
Pro Java Programming,
Second Edition

BRETT SPELL

Pro Java Programming, Second Edition

Copyright © 2005 by Brett Spell

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-474-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Steve Anglin
Technical Reviewer: Kunal Mittal
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,

Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Assistant Publisher: Grace Wong
Project Manager: Beth Christmas
Copy Edit Manager: Nicole LeClerc
Copy Editor: Kim Wimpsett
Production Manager: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor: Molly Sharp, ContentWorks
Proofreader: April Eddy
Indexer: Broccoli Information Management
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Interior Designer: Van Winkle Design Group
Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de,
or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads section.

To Ashleigh and Kaitlin, from Daddy.

Contents at a Glance

About the Author . xvii

About the Technical Reviewer . xix

Acknowledgments . xxi

Introduction . xxiii

■CHAPTER 1 Going Inside Java . 1

■CHAPTER 2 Designing Libraries, Classes, and Methods . 21

■CHAPTER 3 Using Threads in Your Applications . 89

■CHAPTER 4 Using Collections . 151

■CHAPTER 5 Using Layout Managers . 193

■CHAPTER 6 Using Swing’s JTable . 269

■CHAPTER 7 Using Swing’s JTree . 329

■CHAPTER 8 Adding Cut-and-Paste Functionality . 383

■CHAPTER 9 Adding Drag-and-Drop Functionality . 409

■CHAPTER 10 Printing . 447

■CHAPTER 11 Introducing Java Database Connectivity (JDBC) 477

■CHAPTER 12 Internationalizing Your Applications . 533

■CHAPTER 13 Using XML . 587

■CHAPTER 14 Adding Annotations . 637

■INDEX . 667

v

Contents

About the Author . xvii

About the Technical Reviewer . xix

Acknowledgments . xxi

Introduction . xxiii

■CHAPTER 1 Going Inside Java . 1

Java’s Architecture . 2
The Java Virtual Machine . 3

Different JVM Implementations . 4

The JVM As a Runtime Execution Environment 5

The Runtime Data Areas of the JVM . 6

The Garbage Collector . 7

The JVM: Loading, Linking, and Initializing . 8

Bytecode Execution . 11

The Java Class File Format . 13

The Java Programming Language and APIs . 14

The Java Programming Language . 14

The Java APIs . 14

Java Utility Tools: Making the Most of the JVM . 15

The Java Compiler . 15

The Java Interpreter . 16

The Java Class Disassembler . 17

Summary . 18

■CHAPTER 2 Designing Libraries, Classes, and Methods 21

Library Design . 21

Package Design . 22

Class Design . 23

Loose Coupling . 23

Strong Cohesion . 38

Encapsulation . 42

Immutable Objects and Fields . 45

Overriding Object Methods . 46 vii

Method Design . 53

Passing Parameters . 54

Method Naming . 57

Minimizing Duplication of Code . 58

Variable Arguments . 60

Using Exceptions . 62

Assertions . 81

Enumerations . 84

Summary . 87

■CHAPTER 3 Using Threads in Your Applications . 89

Threading in Java . 90

Creating Threads . 92

Disadvantages of Using Threads . 94

Slow Initial Startup . 94

Resource Utilization . 94

Increased Complexity . 94

Thread Management . 96

Synchronizing the Use of Shared Resources . 101

Nested Calls to Synchronized Methods and Code Blocks 104

Synchronized Blocks vs. Methods . 104

Deadlocks . 105

Thread Priorities . 109

Daemon Threads . 110

Adding Threads to an Application . 111

Controlling Threads . 120

Starting a Thread . 123

Making a Thread “Sleep” . 124

Suspending a Thread . 128

Resuming a Thread . 131

Stopping a Thread . 132

Interrupting a Thread . 134

Completing DownloadManager . 136

Deprecated Methods in Thread . 139

DownloadFiles . 140

ThreadGroup . 143

Uncaught Exceptions . 146

Voluntarily Relinquishing the Processor . 147

Concurrency Utilities . 149

Summary . 150

■CONTENTSviii

■CHAPTER 4 Using Collections . 151

The Evolution of Collections . 154

Java 2/Java 1.2 . 154

Java 5/Java 1.5 . 154

Collection Classes and Interfaces . 155

Collection . 155

List . 160

ListIterator . 165

ArrayList . 165

LinkedList . 167

Vector . 168

Stack . 168

Set . 168

HashSet . 172

Constructors . 172

LinkedHashSet . 173

TreeSet . 173

EnumSet . 177

Map . 178

HashMap . 181

LinkedHashMap . 182

TreeMap . 182

EnumMap . 182

IdentityHashMap . 182

WeakHashMap . 183

ConcurrentHashMap . 184

Queue . 184

PriorityQueue . 185

PriorityBlockingQueue . 185

ArrayBlockingQueue . 186

LinkedBlockingQueue . 186

ConcurrentLinkedQueue . 187

SynchronousQueue . 187

DelayQueue . 187

Tips on Using Collections . 188

Shallow vs. Deep Copies . 189

Referencing an Interface Instead of an Implementation 190

Summary . 191

■CONTENTS ix

■CHAPTER 5 Using Layout Managers . 193

Layout Managers and GUI Construction . 193

CardLayout . 196

Constructing a CardLayout . 196

Child Component Sizes . 197

Child Component Locations . 197

Resizing Behavior . 197

Container Size . 197

FlowLayout . 198

Constructing a FlowLayout . 198

Constraints . 198

Child Component Sizes . 198

Child Component Locations . 198

Resizing Behavior . 200

Container Size . 201

GridLayout . 202

Constructing a GridLayout . 203

Constraints . 205

Child Component Sizes . 205

Child Component Locations . 206

Resizing Behavior . 206

Container Size . 207

BorderLayout . 207

Constructing a BorderLayout . 209

Constraints . 209

Child Component Sizes . 209

Child Component Locations . 210

Resizing Behavior . 210

Container Size . 211

GridBagLayout . 211

Constructing a GridBagLayout . 215

Constraints . 215

Child Component Sizes . 239

Child Component Locations . 240

Resizing Behavior . 241

Container Size . 241

BoxLayout . 241

Alignment Values, Ascents, and Descents . 242

Constructing a BoxLayout . 246

Constraints . 247

Child Component Sizes . 247

■CONTENTSx

Child Component Locations . 249

Resizing Behavior . 249

Container Size . 249

Swing’s Box Class . 249

Guidelines for Using Layout Managers . 253

Combining Layout Managers . 253

Absolute Positioning Without a Layout Manager 256

Invisible Components . 256

Specifying an Index When Adding a Component 256

Creating Your Own Layout Manager . 259

LayoutManager2 Methods . 260

LayoutManager Methods . 263

Using a Custom Layout Manager . 267

Summary . 267

■CHAPTER 6 Using Swing’s JTable . 269

The Data Model . 270

Using JScrollPane with JTable . 275

JTable’s Column-Oriented Design . 278

Table Resizing . 278

Column Resizing . 279

AUTO_RESIZE_OFF . 280

AUTO_RESIZE_NEXT_COLUMN . 280

AUTO_RESIZE_SUBSEQUENT_COLUMNS . 280

AUTO_RESIZE_LAST_COLUMN . 281

AUTO_RESIZE_ALL_COLUMNS . 281

Cell Rendering . 282

Creating Custom Renderers . 282

JTable’s Default Renderers . 288

Editing Table Cells . 290

Cell Editors . 291

Table Selection Settings . 296

Combining Row, Column, and Cell Selection Modes 296

List Selection Modes . 297

Selection Mode Combinations . 298

Setting Selections Programmatically . 301

Table Headers . 302

Drawing Headers . 302

Tooltips and Renderer Reuse . 304

JTableHeader . 306

Creating Row Headers . 311

■CONTENTS xi

Sorting Table Rows . 316

Dynamic Sort Column Selection . 318

Using Comparable . 321

Adding and Removing Table Rows . 323

Displaying a Particular Table Row . 326

Summary . 327

■CHAPTER 7 Using Swing’s JTree . 329

JTree Terminology . 330

Creating a JTree . 331

TreeModel . 335

Creating Tree Nodes . 336

TreePath . 349

TreeModelListener . 351

treeNodesChanged() . 351

treeNodesInserted() . 352

treeNodesRemoved() . 352

treeStructureChanged() . 352

TreeModelEvent . 352

getTreePath(), getPath() . 352

getChildren() . 352

getChildIndices() . 353

DefaultTreeModel . 353

Rendering Tree Nodes . 355

Creating a Custom Renderer . 357

Editing Tree Nodes . 362

DefaultTreeCellEditor and DefaultCellEditor 364

Creating a Custom Editor . 366

Limiting Edits to Certain Nodes . 368

Customizing Branch Node Handles . 369

Line Style with the Java/Metal Look and Feel . 371

Node Selection . 372

Selection Modes . 373

TreeSelectionListener . 376

TreeSelectionEvent . 376

Selection Methods in JTree . 377

Collapsing and Expanding Nodes . 379

Detecting Collapses and Expansions . 380

Summary . 382

■CONTENTSxii

■CHAPTER 8 Adding Cut-and-Paste Functionality . 383

Clipboards: Where Cut and Copied Data Is Stored 384

Using the System Clipboard . 384

Using Clipboard . 385

Using Transferable . 385

Using ClipboardOwner . 387

Using DataFlavor . 388

Storing and Retrieving Serialized Java Objects . 390

Transferring Between Java And Native Applications 402

Writing Arbitrary Binary Data . 403

Summary . 408

■CHAPTER 9 Adding Drag-and-Drop Functionality . 409

Introducing Drag-and-Drop Operation Types . 410

Using the Predefined Cursors . 410

Performing File Selection Drops from Native Applications 411

Adding Drop Support . 411

Adding Drag Support . 421

Performing Local Transfers . 433

Introducing Local Object Data Flavors . 433

Handling the Reference Transfer . 435

Performing Link/Reference Operations . 437

Transferring Between Java and Native Applications 438

Transferring Text Data . 440

Transferring Text Between Java and Native Applications 440

Creating a New Transferable for Text Data . 443

Summary . 445

■CHAPTER 10 Printing . 447

Locating Print Services . 448

DocFlavor . 449

Choosing the Right Printer . 452

AttributeSet . 453

Attribute . 453

Attribute Roles . 453

Interfaces and Implementations . 454

Printer Selection via User Interface . 457

Creating a Print Job . 458

■CONTENTS xiii

Defining the Document to Print . 459

Initiating Printing . 459

Monitoring and Controlling a Print Job . 460

Monitoring Attribute Changes . 460

Canceling a Print Job . 462

Introducing Service-Formatted Printing . 462

Support Classes . 464

Sample Printing Application . 468

Summary . 476

■CHAPTER 11 Introducing Java Database Connectivity (JDBC) 477

SQL Standards and JDBC Versions . 479

JDBC Drivers . 479

Driver Types . 480

Obtaining a Database Connection . 482

JDBC URL Formats . 483

Connection . 484

Obtaining Connections from a DataSource
(2.x Optional Package) . 484

DatabaseMetaData . 487

Statement . 496

executeUpdate() . 496

executeQuery() . 497

execute() . 497

addBatch(), executeBatch() . 497

PreparedStatement . 498

CallableStatement . 500

ParameterMetaData . 502

JDBC Data Types . 503

ARRAY . 504

BLOB, CLOB . 505

DATALINK . 505

DATE, TIME, TIMESTAMP . 505

DISTINCT . 506

STRUCT . 506

REF . 507

JAVA_OBJECT . 507

OTHER . 507

ResultSet . 507

Forward-Only vs. Scrollable (Scrollability Type) 508

Read-Only vs. Updatable (Concurrency Mode) 508

■CONTENTSxiv

Update Sensitivity . 508

Holdability . 509

Selecting ResultSet Properties . 509

Using ResultSet . 510

ResultSetMetaData . 515

RowSet . 515

Transactions . 517

Savepoints . 520

Read-Only Transactions . 521

Distributed Transactions . 523

Connection Pooling . 524

Pooling Properties . 525

Errors and Warnings . 526

SQLException . 526

SQLWarning . 529

Debugging . 530

Releasing Resources . 531

Summary . 531

■CHAPTER 12 Internationalizing Your Applications . 533

Locales . 534

Resource Bundles . 536

Creating a ResourceBundle . 538

Locale-Sensitive Formatting and Parsing . 542

Formatting and Parsing Dates . 543

Formatting and Parsing Times . 546

Formatting and Parsing Numeric Values . 546

MessageFormat . 548

Specifying a Locale . 551

Specifying a Format Object . 552

ChoiceFormat . 553

Parsing Text Data . 556

BreakIterator . 556

Text Comparisons and Sorting . 562

Collator Strength . 563

Decomposition Mode . 564

Internationalizing an Application . 565

Changing the Locale at Runtime . 577

native2ascii . 584

Summary . 585

■CONTENTS xv

■CHAPTER 13 Using XML . 587

XML vs. HTML . 588

Describing the Data . 590

Well-Formed Documents . 590

When and Why to Use XML . 594

Creating an XML Document . 595

Root Elements . 596

Components of an XML Document . 596

Parsing and Validation . 597

Parsing with the DOM Implementation in JAXP 598

Traversing a Document with DOM . 615

Editing Documents with DOM . 621

Transforming XML Documents . 627

Performing an XSL Transformation . 629

Summary . 635

■CHAPTER 14 Adding Annotations . 637

Using Annotations . 639

Override . 640

SuppressWarnings . 642

Creating Custom Annotations . 647

Target . 649

Retention . 650

Documented . 652

Inherited . 653

Replacing External Metadata . 654

Using the Annotation Processing Tool . 658

AnnotationProcessorFactory . 658

Declaration . 661

Generating Side Files . 664

Summary . 666

■INDEX . 667

■CONTENTSxvi

About the Author

■BRETT SPELL has been programming professionally in Java since
1996 and is a Sun-certified Java programmer, developer, and archi-
tect. Brett is a regular contributor to Java Pro magazine and former
columnist on design patterns for the Intel Developer Services web
site. He currently lives in Plano, Texas, with his wife, Shari, and
daughters, Ashleigh and Kaitlin.

xvii

About the Technical Reviewer

■KUNAL MITTAL is a consultant specializing in Java, J2EE, web services,
and SOA technologies. He has coauthored and contributed to several
books on these topics. He’s currently working on a portal project for
Sony Pictures Entertainment and writing a book about Apache Bee-
hive that will be published in the fall of 2005. For more information,
visit his web site (http://www.soaconsultant.com).

xix

Acknowledgments

I’ve learned many things in the process of writing this book, one of which is just how many
people it takes to get a title published. Although I didn’t work directly with each of them,
I certainly appreciate their combined efforts. I did have the pleasure of interacting with
Steve Anglin, Beth Christmas, Gary Cornell, Kunal Mittal, Katie Stence, and Kim Wimpsett,
and I’d like to extend a special thank you to each of them.

xxi

Introduction

With so many Java books already on the market, what’s the point in writing another one?
Well, for one thing, what we call Java is so large and complex that there are still areas of it that
haven’t been written about extensively, even some that are commonly used or needed by Java
developers. In addition, you’ll need to be familiar with many different areas to develop a large
Java application, and that’s what this book is intended to help you do. If this book’s chapters
have a common theme, it’s that each of them represents an area you’re likely to need to be
familiar with when working as a professional Java developer. Although some of the chapters
are related to technology traditionally used with the Java 2 Standard Edition (J2SE), most of
them are at least equally relevant to the Java 2 Enterprise Edition (J2EE) and the development
of web applications.

This book doesn’t assume you have a great deal of Java knowledge, but it also isn’t intended
for nonprogrammers. You’ll find that it’s more useful if you already have some background with
software development and a basic understanding of object-oriented programming concepts.
Also, given the variety of topics covered, this book isn’t intended to be a definitive reference to
those topics. Areas such as XML, threading, and database programming are much too complex
to be fully covered in a single chapter, but you’ll find that each chapter provides enough infor-
mation to allow you to effectively develop Java code related to the topic covered.

Keep in mind too that some of the capabilities described within this book were introduced
in Java 1.5 (also known as Java 5), so you won’t be able to use those features with an earlier
version. However, I’ve attempted to ensure that those aspects of Java that are specific to newer
releases are clearly identified as such, so I hope you won’t be surprised or disappointed if you
try to use those features with an older version.

If you have questions or comments, feel free to e-mail me at tbspell@verizon.net. In the
meantime, I hope you find the book informative and valuable.

xxiii

Going Inside Java

According to Sun Microsystems, Java is “a simple, robust, object-oriented, platform-
independent, multithreaded, dynamic, general-purpose programming environment.” This
relatively simple definition has allowed Java to grow and expand into so many niches that it’s
almost unrecognizable from how it first started. Today, you can find Java just about anywhere
you can find a microprocessor. It’s used in the largest of enterprises to the smallest of devices,
and it’s used in devices from humble cell phones to huge, lumbering, supercooled mainframes.
For Java to support such a wide range of environments, an almost bewildering array of appli-
cation programming interfaces (APIs) and versions have been developed, though they’re built
around a common set of core classes.

Despite this, in order to become a good Java programmer, it’s important to be able to do
the basics well. Being able to produce a highly complex user interface is all very well, but if
your code is bloated, memory hungry, and inefficient, your users won’t be happy. This book
isn’t about the huge array of development options available to you as a Java developer but
about how to do the common tasks that as a Java developer you’ll encounter again and again.
Over the course of the book, I’ll concentrate on some of the core language features, such as
threading and memory management, that can really make the difference in a professional-
quality Java application.

At the core of Java’s adaptability, and hence popularity, is that it’s platform-independent.
Its “write once, run anywhere” (WORA) capability stems from the way Java itself operates and
in particular from the use of an abstract execution environment that allows Java code to be
separated from the underlying operating system. Whereas the rest of this book will be about
exploring the programming language and APIs of Java, in this chapter you’ll look at the foun-
dations of how Java really operates under the hood, with the Java Virtual Machine (JVM).
Understanding the inner workings of Java will give you as a programmer a better understand-
ing of the language, which should make you a better programmer.

In this chapter, I’ll cover the following:

• The various components of the Java platform

• How the JVM allows Java to be platform-independent

• What happens when you run a Java program

• What a Java class file really contains

• The key tools needed to work with a JVM

First, then, let’s take apart what Java actually is.
1

C H A P T E R 1

■ ■ ■

CHAPTER 1 ■ GOING INSIDE JAVA2

Java’s Architecture
It’s easy to think of Java as merely the programming language with which you develop your
applications—writing source files and compiling them into bytecode. However, Java as a pro-
gramming language is just one component of Java, and it’s the underlying architecture that
gives Java many of its advantages, including platform independence.

The complete Java architecture is actually the combination of four components:

• The Java programming language

• The Java class file format

• The Java APIs

• The JVM

So, when you develop in Java, you’re writing with the Java programming language, which
is then compiled into Java class files, which in turn are executed in the JVM.

The combination of the JVM and the core classes form the Java platform, also known as
the Java Runtime Environment (JRE), which sits on whatever operating system is being used.
Figure 1-1 shows how different aspects of Java function relative to one another, to your appli-
cation, and to the operating system.

Figure 1-1. An overview of Java’s role

The Java API is prewritten code organized into packages of similar topics. The Java API is
divided into three main platforms:

Your Application

Java Programming Language

Java Class Files

Java Runtime Environment

Java API

Java Virtual Machine

Operating System (Windows, Unix, etc.)

• Java 2 Platform, Standard Edition (J2SE): This platform contains the core Java classes
and the GUI classes.

• Java 2 Platform, Enterprise Edition (J2EE): This package contains the classes and
interfaces for developing web-based applications; it contains the servlet, JavaServer
page, and Enterprise JavaBean classes, among others.

• Java 2 Platform, Micro Edition (J2ME): In this package, Java goes back to its roots. It
provides an optimized runtime environment for consumer products such as pagers,
cellular phones, and car navigation systems.

The Java Virtual Machine
Before I cover the various aspects of writing powerful Java applications, in this section I’ll
spend some time discussing the engine that makes this possible. That engine is the JVM,
which is an abstract computing machine that interprets compiled Java programs.

With other programming languages such as C or C++, a compiler, which is specific to the
processor and often also the operating system, compiles the source code into an executable.
This executable is then self-sufficient and can be run on the machine.

One drawback of this is the lack of portability: code compiled under one operating system
can’t be run on another operating system but must be recompiled on every different system
on which it is to run. In addition, because of vendor-specific compiler features, code compiled
under a certain operating system for a certain processor family (for example, Intel x82, SPARC,
or Alpha) probably won’t run on a different type of processor that runs on the same operating
system. For example, C code compiled on an Alpha workstation running Windows NT will
probably not work on an Intel PC that’s also running NT.

This problem was particularly serious for the people who began writing applications for
the Internet. Their applications were intended for people running many different operating
systems on many different platforms through various different browsers. The only way to
resolve this problem was to develop a platform-independent language.

In the early 1990s, developers at Sun Microsystems were working on a platform-
independent language for use in consumer electronic devices, which unfortunately was
somewhat ahead of its time and was therefore shelved. With the advent of the Internet, these
developers saw a much greater potential for the language they had created and therefore Java
was born.

The key to the portability of the Java language is that the output of the Java compiler isn’t
standard executable code. Instead, the Java compiler generates an optimized set of instruc-
tions called a bytecode program. Bytecodes are sequences of bytes that follow a documented
pattern, and I’ll cover them in more detail later. The bytecode program is interpreted by the
runtime system, otherwise known as the JVM, and a bytecode program generated on one plat-
form can be run on any other platform that has a JVM installed.

This is generally true even though some specifics of the JVM may differ from platform to
platform. In other words, a Java program that’s compiled on a Unix workstation can be run on
a PC or a Mac. The source code is written in a standard way in the Java language and compiled
into a bytecode program, and each JVM interprets the bytecode into native calls specific to its
platform (that is, into a language that the specific processor can understand). This abstraction
is the way various operating systems achieve such operations as printing, accessing files, and
handling hardware in a consistent manner across platforms.

CHAPTER 1 ■ GOING INSIDE JAVA 3

One feature (and some would say disadvantage) of bytecode is that it’s not executed directly
by the processor of the machine on which it’s run. The bytecode program is run through the
JVM, which interprets the bytecode, and that’s why Java is referred to as an interpreted language.
Being an interpreted language is what allows Java to be platform-independent, but this also
results in slower performance compared to a standard executable-type code. However, since
the release of the Java Software Development Kit (JSDK) version 1.3, the speed difference
between Java programs and those written using other programming languages has been
essentially eliminated.

Table 1-1 lists compiled vs. interpreted languages.

Table 1-1. Compiled vs. Interpreted Languages

Language Compiled or Interpreted? Portable Code? Minimal Execution Overhead?

C++ Compiled No Yes

Java Interpreted Yes No

It’s also worth noting that Java includes an API for interfacing with native applications
(those written in non-Java languages such as C and C++). This API is the Java Native Interface
(JNI) API and allows developers to call code written in a non-Java language from Java code,
and vice versa. JNI accomplishes two things, one of which is to allow your application to take
advantage of operating system–specific features that wouldn’t be available directly through
Java. More to the point, JNI allows you to use a compiled language such as C or C++ for func-
tions used by your Java application where performance is critical. Using JNI does, however,
negate some of the platform independence of Java, as the native code will suffer from platform-
dependence, and therefore the Java code will suffer indirectly as well if it relies on the native
code to provide some functionality.

For machine portability to work, the JVM must be fairly tightly defined, and that’s
achieved by the JVM specification. That specification, developed and controlled by Sun
Microsystems, dictates the format of the bytecode recognized by the JVM as well as features
and functionality that must be implemented by the JVM. The JVM specification is what
ensures the platform independence of the Java language; you can find it on the Sun web site
at http://java.sun.com/j2se/1.5.0/docs/index.html.

Therefore, when I talk about a JVM, I can in fact mean three different things:

• An abstract specification

• A concrete implementation of the specification

• A runtime execution environment

Different JVM Implementations
The Sun web site lists companies that are Java technology licensees; these companies support
Java on their particular computer and operating system platforms. The companies include IBM,
Data General, Sequent Computer Systems, Hewlett-Packard, Silicon Graphics, Blackdown.com,

CHAPTER 1 ■ GOING INSIDE JAVA4

Apple, Novell, Compaq, SCO, Wind River Systems, and Digital Equipment Corporation. These
companies embed a version of the JVM into their web browsers, servers, and operating systems.

Why do different versions of the JVM exist? Remember, the JVM specification sets down
the required functionality for a JVM but doesn’t mandate how that functionality should be
implemented. In an attempt to maximize the use of Java, Sun gave third parties some flexibil-
ity to be creative with the platform. The important thing is that whatever the implementation,
a JVM must adhere to the guidelines defined by the Java specification. In terms of platform
independence, this means a JVM must be able to interpret bytecode that’s correctly generated
on any other platform.

