you can see,” I said, “number2 was subtracted from number1 and the result was then….”
“You switched things up a bit here,” Ward interrupted.
“What do you mean?” I answered.
“You declared an extra variable called result,” he answered.
“That’s right,” I said. “I wanted to show you how you can assign the result of the subtraction

operation to another variable. I called it result, but we could have called it anything we want.”
“What would have happened if you hadn’t initialized result to 0?” Ward continued. “Would it

have given us a crazy result like it did last week?”
“Not this time, Ward.” I explained. “Without the initialization, the value of result probably did

start out as some crazy value. However, once we assigned a value to it, the old ‘crazy’ value was
discarded. C++ discarded our assignment to 0 in the same way. The only difference is that we took
the trouble to make the assignment. As I explained last week, you should initialize your variables, but
it’s cases like this one, where it doesn’t much matter, that can make some programmers a bit lazy.”

Since there were no further questions, I then proceeded to the multiplication operator.

Chapter 3: Data 101

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

102 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

The Multiplication Operator
“The multiplication operator (*) multiplies two operands,” I said.

“Now this is a little different from what I used in school,” Mary said. “In school, we used the
letter X to denote multiplication.”

“I did as well,” I said, “but the computer uses the asterisk instead—except for the operator,
everything works as you would expect.”

I displayed the following code on the classroom projector:

//Example3_18.cpp

#include <iostream>

int main()

{

using namespace std;

int number1 = 4;

int number2 = 3;

int result = 0;

result = number1 * number2;

cout << "The answer is " << result;

return 0;

}

I then saved the program as Example3_18.cpp, compiled it, and ran it for the class. The
following screenshot was displayed on the classroom projector:

The Division Operator
“The division operator (/) works by dividing one operand by another and returning a result. In
actuality, it divides the operand on the left side of the division operator by the operand on the
right. Division can be a little tricky in C++ because you must be conscious that the result may be
something other than an integer—and that has implications if you decide to assign the result to
a variable that you have declared as an int. Look at this example.”

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 103

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

//Example3_19.cpp

#include <iostream>

int main()

{

using namespace std;

int number1 = 5;

int number2 = 2;

int result = 0;

result = number1 / number2;

cout << "The answer is " << result;

return 0;

}

I then saved the program as Example3_19.cpp, compiled it, and ran it for the class. The
following screenshot was displayed on the classroom projector:

“Wait a minute,” Linda said. “That answer’s not correct—it should be 2.5. Looks like we got
an integer result.”

“That’s exactly the problem I was alluding to a moment ago,” I answered. “Because we assigned
the result of the subtraction operation to an int variable, C++ truncated, not rounded, our result.
If this program had been one of the many pieces of a critical application, such as the computer
program that keeps the International Space Station aloft, we would have a serious problem.”

“What can we do to fix this?” Ward asked.
“Let’s change the data type for our result variable and see whether that helps,” I answered.
I changed the code as follows:

//Example3_20.cpp

#include <iostream>

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

104 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

int main()

{

using namespace std;

int number1 = 5;

int number2 = 2;

float result = 0;

result = number1 / number2;

cout << "The answer is " << result;

return 0;

}

I then saved the program as Example3_20.cpp, compiled it, and ran it for the class. The
following screenshot was displayed on the classroom projector:

“The answer’s still wrong.” Rose said. “What’s the problem?”
“You’re right, Rose,” I said. “The answer is still wrong. The problem here is that C++ has rules

for dealing with divergent data types. One of these rules is that when C++ divides one integer by
another, the result will always be an integer—assigning the result to a floating-point variable doesn’t
help. Also, remember what I told you earlier today—C++ does all of its operations one at a time.
This means that it first divides the integer 5 by the integer 2—follows its rules for integer division
to come up with the integer 2—and then assigns that to the floating point result.”

“Should we have declared number1 and number2 as float types?” Kate asked.
“You pretty much hit the nail on the head, Kate,” I said. “In order to calculate a result that is

a float data type, at least one of the two operands in the division operator needs to be a float data
type also. Like this.”

I showed them this code:

//Example3_21.cpp

#include <iostream>

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 105

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

int main()

{

using namespace std;

int number1 = 5;

float number2 = 2;

float result = 0;

result = number1 / number2;

cout << "The answer is " << result;

return 0;

}

I then saved the program as Example3_21.cpp, compiled it, and ran it for the class. The
following screenshot was displayed on the classroom projector:

“That’s better,” Steve said. “But I’m a bit confused. Why did making only one of the operands
a floating point type fix the problem?”

“Great question, Steve,” I replied. “In our first version, the C++ compiler knew that we were
dividing two integers, so it knew that we wanted to perform integer-type division on them. When
we next tried to assign the result to a floating-point type, it knew that we were trying to mix data
types, and that something had to be done. What it did was to promote the data type of the result
of the division—2—from an integer to a floating point data type. Internally, the number 2 actually
became a floating-point 2.0, which is compatible with our floating-point type variable result.
Now, when we try to divide the floating point 5 by the integer 2, the compiler sees the different
types earlier, and…”

“…and promotes the 2 into floating-point 2.0 before it does the division,” Steve exclaimed,
finishing my sentence. From the looks on other faces, I could see that everyone else followed
along, too.

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“That’s better,” Steve said. “Do we need to be this careful in C++? In Visual Basic, it seemed
that a lot of this was taken care of for us.”

“You’re right, Steve,” I replied. “In some languages, particularly Visual Basic, you hardly need
to concern yourself with the data types you are dealing with when performing operations. C++ is
different. If you’re not careful, what your program does versus what you intend it to do may be
vastly different. Most languages, particularly C and C++, expect the programmer to be aware of
the types of data they are working with and to be careful when working with that data.”

NOTE
Changing both number1 and number2 to floating-point types would have worked
just as well.

The Remainder Operator
I continued, “A few moments ago, Rose mentioned the remainder that we lost when we
performed division with two integer operands. The remainder operation—sometimes called the
modulus operation in other programming languages—deals with remainders. In fact, you can think
of the remainder operation as the reverse: The result of the remainder operation is the remainder of
a division operation. For instance, 5 divided by 2 is 2, with a remainder of 1. That’s the result of a
remainder operation. It’s that simple, really.”

“What’s the symbol for the remainder operation?” Ward asked.
“It’s the percent (%) sign,” I said. “Let me give you an example of the remainder operation.”

//Example3_22.cpp

#include <iostream>

int main()

{

using namespace std;

int number1 = 5;

int number2 = 2;

int result = 0;

result = number1 % number2;

cout << "The remainder is " << result;

return 0;

}

106 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 107

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

I then saved the program as Example3_22.cpp, compiled it, and ran it for the class. The
following screenshot was displayed on the classroom projector:

“As you can see,” I said, “the remainder operation has resulted in a remainder of 1 being
displayed in the console.”

“I think I’m okay with the mechanics of the remainder operation,” Rhonda said. “I just can’t
understand why you would ever want to use it. Can you give us an example?”

“The usefulness of the remainder operation,” I said, “is not as obvious as some of the other
arithmetic operators. One of the more useful characteristics of a remainder operation is that if the
result of the remainder operation is 0, you know that the first expression is evenly divisible by the
second expression. Even better, if you perform the remainder operation of operand1 by the
number 2, and the result is 0, that means that operand1 was an even number. If the result is 1,
operand1 was odd.”

I gave everyone a chance to think about this for a moment.
“So if you ‘mod’ a number by 2, there are only two possible results, 0 and 1?” Ward asked.
“That’s right, Ward,” I said. “Let me show you.”
I displayed the following:

//Example3_23.cpp

#include <iostream>

int main()

{

using namespace std;

int oddnumber1 = 3;

int evennumber1 = 4;

int oddnumber2 = 5;

int evennumber2 = 6;

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

int result = 0;

result = oddnumber1 % 2;

cout << "The remainder is " << result << endl;

result = evennumber1 % 2;

cout << "The remainder is " << result << endl;

result = oddnumber2 % 2;

cout << "The remainder is " << result << endl;

result = evennumber2 % 2;

cout << "The remainder is " << result;

return 0;

}

“What I’m doing here,” I pointed out, “is declaring four variables and assigning two of them
even numbers and two of them odd. Using the remainder operator, we can determine whether
the number is even or odd by its result; a result of 0 from the remainder operation indicates an
even number, and a result of 1 from the remainder operation indicates an odd number.”

I then saved the program as Example3_23.cpp, compiled it, and ran it for the class. The
following screenshot was displayed on the classroom projector:

“As you can see,” I said, “the result of the remainder operation is either a 0 or a 1; 0 indicates
an even number, and 1 indicates an odd number.”

“It can’t be that easy,” Ward said. “I think I had a programming assignment like this to do in a
class I took several years ago, and as I recall, it was quite a bear to solve—the remainder operator.
I’ll need to remember that one.”

“Could we have used an If statement here to make this code a bit more elegant?” Dave asked.
“We could have, Dave,” I said, “except we won’t be talking about the If statement until next

week. Remind me about it then and we’ll use the remainder operator along with an If statement.”
I glanced at the clock on the wall and knew it was just about time for a break.

108 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“We have two more operators to discuss before break,” I said, “the increment operator and the
decrement operator.”

The Increment Operator
“One of the most common operations performed on a variable,” I said, “is to increment it. That
is, to add 1 to its value. In other programming language, this code would be used to do that.”

I displayed the following:

//Example3_24.cpp

#include <iostream>

int main()

{

using namespace std;

int number1 = 5;

number1 = number1 + 1;

cout << "The answer is " << number1;

return 0;

}

I then saved the program as Example3_24.cpp, compiled it, and ran it for the class. The
following screenshot was displayed on the classroom projector:

“How is that assignment statement read?” Rhonda asked. “It’s confusing me a little bit.”
“The expression to the right of the equal sign is performed first,” I said. “Read it this way: Take

the current value of the variable number1, which is 5, add 1 to it, giving a result of 6, and then
assign that value to the variable number1.”

Chapter 3: Data 109

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

110 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

“So that’s how that’s done,” Blaine said. “But what about this increment operator
you mentioned?”

“The increment operator is a shortcut function,” I said. “Take a look at this.”
I then modified the code to look like this:

//Example3_25.cpp

#include <iostream>

int main()

{

using namespace std;

int number1 = 5;

number1++;

cout << "The answer is " << number1;

return 0;

}

“In C++,” I said, “the increment operator is ++, which tells C++ to take the current value of the
variable and add 1 to it.”

I then saved the program as Example3_25.cpp, compiled it, and ran it for the class. The
following screenshot was displayed on the classroom projector:

“The increment operator produces the same results,” I said, “but saves us a few keystrokes—
and probably results in less mistakes by programmers overall. The increment operator is often
used on variables that are used to count things. You’ll see this when you learn about loops in a
few weeks time.”

The Decrement Operator
“What about the decrement operator?” Dave asked. “Is that the opposite of the increment
operator? Does it subtract 1 from the value of the variable?”

“You’re psychic, Dave,” I said. “That’s exactly what it does. In C++, the decrement operator
is --. Take a look at this code.”

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 111

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

I displayed the following:

//Example3_26.cpp

#include <iostream>

int main()

{

using namespace std;

int number1 = 5;

number1--;

cout << "The answer is " << number1;

return 0;

}

I then saved the program as Example3_26.cpp, compiled it, and ran it for the class. The
following screenshot was displayed on the classroom projector:

“As you can see,” I said, “number1 was initialized with a value of 5. We subtracted 1 from it using
the decrement operator, giving us a result of 4. Again, this is just a shortcut to using this code.”

number1 = number1 - 1;

No one seemed to have any problems with either the increment or decrement operators, so I
called for a break.

Order of Operations
“I mentioned earlier,” I said, as we resumed after break, “that when C++ evaluates an expression
containing more than one operation, it performs each operation one at a time. The natural
question then is, Which operation does C++ perform first?”

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

112 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

“That’s right,” Jack said. “If there’s an expression that contains more than one operation, how
does it decide which operation to execute first?”

“I would think,” Rose said, “that C++ would perform the operations left to right in the
expression. That’s how I would do it.”

“I think you’re right, Rose,” I said, “that most people would evaluate an expression that way,
but that’s not the way C++ does it. C++ follows a set of rules, known as the Order of Operations,
that governs the order in which it performs these operations. Knowing the Order of Operations is
crucial if you want your expressions to be evaluated the way you intend.”

I then displayed this code on the classroom projector. Before running it, I asked everyone in the
class to perform the calculation mentally themselves and tell me the number they thought would
be displayed in the console:

//Example3_27.cpp

#include <iostream>

int main()

{

using namespace std;

cout << (3 + 6 + 9 / 3);

return 0;

}

I received a number of different responses. A couple of students suggested the number 12
would be displayed, a few said 6, and a number of students said that the answer would depend on
exactly when the division operation was performed. Not wishing to keep them in suspense any
longer, I saved the program as Example3_27.cpp, compiled it, and then executed it. The following
screenshot was displayed on the classroom projector:

“It looks as though C++ performed the division first,” Dave said.

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“You’re right, Dave,” I said. “C++ evaluated the expression and broke it into three
separate operations.”

� 3 + 6

� + 9

� / 3

“Following the rules for the order of operations, C++ actually performed the third operation,
division, first,” I said. “The Order of Operations is determined by the following rules.”

� Operations in parentheses are performed first.

� Exponentiation operations are performed next.

� Multiplication and division operations are performed next, from left to right in
the expression.

� Finally, addition and subtraction operations are performed, from left to right in
the expression.

“What does all that mean?” Rhonda asked.
“Here’s what happens,” I said. “When C++ examines an expression, it first looks to see if there

are any operations within parentheses. If it finds parentheses, it performs every operation within
the parentheses first. Once all the operations within parentheses are executed, C++ then looks for
any operations involving exponentiation, and if it finds any, it performs those.”

“Suppose there’s more than one exponentiation operation?” Lou asked.
“If there’s more than one exponentiation operation,” I answered, “C++ performs each one in

turn, from left to right.
“Next,” I continued, “C++ looks for operations involving multiplication or division and

performs them. If it finds more than one, it performs them from left to right.
“Finally, C++ looks for operations involving addition or subtraction and performs them. Once

again, it performs each one in turn, starting at the left side of the expression and working its way
to the right.”

“Can you relate the Order of Operations to the code example you showed us?” Kathy asked.
“Sure,” I said. “C++ first looked for parentheses in the expression. Because the entire expression

appeared within parentheses, this had no impact on the evaluation of the expression. C++ then
looked for an exponentiation operator, but it found none. Next, it looked for any multiplication
or division operators. It found just the single division operator, which it then performed first.”

“So it actually performed the operation of 9 divided by 3 first,” Valerie said. “No wonder the
answer didn’t agree with mine.”

Chapter 3: Data 113

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“After the division operation,” I continued, “C++ looked for any addition or subtraction
operators. It found two of them and performed these operations from left to right: It added 3 plus
6 first, then added that result, 9, to 3. I can show you how this all took place, step by step. Here
are the results of the intermediate operations.”

I displayed this on the classroom projector:

� Step 1: 3 + 6 + 9 / 3

� Step 2: 3 + 6 + 3

� Step 3: 9 + 3

� Step 4: 12

I gave everyone a chance to take all of this in. “I hope this example shows you not only how C++
evaluates an expression containing mathematical operators, but how important it is to compose the
expressions you code carefully. For instance,” I said, “suppose we had intended to calculate the average
of three numbers—3, 6, and 9—with this piece of code. We know that to calculate an average, we
would add 3 plus 6 plus 9 and then divide by 3. However, if we were to wager our jobs on getting
the answer we wanted using this C++ code, we wouldn’t have one very long!”

“You’re right about that,” Rose said. “But how could we code the expression to correctly
compute the average of 3, 6, and 9?”

“One word,” Jack suggested. “Parentheses.”
“That’s right,” I said, agreeing with Jack, as I modified the code and displayed it on the

classroom projector:

//Example3_28.cpp

#include <iostream>

int main()

{

using namespace std;

cout << ((3 + 6 + 9) / 3);

return 0;

}

Now when I compiled and executed the program, the following screenshot appeared on the
classroom projector:

114 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 115

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

“That’s better,” I said. “This time, because we sandwiched the addition operations within a set
of parentheses, C++ performed both addition operations prior to the division, which is exactly
what we wanted to happen. Step by step, it looks like this.”

I displayed the following:

� Step 1: (3 + 6 + 9) / 3

� Step 2: (9 + 9) /3

� Step 3: 18 / 3

� Step 4: 6

“Please excuse my dear Aunt Sally,” I heard Linda mutter.
“What was that, Linda?” Rhonda asked. “Please excuse what?”
“Please excuse my dear Aunt Sally,” Linda repeated. “I learned that in ninth grade math class as

a way to remember the Order of Operations: Parentheses, Exponentiation, Multiplication, Division,
Addition, Subtraction.”

“I had forgotten all about that, Linda,” I said. “That expression does summarize the Order of
Operations perfectly.”

Comparison Operators
“I was talking to a programmer friend of mine,” Ward said, “and she mentioned something called
comparison operators. Will we be covering those as well?”

“Yes, we will,” I replied. “Just as arithmetic or mathematical operators perform an operation
based on operands to the left and right of an operator and then return a result, comparison
operators compare two expressions to the left and right of a comparison operator and return a
result. In the case of a comparison operator, however, the result isn’t a number; it’s a value of either
True or False. Here are the six comparison operators.”

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

I displayed the following on the classroom projector:

Symbol Explanation

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

“We’ll only be discussing the most common comparison operator today: the equal to (==)
operator,” I said.

“Is that right?” Barbara asked. “Should that be two equal signs? Isn’t the equal sign also used to
assign a value to a variable?”

“You’re right,” I said. “The equal sign is used to assign a value to a variable in C++. However,
two equal signs are used for the comparison operator. We haven’t yet learned about If statements—
we’ll do that next week—but in C++, we could use this code to determine whether the value of
the variable number1 is equal to 22.”

I displayed the following code:

//Example3_29.cpp

#include <iostream>

int main()

{

using namespace std;

int number1 = 22;

if (number1 == 22) cout << "number1 is equal to 22";

return 0;

}

“Notice that the assignment statement uses one equal sign,” I said, pointing out the
following line:

int number1 = 22;

116 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 117

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

“But within the If statement, we use the double equal sign (==) to compare the value of
number1 to the literal 22.”

“So the result of the If statement expression will either be True or False, depending on the
current value of number1?” Dave asked.

“That’s exactly right, Dave,” I replied. “If the current value of number1 is 22, the result of this
comparison will be True. As you’ll see next week, when an If statement expression evaluates to
True, the imperative statement following it—in this case, a statement to display a message in the
console—is executed.”

I then saved the program as Example3_29.cpp, compiled it, and ran it for the class. The
following screenshot was displayed on the classroom projector:

“Now let’s modify the program slightly,” I said, “so that you can actually see the result of the
comparison operation.”

I then modified it like so:

//Example3_30.cpp

#include <iostream>

int main()

{

using namespace std;

int number1 = 22;

cout << boolalpha << (number1 == 22);

return 0;

}

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

118 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

I saved the program as Example3_30.cpp, compiled it, and ran it for the class. The following
screenshot was displayed on the classroom projector:

“As you can see,” I said, “using the boolalpha object, we can display the result of C++’s
evaluation of ‘number1 = 22’—which is True.”

“That’s cool,” Kate said. “We really did display the result of the comparison operation, didn’t we?”
“Yes, we did, Kate,” I replied. “Likewise, if the value of number1 is not equal to 22, the result of

the comparison operation would be False, like this.”
I modified the code slightly:

//Example3_31.cpp

#include <iostream>

int main()

{

using namespace std;

int number1 = 99;

cout << boolalpha << (number1 == 22);

return 0;

}

I saved the program as Example3_31.cpp, compiled it, and ran it for the class. The following
screenshot was displayed on the classroom projector:

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 119

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

Logical Operators
“So far,” I said, “we’ve examined arithmetic operators and comparison operators. Now it’s time to
look at a set of operators that sometimes cause beginner’s hearts to skip a beat: logical operators.”

“Are those the And, Or, and Not operators?” Blaine asked.
“That’s right, Blaine,” I said. “In this C++ class, we’ll be discussing three logical operators: And,

Or, and Not. Just like comparison operators, logical operators return a True or False value as the
result of performing an operation on two operands. I must warn you that logical operations can be
confusing for the beginner, primarily because of the necessity to understand the ‘truth’ or ‘falseness’
of their expressions. Let’s take a look at these operators individually.”

The And Operator (&&)
“An And operation,” I said, “returns a True value if the expressions on both sides of the And
operator evaluate to True.”

“Can you give us a real-world example to make this easier to understand?” Ward asked.
“I think so, Ward,” I said, as I thought a moment. “On Wednesday morning, your best friend

Melissa telephones you and invites you to lunch on Friday. You’d love to go, but you have two
problems that prevent you from saying yes right away. First, you and your boss have not been
on the best of terms lately, and you don’t want to chance taking an extra long lunch on Friday,
something that invariably happens when you go to lunch with Melissa. The only way you can
envision going to lunch with your friend is if your boss happens to be out of the office on Friday.”

“And the second problem?” Barbara asked. “You said there were two problems.”
“The second problem,” I said, “is that you’re short of cash and it’s your turn to pick up the tab

for lunch. Luckily though, Friday happens to be payday, and cash won’t be a problem, provided
the direct deposit of your paycheck goes through early Friday morning, something that is 50-50
at best. You decide to call your friend on Friday at 11 A.M. to let her know for sure.”

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

I could see that some of the students were wondering what my heart-felt example had to
do with the And operator. I explained that we can express our dilemma in the form of two
expressions joined with the And operator in this way: “You can go to lunch with your friend
Melissa if your boss is out of the office on Friday and if the direct deposit of your paycheck gets
into your bank account by 11 A.M. on Friday morning,” I said.

“In other words, both the left-hand expression, ‘Boss out of office,’ and the right-hand
expression, ‘Money in account,’ must be true for the And operator to return a value of True.”

Boss out of office AND Money in account

“So what happens?” Rhonda asked.
“On Friday morning,” I said, “you arrive at the office. You’re saddened to hear that your boss

has called in to say she has the flu and won’t be in at all that day.”
“So the left-hand expression, ‘Boss out of office,’ is True,” Dave said.
“That’s right, Dave,” I said. “We’re halfway there. Our left-hand expression evaluates to True.

Now we have to wait on the direct deposit. The morning drags by as lunch time gets closer and
closer. For the moment though, the And operation is returning a False value, because the right-
hand expression, ‘Money in account,’ is still returning a False value. Remember, the And operation
is True only if both the left-hand expression and right-hand expressions are True. Right now, only
the left-hand expression, ‘Boss out of office,’ is True. Unfortunately, the last time you checked your
balance, you found that your direct deposit still hadn’t been made to your account, and $1.38
won’t buy you and your friend Melissa much of a lunch.”

“I wish we could see this graphically,” Peter said.
“Actually Peter,” I said, “we can express this dilemma in the form of something called a truth

table. Here it is.”
I displayed the following on the classroom projector:

Expression 1 And Expression 2 Statement

True And True True

True And False False

False And True False

False And False False

“A truth table,” I said, “shows you the four possible outcomes for the And operation. As you
can see, there’s only one way for an And operation to return a True value, and that’s if both
Expression 1 (the left-hand side) and Expression 2 (the right-hand side) are True. On the other
hand, there are three ways for the And operation to return a value of False.”

120 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“I don’t like those odds,” Kate said, laughing. “I don’t think lunch looks too promising!”
“Can you rewrite the truth table in terms of the boss and the money?” Rhonda said. “I think

that might help me visualize this.”
I took a moment to work up this revised table and then displayed it on the classroom projector.

The current situation is highlighted in bold:

Boss Out? And Money in Bank? Go to Lunch?

True And True True

True And False False

False And True False

False And False False

“That’s better,” Steve said. “This is beginning to make some sense to me now.”
“Let’s continue on with the story,” I said. “As of 10:30, with no cash in the bank, lunch is a

remote possibility. Just as you’re about to call Melissa and tell her no, one last check of your bank
balance shows that the direct deposit has made it, which means the right-hand expression,
Expression 2, is now True. Because both the left-hand and right-hand expressions evaluate to True,
the entire And operation is True, and you and Melissa can now go off to lunch.”

Boss Out? And Money in Bank? Go to Lunch?

True And True True

True And False False

False And True False

False And False False

“What is the And operator in C++?” Kate asked. “Is it the word ‘And’?”
“Thanks, Kate,” I said. “I almost forgot—the C++ And operator is the ampersand (&&).”
“Can you give us an example of the use of the And operation in C++?” Dave asked.
I thought for a moment, then came up with this example, which I displayed on the

classroom projector:

//Example3_32.cpp

#include <iostream>

#include <string>

int main()

{

Chapter 3: Data 121

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

122 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

using namespace std;

string name = "Smith";

int number1 = 99;

if (name == "Smith" && number1 == 22)

cout << "Both sides of the AND expression are True";

return 0;

}

“Once again,” I said, “let’s use an If statement to evaluate the truth or falseness of the logical
expression we’ve coded, where we check to see whether the value of the name variable is Smith
and the value of the number variable is 22. If the expression evaluates to True, we display an
appropriate message in the console.”

I saved the program as Example3_32.cpp, compiled it, and ran it for the class. The following
screenshot was displayed on the classroom projector:

“Nothing happened,” Rhonda said.
“You’re right, Rhonda,” I said, “in that no message was displayed. In this expression, the

left-hand side of the expression is True, because name is equal to Smith, but the right-hand side
expression is False, because the value of number1 is 99, not 22. Therefore, the And operation
returns a value of False (consult the truth table to see this for yourself).”

I then changed the code to assign the value 22 to the variable number:

//Example3_33.cpp

#include <iostream>

#include <string>

int main()

{

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 123

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

using namespace std;

string name = "Smith";

int number1 = 22;

if (name == "Smith" && number1 == 22)

cout << "Both sides of the AND expression are True";

return 0;

}

I saved the program as Example3_33.cpp, compiled it, and ran it for the class. The following
screenshot was displayed on the classroom projector:

“Now the And operation returns a True value,” I said, “because both the left-hand and
right-hand expressions are True, and True and True equals True.”

The Or Operator (||)
“I think if you’re comfortable with the And operation,” I said, “you won’t have too much trouble
with the Or operation. An Or operation, just like the And operation, evaluates expressions to the
left and right of the Or operator, returning a value of True or False. The difference is the rules for
determining whether the expression is True or False.”

I displayed this truth table representing the Or operation on the projector:

Expression 1 Or Expression 2 Statement

True Or True True

True Or False True

False Or True True

False Or False False

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

124 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

“Notice,” I said, “that with the Or operation, as was the case with the And operation, we have
four possibilities. In the case of the Or operator, however, three out of four results are True. In
fact, with the Or operation, there is only one combination that returns a False value, and that’s if
both the left-hand and right-hand expressions are False.”

“Can you give us another real-world example to illustrate the Or operation?” Linda asked.
“Although I think it will be pretty hard for you to top that last one.”

I thought for a moment. “Okay,” I said, “let’s try this one. It’s Friday morning. While dressing
for work, you receive a phone call from the host of an early morning radio show that is running a
contest. He tells you that if the month of your birthday ends in r or the last digit of your Social
Security Number is 4, you’ll be the lucky winner of $10,000!”

“Sounds great to me!” Ward said.
“Let me get this straight,” Rhonda said. “All you need to do to win the $10,000 is to have one

of those conditions be True—is that right?”
“That’s right, Rhonda,” I said. “According to the rules of the contest, you’ll win the $10,000 if either

the left-hand expression is True (the month of your birthday ends in the letter r) or the right-hand
expression is True (the last digit of your Social Security Number ends in 4). Unlike our lunch date
dilemma, where we needed both expressions to be True to go to lunch with our friend, with an Or
operation, only one side of the expression needs to be True. How do you like your odds now, Kate?”

“I love ’em,” she answered. “If that call were placed to me, I’d win the prize.”
Kate wasn’t alone—a quick poll of the class revealed that 4 out of the 18 students would win

using the Or operation. And guess what—if the contest had called for the And operation, none of
the students in the class would have won the cash!

I then displayed this truth table to reflect the radio contest. The three outcomes where the Or
operation returns a True value are highlighted in bold.

Birthday Month
Ends in r? Or

Last Digit of Social
Security Is 4? Win $10,000?

True Or True True

True Or False True

False Or True True

False Or False False

I then took the previous code example and modified it by changing the And operator to an Or
operator. In C++, the Or operator is the double pipe character (||):

NOTE
The Or operator is the double pipe character (||). The pipe character appears on the
same key as the backslash (\) on the keyboard. Beginners frequently mistake it for
an exclamation point.

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 125

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

//Example3_34.cpp

#include <iostream>

#include <string>

int main()

{

using namespace std;

string name = "Smith";

int number1 = 99;

if (name == "Smith" || number1 == 22)

cout << "One or both sides of the OR expression are True";

return 0;

}

I saved the program as Example3_34.cpp, compiled it, and ran it for the class. The following
screenshot was displayed on the classroom projector:

“Because one side of the expression is True—the left-hand side,” I said, “True is returned from
the Or operation. If we were to change the value of name from Smith to Smiley, both the left-
hand and right-hand expressions would be false, and the Or operation would return a False value.”

I did exactly that, changing the code to look like this:

//Example3_35.cpp

#include <iostream>

#include <string>

int main()

{

using namespace std;

string name = "Smiley";

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

126 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

int number1 = 99;

if (name == "Smith" || number1 == 22)

cout << "One or both sides of the OR expression are True";

return 0;

}

I saved the program as Example3_35.cpp, compiled it, and ran it for the class. The following
screenshot was displayed on the classroom projector:

“Nothing is displayed in the console because the Or expression evaluates to False,” I said. “The
only way that an Or operation can return a False value is if both the left-hand and right-hand
expressions evaluate to False. That’s the case here—number1, with a value of 99, is not 22, and
name, with a value of Smiley, is definitely not Smith.”

“I just entered some code on my own and I didn’t get the correct result,” Kathy said.
I took a quick walk to her PC and saw that she had written the following code:

//Example3_36.cpp

#include <iostream>

#include <string>

int main()

{

using namespace std;

int number = 99;

if (number == 22 || 88)

cout << "One or both sides of the OR expression are True";

return 0;

}

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 127

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

I took Kathy’s code, saved it as Example3_36.cpp, and compiled and executed it on my PC.
The following screenshot was displayed on the classroom projector:

“What did I do wrong?” she asked. “The message is telling me that one or both sides of the Or
expression are true, but that’s not the case. The value of the variable number is 99—that’s neither
22 nor 88.”

“I know what you wanted to do,” I said, “but you confused C++. Your code was very English-
like, which is very tempting to do in C++, but you see, you don’t really have two expressions on
either side of the Or operator. Your left-hand expression is ‘number == 22’, and your right-hand
expression is just the number 99. It’s a bit complicated to describe what goes on behind the scenes,
but essentially the right-hand expression was evaluated to be true, and so the entire expression was
determined to be true. I know it’s difficult not to fall into this trap of writing a program the way
you speak—I’ve seen it many times.”

“So how could I rewrite my code?” she asked.
I displayed the correct code on the classroom projector:

//Example3_37.cpp

#include <iostream>

#include <string>

int main()

{

using namespace std;

int number = 99;

if (number == 22 || number == 88)

cout << "One or both sides of the OR expression are True";

return 0;

}

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Wow, that was simple,” Kathy said. “Why didn’t I think of that?”
“You did what a lot of beginners do, Kathy,” I answered. “You wrote the code the way you

would ask the question in conversation. Unfortunately, as English-like as C++ may appear to be,
there are still some statements that can confuse it.”

The Not Operator (!)
“We have one more logical operator to discuss today,” I continued, “and it’s the Not operator. As
opposed to the other logical operators, which operate on two operands or expressions, the Not
operator is called a unary operator because it operates on just a single expression. By the way, the
increment and decrement operators are also unary.

“What does the Not operator do?” Steve asked.
“The Not operator is used as a negation,” I replied. “It evaluates an expression, takes the True

or False result, and then returns the opposite value. So, if an expression evaluates to True, the Not
operator returns False. If the expression evaluates to False, the Not operator returns True.”

“Why in the world would you want to do something like that?” Rhonda asked.
“The Not operator can simplify some types of program code,” I said, “and make it easier to

read and understand. Let me show you.”
I then displayed this code on the classroom projector:

//Example3_38.cpp

#include <iostream>

#include <string>

int main()

{

using namespace std;

int number = 13;

cout << boolalpha << (number == 13);

return 0;

}

“Can anyone tell me what will happen when we run this code?” I asked. Dave suggested that
the word True would be output in the console.

“That’s right,” I said. “Because the value of number is 13, C++ will evaluate the expression
number == 13 as True.”

128 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 129

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

I then saved the program as Example3_38.cpp, compiled the program, and executed it.
As Dave had predicted, the word True appeared in the console. I then changed this line of
code from

cout << boolalpha << (number == 13);

to

cout << boolalpha << (!(number == 13));

“Now what will happen?” I asked. Dave answered that he thought the word False would appear
in the console.

“Can you tell us why?” I replied.
“Because,” he said, “the expression (number == 13) will evaluate to True. Executing the Not

operator on a True value gives us a False value.”
“Excellent, Dave,” I said. “Bill Gates himself couldn’t have stated it better.” I then compiled

the program with the change and executed it. Dave was right; the word False was output in
the console.

“Without the Not operator, determining whether a variable’s value wasn’t a particular value
would require some very hard-to-read-and-understand code, like this.”

cout << boolalpha << (number < 13 || number > 13);

“Is that all there is to the Not operator, then?” Barbara asked.
“Basically, yes,” I said. I paused before suggesting that we end the class by completing

an exercise.
“In this exercise,” I said, “you’ll have a chance to continue working with the class project—the

Grade Calculation Project—which you created last week. We don’t have a lot of changes to make
to it, but we will enhance it with some variable and constant declarations.”

NOTE
You may notice that I use both terms Grade Calculation Project and Grade Calculation
Program throughout the book. As you’ll see, initially the class project consists of just
a single file called Grades.cpp—and so the term program seems to be a good fit.
However, as we enhance the class project, we’ll create more and more files for it,
and so it will no longer be just a single C++ program. At that time, Grades Calculation
Project will be a better description.

I then distributed this exercise for the class to complete.

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

130 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

Exercise 3-1 Add Variables and Constants to the
Grade Calculation Program

In this exercise, you’ll find and load up the Grades.cpp program you wrote last
week and then modify it to include variable and constant declarations. For
the sake of demonstration, you’ll calculate the grade for an English student
who has received a midterm grade of 70, a final examination grade of 80, a
research grade of 90, and a presentation grade of 100 for the four individual
component pieces.

1. Using the editor of your choice (most likely Notepad), locate and load up
the Grades.cpp source file you created last week. (It should be in the
\CPPFiles\Grades folder.)

2. Modify the code so that it looks like this:

//Grades.cpp

#include <iostream>

int main ()

{

using namespace std;

const float MIDTERM_PERCENTAGE = .25;

const float FINALEXAM_PERCENTAGE = .25;

const float RESEARCH_PERCENTAGE = .30;

const float PRESENTATION_PERCENTAGE = .20;

int midterm = 70;

int finalExamGrade = 80;

int research = 90;

int presentation = 100;

float finalNumericGrade = 0;

finalNumericGrade =

(midterm * MIDTERM_PERCENTAGE) +

(finalExamGrade * FINALEXAM_PERCENTAGE) +

(research * RESEARCH_PERCENTAGE) +

(presentation * PRESENTATION_PERCENTAGE);

cout << "Midterm grade is : " << midterm << endl;

cout << "Final Exam grade is : " << finalExamGrade << endl;

cout << "Research grade is : " << research << endl;

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 131

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

cout << "Presentation grade is: " << presentation <<

endl << endl;

cout << "The final grade is: " << finalNumericGrade;

return 0;

}

3. Save your source file as Grades.cs in the \CPPFiles\Grades folder (select File |
Save As from Notepad’s menu bar). Be sure to save your source file with the
filename extension .cpp.

4. Compile your source file into an executable file (if you have forgotten how
to compile your C++ source file into an executable file, consult Exercise 2-2
from last week).

5. Execute your program (if you have forgotten how to execute your C++
program, consult Exercise 2-3 from last week). You should see output similar
to this screenshot:

Discussion C++ is a sensitive language, and as such I didn’t expect everything to go
smoothly with this exercise. All in all, the exercise went well, although some
students, particularly those who didn’t follow the exercise precisely, had a
number of problems. For instance, it took Rhonda four or five compilations of
her source file before she wound up with a compiled executable file. In fact, the
first time she compiled her source file, she just went right ahead and executed
her executable file. Because she still had the old executable file from the
previous week, when she executed her program, it produced the results from
the previous week. Ultimately, most of her problems stemmed from not spelling
her variable names the same way she declared them.

“I admit,” Rhonda said, smiling, “I should have paid more attention to
the syntax of the variable names. I guess I’m just not used to the case sensitivity
of C++.”

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Ward entirely missed the fact that the constants were declared as float data
types, instead declaring them as int. This caused C++ to truncate the assigned
value of the constants to zero, and when he executed his program, the final
grade result was zero.

A number of students just forgot to end statements with a semicolon,
something you need to do in C++.

After about ten minutes, all the students had finally compiled their
programs, and it was time to discuss what they had done.

“As you are beginning to realize by now,” I said, “each program that writes
to the console must have this include statement.”

#include <iostream>

“In addition, each program that is executed from the command-line prompt
must have a main() function.”

int main ()

“As you’ve also learned, including the using namespace statement for the std
library eliminates the need for us to preface our C++ statements with the
keyword std.”

using namespace std;

“C++ convention suggests that constant names be capitalized, and if there is
more than one word in the constant name, they should be separated by an
underscore. That’s why we named the constants like this.”

const float MIDTERM_PERCENTAGE = .25;

const float FINALEXAM_PERCENTAGE = .25;

const float RESEARCH_PERCENTAGE = .30;

const float PRESENTATION_PERCENTAGE = .20;

“Notice that C++ constants must be initialized,” I said. “I should tell you that
as our project evolves, much of the code you see in this class will be moved to
one or more support C++ classes. In fact, this code will be placed in a class called
EnglishStudent, but more on that in a few weeks.”

“I was a little confused,” Blaine said, “about your variable-naming
conventions. I think I would have begun the variable names with a
capital letter.”

“By convention,” I said, “variable names begin with a lowercase letter. If a
variable name consists of more than one word, as some of ours do, the words
are joined together and each word after the first begins with an uppercase
letter. That’s why we named the variables like this.”

132 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 133

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

int midterm = 70;

int finalExamGrade = 80;

int research = 90;

int presentation = 100;

float finalNumericGrade = 0;

I had thought that this next section of code would give the class problems,
but it hadn’t, although Mary did have a question:

finalNumericGrade =

(midterm * MIDTERM_PERCENTAGE) +

(finalExamGrade * FINALEXAM_PERCENTAGE) +

(research * RESEARCH_PERCENTAGE) +

(presentation * PRESENTATION_PERCENTAGE);

“I understand what you were doing in this next section of code,” she said.
“You’re multiplying the component grade pieces by the applicable constant
values, but why didn’t each line of code end with a semicolon?”

“Because those five lines of code are really just a single C++ statement,” I
answered. “Because a C++ statement can span more than one line—in this case,
five—we only needed the semicolon at the very end.”

“Did we really need those parentheses?” Dave asked. “Based on the Order
of Operations, wouldn’t the multiplication operations have been performed
before the additions?”

“That’s right, Dave,” I said. “We could have written the code like this, and
the answer would still be correct.”

finalNumericGrade =

midterm * MIDTERM_PERCENTAGE +

finalExamGrade * FINALEXAM_PERCENTAGE +

research * RESEARCH_PERCENTAGE +

presentation * PRESENTATION_PERCENTAGE;

“But I’m a big believer in readability. I think the parentheses make the code
easier to read for someone else and leave no doubt as to our intentions.”

“I understood everything that was going on in this next section,” Kate said,
“except for the two instances of endl on next-to-last cout statement. What’s
going on with that?”

Kate was referring to this section of code:

cout << "Midterm grade is : " << midterm << endl;

cout << "Final Exam grade is : " << finalExamGrade << endl;

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

134 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

cout << "Research grade is : " << research << endl;

cout << "Presentation grade is: " << presentation << endl << endl;

cout << "The final grade is: " << finalNumericGrade;

“As you learned a little earlier today,” I said, “endl causes a carriage return
and line feed character to be passed to the cout object. Because we want to
print a blank line prior to displaying the final grade in the console, we pass the
cout object two instances of endl.”

“So that’s where that blank line came from,” Linda said. “I was wondering
about that. Is formatting like this something that we’ll concern ourselves with a
great deal?”

“Only in this course,” I said. “When you take the C++ Intermediate class here
at the university, you’ll learn how to write C++ programs that present the user
with a graphical user interface (GUI)—in other words, windows. At that point,
you won’t be using the console at all. Finally, this line of code completes the
program—the return statement of the integer value zero, followed by the
closing right brace.”

return 0;

}

I waited to see if anyone had any questions.

“Next week,” I said, “you’ll learn how to make our program a lot more
intelligent through the use of selection structures.”

I then dismissed class for the day—it had been a long, but very valuable one.

Summary
This was quite an exhaustive look at the use of data in C++. In this chapter, you learned about the
importance of variables in C++. You learned when, where, and how to use variables and about
the different C++ variable types that you can declare. In addition, you discovered how to use a
variety of operations to manipulate the data contained in those variables.

Variables are defined in memory to hold data or information. Each variable has a scope, which
determines what other parts of your program can see the variable, and a lifetime, which determines
when the variable dies. Some variables live for as long as your program runs; others live only for as
long as a function executes. We discussed the need to declare and initialize variables.

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 3: Data 135

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3

C++ data types can be categorized in four broad ways:

� bool True or False values only.

� Numeric Numbers only, which can be integer and floating-point data types.

� char A single character.

� String A set of characters, treated as text. Strings can hold the characters representing
numbers, but these are not numbers that you can perform arithmetic on.

A constant is like a fixed variable and is declared using the const keyword. Constants should be
named in all capital letters so that they stand out in your code. Once a value is assigned to a constant,
that value cannot be changed.

Finally, we took a look at arithmetic, comparison, and logical operators. Operators act on
expressions and return a result. An example of a mathematical operator is the plus sign. You
learned that multiple operators are treated in a defined order called the Order of Operations,
where operations in parentheses are performed first, followed by exponentiation, multiplication
and division, and finally, addition and subtraction.

An example of a comparison operator is the double equal sign. An example of a logical operator
is the And operator, represented by the ampersand (&&).

You should now be familiar, if not totally comfortable, with the ways you can manipulate data
in C++ programs. In the next chapter, you’ll see how selection structures permit your program to
make decisions.

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 3
Blind Folio 3:136

P:\010Comp\LearnTo\535-1\ch03.vp
Monday, October 07, 2002 1:41:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter

4
Selection
Structures

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4
Blind Folio 4:137

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
TLFeBOOK

138 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

In programming, one of the most important capabilities your program must have is to adapt
to conditions that are encountered while it is running. In this chapter, we’ll continue to
follow my C++ class as we examine selection structures—programming constructs that enable

your program to adapt to those runtime conditions. Specifically, you’ll learn about the If statement
and the Switch statement. Along the way, you’ll also get your first taste of writing a program that
accepts input from the user.

Selection Structures
I arrived in the classroom a little later than usual and found a bit of a commotion.

“What’s wrong?” I asked, noting that there was a group of students surrounding Rose and Jack.
“As you know,” Jack said, “Rose and I are both engineers by trade, and we work for the same

company. For the last few months, we’ve been working on our company’s biggest account—overseeing
the construction of a new cruise ship in the United Kingdom. Construction is way ahead of
schedule, and yesterday our supervisor told us that we’re being called away to participate in the
sea trials. So you see, this will probably be our last class!”

“I’m disappointed,” Rose said, “because I had hoped to finish the coding for the Grade Calculation
Project before we left for the sea trials, but there’s no way we’ll be near to that point today.”

I told both Rose and Jack that we would all be sorry not to have them present all the way
through the project, but we hoped they would be able to return in time to see the final version of
the Grade Calculation Project implemented in the English, Math, and Science departments.

“But as far as the Grade Calculation Project is concerned,” I said, “I have a surprise for you. By
the end of today’s class, we’ll have coded a working prototype of the Grade Calculation Project. It’s
not quite what we’ll be delivering to Frank Olley in a few weeks, but I think you’ll be pleased with
it—and pretty amazed at just how full featured it is.”

As the obvious shock at my last statement subsided, I began our fourth class by telling everyone
that during the next two weeks, they would be learning about the three types of programming
structures that form the building blocks of all computer programs.

“Structure?” Ward said. “That sounds like a house or a building.”
“The building analogy is a good one, Ward,” I said. “You’ve already learned that the first step in

developing a program is to develop a ‘blueprint’ in the form of a Requirements Statement. Many
years ago computer scientists discovered that any program can be written using a combination of
three coding structures, much like a house can be constructed using a series of standard components.
These three structures—the sequence structure, the selection structure, and the loop structure—
will form the basis of our discussions over the next few weeks.”

“Will we be writing any code ourselves today?” Rhonda asked. “I know we wrote a bit of code
last week, but I’m really getting anxious to get going.”

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

“You’ll have a chance to write a lot of code today,” I answered. “Whenever possible, I try to
have the exercises that we complete here in class ultimately lead to the completion of the Grade
Calculation Project. However, from time to time we’ll complete some exercises just for practice.
So that we don’t confuse that work with the Grade Completion Project, if you want to keep your
practice exercises, you should save them in the Practice folder you created earlier in the class. Before
we get into our examination of the selection structure today, I’d like to give you all a chance to
work with code that allows you to ‘input’ data into your program.

Getting Input into Your Program
“Up to this point,” I said, “we have not yet written a program that accepts data from outside of
the program while it’s running. In the programming world, this is a common need, and there are
many ways to accomplish this. For instance, a program can open and read data from a file on the
user’s PC or network; it can also open and read data from a database, which is a more
sophisticated form of a data file. It can also accept data directly from the user.”

“Do you mean our program can ask the user a question and do something with their answer?”
Rhonda asked.

“Yes, Rhonda, “ I said, “that’s exactly what I’m getting at. In the next few minutes, I’ll demonstrate
how we can do that by using the cin object to accept input and the cout object to write to the
console window.”

I thought for a moment and then wrote and displayed this program on the classroom projector:

//Example4_1.cpp

#include <iostream>

#include <string>

int main()

{

using namespace std;

string response;

cout << "What is your favorite programming language? ";

cin >> response;

cout << "You have great taste. " <<

response << " is a great language" << endl;

return 0;

}

Chapter 4: Selection Structures 139

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

140 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

I saved the program as Example4_1.cpp, compiled it, and ran it for the class. The
following screenshot was displayed on the classroom projector:

“It’s not obvious,” I said, “but the program is prompting us to name our favorite
programming language. At this point, all we need to do is type our answer and press
ENTER.” I did so, and the following screenshot was displayed on the classroom projector:

“Let me explain what’s going on here,” I said. “As we’ve done with all the programs we’ve
written so far, we begin by telling C++ that we will be including certain libraries in our
program. In this case, we are including both the iostream and string libraries, because
we will be using the special string object in our program.”

#include <iostream>

#include <string>

“Every program that runs from the command line must have a main() function, and
these two lines of code begin it. In case you forgot, the word int in front of the name of
the main() function indicates that the function returns an integer value. The pair of empty
parentheses indicates that no arguments, or values, are passed to the function. Don’t
worry about arguments now. We’ll be discussing them later.”

int main(){

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 4: Selection Structures 141

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

“After coding the first line of the main() function—sometimes called the procedure header—we
begin the actual coding of the main() function by starting off with a bracket, followed by announcing
to C++ that we will be using the std namespace in our program. This saves us from having to type
the word std in front of the objects that are contained in the std namespace, such as cin and cout.”

using namespace std;

“Next, we declare a string variable called response. This variable will be used to store the user’s
response to our question, What is your favorite programming language?”

string response;

“We need to pose a question to the user, and we do that by passing the question in the form
of a quoted string to the cout object. Notice how we insert a space after the question mark. That
allows for a space after the question and the user’s response.”

cout << "What is your favorite programming language? ";

I waited for questions before continuing.
“This next line of code uses the cin object to ‘redirect’ the user’s response into the variable

response. In the old days of programming, doing something like this was really tough, but the cin
object makes it a snap. Basically, everything that the user types up to the point they hit the ENTER

key is placed in the string variable response. Notice how the redirection symbol (>>) is in the
opposite ‘direction’ of the redirection symbol we use with the cout object.”

cin >> response;

I paused to see if everyone was still with me. They were.
“Finally, because we now have the user’s answer in the response variable, we can use its value to

confirm the user’s great taste in a programming language, using the plus (<<) operator to concatenate
the value of the response variable to the string ‘You have great taste.’”

cout << "You have great taste. " <<

response << " is a great language" << endl;

NOTE
This code could have been written on a single line. It was broken up in order to ‘fit’
neatly on the printed page of this book. Remember, in C++, you can break a line of
code up in virtually any way you wish—except in the middle of a quoted string.

“Finally, we end the program by executing the return statement. Because we declare the main()
function to return an integer data type, we return the value 0.”

return 0;

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

142 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

“I’m amazed that I actually understand what’s going on here,” Rose said.
“I love what this program does,” Jack said.
I told my students that I’d like to give them a chance to experiment on their own with obtaining

input from the user via the C++ console, so I distributed this exercise for them to complete.

Exercise 4-1 Experimenting with C++ Input

In this exercise, you’ll write code to ask the user their first name and then
generate a custom response to them. You’ll discover that if the user makes
no response and then presses ENTER, some unsatisfactory results occur.

1. Create a folder on your hard drive called \CPPFiles\Practice. This will be the
home of the C++ programs we create in class that are not part of the Grade
Calculation Project.Use Notepad and enter the following code:

//Practice4_1.cpp

#include <iostream>

#include <string>

int main()

{

using namespace std;

string response;

cout << "What is your name? ";

cin >> response;

cout << "It's nice to meet you, " << response;

return 0;

}

2. Save your source file as Practice4_1 in the \CPPFiles\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute the program. When prompted, type your first name only and
then press ENTER. A message, including your name, should be displayed in
the console.

5. Execute your program again, but this time type your first and last name.
What happens? What does C++ display in the console?

6. Execute the program. When prompted, immediately press ENTER.
What happens?

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 4: Selection Structures 143

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

Discussion No one had any major problems completing the exercise. By now they were
getting pretty good with coding a simple C++ program and having a great time
doing it. I ran the program myself, typed my first name, and a message reading
“It’s nice to meet you, John” was displayed in the C++ console.

A few students had minor problems completing the exercise. One student
used the wrong redirection symbol with the cin object, and a couple had
problems in formatting their display in the console.

Rhonda indicated that she had a problem. “My cursor didn’t stay on the
same line as the question. In your version of the program, the cursor stayed on
the same line, and there was a space in between the question and your response.”

“I suspect,” I answered, “that you may have placed the endl object reference
on the wrong line of code.”

I took a quick walk to Rhonda’s PC, and sure enough, that is what she had
coded. Not only that, but she had forgotten to include a space after the
question mark of her question. This was something Blaine had also done.

cout << "What is your name?" << endl;

I corrected her code to look like this:

cout << "What is your name? ";

“Somehow I thought C++ would do that for me automatically,” Rhonda said.

“In programming, very little happens automatically,” I said. “Especially when
you are dealing with string literals like this. Whatever you tell C++ to display,
that’s exactly what will be displayed—and that includes spaces.”

I paused before continuing. “Did everyone notice what happens when you
enter both your first and last name?”

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

144 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

I ran the program again, and this time typed both my first and last name and
then pressed ENTER. The following screenshot was displayed on the classroom
projector:

“Only your first name was displayed,” Steve said.

“That’s right, Steve,” I said. “The cin object is confused. As soon as it
encountered a space character, it stopped working. That would be true for any
white space, too—like a TAB key or the ENTER key.”

“What can we do about this?” Linda asked. “I would think we’ll need to be
able to have the user input more than a single word into our program.”

“Not to worry Linda,” I said, “there are a few ways around this. The simplest
one is to prompt the user for each element separately. Essentially, we could prompt
the user for their first name, store it, and then repeat the process for their last
name. If we want to get more input on a single line, though, there is a way
around cin’s limits, but it involves the use of something called a character array.
We’ll examine arrays later on in the course, and you’ll learn that an array is just
a collection of something. In this case, a character array is a collection of characters,
and using one, in conjunction with the getline() method of the cin object, we
can deal with this problem. Let me show you.”

I then displayed this code on the classroom projector:

//Example4_2.cpp

#include <iostream>

#include <string>

int main()

{

using namespace std;

char response[256];

cout << "What is your name? ";

cin.getline(response,256);

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 4: Selection Structures 145

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

cout << "It's nice to meet you, " << response;

return 0;

}

I saved it as Example4_2.cpp, compiled it, and executed it. I then entered
both my first and last name at the prompt, and the following screenshot was
displayed:

“That’s better,” I said. “Notice that both my first and last name have been
displayed. All we needed to do was change the response variable from a string
variable to an array of the char data type.”

char response[256];

“Also, instead of assigning the input of the cin object to a string variable,
we executed the getline() method of the cin object.”

cin.getline(response,256);

“In case you’re wondering, a method is simply another name for a function
that is declared in an object. Also, the getline() method requires two
arguments: the first is the name of the character array, and the second is the
maximum number of characters to read. Again, if the concept of an array is
baffling you right now, don’t be too concerned. We’ll cover it in much more
detail toward the end of the course.”

“You asked us to run our program and immediately hit the ENTER key,” Mary
said. “When I did that, the program just kept running and running. The only
way to stop it was to type something—and then the display was skewed.”

“You’re absolutely right, Mary,” I said. “Both Practice4_1 and the modified
version of the program I just coded and ran have a problem dealing with the
user immediately hitting the ENTER key without typing any characters. Being able
to detect whether the user simply presses the ENTER key will be very important to
us later on, and you’ll learn how to handle this in just a few moments.”

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

146 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

There were no questions on getting input into our program, so I suggested that we take a look
at the C++ sequence structure now.

The Sequence Structure—Falling Rock
“As you’ll see later on,” I said, “both the selection and loop structures require a special syntax to
implement, but that’s not the case with the sequence structure. Any code that we write is automatically
part of a sequence structure. I like to analogize a sequence structure to the behavior of a falling rock.”

“Falling rock? What do you mean by that?” Steve said, obviously amused.
“Have you seen signs warning you of falling rock on the highway?” I said. “If you’ve ever seen

rock fall, you know that once it gets rolling, there’s no stopping it. The same is true of C++ program
code. For instance, let’s look at the code we wrote last week that displays the final grade of an English
student to the C++ console:

//Grades.cpp

#include <iostream>

int main ()

{

using namespace std;

const float MIDTERM_PERCENTAGE = .25;

const float FINALEXAM_PERCENTAGE = .25;

const float RESEARCH_PERCENTAGE = .30;

const float PRESENTATION_PERCENTAGE = .20;

int midterm = 70;

int finalExamGrade = 80;

int research = 90;

int presentation = 100;

float finalNumericGrade = 0;

finalNumericGrade =

(midterm * MIDTERM_PERCENTAGE) +

(finalExamGrade * FINALEXAM_PERCENTAGE) +

(research * RESEARCH_PERCENTAGE) +

(presentation * PRESENTATION_PERCENTAGE);

cout << "Midterm grade is : " << midterm << endl;

cout << "Final Exam grade is : " << finalExamGrade << endl;

cout << "Research grade is : " << research << endl;

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 4: Selection Structures 147

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

cout << "Presentation grade is: " << presentation << endl << endl;

cout << "The final grade is: " << finalNumericGrade;

return 0;

}

“This code is a perfect example of the sequence structure. Last week, we observed that the first
line of code in the main() function executes, followed by the second line of code, then the third,
and so forth, in sequence.”

“Oh, I see where the term ‘sequence structure’ comes from now,” Valerie said. “You mean each
line of code is executed, one after the other. But I guess I have to ask, What else could happen?
Isn’t every line of code evaluated by C++?”

“Every line of code is evaluated by C++,” I said, “but not every line of code is necessarily
executed only once—or even one time for that matter. Some lines of code can be skipped based
on conditions found when the program is running. In other cases, lines of code may be executed
more than once, as you’ll see when you learn about coding loops in programs. That’s where the
C++ selection and loop structures come into play. The selection structure gives ‘intelligence’ to our
program, in the form of decision-making capabilities, which is something the falling rock behavior
of a sequence structure simply can’t do. The selection structure allows us to selectively execute lines
of code based on conditions our program finds at runtime. Next week, we’ll examine the loop
structure, which allows us to execute a line or lines of code repetitively.”

I paused a moment before adding, “In order to illustrate the alternatives to the falling rock
behavior of a sequence structure, I’d like you to complete a series of exercises based on a fictitious
collection of seven restaurants in New York City. Pretend, for a few moments, that you have been
hired by these seven restaurants to write a program to display their ads on a giant display screen in
Times Square, but in our case we’re going to use the C++ console as our giant display screen. Here’s
the second exercise of the day, which will illustrate, I hope, the ‘falling rock’ behavior of C++ code.”

I then distributed this exercise for the class to complete.

Exercise 4-2 Eat at Joe’s (The Sequence Structure’s
Falling Rock Behavior)

In this exercise, you’ll write a C++ program that displays information to the C++
console about the days of operation of seven restaurants in New York City.
Pretend that the C++ console is actually a giant display screen in New York
City’s Times Square.

1. Use Notepad and enter the following code (be extremely careful of the
capitalization—C++ is very picky):

//Practice4_2.cpp

#include <iostream>

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

148 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

int main()

{

using namespace std;

cout << "Eat at Joe's" << endl;

cout << "Eat at Tom's" << endl;

cout << "Eat at Kevin's" << endl;

cout << "Eat at Rich's" << endl;

cout << "Eat at Rose's" << endl;

cout << "Eat at Ken's" << endl;

cout << "Eat at Melissa's" << endl;

return 0;

}

2. Save your source file as Practice4_2 in the \CPPFiles\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute your program. You should see output similar to this screenshot:

Discussion Aside from some students’ continued anxiety with writing code and compiling
it into an executable file, this exercise went pretty smoothly. Having warned
them in the instructions for the exercise, my students were very careful with
their capitalization—something that had tripped them up in the previous
week’s exercise. Only one person had a problem—and that person capitalized
the letter c in the word cout, causing the C++ compiler to generate an error
message. I gave everyone a chance to complete the exercise and then began
to explain what we had done with this small program.

“This program seemed pretty straightforward,” Rhonda said. “What were
you trying to illustrate with it?”

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

“The sequence structure,” I answered. “The code that makes up the main()
function of this class represents something known as a programming sequence
structure. As I mentioned a little earlier, all that means is that the second line of
code executes after the first line of code, the third after the second, and so on.”

“Falling rock behavior,” Ward chimed in.

“Exactly right, Ward,” I said. “Does everyone remember how the cout
object works?”

“No problem,” Valerie said. “The cout object is used to display output to the
C++ console.”

“That’s right, Valerie,” I said.

There where no other questions about the exercise, so I continued.

“Having written this program for the owners of the seven restaurants,” I
said, “suppose that the owner of Joe’s restaurant goes into semi-retirement
and decides to open his restaurant only on Sundays. Tom, proprietor of Tom’s
restaurant, hearing the news about Joe, thinks semi-retirement is a great idea
and decides to open his restaurant only on Mondays. Kevin follows suit and
opens only on Tuesdays. Soon the rest of the owners hear about this, figure
that one day of work a week is a great idea, and the next thing we know, Rich
is open only on Wednesdays, Rose only on Thursdays, Ken only on Fridays, and
Melissa only on Saturdays. Hoping to save advertising costs in Times Square,
each owner contacts us and informs us they want to advertise on our giant
display screen only on the days that their restaurant is actually open. How can
we handle this with our program?”

I gave everyone a moment or two to think about the problem.

“I suppose,” Peter said, “we could write separate C++ programs for different
days of the week—although if you tell me there isn’t a better way than that, I
may need to drop out of the class!”

“Peter is right,” I said to the class. “We could write separate C++ programs
for each day of the week, and he’s also right that there is a better way. We can
make our program smart enough to know what the date is—and based on that,
the day of the week. Armed with that knowledge, we can then use the C++
selection structure to decide which restaurant advertisement to display on our
giant display screen.”

The C++ Selection Structure: The If Statement
“Selection structures,” I continued, “can alter the default (falling rock) behavior of C++ code,
but they are a little more complicated to write. Selection structures require that the programmer
specify one or more conditions to be evaluated or tested by the program, along with a statement

Chapter 4: Selection Structures 149

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

or statements to be executed if the condition is determined to be true, and optionally, other
statements to be executed if the condition is determined to be false. In the next exercise, you’ll
implement one of the two C++ selection structures: the If statement. The condition that you’ll
ask C++ to evaluate is the current day of the week, which in this exercise, will be supplied by the
operator of the display screen. Based on C++’s determination of the day of the week, a decision as
to which restaurant’s advertising to display on the console will be made. As you’ll see, coding
selection structures requires a little more upfront thought than merely coding a plain sequence
structure.”

I then distributed this exercise for the class to complete.

Exercise 4-3 The If Statement (or Which Restaurant Is Open Today?)

In this exercise, you’ll modify the code from Exercise 4-2 to use an If statement
to determine which restaurant to advertise in the C++ console.

1. Using Notepad, enter the following code:

//Practice4_3.cpp

#include <iostream>

#include <string>

int main()

{

using namespace std;

string today;

cout << "What day of the week is it? ";

cin >> today;

if (today == "Sunday")

cout << "Eat at Joe's";

if (today == "Monday")

cout << "Eat at Tom's";

if (today == "Tuesday")

cout << "Eat at Kevin's";

if (today == "Wednesday")

cout << "Eat at Rich's";

if (today == "Thursday")

cout << "Eat at Rose's";

if (today == "Friday")

cout << "Eat at Ken's";

150 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

if (today == "Saturday")

cout << "Eat at Melissa's";

}

2. Save your source file as Practice4_3 in the \CPPFiles\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute your program. Enter the current day of the week (be sure to
capitalize the first letter of the day of the week). You should see one
restaurant advertisement displayed in the C++ console, similar to this
screenshot (which one it is will depend on the day of the week you enter
at the prompt):

Discussion I gave my students about ten minutes to complete the exercise. They seemed
mesmerized with the ability of their program to behave intelligently. Although
no one had any trouble completing the exercise, there were still a number of
puzzled looks in the classroom.

“This is really cool,” Steve said. “I had no idea you could do something like
this with a programming language, although I must confess I don’t think I
understand half the code we just wrote.”

“I think you are all comfortable with the first few statements in our
program,” I said. “These first two lines of code tell C++ that we wish to include
the iostream and string libraries in our program.”

#include <iostream>

#include <string>

“The next two lines of code declare the main() function.”

int main()

{

Chapter 4: Selection Structures 151

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

152 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

“The next line of code tells C++ that we wish to use the std namespace in
the program.”

using namespace std;

“This next line of code declares a variable called today, which will be used to
hold the answer that the ‘operator’ of our program provides to us when asked
what the day of the week is.”

string today;

“Here’s the line of code to prompt the user of the program for the day of
the week.”

cout << "What day of the week is it? ";

“This is followed by the line of code that takes the user’s response and
assigns it, via a redirection to the cin object, to the variable today.”

cin >> today;

I could see that Jack looked a bit confused, and I asked him if he was okay.

“That makes sense,” Jack said. “I think it’s just a matter of getting used to all
this mention of objects, such as cin and cout.”

“It does take some getting used to,” I said. “But remember, C++ is very much
object oriented. You’ll be dealing with objects like this quite often.”

I waited for questions before continuing.

“At this point,” I said, “the today variable contains the current day of the
week. Here we are using the C++ If statement in determining whether the day
of the week is Sunday.”

if (today == "Sunday")

“Two equal signs?” Rhonda interrupted. “Is that right? Shouldn’t it be one?”

“Good question, Rhonda,” I said. “In C++, we test for equality by using two
equal signs, not a single equal sign. One equal sign is used to assign a value to a
variable. Here, we’re using the C++ If statement to evaluate an expression to
determine whether it is true or false. In this case, the expression is today ==
“Sunday”.”

“The expression that is evaluated as part of the If statement, does it have to
be within parentheses?” Chuck asked.

“Good question, Chuck,” I said. “The answer is yes. The expression must be
enclosed within parentheses, and it must be an expression that can evaluate to
a True or False result.”

“What happens if the expression evaluates to True?” Kate asked.

“If the expression evaluates to True,” I said, “then any imperative statements
following it are executed.”

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 4: Selection Structures 153

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

“What’s an imperative statement?” Rhonda asked.

“Simply speaking,” I said, “an imperative statement is a command. In this
case, we coded just a single imperative statement to be executed if the day of
week happens to be a Sunday.”

cout << "Eat at Joe's";

“What happens if the expression evaluates to False?” Joe asked.

“In that case,” I answered, “the imperative statement is skipped—it’s
not executed.”

“Can you execute more than one imperative statement?” Dave asked.

“Yes, you can,” I said. “If you want to execute more than one imperative
statement if the expression is true, you need to place each statement within a
block. In C++, a block is code that is placed within curly brackets, like this.”

if (today == "Sunday")

{

cout << "Imperative Statement #1";

cout << "Imperative Statement #2";

cout << "Imperative Statement #3";

}

“To save a line of code, it’s sometimes written like this.”

if (today == "Sunday") {

cout << "Imperative Statement #1";

cout << "Imperative Statement #2";

cout << "Imperative Statement #3";

}

NOTE
A block is a group of statements between curly brackets ({ }).

“Provided you understand how our first If statement works, the remainder
of the If statements are pretty straightforward. All we’re doing is evaluating
the value of the variable today for the other six days of the week. The other
built-in DateTime constants represent the other six days of the week. Because
we’ve covered all our bases here, one of these should evaluate to True,
provided the user has typed a valid entry.”

if (today == "Monday")

cout << "Eat at Tom's";

if (today == "Tuesday")

cout << "Eat at Kevin's";

if (today == "Wednesday")

cout << "Eat at Rich's";

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

154 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

if (today == "Thursday")

cout << "Eat at Rose's";

if (today == "Friday")

cout << "Eat at Ken's";

if (today == "Saturday")

cout << "Eat at Melissa's";

“I know you mentioned earlier,” Valerie said, “that if the expression
evaluates to False, the imperative statement will be skipped. Is it possible to
specify a statement or statements to execute if the expression is False?”

“Optionally, you can do that, yes,” I answered, “by using an Else clause of
the If statement. In this case, we opted to have the next If statement executed
instead.”

“So if the If statement evaluates to False,” Dave asked, “the imperative
statement or statements are skipped, and execution of the program picks up
with the next line of code following them?”

“Absolutely correct, Dave,” I said. “I couldn’t have said it better myself.”

“I feel pretty good about If statements,” Lou said. “Is that all there is to them?”

“You still have some more to learn about them, Lou,” I replied. “There’s still
the Else clause to consider, plus there’s another selection structure called the
Switch statement that you need to learn about.”

The If…Else Statement
“With the If statements we’ve seen so far,” I said, “we’ve specified only the imperative statements
to execute if the expression evaluates to True. Using the Else clause, we can specify one or more
imperative statements to execute if the expression evaluates to False. Let me show you a program
that uses a simple If…Else statement.”

I then displayed this program on the classroom projector:

//Example4_3.cpp

#include <iostream>

int main()

{

using namespace std;

string response;

cout << "What is your favorite programming language? ";

cin >> response;

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 4: Selection Structures 155

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

if (response == "C++")

cout << "You have great taste. C++ is a great language";

else

cout << "It's not as good as C++, but " <<

response <<

" is also a great language";

return 0;

}

I saved the program as Example4_3.cpp, compiled it, and ran it for the class. The program
asked me what my favorite programming language is. I answered C++ and was congratulated on
my good taste.

“As you can see, we used an If Statement to determine whether the user entered ‘C++’,”
I said. “Because the If statement found what it was looking for, C++, it executed this
imperative statement.”

if (response == "C++")

cout << "You have great taste. C++ is a great language";

“I see we used the Else clause here,” Kate said. “Do I understand that the statement following
the word Else will be executed if the user enters anything other than ‘C++’ as their answer?”

“That’s right, Kate,” I answered. “If the evaluation of this expression results in a False
condition, then the statement or statements following the word Else are executed.”

else

cout << "It's not as good as C++, but " <<

response <<

" is also a great language";

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

156 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

“By the way, note that if the user enters ‘C++’ in any other fashion than with a capital C, our
program will discern that as a False condition also. For now, let’s run this program again and
answer the question with another language.”

I did exactly that, this time providing an answer of Java as my language of choice. When I did
so, the following screenshot was displayed.

“The display of this message was handled by the Else clause of the If statement,” I said. “I
should also mention that it’s possible to code an If statement as the imperative statement that
follows the Else clause.”

“Wow, that sounds confusing,” Rhonda said. “Why would we want to do that?”
“It allows us to handle situations where we have multiple conditions to test for,” I answered.

“For instance, if we wanted to display unique messages for a variety of answers that the user might
provide to us.”

No one had any questions about the If statement or the Else clause, so I suggested that we turn
our attention to using an If statement to handle the problems from Exercise 4-1 that arose from
the user entering nothing and then pressing ENTER.

Exercise 4-4 Using an If Statement to Check for No Entry

In this exercise, you’ll modify the code from Exercise 4-1 so that if the user
makes no entry and then presses ENTER, an appropriate message will be
displayed.

1. Using Notepad, enter the following code:

//Practice4_4.cpp

#include <iostream>

#include <string>

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 4: Selection Structures 157

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

int main()

{

using namespace std;

char response[256];

cout << "What is your name? ";

cin.getline(response,256);

if (strlen(response) == 0)

cout << "You must tell me your name...";

else

cout << "It's nice to meet you, " << response;

return 0;

}

2. Save your source file as Practice4_4 in the \CPPFiles\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute your program. When prompted, type your full name and then
press ENTER. A message, including your full name, should be displayed in
the console.

5. Execute your program again, and this time immediately press ENTER. What
does C++ display in the console?

Discussion “This program now exhibits quite a bit of intelligence,” I said. “It’s basically
the same code from Example4_1, but this time we’re using a character array
in combination with the getline() method of the cin object to get the user’s
input. As it turns out, C++ provides us a function called strlen() to determine
the number of characters in either a string or character array. All we need to do
is execute the strlen() function, passing it, as a single argument, the variable
name containing the user’s response to our question. The return value from the
strlen() function is the number of characters in the variable. If the return value
is 0, we know that the user pressed the ENTER key without typing any other
characters, and we display a warning message to that effect.”

if (strlen(response) == 0)

cout << "You must tell me your name...";

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

I ran the program myself, immediately pressed ENTER, and the following
screenshot was displayed:

“I’m still not absolutely sure about the If statement syntax,” Joe said. “Can
you show us another example?”

After thinking for a few moments, I said, “To make this all a little more
understandable for everyone, let me use pseudocode to illustrate an Else
statement intended to display the number of years until an employee is eligible
for retirement.”

I saw some puzzled looks.

“I think I mentioned pseudocode earlier in the course,” I said. “Pseudocode
provides a way that programmers use to express complex problems. Instead of
coding the problem in a particular language, pseudocode lets us concentrate on
expressing the problem in an English-like way. Then, when we have it worked
out to our satisfaction, we can translate the pseudocode into whatever language
we happen to be working in. Remember, what you see here isn’t C++ code, so
don’t try to type it into a code window!”

I then displayed this pseudocode on the classroom projector:

NOTE
Pseudocode is a way of expressing a complex problem in an English-like way, prior to
coding it up in an actual programming language.

There is an employee working for a company. According to the rules of company:

If the employee’s age is 62 or greater

he/she must be retired

Else If the employee’s age is 61

he/she has 1 year until retirement

Else If the employee’s age is 60

he/she has 2 years until retirement

Else If the employee’s age is 59

he/she has 3 years until retirement

158 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 4: Selection Structures 159

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

Else

he/she has a really long time to go

I then suggested that we try implementing this pseudocode in C++, but I
warned everyone that our code would be a bit unwieldy. “Using a series of
If…Else statements can be pretty cumbersome,” I said. “After we write the code
for this exercise, in Exercise 4-6 we’ll look at an alternative selection structure
called the Switch statement, which often can be used to streamline If…Else
statements.”

Exercise 4-5 The If…Else…If Statement

In this exercise, you’ll create a program to determine how long an employee
has until he or she can retire.

1. Using Notepad, enter the following code:

//Practice4_5.cpp

#include <iostream>

#include <string>

int main()

{

using namespace std;

char response[256];

cout << "What is your age? ";

cin.getline(response,256);

if (strlen(response) == 0)

cout << "You must tell me your age...";

else

if (atoi(response) > 61)

cout << response << " - You must be retired";

else

if (atoi(response) == 61)

cout << response <<

" - You have 1 year until retirement";

else

if (atoi(response) == 60)

cout << response <<

" - You have 2 years until retirement";

else

if (atoi(response) == 59)

cout << response <<

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

" - You have 3 years until retirement";

else

cout << response <<

" - You have a long time until retirement";

return 0;

}

2. Save your source file as Practice4_5 in the \CPPFiles\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute your program multiple times, entering 62, 61, 60, 59, and 40 as
answers to your age. Observe the various messages displayed in the console.

5. Execute the program one more time, this time pressing ENTER without
making an entry for your age. You should receive a warning message.

Discussion There was probably more code in this exercise than in any of the others we had
done so far, and several of my students became confused and lost their places.
Fifteen minutes later, though, I was happy to see that everyone in the class had
successfully completed the exercise.

“I don’t think we’ve ever written that much code,” Rhonda said.

“I think you’re right, Rhonda,” I replied. “We haven’t written this much code
before. When you write code that tests for a variety of conditions like we did
here, it can really balloon, but sometimes that’s something that just can’t be
helped. The code you’ve written for this exercise, though lengthy, is still pretty
manageable. Suppose we had a requirement to display a different message for
every age between 1 and 100.”

“That would really balloon the code,” Mary said. “Will the Switch statement
you alluded to earlier help cut down on the number of lines of code we have to
write to test for multiple conditions?”

“It can,” I said, “but before we discuss the Switch statement, I’d like
to explain this code first, which, by my count, contains a total of six Else
statements.”

I displayed the first line of code from the main() function on the classroom
projector:

char response[256];

“You’ve seen this code before,” I said. “What we’re doing here is declaring a
character array of 256 characters. Once again, we’ll discuss arrays in more detail
later on in the course. For now, all you need to realize is that an array is a type

160 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 4: Selection Structures 161

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

of data storage, similar to a variable, in which a single data type, such as
response, can hold multiple values. Next, we prompt the user to enter
their age.”

cout << "What is your age? ";

“Then we assign the user’s answer to the response variable by executing the
getline() function of the cin object, passing as arguments to the function the
name of our character array and the maximum number of characters to accept.”

cin.getline(response,256);

“These next two lines of code,” I said, “use the strlen() function to check to
see whether the user has pressed the ENTER key without entering their age. If
that’s the case, the return value of the strlen() function will be zero, and we
display a warning message.”

if (strlen(response) == 0)

cout << "You must tell me your age...";

“I noticed,” Rhonda said, “that as soon as the message is displayed to the
user, the program ends. Shouldn’t they be given the opportunity to correct
their mistake without having to run the program all over again? Is there a way
to do that?”

“You’re right, Rhonda,” I said. “There is a way to do that—and that’s
something you’ll learn how to do next week when we take up the topic of C++
loop structures.”

“What’s going on with this next line of code?” Ward asked. “What is atoi()?
I presume that’s a function of some kind.”

“Good observation, Ward,” I said. “atoi(), which stands for ASCII to Integer,
is a function that takes a character array or a string and returns the integer
equivalent of it.”

Ward (and the other students) seemed thoroughly confused. I reminded the
class that the response variable is a character array.

“To C++,” I said, “characters and strings are not numbers. In order to do the
numeric comparisons we need to do in this code, we must work with the user’s
response as a number, not as a character. To do that, we first need to convert
the character value in the response variable to an integer data type, and we do
that by executing the atoi() function. Once that conversion is performed, we
can determine whether the value the user has entered is greater than 61 using
the greater-than comparison operator.”

else

if (atoi(response) > 61)

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

162 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

“You learned last week that comparison operations return a True or False
value, and in this case, if the age the user gives us is greater than 61, a True value
is returned from this operation. We then display the user’s age, together with
the string ‘You must be retired’ in the console.”

cout << response << " - You must be retired";

“What would have happened if we didn’t convert the string value in the
response variable to an integer?” Kate asked.

“Our program wouldn’t compile,” I answered. “C++ is very picky. The
compiler will prevent us from performing an arithmetic operation against
nonnumeric data types.”

“What if the user’s age is not greater than 61?” Kate asked. “This is where I
became confused.”

“If the user’s age is not greater than 61,” I said, “the comparison operation
returns a False value. Then, because of the Else statement, our code executes the
imperative statement following the word Else. Of course, it turns out that the
imperative statement is another If statement that is then evaluated by C++.”

“Can we go back to that line of code where we display the message?” Chuck
asked. “Why do we have two sets of redirection (<<) operators?”

I explained that we are joining the string ‘You must be retired’ with the
value of the response variable. The redirection operator allows us to
‘concatenate’ or join one value to another.

cout << response << " - You must be retired";

“Therefore, if the number 73 is typed by the user, the message we display
will read ‘73 - You must be retired.’”

“That’s clever,” Steve said. “So we’re actually using the value of the variable
response in the message, not a numeric literal.”

“That’s right, Steve,” I said. “Using the value the user has entered in the
message by using the value of the variable response gives us a much more
flexible and descriptive message. In this way, no matter what age the user
types, that age is displayed on the console.”

I waited to see if there were any questions before continuing.

“In a similar way,” I said, “we can use this code to determine whether the
value the user has entered is exactly equal to 61.”

else

if (atoi(response) == 61)

cout << response <<

" - You have 1 year until retirement";

“If it is, we then execute the imperative statement to display an appropriate
message. If the user’s entry is not equal to 61, we execute the imperative

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 4: Selection Structures 163

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

statement of the Else clause, which is itself another If statement, to determine
whether the user’s age is 60.”

else

if (atoi(response) == 60)

cout << response <<

" - You have 2 years until retirement";

“I’m okay with this,” Linda said. “This is basically the same code we used to
determine whether the user’s age is 61. If it is, we display a slightly different
message.”

“That’s right,” I agreed, “and this next code works in the same way, checking
to see whether the user’s age is 59.”

else

if (atoi(response) == 59)

cout << response <<

" - You have 3 years until retirement";

“Now can you imagine how much code we would have,” I said, “if we
needed to write individual lines of code for every age from 59 on down to 1.
Fortunately, we can take care of all of those possibilities with this single Else
statement.”

else

cout << response <<

" - You have a long time until retirement";

“By using the Else statement here,” I said, “we tell C++ that all the remaining
ages fit into one category and to display a generic message indicating that the
user has a long time until retirement.”

I waited to see whether there were any other questions. To my surprise, everyone in the class
seemed pretty comfortable with the If statement. Now it was time to discuss another selection
structure—the Switch statement.

The Switch Statement/Structure
“The more alternatives we have in an If…Else…If statement,” I said, “the harder the program is
to write, read, and modify, and the more likely it is that you’ll make a mistake when you code it.
I’d like to introduce you to another C++ selection structure, called the Switch statement. Here’s
the code for a program that asks the user to enter a number between 1 and 3 and then displays a
custom message on the console. I displayed this code on the classroom projector:

//Example4_4.cpp

#include <iostream>

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

164 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

int main()

{

using namespace std;

char response[256];

cout << "Pick a number between 1 and 3: ";

cin.getline(response,256);

if (strlen(response) == 0) {

cout << "You must pick a number...";

return 1;

}

switch (atoi(response)) //Switch begins

{

case 1:

cout << "You entered the number 1";

break;

case 2:

cout << "You entered the number 2";

break;

case 3:

cout << "You entered the number 3";

break;

default:

cout << "Oops, you entered a number " <<

"not in the range 1 to 3";

break;

} //Switch ends

return 0;

}

“Let me explain what I’ve done here,” I said. “As has been the case with the programs we’ve
written today, which solicit input from the user, the first thing we do is declare our response
variable—this time as a character array. Then we display a message prompt and then accept the
user’s response by executing the getline() method of the cin object.”

char response[256];

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

cout << "Pick a number between 1 and 3: ";

cin.getline(response,256);

“As we did in the previous exercise, we test the response variable to determine whether the user
pressed the ENTER key without typing an entry by using the strlen() function.”

if (strlen(response) == 0) {

“This time, instead of merely displaying a warning message to the user if the ENTER key was
pressed, we specify two imperative statements to be executed if the condition evaluates to True.
One imperative statement will display a message indicating that a number must be entered; the
other will end our program by executing the return statement. Notice that instead of returning a
value of 0, which traditionally indicates that a program has ended successfully, we return a value
of 1. Traditionally, any nonzero value is used to indicate a problem or failure in a program.”

cout << "You must pick a number...";

return 1;

}

“Why is it,” Dave asked, “that we went the extra yard this time by ending the program in
addition to displaying the message to the user? That’s new, isn’t it?”

“We need to end the program at that point because of the falling rock behavior of our code,”
I said. “If all we did was display a message to the user at this point, our code would continue
executing, and within the Switch statement we would wind up evaluating the value of the response
variable, which really contains nothing at that point. Although the program would still run,
ultimately we would display another message indicating that the user entered a number not within
the range of 1 through 3. At this point, it’s much ‘cleaner’ to simply display the warning message
and then end the program.”

“What does the number 1 with the return statement signify?” Ward asked. Ward had been
working with his version of the program and obviously missed my discussion of it a moment earlier.

“Because we declared the main() function to return an integer return value,” I said, “some
integer value must accompany the return statement. The number zero, by convention, indicates a
normal termination of our program. Any nonzero value indicates a problem or a failure. Although
we won’t do so in this class, it’s possible to execute our C++ programs from another program—and
the argument we supply with the return statement can be passed back to the program that ‘calls’
our program, thereby letting the other program know how, or why, our program terminated.
Zero, as I mentioned, by convention means the program ended normally.”

I waited a moment before continuing.

Chapter 4: Selection Structures 165

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

166 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

“With the test for the immediate press of the ENTER key out of the way, we now know that the
user typed something. Now it’s time to test to see exactly what it is they have typed. For that, we use
the C++ Switch statement. Let’s concentrate on understanding the Switch statement, which we
execute with this line of code.”

switch (atoi(response)) //Switch begins

“The Switch statement,” I said, “begins with the word switch. The entirety of the Switch
statement is enclosed within a pair of curly brackets, which I’ve marked with comments in this
example. The word switch is followed by what is called a test expression. The test expression can
be a variable, but in actuality it can be anything that evaluates to either a C++ integer or character
data type. In this case, the test expression is the return value of the atoi() function you learned
about earlier. The atoi() function returns the integer value of the response variable.”

“So that’s why we were able to use the atoi() function within the test expression here,” Dave
said, “because it returns an integer data type.”

“That’s right, Dave,” I answered. “According to the rules for the Switch statement, the test
expression must return a value that is either a character or integer data type. Now, here comes
the tricky part. The result of the test expression is then evaluated, in turn, by each one of the
successive Case statements. If the result of the test expression matches the first Case statement,
then the imperative statement or statements following that Case statement are executed. If the
result does not match, then the next Case statement is matched to the test expression result. Once
again, if the test expression matches the Case statement, the imperative statement or statements
following that Case statement are executed. If the result does not match, then each successive Case
statement is tested. You can code an optional default case, which if present, is executed if none of
the Case statements matches the test expression. Here’s our first Case statement looking to see
whether the test expression evaluates to the number 1. Notice, by the way, the spelling of the word
case: It’s lowercase. If you spell it any other way, your program won’t compile at all. Notice also
that the line containing the Case statement ends with a colon.”

case 1:

“Once again, if the Case statement finds that the test expression is equal to 1, then the two
imperative statements following the Case statement are executed. In this example, what that
means is that we display a message to the user and then execute the Break statement.”

“What does the Break statement do?” Lou asked.
“The Break statement,” I said, “tells C++ to skip the remaining Case statements and to resume

execution with the next line of code following the end of the Switch statement.”
“You mean after the ending curly bracket?” Rose asked.
“That’s right, Rose,” I replied. “In this code, we execute the Break statement after a Case

statement matches the test expression. If we didn’t execute the Break statement, the code in each

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 4: Selection Structures 167

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

of the successive Case statements would also execute, regardless of whether the Case statement
was true.”

cout << "You entered the number 1";

break;

NOTE
Within a Case statement, there’s no need to sandwich multiple imperative statements
within curly brackets the way you do with an If statement.

“That’s bizarre,” Rhonda said, “but I guess it’s not the first time I’ve been surprised by the
syntax of a programming language. By the way, why didn’t we enclose the number 1 in our Case
statement within quotation marks or apostrophes?”

“I bet I know,” Dave said. “It’s because our test expression is an integer data type. If we had
enclosed the number 1 within quotation marks, we would be telling C++ that it’s a string. And
if we enclose it within apostrophes, we would be telling C++ that it’s a character data type?”

“That’s excellent, Dave,” I said. “In C++, you must always be aware of the data type with which
you are working.”

I paused a moment before continuing.
“Now at this point, it’s just a matter of evaluating the remainder of the Case statements.”

case 2:

cout << "You entered the number 2";

break;

case 3:

cout << "You entered the number 3";

break;

“The default case,” I said, “as I mentioned, is executed if none of the other Case statements
matches the test expression. Notice that it, too, contains a Break statement. There’s really no
need to do so, because this is the last Case statement, but most programmers will include it for
readability.”

default:

cout << "Oops, you entered a number " <<

"not in the range 1 to 3";

break;

“Finally, this curly bracket marks the end of the Switch statement.”

} //Switch ends

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

“If there had been any other code we wanted to execute outside of the Switch statement,
we would have placed it beyond the closing curly bracket of the Switch statement.”

“What do you mean outside of the Switch statement?” Rhonda asked.
“In theory,” I said, “code within the Switch statement—everything within the starting and

ending curly brackets—is part of a big selection structure and therefore executes only under
certain conditions. If there’s some code that you want to execute every time the code runs,
regardless of program conditions, place it outside of the Switch statement—that is, following
the ending curly bracket of the Switch statement.”

“The Switch statement seems pretty powerful,” Barbara said. “Are there any limitations to it,
other than the fact that the test expression must evaluate to one of the data types you mentioned
earlier? Can we use a test expression that evaluates to a string?”

“Unfortunately not, Barbara,” I said. “Only a test expression that evaluates to an integer or a
character is valid. We can’t use a Switch statement to evaluate a string. If you try, you’ll receive a
compiler error message. If you need to evaluate the contents of a string variable, you’ll need to use
an If statement.”

“Must the Case statement be a string or numeric literal like you’ve shown so far?” Blaine asked.
“Good question, Blaine,” I said. “It must be a literal—either a numeric or character literal—

and it must match the data type specified in the test expression. In other words, if the test
expression returns an int, then you must use an int literal in your Case statement. And unlike
some other languages you may be familiar with, you can’t specify a logical Case expression or a
range of values. For instance, you can’t specify a Case statement that looks like either of these.”

Case > 5 // NOT A VALID SYNTAX

or

Case 1 to 5 // NOT A VALID SYNTAX

There were no questions. I thought it would be a good idea to let everyone take a turn at
coding their own Switch statement before taking a break, so I handed out this exercise for the
class to complete.

Exercise 4-6 The Switch Statement/Structure

In this exercise, you’ll work with the program from Exercise 4-5, modifying it
to use a Switch statement instead of a series of If…Else statements.

1. Using Notepad, enter the following code:

//Practice4_6.cpp

#include <iostream>

168 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

int main()

{

using namespace std;

char response[256];

cout << "What is your age? ";

cin.getline(response,256);

if (strlen(response) == 0) {

cout << "You must tell me your age...";

return 1;

}

if (atoi(response) > 61) {

cout << response << " - You must be retired";

return 0;

}

switch (atoi(response))

{

case 61:

cout << response <<

" - You have 1 year until retirement";

break;

case 60:

cout << response <<

" - You have 2 years until retirement";

break;

case 59:

cout << response <<

" - You have 3 years until retirement";

break;

default:

cout << response <<

" - You have a long time until retirement";

break;

}

return 0;

}

Chapter 4: Selection Structures 169

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

170 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

2. Save your source file as Practice4_6.cpp in the \CPPFiles\Practice folder
(select File | Save As from Notepad’s menu bar). Be sure to save your source
file with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute your program multiple times, entering 62, 61, 60, 59, and 40 at the
prompt. Observe the various messages that are displayed.

Discussion No one seemed to have any great problems completing the exercise, although
there were some students who spelled case in non-lowercase letters, plus one
student entered the ‘default’ parameter as ‘case default’ instead.

“Don’t forget about the spelling of the word case,” I said, “and make sure
you include a Break statement in each one of the Case statements. Remember,
in C++ we need to code the Break statement to prevent the code in each one of
the Case statements from executing after one of them is found to be true.”

“I can vouch for that,” Rhonda said. “I forgot to include it in the Case
statement for ‘age equal to 61,’ and when I executed my program and entered
61, all the messages were displayed—seeing is believing!”

“I really enjoyed this exercise, and I’m glad we took the time to do it,” Ward
said. “This exercise really helped solidify the concept of the Switch statement in
my mind. It’s just a shame that we couldn’t have expressed every condition we
were looking for in the form of a Case statement. I guess there was no way out
of having to code an If statement to handle the user simply pressing the ENTER

key without typing a number—and also for an age greater than 61.”

“That’s right, Ward,” I said. “Because we are restricted to expressing our
Case statements in terms of an equality, we needed to check for an age greater
than 61 using an If statement.”

if (atoi(response) > 61) {

cout << response <<

" - You must be retired";

return 0;

}

“I may have missed something somewhere—did we forget to check for an
age less than 59?” Rhonda asked.

“We didn’t forget. We did it by using the default Case statement,” I said.

default:

cout << response <<

" - You have a long time until retirement";

break;

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 4: Selection Structures 171

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

“How so?” Rhonda asked.

“Because we had already checked for ages greater than 61 and for ages
exactly equal to 61, 60, and 59, if we got to the point of executing the code
in the default Case statement, it would mean that the age entered was less
than 59.”

“I see,” Rhonda said. “I was a little confused because we didn’t explicitly
code what we were looking for, but I see the default Case statement is aptly
named.”

“We could have coded another If statement to be a little more explicit,”
I said, “like this.”

if (atoi(response) < 59) {

cout << response <<

" - You have a long time until retirement";

return 0;

}

“However, I really wanted to give everyone a chance to work with the
default Case statement.”

The classroom was pretty quiet; everyone seemed to be okay with the Switch
statement. I asked if there were any questions. There were none, so I told them
to take a well-earned break.

“When we return from break,” I said, “we’ll use the selection structures you
learned today to enhance the Grade Calculation Project. I think you’ll be very
pleased with what we’re about to do with the project.”

Continuing with the Grade Calculation Project
“We now know enough about C++,” I said, “to add some intelligence to our Grade Calculation
Project we began working on last week. Last week we added code to the project to calculate the
grade for a fictitious English student whose midterm grade was 70, final examination grade was
80, research grade was 90, and presentation grade was 100. We displayed the student’s final grade
of 100 in the C++ console window.”

“We hard-coded the component grade pieces in the program code itself,” Blaine said.
“That’s right, Blaine,” I said. “Last week you didn’t have the C++ skills to allow the program to

accept input from a user, so we had no choice but to hard-code the component grade scores. After what
you’ve learned today about getting input into a program—and the C++ selection structures—we’ll be
able to ask the user what type of student they wish to calculate and to conditionally accept the
component grade scores from the user based on that student type.”

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

172 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

“Wow, do you mean we’ll be able to calculate the grade for an actual student today?”
Ward asked.

“That’s right,” I replied.
“That’s exciting,” Rhonda said. “But if I’m not mistaken, based on what you’re saying we’ll be

doing with the project today, won’t we be done with it?”
“That’s an interesting point you raise, Rhonda,” I said. “And strictly speaking, you’re correct.

By the end of today’s class, we will have a working C++ program that basically fulfills the
Requirements Statement we developed several weeks ago. You may be wondering what we will be
doing for the remainder of the class. You’ll spend it learning even more about C++ and enhancing
the Grade Calculation Project with your new knowledge.”

I then distributed this exercise for the class to complete.

Exercise 4-7 Enhancing the Grade Calculation Project

In this exercise, you’ll modify the Grade Calculation Project you last worked
on last week in Exercise 3-1 by giving it the ability to accept input from the
user and calculate grades (both numeric and letter) for an English, math, or
science student.

1. Using Notepad, locate and open the Grades.cpp source file you worked on
last week. (It should be in the \CPPFiles\Grades folder.)

2. Modify your code so that it looks like this:

//Grades.cpp

#include <iostream>

int main ()

{

using namespace std;

const float ENGLISH_MIDTERM_PERCENTAGE = .25;

const float ENGLISH_FINALEXAM_PERCENTAGE = .25;

const float ENGLISH_RESEARCH_PERCENTAGE = .30;

const float ENGLISH_PRESENTATION_PERCENTAGE = .20;

const float MATH_MIDTERM_PERCENTAGE = .5F;

const float MATH_FINALEXAM_PERCENTAGE = .50;

const float SCIENCE_MIDTERM_PERCENTAGE = .40;

const float SCIENCE_FINALEXAM_PERCENTAGE = .40;

const float SCIENCE_RESEARCH_PERCENTAGE = .20;

int midterm = 0;

int finalExamGrade = 0;

int research = 0;

int presentation = 0;

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 4: Selection Structures 173

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

float finalNumericGrade = 0;

char finalLetterGrade;

char response[256];

// What type of student are we calculating?

cout << "Enter student type " <<

"(1=English, 2=Math, 3=Science): ";

cin.getline(response,256);

if (strlen(response) == 0) {

cout << "You must select a Student Type";

return 1;

}

if ((atoi(response) < 1) | (atoi(response) > 3)) {

cout << response <<

" - is not a valid student type";

return 1;

}

// Student type is valid, now let's calculate the grade

switch(atoi(response))

{

// Case 1 is an English Student

case 1:

cout << "Enter the Midterm Grade: " ;

cin.getline(response,256);

midterm = atoi(response);

cout << "Enter the Final Examination Grade: " ;

cin.getline(response,256);

finalExamGrade = atoi(response);

cout << "Enter the Research Grade: " ;

cin.getline(response,256);

research = atoi(response);

cout << "Enter the Presentation Grade: " ;

cin.getline(response,256);

presentation = atoi(response);

finalNumericGrade =

(midterm * ENGLISH_MIDTERM_PERCENTAGE) +

(finalExamGrade *

ENGLISH_FINALEXAM_PERCENTAGE) +

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

(research * ENGLISH_RESEARCH_PERCENTAGE) +

(presentation *

ENGLISH_PRESENTATION_PERCENTAGE);

if (finalNumericGrade >= 93)

finalLetterGrade = 'A';

else

if ((finalNumericGrade >= 85) &

(finalNumericGrade < 93))

finalLetterGrade = 'B';

else

if ((finalNumericGrade >= 78) &

(finalNumericGrade < 85))

finalLetterGrade = 'C';

else

if ((finalNumericGrade >= 70) &

(finalNumericGrade < 78))

finalLetterGrade = 'D';

else

if (finalNumericGrade < 70)

finalLetterGrade = 'F';

cout << endl <<

"*** ENGLISH STUDENT ***" << endl << endl;

cout << "Midterm grade is: " <<

midterm << endl;

cout << "Final Exam is: " <<

finalExamGrade << endl;

cout << "Research grade is: " <<

research << endl;

cout << "Presentation grade is: " <<

presentation << endl << endl;

cout << "Final Numeric Grade is: " <<

finalNumericGrade << endl;

cout << "Final Letter Grade is: " <<

finalLetterGrade;

break;

// Case 2 is a Math Student

case 2:

cout << "Enter the Midterm Grade: " ;

cin.getline(response,256);

midterm = atoi(response);

174 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

cout << "Enter the Final Examination Grade: " ;

cin.getline(response,256);

finalExamGrade = atoi(response);

finalNumericGrade =

(midterm * MATH_MIDTERM_PERCENTAGE) +

(finalExamGrade * MATH_FINALEXAM_PERCENTAGE);

if (finalNumericGrade >= 90)

finalLetterGrade = 'A';

else

if ((finalNumericGrade >= 83) &

(finalNumericGrade < 90))

finalLetterGrade = 'B';

else

if ((finalNumericGrade >= 76) &

(finalNumericGrade < 83))

finalLetterGrade = 'C';

else

if ((finalNumericGrade >= 65) &

(finalNumericGrade < 76))

finalLetterGrade = 'D';

else

if (finalNumericGrade < 65)

finalLetterGrade = 'F';

cout << endl <<

"*** MATH STUDENT ***" << endl << endl;

cout << "Midterm grade is: " <<

midterm << endl;

cout << "Final Exam is: " <<

finalExamGrade << endl;

cout << "Final Numeric Grade is: " <<

finalNumericGrade << endl;

cout << "Final Letter Grade is: " <<

finalLetterGrade;

break;

// Case 3 is a Science Student

case 3:

cout << "Enter the Midterm Grade: " ;

cin.getline(response,256);

midterm = atoi(response);

cout << "Enter the Final Examination Grade: " ;

Chapter 4: Selection Structures 175

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

cin.getline(response,256);

finalExamGrade = atoi(response);

cout << "Enter the Research Grade: " ;

cin.getline(response,256);

research = atoi(response);

finalNumericGrade =

(midterm * SCIENCE_MIDTERM_PERCENTAGE) +

(finalExamGrade *

SCIENCE_FINALEXAM_PERCENTAGE) +

(research * SCIENCE_RESEARCH_PERCENTAGE);

if (finalNumericGrade >= 90)

finalLetterGrade = 'A';

else

if ((finalNumericGrade >= 80) &

(finalNumericGrade < 90))

finalLetterGrade = 'B';

else

if ((finalNumericGrade >= 70) &

(finalNumericGrade < 80))

finalLetterGrade = 'C';

else

if ((finalNumericGrade >= 60) &

(finalNumericGrade < 70))

finalLetterGrade = 'D';

else

if (finalNumericGrade < 60)

finalLetterGrade = 'F';

cout << endl <<

"*** SCIENCE STUDENT ***" << endl << endl;

cout << "Midterm grade is: " <<

midterm << endl;

cout << "Final Exam is: " <<

finalExamGrade << endl;

cout << "Research grade is: " <<

research << endl;

cout << "Final Numeric Grade is: " <<

finalNumericGrade << endl;

cout << "Final Letter Grade is: " <<

finalLetterGrade;

break;

default:

176 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

cout << response <<

" - is not a valid student type";

return 1;

}

return 0;

}

3. Save your source file as Grades.cpp in the \CPPFiles\Grades folder (select File |
Save As from Notepad’s menu bar). Be sure to save your source file with the
filename extension .cpp.

4. Compile your source file into an executable file.

5. Execute your program and test it thoroughly. See what happens if you
immediately hit the ENTER key without making a selection for the student
type. What happens if you indicate a student type not equal to 1, 2 or 3,
such as 4? What happens if you type the letter a for a student type?

6. Indicate that you wish to calculate the grade for an English student. Enter
70 for the midterm grade, 80 for the final examination grade, 90 for the
research grade, and 100 for the presentation grade. A final numeric grade
of 84.5 should be displayed with a letter grade of C.

7. Indicate that you wish to calculate the grade for a math student. Enter 70
for the midterm grade and 80 for the final examination grade. A final
numeric grade of 75 should be displayed with a letter grade of D.

8. Indicate that you wish to calculate the grade for a science student. Enter 70
for the midterm grade, 80 for the final examination grade, and 90 for the
research grade. A final numeric grade of 78 should be displayed with a
letter grade of C.

Chapter 4: Selection Structures 177

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

178 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

Discussion “This exercise was a lot of fun,” Rhonda said, “but although I was able to
complete it, I must confess I’m not absolutely sure about everything that’s
going on here.”

“I suspect you’re not the only one who feels that way, Rhonda,” I said.
“There’s a bunch of code in this exercise. Let’s take this a step at a time, and I’m
sure you’ll be okay. As you now know, each program that writes to the console
must have this include statement.”

#include <iostream>

“In addition, each program that is executed from the command-line prompt
must have a main() function.”

int main ()

“And within the main() function, we also include the using namespace
statement for the std library to eliminate the need for us to preface our C++
statements with the keyword std.”

using namespace std;

“Some of these constants appeared in the previous version of the program
we worked on last week, and some are new to this version. Last week, we were
only concerned with calculating the grade for an English student. In this version
of the program, we’re calculating math and science students also, so we need
to declare and initialize constants for those student types as well. Constants, by
convention, are named in uppercase, and we assign to this group of constants
values equating to the relative percentage of the component grade for each
one of the three student types we’ll be calculating. Constants make your code
more readable, and if we need to change the percentage of any one of the
component grade pieces, all we need to do is change the value of the constant
in the assignment statement.”

const float ENGLISH_MIDTERM_PERCENTAGE = .25;

const float ENGLISH_FINALEXAM_PERCENTAGE = .25;

const float ENGLISH_RESEARCH_PERCENTAGE = .30;

const float ENGLISH_PRESENTATION_PERCENTAGE = .20;

const float MATH_MIDTERM_PERCENTAGE = .5F;

const float MATH_FINALEXAM_PERCENTAGE = .50;

const float SCIENCE_MIDTERM_PERCENTAGE = .40;

const float SCIENCE_FINALEXAM_PERCENTAGE = .40;

const float SCIENCE_RESEARCH_PERCENTAGE = .20;

I paused a moment before continuing.

“We declared these same variables in the previous version of the program,”
I said, “but this time we’re initializing their values to 0.”

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

int midterm = 0;

int finalExamGrade = 0;

int research = 0;

int presentation = 0;

float finalNumericGrade = 0;

“finalLetterGrade is a new string variable for this version of the program.
We’ll use it to hold the student’s calculated letter grade. Notice how we
initialize it to an empty string.”

char finalLetterGrade;

“The response variable should be familiar to you now. We’ll use it to
store any responses we get from the user via the ReadLine() function of
the Console object.”

char response[256];

“This line of code is just a comment. As our programs get larger, using
comments is a good idea.”

// What type of student are we calculating?

“At this point, with all our constants and variables declared, it’s time to ask
the user what type of student they will be calculating a grade for. This is a
crucial piece of information for our program, and quite honestly, we’re making
things a little easier on ourselves by prompting the user to give us a number
equating to the student type—1 for an English student, 2 for a math student,
and 3 for a science student.”

cout << "Enter student type " <<

"(1=English, 2=Math, 3=Science): ";

cin.getline(response,256);

“I was wondering why you did that,” Peter said.

“We could have asked the user to type in the actual student type as a string,”
I said, “but that can be tricky.”

“How so?” Kate asked.

“There are two problems,” I answered. “You really want to avoid having the
user type in anything into your program. Keystrokes lead to typing errors, and
typing errors cause program problems. If the user must type, and sometimes it’s
unavoidable, then reduce their typing to a minimum, which is what we’re doing
here by having them enter a single number—1, 2, or 3—instead of actually
typing out English, math, or science.”

“You said there are two problems,” Blaine said. “What’s the second?”

Chapter 4: Selection Structures 179

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“A second problem would be this,” I said. “Even if the user managed to
type in English, math, or science properly, capitalization is an issue as well. For
instance, some users might spell their entry in all uppercase, some in lowercase,
and some in a combination of both.”

“I hadn’t thought of that,” Linda commented.

“Did you know there are 128 different ways to spell the word science if you
count the various combinations of upper- and lowercase letters?” I asked. “In
theory then, we would need 128 different If statements for each student
type—that’s why we’re prompting for a number instead of a string.”

No one had any major objections to my rationale, so I continued.

“These next few lines of code we’ve dealt with all day long. Here we’re
checking to see whether the user has hit the ENTER key without telling us the
type of student they wish to calculate a grade for. Most likely this is a mistake,
so we display a message to the user and end the program by executing the
return statement, indicating a failure in our program by returning the integer
value of 1.”

if (strlen(response) == 0) {

cout << "You must select a Student Type";

return 1;

}

“It really would be great,” Ward said, “if instead of just ending the program
here we could redisplay the prompt for the student type.”

“I totally agree, Ward,” I said, “and that’s something we’ll be able to do after
next week’s class when you learn about the C++ loop structure. For now though,
we just gracefully end the program. Now, provided the user hasn’t immediately
pressed ENTER, we know that the user has made a response of some kind. Now
it’s time to determine what it is. You should have noticed, while testing your
program, that if the user enters the letter a, or any character other than 1, 2,
or 3, a message is displayed indicating the entry is not a valid student type. For
now, let’s assume that the user has entered a valid integer. We now need to
determine whether it’s outside the range of valid numbers we’re looking for.
In other words, if it’s less than 1 or greater than 3, it’s not 1, 2, or 3. Last week,
we learned about the C++ Or (|) operator. In combination with an If statement,
this series of code allows us to determine whether the number entered is outside
the range of numbers we’re looking for.”

if ((atoi(response) < 1) | (atoi(response) > 3)) {

cout << response << " - is not a valid student type";

return 1;

}

180 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“If the number entered is either less than 1 or greater than 3 (the < operator
means less than, and the > operator means greater than), we display a message
to the user indicating that they have entered an invalid student type, and we
end the program by executing the return statement.”

“Now we’re in business!” Kathy said. “If the number entered isn’t less than 1
and isn’t greater than 3, then it must be 1, 2, or 3.”

“You hit the nail right on the head, Kathy,” I said. “We now know that the
number the user has entered is either a 1, 2, or 3, and that allows us to use a
Switch statement to deal with each one of those cases, each of which equates
to a different student type.”

switch(atoi(response))

“Case 1 is the English student. Within the Case statement, we prompt the
user for the four component pieces that comprise the English student’s final
grade—midterm, final exam, research, and presentation grades. The user’s
response to each prompt is assigned to the response variable, and we then
assign the value of the response variable to the midterm, finalExamGrade,
research, and presentation variables. Notice how we use the atoi() function
to ‘convert’ the character value of the response variable to an integer prior to
assigning the value.”

case 1:

cout << "Enter the Midterm Grade: " ;

cin.getline(response,256);

midterm = atoi(response);

cout << "Enter the Final Examination Grade: " ;

cin.getline(response,256);

finalExamGrade = atoi(response);

cout << "Enter the Research Grade: " ;

cin.getline(response,256);

research = atoi(response);

cout << "Enter the Presentation Grade: " ;

cin.getline(response,256);

presentation = atoi(response);

“This next sequence of code calculates the final numeric grade for an English
student,” I said. “Here, we multiply the value entered by the user for each
component piece of the grade by the appropriate constant and then sum them
to arrive at the final grade.”

finalNumericGrade =

(midterm * ENGLISH_MIDTERM_PERCENTAGE) +

(finalExamGrade *

Chapter 4: Selection Structures 181

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

182 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

ENGLISH_FINALEXAM_PERCENTAGE) +

(research * ENGLISH_RESEARCH_PERCENTAGE) +

(presentation *

ENGLISH_PRESENTATION_PERCENTAGE);

“Once we have the final numeric grade calculated, we use a series of If…Else
statements to calculate the final letter grade. This code is pretty tedious but
relatively straightforward.”

if (finalNumericGrade >= 93)

finalLetterGrade = 'A';

else

if ((finalNumericGrade >= 85) &

(finalNumericGrade < 93))

finalLetterGrade = 'B';

else

if ((finalNumericGrade >= 78) &

(finalNumericGrade < 85))

finalLetterGrade = 'C';

else

if ((finalNumericGrade >= 70) &

(finalNumericGrade < 78))

finalLetterGrade = 'D';

else

if (finalNumericGrade < 70)

finalLetterGrade = 'F';

“Now that we have the final numeric grade and the final letter grade
calculated, it’s time to display the results to the C++ console. This also is pretty
straightforward. First, we display the type of student for whom we have
calculated a grade.”

cout << endl <<

"*** ENGLISH STUDENT ***" << endl << endl;

“This is followed by the display of the component grade pieces, the final
numeric grade, and the final letter grade.”

cout << "Midterm grade is: " <<

midterm << endl;

cout << "Final Exam is: " <<

finalExamGrade << endl;

cout << "Research grade is: " <<

research << endl;

cout << "Presentation grade is: " <<

presentation << endl << endl;

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 4: Selection Structures 183

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

cout << "Final Numeric Grade is: " <<

finalNumericGrade << endl;

cout << "Final Letter Grade is: " <<

finalLetterGrade;

“Notice at this point that the last line of code in the Case statement
we execute is the Break statement,” I said. “That’s a requirement in C++.”

break;

“Here’s the Case statement for the math student,” I continued. “It’s similar
to the Case statement for the English student, with the obvious differences
being that math students do not have research and presentation grade
components, and, of course, their component percentages are different.”

case 2:

cout << "Enter the Midterm Grade: " ;

cin.getline(response,256);

midterm = atoi(response);

cout << "Enter the Final Examination Grade: " ;

cin.getline(response,256);

finalExamGrade = atoi(response);

finalNumericGrade =

(midterm * MATH_MIDTERM_PERCENTAGE) +

(finalExamGrade * MATH_FINALEXAM_PERCENTAGE);

if (finalNumericGrade >= 90)

finalLetterGrade = 'A';

else

if ((finalNumericGrade >= 83) &

(finalNumericGrade < 90))

finalLetterGrade = 'B';

else

if ((finalNumericGrade >= 76) &

(finalNumericGrade < 83))

finalLetterGrade = 'C';

else

if ((finalNumericGrade >= 65) &

(finalNumericGrade < 76))

finalLetterGrade = 'D';

else

if (finalNumericGrade < 65)

finalLetterGrade = 'F';

cout << endl <<

"*** MATH STUDENT ***" << endl << endl;

cout << "Midterm grade is: " <<

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

184 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

midterm << endl;

cout << "Final Exam is: " <<

finalExamGrade << endl;

cout << "Final Numeric Grade is: " <<

finalNumericGrade << endl;

cout << "Final Letter Grade is: " <<

finalLetterGrade;

break;

“Now here’s the Case statement for the science student.”

case 3:

cout << "Enter the Midterm Grade: " ;

cin.getline(response,256);

midterm = atoi(response);

cout << "Enter the Final Examination Grade: " ;

cin.getline(response,256);

finalExamGrade = atoi(response);

cout << "Enter the Research Grade: " ;

cin.getline(response,256);

research = atoi(response);

finalNumericGrade =

(midterm * SCIENCE_MIDTERM_PERCENTAGE) +

(finalExamGrade *

SCIENCE_FINALEXAM_PERCENTAGE) +

(research * SCIENCE_RESEARCH_PERCENTAGE);

if (finalNumericGrade >= 90)

finalLetterGrade = 'A';

else

if ((finalNumericGrade >= 80) &

(finalNumericGrade < 90))

finalLetterGrade = 'B';

else

if ((finalNumericGrade >= 70) &

(finalNumericGrade < 80))

finalLetterGrade = 'C';

else

if ((finalNumericGrade >= 60) &

(finalNumericGrade < 70))

finalLetterGrade = 'D';

else

if (finalNumericGrade < 60)

finalLetterGrade = 'F';

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 4: Selection Structures 185

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

cout << endl <<

"*** SCIENCE STUDENT ***" << endl << endl;

cout << "Midterm grade is: " <<

midterm << endl;

cout << "Final Exam is: " <<

finalExamGrade << endl;

cout << "Research grade is: " <<

research << endl;

cout << "Final Numeric Grade is: " <<

finalNumericGrade << endl;

cout << "Final Letter Grade is: " <<

finalLetterGrade;

break;

“Finally, here’s the code for the default case. This code will execute if the user
types a letter as a response to the student type prompt instead of a number.”

default:

cout << response <<

" - is not a valid student type";

return 1;

“This curly bracket marks the end of the Switch statement.”

}

“This is followed by a return statement to end the program, and the closing
bracket for the main() function.”

return 0;

}

Great,” Ward said. “This is starting to be a lot of fun.”

“I just realized,” Dave said, “that we don’t have any validation for the
component grade values that the user enters. Is that a problem?”

“In theory, we would have the same problem with the input of those values as
we do with the input of the student type—that is, if the user enters a noninteger
value as the student type, we need to be able to handle it. We’ll take care of
this problem in a few weeks when we start to develop classes and objects to do
more of the work in our program.”

Dave and the rest of the class seemed content to wait until then to resolve
the issue. I waited for questions, but there were none. I had expected my
students to be pretty worn out at this point, but instead they were playfully
experimenting with a program they seemed genuinely proud of. I dismissed
class for the day, telling everyone that next week they would learn about the
C++ loop structures.

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Summary
In this chapter, we examined selection structures and how they are used to vary the way a program
behaves based on conditions found at runtime. You saw that there are several types of selection
structures: two varieties of the If statement, and the Switch statement.

Remember the falling rock? You’ve seen how you can use selection structures to change this
behavior, starting with the plain If statement. If a condition evaluates to True, then the imperative
statement or statements following the If statement are executed. The If statement can be expanded
to include alternative instructions for a False condition as well, using the Else keyword, and even
further with a set of Else...If keywords.

After a number of Else statements, your code will begin to look cumbersome. At this point, it’s
more elegant to use the Switch statement, although it does have some limitations.

We’ve also come to a significant point in our project: the working prototype of the Grade
Calculation Project. This is a very important stage in the development process, because all the key
working parts of the program are now in place. From this point on, we’ll be adding functionality
and code to turn our prototype into a professional-level C++ program.

186 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 4

P:\010Comp\LearnTo\535-1\ch04.vp
Monday, October 07, 2002 1:07:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter

5
Loops

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5
Blind Folio 5:187

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
TLFeBOOK

In this chapter, we’ll discuss the various types of loop structures available in C++. As you’ll see,
loop processing can give your programs tremendous power.

Why Loops?
“Last week I mentioned the term loops quite often,” I said, as I began our fifth class. “In today’s
class, we’ll examine in some detail the loop structures available in C++.”

I continued by explaining that a loop allows the programmer to repeatedly execute sections of
code without having to type those lines of code over and over again in the source.

“The ability to have parts of your program repeatedly execute,” I said, “can give it enormous
power to perform many types of operations that would otherwise be impossible.”

“Can you give us an example?” Mary asked.
“Sure, Mary,” I said. “For instance, a common programming problem is one in which you need

to read records from an external disk file into your program. Reading a single record from a disk
file isn’t difficult. The problem in reading records from an external disk file (or a database) is that
you do not know ahead of time how many records the program will need to read. The trick is to
write code that reads all of the records in the file—regardless of the number of records in it.”

“What do you mean?” Peter asked.
“For instance,” I replied, “a file may contain ten records, or it may contain five billion. The

point is, when you write your program source file, you don’t know how many times to execute the
line of code that in C++ is used to read a record from a file. This is where the loop structure comes
in handy—with just a few lines of code, it’s possible to write code to read every record in a file,
regardless of whether there are ten lines or five billion lines.”

“Are there different types of loops in C++?” Dave asked. “I know there are in other languages
such as Java and Visual Basic.”

“Yes, there are, Dave,” I said. “C++ has several different types of loop structures, and we’ll
examine all of them today. One type of loop, called the For loop, executes a section of code, called
the body of the loop, a definite number of times, and for that reason I call the For loop a definite
type of loop. Other C++ loop structures are less definite in nature, which means that the number
of times the body of the loop is executed is less definite. The number of times that the bodies of
these loop are executed is dependent upon the evaluation of a test condition at runtime. Let’s go
back to that example of reading an external disk file again. If we need to read all the records from
the disk file into our program, we do not know ahead of time how many records are in that
file—the file could even be empty! This type of programming problem requires the use of an
indefinite type of loop, of which there are two in C++: the While loop and the Do-While loop.”

I suggested that we begin our examination of C++ loops with the For loop.

188 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

The For Loop
I displayed the syntax for the For loop on my classroom projector:

For (initialization; termination; increment)

statement or statements with statements appearing in a block

“This syntax,” I said, “is the official syntax for the For loop, but for the time being, you may
prefer this translation, which I think is a little easier for beginners to deal with.”

For (start at this value;

keep looping as long as this expression is true;

increment or decrement the value)

statement or statements with statements appearing in a block

“I always say a picture is worth a thousand words. Here’s the way the code for a C++ For loop
would look in a program designed to display the numbers 1 to 10 in the C++ console window,”
I said, as I displayed this code on the classroom projector:

//Example5_1.cpp

#include <iostream>

int main()

{

using namespace std;

for (int counter = 1;counter < 11;counter++)

cout << counter << endl;

return 0;

}

“The For loop,” I continued, “begins with the keyword For, in lowercase letters, followed by
three arguments that appear in parentheses. Each argument is separated by a semicolon. I think
you’re familiar with arguments by now—arguments affect or determine the behavior of a C++
statement or function. In the case of the For loop, these three arguments—initialization,
termination, and increment—determine the duration of the loop, as you’ll see in a just a few
moments. In our example program, the first argument declares the variable counter as an integer
data type and then assigns a value of 1 to it.”

for (int counter = 1;counter < 11;counter++)

Chapter 5: Loops 189

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

190 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

“I’m a little confused by that first argument,” Rhonda said. “Is there anything special about it,
or is it just an ordinary variable declaration?”

“It’s really just an ordinary variable declaration,” I said. “What makes it seem out of the
ordinary is that the variable is declared and initialized as part of the For statement. This variable,
sometimes called the loop-control variable, is just an ordinary variable, and it should be declared as
a numeric data type, as we’ve done here. You can name the loop-control variable anything you
want. Historically, C++ programmers haven’t bothered to name their loop-control variables with
very meaningful names, preferring instead to name them with single-letter throwaway names, such
as i, j, or k. Myself, I prefer to give my loop-control variables more meaningful names, so I’ve
named ours counter.”

“So both the declaration and assignment of the loop-control variable are done as part of that
first argument?” Ward asked. “And that’s done only once?”

“That’s right, Ward,” I replied. “Now, on to the second argument, called the termination
argument, which is actually a test expression, much like the one you saw last week with the If
statement. In a For loop, as long as the test expression evaluates and returns True, the body of
the loop (that is, the statement or statements following the For line) is executed.”

for (int counter = 1;counter < 11;counter++)

“In this case, we’re telling C++ to continue to execute the statements within the body of the
loop for as long as the value of the loop-control variable, counter, is less than 11. It’s important to
understand that in a For loop, the body of the loop will not be executed, not even once, until after
the test expression is first evaluated. So long as the test expression returns a True value, the body
of the loop is executed. If the test expression evaluates to a False value, the next statement following
the body of the loop is executed.”

“Let me make sure I follow,” Barbara said. “The value of counter was initialized to 1, and we’re
telling C++ to execute the body of the loop as long as counter is less than 11.”

“That’s right, Barbara,” I answered.
“So what’s to keep that from happening forever?” she asked. “If counter starts out as 1, and the

loop will execute as long as counter is less than 11, something needs to make the value of counter
11 or greater in order for the loop to stop. Is that right?”

“That’s excellent, Barbara,” I said, “and that’s exactly right. If we don’t do anything to increment
the value of counter, it will remain 1, and this loop will execute forever.”

“Is that where the term endless loop comes from?” Valerie asked. “I’ve heard some of the
programmers at work use that term.”

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 5: Loops 191

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

“That’s right, Valerie,” I said, “that’s exactly what it means. An endless loop is a loop that
continues to execute, usually because the programmer forgot to take the necessary steps to ensure
that it will eventually stop.”

“How will this loop ever stop, then?” Rhonda asked.
“That’s where the third argument, the increment argument, comes into play,” I said.

for (int counter = 1;counter < 11;counter++)

“The third argument, the increment argument,” I continued, “tells C++ what to do to the
loop-control variable. This usually means we add 1 to it, but as you’ll see later, we can add to or
subtract from it anything we wish. In our example program, we use the C++ increment operator
(++) to add 1 to the value of counter each time the test expression is evaluated.”

“Based on what you’re telling us,” Peter asked, “does that mean this loop will execute ten times?”
“Excellent, Peter, that’s exactly what it means!” I said.
I then compiled and executed the example program, and the following screenshot was

displayed on the classroom projector:

“Hey, that’s pretty amazing,” Kate said, “considering the fact that we displayed ten numbers in
the C++ console window with so little code.”

“See what I mean about the power of loops?” I asked. “They can give a program enormous
power. This is a great illustration of how computers are excellent at performing repetitive tasks.”

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“I’m still a little confused about what’s happening here,” Rhonda said. “I wish we could see this
in slow motion.”

“Maybe this will help,” I said, as I displayed this table on the classroom projector:

Step Value of
counter

counter < 11 Body of Loop
Executed?

cout <<
counter
(Number
Displayed in
C++ Console
Window)

New
Value of
counter
after
counter
++

1 1 True Yes 1 2

2 2 True Yes 2 3

3 3 True Yes 3 4

4 4 True Yes 4 5

5 5 True Yes 5 6

6 6 True Yes 6 7

7 7 True Yes 7 8

8 8 True Yes 8 9

9 9 True Yes 9 10

10 10 True Yes 10 11

11 11 False No

“Step 1 shows you the value for the counter variable as the loop begins to execute,” I said.
“When the For line is executed for the first time, counter is declared and initialized to 1. After
that, the test expression is evaluated for the first time. Because the value of counter is less than 11
(1 is less than 11), the body of the loop is executed, resulting in the number 1 being displayed in
the C++ console window. Next, and it’s important to understand the sequence, the value of
counter is incremented using the C++ increment operator (++).”

“So the incrementation of counter actually takes place after the body of the loop is executed?”
Dave asked.

“That’s right, Dave,” I replied. “That fools everyone the first time they see it. Now, in step 2,
the current value of counter, which is 2, is compared to 11. And 2 is less than 11, which results in
the test expression returning a True value, so the body of the loop is executed. Therefore, the value
2 is displayed in the C++ console. Counter is incremented by 1, giving it a new value of 3. Some
beginners mistakenly believe that counter is initialized to 1 all over again, but as you can see, that
only happens once—the first time the loop is executed.”

192 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 5: Loops 193

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

“Just to make sure I understand what you’re saying, the value of counter is incremented after the
body of the loop is executed, correct?” Linda asked.

“That’s right,” I said. “I know that takes some time getting used to: The test expression is
evaluated, if it returns a True value, the body of the loop is executed, followed by the increment
or decrement of the loop-control variable.”

“I think I understand everything that’s going on,” Blaine said, “but what about when you get
to steps 10 and 11 of the table—that’s when the loop ends, right?”

“In step 10,” I replied, “the value of the variable counter is 10. Because 10 is less than 11, the
test expression once again evaluates to True; therefore, the body of the loop—the display of the
current value of the variable counter in the C++ console window—is executed. Then the value of
counter is incremented by 1, giving it a value of 11.”

“Doesn’t the loop just end at this point?” Joe asked.
“Not quite, Joe,” I answered. “Even though the value of counter has been incremented to 11,

the test expression must formally be evaluated once more. At that point, the test expression returns
a value of False, because 11 is not less than 11, it’s equal to it. Once the test expression returns a
False value, the loop is exited, meaning that execution now continues with the line of code that
follows the For statement or statements. By the way, if you need to execute more than one statement
as part of the body of the loop, you need to use curly brackets to form a block, like this.”

//Example5_2.cpp

#include <iostream>

int main()

{

using namespace std;

for (int counter = 1;counter < 11;counter++) {

cout << "statement1" << endl;

cout << "statement2" << endl;

}

return 0;

}

“This is the same technique we had to apply to the If statement that we learned about last
week. In general, if you want multiple statements in your control structures, you must enclose
them in a block.”

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

194 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

Variations on the For Loop Theme
I pointed out that our For loop was a pretty “vanilla” version of what the For loop can do.

“What do you mean by vanilla?” Bob asked.
“By vanilla,” I said, “I mean that in this example we specified all three arguments for the For

loop. Believe it or not, all three arguments are not required, and not including them can produce
some behavior that is interesting, to say the least. Not providing all three arguments is not something
I would recommend, but C++ does permit you to omit any of the three arguments—or all three if
you want to. For instance, you can code a For loop that looks like this.”

I then displayed the following code on the classroom projector:

for (; ;)

“What will this do?” Rhonda asked.
“This For statement would result in an endless loop,” I said.
“An endless loop?” Ward said. “Why would you want to do this?”
“Most likely you wouldn’t,” I said, “but there are occasions in the programming world where

you would want to create an endless loop—and then use the Break statement from inside the
body of the loop to ‘break out’ of it. The point is, with all three arguments of the For statement
being optional, it’s really easy to do something like this—either because you think it’s a good idea
or because you accidentally code it that way. The example I showed you earlier is the prototypical
example of the For loop, but there are many other ways to code a For loop. Some programmers,
for instance, choose to increment their loop-control variable within the body of the loop itself,
leaving the third argument—the increment argument—empty, like this.”

for (int counter = 1;counter < 11;)

“Again, this isn’t something I would recommend, but you may see some programmers doing
this. Still other programmers choose to leave the first argument, the initialization argument,
empty, like this.”

for (; counter< 11;counter++)

“This is something you can do provided you initialize the loop-control variable elsewhere in
your program.”

“Again, I presume that’s something you don’t recommend,” Bob said.
“That’s right, Bob,” I agreed. “I recommend coding all three arguments in the For loop unless

you can think of a very persuasive reason for not doing so—and in the beginning stages of your
C++ programming career, I don’t think you’ll think of any.”

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

“Assuming we do code all three arguments for the For loop,” Dave asked, “are there any other
variations possible with the For loop?”

“That’s a great question, Dave,” I answered. “It’s possible to vary all three arguments in
such a way as to produce some very interesting results. For instance, if instead of incrementing
your loop-control variable, you decrement it, the value of the loop-control variable will decrease,
and you can actually make your loop go backward. And speaking of the loop-control variable,
it doesn’t have to start out as 1—it can be any value. In fact, it doesn’t even have to be a
positive number.”

I explained that it’s possible to simulate real-world situations more accurately if you get a little
creative with the arguments of a For loop.

“Last week, we worked with some fictitious restaurants in New York City,” I said. “Today, let’s
suppose you own a Manhattan hotel in which the floors are numbered from 2 to 20. Let’s further
pretend that the hotel has three elevators: Elevator 1 stops at all the floors of the hotel, elevator 2
stops only at the even-numbered floors, and elevator 3 stops only at the odd-numbered floors. Now,
suppose that we want to write a C++ program that displays, in the C++ console window, the floor
numbers at which elevator 1 stops. Here’s an exercise to do exactly that using the C++ For loop.”

Exercise 5-1 Your First For Loop

In this exercise, you’ll code a For loop to display the floors at which elevator 1 stops.

1. Use Notepad (if you are using Windows) to enter the following code:

//Practice5_1.cpp

#include <iostream>

int main()

{

using namespace std;

cout <<

"Elevator #1 stops at these floors..." << endl;

for (int counter = 2;counter < 21;counter ++)

cout << counter << endl;

return 0;

}

2. Save your source file as Practice5_1 in the \C++Files\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

Chapter 5: Loops 195

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

196 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

4. Execute your program. You should see the following output in the C++
console window:

Discussion No one had any trouble completing this exercise—there wasn’t much
coding involved.

“Where’s the first floor of the hotel?” Kathy asked. “Why did the display start
with the number 2?”

“Remember, the floors are numbered from 2 to 20,” Mary said. “That’s why
the loop-control variable was initialized to 2.”

“That’s right, Kathy,” I replied. “This was a good exercise to get your feet
wet with the For loop. Now let’s get to work on a more challenging problem—
elevator 2. That’s the elevator that stops only at the even-numbered floors of
the hotel. Do you have any ideas on how we should code a For loop to display
only the even-numbered floors of the hotel?”

After a few seconds, Dave suggested that we code a For loop, initializing our
loop-control variable to 2, that we use a test condition in which we compare
the value of the variable to “less than 21,” and most importantly, that we
increment the value of the loop-control variable by 2 instead of 1.

“Excellent job, Dave,” I said, as I distributed this exercise for the class
to complete.

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 5: Loops 197

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

Exercise 5-2 Modifying the For Loop to Handle Even-Numbered Floors

In this exercise, you’ll code a For loop to display the even-numbered floors of
the hotel at which elevator 2 stops.

1. Using Notepad, enter the following code:

//Practice5_2.cpp

#include <iostream>

int main()

{

using namespace std;

cout <<

"Elevator #2 stops at these floors..." << endl;

for (int counter = 2;counter < 21;

counter = counter + 2)

cout << counter << endl;

return 0;

}

2. Save your source file as Practice5_2 in the \C++Files\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute your program. You should see the following output in the C++
console window:

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

198 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

Discussion “That was very clever, Dave,” Rhonda said, obviously impressed. “I don’t think I
would have thought of incrementing the loop-control variable by 2.”

“Solving programming problems like this requires some imagination,” I told
Rhonda. “The more programs you work with—whether you read or write
them—the easier it will be to envision little tricks like this to solve these types
of problems.”

“I noticed,” Linda said, “that we incremented the value of our loop-control
variable counter by taking the value of counter and adding 2 to it. It sure would
be great if there were an increment operator to add 2 to a variable the way the
(++) operator adds 1.”

“Actually, Linda, there is,” I replied. “We used this code to increment the
value of the counter variable by 2.”

counter = counter + 2)

“But we can use this code instead, which is a variation of the increment
operator (++) you learned about a few weeks ago.”

counter+=2;

“The addition assignment (+=) operator is used to increment the value of a
variable by the number that follows it—in this case, +=2 adds 2 to a variable.”

“Cool,” Chuck said. “Can you increment the variable by any number that
way, and is there a way to subtract numbers as well?”

“Yes on both counts, Chuck,” I said. “This syntax can be used to add 3 to the
variable counter.”

counter+=3;

“And this syntax will subtract 3 from the variable counter.”

counter-=3;

“I’ve been thinking about elevator 3,” Lou said, “the one that stops only at
odd-numbered floors in the hotel. I know what you said about using your
imagination to solve this problem, but so far, I haven’t been able to get it to
work. How should we code that loop?”

Linda suggested that a For loop with a loop-control variable initialized to 3,
a test condition in which we compare the value of the variable to “less than 21,”

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 5: Loops 199

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

and once again incrementing the value of the loop-control variable by 2 would
be the way to go.

for (int counter = 3;counter< 21;counter+=2)

“Of course,” Lou lamented, “that was my mistake! I kept initializing the
value of the loop-control variable to 2 instead of 3.”

“Shouldn’t the initial value of the loop-control variable be 1?” Rhonda asked.

“Don’t forget, Rhonda,” I said, “the hotel has no first floor. The first odd-
numbered floor is 3, so initializing the loop-control variable to 3 takes care
of that.”

I then distributed this exercise for the class to complete.

Exercise 5-3 Modifying the For Loop to Handle Odd-Numbered Floors

In this exercise, you’ll code a For loop to display the odd-numbered floors at
which elevator 3 stops.

1. Using Notepad, enter the following code:

//Practice5_3.cpp

#include <iostream>

int main()

{

using namespace std;

cout <<

"Elevator #3 stops at these floors..." << endl;

for (int counter = 3;counter < 21;counter+=2)

cout << counter << endl;

return 0;

}

2. Save your source file as Practice5_3 in the \C++Files\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

200 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

3. Compile your source file into an executable file.

4. Execute your program. You should see the following output in the C++
console window:

Discussion By this point, no one seemed to be having any major problems with our
elevator exercises.

“This is great fun,” Joe said. “I figured there had to be some way to do this
kind of thing. Now that I’ve seen it, it seems pretty easy. I can’t wait to apply
C++ loops to something practical.”

“You’ll get a chance to work with loops in the Grade Calculation Project,”
I said. “But we still have some more work to do before we get to that point.”

I continued by saying that all three of the For loop’s arguments (initialization,
termination, and increment) could be expressed not only as numerical literals
(that is, numbers), as we had done in the previous exercises, but also as variables
or constants. I then distributed this exercise to demonstrate my point.

Exercise 5-4 Modifying the For Loop to Work
with Variables and Constants

In this exercise, you’ll code a For loop to display the floors at which elevator 1
stops, but instead of using numeric literals for the initialization, termination,
and increment arguments, you’ll use a combination of variables and constants.

1. Using Notepad, enter the following code:

//Practice5_4.cpp

#include <iostream>

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

int main()

{

using namespace std;

const int TOP_FLOOR = 20;

cout << "Elevator #1 stops at these floors..." << endl;

for (int bottom_floor = 2;

bottom_floor < TOP_FLOOR+1;bottom_floor++)

cout << bottom_floor << endl;

return 0;

}

2. Save your source file as Practice5_4 in the \C++Files\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute your program. You should see the following output in the C++
console window:

Chapter 5: Loops 201

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Discussion “Does everyone see what we’re doing here?” I asked.

“It looks like we’ve done two new things here,” Linda said. “First, we used a
more meaningful name for the loop-control variable, bottom_floor. We also
declared a constant called TOP_FLOOR to use as part of the test expression in
the termination argument of the For loop.”

“That’s an excellent analysis, Linda,” I said. “Using a constant or constants
like this doesn’t impact the behavior of the loop, but it does make your code a
lot more readable.”

I waited to see if there were any questions.

“Now, suppose that we want to display the floors of our hotel backwards?”
I continued. “It can be done with a For loop, but I have to warn you, we will
have to be careful.”

I then distributed this exercise for the class to complete.

Exercise 5-5 Displaying the Floors Backwards—but There’s a Problem

In this exercise, you’ll code a For loop to display the floors of the hotel backwards.
But beware: This code has a bug in it and won’t behave properly.

1. Using Notepad, enter the following code:

//Practice5_5.cpp

#include <iostream>

int main()

{

using namespace std;

cout <<

"Floors in the hotel, listed backwards are..." <<

endl;

for (int counter = 20;counter > 20;counter--)

cout << counter << endl;

return 0;

}

2. Save your source file as Practice5_5 in the \C++Files\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

202 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

4. Execute your program. You should see the following output in the C++
console window:

Discussion “Nothing happened,” Rhonda said. “No floor numbers were displayed. The
loop didn’t execute, did it?”

Rhonda was correct. Nothing except the heading was displayed in the C++
console window.

“Can anyone tell me what happened?” I asked.

No one had an immediate solution to what had, or hadn’t, happened, but
then Barbara spoke up.

“I think I know what the problem is,” she said. “I know we intended to have
the loop go backwards, but in the termination argument the test expression
immediately evaluates to False, and that’s why the body of the loop never
executes.”

“What’s that, Barbara?” Rhonda asked.

“Take a look at the initial value of our loop-control variable,” Barbara
continued. “It starts at 20, because that’s the top floor of our hotel, and
because we want to display the floors backwards, that’s where we want to
start. But then the test expression asks whether the value of the counter
variable is greater than 20. This is where the problem lies. As long as the test
expression returns a True value, the body of the loop will execute—but the
value of counter is 20, and obviously 20 is not greater than 20. Therefore, the
test expression immediately evaluates to False, and the loop terminates.”

“Excellent, Barbara,” I said. “That’s exactly what happened. What we have
here is a problem in the way I—and beginning programmers—sometimes
miscode loops.”

“I would have thought,” Ward said, “that C++ would have executed the
body of the loop at least once.”

Chapter 5: Loops 203

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

204 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

“Not with a For loop, Ward,” I answered. “Although you’ll see in just a few
moments that there are some types of C++ loops for which that is the case—that
is, the body of the loop is executed at least once—with a For loop, the test
expression is always evaluated prior to the body of the loop executing.”

“So how can we make this loop count backwards?” Rhonda asked. “What do
we need to change?”

“We need to correct our test expression,” I said, “to make the loop count
backwards.”

I then distributed this exercise for the class to complete.

Exercise 5-6 Displaying the Floors Backwards Correctly

In this exercise, you’ll correct the code from Exercise 5-5 so that the floors of our
hotel are correctly displayed backwards.

1. Using Notepad, enter the following code:

//Practice5_6.cpp

#include <iostream>

int main()

{

using namespace std;

cout <<

"Floors in the hotel, listed backwards are..." <<

endl;

for (int counter = 20;counter > 1;counter--)

cout << counter << endl;

return 0;

}

2. Save your source file as Practice5_6 in the \C++Files\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute your program. You should see the following output in the C++
console window:

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 5: Loops 205

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

Discussion “That’s better,” Mary said. “Now the floors are displayed backwards.”

“To make the loop count backwards,” I said, “you need to specify a test
expression that evaluates the value of the loop-control variable against the
lower limit of the loop. That’s what we did here.”

There were no more questions, so I suggested we take a break.

“When we return from break,” I said, “we’ll examine the indefinite kinds of
C++ loops I’ve mentioned: the While loop family.”

While Loops
Resuming after break, I began a discussion of what I call the C++ indefinite loops—the family of
While loops.

“Compared to the For loop,” I said, “beginners to C++ find the While Loop a bit confusing at
first, perhaps because there are actually two variations of it—the While loop and the Do-While
loop. But you’ll see that the only real difference in the behavior of the two variations is that, like
the For loop, the body of the While loop is not guaranteed to execute even once. With the
Do-While loop, the body of the loop is executed at least once. We’ll examine both types of While
loops during the last half of today’s class.”

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

206 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

“What are the differences between the While loop and the For loop,” Steve asked, “and what
are the similarities?”

“Just like the For loop,” I said, “the While loop structure permits the programmer to
repetitively execute a section of code. But as you’ll see, when a While loop ends is not nearly as
definite as it is for the For loop.”

“How so?” Mary asked.
“With the For loop,” I continued, “you saw that we designate a definite endpoint in the way in

which we specify our termination argument. With a While loop, there is no built-in loop-control
variable as there is with the For loop. Instead, you need to specify an expression in the While
statement that is very much like the test expression specified in the For loop. What makes the
While loop a bit trickier is that the expression is not written to test the loop-control variable.
Instead, the test expression is written to evaluate something else. Unfortunately, when first learning,
quite a few beginners miscode the test expression in a While loop, resulting in something we
mentioned earlier: an endless or infinite loop.”

“What kinds of test conditions can you specify as the expression in the While Loop?”
Ward asked.

“You can specify any condition that evaluates to a True or False value,” I said, “just as in the
test expression you saw in the first For loop we coded today.”

“Can we see an example of the While loop?” Mary asked.

The While Loop
“Sure thing, Mary,” I said. “Let’s take a look at the While loop first; that’s the type of While loop
in which the test expression is evaluated prior to the body of the loop executing even once.”

I then displayed the syntax for the While loop on the classroom projector:

while (expression) {

statement or statements

“You’re right,” Joe said, “this does look a little confusing to me.”
“Let’s take it a step at a time,” I said, “and I’m sure you’ll be okay with this. The While loop

begins with the word while, followed by a test expression, which as I indicated earlier, is much like
the test expression in an If statement. Unlike in a For loop, the loop-control variable isn’t initialized
at the top of the loop structure—there’s just this single test expression. There’s also no termination
argument. As long as the test expression evaluates to True, the body of the loop will be executed.
Therefore, it’s up to the programmer to ensure that the test expression eventually evaluates to
False, and that needs to be done using code within the loop itself, something you’ll see in just a
few moments. As was the case with the For loop, the test expression is evaluated before the body
of the loop is executed. This means that the body of the While loop is not guaranteed to execute

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

even one time: If the text expression immediately evaluates to False, the Loop structure is exited.
As you’ll see in a few moments, there’s a variation of this loop in which the body of the loop is
always executed at least once.”

“Wouldn’t you want every loop you code to execute at least once?” Rhonda asked.
“Not necessarily,” I answered. “For instance, suppose you are using a loop to read records from

a disk file, and you include the instructions to read the records within the body of the loop. If the
file is empty—which can happen—you wouldn’t want to execute the body of the loop even once.
If you did, you would attempt to read a record from an empty file, which would generate an error.”

“Okay,” Rhonda answered, “that makes sense to me.”
At this point, there were no other questions, and I suggested that we complete an exercise to

give everyone a chance to work with the While loop, once again displaying the floors of our hotel.

Exercise 5-7 Using the While Loop to Display the Floors of the Hotel

In this exercise, you’ll code a While loop to display the floors of our hotel in the
C++ console window.

1. Using Notepad, enter the following code:

//Practice5_7.cpp

#include <iostream>

int main()

{

using namespace std;

int counter = 2;

cout << "The floors in the hotel are..." << endl;

while (counter < 21) {

cout << counter << endl;

counter++;

}

return 0;

}

2. Save your source file as Practice5_7 in the \C++Files\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

Chapter 5: Loops 207

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

208 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

4. Execute your program. You should see the following output in the C++
console window:

Discussion “As you can see,” I said, “we’ve successfully displayed the floors of our hotel,
this time using a While loop to do the job instead of a For loop. I think once
you get used to the format, you’ll find that working with the While loop—and,
specifically, coding the test expression—is somewhat intuitive. Remember,
though, we need to do a little more work with the While loop than with the
For loop. For instance, because there is no initialization argument, we needed
to take care of that ourselves, before the loop structure is encountered, with
this line of code.”

int counter = 2;

“Then comes the While loop and its test expression, in which we tell C++ to
execute the body of the loop while the value of counter is less than 21 and to
display the value of counter in the C++ console window:”

while (counter < 21) {

cout << counter << endl;

“As I mentioned earlier, because the While loop does not have an increment
argument of its own, it’s imperative that we take care of incrementing the variable
we are using to determine the duration of the loop. We do that with this code.”

counter++;

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

“The variable counter,” Blaine said, “reminds me of the loop-control variable
from the For loop.”

“You’re right about that, Blaine,” I said. “With the While loop, there is no
formal loop-control variable as there is in a For loop. In effect, we have to
create our own.”

“How important is it to increment the value of counter inside the loop?”
Kathy asked.

“Vitally important,” I said. “Beginners typically make two kinds of mistakes
with the While loop. Either they initialize the value of a variable they’re using
in their test expression inside the body of loop, or they increment the value of
that variable outside the loop.”

“What’s wrong with that?” Rhonda asked.

“In our case, if we were to initialize the value of counter within the body of
the loop,” I said, “each time the body of the loop is executed, the value of counter
is reset to 2. That’s not good, in that the value of counter never gets to the
point where the loop can terminate. Alternatively, if we were to increment the
value of counter outside the body of the loop, the value of counter would
always be 2. As a result, the test expression (counter < 21) is always true, and
the loop never terminates. In both cases, we wind up with an endless loop.”

“Why didn’t the number 21 display in the C++ console window?” Joe asked.
“Why did it stop at 20?”

“Because,” I said, “our expression told C++ to execute the body of the loop
while counter is less than 21. As soon as counter is equal to 21, the test
expression returns a False value, and the loop immediately terminates.”

“You said earlier that While loops have an indefinite nature,” Linda said,
“but this loop seems pretty definite to me. Can you give us a better example
of that?”

“I sure can,” I said. “How about a loop that runs until the user tells it
to stop?”

I then distributed this exercise for the class to complete.

Exercise 5-8 An Indefinite Version of the While Loop

In this exercise, you’ll create a While loop structure that displays numbers in the
C++ console window. However, the numbers will only be displayed for as long
as the user chooses to continue to display them.

1. Using Notepad, enter the following code:

//Practice5_8.cpp

#include <iostream>

#include <string>

Chapter 5: Loops 209

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

210 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

int main()

{

using namespace std;

int counter = 1;

string response;

cout << "Should I start counting? ";

cin >> response;

for (int i = 0; i < response.length(); i++) {

response[i] = toupper (response[i]);

}

while (response == "YES") {

cout << "counter is " << counter << endl;

counter++;

cout << "Should I continue? ";

cin >> response;

for (int i = 0; i < response.length(); i++) {

response[i] = toupper (response[i]);

}

}

cout << "Thanks for counting with me!";

return 0;

}

2. Save your source file as Practice5_8 in the \C++Files\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute your program. The program will ask you whether it should start
counting. Type Yes at the C++ console, as shown here:

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 5: Loops 211

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

5. The number 1 should appear in the C++ console window, and the
program will then ask you whether it should continue counting, as
shown here:

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

212 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

6. Type Yes once again. Here’s what the screen will look like:

7. The number 2 will then be displayed in the C++ console window, and once
again you’ll be asked whether the program should continue counting.
Numbers will continue to be displayed in the C++ console window for as
long as you type Yes.

8. Type No in answer to the prompt to continue counting. A thank-you message
will be displayed in the C++ console, and the program will end, as shown here:

Discussion There was a fair amount of confusion and problems with this exercise, and it
took us about 15 minutes to get through it. The exercise was tedious to type. In
addition, not everyone in the class was as attentive to how they typed the word
YES in their code as they needed to be, which caused some problems when they
ran their programs.

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

Chapter 5: Loops 213

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

“This code is a good example of the indefinite capabilities of the While
loop,” I explained. “How many times this loop executes is entirely up to the
user and is determined at runtime, not when the program is being coded.
When we wrote this program, we had no idea how many numbers the user
would want displayed in the C++ console window. The While loop gives us a
way for the loop to run indefinitely but still with a way to end it. That’s the
beauty of the While loop. In this case, as soon as the test expression evaluates
to False, the loop ends.”

I continued by saying that, as we had done in Exercise 5-7, the first thing we
did here was to declare the variables we would use in the program.

“Remember,” I said, “I can’t emphasize this enough: With a While loop there
is no built-in loop-control variable, so in order for the loop to eventually end,
we need to declare a variable that will be used in a test expression to see
whether the loop should be terminated. In the previous exercise, we used the
value of counter to determine whether the loop should end. This program is a
bit different in that we will let the user’s response to the question determine
when the loop ends. That’s the function of the variable response here, a
variable whose value will be determined by the user. The variable counter, as it
was in Exercise 5-7, is the number we will display in the C++ console window,
and we initialize it to 1.”

int counter = 1;

string response;

“Now it’s time,” I said, “to use the cout object to display a message to the
user, asking them if they wish for the program to start counting, followed by a
redirection of the user’s input via the cin object to the variable response.”

cout << "Should I start counting? ";

cin >> response;

“These next three lines of code are very significant, and some of this
may not make much sense to you until we discuss arrays later in the course.
The result of this code is that the value of the response variable becomes
capitalized. Again, this involves the use of arrays, something we’ll discuss in
more detail later on in the course.”

for (int i = 0; i < response.length(); i++) {

response[i] = toupper (response[i]);

}

“I was going to ask you about that,” Linda said. “What is the toupper()
function? I presume it’s a function.”

“Yes it is,” I responded. “The toupper() function is designed to take a
character value and return its uppercase equivalent.”

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

214 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

“But the response variable isn’t a character data type,” Dave said, “it’s a string.”

“That’s true, Dave,” I replied, “but you may remember last week when I
was discussing the String data type, I indicated that it’s really a collection of
characters. Because of that, we can use a For loop to examine each character in
a string variable, execute the toupper() function on it, and return its uppercase
equivalent.”

“In other words,” Ward chimed in, “if the character is a lowercase a,
toupper() will return a capital A.”

“That’s right, Ward,” I said. “In terms of a string variable, if the user were to
enter the string j-o-h-n, the For loop would replace it with J-O-H-N.”

“Why are we doing this?” Kate asked.

“In short,” I said, “because we want to make our test expression
manageable. In this way, no matter how the user spells the word YES—all
lowercase, all uppercase, or something in between, ultimately their response
is converted to YES, in all uppercase letters, and that will make determining
whether the user answered ‘yes’ or something else much easier.”

“I guess I’m missing something here,” Chuck said, “but how can converting
the user’s response to uppercase make the comparison easier?”

“Did you realize,” I answered, “that the user can type the word yes in eight
different ways?”

“What do you mean eight different ways?” asked Barbara.

“Each letter of the word yes can be entered by the user in either upper- or
lowercase,” I explained. “And although it’s nice to believe that the user would
enter ‘YES’ in all caps if we asked them to, in reality, some users mix and match
case as they’re entering values into an input box or a text field. Let’s take a
moment to come up with all the possible combinations of the word yes, and
you’ll see that there are eight different ways of writing it.”

YES yES

YEs yEs

YeS yeS

Yes yes

“So you see,” I said, “if we ‘convert’ the user’s response to all uppercase
characters, that means we only need to perform the comparison in our test
expression to the word YES, in all capital letters. The alternative would be to
write code using a series of Or operations that would look like this.”

while (

response == "YES" | response == "YEs" |

response == "YeS" | response == "Yes" |

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 5: Loops 215

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

response == "yES" | response == "yEs" |

response == "yeS" | response == "yes") {

“I see what you mean now,” Ward said. “That makes sense, and it makes
even more sense if we ask the user a question whose answer requires 13
characters.”

“That’s right, Ward,” I said. “A word of 13 characters can be entered 8,192
different ways by the user—that’s a comparison I wouldn’t want to make using
the Or operator. Let’s get back to that first line of the While loop, in which we
tell C++ to execute the body of the loop provided the variable response is equal
to the uppercase value YES.”

while (response == "YES") {

“Oh, so that’s the benefit of having converted the user’s response to
uppercase,” Rhonda said. “The light bulb just went on!”

“Is this the type of loop in which the body of the loop is not necessarily
executed once?” Blaine asked.

“That’s right, Blaine,” I said. “Because the test expression in a While loop
is evaluated at the top of the loop structure, the body of the loop will be
executed only if the test expression evaluates to True, something that can
only happen if the user answers ‘yes’ to the question, Should I start counting?
Provided the user answers using any of the eight varieties of ‘yes,’ this next
line of code will display the value of the counter variable in the C++ console
window.”

cout << "counter is " << counter << endl;

“And then this line of code will increment the value of counter.”

counter++;

“Incrementing the value of counter is important, but it’s not as important as
it was in Exercise 5-7, because it’s not the value of counter that determines if
and when the loop ends. The responsibility for ending the loop belongs to the
response the user gives to the question, Should I continue? And this response is
stored in the response variable. That’s the key to the loop eventually ending.
Notice how we must ‘uppercase’ the user’s response to this question, once
again executing the For loop to do the job.”

cout << "Should I continue? ";

cin >> response;

for (int i = 0; i < response.length(); i++) {

response[i] = toupper (response[i]);

}

“So the loop will continue until the user answers ‘no’?” Ward asked.

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Not exactly, Ward,” I said. “The loop will continue as long as the user types
any of the eight variations of the word yes. That means the loop will end if the
user types anything else, at which time we will then display this message to the
user thanking them for counting with us and end the program.”

cout << "Thanks for counting with me!";

Prior to moving on, I repeated my earlier assertion that one of the biggest
mistakes beginners make with the While loop is to forget to include code
within the body of the loop that enables the loop to end.

“Because the test condition we set up is to compare the value of the
response variable to YES,” I said, “if we forget to give the user the opportunity
to change the value of that variable, we’ll wind up with an endless loop
condition.”

Do-While Loop
No one had any questions about the While loop, so it was time to move on to a discussion of the
Do-While loop. I displayed the syntax for the Do-While loop on the classroom projector:

do {

statement(s)

} while (expression);

“This variation of the While loop is called the Do-While loop,” I said, “because the first line of
the loop structure begins with the single word do, and the last line of the loop contains the While
statement. Everything else in between is considered the body of the loop.”

“How is this Do-While loop different from the While loop we just worked with?” Mary asked.
“Unlike the While loop and the For loop,” I answered, “in which the body of the loop is not

guaranteed to execute even once, with the Do-While loop, the body of the loop will execute at
least one time.”

“Is it the location of the word while that causes that behavior?” Linda asked. “I notice that the
test expression is located after the body of the loop.”

“Great observation, Linda,” I said. “In the While loop structure we just examined, because the
word while appeared as the first line of the loop structure, the test expression was evaluated prior
to the body of the loop executing. With the Do-While loop, because the test expression appears as
the last line of the loop structure, the body of the loop is guaranteed to execute at least once, even
if the test expression is always false.”

No one had any other questions, so I suggested that we complete an exercise in which we
implement the functionality from Exercise 5-8 using a Do-While loop instead.

216 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Exercise 5-9 The Do-While Loop

In this exercise, you’ll create a Do-While loop structure that displays numbers in
the C++ console window. However, the numbers will only be displayed for as
long as the user chooses to continue to display them.

1. Using Notepad, enter the following code:

//Practice5_9.cpp

#include <iostream>

#include <string>

int main()

{

using namespace std;

int counter = 1;

string response;

cout << "Should I start counting? ";

cin >> response;

for (int i = 0; i < response.length(); i++) {

response[i] = toupper (response[i]);

}

do {

cout << "counter is " << counter << endl;

counter++;

cout << "Should I continue? ";

cin >> response;

for (int i = 0; i < response.length(); i++) {

response[i] = toupper (response[i]);

} // end of for

} while (response == "YES"); // end of while

cout << "Thanks for counting with me!";

return 0;

}

Chapter 5: Loops 217

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

2. Save your source file as Practice5_9 in the \C++Files\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute your program. The program will ask you whether it should start
counting. Type Yes at the C++ console. As was the case with Exercise 5-8,
the number 1 should appear in the C++ console window, and the program
will then ask you whether you wish it to continue counting.

5. Answer Yes once again. The number 2 will then be displayed in the C++
console window, and once again you’ll be asked whether you wish for the
program to continue counting. Numbers will continue to be displayed in the
C++ console window for as long as you answer Yes.

6. Answer No (or anything other than Yes) to the prompt to stop counting. A
thank-you message will be displayed in the C++ console, and the program
will end.

Discussion No one had any major problems completing the exercise.

“It looks like this program is behaving the same way as the program from
Exercise 5-8,” Rhonda said.

“You’re right, Rhonda,” I said. “We’ve proven we can implement the same
functionality using a Do-While loop as we did when we coded the program
using a While loop.”

“So what’s the difference?” Joe asked.

“The difference in the behavior,” I said, “won’t become apparent unless the
user answers ‘no’ to the first question asked of them, Should I start counting? If
the user answers ‘no’ to this question in the Exercise 5-8 version of the program,
the body of the loop will never execute. That’s not the case with the Exercise 5-9
version of the program. Because the test expression is at the bottom of the
Do-While structure, the body of the loop will always execute at least once. Let
me show you what I mean.”

I then ran the code from Exercise 5-8 and answered ‘no’ to the question
asking me if I wanted the program to start counting. The program immediately
ended without displaying any numbers in the C++ console window.

“That’s what I would expect,” Ward said.

“Now let’s see what happens,” I said, “when we run the code from
Exercise 5-9.”

I then ran the code from Exercise 5-9 and answered ‘no’ to the question
asking me if I wanted the program to start counting. Despite my answer of ‘no,’

218 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 5: Loops 219

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

the program displayed the number 1 in the C++ console window, as
shown here:

“I see the difference now,” Rhonda said. “The program ignored our answer.”

“It’s not so much that the program ignored our answer,” I answered, “but
that it didn’t check our answer until the body of the loop had already executed
once. In Exercise 5-8, the answer was evaluated at the beginning of the loop.
Because the test condition evaluated immediately to False, the body of the loop
was never executed. In Exercise 5-9, the test condition was evaluated after the
body of the loop had already executed and displayed the number 1 in the C++
console window.”

I asked if there were any questions about the While family of loops. There
were none, so I asked everyone to take a break.

“When we return from break,” I said, “we’ll be working on a modification to
the Grade Calculation Project to include loop processing.”

Adding a Loop to the Grade Calculation Project
When my students returned from break, a couple of them immediately asked what we would be
doing with the Grade Calculation Project that involved a loop.

“Right now,” I said, “as the project stands, it properly calculates the grade for an English, math,
or science student, but it only performs one calculation before ending.”

“That’s right,” Blaine said. “One grade calculation, and the program ends. By using loop
processing, will we be able to make the program perform multiple calculations before ending?”

“You hit the nail right on the head, Blaine” I said.

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

220 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

“How will we do that?” Chuck asked.
“What we’ll do,” I said, “is ‘sandwich’ the code that performs the grade calculation within a

loop structure so that we can calculate the grades for many students instead of just one. Can
anyone suggest the kind of loop we should use to do that?”

“I suppose we could use a For loop,” Rhonda suggested, “but from what we’ve learned today, a
For loop is the best choice when we know for certain the number of times we want the body of
the loop to execute. That wouldn’t be the case here because each time the program runs, there’s
likely to be a different number of grades to be calculated. I guess, for that reason, the While loop
is the way to go.”

“Great thinking, Rhonda,” I said, “and I agree, a While loop makes sense to use. Now another
question: Should we use the While loop or the Do-While variety?”

“I would vote for the While loop,” Valerie answered. “I think we should evaluate the test
expression we code at the top of the loop structure, not at the end of it. That way, if the user
decides that they don’t actually want to calculate a grade, they don’t have to. They can just exit the
program.”

“I agree, Valerie,” I said. “Although it’s not likely that the user will run the program and then
have no grades at all to calculate, it is possible. I think it’s safer to ask the user whether they have
grades to calculate, and if so, execute the body of the loop to calculate the grades.”

I saw some confusion in the eyes of my students, but I knew this would be cleared up when
they started to code the modifications to the Grade Calculation Project. I then distributed this
exercise for the class to complete.

Exercise 5-10 Adding a Loop to the Grade Calculation Project

In this exercise, you’ll modify the Grade Calculation Project you last worked on
last week in Exercise 4-7 by giving it the ability to calculate more than one
student’s grade before ending.

1. Using Notepad, locate and open the Grades.cpp source file you worked on
last week. (It should be in the \C++Files\Grades folder.)

2. Modify your code so that it looks like this:

//Grades.cpp

#include <iostream>

#include <string>

int main ()

{

using namespace std;

const float ENGLISH_MIDTERM_PERCENTAGE = .25;

const float ENGLISH_FINALEXAM_PERCENTAGE = .25;

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 5: Loops 221

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

const float ENGLISH_RESEARCH_PERCENTAGE = .30;

const float ENGLISH_PRESENTATION_PERCENTAGE = .20;

const float MATH_MIDTERM_PERCENTAGE = .5F;

const float MATH_FINALEXAM_PERCENTAGE = .50;

const float SCIENCE_MIDTERM_PERCENTAGE = .40;

const float SCIENCE_FINALEXAM_PERCENTAGE = .40;

const float SCIENCE_RESEARCH_PERCENTAGE = .20;

int midterm = 0;

int finalExamGrade = 0;

int research = 0;

int presentation = 0;

float finalNumericGrade = 0;

char finalLetterGrade;

char response[256];

string moreGradesToCalculate;

cout << "Do you want to calculate a grade? ";

cin >> moreGradesToCalculate;

for (int i = 0;

i < moreGradesToCalculate.length(); i++) {

moreGradesToCalculate[i] =

toupper (moreGradesToCalculate[i]);

}

while (moreGradesToCalculate == "YES") {

// What type of student are we calculating?

cout << "Enter student type " <<

"(1=English, 2=Math, 3=Science): ";

cin.getline(response,256);

if (strlen(response) == 0) {

cout << "You must select a Student Type";

return 1;

}

if ((atoi(response) < 1) | (atoi(response) > 3)) {

cout << response <<

" - is not a valid student type";

return 1;

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

}

// Student type is valid, now let's calculate the grade

switch(atoi(response))

{

// Case 1 is an English Student

case 1:

cout << "Enter the Midterm Grade: " ;

cin.getline(response,256);

midterm = atoi(response);

cout << "Enter the Final Examination Grade: " ;

cin.getline(response,256);

finalExamGrade = atoi(response);

cout << "Enter the Research Grade: " ;

cin.getline(response,256);

research = atoi(response);

cout << "Enter the Presentation Grade: " ;

cin.getline(response,256);

presentation = atoi(response);

finalNumericGrade =

(midterm * ENGLISH_MIDTERM_PERCENTAGE) +

(finalExamGrade *

ENGLISH_FINALEXAM_PERCENTAGE) +

(research * ENGLISH_RESEARCH_PERCENTAGE) +

(presentation *

ENGLISH_PRESENTATION_PERCENTAGE);

if (finalNumericGrade >= 93)

finalLetterGrade = 'A';

else

if ((finalNumericGrade >= 85) &

(finalNumericGrade < 93))

finalLetterGrade = 'B';

else

if ((finalNumericGrade >= 78) &

(finalNumericGrade < 85))

finalLetterGrade = 'C';

else

if ((finalNumericGrade >= 70) &

(finalNumericGrade < 78))

finalLetterGrade = 'D';

else

222 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

if (finalNumericGrade < 70)

finalLetterGrade = 'F';

cout << endl <<

"*** ENGLISH STUDENT ***" << endl << endl;

cout << "Midterm grade is: " <<

midterm << endl;

cout << "Final Exam is: " <<

finalExamGrade << endl;

cout << "Research grade is: " <<

research << endl;

cout << "Presentation grade is: " <<

presentation << endl << endl;

cout << "Final Numeric Grade is: " <<

finalNumericGrade << endl;

cout << "Final Letter Grade is: " <<

finalLetterGrade;

break;

// Case 2 is a Math Student

case 2:

cout << "Enter the Midterm Grade: " ;

cin.getline(response,256);

midterm = atoi(response);

cout << "Enter the Final Examination Grade: " ;

cin.getline(response,256);

finalExamGrade = atoi(response);

finalNumericGrade =

(midterm * MATH_MIDTERM_PERCENTAGE) +

(finalExamGrade * MATH_FINALEXAM_PERCENTAGE);

if (finalNumericGrade >= 90)

finalLetterGrade = 'A';

else

if ((finalNumericGrade >= 83) &

(finalNumericGrade < 90))

finalLetterGrade = 'B';

else

if ((finalNumericGrade >= 76) &

(finalNumericGrade < 83))

finalLetterGrade = 'C';

else

if ((finalNumericGrade >= 65) &

Chapter 5: Loops 223

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

(finalNumericGrade < 76))

finalLetterGrade = 'D';

else

if (finalNumericGrade < 65)

finalLetterGrade = 'F';

cout << endl<<

"*** MATH STUDENT ***" << endl << endl;

cout << "Midterm grade is: " <<

midterm << endl;

cout << "Final Exam is: " <<

finalExamGrade << endl;

cout << "Final Numeric Grade is: " <<

finalNumericGrade << endl;

cout << "Final Letter Grade is: " <<

finalLetterGrade;

break;

// Case 3 is a Science Student

case 3:

cout << "Enter the Midterm Grade: " ;

cin.getline(response,256);

midterm = atoi(response);

cout << "Enter the Final Examination Grade: " ;

cin.getline(response,256);

finalExamGrade = atoi(response);

cout << "Enter the Research Grade: " ;

cin.getline(response,256);

research = atoi(response);

finalNumericGrade =

(midterm * SCIENCE_MIDTERM_PERCENTAGE) +

(finalExamGrade *

SCIENCE_FINALEXAM_PERCENTAGE) +

(research * SCIENCE_RESEARCH_PERCENTAGE);

if (finalNumericGrade >= 90)

finalLetterGrade = 'A';

else

if ((finalNumericGrade >= 80) &

(finalNumericGrade < 90))

finalLetterGrade = 'B';

else

if ((finalNumericGrade >= 70) &

224 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 5: Loops 225

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

(finalNumericGrade < 80))

finalLetterGrade = 'C';

else

if ((finalNumericGrade >= 60) &

(finalNumericGrade < 70))

finalLetterGrade = 'D';

else

if (finalNumericGrade < 60)

finalLetterGrade = 'F';

cout << endl <<

"*** SCIENCE STUDENT ***" << endl << endl;

cout << "Midterm grade is: " <<

midterm << endl;

cout << "Final Exam is: " <<

finalExamGrade << endl;

cout << "Research grade is: " <<

research << endl;

cout << "Final Numeric Grade is: " <<

finalNumericGrade << endl;

cout << "Final Letter Grade is: " <<

finalLetterGrade;

break;

default:

cout << response <<

" - is not a valid student type";

return 1;

} // end of switch

cout << endl<< endl<<

"Do you have another grade to calculate? ";

cin >> moreGradesToCalculate;

for (int i = 0;

i < moreGradesToCalculate.length(); i++) {

moreGradesToCalculate[i] =

toupper (moreGradesToCalculate[i]);

} // end of for

} // end of while

cout <<

"Thanks for using the Grades Calculation program!";

return 0;

} // end of main

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

226 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

3. Save your source file as Grades.cpp in the \C++Files\Grades folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

4. Compile your source file into an executable file.

5. Execute your program and test it thoroughly. We need to verify that the
looping behavior of the program is working correctly. After you start up
your program, it should ask you whether you have a grade to calculate.

6. Answer Yes and calculate the grade for an English student. Enter 70 for the
midterm, 80 for the final examination, 90 for the research grade, and 100
for the presentation. A final numeric grade of 84.5 should be displayed with
a letter grade of C.

7. After the grade is displayed, the program should ask whether you have
more grades to calculate.

8. Answer Yes and calculate the grade for a math student. Enter 70 for the
midterm and 80 for the final examination. A final numeric grade of 75
should be displayed with a letter grade of D.

9. After the grade is displayed, the program should ask whether you have
more grades to calculate.

10. Answer Yes and calculate the grade for a science student. Enter 70 for the
midterm, 80 for the final examination, and 90 for the research grade. A
final numeric grade of 78 should be displayed with a letter grade of C. After
the grades is displayed with the calculated grade, the program should ask
whether you have more grades to calculate.

11. Answer No. You should be thanked for using the program, and the
program should end.

Discussion Making the modifications to the code in the Grades class required careful
attention to detail, but in the end, everyone was able to complete the exercise
without a great deal of trouble.

“I have to say I’m really impressed with the practical use for this loop,”
Ward said.

“Me, too,” Rhonda said. “In a way, this program kind of reminds me of an
Automated Teller Machine in that once you are done withdrawing your money,
it asks whether you have any more transactions to complete before giving you
your card back.”

“Can you go over the code?” Mary asked. “I think I understand what’s going
on here, but I want to be absolutely sure.”

“I’d be glad to do that, Mary,” I said. “We made just a few enhancements to
the code from last week’s version of the Grade Calculation Project, the major

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

one being to sandwich in a While loop, the code that actually does the
calculations. Prior to that, we needed to declare a variable to store the value
of the user’s answer to the question we are going to pose: Do you want to
calculate a grade? Because we already had a variable in the program called
response that we use to accept the individual grade component values from the
user, we declared a new variable called moreGradesToCalculate for the answer
to the question.”

string moreGradesToCalculate;

“Having declared that variable to hold the user’s response to our question,
it’s now time ask the question and accept a response.”

cout << "Do you want to calculate a grade? ";

cin >> moreGradesToCalculate;

“Again, we uppercase the user’s response by executing the toupper()
function within a For loop against each character of the response string.”

for (int i = 0;

i < moreGradesToCalculate.length(); i++) {

moreGradesToCalculate[i] =

toupper (moreGradesToCalculate[i]);

}

“Now here’s the critical line of code,” I said. “It’s where we set up the While
loop structure, using the user’s response in the test expression.”

while (moreGradesToCalculate == "YES") {

“If the user has answered ‘Yes’ to the question that they have a grade to
calculate, the value of moreGradesToCalculate is ‘YES,’ and we execute the
body of the loop—the code that we wrote last week to calculate the student’s
final numeric and letter grades.”

“So really, not all that much has changed with this code,” Joe said.

“That’s right, Joe,” I said. “The really difficult code to calculate the grade
was written last week. All we’ve done by placing it within the body of the loop
is give our program the ability to calculate more than one student. We do that
by asking the user the question using this code.”

cout << endl<< endl<<

"Do you have another grade to calculate? ";

cin >> moreGradesToCalculate;

for (int i = 0;

i < moreGradesToCalculate.length(); i++) {

moreGradesToCalculate[i] =

Chapter 5: Loops 227

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

228 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

toupper (moreGradesToCalculate[i]);

} // end of for

} // end of while

“If the user answers anything other than ‘yes’ or its many varieties,” I said,
“our test expression will evaluate to False, and the loop will terminate,
followed by this code, which thanks the user for using our program and
gracefully ends the program.”

cout <<

"Thanks for using the Grades Calculation program!";

“If the user answers ‘yes,’ the body of the loop will execute once more,
permitting a second student’s grade to be calculated.”

“I have a problem,” Rhonda said. “When I run my program, it’s thanking me
for using the program after each student I calculate. Shouldn’t it do that only
when I say I’m finished?”

“That’s right, Rhonda,” I said, “it should only thank the user once.”

I already had a feeling I knew what the problem was as I strode to Rhonda’s
workstation. Sure enough, she had placed the message thanking the user
within the body of the loop, not outside of it. Here’s what her code looked like:

for (int i = 0;

i < moreGradesToCalculate.length(); i++) {

moreGradesToCalculate[i] =

toupper (moreGradesToCalculate[i]);

} // end of for

cout <<

"Thanks for using the Grades Calculation program!";

} // end of while

return 0;

} // end of main

“I see what you mean,” Rhonda said, after I pointed out the problem. “By
placing that line of code within the While loop, I ensured it ran each time I
calculated a student’s grade.”

Ward expressed some concern over the growing length and complexity of
the code in the Grade Calculation Project.

“The code just keeps growing and growing,” he said. “I realize there isn’t
much we can do about its length. However, it’s getting so complex that I’m
having a harder and harder time following it.”

“I agree,” Rhonda added, “and as I said last week, aren’t we just about done
with this project? I think we’ve fulfilled all the requirements for the project,
haven’t we?”

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“I think we have, Rhonda,” I replied. “From a functional point of view, there
really isn’t much that we’ll be adding to the project. In the remainder of the
course, we will streamline and fine-tune the program and take advantage of
some of the object-oriented characteristics of the C++ programming language.
I think in doing so we’ll be addressing Ward’s concerns about the growing
complexity of the code, although you’ll see the overall number of lines of code
in the project won’t decrease. Object-oriented programs have a way of simplifying
the complex nature of code, and we’ll start doing that next week when we
create some functions and methods of our own, which should make our program
a little easier to follow.”

It had been a long class. I could see that everyone was feeling proud of the product they were
producing week by week. I could also see that they were pretty worn out; it had been an intense
session. I dismissed class for the day.

Summary
In this chapter, we discussed how loop processing can make programming a lot easier as well as
adding a lot of power to our programs.

Here’s a summary of some of the different loop structures we discussed:

� For loops These loops execute a definite number of times. The number of times that the
loop runs is determined by the start, end, and step parameters set in the “for” line of the
loop control.

� While loops These loops execute an indefinite number of times, determined by a test
condition. The While loop continues to run while a specified condition is true. In a While
loop, the test expression is evaluated prior to the body of the loop executing even one time.
Therefore, in a While loop, there is the possibility that the code in the body of the loop
will not execute even one time.

� Do-While loops Like the While loop, the Do-While loop executes an indefinite number
of times, determined by a test condition. The Do-While loop continues to run while the
test expression evaluates to True. In a Do-While loop, the test expression is evaluated after
the body of the loop executes. Therefore, in a Do-While loop, the body of the loop is
always executed at least one time.

We also modified the Grade Calculation Project so that it can calculate more than one
student’s grade.

In the next chapter, we’ll take a first look at how C++ allows us to create classes that simulate
real-world objects.

Chapter 5: Loops 229

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 5
Blind Folio 5:230

P:\010Comp\LearnTo\535-1\ch05.vp
Monday, October 07, 2002 12:34:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter

6
Creating Your
Own Functions

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6
Blind Folio 6:231

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
TLFeBOOK

In this chapter, we’ll discuss how to make our programs more readable and efficient by
creating our own functions. As you’ll see during the course of the chapter, functions are
pieces of code that perform a single task, and they promote a concept called modularity.

Modular Programs Are Easier
to Maintain and Understand

“Starting today,” I said, as I began our sixth class, “and continuing for the next three weeks or so,
we’ll be examining ways in which we can use some of C++’s object-oriented features to make
programs that are more readable, more efficient, and easier to maintain. Even more importantly,
you’ll discover that object-oriented programming languages such as C++ promote the concept of
software reuse, which means that a piece of code, once written, doesn’t have to be tossed away or
rewritten for another program but can be incorporated into classes for use in other programs. In
other words, the same piece of code can be used in multiple programs. We’ll look at that in more
detail next week when you see how you can create classes of your own. In today’s class, we’ll take
the first step along the path of software reuse when you learn how to write functions of your own.”

“But haven’t we already written functions of our own?” Kate asked.
“To a degree that’s true, Kate,” I said. “Every one of the programs we’ve written has contained

a main() function.”
“If I’m correct,” Dave said, “I believe that every program we’ve written in this class has had only

one function—the main() function. Isn’t that right?”
“That’s right, Dave,” I answered, “and you have probably noticed that as our programs have

gotten more complex, the number of lines of code in the main() function has grown and grown.
Today, you’ll learn how to create functions of your own that reside in the same file as the one in
which the main() function is contained. Then, next week, you’ll learn how to create functions
that reside in something known as a class. These functions can then be executed or called from
other programs.”

“You said that the number of lines of code in the main() function of our Grades Calculation
Program has grown and grown,” Kate said. “Is that bad? Is there a limit to the number of lines of
code that can go into the main() function? Why do we need to write other functions?”

“There’s no limit to the number of lines of code that can be placed in the main() function, or
in any function for that matter,” I said. “However, the more lines of code contained in a function,
the more difficult the program is to follow, understand, and maintain.”

“What do you mean by maintain?” Rhonda asked. “Is that like car maintenance?”

232 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Maintaining a program,” I answered, “means changing or modifying the program. Programs
need to be maintained for a number of different reasons. Some programs need to be modified
because of a change in the business environment for which the program is written. Other programs
need to be modified due to new governmental regulations. Still other programs need to be modified
because of requests from users. Regardless of the reason, you can be almost certain that any program
you write will eventually need to be modified, if not by you, then by someone else. Even if all you
need to change is a single line of code, if that line of code happens to appear in a main() function
with hundreds or thousands of other lines of code, you’re going to have a heck of a time finding
that line of code unless the program was written in a modular fashion.”

“Modular?” Lou asked.
“You’ll see a little later on, Lou,” I said, “that modular programs are programs that are written

in distinct, logical units.”
“Do programs need to be changed all that often that we need to worry about this?” Blaine asked.
“Most programs that are written for commercial purposes will at one time or other need to be

changed.” I answered. “In fact, it has been estimated that the programming staff in a large corporation
may spend up to 85 percent of its time modifying the code in already existing programs.”

“That’s incredible,” Chuck said. “So making programs easier to read and maintain is really
very important.”

“Absolutely,” I said. “In fact, it’s pretty likely that the program we’re writing for Frank Olley
will need to be changed at some point. If the English, Math, and Science departments change
the formula for the way a student’s final grade is calculated, we’ll need to change the Grade
Calculation program.”

“I see why programs need to be changed,” Valerie said, “but how can creating functions of our
own in addition to the main() function make that process easier?”

“So far,” I answered, “in all the code you’ve written for this class, I’ve pretty much told you exactly
what line or lines of code to write and where to place them. In the real world, however, this won’t
be the case. You’re more likely to be asked by a supervisor or project leader to make a functional
change to a program. In other words, you’ll be told what change to make in terms such as ‘Change
the federal tax withholding rate from 18 percent to 22 percent.’ It will be up to you to find the
appropriate C++ file, locate the line or lines of code in that file that performs that calculation,
decide upon the necessary changes, and then apply them. From experience, I can tell you that if
all the code in your program is located within the main() function of a single C++ program file,
finding and making changes to that code can be pretty tough.”

“And this is where having more than one function will come in handy?” Rhonda asked. “I’m
afraid I just don’t see why.”

“I think I can help,” Dave chimed in. “I work in a department that gets a tremendous amount
of mail. We have a super-efficient secretary, Millie, who by the time I sit down in my cubicle each

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

Chapter 6: Creating Your Own Functions 233

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

morning, has separated everyone’s mail and placed it on each individual’s desk. On those days when
Millie isn’t in, the place is chaos. Anyone who is expecting an important piece of correspondence sifts
through a huge pile of mail. Eventually they find the piece they’re looking for, but it’s a painstaking
job, and sometimes they accidentally pull out a piece of mail belonging to someone else.”

“So that huge pile of mail, Dave,” Rhonda said, “is like having one big main() function?”
“That’s right,” Dave replied. “Millie, by sorting and distributing the mail each morning,

produces logical ‘modules’ of mail. It makes the whole process much easier.”
“That’s a great analogy, Dave, thanks,” I said. “In terms of modular programming, this means

that when we write code, we should place code that performs a single task into a function of its
own. For instance, if we write a program to calculate payroll, all the code to calculate the federal
withholding tax should be placed in a function of its own, ideally named in such a way that conveys
the meaning of what the function does. Similarly, the code to calculate the state withholding tax
should be placed in a function of its own. This process has traditionally been described as modular
programming, although the concepts and techniques have been enhanced quite a bit by modern
object-oriented programming languages such as C++.”

What Is a Function?
“So in theory,” Bob said, “a function is code that performs a single task.”