The JVM As a Runtime Execution Environment
Every time you run a Java application, you’re in fact running your application within an instance
of the JVM, and each separate application you run will have its own JVM instance. So far you’ve
seen that Java uses an interpreted form of source code called bytecode, but how do the instruc-
tions you code in the Java programming language get translated into instructions that the
underlying OS can understand?

The JVM specification defines an abstract internal architecture for this process. You’ll
learn about the components of this internal architecture in a moment, but at a high level,
class files (compiled Java files have a .class extension and are referred to as class files) are
loaded into the JVM where they’re then executed by an execution engine. When executing the
bytecodes, the JVM interacts with the underlying OS through means of native methods, and
it’s the implementation of those native methods that tie a particular JVM implementation to
a particular platform (see Figure 1-2).

Figure 1-2. Role of the JVM

In addition to the previous components, a JVM also needs memory in order to store tem-
porary data related to code execution, such as local variables, which method is executing, and
so on. That data is stored within the runtime data areas of the JVM, as explained next.

JVM
Class Loader

Bytecodes

Execution Engine

Your Class
Files

Native Methods

Operating System (Windows, Unix, etc.)

Java API
Class Files

CHAPTER 1 ■ GOING INSIDE JAVA 5

The Runtime Data Areas of the JVM
Although the individual implementations may differ slightly from platform to platform, every
JVM must supply the runtime components shown in Figure 1-3.

Figure 1-3. Runtime data area

The Heap
The heap is a region of free memory that’s often used for dynamic or temporary memory allo-
cation. The heap is the runtime data area that provides memory for class and array objects.
When class or array objects are created in Java, the memory they require is allocated from the
heap, which is created when the JVM starts. Heap memory is reclaimed when references to
an object or array no longer exist by an automatic storage management system known as the
garbage collection, which you’ll learn more about later.

The JVM specification doesn’t dictate how the heap is implemented; that’s left up to the
creativity of the individual implementations of the JVM. The size of the heap may be constant,
or it may be allowed to grow as needed or shrink if the current size is unnecessarily large. The
programmer may be allowed to specify the initial size of the heap; for example, on the Win32
and Solaris systems, you can do this with the –mx command-line option. Heap memory doesn’t
need to be contiguous. If the heap runs out of memory and additional memory can’t be allo-
cated to it, the system will generate an OutOfMemoryError exception.

The Stack
A Java stack frame stores the state of method invocations. The stack frame stores data and par-
tial results and includes the method’s execution environment, any local variables used for the
method invocation, and the method’s operand stack. The operand stack stores the parameters
and return values for most bytecode instructions. The execution environment contains point-
ers to various aspects of the method invocation.

Class Loader

Method
Area

Heap Stack Registers Constant
Pool

Runtime Data Areas

Execution Engine

CHAPTER 1 ■ GOING INSIDE JAVA6

Frames are the components that make up the JVM stack. They store partial results, data,
and return values for methods. They also perform dynamic linking and issue runtime excep-
tions. A frame is created when a method is invoked and destroyed when the method exits for
any reason. A frame consists of an array of local variables, an operand stack, and a reference to
the runtime constant pool of the class of the current method.

When the JVM runs Java code, only one frame, corresponding to the currently executing
method, is active at any one time. This is referred to as the current frame. The method it repre-
sents is the current method, and the class that includes that method is the current class. When
a thread invokes a method (each thread has its own stack), the JVM creates a new frame,
which becomes the current frame, and pushes it onto the stack for that thread.

As with the heap, the JVM specification leaves it up to the specific implementation of
the JVM how the stack frames are implemented. The stacks either can be of fixed size or can
expand or contract in size as needed. The programmer may be given control over the initial
size of the stack and its maximum and minimum sizes. Again, on Win32 and Solaris, this is
possible through the command-line options –ss and –oss. If a computation requires a larger
stack than is possible, a StackOverflowError exception is generated.

Method Area
The method area is a common storage area shared among all JVM threads. It’s used to store
such things as the runtime constant pool, method data, field data, and bytecode for methods
and constructors. The JVM specification details only the general features of the method area
but doesn’t mandate the location of the area or dictate how the area is implemented. The
method area may be a fixed size, or it may be allowed to grow or shrink. The programmer
may be allowed to specify the initial size of the method area, and the area doesn’t need to be
contiguous.

Registers
The registers maintained by the JVM are similar to registers on other computer systems. They
reflect the current state of the machine and are updated as bytecode is executed. The primary
register is the program counter (the pc register) that indicates the address of the JVM instruc-
tion that’s currently being executed. If the method currently being executed is native (written in
a language other than Java), the value of the pc register is undefined. Other registers in the JVM
include a pointer to the execution environment of the current method, a pointer to the first
local variable of the currently executing method, and a pointer to the top of the operand stack.

Runtime Constant Pool
The runtime constant pool is similar to a symbol table used in other programming languages.
As the name suggests, it contains constants including numeric literals and field constants. The
memory for each runtime constant pool is allocated from the method area, and the runtime
constant pool is constructed when the JVM loads the class file for a class or interface.

The Garbage Collector
Older languages such as C require the programmer to explicitly allocate and release memory.
Memory is allocated when needed and released when no longer needed by the application.

CHAPTER 1 ■ GOING INSIDE JAVA 7

Unfortunately, this approach often causes “memory leaks,” where memory is allocated and for
one reason or another never released. When that takes place repeatedly, the application will
eventually run out of memory and terminate abnormally or at least no longer be able to func-
tion. In contrast, Java never requires the programmer to explicitly allocate or release memory,
preventing many of the problems that can occur. Instead, Java automatically allocates mem-
ory when you create an object, and Java will release the memory when references to the object
no longer exist.

Java uses what’s known as a garbage collector to monitor a Java program while it runs and
automatically releases memory used by objects that are no longer in use. Java uses a series of
soft pointers to keep track of object references and an object table to map those soft pointers
to the object references. The soft pointers are so named because they don’t point directly to
the object but instead point to the object references themselves. Using soft pointers allows
Java’s garbage collector to run in the background using a separate thread, and it can examine
one object at a time. The garbage collector can mark, remove, move, or examine objects by
changing the object table entries.

The garbage collector runs on its own, and explicit garbage collector requests are generally
not necessary. The garbage collector performs its checking of object references sporadically
during the execution of a program, and when no references to an object exist, the memory
allocated to that object can be reclaimed. You can request that the garbage collector run by
invoking the static gc() method in the System class, though there’s no guarantee that a given
object will be garbage collected at any given time.

The JVM: Loading, Linking, and Initializing
For the JVM to interpret a Java bytecode, it must perform three steps for the required classes
and interfaces:

1. Loading: When the JVM loads a class, it finds a binary representation of a class or
interface and creates a Class object from that binary representation (usually a class
file created by a Java compiler). A Class object encapsulates the runtime state of a
class or interface.

2. Linking: Linking is the process of taking the loaded class or interface and combining it
with the runtime of the JVM, preparing it for execution.

3. Initializing: Initialization occurs when the JVM invokes the class or interface initializa-
tion method.

The First Step
The first thing the JVM does when a stand-alone Java application starts is create an additional
Class object representing the Java class that contains the public static void main(String[]
args) method. The JVM links and initializes this class and invokes the main() method, and
that method drives the loading, linking, and initializing of any additional classes and inter-
faces that are referenced.

CHAPTER 1 ■ GOING INSIDE JAVA8

Loading
The loading process itself is carried out by a class loader, which is an object that’s a subclass of
ClassLoader; the class loader will do some of its own verification checks on the class or inter-
face it’s loading. An exception is thrown if the binary data representing the compiled class or
interface is malformed, if the class or interface uses an unsupported version of the class file
format, if the class loader couldn’t find the definition of the class or interface, or if circularity
exists. Class circularity occurs if a class or interface would be its own superclass.

Two general types of class loader exist: the one supplied by the JVM, which is called the
bootstrap class loader, and user-defined class loaders. User-defined class loaders are always
subclasses of Java’s ClassLoader class and can be used to create Class objects from nonstan-
dard, user-defined sources, such as for security purposes. For instance, the Class object could
be extracted from an encrypted file. A loader may delegate part or all of the loading process to
another loader, but the loader that ultimately creates the Class object is referred to as the
defining loader. The loader that begins the loading process is known as the initiating loader.

The loading process using the default bootstrap loader is as follows: The loader first deter-
mines if it has already been recorded as the initiating loader of a class corresponding to the
desired class file. If it has, the Class object already exists, and the loader stops. (You should
note here that loading a class isn’t the same as creating an instance of it; this step merely
makes the class available to the JVM.) If it’s not already loaded, the loader searches for the
class file and, if found, will create the Class object from that file. If the class file isn’t found,
a NoClassDefFounderror exception is generated.

When a user-defined class loader is used, the process is somewhat different. As with the
bootstrap loader, the user-defined loader first determines if it has already been recorded as
the initiating loader of a class file corresponding to the desired class file. If it has, the Class
object already exists and the loader stops, but if it doesn’t already exist, the user-defined
loader invokes the loadClass() method. The return value of that method is the desired class
file, and the loadClass() method assembles the array of bytes representing the class into a
ClassFile structure. It then calls the defineClass() method, which creates a Class object from
the ClassFile structure; alternatively, the loadClass() method can simply delegate the load-
ing to another class loader.

Linking
The first step in the linking process is verifying the class file to be linked.

Java Class File Verification

Because the JVM is completely separate from the Java compiler, the JVM, which interprets the
class file, has no guarantee that the class file is properly formed or that it was even generated
by a Java compiler. Another problem arises with inheritance and class compatibility. If a given
class file represents a class that inherits from a superclass represented by another class file,
the JVM must make sure the subclass class file is compatible with the superclass class file.

The JVM verifies that each class file satisfies the constraints placed on it by the Java
language specification, although the Java class verifier is independent of the Java language.
Programs written in certain other languages can also be compiled into the class file format
and (if everything has been done correctly) pass the verification process.

CHAPTER 1 ■ GOING INSIDE JAVA 9

The verification process itself happens in four steps:

1. In the first step, the class file is loaded by the JVM and checked to make sure it adheres
to the basic format of a class file. The class file must be the correct length. The magic
number (which identifies a class file as really being a class) is checked. The constant
pool must not contain any unrecognizable information, and the length of each attrib-
ute is checked to be sure it’s the correct length.

2. The second step in the verification process occurs when the file is linked. The actions
performed in this step include ensuring that the final keyword constraint is preserved.
This means final classes can’t be subclassed and final methods can’t be overridden.
The constant pool is checked to make sure the elements don’t violate any language
constraints. All field and method references in the constant pool are validated, and
every class except the Object class is checked to see if it has a direct superclass.

3. The third verification step also occurs during the linking phase. Every method refer-
enced in the class file is checked to ensure it adheres to the constraints placed on
methods by the Java language. The methods must be invoked with the correct number
and type of arguments. The operand stack must always be the same size and contain
the same types of values. Local variables must contain an appropriate value before
they’re accessed. Fields must be assigned values of the proper type only.

4. The final step in the verification looks at events that occur the first time a method
is invoked and ensures that everything happens according to the specification. The
checks include ensuring that a referenced field or method exists in a given class, veri-
fying that the referenced field or method has the proper descriptor, and ensuring that
a method has access to the referenced method or field when it executes.

Preparation

Once the class file has been verified, the JVM prepares the class for initialization by allocating
memory space for the class variables and also sets them to the default initial values. These are
the standard default values, such as 0 for int, false for Boolean, and so on. These values will
be set to their program-dependent defaults during the initialization phase.

Resolution

At this (optional) step, the JVM resolves the symbolic references in the runtime constant pool
into concrete values.

Initialization
Once the linking process is complete, any static fields and static initializers are invoked. Sta-
tic fields have values that are accessible even when there are no instances of the class; static
initializers provide for static initialization that can’t be expressed in a single expression. All
these initializers for a type are collected by the JVM into a special method. For example, the
collected initializers for a class become the initialization method <clinit>.

However, when initializing a class, not only must the class initialization method be
invoked by the JVM (only the JVM can call it) but in addition any superclasses must also be

CHAPTER 1 ■ GOING INSIDE JAVA10

initialized (which also involves the invocation of <clinit> for those classes). As a result, the
first class that will always be initialized is Object. The class containing the main() method for
an application will always be initialized.

Bytecode Execution
The bytecode from a class file consists of a series of 1-byte opcode instructions specifying an
operation to be performed. Each opcode is followed by zero or more operands, which supply
arguments or data used by that operation. The JVM interpreter essentially uses a do...while
loop that loads each opcode and any associated operands and executes the action represented
by the opcode. The bytecode is translated into an action according to the JVM instruction set,
which maps bytecode to operations represented by the bytecode as specified by the JVM speci-
fications. This process continues until all the opcode has been interpreted.

For reasons of compactness (at the expense of some performance), JVM opcodes consist
of single-byte entities. Using 1-byte opcode minimizes the required size of the JVM instruction
set, and data that requires a size larger than 1 byte is constructed at runtime from one or more
single-byte entities.

The first set of instructions in the JVM instruction set involves basic operations performed
on the primitive data types and on objects. The nomenclature used is generally the data type
followed by the operation. For instance, the iload instruction (iload is merely a mnemonic rep-
resentation of the actual instruction) represents a local variable that’s an int being loaded onto
the operand stack. The fload instruction is for loading a local variable that’s a float onto the
operand stack, and so on. There are a series of instructions to store a value of a certain data
type from the operand stack into a local variable, to load a constant onto the operand stack,
and to gain access to more than one local variable.

The second set in the instruction set concerns arithmetic operations, and the arithmetic
operation generally involves two values currently on the operand stack, with the result of
the operation being pushed onto the operand stack. The nomenclature is the same as before;
for instance, the iadd operation is for adding two integer values, and the dadd operation is for
adding two double values.

Similarly, some operations represent basic mathematical functions (add, subtract, multi-
ply, and divide), some represent logical operations (bitwise OR, bitwise AND, and bitwise
NOT), and some specialized functions including remainder, negate, shift, increment, and
comparison.

The JVM adheres to the IEEE 754 standards when it comes to things such as floating-
point number operations and rounding toward zero. Some integer operations—divide by zero,
for instance—can throw an ArithmeticException, while the floating-point operators don’t
throw runtime exceptions but instead will return a NaN (“Not a Number”—the result is an
invalid mathematical operation) if an overflow condition occurs.

The JVM instruction set includes operations for converting between different types. The
JVM directly supports widening conversions (for instance, float to double). The naming con-
vention is the first type, then 2, and then the second type. For example, the instruction i2l is
for conversion of an int to a long. The instruction set also includes some narrowing opera-
tions, the conversion of an int to a char, for instance. The nomenclature for these operations
is the same as for the widening operation.

Instructions exist for creating and manipulating class and array objects. The new command
creates a new class object, and the newarray, anewarray, and multilinearray instructions create

CHAPTER 1 ■ GOING INSIDE JAVA 11

array objects. Instructions also exist to access the static and instance variables of classes, to
load an array component onto the operand stack, to store a value from the operand stack into
an array component, to return the length of an array, and to check certain properties of class
objects or arrays.

The JVM instruction set provides the invokevirtual, invokeinterface, invokespecial,
and invokestatic instructions that are used to invoke methods, where invokevirtual is the
normal method dispatch mode. The other instructions are for methods implemented by an
interface, methods requiring special handling such as private or superclass methods, and
static methods. Method return instructions are also defined for each data type.

Finally, there’s a collection of miscellaneous instructions for doing various other opera-
tions, including managing the operand stack, transferring control, throwing exceptions,
implementing the finally keyword, and synchronizing.

For example, consider the following simple Java class:

class Hello {
public static void main(String[] args) {
System.out.println("Hello World!");

}
}

If you compile this class and then use the javap utility with the –c switch (covered later) to
disassemble the class file, you can get a mnemonic version of the bytecode:

Compiled from Hello.java
class Hello extends java.lang.Object {
Hello();
public static void main(java.lang.String[]);
}

Method Hello()
0 aload_0
1 invokespecial #1 <Method java.lang.Object()>
4 return

Method void main(java.lang.String[])
0 getstatic #2 <Field java.io.PrintStream out>
3 ldc #3 <String "Hello World!">
5 invokevirtual #4 <Method void println(java.lang.String)>
8 return

The main set of mnemonics I’m interested in consists of the three lines under the main()
method, which translate the single System.out.println("Hello World"); line I wrote in Java.

The first instruction, getstatic, retrieves a PrintStream object from the out field of the
java.lang.System object and places it onto the operand stack. The next line, ldc, pushes the
String “Hello World!” onto the operand stack. Finally, invokevirtual executes a method, in
this case println (on the java.io.PrintStream class). For that method to successfully execute,
it expects there to be a String and an instance of java.io.PrintStream in the stack, in that
order. Upon execution these items are removed from the stack.

CHAPTER 1 ■ GOING INSIDE JAVA12

The Java Class File Format
The JVM can’t interpret the Java programming language directly, so when Java code is com-
piled, the result is one or more class files that it can interpret. A class file contains bytecode, a
symbol table, and other information for one class or interface. The class file structure is a pre-
cisely defined binary format that ensures any JVM can load and interpret any class file, no
matter where the class file was produced.

The class file itself consists of a stream of 8-bit bytes. All higher-bit quantities (16, 32, or
64 bits) are created by reading in a combination of 8-bit bytes, and multibyte quantities are
stored in big-endian order (the high bytes come first). The Java language provides I/O streams
(supported by the DataInput, DataInputStream, DataOutput, and DataOutputStream interfaces
from the java.io package) that can read and write class files.

The data types in the class file are unsigned 1-, 2-, or 4-byte quantities. These are denoted
by the syntax u1, u2, and u4. The class file can also contain a series of contiguous fixed-size
items that can be indexed like an array. These are designated using square brackets ([]).

The class format contains a single ClassFile structure, and that structure contains all the
information about the class or interface that the JVM needs to know. The general structure of
the ClassFile is as follows:

ClassFile {
u4 magic;
u2 minor_version;
u2 major_version;
u2 constant_pool_count;
cp_info constant_pool[constant_pool_count – 1];
u2 access_flags;
u2 this_class
u2 super_class;
u2 interfaces_count;
u2 interfaces[interfaces_count];
u2 fields_count;
field_info fields[fields_count];
u2 methods_count;
method_info methods[methods_count];
u2 attributes_count;
attribute_into attributes[attributes_count];

}

The magic parameter is the magic number assigned to the class file format. This will have
the value 0xCAFEBABE and identifies the code as being a class file.

The major_version and minor_version items are the major and minor versions of the class
file format. To the JVM, the version numbers indicate the format to which the class file adheres.
JVMs can generally load class files only within a certain version range (for example, within a
single major version but a range of minor versions).

The constant_pool_count item is equal to the number of elements contained in the
constant pool plus one. This variable determines if a constant_pool index is valid. The
constant_pool[] item is a table of cp_info structures containing information on the elements
in the constant_pool.

CHAPTER 1 ■ GOING INSIDE JAVA 13

The access_flags item is a mask of flags reflecting whether the file is a class or interface
and the access permissions of the class or interface. The mask will be off or will be a combina-
tion of public, final, super, interface, or abstract flags.

The this_class parameter points to a CONSTANT_Class_infor structure in the constant_pool
table representing the class or interface defined by this class file. The super_class item points
to a similar element in the constant_pool representing the direct superclass or interface or zero
if no superclass exists.

The interfaces_count parameter represents the number of direct superinterfaces for the
class or interface. The interfaces[] item contains the location of those superinterfaces in the
constant_pool table.

The fields_count variable gives the number of field_info structures contained in the
ClassFile. The field_info structures represent all fields, both static and instance, declared by
the class or interface. The methods[] item is a table containing the method_info structures.

Finally, the attributes_count variable gives the number of attributes in the attributes
table of the class or interface. The attributes[] item is a table containing the attributes’
structure.

The Java Programming Language and APIs
All that I’ve covered so far happens transparently from the perspective of an application
developer. In fact, you don’t really have to know any details of Java’s internal architecture to
program in Java. However, what you do need to know is how to use Java as a programming
language and also how to use the various APIs that come with the different platforms to com-
municate with the underlying software and operating system. In fact, this is essentially what
the remainder of the book will be about—how to develop effectively with Java.

The Java Programming Language
Although knowledge of the various APIs is essential to really achieving anything with Java, a
solid foundation in the core Java language is also highly desirable to make the most effective
use of the APIs. In this book, you’ll explore the following features of core Java programming:

Method, interface, and class design: Writing the main building blocks of your applica-
tions with Java objects can be simultaneously quite straightforward and hideously
complex. However, if you take the time to follow some basic guidelines for creating
methods, classes, and libraries, it’s not too difficult to develop classes that not only pro-
vide the required functionality but that are also reliable, maintainable, and reusable.

Threading: Java includes built-in support for multithreaded applications, and you’ll
often find it necessary or desirable to take advantage of this. To do so, you should be
familiar with Java’s multithreading capabilities and know how to implement threads
correctly within an application.

The Java APIs
As I discussed earlier in the chapter, three different versions of the Java 2 platform exist,
and each consists of some significantly different APIs. In this book, I’ll concentrate on some

CHAPTER 1 ■ GOING INSIDE JAVA14

(although not all) of the APIs that form the Standard Edition. More specifically, I’ll cover the
following:

User interface components: I’ll take an in-depth approach to show two of the more com-
plex user interface components, JTable and JTree; you’ll also learn how to use a layout
manager to arrange components within an interface.

The data transfer API: Closely related to providing the user interface for your application
is the need to provide cut-and-paste and drag-and-drop capabilities.

The printing API: Another common feature often required is the ability to print, which
you’ll examine through the use of Java’s printing capabilities.

JDBC: All but the most trivial of applications require data to be loaded, manipulated, and
stored in some form or another, and the relational database is the most common means
for storing such data. The Java Database Connectivity (JDBC) API is provided for that pur-
pose; I’ll discuss it in detail.

Remote Method Invocation: If your application layers are distributed across more than
one physical machine, you’ll normally need some way for them to communicate with one
another across a network, whether it be the Internet, a local area network, or some other
configuration. Java’s APIs include Remote Method Invocation (RMI), which is provided
specifically for that purpose, so I’ll cover how you can use it.

Internationalization: Most commercial applications and those developed for internal
use by large organizations are used in more than one country and need to support more
than one language. This requirement is sometimes overlooked and treated as an imple-
mentation detail, but to be done successfully, internationalization should be considered
as part of an application’s design. To create a successful design that includes internation-
alization support, you should be familiar with Java’s capabilities in that area, and I’ll
discuss them in detail in this book.

Metadata: Beginning with J2SE 5.0, Java provides the ability to easily associate data with
classes, interfaces, methods, and fields. Java also includes an API that allows the metadata
to be read programmatically and used by tools to provide various useful functions such as
code generation.

Java Utility Tools: Making the Most of the JVM
J2SE comes with a number of development tools that you can use to compile, execute, and
debug Java programs; I’ll discuss some of the tools that relate to the JVM in the next sections.
You can find a description of all the utility tools on the Sun web site at http://java.sun.com/
j2se/1.5.0/docs/tooldocs/index.html.

The Java Compiler
The compiler that comes with the J2SE is named javac; it reads class and interface definition
files and converts these into bytecode files. The command to run the Java compiler is as follows:

javac [options] [source files] [@file list]

CHAPTER 1 ■ GOING INSIDE JAVA 15

The options are command-line options. If the number of source files to be compiled is
sufficiently short, the files can just be listed one after another. However, if the number of files
is large, a file containing the names of the files to be compiled can be used preceded by the
@ character. Source code filenames must end with the .java suffix.

You can use the command-line options described in Table 1-2 to include additional
functionality in the standard compile command.

Table 1-2. Standard Options Supported by Java Compilers

Option Description

–classpath This command, followed by a user-specific class path, overrides the system
CLASSPATH environment variable.

–d This command, followed by a directory path, sets the destination directory
for the class files generated by the compiler.

–deprecation This command displays a description of any deprecated methods or classes
used in the source code.

–encoding This command sets the source file encoding name. Otherwise, the default
encoding is used.

–g This command provides more complete debugging information, including
local variable information.

–g:none This command turns off all debugging information.

–g:keyword This command allows the user to specify the type of debugging information
provided. Valid keyword options are source, lines, and vars.

–help This command displays information about the compiler utility options.

–nowarn This command prevents warning messages from being displayed. Warnings
occur when the compiler suspects something is wrong with the source code
but the problem isn’t severe enough to stop compilation.

–source This command indicates that features added after the specified release
aren’t supported. For example, specifying –source 1.3 will cause the
compiler to fail if it encounters the assert keyword, since assertions weren’t
available until Java 1.4.

–sourcepath This command, followed by a source path, specifies the path that the
compiler will use to search for source code files.

–verbose This command produces additional information about the classes that are
loaded and the source files that were compiled.

–X This command displays information about nonstandard options.