“That’s right, Bob,” I said. “For instance, last week, all the code we wrote for the Grade
Calculation Project went into the main() function of the Grades.cpp file. By the end of today’s
class, we’ll have taken that code and redistributed much of it into separate functions. For instance,
all the code that performs the calculation for the final grade of an English student will be placed
in a function of its own called CalculateEnglishGrade(). In a similar way, the code to perform
the calculation for the final grade of a math student will be placed in a function of its own called
CalculateMathGrade(), and the code to perform the calculation for the final grade of a science
student will be placed in a function of its own called CalculateScienceGrade().”

“I see what you’re getting at now,” Ward said. “If the code to calculate the final grade for a
math student is in a function of its own, I would think finding it and making the correct changes
to it would be much easier.”

“Right on the mark, Ward,” I said. “Not only is code that is broken down and placed in
functions easier to find and modify, but when it’s also bundled in the form of an object—something
we’ll do next week—it can be easily reused in other applications.”

“How’s that?” Peter asked.
“Do you remember the toupper() function we used last week?” I asked. “It’s a perfect example

of code reusability. It’s probably no exaggeration to say that millions of C++ programs use the code
in the toupper() function to do exactly what we did last week—convert characters to uppercase

234 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 6: Creating Your Own Functions 235

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

characters—yet the code in the toupper() function was written just once. The same thing can be
said of the cout and cin objects that we have been using since our first week of class.”

I gave everyone a chance to take in what I was saying.
“Are there any rules or guidelines for writing functions?” Steve asked. “Do you write them from

scratch right away, or do you place all your code in the main() function and then at some point
move the code out of there into separate functions as we’re doing today?”

“With a little experience, Steve,” I said, “you’ll find yourself writing functions of your own
right from the very start of your program. It seems strange to you now because for the last five
weeks we’ve dealt with just the single main() function, but the more programs you write, the more
natural placing code in your own functions will become. Just remember, place code that performs
a single task into a function of its own. Needless to say, we haven’t done that yet with the Grade
Calculation Project, but that’s because we needed to concentrate on learning the fundamentals of
the C++ language and how to create a working program before we worry about making our program
more readable, efficient, and easy to modify. For the remainder of today’s class we’ll worry about
all that, and in next week’s class and the one after that, you’ll learn how the functions we create
today can be placed in C++ classes of their own that can then be incorporated into programs
written by other programmers.”

“Just like the toupper() function?” Kate asked.
“You hit the nail on the head, Kate,” I said. “Programmers who write good code and are insightful

enough to place that code into classes are rewarded by having their code used by hundreds of other
programmers—not only by programmers in their own companies but by programmers all over the
world. You’ll learn more about how to create code and place it in those types of classes next week.”

“I can imagine that’s quite an ego trip,” Ward said, “having your code used like that—and it’s
also quite an incentive for me to learn this language.”

“I have just one question,” Mary said. “If we take all the code out of our main() function and
place it in those other functions you mentioned, what will be left in the main() function?”

“We won’t take all the code out of the main() function,” I answered. “We know that only a
C++ file containing a main() function can be executed from a command prompt, so the main()
function can’t disappear entirely. What will happen is that the main() function will ‘shrink’ so that
it contains the code that ‘calls’ or requests the execution of the code contained in those other
functions. The code in the main() function frequently resembles the outline or table of contents
of a book, with each call to a function appearing as a chapter heading.”

Creating Your Own Functions
“This all sounds very exciting,” Rhonda said. “So how do we create functions of our own, and
what do we name them?”

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“You can name your functions virtually anything you want, Rhonda,” I said, “but be sure to
pick a meaningful name. As far as how to create them, in today’s class the functions you write will
be typed into the same C++ file as the main() function. By convention, they should follow the main()
function, and although this is not required, it’s a good idea to separate any functions you write
from the main() function with a blank line. Let’s examine a now-familiar C++ program containing
just a single main() function and then modify it to include another function of our own.”

I then displayed this code on the classroom projector:

//Example6_1.cpp

#include <iostream>

int main()

{

using namespace std;

cout << "I Love C++";

return 0;

}

“Look familiar?” I asked. “This is the first C++ program we wrote in the course. As you know,
it displays the message ‘I love C++!’ in the C++ console window. Let’s see how we can take the
code to display that message out of the main() function and place it in a function of its own,
which we’ll call DisplayMessage().”

I then modified the code to look like this:

//Example6_2.cpp

#include <iostream>

void DisplayMessage(); // Function Prototype

int main()

{

using namespace std;

DisplayMessage(); // Call to Custom Function

return 0;

}

void DisplayMessage() // Custom Function

236 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

{

using namespace std;

cout << "I Love C++";

}

I then saved the code as Example6_2.cpp, compiled it, and executed it. The message “I love
C++!” was displayed in the C++ console window.

“This program behaves in the same manner as the previous version did,” I said, “but in this
version of the program, the C++ instruction to display the message ‘I love C++!’ is no longer being
executed directly from the main() function. Instead, the instruction is executed from a function
called DisplayMessage(). C++ requires that we include something called a function prototype at the
‘top’ of our code. A function prototype tells C++ the name of the function we’ll be using, its
return type, and the number and type of arguments—called its signature—that it accepts.”

Function Prototype
“Notice how we included the function prototype for the DisplayMessage() function right after
the include statement,” I continued.

void DisplayMessage(); // Function Prototype

“I was wondering what that was,” Blaine said. “So that’s not the function itself?”
“That’s right, Blaine,” I said. “Each function contained in the file—other than the main()

function—must have a function prototype specified. The function prototype doesn’t contain
any instructions. It just announces to C++ our intention to create a function with that name
and ‘signature.’”

I waited a moment before continuing.
“Here is the code that tells C++ to execute the code in the DisplayMessage() function.”

DisplayMessage(); // Call to Custom Function

“Notice,” I continued, “that the code to call or execute the DisplayMessage() function references
the name of the function precisely because function names, like variable names, are case sensitive.
Notice also that the DisplayMessage() function follows the main() function.”

“Do we need to use the parentheses when we call the function?” Peter asked.
“I think we do,” Kate said. “I accidentally coded this program without them, and although the

program compiled okay, nothing seemed to happen when I ran it.”

Chapter 6: Creating Your Own Functions 237

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

238 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

“A good question Peter,” I said, “and a good answer Kate. Failing to include the parentheses in
the function call can lead to all sorts of problems—although as you discovered, the program will
compile cleanly. Let’s take a closer look at the first line of the DisplayMessage() function now.”

Function Header
“I see that the first line of the DisplayMessage() function is different from the main() function,”
Kathy said. “I think at some point in the class you promised to explain that first line of the main()
function in more detail. Is now the time?”

“You’re right, Kathy,” I said. “The first line in each function—which is sometimes called the
function header, the function definition, or the function signature—is different. And you’re also
right that now is a great time to discuss what that first line means in some detail.”

int main()

“That looks so complicated to me!” Rhonda said, looking at the main() function header on the
classroom projector in a bewildered manner.

“Let’s see if this will help,” I said, as I displayed this graphic on the classroom projector. “This is
a schematic of the main() function header.”

“For comparison purposes,” I said, “here’s the header for the DisplayMessage() function we
just created.”

void DisplayMessage()

“It looks to me,” Rhonda said, “that apart from the obvious difference in the names of the two
functions, that main() has the word int in front of it, and DisplayMessage() has the word void. Is
the main() function somehow special?”

“The only ‘special’ quality of the main() function,” I said, “is that its code is automatically
executed when we execute a C++ executable file from the command-line prompt. Refer to the
chart on the classroom projector as we take a closer look at the declaration for the main()
function. Here is what you see, reading left to right.”

� The return type of the function (in this case, int)

� The name of the function

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

� A pair of parentheses within which any parameters to the function are specified, with both
a type and name

“So far in this class,” I said, “the parentheses have been empty, but shortly you’ll learn how to
pass parameters to a function.”

“What’s a parameter?” Bob asked.
“A parameter is a piece of information,” I said, “that in some way provides additional

instructions to the function about how it should behave. A function that is defined with one or
more parameters is seeking qualifying information from the code that calls it, and any code that
executes that function is required to supply that qualifying information. Parameters are specified
in the function header within parentheses. If the parentheses are empty, as is the case with the
DisplayMessage() function, that means the function is defined without parameters, so the code
calling the function need not worry about supplying it with qualifying information. By the way,
you will also hear the term arguments used interchangeably with parameters. Technically, functions
are defined with parameters, and the qualifying information itself is passed to the header as an
argument when the function is called. There’s a subtle difference.”

“Can we see an example of a function header with parameters?” Linda asked.
“Sure thing, Linda,” I answered. “Here’s a preview of the DisplayMessage() function header

with a single string argument.”

void DisplayMessage(string language)

“Is the word language in the DisplayMessage() function header the name of the parameter?”
Dave asked.

“That’s right, Dave,” I said. “Parameters are named in the function header, and language is my
choice for a meaningful parameter name. In actuality, the parameter name can be virtually anything.”

“I know we’ve covered this before,” Valerie said, “but does every program need to have a main()
function?”

“I was about to ask that myself,” Rhonda said. “Now that we have a function of our own—
DisplayMessage() in Example6_2—is it really necessary to have a main() function also?”

“Yes, it is, Rhonda.” I said. “The main() function must be included in every C++ executable file
that is to be executed from the command prompt. However, only the executable file is required to
have a main() function, and it’s important to note that there can be only one main() function in
your program. Next week, we’ll create C++ classes that have no main() function, but they won’t be
executed directly from the command prompt. Instead, they’ll be used as ‘templates’ from which
we’ll create objects.”

Chapter 6: Creating Your Own Functions 239

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

The Return Type
“In the main() function definition, what is void?” Chuck asked. “That’s a strange-sounding word.”

“In C++,” I said, “functions perform some sort of processing, and many of them then return a
value of some kind to the program that calls them. The return value can be used to inform the
calling program as to the success or failure of the operation, or something along those lines. Ordinarily,
the return type is a C++ data type, such as int or double. You’ll also learn that the return type can
also be an object. When the function, by design, returns no value, C++ needs to know this, and
the return type of void is designated.”

NOTE
The return type void indicates that the function does not return a value.

NOTE
Void functions do not require a ‘return’ statement. If a function indicates a return type,
it must contain a return statement that passes back a value of the indicated type.

“So both the main() and DisplayMessage() functions perform some kind of processing—
main() returns an integer value, but DisplayMessage() returns no value to the code that calls it.
Is that right?” Dave asked.

“That’s exactly right, Dave,” I said.
“I’m a bit confused,” Rhonda said.
“Sometimes,” I said, “I analogize functions to favors that you ask a friend to do for you.

Perhaps you ask your friend to feed your fish while you’re away on vacation, and because you tend
to be a worrier, you request a ‘return value’ in the form of a phone call or an e-mail from your
friend to confirm that she actually fed the fish. On the other hand, your friend may be the type
of person who never forgets to do anything, in which case, your mind is at ease, and no ‘return
value’ is necessary.”

“So functions always do something,” Kate said, “but sometimes they return a value, and
sometimes they do not.”

“That’s right, Kate,” I said, “and it’s entirely up to the designer of the function to decide. In the
case of the DisplayMessage() function we wrote in Example6_2, did we return a value?”

Kate checked for a minute and then said, “No, the function header specifies void, and there’s
also no return statement within the body of the function.”

“That’s right, we didn’t return a value from the DisplayMessage() function,” I said, “but we
could have. In the case of DisplayMessage(), I didn’t think it was really necessary.”

240 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“So will the return type be one of the C++ data types we’ve already learned about?” Mary asked.
“Such as int, single, or double?”

“To name a few,” I said. “The return data type can also be an object such as a string, or even an
object of your own design, the kind we’ll create next week.”

“I’m trying to recall whether we’ve executed functions that return a value.” Lou said.
“I think we have, Lou,” Linda said. “When we executed the toupper() function last week, it

returned a value that we then assigned to a variable.”
“That’s right, I forgot about that,” Lou said.
“Can we see how to write a function of our own that returns a value?” Barbara asked.
“Sure thing, Barbara,” I said. “We can modify the DisplayMessage() function we wrote in

Example6_2 to return a value—in this case, a bool data type.”
I then displayed this code on the classroom projector:

NOTE
Long lines of code in this book (such as the ones in Example6_3.cpp to display output
to the C++ console) have been broken up into several lines for formatting reasons.
You may type the code on a single line if you wish.

//Example6_3.cpp

#include <iostream>

bool DisplayMessage(); // Function Prototype

int main()

{

using namespace std;

bool messageDisplayed;

messageDisplayed = DisplayMessage();

cout << endl << "The value of messageDisplayed is "

<< boolalpha << messageDisplayed;

return 0;

}

bool DisplayMessage() // Custom Function

{

Chapter 6: Creating Your Own Functions 241

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 9:39:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

using namespace std;

cout << "I Love C++! ";

return true;

}

I saved the program as Example6_3.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

“To return a value from a function,” I said, “we need to do two things. First, we need to tell
C++ that the function will return a Boolean value, which is either True or False. Because we need
to include a function prototype in our program, we first change the return type of the function’s
prototype from void to bool.”

bool DisplayMessage(); // Function Prototype

“And we also change the function header itself.”

bool DisplayMessage() {

“You said we need to do two things,” Chuck said. “What’s the second?”
“Having told C++ that the function returns a value by declaring it as bool in both the

function prototype and function header,” I said, “we must now actually return the value from the
DisplayMessage() function. We do that by coding a return statement somewhere within the body
of the function—usually the last statement. C++ is pretty smart about this. If we forget to code
the return statement, the program simply won’t compile. Here’s the statement that returns the
bool return value we committed to returning when we declared the function.”

return true;

242 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

CAUTION
Be sure to spell ‘true’ in lowercase letters in your C++ code. Spelling it ‘True’ will
generate a compiler error.

“As you can see, all we need to do is execute the return statement, followed by an appropriate
value for the declared data type of the return value. In this case, because we committed to returning
a bool data type, we need to return the C++ value True or the value False.”

“What does the program that calls the function do with the return value?” Kate asked.
“The code calling the DisplayMessage() function,” I said, “can do one of three things with the

return value. It can store the return value in a variable; it can use the return value in an expression—
for instance, by redirecting it to cout object; or, interestingly enough, it can choose to ignore the
return value simply by executing the function and not doing anything at all with the return value.
In this example, we declared a bool variable called messageDisplayed in which we store the return
value from the function call. Remember, because we declared the DisplayMessage() function with
a return type of bool, the variable we declare to store the return value should also be declared as a
bool data type.”

bool messageDisplayed;

“Having declared the messageDisplayed variable, we now execute the DisplayMessage()
function, but notice how we place the call to the function to the right of the assignment operator (=).
In this way, after the DisplayMessage() function executes, its return value is immediately stored in
the variable messageDisplayed.”

messageDisplayed = DisplayMessage();

“Finally, we display the return value stored in the messageDisplayed variable to the C++ console.”

cout << endl << "The value of messageDisplayed is "

<< boolalpha << messageDisplayed;

“I should mention here,” I said, “that instead of storing the return value of DisplayMessage()
in a variable the way we did here, we could have used the return value directly, like this.”

//Example6_4.cpp

#include <iostream>

bool DisplayMessage(); // Function Prototype

Chapter 6: Creating Your Own Functions 243

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

int main()

{

using namespace std;

cout << endl << "The value of messageDisplayed is "

<< boolalpha << DisplayMessage();

return 0;

}

bool DisplayMessage() // Custom Function

{

using namespace std;

cout << "I Love C++! ";

return true;

}

“This version of the code is a bit trickier to follow, but many C++ programmers love the
compact nature of this style of code—just something to watch out for.”

“I noted that you included the ‘using namespace std;’ statement in both the main() and the
DisplayMessage() functions,” Chuck said. “Is that because both of them use cout?”

“Great point, Chuck,” I replied. “That’s exactly right.”
“I’m surprised,” Rhonda said. “I actually understand what’s going on here.”
“Can a function return more than one value?” Chuck asked.
“Excellent question, Chuck,” I replied. “The answer is no. A function is limited to returning

just a single return value. However, it is possible to return an array. An array is a data structure
that’s actually a collection of variables. So there is a way around the limitation of returning just a
single return value.”

Function Parameters and Arguments
We were making some pretty good progress in examining the function header. “What’s next in
the function header?” I asked.

“After the word int in the main() function,” Steve said, “comes the name of the function—no
problem there. But then comes the part that confuses me—the parentheses.”

I displayed the main() function header on the classroom projector once again:

int main()

244 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Let me assure you, Steve,” I said, “the parentheses confuse everyone at first. I still remember
the first time I saw them. I just couldn’t understand what they were there for. Just remember, the
parentheses are used to designate the parameter list, and if the parentheses are empty, that means
the function will be accepting no parameters. As is the case with the main() function, no parameters
defined are with the DisplayMessage() function either, and that’s why there’s just an empty set of
parentheses.”

bool DisplayMessage() // Custom Function

“What are parameters, anyway?” Linda asked. “Have we executed any functions containing them?”
“I think we have,” Dave chimed in. “Aren’t parameters the same as arguments, like the one

we’ve passed to some of the functions we’ve executed, such as atoi() and toupper()?”
“You’re right, Dave,” I said. “Arguments are the actual values that we pass to a function. Many

programmers use the terms arguments and parameters interchangeably, and really, only a computer
scientist would argue with you. In theory, parameters are the names that appear in a function
header, and arguments are the actual values that are passed to the function by the code that calls it.
For each parameter in the function’s header, there must be a corresponding argument passed to it.”

“So parameters appear in the function header, and arguments are the actual values passed to the
function when it is called. Is that correct?” Dave asked.

“Perfect, Dave,” I said. “I—”
“I know,” Rhonda said, laughing. “You couldn’t have said it any better yourself !”
“Can we modify the DisplayMessage() function to include a parameter?” Linda asked.
“I don’t see why not,” I answered. “Let’s do this: Let’s modify the DisplayMessage() function to

allow the programmer to pass an argument specifying his favorite programming language.”
I thought for a moment and then displayed this code on the classroom projector:

//Example6_5.cpp

#include <iostream>

#include <string>

using namespace std;

void DisplayMessage(string language); // Function Prototype

int main()

{

DisplayMessage("Java");

DisplayMessage("Visual Basic");

Chapter 6: Creating Your Own Functions 245

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

DisplayMessage("C++");

return 0;

}

void DisplayMessage(string language) // Custom Function

{

cout << "I Love " << language << endl;

}

I saved the program as Example6_5.cpp, compiled it, and then executed it. The following
screenshot was displayed on the classroom projector:

“Let’s take a look at the new header for the DisplayMessage() function,” I said. “I decided in
this version of the program to go back to a void return type because returning a value from this
function doesn’t really add anything to the program. Here’s the original function header.”

void DisplayMessage() // Custom Function

“And here’s the new function header declared with a parameter.”

void DisplayMessage(string language) // Custom Function

“Within the parentheses,” I continued, “we are telling C++ that the DisplayMessage() function
will accept a single parameter, called language, and that the parameter will be a string data type.”

I could see some confusion in the eyes of my students, but I knew that would be cleared up
momentarily.

“Let’s see the code to call the DisplayMessage() function.” I said. “Calling a function that
requires a parameter is easy, provided you know the function’s signature.”

“Signature?” Joe asked.

246 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 6: Creating Your Own Functions 247

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

“The function’s signature is the function name, along with the number and type of arguments
required,” I said. “Here we know that we need to pass DisplayMessage() just a single string
argument, and we do that—actually executing it three times—with this code.”

DisplayMessage("Java");

DisplayMessage("Visual Basic");

DisplayMessage("C++");

“And because the function requires a string argument, we enclose the argument within
quotation marks. This is required for a string literal.”

“I’m a little confused as to what the DisplayMessage() function does with the argument once
it receives it from the calling code,” Barbara said. “Can you clear that up?”

“I’ll try, Barbara,” I answered. “Let’s look at the code from the body of the Example6_4 program,
which was hard-coded to display C++ as the favorite language.”

cout << "I Love C++! ";

“Here’s the modified code, which uses the parameter language in conjunction with the cout
object to write to the display of the C++ console.”

cout << "I Love " << language << endl;

“Is language a variable?” Lou asked. “And if so, why isn’t it declared within the body of the
function?”

“Parameters are a lot like variables,” I said, “but they don’t need to be declared within the body
of the function because they are declared within the function header.”

“That makes sense,” Barbara said.
“I just noticed something,” Dave said. “You took the ‘using namespace’ statement out of the

main() function and put it right after the include statements. It isn’t inside either of the two
functions. Why is that?”

“Good observation, Dave,” I replied. “It’s because of our use of the string type parameter in the
function header for DisplayMessage(). C++ needs the help of the std namespace in order to work
with the string data type, and because the function prototype and function header appear ‘outside’
of the main() function, we need to include the ‘using namespace’ statement outside of the main()
function as well. One side benefit of this is that we no longer need to include the using namespace
statement inside of the main() function—or within the DisplayMessage() function either. Technically,
we’ve given the std namespace global scope. The alternative is to write the function prototype
and the function header like this.”

void DisplayMessage(std::string language)

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

248 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

NOTE
Some C++ programmers prefer not to use global namespace references like this and
instead opt for the longer function prototype and header. In the interest of saving
space, for the remainder of the book we’ll code global namespace references.

“I have another question,” Barbara said. “Is it possible to create a function that accepts more
than one argument, and if so, how does C++ know which parameter is which when the code that
calls the function passes the arguments?”

“Another good question,” I said. “Yes, it is common to design a function that accepts more
than one argument. In C++, arguments are passed positionally, which means that if the function’s
header specifies two parameters, C++ assumes that the first argument passed to the function is the
first parameter and that the second argument passed to the function is the second parameter. Let
me show you exactly what I mean by modifying the code we just wrote to accept two parameters.”

I then modified the code from Example6_5 to look like this, saved it as Example6_6.cpp, and
displayed it on the classroom projector:

//Example6_6.cpp

#include <iostream>

#include <string>

using namespace std;

void DisplayMessage(string language, string howMuch);

int main()

{

DisplayMessage("Java", "a bunch");

DisplayMessage("Visual Basic", "lots");

DisplayMessage("C++", "a lot more");

return 0;

}

void DisplayMessage(string language, string howMuch)

{

cout << "I Love " << language << " " << howMuch << endl;

}

“Notice the difference in both the function prototype and the function header for
DisplayMessage(),” I said. “They are both now defined with two string parameters: language and
howMuch. Both of these parameters are used in the body of the function along with the cout object.”

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

void DisplayMessage(string language, string howMuch)

{

cout << "I Love " << language << " " << howMuch << endl;

}

“Also, as you would expect, if the function header now specifies two string parameters, the call
to the function must specify two string arguments, which appear after the function name within
parentheses, separated by a comma. Notice that because these are string arguments, they are
enclosed within quotation marks.”

DisplayMessage("Java", "a bunch");

DisplayMessage("Visual Basic", "lots");

DisplayMessage("C++", "a lot more");

I then compiled and executed the modified program, and the following screenshot appeared on
the classroom projector:

“Now, not only can the calling program designate a favorite language, it can also provide an
assessment as to how much the user likes the language,” I said.

“I can see,” Ward said, “that using two parameters makes this function even more flexible.
This stuff is pretty neat.”

“You’re right, Ward,” I said. “The more parameters a function accepts, the more flexible it can be.
Of course, the more parameters a function accepts, the more complex the code in the function needs
to be to handle the multiple arguments that it will receive. Later on today, we’ll create functions for
the Grade Calculation Project that will accept several parameters, and you’ll see what I mean.”

“Suppose we had forgotten to supply the function call with two arguments.” Lou said. “What
would have happened? Would the program bomb when we ran it?”

“That depends,” I said, “on a number of things. When we compile a C++ program, the C++
compiler will always check the function call against the function header, and if there’s something
wrong with the number and type of arguments being used in the function call, the compiler

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

Chapter 6: Creating Your Own Functions 249

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

250 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

simply won’t compile an executable file. However, sometimes programs are executed, referencing a
function outside of the program itself that has been changed since the program was compiled. In
that case, the program can bomb at runtime.”

“How is it possible to call a function outside of the actual program?” Kate asked.
“We’ve been doing this during the entire course.” I said, “For instance, the toupper() function

we coded last week in our Grade Calculation program wasn’t included in the Grades.cpp file—it’s
a function that’s included in the iostream library we reference via the include statement. If the
toupper() function’s number and type of arguments are changed after we compile a program using
this function, the program would bomb at runtime. That’s why when you change a function
definition the way we just did here, you have to be very careful, especially in a corporate or commercial
environment, where many other programs can be using your function.”

“What do you mean?” Valerie asked.
“If you change the function’s signature,” I said, “which is the number and type of parameters—

or even order of the parameters—programs that have already been written to call this function may
bomb with runtime errors. Even worse, they could execute with incorrect results.”

“Do changes to a function’s signature happen a lot in the real world?” Blaine asked.
“Functions do change in the real world,” I said, “and it’s vitally important not to change a

function’s signature when making changes. When you do that, in programming talk, you have
‘broken’ the client’s code. However, sometimes changing a function like this just can’t be helped.
A function that you designed and coded last year may, in some cases, require more information
from the calling program in order to do its job.”

“How can you implement a change like that without changing the function’s signature?” Bob asked.
“Frequently you can’t,” I said. “But fortunately, in C++, it’s possible to have more than one

function with the same name but with different signatures. This is called function overloading, and
it enables existing programs that call the function with its old signature to run fine and at the
same time permits new programs to be written calling the function with its new signature. But
let’s put off the topic of function overloading for just a few minutes longer. Right now, I’d like to
discuss an alternative way of passing arguments to a function.”

“What do you mean?” Rhonda asked.
“So far,” I replied, “we’ve passed string literals to the DisplayMessage() function we’ve designed.”
“What else can we pass?” Chuck asked.
“We can pass a variable,” I said. “Let me show you.”
I then displayed this code on the classroom projector:

//Example6_7.cpp

#include <iostream>

#include <string>

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 6: Creating Your Own Functions 251

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

using namespace std;

void DisplayMessage(string language, string howMuch);

int main()

{

string favorite = "C++";

string intensity = "enormously";

DisplayMessage(favorite, intensity);

return 0;

}

void DisplayMessage(string language, string howMuch)

{

cout << "I Love " << language << " " << howMuch << endl;

}

I saved the program as Example6_7.cpp, compiled it, and then executed it. The following
screenshot was displayed on the classroom projector:

“This version of the program,” I said, “displays just a single message in the C++ console
window, but aside from that, it behaves in the same manner as the other version. However, we’ve
changed the code by first declaring two string variables called favorite and intensity and then
assigning them values.”

string favorite = "C++";

string intensity = "enormously";

“Then we passed them as arguments to the DisplayMessage() function.”

DisplayMessage(favorite, intensity);

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

252 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

“Doing this has no impact on the execution of the function. The function doesn’t really care
whether a string literal or a variable is passed to it as an argument.”

By Default, Arguments Are Passed by Value in C++
“Suppose,” Linda said, “that for some reason within the body of the function, we change the value
of the passed argument. Does that have any effect on the value of the variable in the code that
called it?”

“I’m not sure I know what Linda is asking,” Rhonda said.
“Let me try to explain, Rhonda” I said. “In some programming languages, when a change is

made to the value of a parameter that is passed to a procedure or function via a variable, as we did
here, the value of the variable itself, back in the code that called it, is also changed.”

I gave everyone a moment to think about that.
“Is that good?” Joe asked.
“Some programmers find this a convenient way of arriving at a programming solution,” I said.

“In most programming languages, variables can be passed as arguments to a procedure or function
either by value or by reference. By value simply means that the actual value of the variable is passed
to the function as an argument, and in that case, changing the parameter within the body of the
function has no impact on the variable in the calling code. When a variable is passed as an argument
to a function by reference, it isn’t the actual value of the variable that is passed to the function but
rather the address of the variable in the computer’s memory. This means that when the function
changes the value of the parameter, it directly updates the value of the variable back in the calling code.”

“What happened here?” Mary asked.
“In C++,” I said, “by default, variables are passed ‘by value’ only, which means that although

a variable is passed as an argument to a function, unless we want to, there’s no way that changing
the value of the parameter within the body of the function can impact the value of the variable
in the code that calls the function.”

“Can we see an example of both?” Mary asked.
“Sure thing, Mary,” I answered. “Let’s start by passing a variable as an argument by value.”
I then displayed this code on the classroom projector:

//Example6_8.cpp

#include <iostream>

#include <string>

using namespace std;

void DisplayMessage(string language, string howMuch);

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

int main()

{

string favorite = "C++";

string intensity = "enormously";

DisplayMessage(favorite, intensity);

cout << "The value of favorite in main() is " << favorite << endl;

return 0;

}

void DisplayMessage(string favorite, string intensity)

{

cout << "The value of favorite in DisplayMessage() is "

<< favorite << endl;

favorite = "VB";

cout << "The value of favorite in DisplayMessage() is now "

<< favorite << endl;

}

I saved the program as Example6_8.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

“Let me explain what’s going on here,” I said. “As we did in Example6_7, within the main()
function we declared two variables called favorite and intensity and initialized both of them with values.”

string favorite = "C++";

string intensity = "enormously";

“We then passed the variables as arguments to the DisplayMessage() function.”

DisplayMessage(favorite, intensity);

Chapter 6: Creating Your Own Functions 253

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“We didn’t need to do this to prove that, by default, C++ passes variables by value,” I said, “but
notice that we’ve changed the names of the parameters within the function’s header. We’re still
accepting two string parameters, but in this version of the program we’ve named them with the
same names as the variables in the main() function.”

void DisplayMessage(string favorite, string intensity)

“Can we do that?” Ward asked. “Shouldn’t the names of the parameters be different from the
variables in the main() function?”

“They don’t have to be,” I said. “I know that in Example6_6 and Example6_7, the parameter
names are different from the names of the variables in the main() function, but there’s no rule that
they have to be. The variables declared in the main() function are local to the main() function,
and the parameters in the DisplayMessage() function are local to that function. C++ considers
each of these variables to be different animals. We prove that by executing this line of code within
the DisplayMessage() function, which displays, in the C++ console, the original value of the
argument passed to it as the favorite parameter, which is C++.”

cout << "The value of favorite in DisplayMessage() is "

<< favorite << endl;

“With this line of code, we change the value of the favorite parameter to VB.”

favorite = "VB";

“You might be inclined to believe that we have also changed the value of the favorite variable
in the main() function, but you’ll see in a moment that we haven’t. First, we prove that the value
of the favorite parameter has indeed been changed by executing this line of code.”

cout << "The value of favorite in DisplayMessage() is now "

<< favorite << endl;

“This displays, in the C++ console, the altered value of the favorite parameter, which is now
VB. The DisplayMessage() function ends, and this line of code is then executed from the body
of the main() function, proving that the value of the favorite variable in the main() function has
not changed.”

cout << "The value of favorite in main() is " << favorite << endl;

254 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 6: Creating Your Own Functions 255

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

“We’ve proven,” I concluded, “that changing the value of the favorite parameter within the
DisplayMessage() function has no impact on the value of the favorite variable in the main()
function.”

“I think I understand what’s going on here,” Linda said. “Even though the variables in the
main() function and the parameters in the DisplayMessage() function have the same names,
they’re really separate things, aren’t they?”

“That’s right, Linda,” I said. “Both the variables and the parameters are declared ‘local’ to each
function in which they appear.”

To Pass Arguments by Reference, Use the Ampersand (&)
“Now what about that other way of passing arguments?” Kate asked. “You said that it’s possible to
pass a variable as an argument to a function and have the function change the value of the variable
back in the code that called it.”

“That’s right, Kate,” I said. “Take a look at this code, which is basically the same as the code
from Example6_8, except this time we are passing variables as arguments to DisplayMessage() by
reference, not by value.”

//Example6_9.cpp

#include <iostream>

#include <string>

using namespace std;

void DisplayMessage(string &language, string &howMuch);

int main()

{

string favorite = "C++";

string intensity = "enormously";

DisplayMessage(favorite, intensity);

cout << "The value of favorite in main() is " << favorite << endl;

return 0;

}

void DisplayMessage(string &favorite, string &intensity)

{

cout << "The value of favorite in DisplayMessage() is "

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

256 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

<< favorite << endl;

favorite = "VB";

cout << "The value of favorite in DisplayMessage() is now "

<< favorite << endl;

}

“In order to pass a variable ‘by reference,’” I continued, “we need to preface the name of the
variable in both the function prototype and the function header with an ampersand. In a few
weeks, we’ll learn that this is called a C++ reference.”

void DisplayMessage(string &language, string &howMuch);

“Let’s see the difference,” I said, as I saved the program as Example6_9.cpp, compiled it, and
then executed it.

“I see what happened,” Linda said excitedly. “This time, the DisplayMessage() function
changed the value of the variables favorite and intensity in the main() function.”

NOTE
A little later on in the book, you’ll learn that it’s also possible to get the same results
by working with C++ pointers.

“That’s right, Linda,” I said. “That’s because this time, by specifying an ampersand along with
the parameter names in the function header and prototype, the memory address of the favorite
and intensity variables were passed to the DisplayMessage() function. When the DisplayMessage()
function changed the value of the favorite parameter, C++ was given direct access to the value of
the favorite variable back in the main() function.”

favorite = "VB";

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 6: Creating Your Own Functions 257

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

“I think I understand what’s going on here,” Rhonda said. “Now, did you say that there are
certain types of problems that can be more easily be solved by passing a variable by reference?”

“That’s true, Rhonda,” I said, “but you needn’t concern yourself with those in this course.
While you’re learning C++, don’t worry about passing arguments by reference. The default, by
value, will be just fine.”

Variable Scope “You’ve used the term local several times this morning,” Blaine said. “Can
you tell us exactly what it means?”

“Local is a term that refers to the scope of a variable,” I said. “A variable’s scope describes what
other parts of your program can ‘see’ the variable. In C++, there are three types of variables: instance,
class, and local variables. We’ll discuss both instance variables and class variables next week. Local
variables are variables declared within a function. A variable declared within a function can be seen
or accessed only by code within that same function.”

“So a local variable is one declared within a function?” Kate asked.
“That’s basically correct, Kate,” I said. “Technically, a local variable is one declared within a

block—that is, within a pair of brackets. This means that if you declare a variable within the
brackets of an If statement, the variable can only be seen by the code within the If statement.”

“I think at work I’ve seen some variables declared just above the main() function,” Linda said.
“They don’t appear to belong to any function.”

“Those are global, static, or class variables,” I said. “We examined a global variable a few weeks
ago in Example3_8. We’ll talk more about static and class variables next week.”

Variable Lifetime “I’ve heard some programmers at work refer to the lifetime of a variable,”
Valerie said. “Is lifetime the same as scope?”

“No, but they are related,” I replied. “Scope affects what parts of your program can see the
variable. Lifetime, on the other hand, affects how long your variable lives. A variable declared as
a local variable within a function has local scope and can only be seen by other code within the
function. It’s also ‘born’ when its declaration statement within the function is executed, and it
‘dies’ after the last line of code in the function is executed. Next week, you’ll see that the lifetimes
for global, static, and class variables are different. In the case of a global variable, it exists for as
long as the program is running. In the case of a class variable, it exists as long as an object created
from its class exists. Static variables may live even longer—as long as any object created from its
class exists. More on that next week.”

We had been working for quite some time, so I suggested we all take a break before completing
our first hands-on exercise of the day.

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Using Functions to Fine-tune Your Code
Fifteen minutes later, when we returned from break, I resumed class by reminding my students
that the main benefit to creating functions of our own—custom functions, as I call them—is that
it promotes program modularity.

“Remember,” I said, “modularity means that, as much as possible, you should create functions
in your programs that perform one function and one function only. In the long run, this makes
your programs easier to read, understand, and modify in the future. Creating custom functions
and placing them in instantiable classes allows our code to be easily used by other programmers.
That’s something we’ll do next week. Today, I have a pretty extensive first exercise for you to
complete. There’s a lot of code to it, and as you write it, you’ll find that all of it is being placed
within the main() function of the class. As you complete the exercise, try to think of ways you
could use custom functions to make the program modular, because that’s exactly what we’ll be
doing in the next exercise.”

I then distributed the exercise for the class to complete.

Exercise 6-1 The Smiley National Bank Program
with All of the Code in the main() Function

In this exercise, you’ll write a program that allows the user to display their bank
balance or make deposits and withdrawals from their account.

1. Using Notepad, enter the following code:

//Practice6_1.cpp

#include <iostream>

#include <string>

using namespace std;

int main()

{

float balance = 0;

float newBalance = 0;

float adjustment = 0;

char response[256];

string moreBankingBusiness;

cout << "Do you want to do some banking? ";

cin >> moreBankingBusiness;

for (int i = 0;

i < moreBankingBusiness.length(); i++) {

moreBankingBusiness[i] =

258 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 6: Creating Your Own Functions 259

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

toupper (moreBankingBusiness[i]);

}

while (moreBankingBusiness == "YES") {

//What type of business are we doing?

cout << "What would you like to do? " <<

"(1=Deposit, 2=Withdraw, 3=Get Balance): ";

cin.getline(response,256);

if (strlen(response) == 0) {

cout << "You must make a selection";

return 1;

}

else

if (atoi(response) < 1 |

atoi(response) > 3) {

cout << response <<

" - is not a valid banking function";

return 1;

}

//1 is a Deposit

if (atoi(response) == 1) {

cout << "Enter the Deposit Amount: ";

cin >> adjustment;

newBalance = balance + adjustment;

cout << endl << endl <<

"*** SMILEY NATIONAL BANK ***" <<

endl << endl;

cout << "Old Balance is: " << balance << endl;

cout << "Adjustment is: +" << adjustment << endl;

cout << "New Balance is: " << newBalance <<

endl <<endl;

}

//2 is a Withdrawal

if (atoi(response) == 2) {

cout << "Enter the Withdrawal Amount: ";

cin >> adjustment;

newBalance = balance - adjustment;

cout << endl << endl <<

"*** SMILEY NATIONAL BANK ***" <<

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

260 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

endl << endl;

cout << "Old Balance is: " << balance << endl;

cout << "Adjustment is: -" << adjustment << endl;

cout << "New Balance is: " << newBalance <<

endl <<endl;

}

// 3 is a Balance Inquiry

if (atoi(response) == 3) {

cout << endl << endl <<

"*** SMILEY NATIONAL BANK ***" <<

endl << endl;

cout << "Your current Balance is: " <<

newBalance << endl <<endl;

}

balance = newBalance;

cout << "Do you have more banking business? ";

cin >> moreBankingBusiness;

for (int i = 0;

i < moreBankingBusiness.length(); i++) {

moreBankingBusiness[i] =

toupper (moreBankingBusiness[i]);

}

} // end of while

cout << endl << endl << "Thanks for banking with us!";

return 0;

}

2. Save your source file as Practice6_1.cpp in the \CPPFiles\Practice folder
(select File | Save As from Notepad’s menu bar). Be sure to save your source
file with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute your program. The program will ask whether you wish to do some
banking. Type Yes at the C++ console.

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

Chapter 6: Creating Your Own Functions 261

5. You will then be asked what you wish to do: make a deposit, make a
withdrawal, or get a balance. Type 1 at the C++ console.

6. The program will then ask you how much you wish to deposit into your
account. Type 50 at the C++ console to indicate your deposit amount.

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

7. The program will display a confirmation message, indicating your deposit
amount and your old and new balances.

8. Notice that the program is asking whether you have more banking business.
Type Yes at the C++ console.

9. Once again, the program will ask you what you wish to do: make a deposit,
make a withdrawal, or get a balance. Type 2 at the C++ console to indicate
you wish to make a withdrawal.

10. The program will then ask you how much you wish to withdraw. Type 20 at
the C++ console to indicate your withdrawal amount.

11. The program will display a confirmation message, indicating your
transaction (withdrawals are designated with a negative transaction
amount) and your old and new balances.

12. Once again, the program will whether you have more banking business.
Type Yes at the C++ console.

13. The program will then ask you what you wish to do: make a deposit, make
a withdrawal, or get a balance. Type 3 at the C++ console to indicate you
wish to display the current balance.

14. The program will then display the current balance of your account.

15. Once again, the program will ask whether you have more banking business.
Type No at the C++ console.

16. The program will display a message thanking you for using it and then end.

Discussion Although this program was very tedious to type, everyone was pretty
comfortable with the code in it. There really wasn’t anything new in the
program, and in about 15 minutes, all my students had successfully coded
the exercise.

“This program,” I said, “is one we’ll be working with in quite a few exercises
and is a good example of the type of program you may be asked to develop in

262 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

the future. It’s also a good example of the type of program that can be
enhanced significantly by writing custom functions. As you undoubtedly
noticed while you keyed in the program, there’s a lot of code, and all of it is in
the main() function. As I mentioned earlier, having all your code in the main()
function makes reading and understanding the code difficult, and it toughens
the task of making modifications to this program if they are ever required.”

“I agree with that,” Kate said. “I made a mistake or two while coding it, and
trying to find these mistakes was certainly compounded by the length of the
code and the fact that it’s all in one place. Will we be able to break the main()
function into other functions?”

“I think so, Kate,” I said. “If we examine the code in the main() function,
we’ll find that we’re performing three distinct tasks: making a deposit, making
a withdrawal, and displaying a balance. Those three tasks, according to what
you’ve learned today about program modularity, should be in three separate
custom functions, and that’s what we’ll be doing in the next exercise. Before
we start with that, do you have any questions about anything in this code?”

“I think just about everything in this program is something we’ve done
before,” Steve said, “but I was a little confused about the two variables, balance
and newBalance. Was the reason we needed to have these two variables because
we chose to display both the old balance and the new balance whenever the user
made a transaction?”

“That’s exactly the case, Steve,” I answered. “It isn’t until after we display a
confirmation of the user’s transaction that we actually calculate a new balance.
For that reason, we need to keep both the old balance and the new balance in
memory to display both in the C++ console. The old balance is no problem—it’s
stored in the balance variable. To calculate the new balance, we execute one of
two lines of code, depending on the transaction type. If a deposit was made,
we perform this calculation.”

newBalance = balance + adjustment;

“And if the user makes a withdrawal, we perform this calculation.”

newBalance = balance - adjustment;

“Regardless of the type of transaction, though, just before asking the user
whether they have more banking business, we must set the value of the
balance variable equal to the value of the newBalance variable.”

cout << "Do you have more banking business? ";

cin >> moreBankingBusiness;

“Makes sense to me,” Steve answered. “Thanks for the explanation.”

I waited to see if there were more questions before continuing.

Chapter 6: Creating Your Own Functions 263

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

264 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

“Okay,” I said, “let’s take a shot at modifying this program to use three
custom functions: one for a deposit, one for a withdrawal, and one to display
a balance. There will still be some code in the main() function—we’re not
moving it all into custom functions—but the main() function will appear more
condensed this time around when we add the calls to the three other functions.
When all is said and done, the new version of the program should behave
identically to the one we just wrote, but you should find the program easier to
read and much easier to modify if necessary. In fact, we’ll be doing just that
next week when we move the code in the three functions you are about to
create and place them into instantiable classes.”

No one had any questions about what we were about to do, so I distributed this exercise for my
class to complete.

Exercise 6-2 The Smiley National Bank Program with Three
Custom Functions

In this exercise, you’ll modify the program you wrote in Exercise 6-1, taking
much of the code in the main() function and placing it in one of three custom
functions you’ll create.

1. Using Notepad, enter the following code:

//Practice6_2.cpp

#include <iostream>

#include <string>

using namespace std;

void MakeDeposit();

void MakeWithdrawal();

void GetBalance();

float balance = 0;

float newBalance = 0;

float adjustment = 0;

int main()

{

char response[256];

string moreBankingBusiness;

cout << "Do you want to do some banking? ";

cin >> moreBankingBusiness;

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

for (int i = 0; i < moreBankingBusiness.length(); i++) {

moreBankingBusiness[i] =

toupper (moreBankingBusiness[i]);

}

while (moreBankingBusiness == "YES") {

cout << "What would you like to do? " <<

"(1=Deposit, 2=Withdraw, 3=Get Balance): ";

cin.getline(response,256);

if (strlen(response) == 0) {

cout << "You must make a selection";

return 1;

}

else

if (atoi(response) < 1 |

atoi(response) > 3) {

cout << response <<

" - is not a valid banking function";

return 1;

}

if (atoi(response) == 1) {

MakeDeposit();

}

if (atoi(response) == 2) {

MakeWithdrawal();

}

if (atoi(response) == 3) {

GetBalance();

}

balance = newBalance;

cout << "Do you have more banking business? ";

cin >> moreBankingBusiness;

for (int i = 0;

i < moreBankingBusiness.length(); i++) {

Chapter 6: Creating Your Own Functions 265

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

moreBankingBusiness[i] =

toupper (moreBankingBusiness[i]);

}

} // end of while

cout << endl << endl << "Thanks for banking with us!";

return 0;

}

void MakeDeposit()

{

cout << "Enter the Deposit Amount: ";

cin >> adjustment;

newBalance = balance + adjustment;

cout << endl << endl <<

"*** SMILEY NATIONAL BANK ***" << endl << endl;

cout << "Old Balance is: " << balance << endl;

cout << "Adjustment is: +" << adjustment << endl;

cout << "New Balance is: " << newBalance

<< endl <<endl;

}

void MakeWithdrawal()

{

cout << "Enter the Withdrawal Amount: ";

cin >> adjustment;

newBalance = balance - adjustment;

cout << endl << endl <<

"*** SMILEY NATIONAL BANK ***" << endl << endl;

cout << "Old Balance is: " << balance << endl;

cout << "Adjustment is: -" << adjustment << endl;

cout << "New Balance is: " << newBalance

<< endl <<endl;

}

void GetBalance()

{

cout << endl << endl <<

"*** SMILEY NATIONAL BANK ***" << endl << endl;

266 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

cout << "Your current Balance is: " <<

newBalance << endl <<endl;

}

2. Save your source file as Practice6_2 in the \CPPFiles\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute your program. The program will ask whether you wish to do some
banking. Type Yes at the C++ console.

5. You will then be asked what you wish to do: make a deposit, make a
withdrawal, or get a balance. Type 1 at the C++ console.

6. The program will then ask you how much you wish to deposit into your
account. Type 50 at the C++ console to indicate your deposit amount.

7. The program will display a confirmation message, indicating your deposit
amount and your old and new balances.

8. Notice that the program is asking whether you have more banking business.
Type Yes at the C++ console.

9. Once again, the program will ask you what you wish to do: make a deposit,
make a withdrawal, or get a balance. Type 2 at the C++ console to indicate
you wish to make a withdrawal.

10. The program will then ask you how much you wish to withdraw. Type 20 at
the C++ console to indicate your withdrawal amount.

11. The program will display a confirmation message, indicating your transaction
(withdrawals are designated with a negative transaction amount) and your
old and new balances.

12. Once again, the program will ask whether you have more banking business.
Type Yes at the C++ console.

13. The program will then ask you what you wish to do: make a deposit, make
a withdrawal, or get a balance. Type 3 at the C++ console to indicate you
wish to display the current balance.

14. The program will then display the current balance of your account.

15. Once again, the program will ask whether you have more banking business.
Type No at the C++ console.

16. The program will display a message thanking you for using it and then end.

Discussion During the completion of this exercise, the question as to the most efficient
way to modify the code from the previous exercise came up. Many of my
students created a new C++ file and copied and pasted the old code into

Chapter 6: Creating Your Own Functions 267

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

the new file. Then they modified the old code for the new exercise. Copying
and pasting is not without its perils, however, and doing so in order to create
the Practice6_2.cpp file was probably no quicker than just creating the code
from scratch.

“This program should behave the same as the previous version, is that
right?” Rhonda asked.

“That’s right, Rhonda,” I said, but I could tell from her face that something
wasn’t right. I paid a quick visit to her PC and discovered that even though she
had properly created the three custom functions, she had failed to call them
from the main() function of the class. Therefore, the program wasn’t
permitting her to do any banking business.

“The behavior of the program hasn’t changed,” I said, after getting Rhonda
on the right track. “What we’ve done is take the code to make a deposit, a
withdrawal, and display a balance out of the main() function and move it into
three custom functions called MakeDeposit(), MakeWithdrawal(), and
GetBalance(), respectively.”

“In addition to those obvious changes,” Dave said, “I did notice a few other
subtle modifications in the program. Can you go over those?”

“Sure thing, Dave,” I said. “I suspect you’re talking about the three variables,
balance, newBalance, and adjustment, that are declared outside of any of the
four functions that we now have in the class.”

“Why are they there?” Blaine asked. “Are these the global variables you
were talking about?”

“That’s excellent, Blaine,” I said. “As I mentioned before our break, variables
declared within a function have local scope, which means that a variable that
is declared within the MakeDeposit() function cannot be seen by code outside
of it. Also, when the MakeDeposit() function ends, the variable and its value
die. All three of these variables have values that need to be seen by code in
the three custom functions. The only way to give the code in all three of those
functions access to the value in a variable is to declare the variable as a global
variable, which is what happens when the variable is declared outside of a
function.”

static float balance = 0;

static float newBalance = 0;

static float adjustment = 0;

“Global variables,” I said, “are accessible by every function in the program,
and their values live for as long as our program is running. Aside from these
changes and the creation of our three custom functions, I believe the program
is now pretty much identical to the previous version.”

No one seemed to disagree, so I continued.

268 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Function Overloading
“In a few minutes,” I said, “we’ll be modifying the Grade Calculation Project by creating custom
functions. Before we do that, however, there’s one more concept we need to go over, and that’s
function overloading. Earlier in today’s class, I mentioned that function overloading allows you
to define multiple functions with the same name, as long as each one of the functions has a
different signature.”

“A signature, as I recall you saying,” Linda said, “is the combination of the function name
along with the number and type of parameters in the function header.”

“That’s right, Linda,” I said. “So long as the number and type of parameters are different in the
function header, you can have any number of functions with the same name. You’d be surprised
how comfortable you’ll get with function overloading as you use it more and more, and we’ll be
creating some overloaded functions of our own.”

“So C++ knows which of the overloaded functions to execute by examining the arguments that
are passed to it?” Kate asked.

“That’s exactly right, Kate,” I said. “Let me show you an example of an overloaded function.
I think you’ll find it pretty interesting.”

I thought for a moment and then displayed the following code on the classroom projector:

//Example6_10.cpp

#include <iostream>

#include <string>

using namespace std;

void DisplayMessage(string favorite);

void DisplayMessage(string favorite, string intensity);

int main()

{

DisplayMessage("C++");

DisplayMessage("C++", "a lot");

return 0;

}

void DisplayMessage(string favorite)

{

cout << "I love " << favorite << endl;

Chapter 6: Creating Your Own Functions 269

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

}

void DisplayMessage(string favorite, string intensity)

{

cout << "I love " << favorite << " " << intensity << endl;

}

I then saved the program as Example6_10.cpp, compiled it, and then executed the program.
The following screenshot was displayed on the classroom projector:

“That’s impressive,” Ward said. “I think I can see a lot of practical applications for function
overloading at my work.”

“This is a pretty simple example,” I said, “but I think it illustrates the concept of function
overloading quite nicely. What we’ve done here is define two custom functions, each one with the
same name—DisplayMessage()—but with different signatures. The first function accepts a single
string argument called favorite.”

void DisplayMessage(string favorite)

{

cout << "I love " << favorite << endl;

}

“And the second function accepts two string arguments called favorite and intensity.”

void DisplayMessage(string favorite, string intensity)

{

cout << "I love " << favorite << " " << intensity << endl;

}

“C++ determines which one of the two functions to execute,” I said, “by matching up the
number and type of arguments supplied with the function call. This line of code tells C++ to
execute the DisplayMessage() function that requires just a single string parameter.”

270 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

DisplayMessage("C++");

“And this line of code tells C++ to execute the DisplayMessage() function that requires two
string parameters.”

DisplayMessage("C++", "a lot");

“Somehow,” Rhonda said, “with the term overloading, I thought this would be a lot more
difficult than it turned out to be. This isn’t bad at all. In this case, a picture really was worth a
thousand words.”

“Are the names of the parameters within the function header considered when C++ determines
which function to execute?” Dave asked. “For instance, suppose you have two identically named
functions, requiring the same number and types of parameters, but the names of the parameters
are different.”

“That’s a good question, Dave,” I said. “The names of the parameters in the header are not
considered by C++, only the numbers and types of parameters. For instance, if we were to define
two functions named DisplayMessage() and specify that each one accept a single string parameter,
the fact that we name the string parameter in the first function Elton and the string parameter in
the second function Elvis doesn’t matter. When we compiled the program, C++ would generate a
compiler error, informing us that we attempted to define a duplicate function.”

“Does the order of the parameters in the header affect whether the compiler detects a duplicate
function header?” Barbara asked.

“That’s a great question, Barbara,” I answered. “The order of the parameters is significant. For
instance, C++ does permit us to write two identically named functions, both of which accept an
integer and a string parameter, but with the parameters in opposite orders.”

“Could you clarify that?” Bob asked.
“Sure,” I replied. I then displayed these two similar looking functions on the classroom projector.

void DisplayMessage(string favorite, string intensity);

void DisplayMessage(string intensity,string favorite);

I explained to the class that the compiler recognizes these as two distinct overloaded functions,
since the parameter types, although the same number and type, are in a different order.

“What about the return value of the function?” Linda asked. “Is that considered to be part of
the function’s signature?”

“Another good question,” I said, “and the answer is no. The return value is not considered to be
part of the function’s signature and is not used by C++ when determining whether the function
can be overloaded.”

Chapter 6: Creating Your Own Functions 271

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“I’m not sure I understand what Linda means about the return value being considered part of
the function’s signature,” Chuck said.

“In other words, Chuck,” I said, “let’s say you have two identically named functions, both
requiring the same number and type of arguments, but one has a return value of void and the
other a return value of string. Does C++ consider them to be unique? The answer is no. When
you compile the class in which these two functions appear, C++ will tell you that you’re trying to
define two identical functions. The bottom line is that only the number and type of parameters
affect the uniqueness of an overloaded function in the eyes of C++. If you declare two functions
with the same signature, you’ll generate a compiler error.”

I waited for more questions, but everyone seemed satisfied with the concept of function
overloading.

“With the remaining time we have left today,” I said, as I glanced at the classroom clock, “I’d
like to make changes to the Grade Calculation program we wrote last week by adding several
custom functions to it. You’ll also have a chance to work with an overloaded function.”

I then distributed the final exercise of the day for the class to complete.

Exercise 6-3 The Grade Calculation Project with Custom Functions

In this exercise, you’ll modify the Grade Calculation program by taking some
of the code currently residing in the main() function and creating several
custom functions—WhatKindOfStudent(), CalculateEnglishGrade(),
CalculateMathGrade(), and CalculateScienceGrade()—and three
overloaded versions of DisplayGrade().

1. Using Notepad, locate and open the Grades.cpp source file you worked on
last week. (It should be in the \CPPFiles\Grades folder.)

2. Modify your code so that it looks like this:

//Grades.cpp

#include <iostream>

#include <string>

using namespace std;

int WhatKindOfStudent();

void CalculateEnglishGrade();

void CalculateMathGrade();

void CalculateScienceGrade();

void DisplayGrade(int midterm, int finalExamGrade,

int research, int presentation,

272 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

float finalNumericGrade,

char finalLetterGrade);

void DisplayGrade(int midterm, int finalExamGrade,

float finalNumericGrade,

char finalLetterGrade);

void DisplayGrade(int midterm, int finalExamGrade,

int research,

float finalNumericGrade,

char finalLetterGrade);

const float ENGLISH_MIDTERM_PERCENTAGE = .25;

const float ENGLISH_FINALEXAM_PERCENTAGE = .25;

const float ENGLISH_RESEARCH_PERCENTAGE = .30;

const float ENGLISH_PRESENTATION_PERCENTAGE = .20;

const float MATH_MIDTERM_PERCENTAGE = .50;

const float MATH_FINALEXAM_PERCENTAGE = .50;

const float SCIENCE_MIDTERM_PERCENTAGE = .40;

const float SCIENCE_FINALEXAM_PERCENTAGE = .40;

const float SCIENCE_RESEARCH_PERCENTAGE = .20;

int midterm = 0;

int finalExamGrade = 0;

int research = 0;

int presentation = 0;

float finalNumericGrade = 0;

char finalLetterGrade;

char response[256];

string moreGradesToCalculate;

int main ()

{

int lresponse;

cout << "Do you want to calculate a grade? ";

cin >> moreGradesToCalculate;

for (int i = 0;

i < moreGradesToCalculate.length(); i++) {

moreGradesToCalculate[i] =

toupper (moreGradesToCalculate[i]);

Chapter 6: Creating Your Own Functions 273

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

274 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

}

while (moreGradesToCalculate == "YES") {

lresponse = WhatKindOfStudent();

switch(lresponse)

{

case 1:

CalculateEnglishGrade();

DisplayGrade (midterm, finalExamGrade,

research, presentation,

finalNumericGrade,

finalLetterGrade);

break;

case 2:

CalculateMathGrade();

DisplayGrade (midterm, finalExamGrade,

finalNumericGrade,

finalLetterGrade);

break;

case 3:

CalculateScienceGrade();

DisplayGrade (midterm, finalExamGrade,

research, finalNumericGrade,

finalLetterGrade);

break;

} // end of switch

cout << endl<< endl<<

"Do you have another grade to calculate? ";

cin >> moreGradesToCalculate;

for (int i = 0;

i < moreGradesToCalculate.length(); i++) {

moreGradesToCalculate[i] = toupper

(moreGradesToCalculate[i]);

} // end of for

} // end of while

cout <<

"Thanks for using the Grades Calculation program!";

return 0;

}

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

int WhatKindOfStudent()

{

int lresponse;

cout << "Enter student type " <<

"(1=English, 2=Math, 3=Science): ";

cin.getline(response,256);

if (strlen(response) == 0) {

cout << "You must select a Student Type";

exit(1);

}

if ((atoi(response) < 1) | (atoi(response) > 3)) {

cout << response <<

" - is not a valid student type";

exit(2);

}

return atoi(response);

}

void CalculateEnglishGrade()

{

cout << "Enter the Midterm Grade: " ;

cin.getline(response,256);

midterm = atoi(response);

cout << "Enter the Final Examination Grade: " ;

cin.getline(response,256);

finalExamGrade = atoi(response);

cout << "Enter the Research Grade: " ;

cin.getline(response,256);

research = atoi(response);

cout << "Enter the Presentation Grade: " ;

cin.getline(response,256);

presentation = atoi(response);

finalNumericGrade =

(midterm *

ENGLISH_MIDTERM_PERCENTAGE) +

(finalExamGrade * ENGLISH_FINALEXAM_PERCENTAGE) +

Chapter 6: Creating Your Own Functions 275

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

276 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

(research * ENGLISH_RESEARCH_PERCENTAGE) +

(presentation * ENGLISH_PRESENTATION_PERCENTAGE);

if (finalNumericGrade >= 93)

finalLetterGrade = 'A';

else

if ((finalNumericGrade >= 85) &

(finalNumericGrade < 93))

finalLetterGrade = 'B';

else

if ((finalNumericGrade >= 78) &

(finalNumericGrade < 85))

finalLetterGrade = 'C';

else

if ((finalNumericGrade >= 70) &

(finalNumericGrade < 78))

finalLetterGrade = 'D';

else

if (finalNumericGrade < 70)

finalLetterGrade = 'F';

}

void CalculateMathGrade()

{

cout << "Enter the Midterm Grade: " ;

cin.getline(response,256);

midterm = atoi(response);

cout << "Enter the Final Examination Grade: " ;

cin.getline(response,256);

finalExamGrade = atoi(response);

finalNumericGrade =

(midterm * MATH_MIDTERM_PERCENTAGE) +

(finalExamGrade * MATH_FINALEXAM_PERCENTAGE);

if (finalNumericGrade >= 90)

finalLetterGrade = 'A';

else

if ((finalNumericGrade >= 83) &

(finalNumericGrade < 90))

finalLetterGrade = 'B';

else

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

if ((finalNumericGrade >= 76) &

(finalNumericGrade < 83))

finalLetterGrade = 'C';

else

if ((finalNumericGrade >= 65) &

(finalNumericGrade < 76))

finalLetterGrade = 'D';

else

if (finalNumericGrade < 65)

finalLetterGrade = 'F';

}

void CalculateScienceGrade()

{

cout << "Enter the Midterm Grade: " ;

cin.getline(response,256);

midterm = atoi(response);

cout << "Enter the Final Examination Grade: " ;

cin.getline(response,256);

finalExamGrade = atoi(response);

cout << "Enter the Research Grade: " ;

cin.getline(response,256);

research = atoi(response);

finalNumericGrade =

(midterm * SCIENCE_MIDTERM_PERCENTAGE) +

(finalExamGrade *

SCIENCE_FINALEXAM_PERCENTAGE) +

(research * SCIENCE_RESEARCH_PERCENTAGE);

if (finalNumericGrade >= 90)

finalLetterGrade = 'A';

else

if ((finalNumericGrade >= 80) &

(finalNumericGrade < 90))

finalLetterGrade = 'B';

else

if ((finalNumericGrade >= 70) &

(finalNumericGrade < 80))

finalLetterGrade = 'C';

else

if ((finalNumericGrade >= 60) &

(finalNumericGrade < 70))

Chapter 6: Creating Your Own Functions 277

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

finalLetterGrade = 'D';

else

if (finalNumericGrade < 60)

finalLetterGrade = 'F';

}

void DisplayGrade(int midterm, int finalExamGrade,

int research, int presentation,

float finalNumericGrade,

char finalLetterGrade)

{

cout << endl <<

"*** ENGLISH STUDENT ***" << endl << endl;

cout << "Midterm grade is: " <<

midterm << endl;

cout << "Final Exam is: " <<

finalExamGrade << endl;

cout << "Research grade is: " <<

research << endl;

cout << "Presentation grade is: " <<

presentation << endl << endl;

cout << "Final Numeric Grade is: " <<

finalNumericGrade << endl;

cout << "Final Letter Grade is: " <<

finalLetterGrade;

} // end of DisplayGrade with 6 parameters

void DisplayGrade(int midterm, int finalExamGrade,

float finalNumericGrade,

char finalLetterGrade)

{

cout << endl<<

"*** MATH STUDENT ***" << endl << endl;

cout << "Midterm grade is: " <<

midterm << endl;

cout << "Final Exam is: " <<

finalExamGrade << endl;

cout << "Final Numeric Grade is: " <<

finalNumericGrade << endl;

cout << "Final Letter Grade is: " <<

278 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

finalLetterGrade;

} // end of DisplayGrade with 4 parameters

void DisplayGrade(int midterm, int finalExamGrade,

int research,

float finalNumericGrade,

char finalLetterGrade)

{

cout << endl <<

"*** SCIENCE STUDENT ***" << endl << endl;

cout << "Midterm grade is: " <<

midterm << endl;

cout << "Final Exam is: " <<

finalExamGrade << endl;

cout << "Research grade is: " <<

research << endl;

cout << "Final Numeric Grade is: " <<

finalNumericGrade << endl;

cout << "Final Letter Grade is: " <<

finalLetterGrade;

} // end of DisplayGrade with 5 parameters

3. Save your source file as Grades.cpp in the \CPPFiles\Grades folder (select File |
Save As from Notepad’s menu bar). Be sure to save your source file with the
filename extension .cpp.

4. Compile your source file into an executable file.

5. Execute your program and test it thoroughly. We need to verify that the
looping behavior of the program is working correctly. After you start up
your program, it should ask whether you have a grade to calculate.

6. Answer Yes and calculate the grade for an English student. Enter 70 for the
midterm, 80 for the final examination, 90 for the research grade, and 100
for the presentation. A final numeric grade of 84.5 should be displayed with
a letter grade of C.

7. After the grade is displayed, the program should ask whether you have
more grades to calculate.

8. Answer Yes and calculate the grade for a math student. Enter 70 for the
midterm and 80 for the final examination. A final numeric grade of 75
should be displayed with a letter grade of D.

Chapter 6: Creating Your Own Functions 279

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

9. After the grade is displayed, the program should ask whether you have
more grades to calculate.

10. Answer Yes and calculate the grade for a science student. Enter 70 for the
midterm, 80 for the final examination, and 90 for the research grade. A
final numeric grade of 78 should be displayed with a letter grade of C. After
the grades are displayed with the calculated grade, the program should ask
whether you have more grades to calculate.

11. Answer No. You should be thanked for using the program, and the
program should end.

Discussion “Wow, that was intense,” Rhonda said. “My program works, and amazingly, I
think I actually understand what we did here. Essentially, we’ve taken a bunch
of code out of the main() function and put it into one of several custom
functions.”

“Exactly right, Rhonda,” I said. “We created several custom functions—
WhatKindOfStudent(), CalculateEnglishGrade(), CalculateMathGrade(),
and CalculateScienceGrade()—and three overloaded functions called
DisplayGrade(). As much as possible, I think the program is now pretty
modular, although I’m sure some of you might be able to suggest the creation
of some additional functions.”

“I think the program is very modular,” Kate said. “We have a function to
determine the type of student for whom the user wishes to calculate a final
grade, three functions for the calculation for each one of the three different
student types, plus three overloaded functions for the display of the grade.”

“The number of lines of code in the main() function has really been
reduced,” I said. “The first thing we did was move the variable and constant
declarations out of the main() function and convert them to global variables
and constants so that their values could be accessible to the code in each of the
custom functions we created. Something else that was important is that we
declared a local response variable called lresponse. This variable will be used
to store an integer value—either 1, 2 or 3—passed to us from the
WhatKindOfStudent() function representing the student type selected
by the user.”

int lresponse;

“Could we have named this variable response also,” Ward asked, “or would
that in some way have conflicted with the global variable response?”

“Good question, Ward,” I answered. “We could have named both variables
response—variables that are declared in a function take precedence over the
same named global variable—meaning that C++, if it finds a local variable with
the same name as a global variable, will use the local variable. But C++ code

280 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 6: Creating Your Own Functions 281

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

can be confusing enough to follow—that’s why I gave the variable a different
name here.”

I waited a moment before continuing.

“All that really remains in the main() function,” I said, “is a loop that asks
the user whether they want to calculate a grade. Based on their response, the
WhatKindOfStudent() function is executed. After it’s finished executing, the
local variable lresponse contains the user’s valid answer.”

while (moreGradesToCalculate == "YES") {

lresponse = WhatKindOfStudent();

“Why did you say valid answer?” Mary asked.

“The WhatKindOfStudent() function prompts the user for a number from
1 to 3, indicating the type of student for which they wish to calculate a grade,”
I said. “As it did when it was in the main() function, this code evaluates the
user’s response by using the WhatKindOfStudent() function, and it prompts
the user if they just press the ENTER key without typing 1, 2, or 3.”

if (strlen(response) == 0) {

cout << "You must select a Student Type";

“In addition, we now do something we didn’t do before—we immediately end
the program by executing the C++ exit() function with a return value of 1.”

exit(1);

“In a similar way, we evaluate the user’s response to see whether the
number entered is less than 1 or greater than 3. If it is, we warn the user that
their response is invalid, and once again immediately end the program. Notice
how we use an exit code of 2 in this case to designate a different abnormal
termination condition.”

if ((atoi(response) < 1) | (atoi(response) > 3)) {

cout << response <<

" - is not a valid student type";

exit(2);

“As a result, the only remaining alternative is a valid response of 1, 2, or 3,
and we pass that back to the main() function via this return statement, first
executing the atoi() function against the value of the response variable.”

return atoi(response);

“I understand now,” Mary said, “what you meant by a valid response.”

“Now,” I continued, “based on the value of the lresponse variable, we then
call one of the three custom functions we wrote to calculate the student’s grade
and execute the overloaded DisplayGrade() function. C++ decides which one

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

of the three overloaded functions to execute by the number and type of
arguments supplied as arguments.”

switch(lresponse)

{

case 1:

CalculateEnglishGrade();

DisplayGrade (midterm, finalExamGrade,

research, presentation,

finalNumericGrade,

finalLetterGrade);

break;

“Each one of the three Calculate functions is fairly well encapsulated,” I said.

“Encapsulated?” Kathy asked.

“Encapsulated,” I said, “means that everything that is needed to perform the
calculations, including prompting the user for the component pieces of the grade,
is included in the function. Not all programmers would write these functions
like this. Some might very well include a separate function to prompt the user
for the grade components and then execute one of the calculate functions,
followed by the display functions.”

“Why is that?” Ward asked. “Is there something wrong with the way we’ve
done it?”

“There’s a science and art to designing functions,” I said. “No two people are
likely to write their program in the same way, which is one of the things I love
about teaching programming. For instance, some programmers would argue
that our use of global variables is wrong. The problem is that the techniques we
need to use to avoid using global variables we are a week or two away from
learning. Our ultimate use of C++ objects will make our program much more
efficient—and stylistically more pleasing to the C++ programming purists.”

“Something I found pretty interesting,” Joe said, “is how you chose to create
overloaded functions to display the grades. Why didn’t you just display the grades
from within the various Calculate functions?”

“Calculating a grade and displaying a grade are different tasks,” I said.
“Separating the code for each task makes sense, especially if you consider the
fact that the manner in which we are displaying the information for Frank Olley
is completely arbitrary. He doesn’t really care how the display of the
information looks.”

“In other words,” Dave said smiling, “he may want it changed as soon as he
sees it. Placing the code to display the grades in functions separate from the
calculation code will make modifying the code easier.”

282 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“But why not just go with three uniquely named functions?” Ward asked.
“Why did you use overloaded functions to display the grades?”

“That’s simple, Ward,” I said. “I wanted to give you experience working
with overloaded functions. That experience will come in handy later on in
the course.”

It had been an extremely long and interesting class. No one had any further questions, so I
dismissed class for the day.

Summary
In this chapter, you learned about the concept of program modularity and the benefits of creating
custom functions in our C++ programs. We discussed details of creating our own functions,
including the four types of access modifiers, the return types of functions, and how to define
functions to accept one or more parameters. You also learned how overloaded functions permit
you to define more than one function with the same name, provided the function headers are
unique in terms of the number and type of arguments supplied. We finished the chapter by
modifying the Grade Calculation Project to include several custom functions, including an
overloaded function.

Chapter 6: Creating Your Own Functions 283

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 6
Blind Folio 6:284

P:\010Comp\LearnTo\535-1\ch06.vp
Tuesday, October 08, 2002 12:00:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter

7
Creating Objects
from Instantiable
Classes

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7
Blind Folio 7:285

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
TLFeBOOK

In Chapter 6, you began to learn how to introduce modularity into the programs you write by
creating custom functions in our Startup program module. Once defined, these functions are
then called from the main() function. In this chapter, we take modularity several steps further

by creating what C++ calls instantiable classes—that is, classes from which objects can be created by
the programs you’ve learned how to write so far, called client programs, and sometimes by other
classes. Creating objects from classes is the name of the game in object-oriented programming
languages such as C++, and by the end of today’s class, you’ll see why. The data and code in your
startup programs, as well as the number of lines of code, will shrink. Overall, your programs will
become easier to follow, maintain, and modify. Plus, the code you place in instantiable classes is
available to hundreds, even thousands, of other programmers in your company or throughout the
world. This is truly object-oriented programming.

Creating Objects from Instantiable Classes
“Early on in our course,” I said, as I began our seventh class, “I mentioned to you that C++ is an
object-oriented programming language in which in we work with standard packages of classes
and objects that make the job of writing a program much easier. I also told you that at some point,
you would be able to design classes of your own from which objects could be created. However, I
warned you that it would be some time before you could do this. Well, today’s the day. Up until
now, we’ve used functions of objects created from classes provided to us in what are known as the
standard C++ libraries—functions such as the toUpper() function and the atoi() function. In
today’s class, you’ll learn how to design and create classes from which other programs will be able
to instantiate objects.”

“Instantiate?” Rhonda asked.
“Instantiate is a term that means to create an object from a class,” I said. “In C++, an instantiable

class is a model for an object, much like an architectural blueprint is a model for a house or a building.
Just as from one blueprint, many ‘instances’ of a house can be built, from one instantiable class,
many instances of an object can be created. I know what you’re probably thinking. The programs
we’ve created so far haven’t been used like that. That’s because they’ve been startup programs,
which are programs intended to be executed from the command prompt. Instantiable classes are
different. They are not intended to be run from the command prompt; in fact, they can’t be.
Instantiable classes are meant to enable startup programs (and other classes) to create objects from
them. Today you’ll learn how to create these instantiable classes, and by the end of today’s class,
you’ll have designed and coded several classes that model real-world objects.”

“This sounds exciting!” Ward said. “What kind of real-world objects can be modeled using
instantiable classes?”

286 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“In the real world of programming,” I said, “we can use instantiable classes to model many
things, such as employees, students, and inventory, to name a few. In today’s class, we’ll create an
instantiable class to model a bank transaction—and, of course, we’ll also be creating a class to
model the English, math, and science students here at the university.”

“This process sounds to me like it may not be all that easy,” Rhonda said.

Creating Classes Is an Extension
of Modular Programming

“I don’t want to make creating instantiable classes sound too easy,” I said, “but I think you’ll find
it’s just an extension of the modular programming process you learned about and practiced last
week when we broke up our code into modules by creating custom functions. Creating instantiable
classes is a matter of determining what real-world objects need to be represented in your program
and apportioning variables and functions to each one. In many ways, this is nearly complete with
the Grade Calculation Project. I think you all realize by now that the project is modeling a real-world
student. In the Grade Calculation Project, that’s one object, and there may be more. The bottom
line is that if you are comfortable with what we did last week concerning function creation, you’ll
have no trouble going through the mechanics of creating instantiable classes. Experience will help
you identify the objects you need to model in your program, along with the characteristics and
behavior of the objects you need to simulate.”

“Do instantiable classes look like the startup programs we’ve written so far?” Peter asked.
“Startup programs require a main() function so that they can be executed from a command

prompt,” I said. “Instantiable classes do not contain a main() function, and for that reason,
instantiable classes cannot be executed directly from a command prompt the way the programs
we’ve written so far can. Instantiable classes provide their blueprint to your program’s functions or
to other classes so that objects can be created from them. Instantiable classes are designed in such
a way that the objects created from them simulate the characteristics and behavior of a real-world
object, such as an employee or a piece of inventory.”

“You’ve used the terms ‘classes’ and ‘instantiable classes’,” Kate pointed out. “Is there a difference?”
“Good point, Kate,” I said, “Not all classes are instantiable—that is, not every class is meant to

be used directly as a blueprint to create objects. For now, we’ll deal only with instantiable classes.
We’ll see those other kinds of classes later on in the course.”

Objects Have Properties That Simulates Their Characteristics
“What do you mean by ‘characteristics of an object’?” Blaine asked. “Can you give us an example
of an object’s characteristics?”

Chapter 7: Creating Objects from Instantiable Classes 287

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

“Yes I can, Blaine,” I said. “For instance, if we create an instantiable class designed to represent
a real-world employee in a corporation, we would want to create a class capable of representing the
employee’s name, address, social security number, and salary, to name a few. The characteristics of
the Employee object are represented and stored inside the object using the instance and static
variables I briefly mentioned last week. The characteristics are also called properties of the object.”

NOTE
Remember, a class is a template or model for the object that is instantiated from it,
just like a house is an object created from an architectural blueprint.

Objects Have Behavior (Methods)
“That makes sense to me,” Linda said, “but what about an object’s behavior, which you also
mentioned? What kind of behavior can an object possess?”

“Well,” I said, thinking for a moment, “an employee has certain kinds of behaviors, such as working
on a particular task, attending meetings, traveling to a customer site, and taking a vacation day. These
kinds of behavior can be simulated in an object through the implementation of a class function. Class
functions are very similar to the kind we wrote last week. Class functions are also called methods.”

“I see,” Kate said, “but wouldn’t the code for that be pretty complex? I’d hate to have to write it.”
“You’re right, Kate,” I said. “I bet that code would be pretty complex to write, but the beauty of

instantiable classes is that if you want to use an Employee object in one of your programs, you don’t
have to write a bit of that code. It’s the designer of the Employee class who needs to worry about
the details of the code to model that behavior, and once it’s written, it can be used over and over
again by hundreds, even thousands, of other programmers. You see, all the really difficult code
necessary to implement the behavior of the object resides within the class itself. A programmer
who wants to use the Employee object, just like we’ve been using the cout object to direct output
to the console, only needs to execute the object’s function in order to implement the behavior.”

“So you’re saying that the programmer who designs the class from which an object is created
isn’t necessarily the programmer who will later use the object in a program?” Ward asked.

“That’s right, Ward,” I said. “It’s usually senior-level programmers and designers who design
the classes from which objects in a corporate environment are created. I know C++ programmers
who spend all their time designing instantiable classes just like that and never write any code that
actually creates any of those objects.”

“So what happens after the instantiable class is designed?” Steve asked.
“Usually,” I answered, “the class is placed in a package, advertised, and made available to other

programmers in the company or corporation. Some companies make their living by designing such
classes for commercial sale to programmers in other companies. And if the instantiable class you design
is really good, it may be used by other programmers all over the world, like the C++ cout object is.”

288 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“I think you mentioned this a minute ago, but I may have missed it,” Mary said. “If characteristics
of an object are implemented via class and member variables, how is the behavior of an object
implemented?”

“Behavior in an object is implemented via functions,” I said, “just like the functions we wrote
last week.”

“I’m anxious to see one of these instantiable classes,” Linda said. “Can you show us one?”
“Sure thing, Linda,” I said. “Let’s create an instantiable class, called Banner, designed to display

the user’s favorite programming language in the C++ console. The class will contain just a single
attribute, called favoriteProgram, implemented via a member variable, and it will possess just one
kind of behavior, Display, designed to display that single attribute. This behavior will be
implemented via a function.

I then displayed this code on the classroom projector:

//Banner.cpp

#include <iostream>

#include <string>

using namespace std;

class Banner

{

public: string favoriteProgram;

public: void Display()

{

cout << "I love " << favoriteProgram << endl;

}

};

“Where’s the main() function?” Rhonda asked. “I don’t see it anywhere.”
“Instantiable classes aren’t required to have a main() function,” I said, “because they are not

intended to be executed directly from a command prompt. Instantiable classes are meant to serve
as blueprints for objects that are created from another class—you’ll see that in a moment. Before
we do that, however, let’s take a closer look at the code in the Banner instantiable class. The first
lines of the class contain the include and using statements you’ve seen in the other programs we’ve
written. These are necessary because the code in this class will use the C++ cout object.”

#include <iostream>

#include <string>

using namespace std;

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

Chapter 7: Creating Objects from Instantiable Classes 289

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“This next line of code, however, is like nothing you’ve seen before,” I continued. The word
‘class’ tells C++ that this is the definition for a class, and the name of the class follows everything
in between the braces is the class definition.”

class Banner

{

“By the way, notice that there’s a semicolon following the closing brace of the class definition.”

};

“That next line of code,” Valerie said, “looks like a variable declaration. Is that the class variable
you were telling us about earlier in the course?”

“That’s right, Valerie,” I said. “A class variable—technically known as a member variable—is a
variable declared within a class but not within any function of the class. That way, the variable is
visible, or scoped, to all the functions in the class. The string variable favoriteProgram is used to
implement the one and only attribute of the Banner class.”

public: string favoriteProgram;

“Let me make sure I understand why this is a member variable,” Dave said. “It’s the fact that
the declaration does not appear within the Display() function, is that right? Otherwise, it appears
to be an ordinary variable declaration to me.”

“That’s right, Dave,” I said. “Member variables are variables that are declared outside of any
function. Member variables, by convention, appear at the top of the class, just after the left
bracket denoting the beginning of the class.”

“I notice the Public keyword in front of the declaration of the member variable,” Kate said. “Is
that necessary?”

“Yes, it is,” I said. “Without the keyword Public, the favoriteProgram member variable would
only be accessible by code within the Banner class. In other words, no program using the Banner
object would be able to access or update the attribute. Notice how the word ‘public’ and the data
type ‘string’ are separated by a colon.”

I waited to see if anyone had any more questions before continuing.
“Now, let’s take a look at the one and only behavior of the Banner class, Display, which is

implemented via a function.”

public: void Display()

{

cout << "I love " << favoriteProgram << endl;

}

290 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 7: Creating Objects from Instantiable Classes 291

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

“As I think you can see,” I said, “this function is very much like the functions you learned to code
last week. The Display() function merely displays the value of the member variable favoriteProgram
to the C++ console using the cout object. What makes this special is that it isn’t code from the
Banner class itself that will execute the Display() function, but rather code from another program
that will first create an instance of the Banner object, which will then execute this function.”

“When you say an object is created from the Banner class,” Dave said, “does that mean that
each object gets its own copy of each of the member variables and functions to work with?”

“That’s right, Dave,” I said. “Later in today’s class, you’ll see that it’s possible to create in a
program more than one object from the same class. When that happens, each object has separate
copies of each of the member variables and functions defined in the class. In this way, there’s no
danger of one object stepping on the foot of another.”

“Are we going to execute this class?” Rhonda asked. “I can’t wait to see how this works.”
“Because it has no main() function, we can’t directly execute this Banner class from the

command prompt,” I said. “In fact, if we save this class as Banner.cpp and then try to compile it
using the C++ compiler, we wind up with a problem. Let me show you.”

I then saved the class as Banner.cpp and attempted to compile it. The following screenshot was
displayed:

“What does that mean?” Kate asked.
“C++ is telling us,” I answered, “that this class, the Banner class, does not have a main()

function, which is required for programs to run from the command prompt. Actually, it’s the
linker program that runs after the compilation is complete that is giving us this error.”

“Is that a problem?” Lou asked.
“It’s not a big deal,” I said. “We don’t intend to run this class from the command prompt

anyway. Classes, which do not have a main() function, are designed to have their objects created
from other programs, called startup programs, that contain a main() function.”

NOTE
Sometimes objects are created from other classes. Ultimately, however, a program
run from the command prompt must contain a main() function.

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Each C++ application should have one of these startup programs. In a moment, we’ll create a
startup program called Example7_1, which will create an instance of the Banner class object.”

“Does that mean we won’t be able to compile the classes that don’t contain a main() function?”
Peter asked. “Suppose we have an error? How will we know?”

“We can still compile the source code in these classes and the compiler will still display any
other errors it encounters,” I said. “Most C++ compilers, including the one we’re using here in
class, will display warnings as well as errors. Warnings are potential coding problems that the
compiler discovers. The compiler will still compile your program despite warnings. On the other
hand, it will terminate compilation if it encounters just a single error. In general, warnings are
showing you poor or dangerous programming practices that might work well for now, but that
you should think about fixing to avoid problems down the road.”

“I was wondering about those warning messages I’ve been receiving,” Rhonda said. “I’ve pretty
much been ignoring them.”

“Just bear in mind,” I said, “that we’ll always receive the linker error we just saw—unresolved
external ‘_main’ referenced. Treat this error—which doesn’t halt compilation—as if it were a warning.
In this case, it’s a warning that we expect to receive, since we omitted the main() function on purpose.
If that’s our only problem, we’re fine. I’ll be showing you how in a minute. Once we have the
startup program coded, we can then compile both the startup program and the class into a single
executable file.”

“Are you saying that code from both the startup program and the class will be contained in the
final EXE?” Dave asked.

“Yes, Dave,” I replied. “The final .exe file will contain the code from both the startup program
and the class. However, in terms of the code files, we have several choices here. Something that
you see frequently in C++ textbooks is the actual inclusion of the other class into the startup
program. In the real world of programming, this is seldom the case. Classes typically are included
in files of their own, sometimes ending in the filename extension .cpp, and sometimes ending in
the filename extension .hpp, indicating something known as a header file. C++ purists like to
create a class prototype—like a function prototype, a class prototype contains the class function
signatures—in a header file and place the actual definition of the class into what is known as an
implementation file, ending with a .cpp file extension.”

“What will we be doing in this course?” Linda asked.
“I prefer,” I answered, “to create the class in a file of its own, name it with an extension of .cpp,

then use an include statement to refer to it in the startup program. Of course, how exactly you do
this is up to you. In the beginning of your C++ learning, there’s certainly nothing wrong with including
the code for your class in the same file as the program that uses it.”

292 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

NOTE
To simplify our discussion in this book, after this week, I’ll be creating just a single
file, with the .hpp file extension, for each class. Creating two files for each class,
although the preferred method among C++ programmers, will “balloon” the size of
the book and complicate the completion of our Grade Calculation Project case study.

“Getting back to the Display() function,” Dave persisted. “This function doesn’t seem very
dynamic. Suppose you need to make a change to the code in the Banner class. Does that mean you
need to recompile the startup program in order for the changes to the Banner class to take effect?”

“In most cases,” I said, “if code in the class changes, you won’t need to recompile the startup
program, but you will need to ‘relink’ it to the modified class.”

I could see some confusion in the eyes of my students.
“In the course so far,” I continued, “we haven’t made a distinction between compiling and

linking, because our compiler takes care of both steps for us with a single command-line
statement. However, the two processes are distinct, and it is possible to link already compiled
programs to produce an executable.”

“What’s the advantage there?’ Linda asked. “Why not recompile and link?”
“Linking is the ‘glue’ that puts compiled pieces of our program together,” I said. “In a real-

world program, you might have hundreds of component pieces that together form a single
executable. In that case, compiling each and every piece could take hours, whereas just linking
them together can be much faster.”

Creating Objects from Your Classes
I waited a moment before continuing.

“To create an instance of a Banner object from our Banner class,” I said, “we must first create a
startup program. This startup program will look like the others we’ve coded in the course so far.
What you’ll find strange, I’m sure, is the code necessary to create, or instantiate, the Banner object.
Take a look.”

I then displayed this code on the classroom projector:

//Example7_1.cpp

#include "Banner.cpp"

int main()

{

Banner x;

x.favoriteProgram = "C++";

Chapter 7: Creating Objects from Instantiable Classes 293

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

x.Display();

return 0;

}

I could see a lot of confusion on the faces of many of my students.
“Let’s break down this code line by line,” I said. “As you can see, this startup program begins

like the others we’ve seen, with an include statement. However, this time, instead of including the
C++ studio library, we’re including the Banner class we just coded.”

#include "Banner.cpp"

“Didn’t we just try to compile Banner.cpp?” Blaine asked. “I though the compile failed? How
can we include the Banner class like this?”

“That’s not quite true, Blaine,” I replied. “We did compile and link the Banner class—and the
compile phase ran fine. It was the linker that reported that Banner.cpp had no main() function.
Because the compiler reported no errors, it’s perfectly fine to include the class in this startup program.”

NOTE
Enclose the names of your own custom classes in quotes, not brackets. The include
statements we’ve seen so far enclose the name of the C++ libraries in angle brackets,
indicating that the libraries are contained in the C++ compiler standard libraries.
When using the include statement with your own classes, the filename must be
enclosed within quotation marks to indicate that the class can be found in the same
directory as the startup program.

I waited a moment before continuing.
“The include statement is then followed by the main() function, which is required of every

program that is executed from a command prompt.”

int main()

{

“What’s going on with that next line of code?” Kathy asked. “I don’t recall you discussing a
Banner data type a few weeks back.”

“This line of code looks like a variable declaration, doesn’t it?” I said.

Banner x;

“In fact, it is. However, instead of seeing a familiar C++ data type of int or string, what you see
instead is a variable declaration that begins with the class name Banner.”

294 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Can we do that?” Ward asked.
“Yes, we can,” I said. “When you declare a type int variable , C++ associates that variable name

with an integer type, allocates enough space in the computer’s memory for an integer data type,
and associates the variable name with that newly allocated memory. When you declare a type
Banner variable, C++ does the same thing—except that it allocates space in the computer’s
memory for both the Banner object’s member variables and for its function definitions.”

“That’s right,” Dave said excitedly. “You did say that each object gets a copy of the class’s
member variables and functions. So that’s how it’s done.”

“That’s right, Dave,” I said. “This syntax looks very confusing at first, but that’s what’s going
on. We’re telling C++ to allocate enough room in the PC’s memory for a Banner object.”

“What’s x?” Lou asked.
“It’s just the name of the banner-type variable, in this case an object variable,” I said. “Hereafter,

the instance of the Banner object we’re about to create will be referred to by this name. In almost
every way, you can think of this as a ‘normal’ variable, except for the fact that we, not C++, have
defined its type.”

I gave everyone a further chance to study the line of code that declares and then creates an
instance of a Banner object. It had been my experience that this single line of code is sometimes
the most confusing single concept for beginning C++ programmers.

“You’re right, this syntax is pretty confusing,” Kate said. “I’m just so used to seeing a data type
specified for a variable declaration. Seeing a class name that we’ve defined ourselves specified as the
type declaration is strange.”

“I agree, Kate,” I said. “It’s strange at first, but believe me, once you get used to it, declaring variables
to refer to instances of your own classes will become second nature to you. As I think I’ve mentioned
before, that’s the name of the game in C++, and C++ programmers are forever defining classes with
attributes and behaviors and then instantiating objects from these classes in their programs.”

“Could you go over the idea of instantiating an object again,” Rhonda asked. “I’m still a little
unsure of the difference between creating the class and instantiating it.”

“Sure,” I replied. “It’s a very important point, and very basic to understanding classes. When we
created the banner.cpp file, we defined the class—much like drawing up the blueprint for a house.
We haven’t produced anything from the blueprint, yet—you might say we haven’t yet built any
houses from it. When we declare a variable to refer to an object, C++ takes the blueprint and
makes a house from it—that is, it creates the object for us.”

“There’s actually a difference between declaring a variable and instantiating an object to
associate with it. In this code, they happen at the same time, but that doesn’t always have to be
true. We’ll look at the other case later in the course when we discuss pointers, but for now, you
can be comfortable with the object getting created when you declare the variable.”

Chapter 7: Creating Objects from Instantiable Classes 295

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Changing an Object’s Attributes
“Can you go over how to change an object’s attributes?” Mary asked. “It seemed like you used an
assignment statement, but I was a little confused by the syntax.”

“Good question, Mary,” I said. “Once you’ve declared an instance of your class’s object, you can
easily set—by that I mean change—one of its attributes just by changing the value of the member
variable that implements that attribute. Remember, behind the scenes, the attributes or characteristics
of an object are really just member variables defined in the object’s class. Changing the attributes of
an object is easy, but we can’t just assign a value to the member variable. We need to assign a value
to the member variable associated with this particular object. Because of that, we need to use a
special notation called object dot notation.”

“Object dot notation?” Rhonda asked. “This is getting more complicated.”
“It’s not bad at all, Rhonda,” I replied. “Object dot notation is just a way of telling C++ the

name of the object whose member variable we wish to update. With object dot notation, we first
specify the name of the variable that we used to declare an instance of our object, followed by a
dot, or period, followed by the name of the member variable that implements the attribute. After
that, we’re basically working with an ordinary C++ assignment statement, in that we use the equal
sign assignment operator, followed by the value we wish to assign to the member variable.”

x.favoriteProgram = "C++";

“So what we’ve done here is change the value of the member variable favoriteProgram inside the
Banner class?” Steve asked.

“That’s close, Steve,” I said. “But more specifically, we’ve changed the value of the member variable
favoriteProgram within the particular instance of the Banner object referenced by the variable x.
Remember, each object has its own copy of every member variable and function in memory. It’s a
subtle distinction, I know, but the distinction will become important later today when you learn that
we can create another type of variable within a class called a static variable. A static variable is a variable
that is shared by every instance of an object instantiated from that class.”

“So can we can retrieve the value of an object’s attribute using the same object dot notation?”
Ward asked.

“That’s right, Ward,” I said. “We could display the value of the favoriteProgram attribute using
this syntax.”

cout << x.favoriteProgram;

“I see,” Linda said. “Really, except for the name of the object variable and the dot, this syntax is
just like working with an ordinary variable.”

“That’s a good way of thinking about it,” I said.

296 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Everyone seemed to understand how to change and view the value of an object’s attribute, so I
proceeded to describe calling an object’s functions.

Calling an Object’s Functions
“Calling the function for an object that we’ve declared,” I said, “should be familiar to you. It’s
similar to the way we’ve executed functions so far in the class—the only difference here is that we
need to reference the object variable name we used to instantiate the object. Once again, as was the
case when we referred to the object’s attributes, we use object dot notation, specifying the name of
our object variable, followed by a dot, followed by the name of the function we wish to execute.”

x.Display();

“What’s the purpose of the empty set of parentheses following the function name?” Mary asked.
“Any arguments required by the function appear within the parentheses,” I said. “We defined

the Display() function of the Banner class to require no parameters. The empty set of parentheses
are required even when no arguments are required.”

“I’m anxious to see the Banner class in action,” Rhonda said. “What do we need to do?”
“In order to create an instance of a Banner object,” I said, “all we need to do is create and

compile a startup program that references the Banner class.”
“Do we need to compile the Banner class first?” Peter asked.
“No we don’t,” I said. “Simply referencing the name of the Banner class via the include statement

in the startup program is enough for the compiler—provided the Banner class is found in the
same directory or folder as the startup program.”

I saved the startup program as Example7_1.cpp and then compiled and executed it. The
following screenshot was displayed on the classroom projector:

“Does everyone realize what has happened here?” I asked. “The code in Example7_1 created an
instance of a Banner object from the Banner class, set the value of its favoriteProgram attribute,
and executed its Display() function.”

Chapter 7: Creating Objects from Instantiable Classes 297

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

298 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

“One program executing code in another,” Kate said. “Pretty cool.”
“I don’t want to be a downer about all of this,” Rhonda said, “but couldn’t we have just executed

all this code from a single startup program? What has all this extra code really bought us? Quite
honestly, I think it just complicated things.”

“That’s usually the first reaction beginners have,” I said. “You’re right in that we could have
placed all the code we just executed in a single file, like this.”

#include <iostream>

#include <string>

using namespace std;

class Banner

{

public: string favoriteProgram;

public: void Display()

{

cout << "I love " << favoriteProgram;

}

};

int main()

{

Banner x;

x.favoriteProgram = "C++";

x.Display();

return 0;

}

“And as you know, we also could have placed all the code within the main() function of a single
startup program. But many years of experience has shown that modular programming—and in
C++, that means creating objects—leads to better programs. While the benefits of this approach
are greatest when a separate program reuses the class code, modular programming methods do a
lot for the clarify and readability of a single program too. I think as the day progresses you’ll begin
to understand that placing code in classes whose objects are then instantiated within other classes
actually uncomplicates programs.”

“You said you would show us three methods for coding a startup program and the class from
which it creates objects,” Dave said. “If I’m not mistaken, we’ve seen two methods—one where the
class is included in the same file as the startup program, and one where the startup program uses
an include statement to refer to the class. Can you show us the third method?”

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 7: Creating Objects from Instantiable Classes 299

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

“Sure thing, Dave,” I said. “But if it’s okay with you, I’ll wait until next week to do so. That
will give you a little more time to get comfortable with classes. For now, let’s keep things as simple
as possible by creating a single file to represent our classes as well as a single startup program to
create objects from them.”

Creating Multiple Objects from Your Classes
“You told us that it’s possible to create more than one instance of the same object in the startup
program,” Bob said. “How would we do that? For example, suppose I was creating an instance of
that Employee object you were describing earlier, and I wanted to instantiate an object for every
employee in a particular department?”

“Yes, it is possible, and quite common,” I said. “You just need to declare more than one object
variable, like this.”

I then displayed the following code on the classroom projector:

//Example7_2.cpp

#include "Banner.cpp"

int main()

{

Banner x;

Banner y;

x.favoriteProgram = "C++";

x.Display();

y.favoriteProgram = "Java";

y.Display();

return 0;

}

I saved the program as Example7_2.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“What we’ve done here,” I said, “is declare two instances of the Banner object.”

Banner x;

Banner y;

“How is it possible to have two object instances of the same class in a program?” Blaine asked.
“It’s no problem,” I said, “because as I mentioned earlier, each instance of an object is maintained

separately in the computer’s memory. Keeping the object and its attributes in separate locations of
memory keeps one object from being confused with another. When we modify the attribute value
of an object, C++ knows exactly which object to act upon by the object variable name we use.”

x.favoriteProgram = "C++";

x.Display();

y.favoriteProgram = "Java";

y.Display();

“That’s pretty amazing,” Rhonda said. “Is there a limit to the number of objects you can
instantiate?”

“The only limit,” I said, “is the available memory in your computer because that’s where the
objects are maintained. In some large commercial applications, it’s not unusual to have thousands
of objects in memory at one time.”

Class Constructors
“I think working with instantiable classes like this to create objects is great,” Ward said, “and I
really can’t wait to start working with them back at my office. Is there anything else we need to
know about creating instantiable classes?”

“There are some more features of instantiable classes that I want to discuss with you that can give
your programs tremendous power,” I said. “For instance, we can write code in something called a
constructor function that is automatically executed each time an instance of our object is created.”

“Kind of like a startup macro in Microsoft Word,” Valerie added.
“Constructor functions are very similar,” I said. “If you have code that you want to be executed

when an instance of an object is created from a class, you place it inside a special function called a
constructor function. Constructor functions are named with the same name as the class.”

“What kind of code goes into a constructor function?” Joe asked.
“Any kind of code that in some way initializes our object,” I said.
“Initializes?” Rhonda asked.
“That’s right, Rhonda,” I said. “For instance, if the class is used to gain access to records in a

database, the constructor function is an ideal location to place code that finds and opens the

300 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

database. Other types of initialization code are for setting attributes of the object—that is, member
variables—to default values, if that’s appropriate. For instance, if your class has a currentDate
member variable, you could place code in its constructor function to find out the system date on
the user’s PC and set the value of the currentDate member variable accordingly.”

“I see,” Kate said. “That makes sense.”
“Speaking of member variables,” I said, “take a look at this code.”
I then displayed the following code on the classroom projector:

//Example7_3.cpp

#include "Banner.cpp"

int main()

{

Banner x;

x.Display();

return 0;

}

I saved the program as Example7_3.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

“What happened?” Blaine asked. “What’s up with that message?”
“What happened here,” I said “is that we created an instance of a Banner object, but prior to

assigning a value to the member variable favoriteProgram, we immediately executed the Banner
object’s Display() function. We displayed in the C++ console the value of the favoriteProgram
member variable, which is an empty string.”

“I didn’t notice that we hadn’t initialized the value of favoriteProgram,” Dave said. “I thought
that in C++ you have to initialize your variables.”

Chapter 7: Creating Objects from Instantiable Classes 301

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

302 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

“That’s only the case with local variables,” I said. “C++ doesn’t require us to initialize member
variables. As a result, accidents like this can easily happen. The bottom line is that it’s a good idea
to initialize all our member variables, either at the time we declare them or as part of the class’s
constructor function. In fact, initializing member variables is perhaps the most common
programming task in a class constructor.”

“Can you show us how to code a constructor function?” Ward asked. “Is it complicated?”
“Creating a constructor function is very easy, Ward,” I said. “A class constructor function is just

an ordinary function with the same name as the class. For instance, a basic constructor function
for the Banner class would look like this.”

I then displayed the following code on the classroom projector:

public: Banner()

{

cout << "Banner's Constructor" << endl;

}

NOTE
A constructor is a function of the class, having the same name as the class, that is
automatically executed when an object of the class is created.

“Coding a constructor function looks easy,” Linda said. “I notice you didn’t specify a return
type for the function. Isn’t a return type always required?”

“That’s a good point, Linda,” I answered. “Return types for functions are required except in the
case of a constructor function. In fact, constructor functions may not return a value of any kind,
not even the void return type. That’s why no return type is permitted here.”

“I’m going to have to remember that,” Rhonda said. “That’s the type of thing I’m likely to
forget, but I guess the compiler will warn me.”

“That’s right, Rhonda,” I said. “The compiler will tell you that a constructor function may not
have a return type.”

NOTE
A constructor function may not specify a return type of any kind, not even void.

“I bet that can have you scratching your head for hours,” Kate said. “Can we see the
constructor function in action?”

“Sure thing, Kate,” I said. “Let’s modify the Banner class to include a constructor function. All we’ll
do is display a message in the C++ console that tells us the constructor function has been executed.”

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 7: Creating Objects from Instantiable Classes 303

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

I then modified the Banner class to look like this, and displayed its code on the classroom projector:

//Banner.cpp

#include <iostream>

#include <string>

using namespace std;

class Banner

{

public: string favoriteProgram;

public: Banner()

{

cout << "Banner's Constructor" << endl;

}

public: void Display()

{

cout << "I love " << favoriteProgram << endl;

}

};

“Does everyone see the constructor function?” I asked. “It’s the function called Banner().”

public: Banner()

{

cout << "Banner's Constructor" << endl;

}

“Notice that the name of the constructor function is identical to the class name, and also notice
that no return value is specified for the function.”

“So when an object of this class is created, the code in the constructor function will automatically
be executed, correct?” Steve asked.

“That’s right, Steve,” I said. “Here’s some simple code that will illustrate the behavior of the
constructor function. All we’re doing here is creating an instance of the Banner object, nothing else.”

I then displayed the following code on the classroom projector:

//Example7_4.cpp

#include "Banner.cpp"

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

int main()

{

Banner x;

return 0;

}

I saved the program as Example7_4.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

“As you can see,” I said, “when we executed this line of code in Example7_4, the Banner object
was created, and its constructor function was automatically executed.”

Banner x;

“That resulted in the message we see in the C++ console.”
“What did you say earlier about using a constructor to initialize member variables?” Rhonda asked.
“Constructors are also an ideal place to initialize any member variables in your class with

default or startup values,” I said. “Let me show you.”
I displayed this modified code on the classroom projector:

//Banner.cpp

#include <iostream>

#include <string>

using namespace std;

class Banner

{

public: string favoriteProgram;

public: Banner()

304 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

{

cout << "Banner's Constructor" << endl;

favoriteProgram = "C++";

}

public: void Display()

{

cout << "I love " << favoriteProgram << endl;

}

};

“Do you remember what happened when we executed Example7_3 a few minutes ago?” I asked.
“I do,” Kate said. “Because we didn’t set the favoriteProgram attribute prior to executing the

Banner object’s Display() function, we displayed the message ‘I love’ in the C++ console window.”
“Right on the mark, Kate,” I said. “Having changed the Banner class to initialize the value of

favoriteProgram in its constructor function, let’s recompile Example7_3 to include the latest
version of the Banner class. Then we’ll execute it and see what happens.”

I did exactly that, and the following screenshot was displayed on the classroom projector:

“That’s better, isn’t it?” I asked. “Now if the user forgets to tell us with an assignment statement what
their favorite program is, we’ll just display the default value of the favoriteProgram member variable.”

Class Contracts
I noticed that Dave seemed very pensive. “What’s wrong, Dave?” I asked.

“I’m just pondering what we’ve done here,” he said. “We changed the Banner class to include a
constructor function, and although we had to recompile Example7_3 to include the new version of
the Banner class, none of the code in Example7_3 needed to be changed. Is that true in all cases? For
instance, suppose we had changed the name of the Display() function in the Banner class.”

Chapter 7: Creating Objects from Instantiable Classes 305

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“You raise a good point, Dave,” I said. “In the world of object-oriented programming, there
is a presumed ‘contract’ between the designer of the object and the many users—actually other
programmers—who use the object. Because of this, there’s a hard-and-fast rule: Don’t break the
contract. This means that a class should not be modified in such a way as to cause programs
already using objects from that class to bomb. In the case you cite, where a class function name is
changed, we would have discovered that we ‘broke’ the contract when we attempted to recompile
a program that uses the modified class. But sometimes changes to a class can escape the watchful
eye of the compiler and instead bomb at runtime.”

“What could cause programs using the class to bomb?” Bob asked.
“The C++ compiler,” I said, “does thorough checking to ensure that a class function or attribute

referenced in a program actually exists. It will also verify that the number and type of arguments
supplied to the class function, when it is called, are correct. However, if the code within the
function is changed so that it no longer operates the way the programmer calling the function
believes it does, that could potentially cause a runtime error.”

“Something like that happened to me a few months ago at work,” Dave said. “I called a function
designed to calculate and return the unit cost for one of our part numbers—unknown to me,
someone had modified the function to return the inventory on hand. For one of our part numbers,
we had zero inventory, and I wound up dividing by zero, which caused a runtime error in my program.
As you can see, the violation of the ‘contract’ between me and one of my fellow programmers
caused me big problems.”

CAUTION
Division by zero is a big programming no-no. We’ll cover this error later in the book.

“That’s a great real-world example, Dave. Thanks,” I said.
“Obviously, adding a constructor function to the class had no detrimental impact on Example7_3,”

Ward said. “The program compiled okay, and it ran fine.”
“That’s right, Ward,” I said, “and that’s a big benefit to modularizing code into objects like this.

A minor change like this to the code in a class has no impact on the program using it.”
“I understand,” Peter said, “that if we change the name of a function, or change the signature

of a function in a class, the program using its object will fail to compile. And I see that adding a
new function to the class is not a problem. But suppose we change some of the code in an existing
function, the way the programmer did at Dave’s work. Is that always a problem?”

“That’s the beauty of object-oriented programming,” I said. “By hiding the details of exactly
how a function does its work and simply having the client program execute it, in theory, a change
to the function, in most cases, has no impact on the client program. For instance, when we add

306 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

classes to the Grade Calculation Project later today, the code for the calculation of an English
student will reside in the Calculate() function of an EnglishStudent class. If Frank Olley should
request a change in the way the final grade for an English student is calculated, all we need to do is
change the code in the function, and any client program using the function won’t have a problem.”

“How often are the signatures of functions changed in the commercial world?” Valerie asked.
“They’re usually not,” I said. “If something requires a change to the function signature, it’s

better to create an….”
“Overloaded function,” Kate yelled out. “Now I understand why we would want to use one.”
“You took the words right out of my mouth, Kate,” I said. “That’s one good reason to create an

overloaded function. By maintaining a function with the old signature and creating a function
with the new signature, you ensure that older programs will still run, while new programs can take
advantage of the functionality in the new function.”

“I just thought of something,” Chuck said. “In our first version of the Banner class, we didn’t
code a constructor function. I assume that means that classes don’t have to have a constructor? Is
that correct?”

“That’s right, Chuck,” I answered. “Constructor functions are not required in a class, but as you’ll
learn as you progress in your C++ career, coding a constructor function is usually a good idea. In fact,
it’s possible, and often a good idea, to code more than one constructor function for a class.”

“You mean an overloaded constructor?” Dave asked.

Overloaded Constructors
“Exactly right, Dave,” I said. “When your class has two or more constructor functions with the
same name but with different function signatures, you have overloaded constructors.”

“I didn’t realize you could pass arguments to a constructor function,” Kate said.
“Yes, you can, Kate,” I said. “I’ll show you an example of a constructor function that accepts

arguments in a minute or two.”
“Why would you want to create more than one constructor function?” Rhonda asked.
“Because constructor functions are automatically executed whenever an object of your class is

created,” I said, “coding overloaded constructor functions gives the user of your class more flexibility
in the way they create objects from your class. For example, as the designer of your class, you might
create a constructor function with no arguments. This constructor, when executed, would create a
no-frills object from your class, perhaps initializing member variables to default values. But you
might also want to code a constructor function that does much more than this—maybe permitting
the program creating an object from your class to specify values for one or more member variables
at the time the object is created.”

Chapter 7: Creating Objects from Instantiable Classes 307

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

308 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

NOTE
Overloaded constructors are similar to the overloaded functions we have already
encountered. When you have overloaded constructors, or any function, the compiler
keeps track of each one, along with their function signatures. When the function is
called, the compiler executes the one whose full signature matches the parameters
passed in the function call. To the compiler, they are truly different functions. All we
have to remember is that the only difference between a regular overloaded function
and an overloaded constructor is in the way you actually call them.

I could see some confusion in the classroom, so I suggested that we modify the Banner class to
provide two constructor functions.

“The first constructor function,” I said, “is the one we have already written. It will accept no
arguments and will simply initialize the value of the favoriteProgram member variable to ‘C++’.
The second constructor function will accept a single argument, and it will initialize the value of
the favoriteProgram member variable to whatever value is passed as an argument to the constructor.”

I then displayed the modified code for the Banner class containing two constructor functions
on the classroom projector:

#include <iostream>

#include <string>

using namespace std;

class Banner

{

public: string favoriteProgram;

public: Banner()

{

cout << "Banner's Constructor" << endl;

favoriteProgram = "C++";

}

public: Banner(string param1)

{

cout << "Banner's Overloaded Constructor" << endl;

favoriteProgram = param1;

}

public: void Display()

{

cout << "I love " << favoriteProgram << endl;

}

};

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Do you see that we now have two constructor functions?” I asked. “Both are named Banner.
The first requires no arguments, but the second requires a single string argument called param1.”

public: Banner(string param1)

{

cout << "Banner's Overloaded Constructor" << endl;

favoriteProgram = param1;

}

“I was pretty comfortable with creating overloaded functions last week,” Steve said, “and I see
what you’re doing here in the Banner class to create the overloaded constructor functions. But how
do you call an overloaded constructor?”

“Let me show you,” I said, as I displayed this program on the classroom projector:

//Example7_5.cpp

#include "Banner.cpp"

int main()

{

Banner x; // Call Constructor

x.Display();

Banner y("Java"); // Call Overloaded Constructor

y.Display();

return 0;

}

I saved the program as Example7_5.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

Chapter 7: Creating Objects from Instantiable Classes 309

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Does everyone see what happened?” I said. This code created an instance of the Banner object,
and because there were no arguments supplied, C++ automatically executed the constructor
function requiring no arguments:”

Banner x; // Call Constructor

“When that constructor function is executed, the value of the favoriteProgram Member variable
is set to ‘C++’, which is why when we executed this code, ‘I love C++’ was displayed in the C++
console window.”

x.Display();

“This code also creates an instance of the Banner object. Notice that this time we pass a single
string argument, which is the word ‘Java’ contained within the parentheses. When C++ see this string
argument, it automatically executes the constructor function requiring a single string argument.”

Banner y("Java"); // Call Overloaded Constructor

“When that constructor function is executed, the value of the favoriteProgram member variable
is set to the value of the passed argument, which is ‘Java’. That’s why, when we executed this code,
‘I love Java’ was displayed in the C++ console window.”

y.Display();

“This is really neat,” Ward said. “I would imagine you could come up with quite a few different
constructor functions.”

“That’s right, Ward,” I said. “Programmers frequently have more than one. The important thing
to remember is that constructor functions are an ideal place for code to initialize the state of your
object at the time of its creation.”

Static Variables
“I mentioned earlier,” I said, “that each object and its attributes, or member variables, are
maintained in separate locations in the computer’s memory. This protects the data in one object
from being confused with the data of another object. There’s another type of variable you can
declare in a class called a static variable that allows you to share its value with every instance of an
object created from that class.”

310 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 7: Creating Objects from Instantiable Classes 311

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

“I was just about to ask if such a thing was possible,” Dave said. “I’ve worked with other
languages where I could do that, and it can be a pretty beneficial feature.”

“When you say share,” Kate asked, “do you mean that every object created from the same class
can see the value of the variable and update it as well?”

NOTE
Static variables share their values with every instance of the object created
from the class.

“That’s right, Kate,” I said. “As Dave said, this can be a very beneficial feature. Static variables
are a great way for objects of the same class to share data.”

“Is that important?” Mary asked. “Is that something that’s commonly required?”
“It can be,” I said. “For instance, have you ever worked with an accounting program? One part

of an accounting program typically is used to generate invoices for your customers, and it’s customary
to assign a unique number to each invoice. If you write the accounting program using C++, each
invoice can be an object, and you could create a static variable called nextInvoiceNumber that
would enable each object to access the next available invoice number when the invoice object
is created.”

“I see what you mean,” Valerie said. “That makes sense. By storing the value of the next invoice
number in a static variable, each instance of the object can get at the value, plus increment the
value by one after it’s used.”

“Excellent, Valerie,” I said. “The alternative is to force your main() function or startup program
to keep track of the next invoice number, and that’s contrary to the good practice of encapsulation
we are trying to develop.”

“Can we add a static variable to the Banner class to see how it works?” Steve asked.
“Sure, Steve,” I said. “Remember in Example7_2, we created two Banner objects, both of which

were alive at the same time. Suppose we want each object to be able to know how many Banner
objects are currently alive. A static variable is an ideal way to do that.”

“How exactly would we do that?” Peter asked.
“We can declare an integer static variable in the Banner class,” I said, “and then, within its

constructor function, increment the value of that static variable by one. Because the constructor
function is automatically executed each time an object of the class is created, the value of the static
variable should always reflect the number of Banner objects currently in existence.”

I then modified the Banner class to look like this, and displayed it on the classroom projector:

#include <iostream>

#include <string>

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

using namespace std;

class Banner

{

public: string favoriteProgram;

public: static int numberOfBannerObjects;

public: Banner()

{

cout << "Banner's Constructor" << endl;

numberOfBannerObjects++;

favoriteProgram = "C++";

}

public: Banner(string param1)

{

cout << "Banner's Overloaded Constructor" << endl;

numberOfBannerObjects++;

favoriteProgram = param1;

}

public: void HowMany()

{

cout << "The number of Banner objects is " <<

numberOfBannerObjects << endl;

}

public: void Display()

{

cout << "I love " << favoriteProgram << endl;

}

};

“Let’s take a look at the new code in the Banner class,” I said. “We added a static variable called
numberOfBannerObjects, added a line of code in each of the two constructor functions, and created a
new function called HowMany(). Let’s take a look at the declaration of the static variable first. A
static variable is like a member variable in that it is declared outside any functions in the class. What
differentiates a static variable from an member variable is that it is declared with the Static keyword.”

public: static int numberOfBannerObjects;

312 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Static means that numberOfBannerObjects is a static variable and not an member variable,
right?” Blaine asked.

“That’s right, Blaine,” I said. “By the way, you can also write the declaration of our two public
member variables like this, everything following the Public keyword is assumed to be public.”

public:

string favoriteProgram;

static int numberOfBannerObjects;

I waited a moment before continuing.
“We also needed to modify both constructor functions to increment the value of the

numberOfBannerObjects static variable by using the increment (++) operator. Here’s the code for
the first constructor function.”

public: Banner()

{

cout << "Banner's Constructor" << endl;

numberOfBannerObjects++;

favoriteProgram = "C++";

}

“And here’s the code for the second.”

public: Banner(string param1)

{

cout << "Banner's Overloaded Constructor" << endl;

numberOfBannerObjects++;

favoriteProgram = param1;

}

“Finally, here’s the code for the new function called HowMany(). This function will be used by
client programs to display the number of Banner objects currently alive.”

public: void HowMany()

{

cout << "The number of Banner objects is " <<

numberOfBannerObjects << endl;

}

“Now let’s write the code to see the effect of the static variable in action.” I said. “What we’ll do
is create two Banner objects and then execute the HowMany() function of each one.”

Chapter 7: Creating Objects from Instantiable Classes 313

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

I then displayed this code on the classroom projector:

//Example7_6.cpp

#include "Banner.cpp"

int Banner::numberOfBannerObjects;

int main()

{

Banner x; // Call Constructor

x.Display();

x.HowMany();

Banner y("Java"); // Call Overloaded Constructor

y.Display();

y.HowMany();

return 0;

}

“It’s easy to miss,” I said, “but notice how in order to use a static variable, we must declare it
in our program—that’s what this code does. Notice how we prefix the name of the static variable
with the name of the class, followed by two colons (:: called the scoping operator)...”

int Banner::numberOfBannerObjects;

“I thought we declared the static variable in the class,” Mary said.
“We didn’t declare it,” I said. “We defined it. In C++ there’s a fine distinction. We need to

declare the static variable in the program that will be accessing it in order to create storage space
for the variable.”

CAUTION
Failure to declare a static variable in the program that uses it will result in a
compiler error.

I saved the program as Example7_6.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

314 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:29:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 7: Creating Objects from Instantiable Classes 315

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

“Do you see what happened here?” I asked. “After we create the first instance of the Banner
object using this syntax, the value of the static variable numberOfBannerObjects is incremented by
one when the no-arguments constructor function is executed, thus giving us 1. Remember, integer
variables, when uninitialized, are automatically set to zero.”

Banner x; // Call Constructor

“Executing the HowMany() function displays the value of the static variable, 1, on the C++
console.”

x.HowMany();

“This syntax is then used to create a second instance of the Banner object.”

Banner y("Java"); // Call Overloaded Constructor

“The call to the single parameter version of the constructor also results in the value of the
static variable numberOfBannerObjects being incremented by one, thus giving us 2. Executing
the HowMany() function displays the value of the static variable, 2, on the C++ console.”

y.Display();

“From this example,” Dave said, “I can see that both of our Banner objects can ‘see’ the value
of the static variable numberOfBannerObjects, but can both of them modify its value?”

“Good question, Dave,” I said, “and the answer is yes. Each object can modify the value of the static
variable, although the syntax is different from that used to modify a member variable. Take a look.”

I then modified the code from Example7_6 to look like this:

//Example7_7.cpp

#include "Banner.cpp"

int Banner::numberOfBannerObjects;

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

int main()

{

Banner x;

x.HowMany();

Banner y;

y.HowMany();

Banner::numberOfBannerObjects = 0;

x.HowMany();

y.HowMany();

return 0;

}

I saved the program as Example7_7.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

“I know this code is a bit confusing,” I said, “but it does illustrate the capability of an object to
modify the value of a static variable. As we did in Example7_6, here we’ve also created two Banner
objects. The first Banner object is created by this code:”

Banner x;

“As a result, the no-arguments version of the constructor function is executed, incrementing the
value of the static variable numberOfBannerObjects from its initial value of 0 to 1. Executing the
HowMany() function of the first object results in the message ‘The number of Banner objects is 1’
being displayed on the C++ console.”

x.HowMany();

“The second Banner object is then created by this code.”

Banner y;

316 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Once again, the no-arguments version of the constructor function is executed, incrementing
the value of the static variable numberOfBannerObjects from 1 to 2. Executing the HowMany()
function of the second object results in the message ‘The number of Banner objects is 2’ being
displayed on the C++ console.”

y.HowMany();

“With this line of code, we gain direct access to the static variable numberOfBannerObjects and
update it to 0 using an assignment statement with the first object. Because there is just one copy
of a static variable, shared across all instances of objects derived from the class, we use the class
name Banner, and not the name of the object variable, to update it.”

Banner::numberOfBannerObjects = 0;

“Has the value of the static variable really been updated? Yes, it has, and we can prove that by
executing the HowMany() function of the second Banner object, which results in the message
‘The number of Banner objects is 0’ being displayed on the C++ console.”

x.HowMany();

“Not surprisingly, because both objects have access to the same static variable, we get the same
results in the C++ console when we execute the HowMany() function of the second Banner object.”

y.HowMany();

“I’m convinced there really is just the single static variable called numberOfBannerObjects
shared among all the objects created from the class,” Rhonda said. “I think I’m really beginning
to understand this. But isn’t there a potential problem here?”

“How so, Rhonda?” I asked.
“Well,” she continued, “the static variable numberOfBannerObjects was intended to keep track

of the number of Banner objects in existence, and one of our objects was able to subvert that by
resetting the value to 0. If other objects are dependent on the value of numberOfBannerObjects,
a program being able to directly change the value the way we did here seems more than a little
dangerous to me.”

“You raise some good points, Rhonda,” I said “Actually, this topic is one that we’ll cover next
week when we discuss ways to protect the data—that is, variables—in our classes from intentional
and unintentional updates.”

“Is there any way to validate the types of updates that a program like our startup program can
make to an object’s member and static variables?” Dave asked.

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

Chapter 7: Creating Objects from Instantiable Classes 317

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“The answer is yes,” I said, “and again, next week, we’ll spend the entire class examining ways
to protect the data within our objects. For example, you’ll learn there are techniques we can use to
prevent an object from directly updating a member or static variable by forcing all updates to be
performed through special validation functions—but more on that next week.”

Destroying an Object
“I’ve got to say that I feel pretty confident about working with objects,” Ward said. “Now that
you’ve shown us how to create classes of our own and create objects from them, is there anything
special we need to know to destroy them? What happens to the objects we create in our program?
Do they just go away when the program that creates them ends?”

“There’s no need in C++ to explicitly destroy an object when you’re done working with it,” I
said. “Objects are automatically destroyed for us when they go out of scope.”

NOTE
This statement is true, unless we happen to be working with something called
pointers, which you’ll learn about later on in the course. Pointers to an object must
be explicitly destroyed, in order to ensure that all the object’s resources are freed up,
but again, that’s something we’ll talk about later.

“Out of scope?” Rhonda said. “What does that mean?”
“Just like any local variable, an object goes out of scope when the function that is using it

ends,” I said.
“Does that mean,” Joe asked, “that when Example7_7 finished, the two Banner objects we

created were destroyed?”
“That’s right, Joe,” I said, “and with them all the space in our computer’s memory that they

were consuming. Of course, when the program ends, C++ frees up that memory anyway. If we
declare Banner objects in a function, however, C++ destroys the objects after the function finishes
executing—freeing up the memory they used while the program continues to execute.”

“Based on what you just said, I understand there’s nothing we need to do when we’re done with
an object,” Linda said, “but suppose we would like to have code execute when the program using
our object is done with it. Is there a way to do that?”

Class Destructors
“C++ provides objects with a destructor function,” I said. “The destructor function is an optional
function that is guaranteed to be executed just before the object is destroyed.”

318 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“The destructor function sounds similar to the constructor function,” Kate said, “except that
instead of executing when the object is born, it’s executed just before it dies. How do we create a
destructor function?”

“The destructor function is pretty easy to code,” I said. “Like the constructor function, it’s just
a procedure with some code in it. The rules for creating the Destructor function’s header are a bit
strict though: You take the name of the class and precede it with a tilde; use no keyword, such as
Public or Private; and include no parameters nor a return type, like this.”

~Banner()

“What kind of code would we place in the destructor function?” Bob asked.
“Any kind of code that needs to be executed when the object dies,” I said. “For instance, you

might want to store the object’s data in a database or file of some kind when the client program is
done with it. Placing code in the object’s destructor function is one way to ensure that the data
is saved prior to the object dying, when the values of its member variables would be lost. Let’s
modify the Banner class we’ve been using this morning to see the destructor function in action.”

I then displayed this modified code for the Banner class on the classroom projector:

#include <iostream>

#include <string>

using namespace std;

class Banner

{

public: string favoriteProgram;

public: static int numberOfBannerObjects;

public: Banner()

{

cout << "Banner's Constructor" << endl;

numberOfBannerObjects++;

favoriteProgram = "C++";

}

public: Banner(string param1)

{

cout << "Banner's Overloaded Constructor" << endl;

numberOfBannerObjects++;

favoriteProgram = param1;

Chapter 7: Creating Objects from Instantiable Classes 319

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

320 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

}

~Banner() {

cout << "Banner's Destructor" << endl;

}

public: void HowMany()

{

cout << "The number of Banner objects is " <<

numberOfBannerObjects << endl;

}

public: void Display()

{

cout << "I love " << favoriteProgram << endl;

}

};

“Here’s the code for the destructor function,” I said. “Nothing fancy here. We’re just writing a
message to the C++ console to let us know that the Banner object is about to be destroyed.”

~Banner() {

cout << "Banner's Destructor" << endl;

}

“Now let’s write some code to see the destructor function in action,” I said. I then displayed
this code on the classroom projector:

//Example7_8.cpp

#include "Banner.cpp"

int Banner::numberOfBannerObjects;

int main()

{

Banner x;

x.favoriteProgram = "C++";

Banner y("Java");

return 0;

}

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

I saved the program as Example7_8.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

“Does everyone see what happened here?” I asked. “We created two Banner objects, triggering
their constructor functions. That’s all we did with them, and when the code in the main() function
of Example7_8 finished, both objects were no longer being used by it. That’s when our objects
were about to be destroyed, and the destructor function of each one of the objects was triggered.

“This process—of objects going out of scope and being destroyed—happens on its own, right?”
Kathy asked.

“That’s right, Kathy,” I said. “As I said earlier, we don’t need to explicitly destroy the objects.
That happens for us.”

Working with Objects
“This is all great stuff,” Rhonda said. “I’m finding the whole concept of objects and how to work
with them quite fascinating, but I’d be lying if I didn’t say that I would feel a lot more confident
about creating my own classes and objects if I had a chance to work with them a little bit. Will we
have time to do that today?”

“Absolutely,” I said. “I have a series of exercises for you to complete that will give you plenty of
practice in creating classes and objects. We’ll start by taking the Smiley National Bank program we
created last week and modifying it to use objects. Then, toward the end of today’s class, you’ll
modify the Grade Calculation Project to use objects also.”

We had been working a long time without a break, and so I asked everyone to take 15 minutes.
When my students returned, I distributed this exercise for them to complete.

Exercise 7-1 Create the BankTransaction Instantiable Class for
the Smiley National Bank

In this exercise, you’ll take the code you wrote last week in Practice6_2 and
include it in a BankTransaction class. This class will then be used by a client

Chapter 7: Creating Objects from Instantiable Classes 321

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

322 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

program you’ll write in Exercise 7-2 to instantiate BankTransaction objects that
will handle the details of making deposits, withdrawals, and displaying bank
balances.

1. Using Notepad, enter the following code:

//BankTransaction.cpp

#include <iostream>

#include <string>

using namespace std;

class BankTransaction

{

private:

static float balance;

float newBalance;

float adjustment;

public: BankTransaction()

{

cout << "BankTransaction's Constructor" << endl;

}

~BankTransaction() {

cout << "BankTransaction's destructor" << endl;

}

public: void MakeDeposit()

{

cout << "Enter the Deposit Amount: ";

cin >> adjustment;

newBalance = balance + adjustment;

cout << endl << endl <<

"*** SMILEY NATIONAL BANK ***" << endl << endl;

cout << "Old Balance is: " << balance << endl;

cout << "Adjustment is: +" << adjustment << endl;

cout << "New Balance is: " << newBalance << endl <<

endl;

balance = newBalance;

}

public: void MakeWithdrawal()

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 7: Creating Objects from Instantiable Classes 323

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

{

cout << "Enter the Withdrawal Amount: ";

cin >> adjustment;

newBalance = balance - adjustment;

cout << endl << endl <<

"*** SMILEY NATIONAL BANK ***" << endl << endl;

cout << "Old Balance is: " << balance << endl;

cout << "Adjustment is: -" << adjustment << endl;

cout << "New Balance is: " << newBalance << endl <<

endl;

balance = newBalance;

}

public: void GetBalance()

{

cout << endl << endl <<

"*** SMILEY NATIONAL BANK ***" << endl << endl;

cout << "Your current Balance is: " << balance <<

endl << endl;

}

};

2. Save your source file as BankTransaction.cpp in the \CPPFiles\Practice folder
(select File | Save As from Notepad’s menu bar). Be sure to save your source
file with the filename extension .cpp.

3. Compile your source file. Look for any compiler error messages. If you receive
one, correct the problem so that the compiler runs cleanly. Because your source
file contains a class, once the class compiles cleanly, you will still receive an error
from the linker program indicating that you don’t have a main() function. If
that’s the only error you receive, don’t worry. In Exercise 7-2, you’ll create a
startup program to instantiate objects from this class.

Discussion Creating the BankTransaction instantiable class took us about 15 minutes
to complete. Much to my surprise, most of the students seemed comfortable
completing the exercise. I think they were beginning to feel comfortable working
with objects.

“Somehow I thought this would be more confusing,” Rhonda said, “but I think
I’ve surprised myself by more or less understanding what’s going on here. Not only
that, but I’m beginning to get the sense that the changes we’ve made to the Smiley
National Bank application are doing exactly what you said they would do. They’ll
make the program easier to read, follow, and modify in the future. If I’m correct,
what we’ve done in this exercise is take a bunch of code out of Practice6_2 and
include it in an instantiable object called BankTransaction. Is that right?”

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

324 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

“That’s right, Rhonda,” I said. “We’ve taken some but not all the code we
had in written in Practice6_2 and included it in a BankTransaction class, from
which we will create objects in a client program. The BankTransaction class
contains three variables. Two of the variables, adjustment and newBalance, are
member variables, which means that each object created from the class has a
separate copy of them. One variable, however, balance, was designated with
the Static keyword, and that means it’s a static variable.”

“I got it! A static variable can be seen by every object of that class,” Ward
said, “plus, it exists for as long as any object of that class is alive.”

“That’s excellent, Ward,” I said.

“Why is balance declared as a static variable?” Peter asked.

“We have elected to have BankTransaction take on the responsibility of
tracking the value of the account balance,” I said. “The alternative would to be
to declare and track it from within the startup program, but that would have
been less encapsulated. If another object needs to access the current balance,
we can add a function to the BankTransaction class to retrieve that value. We’ll
discuss that kind of function next week. Ultimately, designating balance as a
static variable will enable our client program to keep a running total of the
bank account balance as it is updated by various objects.”

“I notice,” Mary said, “that our three variables, balance, newBalance, and
adjustment, aren’t defined as public like the variables were in the examples you
worked up earlier. What’s the difference here?”

“That’s an excellent question, Mary,” I answered. “In the examples we
worked up earlier, our client program was updating the member variables of
the object directly, so the access modified for the variables needed to be public.
In this case, the member variables of the object are private in scope. Private
means that only code within the class itself can access or modify the variables.
That’s fine in this case because, as you’ll see in a minute, our client program will
only be executing functions of this object, not directly accessing its attributes.”

“How many functions are there in the BankTransaction class?” Chuck asked.

“The BankTransaction class has three functions,” I said. “MakeDeposit(),
MakeWithdrawal(), and GetBalance(). The code in each of these functions
hasn’t changed from that found in the functions in Practice6_2. All we’ve done
is move the functions from a startup program to an instantiable class called
BankTransaction. Plus, in order to illustrate the lifetime of our BankTransaction
object, we’ve written code for a constructor and destructor function.”

“You’re right,” Valerie said. “I was a little amazed at that myself. It seems
that the work we did last week creating custom functions for this application
enabled us to create the BankTransaction class pretty easily.”

“That’s good design,” I said. “When you start to get more experienced with C++, you’ll create
classes like this right from scratch.”

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 7: Creating Objects from Instantiable Classes 325

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

I waited a moment to see if there were any questions. No one had any, so I distributed
this exercise to create the client program in which we would instantiate objects from the
BankTransaction class we just created.

Exercise 7-2 The Smiley National Bank Client Program
Using BankTransaction Objects

In this exercise, you’ll create a client program to instantiate objects from the
BankTransaction class you created in Exercise 7-1.

1. Using Notepad (if you are using Windows), enter the following code:

//Practice7_1.cpp

#include <iostream>

#include <string>

#include "BankTransaction.cpp"

using namespace std;

float BankTransaction::balance;

int main()

{

char response[256];

string moreBankingBusiness;

cout << "Do you want to do some banking? ";

cin >> moreBankingBusiness;

for (int i = 0; i < moreBankingBusiness.length();

i++) {

moreBankingBusiness[i] =

toupper (moreBankingBusiness[i]);

}

while (moreBankingBusiness == "YES") {

cout << "What would you like to do? " <<

"(1=Deposit, 2=Withdraw, 3=Get Balance): ";

cin.getline(response,256);

if (strlen(response) == 0) {

cout << "You must make a selection";

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

326 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

return 1;

}

else

if (atoi(response) < 1 |

atoi(response) > 3) {

cout << response

<< " - is not a valid banking function";

return 1;

}

if (atoi(response) == 1) {

BankTransaction transaction;

transaction.MakeDeposit();

}

if (atoi(response) == 2) {

BankTransaction transaction;

transaction.MakeWithdrawal();

}

if (atoi(response) == 3) {

BankTransaction transaction;

transaction.GetBalance();

}

cout << "Do you have more banking business? ";

cin >> moreBankingBusiness;

for (int i = 0;

i < moreBankingBusiness.length(); i++) {

moreBankingBusiness[i] =

toupper (moreBankingBusiness[i]);

}

} // end of while

cout << endl << endl << "Thanks for banking with us!";

return 0;

}

2. Save your source file as Practice7_1 in the \CPPFiles\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 7: Creating Objects from Instantiable Classes 327

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

3. Compile your source file into an executable file.

4. Execute your program. The program will ask whether you wish to do some
banking. Type Yes at the C++ console.

5. You will then be asked what you want to do: make a deposit, make a
withdrawal, or get a balance. Type 1 at the C++ console.

6. The program will then ask how much you wish to deposit into your account.
Type 50 at the C++ console to indicate your deposit amount.

7. The program will display a confirmation message, indicating your deposit
amount and your old and new balances.

8. Notice that the program is asking whether you have more banking business.
Type Yes at the C++ console.

9. Once again, the program will ask what you wish to do: make a deposit,
make a withdrawal, or get a balance. Type 2 at the C++ console to indicate
you want to make a withdrawal.

10. The program will then ask how much you wish to withdraw. Type 20 at the
C++ console to indicate your withdrawal amount.

11. The program will display a confirmation message, indicating your transaction
(withdrawals are designated with a negative transaction amount) and your
old and new balances.

12. Once again, the program will ask whether you have more banking business.
Type Yes at the C++ console.

13. The program will then ask what you wish to do: make a deposit, make a
withdrawal, or get a balance. Type 3 at the C++ console to indicate you
want to display the current balance.

14. The program will then display the current balance of your account.

15. Once again, the program will ask whether you have more banking business.
Type No at the C++ console.

16. The program will display a message thanking you for using it and then end.

Discussion “This program behaves in an identical manner to the code in Practice6_2,” I
said. “The difference is in the way the code is implemented, with this version
using a client program to create instances of the BankTransaction object we
created in Exercise 7-1. In this version of the program, it’s the BankTransaction
object that does the majority of the work. This client program creates objects,
and based on the type of banking business the user wishes to do, executes one
of the three functions of the BankTransaction class.”

if (atoi(response) == 1) {

BankTransaction transaction;

transaction.MakeDeposit();

}

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

328 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

if (atoi(response) == 2) {

BankTransaction transaction;

transaction.MakeWithdrawal();

}

if (atoi(response) == 3) {

BankTransaction transaction;

transaction.GetBalance();

}

“We’ve really taken the notion of modular programming to its extreme by
creating classes and objects, haven’t we?” Dave commented.

“That’s right, Dave,” I said. “By encapsulating the code for making deposits
and withdrawals and displaying balances within the BankTransaction object, all
the client program using our object needs to know is how to instantiate the
object and what functions to execute. It’s pretty easy, isn’t it?”

“Will we be modifying the Grade Calculation Project to use objects today?”
Joe asked.

“That’s our next step, Joe,” I said. “Right now, the Grade Calculation
Project contains a single startup program called Grades. Grades contains eight
functions: main(), WhatKindOfStudent(), CalculateEnglishGrade(),
CalculateMathGrade(), CalculateScienceGrade(), and three overloaded
functions called DisplayGrade() to handle each of the three different types of
student grade calculations. Any suggestions as to how we can turn this code
into an instantiable class?”

“I guess we could create a single class called Student,” Mary said, “having
the same eight functions we created last week. That’s essentially what we just
did with the banking program.”

“That’s a possibility,” I agreed.

“From what I’ve been reading about object-oriented programming,” Dave
said, “I think we need at least three classes, one for each of the three different
types of students.”

“Is that right?” Rhonda said, turning to Dave, but addressing her question
to me.

“Dave’s on the right track,” I said. “Object design will start to go more
smoothly for you when we discuss a concept called inheritance in two weeks,
but it makes the most sense to create a separate class for each type of student.”

Getting back to Mary’s suggestion, I said. “Mary, I’d have no objection if you
created a single class called Student. You wouldn’t really be wrong, but I think
you’ll see that creating three student classes is the better approach of the two.”

“Sounds great,” Rhonda said. “I’m ready to start!”

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

Chapter 7: Creating Objects from Instantiable Classes 329

“Before we begin,” I said, “I’d also like to suggest that we create one other
class called DisplayGrade. We currently have three overloaded functions called
DisplayGrade, and I think that tells us that displaying grades is a distinct function
in this program. Creating an object to handle the display of the grades will
make things even easier on us.”

“If the EnglishStudent, MathStudent, and ScienceStudent objects do the
work of prompting the user for information and calculating a grade,” Dave
said, “and the DisplayGrade object takes care of displaying the student’s grade,
I think we have ourselves a very modular program.”

“Yes, we do,” I agreed.

“Is there more than one way to design the classes in this project?” Blaine
asked. “I hadn’t thought of a DisplayGrade class at all.”

“That’s a good question, Blaine,” I said. “I want to emphasize that although
there are some agreed-upon rules for the construction of objects, believe me, if
we asked five programmers to review the requirements for this project and design
classes based on these requirements, we would come up with five different
object models. As I frequently say, in the world of programming, there are
many ways to paint a picture, and there’s rarely a single correct solution to
a problem.”

“Can we get going on this?” Rhonda repeated impatiently. “This sounds like
great fun to me, and I’m anxious to get started.”

I then distributed this exercise for the class to complete.

Exercise 7-3 Create the EnglishStudent Instantiable Class

In this exercise, you’ll create the EnglishStudent class for the Grade Calculation
Project. This class will allow a client program to create an object that will
prompt the user for information necessary to calculate the final grade for an
English student.

1. Using Notepad, enter the following code:

//EnglishStudent.cpp

#include <iostream>

#include <string>

using namespace std;

class EnglishStudent

{

public:

int midterm;

int finalExamGrade;

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

330 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

int research;

int presentation;

float finalNumericGrade;

char finalLetterGrade;

float ENGLISH_FINALEXAM_PERCENTAGE;

float ENGLISH_RESEARCH_PERCENTAGE;

float ENGLISH_PRESENTATION_PERCENTAGE;

float ENGLISH_MIDTERM_PERCENTAGE;

public: EnglishStudent()

{

cout << "English Student's Constructor" << endl;

midterm = 0;

finalExamGrade = 0;

research = 0;

presentation = 0;

finalNumericGrade = 0;

ENGLISH_FINALEXAM_PERCENTAGE = .25;

ENGLISH_RESEARCH_PERCENTAGE = .30;

ENGLISH_PRESENTATION_PERCENTAGE = .20;

ENGLISH_MIDTERM_PERCENTAGE = .25;

}

public: void Calculate()

{

char response[256];

string moreGradesToCalculate;

cout << "Enter the Midterm Grade: " ;

cin.getline(response,256);

midterm = atoi(response);

cout << "Enter the Final Examination Grade: " ;

cin.getline(response,256);

finalExamGrade = atoi(response);

cout << "Enter the Research Grade: " ;

cin.getline(response,256);

research = atoi(response);

cout << "Enter the Presentation Grade: " ;

cin.getline(response,256);

presentation = atoi(response);

finalNumericGrade =

(midterm *

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 7: Creating Objects from Instantiable Classes 331

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

ENGLISH_MIDTERM_PERCENTAGE) +

(finalExamGrade * ENGLISH_FINALEXAM_PERCENTAGE) +

(research * ENGLISH_RESEARCH_PERCENTAGE) +

(presentation * ENGLISH_PRESENTATION_PERCENTAGE);

if (finalNumericGrade >= 93)

finalLetterGrade = 'A';

else

if ((finalNumericGrade >= 85) &

(finalNumericGrade < 93))

finalLetterGrade = 'B';

else

if ((finalNumericGrade >= 78) &

(finalNumericGrade < 85))

finalLetterGrade = 'C';

else

if ((finalNumericGrade >= 70) &

(finalNumericGrade < 78))

finalLetterGrade = 'D';

else

if (finalNumericGrade < 70)

finalLetterGrade = 'F';

}

};

2. Save your source file as EnglishStudent.cpp in the \CPPFiles\Grades folder
(select File | Save As from Notepad’s menu bar). Be sure to save your source
file with the filename extension .cpp.

3. Compile your source file. Look for any compiler error messages. If you
receive one, correct the problem so that the compiler runs cleanly. Because
your source file contains a class, once the class compiles cleanly, you will still
receive an error from the linker program indicating that you don’t have a
main() function. If that’s the only error you receive, don’t worry. You’ll be
creating an EnglishStudent object from this class via the startup Grades
class, which you’ll modify in Exercise 7-7.

Discussion No one had any trouble creating the EnglishStudent class, although I did notice
a student or two trying to execute the class from the command prompt, which
is something that can’t be done because EnglishStudent is an instantiable class.

“Just a couple of things to note here,” I said. “First, you may have noticed
that we changed the constants we formerly had in the Grades Calculation
program to member variables here.”

“I was wondering about that,” Dave said. “Why is that?”

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

332 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

“In a C++ class,” I said, “you can’t assign values to member variables or
constants—that is, those declared outside of class functions. Because a constant
must have a value assigned to it when it’s declared, it’s therefore impossible to
declare a constant in a class that is outside of a function.”

NOTE
The latest C++ standards permit constants to be declared and assigned values outside
of a class function, but not all compilers (including the one we’re using here in the
class) support this new feature yet.

“And if we declare a constant within a function,” Dave added, “it has only
local scope, meaning all the other functions won’t be able to see it. Isn’t that
right?”

“You hit the nail on the head,” I said. “That’s why we changed our constants
to member variables and assigned values to them via our constructor function.”

“I noticed that you changed the name of the function
CalculateEnglishGrade() to Calculate(),” Dave said. “Is there a reason for that?”

“There’s an object-oriented programming term called polymorphism,” I said,
“which means it’s okay—even preferable—to have identically named functions
in different classes, provided the functions perform the same task. Because each
one of our Student classes has a function to perform a calculation, I thought it
made sense to give each one of them the same name. Therefore, we’ll have a
Calculate() function in each one of the three Student classes.”

“I noticed that we have a constructor function in the class,” Linda said. “Is
that really necessary?”

“You’re right, Linda,” I said. “We coded a constructor function, and as you
can see, we use it to assign initial values to our member variables, including the
variables that were formerly declared as constants.”

NOTE
Remember, the class constructor function is the perfect place to initialize values for
the object’s use.

public: EnglishStudent()

{

cout << "English Student's Constructor" << endl;

midterm = 0;

finalExamGrade = 0;

research = 0;

presentation = 0;

finalNumericGrade = 0;

ENGLISH_FINALEXAM_PERCENTAGE = .25;

ENGLISH_RESEARCH_PERCENTAGE = .30;

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 7: Creating Objects from Instantiable Classes 333

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

ENGLISH_PRESENTATION_PERCENTAGE = .20;

ENGLISH_MIDTERM_PERCENTAGE = .25;

}

“Why are we displaying a message to the console?” Linda asked.

“Whenever I’m developing a new application, I like to code constructor
functions that write a message out to the C++ console. That way, when I run the
program, I can see if and when my objects are being created. This can sometimes
help you understand how your programming is behaving. At any rate, it can’t
hurt, provided we remember to remove the code from the constructor functions
prior to delivering the final version of the program to Frank Olley.”

There were no other questions, so we moved on to creating the MathStudent class.

Exercise 7-4 Create the MathStudent Instantiable Class

In this exercise, you’ll create the MathStudent class for the Grade Calculation
Project. This class will allow a client program to create an object that will
prompt the user for information necessary to calculate the final grade for a
math student.

1. Using Notepad, enter the following code:

//MathStudent.cpp

#include <iostream>

#include <string>

using namespace std;

class MathStudent

{

public:

int midterm;

int finalExamGrade;

float finalNumericGrade;

char finalLetterGrade;

float MATH_MIDTERM_PERCENTAGE;

float MATH_FINALEXAM_PERCENTAGE;

public: MathStudent()

{

cout << "Math Student's Constructor" << endl;

midterm = 0;

finalExamGrade = 0;

finalNumericGrade = 0;

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

MATH_MIDTERM_PERCENTAGE = .50;

MATH_FINALEXAM_PERCENTAGE = .50;

}

public: void Calculate()

{

char response[256];

string moreGradesToCalculate;

cout << "Enter the Midterm Grade: " ;

cin.getline(response,256);

midterm = atoi(response);

cout << "Enter the Final Examination Grade: " ;

cin.getline(response,256);

finalExamGrade = atoi(response);

finalNumericGrade =

(midterm * MATH_MIDTERM_PERCENTAGE) +

(finalExamGrade * MATH_FINALEXAM_PERCENTAGE);

if (finalNumericGrade >= 90)

finalLetterGrade = 'A';

else

if ((finalNumericGrade >= 83) &

(finalNumericGrade < 90))

finalLetterGrade = 'B';

else

if ((finalNumericGrade >= 76) &

(finalNumericGrade < 83))

finalLetterGrade = 'C';

else

if ((finalNumericGrade >= 65) &

(finalNumericGrade < 76))

finalLetterGrade = 'D';

else

if (finalNumericGrade < 65)

finalLetterGrade = 'F';

}

};

2. Save your source file as MathStudent.cpp in the \CPPFiles\Grades folder
(select File | Save As from Notepad’s menu bar). Be sure to save your source
file with the filename extension .cpp.

334 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

3. Compile your source file. Look for any compiler error messages. If you
receive one, correct the problem so that the compiler runs cleanly. Because
your source file contains a class, once the class compiles cleanly, you will still
receive an error from the linker program indicating that you don’t have a
main() function. If that’s the only error you receive, don’t worry. You’ll be
creating a MathStudent object from this class via the startup Grades class,
which you’ll modify in Exercise 7-7.

Discussion Again, there were no major problems in completing the exercise, and to my
surprise, absolutely no questions. We then moved on to the next exercise: the
creation of the ScienceStudent class.

Exercise 7-5 Create the ScienceStudent Instantiable Class

In this exercise, you’ll create the ScienceStudent class for the Grade Calculation
Project. This class will allow a client program to create an object that will
prompt the user for information necessary to calculate the final grade for a
science student.

1. Using Notepad, enter the following code:

//ScienceStudent.cpp

#include <iostream>

#include <string>

using namespace std;

class ScienceStudent

{

public:

int midterm;

int finalExamGrade;

int research;

float finalNumericGrade;

char finalLetterGrade;

float SCIENCE_MIDTERM_PERCENTAGE;

float SCIENCE_FINALEXAM_PERCENTAGE;

float SCIENCE_RESEARCH_PERCENTAGE;

public: ScienceStudent()

{

cout << "Science Student's Constructor" << endl;

Chapter 7: Creating Objects from Instantiable Classes 335

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

336 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

midterm = 0;

finalExamGrade = 0;

research = 0;

finalNumericGrade = 0;

SCIENCE_MIDTERM_PERCENTAGE = .40;

SCIENCE_FINALEXAM_PERCENTAGE = .40;

SCIENCE_RESEARCH_PERCENTAGE = .20;

}

public: void Calculate()

{

char response[256];

string moreGradesToCalculate;

cout << "Enter the Midterm Grade: " ;

cin.getline(response,256);

midterm = atoi(response);

cout << "Enter the Final Examination Grade: " ;

cin.getline(response,256);

finalExamGrade = atoi(response);

cout << "Enter the Research Grade: " ;

cin.getline(response,256);

research = atoi(response);

finalNumericGrade =

(midterm * SCIENCE_MIDTERM_PERCENTAGE) +

(finalExamGrade *

SCIENCE_FINALEXAM_PERCENTAGE) +

(research * SCIENCE_RESEARCH_PERCENTAGE);

if (finalNumericGrade >= 90)

finalLetterGrade = 'A';

else

if ((finalNumericGrade >= 80) &

(finalNumericGrade < 90))

finalLetterGrade = 'B';

else

if ((finalNumericGrade >= 70) &

(finalNumericGrade < 80))

finalLetterGrade = 'C';

else

if ((finalNumericGrade >= 60) &

(finalNumericGrade < 70))

finalLetterGrade = 'D';

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 7: Creating Objects from Instantiable Classes 337

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

else

if (finalNumericGrade < 60)

finalLetterGrade = 'F';

}

};

2. Save your source file as ScienceStudent.cpp in the \CPPFiles\Grades folder
(select File | Save As from Notepad’s menu bar). Be sure to save your source
file with the filename extension .cpp.

3. Compile your source file. Look for any compiler error messages. If you
receive one, correct the problem so that the compiler runs cleanly. Because
your source file contains a class, once the class compiles cleanly, you will still
receive an error from the linker program indicating that you don’t have a
main() function. If that’s the only error you receive, don’t worry. You’ll be
creating a ScienceStudent object from this class via the startup Grades class,
which you’ll modify in Exercise 7-7.

Discussion “All three of these classes are very similar,” I said, “with just minor differences
in the way the final grade is calculated. This is something that will come into
play when we discuss inheritance in two weeks.”

There were no questions, so I distributed this exercise for the class to complete.

Exercise 7-6 Create the DisplayGrade Instantiable Class

In this exercise, you’ll create the DisplayGrade class for the Grade Calculation
Project. This class will allow a client program to create an object that will display
the final grade for an English, math, or science student. This class has three
overloaded constructor functions to code, so be careful while entering them.

1. Using Notepad, enter the following code:

//DisplayGrade.cpp

#include <iostream>

#include <string>

using namespace std;

class DisplayGrade

{

// This function accepts 6 parameters for the

// English Student

public: DisplayGrade(int midterm, int finalExamGrade,

int research, int presentation,

float finalNumericGrade,

char finalLetterGrade)

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

{

cout << endl <<

"*** ENGLISH STUDENT ***" << endl << endl;

cout << "Midterm grade is: " <<

midterm << endl;

cout << "Final Exam is: " <<

finalExamGrade << endl;

cout << "Research grade is: " <<

research << endl;

cout << "Presentation grade is: " <<

presentation << endl << endl;

cout << "Final Numeric Grade is: " <<

finalNumericGrade << endl;

cout << "Final Letter Grade is: " <<

finalLetterGrade;

} // end of DisplayGrade with 6 parameters

// This function accepts 4 parameters for the Math student

public: DisplayGrade(int midterm, int finalExamGrade,

float finalNumericGrade,

char finalLetterGrade)

{

cout << endl<<

"*** MATH STUDENT ***" << endl << endl;

cout << "Midterm grade is: " <<

midterm << endl;

cout << "Final Exam is: " <<

finalExamGrade << endl;

cout << "Final Numeric Grade is: " <<

finalNumericGrade << endl;

cout << "Final Letter Grade is: " <<

finalLetterGrade;

} // end of DisplayGrade with 4 parameters

// This function accepts 5 parameters for the

// Science Student

public: DisplayGrade(int midterm, int finalExamGrade,

int research,

float finalNumericGrade,

char finalLetterGrade)

338 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

{

cout << endl <<

"*** SCIENCE STUDENT ***" << endl << endl;

cout << "Midterm grade is: " <<

midterm << endl;

cout << "Final Exam is: " <<

finalExamGrade << endl;

cout << "Research grade is: " <<

research << endl;

cout << "Final Numeric Grade is: " <<

finalNumericGrade << endl;

cout << "Final Letter Grade is: " <<

finalLetterGrade;

} // end of DisplayGrade with 5 parameters

};

2. Save your source file as DisplayGrade.cpp in the \CPPFiles\Grades folder
(select File | Save As from Notepad’s menu bar). Be sure to save your source
file with the filename extension .cpp.

3. Compile your source file. Look for any compiler error messages. If you
receive one, correct the problem so that the compiler runs cleanly. Because
your source file contains a class, once the class compiles cleanly, you will still
receive an error from the linker program indicating that you don’t have a
main() function. If that’s the only error you receive, don’t worry. You’ll be
creating a DisplayGrade object from this class via the startup Grades class,
which you’ll modify in Exercise 7-7.

Discussion No one seemed to have any problems completing the exercise, but I could sense
some confusion.

“Does everyone understand what’s going on here?” I asked. “We’ve created
a class that has three overloaded constructor functions.”

“Constructor functions have the same name as the class, is that right?”
Rhonda asked. “And they are automatically executed when an object from
the class is created.”

“That’s excellent, Rhonda,” I said. “Constructor functions are guaranteed
to execute when an object of the class is created. Furthermore, you can create
more than one constructor function with the same name. These are called
overloaded constructor functions, and C++ decides which one of them to
execute based on the number and type of arguments passed to the constructor

Chapter 7: Creating Objects from Instantiable Classes 339

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

340 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

when the object is created. I’ll give you a preview of the code change we’re
about to make in the Grades class. This is the code that will instantiate a
DisplayGrade object and pass the constructor function six arguments to display
the final grade for an English student.”

DisplayGrade x(eStudent.midterm,

eStudent.finalExamGrade,

eStudent.research,

eStudent.presentation,

eStudent.finalNumericGrade,

eStudent.finalLetterGrade);

No one had any other questions, so we moved on to the final exercise of the day: modifying the
Grades class to create objects from the instantiable classes we had just created.

Exercise 7-7 Modify the Grade Calculation Program
to Use Instantiable Objects

In this exercise, you’ll modify the Grades class from last week to create objects
from the instantiable classes you just created.

1. Using Notepad, locate and open the Grades.cpp source file you worked on
last week. (It should be in the \CPPFiles\Grades folder.)

2. Modify your code so that it looks like this:

//Grades.cpp

#include <iostream>

#include <string>

#include "EnglishStudent.cpp"

#include "MathStudent.cpp"

#include "ScienceStudent.cpp"

#include "DisplayGrade.cpp"

using namespace std;

int WhatKindOfStudent();

char response[256];

string moreGradesToCalculate;

int main ()

{

int lresponse;

cout << "Do you want to calculate a grade? ";

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 7: Creating Objects from Instantiable Classes 341

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

cin >> moreGradesToCalculate;

for (int i = 0;

i < moreGradesToCalculate.length(); i++) {

moreGradesToCalculate[i] =

toupper (moreGradesToCalculate[i]);

}

while (moreGradesToCalculate == "YES") {

lresponse = WhatKindOfStudent();

switch(lresponse)

{

case 1: // English Student

{

EnglishStudent eStudent;

eStudent.Calculate();

DisplayGrade x(eStudent.midterm,

eStudent.finalExamGrade,

eStudent.research,

eStudent.presentation,

eStudent.finalNumericGrade,

eStudent.finalLetterGrade);

}

break;

case 2: // Math Student

{

MathStudent mStudent;

mStudent.Calculate();

DisplayGrade y(mStudent.midterm,

mStudent.finalExamGrade,

mStudent.finalNumericGrade,

mStudent.finalLetterGrade);

}

break;

case 3: // Science Student

{

ScienceStudent sStudent;

sStudent.Calculate();

DisplayGrade z(sStudent.midterm,

sStudent.finalExamGrade,

sStudent.research,

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

sStudent.finalNumericGrade,

sStudent.finalLetterGrade);

}

break;

} // end of switch

cout << endl << endl <<

"Do you have another grade to calculate? ";

cin >> moreGradesToCalculate;

for (int i = 0;

i < moreGradesToCalculate.length(); i++) {

moreGradesToCalculate[i] = toupper

(moreGradesToCalculate[i]);

} // end of for

} // end of while

cout <<

"Thanks for using the Grades Calculation program!";

return 0;

}

int WhatKindOfStudent()

{

cout << "Enter student type " <<

"(1=English, 2=Math, 3=Science): ";

cin.getline(response,256);

if (strlen(response) == 0) {

cout << "You must select a Student Type";

exit(1);

}

if ((atoi(response) < 1) | (atoi(response) > 3)) {

cout << response <<

" - is not a valid student type";

exit(1);

}

return atoi(response);

}

342 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 7: Creating Objects from Instantiable Classes 343

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

3. Save your source file as Grades.cpp in the \CPPFiles\Grades folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

4. Compile your source file into an executable file.

5. Execute your program and test it thoroughly. Verify that the looping
behavior of the program is working correctly. After you start up your
program, it should ask whether you have a grade to calculate.

6. Answer Yes and calculate the grade for an English student. Enter 70 for the
midterm, 80 for the final examination, 90 for the research grade, and 100
for the presentation. A final numeric grade of 84.5 should be displayed with
a letter grade of C.

7. After a message is displayed with the calculated grade, the program should
ask whether you have more grades to calculate.

8. Answer Yes and calculate the grade for a math student. Enter 70 for the
midterm and 80 for the final examination. A final numeric grade of 75
should be displayed with a letter grade of D.

9. After a message is displayed with the calculated grade, the program should
ask whether you have more grades to calculate.

10. Answer Yes and calculate the grade for a science student. Enter 70 for the
midterm, 80 for the final examination, and 90 for the research grade. A
final numeric grade of 78 should be displayed with a letter grade of C. After
the message is displayed with the calculated grade, the program should ask
whether you have more grades to calculate.

11. Answer No. You should be thanked for using the program, and the
program should end.

Discussion Changing the Grades class to use instantiable objects was pretty tedious, and it
took most of my students about 15 minutes to complete the exercise. Despite
that, there were no major problems (one or two students forgot the include
statement for the four classes; however, for the most part, I think most
everyone understood what was going on).

“In the final analysis,” Ward said, “we took a bunch of the code from the
Grades class and placed it in the EnglishStudent, MathStudent, ScienceStudent,
and DisplayGrade classes. Is that right?”

“That’s right, Ward,” I said. “Notice that the code in the Grades class itself
has been drastically reduced because so much of it was moved into one of four

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

other classes. Most importantly, the code is easier to read, understand, and
maintain, although the overall code is larger when you consider all the classes
that comprise it.”

“How so?” Rhonda asked. “I mean, how is it easier to maintain?”

“Let me ask you this question,” I said. “If Frank Olley walked into our
classroom right now and told you that the calculation of the final grade for an
English student needs to be changed, could you tell me what class we would
need to change?”

“That’s easy,” Dave said. “That code is in the EnglishStudent class. In fact, it’s
in the Calculate() function of the EnglishStudent class.”

“I couldn’t have said it better myself, Dave,” I replied.

“Can you review the code that instantiates the various student objects?”
Barbara asked.

“Sure thing, Barbara,” I said. “Here it is:”

switch(lresponse)

{

case 1: // English Student

{

EnglishStudent eStudent;

eStudent.Calculate();

DisplayGrade x(eStudent.midterm,

eStudent.finalExamGrade,

eStudent.research,

eStudent.presentation,

eStudent.finalNumericGrade,

eStudent.finalLetterGrade);

}

break;

case 2: // Math Student

{

MathStudent mStudent;

mStudent.Calculate();

DisplayGrade y(mStudent.midterm,

mStudent.finalExamGrade,

mStudent.finalNumericGrade,

mStudent.finalLetterGrade);

}

break;

case 3: // Science Student

{

344 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

ScienceStudent sStudent;

sStudent.Calculate();

DisplayGrade z(sStudent.midterm,

sStudent.finalExamGrade,

sStudent.research,

sStudent.finalNumericGrade,

sStudent.finalLetterGrade);

}

break;

} // end of switch

“All the code necessary to instantiate the EnglishStudent, MathStudent, and
ScienceStudent objects is contained within this Switch structure. The test condition
for the Switch structure is the user’s response of 1, 2, or 3. If the user’s response
is 1, we declare an instance of the EnglishStudent object using the object
variable eStudent.”

EnglishStudent eStudent;

“We then execute the Calculate() function of the EnglishStudent object
using this code.”

eStudent. Calculate();

“This is followed by an instantiation of the DisplayGrade object. Depending
on the number and type of arguments supplied, one of the three constructor
functions we created is executed.”

DisplayGrade x(eStudent.midterm,

eStudent.finalExamGrade,

eStudent.research,

eStudent.presentation,

eStudent.finalNumericGrade,

eStudent.finalLetterGrade);

“What’s the significance of sandwiching the Case statements within curly
braces?” Dave asked. “We haven’t done that before.”

“We need to put curly braces around the Case statement,” I said, “because
one of the imperative statements declares an object. Without the braces, C++
will complain that there’s a conditional variable declaration occurring here—
something that, for technical reasons beyond the scope of this course, it won’t
allow. The braces give the Case statements local scope, allowing the code to
compile.”

“I probably should have asked this earlier,” Linda said, “but why didn’t
we place the code for the grade calculation in a constructor function of the
EnglishStudent class, like we did with the DisplayGrade class, instead of creating
a separate function called Calculate()?”

Chapter 7: Creating Objects from Instantiable Classes 345

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“That’s a good question, Linda,” I said. “We certainly could have done that.
It’s another case of there being more than one way to paint a picture. In theory,
constructor functions should be used to initialize the state or data variables of
an object. I stretched the intended purpose of the constructor functions for the
DisplayGrade object just a bit, in part because I wanted to give you all a chance
to work with one.”

I waited to see if anyone had any questions, but there were none.

“This class has been a very productive one,” I said, “in that you learned
how to code classes and create objects from them, which gives us access to the
object’s data and behavior. Next week, you’ll learn that sometimes in our haste
to give a client program access to an object’s data, we permit too much access,
which can have some pretty nasty effects on the data integrity of our objects.
You’ll learn how to correct that problem next week.”

With that, I dismissed the class for the day.

Summary
In this chapter, you learned how to create instantiable classes—that is, classes from which objects
can be created. These objects can have attributes, which are implemented via member and static
variables within the class, and behaviors, which are implemented via class functions.

Instantiable classes cannot be executed via a command prompt; their objects must be created
from within another class, typically a startup program possessing a main() function. Instantiable
objects can be created using a syntax very similar to those for the fundamental data types.
Instantiable objects created in this way are destroyed by C++ when they go out of scope, so there
is no need to explicitly destroy a C++ object as there is in other programming languages.

Instantiable classes have two special types of functions. The first, the constructor function, has
the same name as the class, and its code is guaranteed to execute when an object of the class is first
created. Constructor functions may be overloaded—that is, you may have more than one constructor
function with the same name, provided each one has a different signature (the number and type of
arguments).

The second special function is called a destructor function, and its code is guaranteed to
execute when a C++ object is about to be destroyed. Destructor functions are named with the class
name and prefixed with a tilde (~). Neither constructor nor destructor functions may accept any
parameters.

346 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 7

P:\010Comp\LearnTo\535-1\ch07.vp
Tuesday, October 08, 2002 12:30:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter

8
Controlling Access
to the Data in
Your Object

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8
Blind Folio 8:347

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
TLFeBOOK

348 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

In Chapter 7, you learned how to create instantiable classes, which are classes from which
other objects can be created. These objects are just like the standard C++ objects, such as
cout, that we’ve been working with all along. Instantiable objects possess characteristics or

attributes that are created via instance and member variables. An instantiable object’s attributes
can be read or updated by the C++ program (or other class) that creates the object. Instantiable
objects also possess certain types of behavior, which are created via functions (functions with
classes are called methods). An instantiable object’s methods can be executed by the C++ program
(or other class) that creates it.

In this chapter, you’ll learn that although it’s great that the C++ class that creates an instantiable
object can access and update the object’s member variables, it’s not always desirable for these variables
to be directly updateable by the client program. The same can be said of client programs that execute
the object’s methods. There may be cases where some methods of the instantiable class need to be
hidden from the client program. You’ll learn that there are ways to deal with these potential problems.

Controlling Access to Your Object’s Data
“Last week,” I said, as I began our eighth class, “you learned how to create instantiable classes,
which are classes from which objects can be created. You learned how we can design an instantiable
class to model a real-world object, complete with characteristics or attributes and behaviors. When
an object is created from an instantiable class, the C++ program creating the object can read and
update the object’s attributes and trigger its behavior by executing its methods. In today’s class,
we’ll continue studying instantiable class creation, which we began last week.”

“I wouldn’t have thought there was a lot more to cover with instantiable classes,” Mary said.
“I thought we were pretty much done with this topic last week.”

“In terms of instantiable classes,” I said, “what we’ve done so far has been fine, but in today’s
class, you’ll learn that the instantiable classes we created last week, although fully functional, may
have some potential data problems.”

“Data problems?” Rhonda asked. “That sounds serious. Do you mean that there are problems
with the classes we created last week?”

“There’s no need to be alarmed, Rhonda,” I said. “In terms of the mechanics of creating instantiable
classes, everything we did last week was just fine. But in our excitement about learning how to use a
C++ class to model an object, we didn’t consider in the least whether the data in the object needs to be
protected, and if so, how to protect it.”

“Protecting the data?” Peter asked. “I’m afraid I don’t understand. From whom do we need to
protect data?”

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“That’s a great question, Peter,” I said. “It may be difficult for you to fathom right now, but the
C++ programs you will write later, particularly if you are writing programs to run in a commercial
environment, have the potential for exposing data that is sensitive.”

“Such as?” Ward asked.
“In a Customer object, customer account numbers and social security numbers are sensitive

data,” I said. “In an Employee object, employee salary information or employee performance
appraisals are sensitive data. These are examples of data that, if the designer of the instantiable
class is not careful, can wind up in the hands of the wrong person. It seems that nearly every week
there’s a story in the newspaper about sensitive data finding its way into the wrong hands. This is
something we need to consider when we design our instantiable classes.”

“How do we do that?” Blaine asked. “Can you give us an example?”
“Sure thing, Blaine,” I said. “Every class we’ve created so far in the course has been created as

a public class, with public methods and public member variables. Let’s take a look at the code we
wrote last week to implement the attributes of the EnglishStudent class.”

public:

int midterm;

int finalExamGrade;

int research;

int presentation;

float finalNumericGrade;

char finalLetterGrade;

“The Public keyword is in front of these member variables,” Rhonda said.
“That’s my point exactly, Rhonda,” I said. “When we created the EnglishStudent class last week,

we specified the keyword Public. That tells C++ to give these variables public access.”
“What does public access mean?” Steve wondered.
“In terms of a member variable,” I said, “public access means that code in other classes and in

the startup program can directly access the member variables in the class.”
“What do you mean by ‘directly access’?” Valerie asked.
“When I say directly access,” I replied, “I mean that a class can create an instance of the

EnglishStudent object and, using object dot notation, directly update the value of an instance or
a member variable, like this.”

I then showed the following example on the classroom projector:

//Example8_1.cpp

#include "EnglishStudent.cpp"

Chapter 8: Controlling Access to the Data in Your Object 349

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

350 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

int main()

{

EnglishStudent x;

x.midterm = 99; // Update the member variable

cout << x.midterm; // Access the member variable

return 0;

}

“Is that a problem?” Steve asked. “Don’t we want the program that creates our object to be able
to work directly with the object’s attributes and methods?”

“In some cases,” I said, “but perhaps not all. Updating the midterm attribute of EnglishStudent
may be fine, but suppose one of the programmers using the EnglishStudent class discovers he or
she can directly update the finalNumericGrade attribute, like this.”

I then showed the following example on the classroom projector:

//Example8_2.cpp

#include "EnglishStudent.cpp"

int main()

{

EnglishStudent x;

x.finalNumericGrade = 99;

return 0;

}

“Now we’re starting to get into dangerous territory,” I said. “Allowing a program to create an
object and then update the component pieces of the English student’s final grade is fine, but by
design, only the Calculate() method of the EnglishStudent object should determine the final
numeric grade. To allow a programmer to directly update the finalNumericGrade or finalLetterGrade
attribute of the EnglishStudent object is to invite problems.”

“Like what?” Rhonda asked.
“The only way a final grade should be calculated,” I said, “is via the code that the designer of

the object wrote. By permitting the user of the object to directly update the finalNumericGrade or
finalLetterGrade attribute, we’ve allowed them to bypass the correct calculation. This can lead to
results that are incorrect at best and fraudulent at worst.”

“In other words,” Dave said, “an unscrupulous programmer could update the final grade for a
student by bypassing the code in the Calculate() method of the EnglishStudent object.”

“That’s right, Dave,” I said, “and it has happened. But as I said before, fraudulent activity like
this is the worst-case scenario. In this case, since the examination and other final grade

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 8: Controlling Access to the Data in Your Object 351

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

components are public, an unscrupulous programmer could also fraudulently update the examination
or other grade components, achieving a similar effect. However, even if the programmer doesn’t
intend to do something like that, allowing the programmer to directly update an attribute that can
properly only be updated by complex code is a big mistake. Remember, one of the great things
about objects is that they allow the developer of the object to shield the complexities of a task
from the programmer who needs to use the object. In the real world of programming, programmers
work with objects like this all the time, and the objects are many times more complex than that of
an English student at a university. Programmers are developing object-oriented programs today to
monitor switches in nuclear power plants or values on the space shuttle just before launch. Can
you imagine the dire effects if the designer of one of these objects accidentally permitted the
programmer using the object to directly update one of its attributes?”

“I think I get the point,” Valerie said. “Certain attributes of an object shouldn’t be updateable
by the programmer using the object.”

“That’s right, Valerie,” I said, “and some attributes are best not seen as well. My point is that
whether or not to allow access to an object’s attributes and methods is something to which the
designer of the class needs to give careful thought before distributing the class for use by other
programmers.”

I waited a moment before continuing.
“I’m not sure there is a consensus among class designers,” I said, “but I think it’s safe to say

that some attributes, but not all, can be directly accessible by the program creating the object and
therefore should be designated with the Public keyword. Other attributes can be visible to the
program creating the object but should not be directly updateable by it. Other attributes should
be invisible to certain users of the program creating the object, and still others should be totally
invisible to the program creating the object—accessible only by code within the methods of the
object itself. These attributes should be designated with the Private access keyword.”

“Can you give us an example of each one of these categories?” Kate asked. “I’m afraid I’m still
not getting it.”

“Let’s imagine,” I said, “that a programmer at XYZ University designs a Student class to model
the university’s real-world student, and that the Student class has this list of attributes.”

I then showed the following example on the classroom projector:

//Student.cpp

#include <iostream>

#include <string>

using namespace std;

class Student

{

public:

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

352 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

string studentID;

string name;

string address;

int age;

string SSN;

float GPA;

“SSN is the student’s social security number, and GPA is the student’s grade point average. Let’s
further suppose that the designer of the Student class coded a constructor method so that when a
Student object is created, the value of the studentID attribute is used to locate student information
in a database record and to assign values to the rest of the Student class attributes. Finally, let’s
suppose that another programmer at the university finds the Student class and decides to use it in
a program they are writing, which is designed to permit a work-study student to update student
address and age information.”

“I see some potential problems with this Student class right away!” Dave said. “There’s nothing
stopping the program from creating a Student object that then exposes private information about
the student, such as social security number and grade point average.”

“I agree,” Steve added. “I think that the client program using the Student object should have
full access—by that I mean read and update—to just two attributes, the address and age attributes.
Furthermore, I would suggest read-only access to the studentID and name attributes. We don’t
want either of those attributes being changed by accident. Finally, I would suggest that both SSN
and GPA be totally invisible to the user of the Student object, at least in this particular case.”

“I agree with both Dave and Steve,” Rhonda said. “But how can we hide some attributes and
make others invisible in C++? Is that what you were talking about earlier when you were discussing
access keywords?”

“That’s part of it, Rhonda,” I said. “By specifying a Private access keyword, we can prevent the
client program from being able to access the attribute at all, and in a moment, you’ll see that we
can also use special methods to selectively restrict what the client program using our object can do
with the data inside of it. Let’s create a Student class with the attributes I just listed and create a
method called Display() to display its data.”

“Will we be accessing data in a database today?” Rhonda asked excitedly.
“No, Rhonda,” I replied. “Working with data from a database within C++ is beyond the scope

of this introductory course. Instead of looking up the student’s information in a database record,
we’ll simulate its lookup by assigning a set of default values to the object’s attributes via its
constructor method.”

I displayed this code for the Student class on the classroom projector:

//Student.cpp

#include <iostream>

#include <string>

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 8: Controlling Access to the Data in Your Object 353

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

using namespace std;

class Student

{

public:

string studentID;

string name;

string address;

int age;

string SSN;

float GPA;

public: Student() //Constructor Method

{

studentID = "123";

name = "Mary Smith";

address = "22 Twain Drive";

age = 22;

SSN = "111-22-3333";

GPA = 2.12;

}

public: void Display()

{

cout << "Student ID: " << studentID << endl <<

"Name: " << name << endl <<

"Address: " << address << endl <<

"Age: " << age << endl <<

"SSN: " << SSN << endl <<

"GPA: " << GPA << endl;

}

};

I then saved the code as Student.cpp and compiled it. Except for the message from the compiler
complaining that the class lacked a main() function (remember, an object of the class needs to be
created from a client program), the program compiled fine.

“As you can see,” I said, “the Student class contains the six attributes we discussed. Notice that
all six member variables are defined with the Public keyword. Notice also that the Student class
has two methods: The constructor method, called Student(), is given the same name as the class.
In it, we placed code to assign a set of default values to each one of the six attributes of the class so
that we can experiment a bit with Student objects created from the class. As I mentioned earlier,
ordinarily we would obtain this information from a data source, such as a database, but that’s

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

354 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

beyond the scope of this introductory course, so we’ll just ‘pretend’ to do so via the constructor
method. Besides, the constructor method is the proper place to initialize the object’s attributes
anyway. The second method is the Display() method, which displays the values of the attributes
to the C++ console. Now let’s create a client program and write the code necessary to instantiate a
Student object from this class.”

I displayed this code on the classroom projector:

//Example8_3.cpp

#include "Student.cpp"

int main()

{

Student x;

x.Display();

return 0;

}

I saved the program as Example8_3.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

“Can anyone tell me what this code did?” I asked.
“What you’ve done here,” Chuck said, “is create a Student object, initialize the values of all six

attributes via its constructor method, and display those values in a message box via the Object’s
Display() method.”

“That’s excellent, Chuck,” I said. “Any other comments?”
“Right now,” Dave said, “the data in this class is very much unprotected. The user of the Student

object can directly access every Student attribute.”
“Absolutely right, Dave,” I said, “We previously agreed that we didn’t want a client program to

have access to the student’s social security number or grade point average, and both of these are
now prominently displayed in the message box. Worse yet, the user of this Student object can

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

directly update both of those attributes, something we also said we didn’t want to happen. Let’s
change the grade point average for Mary Smith.”

I displayed this modified code on the classroom projector:

//Example8_4.cpp

#include "Student.cpp"

int main()

{

Student x;

x.GPA = 3.99;

x.Display();

return 0;

}

I saved the program as Example8_4.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

“Wow,” Kate said. “We’ve really done that Mary Smith a favor: her grade point average went
from 2.12 to 3.99. I see what you mean by allowing the client program full access to the GPA
attribute of the Student class.”

“It didn’t occur to me that we could use the object dot-notation to directly update these attributes,”
Ward said, “and with the access control keyword of Public, the member variables in the class can
be updated by the client program.”

NOTE
Access control keywords are typed in lowercase (for example, public and private).

“Besides public access,” Mary asked, “what are the other access control keywords again?”

Chapter 8: Controlling Access to the Data in Your Object 355

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

“Public access,” I said, “which is what we have here, gives full access to the member variable to
code in any other client class. There’s also private and protected access. Protected access applies only
when inheritance is a factor. Inheritance is something we’ll be discussing next week.”

“What about private access?” Steve asked. “Did you skip that?”
“Private access,” I said, “means that the member variable can be used only by code located within

the same class as the member variable.”
I gave everyone a chance to ponder that statement for a moment.
“In the case of the Student class,” I said, “that means that if the member variable GPA is defined

with a Private access control keyword, only code in the methods of the Student class itself will be
able to access the member variable.”

NOTE
As a reminder, a method is the name given to a function in a class.

“That seems pretty worthless, doesn’t it?” Mary said. “What’s the use of having an attribute if it
can’t be seen or updated from outside the instantiable class?”

“You’ll see in a moment,” I said, “how the Private access control keyword is the perfect way to
protect data within our object. What we do is make the member variables private but provide
public methods to access and modify them. Right now, I’d like to show you what happens if we
define our member variables with the Private access control keyword.”

I then modified the code in the Student class to look like this:

//Student.cpp

#include <iostream>

#include <string>

using namespace std;

class Student

{

private:

string studentID;

string name;

string address;

int age;

string SSN;

float GPA;

public: Student() //Constructor Method

{

studentID = "123";

356 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 8: Controlling Access to the Data in Your Object 357

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

name = "Mary Smith";

address = "22 Twain Drive";

age = 22;

SSN = "111-22-3333";

GPA = 2.12;

}

public: void Display()

{

cout << "Student ID: " << studentID << endl <<

"Name: " << name << endl <<

"Address: " << address << endl <<

"Age: " << age << endl <<

"SSN: " << SSN << endl <<

"GPA: " << GPA << endl;

}

};

“By specifying an access control keyword of Private for the member variables of the Student
class,” I said, “we’re now preventing the code from the Example8_4 class from being able to access
the values of these member variables. Look at what happens when we try to recompile the code
from Example8_4.”

I then attempted to recompile Example8_4. The following screenshot was displayed:

“What happened?” I heard Rhonda say.
“The C++ compiler has recognized that the code in Example8_4 is trying to access the private

member variable GPA in the Student class and has flagged that line of code as an error,” I said.
“With the Private access control keyword, access to these member variables from code outside the
class is no longer possible.”

“I see that private access means we can’t update the value of the member variable,” Rhonda
said. “Does it also mean we can’t see the value?”

“That’s right, Rhonda,” I said. “We can neither see nor update private member variables
directly. However, and this is where the trick comes in, we can indirectly see and update private

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

358 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

member variables, provided that a public method of the Student class is written to do that.
Remember, private access allows methods within the same class to ‘get at’ the private member
variables. We can modify the code in Example8_4 to look like this:”

//Example8_5.cpp

#include "Student.cpp"

int main()

{

Student x;

x.Display();

return 0;

}

“This code will compile and run just fine, with the public Display() method of the Student
class taking care of allowing our program to see the values of the Student object’s attributes.”

I saved the program as Example8_5.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

“I see what you mean now,” Mary said. “Even though the member variables are declared as private,
the public Display() method allows us to see the values of the Student class’s member variables.”