The Java Interpreter
The java utility launches a Java application by loading and running the class file containing
the main method of the application. The java utility will interpret the bytecode contained in
that file and any other class files that are part of the application. The general command syntax
for the java utility is as follows:

java [options] class [arguments]

CHAPTER 1 ■ GOING INSIDE JAVA16

Alternatively, you can run it as follows:

java [options] –jar file.jar [arguments]

You can provide the initial class file as a separate file or as part of a Java Archive (JAR) file.
The options are command-line options for the JVM, and the class is the name of the class file
containing the main() method to execute. The arguments are any arguments that need to be
passed to main().

Table 1-3 describes the standard options for the java utility.

Table 1-3. Standard Options Supported by JVM Implementations

Option Description

–client This command specifies that the Java HotSpot Client
Virtual Machine should be used. This is the default.

–server This command specifies that the Java HotSpot Server
Virtual Machine should be used.

–classpath or –cp This command, followed by a user-specified class path,
overrides the system CLASSPATH environment variable.

–Dproperty=value This command provides a system property with a value.

–enableassertions or –ea This command enables assertions, which are disabled by
default.

–disableassertions or –da This command disables assertions.

–enablesystemassertions or –esa This command enables assertions in all system classes.

–disablesystemassertions or –dsa This command disables assertions in all system classes.

–help or –? This command displays information about the java utility.

–jar This command executes a program contained in a JAR file,
as shown previously.

–showversion This command shows version information and continues
running.

–verbose This command provides information about each class
that’s loaded.

–verbose:gc This command reports garbage collection events.

–verbose:jni This command displays information about native
methods and other JNI activity.

–version This command shows version information and then exits.

–showversion This command shows the version number and then
continues.

–X This command displays information about nonstandard
options and then exits.

The Java Class Disassembler
You can use the javap utility to look inside a class file. The standard command lists declarations
of nonprivate and nonstatic fields, methods, constructors, and static initializers for a specific

CHAPTER 1 ■ GOING INSIDE JAVA 17

class file. You can also use the javap utility to provide a printout of the JVM instructions that are
executed for each method. The basic syntax for the javap command is as follows:

javap [options] class

The options are command-line options for the javap utility (see Table 1-4).

Table 1-4. Some of the Options Supported by the javap Utility

Option Description

–b This command ensures backward compatibility with earlier versions of
javap.

–bootclasspath This command, followed by a path, specifies the path from which to load
the bootstrap classes. Normally these would be classes contained in the
/lib/rt.jar archive.

–c This command prints the JVM instructions for the execution of each
method. This tells you what the bytecode for each method actually does.

–classpath This command, followed by a user-specified class path, overrides the
system CLASSPATH environment variable.

–extdirs This command, followed by a directory, overrides the location the system
searches for installed extensions. The default location is /lib/ext.

–help This command prints information about the javap utility.

–Jflag This command passes the specified flag directly to the runtime system.

–l This command displays line and local variables.

–package This command shows only package, protected, and public classes and
members. This is the default.

–private This command shows information about all classes and members.

–protected This command displays information about protected and public classes
and members only.

–public This command shows information only about public classes and
members.

–s This command prints internal type signatures.

–verbose This command prints additional information for each method including
stack size, local variable information, and arguments.

Summary
This chapter has been a bit of a whirlwind tour inside Java, poking in the corners of Java’s
internal architecture that don’t get explored all that often. You should now have a better
appreciation of what’s actually going on when you type java MyClass at the command
prompt.

CHAPTER 1 ■ GOING INSIDE JAVA18

I’ve covered the following:

• The components of Java’s architecture

• What the JVM is and how it functions

• The internals of the JVM architecture

• The Java class file format

Now that you’ve taken a bit of time to explore the foundations of Java, you’re ready to
start the main work of learning how to use all the different components of the Java platform
in detail, starting with library, class, and method design.

CHAPTER 1 ■ GOING INSIDE JAVA 19

Designing Libraries, Classes,
and Methods

Understanding the mechanics of creating Java code is relatively easy, but creating a good
object-oriented design is much more complex. In this context, good means that the code
works correctly and is reasonably easy to understand, maintain, extend, and reuse. This
chapter describes some guidelines that can help you create code with those characteristics.

Reusability is an important goal and is one of the primary advantages of using object-
oriented programming languages. Creating reusable code saves time and effort by avoiding
the duplication that occurs when software must be created that’s similar or identical to some-
thing that was written previously.

Although creating reusable code should always be your goal, the reality is that it’s some-
times impossible or impractical to make code reusable. Some classes are good candidates for
reuse while others aren’t, and creating reusable software usually requires more work in the
short term than creating “throwaway” code. However, as you become more experienced in
creating good object-oriented designs, you’ll learn to recognize good candidates for reuse and
become better at creating classes, interfaces, and packages that aren’t tied too closely to a sin-
gle application. This chapter provides some of the basic concepts that will help you learn
those skills.

Library Design
Since it’s almost certain that some of the code you write won’t be reusable, it’s a good idea to
maintain two sets of packages when building an application. One set should contain reusable
code, and the other should contain classes and interfaces that are likely to remain application-
specific. By doing this, you can begin to assemble a library of reusable classes and can easily
import them into another application. You should try to treat these reusable classes the same
way most programmers do the Java core classes—as code that can’t (or at least shouldn’t) be
changed. To avoid making changes, you must put a great deal of thought into the initial design
of a class. In particular, you should think about how it might need to be used differently in the
future than the initial use you have in mind.

21

C H A P T E R 2

■ ■ ■

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS22

Package Design
Perhaps the first question to be answered concerning packages is, when do you define them?
Ideally, you should define packages early in the design phase, prior to creating class defini-
tions. In practice, however, it’s usually easier to create packages once your design is at least
partially complete. At that point, it’s more evident what sort of logical groupings you can
create, and those groupings should be the basis for your package design.

A package should be kept reasonably focused and have some type of “theme” or consis-
tency to the classes assigned to it. If the package grows large and contains a subset of classes
that can be separated from the main package, you should consider using subpackages. For
example, the javax.swing package contains many classes and interfaces that define visual
components and otherwise provide support for creating graphical user interface (GUI) code.
In addition, several classes are responsible for drawing borders around other components.
Instead of adding these border-related classes to javax.swing, which would further increase
that package’s size, the border classes are in the javax.swing.border subpackage. As this
example illustrates, selecting a package is as much a matter of knowing where a class doesn’t
belong as it is a matter of knowing where it should reside. An example of a class that should
probably not have been included in javax.swing is Timer, a class that can be used to send
notifications at arbitrary intervals or a single notification at some specific point in time. That
functionality isn’t inherently tied to visual components and is a likely candidate for use by
nonvisual portions of an application. Therefore, javax.swing is arguably a poor location for
this class, and in fact, a completely new and separate Timer class is included in the java.util
package in Java 1.3.

The recommended approach for package hierarchies is to use something resembling a
reverse domain name. For example, if you’re writing code for the Acme Corporation whose
domain name is www.acme.com, your packages should begin with com.acme and include as many
other levels as are necessary to support an effective division of classes. For example, if you’re
writing code for a project referred to as the CRM project, you might use a base package of
com.acme.crm with appropriate sublevels below that base.

If you don’t have a registered domain name, you can always choose to use geography
or other criteria for selecting your base package hierarchy. For example, I might use
us.tx.plano.bspell as the base package for code I write. The important point to keep
in mind is that packages are primarily intended to prevent naming “collisions” where
two classes exist in the same package with the same name. If you’re never going to share
your code with anyone, you can use any package-naming convention you want or none
at all. There’s no technical reason you can’t define classes in a package such as com.sun or
com.microsoft, but doing so may confuse people who want to use your code or even make
it difficult for them to use it if they’re already using code with the same package/class name
combination.

Another guideline you should follow concerning package design is that you should
prevent your packages from being cluttered with too many small, simple classes that provide
little functionality. Doing so can make it difficult for someone who is reviewing the classes
in your package to remember the responsibilities of each class. One way you can reduce the
number of trivial classes visible in a package is to use inner classes. However, you should
limit their use to cases where you’re reasonably sure the potential inner class won’t need to
be referenced outside the class that defines it. In particular, you should use anonymous inner
classes as event handlers when there’s a limited amount of functionality in the event han-
dling method(s).

Class Design
An important part of being a professional object-oriented programmer is the ability to create
well-designed classes. Practice is an important ingredient in mastering this skill, but some
simple principles can help you become more effective. Class design is largely a matter of
assigning responsibility, where you identify the functions that must be implemented and
assign each one to the class or classes best suited to perform that function. Alternatively, if
there’s no existing class that’s appropriate, you may decide to create a new class. Some classes
are identified in the analysis phase and correspond to real-world entities, and others (called
pure abstractions) exist solely to provide needed functionality while allowing you to create a
better design. To promote reusability, your classes should have two general characteristics:
loose coupling and strong cohesion. A class should also encapsulate its data in an effective
manner, and I’ll now discuss each of these points as they relate to class design.

Loose Coupling
Coupling refers to the degree to which classes depend upon one another, and two classes that
are highly dependent upon each other are considered tightly (or highly) coupled. Coupling is
inevitable in some cases, because classes must maintain references to one another and per-
form method calls. However, when you implement a class that’s a good candidate for reuse,
you should limit its dependencies on other classes as much as possible. It’s often not obvious
how to do this, since you usually can’t simply eliminate the interaction between classes. In
many cases, it’s possible to create a pure abstraction that handles the interaction between two
classes or to shift the responsibility for the interaction to an existing class that you don’t
intend to make reusable.

As an example, suppose you need to create a graphical component that allows you to
select font properties, enter some sample text, and have that sample text displayed using the
selected font properties. When the font or the sample text changes, the display should update
to display the sample text value using the current font settings.

To satisfy these requirements, you might first create a class similar to the one in Listing 2-1,
which defines a panel that allows you to select the font properties (name, size, bold, italic). See
Figure 2-1 below.

Figure 2-1. Font Testing Application Interface

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 23

Listing 2-1. The Initial FontPropertiesPanel Code

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

public class FontPropertiesPanel extends JPanel {

protected JList nameList;
protected JComboBox sizeBox;
protected JCheckBox boldBox;
protected JCheckBox italicBox;

protected SampleTextFrame frame;

public final static int[] fontSizes = {10, 12, 14, 18, 24, 32, 48, 64};

public FontPropertiesPanel(SampleTextFrame stf) {
super();
frame = stf;
createComponents();
buildLayout();

}

protected void buildLayout() {
JLabel label;
GridBagConstraints gbc = new GridBagConstraints();
GridBagLayout gbl = new GridBagLayout();
setLayout(gbl);

gbc.anchor = GridBagConstraints.WEST;
gbc.insets = new Insets(5, 10, 5, 10);

gbc.gridx = 0;
label = new JLabel("Name:", JLabel.LEFT);
gbl.setConstraints(label, gbc);
add(label);
label = new JLabel("Size:", JLabel.LEFT);
gbl.setConstraints(label, gbc);
add(label);
gbl.setConstraints(boldBox, gbc);
add(boldBox);

gbc.gridx++;
nameList.setVisibleRowCount(3);
JScrollPane jsp = new JScrollPane(nameList);
gbl.setConstraints(jsp, gbc);
add(jsp);

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS24

gbl.setConstraints(sizeBox, gbc);
add(sizeBox);
gbl.setConstraints(italicBox, gbc);
add(italicBox);

}

protected void createComponents() {
GraphicsEnvironment ge =

GraphicsEnvironment.getLocalGraphicsEnvironment();
String[] names = ge.getAvailableFontFamilyNames();
nameList = new JList(names);
nameList.setSelectedIndex(0);
nameList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
nameList.addListSelectionListener(new ListSelectionListener() {
public void valueChanged(ListSelectionEvent event) {
handleFontPropertyChange();

}
}
);
Integer sizes[] = new Integer[fontSizes.length];
for (int i = 0; i < sizes.length; i++) {
sizes[i] = new Integer(fontSizes[i]);

}
sizeBox = new JComboBox(sizes);
sizeBox.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
handleFontPropertyChange();

}
}
);
boldBox = new JCheckBox("Bold");
boldBox.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
handleFontPropertyChange();

}
}
);
italicBox = new JCheckBox("Italic");
italicBox.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
handleFontPropertyChange();

}
}
);

}

protected void handleFontPropertyChange() {
frame.refreshDisplayFont();

}

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 25

public String getSelectedFontName() {
return (String)(nameList.getSelectedValue());

}

public int getSelectedFontSize() {
return ((Integer)(sizeBox.getSelectedItem())).intValue();

}

public boolean isBoldSelected() {
return boldBox.isSelected();

}

public boolean isItalicSelected() {
return italicBox.isSelected();

}

}

Next, you might create a class similar to the one shown in Listing 2-2 that contains an
instance of FontPropertiesPanel, contains a text field that allows you to type the sample text,
and contains a label that displays that text using the specified font.

Listing 2-2. The Initial SampleTextFrame Class

import java.awt.*;
import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;
import javax.swing.text.*;

public class SampleTextFrame extends JFrame {

protected FontPropertiesPanel propertiesPanel;
protected JTextField sampleText;
protected JLabel displayArea;

public static void main(String[] args) {
SampleTextFrame stf = new SampleTextFrame();
stf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
stf.setVisible(true);

}

public SampleTextFrame() {
super();
createComponents();
createDocumentListener();
buildLayout();
refreshDisplayFont();
pack();

}

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS26

protected void createComponents() {
propertiesPanel = new FontPropertiesPanel(this);
sampleText = new JTextField(20);
displayArea = new JLabel("");
displayArea.setPreferredSize(new Dimension(200, 75));
displayArea.setMinimumSize(new Dimension(200, 75));

}

protected void createDocumentListener() {
Document document = sampleText.getDocument();
document.addDocumentListener(new DocumentListener() {
public void changedUpdate(DocumentEvent event) {
handleDocumentUpdate();

}

public void insertUpdate(DocumentEvent event) {
handleDocumentUpdate();

}

public void removeUpdate(DocumentEvent event) {
handleDocumentUpdate();

}
}
);

}

protected void buildLayout() {
Container pane = getContentPane();
GridBagConstraints gbc = new GridBagConstraints();
GridBagLayout gbl = new GridBagLayout();
pane.setLayout(gbl);

gbc.insets = new Insets(5, 10, 5, 10);
gbc.fill = GridBagConstraints.HORIZONTAL;
gbc.weightx = 1;

gbc.gridx = 0;
BevelBorder bb = new BevelBorder(BevelBorder.RAISED);
TitledBorder tb = new TitledBorder(bb, "Font");
propertiesPanel.setBorder(tb);
gbl.setConstraints(propertiesPanel, gbc);
pane.add(propertiesPanel);

gbl.setConstraints(sampleText, gbc);
pane.add(sampleText);

gbl.setConstraints(displayArea, gbc);
pane.add(displayArea);

}

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 27

protected void handleDocumentUpdate() {
displayArea.setText(sampleText.getText());

}

public void refreshDisplayFont() {
displayArea.setFont(getSelectedFont());

}

public Font getSelectedFont() {
String name = propertiesPanel.getSelectedFontName();
int style = 0;
style += (propertiesPanel.isBoldSelected() ? Font.BOLD : 0);
style += (propertiesPanel.isItalicSelected() ? Font.ITALIC : 0);
int size = propertiesPanel.getSelectedFontSize();
return new Font(name, style, size);

}

}

As you can see from this code, FontPropertiesPanel maintains a reference to its parent
SampleTextFrame and, when a font property changes, calls the frame’s refreshDisplayFont()
method. At first glance this may appear to be an acceptable design, but it has a significant draw-
back: neither class can be used independently of the other. In other words, SampleTextFrame
and FontPropertiesPanel are tightly coupled and as a result are poor candidates for reuse. If
you wanted to use FontPropertiesPanel as part of some user interface component other than
SampleTextFrame, you’d be unable to do so in its present form, as the current design allows it
to operate only in conjunction with an instance of SampleTextFrame. Figure 2-2 shows the rela-
tionship between these two classes.

Figure 2-2. FontPropertiesPanel’s dependency upon SampleTextFrame greatly limits the reuse
potential of the former class.

Since it provides functionality that might be useful in another context, FontPropertiesPanel
appears to be a good candidate for reuse if it can be decoupled from SampleTextFrame. The
existing dependence is because FontPropertiesPanel calls refreshDisplayFont() directly.
Consequently, FontPropertiesPanel depends not only upon the existence of SampleTextFrame
but also upon it implementing the refreshDisplayFont() method. Obviously, changes to
the font must be communicated to the text display somehow but in a way that allows
FontPropertiesPanel and SampleTextFrame to be loosely coupled.

+ refreshDisplayFont()

SampleTextFrame + getSelectedFontName()
+ getSelectedFontSize()
+ isBoldSelected()
+ isItalicSelected()

FontPropertiesPanel

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS28

One solution to this problem is to use a technique that’s simple but powerful: couple
a class to an interface instead of another class. For example, you might create an interface
called FontListener that defines a single fontChanged() method, which is called when the font
property value changes. In fact, you can use this technique to reduce SampleTextFrame’s depend-
ence upon FontPropertiesPanel as well. Notice that currently when a property changes,
SampleTextFrame is responsible for extracting the font properties from FontPropertiesPanel
and using that information to construct an instance of Font. This is a poor design not only
because it makes the two classes more tightly coupled but also because it actually requires
more code than building a Font instance inside of FontPropertiesPanel, which has all the infor-
mation needed to do so.

This illustrates another important point related to class design: functionality should usu-
ally be assigned to the class that contains the information needed to perform the function. So,
to make these two classes more loosely coupled, we’ll specify that the listener’s fontChanged()
method should be passed a reference to a new font that was built using the newly selected
properties. The following is an implementation of such an interface:

public interface FontListener {
public void fontChanged(java.awt.Font newFont);

}

Next, you’ll implement the previous interface in SampleTextFrame and have it update the
label’s font when it receives a message from the FontPropertiesPanel instance (see Listing 2-3).

Listing 2-3. Implementing the FontListener Interface

import java.awt.*;
import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;
import javax.swing.text.*;

public class SampleTextFrame extends JFrame implements FontListener {

protected FontPropertiesPanel propertiesPanel;
protected JTextField sampleText;
protected JLabel displayArea;

public static void main(String[] args) {
SampleTextFrame stf = new SampleTextFrame();
stf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
stf.setVisible(true);

}

public SampleTextFrame() {
super();
createComponents();
createDocumentListener();
buildLayout();
displayArea.setFont(propertiesPanel.getSelectedFont());
propertiesPanel.setFontListener(this);

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 29

pack();
}

protected void createComponents() {
propertiesPanel = new FontPropertiesPanel();
sampleText = new JTextField(20);
displayArea = new JLabel("");
displayArea.setPreferredSize(new Dimension(200, 75));
displayArea.setMinimumSize(new Dimension(200, 75));

}

protected void createDocumentListener() {
Document document = sampleText.getDocument();
document.addDocumentListener(new DocumentListener() {
public void changedUpdate(DocumentEvent event) {
handleDocumentUpdate();

}

public void insertUpdate(DocumentEvent event) {
handleDocumentUpdate();

}

public void removeUpdate(DocumentEvent event) {
handleDocumentUpdate();

}
}
);

}

protected void buildLayout() {
Container pane = getContentPane();
GridBagConstraints gbc = new GridBagConstraints();
GridBagLayout gbl = new GridBagLayout();
pane.setLayout(gbl);

gbc.insets = new Insets(5, 10, 5, 10);
gbc.fill = GridBagConstraints.HORIZONTAL;
gbc.weightx = 1;

gbc.gridx = 0;
BevelBorder bb = new BevelBorder(BevelBorder.RAISED);
TitledBorder tb = new TitledBorder(bb, "Font");
propertiesPanel.setBorder(tb);
gbl.setConstraints(propertiesPanel, gbc);
pane.add(propertiesPanel);

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS30

gbl.setConstraints(sampleText, gbc);
pane.add(sampleText);

gbl.setConstraints(displayArea, gbc);
pane.add(displayArea);

}

protected void handleDocumentUpdate() {
displayArea.setText(sampleText.getText());

}

// public void refreshDisplayFont() {
// displayArea.setFont(getSelectedFont());
// }

// public Font getSelectedFont() {
// String name = propertiesPanel.getSelectedFontName();
// int style = 0;
// style += (propertiesPanel.isBoldSelected() ? Font.BOLD : 0);
// style += (propertiesPanel.isItalicSelected() ? Font.ITALIC : 0);
// int size = propertiesPanel.getSelectedFontSize();
// return new Font(name, style, size);
// }

public void fontChanged(Font newFont) {
displayArea.setFont(newFont);

}

}

Finally, you can modify FontPropertiesPanel so it no longer maintains a reference to
SampleTextFrame but instead keeps a reference to a FontListener. You can also implement a
getSelectedFont() method that can be used to create a new Font instance using the currently
selected properties (see Listing 2-4).

Listing 2-4. Decoupling FontPropertiesPanel and SampleTextFrame

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

public class FontPropertiesPanel extends JPanel {

protected JList nameList;
protected JComboBox sizeBox;

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 31

protected JCheckBox boldBox;
protected JCheckBox italicBox;

// protected SampleTextFrame frame;
protected FontListener listener;

public final static int[] fontSizes = {10, 12, 14, 18, 24, 32, 48, 64};

public FontPropertiesPanel() {
super();
createComponents();
buildLayout();

}

protected void buildLayout() {
JLabel label;
GridBagConstraints gbc = new GridBagConstraints();
GridBagLayout gbl = new GridBagLayout();
setLayout(gbl);

gbc.anchor = GridBagConstraints.WEST;
gbc.insets = new Insets(5, 10, 5, 10);

gbc.gridx = 0;
label = new JLabel("Name:", JLabel.LEFT);
gbl.setConstraints(label, gbc);
add(label);
label = new JLabel("Size:", JLabel.LEFT);
gbl.setConstraints(label, gbc);
add(label);
gbl.setConstraints(boldBox, gbc);
add(boldBox);

gbc.gridx++;
nameList.setVisibleRowCount(3);
JScrollPane jsp = new JScrollPane(nameList);
gbl.setConstraints(jsp, gbc);
add(jsp);
gbl.setConstraints(sizeBox, gbc);
add(sizeBox);
gbl.setConstraints(italicBox, gbc);
add(italicBox);

}

protected void createComponents() {
GraphicsEnvironment ge =

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS32

GraphicsEnvironment.getLocalGraphicsEnvironment();
String[] names = ge.getAvailableFontFamilyNames();
nameList = new JList(names);
nameList.setSelectedIndex(0);
nameList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
nameList.addListSelectionListener(new ListSelectionListener() {
public void valueChanged(ListSelectionEvent event) {
handleFontPropertyChange();

}
}
);
Integer sizes[] = new Integer[fontSizes.length];
for (int i = 0; i < sizes.length; i++) {
sizes[i] = new Integer(fontSizes[i]);

}
sizeBox = new JComboBox(sizes);
sizeBox.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
handleFontPropertyChange();

}
}
);
boldBox = new JCheckBox("Bold");
boldBox.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
handleFontPropertyChange();

}
}
);
italicBox = new JCheckBox("Italic");
italicBox.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
handleFontPropertyChange();

}
}
);

}

public void setFontListener(FontListener fl) {
listener = fl;

}

protected void handleFontPropertyChange() {
listener.fontChanged(getSelectedFont());

}

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 33

public Font getSelectedFont() {
String name = (String)(nameList.getSelectedValue());
int style = 0;
style += (boldBox.isSelected() ? Font.BOLD : 0);
style += (italicBox.isSelected() ? Font.ITALIC : 0);
int size = ((Integer)(sizeBox.getSelectedItem())).intValue();
return new Font(name, style, size);

}

// public String getSelectedFontName() {
// return (String)(nameList.getSelectedValue());
// }

// public int getSelectedFontSize() {
// return ((Integer)(sizeBox.getSelectedItem())).intValue();
// }

// public boolean isBoldSelected() {
// return boldBox.isSelected();
// }

// public boolean isItalicSelected() {
// return italicBox.isSelected();
// }

}

Figure 2-3 illustrates the relationships between the two classes and the new interface after
these changes have been made.

Figure 2-3. Reducing dependencies can also result in improved reuse.

Although the design is slightly more complex than the original one, it’s much more desir-
able from a reuse standpoint. FontPropertiesPanel is now dependent only upon FontListener
and isn’t coupled to SampleTextFrame. Any user interface component that needs to incorporate

+ fontChanged()

SampleTextFrame

+ getSelectedFont()
+ setFontListener()

FontPropertiesPanel

+ fontChanged()

<<Interface>>
FontListener

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS34

FontPropertiesPanel can do so and must simply implement the FontListener interface (and
its fontChanged() method) in a class that’s responsible for monitoring the font properties. In
this case, the method was implemented with just a single line of code that refreshes the dis-
play so that it uses the updated font properties.