“Exactly, Mary,” I answered.
“But suppose,” Mary continued, “we want to be able to update the member variables as well as

see them?”
“Then we write a public method to enable us to do that as well,” I said. “The point is that

instead of allowing a client program to directly view or update a member variable, we write a
public method that permits either the view or the update, or both. At this point, that approach
may not seem like much of an improvement over simply having a public attribute, but I think
you’ll see the benefits of doing so in just a few minutes.”

P:\010Comp\LearnTo\535-1\ch08.vp
Tuesday, October 08, 2002 8:43:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 8: Controlling Access to the Data in Your Object 359

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

Member Variables: Public or Private?
“Are you saying that all our member variables should be declared as private?” Linda asked.

“That’s a good question, Linda,” I said. “In the C++ world, it’s considered best to create private
member variables, and many programmers follow this guideline, declaring all their member variables
as private and writing public methods to provide access to the member variables and their values.
On the other hand, you will find some programmers who declare all their member variables as public.
You’ll also find programmers who pick and choose, declaring some member variables as public and
some as private, depending on the particular attribute of an object the member variable represents.”

“What’s your recommendation?” Steve asked.
“My recommendation,” I said, “is that you declare your member variables as private and write

public methods to access them, and that’s the consensus opinion. However, the bottom line is that
the C++ language allows you to create public member variables. If you choose to do so, that’s up
to you. However, bear in mind that this practice may be something that a prospective employer
frowns upon, because public member variables can cause data integrity problems, the type we just
saw with the Student class example. Certainly, you should at least think twice before you declare a
member variable as public.”

“I’m still having problems with this concept of private member variables and public methods,”
Chuck said. “In the Student class we just wrote, is the Display() method the type of public method
you are talking about?”

“Good question, Chuck,” I said. “More typically, the public methods I’m referring to are functions
or methods normally called Get() and Set() methods. Get() methods are public methods that
permit a client program to get or retrieve the value of a private member variable. Set() methods
are public methods that permit a client program to set or update the value of a private member
variable. By the way, Get() methods are also called accessor methods, and Set() methods are also
called mutator methods.

NOTE
C++ terminology can be confusing. In some cases, you will see both the Set() and
Get() methods referred to collectively as accessor methods. You will sometimes see
the Set() method referred to as a mutator method (because it changes the value of a
private member variable) and the Get() method referred to as an accessor method
(because it accesses the value of a private member variable). For the purposes of our
discussion, I’ll refer to the Set() method as the mutator method and the Get() method
as the accessor method.

“So we should code a pair of Get() and Set() public methods for each member variable?”
Linda asked.

“If you declare your member variables as private,” I said, “you will need a public Get() method
to retrieve an attribute’s value and a public Set() method to change it. Without them, there’s no

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

360 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

way the client program can access the object’s attribute represented by that member variable. There
are also times where you may choose not to code either one, thereby preventing the attribute from
either being seen, updated, or both.”

“What kind of code do we put in the Get() method?” Valerie asked. “Just the code to update
the private member variable.”

“As you’ll see in a minute,” I said, “you can place code in the Get() method to determine whether
the client program requesting the value of the private member variable really should have access to
it, and you can place code in the Set() method to determine whether the client program attempting
to update the value of the private member variable should be able to do so.”

“That would come in very handy with the SSN and GPA attributes of the Student class,” Mary said.
“Absolutely,” I said. “The Set() method is a great place to put code to verify whether the client

program has the authority to update the private member variable. Code in the Set() method can
also be used to perform validation on the proposed update before the member variable is actually
changed and the object is set to an invalid state.”

“Validation code?” Rhonda asked. “Invalid state? What do you mean?”
“The ‘state’ of an object refers to the values of the data that represent the object,” I said. “An

object must always maintain its data in a valid state, and a well-written object should test any
changes to its data, ensuring that each one of its attribute’s values doesn’t violate its set of legal
values. For instance, in Example8_4, you saw how a client program can inappropriately change
the value of the GPA member variable. Still, the value of GPA was set to a value that is consistent
with a grade point average. With a public member variable, it’s easy for a client program to make a
mistake and cause the object’s state to become invalid, like this:”

//Example8_6.cpp

#include "Student.cpp"

int main()

{

Student x;

x.age = -6;

x.Display();

return 0;

}

NOTE
If you try to compile this code, the class won’t compile cleanly because the age
attribute is currently defined with private access.

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 8: Controlling Access to the Data in Your Object 361

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

Using the Get() and Set() Methods
“Does anyone see a problem here?” I asked.

“I do,” Rhonda called out. “You’ve assigned a negative number to the Student object’s age attribute.
I’m sure you didn’t mean to do that.”

“Is that what you mean by ‘invalid state’?” Ward asked.
“You’re both absolutely right,” I said. “I didn’t intend to do that, but if the age member variable

is declared with public access, there’s absolutely no way to prevent this. And now the Student object
does have an invalid state: One of its attributes makes no sense. The student’s age cannot be negative.”

“A Set() method could prevent this from happening?” Lou asked.
“That’s right, Lou,” I said. “Using a Set() method, we can alert the user if the update they’ve

attempted to make to a private member variable is invalid. Let’s code Set() and Get() methods for
two of the attributes in the Student class. Take a look at this code.”

I then modified the code in the Student class to look like this:

//Student.cpp

#include <iostream>

#include <string>

using namespace std;

class Student

{

private:

string studentID;

string name;

string address;

int age;

string SSN;

float GPA;

public: Student() //Constructor Method

{

studentID = "123";

name = "Mary Smith";

address = "22 Twain Drive";

age = 22;

SSN = "111-22-3333";

GPA = 2.12;

}

public: void Display()

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

{

cout << "Student ID: " << studentID << endl <<

"Name: " << name << endl <<

"Address: " << address << endl <<

"Age: " << age << endl;

}

public: void SetAddress(string temp)

{

address = temp;

}

public: string GetAddress()

{

return address;

}

public: void SetAge(int temp)

{

if (temp < 1)

{

cout << "Invalid Age " << temp << " Program Terminating" << endl;

exit(1);

}

else

age = temp;

}

public: int GetAge()

{

return age;

}

}; //end of class

“What we’ve done here,” I said, “is declare a Get() and Set() method for two of our member
variables: address and age.”

“Are those the accessor and mutator methods you mentioned earlier?” Valerie asked.
“That’s right, Valerie,” I answered. “Get() methods are also called accessor methods, and they

permit the client program to retrieve the value of a private member variable. Set() methods are

362 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

also called mutator methods, and they permit the client program to update the value of a private
member variable.”

“Why didn’t we create Get() and Set() methods for each one of the private member variables?”
Kate asked. “Didn’t you say that was your recommendation?”

“Not quite, Kate,” I replied. “My recommendation is to create private member variables for
every attribute of the object but to create Get() and Set() methods only where necessary. Remember,
I mentioned that there may be times when we choose not to create accessor or mutator methods
for some attributes. This is a good example of that. We are not interested in providing our client
program with access to the Student object’s other four attributes, so those values would be initialized
by the constructor method, perhaps from a database file, and then remain the same for the life of
the object. By providing no Get() or Set() methods for those member variables, there’s no way the
client program can view them or update them.”

“Except through the public display() method,” Dave said, “and I notice that you’ve modified
that method, and it no longer displays the SSN or GPA member variables.”

“That’s right, Dave,” I said. “Does everyone see the benefits of declaring our member variables
as private?”

“I think I do,” Linda said, “but isn’t providing Get() and Set() methods the same as making the
member variable public in the first place?”

“That’s the argument that some programmers make,” I said, “but that’s only true if no validation
or access rights check is being performed in the Get() or Set() method. You have to remember that
when a direct retrieval or update is made to a public member variable by a client program, there’s
nothing that the object can do to stop it. Get() and Set() methods, on the other hand, can be coded
to be much ‘smarter’ than that. For instance, code in a Get() method can determine the identity
of the user of the client program and make a decision as to whether the user should be permitted
to see the data. Code in a Set() method can validate the proposed update before it occurs.”

“I’m convinced,” Linda said. “Can we take a closer look at the Get() and Set() methods before
we test this code?”

“Sure thing, Linda,” I said. “Let’s take a look at the Set() methods first. Remember, we created
Set() methods only for the age and address private member variables.”

“Does that mean the other four private member variables can’t be updated?” Linda asked.
“That’s right,” I said. “If we declare a member variable as private, without a mutator method or

some other public method that can update it, the member variable is shut off from the client program.”
“So it’s up to the designer of the object to decide whether a Get() or Set() method will be written

for each private member variable, right?” Joe asked.
“Exactly,” I answered. “If no access to the private member variable is required, then we don’t write

either a Get() or Set() method. If the private member variable’s value needs to be seen but not updated,
we only write a Get() method.”

Chapter 8: Controlling Access to the Data in Your Object 363

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

Set() Mutator Methods
“Where’s the mutator method for the address attribute?” Blaine asked. “Is that the SetAddress()
method?”

“That’s right, Blaine,” I said, as I displayed it on the classroom projector. “Mutator methods by
convention begin with the prefix ‘Set’. Notice also that we have specified the Public keyword.”

public: void SetAddress(string temp)

{

address = temp;

}

“Is there anything special about a mutator method?” Barbara asked. “SetAddress() looks like an
ordinary method to me.”

“Barbara’s right,” I said. “Set() methods are just ordinary methods with code that permits the user of
the object to update the value of a private member variable. This is accomplished by the client program
passing the proposed updated value of the private member variable as an argument to the Set() method.
Notice that SetAddress() is declared to accept a single string argument called temp. This argument,
when passed to SetAddress(), is then assigned to the private member variable address.”

“So that’s how it works,” Rhonda said. “The address member variable is declared private, but
even so, code within the class itself has full access to it.”

“You have the idea now, Rhonda,” I said. “Notice that there was no validation code in the
SetAddress() method. However, the mutator method for the age attribute is a bit more complicated.”

public: void SetAge(int temp)

{

if (temp < 1)

{

cout << "Invalid Age " << temp << " Program Terminating" << endl;

exit(1);

}

else

age = temp;

}

“As was the case with the SetAddress() mutator method, SetAge() also accepts a single argument,
although this one is an integer, because the passed argument must match the data type of the
private member variable. SetAddress() contains validation code, using an If statement, to handle
the negative number that we ‘accidentally’ assigned to the age attribute in Example 8_4. If the
value of the passed argument is less than 1, we display a message to the user and execute the
exit() method to immediately end the program. Otherwise, we assign the value of the passed
argument to the private member variable called age.”

364 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 8: Controlling Access to the Data in Your Object 365

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

“What’s the impact of executing the exit() method within the mutator method?” Dave asked.
“Will it end the program or just destroy the Student object?”

“Executing the exit() method immediately terminates the entire program,” I said.
“Is there a more elegant way of handling the error than that?” Linda asked.
“Yes, there is,” I said. “We could have defined the mutator method to return a predetermined

value to the client program and then have the client program react to that return value.”
“So mutator methods can return a value?” Bob asked.
“Absolutely,” I said. “Mutator methods can return a value just like any other method. In the case

of SetAge(), we could have chosen to return a value to the client program indicating the success
or failure of the update. Traditionally, a return value of 0 indicates success, and some other value,
such as –1, indicates failure.”

Everyone seemed anxious to see the mutator method of the Student class in action by executing
a client program, but first, we needed to quickly examine the accessor methods.

Get() Accessor Methods
“Let’s take a look at the two accessor methods we created, GetAddress() and GetAge(). As you can
see, by convention, accessor methods are named beginning with the prefix ‘Get’. Accessor methods
return the value of the private member variable as a return value to the client program that calls
them. Here’s the GetAddress() accessor method:”

public: string GetAddress()

{

return address;

}

“And here’s the GetAge() accessor method:”

public: int GetAge()

{

return age;

}

“We had no reason to do so,” I continued, “but it’s within the accessor method that we can write
code to determine whether the client program should have access to the value of the private member
variable. One way to do so would be to require the client program to supply, as an argument to the
accessor method, some kind of password.”

I waited to see if there were any questions, but there were none.
“I’m anxious to see how the mutator and accessor methods work,” Rhonda said.

P:\010Comp\LearnTo\535-1\ch08.vp
Tuesday, October 08, 2002 8:44:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

366 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

“Rhonda’s right,” I said. “It’s time to test the accessor and mutator methods of the Student class.
Let’s see if we can assign a negative value to the age attribute of the Student object.”

I then displayed this code on the classroom projector:

//Example8_7.cpp

#include "Student.cpp"

int main()

{

Student x;

x.SetAddress("222 Elm Street");

x.SetAge(-6);

x.Display();

return 0;

}

“Here’s code that creates an instance of a Student object,” I said, “and then uses the mutator
methods SetAddress() and SetAge() to update the private member variables of address and age.
Notice how we’re passing values for both of the mutator methods via arguments to the respective
mutators.”

“I was about to say,” Kate mentioned, “that there is no assignment statement in the code. I
forgot that we no longer assign a value directly to a member variable and that instead we pass a
value as an argument to the mutator method.”

“Does everyone notice that I’ve repeated the mistake that I made earlier,” I asked, “by ‘accidentally’
passing a negative number as an argument to the SetAge() mutator method? Let’s see if the
mutator catches it.”

I saved the program as Example8_7.cpp and then compiled and executed it. The following
screenshot was displayed:

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 8: Controlling Access to the Data in Your Object 367

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

“Looks like the mutator worked,” I heard Steve say.
“Indeed it did,” I replied. “The SetAge() mutator detected a passed value less than 1, displayed

a message to the user, and then ended the program. Now, let’s see how the program behaves if we
pass it a legal value for the age attribute.”

I then displayed the following code on the classroom projector:

//Example8_8.cpp

#include "Student.cpp"

int main()

{

Student x;

x.SetAddress("222 Elm Street");

x.SetAge(46);

x.Display();

return 0;

}

I saved the program as Example8_8.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

“Does everyone see how the two mutator methods have allowed us to update the private member
variables address and age?” I asked.

“I’m fine with that,” Linda said, “but we haven’t used the accessor methods, have we? We used
the public Display() method of the Student object to display the values for the address and age
member variables. Can we see their accessor methods in action?”

“That’s a good point, Linda,” I said. “Let’s do that.”

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

368 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

I then displayed the following code on the classroom projector:

//Example8_9.cpp

#include "Student.cpp"

int main()

{

Student x;

x.SetAddress("222 Elm Street");

x.SetAge(46);

cout << "The value of age is: " << x.GetAge() << endl;

cout << "The value of address is: " << x.GetAddress() << endl;

return 0;

}

“Where are we executing the accessor methods for age and address?” Rhonda asked. “I’m afraid
I’m just not seeing them.”

“They’re in these two lines of code,” I said. “You may have missed them because their return
values are being used as an argument to the cout object.”

cout << "The value of age is: " << x.GetAge() << endl;

cout << "The value of address is: " << x.GetAddress() << endl;

“I see now,” Rhonda said.
I saved the program as Example8_9.cpp and then compiled and executed it. The following

screenshot was displayed on the classroom projector:

We had been working for some time, so I suggested we take a break prior to examining the Grade
Calculation Project for data integrity issues. While my class was out of the room, I placed a quick
phone call to coordinate a visit with a special guest.

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 8: Controlling Access to the Data in Your Object 369

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

Analyzing the Grades Calculation Project for Data Integrity
Fifteen minutes later I resumed class by explaining that it was now time to examine the Grade
Calculation Project for data integrity concerns, the type that we had been studying all morning.

“Does anyone see any data integrity problems with the Grade Calculation Project?” I asked.
“Don’t forget, you’ll need to examine all the classes in the project.”

I gave everyone a few minutes to find and load their own versions of the Grade Calculation
Project on their PCs.

“The first thing that strikes me as being suspect, at least based on what we learned this morning,”
Dave said, “is that the member variables in the EnglishStudent, MathStudent, and ScienceStudent
classes are currently defined with the Public keyword. From what we learned today, that means a
client program can, in theory, directly access those member variables—and also modify them.”

“Absolutely correct,” I replied. “That’s definitely something we’ll need to correct.”
“Does that mean we’ll need to write Get() and Set()methods for each of the member variables?”

Joe asked.
“Almost all of them Joe,” I replied. “We’ll need to write Set() methods for each member variable

we want our client program to update, and Get() methods for each member variable we want our
client program to be able to access.”

“I think,” Linda said, “that the Set() mutator methods will be a great place to put the validation
code we’ll need for the midterm, finalExamGrade, research, and presentation member variables. Just
like the negative number we assigned to the age attribute a few minutes ago, each one of the member
variables of the various Student classes in the Grades Calculation Project can have an invalid number
assigned to it by the user. Isn’t the Set() mutator method the place for that code?”

“Absolutely, Linda,” I said. “You’re right. At this point, the user can specify a negative number
for a student’s midterm, and our program will calculate a final grade anyway. We’ll definitely need
to correct that. One more thing: I’d suggest coding the Set() methods with an access control keyword
of Private. This will ensure that only code within the class can update the member variables.”

“Can we do that?” Ward asked, “I mean, code a method with an access keyword of Private, just
like our member variables? I thought all our methods needed public access.”

“Yes, we can code a private method,” I said. “It works the same way as with a member variable.
A private method is one that can only be executed by code within the same class.”

“But if we code the Set() mutator method as private, how will the private member variable be
updated?” Barbara asked.

“I was just about to ask,” Kate said, “whether anything we do in the next few minutes will require
a change to the Grades class itself. I notice that, right now, the Grades program, when it creates a
DisplayGrade object, directly references the member variables in each one of the Student objects.

“You both hit the nail on the head,” I said. “Our program will no longer be directly updating
the member variables in the various Student objects as it does now. Instead, we’ll be coding and

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

370 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

executing Set() mutator methods of the Student classes. In fact, as you’ll see shortly, it will be the
constructor methods of the Student classes that ultimately will execute the Set() mutator methods
for each one of the member variables.”

We then spent the next few minutes agreeing on what everyone believed would be the final
versions of the various Student classes (the students didn’t realize they would be changing these
classes again after they learned about inheritance the following week). We agreed that for every
Student class we would do the following:

� Modify all the member variables to have Private access keywords

� Create Get() accessor and Set() mutator methods for the midterm, finalExamGrade, research,
and presentation member variables. We agreed to incorporate validation code in the Set()
mutator methods of each, with valid grades ranging from 0 to 100. Because these Set() mutator
methods would be executed only by code within the Student classes themselves, we agreed to
specify an access keyword of Private for these methods.

We agreed that there was no need to code a Set() mutator method for either the finalNumericGrade
or the finalLetterGrade member variables—the Student classes would update these variables directly,
which is okay because the update is not being performed by a client program. I further suggested that
it would be a good idea to code a Get() accessor method for both the finalNumericGrade and
finalLetterGrade member variables.”

“I just thought of something,” Rhonda said. “What about the DisplayGrade class? Are any
changes required of it?”

Rhonda’s question was a good one, but after a quick analysis of the DisplayGrade class, we saw
that it contained no member variables of any kind. Therefore, no changes were required there.
With no more questions, I then distributed the first exercise of the day to complete the modification
of the EnglishStudent class.

Exercise 8-1 Modify the EnglishStudent Class

In this exercise, you’ll modify the EnglishStudent class you created last week.

1. Using Notepad (if you are using Windows), locate and open the
EnglishStudent.cpp source file you worked on last week. (It should be
in the \CPPFiles\Grades folder.)

2. Modify your code so that it looks like this:

//EnglishStudent.cpp

#include <iostream>

#include <string>

using namespace std;

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 8: Controlling Access to the Data in Your Object 371

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

class EnglishStudent

{

private:

int midterm;

int finalExamGrade;

int research;

int presentation;

float finalNumericGrade;

char finalLetterGrade;

float ENGLISH_FINALEXAM_PERCENTAGE;

float ENGLISH_RESEARCH_PERCENTAGE;

float ENGLISH_PRESENTATION_PERCENTAGE;

float ENGLISH_MIDTERM_PERCENTAGE;

public: EnglishStudent()

{

cout << "English Student's Constructor" << endl;

midterm = 0;

finalExamGrade = 0;

research = 0;

presentation = 0;

finalNumericGrade = 0;

ENGLISH_FINALEXAM_PERCENTAGE = .25;

ENGLISH_RESEARCH_PERCENTAGE = .30;

ENGLISH_PRESENTATION_PERCENTAGE = .20;

ENGLISH_MIDTERM_PERCENTAGE = .25;

}

private: void SetMidterm(int temp)

{

if (temp < 0 || temp > 100)

{

cout << "Invalid Midterm Grade (" <<

temp << ") " <<

"Program Terminating" << endl;

exit(1);

}

else

midterm = temp;

}

public: int GetMidterm()

{

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

372 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

return midterm;

}

private: void SetFinalExamGrade(int temp)

{

if (temp < 0 || temp > 100)

{

cout << "Invalid Final Exam Grade (" <<

temp << ") " <<

"Program Terminating" << endl;

exit(1);

}

else

finalExamGrade = temp;

}

public: int GetFinalExamGrade()

{

return finalExamGrade;

}

private: void SetResearch(int temp)

{

if (temp < 0 || temp > 100)

{

cout << "Invalid Research Grade (" <<

temp << ") " <<

"Program Terminating";

exit(1);

}

else

research = temp;

}

public: int GetResearch()

{

return research;

}

private: void SetPresentation(int temp)

{

if (temp < 0 || temp > 100)

{

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

Chapter 8: Controlling Access to the Data in Your Object 373

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

cout << "Invalid Presentation Grade (" <<

temp << ") " <<

"Program Terminating";

exit(1);

}

else

presentation = temp;

}

public: int GetPresentation()

{

return presentation;

}

public: float GetFinalNumericGrade()

{

return finalNumericGrade;

}

public: char GetFinalLetterGrade()

{

return finalLetterGrade;

}

public: void Calculate()

{

char response[256];

string moreGradesToCalculate;

cout << "Enter the Midterm Grade: " ;

cin.getline(response,256);

SetMidterm(atoi(response));

cout << "Enter the Final Examination Grade: " ;

cin.getline(response,256);

SetFinalExamGrade(atoi(response));

cout << "Enter the Research Grade: " ;

cin.getline(response,256);

SetResearch(atoi(response));

cout << "Enter the Presentation Grade: " ;

cin.getline(response,256);

SetPresentation(atoi(response));

finalNumericGrade =

(midterm *

ENGLISH_MIDTERM_PERCENTAGE) +

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

374 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

(finalExamGrade * ENGLISH_FINALEXAM_PERCENTAGE) +

(research * ENGLISH_RESEARCH_PERCENTAGE) +

(presentation * ENGLISH_PRESENTATION_PERCENTAGE);

if (finalNumericGrade >= 93)

finalLetterGrade = 'A';

else

if ((finalNumericGrade >= 85) &

(finalNumericGrade < 93))

finalLetterGrade = 'B';

else

if ((finalNumericGrade >= 78) &

(finalNumericGrade < 85))

finalLetterGrade = 'C';

else

if ((finalNumericGrade >= 70) &

(finalNumericGrade < 78))

finalLetterGrade = 'D';

else

if (finalNumericGrade < 70)

finalLetterGrade = 'F';

}

};

3. Save your source file as EnglishStudent.cpp in the \CPPFiles\Grades folder
(select File | Save As from Notepad’s menu bar). Be sure to save your source
file with the filename extension .cpp.

4. Compile your source file. Look for any compiler error messages. If you
receive one, correct the problem until the compiler runs cleanly. Because
your source file contains a class, once the class compiles cleanly, you will still
receive an error from the linker program indicating that you don’t have a
main() function. If that’s the only error you receive, don’t worry. You won’t
be testing your modified EnglishStudent class until we have completed the
work on the other classes in the project.

Discussion “Let’s take a look at what we’ve done in the EnglishStudent class,” I said. “We
made three major types of changes. First, we changed the access keywords for
our member variables from public to private”

private:

int midterm;

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

Chapter 8: Controlling Access to the Data in Your Object 375

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

“Second,” I continued, “we created private mutator, or Set() methods, for
each one of the member variables. As Linda pointed out earlier, the Set() method
is a great place to put validation code for our member variables. Here’s the
Set() method for the midterm member variable.”

private: void SetMidterm(int temp)

{

if (temp < 0 || temp > 100)

{

cout << "Invalid Midterm Grade (" <<

temp << ") " <<

"Program Terminating" << endl;

exit(1);

}

else

midterm = temp;

}

“Notice that within the Set() method,” I said, “we are accepting a midterm
grade from the user and validating it to ensure that it’s a value between 1 and
100. If it is, we then assign the value to the private member variable midterm.
If it’s not, we display a message to the C++ console and end the program.”

“Tell me again why these are private methods.” Blaine said.

“By making the Set() methods private,” I said, “we prevent our client program
from updating the member variables, even via the Set() method. Only code within
the English class itself will be able to execute the various Set() methods, and they
will be triggered only after the user is prompted for their appropriate values.”

I waited for questions, but everyone seemed fine.

“Finally,” I said, “we created accessor, or Get() methods, for each one of the
member variables. In comparison to the Set() methods, these are relatively simple.
Here’s the Get() method for the midterm member variable.”

public: int GetMidterm()

{

return midterm;

}

“We won’t be able to see the Get() and Set() methods in action until we
modify the Grades class to use them,” I said.

“I noticed we also made a change to the Calculate() method,” Dave said.

“Thanks Dave,” I said. “I almost forgot about that. Because we are now
updating the value of the EnglishStudent member variables by executing the

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

376 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

various Set() methods, the Calculate() method has changed slightly. Here’s
the code that prompts the user to enter the midterm grade.”

cout << "Enter the Midterm Grade: " ;

cin.getline(response,256);

SetMidterm(atoi(response));

Notice how we use the return value of the atoi() function as an argument
to the SetMidterm() function.”

There were no questions on the modifications we had made to the EnglishStudent class, so we
moved on to the next exercise.

Exercise 8-2 Modify the MathStudent Class

In this exercise, you’ll modify the MathStudent class you created last week.

1. Using Notepad (if you are using Windows), locate and open the
MathStudent.cpp source file you worked on last week. (It should be
in the \CPPFiles\Grades folder.)

2. Modify your code so that it looks like this:

//MathStudent.cpp

#include <iostream>

#include <string>

using namespace std;

class MathStudent

{

private:

int midterm;

int finalExamGrade;

float finalNumericGrade;

char finalLetterGrade;

float MATH_MIDTERM_PERCENTAGE;

float MATH_FINALEXAM_PERCENTAGE;

public: MathStudent()

{

cout << "Math Student's Constructor" << endl;

midterm = 0;

finalExamGrade = 0;

finalNumericGrade = 0;

MATH_MIDTERM_PERCENTAGE = .50;

MATH_FINALEXAM_PERCENTAGE = .50;

}

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 8: Controlling Access to the Data in Your Object 377

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

public: void Calculate()

{

char response[256];

string moreGradesToCalculate;

cout << "Enter the Midterm Grade: " ;

cin.getline(response,256);

SetMidterm(atoi(response));

cout << "Enter the Final Examination Grade: " ;

cin.getline(response,256);

SetFinalExamGrade(atoi(response));

finalNumericGrade =

(midterm * MATH_MIDTERM_PERCENTAGE) +

(finalExamGrade * MATH_FINALEXAM_PERCENTAGE);

if (finalNumericGrade >= 90)

finalLetterGrade = 'A';

else

if ((finalNumericGrade >= 83) &

(finalNumericGrade < 90))

finalLetterGrade = 'B';

else

if ((finalNumericGrade >= 76) &

(finalNumericGrade < 83))

finalLetterGrade = 'C';

else

if ((finalNumericGrade >= 65) &

(finalNumericGrade < 76))

finalLetterGrade = 'D';

else

if (finalNumericGrade < 65)

finalLetterGrade = 'F';

}

private: void SetMidterm(int temp)

{

if (temp < 0 || temp > 100)

{

cout << "Invalid Midterm Grade (" <<

temp << ") " <<

"Program Terminating" << endl;

exit(1);

}

else

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

378 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

midterm = temp;

}

public: int GetMidterm()

{

return midterm;

}

private: void SetFinalExamGrade(int temp)

{

if (temp < 0 || temp > 100)

{

cout << "Invalid Final Exam Grade (" <<

temp << ") " <<

"Program Terminating" << endl;

exit(1);

}

else

finalExamGrade = temp;

}

public: int GetFinalExamGrade()

{

return finalExamGrade;

}

public: float GetFinalNumericGrade()

{

return finalNumericGrade;

}

public: char GetFinalLetterGrade()

{

return finalLetterGrade;

}

}; // end of class

3. Save your source file as MathStudent.cpp in the \CPPFiles\Grades folder
(select File | Save As from Notepad’s menu bar). Be sure to save your
source file with the filename extension .cpp.

4. Compile your source file. Look for any compiler error messages. If you
receive one, correct the problem until the compiler runs cleanly. Because
your source file contains a class, once the class compiles cleanly, you will still

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 8: Controlling Access to the Data in Your Object 379

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

receive an error from the linker program indicating that you don’t have a
main() function. If that’s the only error you receive, don’t worry. You won’t
be testing your modified MathStudent class until we have completed the
work on the other classes in the project.

Discussion Again, there were no major problems completing the exercise—the changes we
made to the MathStudent class were nearly identical to those we made in the
EnglishStudent class. Rhonda did attempt to add a Get() and Set() method for
both the presentation and research member variables, which the math student
does not possess. But she quickly realized her mistake, and we then moved on
to updating the ScienceStudent class.

Exercise 8-3 Modify the ScienceStudent Class

In this exercise, you’ll modify the ScienceStudent class you created last week.

1. Using Notepad (if you are using Windows), locate and open the
ScienceStudent.cpp source file you worked on last week. (It should be
in the \CPPFiles\Grades folder.)

2. Modify your code so that it looks like this:

//ScienceStudent.cpp

#include <iostream>

#include <string>

using namespace std;

class ScienceStudent

{

private:

int midterm;

int finalExamGrade;

int research;

float finalNumericGrade;

char finalLetterGrade;

float SCIENCE_MIDTERM_PERCENTAGE;

float SCIENCE_FINALEXAM_PERCENTAGE;

float SCIENCE_RESEARCH_PERCENTAGE;

public: ScienceStudent()

{

cout << "Science Student's Constructor" << endl;

midterm = 0;

finalExamGrade = 0;

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

380 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

research = 0;

finalNumericGrade = 0;

SCIENCE_MIDTERM_PERCENTAGE = .40;

SCIENCE_FINALEXAM_PERCENTAGE = .40;

SCIENCE_RESEARCH_PERCENTAGE = .20;

}

public: void Calculate()

{

char response[256];

string moreGradesToCalculate;

cout << "Enter the Midterm Grade: " ;

cin.getline(response,256);

SetMidterm(atoi(response));

cout << "Enter the Final Examination Grade: " ;

cin.getline(response,256);

SetFinalExamGrade(atoi(response));

cout << "Enter the Research Grade: " ;

cin.getline(response,256);

SetResearch(atoi(response));

finalNumericGrade =

(midterm * SCIENCE_MIDTERM_PERCENTAGE) +

(finalExamGrade *

SCIENCE_FINALEXAM_PERCENTAGE) +

(research * SCIENCE_RESEARCH_PERCENTAGE);

if (finalNumericGrade >= 90)

finalLetterGrade = 'A';

else

if ((finalNumericGrade >= 80) &

(finalNumericGrade < 90))

finalLetterGrade = 'B';

else

if ((finalNumericGrade >= 70) &

(finalNumericGrade < 80))

finalLetterGrade = 'C';

else

if ((finalNumericGrade >= 60) &

(finalNumericGrade < 70))

finalLetterGrade = 'D';

else

if (finalNumericGrade < 60)

finalLetterGrade = 'F';

}

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 8: Controlling Access to the Data in Your Object 381

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

private: void SetMidterm(int temp)

{

if (temp < 0 || temp > 100)

{

cout << "Invalid Midterm Grade (" <<

temp << ") " <<

"Program Terminating" << endl;

exit(1);

}

else

midterm = temp;

}

public: int GetMidterm()

{

return midterm;

}

private: void SetFinalExamGrade(int temp)

{

if (temp < 0 || temp > 100)

{

cout << "Invalid Final Exam Grade (" <<

temp << ") " <<

"Program Terminating" << endl;

exit(1);

}

else

finalExamGrade = temp;

}

public: int GetFinalExamGrade()

{

return finalExamGrade;

}

private: void SetResearch(int temp)

{

if (temp < 0 || temp > 100)

{

cout << "Invalid Research Grade (" <<

temp << ") " <<

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

382 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

"Program Terminating";

exit(1);

}

else

research = temp;

}

public: int GetResearch()

{

return research;

}

public: float GetFinalNumericGrade()

{

return finalNumericGrade;

}

public: char GetFinalLetterGrade()

{

return finalLetterGrade;

}

};

3. Save your source file as ScienceStudent.cpp in the \CPPFiles\Grades folder
(select File | Save As from Notepad’s menu bar). Be sure to save your source
file with the filename extension .cpp.

4. Compile your source file. Look for any compiler error messages. If you
receive one, correct the problem until the compiler runs cleanly. Because
your source file contains a class, once the class compiles cleanly, you will still
receive an error from the linker program indicating that you don’t have a
main() function. If that’s the only error you receive, don’t worry. You won’t
be testing your modified ScienceStudent class until we have completed
the work on the other classes in the project.

Discussion “I know you told us that we would need to make changes to the Grades class in
order to see the impact of the changes we just made,” Barbara said. “What kinds
of changes will we need to make to the Grades class?”

“All we really need to do,” I said, “is find any code that directly references a
member variable of any of the Student classes, and then modify the code to use
the newly created Get() methods instead. In the case of the Grades class, there
are currently references to private member variables that are passed as arguments
to the DisplayStudent object’s constructor method. We’ll need to reference the
Get() methods of those member variables instead.”

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

Chapter 8: Controlling Access to the Data in Your Object 383

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

I then distributed this exercise for the class to complete.

Exercise 8-4 Modify the Grades Class

In this exercise, you’ll modify the Grades class to include Get() and Set()
methods.

1. Using Notepad (if you are using Windows), locate and open the Grades.cpp
source file you worked on last week. (It should be in the \CPPFiles\
Grades folder.)

2. Modify your code so that it looks like this (changed code appears in bold):

//Grades.cpp

#include <iostream>

#include <string>

#include "EnglishStudent.cpp"

#include "MathStudent.cpp"

#include "ScienceStudent.cpp"

#include "DisplayGrade.cpp"

using namespace std;

int WhatKindOfStudent();

char response[256];

string moreGradesToCalculate;

int main ()

{

int lresponse;

cout << "Do you want to calculate a grade? ";

cin >> moreGradesToCalculate;

for (int i = 0;

i < moreGradesToCalculate.length(); i++) {

moreGradesToCalculate[i] =

toupper (moreGradesToCalculate[i]);

}

while (moreGradesToCalculate == "YES") {

lresponse = WhatKindOfStudent();

switch(lresponse)

{

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

case 1:

{

EnglishStudent eStudent;

eStudent.Calculate();

DisplayGrade x(eStudent.GetMidterm(),

eStudent.GetFinalExamGrade(),

eStudent.GetResearch(),

eStudent.GetPresentation(),

eStudent.GetFinalNumericGrade()

eStudent.GetFinalLetterGrade());

}

break;

case 2:

{

MathStudent mStudent;

mStudent.Calculate();

DisplayGrade y(mStudent.GetMidterm(),

mStudent.GetFinalExamGrade(),

mStudent.GetFinalNumericGrade(),

mStudent.GetFinalLetterGrade());

}

break;

case 3:

{

ScienceStudent sStudent;

sStudent.Calculate();

DisplayGrade z(sStudent.GetMidterm(),

sStudent.GetFinalExamGrade(),

sStudent.GetResearch(),

sStudent.GetFinalNumericGrade(),

sStudent.GetFinalLetterGrade());

}

break;

} // end of switch

cout << endl<< endl <<

"Do you have another grade to calculate? ";

cin >> moreGradesToCalculate;

for (int i = 0;

i < moreGradesToCalculate.length(); i++) {

moreGradesToCalculate[i] =

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

384 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

Chapter 8: Controlling Access to the Data in Your Object 385

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

toupper (moreGradesToCalculate[i]);

} // end of for

} // end of while

cout <<

"Thanks for using the Grades Calculation program!";

return 0;

}

int WhatKindOfStudent()

{

cout << "Enter student type " <<

"(1=English, 2=Math, 3=Science): ";

cin.getline(response,256);

if (strlen(response) == 0) {

cout << "You must select a Student Type";

exit(1);

}

if ((atoi(response) < 1) || (atoi(response) > 3)) {

cout << response <<

" - is not a valid student type";

exit(1);

}

return atoi(response);

}

3. Save your source file as Grades.cpp in the \CPPFiles\Grades folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

4. Compile your source file into an executable file.

5. Execute your program and test it thoroughly. Verify that the looping
behavior of the program is working correctly. After you start up your
program, it should ask whether you have a grade to calculate.

6. Answer Yes and calculate the grade for an English student. Enter 70 for the
midterm, 80 for the final examination, 90 for the research grade, and 100
for the presentation. A final numeric grade of 84.5 should be displayed with
a letter grade of C.

7. After a message is displayed with the calculated grade, the program should
ask whether you have more grades to calculate.

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

386 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

8. Answer Yes and calculate the grade for a math student. Enter 70 for the
midterm and 80 for the final examination. A final numeric grade of 75
should be displayed with a letter grade of D.

9. After a message is displayed with the calculated grade, the program should
ask whether you have more grades to calculate.

10. Answer Yes and calculate the grade for a science student. Enter 70 for the
midterm, 80 for the final examination, and 90 for the research grade. A
final numeric grade of 78 should be displayed with a letter grade of C. After
the message is displayed with the calculated grade, the program should ask
whether you have more grades to calculate.

11. Answer No. You should be thanked for using the program, and the program
should end.

12. Now execute the program again and verify that the code in the Set() methods
of the Student classes is properly handling invalid entries for the midterm,
final exam, research, and presentation grades. This will take several iterations
of the program, because each time you enter an invalid grade, the program
will display a message and end.

Discussion I gave everyone in the class a chance to make their changes to the Grades
class—and to experiment with their own versions of the Grades program. All in
all, this took about half an hour. Some students discovered, while compiling
the Grades.cpp program, that they still had ‘errors’ in some of the various
Student classes.

“Did everyone notice the changes we made to the program?” I asked.

“I did,” Blaine said. “We modified the sections of code that created instances
of the DisplayGrade class. Previously, we directly referenced member variables of
each of the Student classes in the constructor method of the DisplayGrade class.
Now we’ve made those member variables private and we’re executing the
various Get() methods of the Student classes instead.”

“Excellent, Blaine,” I said. “Here’s the modified code that is executed to
display the grade for an English student.”

DisplayGrade x(eStudent.GetMidterm(),

eStudent.GetFinalExamGrade(),

eStudent.GetResearch(),

eStudent.GetPresentation(),

eStudent.GetFinalNumericGrade(),

eStudent.GetFinalLetterGrade());

“In a similar way,” I continued, “we execute the accessor methods for the
math and science students as well.”

I waited to see if anyone had any questions, but there were none.

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

A Surprise Visit from Frank Olley
Just then, I heard a voice call from outside my classroom door. Unknown to the students in the
class, Frank Olley had been outside and had just witnessed the execution of the Grade Calculation
Project from the hallway. I had phoned Frank during the break to confirm some aspects of the
validation of the component grades (I wanted to be sure that valid grades ranged from 0 to 100),
and when I found out he was on campus, I invited him down for a demo.

“I’ve got to tell you,” Frank said, “I’m most impressed with the progress you’ve made with the
program in such a short time. In fact, I like it so much, I’d like nothing better than for you to install
it on my PC today—but John tells me you still have some work to do on it.”

I could see that the students in the class were just about to burst with pride.
Frank then spent some time admiring the work of the individual students. About 10 minutes

later, I dismissed class for the day.

Summary
This chapter dealt with a topic that is extremely important in the world of C++: protecting the
data in your objects from accidental or willful manipulation that can cause unauthorized changes,
or even cause the state of your objects to become invalid.

You learned that the primary way to protect your data is to declare your member variables with
the Private access keyword, which allows only code within the class itself to view or update the
variables. Having done that, if you want client programs (those creating instances of your object)
to be able to see or update these member variables, you need to write accessor and mutator methods.

Accessor, or Get(), methods enable a client program to see the values of your member
variables. Mutator, or Set(), methods enable a client program to update the values of your
member variables.

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8

Chapter 8: Controlling Access to the Data in Your Object 387

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 8
Blind Folio 8:388

P:\010Comp\LearnTo\535-1\ch08.vp
Monday, October 07, 2002 10:25:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter

9
Inheritance

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9
Blind Folio 9:389

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
TLFeBOOK

In the last two chapters, you learned how to create instantiable classes that permit client
programs (other classes) to create objects from them. You saw that a C++ programmer does
more than just write code; a C++ programmer is also a class architect who designs classes that

can be used by other programmers. This is an illustration of the software reusability of C++: One
class and the object it represents can be used in thousands of other programs.

In this chapter, you’ll learn how a C++ programmer can design a class that can then be used as
the basis for other new classes, which will once again illustrate how an object-oriented programming
language can help you avoid reinventing the wheel. This feature of object-oriented programming
languages is called inheritance, and it can be an enormous timesaver when creating classes in the
programs you write.

Inheritance
“Today’s topic is inheritance,” I said, as I began our ninth class. “In object-oriented programming
languages, inheritance means that a new class can be coded based on (or derived from) an already
existing class. The new class is called the derived class, and the already existing class is called the
base class. Deriving one class from an already existing class can be an enormous timesaver for
programmers, especially if the base class already has features—member variables and methods—
that the derived class can use.”

“Sounds complicated,” Rhonda said.
“Inheritance, as a concept, isn’t unique to object-oriented programming,” I said. “I have a

friend who is a structural engineer who designs bathroom shower doors. I didn’t know this until it
came up in conversation, but there are many different styles and types of bathroom shower doors
and, as in the fashion industry, each year hundreds of new styles are introduced. My friend is
constantly designing new shower doors, and much to my surprise, I learned recently that structural
engineers use something similar to class inheritance in their own work.”

“How does an engineer implement the type of inheritance you’re talking about with C++?”
Barbara asked. “Does an engineer work with classes?”

“Not quite,” I said, “but an engineer does work with blueprints. Blueprints, as I think I
mentioned in our first class meeting, are to an architect or engineer what classes are to a C++
programmer. A blueprint is the model for something that is built, just like a class is a blueprint for
an object. Ultimately, both blueprints and classes are nothing more than designs. My friend the
structural engineer turns her completed blueprints over to a manufacturing facility that produces
the actual shower doors. As C++ programmers, we turn our classes over to other programmers
who then create objects from them.”

390 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“I’m okay with your analogy about blueprints and classes,” Kate said, “but where does this
notion of inheritance come into play with your friend the structural engineer?”

“I’m getting to that,” I said, smiling. “Just last week I was talking to my friend the engineer,
and I commented how frustrating it must be to have to design a shower door from scratch every
year to produce a new door with a different style or with slightly different features. That’s when
she told me that she doesn’t design every shower door from scratch. The blueprints for her
previous years’ designs are stored on the hard drive of her personal computer, and she can derive
the design for a new shower door based on a previous model.”

“In other words,” Dave said, “she’s not reinventing the wheel.”
“That’s right, Dave,” I said. “The basic features of last year’s door very likely will be identical to

the basic features of this year’s door, with some stylistic differences. Perhaps it may be the color of
the chrome on the door that is different or the style of the glass or even the location of the door
handles. However, the shape and thickness of the supporting steel structure may be identical, the
dimensions of the door, as well as the size and location of the glass may be identical—my point is
that there are a lot more similarities than there are differences.”

“I see where you’re coming from,” Steve said. “By starting her design of a new shower door
with the blueprints from a previous one, she saves herself a whole bunch of work. But I don’t quite
see how this will work in C++. Are you saying that if one class is similar to another, we can copy
and paste the code from that first class into Notepad as a starting point for the new class?”

“That’s not quite it, Steve,” I said, “although we could certainly do that—copy and paste,
I mean. But copying and pasting doesn’t quite give us the software reusability that I’m talking
about. Instead of copying and pasting code from one class to another, we can tell C++ that the
class we’re coding is derived from another class—that is, the new class should be considered to
have variables and methods found in another class—without having to explicitly code those
variables and methods in the class itself. We can then add attributes and methods to the derived
class to provide it with its own unique features.”

“So are you saying,” Valerie asked, “that if an existing class already has most of the functionality
you need in your new class, you can derive or ‘inherit’ variables and methods from that existing
class and then add some functionality of its own to the new class?”

“That’s exactly right, Valerie,” I said. “Technically, the existing class is called the base class, and
the class that is inherited from it is called the derived class. Think of the base class as a parent of the
child derived class. At the risk of oversimplifying this, all that’s really required is that we tell C++
that our derived class wishes to inherit from the base class to derive the functionality (variables and
methods) from it. But you’ll see that in just a few minutes.”

“From the way you’re describing it,” Dave said, “I bet that inheritance would have made the
work of creating the three Student classes in the Grade Calculation Project a little easier.”

“How so?” Rhonda asked, directing her attention to Dave.

Chapter 9: Inheritance 391

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Well,” Dave said, “if you think about it, all three Student classes—EnglishStudent, MathStudent,
and ScienceStudent—have a lot in common in terms of member variables and methods. In fact,
some of their code is even duplicated. I would think that being able to derive one class from
another would have come in very handy there.”

“Dave’s absolutely right about the Student classes,” I said. “In fact, we’ll be modifying these
classes later on to incorporate the concepts of inheritance that you’ll learn today.”

“I wish we had learned about inheritance last week,” Chuck said. “Coding those classes has
been a real pain in the neck for me. Why did we wait until now to discuss inheritance?”

“We first needed to learn how to create classes and protect their data before we could start to
learn about inheritance,” I said.

“Inheritance sounds like something I can really use back at work,” Ward said. “It seems like I’m
forever reinventing the wheel there—I can’t wait to get started. Can you show us an example of
inheritance in C++?”

Before Inheritance Came Along…
“Sure thing, Ward,” I said. “Let me demonstrate inheritance by first creating an ordinary C++
class, and then we’ll derive other classes from it.”

I thought for a moment before continuing.
“Let’s pretend that after completing this introductory C++ course, you’re hired by a small

consulting firm as a C++ programmer. In your first week on the job, you are asked to write what
appears to be a simple program to calculate the payroll for a relatively large plumbing company in
the area. Having learned about the benefits of the Systems Development Life Cycle in this class,
you then spend some time working with the client in determining the requirements for the payroll
system. During the Analysis phase of the SDLC, it becomes obvious to you that you should create
a C++ class called Employee to model the company’s employees. You decide that the Employee
class will have the following five attributes, implemented as member variables.”

I then displayed these variables on the classroom projector:

� empID

� name

� hourlyRate

� hoursWorked

� grossPay

392 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“You also decide to implement a Display() method to output the employee’s gross pay to the
C++ console (to keep things simple for our demonstration, that’s the only value we’ll calculate).
Within the Display() method, you include a calculation of grossPay equal to the multiplication
of hourlyRate by hoursWorked.”

“Sounds simple enough,” Rhonda said, smiling. “I bet I could code that up in no time.”
I was tempted to take Rhonda up on her offer, but since I had already coded up the Employee

class myself prior to class, I displayed the code for this class on the classroom projector:

//Employee.cpp

#include <iostream>

#include <string>

using namespace std;

class Employee

{

private:

string empID;

string name;

float hourlyRate;

int hoursWorked;

float grossPay;

public: Employee() //Constructor Method

{

cout << "Employee's Constructor" << endl;

}

public: void Display()

{

cout << "*** EMPLOYEE RECORD ***" << endl << endl;

cout << "Employee ID: " << empID << endl;

cout << "Name: " << name << endl;

cout << "Hourly Rate: $" << hourlyRate << endl;

cout << "Hours Worked: " << hoursWorked << endl;

cout << "Gross Pay: $" << GetGrossPay() << endl;

}

Chapter 9: Inheritance 393

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

public: void SetEmpID(string temp)

{

empID = temp;

}

public: string GetEmpID()

{

return empID;

}

public: void SetName(string temp)

{

name = temp;

}

public: string GetName()

{

return name;

}

public: void SetHourlyRate(float temp)

{

hourlyRate = temp;

}

public: float GetHourlyRate()

{

return hourlyRate;

}

public: void SetHoursWorked(int temp)

{

hoursWorked = temp;

}

public: int GetHoursWorked()

{

return hoursWorked;

}

public: float GetGrossPay()

394 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 9: Inheritance 395

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

{

grossPay = hourlyRate * hoursWorked;

return grossPay;

}

}; //end of class

“I don’t think there’s anything in this Employee class that you haven’t seen before,” I said.
“We have the five attributes of the Employee class, each implemented as private member variables.
Also, based on what you learned last week, we’ve created Get() and Set() methods for four of the
five attributes—empID, name, hourlyRate, and hoursWorked. We don’t want any client programs
using our Employee object to be able to directly update the grossPay attribute, so we have created
a Get() method for it called GetGrossPay(), but no Set() method. Notice that the GetGrossPay()
method does the work of calculating the employee’s gross pay. Finally, we also have the public
Calculate() method, which outputs the employee’s information to the C++ console. To keep
things simple, we have no validation in this class. Obviously, in something other than a demo
like this, we would have plenty of validation code.”

“I noticed that we created a constructor method,” Kate said. “Is that really necessary here? Isn’t
this class going to be used as a base class for other classes? Is a constructor required?”

“Good question, Kate,” I said. “A constructor isn’t required, but I thought it would be a good
idea to code one here. When we create an object from a class derived from this base class, we’ll be
able to see when the constructor of the base class is executed—I think you’ll find that pretty
fascinating when you see it in action.”

“I’m a little confused with a line of code in the Display() method,” Rhonda said. “What’s going
on with that line of code to display the gross pay?”

“This can be a little confusing,” I said. “Here we’re using the return value of the accessor method
GetGrossPay() as an argument to the cout object.”

cout << "Gross Pay: " << GetGrossPay() << endl;

“Okay,” Rhonda answered, “I think I remember you doing that before.”
I waited to see if there were any more questions before continuing. There were none.
“Remember,” I said, “all we’ve done so far is create a simple class—we haven’t done any inheritance

yet. Now let’s write code in a client program that will create an instance of an Employee object
and calculate the gross pay for that employee.”

I then displayed this code on the classroom projector:

//Example9_1.cpp

#include "Employee.cpp"

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

396 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

int main()

{

Employee x;

x.SetEmpID("086");

x.SetName("John Smith");

x.SetHourlyRate(12.50);

x.SetHoursWorked(40);

x.Display();

return 0;

}

“Nothing too fancy here,” I said. “All we’re doing is creating an instance of an Employee
object.”

Employee x;

“We then use its mutator, or Set(), methods to assign values to its attributes (member variables).
Notice that we indicate that the pay rate for this employee is $12.50 per hour and that his total
number of hours worked is 40.”

x.SetEmpID("086");

x.SetName("John Smith");

x.SetHourlyRate(12.50);

x.SetHoursWorked(40);

“Then we execute the Display() method.”

x.Display();

I saved this program as Example9_1.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Nothing surprising here,” I said. “We created an instance of the Employee object, updated the
empID, name, hourlyRate, and hoursWorked attributes via the mutator methods of the class, and
then executed the Display() method of the class to display the employee’s pay information to the
C++ console, complete with the calculated gross pay of $500. Notice that a message was also
displayed in the C++ console to let us know that the constructor method of the Employee class
was executed.”

“How did the grossPay attribute of the Employee class get updated?” Rhonda asked.
“That was done as part of the Display() method,” I said. “The Display() method concatenated the

return value of the GetGrossPay() accessor method of the Employee class to the string ‘Gross Pay:’.”

cout << "Gross Pay: $" << GetGrossPay() << endl;

“The GetGrossPay() accessor method is where the grossPay attribute was updated when the
actual calculation was performed.”

public: float GetGrossPay()

{

grossPay = hourlyRate * hoursWorked;

return grossPay;

}

“Okay, that makes sense,” Rhonda said.
“I understand what we just did,” Chuck said, “but how does this relate to inheritance?”

Creating Classes from Other Classes Using Inheritance
“It doesn’t, yet,” I said, “That will be our next step. Before I show you how to implement inheritance
in your program, I need to clue you in a little bit about real-world programming, but I don’t think
you’ll be at all surprised about what I have to tell you. In the real-world of C++ programming,
there are two ways that inheritance comes into play. First, you meticulously plan it. That is, right
from the start you design a class, known as a base class, possessing the most basic common
functionality—attributes and methods—from which you will derive other classes. For a number
of reasons, this structured approach to building base classes and derived classes—like the
structured approach of the Systems Development Life Cycle—is ideal.”

“I can see why this structured approach is the way to go,” Kate said. “An organized approach is
always best. But what’s the other way in which inheritance comes about—you said there were two.”

“The second approach is what I call the evolutionary approach to inheritance,” I replied.
“What happens is that one day you have the need to create a class to model a real-world object,

Chapter 9: Inheritance 397

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

and you realize that you already have a class that is very close to what you need—but not quite. I
should tell you that real-world C++ classes may have hundreds of attributes and methods—so you
see, the last thing you want to do is to ‘start from scratch’ by creating a new class.”

“So in this case,” Steve said, “you would borrow the functionality of the existing class by
deriving the new class from it.”

“Exactly, Steve,” I said. “If you—or another programmer—already have a class that is ‘close
enough’ in functionality to the class you need to create, you can save yourself a bunch of work by
deriving the new class from it. This process isn’t nearly as efficient as planning a base class and
later deriving classes from it, but in the real world, that’s not always possible.”

“I’m not sure I’m fully understanding this.” Blaine said.
“Let’s try it this way, Blaine,” I said. “Suppose that two months after we create the Employee

class we just coded, the plumbing company asks us to modify the program to calculate payroll for
biweekly salaried employees as well as hourly ones.”

“I sense a problem here,” Ward said. “The calculation for an hourly employee is nothing like
that of a salaried employee.”

“That’s right, Ward,” I agreed. “Salaried employees draw a straight salary, regardless of the
number of hours they work. The hoursWorked and hourlyRate attributes of the Employee class
have no meaning for a salaried employee.”

“Will we be able to use the Employee class for the salaried employee calculation,” Rhonda
asked, “or will we need to create a Salaried class to do the job?”

“Without inheritance, Rhonda,” I said, “that’s exactly what we would need to do—create a new
class entirely from scratch. But using inheritance, we can ‘borrow’ the functionality of the Employee
class. It’s not a perfect fit. After all, remember that the existing Employee class contains two attributes—
hourlyRate and hoursWorked—that don’t make any sense for a salaried employee. However, the
remaining three attributes—empID, name, and grossPay—are fine for the salaried employee.”

“We will also need to add a new attribute to the derived class to represent the salaried employee’s
annual salary,” Dave said. “The calculation of the gross pay for a salaried employee is different
from that of an hourly employee, which means that the GetGrossPay() accessor method of the
derived class will have to be different. Because the employee is paid every other week, the pay will
be equal to the annual salary divided by 26.”

“That was really an excellent analysis, Dave,” I said. “It really illustrates why inheritance can be
useful in our programming. The Employee class probably has 20 to 30 lines of code, and a new
Salaried class would probably have a similar number of lines of code—much of it duplicating that
found in the Employee class. Why bother writing that code from scratch—and therefore reinventing
the wheel—if we already have a class that is very close to what we need. For that reason, we’ll
create a derived class called SalariedEmployee and base it on the Employee class.”

398 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 9: Inheritance 399

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

“I’d like to get back to something Dave mentioned,” Barbara said. “He said that the GetGrossPay()
method in the derived class will need to be different from the one in the base class. Does that
mean we can have a method in the derived class with the same name as one in the base class? Isn’t
that an overloaded method?”

“You make a good point, Barbara,” I said. “What I’m describing is very similar to an overloaded
method in which two identically named methods, but with different signatures, appear in the same
class. In this case, we have identically named methods with identical signatures—one appearing in
the base class and the other in the derived class. The method in the derived class ‘overrides’ the
identically named method in the base class. What this means is that if a client program creates an
object from the derived class, the code in the method of the derived class will be executed, not the
code in the method of the base class. However, a client program could always choose to use the
base class in its program, in which case the code in the method of the base class will execute.”

The Base (Parent) Class
“Will the Employee class become a base class then?” Mary asked. “If so, what will we need to
change in the Employee class?”

“That’s an excellent question, Mary,” I said. “The beauty of inheritance is that nothing needs
to be done to a class in order for it to be used as a base class. We can design the class to facilitate
inheritance, ensuring that certain features—attributes and methods—are present. However, the
only thing that makes a class a base class is the fact that other classes—derived classes—choose to
be derived from it.”

The Derived (Child) Class
“How does C++ know that a derived class wishes to be derived from a base class?” Chuck asked.

“That’s done by following the name of the class with a colon,” I said, “followed by the name of
the class that is to be used as the base class. In addition, it’s necessary to add an include compiler
directive for the base class. Let me show how we do this by creating the SalariedEmployee derived
class, using the Employee class as a base class.”

NOTE
In C++, it’s possible to derive a class from more than one base class. This is called
multiple inheritance. To invoke multiple inheritance, separate the name of each
base class with a comma.

I then displayed this code on the classroom projector:

//SalariedEmployee.cpp

#include <iostream>

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

400 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

#include <string>

#include "EmployeeBase.cpp"

using namespace std;

class SalariedEmployee : public EmployeeBase

{

private:

float annualSalary;

public: SalariedEmployee() //Constructor Method

{

cout << "Salaried Employee's Constructor" << endl;

}

public: void SetAnnualSalary(float temp)

{

annualSalary = temp;

}

public: float GetAnnualSalary()

{

return annualSalary;

}

public: float GetGrossPay()

{

grossPay = annualSalary / 26;

return grossPay;

}

public: void Display()

{

cout << endl<< "*** SALARIED EMPLOYEE RECORD ***" << endl << endl;

cout << "Employee ID: " << empID << endl;

cout << "Name: " << name << endl;

cout << "Annual Salary: $" << annualSalary << endl;

cout << "Gross Pay: $" << GetGrossPay() << endl;

}

}; //end of class

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Aren’t we missing some attributes?” Rhonda asked. “I don’t see empID or name—yet we’re
referring to them in the Display() method.”

“That’s the point, Rhonda,” I said. “By deriving SalariedEmployee from the already existing
Employee class, we don’t need to define those attributes here in this class. Notice how we include
a reference to the base class using the include compiler directive.”

#include "EmployeeBase.cpp"

“Then we tell C++ that we’re using the Employee class as the starting point for SalariedEmployee.
The keyword Public, followed by the name of our base class, tells C++ to use the Employee class as
the starting point for SalariedEmployee.”

class SalariedEmployee : Public Employee

NOTE
Failure to include the keyword Public will cause your derived class not to be able to
“see” public methods of the base class. Always be sure to include it.

“Every variable and method that Employee has is automatically made a part of the
SalariedEmployee derived class. In other words, the derived class derives the member variables and
methods of its base class. This means that, without any coding, the SalariedEmployee derived class
automatically possesses the five member variables of the Employee class, as well as its 11 methods.”

“So are you saying that all we need to code in the derived class are any new member variables
and methods?” Dave asked.

“That’s basically correct, Dave,” I said, “but let’s take it a step further. When it comes to
deriving a new class from a base class, there are four things you can choose to ‘do’ with the existing
member variables and methods of the base class parent.

“First, you can accept the member variable or method ‘as is’ because it fits the needs of the
derived class. For example, the member variable empID and its accessor method getEmpID of the
base class Employee are also necessary in the derived class SalariedEmployee. Accepting a member
variable or method requires absolutely no action on the part of the programmer—these are
automatically included when you ‘inherit’ from the base class.

“Second, you can ignore the member variable or method derived from the base class because it
is not required in the derived class. Ignoring the member variable or method again requires no
extra ‘effort’ on the part of the programmer. For example, in the derived class SalariedEmployee,
we have no need for either the member variable hourlyRate or its accessor method getHourlyRate.
We ‘ignore’ them simply by not using them anywhere in the derived class or client programs using
the derived class.

Chapter 9: Inheritance 401

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Third, you can add new member variables or methods to the derived class. Member variables
and methods are added to the derived class to give it the unique behavior that differentiates it from
the base class. In the case of SalariedEmployee, we added one new member variable, annualSalary,
which is required by the derived class because it needs an annual salary to properly calculate a
biweekly gross pay for a salaried employee.

“Fourth, you can override the derived member variables or methods in the derived class, in
effect ‘hiding’ the definition of these member variables or methods in the base class. For instance,
both the base class Employee and the derived class SalariedEmployee need to possess a GetGrossPay()
method and a Display() method, but the code for these methods in the two classes needs to be
different. To override a member variable or method, place the definition in the derived class, and
the derived member variable or method of the base class will be overridden.”

“So in short,” Kate said, “we can accept, ignore, add, or override member variables or methods
derived from the base class.”

“That’s perfect, Kate,” I said, “Here’s a table detailing the actions we took with the member
variables and methods of the Employee base class in the derived SalariedEmployee class.”

Employee Base Class SalariedEmployee Derived Class Action

empID Accepted

name Accepted

hourlyRate Ignored

hoursWorked Ignored

annualSalary added to derived class

Employee() Accepted

SetEmpID() Accepted

GetEmpID() Accepted

SetName() Accepted

GetName() Accepted

SetHourlyRate() Ignored

GetHourlyRate() Ignored

SetHoursWorked() Ignored

SetHoursWorked() Ignored

GetGrossPay() Overridden

Display() Overridden

SetAnnualSalary() added to derived class

GetAnnualSalary() added to derived class

402 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

Chapter 9: Inheritance 403

“As you can see,” I said, “in the derived class SalariedEmployee, we accepted two member
variables (empID and name) and five methods (Employee, SetEmpID, GetEmpID, SetName,
and GetName) of the base class Employee. We ignored two member variables (hourlyRate and
hoursWorked) and four methods (SetHourlyRate, GetHourlyRate, SetHoursWorked, and
GetHoursWorked) of the base class Employee. All these pertained to an hourly employee,
and we had no need for these in our derived class. It’s important to note that even though we
are ignoring these member variables and methods in our derived class, they’re still part of the
derived class, and a client program could still use them. Finally, we ‘hide’ two methods in the
base class—GetGrossPay() and Display()—by writing new code, unique to the derived class
SalariedEmployee.”

“I see we also added one member variable (annualSalary) and two methods (SetAnnualSalary
and GetAnnualSalary) to the derived class that don’t exist in the base class,” Mary said.

“That’s right, Mary,” I answered. “annualSalary is a member variable we need to store the employee’s
annual salary, and SetAnnualSalary() and GetAnnualSalary() are its mutator and accessor methods. We
also use annualSalary in the GetGrossPay() and Display() methods we overrode.”

“Do we compile a derived class the same way we compile any other class?” Blaine asked after a
few seconds of silence.

“Yes, Blaine,” I said, “that’s right. We compile a derived class the same way we compile any other
class—of course, the base class must be included in the derived class via an include statement.”

I then compiled the SalariedEmployee derived class—but with less-than-satisfactory results.
The following screenshot was displayed:

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

404 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

NOTE
Depending on the version of the C++ compiler you are running, you might see a
more explicit message about trying to access a private access variable in a base class.

“Uh-oh,” I heard Rhonda say, “what happened? The SalariedEmployee derived class didn’t compile.”
I had to take a close look at the error messages for a few moments before I realized the problem

myself.
“Oh, I see what happened,” I said. “The problem is that we defined the member variables in

the Employee class with private access.”
“Last week we learned that only code in the same class can access member variables defined

with the private access specifier,” Blaine said. “Is that the problem? Our derived class can’t ‘see’
the member variables in the base class.”

“That’s right, Blaine,” I said. “We can’t derive private member variables from a base class.”
“Does this mean we can’t create a derived class from a base class unless the member variables are

declared as public?” Barbara asked. “From what we learned last week, won’t that impact the data
integrity of the Employee class? How would the designer of the base class feel about that?”

“You’re right, Barbara,” I agreed. “Changing the member variables from private to public would
fix this problem, but that’s not a step the original designer would be in favor of—just so we can derive
a class from it. Fortunately, we don’t need to do that to fix this problem. Does anyone remember
last week, when we we’re discussing access specifiers, that in addition to the Private and Public
keywords, there’s another one that I told you wouldn’t mean much to you until you learned about
inheritance?”

“I do,” Dave quickly volunteered. “I think it’s the Protected keyword, isn’t it?”
“Dave’s absolutely right,” I said. “Protected access comes into play only when we are dealing

with a class used as a base class. Protected access is just like private access—except that member
variables and methods defined with protected access can be derived and used in a derived class
with no problem.”

“So all we need to do is go back and change the access specifiers in the Employee base class
from Private to Protected, and our SalariedEmployee derived class will compile okay?” Peter asked.

“Absolutely,” I said.
I then made these changes to the Employee class, changing every private member variable in

Employee from Private to Protected, and displayed the modified code on the classroom projector:

//Employee.cpp

#include <iostream>

#include <string>

using namespace std;

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

class Employee

{

protected:

string empID;

string name;

float hourlyRate;

int hoursWorked;

float grossPay;

public: Employee() //Constructor Method

{

cout << "Employee's Constructor" << endl;

}

public: void Display()

{

cout << "*** EMPLOYEE RECORD ***" << endl << endl;

cout << "Employee ID: " << empID << endl;

cout << "Name: " << name << endl;

cout << "Hourly Rate: $" << hourlyRate << endl;

cout << "Hours Worked: " << hoursWorked << endl;

cout << "Gross Pay: $" << GetGrossPay() << endl;

}

public: void SetEmpID(string temp)

{

empID = temp;

}

public: string GetEmpID()

{

return empID;

}

public: void SetName(string temp)

{

name = temp;

}

Chapter 9: Inheritance 405

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

406 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

public: string GetName()

{

return name;

}

public: void SetHourlyRate(float temp)

{

hourlyRate = temp;

}

public: float GetHourlyRate()

{

return hourlyRate;

}

public: void SetHoursWorked(int temp)

{

hoursWorked = temp;

}

public: int GetHoursWorked()

{

return hoursWorked;

}

public: float GetGrossPay()

{

grossPay = hourlyRate * hoursWorked;

return grossPay;

}

}; //end of class

I then recompiled the SalariedEmployee class. This time SalariedEmployee compiled with no
errors (except, of course, for the warning message that it contained no main() function).

“That’s better,” I said. “Now that we have changed the member variables in the Employee class
from private to protected access, SalariedEmployee can derive those member variables with no
problem. Now let’s write some code to use the SalariedEmployee derived class in a client program.”

I then displayed this code on the classroom projector:

//Example9_2.cpp

#include "SalariedEmployee.cpp"

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

int main()

{

SalariedEmployee x;

x.SetEmpID("337");

x.SetName("Mary Jones");

x.SetAnnualSalary(52000);

x.Display();

return 0;

}

I saved the program as Example9_2.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

“I’m still not quite sure what’s going on here,” Rhonda said. “Can you explain it to us?”
“Sure thing, Rhonda,” I said. “What we’ve done is create an instance of a SalariedEmployee

object using the SalariedEmployee derived class.”

SalariedEmployee x;

“We then executed the SetEmpID and SetName mutator methods of the empID and name
member variables.”

x.SetEmpID("337");

x.SetName("Mary Jones");

“Take note that both of those methods don’t explicitly appear in the SalariedEmployee derived
class but are actually public methods of the Employee base class. We never defined them ourselves
in the SalariedEmployee derived class.”

Chapter 9: Inheritance 407

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

408 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

“I just realized that myself,” Chuck said. “I don’t think I really understood this whole concept
of inheritance until just now. Now I see exactly how much time and effort deriving one class from
another class can save us.”

“Exactly. Chuck,” I said, waiting for more questions and comments. “Now, with this line of
code, we execute one of the two ‘new’ methods in the SalariedEmployee class, SetAnnualSalary().”

x.SetAnnualSalary(52000);

“This is followed by the execution of the overridden Display() method.”

x.Display();

“So this code is executing the Display() method of the derived class SalariedEmployee, not the
Display() method of the base class Employee?” Linda asked.

“That’s right, Linda,” I said. “Because we created an instance of the SalariedEmployee class, it’s
the Display() method of SalariedEmployee we’re executing here.”

“Very impressive,” Ward said, “very impressive. I can see a lot of practical applications for
inheritance back at the office. I think this can save me a lot of work.”

“I have a question,” Dave said. “I just noticed the message in the C++ console indicating that the
constructor method of the base class Employee had been run. I know we didn’t code a constructor
method for the SalariedEmployee derived class, so I’m presuming that without a constructor method
in the derived class, the constructor method for the base class executes. Is that correct?”

“Good observation, Dave,” I said, “and you’re right. The constructor method for the Employee
base class was executed when an instance of the SalariedEmployee derived class was created. A
derived class automatically ‘inherits’ the constructor method of its base class.”

“Suppose we code a constructor method in the derived class.” Kathy said. “What happens
then? Do they both execute?”

“Let’s see,” I said.
I then modified the code for the SalariedEmployee derived class by adding a constructor

method of its own. In other words, now both the Employee base class and the derived class
SalariedEmployee have constructor methods of their own.

//SalariedEmployee.cpp

#include <iostream>

#include <string>

#include "Employee.cpp"

using namespace std;

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

class SalariedEmployee : public Employee

{

private:

float annualSalary;

public: SalariedEmployee() //Constructor Method

{

cout << "Salaried Employee's Constructor" << endl;

}

public: float GetGrossPay()

{

grossPay = annualSalary / 26;

return grossPay;

}

public: void Display()

{

cout << "*** SALARIED EMPLOYEE RECORD ***" << endl << endl;

cout << "Employee ID: " << empID << endl;

cout << "Name: " << name << endl;

cout << "Annual Salary: $" << annualSalary << endl;

cout << "Gross Pay: $" << GetGrossPay() << endl;

}

public: void SetAnnualSalary(float temp)

{

annualSalary = temp;

}

public: float GetAnnualSalary()

{

return annualSalary;

}

}; //end of class

Chapter 9: Inheritance 409

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Any guesses as to what will happen when I reexecute Example9_2?” I asked, after recompiling
the SalariedEmployee class. “How many constructor methods will execute? And which ones?”

My students seemed evenly divided—half of the class felt that both constructors would execute.
The other half felt that only the constructor for SalariedEmployee would execute.

I then recompiled and executed Example9_2. The following screenshot was displayed on the
classroom projector:

“There’s our answer,” I said, “both constructors were executed. With the base class and the
derived class each having its own constructor methods, both constructors were executed. This is
something to bear in mind when you derive a class from a base class—you need to be aware that
any code contained within the constructor method of the base class will be executed, and executed
prior to code in the constructor method of the derived class being executed. In general, because
constructor methods are used to perform the initialization of member variables, you’ll find that
base class constructor methods are performing initialization of the member variables of the base
class. If you code a constructor method for your derived class, you should use it to perform
initialization of the member variables unique to the derived class.”

Planning Your Object Hierarchy in Advance
I paused for a few moments before continuing.

“Not all base classes and derived classes are built using the scenario we’ve just seen here,” I said.
“What do you mean?” Kate asked. “Is this what you were getting at earlier when you were talking

about the structured approach versus the evolutionary approach?”
“Exactly, Kate,” I said. “In the current scenario, we started out with a class—Employee—that

was originally intended to stand on its own. At the time we designed the Employee class, we didn’t
envision that any classes would be derived from it—although as we saw, when it became evident a

410 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

little later on that we would need a class very similar to the Employee class, it made sense to derive
the SalariedEmployee class from it.”

“And it doesn’t always happen this way?” Bob asked.
“Not always,” I said. “Using a structured approach, we can design a class hierarchy right from

the very start.”
“I’m not sure I understand what you mean by a class hierarchy,” Kate said.
“A class hierarchy is a planned collection of classes,” I said, “some of them designed to be base

classes, some of them designed to be derived classes. The key point here is that there is a plan to
the creation of the classes, usually all of them being created roughly at the same time, early in the
process of the design of the program for which they are being written. As an example, it’s likely
that an experienced C++ programmer, when interviewing the clients at the plumbing company,
would have anticipated that sometime in the future, the need would arise for their program to
calculate the gross pay for a salaried employee as well as the gross pay for an hourly employee.
Having recognized this need ahead of time, the programmer most likely would have designed an
Employee ‘base class.’ In this case, the base class is a class designed in advance to have classes
derived from it. Let me illustrate what I mean by a base class by showing you how different our
scenario would have been if instead of creating an Employee class designed to calculate the gross
pay for an hourly employee, we first coded a base class called EmployeeBase and then derived two
classes—HourlyEmployee and SalariedEmployee—from it.”

I then displayed this code for the EmployeeBase class on the classroom projector:

//EmployeeBase.cpp

#ifndef EmployeeBase_cpp

#define EmployeeBase_cpp

#include <iostream>

#include <string>

using namespace std;

class EmployeeBase

{

protected:

string empID;

string name;

float grossPay;

public: EmployeeBase() //Constructor Method

Chapter 9: Inheritance 411

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

{

cout << endl<< "EmployeeBase's Constructor" << endl;

}

public: void SetEmpID(string temp)

{

empID = temp;

}

public: string GetEmpID()

{

return empID;

}

public: void SetName(string temp)

{

name = temp;

}

public: string GetName()

{

return name;

}

}; //end of class

#endif

I then saved the program as EmployeeBase.cpp and compiled it. Except for a message from the
linker complaining that there was no main() function, the class compiled fine. Almost immediately,
there were two hands raised in the air to ask a question.

Dave blurted out, “What’s going on with those first two lines at the top of the program
following the comment, the ones that begin with #ifndef and #define?”

“Those are both precompiler instructions,” I said, “which are instructions, not part of the C++
language itself, that provide guidance to the compiler or linker when compiling our code. In this
instance, these two lines of code, as well as the very last line of code in the program, are called
inclusion guards. Their purpose is to ensure that only one copy of the EmployeeBase class is actually
included in our final executable, Example9_3.cpp, when we compile it in a few minutes.”

“How could that happen?” Linda asked.

412 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 9: Inheritance 413

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

“As you’ll see in a minute,” I replied, “because both HourlyEmployee and SalariedEmployee
will be derived from the EmployeeBase class, both classes will contain include statements for
EmployeeBase.cpp—that’s how the duplicate definition of EmployeeBase can confuse the compiler.
When we compile Example9_3.cpp, these precompiler directives tell our compiler to compile
EmployeeBase only if no definition for it already exists.”

//#ifndef EmployeeBase_cpp

//#define EmployeeBase_cpp

“That reminds me of an If statement,” Ward said.
“That’s exactly what it is, Ward” I said, “except it’s an If statement for the compiler. In essence,

it says if no definition of EmployeeBase already exists, proceed to the next line of code. That line
of code, which is also a compiler directive, instructs the compiler to define it and to use the code
that is contained between the #define statement and the #endif statement.”

//#endif

NOTE
C++ is a powerful tool, and because of its capability to produce an executable from
many component files, an awareness of precompiler directives is a necessary evil.

“If the compiler had already defined EmployeeBase.cpp, nothing between the #ifndef and #endif
directives would have compiled. That’s okay, because that would have already been compiled.”

“So what would have happened had we not included these precompiler statements?” Rhonda asked.
“When we compiled the client program that uses both HourlyEmployee and SalariedEmployee,”

I answered, “the compiler would complain that there is a duplicate definition for the EmployeeBase
class. As programs get more and more complex, this duplicate definition problem becomes more likely.
In fact, some of my associates routinely ‘sandwich’ their classes with these precompiler directives.”

Rhonda and the rest of the class seemed okay with the precompiler directives, so we moved on
to the actual code.

“The base class EmployeeBase,” I continued, “implements the member variables empID, name,
and grossPay, which are common to any type of employee, whether hourly or salaried. In addition,
the corresponding accessor and mutator methods for empID and name are included.”

I paused a moment before continuing.
“What I’d like to do now is show you how we can derive a class called HourlyEmployee from

the EmployeeBase class we just coded.”

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

I then displayed this code on the classroom projector:

//HourlyEmployee.cpp

#include <iostream>

#include <string>

#include "EmployeeBase.cpp"

using namespace std;

class HourlyEmployee: public EmployeeBase

{

protected:

float hourlyRate;

int hoursWorked;

public: HourlyEmployee() //Constructor Method

{

cout << "HourlyEmployee's Constructor" << endl;

}

public: void SetHourlyRate(float temp)

{

hourlyRate = temp;

}

public: float GetHourlyRate()

{

return hourlyRate;

}

public: void SetHoursWorked(int temp)

{

hoursWorked = temp;

}

public: int GetHoursWorked()

{

return hoursWorked;

}

414 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 9: Inheritance 415

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

public: float GetGrossPay()

{

grossPay = hourlyRate * hoursWorked;

return grossPay;

}

public: void Display()

{

cout << endl << "*** EMPLOYEE RECORD ***" << endl << endl;

cout << "Employee ID: " << EmployeeBase::empID << endl;

cout << "Name: " << name << endl;

cout << "Hourly Rate: $" << hourlyRate << endl;

cout << "Hours Worked: " << hoursWorked << endl;

cout << "Gross Pay: $" << GetGrossPay() << endl;

}

}; //end of class

“Notice,” I said, “how the HourlyEmployee derived class has implemented two member
variables unique to an hourly employee—hourlyRate and hoursWorked. In addition, accessor and
mutator methods for each have been coded. We’ve also coded a GetGrossPay() function and a
Display() function—and before I forget to mention it, take note of the fact that we also used the
include statement to reference the EmployeeBase class.”

“That’s what you meant earlier when you said we might have a duplicate definition, is that
right?” Kate asked.

“Exactly, Kate,” I said. “In a minute you’ll see that the SalariedEmployee class will also include
a reference to the EmployeeBase class.”

I then saved the program as HourlyEmployee.cpp and compiled it. Once again, except for a
message from the linker complaining that there was no main() function, the class compiled fine.

“Now,” I said “before we write code to use the HourlyEmployee class in a client program,
let’s modify the derived class SalariedEmployee that we created earlier so that it’s derived from
EmployeeBase instead of Employee. All we need to do, really, is change two line of codes: the
include statement and the line of code that specifies the base class.”

I then displayed this code on the classroom projector:

//SalariedEmployee.cpp

#include <iostream>

#include <string>

#include "EmployeeBase.cpp"

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

using namespace std;

class SalariedEmployee : public EmployeeBase

{

private:

float annualSalary;

public: SalariedEmployee() //Constructor Method

{

cout << "Salaried Employee's Constructor" << endl;

}

public: void SetAnnualSalary(float temp)

{

annualSalary = temp;

}

public: float GetAnnualSalary()

{

return annualSalary;

}

public: float GetGrossPay()

{

grossPay = annualSalary / 26;

return grossPay;

}

public: void Display()

{

cout << endl<< "*** SALARIED EMPLOYEE RECORD ***" << endl << endl;

cout << "Employee ID: " << empID << endl;

cout << "Name: " << name << endl;

cout << "Annual Salary: $" << annualSalary << endl;

cout << "Gross Pay: $" << GetGrossPay() << endl;

}

}; //end of class

416 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 9: Inheritance 417

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

I then saved the program as SalariedEmployee.cpp and compiled it. Once again, except for a
message from the linker complaining that there was no main() function, the class compiled fine.

“Notice,” I said, “that this version of the SalariedEmployee derived class has implemented one
member variable unique to a salaried employee: annualSalary. In addition, accessor and mutator
methods for the annualSalary attribute have been coded. Finally, the SalariedEmployee derived
class also contains code for the GetGrossPay() and Display() methods.”

“Overall, then,” Dave said, “it looks like the EmployeeBase base class has three member
variables and seven methods. The HourlyEmployee derived class has two member variables and
seven methods, and SalariedEmployee has one member variable and five methods.

“Excellent analysis,” I said. “Using inheritance and giving some thought to the base class can
result in much less code in the classes derived from it.”

“I’m starting to get a feel for the class hierarchy you’re talking about,” Linda said. “Now I see
that if the need arose to create a new type of employee class—a member of the board of directors,
for instance, who receives a one-time stipend payment each year—we can create a class called
EmployeeBoardOfDirectors and derive it from the EmployeeBase class, adding just the member
variables necessary to describe that kind of employee and adding code to implement its own
version of the GetGrossPay() and Display() methods.”

“Excellently stated, Linda,” I said.
“This may not be a good time to ask this,” Dave said, “but suppose the designer of the

EmployeeBoardOfDirectors class ‘forgets’ to code a GetGrossPay() and Display() method. Or
codes them but gives them a different name.”

“What do you mean?” Rhonda asked, turning to Dave.
“In some other object-oriented languages I’ve worked with,” Dave replied, “there’s a way for

the designer to ensure some consistency in the classes derived from a base class—for instance, to
ensure that each derive class code have methods called GetGrossPay() and Display().”

“There is a way to do that in C++,” I said, “and we’ll be examining it shortly.”
I then paused a moment before continuing.
“Now let’s write a client program that creates an instance of each of these derived class objects,

HourlyEmployee and SalariedEmployee.”
I then displayed this code on the classroom projector:

//Example9_3.cpp

#include "HourlyEmployee.cpp"

#include "SalariedEmployee.cpp"

int main()

{

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

418 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

HourlyEmployee x;

x.SetEmpID("086");

x.SetName("John Smith");

x.SetHourlyRate(12.50);

x.SetHoursWorked(40);

x.Display();

SalariedEmployee y;

y.SetEmpID("337");

y.SetName("Mary Jones");

y.SetAnnualSalary(52000);

y.Display();

return 0;

}

I saved the program as Example9_3.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

“As you can see,” I said, “our client program has created an instance of both the HourlyEmployee
and SalariedEmployee objects, set some attributes, and displayed the calculated gross pay for each
type of object. Notice that the constructor for the EmployeeBase class was executed prior to the
constructor for the HourlyEmployee and SalariedEmployee classes. Again, constructor methods
are where you should place code that initializes the state—or member variables—of an object.”

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Abstract Classes and Pure Virtual Functions
“Can we get back to what Dave asked about earlier?” Peter asked. “A way the designer of the base
class can ‘force’ classes deriving from the base class to code methods with a certain name.”

“I still don’t quite ‘get’ why you would want to do this if you were the designer of the base
class.” Rhonda said.

“There are two reasons,” I replied. “First, consistency. As Dave mentioned, it makes sense that
each class derived from EmployeeBase have methods called GetGrossPay() and Display(). From
a functional point of view, it’s necessary, and having identical names for these methods in each
derived class will help maintain the ‘sanity levels’ of the programmers using their objects. You can
force this consistency by creating what C++ calls a pure virtual function, also known as a virtual
method, which is essentially a method containing only a header with no code. When a derived
class uses a base class containing a pure virtual function, the derived class must supply the
implementation code for it.”

“Okay, that makes sense,” Linda said. “What’s the second reason?”
“As the designer of the base class,” I said, “you may realize that the class isn’t really suitable to

having objects directly instantiated from it—in other words, you only want the class to be used as
a base class in derived classes. This is done by creating an abstract class, which is a class that is
meant to be a ‘blueprint’ for derived classes. In other words, objects cannot be directly instantiated
from an abstract class. In C++, you create an abstract class by including in the class at least one
pure virtual function.”

“So a class containing at least one pure virtual function is automatically an abstract class, and
no objects can be created from it, correct?” Peter asked.

“Exactly right, Peter,” I said, “although other classes can be derived from an abstract class. Let’s
‘convert’ our EmployeeBase class to an abstract class by including in it two pure virtual functions—
GetGrossPay() and Display().”

I then displayed this code on the classroom projector (the modified code is shown in bold):

//EmployeeBase.cpp

#include <iostream>

#include <string>

#ifndef EmployeeBase_cpp

#define EmployeeBase_cpp

using namespace std;

class EmployeeBase

{

protected:

Chapter 9: Inheritance 419

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

string empID;

string name;

float grossPay;

public: EmployeeBase() //Constructor Method

{

cout << endl<< "EmployeeBase's Constructor" << endl;

}

public: void SetEmpID(string temp)

{

empID = temp;

}

public: string GetEmpID()

{

return empID;

}

public: void SetName(string temp)

{

name = temp;

}

public: string GetName()

{

return name;

}

public: virtual float GetGrossPay() = 0;

public: virtual void Display() = 0;

}; //end of class

#endif

“As before,” I said, “the base class EmployeeBase implements the member variables—empID,
name, and grossPay—that are common to any type of employee, whether hourly or salaried, along
with the corresponding accessor and mutator methods for empID and name. However, this time

420 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

we also included a reference to the GetGrossPay() and Display() methods that we want our
derived classes to actually implement. We do that with these two lines of code:”

public: virtual float GetGrossPay() = 0;

public: virtual void Display() = 0;

“Including the Virtual keyword in the signature of the method, along with assigning it a value
of 0, is what tells C++ that this method is a pure virtual function, and it also designates this class
as an abstract class. As you can see, pure virtual functions are really nothing more than method
signatures without code.”

“Can you explain again what the purpose is of a pure virtual function?” Kate asked. “Why
would the designer of a base class use one?”

“The designer of the class,” I continued, “may decide that it makes perfect sense to include a
Display() method in the EmployeeBase base class, but isn’t exactly sure how derived classes
‘inheriting’ from it will choose to implement the details of the Display() method. As we saw with
our previous example of hourly and salaried employees, the display for each type is slightly different.”

“Does the presence of a pure virtual function in the base class force the designer of a class
derived from it to provide the detailed code?” Dave asked.

“Yes, Dave, that’s exactly what it means,” I replied. “When you derive a class from a base class
containing pure virtual functions, you are forced by the compiler to provide actual implementations
for them in the derived class. Of course, how you choose to do that is entirely up to you.”

“Are you saying,” Linda asked, “that if a class derived from the EmployeeBase class does not
contain its own methods called Display() and GetGrossPay(), the derived class won’t compile?”

“Exactly right, Linda,” I said. “Any class derived from the EmployeeBase base class must
implement both the GetGrossPay() and Display() methods.”

“This is all pretty interesting,” Rhonda said. “In some ways, a pure virtual function reminds me
of when I worked as a secretary in a law firm. If a client came in to have a will drawn up, one of
the staff attorneys would take some notes, hand them to me, and I would then incorporate their
notes into boilerplate sections in a will template we had created in WordPerfect.”

“Boilerplate sections?” Mary asked, looking at Rhonda.
“Boilerplate is standard legal language,” Rhonda answered. “And much of a standard will is

standard legal jargon. In the templates I worked with, there were many boilerplate section headers
that had nothing in them. In essence, they were just there to serve as reminders to us to ensure that
we didn’t forget to include the necessary verbiage to make the will valid.”

“Kind of like a pure virtual function!” I said. “Rhonda, that’s a brilliant analogy. That’s exactly
the idea behind pure virtual functions in a base class. Pure virtual functions ensure that the
designer’s vision for the base class, and the classes to be derived from it, are adhered to. Through

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

Chapter 9: Inheritance 421

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

the use of pure virtual functions in a base class, the designer knows that each and every class
derived from the base class will implement those methods—even though the implementation
details are up to the programmer who codes the derived class. And remember, any class that
contains a pure virtual function is also an abstract class—and no objects can be directly
instantiated from it.”

“That means we can’t create an EmployeeBase object?” Blaine asked.
“Right on the mark, Blaine,” I said. “A class containing pure virtual functions is automatically

an abstract class—and that means it’s really nothing more than the ‘boilerplate’ for derived classes
to be derived from it. Unlike this class, which contains a mixture of regular methods and pure
virtual functions, there are also some abstract classes that contain only pure virtual functions.”

“Are you going to show us how to derive a class from an abstract base class?” Ward asked.
“What changes need to be made to the HourlyEmployee and SalariedEmployee classes?”

“None at all, Ward,” I said. “The fact that we are now deriving from an abstract version of
EmployeeBase simply means that we must have code in both HourlyEmployee and SalariedEmployee
that implements the GetGrossPay() and Display() methods. Because we already have that code in
those classes, no changes are required to them. If we failed to implement those methods in a class
derived from the EmployeeBase base class, we would have generated a compiler error when we
compiled the derived class.”

“Can we see the compiler error that would generate?” Kate asked.
“Sure thing, Kate,” I said.
I then temporarily deleted the implementation of the GetGrossPay() method from

HourlyEmployee and compiled it. The following screenshot was displayed on the classroom projector:

“Do you see what happened?” I said. “The compiler error message is a bit cryptic, but it is
telling us that we failed to define a GetGrossPay() method.”