Although SampleTextFrame isn’t as good a candidate for reuse as FontPropertiesPanel,
you can make it more reusable by eliminating its dependence upon FontPropertiesPanel.
You’ve already removed one dependency by preventing SampleTextFrame from building a new
Font instance based on the properties in the panel, but dependencies still exist. For example,
in the createComponents() method, an instance of FontPropertiesPanel is created. In addi-
tion, the SampleTextFrame constructor makes calls to the panel’s getSelectedFont() and
getFontListener() methods.

Let’s assume that SampleTextFrame will always contain a JPanel subclass called
propertiesPanel but that you don’t want to couple it specifically to FontPropertiesPanel.
This would allow you to use other panel types and greatly reduce the coupling between these
two classes, but how can you achieve this?

Another helpful guideline for creating reusable classes is to divide the functionality into two
segments: functionality that’s common and reusable and functionality that’s specific to one
application and isn’t reusable. Given this division, you can improve reusability by putting the
common functionality in a superclass and the application-specific logic in a subclass. For exam-
ple, in this case, you can eliminate SampleTextFrame’s references to the FontPropertiesPanel
class and move them into a subclass of SampleTextFrame. Listing 2-5 shows the modified
SampleTextFrame.

Listing 2-5. SampleTextFrame, Modified

import java.awt.*;
import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;
import javax.swing.text.*;

public class SampleTextFrame extends JFrame implements FontListener {

// protected FontPropertiesPanel propertiesPanel;
protected JPanel propertiesPanel;
protected JTextField sampleText;
protected JLabel displayArea;

public static void main(String[] args) {
SampleTextFrame stf = new SampleTextFrame();
stf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
stf.setVisible(true);

}

public SampleTextFrame() {
super();

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 35

createComponents();
createDocumentListener();
buildLayout();

// displayArea.setFont(propertiesPanel.getSelectedFont());
// propertiesPanel.setFontListener(this);

pack();
}

protected void createComponents() {
// propertiesPanel = new FontPropertiesPanel();

sampleText = new JTextField(20);
displayArea = new JLabel("");
displayArea.setPreferredSize(new Dimension(200, 75));
displayArea.setMinimumSize(new Dimension(200, 75));

}

protected void createDocumentListener() {
Document document = sampleText.getDocument();
document.addDocumentListener(new DocumentListener() {
public void changedUpdate(DocumentEvent event) {
handleDocumentUpdate();

}

public void insertUpdate(DocumentEvent event) {
handleDocumentUpdate();

}

public void removeUpdate(DocumentEvent event) {
handleDocumentUpdate();

}
}
);

}

protected void buildLayout() {
Container pane = getContentPane();
GridBagConstraints gbc = new GridBagConstraints();
GridBagLayout gbl = new GridBagLayout();
pane.setLayout(gbl);

gbc.insets = new Insets(5, 10, 5, 10);
gbc.fill = GridBagConstraints.HORIZONTAL;
gbc.weightx = 1;

gbc.gridx = 0;
BevelBorder bb = new BevelBorder(BevelBorder.RAISED);

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS36

TitledBorder tb = new TitledBorder(bb, "Font");
propertiesPanel.setBorder(tb);
gbl.setConstraints(propertiesPanel, gbc);
pane.add(propertiesPanel);

gbl.setConstraints(sampleText, gbc);
pane.add(sampleText);

gbl.setConstraints(displayArea, gbc);
pane.add(displayArea);

}

protected void handleDocumentUpdate() {
displayArea.setText(sampleText.getText());

}

public void fontChanged(Font newFont) {
displayArea.setFont(newFont);

}

}

Listing 2-5 removes all explicit references to FontPropertiesPanel, which can be added to
a new subclass of SampleTextFrame (see Listing 2-6).

Listing 2-6. The FontPropertiesFrame Subclass

public class FontPropertiesFrame extends SampleTextFrame {

public static void main(String[] args) {
FontPropertiesFrame fpf = new FontPropertiesFrame();
fpf.setVisible(true);

}

public FontPropertiesFrame() {
super();
FontPropertiesPanel fontPanel = (FontPropertiesPanel)propertiesPanel;
displayArea.setFont(fontPanel.getSelectedFont());
fontPanel.setFontListener(this);

}

protected void createComponents() {
propertiesPanel = new FontPropertiesPanel();
super.createComponents ();

}

}

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 37

Figure 2-4 illustrates the relationship between these components.

Figure 2-4. Class diagrams such as this one illustrate the dependencies between classes and can
be helpful in identifying design weaknesses.

Although it was necessary to create a small class (FontPropertiesFrame) and an interface
(FontListener), you’ve now converted two tightly coupled and practically impossible to reuse
classes into good candidates for a reusable code library.

Strong Cohesion
In addition to loosely coupling classes, another characteristic of good class design is a high
level of cohesion. If a class is highly cohesive, it means its responsibilities are closely related
and that it’s complete. In other words, the class isn’t cohesive if it contains methods that per-
form unrelated functions or if some set of closely related functions is split across that class
and one or more others. You saw an example of this in the application just described, where
the original implementation of FontPropertiesPanel didn’t contain a method to create an
instance of Font based on the selected property settings.

Cohesion most commonly becomes a problem when too much functionality is added to
a single class. To avoid that problem, a good rule of thumb is to keep the responsibilities of a
class limited enough that they can be outlined with a brief description. For another example
of classes that aren’t cohesive, suppose you’re given the code in Listing 2-7, which is part of a
larger application. StudentReport is responsible for printing out students’ reports.

Listing 2-7. StudentReport

public class StudentReport {

public void printStudentGrades(Student[] students) {
TestScore[] testScores;
TestScore score;
Student student;
int total;

FontPropertiesFrame

+ fontChanged()

SampleTextFrame

+ getSelectedFont()
+ setFontListener()

FontPropertiesPanel

+ fontChanged()

<<Interface>>
FontListener

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS38

for (int i = 0; i < students.length; i++) {
student = students[i];
testScores = student.getTestScores();
total = 0;
for (int j = 0; j < testScores.length; j++) {
score = testScores[j];
total += score.getPercentCorrect();

}
System.out.println("Final grade for " + student.getName() + " is " +

total / testScores.length);
}

}

}

Student holds a student’s name and an array containing their test results:

public class Student {

protected TestScore[] testScores;
protected String name;

public String getName() {
return name;

}

public TestScore[] getTestScores() {
return testScores;

}

}

Finally, TestScore is as follows:

public class TestScore {

int percentCorrect;

public int getPercentCorrect() {
return percentCorrect;

}

}

This code will function correctly but is an example of poor design. StudentReport is
responsible for printing a list of students and the average of their grades, but it has also
been assigned responsibility for calculating the average. It’s coupled both to Student and to
TestScore, because TestScore contains the information needed to calculate the averages.
Figure 2-5 illustrates the relationships among these three classes.

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 39

Figure 2-5. This diagram illustrates the relationship between the StudentReport, TestScore,
and Student classes.

Notice that both StudentReport and Student depend upon TestScore. This code is poorly
designed because it violates both of the guidelines outlined previously:

• The classes are tightly coupled because of an unnecessary dependency (specifically
StudentReport’s dependency upon TestScore).

• StudentReport suffers from weak cohesion, because it performs two functions: printing
a report and calculating each student’s average.

This poor design is a result of the decision to assign StudentReport the responsibility for
calculating averages. A better design would involve assigning responsibility for the calculation
to Student and creating a method that allows StudentReport to obtain the information from
that class. StudentReport’s printStudentGrades() method is therefore much simpler:

public class StudentReport {

public void printStudentGrades(Student[] students) {
Student student;
for (int i = 0; i < students.length; i++) {
student = students[i];
System.out.println("Final grade for " + student.getName() +

" is " + student.getAverage());
}

}

}

And Student gains a getAverage() method:

public class Student {

protected TestScore[] testScores;

+ getName()
+ getTestScores()

Student

+ printStudentGrades()

StudentReport

+ getPercentCorrect()

TestScore

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS40

protected String name;

public String getName() {
return name;

}

public TestScore[] getTestScores() {
return testScores;

}

public int getAverage() {
int total = 0;
for (int i = 0; i < testScores.length; i++) {
total += testScores[i].getPercentCorrect();

}
return total / testScores.length;

}

}

TestScore is unchanged. This code is not only more readable but is also more reusable,
since there are fewer dependencies, as illustrated in Figure 2-6.

Figure 2-6. Modifying the classes results in fewer dependencies, which in turn results in
application code that’s easier to understand and support.

In general, you should assign responsibilities carefully and minimize the number of
dependencies among different classes. As mentioned earlier, you should usually assign respon-
sibility for manipulating data to the class that has access to it. In this case, Student had access
to all the necessary information while StudentReport didn’t, which made Student a better
choice for performing the task of calculating an average.

+ getName()
+ getTestScores()
+ getAverage()

Student

+ printStudentGrades()

StudentReport

+ getPercentCorrect()

TestScore

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 41

Encapsulation
One of the most basic ways of ensuring good class design is to provide good encapsulation of
your data. For example, suppose you create a class called Employee that contains all the infor-
mation an application needs to describe an individual:

public class Employee {

public int employeeID;
public String firstName;
public String lastName;

}

Since the three fields are public, it’s possible to access them from any other class, such as
in the following code segment:

Employee emp = new Employee();
emp.employeeID = 123456;
emp.firstName = "John";
emp.lastName = "Smith";

Although Java allows you to read and modify fields this way, you shouldn’t normally do so.
Instead, change the visibility of the fields to limit their accessibility and create a pair of accessor
(get) and mutator (set) methods for each field that will allow you access to it, as in Listing 2-8.

Listing 2-8. Adding Accessor and Mutator Methods

public class Employee {

protected int employeeID;
protected String firstName;
protected String lastName;

public int getEmployeeID() {
return employeeID;

}

public void setEmployeeID(int id) {
employeeID = id;

}

public String getFirstName() {
return firstName;

}

public void setFirstName(String name) {
firstName = name;

}

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS42

public String getLastName() {
return lastName;

}

public void setLastName(String name) {
lastName = name;

}

}

Encapsulation and object-oriented “purity” are nice concepts, but this approach also has
some practical advantages. First, if it becomes necessary for Employee to be made thread-safe
(which I’ll discuss in detail in Chapter 3), then it’s relatively easy to do so if access to its fields
is controlled this way. In fact, making a class thread-safe is often as simple as adding the syn-
chronized keyword to the method signatures.

Second, encapsulation simplifies the task of converting an existing class into a class
that’s used to create distributed (or remote) objects. A distributed object normally resides
on a server machine, and its methods can be called by applications that reside on different
machines (in other words, can be called across the network). Since a distributed object usu-
ally is on a separate machine from the caller, the fields it contains can’t be accessed directly
as can be done with a “local” object. However, if you’ve defined accessor and mutator meth-
ods for those fields, the caller can call them remotely, making the location of the object
largely transparent.

Another advantage of using accessor and mutator methods is that they insulate you from
changes to a property’s implementation. For example, you could change employeeID from an
int to a String without affecting other classes, as long as you perform the appropriate conver-
sions in the accessor and mutator methods, as shown in Listing 2-9.

Listing 2-9. Encapsulation Hides Implementation Details

public class Employee {

protected String employeeID;
protected String firstName;
protected String lastName;

public int getEmployeeID() {
return Integer.parseInt(employeeID);

}

public void setEmployeeID(int id) {
employeeID = Integer.toString(id);

}

public String getFirstName() {
return firstName;

}

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 43

public void setFirstName(String name) {
firstName = name;

}

public String getLastName() {
return lastName;

}

public void setLastName(String name) {
lastName = name;

}

}

Although the implementation of employeeID changed, other classes that read or modify it
won’t see any change in its behavior, because the change in implementation is concealed by
the accessor and mutator methods.

Finally, encapsulating the class properties this way allows you to define derived values
that can be made accessible. For example, you might define a getFullName() method in
Employee that returns the first and last name together as a single string:

public String getFullName() {
return firstName + " " + lastName;

}

Of course, it’s possible to obtain derived values without creating an accessor method, but
often that means duplicating the code that derives the value. For example, to derive the “full
name” property in several places within your application, you’d have to copy the implementa-
tion (firstName + " " + lastName) to each of those places. This has the same disadvantage
that always accompanies duplicated code: if the implementation ever changes, you’ll need
to change every place in the code that relied upon the old implementation. If you decided to
include a middle name, for instance, using a getFullName() method would allow you to make
the change in a single place within your code.

Visibility
In this example, the fields were protected and the methods public. As a rule, you should
assign fields and methods the most restrictive visibility possible while still providing the func-
tionality you need (see Table 2-1). The methods in Employee are public because it’s assumed it
should be possible for any other class in any package to be able to access and manipulate the
state of an Employee instance. What might be less obvious is why the fields were defined as
protected, since we established that access to them should be controlled through accessor
and mutator methods, so private might seem like a better choice.

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS44

Table 2-1. Variable and Method Scope

Visibility Description

public Accessible by all classes

protected Accessible by subclasses and by other classes within the same package

(Default) Accessible by classes within the same package

private Not accessible from any class other than the one in which it’s defined

I selected protected visibility so subclasses could access these fields directly, which is often
necessary. In general, if you’re certain a field or method won’t need to be accessed or overrid-
den by a subclass, then you should make it private. Otherwise, you should assume that the
class will be extended and make the members protected. While making a member protected
also makes it accessible to all classes in the same package, you shouldn’t exploit this feature. In
other words, only a subclass should ever directly access members that aren’t public within a
class. One case where it’s more acceptable to relax this rule is in the case of immutable fields. To
understand what an immutable field is, let’s first review what’s meant by an immutable object.

Immutable Objects and Fields
To say that an object is immutable means that its state can’t be changed once it has been
instantiated. Some examples of this are the wrapper classes defined in the java.lang package
(for example, Integer, Float, and Boolean), which are called wrapper classes because they
“wrap” functionality around a primitive type. String instances are probably the most com-
monly used type of immutable object, even though it might appear on the surface that you’re
able to modify them. For example, the following three lines will compile and run successfully:

String myString = "Hi";
System.out.println(myString);

//...

myString = "Hello";
System.out.println(myString);
myString += " there";
System.out.println(myString);

Running this code segment will produce the following output:

Hi
Hello
Hello there

From this example, it may seem that the object instance referenced by myString was
modified twice after it was initially created: once when it was assigned a new value of “Hello”
and a second time when “there” is appended. In reality, an entirely new String instance was

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 45

created in each case, and the reference was changed to point to the new instance. In other
words, the object wasn’t modified, but a new object was created and the old one discarded.
Any references to the original string that existed before the two “changes” would still refer to
the original “Hi” text.

Just as the value of an immutable object can’t be changed after it’s instantiated, the value
of an immutable field can’t be modified after the object that contains it has been created. To
create an immutable field, you must declare it as a blank final (in other words, a final field
that isn’t assigned a value in its declaration) and initialize its value in each constructor. For
example, if you were to decide that it shouldn’t be possible to modify an instance of Employee
after it has been created, you could make all its fields immutable, as in the following code:

public class Employee {

public final int employeeID;
public final String firstName;
public final String lastName;

public Employee(int id, String first, String last) {
employeeID = id;
firstName = first;
lastName = last;

}

}

It’s important to understand the difference between an immutable field and an immutable
object, because a subtle distinction exists. An immutable field prevents you from changing
which object the field references, but it doesn’t prevent you from changing that object’s state.

For example, if firstName and lastName were defined as instances of StringBuffer (which
are mutable), then the states of those objects (the contents of the StringBuffers) could be
changed at any time. However, you couldn’t store a reference to a different StringBuffer into
firstName or lastName after an Employee instance is created. In other words, you can’t change
which object an immutable field references, but you can change the state of the object if it
allows you to do so (in other words, if it’s a mutable object).

As mentioned earlier, using accessor and mutator methods provides you with an easy way
to make access to properties thread-safe. In some cases, however, you may instead choose to
provide thread safety by using immutable fields and/or objects, which we’ll discuss in more
detail in Chapter 3.

Overriding Object Methods
The java.lang.Object class is the direct or indirect superclass of all Java classes, and it’s often
necessary or desirable to override some of the methods in Object. The following sections cover
the methods that are commonly overridden, along with a description of how each one is used
and what information you need to know before overriding it.

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS46

clone()
This method returns a copy of the object instance, assuming that the class implements the
Cloneable interface. Cloneable is a tag interface—that is, it’s an interface that doesn’t define
any methods but is used to mark instances of a class as having some property. In this case, the
interface indicates it’s acceptable to create a clone, or copy, of an instance of the class. The fol-
lowing code checks to see whether the object unknown implements Cloneable, and it displays a
message indicating whether that’s the case:

Object unknown = getAnObject();
if (unknown instanceof Cloneable) {
System.out.println("I can create a clone of this object");

} else {
System.out.println("I can’t create a clone of this object");

}

The default implementation of clone() defined in Object creates a shallow copy of the
object. A shallow copy is a copy of the object that contains references to the same objects to
which the original contained references. For example, suppose that the Employee class defined
earlier had implemented Cloneable:

public class Employee implements Cloneable {

public int employeeID;
public String firstName;
public String lastName;

}

Let’s also suppose that an instance of this class is created and initialized, and the clone()
method is called to create a copy of it. Note that because Object’s implementation of clone() is
protected, so you must either call it from a subclass or class in the same package, or you must
override it and make it public:

Employee original = new Employee();
original.employeeID = 123456;
original.firstName = "John";
original.lastName = "Smith";
Employee myClone = (Employee)(original.clone());

In this code segment, a shallow copy of the Employee instance is created, and a reference
to it is stored in myClone. Since it’s only a shallow copy, the object references in the clone will
point to the same objects—not copies of those objects—that are referenced in the original.
Figure 2-7 illustrates this. Both the original and the clone have their own copy of employeeID,
since it’s a primitive (integer) value and primitives are always copied by value instead of by
reference. Note, however, that the other (object) fields contain references to the same object
instances.

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 47

Figure 2-7. A shallow copy of an object is one that shares with the original object references to
the same instances of other referenced objects.

Shallow copies are sometimes acceptable, but not in all cases. For example, when you
create a clone of an object, you’ll often do so intending to modify the contents of the clone
without changing the original. In that case, a shallow copy may not be sufficient. For example,
suppose you’re using the following class:

public class MailMessage implements Cloneable {

protected String sender;
protected String recipient;
protected StringBuffer messageText;

public MailMessage(String from, String to, String message) {
sender = from;
recipient = to;
messageText = new StringBuffer(message);

}

public StringBuffer getMessageText() {
return messageText;

}

}

If you use clone() to create a duplicate instance of this class, then you’ll have a shallow
copy that points to the same object instances as the original. If you then make changes to the
StringBuffer instance referenced by messageText, your changes will affect both the original
MailMessage instance and its cloned copy. For example:

// Create a new instance of MailMessage
MailMessage original = new MailMessage("bspell", "jsmith",

"This is the original text");

// Create a shallow copy
MailMessage shallowCopy = (MailMessage)(original.clone());

// Get a reference to the copy's message text
StringBuffer text = shallowCopy.getMessageText();

myClone: Employee

employeeID: int = 123456
firstname: String
lastName: String

original : Employee

employeeID: int = 123456
firstname: String
lastName: String String = "Smith"

String = "John"

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS48

// Modify the message text using the clone/shallow copy
text.append(" with some additional text appended");

// Now print out the message text using the original MailMessage
System.out.println(original.getMessageText().toString());

Running this code segment results in the following message being displayed:

This is the original text with some additional text appended

To prevent this from happening, you must override the clone() method in MailMessage so
it creates a “deep” copy. For example:

public class MailMessage implements Cloneable {

protected String sender;
protected String recipient;
protected StringBuffer messageText;

public MailMessage(String from, String to, String message) {
sender = from;
recepient = to;
messageText = new StringBuffer(message);

}

public StringBuffer getMessageText() {
return messageText;

}

protected Object clone() CloneNotSupportedException {
MailMessage mm = (MailMessage)(super.clone());
mm.messageText = new StringBuffer(messageText.toString());
return mm;

}

}

Note that although it was necessary to create a new StringBuffer for messageText, it
wasn’t necessary to create new objects for either sender or recipient. This is because those
two fields point to instances of String, which are immutable objects. Since their state can’t be
changed, it’s usually acceptable for the original and the clone to reference the same object
instance.

As these examples illustrate, it’s generally true that shallow copies are acceptable for objects
that contain references to immutable objects and/or to primitives, while more complicated
object structures usually require deep copies. When a deep copy is needed, it’s your responsi-
bility to implement the functionality yourself.

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 49

equals()
This method returns a boolean value (true or false) and determines whether two object
instances should be considered equal to one another. What determines equality between
two instances is left entirely up to the programmer to decide, and this method can be over-
ridden to perform any type of comparison that’s useful to you. The default implementation
provided in Object tests to see whether the two objects being compared are actually the same
object instance and, if so, returns true. However, if you define a class for which instances will
be compared to one another, you’ll often want to use some other criteria.

For example, you might decide that two instances of Employee should be considered equal
if the value of employeeID is the same in both instances. In that case, you’d add a method simi-
lar to the following to the class:

public boolean equals(Object obj) {
if ((obj != null) && (obj instanceof Employee)) {
Employee emp = (Employee)obj;
if (this.employeeID == emp.employeeID) {
return true;

}
}
return false;

}

This method first checks to ensure that the parameter passed to the equals() method
isn’t null and is an instance of Employee and, if so, casts it to a reference of that type. It then
checks to see whether the employeeID field in both instances contains the same value and, if
so, returns a value of true, indicating that the two instances are equal. Although this simple
example uses only a single field to determine equality, you can use any criteria that are
meaningful to your application when overriding equals() in your own classes.

finalize()
The garbage collector calls this method when it determines there are no more references to
the instance but before the object is destroyed. The most common use of this method is to
ensure that any resources held by the instance are released.

Java makes no guarantees about when or even if this method will ever be called for an
instance, so you shouldn’t use it for normal cleanup.

Instead, provide a separate method that releases active resources, and encourage pro-
grammers who use the class to call that method to perform the cleanup. Listing 2-10 shows
an example.

Listing 2-10. Using the finalize() Method

public class MyFinalizeTest {

private boolean resourcesInUse;

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS50

public synchronized void allocateResources() {
performAllocate();
resourcesInUse = true;

}

public synchronized void releaseResources() {
performRelease();
resourcesInUse = false;

}

/**
* If we're still holding resources, release them now
*/
protected synchronized void finalize() throws Throwable {
if (resourcesInUse) {
releaseResources();

}
}

// Allocate resources here
protected void performAllocate() {
}

// Release resources here
protected void performRelease() {
}

}

hashCode()
An object’s hash code value is used primarily to improve the performance of some collection
classes, such as java.util.Hashtable. It’s not necessary for each instance of a class to return a
different hash code from every other instance, but you should attempt to make them as unique
as possible. This will improve the performance of the classes that use hash codes, since they
rely on an object returning a different hash code from most other objects. The following are
the two requirements for values returned from this method:

• Two instances that are considered equal when compared using the equals() method
should return the same hash code value.

• When this method is invoked on an object two or more times during a single execution
of an application, the method should return the same value. However, this requirement
doesn’t need to be met if the object’s state changes in such a way that the object would
no longer be considered equal to an instance to which it was previously equal.

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 51

For example, given the previously defined Employee class, you might choose to simply use
the employeeID field as the hash code for each instance. This is an appropriate choice since it
could be expected to provide a reasonable degree of uniqueness from one instance to the next:

public int hashCode() {
return employeeID;

}

This would satisfy the first requirement mentioned previously because the value of
employeeID would be used to determine equality and would be used as the hash code value.
In other words, two instances that have the same employeeID value are considered equal to
one another, and they will return the same hash code value. The second requirement is also
satisfied, because as long as the employeeID value remains unchanged, the hashCode()
method will return the same result each time it’s called.

In general, the default implementation of hashCode() will return values that are largely
unique, and you won’t find it necessary to override this method. However, when you override
the equals() method, you should normally also override hashCode() to ensure it meets the two
requirements listed previously.

toString()
This method returns a string representation of the object instance. You can call this method
explicitly whenever it’s useful to do so (such as while debugging), but it’s also called implicitly
whenever you specify an object reference as part of a string expression. For example, if you
create an instance of MailMessage and include it in a string expression, the toString() method
is called to obtain its string representation:

MailMessage message = new MailMessage("bspell", "jsmith", "This is a test");
System.out.println("Calling toString(): " + message);

// The following line is equivalent to the previous one and would produce
// exactly the same output if it were compiled and executed:
// System.out.println("Calling toString(): " + message.toString());

The default implementation of this method in Object simply displays the name of the
object’s class and the object’s hash code value, separated by the at (@) symbol:

MailMessage@71eaddc4

Since this information usually isn’t very helpful, you’ll normally want to override toString()
so it returns more useful information. Typically, that information should include a partial or
complete description of the object’s state. For example, you might choose to add the following
method to MailMessage:

public String toString() {
return "MailMessage[sender=" + sender + ", recipient=" + recipient +

", messageText=" + messageText + "]";
}

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS52

With this implementation of toString(), running the code segment shown previously will
result in the following output:

MailMessage[sender=bspell, recipient=jsmith, messageText=This is a test]

You can use this information when debugging or at any other time when you need to
obtain a string representation of an object’s state.

Method Design
Many of the guidelines previously mentioned for classes also apply to methods. For example,
methods should be loosely coupled and strongly cohesive, with each method having a single
responsibility that can be easily described, and should be independent of other methods as
much as possible.

One indication that a method may not be cohesive is the existence of many levels of code
blocks, which are easy to identify if the blocks are properly indented. For example:

public void doSomethingComplex(int a, int b, Object c, int d) {
if (a < b) {
if (c instanceof Number) {
for (int i = 0; i < count; i++) {
if (getSomeData(i) == null) {
while (d < 5) {
if (d == 0) {
handleSpecialCase();

}
}

}
}

}
}

}

It’s sometimes necessary to create such complex logical constructs. However, it’s never
necessary to include the entire construct in a single method, and splitting it into two or more
methods can make the code much easier to understand. Most people find it difficult to follow
more than a few levels of logic and would probably find the following implementation more
readable:

public void doSomethingComplex(int a, int b, Object c, int d) {
if (a < b) {
if (c instanceof Number) {
for (int i = 0; i < count; i++) {
doPartOfSomethingComplex(i, d);

}
}

}
}

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 53

public void doPartOfSomethingComplex(int i, int d) {
if (getSomeData(i) == null) {
while (d < 5) {
if (d == 0) {
handleSpecialCase();

}
}

}
}

Although this may not be the best implementation for these methods, it illustrates that
by separating pieces of functionality from a method, you can make its responsibilities simpler
and clearer. In addition to greater clarity, structuring your code this way can also make it eas-
ier to enhance and debug.

One basic but extremely important point worth mentioning concerning method design
is the use of an obscure, complex algorithm when a simpler alternative exists. Although the
more complicated approach may provide minor benefits such as slightly faster execution,
that advantage is usually outweighed by the added complexity involved in maintenance and
debugging of the code. Stated more simply, readability, extensibility, and reliability are impor-
tant, and you should be hesitant to sacrifice those qualities for an algorithm that seems
elegant and clever unless doing so provides some important advantage to your application.

Passing Parameters
When deciding what parameters to pass to a method, you should avoid using “flags” or “con-
trol” parameters that tell the method how to perform its function. For example, assume you’re
responsible for a Roster class that maintains a list of students. In addition, let’s assume a limit
exists to the number of students that can normally be included on the roster. However, in some
cases, you want to be able to override that maximum, so you might create a class like the one
shown in Listing 2-11.

Listing 2-11. Initial Roster Implementation

import java.util.Vector;

public class Roster {

protected int capacity;
protected Vector students;

public Roster(int max) {
capacity = max;
students = new Vector();

}

/**

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS54

* Attempts to add the student name to the Vector that is used to
* maintain the list. There is a capacity value that normally will
* limit the number of students that can be on the list, but the
* caller can override that constraint if the student has been
* given permission from their advisor to add the class even though
* it's already full.
*
* @param name Student to add to the list.
* @param allowExcess Override capacity check when adding student
* @return <code>true</code> if the student was added
* to the list, <code>false</code> otherwise.
*/
public boolean addStringToVector(String name, boolean allowExcess) {
if (!allowExcess) {
if (students.size() >= capacity) {
return false;

}
}
students.addElement(name);
return true;

}

}

At first glance, this method may appear to be reasonably well-designed, but in fact, it
possesses a number of undesirable characteristics. For one thing, it requires callers to pass a
parameter that indicates whether the student should be added when the capacity value has
already been reached. This makes the method less cohesive, because it not only has responsi-
bility for adding the student’s name to the Vector but it also must determine whether it’s
acceptable to add the student.

Given that the method isn’t cohesive, how can you improve it? Well, you should eliminate
the allowExcess flag, since it’s used as a way for the caller to communicate with the method
concerning how the method should operate. You should avoid using parameters for that pur-
pose, since they tend to make the function of your method less clear and cohesive. In this
example, a better solution is to create a separate method that always ignores the capacity
value and remove the allowExcess flag, as shown in Listing 2-12.

Listing 2-12. Eliminating Flag Usage

import java.util.Vector;

public class Roster {

protected int capacity;
protected Vector students;

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 55

public Roster(int max) {
capacity = max;
students = new Vector();

}

/**
* Adds the student name to the Vector that is used to maintain the
* list.
*
* @param name Student to add to the list.
*/
public void addStringToVector(String name) {
students.addElement(name);

}

/**
* Attempts to add the student name to the Vector that is used to
* maintain the list. There is a capacity value that normally will
* limit the number of students that can be on the list, but the
* caller can override this check if desired.
*
* @param name Student to add to the list.
* @return <code>true</code> if the student was added
* to the list, <code>false</code> otherwise.
*/
public boolean conditionalAddStringToVector(String name) {
if (students.size() >= capacity) {
return false;

}
addStringToVector(name);
return true;

}

}

This is an improvement over the original design, as there’s more cohesion in these two
methods than in the original one. Instead of passing a flag to the method as in the previous
implementation, the caller can now call the method that provides the desired behavior. Notice
that conditionalAddStringToVector() doesn’t actually add the student but instead calls
addStringToVector(). Since the “add” operation requires just a single line of code, it might be
tempting to copy the contents of addStringToVector() to conditionalAddStringToVector().
However, not doing so makes the code more cohesive, and the lack of code duplication makes
the class easier to maintain.

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS56

Method Naming
One final point to make about the addStringToVector() and conditionalAddStringToVector()
methods in the previous example is that they’re poorly named. You should avoid names that
describe the method implementation and instead use names that describe what the method
does conceptually. For example, these method names imply that the purpose of the method is
to add a String to a Vector, which is true in this implementation. However, this approach has
two problems. First, the names don’t provide any useful information that couldn’t be obtained
from a quick glance at the code, and naming these methods enrollStudentConditionally()
and enrollStudent() provides the reader with valuable information about the responsibilities
of these methods.

Second, choosing a name that describes a method’s implementation is bad because the
implementation may change over time. For example, if the student names were to be sorted,
you might modify the code so that it stores them in a TreeSet instead of a Vector. In that case,
you either must change every occurrence of the method names or resign yourself to having
method names that no longer describe the implementation, which is at best confusing to pro-
grammers who read your code. Listing 2-13 shows an improved version of the Roster class.

Listing 2-13. Roster Class, Improved

import java.util.Vector;

public class Roster {

protected int capacity;
protected Vector students;

public Roster(int max) {
capacity = max;
students = new Vector();

}

/**
* Enrolls the student in this course.
*
* @param name Name of the student to enroll.
*/
public void enrollStudent(String name) {
students.addElement(name);

}

/**
* Attempts to enroll a student in this course. The student is added
* only if the capacity limit for the course has not been reached.
*
* @param name Name of the student to enroll.

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 57

* @return <code>true</code> if the student was added
* to the list, <code>false</code> otherwise.
*/
public boolean enrollStudentConditionally(String name) {
boolean isEnrolled = false;
if (students.size() < capacity) {
enrollStudent(name);
isEnrolled = true;
}
return isEnrolled;

}

}

Minimizing Duplication of Code
In the previous example, you placed the logic for adding a student in one method and called
that method from a different one that needed the same functionality. Minimizing duplication
is an important step in creating maintainable code, as it prevents you from having to make
identical changes to many methods when some implementation detail must be modified.
This is particularly important when multiple programmers are involved in creating an appli-
cation and applies not only to methods but also to constructors, since you can call one
constructor from another. For example, the following class shows an example of how duplica-
tion can occur in constructors:

public class DuplicationSample {

protected int firstValue;
protected String secondValue;
protected Integer thirdValue;

public DuplicationSample(int first, String second, Integer third) {
firstValue = first;
secondValue = second;
thirdValue = third;

}

public DuplicationSample(int first, String second) {
firstValue = first;
secondValue = second;
thirdValue = new Integer(0);

}

}

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS58

Only the last statement differs in these two constructors, and you can eliminate the dupli-
cate code without changing the behavior of the constructors by modifying the class, as follows:

public class DuplicationSample {

protected int firstValue;
protected String secondValue;
protected Integer thirdValue;

public DuplicationSample(int first, String second, Integer third) {
firstValue = first;
secondValue = second;
thirdValue = third;

}

public DuplicationSample(int first, String second) {
this(first, second, new Integer(0));

}

}

Similarly with methods, it’s often helpful to use overloading and identify a method imple-
mentation that contains a superset of the functionality defined in the other implementations.
The following example illustrates this point:

public class AddingMachine {

/**
* Adds two integers together and returns the result.
*/
public static int addIntegers(int first, int second) {
return first + second;

}

/**
* Adds some number of integers together and returns the result.
*/
public static int addIntegers(int[] values) {
int result = 0;
for (int i = 0; i < values.length; i++) {
result += values[i];

}
return result;

}

}

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 59

Although there’s no code duplication here, there’s duplicate functionality, and eliminating
that duplication will make the class simpler and more maintainable. Both methods add num-
bers together, and it’s necessary to decide which one should retain that functionality. One of
the methods adds two numbers together, and the other adds zero or more numbers together.
In other words, the first method provides a subset of the functionality of the second one. Since
that’s the case, you can eliminate the duplication by delegating responsibility for adding the
two numbers to the more flexible method. The following is an alternative implementation:

public class AddingMachine {

/**
* Adds two integers together and returns the result.
*/
public static int addIntegers(int first, int second) {
return addIntegers(new int[] {first, second});

}

/**
* Adds some number of integers together and returns the result.
*/
public static int addIntegers(int[] values) {
int result = 0;
for (int i = 0; i < values.length; i++) {
result += values[i];

}
return result;

}

}

This simplistic example illustrates an important point concerning something that’s com-
mon in method design. Specifically, you can often reduce code or functional duplication by
identifying a method that represents a “special case” of some other method and delegating the
request to the more generic implementation.

Variable Arguments
As you just saw, one way of reducing code duplication is by creating a single method that
contains the logic that would otherwise be duplicated and by calling that method from others
with different signatures. In Java 1.5, a new feature was introduced called variable arguments,
or varargs, that makes this even easier by creating what amounts to a template for the method
signature. In other words, instead of explicitly identifying each individual argument, varargs
allow you to indicate that one or more arguments of a particular type can be specified. The
following is an example of how you can declare such a method:

/**
* Adds some number of integers together and returns the result.
*/

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS60

public static int addIntegers(int... values) {
int result = 0;
for (int i = 0; i < values.length; i++) {
result += values[i];

}
return result;

}

Given this method signature, you can call the method with any number of integer values
as in the following example:

int result = addInteger(37, 23);

or in the following example:

int result = addInteger(37, 23, 59, -2, 0);

Notice that the code inside the method didn’t change from the implementation you saw
earlier where an array of integers was passed. This is because varargs internally are represented
as arrays, so you can access an integer from the “values” argument simply by referencing its
position within the argument list.

It may not be entirely clear at first glance why the method signature that uses varargs is
an improvement over the one that accepted an array. After all, the only thing that has really
changed here is that the parameter type changed from int[] to int… in the method signature
and is arguably less intuitive than it was before. While it’s true that the varargs version of the
method allows you to avoid explicitly creating a new integer array, that’s not a particularly
compelling advantage.

Where the usefulness of varargs really comes in is when you have a method that can
accept a variety of arbitrary data types. For example, as you’ll see in a later chapter, Java’s
MessageFormat class defined in java.text allows you to specify an array of values and have
those values used to format fields within a message. The following is an example of this:

String customerName = "Justin Playfair";
int customerNumber = 123456789;
Date lastUpdated = new Date();
String pattern = "Record for ''{0}'' (customer #{1}) was updated on {2}";

To use MessageFormat in a version of Java prior to 1.5 would require that the integer value
in the previous code be encapsulated within an Integer wrapper object and that the parame-
ter values be stored in an array as follows:

Object[] parms = new Object[]
{customerName, new Integer(customerNumber), lastUpdated};

String message = MessageFormat.format(pattern, parms);

Prior to 1.5, the method signature for the format() method required you to pass an array
of objects as follows:

public static String format(String pattern, Object[] arguments);

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 61

However, in 1.5, the arguments parameter was changed from an object array to a vararg
as follows:

public static String format(String pattern, Object... arguments);

This new signature allows you to call the method by simply passing the arguments as
follows, with no need to explicitly create an array or any wrapper objects:

String message = MessageFormat.format(
pattern, customerName, customerNumber, lastUpdated);

Part of the reason this is possible is because Java 1.5 also includes a feature called auto-
boxing that automatically encapsulates primitive values in their wrapper equivalent when
appropriate. Although the functionality of your code doesn’t change, this combination of
autoboxing and varargs allows you to write code that’s more readable and maintainable, since
you no longer are required to “manually” encapsulate the format() method argument before
calling it.

Varargs have one limitation: you can have only one vararg entry in a method signature.
So, for example, the following isn’t a valid method signature:

public void doSomething(String... firstList, int myNumber, String... secondList);

Using Exceptions
Exceptions provide a useful capability, and properly using exceptions is an important part of
good method design in Java. However, a number of questions arise when designing a class:

• When should an exception be thrown?

• What type of exception should be thrown?

• When should a new exception subclass be created, and what should its superclass be?

• What information should be included in the exceptions that are thrown?

• Where should exceptions be caught and handled?

When to Throw an Exception
In general, your method should throw an exception when some sort of condition is detected
that the method can’t or shouldn’t handle. It’s usually obvious when a method can’t handle an
exception, but it might seem like circular logic to say that a method should throw an exception
when it shouldn’t handle some condition. What this really means is that although the method
may be able to handle the condition, it isn’t the best candidate for doing so. For example, sup-
pose you define a simple user interface that allows the user to enter a name and an age. Let’s
also assume that your interface provides a button that ends the application when pressed, as
illustrated in Figure 2-8.

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS62

Figure 2-8. A simple application with an interface that prompts the user to enter some basic
information

The following two classes provide this functionality; the DataFrame class displays a frame
with a button and an instance of DataPanel (see Listing 2-14).

Listing 2-14. Initial DataFrame Implementation

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class DataFrame extends JFrame {

public static void main(String[] args) {
DataFrame df = new DataFrame();
df.setVisible(true);

}

public DataFrame() {
super("Enter Data");
buildLayout();
pack();

}

protected void buildLayout() {
Container pane = getContentPane();
pane.setLayout(new BorderLayout());
pane.add(new DataPanel(), BorderLayout.CENTER);
JButton button = new JButton("Ok");
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
System.exit(0);

}
}
);
JPanel panel = new JPanel();
panel.setLayout(new FlowLayout(FlowLayout.CENTER, 0, 0));
panel.add(button);
pane.add(panel, BorderLayout.SOUTH);

}

}

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 63

The DataPanel class defines the text fields that allow the user to enter a name and an age
(see Listing 2-15).

Listing 2-15. Initial DataPanel Implementation

import java.awt.GridLayout;
import javax.swing.*;

public class DataPanel extends JPanel {

protected JTextField nameField;
protected JTextField ageField;

public DataPanel() {
buildDisplay();

}

protected void buildDisplay() {
setLayout(new GridLayout(2, 2, 10, 5));
JLabel label = new JLabel("Name:");
add(label);
nameField = new JTextField(10);
add(nameField);
label = new JLabel("Age:");
add(label);
ageField = new JTextField(10);
add(ageField);

}

}

Now let’s assume the requirements change after these two classes have been created, and
it’s now required that the user must enter valid data before exiting the application. Specifically,
the Name field shouldn’t be blank, and the Age field should contain a positive integer. In addi-
tion, let’s specify that if either of these two conditions isn’t met, then an error dialog should be
displayed and the input focus should be set to the field that contains invalid data.

Given these requirements, you must decide where to assign responsibility for the new
functionality. The design guidelines covered previously indicate that the responsibility for val-
idation belongs in DataPanel, since it already has access to the data being validated. The other
new responsibility that must be assigned is the error message display, and DataFrame stands
out as the more desirable choice, because putting the error display logic into DataPanel would
make it less cohesive and less flexible. For example, another application might need to reuse
DataPanel but not want to use dialogs to display validation errors.

This scenario provides an example of what was referred to previously as an error that a
method shouldn’t handle. The validation method in DataPanel shouldn’t be responsible for
displaying the error dialog because doing so would make it less cohesive, flexible, and extensi-
ble. Instead, it should throw an exception and let its caller in DataFrame display the error.

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS64

Choosing the Exception Type
Now that you’ve determined an exception will be thrown, what type of exception should be
used? Many subclasses of Exception are defined with the Java core classes, and it’s acceptable
for applications to create and throw instances of those. In fact, nothing prevents you from
throwing an exception that’s totally unrelated to the problem that has occurred. For example,
when the validation routine determines that the user has entered a non-numeric age value,
it could throw any type of exception, such as a NullPointerException, a SocketException, or
an InterruptedException. However, it shouldn’t do so, because these exceptions are normally
used to indicate specific problems that have no relationship to our user interface validation.
While it’s possible to use the exception classes defined as part of Java, you should do so only
if the exception is an appropriate choice for signaling the type of error your application expe-
rienced. Otherwise, you should instead create your own Exception subclasses and throw
instances of those. Besides a situation where no existing exception class accurately describes
the condition that has occurred, there’s at least one other case where you’ll want to create a
custom exception class. Specifically, you’ll do so when you need to return more information
than a simple text message to the caller that’s responsible for handling the exception; you’ll
see an example of this later in the chapter.

Choosing a Superclass for a Custom Exception Class
When creating your own exception classes, you’ll normally want to extend one of two classes:
either Exception or RuntimeException. Most of the time, you’ll subclass Exception, which results
in your exception being classified as a checked exception. A checked exception is one that must
be declared when you create a method that can throw the exception, while unchecked excep-
tions (subclasses of RuntimeException) need not be declared or caught.

For example, the doSomething() method in the class shown in Listing 2-16 can throw
either MyFirstException or MySecondException, but only MyFirstException must be identified,
because it’s a checked exception (in other words, it subclasses Exception).

Listing 2-16. ExceptionSampler Implementation

public class ExceptionSampler {

/**
* Not declaring that this method can throw MyFirstException will
* cause the Java compiler to generate an error message when this
* class is compiled. However, declaring MySecondException is
* optional.
*/
public void doSomething(boolean throwFirst) throws MyFirstException {
if (throwFirst) {
throw new MyFirstException();

} else {
throw new MySecondException();

}
}

class MyFirstException extends Exception {
}

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 65

class MySecondException extends RuntimeException {
}

}

The factor that determines which type of exception to create is usually the nature of the
error or errors than can cause the exception to be thrown. You normally should throw an
unchecked exception when you encounter a condition that seems to indicate some sort of
programming error. For example, if you call a method that should return only a positive inte-
ger value and it instead returns a negative or zero value, then it’s probably appropriate to
throw an unchecked exception. In general, you should throw unchecked exceptions any time
you don’t want to force callers to handle or declare them. Keep in mind, however, that using
an unchecked exception partially defeats the purpose of throwing an exception in the first
place. One of the main benefits of Java’s exception handling facility is that it forces program-
mers to recognize and handle exceptional conditions that can occur, but this is true only for
checked exceptions. By using an unchecked exception, you allow a programmer who’s calling
a method you created to ignore the error condition, which can decrease the stability of the
application. Therefore, you should use unchecked exceptions sparingly, throwing them only
in cases where the condition should theoretically not occur.

It’s appropriate to violate this guideline in one case, but it doesn’t usually apply to applica-
tions: an exception that can be thrown from an extremely large number of different places. The
exception that’s probably thrown more frequently than any other is NullPointerException,
which can occur any time you attempt to use an object reference to access a field or method.
If NullPointerException were a checked exception, you’d be forced to throw it from virtually
all methods or to catch it at hundreds or even thousands of places within a single application.
Since it’s an unchecked exception, you can selectively choose when (or if) to catch it, which
makes code less tedious to write and easier to understand. However, NullPointerException
is really something of a special case, and if you find yourself tempted to make an exception
unchecked simply to avoid handling it in many places, what may really be needed is a redesign
of your application. Most of the time, you’ll subclass Exception and throw checked exceptions
instead. In the case of my input validation routine for DataFrame and DataPanel, I’ll create a
checked exception and call it InputValidationException:

public class InputValidationException extends Exception {
}

Using a Common Superclass for Different Exception Types

Another issue you’ll commonly need to address regarding exceptions occurs when you throw
exceptions for different but related types of error conditions. For example, suppose you create
a method called attemptLogon() that can throw a LogonFailedException if either the username
or password specified is invalid. It’s possible to use only a single LogonFailedException class in
both cases and simply create an appropriate message that describes which type of condition
caused the exception to be thrown. Alternatively, you may consider creating subclasses of that
exception (perhaps calling them InvalidUseridException and InvalidPasswordException) and
throwing instances of those subclasses instead of an instance of LogonFailedException.

To determine which is the better approach, you need to consider how the exceptions will
be handled. If you intend to create error handling for the entry of an invalid password that’s dif-
ferent from the handling for an invalid username, you should create the two subclasses and

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS66

throw instances of those. However, if your application will simply display the message encap-
sulated within the exception object and it doesn’t care which type of error occurred, you should
create and use only a single exception class. For example, the following code illustrates how
you might just display the error message contained within the exception class:

String userid, password;
// ...
try {
attemptLogon(userid, password);

} catch (LogonFailedException lfe) {
System.out.println("Logon failed: " + lfe.getMessage());

}

In contrast, the following code assumes that the InvalidPasswordException is handled
differently from other errors (for example, InvalidUseridException):

String userid, password;
// ...
try {
attemptLogon(userid, password);

}
// Handle the case where the password was invalid
catch (InvalidPasswordException ipe) {
// Log the logon attempt and possibly lock the userid
// to prevent more logon attempts
recordFailedLogon(userid);
System.out.println("Logon failed: " + ipe.getMessage());

}
// Handle all other types of errors
catch (LogonFailedException lfe) {
System.out.println("Logon failed: " + lfe.getMessage());

}

Although it’s not necessary to make InvalidUseridException and InvalidPasswordException
share a single superclass, doing so has a significant advantage. Instead of specifying that it
throws both types of exception, the attemptLogon() method can be defined to throw instances
of LogonFailedException as follows:

public void attemptLogon(String userid, String password)
throws LogonFailedException {

instead of the following:

public void attemptLogon(String userid, String password)
throws InvalidUseridException, InvalidPasswordException {

Besides making your code slightly simpler, the first approach shown also makes it possi-
ble for you to modify attemptLogon() so it throws additional exception types without also
changing the code that calls the method. As long as the new exception type is a subclass of
a type that’s already declared (for example, LogonFailedException), you can throw the new
type without modifying any other code in your application. For example, you might change

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 67

attemptLogon() so it also throws an exception called AlreadyLoggedOnException. As long as
that new exception type is a subclass of LogonFailedException, you’re not required to make
any changes to the code that calls attemptLogon().

Adding Information to an Exception
When creating your exception, you should include a message that describes the nature of the
error that occurred, along with any information that exception handlers will need. Keep in
mind that exceptions are a mechanism for communicating with your method’s callers, and
any information that’s needed to process the error should be included. In the case of the input
validation, the validation routine should pass back to the handler two pieces of information:
an error message and a reference to the field that contains invalid information. The Exception
class inherits the ability to store a message from its parent, so the only additional field you
need to define is a reference to the component associated with the error. By returning a refer-
ence to the component, you make it possible for the frame to move the input focus to that
component as a convenience for the user:

import java.awt.Component;

public class InputValidationException extends Exception {

protected Component errorSource;

public InputValidationException(String message, Component source) {
super(message);
errorSource = source;

}

}

Now that the exception class is created, you can implement the validation routine in
DataPanel and make it throw an exception when it encounters an error, as shown in Listing 2-17.

Listing 2-17. Throwing InputValidationException

import java.awt.GridLayout;
import javax.swing.*;

public class DataPanel extends JPanel {

protected JTextField nameField;
protected JTextField ageField;

public DataPanel() {
buildDisplay();

}

public void validateInput() throws InputValidationException {
String name = nameField.getText();
if (name.length() == 0) {

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS68

throw new InputValidationException("No name was specified",
nameField);

}
String age = ageField.getText();
try {
int value = Integer.parseInt(age);
if (value <= 0) {
throw new InputValidationException("Age value must be " +

"a positive integer",
ageField);

}
}
catch (NumberFormatException e) {
throw new InputValidationException("Age value is missing " +

"or invalid", ageField);
}

}

protected void buildDisplay() {
setLayout(new GridLayout(2, 2, 10, 5));
JLabel label = new JLabel("Name:");
add(label);
nameField = new JTextField(10);
add(nameField);
label = new JLabel("Age:");
add(label);
ageField = new JTextField(10);
add(ageField);

}

}

Notice that there are three cases where you throw InputValidationException: when the
Name field is empty, when the Age field is less than or equal to zero, and when the Age field
isn’t a valid integer. It’s easy to create more than one exception class, such as one for a missing
name and one for an invalid age, as shown in Figure 2-9.