422 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

I then reinserted the GetGrossPay() method into the HourlyEmployee derived class and
recompiled Example9_3 with no problem.

“Just out of curiosity, as it’s not directly related to abstract classes,” Dave said, “but is there a
way to keep a derived class from overriding a method in a base class? For instance, right now,
there’s nothing stopping the designer of SalariedEmployee from including their own version of
the SetEmpID() method, is there?”

“Good question, Dave,” I said. “You’re right. The designer of the derived class can choose to
implement their own version of each one of the methods defined in the base class—something
that the designer of the base class may not want to happen. In some other languages, it is possible
to prevent this from happening, but unfortunately there is no way to prevent this from happening
in C++. Once again, this is an illustration of the great power of C++. It can do a lot, but it also
lacks some of the ‘protection features’ that other languages have built in to prevent programmers
from stepping on their own toes.”

I noticed several students were starting to fidget. I realized that we had been working pretty
intensely for some time without coming up for air, and so I asked everyone to take a short break.

Creating a Base Class and Derived Classes
in the Grades Calculation Project

Fifteen minutes later I resumed class by explaining that it was now time to examine the Grades
Calculation Project to see if we had a candidate for a base class.

“Normally,” I said, “we would do this kind of analysis prior to this point, but because you’re
learning C++ while we’re writing the Grades Calculation Project, it can’t really be helped. Does
anyone have any thoughts on base classes and derived classes?”

“I think one obvious base class would be a Student class,” Dave said. “Right now the
EnglishStudent, MathStudent, and ScienceStudent classes have a lot of duplicated code. If we create
a Student base class, we’ll be able to cut down significantly on the size of those three classes.”

“Dave’s right,” I said. “The member variables midterm, finalExamGrade, finalNumericGrade,
and finalLetterGrade are used in all three of those classes—plus the research and presentation
member variables are used in the EnglishStudent class, and the research member variable is used
in the ScienceStudent class.”

“We also have duplication of the mutator and accessor methods for each of those member
variables,” Linda said “These are all candidates for inclusion in a base class.”

“Each one of the three student classes also have a Calculate() method,” Mary said, “although
the code details are different in each one. Might the Calculate() method be a good candidate for
a pure virtual function in a Student base class?”

Chapter 9: Inheritance 423

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 1:10:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“That’s a great idea, Mary” I said. “That way, any class that inherits from the base class would
be required to implement its own version of the Calculate() method.”

I then distributed this exercise for the class to complete.

Exercise 9-1 Create the Student Base Class
for the Grade Calculation Project

In this exercise, you’ll create the base class Student for the Grades
Calculation Project.

1. Use Notepad (if you are using Windows) to enter the following code:

//Student.cpp

#ifndef Student_cpp

#define Student_cpp

#include <iostream>

#include <string>

using namespace std;

class Student

{

protected:

int midterm;

int finalExamGrade;

int research;

int presentation;

float finalNumericGrade;

char finalLetterGrade;

public: Student()

{

cout << "Student's Constructor" << endl;

midterm = 0;

finalExamGrade = 0;

research = 0;

presentation = 0;

finalNumericGrade = 0;

}

protected: void SetMidterm(int temp)

{

424 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

if (temp < 0 || temp > 100)

{

cout << "Invalid Midterm Grade (" <<

temp << ") " << "Program Terminating" << endl;

exit(1);

}

else

midterm = temp;

}

public: int GetMidterm()

{

return midterm;

}

protected: void SetFinalExamGrade(int temp)

{

if (temp < 0 || temp > 100)

{

cout << "Invalid Final Exam Grade (" <<

temp << ") " << "Program Terminating" << endl;

exit(1);

}

else

finalExamGrade = temp;

}

public: int GetFinalExamGrade()

{

return finalExamGrade;

}

protected: void SetResearch(int temp)

{

if (temp < 0 || temp > 100)

{

cout << "Invalid Research Grade (" <<

temp << ") " << "Program Terminating" << endl;

exit(1);

}

else

Chapter 9: Inheritance 425

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

research = temp;

}

public: int GetResearch()

{

return research;

}

protected: void SetPresentation(int temp)

{

if (temp < 0 || temp > 100)

{

cout << "Invalid Presentation Grade (" <<

temp << ") " << "Program Terminating" << endl;

exit(1);

}

else

presentation = temp;

}

public: int GetPresentation()

{

return presentation;

}

public: float GetFinalNumericGrade()

{

return finalNumericGrade;

}

public: char GetFinalLetterGrade()

{

return finalLetterGrade;

}

public: virtual void Calculate() = 0;

};

#endif

426 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

2. Save your source file as Student.cpp in the \CPPFiles\Grades folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file. Look for any compiler error messages. If you
receive one, correct the problem so that the compiler runs cleanly. Because
your source file contains a class, once the class compiles cleanly, you will still
receive an error from the linker program indicating that you don’t have a
main() function. If that’s the only error you receive, don’t worry. You won’t
be testing the behavior of your base Student class until we have completed
the work on the other classes in the project.

Discussion No one had any major problems completing the exercise (of course, we had our
share of typos and minor problems). One student forgot to code the inclusion
guards, which didn’t impact the cability to compile the class but would have
caused problems further down the line.

“All we’ve really done then,” Rhonda said, “is take the member variables
common to all three classes—EnglishStudent, MathStudent, and ScienceStudent—
and incorporate them into the Student class. Is that right?”

“That’s basically correct, Rhonda” I said. “But remember, research and
presentation are not common to all three classes.”

“That’s right,” Peter said, obviously troubled. “Research and presentation
don’t appear in the MathStudent class, and the presentation member variable
doesn’t appear in the ScienceStudent class. Is it okay to place these in the
Student base class anyway?”

“It’s not a problem, Peter,” I said. “We could have chosen to declare only the
two ‘common’ member variables in the Student base class, but we really should
design the Student base class not only for the three student types that currently
exist but for those that may be required in the future as well.”

“Other student types?” Mary asked. “Such as?”

“Well,” I suggested, “there’s always the possibility that other departments
in the university—such as the Business department and the Computer Science
department—after hearing about the fine work we’ve done for Frank Olley,
may ask us to modify the Grades Calculation program for their use as well. These
departments, I suspect, may compute their final grades based on combinations of
the midterm, finalExamGrade, research, and presentation components, so that’s
why we should include all these in the Student base class.”

There were no more questions, so I distributed this exercise for the class to complete.

Chapter 9: Inheritance 427

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Exercise 9-2 Modify the EnglishStudent Class to Inherit
from the Student Base Class

In this exercise, you’ll modify the EnglishStudent Derived Class for the Grade
Calculation Project.

1. Using Notepad (if you are using Windows), locate and open the
EnglishStudent.cpp source file you worked on last week. (It should be in
the \CPPFiles\Grades folder.)

2. Modify your code so that it looks like this.

//EnglishStudent.cpp

#include <iostream>

#include <string>

#include "Student.cpp"

using namespace std;

class EnglishStudent: public Student

{

private:

float ENGLISH_FINALEXAM_PERCENTAGE;

float ENGLISH_RESEARCH_PERCENTAGE;

float ENGLISH_PRESENTATION_PERCENTAGE;

float ENGLISH_MIDTERM_PERCENTAGE;

public: EnglishStudent()

{

cout << "English Student's Constructor" << endl;

ENGLISH_FINALEXAM_PERCENTAGE = .25;

ENGLISH_RESEARCH_PERCENTAGE = .30;

ENGLISH_PRESENTATION_PERCENTAGE = .20;

ENGLISH_MIDTERM_PERCENTAGE = .25;

}

public: void Calculate()

{

char response[256];

string moreGradesToCalculate;

cout << "Enter the Midterm Grade: " ;

cin.getline(response,256);

SetMidterm(atoi(response));

428 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 9: Inheritance 429

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

cout << "Enter the Final Examination Grade: " ;

cin.getline(response,256);

SetFinalExamGrade(atoi(response));

cout << "Enter the Research Grade: " ;

cin.getline(response,256);

SetResearch(atoi(response));

cout << "Enter the Presentation Grade: " ;

cin.getline(response,256);

SetPresentation(atoi(response));

finalNumericGrade =

(midterm *

ENGLISH_MIDTERM_PERCENTAGE) +

(finalExamGrade * ENGLISH_FINALEXAM_PERCENTAGE) +

(research * ENGLISH_RESEARCH_PERCENTAGE) +

(presentation * ENGLISH_PRESENTATION_PERCENTAGE);

if (finalNumericGrade >= 93)

finalLetterGrade = 'A';

else

if ((finalNumericGrade >= 85) &&

(finalNumericGrade < 93))

finalLetterGrade = 'B';

else

if ((finalNumericGrade >= 78) &&

(finalNumericGrade < 85))

finalLetterGrade = 'C';

else

if ((finalNumericGrade >= 70) &&

(finalNumericGrade < 78))

finalLetterGrade = 'D';

else

if (finalNumericGrade < 70)

finalLetterGrade = 'F';

}

};

3. Save your source file as EnglishStudent.cpp in the \CPPFiles\Grades folder
(select File | Save As from Notepad’s menu bar). Be sure to save your source
file with the filename extension .cpp.

4. Compile your source file. Look for any compiler error messages. If you
receive one, correct the problem so that the compiler runs cleanly. Because

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

your source file contains a class, once the class compiles cleanly, you will still
receive an error from the linker program indicating that you don’t have a
main() function. If that’s the only error you receive, don’t worry. You won’t
be testing your modified EnglishStudent class until we have completed the
work on the other classes in the project.

Discussion “So EnglishStudent is now a derived class, is that right?” Joe asked.

“That’s right, Joe,” I said. “It’s this line of code that tells C++ that the
EnglishStudent class is deriving the member variables and methods of the
Student class. Don’t forget to code the Public keyword.”

class EnglishStudent: public Student

“In addition to the EnglishStudent class inheriting from the Student base
class,” I continued, “we ‘removed’ from the EnglishStudent class the member
variables and methods that are now contained in the Student base class. The
EnglishStudent class contains the member variables necessary for its unique
Calculate() method to function properly.”

private:

float ENGLISH_FINALEXAM_PERCENTAGE;

float ENGLISH_RESEARCH_PERCENTAGE;

float ENGLISH_PRESENTATION_PERCENTAGE;

float ENGLISH_MIDTERM_PERCENTAGE;

“It also contains its own constructor method, EnglishStudent(), which, in
addition to displaying a message to the C++ console, initializes the values of its
member variables

public: EnglishStudent()

{

cout << "English Student's Constructor" << endl;

ENGLISH_FINALEXAM_PERCENTAGE = .25;

ENGLISH_RESEARCH_PERCENTAGE = .30;

ENGLISH_PRESENTATION_PERCENTAGE = .20;

ENGLISH_MIDTERM_PERCENTAGE = .25;

}

as well as its own unique Calculate() method, which overrides the pure virtual
function Calculate() method in the Student base class.”

public: void Calculate()

{

char response[256];

string moreGradesToCalculate;

cout << "Enter the Midterm Grade: " ;

430 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 9: Inheritance 431

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

cin.getline(response,256);

SetMidterm(atoi(response));

cout << "Enter the Final Examination Grade: " ;

cin.getline(response,256);

SetFinalExamGrade(atoi(response));

cout << "Enter the Research Grade: " ;

cin.getline(response,256);

SetResearch(atoi(response));

cout << "Enter the Presentation Grade: " ;

cin.getline(response,256);

SetPresentation(atoi(response));

finalNumericGrade =

(midterm *

ENGLISH_MIDTERM_PERCENTAGE) +

(finalExamGrade * ENGLISH_FINALEXAM_PERCENTAGE) +

(research * ENGLISH_RESEARCH_PERCENTAGE) +

(presentation * ENGLISH_PRESENTATION_PERCENTAGE);

if (finalNumericGrade >= 93)

finalLetterGrade = 'A';

else

if ((finalNumericGrade >= 85) &&

(finalNumericGrade < 93))

finalLetterGrade = 'B';

else

if ((finalNumericGrade >= 78) &&

(finalNumericGrade < 85))

finalLetterGrade = 'C';

else

if ((finalNumericGrade >= 70) &&

(finalNumericGrade < 78))

finalLetterGrade = 'D';

else

if (finalNumericGrade < 70)

finalLetterGrade = 'F';

}

“So none of the code in the EnglishStudent class has really changed, has it?”
Linda asked. “We’ve really just removed code from it.”

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

432 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

“That’s right, Linda,” I replied. “Because we’re deriving member variables
and methods from the Student base class, we’ve been able to significantly
reduce the amount of code in the EnglishStudent class.”

“Where are the variables that are in the EnglishStudent’s Calculate()
method located?” Rhonda asked. “Are those the member variables found in the
Student class?”

“That’s exactly right, Rhonda,” I said. “EnglishStudent derives these member
variables from the Student class, so the Calculate() method can refer to them
as if they were declared in EnglishStudent—that’s the whole idea behind
inheritance.”

There were no more questions, so I distributed this exercise for the class to complete.

Exercise 9-3 Modify the MathStudent Class to Inherit from the
Student Base Class

In this exercise, you’ll modify the MathStudent derived class for the Grade
Calculation Project.

1. Using Notepad (if you are using Windows), locate and open the
MathStudent.cpp source file you worked on last week. (It should be in
the \CPPFiles\Grades folder.)

2. Modify your code so that it looks like this:

//MathStudent.cpp

#include <iostream>

#include <string>

#include "Student.cpp"

using namespace std;

class MathStudent: public Student

{

private:

float MATH_MIDTERM_PERCENTAGE;

float MATH_FINALEXAM_PERCENTAGE;

public: MathStudent()

{

cout << "Math Student's Constructor" << endl;

MATH_MIDTERM_PERCENTAGE = .50;

MATH_FINALEXAM_PERCENTAGE = .50;

}

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

public: void Calculate()

{

char response[256];

string moreGradesToCalculate;

cout << "Enter the Midterm Grade: " ;

cin.getline(response,256);

SetMidterm(atoi(response));

cout << "Enter the Final Examination Grade: " ;

cin.getline(response,256);

SetFinalExamGrade(atoi(response));

finalNumericGrade =

(midterm * MATH_MIDTERM_PERCENTAGE) +

(finalExamGrade * MATH_FINALEXAM_PERCENTAGE);

if (finalNumericGrade >= 90)

finalLetterGrade = 'A';

else

if ((finalNumericGrade >= 83) &&

(finalNumericGrade < 90))

finalLetterGrade = 'B';

else

if ((finalNumericGrade >= 76) &&

(finalNumericGrade < 83))

finalLetterGrade = 'C';

else

if ((finalNumericGrade >= 65) &&

(finalNumericGrade < 76))

finalLetterGrade = 'D';

else

if (finalNumericGrade < 65)

finalLetterGrade = 'F';

}

};

3. Save your source file as MathStudent.cpp in the \CPPFiles\Grades folder
(select File | Save As from Notepad’s menu bar). Be sure to save your source
file with the filename extension .cpp.

4. Compile your source file. Look for any compiler error messages. If you
receive one, correct the problem so that the compiler runs cleanly. Because
your source file contains a class, once the class compiles cleanly, you will still
receive an error from the linker program indicating that you don’t have a

Chapter 9: Inheritance 433

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

main() function. If that’s the only error you receive, don’t worry. You won’t
be testing your modified MathStudent class until we have completed the
work on the other classes in the project.

Discussion No one had any problems completing their work on the MathStudent class.
Modifying it was just a matter of removing some code, the same process we had
followed for the EnglishStudent class. We then moved on to the next exercise.

Exercise 9-4 Modify the ScienceStudent Class to Inherit
from the Student Base Class

In this exercise, you’ll modify the ScienceStudent derived class for the Grade
Calculation Project.

1. Using Notepad (if you are using Windows), locate and open the
ScienceStudent.cpp source file you worked on last week. (It should be in
the \CPPFiles\Grades folder.)

2. Modify your code so that it looks like this:

//ScienceStudent.cpp

#include <iostream>

#include <string>

#include "Student.cpp"

using namespace std;

class ScienceStudent: public Student

{

private:

float SCIENCE_MIDTERM_PERCENTAGE;

float SCIENCE_FINALEXAM_PERCENTAGE;

float SCIENCE_RESEARCH_PERCENTAGE;

public: ScienceStudent()

{

cout << "Science Student's Constructor" << endl;

midterm = 0;

finalExamGrade = 0;

research = 0;

finalNumericGrade = 0;

SCIENCE_MIDTERM_PERCENTAGE = .40;

SCIENCE_FINALEXAM_PERCENTAGE = .40;

SCIENCE_RESEARCH_PERCENTAGE = .20;

434 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

}

public: void Calculate()

{

char response[256];

string moreGradesToCalculate;

cout << "Enter the Midterm Grade: " ;

cin.getline(response,256);

SetMidterm(atoi(response));

cout << "Enter the Final Examination Grade: " ;

cin.getline(response,256);

SetFinalExamGrade(atoi(response));

cout << "Enter the Research Grade: " ;

cin.getline(response,256);

SetResearch(atoi(response));

finalNumericGrade =

(midterm * SCIENCE_MIDTERM_PERCENTAGE) +

(finalExamGrade *

SCIENCE_FINALEXAM_PERCENTAGE) +

(research * SCIENCE_RESEARCH_PERCENTAGE);

if (finalNumericGrade >= 90)

finalLetterGrade = 'A';

else

if ((finalNumericGrade >= 80) &&

(finalNumericGrade < 90))

finalLetterGrade = 'B';

else

if ((finalNumericGrade >= 70) &&

(finalNumericGrade < 80))

finalLetterGrade = 'C';

else

if ((finalNumericGrade >= 60) &&

(finalNumericGrade < 70))

finalLetterGrade = 'D';

else

if (finalNumericGrade < 60)

finalLetterGrade = 'F';

}

};

Chapter 9: Inheritance 435

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

3. Save your source file as ScienceStudent.cpp in the \CPPFiles\Grades folder
(select File | Save As from Notepad’s menu bar). Be sure to save your source
file with the filename extension cpp.

4. Compile your source file. Look for any compiler error messages. If you
receive one, correct the problem so that the compiler runs cleanly. Because
your source file contains a class, once the class compiles cleanly, you will still
receive an error from the linker program indicating that you don’t have a
main() function. If that’s the only error you receive, don’t worry.

5. We can now test the work we’ve done with the four classes (Student,
EnglishStudent, MathStudent, and ScienceStudent). Although no changes
need to be made to the Grades.cpp program, we do need to recompile it so
that the new versions of our classes are linked into the executable. Do that
now. Provided it compiles cleanly, execute the Grades program.

6. After you start up your program, it should ask whether you have a grade to
calculate.

7. Answer Yes and calculate the grade for an English student. Enter 70 for the
midterm, 80 for the final examination, 90 for the research grade, and 100
for the presentation. A final numeric grade of 84.5 should be displayed with
a letter grade of C.

8. After a message is displayed with the calculated grade, the program should
ask whether you have more grades to calculate.

9. Answer Yes and calculate the grade for a math student. Enter 70 for the
midterm and 80 for the final examination. A final numeric grade of 75
should be displayed with a letter grade of D.

10. After a message is displayed with the calculated grade, the program should
ask whether you have more grades to calculate.

11. Answer Yes and calculate the grade for a science student. Enter 70 for the
midterm, 80 for the final examination, and 90 for the research grade. A
final numeric grade of 78 should be displayed with a letter grade of C. After
the message is displayed with the calculated grade, the program should ask
whether you have more grades to calculate.

12. Answer No. You should be thanked for using the program, and the
program should end.

13. Now execute the program again and verify that the code in the Set()
methods of the Student classes are properly handling invalid entries for
midterm, final exam, research, and presentation grades. This will take
several iterations of the program, as each time you enter an invalid grade,
the program will display a message and end.

436 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Discussion “Everything works the same as it did prior to creating the base class and converting
EnglishStudent, MathStudent, and ScienceStudent to derived classes,” I said.
“Ultimately, we’ve made the size of our derived classes smaller—which is always
a good thing—and the class hierarchy we’ve created through the creation of
the Student base class will make future modifications to this project much easier.”

No one had any questions. They seemed quite pleased with the work they
had done today.

“Next week,” I said, “we’ll examine the topic of arrays. I think you’ll enjoy it. See you then.”
I then dismissed class for the day.

Summary
In this chapter, we covered one major topic: inheritance.

Inheritance is the process whereby one class (called a derived class) can derive the member
variables and methods of a parent class (called the base class). Deriving attributes and behaviors of
another class can save the programmer of the derived class a lot of coding. More important, creating
class hierarchies in which a base class (a base class is the top of the hierarchy) has member variables
and methods that are common to the classes derived from it offers the utmost in software reusability.

Chapter 9: Inheritance 437

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 9
Blind Folio 9:438

P:\010Comp\LearnTo\535-1\ch09.vp
Tuesday, October 08, 2002 12:53:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter

10
Arrays

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10
Blind Folio 10:439

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:47:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
TLFeBOOK

In this chapter, you’ll learn about one of the most fundamental data structures in the world
of programming: arrays. Arrays are collections of variables, each having the same name but
possessing a unique number called a subscript. Arrays permit a programmer to easily solve

certain types of problems that would otherwise be extremely tedious to code.

Why Arrays?
I began our tenth class by telling my students that the entirety of this day’s class would be devoted
to the topic of arrays.

“Is an array similar to a regular variable?” Dave asked.
“Yes it is, Dave,” I said. “You’ve learned that a variable is a single piece of data stored in the

computer’s memory and given a name. An array is a collection of variables—I sometimes call arrays
families of variables—of the same data type, such as int or string, stored in the computer’s memory.
Each member of the collection has the same name but possesses a unique number called a subscript,
which is used to identify it. Individual members of an array are called elements of the array.”

NOTE
You sometimes see the terms subscript and index used interchangeably.

“In the world of programming,” I continued, “certain kinds of programming problems can
more easily be solved using arrays. In fact, it’s probably safe to say that there are certain types of
programming problems that could not be solved without the use of arrays.”

“What kinds of problems?” Chuck asked, his curiosity aroused.
“In general, Chuck,” I said, “arrays are useful for problems where there is a requirement to

manipulate large amounts of data and where the data isn’t really unique but there are huge
volumes of it.”

“Could you give us an example of something like that?” Kate asked.
I thought for a moment and then said, “Let’s suppose, Kate, that you are a weather meteorologist

and, armed with the knowledge of C++ that you have picked up in this class, you decide to write a
C++ program to keep track of 365 days worth of daily high temperature readings.”

“That sounds interesting,” Ward said. “That’s an awful lot of data—at least more than we’re
used to.”

“Furthermore,” I continued, “let’s presume that Kate would also like to calculate the yearly
high average for her temperature readings. From what you’ve learned so far in the class, you know

440 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:47:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

that she could declare and store these temperature readings in 365 separate variables called
highTemperature1 through highTemperature365.”

“I agree, that would do the trick,” Dave said, “but who really wants to code 365 variable
declaration statements, plus the 365 assignment statements to store the value of the variables?
Plus, the calculation for the yearly average would require that Kate sum each and every one of
those variables and then divide by 365—what a tedious exercise that would be! Is this where an
array can help?”

“That’s exactly the case, Dave,” I answered. “Let’s think about this for a moment. Each one
of the 365 recorded high-temperature readings isn’t really unique. It represents the same kind of
thing: a temperature reading. What’s different about each one? Only the day that the temperature
is recorded, and the value of the temperature measurement. You’ll see in a few minutes that an
array is a much better choice than an ordinary variable in which to store those 365 temperature
readings. Arrays are so common in programming that they are generally very easy to declare. In
fact, an array declaration to store 365 high-temperature readings is just a single line of code.”

“Amazing,” I heard Valerie say.
“Not only does an array eliminate the need to declare 365 separate variables,” I continued, “but

once the values for the year’s temperature readings are stored in the array, it’s a simple process to
use a For loop to access each individual element of the array and then retrieve the value, add it to
an accumulator variable, and then calculate an average temperature. Believe it or not, this all can
be done in about five lines of code.”

“I can’t wait to see this in action,” Steve said.
“Let me give you another example,” I said. “On Wednesday evenings, I teach a database

administration class here at the university. Last Wednesday, I gave a quiz to each one of the six
students in the class. What would you say if I asked you to write a C++ program to calculate the
overall class average for that quiz? Based on what you’ve learned in the first nine weeks of the
course but excluding what we’ve discussed so far about arrays, do you have any idea as to how we
could calculate the class average?”

“I guess,” Rhonda suggested, “that one way would be to borrow the functionality that we are
currently using with the Grade Calculation program.”

“How’s that, Rhonda?” I asked.
“Well, we could prompt the user of the program to enter quiz grades for each one of the six

students,” she replied. “You told us to discount today’s discussion of arrays, so the best I can
suggest is to declare six variables, one to represent the quiz grades for each one of the students, and
assign the user’s input to one of those variables. Once the user has entered all six student grades,
we can then sum the values of the variables and divide by six to calculate an overall class average.”

Chapter 10: Arrays 441

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:47:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

442 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

“Based on what you’ve learned so far during the course, Rhonda, that’s an excellent approach,”
I said. “However, once you learn more about arrays, I bet you’ll come to the conclusion that this
method, as effective as it is, is really a ‘brute-force’ method, as I like to call it.”

I gave everyone a chance to ponder that statement.
“Now, suppose I told you that my database management class doesn’t have just six students; it

really has 150 students. Would that change your approach to solving the problem?”
“I would think we need to find a better approach to solving the problem than this,” Rhonda

replied. “I really don’t want to have to declare 150 variables! There must be a better way.”
“Absolutely, Rhonda,” I said, “and you’ll see shortly that the ‘better approach’ you sense must

exist is to use an array instead of individual variables. But before we start to discuss arrays in detail,
I think it’s a good idea if we code the solution to the problem using the ‘brute-force’ method.
That will allow you to see how tedious programming would be without arrays.”

I then distributed this exercise for the class to complete.

Exercise 10-1 The Brute-force Method—Life Without Arrays

In this exercise, you’ll write a program that prompts the user for six quiz grades
and then calculates and displays the grades plus the overall class average to the
C++ console.

1. Use Notepad (if you are using Windows) to enter the following code:

//Practice10_1.cpp

#include <iostream>

#include <string>

using namespace std;

int main()

{

int grade1,grade2,grade3,grade4,grade5,grade6;

int accumulator = 0;

int counter = 6;

float average = 0;

char response[256];

cout << "What is the first grade? ";

cin.getline(response,256);

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:47:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 10: Arrays 443

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

grade1 = atoi(response);

cout << "What is the second grade? ";

cin.getline(response,256);

grade2 = atoi(response);

cout << "What is the third grade? ";

cin.getline(response,256);

grade3 = atoi(response);

cout << "What is the fourth grade? ";

cin.getline(response,256);

grade4 = atoi(response);

cout << "What is the fifth grade? ";

cin.getline(response,256);

grade5 = atoi(response);

cout << "What is the sixth grade? ";

cin.getline(response,256);

grade6 = atoi(response);

accumulator = grade1 + grade2 + grade3 +

grade4 + grade5 + grade6;

average = accumulator / counter;

cout << endl << "The class average is " << average << endl;

return 0;

}

2. Save your source file as Practice10_1 in the \CPPFiles\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute your program. The program will prompt you for six grades. Enter
82 for the first grade, 90 for the second, 64 for the third, 80 for the fourth,
95 for the fifth, and 75 for the sixth.

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:47:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

5. The program will then display the calculated overall class average, which is 81.

Discussion Everyone agreed that the code in this exercise did what every good program must
do: It worked. Beyond that, it had been an extremely tedious exercise to code.

“Brute force is right,” Peter said. “What a boring program to write! I can’t
wait to see how an array can improve upon this.”

“You’ll see that in a minute, Peter,” I said, “but first, let’s take a look at the
code. Much of it will be pretty familiar to you, because we’re using the same
technique we used in the Grade Calculation Project. As usual, the first thing we
do is to declare the variables that we need to use in our program. We have six
local variables in the main() method.”

int grade1,grade2,grade3,grade4,grade5,grade6;

“Notice that we’ve declared an integer variable for each one of the six quiz
grades,” I continued. “In addition, I’ve introduced two special types of variables
in this code. The first variable, appropriately named accumulator, is called an
‘accumulator’ variable. It’s really just an ordinary variable that is used to sum
values. In this case, we’ll use accumulator to sum the values of the six grade
variables.”

int accumulator = 0;

“The second special type of variable is called a ‘counter’ variable, which
we’ve named counter, and like an accumulator variable, a counter variable is
just an ordinary variable that is used to count something—in this case, we’re
using it to count the number of students in the class. We could get fancier than
this, but for now, because we’ll eventually divide the value of counter into
accumulator to arrive at a class average, we assign the number 6 to the counter
variable, which is the total number of grades that will be entered.”

int counter = 6;

444 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:47:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“We also declare a float variable type called average, into which we will
store the class average.”

float average = 0;

“Float, that’s a data type with a fractional part, isn’t it?” Blaine asked.

“That’s right, Blaine,” I answered. “Because we want to calculate the class
average as precisely as possible, we need to declare a variable that can handle
fractions. Our final variable declaration is for the response variable—actually an
array—which is used to hold the user’s response to our prompts for grades.”

char response[256];

I went on to explain that in the next section of code, we used a combination of
cin and cout objects to prompt the user for each of the six quiz grades for the class.

“Notice that the return value of the user’s response is assigned to the response
variable,” I said, “which is then, in turn, assigned to one of the six grade variables.
This is where the problem arises: If all of a sudden we have 150 students in the
class, not the six that we have here, this code can really balloon in size.”

cout << "What is the first grade? ";

cin.getline(response,256);

grade1 = atoi(response);

cout << "What is the second grade? ";

cin.getline(response,256);

grade2 = atoi(response);

cout << "What is the third grade? ";

cin.getline(response,256);

grade3 = atoi(response);

cout << "What is the fourth grade? ";

cin.getline(response,256);

grade4 = atoi(response);

cout << "What is the fifth grade? ";

cin.getline(response,256);

grade5 = atoi(response);

cout << "What is the sixth grade? ";

cin.getline(response,256);

grade6 = atoi(response);

“Here’s the code that assigns a value to the accumulator variable. As we
progress through today’s class, the code to work with the accumulator variable

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

Chapter 10: Arrays 445

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:47:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

will become a little more elegant. For now, we assign it the values of each one
of the six grade variables.”

accumulator = grade1 + grade2 + grade3 +

grade4 + grade5 + grade6;

“This line of code is probably the most important one in the program,” I
continued, “in that it assigns the class average to the average variable. Notice
that we take the value of the accumulator variable and divide it by the value of
the counter variable.”

average = accumulator / counter;

“Is there anything magical about the names of those two variables, the
accumulator and counter variables?” Joe asked.

“Not at all, Joe,” I answered. “We can name them anything we want.”

I paused before continuing.

“This next section of code displays the values of the individual grades,” I
said. “This is another problematic section of code if the number of students in
the class increases, because we would need to add additional lines of code.”

cout << grade1 << endl;

cout << grade2 << endl;

cout << grade3 << endl;

cout << grade4 << endl;

cout << grade5 << endl;

cout << grade6 << endl;

“Finally,” I said, “this line of code displays the class average.”

cout << endl << "The class average is " << average << endl;

I checked the room for signs of confusion, but no one seemed to be having
any trouble understanding what we had just done.

“I think you’re all pretty comfortable with this code,” I said. “There’s really
nothing in this code that you haven’t seen before.”

I then made this suggestion.

“Now I’d like you all to modify this code to calculate the class average for
a class with 500 students,” I said.

“I hope you’re kidding,” Joe said smiling.

“Well, I am...but suppose we really needed to calculate the average for a
class with 500 students. Could we do it?” I asked.

Everyone agreed that modifying the code to calculate the class average for
500 students would be a real nightmare.

446 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:47:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“We would need 500 prompts to the user and 500 variables in which to store
their responses,” Kate said. “Plus, we would need multiple lines of code to sum
the values of the 500 variables and assign them to the accumulator variable.”

What’s an Array?
“All your points are excellent ones, Kate,” I said. “Examining the brute-force method gives us a
chance to see the types of problems that can be more easily solved using array processing.”

“Is an array a separate data type, like an integer or a single?” Peter asked.
“Many beginners make the mistake of thinking of an array as a separate data type,” I said,

“but arrays are just a special implementation of one of the other C++ data types. In C++, you can
have arrays of any data type, such as integer arrays, double arrays, string arrays, and as you’ll see
later, even object arrays.”

“I’m still a little confused as to exactly what an array is,” Rhonda said. “Do you have any
analogies up your sleeve that might make this a little clearer?”

“In the past when I’ve taught arrays,” I said, “many of my students have found my analogy
of a hotel to be pretty useful.”

“A hotel?” Rhonda asked.
“That’s right, Rhonda,” I said. “Just about everyone at one time or another has stayed in a hotel

or motel. As you know, a variable is just a storage location in your computer’s memory. Getting
back to the hotel analogy, think of an ordinary variable as a storage location consisting of just a
single floor. An array, on the other hand, is a storage location having more than just one floor,
with each floor having its own unique floor number.”

“Just like a hotel,” Joe said. “I see what you mean.”
“I’m not much of an artist,” I said, “but here’s a graphic depiction of what I mean.”

“This drawing is an attempt to illustrate the difference between an ordinary variable and an
array,” I said. “On the left side of the drawing, we have an ordinary integer variable called grade
with an assigned value of 82. On the right side of the drawing, we have an array of integer

Chapter 10: Arrays 447

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:47:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

448 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

variables called grades, the array containing six elements and each element having its own value.
As you can see, the ordinary variable grade can hold only one value at a time. The integer array,
however, can hold all six quiz grades at one time.”

“What are those numbers to the right of the grades in the array?” Barbara asked.
“In keeping with our hotel analogy,” I said, “those are the floor numbers of the hotel or, in

computer terms, the array subscript or index values. A subscript uniquely identifies the element
within the array. Each element has a subscript, and subscripts cannot be duplicated. This ensures
that once a value is entered into an element of the array, you’ll later be able to retrieve that value
by using its subscript.”

“Why does the first element of the array begin with zero?” Ward asked. “Why doesn’t it begin
with one?”

“Let me guess, that’s the basement!” Rhonda said, obviously joking.
“In a way, Rhonda, you’re right,” I replied. “In the computer world, many things begin with the

number zero instead of one, and array element numbers are one of them. In C++, the first element of
an array begins with the number zero—it’s just something that you’ll need to get used to.”

Declaring an Array
“How do you declare an array?” Steve asked. “Is declaring an array different from declaring an
ordinary variable?”

“Declaring an array isn’t much different from declaring an ordinary variable,” I continued.
“C++ knows you are declaring an array if you follow the name of a variable with a pair of brackets
in which you include a number, like this:”

int grades[5];

“That looks familiar,” Dave said. “That’s similar to the declaration of the response variable in
the practice exercise we just completed.”

“Good observation, Dave,” I replied. “That’s because the response variable in Practice10_1 was
actually a string array containing 257 elements. In this example, what we’ve done is tell C++ that
we are declaring an integer array called grades containing six elements. Just like with an ordinary
variable declaration, an array declaration must begin with a data type—in this case, int for integer.”

“And it’s the brackets containing a number that follow the variable name—I mean the array
name—that tells C++ that?” Chuck asked.

“That’s right, Chuck,” I said. “C++ knows we are declaring an array because of the brackets and
the number contained within them. To carry our analogy forward, we are telling C++ that we are
declaring an integer array called grades and that it will have a total of six elements or floors.”

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:47:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“I want to be certain I’m clear about this,” Kate said. “Is the number six the number of
elements in the array or the top floor of the hotel?”

“That’s a key distinction, Kate” I said. “In C++, the number within brackets represents the total
number of elements in the array, which is not the same as the top floor. This array has six elements,
with its subscripts numbered from 0 through 5. In C++, all array elements begin with the number 0,
which is why they are said to be ‘zero based’. Many beginners have difficulty remembering this,
believing that the first element of an array is 1. This also means that the highest index value in the
array is one less than the number of elements, so the highest index value in a six element array is 5.”

Adding Data to the Elements of an Array
“How do we assign a value to an individual element of an array?” Steve asked. “And once we have
values in the array elements, how can we retrieve the value from one of those elements?”

“Working with array elements isn’t much different from working with an ordinary variable,” I
said. “The difference is that we need to reference the element number within the array by using its
subscript within brackets. For example, if we had an array called grades, this code would be used to
assign the value of 64 to element number 2:”

grades[2] = 82;

“By the way,” I cautioned, “the array element with a subscript equal to 2 is actually the third element
in the array. Remember, element numbers start with 0, not 1. Therefore, the first element in the
array has a subscript of 0, the second element has a subscript of 1, and so forth.”

“Are array values referred to in the same way?” Steve asked. “Using the subscript number within
brackets?”

“That’s right, Steve,” I replied. “Again, as was the case with the assignment statement, just
reference the subscript of the array element within brackets. For instance, you can use this syntax
to display the value of element number 0 of the grades array in the C++ console:”

cout << grades[0];

“This isn’t too bad at all,” Kathy said. “I must confess, when I first heard the term ‘array,’ I thought
it would be a lot more complicated than this.”

“I just noticed something,” Dave said. “I’ve been experimenting with an array of my own, and I
accidentally assigned a value to an array element that is beyond the range I specified with my array
declaration. No other language I’ve ever worked with would permit me to do such a thing—I
would have expected an error message of some kind.”

Chapter 10: Arrays 449

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:47:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“You’re right, Dave,” I said, “most other programming languages would prevent you from making
a mistake like this—but C++ is different. C++ permits programmers to manipulate computer memory
in a way other languages don’t, even when it can mean causing you problems.”

I took a walk to Dave’s PC, flipped a switch, and displayed Dave’s code for the rest of the class
to view:

int dave[10];

dave[10] = 44;

cout << "dave[10] is " << dave[10] << endl;

“As Dave indicated,” I said, “he declared an integer array called Dave with ten elements, but
then he assigned a value to subscript number 10.”

dave[10] = 44;

“The array element with subscript 10 is actually the eleventh element of the array. Because you
told C++, via the declaration statement, that it would have only ten elements, you expected to receive
an error message of some kind. Not only didn’t Dave receive an error message, but the assignment
statement ‘worked,’ in that the value 44 was assigned to the computer’s memory. Not only that,
but the value of that memory location was then accessed and printed via the cout object.”

“That is confusing, isn’t it?” Peter said, as Rhonda nodded her head knowingly.
“I agree, Peter,” I said. “The fact that elements of an array are numbered starting with zero can

be confusing. Just remember that the last element number in the array—the top floor of our
hotel—is always one less than its size. Therefore, if an array is declared with ten elements, the last
element number is 9.”

“Perhaps even more confusing is the fact that assignments to memory locations can be made
outside the scope of the array bounds,” Linda said. “Where exactly did C++ place the number 44?”

“A good question, Linda,” I replied. “Most computer languages prevent this kind of
assignment—but not C++. In this case, C++ placed the number 44 right ‘next’ to the memory
location it had allocated for the final element of the array. That area in memory could actually be
holding the value of another variable declared in our program—it could also be holding some of
the actual program instructions for our program. Even worse, it could be an area in the computer’s
memory that has nothing to do with our program, and that when executed, causes a memory
error on our PC, with the result that we have to reboot our computer.”

“Wow,” Kate said, “I had no idea a simple mistake like that could cause so much trouble. Can
we hurt the PC?”

450 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:47:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

“No, we can’t damage the PC this way,” I said, “because the memory error is temporary, but if
we are doing other work on it when this memory error occurs, the PC can ‘freeze’ and we can lose
all our work.”

“Can we use something other than a numeric literal to refer to the array’s subscript?” Dave asked.
“You can use any expression within the brackets, as long as the expression evaluates to a valid

subscript.” I answered.
“I’m not sure I’m following this,” Chuck said.
“For instance,” I explained, “if we have a variable called counter containing an integer value,

and that value represents a valid subscript in the grades array, this is a valid assignment statement
that uses the value of the variable, not an actual number to represent the subscript.”

grades[counter] = 80

“The ability to do this,” I said, “will come in very handy in the exercise we’re about to complete,
because it will enable us to use loop processing to quickly access all the elements of an array.”

I waited for questions, but there were none. I think everyone, for the moment anyway, felt
comfortable declaring and working with arrays.

“I have an exercise for you to complete that will give you a chance to use an array to perform
the same average calculation we did in the last exercise using the brute-force method—but I think
you’ll enjoy this one a whole lot more.”

I then distributed this exercise for the class to complete.

Exercise 10-2 Our First Look at Arrays

In this exercise, you’ll create your first array.

1. Use Notepad (if you are using Windows) to enter the following code:

//Practice10_2.cpp

#include <iostream>

#include <string>

using namespace std;

int main()

{

int grades[6];

int accumulator = 0;

int counter = 6;

float average = 0;

Chapter 10: Arrays 451

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:47:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

452 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

grades[0] = 82;

grades[1] = 90;

grades[2] = 64;

grades[3] = 80;

grades[4] = 95;

grades[5] = 75;

accumulator = grades[0] + grades[1] + grades[2] +

grades[3] + grades[4] + grades[5];

average = accumulator / counter;

cout << grades[0] << endl;

cout << grades[1] << endl;

cout << grades[2] << endl;

cout << grades[3] << endl;

cout << grades[4] << endl;

cout << grades[5] << endl;

cout << endl << "The class average is " << average << endl;

return 0;

}

2. Save your source file as Practice10_2 in the \CPPFiles\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute the program. The program will then display each of the six grades,
plus the calculated overall class average, which is 81.

Discussion Except for a student or two who confused the parentheses with square
brackets, no one had any trouble completing this exercise.

“As you can see,” I said, “the results of this program are identical to those
in the first exercise: the display of six grades, plus the calculated overall class
average. Of course, this version uses an array. Let’s take a closer look at the
code now. It’s this line of code that declares a six-element array called grades:”

int grades[6];

“As you know by now, this means the first element in the array has a
subscript of 0 and the last element has a subscript of 5. By the way, I didn’t

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:47:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

mention this before, but it’s a good idea to name arrays using the plural form
of a noun—that enables programmers reading your code to recognize
immediately that the variable is actually an array.

“Using an array here, we’ve reduced the number of lines of code necessary
to declare the variables to store our six grades from six to one. As was the case
with the first exercise, these next three lines of code declare our accumulator
variable, our counter variable and our average variable. Once again, we initialize
the value of our accumulator variable to 6, although shortly you’ll see there’s a
more elegant way to keep track of the number of grades to use in our average
calculation. For now, we’ll initialize it to 6.”

int accumulator = 0;

int counter = 6;

float average = 0;

“You probably remember that the previous version of this program assigned
values to variables named grade1 through grade6. This version does the same,
but this time we assign values to individual elements of the grades array. In the
next exercise, you’ll learn that there’s a more compact method for assigning
values to array elements.”

grades[0] = 82;

grades[1] = 90;

grades[2] = 64;

grades[3] = 80;

grades[4] = 95;

grades[5] = 75;

“As in our first exercise, we then sum the values of all six grades and assign
the result to the accumulator variable. This time we refer to the individual
elements of the grades array using the subscript.”

accumulator = grades[0] + grades[1] + grades[2] +

grades[3] + grades[4] + grades[5];

“And with this line of code we calculate the overall class average:”

average = accumulator / counter;

“This next section of code is similar to the first exercise—it displays the values
of the individual grades to the C++ console, referring to the individual elements
in the grades array to do so.”

cout << grades[0] << endl;

cout << grades[1] << endl;

cout << grades[2] << endl;

cout << grades[3] << endl;

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

Chapter 10: Arrays 453

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

cout << grades[4] << endl;

cout << grades[5] << endl;

“Finally, this line of code displays the calculated class average in the
C++ console.”

cout << endl << "The class average is " << average << endl;

The Wonders of Array Processing
“So far,” Ward said, “I can see that array processing reduces the number of variables we need to
declare in our program, but quite honestly, I don’t see what the big deal is all about. Everything
we did in this exercise was very similar to what we did in the first exercise, but instead of referencing
individual variable names, we referenced elements of an array. There was still quite a bit of tedious
typing referring to individual elements of the array.”

“I agree with Ward,” Lou said. “Surely there’s got to be an easier way to assign values to an
array. And once we have the values in the array, what then? Suppose we have an array with 365
elements like the daily high-temperature readings you mentioned earlier. Would we need to code
up 365 separate assignment statements?”

“Glad you asked that, Lou,” I said. “There is a shorter form of assigning values to an array, and
its one to which I alluded earlier when I said there’s a method to declare and initialize an array just
by assigning values to it. Check out this code:”

int grades[6] = {82,90,64,80,95,75};

“Notice that the values for the array elements are contained within the braces,” I said. “Now,
with a single line of code, we have declared an array called grades as well as initialized it with
values. How does C++ know how large to size the array? There are two ways: First, we declare the
array to have six elements. Also, the six values within the braces tell C++ that the grades array
should have six elements.

“I should also mention here that you will see this syntax, which, although acceptable, is not
nearly as readable, especially to a beginner programmer.”

int grades[] = {82,90,64,80,95,75};

“There’s no number in the bracket,” Rhonda said. “Is that correct?”
“That’s correct Rhonda,” I said. “The compiler doesn’t really care if you specify the array size

since you are providing it with a list of initial values. C++ determines the size of the array by
counting the number of elements that have been initialized. As I said, although it’s acceptable,
it’s not ideal for readability, and my preference is to always place a number within the brackets.”

454 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 10: Arrays 455

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

“Combining the declaration and initialization of the array is an improvement,” Ward persisted,
“but I still say big deal. I can see that this method will reduce the number of lines of code required
to assign values to the elements of an array, but what else can arrays do for me? Why is it that the
programmers at work always tell me they couldn’t live without arrays? If I still need to refer to
each and every element within the array individually, I still have quite a bit of work ahead of me.”

“Arrays allow you to use loop processing to quickly refer to each element in the array,” I said,
“and that can be a big timesaver. This exercise, I believe, will illustrate why the programmers at
your work love arrays so much.”

I then handed out this exercise for the class to complete.

Exercise 10-3 The Wonders of Array Processing

In this exercise, you’ll modify the code from Exercise 10-2, using a C++ For loop
to quickly and easily access the elements of the array.

1. Use Notepad (if you are using Windows) to enter the following code:

//Practice10_3.cpp

#include <iostream>

#include <string>

using namespace std;

int main()

{

int grades[6] = {82,90,64,80,95,75};

int accumulator = 0;

int counter = 0;

float average = 0;

for (int row = 0;

row < sizeof grades/sizeof grades[0]; row++)

{

cout << grades[row] << endl;

accumulator = accumulator + grades[row];

counter++;

}

average = accumulator / counter;

cout << endl << "The class average is " << average << endl;

return 0;

}

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

456 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

2. Save your source file as Practice10_3 in the \CPPFiles\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute the program. The program will then display each of the six grades,
plus the calculated overall class average, which is 81.

Discussion “Okay, I’m beginning to see the light,” Ward said. “This version of the program
is certainly a lot more streamlined than the other code, and I’m happy to see we
never directly referred to an individual element of the array.”

“I’m not quite sure I understand what’s happening,” Rhonda said. “Can you
explain the code to us?”

“Sure thing, Rhonda,” I said. “This time, instead of declaring and initializing
the grades array using the new statement, we declare and initialize the array in
a single statement by assigning values to each one of the six elements of the
grades array.”

int grades[] = { 82, 90, 64, 80, 95, 75};

“As before, we declare the variables accumulator, counter, and average. But
notice that this time, the counter variable is assigned a value of 0, not 6. We’ll
be arriving at a value for the counter variable a little later on in the code, and it
will make our program much more flexible in being able to deal with different
numbers of quiz grades to calculate.”

int accumulator = 0;

int counter = 0;

float average = 0;

“At this point in our program,” I continued, “the grades array now has six
elements, with values assigned to each. In the previous version of this program,
we used the cout object to display the values for each element of the array,
using six separate lines to do so. The problem with that version—and it’s one
that bothered the heck out of Ward—is that if the number of students in the
class increases, we’ll have to change the number of elements in the array and
write another line of code to display that additional student’s grade. That’s why
this next section of code is so powerful: It uses a C++ For loop to access every
element in the grades array, displaying its value in the C++ console, adding its
value to the accumulator variable, and incrementing the value of the counter
variable by one.”

for (int row = 0; row < sizeof grades/sizeof grades[0]; row++)

{

cout << grades[row] << endl;

accumulator = accumulator + grades[row];

counter++;

}

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“The wonderful thing about this code is that it works without modification,
regardless of the number of elements in the array.”

“Are you saying,” Linda asked, “that if we changed the declaration of the
grades array to have 250 student grades, this code wouldn’t need to be changed?
Is that what the sizeof keyword is doing for us?”

“That’s exactly right, Linda,” I said.

“I’m a little confused,” Rhonda said. “How are we specifying the subscript
for the array elements?”

“Do you remember a little earlier I said that we could refer to an array’s
subscript using a variable?” I asked. “That’s what we’re doing here by using the
row variable, which is the ‘loop control’ variable for the For loop. As you can
see, row is initialized to 0, which is the value for the first element of the array.
We then increment row by one each time the For loop executes. The For loop
continues to execute while the value of the row variable is less than the length
attribute of the grades array.”

for (int row = 0; row < sizeof grades/sizeof grades[0]; row++)

“Sizeof?” Rhonda asked. “What’s that? Sizeof what?”

“Sizeof is a C++ operator,” I said, “that enables us to determine the number
of memory bytes that a variable is using. When dealing with an array, we can
use the sizeof operator in two ways: First, to determine the total number of
bytes in the array, which is what this code does:”

sizeof grades

“Second, to determine the number of bytes for an individual array
element—in this case element 0—which is what this code does.”

sizeof grades[0]

“I see,” Ward said excitedly. “Dividing these two values gives us the number
of elements in the array—regardless of how large the array is declared to be.”

“Exactly right,” I said. “By specifying that the For loop should continue to
execute while the value of the row loop control variable is less than the
expression

sizeof grades/sizeof grades[0]

“…we ensure that we access each and every element of the array.”

“Powerful,” Ward said.

“I’m afraid I still don’t see how we specify the subscript for the individual
array elements,” Rhonda said. “Is it because we are using the loop control
variable row within the brackets?”

“Absolutely, Rhonda,” I said. “The loop control variable is used, within
brackets, to specify the subscript of the array element we wish to display in

Chapter 10: Arrays 457

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

458 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

the C++ console. Each time the body of the For loop is executed, an incrementing
value of row is used as the subscript for the array element.”

cout << grades[row] << endl;

“After we have displayed the value of the array element in the C++ console,
we then add it to the current value of the variable accumulator,” I continued.
“In this way, the accumulator variable maintains a running total of the value
of the array elements we have displayed in the C++ console.”

accumulator = accumulator + grades[row];

“To make things easier to understand,” I said, “visualize that the first time
the body of the For loop is executed, the value of the row variable is 0. That
means this statement is interpreted by C++ like this:”

accumulator = accumulator + grades[0]

“This statement, in turn, is then interpreted by C++ like this:”

accumulator = 0 + 90

“The second time through the loop,” I continued, “the value of row in
incremented, making it 1, and the statement is then interpreted by C++ like this:”

accumulator = accumulator + grades[1]

“Or like this:”

accumulator = 90 + 91

I explained that this process is repeated until the For loop terminates and all
the elements of the array have been processed.

“We can’t forget the role of the counter variable in the process,” I said. “It’s
this line of code that increments the value of the counter variable, each time the
For loop is executed. When the For loop terminates, the value of the counter
variable is equal to the number of elements in the array.”

counter++;

“Finally, this section of code is identical to the previous versions, displaying
a blank line in the C++ console, calculating the average, and displaying that
average in the C++ console as well. The big difference here is that the value of
the counter variable is assigned within the For loop, not at the time the counter
variable is declared.”

average = accumulator / counter;

cout << endl << "The class average is " << average << endl;

Using an Array for Averaging
“I would really love to see arrays used with the code we wrote in the first exercise,” Mary said. “Is
it possible to use arrays there, even when the user is being prompted for grades to calculate?”

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 10: Arrays 459

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

“Yes, it is possible,” I said.
I hadn’t really considered having the class do this, but it sounded like a great idea, and so, after

a few minutes of thought, I distributed this exercise for the class to complete.

Exercise 10-4 Use Arrays with Interactive Processing

In this exercise, you’ll modify the program you wrote in Exercise 10-1 to use
arrays to make the process of calculating the average of six grades much easier.

1. Use Notepad (if you are using Windows) to enter the following code:

//Practice10_4.cpp

#include <iostream>

#include <string>

using namespace std;

int main()

{

int grades[6];

int accumulator = 0;

int counter = 0;

float average = 0;

char response[256];

string moreGradesToCalculate;

cout << "Do you want to enter a grade? ";

cin >> moreGradesToCalculate;

for (int i = 0;

i < moreGradesToCalculate.length(); i++) {

moreGradesToCalculate[i] =

toupper(moreGradesToCalculate[i]);

}

if (moreGradesToCalculate != "YES") {

exit(1);

}

for (int i = 0;

i < moreGradesToCalculate.length(); i++) {

moreGradesToCalculate[i] =

toupper(moreGradesToCalculate[i]);

}

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

460 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

while (moreGradesToCalculate == "YES") {

cout << endl << "What is the grade? ";

cin.getline(response,256);

grades[counter] = atoi(response);

cout << endl << endl

<< "Do you have another grade to enter? ";

cin >> moreGradesToCalculate;

for (int i = 0;

i < moreGradesToCalculate.length(); i++) {

moreGradesToCalculate[i] =

toupper(moreGradesToCalculate[i]);

} // end of for

counter++;

} // end of while

for (int row = 0; row < counter; row++)

{

cout << grades[row] << endl;

accumulator = accumulator + grades[row];

}

average = accumulator / counter;

cout << endl << "The class average is " << average << endl;

return 0;

}

2. Save your source file as Practice10_4 in the \CPPFiles\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute your program. The program will prompt you for six grades. Enter
82 for the first grade, 90 for the second, 64 for the third, 80 for the fourth,
95 for the fifth, and 75 for the sixth.

5. Execute the program. The program will then display each of the six grades,
plus the calculated overall class average, which is 81.

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Discussion “As you can see,” I said, “the changes between this version of the program and the
one from the first exercise are pretty dramatic. Using arrays to prompt for and
process a series of grades like this is a great deal easier than using six variables.”

“I see that,” Steve said, “and I can also see that we married the methodologies
from the first three exercise to write a program that allows the user to load
values into the elements of the array themselves, instead of the program doing
so within code.”

“That’s right, Steve,” I said. “Much of the code in this program is found in
the first exercise. The main difference is that the user’s input of a quiz grade is
assigned to an element of an array instead of to a dedicated variable. Let’s take
a look at the code now. The first thing we did was declare an integer array
called grades containing six elements, plus the variables accumulator, counter,
and average.”

int grades[6];

int accumulator = 0;

int counter = 0;

float average = 0;

“Because this program will be accepting responses from the user, we also
declared a 256-element character array to hold their response.”

char response[256];

“You should recognize the string variable moreGradesToCalculate,” I said,
“from the Grade Calculation Project as a variable we use in a While loop test
expression to determine whether we should continue processing the loop to
prompt the user for more grades.”

string moreGradesToCalculate;

“This section of code asks the user whether they have a grade to enter,
takes their response, and, using the toupper function, converts the response
to uppercase.”

cout << "Do you want to enter a grade? ";

cin >> moreGradesToCalculate;

for (int i = 0; i < moreGradesToCalculate.length(); i++) {

moreGradesToCalculate[i] =

toupper (moreGradesToCalculate[i]);

}

“If for some reason, the user immediately indicates a response other than ‘YES,’
these three lines of code will detect that and immediately end the program.
Notice that we check for a response of other than ‘YES’ using the C++ inequality
operator, !=.”

Chapter 10: Arrays 461

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

if (moreGradesToCalculate != "YES") {

exit(1);

}

“Provided the user answers ‘YES’ to the initial question, this section of code
establishes a While loop, in which the user is prompted for a grade and then
asked whether they have any others to input. Notice that the body of the loop
will only execute if the value of moreGradesToCalculate is equal to an uppercase
‘YES.’ Any other value, and the loop will immediately terminate.”

while (moreGradesToCalculate == "YES") {

“Provided the value of moreGradesToCalculate is ‘YES,’ we prompt the user
for a grade and assign its value to the response variable.”

cout << endl << "What is the grade? ";

cin.getline(response,256);

“This next line of code is crucial, in that it uses the value of the counter
variable to establish the subscript number as the user’s value for a grade and is
then added as an element to the array.”

grades[counter] = atoi(response);

“With the user’s response now stored as an element in the grades array, it’s
time to ask the user whether they have more grades to enter.”

cout << endl<< endl<< "Do you have another grade to enter? ";

cin >> moreGradesToCalculate;

“Their response is then converted to uppercase using the For loop we’ve
been using the last few weeks.”

for (int i = 0; i < moreGradesToCalculate.length(); i++) {

moreGradesToCalculate[i] =

toupper(moreGradesToCalculate[i]);

} // end of for

I paused to give my next statement some added weight.

“This line of code is absolutely crucial—it’s at this point that we increment
the value of the counter variable so that if the user does have another grade to
input, we load that value into the next element in the grades array. As you’ll
see, we also use the value of the counter variable later to calculate the class
average.”

counter++;

“The While loop continues to execute until the user indicates they have no
more grades to input. At that point, we have an array loaded with grade values,
and it’s time to read the values in the grades array and calculate an overall
average, just as we did in the third exercise. However, you’ll note there’s a
slight difference here in how we do that. In the third exercise, we used the

462 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

sizeof operator to determine the number of elements in the array. In this
program, it’s ultimately the user who determines the number of elements in the
array. In fact, the total number of elements in the array is equal to the value of
the counter variable, and that’s the value we use to determine the number of
elements in our array.”

for (int row = 0; row < counter; row++)

{

cout << grades[row] << endl;

accumulator = accumulator + grades[row];

}

average = accumulator / counter;

cout << endl << "The class average is " << average << endl;

Problems with Arrays
“I’m really pleased with what I’ve seen here,” Ward said, “but I just noticed a problem. I tried to
enter a seventh grade, and the program let me, even though I only declared the array to have six
elements.”

“That’s what I alluded to earlier, Ward,” I said. “C++ has no built-in error checking for this. If
you assign a value beyond the bounds of your array declaration, C++ will just place the value at
the storage location adjacent to the last element of the array—which can result in a host of problems,
such as other variables in your program being overwritten, program instructions in your own
program being corrupted, and even your PC ‘hanging’ because you’re overwriting part of the
loaded operating system with an array value.”

“Wow, I guess it really didn’t hit home until I did it myself,” Ward replied. “I guess I better be
more careful.”

“I just did the same thing,” Rhonda said. “I entered ten values—and nothing bad seemed to
happen.”

“Seemed is the key word, Rhonda,” I answered with a smile. “Believe me, something was
overwritten in your computer’s memory—just remember to be careful. C++ programming gives
you enormous power to manipulate computer memory in ways that other programming languages
don’t—and along with that power comes a certain sense of danger, which adds to the adventure
and lore of being a C++ programmer.”

“Wow, this opens up a whole can of worms,” Dave said. “I would think there would be times
when you don’t know ahead of time how many elements you need to have in your array, such
as when you use an array to store values you read from a file. What should we do, declare the array
with a large number?”

Chapter 10: Arrays 463

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

464 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

“You raise a good point, Dave,” I said. “There will be times when, as is the case here, you can’t
be certain of the size of your array prior to writing the program. In that case, one approach is to
declare the array with an overly large size. For instance, we could declare the grades array with
10,000 elements—that would certainly take care of our needs.”

int grades[10000];

“Isn’t that a waste of the computer’s memory?” Bob asked. “Isn’t there a way, while the program
is running, to make the array larger if it needs to be?”

“Good question, Bob,” I said. “And you’re right, allocating an array with a larger-than-necessary
size is a big waste of the computer’s memory. Depending on your compiler, there will be a limitation
on the size you can allocate an array—for the compiler we’re using here in the classroom, it’s the
positive limit for an integer data type. Additionally, even if your compiler permits the size you
have chosen, it’s possible to declare an array with so many elements that it exceeds the available
memory in your PC. If you do, you’ll receive an error message when you run the program.”

“So what’s the answer?” Linda said. “Is there a way, while the program is running, to make the
array larger?”

“The answer is yes,” I replied. “That’s called dynamic memory allocation, and doing so requires
that you first learn about C++ pointers, which is a topic we’ll be taking up next week.”

Multidimensional Arrays
We were making great progress on what can be a difficult topic, so I began my discussion of
multidimensional arrays.

“All the arrays we’ve seen so far have been one-dimensional arrays,” I explained. “Now it’s time
to discuss multidimensional arrays.”

“Dare I ask the difference?” said Kathy tentatively.
“They say a picture is worth a thousand words,” I said. “Let’s use Notepad to see the difference.

In Notepad, one-dimensional arrays appear as a single column of data. Two-dimensional arrays
appear as rows and columns of data, much like a worksheet.” I said, as I displayed this file on the
classroom projector:

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“This is a two-dimensional text file,” I explained. “This file contains not only the original quiz
grades we worked with in our exercises so far today, but also two other quiz grades.”

“So the first column of numbers are scores from the first quiz, the second column are scores
from the second quiz, and the third column are scores from the third quiz?” Ward asked.

“That’s right,” I replied. “Each row represents a record of three quiz scores for one student, and
each column represents a different quiz.”

“You mentioned the word ‘multidimensional’ a minute ago,” Joe said, “and you just said this is
the depiction for a two-dimensional array. Does that mean you can have an array with more than
two dimensions?”

“Yes you can, Joe,” I answered. “Creating an array with more than two dimensions is easy in C++.
Visualizing one is something else and requires a little imagination, but C++ doesn’t limit you to a
two-dimensional array. In fact, C++ allows you to declare an array with any number of dimensions.”

NOTE
Although array dimensions are not limited, the total size of an array is limited and
will vary based on the PC and the operating system in use. Bear in mind that arrays
tend to grow geometrically in size as dimensions are added to it.

“So far,” Kathy said, “both types of arrays you’ve shown us, the one-dimensional and two-
dimensional varieties, have represented some real-world object. What kind of real-world object
would you represent with a three-dimensional array?”

“One classic example,” I said, “is a farm. We can use a three-dimensional array to represent a
farmer’s crops. A farmer plants crops in fields (the first dimension), and within a field, he plants
crops in rows (the second dimension) and columns (the third dimension). Try to imagine a farm that
has ten fields, each field made up of 100 rows and columns. A three-dimensional array is a perfect
way to represent the crop plants in a particular row and column of a field on the farm.”

I gave everyone a chance to visualize this.
“Is there any limitation to how large an array can be?” Steve asked.
“There’s no limitation per se on the number of dimensions,” I said, “however, the size of an

array is limited by the PC and the operating system. Multidimensional arrays, in particular, can
use up the available memory in your computer very quickly. Each dimension that you add to an
array geometrically increases the storage requirements for the array.”

I sensed that my students were becoming tense with this discussion of multidimensional arrays,
so I sought to comfort them a bit.

“Don’t worry,” I told everyone, “in the real-world of programming, most of your work will be
with one- and two-dimensional arrays. Just remember that everything you learn today about two-
dimensional arrays can be applied to an array with three or more dimensions.”

“How are two-dimensional arrays declared?” Joe asked.

Chapter 10: Arrays 465

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“The declaration for a multidimensional array is slightly different from that of a one-dimensional
array,” I said. “With a multidimensional array, you need to declare a size for each dimension of the
array. For instance, here’s the declaration for the file we just viewed in Notepad that contains
scores for three quizzes for six different students:”

int grades[] [] = new int[6] [3];

“Notice that there are two sets of brackets,” I said, “one for each dimension of the array. The
two sets of brackets tell C++ that we wish to declare a two-dimensional array. For a three-dimensional
array, we would have three sets of brackets. By convention, for a two-dimensional array, the
declaration for the rows appears first, followed by the declaration for the columns, although there’s
no requirement to do it that way.”

“So the number 6 refers to the number of rows in the array, and the number 3 refers to the
number of columns?” Barbara asked.

“That’s right,” I said. “C++ knows that the number of bracket pairs it sees in the declaration
equates to the number of dimensions in the array. With this declaration, C++ initializes a two-
dimensional array, the first dimension having six elements, with the lowest subscript being 0, and
the highest subscript being 5. The second dimension has three elements, with the lowest subscript
being 0 and the highest being 2. Let me ask you a question: If this array were actually a worksheet,
how many cells would it contain?”

“Eighteen,” Dave said. “Just multiply the two size figures—six by three is eighteen.”
“That’s right, Dave,” I said. “A two-dimensional array containing six rows and three columns

contains a total of 18 elements, each element holding a quiz score. You can see why I said earlier
that each dimension you add to an array increases its storage requirements geometrically.”

“How do we refer to individual elements within a multidimensional array?” Peter asked. “Is it
similar to referring to the elements of a one-dimensional array?”

“It is similar,” I answered. “As you’ve seen, one-dimensional arrays are referenced by using a
single subscript within brackets. Two-dimensional array elements are referenced by using two
subscripts, one for each dimension. For example, to refer to the third quiz grade for the second
student, we would use this notation:”

grades[1] [2] = 88;

“The number within the first pair of brackets,” I said, “refers to the first dimension, or row,
of the array, and that’s the dimension that represents students. Don’t forget, subscript 1 is actually
the second row, or student, in the array. The number within the second set of brackets refers to the
second dimension, or column, of the array, and that’s the dimension that represents quizzes.
Subscript 2 is the third quiz score.”

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

466 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“It looks strange how you put spaces between the subscripts,” Kathy remarked, “but I guess
the compiler doesn’t really care about that, does it?”

“Not at all,” I agreed.
I looked for signs of confusion in the faces of my students, but happily, I didn’t see any. I

suggested that now would be a great time for them to get their feet wet completing an exercise
with a two-dimensional array.

Exercise 10-5 A Two-dimensional Array

In this exercise, you’ll create your first two-dimensional array.

1. Use Notepad (if you are using Windows) to enter the following code:

//Practice10_5.cpp

#include <iostream>

#include <string>

using namespace std;

int main()

{

int grades[6][3];

grades[0] [0] = 82;

grades[0] [1] = 91;

grades[0] [2] = 73;

grades[1] [0] = 90;

grades[1] [1] = 65;

grades[1] [2] = 88;

grades[2] [0] = 64;

grades[2] [1] = 56;

grades[2] [2] = 33;

grades[3] [0] = 80;

grades[3] [1] = 85;

grades[3] [2] = 81;

grades[4] [0] = 95;

grades[4] [1] = 98;

grades[4] [2] = 95;

Chapter 10: Arrays 467

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

grades[5] [0] = 75;

grades[5] [1] = 61;

grades[5] [2] = 80;

for (int row = 0; row < 6; row++)

{

for (int col = 0; col < 3; col++)

{

cout << grades[row][col] << " ";

}

cout << endl;

}

return 0;

}

2. Save your source file as Practice10_5 in the \CPPFiles\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute your program. The program will display the three quiz grades for
the six students in row and column format.

Discussion I immediately ran the program myself and the following screenshot was
displayed on the classroom projector:

“As you can see,” I said, “what we’ve done is write code to load the three
quiz grades for six students into a two-dimensional array and then display them
in the C++ console.”

“This is pretty impressive,” Rhonda said. “Although I must confess, I’m not
real clear with how you did this.”

“Don’t worry, Rhonda,” I said, “I’ll be glad to explain it.”

468 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“That first line of code in the main() function, is that the declaration for the
two-dimensional array?” Peter asked.

“Yes it is, Peter,” I replied. “The two sets of brackets tell C++ that we are
declaring a two-dimensional array, and the numbers within the brackets indicate
the size of each dimension. Remember, by convention, in a two-dimensional
array, the row is specified first, followed by the column.”

int grades[6][3];

“Once we’ve declared the array,” I said, “this next section of code initializes
each element of the array, here, one line of code at a time:”

grades[0] [0] = 82;

grades[0] [1] = 91;

grades[0] [2] = 73;

grades[1] [0] = 90;

grades[1] [1] = 65;

grades[1] [2] = 88;

grades[2] [0] = 64;

grades[2] [1] = 56;

grades[2] [2] = 33;

grades[3] [0] = 80;

grades[3] [1] = 85;

grades[3] [2] = 81;

grades[4] [0] = 95;

grades[4] [1] = 98;

grades[4] [2] = 95;

grades[5] [0] = 75;

grades[5] [1] = 61;

grades[5] [2] = 80;

“It’s possible to initialize the elements of a two-dimensional array the same
way we initialized the elements of the one-dimensional array in the third
exercise, like this:”

int grades[6] [3] = {

{ 82, 91, 73}, // First row

{ 90, 65, 88}, // Second row

{ 64, 56, 33}, // Third row

{ 80, 85, 81}, // Fourth row

Chapter 10: Arrays 469

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

{ 95, 98, 95}, // Fifth row

{ 75, 61, 80} // Sixth row

};

“Some students find this syntax confusing, so I’ll leave it up to you to
determine which syntax you wish to use. Now, with our two-dimensional array
loaded with values, all that remains is to navigate through the 18 elements of
the array and display them on the C++ console. This next section of code is
similar to the code we saw in the fourth exercise, but because we are dealing
with an array that has not just one dimension but two, the technique is more
complex, requiring us to use something called nested For loops.”

for (int row = 0; row < 6; row++)

{

for (int col = 0; col < 3; col++)

{

cout << grades[row][col] << " ";

}

cout << endl;

}

“This is where I got totally lost when I did the exercise,” Kate said. “You say
this is a nested For loop? I think I’ve heard some programmers at work use that
term. It sounds very complicated.”

“Nested For loops can be intimidating, Kate,” I said, “but if you just
remember that a nested For loop is nothing more than a loop whose body itself
contains a For loop, I think you’ll be okay.”

I paused a moment to give everyone in the class a second to take in what I had
just said.

“A nested For loop is a For loop that contains another For loop in its body,”
I repeated. “The first For loop structure is called the outer loop, and the For
loop that appears in its body is called the inner loop. If you check the code,
you’ll see that each For loop has its own unique loop control variable. I’ve
named the loop control variable of the outer loop row, and the loop control
variable of the inner loop column. This is because the outer loop is intended to
process the rows in the two-dimensional array, and the inner loop is intended
to process the columns. Think of these For loops almost like a mouse pointer
that is directing a screen cursor to various positions within the array.”

“This is confusing,” Rhonda chimed in. “I keep trying to visualize what’s
going on with the code but….”

“I think if you take it a step at a time, you’ll be fine,” I said. “And that’s
exactly what we’re going to be doing in a minute. Notice that the outer loop
has a body consisting of another For loop and a redirection of a linefeed to the

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

470 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

cout object. The inner loop has a body consisting of just one line of code: the
redirection of an array value to the cout object.”

“Isn’t the redirection of the linefeed to the cout object part of the body of
the inner loop?” Barbara asked.

“No, it’s not,” I said. “The inner loop—the one that uses col as the loop
control variable—has just one line of code in it.”

cout << grades[row][col] << " ";

“Okay,” Barbara said, “I see what you mean now.”

I paused for a moment before continuing.

“You’ll see in a minute,” I said, “as we step through this code, that the body
of the inner loop will be executed a total of 18 times, whereas the body of the
outer loop will be executed just six times.”

“Is that because there are six rows of data in the array?” Dave asked.

“Exactly, Dave,” I said.

“But there are only three columns in the array,” Blaine said. “Why would the
inner loop be executed 18 times? Shouldn’t it be executed just three times?”

“That’s a good question, Blaine,” I responded. “The inner loop is executed
three times, but each time the outer loop is executed, which is six times, the
inner loop is once again executed three times. Six multiplied by three is
eighteen—that’s the total number of times the inner loop is executed.”

“It also happens to be the number of elements in the array,” Dave said.

I saw a great deal of confusion on the faces of my students.

“Don’t worry if you feel a little overwhelmed by this right now,” I said. “I
think this will all make a lot more sense to you in a few moments. Let’s get back
to the body of the inner loop now. Amazingly, it consists of just this single line
of code.”

cout << grades[row][col] << " ";

“All in all, this line of code will be executed a total 18 times,” I explained,
“which, as Dave pointed out, is the total number of elements, or quiz grades, in
our two-dimensional array. Using nested For loops, the values of the two loop
control variables, row and col, are varied to point to each element in the array
and displayed in the C++ console.”

for (int row = 0; row < 6; row++)

{

for (int col = 0; col < 3; col++)

“Again, the first loop is known as the outer loop,” I continued, “and we use
it to move through the rows in the array. We initialize its loop control variable,

Chapter 10: Arrays 471

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

472 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

row, to 0, and for its termination point, we use the number of elements in the
first dimension of the array, which is 6.”

for (int row = 0; row < 6; row++) {

“That means the outer loop is executed six times, is that right?” Chuck asked.

“Exactly right, Chuck,” I said. “Now let’s take a look at the inner loop, which
is used to process the columns in the array.”

for (int col = 0; col < 3; col++)

“Notice that for the termination point of this loop we use the number of
elements in the second dimension of our array, which is 3.”

“Isn’t there any way to use the sizeof operator the way we did in the
previous exercise?” Linda asked.

“Yes there is, Linda,” I said. “I hesitated to ask you to code it that way
because of the nested For loops and because the usage of the sizeof operator
for a multidimensional array is a bit confusing, but here goes.”

for (int row = 0; row < sizeof grades/sizeof grades[0]; row++)

{

for (int col = 0;

col < sizeof grades[0]/sizeof grades[0][0]; col++)

“The sizeof syntax for the outer loop looks familiar,” Linda said, “but the
syntax for the inner loop looks foreign.”

“You’re right, Linda,” I said. “The sizeof syntax for the outer loop is identical
to what you saw earlier. This tells C++ to divide the total number of bytes in the
array by the ‘width’ of the first row of the array, which will give a result equal
to the number of rows in the array. Ultimately, C++ interprets this code to look
like this:”

for (int row = 0; row < 6; row++)

“This syntax is a bit more confusing:”

for (int col = 0;

col < sizeof grades[0]/sizeof grades[0][0]; col++)

“This tells C++ to divide the total number of bytes in the column dimension
of the array by the width of an array column element, which gives us the total
number of columns. Ultimately, C++ interprets this code to look like this:”

for (int col = 0; col < 3; col++)

“And that’s why the inner loop is executed three times?” Chuck asked.

“That’s right, Chuck,” I said. “Maybe this will help to give you an
appreciation for the sequence of code execution.”

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

I then displayed this table on the classroom projector:

Statement Row Col Grades Value of
Grades

Comment

For (int row…) 0 First execution of the
outer loop.

For (int col…) 0 0 0,0 82 First execution of the
inner loop.

cout <<
grades[row][col]

0 0 0,0 82 Displays 82 in the C++
console.

For (int col…) 0 1 0,1 91 Second execution of the
inner loop. The value of
col is incremented by 1.

cout <<
grades[row][col]

0 1 0,1 91 Displays 91 in the C++
console.

For (int col…) 0 2 0,2 73 Third execution of the
inner loop. The value of
col is incremented by 1.

cout <<
grades[row][col]

0 2 0,2 73 Displays 73 in the C++
console.

cout << endl 0 2 0,2 73 A new line is generated
in the C++ console.

For (int row…) 1 Second execution of the
outer loop. The value of
row is incremented by 1.

For (int col…) 1 0 1,0 90 First execution of the
inner loop.

cout <<
grades[row][col]

1 0 1,0 90 Displays 90 in the C++
console.

For (int col…) 1 1 1,1 65 Second execution of the
inner loop. The value of
col is incremented by 1.

cout <<
grades[row][col]

1 1 1,1 65 Displays 65 in the C++
console.

For (int col…) 1 2 1,2 88 Third execution of the
inner loop. The value of
col is incremented by 1.

cout <<
grades[row][col]

1 2 1,2 88 Displays 88 in the C++
console.

cout << endl 1 2 1,2 88 A new line is generated
in the C++ console.

Chapter 10: Arrays 473

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Statement Row Col Grades Value of
Grades

Comment

For (int row…) 2 Third execution of the
outer loop. The value of
row is incremented by 1.

For (int col…) 2 0 2,0 64 First execution of the
inner loop.

cout <<
grades[row][col]

2 0 2,0 64 Displays 64 in the C++
console.

For (int col…) 2 1 2,1 56 Second execution of the
inner loop. The value of
col is incremented by 1.

cout <<
grades[row][col]

2 1 2,1 56 Displays 56 in the C++
console.

For (int col…) 2 2 2,2 33 Third execution of the
inner loop. The value of
col is incremented by 1.

cout <<
grades[row][col]

2 2 2,2 33 Displays 33 in the C++
console.

cout << endl 2 2 2,2 33 A new line is generated
in the C++ console.

For (int row…) 3 Fourth execution of the
outer loop. The value of
row is incremented by 1.

For (int col…) 3 0 3,0 80 First execution of the
inner loop.

cout <<
grades[row][col]

3 0 3,0 80 Displays 80 in the C++
console.

For (int col…) 3 1 3,1 85 Second execution of the
inner loop. The value of
col is incremented by 1.

cout <<
grades[row][col]

3 1 3,1 85 Displays 85 in the C++
console.

For (int col…) 3 2 3,2 81 Third execution of the
inner loop. The value of
col is incremented by 1.

cout <<
grades[row][col]

3 2 3,2 81 Displays 81 in the C++
console.

cout << endl 3 2 3,2 81 A new line is generated
in the C++ console.

474 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Statement Row Col Grades Value of
Grades

Comment

For (int row…) 4 Fifth execution of the
outer loop. The value of
row is incremented by 1.

For (int col…) 4 0 4,0 95 First execution of the
inner loop.

cout <<
grades[row][col]

4 0 4,0 95 Displays 95 in the C++
console.

For (int col…) 4 1 4,1 98 Second execution of the
inner loop. The value of
col is incremented by 1.

cout <<
grades[row][col]

4 1 4,1 98 Displays 98 in the C++
console.

For (int col…) 4 2 4,2 95 Third execution of the
inner loop. The value of
col is incremented by 1.

cout <<
grades[row][col]

4 2 4,2 95 Displays 95 in the C++
console.

cout << endl 4 2 4,2 95 A new line is generated
in the C++ console.

For (int row…) 5 Sixth execution of the
outer loop. The value of
row is incremented by 1.

For (int col…) 5 0 5,0 75 First execution of the
inner loop.

cout <<
grades[row][col]

5 0 5,0 75 Displays 75 in the C++
console.

For (int col…) 5 1 5,1 61 Second execution of the
inner loop. The value of
col is incremented by 1.

cout <<
grades[row][col]

5 1 5,1 61 Displays 61 in the C++
console.

For (int col…) 5 2 5,2 80 Third execution of the
inner loop. The value of
col is incremented by 1.

cout <<
grades[row][col]

5 2 5,2 80 Displays 80 in the C++
console.

cout << endl 5 2 5,2 80 A new line is generated
in the C++ console.

Chapter 10: Arrays 475

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“This table shows the statements that are being executed,” I said, “as well as
the values of the row and col loop control variables, the array element that is
being pointed to by the value of row and col, the value of that array element,
and the result of the execution of the statement.”

We spent the next few minutes going over the table.

“I hope that helped,” I said, as I scanned the faces of my students for signs
of confusion.

“Yes, it did,” Ward said.

That explanation satisfied Ward and the other students, so before continuing onto the next
topic of creating arrays of objects, I asked everyone to take a 15-minute break.

Creating Arrays of Objects
“Something that’s asked of me all the time,” I said, after resuming from break, “is whether it’s
possible to create an array of objects in C++.”

“You mean like the Student objects we’ve been working with throughout the class?” Mary asked.
“That’s right, Mary,” I said, “that kind of object. In fact, creating an array of objects is easy to

do. Do you remember the Banner object we worked with several weeks ago? Let’s create an array
of Banner objects.”

I displayed this code on the classroom projector:

//Example10_1.cpp

#include "Banner.cpp"

int Banner::numberOfBannerObjects;

int main()

{

Banner x[2];

x[0].favoriteProgram = "C++";

x[0].Display();

x[1].favoriteProgram = "Visual Basic";

x[1].Display();

for (int row = 0; row < 2; row++)

{

cout << x[row].favoriteProgram << endl;

476 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

}

return 0;

}

I saved the program as Example10_1.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

“Working with an array of objects is very similar to working with an array of C++ primitive
data types, such as int or string,” I said. “First, we need to declare the array of objects, and then we
need to go about the business of actually working with the objects, just as we would normally—
assigning values to member variables, if they are public, and executing object functions. But because
we’re dealing with an array of objects, we need to use subscript values when we refer to the object
variable. Let’s start with the array declaration. This line of code declares a two-element array of
Banner objects called x. This is the same as an array declaration for an array of integers:”

Banner x[2];

“With two Banner objects created and referenced as elements 0 and 1 of the x array, we can
now work with the object just as we normally would—we just need to remember to reference the
element number any time we refer to the object. With this line of code, we set the favoriteProgram
attribute of the Banner object to ‘C++’:”

x[0].favoriteProgram = "C++";

“And then we execute its Display() method:”

x[0].Display();

Chapter 10: Arrays 477

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Just to prove that we can have multiple Banner objects alive at the same time, this code sets the
favoriteProgram attribute of element 1 to ‘Visual Basic’ and then executes its Display() method.”

x[1].favoriteProgram = "Visual Basic";

x[1].Display();

“So we have two Banner objects loaded in our array?” Mary asked.
“You can think of it that way, Mary,” I said. “In reality, the array contains a reference—a

memory address, really—pointing to both objects. The important thing is that when we refer to
an element in the array, C++ can find the Banner object we intend to work with in the computer’s
memory, along with any attributes that belong to that particular object. That’s why we can use the
For loop logic we’ve been employing in today’s class to display the favoriteProgram attribute of
every Banner object referenced by our array.”

for (int row = 0; row < 2; row++)

{

cout << x[row].favoriteProgram << endl;

}

“That is really neat,” Blaine said. “I’m beginning to like arrays more and more—too bad we
can’t include one in the Grade Calculation Project.”

“I don’t see why we can’t,” I said. “Frank Olley never requested it, but I don’t think he would
mind if we calculated an overall average for every student’s grade entered into the program. I think
an array would be a perfect way to do that.”

I then distributed this exercise for the class to complete.

Exercise 10-6 Modify the Grade Calculation Project to Use an Array

In this exercise, you’ll modify the grades class to include array processing to
calculate an overall class average.

1. Using Notepad (if you are using Windows), locate and open the Grades.cpp
source file. (It should be in the \CPPFiles\Grades folder.)

2. Modify your code so that it looks like this (changed code appears in bold):

//Grades.cpp

#include <iostream>

#include <string>

#include "EnglishStudent.cpp"

#include "MathStudent.cpp"

#include "ScienceStudent.cpp"

478 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 10: Arrays 479

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

#include "DisplayGrade.cpp"

using namespace std;

int WhatKindOfStudent();

char response[256];

string moreGradesToCalculate;

float grades[1000];

float accumulator;

int counter;

float average;

int main ()

{

int lresponse;

cout << "Do you want to calculate a grade? ";

cin >> moreGradesToCalculate;

for (int i = 0;

i < moreGradesToCalculate.length(); i++) {

moreGradesToCalculate[i] =

toupper (moreGradesToCalculate[i]);

}

while (moreGradesToCalculate == "YES") {

lresponse = WhatKindOfStudent();

switch(lresponse)

{

case 1:

{

EnglishStudent eStudent;

eStudent.Calculate();

grades[counter] =

eStudent.GetFinalNumericGrade();

counter++;

DisplayGrade x(eStudent.GetMidterm(),

eStudent.GetFinalExamGrade(),

eStudent.GetResearch(),

eStudent.GetPresentation(),

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

480 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

eStudent.GetFinalNumericGrade(),

eStudent.GetFinalLetterGrade());

}

break;

case 2:

{

MathStudent mStudent;

mStudent.Calculate();

grades[counter] =

mStudent.GetFinalNumericGrade();

counter++;

DisplayGrade y(mStudent.GetMidterm(),

mStudent.GetFinalExamGrade(),

mStudent.GetFinalNumericGrade(),

mStudent.GetFinalLetterGrade());

}

break;

case 3:

{

ScienceStudent sStudent;

sStudent.Calculate();

grades[counter] =

sStudent.GetFinalNumericGrade();

counter++;

DisplayGrade z(sStudent.GetMidterm(),

sStudent.GetFinalExamGrade(),

sStudent.GetResearch(),

sStudent.GetFinalNumericGrade(),

sStudent.GetFinalLetterGrade());

}

break;

} // end of switch

cout << endl << endl <<

"Do you have another grade to calculate? ";

cin >> moreGradesToCalculate;

for (int i = 0; i < moreGradesToCalculate.length(); i++) {

moreGradesToCalculate[i] =

toupper (moreGradesToCalculate[i]);

} // end of for

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

Chapter 10: Arrays 481

} // end of while

for (int row = 0; row < counter; row++)

{

cout << grades[row] << endl;

accumulator = accumulator + grades[row];

}

average = accumulator / counter;

cout << "The class average is " << average << endl;

cout <<

"Thanks for using the Grades Calculation program!";

return 0;

}

int WhatKindOfStudent()

{

cout << "Enter student type " <<

"(1=English, 2=Math, 3=Science): ";

cin.getline(response,256);

if (strlen(response) == 0) {

cout << "You must select a Student Type";

exit(1);

}

if ((atoi(response) < 1) || (atoi(response) > 3)) {

cout << response <<

" - is not a valid student type";

exit(2);

}

return atoi(response);

}

3. Save your source file as Grades.cpp in the \CPPFiles\Grades folder (select File |
Save As from Notepad’s menu bar). Be sure to save your source file with the
filename extension .cpp.

4. Compile your source file into an executable file.

5. After you start up your program, it should ask whether you have a grade
to calculate.

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

482 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

6. Answer Yes and calculate the grade for an English student. Enter 70 for the
midterm, 80 for the final examination, 90 for the research grade, and 100
for the presentation. A final numeric grade of 84.5 should be displayed with
a letter grade of C.

7. After the grade is displayed, the program should ask whether you have
more grades to calculate.

8. Answer Yes and calculate the grade for a math student. Enter 70 for the
midterm and 80 for the final examination. A final numeric grade of 75
should be displayed with a letter grade of D.

9. After the grade is displayed, the program should ask whether you have
more grades to calculate.

10. Answer Yes and calculate the grade for a science student. Enter 70 for the
midterm, 80 for the final examination, and 90 for the research grade. A
final numeric grade of 78 should be displayed with a letter grade of C. After
the message is displayed with the calculated grade, the program should ask
whether you have more grades to calculate.

11. Answer No. All three final numeric grades will be displayed in the C++
console, along with an overall average of 79.1667. You should be thanked
for using the program, and the program should end.

Discussion “I’m not sure that the changes we’ve just made to the Grade Calculation Project
are something Frank Olley requires,” I said, “but I think they will add greatly to
your learning experience—and it didn’t require all that much additional code.
Our first step was to declare a grades array to store the values of the individual
calculated final grades. We declared grades as an array of the double data type,
having 1,000 elements, which should be more than large enough to hold the
grades a user will calculate in this program.”

float grades[1000];

float accumulator;

int counter;

float average;

“We needed to modify our existing code to add the student’s calculated
grade as an element of the grades array. To do that, all we needed to do was
add a line of code to each of the individual Case statements and add the
finalNumericGrade attribute of the various Student objects to the array, using
the current value of the counter variable to specify the subscript. Here’s the
code to do that for the EnglishStudent object:”

case 1:

{

EnglishStudent eStudent;

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 10: Arrays 483

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10

eStudent.Calculate();

grades[counter] = eStudent.GetFinalNumericGrade();

“Once we have the student’s grade in the grades array, we need to
increment the value of the counter variable so that the next student’s grade
is assigned to the next available location in the array.”

counter++;

“This process of adding an element to the grades array continues for each
student calculated. Finally, when the user indicates there are no more grades
to calculate, it’s time to move through the elements of the array, calculate the
average, and display it.”

for (int row = 0; row < counter; row++)

{

cout << grades[row] << endl;

accumulator = accumulator + grades[row];

}

average = accumulator / counter;

cout << "The class average is " << average << endl;

“Seeing the array used in the Grade Calculation program really helped me,”
Rhonda said. “This doesn’t seem so bad after all.”

I waited to see if there were any questions, but there were none. I then dismissed class for the day.

Summary
In this chapter, you learned about the basics of array processing. In particular, you learned about the
various types of arrays and about array dimensions. Arrays are a frequent source of confusion for new
programmers, and I hope our coverage of them will make your future work with them easier.

Specifically, you learned the following:

� Why arrays are useful in making your code easier to write and use

� How to use one-, two-, and multidimensional arrays

� How arrays can reduce the amount of hard-coding you write in your projects.

In the next chapter, you’ll learn about C++ pointers and references—and how C++ works with
your computer’s memory. Then we’ll finish the course by examining some of the common errors
that can occur in C++ programming and examine ways to make allowances for problems that
might occur when your programs run.

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 10
Blind Folio 10:484

P:\010Comp\LearnTo\535-1\ch10.vp
Monday, October 07, 2002 9:48:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter

11
Pointers

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11
Blind Folio 11:485

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
TLFeBOOK

In this chapter, we’ll cover a topic that almost every beginning C or C++ student dreads—
pointers. But never fear, pointers give C and C++ their great power, by enabling you to
do something you can’t do with most other programming languages—manipulate your

computer’s memory.

Why Pointers?
I began class by telling my students that the entirety of this day’s lesson would be devoted to the
topic of pointers.

“The topic of pointers is one that just about every C or C++ student dreads,” I said, “but I
think you’re going to enjoy it. Using pointers, you can do something you can’t do with other
programming languages—access and manipulate your PC’s memory.”

“I’ve heard of pointers,” Rhonda said, “and they scare me to death. I actually thought about
cutting class today to avoid the trauma. All I know is that whenever the C and C++ programmers
at work want to go off into their own little world, they start up a discussion of pointers, and
everyone vacates the area.”

“Never fear, Rhonda,” I said, “pointers can be a bit intimidating, but I think that by the end of
today’s class, you’ll be fine with them. Pointers were built in to the C language to handle a problem
with function calls. C++ also provides for something called a reference, which is an advance over
pointers. In fact, a few weeks ago we used a reference to call a function and have that function
change the value of a variable back in the main() function.”

NOTE
We used a reference in Example6_9 in Chapter 6.

The Classic Example: The Swap Program
“Rather than use that example from several weeks ago over again,” I said, “I thought I would show
you what has become the classic illustration of a program that calls for the use of a pointer. This is
the same program that my C instructor used in my first programming class. It’s a program that’s
intended to take the values found in two variables and exchange or ‘swap’ them. For example, if a
variable called x contains the number 13, and a variable called y contains the number 22, ultimately
we want the variable x to contain the value 22 and the variable y to contain the value 13.”

“That shouldn’t be a big problem,” Dave said. “I believe if we use a third variable, that’s a piece
of cake.”

486 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

I invited Dave to code the program for us, and in no time, he was finished and had displayed it
on the classroom projector.

//Example11_1.cpp

#include <iostream>

using namespace std;

int main()

{

int x = 13;

int y = 22;

int temp;

cout << "The value of x is " << x << endl;

cout << "The value of y is " << y << endl;

temp = x;

x = y;

y = temp;

cout << "The value of x is now " << x << endl;

cout << "The value of y is now " << y << endl;

return 0;

}

“Dave’s idea,” I said, admiring his code and watching the rest of the class study it, “is to use a
third variable to accomplish the swapping of the values. In other words, the value of the variable x
is placed in a variable called temp. The value of the variable y is then assigned to the variable x, and
the value of the variable temp is assigned to the variable y. Here’s a schematic of what is going on.”

Chapter 11: Pointers 487

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Seems like a lot of trouble to exchange two values,” Rhonda said. “Can’t we just set x to y and
y to x ?”

“Unfortunately not,” I said. “If you do that, after you copy the value of x to y, you’ll have two
variables with the same value, and you’ll lose your ability to exchange the values. Doing a swap of
values like this always requires a third variable. Let’s compile and execute Dave’s program and see
it in action.”

I saved Dave’s program as Example11_1.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

“Does everyone see what’s going on here?” I asked. “The values in the variables x and y have
been swapped: x started out with a value of 13, but now it has a value of 22, and y started out with
a value of 22, but now it has a value of 13.”

“I see,” Ward said, “that the values of the variables x and y have been swapped. This worked
fine. Now why do we need pointers?”

“We need pointers,” I said, “because of what happens if we take the code to do the exchange
of the variables and place it in a function of its own—the program no longer works properly.”

I then modified Dave’s code to look like this, taking the code to perform the exchange of the
variables and placing it in a function called Swap().

//Example11_2.cpp

#include <iostream>

using namespace std;

void Swap(int number1, int number2); // Function Prototype

int main()

{

int x = 13;

488 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

int y = 22;

cout << "The value of x is " << x << endl;

cout << "The value of y is " << y << endl;

Swap(x,y);

cout << "The value of x is now " << x << endl;

cout << "The value of y is now " << y << endl;

return 0;

}

void Swap(int number1,int number2)

{

int temp;

temp = number1;

number1 = number2;

number2 = temp;

}

“As you can see,” I said, “what we’ve done is to create a custom function named Swap(),
designed to accept two integer arguments called number1 and number2, and we placed the code
to do the exchange of the variable values in there.”

void Swap(int number1,int number2)

{

int temp;

temp = number1;

number1 = number2;

number2 = temp;

}

“We then ‘call’ the function Swap() from within main(),” I continued, “passing it the names of
the variables x and y as the two arguments.”

Swap(x,y);

Chapter 11: Pointers 489

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“I would think,” Kate said, “that the Swap() function will take the values of the two variables and
exchange them, just as the program did when this code was contained within the main() function.”

“Let’s see, Kate,” I said.
I saved the program as Example11_2.cpp and then compiled and executed it. The following

screenshot was displayed on the classroom projector:

“Looks fine to me,” I heard Rhonda start to say, but then she immediately realized that the
values of x and y hadn’t been swapped at all.

“Hey, what happened?” asked Rhonda. “The values haven’t been switched—they’re still the
same. Did we make a mistake somewhere in coding the Swap() function. The code in the Swap()
function looks the same as it did when it was contained in the main() function. Should we have
named the arguments in the Swap() function x and y ?”

“You’re right, Rhonda,” I said, “this program does have a problem. Unfortunately, it’s not a
problem that can be fixed simply by renaming the arguments in the Swap() function to x and y.
It goes much deeper than that.”

“What is the problem, then?” Blaine asked. “Is the problem with the code in the Swap() function?”
“No, the code in the Swap() function is fine,” I said. “The real issue here is how we ‘passed’ our

arguments to the Swap() function.”
“What do you mean how we passed the arguments?” Steve asked.
“By passing our variables as arguments,” I continued, “we were hoping that the Swap() function

would change the values of our variables back in the main() function. However, C++ passes
arguments to functions by value, not by reference.”

“I’m afraid I’m totally confused,” Kate said. “What does that mean? By value? By reference?”
“By value,” I said, “means that the Swap() function was passed the actual value of the variables

x and y as arguments, not the variables themselves. As a result, after the Swap() function executed,
the values of the variables x and y, declared in the main() function, were still the same. They
hadn’t been changed at all.”

490 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 11: Pointers 491

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

“I guess I hadn’t realized the nuance of passing arguments to functions,” Linda said. “This
is starting to ring a bell. Didn’t we address this issue in a program we coded a few weeks ago?
I thought we wound up using an ampersand (&) to make it work.”

“You have a great memory, Linda,” I said, “and you’re right. When I first introduced you to
passing arguments to functions, we had the same problem. We ‘got around’ it by using something
called a C++ reference, and we can solve our problem in this program in the same way. Let me
show you.”

I then modified the code to look like this, changing the argument declaration within both the
function prototype and function header to include the ampersand character.

//Example11_3.cpp

#include <iostream>

using namespace std;

void Swap(int &number1, int &number2); // Function Prototype

int main()

{

int x = 13;

int y = 22;

cout << "The value of x is " << x << endl;

cout << "The value of y is " << y << endl;

Swap(x,y);

cout << "The value of x is now " << x << endl;

cout << "The value of y is now " << y << endl;

return 0;

}

void Swap(int &number1,int &number2)

{

int temp;

temp = number1;

number1 = number2;

number2 = temp;

}

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Using an ampersand in the function header,” I said, “tells C++ we wish to pass the argument
by reference, not by value. In effect, this gives the function the ‘address’ of the variable in memory,
giving the function full access to the variable itself—not just a copy of the value of the variable.”

void Swap(int &number1,int &number2)

“As a result, when this program is executed, we should see the correct results of our variable
exchange displayed in the C++ console.”

“What do you mean by address?” Bob asked.
“Each variable that we declare,” I said. “In fact, everything in our program is stored in the

computer’s memory and is given a unique address so that our program can find it. A reference—
and as we’ll see shortly, a pointer—is just the actual address by which the variable is known to the
computer.”

I saved the program as Example11_3.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

“Now we’re back on track.” Linda said. “The Swap() function successfully exchanged the values
of the variables x and y.”

“That’s right, Linda,” I said. “Using a C++ reference—the ampersand—did the trick.”
I paused a moment to see if there were any questions.
“I know the theme of today’s class is pointers,” Ward said, “but if a C++ reference gives us the

results we need, why do we need to use pointers? I hear pointers are very difficult to work with. In
fact, I’ve heard they’re a nightmare.”

“You’re right, Ward,” I said. “In this particular program, a C++ reference can give us the same
functionality as a pointer—and references are easier to work with than pointers. But there are things
that pointers can do for us that references simply cannot—more on that later in the class. Besides,
I think by the end of today’s class you’ll be pretty comfortable with the concept of pointers, and
the topic is simply too important to skip. Pointers are engrained in the C and C++ world. It’s
difficult to imagine any of you finding employment without a working knowledge of pointers—
and I would dare say that if you get a job as a C++ programmer, it won’t be very long before you’re

492 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

asked to modify a program that uses pointers. For that reason, it makes good sense to learn about
them—and the best place to do so is in the friendly confines of our classroom.”

“Are you going to modify this program to use pointers instead of references?” Joe asked.
“Eventually,” I said, “but before we rush into that, let’s slow things down just a bit and take up the

subject of pointers in a more leisurely fashion. I think it will make it easier on everyone that way.”

What Is a Pointer?
“So exactly what is a pointer?” Chuck asked.

“In a single word, an address,” I replied. “Think of a pointer as a type of variable that contains a
memory address.”

“Isn’t that basically what a reference is?” Barbara asked hesitantly.
“Yes and no, Barbara,” I said. “When you place an ampersand in front of a variable name, as we

did in the program we just wrote, we tell C++ to work with a variable’s address, and not its actual
value. In that way a reference is like a pointer. The difference with a pointer, however, is that the
pointer is a variable that actually contains the address to another variable or object. There’s more
work involved in using a pointer. The programmer must explicitly declare a pointer and then assign
the memory address of a variable or object to it. As you’ll see, the process of using pointers is much
more complicated than merely using a reference—although the end results will be the same.”

“So a pointer is just a variable that contains a memory address?” Barbara asked.
“Exactly, Barbara,” I said. “Using pointers, it’s possible to work directly with a variable or object

by using its address—not its name. In fact, it’s also possible to call a function by using its address
instead of its function name.”

“Why would you ever want to do something like that?” Kathy asked. “I have enough trouble
already.”

“Experienced C++ programmers love the flexibility working with pointers gives them,” I said.
“Also, working with pointers is sometimes faster than working with variables and objects themselves.
C++ programmers are always looking to optimize the speed of their programs. And perhaps most
importantly, by using pointers it’s possible to dynamically create variables and objects at runtime.
You may recall that last week we discussed having to declare an array ‘large’ enough to hold the
largest number of elements we could envision. Using pointers, as you’ll see later on today, we don’t
need to do that. We can create the array and the exact number of elements we need, at runtime.”

“Can you explain a little bit more about this memory address that a pointer contains?” Bob
asked. “What does a memory address look like?”

“An address is nothing more than a number,” I said. “The exact look and feel depends on the
computer and operating system you’re using. What’s important to remember is that when you
declare a variable in your program, the operating system takes care of finding an available piece

Chapter 11: Pointers 493

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

of computer memory, noting the physical memory address, and then associating the name of your
variable with the address. We’ll be writing some programs later on that will allow you to see what
the addresses of the PCs located here in our computer lab look like.”

Declaring and Naming a Pointer
“You said a pointer is a variable that contains an address,” Lou said. “Is a pointer declared in the
same way that we declare a variable?”

“It’s similar, Lou,” I said. “However, because a pointer is a special type of variable, we need to
alert C++ to the fact that we are declaring a pointer, and we do that by declaring a pointer with an
asterisk, like this.”

int* pNumber1

“What we’re telling C++ to do here,” I said, “is to allocate, in the computer’s memory, a
variable called pNumber1 that itself will contain a memory address. It’s the asterisk that tells C++
this variable is a pointer. By the way, notice how I have named the pointer beginning with a
lowercase p. This makes identifying pointer variables in your program much easier.”

NOTE
All pointers are 4 bytes long.

“I know that the first time you see this notation it can be very confusing. Even more confusing
is the fact that you will often see three different styles of pointer declarations. For example, all
three of these pointer declarations styles are valid—notice that the position of the asterisk in each
is slightly different.”

int* pNumber1

int * pNumber1

int *pNumber1

“Is one of these styles more correct than the others?” Kate asked.
“All three are perfectly fine,” I said, “although my preference is to use the first one. Please be

careful when declaring more than one pointer. For example, this syntax results in one pointer
variable called pNumber1 being declared, and two regular variables called pNumber2 and
pNumber3 being declared.”

int* pNumber1, pNumber2, pNumber3;

494 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“To declare more than one pointer variable, either declare them on separate lines or use this syntax.”

int *pNumber1, *pNumber2, *pNumber3;

“By the way,” I added, “it’s always a good idea to initialize pointers with a value of zero—also
called a null value. A pointer initialized in this way really points to no address. Assigning no initial
value means that the pointer value contains a random value, and if you accidentally perform an
operation using that address, your program can have some very unpredictable results. You can
declare and initialize a pointer variable using this syntax.”

int* pNumber1 = 0;

NOTE
A pointer initialized with a value of zero is called a null pointer.

“Why is there a type of int designated with the pointer?” Dave asked. “It appears here that you
are saying that pNumber1 is an integer variable. I presume C++ understands this to mean that
pNumber1 is a pointer to a variable of the integer data type. Does it really matter?”

“Specifying the type is required,” I said, “because some pointer operations we’ll be performing
will need to know the type of data they will find at a particular address. In addition, because
different data types have different storage requirements, C++ needs to know the data type your
pointer is referring to so that in addition to knowing where the variable ‘starts’ it also knows its
length, and therefore where the variable ‘ends.’”

The AddressOf Operator (&)
“Okay,” Mary said, “now that we have a pointer declared, what do we do with it? A pointer
initialized to zero doesn’t seem very useful to me. I presume there’s a way to assign a valid
memory address to a pointer. How do I know the address to assign to the pointer?”

“A good point, Mary,” I said, “and a good question. Assigning a memory address to a pointer
variable can be done in one of two ways. First, you can directly assign the memory address to the
pointer variable—in much the same way that we initialize a pointer to zero—but doing so requires
that we know the actual physical memory address that we wish to assign to the pointer. In most
cases, we won’t know that. Instead we’ll know the name of the variable, object, or function whose
address we wish to store in the pointer.”

“How do we get the address, then?” Peter asked.

Chapter 11: Pointers 495

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“We can use the C++ AddressOf operator,” I said, “to either determine the memory address or
assign it to the pointer variable. Here’s some code in which we declare two integer variables called
number1 and number2 and then display both their addresses to the C++ console.”

//Example11_4.cpp

#include <iostream>

using namespace std;

int main()

{

int number1 = 12;

int number2 = 22;

cout << "The value of number1 is " << number1 << endl;

cout << "The address of number1 is " << &number1 << endl;

cout << "The value of number1 is " << number2 << endl;

cout << "The address of number1 is " << &number2 << endl;

return 0;

}

I saved the program as Example11_4 and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

NOTE
The addresses displayed on your PC will most likely be different from these.

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

496 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Does everyone see what happened here?” I asked. “We displayed the values of the variables
number1 and number2 as well as their memory addresses. Here’s a schematic.”

“I’m a little confused,” Rhonda said. “I understand that we displayed the values of number1
and number2, but what’s up with those addresses? Shouldn’t they be numbers? Why is there a
letter F in the address?”

“Addresses in a computer are usually represented in something called hexadecimal notation,” I
said. “The hexadecimal number system contains the digits 0 through 9, just like the decimal number
system we’re more familiar with. In addition, the letters A, B, C, D, E, and F are also used as digits.”

“So the letter F in the addresses that we see is like a number?” Linda asked.
“Exactly, Linda,” I said, “but don’t worry about this—or try to read too much into the actual

address itself. Most times you won’t even know the actual address contained in your pointer
variable—your program will take care of that. The key point here is that each variable we declare
in our program has a unique address in the computer’s memory, and that address can be retrieved
using the C++ AddressOf operator, which is the ampersand (&).”

cout << "The address of number1 is " << &number1 << endl;

“So all we’re doing here is using the AddressOf operator to display the address of the variable
number1 to the C++ console?” Rhonda asked.

“Exactly, Rhonda,” I said.
“I knew that ampersand looked familiar,” Blaine said. “Isn’t that the way we passed a reference

to the Swap() function in Example11_3?”
“Great observation, Blaine,” I said. “You’re right—by using the AddressOf operator in the

Swap() function’s header and function prototype, we told C++ to work directly with the address
of the arguments—not the values themselves.”

“I may be missing something here,” Kate said, “but did we work with pointers at all in this
example?”

“Not yet, Kate,” I said, “We’ll be doing that shortly. At this point, I simply wanted to show you
how easy it is to retrieve the address of a variable—or for that matter an object or function—by
using the AddressOf operator.”

Chapter 11: Pointers 497

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

number1

number2

22

12
Names

ValuesAddress

0012FF88

0012FF84

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

498 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

“Did you say we can use the AddressOf operator to determine the address of a function?”
Dave asked.

“That’s right, Dave,” I said. “Let’s write a program that contains a custom function and use
the AddressOf operator to display the memory of the function.”

//Example11_5.cpp

#include <iostream>

using namespace std;

void Dummy(); //Function Prototype

int main()

{

Dummy();

cout << "The address of Dummy() is " << &Dummy << endl;

return 0;

}

void Dummy()

{

cout << "Dummy() has been executed" << endl;

}

I saved the program as Example11_5 and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

“As you can see,” I said, “by using the AddressOf operator, we were able to display the address
in memory of the Dummy() function. Take note to be careful to specify only the name of the
function. Don’t include the parentheses after the function name.”

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 11: Pointers 499

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

cout << "The address of Dummy() is " << &Dummy << endl;

“Again, working with function addresses is something that an experienced C++ programmer
would love to do, but it’s a bit beyond the scope of this class.”

I waited a moment before continuing. So far, so good.
“Why don’t we experiment with our first pointer now,” I suggested. “Let’s declare a pointer and

then use the AddressOf operator to assign the address of an ordinary variable to it. Then we’ll display
both the value of the variable and the address we stored in the pointer to the C++ console.”

//Example11_6.cpp

#include <iostream>

using namespace std;

int main()

{

int number1 = 12;

int* pNumber1 = 0;

cout << "The value of number1 is " << number1 << endl;

cout << "The address of number1 is " << &number1 << endl;

cout << "The initial value of pNumber1 is " << pNumber1 << endl;

pNumber1 = &number1;

cout << "The value of pNumber1 is now " << pNumber1 << endl;

return 0;

}

I saved the program as Example11_6 and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Can anyone explain what’s going on here?” I asked.
“I think I can,” Linda volunteered. “We first displayed the value of the variable number1, 12, to

the C++ console. Then we used the AddressOf operator to display the memory address of the variable
number1, which is 0012FF88. Then we displayed the initial value of the pointer pNumber1, which is
zero. Finally, after we assigned the address of the variable number1 to the pointer pNumber1, we
displayed its value to the C++ console.”

“That’s excellent, Linda,” I said. “Notice that the result of displaying the value of the pointer
variable pNumber1 and the result of the AddressOf operation against the variable number1 are
identical. Let’s take a good look at the code now. The first thing we did was to declare an ordinary
integer variable called number1, followed by the declaration of our pointer variable, pNumber1.”

int number1 = 12;

int* pNumber1 = 0;

“Remember,” I said, “when C++ sees the asterisk following the word int, it knows that
pNumber1 is not an ordinary variable but rather is a pointer variable meant to store a memory
address. This distinction is very important, because C++ will not permit us to assign the return
value of the AddressOf operator to an ordinary variable—only to a pointer variable. Also notice
that we initialized our pointer variable to zero, which is always recommended.”

The week I discuss pointers in class is always a challenge, and from experience, I expected a bit
of confusion. However, I was pleasantly surprised to find that no one seemed to be having any
great difficulties so far.

“This next line of code,” I continued, “displays the value of the variable number1 to the C++
console.”

cout << "The value of number1 is " << number1 << endl;

“This is followed by the line of code that uses the AddressOf operator to display the memory
address of the variable number1.”

cout << "The address of number1 is " << &number1 << endl;

NOTE
Remember, don’t read too much into the value of the memory address itself. The
address that you see on your monitor will be affected by the PC upon which your
program is running and the operating system. Most likely, the address you see will
not match the one in this example.

500 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“With this next line of code, we display the value of the initialized pointer. I wanted to show
you that it is indeed equal to zero. Notice that nothing ‘special’ needs to be done to display the
value of a pointer variable.”

cout << "The initial value of pNumber1 is " << pNumber1 << endl;

“Next we execute the AddressOf operation against the variable number1. The return value is an
address that we then assign to the pointer variable pNumber1. As I mentioned earlier, this is the
method normally used to assign an address to a pointer variable, although you could assign the
address directly if you knew it.”

pNumber1 = &number1;

“Finally, this line of code displays the value of pNumber1—an address—to the C++ console.
Notice again that nothing ‘special’ needs to be done to display the address.”

cout << "The value of pNumber1 is now " << pNumber1 << endl;

No one seemed to be having any problems so far.

The Indirection Operator (*)
“If you have a pointer variable containing an address,” Chuck said, “is there any way to determine
the value of the variable to which that address belongs. By that I don’t mean the address of the
variable—we already know that, it’s in the pointer—but rather the value of the variable that the
pointer ‘points to.’”

“That’s quite a tongue twister, Chuck,” I said, “and it’s an excellent question. Yes, it is possible
by using the C++ indirection operator, which is the asterisk.”

“Did you say indirection operator?” Rhonda asked.
“You heard me right, Rhonda,” I said. “The indirection operator, the asterisk, is also called the

dereference operator. Using it, we can obtain the value of a variable whose address is stored in a
pointer. You can think of the indirection operator as the opposition of the AddressOf operator.
The AddressOf operator returns the address of an ordinary variable. Given an address, the
indirection operator returns the value stored at that address.”

“Could you elaborate on that?” Ward asked.
“Sure thing, Ward,” I said. “Suppose we have a variable called number1, containing the value

22, and we have a pointer variable called pNumber1, containing the address of the variable
number1. By using the indirection operator, we can determine that the value of number1 is 22.”

Chapter 11: Pointers 501

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Sounds like a roundabout way of obtaining a value,” Linda said. “Of course, if we know the
name of the variable, we can simply use that to obtain the value, right?”

“Absolutely right, Linda,” I said. “But as you’ll see later on today, it’s possible to create a variable
with no name, just a pointer, in which case using the indirection operator is the only way to obtain
its value. Let’s take a look at the indirection operator now.”

I then displayed this code on the classroom projector:

//Example11_7.cpp

#include <iostream>

using namespace std;

int main()

{

int number1 = 12;

int* pNumber1 = 0;

pNumber1 = &number1;

cout << "The value of number1 is " << *pNumber1 << endl;

return 0;

}

I saved the program as Example11_7.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

“Let’s review the code now to make sure you’re all with me,” I said. “Here are the declarations
for both the variable number1 and the pointer variable pNumber1.”

502 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

int number1 = 12;

int* pNumber1 = 0;

“This line of code uses the C++ AddressOf operator to assign the address of the variable
number1 to the pointer variable pNumber1.”

pNumber1 = &number1;

“As we know,” I continued, “ordinarily, to display the value of a variable, we simply reference
the name of the variable, but using the C++ indirection operator we tell C++ to ‘look up’ the value
associated with an address, like this. Notice the asterisk in front of the pointer name.”

cout << "The value of number1 is " << *pNumber1 << endl;

The Swap() Function Using Pointers
“I feel pretty confident in the mechanics of what you’ve shown us so far this morning,” Rhonda
said. “Can we have a chance to put it all together—perhaps with a practice exercise?”

“You read my mind, Rhonda,” I said. “Do you remember the Swap program we wrote a little
earlier? Our last version of that program used a C++ reference to get the job done. Let’s complete
this exercise so that we use pointers to perform the exchange of values between two variables.
You’ll see that the program is more complicated than the version we have now, but it will be a
great learning experience.”

I then distributed this exercise for the class to complete.

Exercise 11-1 Using Pointers with the Swap() Function

In this exercise, you’ll write a program that uses pointers to swap variable values.

1. Use Notepad (if you are using Windows) to enter the following code:

//Practice11_1.cpp

#include <iostream>

using namespace std;

void Swap(int* pNumber1, int* pNumber2);

int main()

{

int x = 13;

int y = 22;

Chapter 11: Pointers 503

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

504 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

int* pX = 0;

int* pY = 0;

cout << "The value of x is " << x << endl;

cout << "The value of y is " << y << endl;

pX = &x;

pY = &y;

Swap(pX,pY);

cout << "The value of x is now " << x << endl;

cout << "The value of y is now " << y << endl;

return 0;

}

void Swap(int* pNumber1,int* pNumber2)

{

int temp;

temp = *pNumber1;

*pNumber1 = *pNumber2;

*pNumber2 = temp;

}

2. Save your source file as Practice11_1 in the \CPPFiles\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute your program. The program will display the initial values of the
variables x and y, along with their new values after the Swap() function
has executed.

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 11: Pointers 505

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

Discussion Only one student, Blaine, had a problem completing the exercise—and it was a
minor one. While coding the exercise, although he properly initialized his pointer
variables to zero, he forgot to later assign valid addresses to them using the
AddressOf operator. His program compiled and linked fine, but when he ran it,
when the Swap() function executed, the two addresses passed to the Swap()
function as arguments were null, and his program ‘bombed’ with a memory
read error. It didn’t take Blaine too long to correct the problem, and soon he
was happily on his way. It was a great learning experience for the whole class.

“This exercise gave us a chance to practice everything we learned this
morning about pointers,” I said, after returning from Blaine’s workstation,
“although I suspect declaring a pointer as an argument to a function may have
confused some of you. Let’s take a detailed look at the code now, beginning
with the function prototype for Swap(). Something you hadn’t seen before
now is the use of a pointer as an argument to a function. Not surprisingly, if
you intend to pass an argument that is a pointer to a function, you need to let
C++ know that in both the function prototype and the function header. Here’s
the prototype for the Swap() function.”

void Swap(int* pNumber1, int* pNumber2); // Function Prototype

“That syntax did confuse me a bit when I first saw it,” Rhonda said. “I must
say I was pretty proud of myself when I eventually recognized what was going
on. One thing that really confuses me is the multiple use of asterisks in C++. We
use the asterisk to declare a pointer and for the indirection operator—not to
mention the use of the asterisk for multiplication.”

“Your confusion is absolutely understandable,” I said. “I’ve participated in
many discussions with C++ programmers lamenting the use of the asterisk for
both pointer declaration and for the indirection operator. You would have
thought that the developers of the C and C++ languages would have come up
with another way to designate these—but that’s all water under the bridge
now. This is the syntax we have to work with. Let’s take a look at the code in
the main() function now. We start out by declaring two ordinary integer
variables called x and y.”

int x = 13;

int y = 22;

“Then we declare two pointer variables called pX and pY, which we initialize
to zero.”

int* pX = 0;

int* pY = 0;

“Now we display the current values of x and y.”

cout << "The value of x is " << x << endl;

cout << "The value of y is " << y << endl;

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

506 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

“Blaine, it was at this point where you had the problem with your program,
forgetting to assign the addresses of the variables x and y to the pointers pX
and pY. We do that by using the AddressOf operator.”

pX = &x;

pY = &y;

“In Blaine’s case, when his program called the Swap() function, instead of
passing it two pointers with valid addresses as arguments, it actually passed two
null pointers. Because a null pointer contains an invalid memory address, Blaine’s
program bombed with an address error. In our case, both pointers now contain
valid addresses, which are then passed to the Swap() function with this code.”

Swap(pX,pY);

“You’re going to see in a few minutes,” I said, “that there’s a way to
streamline this code quite a bit by not explicitly declaring pointers at all. What
we’ll do in the next exercise is to pass references to the Swap() function, not
pointers. But let’s not look ahead too far. Instead, let’s take a look at the
Swap() function. As you can see, both the function header and the function
prototypes are identical—including two arguments declared as integer type
pointers.”

void Swap(int* pNumber1,int* pNumber2)

{

“Within the Swap() function, we declare a variable called temp, which will
be used to exchange the values of the variables x and y.”

int temp;

“Here’s the difference between this version of the program and the one we
wrote in Example11_3. In this one, we use the indirection operator against the
first passed argument—which is really the address of the variable x in the
main() function—and assign it to the temp variable.”

temp = *pNumber1;

“This next line of code you may find a bit confusing at first,” I said. “Here
we are using the indirection operator on the second passed argument, and we
assign its return value to the variable ‘pointed to’ by the pointer pNumber1—
in essence, exchanging the value x with the value of y.”

*pNumber1 = *pNumber2;

“Because of this, for the moment anyway, both the variables x and y in the
main() function have the same value.”

“If both variables have the same value,” Rhonda said, “we’re in trouble.
Where’s the old value of the variable x?”

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“The value of x is in the temp variable,” I said, “and we’ll then assign it to
the variable ‘pointed to’ by the pointer pNumber2.”

*pNumber2 = temp;

“Oh, I see,” Rhonda replied. “The value of temp is being assigned to the
variable pointed to by pNumber2—that’s what the asterisk means.”

“Exactly, Rhonda,” I said.

“All this pointer notation can be tough to follow,” Kathy said, “but I think
if you take your time as you read the code, remembering that a pointer is an
address, that an ampersand in front of a variable name returns its address, and
that an asterisk in front of a pointer points to the variable whose address is
stored in the pointer, you’ll be okay.”

“That’s a pretty good summation of the operation of pointers, Kathy,” I said.

“Did you say there’s a simpler way to code this program?” Linda asked.

“Slightly,” I replied. “Experienced C++ programmers are always looking
to streamline code—so saving a few lines of code here and there can be
significant. In the modified code that follows, we can save some lines by not
declaring the two pointer variables in the main() function of our program.
Instead, we can pass, as arguments, the address of the variables x and y using
the AddressOf operator. As practice, why don’t you code this yourself.”

I then distributed this exercise for the class to complete.

Exercise 11-2 More on Pointers with the Swap() Function

In this exercise, you’ll modify the program you wrote in Exercise 11-1,
streamlining it just a bit to achieve the same results.

1. Use Notepad (if you are using Windows) to either modify the code in
Practice11_1.cpp or enter the following code from scratch (four lines of
code have been deleted, and the one line of modified code is in bold):

//Practice11_2.cpp

#include <iostream>

using namespace std;

void Swap(int* pNumber1, int* pNumber2);

int main()

{

int x = 13;

Chapter 11: Pointers 507

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

508 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

int y = 22;

cout << "The value of x is " << x << endl;

cout << "The value of y is " << y << endl;

Swap(&x,&y);

cout << "The value of x is now " << x << endl;

cout << "The value of y is now " << y << endl;

return 0;

}

void Swap(int* pNumber1,int* pNumber2)

{

int temp;

temp = *pNumber1;

*pNumber1 = *pNumber2;

*pNumber2 = temp;

}

2. Save your source file as Practice11_2 in the \CPPFiles\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute your program. As was the case with Practice11_1, the program will
display the initial values of the variables x and y, along with their new
values after the Swap() function has executed.

Discussion “Not much changed in this version of the program,” Ward said, “Most
importantly, it appears that the program still works in the same way.”

“Absolutely, Ward,” I said. “We dropped four lines of code, the code within
the main() function in which we declared two pointers, and two lines of code
to assign the addresses of the variables x and y to our pointers. In addition, we
modified one line of code, the call to the Swap() function, to pass the address
of the variables x and y via the AddressOf operator instead of explicitly passing
the pointers.”

Swap(&x,&y);

“I know saving four lines of code like this would make the programmers
back at work very happy,” Dave said, with a smile on his face. “It seems to
me their goal is to write their programs with as few lines as possible.”

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Pointers and Arrays
“I’d like to address the issue of pointers and arrays now,” I said.

“Do you mean we can create a pointer to an array?” Ward asked.
“Yes we can, Ward,” I said.
“I’m trying to conceptualize exactly what that means,” Linda said. “Because an array is a

collection of data, what does the pointer contain? The address of the first element?”
“That’s exactly right, Linda,” I said. “In fact, every pointer—whether a pointer to a variable or

a pointer to an array—really contains the address of the starting point of that piece of data. Take a
look at this code, which declares a six-element array called grades and then uses pointer notation to
display the address of the array and the value of its first element.”

//Example11_8.cpp

#include <iostream>

using namespace std;

int main()

{

int grades[6] = {82,90,64,80,95,75};

int* pGrades = grades;

cout << "The value of pGrades is " << pGrades << endl;

cout << "The value of the first element of grades is "

<< *pGrades << endl;

return 0;

}

I saved the program as Example11_8.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

Chapter 11: Pointers 509

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“As you can see,” I said, “both the address of our array—in hexadecimal notation—and the
value of the first element of the array have been displayed in the C++ console. Using pointers
to arrays is much the same as working with pointers to ordinary variables, but there are some
differences you need to be aware of and careful with. Here’s the declaration of a six-element
integer array called grades.”

int grades[6] = {82,90,64,80,95,75};

“This is followed by the assignment of the address of the array to the pointer called pGrades.”

int* pGrades = grades;

Notice how in this program, we combine the declaration of the pointer and the assignment of
the address to the pointer with one line of code rather than declare the pointer, initialize it to zero,
and then assign the address. We’ve saved two lines of code by using this syntax. By the way, notice
that the data type of the pointer is identical to that of the array.”

“Hmmm,” I heard Valerie say, “where’s the AddressOf operator?”
“That’s right,” Joe said. “In our other programs, when assigning the address of an ordinary

variable to a pointer, we’ve been using the AddressOf operator, haven’t we? We didn’t do that here.”
“Great observations,” I said, “This is one of the differences in working with an array pointer.

When you assign the address of an array to a pointer variable, you don’t use the AddressOf
operator—in fact, if you use it, the compiler will flag that line of code as an error.”

NOTE
When assigning the address of an array to a pointer variable, do not use the
AddressOf operator.

I paused a moment before continuing.
“These next two lines of code display both the address of our array and the value of the first

element in our array to the C++ console.”

cout << "The value of pGrades is " << pGrades << endl;

cout << "The value of the first element of grades is " << *pGrades << endl;

“One interesting feature of an array is that we can display the memory address of an array
without using a pointer at all, just by using the name of the array itself, like this.”

cout << "The value of pGrades is " << pGrades << endl;

510 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“When you say ‘address of the array,’” Kate said, “you really mean the starting point of the
array, don’t you?”

“That’s right, Kate,” I said. “To C++, an array, no matter how many elements it contains, is
really just a continuous piece of data storage, so when we display the address of the array, what we
are seeing is the address of the starting point of the array. Addresses for all data storage are expressed
the same way. For instance, when we display the address of an integer variable, we display its starting
point as well.”

“Displaying the first element of an array is great,” Ward said, “but what about the other
elements in the array? Isn’t there a way to display the other elements of the array by using the
pointer to the array?”

“Great question, Ward,” I said. “The answer is yes. Using what is known as pointer arithmetic,
we can display the values in all the elements of the array.”

Pointer Arithmetic
“Did you say pointer arithmetic?” Peter asked. “Not more math to learn!”

“You heard me right, Peter,” I said, “but don’t worry, it’s basic addition and subtraction.
Using pointer arithmetic, you can increment (add to) or decrement (subtract from) the value of a
pointer. Pointer arithmetic makes the most sense if the pointer contains the address of an array.
For instance, if you add 1 to the value of a pointer that ‘points to’ an array, the pointer address is
updated with the address of the second element of the array. Add 1 again, and now the pointer
contains the address of the third element of the array, and so forth. Subtracting 1 from the value
of a pointer that ‘points to’ an array works in reverse.”

“So adding 1 to a pointer doesn’t simply add 1 to the physical address stored there,” Dave said.
“I presume this is why it’s important to designate a data type along with the pointer declaration so
that C++ knows how much data storage each array element consumes and can properly increment
the address.”

“Exactly, Dave,” I said. “C++ is smart enough to know, for instance, that an integer array
element uses four bytes of storage. Therefore, when you increment the value of its pointer by 1,
it actually ‘adds’ 4 to the address stored in the pointer.”

I could see some confused looks on the faces of my students, so I displayed this code on the
classroom projector:

//Example11_9.cpp

#include <iostream>

using namespace std;

Chapter 11: Pointers 511

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

int main()

{

int grades[6] = {82,90,64,80,95,75};

int* pGrades = grades;

cout << "The value of pGrades is " << pGrades << endl;

cout << "The value of the first element of grades is " << *pGrades

<< endl << endl;

pGrades++;

cout << "The value of pGrades is now " << pGrades << endl;

cout << "The value of the second element in grades is " << *pGrades

<< endl << endl;

pGrades+=4;

cout << "The value of pGrades is now " << pGrades << endl;

cout << "The value of the sixth element in grades is " << *pGrades

<< endl << endl;

pGrades-=3;

cout << "The value of pGrades is now " << pGrades << endl;

cout << "The value of the third element in grades is " << *pGrades

<< endl << endl;

return 0;

}

I saved the program as Example11_9.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector.

512 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“As you can see,” I said, “this program started out by displaying the initial value of both the
pointer pGrades and the first element in our array. Then by using pointer arithmetic, we were able
to change and display the address contained in the pointer and also display the elements of the
array pertaining to that updated address. We first incremented the value of the pointer variable
pGrades by using the C++ increment operator.”

pGrades++;

“Then we used this code to display the value of its pointer and second element. Notice by
adding 1 to the value of the pointer that the address really ‘jumped’ by 4—that’s the number of
bytes in an integer data type.”

cout << "The value of pGrades is now " << pGrades << endl;

cout << "The value of the second element in grades is " << *pGrades

<< endl << endl;

“With the pointer now containing the address of the second element of the array, this line of
code, which increments the pointer by 4, results in the address of the sixth element of the array
being stored in the pointer.”

pGrades+=4;

“Just to prove that we can also work our way ‘backward’ in an array using pointer arithmetic,
this code, which subtracts 3 from the pointer, results in the address of the third element of the
array being stored in the pointer.”

pGrades-=3;

“I can see some potential danger here,” Dave said. “Suppose you increment past the end of the
array—or decrement past the beginning.”

“What does Dave mean?” Kate asked.
“What Dave means,” I said, “is that C++ gives the programmer a lot of freedom. If you have a

three-element array and add 10 to the value of its pointer, the pointer will contain an address that
is well ‘beyond’ the last element of the array. If you try to read the value there, or worse yet, update
it in some way, your program can bomb—and you can even cause your PC to ‘freeze.’ Be very
careful when performing pointer arithmetic.”

“Is it possible to use pointers with multidimensional arrays?” Dave asked.
“Yes it is,” I said, “but that’s a topic that is well beyond the scope of this class. In general, particular

for beginners, it’s recommended that when working with arrays, particularly multidimensional arrays,
that you use the standard type of array processing that we discussed last week.”

Chapter 11: Pointers 513

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Can you perform pointer arithmetic on a pointer that refers to an ordinary variable?” Steve asked.
“In theory, you can,” I said, “although pointer arithmetic is most useful on pointers referring to

an array. Let’s put it this way: C++ won’t prevent you from incrementing or decrementing the
value of a pointer that refers to an ordinary variable, although you may not obtain the results you
are looking for. For instance, suppose you declare two variables, called x and y, and declare a
pointer called pX containing the address of x. You might think that incrementing the pointer pX
by 1 would result in the address of the variable y being stored in the pointer, but that’s not necessarily
the case. On our computers here in the computer lab, the address location of the variable y is
actually before the address of the variable x. The bottom line: When it comes to pointer arithmetic,
only arrays can be guaranteed to behave the way we’ve seen today.”

“Can you create a pointer that refers to an object?” Dave asked.
“Good question, Dave,” I said. “Let’s tackle that one after our break.”
We had been working for quite some time, so I suggested that we take a 15-minute break before

tackling our last topics of the day—pointers to objects, the free store, and dynamic memory.

Pointers to Objects
“So is it possible to create a pointer to an object,” Linda asked, as we resumed after our break,
“and are there any advantages to doing so? Why would you want to?”

“Yes, Linda,” I said, “it is possible to create a pointer to an object. Using a pointer to an object,
you can work with the object’s attributes and execute its functions just as you ordinarily would,
although the syntax is a bit unruly. As far as advantages? Not really.”

“Then why do it?” Ward asked.
“The primary reason for creating a pointer to an object,” I replied, “is because that’s the only

way to dynamically create an object at runtime, which is something that can come in very handy.
Dynamic memory allocation is the last topic we’ll cover in today’s class, so let’s hold off until then
to discuss it. For now, let’s see how we can create a pointer to an object by writing a program to
create an instance of a Banner object from the Banner class we created several weeks back. Once
we have the object created and its address in a pointer, you’ll see that it’s possible to update the
object’s member attributes and even execute its functions via the pointer. Take a look at this code.”

//Example11_10.cpp

#include "Banner.cpp"

int Banner::numberOfBannerObjects;

int main()

{

514 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Banner x;

Banner* pX = &x;

pX->favoriteProgram = "C++";

pX->Display();

return 0;

}

I saved the program as Example11_10.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

“The C++ console,” I said, “indicates that a Banner object has been created, its Display()
function has been executed, and finally the object has been destroyed. The code itself is very
similar to the code we first wrote several weeks ago, except this first uses a pointer instead. We
start by executing this line of code, which declares an instance of a Banner object called x.”

Banner x;

“This code creates a pointer called pX.”

Banner* pX = &x;

“Notice how we specify a pointer type of Banner, which tells C++ the type of pointer we are
establishing. As is the case with the other pointers we’ve created today, we use the AddressOf
operator to assign the address of our Banner object to the pointer.

“These next two lines of code update the favoriteProgram attribute of the Banner object and
execute its Display() function.”

pX->favoriteProgram = "C++";

pX->Display();

Chapter 11: Pointers 515

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

516 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

“Now we could have chosen to use standard object dot notation to do this, but both can be
done using the pointer, although as you can see, the syntax is something you haven’t encountered
before. Notice the hyphen and the greater than sign following the pointer name.”

“I was wondering what that was,” Rhonda said.
“The use of the hyphen, followed by the greater than sign,” I said, “is required when you refer

to an attribute or function of an object by using its pointer.”
“This still seems like a lot of trouble to me,” Rhonda said. “Why not just use object notation to

‘get at’ the attributes and functions of the objects? This must have something to do with the dynamic
memory allocation you mentioned earlier.”

“That’s right, Rhonda,” I said. “Accessing the attribute of an object or executing its function via
a pointer is a bit more trouble. Unfortunately, if you create an object on the free store, it’s the only
way you can ‘get at’ the object’s attributes or functions.”

The Free Store
“What in the world is a free store ?” Mary asked.

“Sorry, Mary,” I said, “that term just slipped out. When you create variables, arrays, and objects
at runtime—in other words, dynamically—they are created on something known as the free store,
sometimes also called the heap.”

“How is that different from the variables, arrays, and objects we’ve been creating so far?” Kate asked.
“Up until now,” I said, “the variables and objects we’ve declared—with the exception of global

variables that we examined very briefly early in the course—have been created and maintained in
something called the stack.”

“I think I’ve heard of that term before,” Dave said, “Is the stack another term for local memory ?”
“That’s right, Dave,” I said. “Most of the variables and objects we’ve created during the course

have been local. For instance, whenever a variable or object is declared within a function, such as
the main() function, the storage allocation for that variable or object is made within the stack. The
stack is a relatively small area of computer memory that is allocated to an individual program—
each program that runs on a PC gets its own stack. The stack ‘holds’ both programming instructions
and data. As your program executes, data is constantly placed on and removed from the stack.
There are several key points to bear in mind about the stack.

“First, the amount of stack space available to your program can be limited—in other words, it’s
possible to write a program that simply runs out of stack space. The storage allocated for the free
store, or the heap, is much larger.

“Second, when you compile your program, the C++ compiler analyzes your program code for
storage requirements, based on the declaration statements for the variables, arrays, and objects it
finds. Without the use of pointers, it’s impossible for your program to get more storage at runtime
for variables, arrays, and objects.

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 11: Pointers 517

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

“Finally, when a function is executed, variables and objects declared within that function are
placed on the stack. Variables and objects declared in a function can only be ‘seen’ within that
function, and when the function ends, they are removed from the stack. As a result, the life span
of data that is placed on the stack is relatively short—it’s not the full duration of your program.”

“Suppose you need to have data ‘last’ for the duration of your program?” Steve asked. “Or be
‘seen’ by code in another function?”

“That’s why you use global variables and objects,” I said. “Global variables and objects are declared
outside of any of the functions in our program—usually just under the compiler directives—and are
actually stored in something called the global namespace. They ‘last’ for as long as the program is
running. In addition, they can also be ‘seen’ by every part of our program.”

“So where does the free store you mentioned fit in?” Joe asked, “So far, we have local variables, which
are stored on the stack, and global variables, which are stored in the global namespace. It would seem to
me that between stack memory and global memory we have pretty much all we need.”

“You’re right, Joe,” I said. “Between stack and global memory, it would appear we have all the
functionality we require. Stack memory allows us to create local variables and objects whose lifespan
and scope—where they can be seen—begins and ends with the function in which they’re declared.
And global variables allow us to create variables whose lifespan is for the duration of the program and
whose scope is program wide. However, there’s a potential problem with global variables.”

“What is it?” Mary asked.
“The rule of thumb in programming,” I said, “is to restrict the scope of a variable or object as

narrowly as possible. C and C++ programmers have traditionally objected to declaring variables
or objects as global just to give them a longer life span. Declaring a variable or object on the free
store can give it a lifespan equal to the duration of the program, yet still give it local scope.”

“I’m afraid I don’t understand,” Rhonda said, obviously perplexed.
“Declaring a variable or object on the free store,” I continued, “gives the variable or object local

scope but still allows it to ‘live’ for as long as the program is running.”
“So a variable or object declared on the free store can only be ‘seen’ by the function that creates

it?” Kathy asked.
“That’s exactly right, Kathy,” I said.

Declaring Variables and Objects on the Free Store
“How do we declare variables or objects on the free store?” Steve asked. “Is it like declaring an
ordinary variable?”

“Not quite,” I said. “Variables and objects to be created on the free store require that we use a
pointer and that we assign an address to it that is obtained by executing the C++ ‘new’ statement.
Once variables and objects are created on the free store, thereafter they can only be referenced by
using the address, which of course is stored in the pointer.”

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

518 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

“And that’s why they have local scope,” Dave said. “There’s no way for another function to
accidentally access or modify the value of a free store variable or object, the way there is with a
global variable or object, because only the function has access to the address via the pointer.”

“That’s right, Dave,” I said. “And one other valuable feature of declaring variables and objects
on the free store, which I’ve hinted strongly at earlier, is that it gives us the ability to allocate
memory dynamically—that is, at runtime.”

“And why would we want to do that again?” Mary asked.
“With ordinary variables, arrays, and objects,” I said, “the C++ compiler determines space

requirements at compile time. There may be instances in your programs where you just don’t
know, when you write your program, exactly how many variables or array elements you’ll need
within your program. For instance, you may write a program in which you read a file or a
database, and for each record you find there, you create an array element. You may have ten
records in the file today, and 10,000 records in the file tomorrow. The point is that ideally, the
array declaration should reflect only the amount of data storage actually needed, but this can’t be
done using an ordinary variable. However, with variables and objects declared on the free store,
memory isn’t allocated until the program actually executes—which means you can write a
program whose array declaration is based on some condition it finds at runtime, such as the
number of records in a file or a database table.”

“Array size was an issue last week, wasn’t it?” Linda volunteered. “Someone in the class asked
how large to declare an array if you weren’t sure what the size should be. So it’s possible to decide
on the ‘size’ of an array when the program is running?”

“That’s right, Linda,” I said. “Dynamic memory allocation is one of the big advantages in
declaring variables on the free store.”

“I’m afraid I’m going to have to see how this free store variable declaration works in order to
clear this all up for me,” Chuck said. “Can you show us an example?”

“I’d be glad to, Chuck,” I said, as I displayed this code on the classroom projector:

//Example11_11.cpp

#include <iostream>

using namespace std;

int main()

{

int* pY = new int; //Create variable on the Free Store

*pY = 22;

cout << "The value of pY is " << *pY << endl;

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

delete pY; //Delete variable from the Free Store

pY=0; //Assign a Null value to the pointer

return 0;

}

I saved the program as Example11_11.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

“As you can see,” I said, “what we’ve done here is to declare a variable on the free store and then
display its value in the C++ console. Although its functionality is pretty simple, working with the
free store is different than anything you’ve seen before, and it does require some explanation. First,
in order to declare a variable on the free store, we must declare a pointer variable, which will
contain the address of the free store variable. It’s important to note that there is no name declared
for the free store variable—it can only be accessed via its address, which is returned by executing
the C++ ‘new’ statement. In this program, we combined the declaration of the pointer and the
assignment of the address of the free store variable into a single statement. You can read this line of
code as asking C++ to create a new integer variable and to assign its address to the integer pointer
variable pY.”

int* pY = new int; //Create variable on the Free Store

“So there’s no way not to use a pointer here?” Rhonda asked. “For instance, by assigning the
return value of the new keyword to an ordinary variable?”

“No there’s not, Rhonda,” I said. “The return value of the new keyword is an address, and you
now know that only a pointer variable can store an address. Once we have our free store variable’s
address stored in our pointer variable, we can use the indirection operator to assign a value to the
variable via its pointer, like this.”

*pY = 22;

Chapter 11: Pointers 519

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Oh, I see now,” Rhonda said. “I was a little confused with this syntax when I first saw it. So
everything having to do with the free store variable is now done via the address stored in the
pointer variable.”

“Exactly, Rhonda,” I said, “which is why we then use the indirection operator to display its
value on the C++ console.”

cout << "The value of pY is " << *pY << endl;

“Is there any way to initialize a free store variable when you declare it?” Steve asked.
“Great question, Steve,” I replied. “You can combine the declaration and initialization by

specifying its initial value within parentheses, like this.”

int* pY = new int(22);

“What’s going on with that next line of code?” Chuck asked. “What does ‘delete’ do?”
“Being able to declare variables on the free store gives us as C++ programmers enormous

power,” I said, “because the variable exists for the duration of our program. It also requires more
responsibility on the part of the programmer for that reason. Therefore, when we are done using
the variable, it is extremely important that we delete it from the free store—and that’s done
using the C++ delete statement.”

delete pY; //Delete variable from the Free Store

“It’s also a good idea to assign a null address to the pointer as well so that we don’t accidentally
refer to the address in it again. Even though the data associated with free store variable has been
deleted, the address contained in the pointer is still there, and we don’t want to accidentally use it
in our code.”

pY=0; //Assign a Null value to the pointer

“How important is it to execute the delete statement?” Kate asked. “I mean, what will happen
if the program ends without us deleting the variable?”

“Failure to delete the variable from the free store using the delete statement,” I said, “can result
in a variety of minor, and sometimes not-so-minor, problems. The primary problem occurs when
a program—usually one intended to run for a long period of time—continues to use more and
more memory. Specifically, it continues to write data in the form of free store variables and arrays
to the free store, without ‘remembering’ to free the data. Eventually, the PC or server will run out
of available memory and the program—or even worse, the entire PC—will come to a grinding
halt. This problem is called a memory leak and invariably is caused by the programmer forgetting
to delete free store memory after using it. Sometimes the programmer gets it ‘half right’ by

520 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 11: Pointers 521

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

remembering to assign a null value to the pointer containing the free store variable’s address—but
by itself, this doesn’t free up any of the storage that variable is using on the free store. The bottom
line: Free up the space using the delete statement, then assign a null value to the pointer containing
the address of the free store variable.”

“What happens when the program ends and you’ve forgotten to delete the free store variables?”
Ward asked. “Will this storage be returned to the operating system?”

“Yes, it will,” I said. “There’s a misconception among beginners that this space is never returned
to the operating system, but it is, and it will be made available to other programs. The misconception
probably comes about because many C++ programs are intended to run indefinitely—that is, they
never end. Therefore, a program with a small memory leak problem can cause the PC or server to
run out of memory eventually.”

“How do you declare an object on the free store?” Bob asked.
“The basic steps are the same,” I said. “Declare a pointer of the object’s type, assign it the

address of the return value of the new statement, use the notation you saw in Example11_1 to
work with the object’s attributes and functions, and when you’re done with it, delete it using the
delete statement. In fact, why don’t you take a shot at creating an object on the free store by
completing this exercise?”

I then distributed this exercise for the class to complete.

Exercise 11-3 More on Pointers with the Swap() Function

In this exercise, you’ll write a program that creates an instance of a Banner
object on the free store.

1. Use Notepad (if you are using Windows) to enter the following code:

//Practice11_3.cpp

#include "Banner.cpp"

int Banner::numberOfBannerObjects;

int main()

{

Banner* pX = new Banner;

pX->favoriteProgram = "C++";

pX->Display();

delete pX; //Delete variable from the Free Store

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

pX = 0; //Assign Null value to pointer

return 0;

}

2. Save your source file as Practice11_3 in the \CPPFiles\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute your program. You should see the following screenshot:

Discussion “This program looks much like Example11_10,” I said, “in which we created an
instance of the Banner object and assigned its address to a pointer variable. The
difference here is that we’ve declared our Banner object on the free store by
using the new keyword.”

Banner* pX = new Banner;

“The pointer pX now contains the address of the newly created Banner
object. Using this pointer, we can then update the favoriteProgram attribute
of the Banner object using this syntax.”

pX->favoriteProgram = "C++";

“And we can execute its Display() function as well.”

pX->Display();

“Finally, because we’re all done with the Banner object, we should delete
the object on the free store by using the delete statement.”

delete pX;

“And we should also assign a null value to its pointer.”

pX = 0;

“I’m still having a hard time conceptualizing what happens when you
execute the delete statement,” Mary said. “Is it the value in the pointer pX

522 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

that is being erased, or is it the data stored in the address that pX contains that
is being erased?”

“It’s the data stored at that address that’s erased,” I said. “Executing the
delete statement has no impact on the address stored in the pointer. After
the delete statement is executed, the pointer pX still has the address that the
new statement returned to it. However, there’s no valid data there any longer.
That’s why, after executing the delete statement, we then assign a null address
to the pointer.”

Creating and Destroying Arrays on the Free
Store—Dynamic Memory
I waited a moment before continuing. There was only one topic left to discuss—declaring a
dynamically-sized array on the free store.

“I want to show you how to create an array on the free store now,” I said, “but before we do
that, let’s first create a program using an ordinary array that asks the user for the names of their
family members and then displays them in the C++ console.”

I then displayed this code on the classroom projector:

//Example11_12.cpp

#include <iostream>

#include <string>

using namespace std;

int main()

{

string names[3];

int counter = 3;

char response[256];

cout << "What is the first name? ";

cin.getline(response,256);

names[0] = response;

cout << "What is the second name? ";

cin.getline(response,256);

names[1] = response;

Chapter 11: Pointers 523

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

cout << "What is the third name? ";

cin.getline(response,256);

names[2] = response;

cout << endl << "The 3 names you entered are " << endl << endl;

for (int row = 0; row < counter; row++)

{

cout << names[row] << endl;

}

return 0;

}

I saved the program as Example11_12.cpp and then compiled and executed it. Entering three
names at the prompts, the following screenshot was displayed on the classroom projector:

“As you can see,” I said, “this program asks the user for the names of three family members and
then displays them in the C++ console. We use an array to store the user’s family members and to
later display them in the C++ console. The first thing we did was to declare a three-element string
array called names.”

string names[3];

“As you know, an array declared in this way is fixed in size, and storage for the array is determined
at compile time by the compiler—there’s no way to change it at runtime. As you’ll see in a few
minutes, declaring an array on the free store will overcome this limitation.

“Next, we declare an integer variable called counter, which will assist us in displaying the values
of each element of our array in the C++ console.”

524 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

int counter = 3;

“You’ve seen this declaration time and time again throughout the course—it’s a 256-element
character array to hold the user’s response to the questions we ask.”

char response[256];

“Next, we have a series of code that prompts the user for the name of the first family member.”

cout << "What is the first name? ";

“Their answer is then stored in the response variable via the getline() function of the cin object.”

cin.getline(response,256);

“Then the value of the response variable is stored in the first element—element 0—of the
names array.”

names[0] = response;

“This process is repeated for the second and third family member names.”

cout << "What is the second name? ";

cin.getline(response,256);

names[1] = response;

cout << "What is the third name? ";

cin.getline(response,256);

names[2] = response;

“With all three family member names entered by the user, and each stored as an element of the
names array, we then use a For loop to display the value of each of the three elements in the C++
console. Notice how the value of the variable counter—which we initialized to 3—is used to
determine how many times to execute the body of the For loop.”

for (int row = 0; row < counter; row++)

{

cout << names[row] << endl;

}

“Not very elegant, is it?” Dave asked.
“And not very flexible either,” Linda added. “The program only asks for three family members.

Suppose the user has five family members—or two. We would have to modify the program,

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

Chapter 11: Pointers 525

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

changing the declaration of the names array, and then the value of the counter variable, to get the
program to function properly.”

“Both Dave and Linda are right,” I said. “This program isn’t flexible at all, and it’s not very
elegant either. There’s already a lot of code here—and that’s just for three names. If we had to
accept ten names, we’d have to modify the program, and then we would have three times as much
code. Ordinary arrays declared in this way are allocated on the stack, and their size is determined
at compile time—there’s simply no way to change it at runtime. Before I show you how to declare
a free store array, let me show you what some beginner programmers attempt to do to make this
program more flexible. In fact, it’s not far from the ultimate solution to the problem. Unfortunately,
this program won’t compile—and you’ll see why in a minute.”

//Example11_13.cpp

#include <iostream>

#include <string>

using namespace std;

int main()

{

int HOWMANY = 0;

char response[256];

cout << "How many people in your family? ";

cin.getline(response,256);

HOWMANY = atoi(response);

string names[HOWMANY];

for (int row = 0; row < HOWMANY; row++)

{

cout << "Enter name #" << row+1 << " ";

cin.getline(response,256);

names[row] = response;

}

cout << endl << "The names you entered are " << endl << endl;

for (int row = 0; row < HOWMANY; row++)

{

526 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

cout << names[row] << endl;

}

return 0;

}

“I think I see what you are trying to do,” Kate said. “You’re asking the user to tell you how many
family members they have and then assigning that value to the variable HOWMANY. Then you’re
using HOWMANY in your variable declaration. Sounds like a great idea to me—but will it work?”

“Let’s see,” I replied.
I then saved the program as Example11_13.cpp and tried to compile it. Unfortunately, the

following error message from the compiler was displayed on the classroom projector:

“It sounded like a great idea,” I said, “but the compiler didn’t agree. Here’s the problem line
of code.”

string names[HOWMANY];

“What’s the problem?” Rhonda asked.
“Because storage for local variables and arrays are determined at compile time,” I said, “the C++

compiler needs a size for the number of elements in the names array that it knows cannot change.
The compiler recognizes that HOWMANY is a variable, whose value, although initially set to zero,
will be changed when the program runs, and so it flags this line of code as an error. The compiler
would have been perfectly fine with it if HOWMANY had been defined as a C++ constant. In fact,
that’s what the error message is telling us: HOWMANY needs to be a constant.”

“So what can we do?” Rhonda said. “How can we make the program flexible enough to deal
with different numbers of family members? You said it was a good idea to have the user be able
to determine the number of elements in the names array, but now it seems like we can’t do it.”

“It can be done,” I said, “but only if we declare the names array on the free store.”
“Are you going to show us how to do that now?” Kate asked.

Chapter 11: Pointers 527

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

528 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

“Even better,” I said. “You’re going to code it up yourself by completing our final exercise
of the day.”

I then distributed this exercise for the class to complete.

Exercise 11-4 Using Pointers to Create an Array on the Free Store

In this exercise, you’ll write a program that creates a dynamic array on the
free store.

1. Use Notepad (if you are using Windows) to enter the following code:

//Practice11_4.cpp

#include <iostream>

#include <string>

using namespace std;

int main()

{

int HOWMANY = 0;

char response[256];

cout << "How many people in your family? ";

cin.getline(response,256);

HOWMANY = atoi(response);

string* pNames = new string[HOWMANY];

for (int row = 0; row < HOWMANY; row++)

{

cout << "Enter name #" << row+1 << " ";

cin.getline(response,256);

pNames[row] = response;

}

cout << endl << "The " << HOWMANY

<< " names you entered are " << endl << endl;

for (int row = 0; row < HOWMANY; row++)

{

cout << pNames[row] << endl;

}

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 11: Pointers 529

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

delete [] pNames; //Delete array from the Free Store

pNames = 0; //Assign Null value to pointer

return 0;

}

2. Save your source file as Practice11_4 in the \CPPFiles\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute your program. Enter the number of members in your family and
then enter their names. You should see a screenshot similar to the
following:

Discussion No one had any major problems completing the exercise. In fact, I detected
quite a bit of satisfaction in the faces of my students. I think they’re really
beginning to catch on to the notion of pointers.

“Creating an array on the free store,” I said, “follows the same pattern as
creating a variable or object on the free store. Once again, you declare a pointer,
use the new statement to declare the array, and assign its return value to the
pointer variable. When we are done with the array, we execute the delete
statement and set the pointer variable equal to null. I must warn you, however,
that the delete statement for an array declared on the free store is a bit quirky—
but we’ll discuss that in a minute. Let’s take a look at the code now and see
how this results in a program that’s extremely compact and flexible enough to
handle any number of family members. The first thing we did was to declare
and initialize a variable called HOWMANY, designed to store the number of
members in the user’s family.”

int HOWMANY = 0;

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

530 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

“This code prompts for, and then receives, the user’s answer, which is then
converted to an integer via the atoi() function and stored in the variable
HOWMANY.”

cout << "How many people in your family? ";

cin.getline(response,256);

HOWMANY = atoi(response);

“It was at this point in Example11_13 that we attempted to declare an array
with a size equal to the value of the HOWMANY variable. As you learned when
we tried to compile that program, with an ordinary variable, that’s something
we may not do. However, with an array on the free store, whose size can be
dynamically determined at runtime, it’s perfectly legal, and that’s what this
code does by instructing C++ to allocate a free store string array containing a
number of elements equal to the value of the HOWMANY variable. The return
value of the new statement is the address of the starting point of the array,
which is then assigned to the pointer variable called pNames.”

string* pNames = new string[HOWMANY];

“With the array declared on the free store, we then ask the user to enter the
names of their family members. Using a For loop, determined by the value of
HOWMANY variable, which contains the number of family members, this code
prompts the user for a name and then assigns it to an element of the pNames
array. The user continues to be prompted for family member names based on
the value they entered earlier.”

for (int row = 0; row < HOWMANY; row++)

{

cout << "Enter name #" << row+1 << " ";

cin.getline(response,256);

pNames[row] = response;

}

“That’s incredibly compact,” Ward said. “I really love this code.”

“When the loop to load the elements of the array finally ends,” I said, “this
code is then used to display each element of the array to the C++ console.”

cout << endl << "The " << HOWMANY

<< " names you entered are " << endl << endl;

for (int row = 0; row < HOWMANY; row++)

{

cout << pNames[row] << endl;

}

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 11: Pointers 531

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

“Finally,” I said, “we can’t forget to delete the array from the free store
using the delete statement and to set the value of our pointer variable to a null
value. By the way, notice the syntax for deleting the array from the free store—
you must include an empty set of brackets before the array name in order to
delete the array from the free store.”

delete [] pNames; //Delete array from the Free Store

pNames = 0; //Assign Null value to pointer

“I’ve got to say, I’m pretty impressed with this code,” Ward said. “Better yet,
I think I understand what’s going on. I’m beginning to feel like one of those
experienced C++ programmers you’re always talking about.”

“Will we be using pointers in the Grades Calculation Project?” Kathy asked.

“We could probably come up with an excuse to use one or two,” I said, “but
there’s no sense modifying the project if we don’t need to. If we had the need
to create a dynamic array, that would be a great reason to use a pointer, but
offhand, I can’t think of an urgent need for pointers in our project. Perhaps
that’s something we can do in our intermediate C++ class next semester.”

I then dismissed class for the day, reminding my students that our next class
would be our final one.

“Next week should be pretty exciting around here,” I said. “We’ll be
completing the Grades Calculation Project and delivering it to Frank Olley.”

Summary
In this chapter, you learned about a topic that many C++ beginners find very difficult—pointers.
I hope you found my treatment of pointers easy to understand and nonthreatening. If you keep
your wits about you, pointers aren’t all that difficult to work with and understand.

Specifically, you learned the following:

� A pointer is a variable that contains the memory address of a variable, array, or object.

� Each variable, array, and object—and even each function—has a memory address that can
be returned using the AddressOf operator, which is the ampersand character (&).

� If you have a memory address stored in a pointer variable, you can determine the value
stored there by using the indirection operator, which is the asterisk character (*).

� Local variables are stored on something called the stack. It’s possible to declare variables on
the free store, and these variables are allocated at runtime.

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

� Use the “new” statement to declare a variable, array, or object on the free store.

� Use the “delete” statement to “free up” the storage consumed by your free store variable,
array, or object.

In the next chapter, we’ll finish the book by exploring some of the common errors that can
occur in C++ programming. We’ll also examine ways to make allowances for problems that
might occur when our programs run.

532 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 11

P:\010Comp\LearnTo\535-1\ch11.vp
Tuesday, October 08, 2002 1:40:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter

12
Errors and Error
Handling

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12
Blind Folio 12:533

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
TLFeBOOK

534 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

In this chapter, you’ll follow my university class as we learn how to avoid some of the common
mistakes that beginner C++ programmers make. You’ll also learn how to detect and handle
the errors that slip through your fingers. Finally, we’ll wrap up the course by delivering and

installing our program in the English department.

Errors and Error Handling
I began the final class of my Introduction to C++ course by saying that in our final meeting together,
we would cover error handling in a C++ program as well as deliver and install our program on a
PC in the English department.

“So we’ll actually be delivering the program today?” Ward asked.
“That’s right, Ward,” I said. “We’ll be doing that at the end of today’s class. Frank Olley called

me earlier in the week to find out if we were on target to complete the project today, and when
I told him we were, he asked if it would be possible to deliver and install the program as part of
today’s class. I told him that would be fine with me, and he was elated. He told me that he would
arrange to have his two work study students come in today to get acquainted with the program.
This might mean that today’s class goes a little bit longer than usual. I do hope you can all hang in
there and help me deliver and install our program in the English department.”

“I wouldn’t miss it for anything,” Linda said.
“Me either,” Steve said. “I think it will be exciting to see how the work study students like

the program.”
From the looks on the rest of my students’ faces, I had a feeling they all felt the same way and

would be paying a visit to the English department as well.
“It’s a shame,” Mary said suddenly, “but it doesn’t look like Rose and Jack will make it to our

final class. Has anyone heard from them? Are they still in Liverpool?”
“I’ve heard from them,” I said. “I spoke with both of them on Thursday night, and at the time,

they were aboard their ship somewhere in the North Atlantic. They said the weather was unusually
frigid for April, and when asked whether they would be making it back on time for today’s class,
they told me they had spoken to the ship’s captain, who assured them they’d be arriving in New
York harbor early this morning—a few hours ahead of schedule. I expect both of them to be here
before the end of class.”

“That’s great news,” Rhonda said. “It will be good to see them again.”
“Will our delivery and installation of the Grades Calculation program on a PC in the English

department wrap up the SDLC?” Valerie asked.
“Just about,” I replied. “Phase 5 of the SDLC, which is the Implementation phase, will begin

today with the delivery and installation of the program, and it will conclude over the course of the
next week as I and hopefully some student volunteers train work study students in the English, math,

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 12: Errors and Error Handling 535

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

and science departments in the use of the program. Phase 6 of the SDLC, which is the Audit and
Maintenance phase, will begin today as well, as we observe and study how well the program performs.”

“So besides delivering the program to Frank Olley,” Ward said, “what’s on the agenda today?
Error handling?”

“That’s right, Ward,” I said. “Error handling involves writing code to handle errors that can
creep into our programs even after we do our best to ensure that they are free of errors.”

I then went on to explain that as a teacher of computer programming, it’s frequently tempting
to show my students examples of bad code early on in a class in an effort to show them what ‘not’ to
do. However, after many years of teaching, I have learned that there’s a huge danger in illustrating
bad code or code that contains errors too early in the class.

“For that reason,” I said, “I try to wait until we’ve established a strong foundation in good
coding techniques before discussing the types of errors you can make, which can quickly ruin your
programming reputation. In today’s class, we’ll examine the types of common errors that beginners
make and then you’ll learn how to implement error-handling techniques in our C++ programs to
detect and handle the errors that can occur anyway, even in the best of programs.”

Common Beginner Errors
“What kinds of errors are you talking about detecting?” Dave asked. “I assume you mean runtime
errors—you’re not talking about compiler errors.”

“That’s a good point, Dave,” I said. “There are actually three kinds of errors that we’ll be discussing
today. The first kind are compiler errors, and those are the errors detected by the C++ compiler,
most of which we’ve already seen in the class. Compiler errors prevent us from ever getting to the
point where we can run our program. The second kind are runtime errors. These are the kinds of
errors that the C++ compiler can’t detect, and which unfortunately occur when we run our compiled
program. Runtime errors display nasty error messages to the user of our program, and in the case
of pointers, they can cause the PC running our program to ‘freeze.’ The third kind of errors are
the most dangerous. These are logic errors, and they are not detected by the compiler, nor, for the
most part, do they cause your program to ‘bomb’ or abnormally terminate at runtime. Logic errors
are programming mistakes that can cause horrific results—such as generating a paycheck for an
employee for one million dollars instead of one thousand dollars, or ordering a dosage of medicine
for a patient that is incorrect, or opening a valve or an engine of the space shuttle prematurely.
Logic errors can be very difficult to track down—in fact, some programs have run for years with
subtle logic errors that went unnoticed.”

Compiler Errors
“Let’s start by examining the common types of compiler errors that you are likely to make,” I said.
“Remember, compiler errors are those errors detected by the C++ compiler.”

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

536 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

C++ Is Case Sensitive
“Probably the most common types of compiler errors,” I said, “are caused by the case sensitivity of
C++. In C++, just about everything is case sensitive. The names of classes, the names of functions,
and the names of variables are all case sensitive. This can give programmers, especially those who
have experience in other languages that are not case sensitive, a lot of trouble. Improperly referencing
the name of a class, a function, or a variable in your program will generate a ‘cannot resolve symbol’
compiler error. Remember, any reference to a class name, a function, or a variable that you declare
in your program must match its case exactly. For instance, if we declare a variable called counter
(in lowercase) and then attempt to increment its value like this…”

//Example12_1.cpp

#include <iostream>

using namespace std;

int main()

{

int counter = 0;

Counter++;

cout << "The value of counter is " << counter;

return 0;

}

“…we’ll generate a compiler error indicating that there is an ‘undefined symbol.’”
The following screenshot was displayed on the classroom projector:

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 12: Errors and Error Handling 537

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

“What’s a symbol?” Lou asked.
“C++ keeps track of class, function, variable, and constant names in something called a symbol

table,” I said. “So you see, C++ is just telling us that we’re referencing a name for which it doesn’t
have a record—and that’s because, in this case, we declared the variable counter in all lowercase but
later referenced it with a capital C.”

“I think I’ve seen this error a million times,” Rhonda said laughing.
“I would say this is probably the most common error message a beginner will see,” I said. “Until

you get used to the case sensitivity of C++, this may be an error that you generate every time you
compile your program. Just remember, whenever you see the ‘undefined symbol’ error, check the
spelling of your class, function, and variable names.”

Spelling main as Main
“I sometimes get a compile error when I’m not careful with the spelling of the word ‘main,’” Peter
said. “I think it took me about three weeks before I got it into my head to spell the name of the
main() function with a lowercase m instead of a capital M.”

“That’s a good point, Peter,” I said. “You’ve learned that every C++ program that is executed
from a command prompt must contain a main() function—and C++ is very picky about the
spelling of main(). It must begin with a lowercase m. Let’s take a look at the compiler error we
receive if we spell the name of the main() function with a capital M.”

//Example12_2.cpp

#include <iostream>

using namespace std;

int Main()

{

int counter = 0;

counter++;

cout << "The value of counter is " << counter;

return 0;

}

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

538 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

I saved the program as Example12_2 and then compiled it. The following screenshot was displayed
on the classroom projector:

“Notice,” I said, “this error message is pretty descriptive. It says it can’t find ‘_main.’ This either
means there’s no function named main() or the letter m is capitalized.”

Forgetting to Reference the std Namespace
“I was just following along with you,” Valerie said, “and everything was going fine. However, when
I corrected the spelling of main() by changing my capital M to a lowercase m, I still received a missing
symbol error for cout.”

“I think I know what that is Valerie,” Rhonda volunteered. “It happens to me all the time. You
must have either omitted the reference for the iostream header file or for the std namespace.”

Valerie looked puzzled, and before saying anything, I displayed her code on the classroom projector:

//Example12_3.cpp

#include <iostream>

int main()

{

int counter = 0;

counter++;

cout << "The value of counter is " << counter;

return 0;

}

I then saved the program as Example12_3 and attempted to compile it. The following screenshot
was displayed on the classroom projector:

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 12: Errors and Error Handling 539

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

“Rhonda’s, right,” I said. “You did properly include a reference to the iostream library, which
contains the ‘definition’ for the cout object. However, you didn’t include a namespace statement
for the std namespace. Namespaces are ‘subdivisions’ within libraries, and by default C++ needs
to know the particular namespace within the iostream library to find the ‘definition’ for the cout
object. There are two ways of doing this. The first is to specify the name of the namespace when
referencing the cout object, like this.”

std::cout << "The value of counter is " << counter;

“Notice how we precede the name of the cout object with the name of the std namespace, and
then two colons. That’s how we tell C++ to look for the cout object in the std namespace of one
of the included libraries. As I mentioned earlier in the course, preceding every object reference with
its appropriate namespace can get pretty tedious, which is why C++ permits us to simply include
the entire namespace as a reference in our program using this statement.”

using namespace std;

Valerie now seemed to fully understand what was going on.

Forgetting to Include the iostream Library
“Will we get the same compiler error message if we forget to include the iostream library in our
program?” Blaine asked.

“Good question, Blaine,” I said. “That’s something beginners frequently forget to do that
results in a failure of their programs to compile. The error message will be different however, and
it’s pretty misleading. For instance, here’s some code that fails to include the iostream library.”

//Example12_4.cpp

using namespace std;

int main()

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

540 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

{

int counter = 0;

counter++;

cout << "The value of counter is " << counter;

return 0;

}

“Let’s save this as Example12_4.cpp, compile it, and then take a look at the error message the
compiler generates.”

I did just that, and the following screenshot was displayed on the classroom projector:

“It doesn’t say anything about a missing library,” Blaine said. “It’s telling us that it’s expecting
a namespace name, but we included one for the std namespace.”

“The compiler is confused, Blaine,” I said, “and doesn’t recognize the name of the namespace
that we are telling it to use in our program.”

“Why is that?” Barbara asked.
“The reason,” I answered, “is that the std namespace is located in the iostream library—and

because we forgot to include a reference to iostream in our program, the compiler can’t find the
std namespace.”

Forgetting the Semicolon at the End of a Statement
Is a Syntax Error
“The next error I’d like to discuss may seem pretty obvious to you,” I said, “but I’ve seen many
students ponder over this one for minutes on end without realizing what they had done.”

“What’s that one?” Rhonda asked. “I bet it’s one I’ve seen!”
“Forgetting to end a statement with a semicolon,” I said, “like this.”

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 12: Errors and Error Handling 541

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

//Example12_5.cpp

#include <iostream>

using namespace std;

int main()

{

int counter = 0;

counter++

cout << "The value of counter is " << counter;

return 0;

}

“I see the problem,” Lou said. “There should be a semicolon on the line of code incrementing
the counter variable.”

“Exactly, Lou,” I agreed.
“What kind of error message will this generate?” Kate asked.
“It’s a pretty explicit error message,” I said, as I compiled Example12_5.
The following screenshot was displayed on the classroom projector:

A Semicolon Must End a Class Definition
“Speaking of semicolons,” I said, “something else that drives C++ programmers crazy—and not
just beginners—is the fact that a C++ class definition must end with a semicolon.”

“What do you mean?” Rhonda asked. “I don’t remember doing that.”

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

542 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

“You may not have realized it,” I said. “Take a look at this version of the Banner class, which I
introduced way back in the early part of our course. Notice the semicolon that follows the ending
brace in the class definition.”

//Banner.cpp

#include <iostream>

#include <string>

using namespace std;

class Banner

{

public: string favoriteProgram;

public: void Display()

{

cout << "I love " << favoriteProgram << endl;

}

}; //Class definition must end with a semicolon

“I honestly never noticed that either,” Chuck said. “What happens if we erase the semicolon
and then try to compile the class without it?”

“Let’s see,” I said, as I erased the semicolon and compiled the Banner.cpp file.
The following screenshot was displayed on the classroom projector:

Braces (and Parentheses) Must Occur in Matching Pairs
“Another common error that beginner programmers make,” I said, “is dealing with braces in their
code. In a C++ class, everything following the class name must be ‘sandwiched’ between braces. In
addition, functions—such as the main() function in a C++ startup program and custom functions
in a class—must also be sandwiched between braces. The same applies to blocks, such as If statement
blocks. As your programs get more complex, it can be pretty easy to become confused—particularly
if your program has a number of custom functions. Here’s an example of correct code we wrote

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 12: Errors and Error Handling 543

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

earlier in the course—notice that we have the same amount of left curly braces as we do right
curly braces—two of each. The same applies for parentheses—we have the same number of left
and right parentheses and square brackets.”

//Example12_6.cpp

#include <iostream>

void DisplayMessage(); // Function Prototype

int main()

{

using namespace std;

DisplayMessage(); // Call to Custom Function

return 0;

}

void DisplayMessage() // Custom Function

{

using namespace std;

cout << "I Love C++";

}

“I have to admit,” Linda said, “I did find the whole issue of braces and parentheses confusing
at first—all those curly braces can really be confusing.”

“I don’t blame you,” I said. “By the way, that’s a good reason to indent your code. Another way
to eliminate this error altogether is to double-check your code to ensure that you have the same
number of right and left curly braces and parentheses.”

“What kind of error message will you get if you make this kind of mistake?” Rhonda asked.
“Let’s see, Rhonda,” I said. “Let’s modify the code from Example11_4 by intentionally eliminating

the right closing curly brace of the main() function.”

//Example12_7.cpp

#include <iostream>

using namespace std;

void DisplayMessage(); // Function Prototype

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

544 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

int main()

{

DisplayMessage(); // Call to Custom Function

return 0;

void DisplayMessage() // Custom Function

{

cout << "I Love C++";

}

“Now let’s compile the program and see what kind of error message we get,” I said.
I did so, and the following error message was displayed on the classroom projector:

“Unfortunately, “ I said, “this error message can be confusing. But the last statement by the
compiler—‘Compound statement missing }’—is a good tip off that a right curly brace is missing.
Unfortunately, it does a terrible job of telling us where in our source file the missing right curly
brace should be. It isn’t line 18 of our source file that is missing the right curly brace; it’s actually
line 14. Recognizing this error can be a difficult task.”

Forgetting the Left and Right Parentheses in an If Structure
“An error that is closely related to the one we just examined,” I said, “is one that I see a lot of beginners
make, and it concerns the If statement. Beginners tend to forget that the test expression for an If
statement must be enclosed within parentheses.”

“Ah, yes,” I heard Joe say.
“What’s that?” Rhonda asked. “Test expression?”
“That’s right, Rhonda,” I said. “Let me show you an example.”
I then displayed this code on the classroom projector.

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 12: Errors and Error Handling 545

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

“This code,” I said, “uses an If statement to determine if the value of the counter variable is 0.”

//Example12_8.cpp

#include <iostream>

using namespace std;

int main()

{

int counter = 0;

if (counter == 0)

{

cout << "The value of counter is " << counter;

}

return 0;

}

“Notice,” I said, “how the test expression ‘counter == 0’ is enclosed within parentheses.”

if (counter == 0)

“Oh my gosh,” Rhonda said, “you’re right. I totally forgot about having to enclose the test
expression within parentheses—what kind of compiler error will that generate if we don’t do it?”

“Let me show you,” I said, as I changed the code in Example12_8 to look like this:

//Example12_9.cpp

#include <iostream>

using namespace std;

int main()

{

int counter = 0;

if counter == 0

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

546 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

{

cout << "The value of counter is " << counter;

}

return 0;

}

“Notice how the test expression is no longer enclosed within parentheses,” I said. “Now let’s
compile the program and see what error message it generates.”

I did so, and the following error message was displayed on the classroom projector:

“This error message is not quite as clear as some of the other compiler messages we’ve seen,”
I said, “but it does point us in the right direction by listing the line of code in error, and by telling
us that C++ is expecting a left parenthesis.”

Confusing the Equality Operator (==)
with the Assignment Operator (=)
“This next error is one I see all the time from beginners,” I said, “and occurs when they confuse
the equality operator (==) with the assignment operator (=), generally in the test expression of an
If statement. Here’s the code we just examined with a properly formatted test expression checking
to see if the value of the counter variable is 0.”

//Example12_10.cpp

#include <iostream>

using namespace std;

int main()

{

int counter = 0;

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 12: Errors and Error Handling 547

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

if (counter == 0)

{

cout << "The value of counter is " << counter;

}

return 0;

}

“Notice how we check the value of counter against the numeric literal 0 by using the equality
operator (==).”

if (counter == 0)

“It’s relatively easy,” I said, “especially for those you have programmed in other languages, to
confuse the equality operator (==) with the assignment operator (=) and code the test expression
like this instead.”

if (counter = 0)

“If we compile a program that includes a test expression formatted like this…”

//Example12_11.cpp

#include <iostream>

using namespace std;

int main()

{

int counter = 0;

if (counter = 0)

{

cout << "The value of counter is " << counter;

}

return 0;

}

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

“…we will get this error message.”

“The C++ compiler has properly identified the line of code with the error,” I said, “and is telling
us that some kind of incorrect assignment is occurring—that’s the clue to the error.”

“I understand,” Blaine said. “That’s something that I’ve been guilty of on more than one occasion.”

Forgetting to Code a Function Prototype
“It’s time to turn our attention,” I said, “to a series of compiler errors that are related to the
custom functions we write. The first type of error that occurs is when we code a custom function
but forget to code a function prototype. Here’s a program that calls a custom function called test()
from within main(). Notice how we declare the function prototype before the main() function.”

//Example12_12.cpp

#include <iostream>

using namespace std;

void test(); //Function Prototype

int main()

{

test();

return 0;

}

void test()

{

cout << "I love C++" << endl;

}

548 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 12: Errors and Error Handling 549

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

“When you first start writing C++ programs,” I said, “it’s pretty easy to forget to declare the
function prototype—and if you do, you’ll wind up with a compiler error that looks like this.”

I then deleted the function prototype from the program, saved it as Example12_12.cpp, and
tried to compile it. The following screenshot was displayed on the classroom projector:

“It’s important to realize,” I continued, “that when the compiler examines our code, it needs to
see a definition of any custom function prior to the call to the function. Because the call to the test()
function occurs in main(), the compiler needs to see the function prototype before that point in
our code.”

“Isn’t it also possible to place the test() function above the main() function and have our code
compile?” Dave asked.

“That’s a good point, Dave,” I replied. “You’re right. Rather than code a function prototype,
we could place the test() function ‘above’ the line of code that calls it. In this case, the main()
function, like this.”

//Example12_13.cpp

#include <iostream>

using namespace std;

void test()

{

cout << "I love C++" << endl;

}

int main()

{

test();

return 0;

}

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“I didn’t realize we could do this,” Kate said. “Do you have a preference as to which style we use?”
“I prefer to use function prototypes for a number of reasons,” I said. “First, stylistically, I like to

have the main() function appear first in my code. Second, by declaring function prototypes in the
beginning of a program, you and other programmers who read your code know immediately the
names and signatures of all the functions in the program.”

Forgetting to Specify a Return Type for a Function You Write
“Another type of compiler error related to custom functions,” I said, “is when we forget to specify
a return type in the function header. Remember, every function—except for a constructor function—
requires that we specify a return type. That includes functions that are written not to return a value.
Those kind of functions must be defined with a function return type of void. Here’s the function
header for the test() function from Example12_12. Notice how we specify a return type of void.”

void test()

“Now let’s accidentally omit the void return type in both the function prototype and the header.”

//Example12_14.cpp

#include <iostream>

using namespace std;

test(); //Function Prototype

int main()

{

test();

return 0;

}

test()

{

cout << "I love C++" << endl;

}

“And now let’s see what happens when we compile the program.”
I did so, and the following screenshot was displayed on the classroom projector:

550 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

“Again,” I said, “this is a pretty informative compiler message, telling us that the test() function
must return a value.”

Forgetting to Return a Value from a Function You Write
“Another error related to a custom function,” I continued, “occurs when we declare a function
with a return type—such as int or String—but then forget to return a value from within the
function. This will also generate a compiler error. Take a look at this code. Once again, we’ve
created a function called test, but this time with a declaration and prototype specifying a return
value of an integer data type. From what you’ve learned in the course, you know that we need to
return an integer value from within the test() function, and we do that in the last line of the
function using the return statement.”

//Example12_15.cpp

#include <iostream>

using namespace std;

int test(); //Function Prototype

int main()

{

int retval = 0;

retval = test();

cout << "The return value of test() is " << retval << endl;

return 0;

}

int test()

Chapter 12: Errors and Error Handling 551

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

552 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

{

cout << "I love C++" << endl;

return 1;

}

“However, if we forget to code a return statement, like this…”

//Example12_16.cpp

#include <iostream>

using namespace std;

int test(); //Function Prototype

int main()

{

int retval = 0;

retval = test();

cout << "The return value of test() is " << retval << endl;

return 0;

}

int test()

{

cout << "I love C++" << endl;

}

“…when we compile the program, we’ll receive this compiler error.”

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 12: Errors and Error Handling 553

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

“By the way,” I added, “forgetting to return a value from a function applies not only to custom
functions you write but also to the main() function itself. If you declare the main() function with
a integer return type—as we have during this course—you must, somewhere within the main()
function, execute the return statement with an integer argument.”

Returning the Wrong ‘Type’ of Return Value
for a Function You Write
“Suppose you return the wrong type of return value?” Kathy asked.

“Kathy, you must have read my mind,” I said. “That’s exactly the next type of compiler error
I intended to cover.”

“What does Kathy mean?” Rhonda asked.
“In Example12_15, Rhonda,” I said, “we declared our test() function with a return type of int

and returned the integer 1 within the body of the function. Suppose, instead of returning the number
1, we return a string instead.”

//Example12_17.cpp

#include <iostream>

using namespace std;

int test(); //Function Prototype

int main()

{

int retval = 0;

retval = test();

cout << "The return value of test() is " << retval << endl;

return 0;

}

int test()

{

cout << "I love C++" << endl;

return "Kathy";

}

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

554 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

“I see what you mean,” Rhonda said. “Here we’re returning the string ‘Kathy’, not an integer.
That should confuse the compiler.”

“Exactly, Rhonda” I replied, as I compiled the program.
The following screenshot was displayed on the classroom projector:

“The warning that we see here,” I said, “is a result of the error that the compiler has flagged in
the test() function. The compiler is telling us that it can’t convert a string—which it designates as
a character array—to an int. In other words, we can’t return a string from a function that has been
declared to return an integer data type.”

Returning a Value from a Function Whose Return Type Is Void
“I didn’t realize there were so many ways to foul up a function!” Rhonda said laughing, “I would
think we’ve covered just about all the possibilities—are there any others?”

“There are at least two other types of errors that you can make with functions,” I said. “For one,
you can generate a compiler error by trying to return a value when you’ve declared the function to
have a void return type. Let me show you.”