Figure 2-9. Creating more granular exception classes gives you more control over exception
processing.

errorSource : Component

InputValidationException

MissingNameException InvalidAgeException

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 69

However, the only time you should do this is when there are multiple possible error
conditions and some of them are handled differently from others. This example has three
different error conditions, but they’re all handled the same way and by the same caller.
Therefore, you have no need to define more than one new Exception subclass.

Finally, you must modify DataFrame so that it catches any validation errors and displays
them in a dialog (see Listing 2-18).

Listing 2-18. Handling the Exception

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class DataFrame extends JFrame {

protected DataPanel panel = new DataPanel();

public static void main(String[] args) {
DataFrame df = new DataFrame();
df.setVisible(true);

}

public DataFrame() {
super("Enter Data");
buildLayout();
pack();

}

protected void buildLayout() {
Container pane = getContentPane();
pane.setLayout(new BorderLayout());
pane.add(panel, BorderLayout.CENTER);
JButton button = new JButton("Ok");
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
onOk();

}
}
);
JPanel panel = new JPanel();
panel.setLayout(new FlowLayout(FlowLayout.CENTER, 0, 0));
panel.add(button);
pane.add(panel, BorderLayout.SOUTH);

}

protected void onOk() {
try {

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS70

panel.validateInput();
System.exit(0);

}
catch (InputValidationException ive) {
ive.errorSource.requestFocus();
JOptionPane.showMessageDialog(this, ive.getMessage(),

"Validation Error",
JOptionPane.ERROR_MESSAGE);

}
}

}

When to Catch Exceptions
I need to make two final points concerning where exceptions should be caught and handled.
As mentioned earlier, the main factor that will determine where to catch an exception is often
simply a matter of good class design. In other words, your choice of where to handle an excep-
tion should be one that maintains the cohesiveness and flexibility of the classes involved.
However, when no particular class stands out as an appropriate place to handle an exception,
a rule of thumb is that you should catch the exception as early as possible. For example, sup-
pose you have the following nested calls:

Method A() calls method B()
Method B() calls method C()
Method C() calls method D()
Method D() calls method E(), which can throw SomeException

In this scenario, if method E() can throw SomeException, it’s better to catch that exception
as far down the call stack as possible. For example, if SomeException can be handled appropri-
ately in method D() while still maintaining cohesion and loose coupling, then do so. This will
prevent you from having to declare that SomeException can be thrown from A(), B(), or C(),
which simplifies your code. Depending upon the nature of the exception condition and the
design of your application, it may be necessary to allow the exception to propagate back to
method A(). However, you should do so only if handling the exception earlier would cause you
to violate object-oriented design principles such as cohesion and loose coupling. In other
words, throw exceptions as often as necessary but handle them as early as possible.

Lastly, you’ll often find yourself creating a block of code that contains multiple statements
that can throw exceptions, either a particular type of exception or several different types. In
this situation, you should enclose all the statements within a single try/catch instead of creat-
ing a separate one for each statement. For example, suppose you’ve created the following
segment of code that creates a database connection and uses it to execute and process the
results of a query:

Connection conn = DriverManager.getConnection(url, userid, password);
Statement stmt = conn.createStatement();
ResultSet rset = null;
rset = stmt.executeQuery("SELECT * FROM CUSTOMERS WHERE CUSTID = 123");

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 71

if (rset.next()) {
String custname = rset.getString("CUSTNAME");
System.out.println(custname.toUpperCase());

}

The majority of the statements in this code segment are capable of throwing SQLException,
but enclosing each one within its own try/catch block would be tedious and result in code
that’s difficult to read. Although it may be necessary to do so if your application needs to know
specifically which statement caused the exception, it’s often appropriate to simply enclose all
of the statements in a single try/catch block as follows:

try {
Connection conn = DriverManager.getConnection(url, userid, password);
Statement stmt = conn.createStatement();
ResultSet rset = null;
rset = stmt.executeQuery("SELECT * FROM CUSTOMERS WHERE CUSTID = 123");
if (rset.next()) {
String custname = rset.getString("CUSTNAME");
System.out.println(custname.toUpperCase());

}
} catch (SQLException sqle) {
// Handle exception thrown by one of the statements

}

Using a finally Block
One of the more useful features of Java’s exception handling facility is the ability to include a
finally block, which is simply a section of code that’s always entered, regardless of what hap-
pens within the try block. For example, suppose you create the following code segment:

String value;
// ...
try {
int intValue = Integer.parseInt(value);
System.out.println("Is a valid integer value");

}
catch (NumberFormatException nfe) {
System.out.println("Not a valid integer value");

}
finally {
System.out.println("This is always executed");

}

If the value string in the previous code represents a valid integer value, the try block will
complete successfully and the following two messages will be displayed:

Is a valid integer value
This is always executed

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS72

In contrast, if the value string doesn’t represent a valid integer, the parseInt() call will
cause the try block to be exited, the catch block to be entered, and the following messages to
be displayed:

Not a valid integer value
This is always executed

The most common reason for using a finally block is to ensure that cleanup occurs
regardless of what happens within the try block. For example, suppose you’ve used JDBC to
perform a database query and you want to access the information returned by the query and
then release the ResultSet that encapsulates the data. Since most ResultSet methods can
throw SQLException, you might do this by creating code like this:

ResultSet rset = null;
// ...
try {
rset = stmt.executeQuery("SELECT * FROM CUSTOMERS WHERE CUSTID = 123");
if (rset.next()) {
String custname = rset.getString("CUSTNAME");
System.out.println(custname.toUpperCase());

}
} catch (SQLException sqle) {
System.out.println("Error performing or processing query: " +

sqle.getMessage());
}

What’s missing is a call to the ResultSet object’s close() method that will cause the
resources associated with that ResultSet to be released. Placing the close() call inside the try
block will work only as long as no errors occur, but executeQuery(), next(), and getString()
can all throw SQLException. Putting the call to close() inside the catch block is even more
inappropriate, since it will then be invoked only if an error does occur. On the surface, it might
appear that the best approach is to call close() from outside the try/catch block as follows:

try {
rset = stmt.executeQuery("SELECT * FROM CUSTOMERS WHERE CUSTID = 123");
if (rset.next()) {
String name = rset.getString("CUSTNAME");
System.out.println(name.toUpperCase());

}
} catch (SQLException sqle) {
System.out.println("Error performing or processing query: " +

sqle.getMessage());
}
rset.close();

While this approach will work in most cases, it doesn’t ensure that the close()
method will be called. For example, if the getString() method returns a null value, a

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 73

NullPointerException will be thrown when toUpperCase() is called for the object referenced
by name. Since NullPointerException isn’t handled by the try/catch block, execution of this
code segment will be terminated and the call to the ResultSet’s close() method will never
be executed.

A better approach is to create a finally block that’s responsible for closing the ResultSet
as follows:

try {
rset = stmt.executeQuery(
"SELECT * FROM CUSTOMERS WHERE CUSTID = 123");

if (rset.next()) {
String name = rset.getString("CUSTNAME");
System.out.println(name.toUpperCase());

}
} catch (SQLException sqle) {
System.out.println(

"Error performing or processing query: " +
sqle.getMessage());

} finally {
rset.close();

}

Note that the close() method will now be called even if the try block terminates pre-
maturely with a NullPointerException. In fact, the finally block will be entered even if a
return, break, or continue is placed within the try block (and/or the catch block) as in the
following code:

try {
rset = stmt.executeQuery(
"SELECT * FROM CUSTOMERS WHERE CUSTID = 123");

if (rset.next()) {
String name = rset.getString("CUSTNAME");
System.out.println(name.toUpperCase());

}
return;

} catch (SQLException sqle) {
System.out.println("Error performing or processing query: " +

sqle.getMessage());
return;

} finally {
rset.close();

}

In practice, you should try to define only a single exit point (in other words, return state-
ment) inside a method, which would result in more structured and readable code, but this
example illustrates an important point. Specifically, you can ensure your cleanup code will be

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS74

executed regardless of what happens within the try and catch blocks by placing the code
within a finally block.

Discarded Exceptions
At this point, it’s worth considering what will happen in the previous code if the call to
executeQuery() doesn’t complete successfully but throws an exception. If that occurs, the
catch block will be executed, followed by the finally block, but the finally block will attempt
to call the ResultSet object’s close() method. However, since the rset variable will contain
a null value in that scenario, the close() attempt will result in a NullPointerException. The
question then becomes, what happens to the original SQLException? The answer is that it will
be discarded, and the code segment will be terminated with a NullPointerException with no
indication that the original error ever occurred. One way to avoid this particular problem is to
ensure that the rset variable contains a reference to a ResultSet instead of a null value:

} finally {
if (rset != null) {
rset.close();

}
}

Although this minor change allows you to avoid the problem, it’s not appropriate in all
cases, since you may want take some action if the close() call itself throws an exception. In
addition, the potential for exceptions to be discarded exists even when you’re not using finally
but can also occur when an exception is thrown from inside a catch block. For example, let’s
suppose that instead of simply displaying error messages using System.out.println() that you
instead want to write the messages to a disk file, in which case you might create code like this:

try {
rset = stmt.executeQuery(
"SELECT * FROM CUSTOMERS WHERE CUSTID = 123");

if (rset.next()) {
String name = rset.getString("CUSTNAME");
System.out.println(name.toUpperCase());

}
} catch (SQLException sqle) {
FileWriter fw = new FileWriter("errors.txt");
PrintWriter pw = new PrintWriter(fw);
pw.println("Error performing or processing query: " +

sqle.getMessage());
pw.close();

} finally {
rset.close();

}

Unfortunately, the FileWriter constructor can throw an IOException, and the original
SQLException being handled by the previous catch block will be discarded if that occurs. The

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 75

most obvious solution is to enclose the construction of the FileWriter object within its own
try/catch block (in other words, by nesting one try/catch block within another):

} catch (SQLException sqle) {
FileWriter fw = null;
try {
fw = new FileWriter("errors.txt");

} catch (IOException ioe) {
}
PrintWriter pw = new PrintWriter(fw);
pw.println("Error performing or processing query: " +

sqle.getMessage());
pw.close();

} finally {

Although this approach prevents the original problem of the SQLException being dis-
carded, the problem of how to handle the second (IOException) error remains an issue. It’s
likely you’d not want your application to ignore either exception, but it may not be apparent
how you can communicate to the caller that both errors occurred. To understand how this
problem can be solved, keep in mind that each exception is nothing more than an object
instance, and objects can maintain references to one another. Therefore, to address this prob-
lem, you can simply define a new class that allows you to create an exception that maintains
a reference to another exception. The following LoggingException class is an example of how
you can do this:

public class LoggingException extends Exception {

protected Exception originalException;

public LoggingException(String message, Exception trigger) {
super(message);
originalException = trigger;

}

public Exception getOriginalException() {
return originalException;

}

}

Notice that in additional to the traditional error message this class also maintains a
reference to another Exception object. Using this new class, you can throw an instance of
LoggingException that contains the information from the IOException as well as a reference
to the exception that describes the original error:

} catch (SQLException sqle) {
FileWriter fw;
try {

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS76

fw = new FileWriter("errors.txt");
} catch (IOException ioe) {
throw new LoggingException(ioe.getMessage(), sqle);

}
PrintWriter pw = new PrintWriter(fw);
pw.println("Error performing or processing query: " +

sqle.getMessage());
pw.close();

} finally {

When the LoggingException is thrown, the caller can retrieve information on both excep-
tions: the IOException that occurred when attempting to write the error message and the
SQLException that represents the original error.

Nested Exceptions, Stack Traces, and Message Text
When an exception class is instantiated, a stack trace is created and associated with the excep-
tion object. A stack trace is nothing more than information that describes the path of execution
of a thread at some point in time, including the name of each method that was called, the class
in which each method is defined, and in most cases the line number within the class. It’s the
stack trace information that’s displayed when you execute an application that terminates with
an exception. For example, suppose you create a class like the following one that attempts to
read the contents of a file:

import java.io.*;

public class ShowStack {

public static void main(String[] args) throws IOException {
ShowStack ss = new ShowStack();

}

public ShowStack() throws IOException {
initialize();

}

protected void initialize() throws IOException {
readFileData();

}

protected void readFileData() throws IOException {
File f = new File("test.txt");
FileReader fr = new FileReader(f);
BufferedReader br = new BufferedReader(fr);
String line = br.readLine();

}

}

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 77

If the file doesn’t exist, this application will terminate by displaying a stack trace like
this one:

C:\brett\temp>java ShowStack
Exception in thread "main" java.io.FileNotFoundException: test.txt
(The system cannot find the file specified)

at java.io.FileInputStream.open(Native Method)
at java.io.FileInputStream.<init>(Unknown Source)
at java.io.FileInputStream.<init>(Unknown Source)
at java.io.FileReader.<init>(Unknown Source)
at ShowStack.readFileData(ShowStack.java:19)
at ShowStack.initialize(ShowStack.java:14)
at ShowStack.<init>(ShowStack.java:10)
at ShowStack.main(ShowStack.java:6)

This information indicates that the exception was generated from within the native open()
method defined in the FileInputStream class. Prior to that method being called, several levels
of constructors were invoked, which is indicated by the <init> entries. The original FileReader
constructor was called as part of the instantiation that’s found on line 19 of the ShowStack class,
which is a statement within the readFileData() method.

By examining the stack trace entries, you can determine the complete execution path
of the thread that generated an exception, which in this case began with the execution of
the static main() method in StackTrace. The information is obviously extremely useful for
debugging purposes, but it raises the question of how to handle the stack trace information in
the case of a nested exception. For example, if a LoggingException is thrown, which stack trace
should be displayed: the one from the LoggingException or the one from the original excep-
tion to which it contains a reference? The answer is that the original exception’s stack trace
should appear, since it identifies the source of the problem, and to ensure that the correct
stack trace is displayed, printStackTrace() should be overridden in LoggingException. As its
name implies, printStackTrace() is responsible for displaying the stack trace, and it’s over-
loaded with three implementations. Two of those implementations allow you to specify a
PrintStream or a PrintWriter object that indicates where the stack trace output should be
sent, and the third simply sends the information to standard output.

The default printStackTrace() displays the class name and message text associated with
the exception, followed by the stack trace information, which is appropriate for most excep-
tions but not for nested exception classes such as LoggingException. Instances of that class
should use the default printStackTrace() behavior when they don’t encapsulate another
exception, but when they do, that nested exception’s stack trace information should be dis-
played instead of the trace for the LoggingException. You can do this easily by making the
modifications shown in Listing 2-19 to the custom exception class.

Listing 2-19. Displaying the Stack Trace

public class LoggingException extends Exception {

protected Exception originalException;

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS78

public LoggingException(String message, Exception trigger) {
super(message);
originalException = trigger;

}

public Exception getOriginalException() {
return originalException;

}

public void printStackTrace(java.io.PrintStream ps) {
if (originalException == null) {
super.printStackTrace(ps);

} else {
ps.println(this);
originalException.printStackTrace(ps);

}
}

public void printStackTrace(java.io.PrintWriter pw) {
if (originalException == null) {
super.printStackTrace(pw);

} else {
pw.println(this);
originalException.printStackTrace(pw);

}
}

public void printStackTrace() {
printStackTrace(System.err);

}

}

This custom exception class is now largely complete, but it has one problem: when it
encapsulates another exception, it will print its own message text but will print the stack trace
associated with the exception so that it encapsulates (in other words, the original exception).
This behavior would be extremely confusing for a programmer trying to debug a problem
associated with the original exception, because the stack trace would direct the developer to
a location in code that doesn’t throw the type of exception being generated. For example, if an
IOException were the original cause of the exception condition, the programmer would see
a LoggingException being thrown, but the stack trace associated with that exception would
point to code that throws an IOException. Fortunately, there’s a simple solution to this prob-
lem: modify the LoggingException’s getMessage() method so it indicates that it represents a
nested exception and prints both its own message text and that of the original exception.
Listing 2-20 shows an example of how you can do this.

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 79

Listing 2-20. Overriding getMessage()

public class LoggingException extends Exception {

protected Exception originalException;

public LoggingException(String message, Exception trigger) {
super(message);
originalException = trigger;

}

public Exception getOriginalException() {
return originalException;

}

public void printStackTrace(java.io.PrintStream ps) {
if (originalException == null) {
super.printStackTrace(ps);

} else {
ps.println(this);
originalException.printStackTrace(ps);

}
}

public void printStackTrace(java.io.PrintWriter pw) {
if (originalException == null) {
super.printStackTrace(pw);

} else {
pw.println(this);
originalException.printStackTrace(pw);

}
}

public void printStackTrace() {
printStackTrace(System.err);

}

public String getMessage() {
if (originalException == null) {
return super.getMessage();

} else {
return super.getMessage() + "; nested exception is: \n\t" +
originalException.toString();

}
}

}

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS80

As mentioned, creating nested exceptions without overriding the printStackTrace() and
getMessage() methods can make debugging more difficult. Therefore, you should ensure you
provide implementations similar to the ones shown here if you create a custom nested excep-
tion class.

Avoiding Exceptions
Sometimes it’s common not to use exceptions at all when an “error” occurs but to pass back
a special value that indicates that such an error occurred. For example, suppose you define a
method that performs a search and returns a value, as in the following case:

public Student findStudent(int studentID) {
// ...

}

In this case, if the method could reasonably be expected to fail to find a Student instance
that matches the specified criteria, it might return a null value instead of throwing an excep-
tion. Similarly, if you define a method that returns some integer value that should always be
positive or zero, then returning a negative value could be used in place of an exception to indi-
cate an error. For example, the indexOf() method in the String class does just that if it can’t
find an occurrence of the character you specify:

String test = "Hello";
// Prints the index of the first occurrence of 'e', in this case 1
System.out.println(test.indexOf('e'));
// Prints -1, since the character 'z' isn't found in the string
System.out.println(test.indexOf('z'));

You should use this technique for a single error condition per method only. In other
words, don’t define a method that returns -1 for one type of error, -2 for another type, and so
on. If you find yourself tempted to do this, then you should either rewrite the method or start
using exceptions to signal which error has occurred. What are the advantages of using this
approach instead of throwing an exception? Besides being slightly simpler, it provides faster
execution, because there’s some overhead associated with throwing an exception. However,
the overhead is reasonably small, and fast execution isn’t usually a critical factor when an
error has occurred, so exceptions are an appropriate choice in most situations.

In some cases, such as the two described in this section, what constitutes an error can be
subjective. Is it really an error at all when a given character isn’t found in a string? Maybe, and
maybe not—it depends upon the context. If the application were designed in such a way that
the character should be found, most people would classify the results as an error. Otherwise,
it’s just one possible outcome of the method call, in which case you should avoid throwing
exceptions.

Assertions
Java 1.4 and later releases include support for a feature called assertions. Assertions are related
to exception processing but with some important differences. Before we examine how asser-
tions are to be used, let’s examine how to add an assertion to your code. The format is quite

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 81

simple, with the assert followed by either a single boolean argument or a boolean and an
expression separated by a colon, as follows:

boolean systemValid;
.
.
.
assert systemValid;

Alternatively, it’s as follows:

assert systemValid : "Invalid System State";

In both cases, if systemValid is false, an AssertionError is thrown, and if the expression is
specified as with the “Invalid System State” message shown previously, the string representa-
tion of that expression is used as the message for the AssertionError.

So, what’s the advantage of using an assertion instead of throwing an exception directly?
One advantage is that assertions can be enabled and disabled without making any code changes.
Assertions are disabled by default and must be explicitly enabled using the –enableassertions
command-line option or its abbreviated –ea equivalent as follows:

java –enableassertions MyClass

If you don’t enable assertions, any assert statements in your code will be ignored at exe-
cution time. For this reason, you shouldn’t include in an assertion’s boolean expression any
functionality that must be executed for your code to work correctly. For example, let’s sup-
pose you have a method that updates a database and returns a boolean value indicating
whether it was successful. If you use the following code, that code will ever be executed only
when assertions are enabled:

assert updateDatabase(parms);

In most cases, what you’ll want is to perform the operation unconditionally (that is,
whether assertions are enabled) and then check the results of the update operation, generat-
ing an assertion if the operation failed to complete successfully. You can easily accomplish
this with the following code:

boolean success = updateDatabase(parms);
assert success;

For essentially the same reason, you also shouldn’t use assertions for checking the valid-
ity of parameters passed to public methods. In other words, checking the validity of those
parameters is something you should do whether or not assertions are enabled, and for that
purpose, you should use the existing exception classes such as IllegalArgumentException
and NullPointerException.

So, what are some situations where it’s appropriate to use assertions? A good place is any
section of code that theoretically should never be executed, such as an if/else that shouldn’t
be reached, as in the following example:

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS82

int age;
.
.
.
if ((age > 12) && (age < 20)) {
// Handle teenagers here

}
else if (age >= 65) {
// Handle seniors here

}
else if (age >= 0) {
// Handle all other valid ages here

}
else {
assert false;

}

Similarly, another good candidate is the default block of a select statement as in the fol-
lowing example:

public class processPassenger(Passenger passenger) {
int cabinClass = passenger.getCabinClass();
switch (cabinClass) {

case TYPE_COACH:
processCoachPassenger(passenger);
break;

case TYPE_BUSINESS:
processBusinessPassenger(passenger);
break;

case TYPE_FIRST_CLASS:
processFirstClassPassenger(passenger);
break;

default:
assert false;

}
}

Another possible use of assertions is to verify that an object is in a state that’s valid and/or
adequate for the application to continue execution. For example, as you’ll see in another
chapter, the interfaces that Java uses for database access such as Connection, Statement, and
ResultSet contain methods called getWarnings() and clearWarnings(). Those methods are
provided because some of their “sibling” methods can result in warnings being quietly attached
to the object when called. For example, calling the getInt() method for a ResultSet can cause
a warning to be added to the ResultSet if there was a loss of precision when the value retrieved
is returned as an integer.

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 83

In this scenario, you might use assertions at some point in your code to ensure that no
warnings exist for the object, as in the following example:

ResultSet rset;
.
.
.
// Create a passenger object from the current row of the ResultSet
Passenger passenger = createPassenger(rset);
// See if any warnings were generated for the ResultSet
assert (passenger.getWarnings() == null);

If you do decide to use assertions with a Java 1.4 compiler, be aware that you must explic-
itly enable the compiler to compile them by specifying the –source 1.4 command-line option,
as in the following example. You need not specify the -source option with a Java 1.5 compiler
because assertion support is enabled by default with that version. If you try to compile code
that contains assertions but you don’t specify that option, the compiler will generate an error:

javac –source 1.4 MyClass.java

Enumerations
In the switch statement you just saw that was an example of how assertions can be used, an
integer was expected to have a value that corresponds to one of several valid categories, and
being assigned any other value was considered to be an incorrect state. This is a situation
that’s encountered often; you can use several different approaches to handle it. The problem
with the technique used previously is that it’s easy for errors to occur because there’s no way
to ensure that a particular parameter represents a valid value. For example, let’s suppose you
define a Passenger class with a constructor that takes a string and an integer and that the inte-
ger should correspond to one of the constants in the following class:

public class TicketType {
public int TYPE_COACH = 1;
public int TYPE_BUSINESS = 2;
public int TYPE_FIRST_CLASS = 3;

}

Given these values, there’s nothing to prevent a Passenger object from being created with
a constructor like this one:

Passenger passenger = new Passenger("Del Griffith", -1);

Although it’s technically possible for the Passenger object to perform error checking on its
parameters, it’s not really desirable to do so. For example, suppose you implemented the con-
structor as follows:

public class Passenger {

private String name;

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS84

private int cabinClass;

public Passenger(String nm, int type) {
name = nm;
switch (type) {

case TicketType.TYPE_COACH:
case TicketType.TYPE_BUSINESS:
case TicketType.TYPE_FIRST_CLASS:

break;
default:

assert false;
}
cabinClass = type;

}
}

The problem with this approach is that the Passenger constructor is now tightly coupled
to the list of valid values, and the Passenger class would have to change if a new value is added
to the application or an existing one is removed. An alternative is to add a method to the
TicketType class that checks the validity of a value and call that method from the previous
constructor, but an even better approach is to simply ensure that an invalid value can’t be
passed to the constructor at all. The traditional way of implementing this in Java is to define
a single private constructor for the relevant class (TicketType in this case) and then create a
public instance for each valid state as follows:

public class TicketType {

public static final TicketType TYPE_COACH = new TicketType();
public static final TicketType TYPE_BUSINESS = new TicketType();
public static final TicketType TYPE_FIRST_CLASS = new TicketType();

private TicketType() {
}

}

Since the available selections are now represented as instances of the TicketType class
instead of integer values, you’d also need to make the corresponding changes to Passenger:

public class Passenger {

private String name;
private TicketType cabinClass;

public Passenger(String nm, TicketType type) {
name = nm;
cabinClass = type;

}

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 85

public TicketType getCabinClass() {
return cabinClass;

}

}

Although this prevents a Passenger from being constructed with an invalid type, there’s
one potential problem: it’s possible for multiple instances of the TicketType class to be created
that correspond to the same type. Without going into the details of how that can occur, suffice
it to say that with the current code, there’s no guarantee the following code will be evaluated
as true even if both variables represent the same type:

if (oldPassenger.getCabinClass() == newPassenger.getCabinClass())

Java 1.5 and later releases support a better option called enumerations, which allow you
to define a class-like structure that identifies a finite list of valid instances/values. To define an
enumeration for your TicketType class, create code like this:

public enum TicketType {
TYPE_COACH,
TYPE_BUSINESS,
TYPE_FIRST_CLASS

}

Once you’ve defined an enumeration this way, you can access the values the same way
they were accessed with the class implementation shown earlier:

TicketType type = TicketType.TYPE_COACH;

Despite this simplistic example, enumerations aren’t limited to simply being instantiated;
you can define attributes, methods, and constructors just as you would in a standard class.
For example, suppose you wanted to associate each type in the previous example with a
numeric value so you could store a representation of the type in a database (for example,
coach = 1, business = 2, and so on) In that case, you could simply add a property and corre-
sponding accessor method to the enumeration, specifying a different value for each
enumeration instance as follows:

public enum TicketType {

TYPE_COACH(1),
TYPE_BUSINESS(2),
TYPE_FIRST_CLASS(3);

private int value;

private TicketType(int intValue) {
value = intValue;

}

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS86

public int getValue() {
return value;

}

}

As you can see, enumerations are similar to classes in terms of the functionality that’s
available. However, they offer a more reliable way of defining a finite set of values from which
you can choose, and doing so makes your code simpler and more maintainable.