//Example12_18.cpp

#include <iostream>

using namespace std;

void test(); //Function Prototype

int main()

{

int retval = 0;

retval = test();

cout << "The return value of test() is " << retval << endl;

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 12: Errors and Error Handling 555

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

return 0;

}

void test()

{

cout << "I love C++" << endl;

return 1;

}

“Notice that the declaration for the test() function specifies a return type of void,” I said, “yet,
within the body of the function, we execute the return statement. Let’s see what happens when we
compile this program.”

The following screenshot was displayed on the classroom projector:

“The compiler message,” I said, “is telling us that we cannot return a value from within the test()
function—again, this is a pretty informative error message.”

Creating an Overloaded Function
with What You Believe to Be a Different Signature
“Here’s the last of the error messages pertaining to functions that we’ll examine today,” I said,
“and it deals with overloaded functions. Does everyone remember what an overloaded function is?”

“Overloaded functions are functions that have the same name but a different signature—that is,
number and type of arguments,” Dave said.

“Exactly right, Dave,” I said. “Beginners tend to misunderstand what comprises a function
signature.”

“How so?” Kate asked.
“For instance,” I said, “I’ve seen a number of beginner C++ programmers code two functions

with the same name, having the same number and type of arguments, but with different argument
names, believing that the signatures are different and therefore they’ve created overloaded functions.”

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

556 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

“Haven’t they?” Blaine asked.
“No,” I replied. “Despite the fact that the argument names are different, if the name of the

functions are identical and the number and type of arguments in the function header are identical,
you haven’t created overloaded functions. For instance, in this code, I’ve created two functions
called test(), the signature of each specifying a single integer parameter. The parameter name in
the first test() function is called ‘a,’ and in the second test() function it’s called ‘b.’”

//Example12_19.cpp

#include <iostream>

using namespace std;

void test(int a); //Function Prototype

void test(int b); //Function Prototype

int main()

{

int retval = 0;

test(44);

test(33);

return 0;

}

void test(int a)

{

cout << "The value of the passed argument is " << a << endl;

}

void test(int b)

{

cout << "The value of the passed argument is " << b << endl;

}

“What do you think?” I asked. “Does C++ consider the two signatures to be different?”
“I’m not really sure,” Valerie said.
“I’m guessing it doesn’t,” Dave said.
“The answer,” I said, “is that to C++, both function signatures are identical, and compiling

this code will result in a compiler error message.”
The following screenshot was displayed on the classroom projector:

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 12: Errors and Error Handling 557

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

“The first error message,” I said, “E2171, is the significant one. It tells us that the body of our
second test() function has already been defined with a single integer argument. As far as C++ is
concerned, this program already has a function called test(), having a single integer argument.”

“So argument names really do nothing to differentiate a function’s signature?” Kate asked.
“That’s right, Kate,” I said. “Argument names themselves mean nothing—it’s the number and

type of arguments in the signature that differentiates the function signatures.”

NOTE
A function signature can also be differentiated by varying the position of the
arguments. For instance, two functions, one having a function signature calling
for one integer argument followed by a string argument, and a second function
signature calling for one string argument followed by an integer argument, would
be considered different.

“I hesitate to ask this,” Rhonda said, “but are there any other mistakes you can make when
creating functions?”

“Just one, Rhonda,” I said. “Some beginners also believe that creating two functions with
identical signatures but with different return types will differentiate the two functions—but that
isn’t the case either. Identical function signatures, with different return types, like this…”

//Example12_20.cpp

#include <iostream>

using namespace std;

void test(int a); //Function Prototype

int test(int b); //Function Prototype

int main()

{

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

558 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

int retval = 0;

test(44);

test(33);

return 0;

}

void test(int a)

{

cout << "The value of the passed argument is " << a << endl;

}

int test(int b)

{

cout << "The value of the passed argument is " << b << endl;

return 1;

}

“…will also generate a compiler error similar to the one we saw a moment ago.”

Runtime Errors and Logic Errors
“The types of errors that we’ve examined so far this morning,” I said, “have been exclusively
compiler errors. Compiler errors, though sometimes a real nuisance to correct, do little to tarnish
the image of your program in the eyes of the user. Because a program with compiler errors can’t
generate an executable, the user never sees compiler errors. Unfortunately, there are some types of
errors that escape the watchful eye of the C++ compiler and don’t show up until runtime when an
unsuspecting user is interacting with your program. These types of errors are called runtime errors,
and they usually result in your program abnormally terminating, or ‘bombing’ as we sometimes
call it. Runtime errors are often serious, sometimes resulting in the user of your program losing
hours of work. Another type of error that we’ll examine today is called a logic error, and it can be
even more serious. Logic errors usually do not result in your program abnormally terminating.
Worse yet, the program seems to be working just fine, when in reality it’s producing incorrect
results. Sometimes, if you are lucky, the user will quickly detect a programming logic error, thus
minimizing its damage. However, some logic errors may not be discovered by the user for a long
period of time, in which case the damage is multiplied. As you can imagine, both runtime and
logic errors can drastically affect your programming reputation and even your career.”

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 12: Errors and Error Handling 559

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

Not Initializing a Variable Is a Logic Error
“One question that I’m asked quite often,” I said, “is whether or not, in a C++ program, we have
to initialize our variables. I believe for the most part in this class, we’ve followed the good practice
of initializing all the variables we’ve used in our programs. It’s a good practice to get into.”

“I thought we had to initialize our variables,” Bob said.
“Actually,” I said, “C++ doesn’t require us to initialize any of the variables we declare, but there’s

a danger in not initializing our variables.”
“What’s that?” Steve asked.
“As you saw last week when we discussed pointers,” I said, “when a variable is declared, an area

of computer memory is assigned to the variable, and the address of that memory is then associated
with the variable name. The problem in not initializing the variable is that the address location assigned
to your variable already has data in it.”

“It does?” Barbara asked.
“That’s right,” I said. “There’s already data stored in the variable, and it can be just about anything.”
“That’s dangerous,” Dave said.
“Absolutely,” I agreed. “I’ve seen programmers declare a variable, fail to initialize it, expecting

that valid data would be stored in the variable sometime during the running of the program, and
then use the value of that variable somewhere else within the program—either in a calculation or
as output to the user. The problem is that the program is working with invalid data, and the results
of this erroneous operation can be anything from a nuisance to a disaster.”

“I’m afraid I don’t quite understand what you’re getting at,” Rhonda said.
“Let me show you,” I said, as I displayed this code for the class to examine. “Here’s a program

in which we declare a variable called counter within the main() function and initialize its value
to zero.”

//Example12_21.cpp

#include <iostream>

using namespace std;

int main()

{

int counter = 0;

cout << "The value of counter is " << counter << endl;

counter++;

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

cout << "The value of counter is now " << counter << endl;

return 0;

}

I saved the program as Example12_21.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

“Nothing surprising there,” I said. “We initialized the variable to zero, displayed its value in the
C++ console, then incremented it by 1 and displayed its new value. Now let’s see what happens if
we fail to initialize the value of the variable.”

//Example12_22.cpp

#include <iostream>

using namespace std;

int main()

{

int counter;

cout << "The value of counter is " << counter << endl;

counter++;

cout << "The value of counter is now " << counter << endl;

return 0;

}

I saved the program as Example12_22.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

560 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 12: Errors and Error Handling 561

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

“Because we failed to initialize the value of the counter variable,” I said, “our program was left
to work with the value that happened to be stored at the address location of that variable—which
in this case turned out to be 2147348480. Many an unsuspecting programmer believes that C++
automatically initializes variables and therefore might assume that the value of the counter variable
is 0—an assumption that could have a devastating impact on their program. The bottom line: It’s
a good idea to initialize all variables.”

“So this is a logic error, is that right?” Peter asked.
“That’s right, Peter,” I said. “The program ran to completion, without an error code, yet it

produced erroneous results. This is a logic error.”

Referring to an Element Outside the Array Bounds
Is a Logic Error
“Let’s continue,” I said, “ by examining one of the more frequent logic errors that occurs when
working with arrays—and that’s when we erroneously work with an array element that is outside
of the array’s defined boundaries. Let’s take a look at this code in which we have declared an array
called grades that has six elements.”

//Example12_23.cpp

#include <iostream>

using namespace std;

int main()

{

int grades[6];

grades[0] = 82;

grades[1] = 90;

grades[2] = 64;

grades[3] = 80;

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

562 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

grades[4] = 95;

grades[5] = 75;

grades[6] = 100;

cout << grades[0] << endl;

cout << grades[1] << endl;

cout << grades[2] << endl;

cout << grades[3] << endl;

cout << grades[4] << endl;

cout << grades[5] << endl;

cout << grades[6] << endl;

return 0;

}

“I don’t see anything wrong with this code,” Rhonda said. “Is there a problem with it?”
“Yes there is,” I said. “It’s a very subtle error—our array is declared with six elements.”

int grades[6];

“But because element numbers in an array begin with the number zero, the ‘upper floor’ of the
array is always one less than its size. In other words, with a size of 6, the highest element number
that we can legally reference is 5. Therefore, this line of code…”

grades[6] = 100;

“…is referencing an element of the array that does not exist, because the upper floor of the array is
actually 5.”

“I understand now,” Rhonda said. “And you say if we compile this program, the C++ compiler
won’t detect the problem?”

“Unfortunately it won’t, Rhonda,” I said.
I then compiled the program, and as I predicted, there were no error messages.
“Let’s see what happens if we run the program,” I said.
The following screenshot was displayed on the classroom projector:

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 12: Errors and Error Handling 563

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

“The program looks okay to me. It didn’t bomb,” Ward said.
“This is most often a logic error, Ward,” I said. “The program appears to have worked fine. In

fact, as you can see, it actually stored a value in what it believed to be element six of the array—
one beyond its declared size—and later successfully retrieved and displayed this value.”

“That somehow doesn’t seem ‘safe,’” Linda said. “What are the repercussions?”
“The problem is that C++ allowed us to overwrite a piece of computer memory that didn’t

belong to the array,” I said. “That can mean that we placed the value of 100 in an area of memory
allocated for another variable in our program—or worse yet, in an area of memory allocated for
another program on the computer our program is running. Ultimately, that can cause big problems,
such as causing the computer to freeze or perform erroneous operations. The bottom line: Be very
careful when working with array elements.”

Forgetting to Increment a Counter Variable
“Forgetting to increment a counter variable,” I said, “is one of the most common errors I see.”

“Counter variable?” Steve asked.
I continued by explaining that many of the programs we had written during the course,

particularly those we wrote two weeks ago when dealing with arrays, depended heavily on
declaring, incrementing, and examining a counter variable somewhere within a program.

“Counter variables,” I explained, “are variables that you declare to do exactly that—count
something. For example, two weeks ago in Practice10_3, we wrote code that loaded the values of
six quiz grades to an array. We then used a For loop to access each element of the array, add its
value to an accumulator variable, increment a counter, and finally calculate an average. Here’s the
code from Practice10_3.”

//Example12_24.cpp

#include <iostream>

#include <string>

using namespace std;

int main()

{

int grades[6] = {82,90,64,80,95,75};

int accumulator = 0;

int counter = 0;

float average = 0;

for (int row = 0; row < sizeof grades/sizeof grades[0]; row++)

{

cout << grades[row] << endl;

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

564 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

accumulator = accumulator + grades[row];

counter++;

}

average = accumulator / counter;

cout << endl << "The class average is " << average << endl;

return 0;

}

I then saved the program as Example12_24.cpp, compiled and executed it, and an average of 81
was displayed on the classroom projector.

“Crucial to this program correctly calculating the class average,” I said, “is knowing the number
of student grades in the array. In order to keep track of that number, we declared a variable called
counter and incremented it by 1 each time we added an element to the array.”

counter++;

“Had we forgotten to increment this counter variable, a number of problems could have resulted.
Most often, we get a ‘division by zero’ runtime error. Let me show you.”

I then deleted the line of code that increments the counter so that the program looked like this:

//Example12_25.cpp

#include <iostream>

#include <string>

using namespace std;

int main()

{

int grades[6] = {82,90,64,80,95,75};

int accumulator = 0;

int counter = 0;

float average = 0;

for (int row = 0; row < sizeof grades/sizeof grades[0]; row++)

{

cout << grades[row] << endl;

accumulator = accumulator + grades[row];

}

average = accumulator / counter;

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

cout << endl << "The class average is " << average << endl;

return 0;

}

I saved the program as Example12_25 and then compiled and executed it. The program began
to execute, values were displayed in the C++ console, but then this message box was displayed on
the classroom projector:

NOTE
Depending on the operating system you are running, and other installed products
on your PC (such as Microsoft Visual Studio), you may receive a slightly different error
message. Regardless, division by zero is not permitted, and it causes your program
to bomb.

“This is the ‘division by zero’ error I said might occur,” I continued. “Division by zero is a big
no-no in most computer languages. Because we never incremented the counter variable, we divided
the value of our accumulator variable by the initial value of the counter variable, which is zero.
Division by zero is something we’ll discuss later in a little more detail. For now, just remember that
it’s vitally important to increment the value of any counter variables you declare.”

Forgetting to Add to an Accumulator
“Forgetting to add values to an accumulator,” I said, “is similar to forgetting to increment a
counter variable—both mistakes result in runtime errors. A counter variable is used to count the
instances of something—such as the number of quizzes taken or the number of employees in a
company. An accumulator variable is a little different in that it is used to hold the running total of
something—such as the total scores of all the quiz grades taken or the total value of all employee
salaries in a company. In the same example we used to illustrate the problem with a counter variable,”
I said, “we also added the value of the quiz grade to an accumulator variable. If we had forgotten
to add the grade to the accumulator variable, we would have displayed an incorrect average in the
C++ console—most likely zero.”

“And there goes our reputation!” Rhonda said.
“That’s right, Rhonda,” I agreed. “It only takes a few mistakes to tarnish it.”

Chapter 12: Errors and Error Handling 565

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

I displayed the code from Example12_24 on the classroom projector and highlighted the line
of code where we added the grade to the accumulator variable:

accumulator = accumulator + grades[row];

“Forgetting to add a value to the accumulator variable is a very common type of C++ error,”
I explained.

“What kind of error would this generate again?” Ward asked.
“The program would run,” I said, “but most likely the program would display an average of zero.”
I then deleted the line of code where we add the value of the quiz grade to the accumulator

variable and then added back the line of code to correctly increment the counter variable so that
it looked like this:

//Example12_26.cpp

#include <iostream>

#include <string>

using namespace std;

int main()

{

int grades[6] = {82,90,64,80,95,75};

int accumulator = 0;

int counter = 0;

float average = 0;

for (int row = 0; row < sizeof grades/sizeof grades[0]; row++)

{

cout << grades[row] << endl;

counter++;

}

average = accumulator / counter;

cout << endl << "The class average is " << average << endl;

return 0;

}

I saved the program as Example12_26 and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

566 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“As you can see,” I said, “because we forgot to increment the value of the accumulator variable,
its value is equal to its initial value of zero. Therefore, when we divided the accumulator variable
by the value of the counter variable—which in this case was 6—our result was zero. The program
didn’t bomb, but it did result in an incorrect answer.”

“So this is a logic error,” Valerie said, “because the program didn’t bomb.”
‘That’s right, Valerie,” I said. “And as you can all see, an error like this can be far worse than

a runtime error, particularly if an unsuspecting user takes the result at face value.”

Not Providing a Way for a While Structure to End
“Another type of runtime error that is common for beginners,” I said, “is to code a While loop
and forget to provide a way for it to ultimately end. A few weeks ago, we wrote this code, in
Practice5_7, to display the floor numbers of a hotel.”

//Example12_27.cpp

#include <iostream>

using namespace std;

int main()

{

int counter = 2;

cout << "The floors in the hotel are..." << endl;

while (counter < 21) {

cout << counter << endl;

counter++;

}

return 0;

}

Chapter 12: Errors and Error Handling 567

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

568 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

“Beginners,” I continued, “frequently forget that in a While loop, it’s important to include,
somewhere within the body of the loop, code that enables the loop to eventually end. Otherwise,
you have what is known as an endless loop. In the case of this code, we told C++ to continue
executing the loop while the value of the counter variable is less than 21. Because we initialized
the counter variable to 2, this means if we didn’t place some code in the body of the loop to do
something to cause the value of the counter variable to become 21 or greater, the loop would
never end. What we did, of course, was write this line of code, which increments the value of the
counter variable every time the body of the loop is executed.”

counter++;

“And what happens if we were to forget this code?” Joe asked.
“Let me show you,” I said, as I displayed this version of the program on the classroom projector.”

//Example12_28.cpp

#include <iostream>

using namespace std;

int main()

{

int counter = 2;

cout << "The floors in the hotel are..." << endl;

while (counter < 21) {

cout << counter << endl;

}

return 0;

}

“We’d create a program that would display the number 2 indefinitely,” I said. “In other words,
an infinite loop.”

I saved the program as Example12_28.cpp and then compiled and executed it. My prediction
was right. The number 2 continued to display on the C++ console. Because the program wouldn’t
stop, I had to use the Windows Task Manager to terminate it.

“So that’s an infinite loop,” Rhonda said, “and all because we forgot one little line of code.”

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 12: Errors and Error Handling 569

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

Forgetting to Code a Break Statement in a Switch Structure
“This next ‘error’ isn’t so much an error as it is a C++ feature,” I said, “but it’s a feature that can
trip many beginners up—that is, when coding a Switch structure, once a Case statement evaluates
to true, the code in every succeeding Case statement is also executed.”

“That’s why we use the break statement, isn’t it?” Dave asked.
“That’s right, Dave,” I said. “The break statement is normally included as the last statement of

a Case statement to tell C++ to skip the remainder of the Case statements if the Case statement is
found to be true. Here’s a program that uses a Switch statement to evaluate the value of the variable x.
Depending on the value of the variable, the program displays one of several alternative messages to
the C++ console. Notice the break statement in each of the Case statements. This program, when
run, will display the message ‘x is 2’ in the C++ console.”

//Example12_29.cpp

#include <iostream>

using namespace std;

int main()

{

int x = 2;

switch (x)

{

case 1:

cout << "x is 1" << endl;

break;

case 2:

cout << "x is 2" << endl;

break;

case 3:

cout << "x is 3" << endl;

break;

default:

cout << "x is not 1, 2 or 3" << endl;

}

return 0;

}

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

570 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

“If however, we remove the break statements from the program, so that it looks like this…”

//Example12_30.cpp

#include <iostream>

using namespace std;

int main()

{

int x = 2;

switch (x)

{

case 1:

cout << "x is 1" << endl;

case 2:

cout << "x is 2" << endl;

case 3:

cout << "x is 3" << endl;

default:

cout << "x is not 1, 2 or 3" << endl;

}

return 0;

}

“…we get a different result. When we compile and execute this version of the program, because of
our failure to include a break statement, we get multiple messages displayed in the C++ console.”

I saved the program as Example12_30.cpp and then compiled and executed it. The following
screenshot was displayed on the classroom projector:

“As you can see, forgetting to code the break statements led to the execution of each one of the
Case statements following the first Case statement that evaluated to true.”

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 12: Errors and Error Handling 571

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

Division by Zero
“Let’s revisit that issue of division by zero again,” I said. “You saw earlier that in C++, like most
programming languages, division by zero generates a runtime error. Now I’m going to explain why.”

I continued by stating that in the computer world, division by zero is a big no-no.
“What’s 12 divided by 1?” I asked.
“12,” Mary replied.
“Now what about 12 divided by 1/2?” I continued.
After a moment’s hesitation, Dave answered, “24.”
“Correct,” I said.
There were some puzzled faces.
“I know I’ve caught those of you with math phobia on that one,” I said. “A number, divided by

a number smaller than 1 always results in an answer larger than the original number.”
“In math terms,” Ward said, “I believe you mean to say that when we divide a number (called

the dividend) by another number (called the divisor) that’s smaller than 1, we take the reciprocal
of that number and multiply by it. In other words, 12 divided by 1/2 becomes 12 multiplied by 2,
whose result is 24.”

“Well said, Ward,” I stated. I then displayed the following chart on the board:

Number 1
(Dividend)

Number 2
(Divisor)

Answer

12 1 12

12 1/2 24

12 1/3 36

12 1/4 72

12 1/10 120

12 1/100 1200

12 1/1000 12000

I continued by telling my students that as the divisor approaches zero, the answer becomes larger
and larger. In fact, it becomes an infinite number, which is impossible to represent in a computer.

“For that reason,” I continued, “dividing a number by 0 in your computer program causes
most programs to bomb, and C++ is no exception. Let’s take a look at this code.”

//Example12_31.cpp

#include <iostream>

using namespace std;

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

572 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

int main()

{

int x = 4;

int y = 0;

float z = 0.0;

z = x / y;

cout << "The value of z is " << z;

return 0;

}

“As you can see,” I said, “this code will eventually divide the value of the variable x, which is 4,
by the value of the variable y, which is 0.”

I saved the program as Example12_31.cpp and then compiled and executed it. As was the case
when we executed Example12_25, the program bombed and this message box was displayed on
the classroom projector:

I went on to explain that most beginners aren’t aware of the problems with division by zero and that
their immediate response would most likely be that they would never intentionally divide by zero.

“That’s what I was going to say,” Dave said. “However, I can imagine that this kind of error can
occur in many different ways—for instance, input from a user via a C++ cin object.”

“That’s excellent, Dave,” I said. “That’s exactly how it could happen. The user can enter zero
at runtime. If our program then divides by that value, we have a ‘division by zero’ error.”

“Isn’t that something we could prevent with an If statement?” Barbara suggested.
“That’s exactly what we’ll need to do, Barbara,” I said, “and we’ll be doing that a little later when

we examine C++ error handling when we return from our break.”

Dealing with Errors in Your Program
Fifteen minutes later I was about to begin discussing error handling in a C++ program when I noticed
two people approach our classroom door. It was Rose and Jack, back from their long journey.

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 12: Errors and Error Handling 573

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

“Rose and Jack,” I said, “welcome back. It’s great to see you! I was getting a little worried that
you might not make it back in time for our final class.”

“Professor Smiley has been keeping us apprised of the development with the Grades Calculation
Project,” Rose explained to the class. “And of course, we took our laptops along with us. We’re
right on pace—well, just about on pace—to complete the course, and the project, with all of you.
I don’t think we’ve missed a beat.”

“I’m glad that you both were able to be with us today,” I said. “Your attendance will help put a
nice close to the project we all started together so many weeks ago.”

I continued by explaining to my students that during the first part of our class, we had intentionally
created errors to cause our programs to bomb. During the last half of our class, we would be
examining ways of gracefully handling those errors in such a way that our programs just don’t
come to a grinding halt.

“As I’ve mentioned several times today,” I said, “nothing can ruin your reputation faster than
having one of your existing customers tell a prospective client that they love your programs but
that they bomb once in a while. As you can imagine, this can be very bad for business!”

I explained that it isn’t always possible to write a program that will never produce a runtime
error. As we discussed right before break, sometimes the user can enter data into the program that
causes a runtime error. You might also write a program that reads data from a disk file, asking the
user for the name and location of the file at runtime.

“Suppose,” I said, “the user of your program indicates that the file is located on a diskette, but
then forgets to insert the diskette into the drive.”

“I do that all the time,” Rhonda said. “Will that cause our program to bomb?”
“It can,” I said, “because our program is attempting to open a file that doesn’t exist.”
“That generates an error?” Ward asked. “I’m surprised. When I do that while using my word-

processing software, a warning message is displayed.”
“That’s exactly the point, Ward” I replied. “The programmers who wrote your word processor

anticipated that the user might specify a nonexistent file to be opened and therefore implemented
C++ error handling in the program, substituting a user-friendly message in place of a system-generated
runtime error. That’s the warning message you say you receive. Most importantly, though, your
word processor continues running instead of coming to a grinding halt, which is what we want
our C++ programs to do in the event a runtime error occurs. Remember, when a C++ program
comes to a jarring stop, it can result in the loss of hours of work on the part of the user.”

“So we can do something like that in our C++ program?” Barbara asked. “I mean, intercept those
nasty runtime error messages we saw earlier today and replace them with user-friendly messages
of our own.”

“It’s not so much intercepting messages as it is anticipating these errors,” I said, “and checking
for them and reacting to them. For instance, in the case of a ‘division by zero’ error, we’ll check to
see whether the user has supplied our program with a denominator of zero—and if they have, we’ll

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

574 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

display a warning message. If we were to write a program that prompts the user for a filename to
open, we would first check for the existence of the file prior to trying to open it. That’s what I mean.”

“I’ve programmed in Visual Basic, Java, and C#,” Dave said, “and each one of those languages
allows you to intercept runtime errors, such as division by zero. Can’t we do that in C++?”

“That’s a good point, Dave,” I said. “There are certain runtime errors that can be intercepted
in that way. However, the ‘division by zero’ error isn’t one of them. We’ll examine how to intercept
those runtime errors in our intermediate C++ course, which begins in a few weeks. Let’s begin our
look at C++ error handling by completing an exercise in which we write a program that permits
the user to cause a ‘division by zero’ error.”

I then distributed this exercise to the class.

Exercise 12-1 Intentionally Generate an Error

In this exercise, you’ll write a program that prompts the user for two numbers
and then divides the first number by the second number. You’ll then execute
the program and intentionally generate a ‘division by zero’ error. But don’t
worry—in the next two exercises, you’ll see how you can implement error
handling to more gracefully deal with the error.

1. Use Notepad (if you are using Windows) to enter the following code:

//Practice12_1.cpp

#include <iostream>

using namespace std;

int main()

{

int number1 = 0;

int number2 = 0;

float answer = 0.0;

char response[256];

cout << "Enter Number 1: ";

cin.getline(response,256);

number1 = atoi(response);

cout << "Enter Number 2: ";

cin.getline(response,256);

number2 = atoi(response);

answer = (float)number1/(float)number2;

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

cout << endl << number1 << " divided by " << number2

<< " is " << answer;

return 0;

}

2. Save your source file as Practice12_1 in the \CPPFiles\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute your program. Enter 9 for the first number and 4 for second. The
program will display a result of 2.25.

5. Now run the program again. Enter 4 for the first number and 0 for the
second. The program will terminate with a ‘division by zero’ exception,
as shown here:

Discussion “What we’ve done here,” I said, “is to write some innocent-looking code that
prompts the user for two numbers. Certainly, there’s nothing in the code itself
that would suggest the program would have a problem. It isn’t until the user
enters a zero for the second number, and we then divide the first number by
that value, that the program bombs with a runtime error.”

“I understand why the error was generated,” Kate said, “but I do have a
question about some code you used that I don’t believe we’ve seen before.
What’s going on with that line of code that divides number1 by number2 and
then assigns the result to the answer variable. Why is the word ‘float’ in
parentheses before the variable names?”

answer = (float)number1/(float)number2;

“This is a technique called coercion, also known as casting,” I said, “and
we used it here to ensure that the answer variable contains a fraction part. By
default, in C++, if you divide an integer by an integer, the result will be an
integer. Placing the word ‘float’ within parentheses in front of the variable tells
C++ to convert, or ‘coerce,’ the data type of the variable to a float. As a result,
we wind up dividing two floating-point data types, which generates a result
that is also a float.”

Chapter 12: Errors and Error Handling 575

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

576 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

“Getting back to the ‘division by zero’ error,” Kate said, “you say we will be
able to prevent this type of problem?”

“There’s nothing we can do to prevent the user from entering zero for the
second number,” I said, “but we can certainly anticipate what the user may do
and react accordingly. Anticipating and reacting to problems like this leads us
quite nicely into a discussion of C++ exceptions and error handling.”

C++ Exceptions and Error Handling
“Is a C++ exception the same thing as a C++ error?” Steve asked. “I think you’ve used both terms
in the last few minutes.”

“Strictly speaking,” I said, “a C++ exception is an object that is created when an error occurs.
That’s why you may hear the terms used interchangeably.”

“How are Exception objects created?” Kate asked.
“Some Exception objects we create,” I said, “and some are created by the system—for instance,

when one of those ‘interceptable’ runtime errors occurs, which I mentioned earlier. I should mention
that it’s not absolutely necessary for us to create an Exception object in order to implement error
handling in our program. In fact, we won’t be doing that today—although that’s the route most
experienced C++ programmers take.”

Basic Error Handling
“So what should we do when we realize that the code we’ve written could result in an error?”
Ward asked.

“The first step,” I said, “is to write code that detects the error condition. In the case of Practice12_1,
we can check to see whether the value of the variable number2 is zero. Then, if we detect an error
condition, we need to react in some way—in the case of our exercise, we’ll notify the user of the
problem. Finally, you need to decide what to do next in the program. For instance, is there a way
for the program to continue processing, perhaps by asking the user for a value for number2 again,
or should you simply gracefully end the program? Let’s see how we can implement this methodology
by modifying the program we wrote in Practice12_1 to anticipate and react to the user’s entry of a
zero for the denominator.”

Exercise 12-2 Basic Error Handling

In this exercise, you’ll modify the program from Exercise 12-1 to use a simple If
statement to deal with the ‘division by zero’ error.

1. Use Notepad (if you are using Windows) to enter the following code:

//Practice12_2.cpp

#include <iostream>

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 12: Errors and Error Handling 577

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

using namespace std;

int main()

{

int number1 = 0;

int number2 = 0;

float answer = 0.0;

char response[256];

cout << "Enter Number 1: ";

cin.getline(response,256);

number1 = atoi(response);

cout << "Enter Number 2: ";

cin.getline(response,256);

number2 = atoi(response);

if (number2 == 0)

{

cout << endl <<

"Sorry, but you may not divide by zero";

return 1;

}

answer = (float)number1/(float)number2;

cout << endl << number1 << " divided by " << number2

<< " is " << answer;

return 0;

}

2. Save your source file as Practice12_2 in the \CPPFiles\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute your program. Enter 9 for the first number and 4 for second. The
program will display a result of 2.25.

5. Now run the program again. Enter 4 for the first number and 0 for the second.
This time, instead of terminating, the program will display a warning message
indicating that division by zero is not permitted and then gracefully end.

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

578 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

Discussion I ran the program myself, entering 4 for the first number and 0 for the second.
The following screenshot was displayed on the classroom projector:

“As you can see,” I said, “the additional code we wrote detected the impeding
‘division by zero’ error by looking for a value of zero in the variable number2.”

if (number2 == 0)

“It then displayed a warning message to the user.”

cout << endl << "Sorry, but you may not divide by zero";

“Finally, the program gracefully terminated.”

return 1;

“That seemed to work out fine,” Rhonda said. “Is that all there is to it?”

“What we did here, Rhonda,” I answered, “was to implement some pretty
basic error handling. One problem with this code is that if we give the user the
opportunity to make this same error in several places in our program, we need
to duplicate this error-handling code in several places as well. The C++ Try-Catch
blocks give us the ability to more centrally handle errors.”

Try-Catch
“Try-Catch blocks?” Kate said. “What does that mean, and do we have to discard the code we
just wrote?”

“Not to worry, Kate,” I replied. “The code we just wrote doesn’t have to change—we just need
to enclose it within a Try-Catch block. The idea behind a Try-Catch block is that we tell C++ to
‘try’ the code in the Try block, that it may potentially cause an exception, and to execute the code
in the Catch block if an exception should occur. For certain runtime errors, the system will generate
an exception, and for errors that we detect on our own, such as division by zero, we generate the
exception ourselves by executing the ‘throw’ statement within the Try block.”

“Oh, I get it,” Ward said. “The exception is thrown from the Try block and caught in the
Catch block.”

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 12: Errors and Error Handling 579

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

“That’s the idea, Ward,” I said.
“So the code in the Try block is the code that we would execute ordinarily,” Mary said, “and

the code in the Catch block is the code to execute if an exception does occur.”
“That’s perfect, Mary,” I replied.
“I’m going to need to see this in action,” Rhonda said. “I think it’s pretty confusing.”
“Let’s take the code in Practice12_2,” I said, “and modify it to include a Try-Catch block. I think

that will clear up some of your confusion. While you’re coding the exercise, don’t be too concerned
if you don’t understand perfectly the syntax of the throw statement and of the Catch block—I’ll
be explaining those after you’re done.”

I then distributed this exercise for the class to complete.

Exercise 12-3 Try-Catch

In this exercise, you’ll modify the program from Exercise 11-2 to use Try-Catch
blocks to deal with the “division by zero” error.

1. Use Notepad (if you are using Windows) to enter the following code:

//Practice12_3.cpp

#include <iostream>

using namespace std;

int main()

{

int number1 = 0;

int number2 = 0;

float answer = 0.0;

char response[256];

try

{

cout << "Enter Number 1: ";

cin.getline(response,256);

number1 = atoi(response);

cout << "Enter Number 2: ";

cin.getline(response,256);

number2 = atoi(response);

if (number2 == 0) //Detect divide by zero

throw(12345); //Throw an exception of type int

}

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

580 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

catch(int n) //Catch the exception

{

cout << endl

<< "Sorry, but you may not divide by zero";

return 1;

}

answer = (float)number1/(float)number2;

cout << endl << number1 << " divided by " << number2

<< " is " << answer;

return 0;

}

2. Save your source file as Practice12_3 in the \CPPFiles\Practice folder (select
File | Save As from Notepad’s menu bar). Be sure to save your source file
with the filename extension .cpp.

3. Compile your source file into an executable file.

4. Execute your program. Enter 9 for the first number and 4 for second. The
program will display a result of 2.25.

5. Now run the program again. Enter 4 for the first number and 0 for the
second. This time, instead of terminating, the program will display a
warning message indicating that division by zero is not permitted and
gracefully end.

Discussion Only one student, Blaine, had a problem completing the exercise—and a minor
one at that. He accidentally inserted the code to calculate the value of the answer
variable between the end of the Try block and the beginning of the Catch block.

“The compiler,” I said, “at least the one we’re using here in class, wants the
Catch block to follow the Try block. Inserting just a single line of code in between
confused the compiler.”

After a moment, Blaine had his code fixed and we were on our way again.

“Let me explain what we’ve done here,” I said. “We took the code that could
potentially lead to a ‘division by zero’ error, along with the code to detect it,
and placed them within a Try block. A Try block starts with the word try and its
code is enclosed within a pair of braces.”

try

{

cout << "Enter Number 1: ";

cin.getline(response,256);

number1 = atoi(response);

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 12: Errors and Error Handling 581

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

cout << "Enter Number 2: ";

cin.getline(response,256);

number2 = atoi(response);

if (number2 == 0) //Detect divide by zero

throw(12345); //Throw an exception of type int

}

“Notice how the Try block contains only the code that might cause an error,”
I continued, “plus the throw statement. The code to react to the error is now
contained in the Catch block.”

“Can you go over the syntax of the throw statement?” Ward asked. “What
are we doing here—it looks like we’re passing an error code to the Catch block.”

“That’s exactly what we’re doing,” I said. “In this case, the number 12345 is
just a number I randomly selected to be our program’s error code for division by
zero. We could have passed the Catch block anything—including a character, a
string, or even a reference to an object.”

NOTE
Many advanced C++ programmers design exception classes of their own and instantiate
objects from these classes within the Try block, passing them to the Catch block as an
argument.

“So we could have chosen any number we wanted to here,” Barbara said.

“Absolutely,” I answered. “Within our program, we might decide to pass the
Catch block 12345 for a ‘division by zero’ error, 34567 for a ‘missing file’ error,
and so on. The important thing to realize is that if and when the throw statement
is executed, the next line of code executed will be its corresponding catch
statement.”

“What do you mean corresponding?” Peter asked. “Can you have more than
one Catch block?”

“Good question, Peter,” I said, “and the answer is yes. A program can contain
multiple Catch blocks, each one designed to react to a different set of error
conditions if you like, or alternatively, have a single Catch block and use If
statements or Case statements to handle multiple error conditions.”

“How does C++ know which of the multiple Catch blocks to execute?”
Dave asked.

“C++ will match the data type of the throw statement with the declaration
for the Catch block,” I said. “Since our throw statement is passing an integer
argument, C++ will look for a Catch statement defined to accept an Integer
parameter, like this.”

catch(int n) //Catch the exception

{

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

cout << endl << "Sorry, but you may not divide by zero";

return 1;

}

“…within the body of the catch block, we display a message to the user,
then gracefully end the program by executing the return statement, using an
argument of 1. Remember, we’ve been using non-zero return statements to
indicate abnormal terminations of our program.”

NOTE
Return codes from our startup program mean nothing to us—but are meaningful if
our program was executed by another program.

“What’s the significance of the letter n within the parentheses?”
Rhonda asked.

“That’s the parameter corresponding to the argument that is passed to the
Catch block,” I said, “and can be used to determine the value that has been passed
by the throw statement. For instance, if we wrote code in another part of our
program that throws an error of 34567, we could use either an If statement or
a Case statement to determine the error code, like this.”

catch(int n)

{

switch (n)

{

case 12345:

cout << endl << "Sorry, but you may not divide by zero";

return 1;

break;

case 34567:

cout << endl << "Sorry, but I cannot find that file";

return 1;

break;

}

}

“By the way,” I said, “if you want a single Catch block to handle any throw
statement in your program, code your Catch block with an ellipsis for an argument,
like this.”

catch(…)

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

582 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Should We Modify the Grades Calculation Project
to Include Error Handling?

“Can we modify the Grades Calculation Project to provide for error handling?” Kate asked.
“Actually,” I said, “we already have. Our base class Student already has logic built in to handle

invalid grade entries on the part of the user—that’s all coded into the various mutator methods of
the Student class. Although it’s true we didn’t enclose that logic within Try and Catch blocks, I’m
not sure what advantages we might gain from doing so now—plus, we’re almost out of time for
today’s class, and we need to get down to Frank Olley’s office. Why don’t we do this: If you’d like
to tackle adding Try and Catch blocks to the Student class on your own, do that on your own;
otherwise, I’m ready to deliver our project to Frank Olley.”

Testing the Program
“So we’re done?” asked Ward.

“That’s right, Ward,” I said. “We’re now done with the Grades Calculation Project.”
“When do we deliver it?” Mary asked.
“And what version do we deliver?” Linda asked. “Will you be installing your version of the project?”
“When I spoke to Frank Olley earlier in the week,” I said, “I explained to him that, excluding

my version of the program, we had 18 different versions of the program—and that because this
was a student project, I’d rather have him use one of yours, not mine.”

I could see some excitement building among the students in the class.
“I invited Frank to visit us today to select the ‘winning’ project,” I said, “but in Frank’s mind,

you’re all winners—and I have to agree. It’s going to be hard to select one project to install in the
English department.”

“So what are we going to do?” Ward asked.
“Frank had a good suggestion,” I said, “and here it is. He suggested that prior to traveling over to

the English department at the end of today’s class, we all select one project as the one to install
in the English department. So here’s what I’m going to ask you to do. I would like everyone to
take a few moments to test their own version of the program to verify that it’s working properly,
then walk up to the front of the classroom and pick up a voting ballot that I’ve prepared. Take the
ballot, walk around the classroom and observe everyone’s project, and then record your vote for
what you consider to be the best project you see. The project that receives the most votes will be
the one that we install in the English department. By the way, I’m removing my version of the
project from consideration—so please don’t vote for mine! This is your project and one of you
deserves to have the place of honor in Frank Olley’s English department.”

“Can you give us some guidelines on testing our programs?” Linda asked, after a moment or two.

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

Chapter 12: Errors and Error Handling 583

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

584 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

“That’s a good question,” I said. “Obviously, at a minimum, the program must work—that is,
it needs to properly calculate the grade for each one of the three types of students. You should also
make sure that the console interface, as far as possible, is attractive and easy to use.”

“I would think that most of the bugs have been discovered by now,” Valerie commented.
“I’m not sure we can say that with 100-percent certainty,” I said. “There’s always the possibility

that something has slipped through our fingers. But I would say that I’m fairly confident our programs
are bug free. Obviously, the more complicated the programs you write, the less certain you can
feel, and the more thorough your testing needs to be.”

“Is it possible to test each and every combination of grades and student types?” Rhonda asked.
“You’re right, Rhonda,” I said. “There are quite a few possible combinations of different student

types and grades, and testing every one of them would be next to impossible. We’ve been testing our
programs all along with a scenario for each type of student—and we should take this testing one step
further. For instance, you should test scenarios where each component grade is zero, where one or
more component grades, but not all, are zero, where all component grades are 100 percent, and where
only some are 100 percent. Above all, make sure you calculate the grades manually first so that you
know what the correct answer should be.”

“In other words,” Dave said, “test the extreme limits of each component.”
“That’s right, Dave,” I said. “We saw today how the introduction of a zero into a program can

produce errors. Try to ‘break’ your program now, before you give it to one of the work study students
to work with.”

“I’ve been testing my project all along using a similar methodology,” Chuck said, “except that
I used Microsoft Excel to develop a worksheet of possible scenarios, along with the correct answers,
and then ran my program to test as many of these scenarios as I could, verifying each correct answer.”

“That’s a great idea, Chuck,” I said.
I then gave the class 15 minutes to test their projects one last time and then asked them to review

and evaluate their fellow students’ projects and vote for the project they thought was “best.” As I
collected their ballots and tallied the results, I asked everyone to give me a diskette with a copy of
their project on it as well.

“Class is officially dismissed for today,” I said. “I hope to see you all in the English department
in a few minutes!”

I called Dave aside. Dave had volunteered to coordinate the installation of C++ on a PC in the
English department, along with the installation of the ‘winning’ program’s executable. I handed
Dave a CD-ROM containing the C++ compiler, along with a diskette containing the project that
had received the most votes.

“Would you mind installing these?” I asked him. “I have a few things to wrap up here.”
“Not at all,” Dave said, as he glanced at the student’s name on the diskette and smiled. “That

project really was great—I guess it pays to ask a lot of questions! I’ll take care of this.”

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Chapter 12: Errors and Error Handling 585

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

Delivering and Implementing
the Grades Calculation Project

No sooner had I packed up my things and was preparing to make my way out the door of the
classroom than a former student of mine approached me with a problem. Half an hour later, I
finally arrived in the English department.

As I entered, I could hear quite a bit of excited talk and conversation. I could see an incredible
amount of activity taking place. The area was packed with students—my students, plus two students
whom I recognized as work study students—plus Frank Olley, David Burton, and Robin Aronstram
were there.

Frank Olley caught sight of me.
“John, this program is absolutely great,” he said excitedly. “I can’t believe what an excellent job

your students did with this. I, David, and Robin really love it—plus the two people who really
count, the work study students who will be using it.”

Amid all the hullabaloo, I glanced toward the middle of the open space in the English department
and noticed a small table with a computer sitting on it. Seated at the table were the two work study
students, and there was Rhonda, standing in front of the computer, training these students who
would be using her version of the program to calculate grades for the English, math, and science
departments!

“Rhonda’s been proudly demonstrating her program to our work study students for the last 15
minutes,” Frank explained. “She’s obviously very proud of it, and they love it also—they haven’t
gotten up from their chairs yet. Rhonda really did a great job with it.”

I wandered over to them and caught Rhonda’s eye.
“I’m flabbergasted that the class voted for my version of the project,” Rhonda said. “To say that

this has made my week is an understatement—more like my year! I’m just so honored that someone
like me, with absolutely no programming background, could actually write a program like this.
I felt like I asked so many stupid questions during the course.”

“Rhonda,” I interrupted, “you know what I always say—the only stupid question is the question
you don’t ask. Your questions were always good ones, plus I know they were questions that some
of the other students in the class were dying to ask. By the way, when I put this C++ course together,
I had someone just like you in mind—an inquisitive person, anxious to learn, but with no
programming background. You did a great job.”

“Really?” she said. “You know I enjoyed the course very much. You should consider taking those
notes of yours and writing a C++ book.”

“Maybe I’ll do that someday,” I told her.
I spent the next few minutes observing the two work study students, Rita and Gil, experiment

with the program. They had no problem whatsoever with it. Rhonda’s console interface was neat,
easy to read, and easy to use—both of them really seemed to be enjoying working with it.

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Believe me,” Rita said, “this is a lot better than the method we were using before.”
“You can say that again,” Gil said, “calculating these grades using a calculator was a real pain

in the neck.”
“From what I can see,” I told the assembled class as they gathered around us, “the system works as

designed. The ultimate users of the project, Rita and Gil, have been using the program for the last
few minutes to calculate grades, and as you’ve all probably seen, they’re extremely pleased with it. I
want to thank Dave for installing C++ and Rhonda’s version of the project on this PC. By installing
the software, we have begun phase 5 of the SDLC, the Implementation phase. Installation,
fine-tuning, and training are all part of this phase.”

Frank Olley came over and stood right next to me, obviously pleased at the time savings and
accuracy the program would achieve. I turned to him and told him that this phase of the SDLC
would last for at least the next week.

“Pairs of students have volunteered to be ‘on site’ during the week to make observations and
assist with any problems that might come up,” I explained.

“It’s comforting to know they’ll be here,” he said. “What are those notes I’ve seen you taking?”
“I’m making notes about Phase 6 of the SDLC,” I said. “Even though we’re now in the midst

of phase 5 of the SDLC, we can proceed concurrently with phase 6, which is the Feedback and
Maintenance phase—and observation is an important part of the Feedback and Maintenance phase.”

“Feedback and maintenance?” Frank asked.
“We want to make sure the program is behaving according to the Requirements Statement you

and I agreed upon before the class began to write the program for you,” I explained. “A big part of
this phase is just observing the system to see how it’s being used.”

“And how it’s being admired,” Frank Olley added.
“Positive feedback is a wonderful thing,” I said, smiling.
“What about program maintenance?” Frank asked.
“The maintenance phase handles any changes to the program that are necessitated by

governmental regulations, changes in business rules, or changes that you decide you want to
make to the program,” I replied.

“After seeing the great work you’ve done on the project,” he said, “I’m sure I’ll have more work
for your class.”

“Sadly though,” I said, “this is the end of our introductory C++ course. But many, if not all of
these students, will be signed up for my intermediate C++ programming course starting in five
weeks. Maybe we can work on any enhancements you have then. Perhaps we’ll produce a version
with a graphical user interface like Windows.”

Frank Olley seemed happy with that idea and left to chat with the two work study students.
Linda, meanwhile, stopped by to see me and asked to see the notes I had taken.

“Interesting observations,” Linda said. “I can see we still have some work to do.”

586 Learn to Program with C++

LEARNTO / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

“Frank,” I said, as I approached him, Rhonda, and the two work study students, “on behalf of
the class, I want to thank you for a wonderful learning experience. I’m sure we’ll be in touch.”

I shouted across the room to the rest of my students, “I’ve got to take off now. Everyone please
be mindful of your coverage schedules, and if you have any problems at all, you know where to
find me—remember, my e-mail address is johnsmiley@johnsmiley.com. I hope to see you all in
five weeks.”

Summary
Congratulations! You’ve finished the introductory C++ class and completed and implemented the
Grades Calculation Project. I hope you felt the excitement of completing, delivering, and installing
the Grades Calculation program as much as the students in my class did, because you were a big
part of it.

What’s next? At this point, you should feel confident enough to tackle a variety of C++ programs.
I hope that by following my introductory computer programming class, you’ve seen how real-world
applications are developed. The step-by-step methodology that we followed to complete the
program should be one that you follow in your own programming work.

That’s not to say that all projects go as smoothly as this one did. You can expect your share of
mistakes, misinterpretations, and misunderstandings along the way. Nonetheless, developing a
computer program is always exciting, and if you love it as I do, it’s always fun.

As I close, I just want to give you a few words of advice.
First, remember that in programming there’s rarely a single correct solution. Ultimately, if

your program achieves the desires of the person who needs to use it, you’ve developed the correct
solution. In the beginning of your programming experience, don’t waste your time trying to achieve
the best solution. Move on to other projects to broaden your experience.

Second, always be your own best friend. Inevitably, while trying to work through a solution,
there will be frustrating moments. Never doubt yourself, and never get “down” on yourself.

Finally, remember that there is always more to learn. The world of programming is an endless
series of free learning seminars. All you need to do is open up a manual, read a Help file, surf the
Internet, or pick up a copy of a good book, and you are well on your way. You can never know it
all, let alone master it all. But always move in that direction. Good luck, and I hope to see you in
another C++ class some day!

Chapter 12: Errors and Error Handling 587

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Chapter 12
Blind Folio 12:588

P:\010Comp\LearnTo\535-1\ch12.vp
Tuesday, October 08, 2002 2:07:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

INDEX

Symbols
[] brackets

custom classes, 294
declaring arrays, 448–449, 466
matching pairs of, 542–544

{ } curly brackets, 52–53, 153, 167–168
() parentheses

arguments and, 297
forgetting left and right in If structure, 544–546
functions and, 237–239, 244–245
If statement and, 152
matching pairs of, 542–544
order of operations and, 113–115
variables, 69

+ (addition operator), 98–100
(+=) additional assignment operator, 198
& (AddressOf operator), 495–501, 510
& (ampersand), 255–257, 491–493, 507
&& (And operator), 119–123
= (assignment operator), 546–548
* (asterisk)

multiplication symbol, 102, 505
pointers, 494, 507
program comments, 49–50
redirection, 501, 503, 505

: (colon), 59, 399
, (comma), 87, 399
-- (decrement operator), 110–111
/ (division operator), 98, 102–106
= (equal sign), 152
== (equal signs), 152
== (equal to operator), 116–119

/ (forward slash), 50
> (greater than operator), 116
>= (greater than or equal to operator), 116
++ (increment operator), 109–110, 313
* (indirection operator), 501–503, 505, 520
< (less than operator), 116
<= (less than or equal to operator), 116
* (multiplication operator), 98, 102–103
!= (not equal to operator), 116
! (Not operator), 128–129
|| (Or operator), 123–128
<< (output-redirection symbol), 53
% (percent sign), 106
| pipe character, 124
<< (plus operator), 141
“” (quotation marks)

Case statement and, 167
custom classes, 294
string arguments, 249
String data types, 97
text in, 73

<< (redirection) operators, 162
>> (redirection symbol), 141
% (remainder operator), 98, 106–109
:: (scoping operator), 314
; (semicolon)

class definition, 541–542
missing, 62, 540–541
terminating statements with, 53, 62

- (subtraction operator), 98, 100–101
~ (tilde), 319, 346
_ (underscore character), 70

589

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Index

P:\010Comp\LearnTo\535-1\index.vp
Tuesday, October 08, 2002 8:49:30 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
TLFeBOOK

A
abstract classes, 419–423
access control keywords, 355–357
accessor methods, 359, 362, 365–368
accumulator variable, 444–447, 453, 458
accumulators, forgetting to add, 565–567
addition assignment (+=) operator, 198
addition operator (+), 98–100
addresses, computer, 497
AddressOf operator (&), 495–501, 510
adjustment variable, 324
ampersand (&), 255–257, 491–493, 507
Analysis phase, SDLC, 13–16
And operator (&&), 119–123
annualSalary variable, 403
ANSI standards, 40
argument names, 555–558
arguments

calling for objects, 297
constructor functions, 308–309
described, 245
function calls and, 249–250
functions and, 244–257
integer, 557
For loops, 194–195
passing by reference, 252, 255–257
passing by value, 252–255
passing to functions, 248, 250, 491
string, 249
termination, 190
variables passing as, 490
vs. parameters, 239, 245

arithmetic operations, 98–115
addition, 98–100
comparison, 115–119
decrement, 110–111
division, 98, 102–106
increment, 109–110
multiplication, 98, 102–103
order of, 111–115

remainder, 98, 106–109
subtraction, 98, 100–101

array declaration, 518
array elements, 561–563
arrays, 439–483

adding data to elements, 449–458
address, 27, 510
assigning values to, 449–458
averaging with, 458–463
character, 144
contents of, 509
declaring, 448–449, 465–466
described, 160–161, 244, 440, 447–448
elements outside boundaries, 561–563
on free store, 523–531
multidimensional, 464–476, 513
object, 476–483
one-dimensional, 464
pointers to, 509–511
problems with, 463–464
processing, 454–458, 478–483
purpose of, 440–447
size of, 454, 463–476, 518
string, 145
using with interactive processing, 459–463
working with, 451–454

ASCII code, 95
ASCII to Integer. See atoi() function
ASCII values, 95
assignment operator (=), 546–548
asterisk (*)

multiplication symbol, 102, 505
pointers, 494, 507
program comments, 49–50
redirection, 501, 503, 505

atoi() function, 161, 166, 181
attributes

access to, 351–358
initializing values of, 353–354
retrieving, 359–368
updating, 359–368

590 Learn to Program with C++

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Index

P:\010Comp\LearnTo\535-1\index.vp
Tuesday, October 08, 2002 8:49:30 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Audit and Maintenance phase, SDLC, 37
average data type, 445
average variable, 453
averages, calculating, 478–483
averaging, with arrays, 458–463

B
balance variable, 324
BankTransaction instantiable class, 321–325
BankTransaction objects, 325–329
Banner instantiable class, 289–298, 319–321
Banner objects

arrays of, 476–478
pointers to objects, 514–516

base classes
creating, 423–437
deriving classes from, 411–418
Grades Calculation Project, 423–437
overview, 399
planning for, 397

behaviors, objects, 288–293
blank lines, 57
block comments, 49–50
blocks

Catch, 578–582
code, 153
described, 153
Try, 578–582
Try-Catch, 578–582

boilerplate sections, 421–422
bomb, program, 86–87
bool data types, 85, 92–94, 241–242
Boolean value, 242
Boolean variables, 93–94
Borland C++ compiler, 40–41, 70
brackets []

custom classes, 294
declaring arrays, 448–449, 466
matching pairs of, 542–544

Break statement
Case statements and, 166–167, 170, 569–570

described, 166
endless loops and, 194
forgetting to code in Switch structure, 569–570

budgetary constraints, 13
bugs. See errors
business rules, 10–11

C
C++ console, 142
C++ exceptions

Try-Catch blocks, 578–582
vs. error handling, 576

C++ objects
access to attributes, 351–358
arguments and, 297
BankTransaction, 325–329
Banner. See Banner objects
behaviors, 288–293
built-in, 55
calling for, 297
characteristics, 287–288
cin, 144
controlling access to data, 347–387
creating arrays, 476–483
creating from instantiable classes, 286–346
creating instances, 54–55
creating multiple, 299–300
declaring on free store, 517–521
described, 53
destroying, 318
Exception, 576
global, 517
hierarchies, 410–423
instantiating, 286, 344–345
invalid state, 360–361
location of, 80–81
in memory, 80–81
out of scope, 318
pointers to, 514–516
properties, 287–288
scope of, 517

Index 591

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Index

P:\010Comp\LearnTo\535-1\index.vp
Tuesday, October 08, 2002 8:49:30 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

in standard namespace, 141
String, 96–97
templates for, 239
working with, 54–55, 321–346

C++ programs
elements of, 49–63
running, 48–49

Calculate() method, 350, 395, 423–426, 432
CalculateEnglishGrade() function, 234
CalculateMathGrade() function, 234
CalculateScienceGrade() function, 234
“can’t find the compiler” error, 47–48
case sensitivity, 56–57, 61–62, 131, 536–538
Case statements

break statement and, 166–167, 170, 569–570
curly braces and, 345
default, 170–171
English student, 181
math student, 183
science student, 184
test expressions, 166–168

casting technique, 575
Catch blocks, 578–582
Catch statement, 581–582
char data types, 85, 95–96, 145
character array, 144
child classes. See derived classes
cin object, 141, 144–145
class constructors, 300–305
class contracts, 305–307
class definitions, 541–542
class destructors, 318–321
class hierarchy, 411, 417
class variables, 67, 290
classes

abstract, 419–423
base. See base classes
built-in, 54–55
code for, 68
creating, 287–293
creating objects from, 293–299
creating other classes from, 397–410

derived. See derived classes
deriving from base class, 411–418
exception, 581
inheritance and, 423–437
instances and, 407
instantiating, 54–55
member variables and, 401–406
multiple objects from, 299–300
private access, 404
protected access, 404–406
student, 328–337, 392
working with, 54–55

client programs, 286
clients, meeting with, 5–9
code. See also programs

blank lines, 57
blocks of, 153
breaking lines of, 141
case sensitivity, 56–57, 61–62
detecting error conditions, 576
indenting, 56–57, 543
inserting lines, 73–75
pseudocode, 158–159
splitting lines of, 57–58
validation, 360–363, 369
white space, 57

coercion technique, 575
colon (:), 59, 399
comma (,), 87, 399
command prompt, 43–44
comments, 49–50
comparison operators, 115–119, 162
compiler directives, 413
compiler errors, 535–558

“can’t find compiler,” 47–48
capitalization and, 243
case sensitivity and, 536–538
curly brace missing, 542–544
described, 46, 535
duplicate function signatures, 272
equal sign confusion, 546–548
function prototype missing, 548–550

592 Learn to Program with C++

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Index

P:\010Comp\LearnTo\535-1\index.vp
Tuesday, October 08, 2002 8:49:30 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

incorrect return value, 553–555
iostream library not included, 539–540
overloaded functions, 555–558
parenthesis missing, 542–546
return type missing, 550–551
semicolon missing, 62, 540–542
signatures, 555–558
std namespace reference missing, 538–539
values missing from functions, 551–553
void return types, 554–555

compilers
available for C++, 40
Borland, 40–41
errors. See compiler errors
messages, 45–46
Microsoft, 40–41, 70
unable to find, 47–48
warnings, 291–292

compiling programs, 59–62, 293
“Compound statement missing” error, 544
conditions

error, 576
false, 150, 156
true, 150

console application, 8, 19
console, message display on, 333
constants

adding to Grade Calculation Program, 130–134
advantages of, 84
assigned values for, 332
declaring, 81–83, 332
described, 81
errors, 527
initializing, 132
For loops, 200–202
names, 83, 132
overview, 81–84
purpose of, 82

constraints, 12–13, 17
constructor functions

advantages of, 332–333
class constructors and, 300–305

described, 346
overloaded, 307, 339–340

constructor methods
base class and, 395, 408–410
initializing attributes, 353–354

constructors
class, 300–305
described, 302
overloaded, 307–310

contracts, class, 305–307
“Could not find file” error, 47
counter, 209, 215
counter variables

arrays and, 453, 458, 462–463
described, 444
errors, 537
forgetting to increment, 563–565
loops and, 189, 209

cout object
described, 53
referencing, 539
strings, 141
using variables with, 70

.cpp extension, 42, 47, 292
curly brackets { }, 52–53, 153, 167–168
custom functions, 235–257

arguments, 244–257
errors in, 548–550
example of, 272–283
function header, 238–239
function prototype, 237–238
naming, 236
parameters, 244–257
return type, 240–244

customers, meeting with, 5–9

D
data, 65–135

adding to array elements, 449–458
arithmetic operations, 98–115
comparison operators, 115–119

Index 593

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Index

P:\010Comp\LearnTo\535-1\index.vp
Tuesday, October 08, 2002 8:49:30 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

controlling access to, 347–387
importance of, 66
logical operators, 119–129
operations on, 98–129
order of operations, 111–115
protecting, 348–358
sensitive, 349
sources of, 66
validation of, 369–382

Data Gathering phase, 13–16
data integrity, 369–382
data types

arrays and, 447
bool, 85, 92–94
char, 85, 95–96
decimal, 86
double, 85–86, 91–92
float, 85–86, 91
fundamental, 84
int, 85–86, 88–90, 167
long, 85–86, 88–90
nonnumeric, 92–97
numeric, 85–92
overview, 84–85
recommendations for, 86
short, 85–86, 88
string, 96–97
unsigned int, 85–86, 90–91
unsigned long, 85–86, 90–91
unsigned short, 85–86, 88
wchar_t, 85, 95–96

DateTime constants, 153
deadlines, 17
debugging, 36. See also error handling; errors
decimal data types, 86
decrement operator (--), 110–111
delete statement, 520–523
deliverables, SDLC, 11–12
dereference operator, 501
derived classes

creating, 423–437
Grades Calculation Project, 423–437

overview, 399–410
Design phase, SDLC, 16–35
destructor function, 318–321, 346
Development phase, SDLC, 35–36
directory, current, 44–45
Display() function, 291, 293, 515
Display() method, 393–397
DisplayGrade class, 329
DisplayGrade instantiable class, 337–340
DisplayMessage() function, 236–256
dividend, 571
division by zero error, 565, 571–572, 575–576
division operator (/), 98, 102–106
divisor, 571
DOS program, 19
dot-notation, 296, 355
double data types, 85–86, 91–92
Do-While loops, 216–219

creating, 217–219
described, 229
syntax, 216
vs. While loops, 216, 218, 220

dynamic memory, 464, 518, 523–531

E
Else clause, 155
Employee class, 398
EmployeeBase class, 411–418
endl object reference, 143
endless loops, 567–568
EnglishStudent class, 370–376, 428–432
EnglishStudent instantiable class, 329–333
ENTER key, 145, 156–158, 161, 165–166
equal sign (=), 152
equal sign assignment operator, 296
equal signs (==), 152
equal to operator (==), 116–119
equality operator (==), 546–548
error handling, 572–584

basic, 576–578
described, 535

594 Learn to Program with C++

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Index

P:\010Comp\LearnTo\535-1\index.vp
Tuesday, October 08, 2002 8:49:30 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

Grades Calculation Project, 583
Implementation phase and, 36
intentionally generating errors, 574–576
Try-Catch blocks, 578–582
vs. C++ exceptions, 576

error messages, Grade Calculation Project, 33
errors, 533–587

arrays, 463–464
assignment operator, 546–548
bombs, 86–87
case sensitivity and, 536–538
colon missing, 59
common, 535
compiler. See errors, compiler
“Compound statement missing,” 544
constants, 527
“Could not find file,” 47
counter variables, 537
creating overloaded functions with different

signatures, 555–558
custom functions, 548–550
debugging, 36
division by zero, 565, 571–572
equality operator, 546–548
forgetting to add accumulators, 565–567
forgetting to code break statements in Switch

structure, 569–570
forgetting to code function prototypes, 548–550
forgetting to include iostream library, 539–540
forgetting to increment counter variables, 563–565
forgetting to reference std Namespace, 538–539
forgetting to return value from function, 551–553
forgetting to specify return type for function,

550–551
intentionally generating, 574–576
intercepting, 573–574
left and right parentheses missing in If

structure, 544–546
logic. See errors, logic
memory, 450–451
not initializing variables, 559–561

not providing end code for While structures,
567–568

referring to elements outside array boundaries,
561–563

returning value from function whose return type
is void, 554–555

returning wrong type of return for function,
553–554

runtime, 535, 558–572
semicolon missing, 62, 540–541
spelling mistakes and, 57
statements, 540–541
syntax, 540–541
types of, 535
undefined symbol, 536–537

errors, compiler, 535–558
“can’t find the compiler,” 47–48
capitalization and, 243
case sensitivity and, 536–538
confusing == and =, 546–548
curly brace missing, 542–544
described, 46, 535
duplicate function signatures, 272
function prototype missing, 548–550
incorrect return value, 553–555
iostream library not included, 539–540
overloaded functions, 555–558
parenthesis missing, 542–546
return type missing, 550–551
semicolon missing, 62, 540–542
signatures, 555–558
std namespace reference missing, 538–539
values missing from functions, 551–553
void return types, 554–555

errors, logic. See also errors
break statement missing, 569–570
described, 535, 558
division by zero, 570–572
forgetting to add to accumulator, 565–567
listed, 558–572
not incrementing counter variables, 563–565
not initializing variables, 559–561

Index 595

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Index

P:\010Comp\LearnTo\535-1\index.vp
Tuesday, October 08, 2002 8:49:31 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

not providing end code for While structure, 567–568
referring to elements outside array bounds, 561–563

evaluating expressions, 99
event-driven programs, 30
exception classes, 581
Exception objects, 576
exceptions

Try-Catch blocks, 578–582
vs. error handling, 576

.exe extension, 48
executable files, 42, 45–48, 292
exit() methods, 365
exponential notation, 91
expressions

evaluating, 99, 111–113
evaluating to false, 153–154
evaluating to true, 152
test, 166–168

F
false conditions, 150, 156
false expressions, 153–154
False values, 123–128
feedback, user, 37
files

executable, 42, 45–48, 292
header, 51, 292
help, 55
hpp, 54
implementation, 292
including, 51
iostream, 51
.obj, 46
source. See source files
startup, 52
unable to find, 47, 573

float data types, 83, 85–86, 91, 445
floating point, 105
floating-point numbers, 85
floating-point variable, 104
flowcharts, 29

For loops, 189–205
arguments, 194–195
arrays and, 456–458
basic, 195–196
constants and, 200–202
described, 188, 229
displaying items backwards, 202–205
exiting, 194
modifying, 197–205
nested, 470–472
purpose of, 220
syntax, 189–191
variables and, 200–202
variations on, 193–205
vs. While loops, 205–206

forward slash (/), 50
free store, 516–531
free store variables, 520–521
function call, 249–20
function header, 238–239, 248–249, 550–551, 556
function overloading, 250
function prototypes, 237–238, 248–249, 548–550
function signatures

arguments and, 557
changes to, 250
creating overloaded functions with, 555–558
described, 237, 246–247, 269
duplicate, 272, 399, 557–558
overloaded constructors and, 308
return values and, 271–272

functions, 231–283
address, 498–499
arguments and, 244–257, 491
calling, 250
creating, 235–257
custom, 235–257, 272–283
described, 52, 234–235
fine-tuning code with, 258–268
forgetting to return value from, 551–553
forgetting to specify return type, 550–551
names, 236, 271, 556
overloaded. See functions, overloaded

596 Learn to Program with C++

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Index

P:\010Comp\LearnTo\535-1\index.vp
Tuesday, October 08, 2002 8:49:31 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

parameters, 244–252
passing arguments to, 491
pure virtual, 419–423
returning values, 140, 242–244, 554–555
returning wrong type of return values, 553–554
signatures. See function signatures
void return type, 554–555

functions, overloaded
creating with different signatures, 555–558
described, 555
overview, 269–272
purpose of, 307
vs. overloaded constructors, 308

G
Get() methods

data integrity and, 369–376
member variables and, 359–368
using, 361–370

GetAnnualSalary method, 403
GetBalance() function, 324
GetGrossPay() accessor method, 397–398
GetGrossPay() method, 395, 399
getline() method, 144–145, 157, 161
global memory, 517
global namespace

described, 517
references, 247–248

global objects, 517
global variables, 76–79, 257, 517
Grade Calculation Program

adding constants to, 130–134
adding variables to, 130–134
described, 129
instantiable objects, 340–346
vs. Grade Calculation Project, 129

Grade Calculation Project
accepting input from users, 171–185
adding intelligence to, 171–185
adding loop to, 219–229
calculating grades, 171–185

custom functions, 272–283
described, 129
designating component grades, 21–22
designating type of student, 21
error messages, 33
initial meeting with client, 5–9
input design, 20–27
introduction to, 4–5, 10
output design, 19–20
preliminary interface design, 22–25
preliminary investigation, 5–9
primary goal of, 31
requirements statement, 26–27
using arrays with, 478–483
using objects with, 328–346
vs. Grade Calculation Program, 129

grades
component, 21–22
display of, 19–20

Grades Calculation Project
base classes, 423–437
data integrity of, 369–382
delivering, 585–587
derived classes, 423–437
error handling, 583
implementing, 585–587
processing design, 27–33
testing, 583–584

Grades class, 383–386
Grades startup program, 328
Grades.cpp program, 58–63
graphical user interface (GUI), 134
greater than operator (>), 116
greater than or equal to operator (>=), 116
grossPay calculation, 393–397

H
header files, 51, 292
heap, 516
Hello World program, 2
help file, 55

Index 597

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Index

P:\010Comp\LearnTo\535-1\index.vp
Tuesday, October 08, 2002 8:49:31 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

hexadecimal notation, 497, 510
HourlyEmployee class, 413–418
HowMany() function, 312–317
.hpp extension, 292–293
hpp files, 54

I
If statement, 149–155
If structures, 544–546
If...Else statement, 154–163
If...Else...If statement, 159–163
imperative statements, 152–153, 162–163, 165
implementation file, 292
Implementation phase, SDLC, 36–37
include files, 51
include statement, 50–58, 294
inclusion guards, 412
increment operator (++), 109–110, 313
indentation, code, 56–57, 543
indexes. See subscripts
indirection operator (*), 501–503, 505, 520
infinite loops, 567–568
inheritance, 389–437

base classes, 423–437
class creation, 397–410
derived classes, 423–437
multiple, 399
overview, 390–397
planning object hierarchy, 410–423

initialization
code for, 300–301
logic errors and, 559–561
values, 353–354
variables, 70–72, 301–302, 559–561

input
accepting from user, 171–185
design of, 20–27
experimenting with, 142–146
getting into program, 139–146
obtaining from user, 142
obtaining via C++ console, 142

instances
creating for derived class objects, 413–414
creating for objects, 54–55
creating with derived classes, 407
updating value of, 349–358

instantiable classes
controlling data access, 347–387
creating objects from, 286–346
described, 286, 348
sensitive data and, 349

instantiable objects, described, 348
instantiating classes, 54–55
instantiating objects, 286
int data types, 52–53, 85–86, 88–90
integer arguments, 557
integer data type, 167
integer values, 140
integer variables, 447–448
integers, 52–53, 85
interactive processing, 459–463
interface design, 22–25
invalid state, 360–361
iostream file, 51
iostream library, 140, 151, 539–540

K
keystrokes, 179–180

L
language designation, 249
less than operator (<), 116–119
less than or equal to operator (<=), 116
libraries

access to, 46
including in programs, 46, 140
iostream, 140, 151
missing, 539–540
references to, 46
string, 140, 151

598 Learn to Program with C++

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Index

P:\010Comp\LearnTo\535-1\index.vp
Tuesday, October 08, 2002 8:49:31 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

lines
blank, 57
breaking, 141
inserting, 73–75
splitting, 57–58

linker, 45–46
linking, described, 293
Linux systems, 42
local memory, 516
local scope, 79–80, 517–518
local variables, 66–68, 517
logic errors. See also errors

break statement missing, 569–570
described, 535, 558
division by zero, 570–572
forgetting to add to accumulator, 565–567
listed, 558–572
not incrementing counter variables, 563–565
not initializing variables, 559–561
not providing end code for While structure, 567–568
referring to elements outside array bounds, 561–563

logical operators, 119–129
long data types, 85–86, 88–90
loop processing

accessing array elements, 451–454
referring to array elements, 455–458

loop structures, 147
loop-control variable, 190, 198–199, 203, 206
looping behavior, 385–386
loops, 187–229

For. See For loops
adding to Grade Calculation Project, 219–229
definite, 188
Do-While. See Do-While loops
endless, 190–191, 194, 567–568
exiting, 193
indefinite, 188
infinite, 567–568
nested, 470–472
purpose of, 188–195
testing, 385–386
While. See While loops

M
main() function, 52–58

Banner class, 291–292
case sensitivity and, 537–538
described, 53
instantiable classes, 287, 289
local scope and, 79–80
missing, 291–292, 294
overview, 52–53
program maintenance, 232–234

Maintenance phase, 37
MakeDeposit() function, 324
MakeWithdrawal() function, 324
MathStudent class, 376–379, 432–434
MathStudent instantiable class, 333–335
member variables

constructors and, 305
derived classes, 401–406
described, 67, 290
Get() methods, 359–368
initializing, 301–305
private access, 357–358
public access to, 349–350
public vs. private access, 359–360
Set() methods, 359–368
updating value of, 349–358

memory
arrays and, 464
dynamic, 464, 518, 523–531
errors, 450–451
freeing up, 318
global, 517
leaks, 520–521
objects in, 80–81
pointers and, 486
stack, 517

memory address, 493–495, 500
memory locations, 450
methods

accessor, 365–368
described, 55, 145

Index 599

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Index

P:\010Comp\LearnTo\535-1\index.vp
Tuesday, October 08, 2002 8:49:31 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

mutator, 364–368
object behavior, 288–293
overview, 351–358
private, 369
public, 358
virtual, 419–423

Microsoft C++ compiler, 40–41, 70
Microsoft Visual C++ package, 41
Microsoft Visual Studio, 565
Microsoft Windows user interface, 19
modular programming, 234, 287–293
modular programs, 232–234
modularity, 258
modulus operation, 106
multidimensional arrays, 464–476, 513
multiplication operator (*), 98, 102–103
mutator methods, 359, 362–368

N
namespace declaration, 56
namespace directive, 56
namespace statement, 61, 68, 178
namespaces

described, 55–56, 539
global, 517
specifying name of, 539
standard. See standard namespace

nested For loops, 470–472
newBalance variable, 324
newline character, 73–75
nonzero values, 165
not equal to operator (!=), 116
Not operator (!), 128–129
Notepad, 40–43
null address, 520
null pointers, 495, 506
null value, 495, 521–522
numeric literals, 100

O
.obj file, 46
object attribute, changing, 296–297
object dot notation, 296
object function calling, 297–299
object variable, 295
object-oriented programming, 306–307
objects

access to attributes, 351–358
arguments and, 297
BankTransaction, 325–329
Banner. See Banner objects
behaviors, 288–293
built-in, 55
calling for, 297
characteristics, 287–288
cin, 144
controlling access to data, 347–387
creating arrays of, 476–483
creating from classes, 293–299
creating from instantiable classes, 286–346
creating instances, 54–55
creating multiple, 299–300
declaring on free store, 517–521
described, 53
destroying, 318
Exception, 576
global, 517
hierarchies, 410–423
instantiating, 286, 344–345
invalid state, 360–361
location of, 80–81
in memory, 80–81
out of scope, 318
pointers to, 514–516
properties, 287–288
scope of, 517
in standard namespace, 141
String, 96–97
templates for, 239
working with, 54–55, 321–346

600 Learn to Program with C++

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Index

P:\010Comp\LearnTo\535-1\index.vp
Tuesday, October 08, 2002 8:49:31 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

operands, 98–99
operations, arithmetic, 98–115

addition, 98–100
comparison, 115–119
decrement, 110–111
division, 98, 102–106
increment, 109–110
multiplication, 98, 102–103
order of, 111–115
remainder, 98, 106–109
subtraction, 98, 100–101

operators
addition (+), 98–100
AddressOf (&), 495–501, 510
comparison, 115–119, 162
decrement (--), 110–111
dereference, 501
division (/), 98, 102–106
increment (++), 109–110
indirection (*), 501–503, 505, 520
multiplication (*), 98, 102–103
order of operations, 111–115
remainder (%), 98, 106–109
subtraction (-), 98, 100–101
unary, 128

Or operator (||), 123–128
output design, 19–20
output-redirection symbol (<<), 53
overloaded constructors, 308–310
overloaded functions

creating with different signatures, 555–558
described, 555
overview, 269–272
purpose of, 307
vs. overloaded constructors, 308

P
parameters

described, 239, 245
functions, 244–252
names, 239, 254, 256, 271

string, 249
vs. arguments, 239, 245
vs. variables, 247

parent classes. See base classes
parentheses ()

arguments and, 297
forgetting left and right in If structure, 544–546
functions and, 237–239, 244–245
If statement and, 152
matching pairs of, 542–544
order of operations and, 113–115
variables, 69

PATH environmental setting, 48
percent (%) sign, 106
phases, SDLC, 11–37
pipe character (|), 124
plus (<<) operator, 141
pointer arithmetic, 511–514
pointer declaration, 505
pointer notation, 509
pointer variable, 519–520
pointers, 485–532

advantages of, 493
to arrays, 509–511
assigning memory address to, 495–501
asterisks and, 494, 507
contents of, 509
declaring, 494–495
described, 493–494
free store, 516–531
initializing, 495, 505
length of, 494
naming, 494–495
null, 495, 506
null address for, 520
null values and, 521
to objects, 318, 514–516
purpose of, 486
with Swap() function, 503–508, 521–523
Swap program and, 486–493
vs. references, 492

polymorphism, 332

Index 601

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Index

P:\010Comp\LearnTo\535-1\index.vp
Tuesday, October 08, 2002 8:49:31 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

precompiler directives, 412–413
Preliminary Investigation, SDLC, 5–9, 12–13
printer output, 19
private access, 356–358
private access control keyword, 356–357
Private keyword, 351–352, 369
private member variables, 359
private methods, 369
procedural programs, 30
procedure header, 141
processing

described, 27
examining, 28–31
interactive, 459–463
rules for, 10–11

processing design, 27–33
program planning, 4–5
programs. See also code

bombs, 86–87
captions, 23
coding, 58–59
compiling, 59–62, 293
concrete plan, 4
constraints, 12–13
ending, 33
event-driven, 30
executing, 63
getting input into, 139–146
including libraries in, 140
initial meeting about, 5–9
input design, 20–27
maintenance of, 232–234
modular, 233–234
output design, 19–20
procedural, 30
processing subplots, 28
real-world, 2–3
simple, 2
titles, 23
Windows, 30
working out on paper first, 30–31

properties, objects, 287–288
protected access, 356
Protected keyword, 404
pseudocode, 29–30, 158–159
public access, 356
Public keyword, 290, 313, 349, 351, 369, 401
public member variables, 359
public methods, 358–359
pure virtual functions, 419–423

Q
quotation marks (“”)

Case statement and, 167
custom classes, 294
string arguments, 249
String data types, 97
text in, 73

quoted strings, 141

R
redirection, 141
redirection (<<) operators, 162
redirection symbol (>>), 141
references

described, 81, 492
global namespace, 247–248
pointers and, 486
std Namespace and, 538–539
vs. pointers, 492

remainder operator (%), 98, 106–109
Requirements Statement

additions to, 11
as basis of contract, 8, 18, 27
changes to, 31–33
described, 2, 10–11
developing, 25–27
deviating from, 27
example of, 26–27
final version of, 33–35
missing items, 11

602 Learn to Program with C++

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Index

P:\010Comp\LearnTo\535-1\index.vp
Tuesday, October 08, 2002 8:49:31 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

mistakes in, 11
preliminary, 14–15

response variable, 141, 161–165, 214, 445, 448
result variables, 101, 103–104
return statement, 141, 165, 242–244
return types, 240–244, 302, 550–551
return values, 52, 553–554
runtime errors, 535, 558–572. See also errors

S
Salaried class, 398
SalariedEmployee class, 398–410
ScienceStudent class, 379–383, 434–437
ScienceStudent instantiable class, 335–337
scientific notation, 91
scope

local, 79–80, 517–518
objects, 318, 517
out of, 318
variables, 79–81, 257, 517

scoping operator (::), 314
screen output, 19
selection structures, 137–186

getting input into program, 139–146
If statement, 149–154
If...Else statement, 154–163
sequence structure, 146–149
Switch statement, 160, 163–171

semicolon (;)
class definition, 541–542
missing, 62, 540–541
terminating statements with, 53, 62

sequence structure, 146–149
Set() methods, 361–370

data integrity and, 369–376
member variables and, 359–368

SetAnnualSalary() method, 403
short data types, 85–86, 88
signatures, function

arguments and, 557
changes to, 250

creating overloaded functions with, 555–558
described, 237, 246–247, 269
duplicate, 272, 399, 557–558
overloaded constructors and, 308
return values and, 271–272

sizeof operator, 457, 472
software reuse, 232
source files

compiling into executable files, 45–48
creating, 41–45
described, 41
names, 41

spaces
cin objects and, 144
including, 143
variable names and, 70, 74–75

stack, 516
stack memory, 517
stack space, 516
standard namespace

described, 55
forgetting to reference, 538–539
global scope, 247
namespace statement and, 68
objects in, 141
using, 152

standard output, 53
startup files, 52
startup program, 293–294, 299–300
statements

Case, 166–168, 171
groups of, 153
imperative, 152–153, 162–163, 165
return, 165
semicolon missing, 540–541

Static keyword, 312–313
static variables, 66, 257, 296, 310–318, 324
string arguments, 249, 310–311
string array, 145
String data types, 86, 96–97, 247
string library, 97, 140, 151
string literals, 73–74, 247, 250

Index 603

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Index

P:\010Comp\LearnTo\535-1\index.vp
Tuesday, October 08, 2002 8:49:31 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

String objects, 96–97
string parameters, 249
string values, 162
string variables, 96–97, 141, 168
strings, 141
strlen() function, 157, 161
structures

If, 544–546
loop, 147
While, 567–568

structures, selection, 137–186
getting input into program, 139–146
If statement, 149–154
If...Else statement, 154–163
sequence structure, 146–149
Switch statement, 160, 163–171

Student base class, 423–437
student classes, 328–337, 392
subscripts, 440, 449
subtraction operator (-), 98, 100–101
Swap() function

example, 488–491
using pointers with, 503–508, 521–523

Swap program, 486–493
Switch statement, 160, 163–171
Switch structure, 345, 569–570
symbol table, 537
symbols

described, 537
errors, 536–537
in flowcharts, 29

syntax errors, 540–541. See also errors
Systems Development Life Cycle (SDLC), 9–38

adhering to, 13
Analysis phase, 13–16
Audit and Maintenance phase, 37
changes to, 37
deliverables, 11–12
described, 2, 11
Design phase, 16–35
Development phase, 35–36
Implementation phase, 36–37

phase 1, 12–13
phase 2, 13–16
phase 3, 16–35
phase 4, 35–36
phase 5, 36–37
phase 6, 37
phase overview, 11–12
Preliminary Investigation, 12–13
purpose of, 11
skipping parts of, 13

T
.tds file, 46
technical constraints, 12
templates, 239
termination argument, 190
test expressions, 166–168, 544–546
testing programs, 583–584
throw statement, 581
throwaway variable, 76
tilde (~), 319, 346
time constraints, 12, 17
today variable, 152
toupper() function, 213–214, 234–235
training, 36–37
true conditions, 150
true expressions, 152
True values, 123–128
Try blocks, 578–582
Try-Catch blocks, 578–582
types, data

arrays and, 447
bool, 85, 92–94
char, 85, 95–96
decimal, 86
double, 85–86, 91–92
float, 85–86, 91
fundamental, 84
int, 85–86, 88–90, 167
long, 85–86, 88–90
nonnumeric, 92–97

604 Learn to Program with C++

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Index

P:\010Comp\LearnTo\535-1\index.vp
Tuesday, October 08, 2002 8:49:31 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

numeric, 85–92
overview, 84–85
recommendations for, 86
short, 85–86, 88
string, 96–97
unsigned int, 85–86, 90–91
unsigned long, 85–86, 90–91
unsigned short, 85–86, 88
wchar_t, 85, 95–96

typing errors, 179–180

U
unary operators, 128
undefined symbol error, 536–537
underscore character (_), 70
Unix systems, 42
Unresolved external “_main” referenced error, 292
unsigned data types, 86
unsigned int data types, 85–86, 90–91
unsigned long data types, 85–86, 90–91
unsigned short data types, 85, 88
user input

accepting, 171–185
obtaining, 142
requirements for, 20–27

users
feedback from, 37
observing, 37
requirements, 3
training, 36–37

using declaration, 56
using directive, 56
using statement, 56

V
validation code, 360–363, 369
values

assigning to variables, 69
forgetting to return from functions, 551–553

initializing, 353–354
nonzero, 165
null, 495, 521–522
return, 52, 553–554
returning from functions, 242–244, 554–555
True, 123–128
zero, 165

“vanilla” versions, 193–194
variable counter, 213
variable declaration, 294–295
variable response, 213
variables, 559–561

adding to Grade Calculation Program, 130–134
addresses, 497, 499–501, 505
arrays. See arrays
assigning numeric values to, 87
assigning values to, 69–72
Boolean, 93–94
class, 67
combining declaration/assignment, 72–76
commas and, 87
counter. See counter variables
data types. See data types
declaring, 69, 72–76, 90, 559
declaring on free store, 517–521
decrementing, 110–111
described, 66
global, 76–79, 257, 517
incrementing, 109–110
initializing, 70–72, 301–302, 559–561
lifetime of, 79–81, 257
local, 66–68, 517
For loops, 200–202
member. See variables, member
names, 70, 75–76, 254
not initializing, 559–561
overview, 66–81
parentheses, 69
passing as arguments, 490
passing by reference, 255–257
passing by value, 252–255
passing to functions, 250–252

Index 605

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Index

P:\010Comp\LearnTo\535-1\index.vp
Tuesday, October 08, 2002 8:49:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

pointers to, 509
public access to, 349–350
purpose of, 66
response, 141, 161–162, 164–165
scope of, 79–81, 257, 517
static, 66, 257, 310–318, 324
string, 96–97, 141, 168
swapping values in, 486–493
throwaway, 76
types of, 66–67
using with cout object, 70
values of, 66
vs. parameters, 247

variables, member
constructors and, 305
derived classes, 401–406
described, 67, 290
Get() methods, 359–368
initializing, 301–305
private access, 357–358
public access to, 349–350
public vs. private access, 359–360
Set() methods, 359–368
updating value of, 349–358

Virtual keyword, 421
virtual method, 419–423
visual interface, 30
void functions, 240
void return type, 240, 246, 554–555

W
warnings, compiler, 291–292
wchar_t data types, 85, 95–96
While loops, 205–219

basic, 207–209
described, 229
ending, 567–568
indefinite version, 209–216
overview, 206
string variables, 461–462
syntax, 206–207
terminating, 206–207, 213, 216
vs. Do-While loops, 216, 218, 220
vs. For loops, 205–206

While structures, 567–568
white space, 57
Windows Notepad, 40–43
Windows programs, 30
Windows user interface, 8
work rules, 10–11

Z
zero, division by, 306, 571–572
zero values, 165

606 Learn to Program with C++

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Index

P:\010Comp\LearnTo\535-1\index.vp
Tuesday, October 08, 2002 8:49:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA

McGraw-Hill Book Company Australia Pty. Ltd.

TEL +61-2-9900-1800

FAX +61-2-9878-8881

http://www.mcgraw-hill.com.au

books-it_sydney@mcgraw-hill.com

CANADA

McGraw-Hill Ryerson Ltd.

TEL +905-430-5000

FAX +905-430-5020

http://www.mcgraw-hill.ca

GREECE, MIDDLE EAST, & AFRICA

(Excluding South Africa)

McGraw-Hill Hellas

TEL +30-1-656-0990-3-4

FAX +30-1-654-5525

MEXICO (Also serving Latin America)

McGraw-Hill Interamericana Editores S.A. de C.V.

TEL +525-117-1583

FAX +525-117-1589

http://www.mcgraw-hill.com.mx

fernando_castellanos@mcgraw-hill.com

SINGAPORE (Serving Asia)

McGraw-Hill Book Company

TEL +65-863-1580

FAX +65-862-3354

http://www.mcgraw-hill.com.sg

mghasia@mcgraw-hill.com

SOUTH AFRICA

McGraw-Hill South Africa

TEL +27-11-622-7512

FAX +27-11-622-9045

robyn_swanepoel@mcgraw-hill.com

SPAIN

McGraw-Hill/Interamericana de España, S.A.U.

TEL +34-91-180-3000

FAX +34-91-372-8513

http://www.mcgraw-hill.es

professional@mcgraw-hill.es

UNITED KINGDOM, NORTHERN,

EASTERN, & CENTRAL EUROPE

McGraw-Hill Education Europe

TEL +44-1-628-502500

FAX +44-1-628-770224

http://www.mcgraw-hill.co.uk

computing_neurope@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:

Osborne/McGraw-Hill

TEL +1-510-549-6600

FAX +1-510-883-7600

http://www.osborne.com

omg_international@mcgraw-hill.com

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Index
Blind Folio Index :607

P:\010Comp\LearnTo\535-1\index.vp
Tuesday, October 08, 2002 8:49:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

LearnTo / Learn to Program with C++ / Smiley / 222535-1 / Index
Blind Folio Index :608

EasyReading

]

[The easiest way to learn programming is with Professor John Smiley’s
Learn to Program series from McGraw-Hill/Osborne Media.

For a complete listing of McGraw-Hill/Osborne titles, visit www.osborne.com

Osborne delivers results!

Learn to Program
with Visual Basic .NET
0-07-213177-2
Available Jan. 2002

Learn to Program
with Java
0-07-213189-6
Available Nov. 2001

Learn to Program
with C#
0-07-222261-1
Available May 2002

Learn to Program
with C++
0-07-222535-1
Available Nov. 2002

Available at bookstores and online retailers everywhere.

P:\010Comp\LearnTo\535-1\index.vp
Tuesday, October 08, 2002 8:49:34 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TLFeBOOK

	Learn.To.Program.With.C++
	Cover

	About the Author
	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	Chapter
1
Where Do
I Begin?
	Chapter
2
Getting
Comfortable
with C++
	Chapter
3
Data
	Chapter
4
Selection
Structures
	Chapter
5
Loops
	Chapter
6
Creating Your
Own Functions
	Chapter
7
Creating Objects
from Instantiable
Classes
	Chapter
8
Controlling Access
to the Data in
Your Object
	Chapter
9
Inheritance
	Chapter
10
Arrays
	Chapter
11
Pointers
	Chapter
12
Errors and Error
Handling
	INDEX