Summary
In this chapter, I covered a number of issues related to the design of packages, classes, and
methods, including the following:

• You can make a library of classes more manageable by organizing the classes into
packages.

• Creating classes, interfaces, and packages with loose coupling and strong cohesion
tends to make those items more reusable.

• Encapsulation provides many advantages, including the ability to hide implementation
details, and provides insulation from changes in implementation.

• Immutable objects and fields can simplify an object-oriented design.

• The Object class contains a number of important methods that it may be necessary or
helpful to override.

• Method design and naming are an important part of a good design. Method design
greatly influences the reusability of your code, while naming is an important part of
making your code intuitive and easy to understand.

• Minimizing code duplication not only saves time but also makes your code more reli-
able and maintainable.

• Java’s exception handling mechanism is a powerful, flexible facility that can handle
conditions that require attention during the executing of your application.

• Assertions can improve your code’s correctness by checking for a condition that you
expect to be true under normal circumstances.

• Enumerations are useful when defining a finite set of values that are used to identify a
selection or some kind of state.

CHAPTER 2 ■ DESIGNING L IBRARIES, CLASSES, AND METHODS 87

Using Threads in Your
Applications

If you’re like most users, you probably have more than one application running on your
computer most of the time. In addition, you probably sometimes initiate a long-running task
on one application and switch to another application while waiting for that task to complete.
For example, you might start downloading a file from the Internet, or begin a search that scans
your disk drive for files matching a particular pattern, and then read your e-mail while the
download or search is in progress. Having multiple applications run simultaneously (or at least
appear to do so) is called multitasking, and each application is usually referred to as a process.

In reality, of course, your computer probably has one processor, and the operating system
makes it appear that the applications are running at the same time by dividing the processor’s
time between them. One reason that this behavior is useful is that it makes efficient use of
processor time that would otherwise be wasted. In both of the examples mentioned (down-
loading and searching), the processor would spend much of its time simply waiting for I/O
operations to complete unless it has other work to do. From a user’s perspective, this multi-
tasking behavior is desirable because it allows you to continue to use your computer while
some background task is being executed.

Although this scenario refers to different processes/applications, the same concept is
relevant within the context of a single application. For example, a word processor can auto-
matically check your spelling and grammar while it allows you to perform some other task
such as entering text. Similarly, if your application performs a long-running task such as
downloading a large file from the Internet, it’s usually desirable to provide a user interface
that can respond to a user’s request to cancel the download. Java provides built-in support
for simultaneous (concurrent) tasks within a single application through its threading capa-
bilities, where a thread is simply a unit of execution.

In this chapter, I’ll cover the following topics related to using threads in Java:

• I’ll discuss common reasons for using threads and some of the advantages and disad-
vantages of using them.

• I’ll provide examples that illustrate how to create threads and manage their execution.

• I’ll provide tips on how to synchronize access to resources that are used by multiple
threads, and I’ll provide information on how to prevent problems from occurring.

89

C H A P T E R 3

■ ■ ■

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS90

• I’ll explain changes that occurred to the Thread class in Java 2, and I’ll provide sample
code that shows how to create or modify your applications to take into account those
changes.

• I’ll explain thread pooling, a technique that’s used to reduce the overhead associated
with creating threads, and I’ll show an example of how you can implement it.

Threading in Java
It’s likely you’ve built a multithreaded application in Java, even if you didn’t do so explicitly.
When you execute a Java application, the main() method is executed by a thread, although
that fact is largely transparent. In addition, applications that provide a GUI (as most do) will
implicitly cause another thread to be created and used: the AWT event thread.

Despite its name, the AWT event thread is active for both AWT- and Swing-based user
interfaces and is responsible for painting lightweight components and for performing event
notifications. If you create an interface that includes a JButton instance, the AWT event thread
paints the button when it’s made visible and will call the actionPerformed() method for each
of the button’s listeners when it’s clicked.

The fact that the AWT event thread is responsible for both painting and event notification
provides the motivation behind one of the most common uses of threads in Java. As long as the
thread is busy with event handling, it can’t repaint the user interface, and if you create an event
handler that performs some long-running function, the interface may remain unpainted long
enough to produce undesirable results.

For example, the code shown in Listing 3-1 calls the performDatabaseQuery() method
from actionPerformed(). The called method simulates a long-running query by calling the
sleep() method, causing the currently running thread to pause for five seconds before contin-
uing execution. Since actionPerformed() will be called by the AWT event thread, that thread
will be busy until the query completes, which prevents it from repainting the user interface
during that time. Therefore, the user interface will appear to “hang” during the query, as
shown in Figure 3-1.

This type of confusing display can occur when one window is temporarily overlaid by
another and the first window isn’t repainted after the second one is hidden or removed.

Listing 3-1. Simulating a Long-Running Query

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ButtonPress extends JFrame {

public static void main(String[] args) {
ButtonPress bp = new ButtonPress();
bp.setSize(400, 300);
bp.setVisible(true);

}

public ButtonPress() {
JMenuBar jmb = new JMenuBar();
JMenu menu = new JMenu("Execute");
jmb.add(menu);
JMenuItem jmi = new JMenuItem("Database Query");
menu.add(jmi);
jmi.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
performDatabaseQuery();

}
});
setJMenuBar(jmb);

}

protected void performDatabaseQuery() {

// Simulate long-running database query
try {
Thread.sleep(5000);

} catch (Exception e) {}
;

}

}

Figure 3-1. Blocking the AWT event thread prevents your UI from being repainted/refreshed,
which makes the application look as though it’s “hung up” or is otherwise malfunctioning.

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 91

Creating Threads
Java provides built-in support for multithreaded applications, and creating a new thread
is simple. Each thread is represented by an instance of the java.lang.Thread class, and to
create a new instance, you simply define a class that extends Thread or implements the
java.lang.Runnable interface.

You’ll often want to create a class with code that runs in its own thread, but if that class
extends Thread, it can’t inherit functionality from any other class since Java doesn’t support
multiple inheritance. Extending Thread doesn’t provide any functional advantage over imple-
menting Runnable, and neither approach is significantly easier than the other one, so the latter
approach (implementing Runnable) is usually preferable.

The only method defined in Runnable is run() which is called when the thread executes.
Once the thread exits run() (either normally or because of an uncaught exception), it’s con-
sidered dead and can’t be restarted or reused. In effect, the run() method serves the same
purpose in a thread that the main() method does when executing a Java application: it’s the
initial entry point into your code. As with the main() method, you shouldn’t normally call
run() explicitly. Instead, you’ll pass an instance of Runnable to a Thread constructor, and the
thread will call run() automatically when it’s started. For example, to make the ButtonPress
application multithreaded, you could create a DatabaseQuery class like the following one that
implements Runnable:

class DatabaseQuery implements Runnable {

public void run() {
performDatabaseQuery();

}

}

To use this class, all that’s necessary is to create a new instance of Thread, passing its con-
structor a DatabaseQuery instance, and call the Thread’s start() method to begin execution.
Calling start() indicates that the newly created thread should begin execution, and it does so
by calling the object’s run() method as mentioned previously:

Thread t = new Thread(new DatabaseQuery());
t.start();

An even easier way is to define an anonymous inner class that implements Runnable, as
shown in the modified DatabaseQuery code (see Listing 3-2).

Listing 3-2. DatabaseQuery, Modified

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ButtonPress extends JFrame {

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS92

public static void main(String[] args) {
ButtonPress bp = new ButtonPress();
bp.setSize(400, 300);
bp.setVisible(true);

}

public ButtonPress() {
JMenuBar jmb = new JMenuBar();
JMenu menu = new JMenu("Execute");
jmb.add(menu);
JMenuItem jmi = new JMenuItem("Database Query");
menu.add(jmi);
jmi.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
Thread t = new Thread(new Runnable() {
public void run() {
performDatabaseQuery();

}
});
t.start();

}
});
setJMenuBar(jmb);

}

protected void performDatabaseQuery() {

// Simulate long-running database query
try {
Thread.sleep(50000);

} catch (Exception e) {}
;

}

}

When this code is executed and the menu item activated, the AWT event thread will call
the actionPerformed() method and create a new thread, and then that new thread will call
performDatabaseQuery(). This allows the AWT event thread to return from actionPerformed()
quickly and to repaint the user interface.

In addition to the constructor used here that accepts a single Runnable parameter,
Thread also provides constructors that allow you to specify a name (in the form of a String)
for the thread and to identify the ThreadGroup with which the Thread should be associated.
I’ll describe thread groups in more detail later in this chapter; they allow you to create logical
groupings of threads. A thread’s name has no functional significance but may allow you to
more easily distinguish one thread from another while debugging a multithreaded application.

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 93

Disadvantages of Using Threads
As you can see from the previous example, it’s extremely easy to create a thread in Java, but
you should avoid doing so when possible. Although not obvious from this simple example,
using multiple threads within your applications has several disadvantages, as described in
the following sections.

Slow Initial Startup
Although not apparent from the previous ButtonPress class, creating and starting a new thread
is a relatively slow operation on some platforms, and in an application where performance is
critical, this can be a significant drawback. However, thread pooling provides a reasonably
simple solution to this problem, and pools are often used by applications that perform many
concurrent operations, especially when those operations can be completed quickly. Thread
pooling is conceptually similar to database connection pooling, which is a topic that’s described
in Chapter 11. I’ll discuss thread pooling in detail later in this chapter.

Resource Utilization
Each thread is allocated its own stack, which is an area of storage used to contain local vari-
able values and other information related to execution. Other system resources are used in
addition to the stack, although the specific amount and type of those resources used varies
from one Java Virtual Machine to the next. Although it’s usually possible to create a large num-
ber of threads, the platform you’re using may limit the number that can be created. Even if the
platform doesn’t explicitly limit the number of threads you can create, there’s usually a practi-
cal limit determined by the speed of your processor and the amount of available memory on
your system.

Although you can’t eliminate this problem, you can control it through thread pooling. In
addition to eliminating the overhead penalty associated with creating a new thread, you can
use thread pools to limit the number of threads that are created. This assumes, of course, that
your application voluntarily allows a thread pool manager to control when to create threads
and how many to create. Java doesn’t include an implementation of a thread pool manager,
but as you’ll see later in the chapter, it’s easy to create one.

Increased Complexity
By far the biggest disadvantage of using threads within your application is the complexity that
it adds. For example, if you’re debugging a single-threaded application, it’s relatively easy to
observe your application’s flow of execution, but it can be significantly more difficult to do so
when using multiple threads.

Thread safety usually involves designing the object so that its data can’t be read or written
by one thread while another thread is in the process of modifying that data. In this context,
data refers to the information encapsulated by the object, and a single data item can consist
of a field or collection of fields within the object. An example of a data item is a person’s name,
which might be contained within a single String field or within several fields (for example,
first, middle, and last names).

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS94

An even more complex problem is the matter of sharing resources among multiple
threads. In this context, a resource is any entity that can be used by more than one thread
simultaneously, and in most cases, you’re responsible for coordinating their use by the
threads. For example, Swing components aren’t inherently thread-safe, so you’re responsible
for coordinating how they’re used by your application’s thread(s) and the AWT event thread.
This is usually done using the invokeAndWait() and invokeLater() methods in SwingUtilities
to delegate modifications to visible components to the AWT event thread.

In general, if you create an object that contains data that can be modified, and the object
is accessible by more than one thread, you’re responsible for making that object thread-safe.
Thread safety refers to ensuring that no partial or otherwise inappropriate modifications can
be made to an object’s state because of two or more threads attempting to update the state
simultaneously; you’ll see shortly how this can occur when an object isn’t thread-safe.

Sharing Resources
Before discussing how to coordinate using shared resources among threads, I’ll first cover
which resources are shared. Variables defined locally within a method aren’t accessible out-
side that method and are therefore not shared when multiple threads execute the same
method for some object. For example, suppose you run the following application, which
creates two threads that use the same Runnable object instance:

public class ThreadShare implements Runnable {

public static void main(String[] args) {
ThreadShare ts = new ThreadShare();
Thread t1 = new Thread(ts);
Thread t2 = new Thread(ts);
t1.start();
t2.start();

}

public void run() {
int nonSharedValue = 100;
nonSharedValue += 100;
System.out.println("Value: " + nonSharedValue);

}

}

Since the nonSharedValue variable is defined inside the run() method, it’s local to that
method and isn’t shared by the two threads. Since each thread will get its own copy of
nonSharedValue, running this application will always produce the following output:

Value: 200
Value: 200

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 95

However, if the application is modified so that the run() method increments an instance
variable, that variable will be a shared resource:

public class ThreadShare implements Runnable {

int sharedValue = 100;

public static void main(String[] args) {
ThreadShare ts = new ThreadShare();
Thread t1 = new Thread(ts);
Thread t2 = new Thread(ts);
t1.start();
t2.start();

}

public void run() {
sharedValue += 100;
System.out.println("Value: " + sharedValue);

}

}

If you modify and execute this application, it will probably produce the following results:

Value: 200
Value: 300

However, it’s also possible that the output could match the following:

Value: 300
Value: 300

It’s even possible for the program to produce these results:

Value: 300
Value: 200

To understand why the output can vary, it’s necessary to have some knowledge of how
threads are managed by operating systems, since Java’s threading support uses the native
thread capabilities of the platform on which the Java Virtual Machine executes.

Thread Management
For multiple operations to be executed concurrently by a single microprocessor, it’s neces-
sary at some point to transfer control of the processor from one thread to another, which is
called context switching. Context switching can occur when a thread voluntarily gives up

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS96

control of the processor, and that approach is known as cooperative multitasking. In cooper-
ative multitasking, a thread must execute some instruction or call a method to indicate that
it’s willing to relinquish control over the processor to another thread. Unfortunately, if a
programmer deliberately or accidentally creates a thread that doesn’t periodically give up
control of the processor, that thread can easily cause the application to “hang” and/or
prevent other threads from running. Windows 3.1 and other older operating systems use
cooperative multitasking, and it’s possible for one thread to “lock up” an application or even
the entire operating system if that thread doesn’t occasionally release control of the processor.

A better approach is preemptive multitasking, where control of the processor is arbitrarily
transferred from one thread to another, usually after some amount of time has elapsed. Pre-
emptive multitasking has two advantages over cooperative multitasking:

• It can prevent a thread from monopolizing the processor.

• It removes from the programmer the burden of deciding when to perform a context
switch, shifting that responsibility to the operating system.

With preemptive multitasking, a programmer doesn’t need to be concerned with how
or when to perform a context switch, but that convenience comes at a price. Although the
programmer doesn’t need to be concerned with the details of context switching, it becomes
necessary to coordinate the use of resources that are shared by multiple threads.

In the previous example of the ThreadShare class, you saw that the results of running
the application could vary. The reason for this is that no effort was made to coordinate the use
of the shared resource, specifically the sharedValue variable. In most cases, the sequence of
events will proceed as follows, where t1 represents the first thread and t2 the second:

t1 enters the run() method
t1 adds 100 to sharedValue, setting it equal to 200
t1 prints the value of sharedValue
t2 enters the run() method
t2 adds 100 to sharedValue, setting it equal to 300
t2 prints the value of sharedValue

However, if the native platform uses preemptive multitasking, it’s possible that the
sequence of steps can be performed slightly differently. In fact, from an application per-
spective, it’s not possible to predict when a context switch will occur, so you must assume a
worst-case scenario. In this case, for example, it’s possible for the sequence of steps to occur
as follows:

t1 enters the run() method
t1 adds 100 to sharedValue, setting it equal to 200
(Context switch occurs here and t2 is allowed to run)
t2 enters the run() method
t2 adds 100 to sharedValue, setting it equal to 300
t2 prints the value of sharedValue
(Context switch occurs and t1 is allowed to resume execution)
t1 prints the value of sharedValue

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 97

This is just one of the possible combinations that can occur, which means the results of
the application are unpredictable. This type of situation, where the order in which threads
execute can affect the results of running an application, is called a race condition. Since
unpredictability is obviously not desirable in a software application, it’s important to avoid
race conditions, and the following code illustrates that point. The application creates two
instances of CustomerAccount representing a customer’s savings and checking accounts. Once
the accounts have been created and initialized so that each one contains $1,000, two threads
are created that transfer random amounts of money between the two accounts.

In the case of the ThreadShare application, it wasn’t clear what the correct output should
be because the purpose behind the code’s design wasn’t stated, but it should be more obvious
here. In this case, the intent is clearly to transfer money between two accounts while still
maintaining the same total value. To allow you to determine whether that’s actually the case,
the sum of the two account balances is printed both before and after the transfers take place.
Listing 3-3 shows the initial AccountManager implementation.

Listing 3-3. Initial AccountManager Implementation

public class AccountManager {

protected CustomerAccount savings;
protected CustomerAccount checking;

public final static int SAVINGS_ACCOUNT = 1;
public final static int CHECKING_ACCOUNT = 2;

public static void main(String[] args) {
int transfers = 1000000;
try {
transfers = Integer.parseInt(args[0]);

} catch (Exception e) {}
AccountManager am = new AccountManager(transfers);

}

public AccountManager(int transfers) {
savings = new CustomerAccount(SAVINGS_ACCOUNT, 1000);
checking = new CustomerAccount(CHECKING_ACCOUNT, 1000);
java.text.NumberFormat formatter =

java.text.NumberFormat.getCurrencyInstance(
java.util.Locale.US);

System.out.println("Total balance before transfers: " +
formatter.format(savings.getBalance() +
checking.getBalance()));

TransferManager tm1 = new TransferManager(checking,
savings, transfers);

TransferManager tm2 = new TransferManager(savings,
checking, transfers);

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS98

// Create two threads
Thread t1 = new Thread(tm1);
Thread t2 = new Thread(tm2);
// Initiate execution of the threads
t1.start();
t2.start();
// Wait for both threads to complete execution
try {
t1.join();
t2.join();

} catch (Exception e) {};
System.out.println("Total balance after transfers: " +

formatter.format(savings.getBalance() +
checking.getBalance()));

}

class TransferManager implements Runnable {

protected CustomerAccount fromAccount;
protected CustomerAccount toAccount;
protected int transferCount;

public TransferManager(CustomerAccount fromacct,
CustomerAccount toacct, int transfers) {

fromAccount = fromacct;
toAccount = toacct;
transferCount = transfers;

}

public void run() {
double balance;
double transferAmount;
for (int i = 0 ; i < transferCount; i++) {
balance = fromAccount.getBalance();
transferAmount = (int)(balance * Math.random());
balance -= transferAmount;
fromAccount.setBalance(balance);
balance = toAccount.getBalance();
balance += transferAmount;
toAccount.setBalance(balance);

}
}

}

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 99

class CustomerAccount {

protected int accountType;
protected double balance;

public CustomerAccount(int type, double bal) {
accountType = type;
balance = bal;

}

public int getAccountType() {
return accountType;

}

public double getBalance() {
return balance;

}

public void setBalance(double newbal) {
balance = newbal;

}

}

}

Regardless of how many transfers take place or what the amounts of those transfers are,
the total value of the two accounts should be equal to $2,000 once the application completes.
In fact, if you compile and execute this application, it will correctly display the following
results in most cases:

Total balance before transfers: $2,000.00
Total balance after transfers: $2,000.00

However, it’s also possible that it will display results like these:

Total balance before transfers: $2,000.00
Total balance after transfers: $41.00

This variation occurs for the same reason that ThreadShare’s output was unpredictable.
Specifically, the two threads that are modifying the account balances sometimes produce a
conflict as follows, where t1 represents one thread and t2 represents the other:

t1 gets the current checking account balance (e.g. $1000).
t1 calculates the transfer amount (e.g. $15)

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS100

t1 subtracts the transfer amount from the checking balance (1000 - 15 = $985)
(Context switch occurs)
t2 calculates the transfer amount (e.g. $27)
t2 gets the current savings account balance (e.g. $1000).
t2 subtracts the transfer amount from the savings balance (1000 - 27 = $973)
t2 saves the new savings balance (973) in the CustomerAccount object
t2 gets the current checking account balance ($1000)
t2 adds the transfer amount ($27) to the checking balance (1000 + 27 = $1027)
t2 saves the new checking balance ($1027) in the CustomerAccount object
(Context switch occurs)
t1 saves the new checking balance ($985) in the CustomerAccount object
t1 gets the current savings account balance ($973)
t1 adds the transfer amount ($15) to the savings balance (973 + 15 = $988)
t1 saves the new savings balance ($988) in the CustomerAccount object

After this sequence of steps, the checking balance is $985 and the savings balance is $988.
Although the total of the two account balances should still be $2,000, their total is only $1,973.
In effect, $27 was lost because of context switching and the failure to prevent the two threads
from making inappropriate updates to the resources they share.

Synchronizing the Use of Shared Resources
In the previous example, you saw that it’s possible for data to effectively become corrupted
when it’s modified by more than one thread simultaneously. However, Java’s synchronized
keyword provides an easy way for you to prevent this from happening by allowing you to
define methods and blocks of code that can be executed by only one thread at a time. In
effect, the synchronized keyword locks the method or block of code while it’s being executed
by one thread so that no other threads are allowed to enter until the first thread has exited
the method or block.

Each instance of java.lang.Object or one of its subclasses (in other words, every Java
object) maintains a lock (or monitor), and the synchronized keyword is always implicitly or
explicitly associated with an instance of Object (primitives can’t be used). Before a thread can
enter a synchronized method or section of code, it must obtain the monitor of the object asso-
ciated with that code. If one thread obtains an object’s monitor and a second thread attempts
to do so, the second thread becomes blocked and its execution is suspended until the monitor
becomes available. In addition to the monitor, each object maintains a list of threads that are
blocked because they’re waiting on the object’s monitor. If a thread can’t obtain an object’s
monitor, it’s automatically put on the list, and once the monitor becomes available, one of the
threads in the list will be given the monitor and allowed to continue execution. This behavior
occurs when you use the synchronized keyword, and you don’t need to explicitly obtain or
release an object’s monitor. Instead, it will be automatically obtained (if possible) when a
thread enters a synchronized method or block of code and released when the thread exits that
code block or method.

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 101

In the following code segment, a synchronized block of code is created that requires a
thread to obtain the studentList object’s monitor before entering the block:

public class StudentRoster {

protected java.util.Vector studentList;

public void addStudentToList(Student st) {
synchronized (studentList) {
studentList.addElement(st);

}
st.setEnrolled(true);

}

public void removeStudentFromList(Student st) {
studentList.removeElement(st);

}

}

In this case, the object that’s used for synchronization is an instance of Vector, but it can be
an instance of any class. As in this example, it’s common (but not necessary) for the synchro-
nization to be performed using the object that’s accessed or modified within the synchronized
block. There’s no technical requirement that you do so, but this approach provides an easy
way for you to remember which object’s monitor is used to control access to that object’s data.

You can also use the synchronized keyword as a method modifier, in which case the entire
method is synchronized as follows:

public class StudentRoster {

protected java.util.Vector studentList;

public synchronized void addStudentToList(Student st) {
studentList.addElement(st);
st.setEnrolled(true);

}

public void removeStudentFromList(Student st) {
studentList.removeElement(st);

}

}

Since it was mentioned earlier that synchronized is always associated with an instance
of Object, you may be wondering which object that is in this case. When synchronized is
used with an instance (in other words, nonstatic) method, the object that will be used is the
object against which the method was invoked. For example, if you create an instance of the
StudentList class and then call its synchronized addStudent() method, the thread that calls
the method must obtain the monitor of the StudentList object instance. In other words, the

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS102

following code is functionally identical to calling removeStudentFromList() after adding
synchronized to that method’s definition:

StudentRoster sr = new StudentRoster();
Student st = new Student();
.
.
// Putting the call to removeStudentFromList() in a code block that's
// synchronized on the instance of StudentList is functionally equivalent
// to adding the synchronized keyword to the method definition.
synchronized (sl) {
sr.removeStudentFromList(st);

}

When you define a class (in other words, static) method that’s synchronized, calls to that
method will be synchronized on the Class object associated with the class. For example, sup-
pose that a static method is added to StudentRoster:

public class StudentRoster {

protected java.util.Vector studentList;

public synchronized void addStudentToList(Student st) {
studentList.addElement(st);
st.setEnrolled(true);

}

public void removeStudentFromList(Student st) {
studentList.removeElement(st);

}

public static synchronized StudentRoster getNewInstance() {
return new StudentRoster();

}

}

Calls to getNewInstance() will be synchronized on the Class object associated with
StudentRoster, so specifying synchronized with the getNewInstance() method definition is
equivalent to calling that method using the following code:

StudentRoster sr;
.
.
// The following code is equivalent to adding synchronized to the
// removeStudentFromList() method's definition, because it causes
// the running thread to attempt to obtain the lock of the Class
// object associated with StudentList.
synchronized (StudentRoster.class) {
sr = StudentRoster.getNewInstance();

}

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 103

As these examples illustrate, you can use the synchronized keyword to make code thread-
safe that wouldn’t be otherwise. However, as you’ll see later in the chapter, thread safety often
isn’t as simple as adding this modifier to one or more method signatures. You need to be aware
of some potential problems that can occur in multithreaded applications, and synchronizing
methods and code blocks is just part of what you need to do to make your application func-
tion appropriately.

Nested Calls to Synchronized Methods and Code Blocks
As mentioned earlier, a thread becomes blocked if it tries to enter a synchronized method or
section of code while some other thread owns the associated object’s monitor. However, you
may be wondering what happens if a thread attempts to enter a synchronized method when it
already owns the associated object’s monitor. For example, you might have two synchronized
methods in a class where one of them calls the other as follows:

public synchronized void performFirstFunction() {
// Some functionality performed here
.
performSecondFunction()

}

public synchronized void performSecondFunction() {
// Some other functionality performed here

}

When a thread enters the performFirstFunction() method, it obtains the monitor for the
object for which the method is called. Once performSecondFunction() is called, there’s no need
to obtain the object’s monitor because the thread is already the owner of that monitor, so the
thread is allowed to continue executing normally.

Each time a thread successfully enters a method or section of code that’s synchronized on
some object, a count value associated with the object is incremented, and when the thread
exits that method or block, the value is decremented.

A thread releases an object’s monitor only when the count value associated with the
object is zero, which ensures that the thread keeps the monitor until it exits the code that
originally caused it to obtain the monitor. In this case, for example, when a thread enters
performFirstFunction(), it obtains the object’s monitor and increments the count value to
one. When the call to performSecondFunction() occurs, the count value is incremented to two
but will be decremented back to one when the thread exits performSecondFunction(). Finally,
when the thread exits performFirstFunction(), the count value returns to zero, and the
object’s monitor is released by the thread.

Synchronized Blocks vs. Methods
As you’ve seen, it’s possible to synchronize both an entire method and a section of code within
a method, and you may wonder which one you should use. To understand which is appropri-
ate in a given situation, it’s important to consider what synchronization really provides.

Stated simply, synchronization allows you to prevent multithreaded execution of certain
portions of a multithreaded application. In other words, synchronization reduces the concur-
rency of your application’s threads and, if used too extensively, defeats the purpose of using

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS104

multiple threads. A good rule of thumb is to include as few lines of code as possible within syn-
chronized methods or blocks but only to the extent that you haven’t sacrificed thread safety.

Adding the synchronized keyword to a method definition is a simple, readable way to
provide thread safety, but it’s sometimes not necessary and may be undesirable. For example,
if only one or two lines of code within the method really need to be synchronized, you should
enclose that code within its own synchronized block instead of synchronizing the entire
method. This is particularly true if much of the time devoted to executing that method is
spent on code that doesn’t need to be synchronized. In other words, if you synchronize too
much of your code, you’ll prevent threads from running when they should be able to run.

Deadlocks
Once you’ve synchronized access to the shared resources within your application, you may
encounter a deadlock. For example, returning to the AccountManager application as an exam-
ple, let’s suppose you decide to synchronize access to the resources (in other words, the
CustomerAccount objects) that are used by multiple threads, as shown in Listing 3-4.

Listing 3-4. Synchronizing Code Sections

class TransferManager implements Runnable {

protected CustomerAccount fromAccount;
protected CustomerAccount toAccount;
protected int transferCount;

public TransferManager(CustomerAccount fromacct,
CustomerAccount toacct, int transfers) {

fromAccount = fromacct;
toAccount = toacct;
transferCount = transfers;

}

public void run() {
double balance;
double transferAmount;
for (int i = 0 ; i < transferCount; i++) {
synchronized (fromAccount) {
balance = fromAccount.getBalance();
transferAmount = (int)(balance * Math.random());
balance -= transferAmount;
fromAccount.setBalance(balance);
synchronized (toAccount) {
balance = toAccount.getBalance();
balance += transferAmount;
toAccount.setBalance(balance);

}
}

}
}

}

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 105

Although these modifications do fix one potential problem, they introduce the possibility
of another: deadlock. The first thread that’s started in the CustomerAccount application trans-
fers money from the checking account to the savings account, and the second thread transfers
money from savings into checking. Therefore, for each of the first thread’s iterations through
the run() method, it will obtain the checking account object’s monitor and then the savings
account monitor. The second thread competes for the same two monitors, but it attempts to
obtain them in the reverse order.

Now suppose during an iteration of the run() method that the first thread is interrupted
after it obtains the checking account monitor but before it has gotten the savings account
monitor. If the second thread then begins executing the loop, it will successfully obtain the sav-
ings account monitor, but it will be blocked when it attempts to obtain the checking account
monitor. At that point, each thread has successfully obtained one of the two monitors, and
each will wait indefinitely for the other monitor to become available, which is an example of
deadlock.

Deadlock conditions are common in multithreaded applications and often result in the
application becoming “hung.” Fortunately, you have at least two ways of preventing this prob-
lem, neither of which is terribly complex: high-level synchronization and lock ordering.

High-Level Synchronization
In Listing 3-4, each CustomerAccount’s monitor was used to synchronize access to that
CustomerAccount instance. Since a transfer operation involved obtaining two locks, it was
possible for deadlock to occur if a thread obtained one of the locks but not the other. However,
since this form of deadlock can’t occur if only one lock is involved, high-level synchronization
offers a potential solution to the problem.

As mentioned earlier, it’s customary when adding synchronization to your application to
cause an operation to synchronize on the object being accessed or modified, but there’s no
technical reason you must do so. In this case, for example, the application synchronizes access
to each CustomerAccount object using that instance’s monitor, but it’s entirely acceptable to syn-
chronize access to those objects using some other object.

In high-level synchronization, you simply select a single object that synchronizes access
to all shared resources that are involved in some operation. In the case of a transfer opera-
tion, for example, you can select an existing object or create a new object that will be used to
control access to all instances of CustomerAccount. You can do this by creating a new object
explicitly for that purpose, as shown in the following variable declaration that might be
added to CustomerAccount:

protected final static Object synchronizerObject = new Object();

This new object is defined as a class variable because it will be used to synchronize access
to all instances of CustomerAccount as follows:

public void run() {
double balance;
double transferAmount;
for (int i = 0 ; i < transferCount; i++) {
synchronized (synchronizerObject) {
balance = fromAccount.getBalance();

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS106

transferAmount = (int)(balance * Math.random());
balance -= transferAmount;
fromAccount.setBalance(balance);
balance = toAccount.getBalance();
balance += transferAmount;
toAccount.setBalance(balance);

}
}

}

In effect, you’ve eliminated the deadlock problem by reducing the number of monitors
that a thread must own from two to one. However, the problem with this approach is that it
reduces the concurrency of the application, since only one transfer can ever be in progress at
any given time. In other words, even a transfer involving two completely separate and unre-
lated CustomerAccount objects would be blocked while a thread is executing the code inside
this synchronized block.

Lock Ordering
As you saw earlier, the deadlock condition occurred because the two threads attempt to
obtain the objects’ monitors in a different order. The first thread attempts to obtain the check-
ing account monitor and then the savings account monitor, while the second thread attempts
to obtain the same two monitors but in the reverse order. This difference in the order in which
the monitors are obtained lies at the root of the deadlock problem, and you can address the
problem by ensuring that the monitors are obtained in the same order by all threads.

You can accomplish this by creating an if statement that switches the order in which the
locks are obtained based on the results of some comparison. In other words, when locking
two objects, there must be some way to compare those objects to determine which one’s mon-
itor should be obtained first. In this case, the CustomerAccount instances provide a convenient
way of doing so, since each one maintains an account type (in other words, checking or sav-
ings) that’s stored as an integer value. Listing 3-5 shows an example of how you could
implement this.

Listing 3-5. Implementing Lock Ordering

class TransferManager implements Runnable {

protected CustomerAccount fromAccount;
protected CustomerAccount toAccount;
protected int transferCount;

public TransferManager(CustomerAccount fromacct,
CustomerAccount toacct, int transfers) {

fromAccount = fromacct;
toAccount = toacct;
transferCount = transfers;

}

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 107

public void run() {
double balance;
double transferAmount;
for (int i = 0 ; i < transferCount; i++) {
balance = fromAccount.getBalance();
transferAmount = (int)(balance * Math.random());
transferFunds(fromAccount, toAccount, transferAmount);

}
}

protected void transferFunds(CustomerAccount account1,
CustomerAccount account2, double transferAmount) {

double balance;
CustomerAccount holder = null;
// We want to always synchronize first on the account with the
// smaller account type value. If it turns out that the "second"
// account actually has a larger type value, we'll simply
// switch the two references and multiply the amount being
// transferred by -1.
if (account1.getAccountType() > account2.getAccountType()) {
holder = account1;
account1 = account2;
account2 = holder;
transferAmount *= -1;

}
synchronized (account1) {
synchronized (account2) {
balance = account1.getBalance();
balance -= transferAmount;
account1.setBalance(balance);
balance = account2.getBalance();
balance += transferAmount;
account1.setBalance(balance);

}
}

}

}

Since the savings account’s type value (1) is less than the checking account type (2), a
savings account’s monitor will always be obtained first by this code, regardless of the type of
transfer being performed. In this case, you obtain the monitor of the account with a lower
type value, but this code would run equally well if it were modified to first obtain the monitor
of the account with the higher type value. In other words, it’s not the order in which the moni-
tors are obtained that’s important: it’s simply necessary to ensure that both threads
consistently obtain the monitors in the same order.

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS108

Thread Priorities
Each Thread is assigned a priority, which is a value between 1 and 10 (inclusive) that’s an
indication of when a thread should run relative to other threads. In general, a thread’s prior-
ity determines whether it’s given preference by the processor when there are two or more
runnable threads. A runnable thread is one that’s able to execute instructions, which means
it has been started, hasn’t yet died, and isn’t blocked for any reason.

When a context switch occurs, the processor typically selects the runnable thread with
the highest priority, which means that higher-priority threads will usually run before and/or
more frequently than lower-priority threads. If two or more threads with the same priority are
runnable, it’s more difficult to predict which one will be allowed to run.

In fact, the factors that determine how long and how often a thread runs are specific to
the platform on which it’s running and to the Java Virtual Machine implementation in use.
One operating system might always select the first available runnable thread with the highest
priority, while another system may schedule threads with the same priority in a “round-robin”
fashion. In addition, while Java supports ten priorities, the underlying operating system’s
threading architecture may support a lesser or greater number of priorities. When that’s the
case, the Java Virtual Machine is responsible for mapping the priority value assigned to the
Thread object to an appropriate native priority.

Given these differences between platforms, Java doesn’t make any guarantees concerning
how priority affects a thread’s execution. Therefore, you should avoid making assumptions
about the effects of thread priorities on your application or at least test its effects on each plat-
form on which your code will be deployed.

When one Thread creates another, that new Thread (sometimes called the child thread)
is given the same priority value as the one that created it (the parent thread). However, you
can explicitly set a Thread’s priority by calling its setPriority() method and specifying an int
parameter value between 1 and 10. The Thread class provides three constants that correspond
to low, medium, and high thread priorities; MIN_PRIORITY, NORM_PRIORITY, and MAX_PRIORITY
correspond to values of 1, 5, and 10, respectively. For example, to create a thread and assign it
the lowest possible priority, you could use code similar to the following:

Runnable myRunnable;
.
.
.
Thread t = new Thread(myRunnable);
t.setPriority(Thread.MIN_PRIORITY);

The specific priority you assign to a thread will depend primarily on the nature of the func-
tion(s) performed by the thread. For example, if a thread will spend most of its time waiting for
input and it performs a task that must be completed quickly, it should normally be assigned a
high priority. Conversely, a thread that performs some type of noncritical background task
(particularly one that takes a long time to complete) should be given a low priority. The word
processor used to create this book, for instance, performs automatic spell checking, but that
function is performed in a low-priority thread, at least until the application receives an explicit
request to spell check the document.

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 109

When selecting thread priorities, be aware that it may be possible for a long-running
thread with a high priority to monopolize the processor, even when preemptive multitasking
is being used. Therefore, you should use caution in assigning higher priorities and will usually
do so only for threads that can be counted on to periodically relinquish control of the proces-
sor voluntarily.

Daemon Threads
Each thread is classified as either a daemon thread or a user thread, and Thread’s setDaemon()
method allows you to specify the thread’s type. To use setDaemon(), you must call it before a
thread is started, and passing a boolean value of true indicates that the thread should be a
daemon thread, while false (the default) indicates it should be a user thread.

The only difference between a daemon thread and a user thread is that one type (user)
prevents the Java Virtual Machine from exiting, while the other (daemon) doesn’t. For example,
if you compile and execute the following application, the JVM will terminate after executing the
main() method:

public class Test {

public static void main(String[] args) {
Test t = new Test();

}

public Test() {
System.out.println("Hello world.");

}

}

However, if you create a similar application that displays a visual component such as a
frame or dialog, as shown in Listing 3-6, the JVM doesn’t exit.

Listing 3-6. Displaying a Visual Component in Test

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Test {

protected JFrame frame;

public static void main(String[] args) {
Test t = new Test();

}

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS110

public Test() {
frame = new JFrame("Hello World");
frame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent event) {
frame.setVisible(false);
frame.removeWindowListener(this);
frame.dispose();
frame = null;

}
});
Container pane = frame.getContentPane();
pane.setLayout(new FlowLayout());
pane.add(new JLabel("Hello world."));
frame.setSize(400, 300);
frame.setVisible(true);

}

}

Although the modified Test class shown in Listing 3-6 performs all the appropriate
cleanup operations, the JVM doesn’t exit when the window is closed and the resources are
released. This is because a JVM will not automatically terminate as long as there are any live
user threads, even if it may not be obvious which user thread is active. In this case, the user
thread preventing the JVM from exiting is the AWT event thread, which is started automati-
cally when the JFrame is created so that rendering and event notification services can be
provided. If you want to force the JVM to exit despite that one or more user threads are still
executing, you must call the static exit() method in the System class as follows:

System.exit(0);

Daemon threads are often used for background tasks that run continuously and that
don’t need to perform any cleanup tasks before the JVM terminates execution; an example of
this is the thread that performs garbage collection. If it’s important for a thread to perform
some cleanup task(s) before the Java Virtual Machine exits, that thread should be made a
user thread. Otherwise, it’s appropriate for the thread to run as a daemon thread.

Adding Threads to an Application
I’ll now show how to create an application that can benefit from the use of threads and cover
some of the issues you’ll face when doing so. This application allows you to specify the URL of
a file and downloads it, writing the file to disk. Figure 3-2 illustrates how the application will
appear during the download.

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 111

Figure 3-2. The Downloader class allows you to download a file and displays the progress of the
download.

To run this application by itself, you must specify two parameters on the command line:
the URL of the file to download and the output file to which the contents of that URL should
be written. When you do so, the component will appear in a frame like the one shown in
Figure 3-2, and the portion of the file downloaded will be displayed visually through the
progress bar. For example, to download the home page from the JavaSoft web site and store
its contents in C:/brett/temp/javahome.html, you could enter the following command:

java Downloader http://www.javasoft.com/index.html C:/brett/temp/javahome.html

Listing 3-7 shows the initial implementation of this code. The main() method defined
here creates an instance of the Downloader visual component, places it in a frame, displays
that frame, and initiates the download by calling performDownload().

Listing 3-7. Initial Downloader Implementation

import java.awt.*;
import java.io.*;
import java.net.*;
import javax.swing.*;

public class Downloader extends JPanel {

protected URL downloadURL;
protected InputStream inputStream;
protected OutputStream outputStream;
protected byte[] buffer;

protected int fileSize;
protected int bytesRead;

protected JLabel urlLabel;
protected JLabel sizeLabel;
protected JLabel completeLabel;
protected JProgressBar progressBar;

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS112

public final static int BUFFER_SIZE = 1000;

protected boolean stopped;

public static void main(String[] args) throws Exception {
Downloader dl = null;
if (args.length < 2) {
System.out.println("You must specify the URL of the file " +

"to download and the name of the local file to " +
"which its contents will be written.");

System.exit(0);
}
URL url = new URL(args[0]);
FileOutputStream fos = new FileOutputStream(args[1]);
try {
dl = new Downloader(url, fos);

} catch (FileNotFoundException fnfe) {
System.out.println("File '" + args[0] + "' does not exist");
System.exit(0);

}
JFrame f = new JFrame();
f.getContentPane().add(dl);
f.setSize(600, 400);
f.setVisible(true);
dl.performDownload();

}

The following portion of the code is passed a URL that identifies the file to be down-
loaded and an OutputStream that represents the location to which the file’s contents will be
written. In this case, it will be a FileOutputStream, causing the contents to be written to a local
disk file.

public Downloader(URL url, OutputStream os) throws IOException {
downloadURL = url;
outputStream = os;
bytesRead = 0;
URLConnection urlConnection = downloadURL.openConnection();
fileSize = urlConnection.getContentLength();
if (fileSize == -1) {
throw new FileNotFoundException(url.toString());

}
inputStream = new BufferedInputStream(

urlConnection.getInputStream());
buffer = new byte[BUFFER_SIZE];
buildLayout();

stopped = false;
}

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 113

The following section of the code simply builds the interface that’s used to provide feed-
back to the user on the status of the download and consists of labels and a JProgressBar:

protected void buildLayout() {
JLabel label;
setLayout(new GridBagLayout());
GridBagConstraints gbc = new GridBagConstraints();
gbc.fill = GridBagConstraints.HORIZONTAL;
gbc.insets = new Insets(5, 10, 5, 10);

gbc.gridx = 0;
label = new JLabel("URL:", JLabel.LEFT);
add(label, gbc);

label = new JLabel("Complete:", JLabel.LEFT);
add(label, gbc);

label = new JLabel("Downloaded:", JLabel.LEFT);
add(label, gbc);

gbc.gridx = 1;
gbc.gridwidth = GridBagConstraints.REMAINDER;
gbc.weightx = 1;
urlLabel = new JLabel(downloadURL.toString());
add(urlLabel, gbc);

progressBar = new JProgressBar(0, fileSize);
progressBar.setStringPainted(true);
add(progressBar, gbc);

gbc.gridwidth = 1;
completeLabel = new JLabel(Integer.toString(bytesRead));
add(completeLabel, gbc);

gbc.gridx = 2;
gbc.weightx = 0;
gbc.anchor = GridBagConstraints.EAST;
label = new JLabel("Size:", JLabel.LEFT);
add(label, gbc);

gbc.gridx = 3;
gbc.weightx = 1;
sizeLabel = new JLabel(Integer.toString(fileSize));
add(sizeLabel, gbc);

}

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS114

As its name implies, the performDownload() method, shown next, is responsible for per-
forming the download. It does this by repeatedly reading a portion of the file into a buffer,
writing the contents of that buffer to the output destination, and updating the user interface
so that it illustrates the progress of the download.

public void performDownload() {
int byteCount;
while ((bytesRead < fileSize) && (!stopped)) {
try {
byteCount = inputStream.read(buffer);
if (byteCount == -1) {
stopped = true;
break;

}
else {
outputStream.write(buffer, 0,

byteCount);
bytesRead += byteCount;
progressBar.setValue(bytesRead);
completeLabel.setText(

Integer.toString(
bytesRead));

}
} catch (IOException ioe) {
stopped = true;
JOptionPane.showMessageDialog(this,

ioe.getMessage(),
"I/O Error",
JOptionPane.ERROR_MESSAGE);

break;
}

}
try {
outputStream.close();
inputStream.close();

} catch (IOException ioe) {};
}

}

One problem with this initial implementation of Downloader is that there’s no way to con-
trol the download process. Downloading starts immediately when the application is executed
and can’t be suspended or canceled. This is particularly undesirable since downloading a large
file can be time-consuming, especially when the download occurs over a low-bandwidth net-
work connection.

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 115

The first step in allowing a user to control the download process is to create a thread that
exists specifically to perform the download (see Listing 3-8). By making this change, it will be
possible to integrate an instance of Downloader into a user interface that will allow the down-
load process to be controlled (in other words, started, suspended, and stopped) through
components such as buttons.

Listing 3-8. Creating a Download Thread

import java.awt.*;
import java.io.*;
import java.net.*;
import javax.swing.*;

public class Downloader extends JPanel implements Runnable {

protected URL downloadURL;
protected InputStream inputStream;
protected OutputStream outputStream;
protected byte[] buffer;

protected int fileSize;
protected int bytesRead;

protected JLabel urlLabel;
protected JLabel sizeLabel;
protected JLabel completeLabel;
protected JProgressBar progressBar;

public final static int BUFFER_SIZE = 1000;

protected boolean stopped;

protected Thread thisThread;

public static void main(String[] args) throws Exception {
Downloader dl = null;
if (args.length < 2) {
System.out.println("You must specify the URL of the file " +

"to download and the name of the local file to which " +
"its contents will be written.");

System.exit(0);
}
URL url = new URL(args[0]);
FileOutputStream fos = new FileOutputStream(args[1]);
try {
dl = new Downloader(url, fos);

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS116

} catch (FileNotFoundException fnfe) {
System.out.println("File '" + args[0] + "' does not exist");
System.exit(0);

}
JFrame f = new JFrame();
f.getContentPane().add(dl);
f.setSize(600, 400);
f.setVisible(true);
dl.thisThread.start();

}

public Downloader(URL url, OutputStream os) throws IOException {
downloadURL = url;
outputStream = os;
bytesRead = 0;
URLConnection urlConnection = downloadURL.openConnection();
fileSize = urlConnection.getContentLength();
if (fileSize == -1) {
throw new FileNotFoundException(url.toString());

}
inputStream = new BufferedInputStream(

urlConnection.getInputStream());
buffer = new byte[BUFFER_SIZE];
thisThread = new Thread(this);
buildLayout();

stopped = false;
}

protected void buildLayout() {
JLabel label;
setLayout(new GridBagLayout());
GridBagConstraints gbc = new GridBagConstraints();
gbc.fill = GridBagConstraints.HORIZONTAL;
gbc.insets = new Insets(5, 10, 5, 10);

gbc.gridx = 0;
label = new JLabel("URL:", JLabel.LEFT);
add(label, gbc);

label = new JLabel("Complete:", JLabel.LEFT);
add(label, gbc);

label = new JLabel("Downloaded:", JLabel.LEFT);
add(label, gbc);

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 117

gbc.gridx = 1;
gbc.gridwidth = GridBagConstraints.REMAINDER;
gbc.weightx = 1;
urlLabel = new JLabel(downloadURL.toString());
add(urlLabel, gbc);

progressBar = new JProgressBar(0, fileSize);
progressBar.setStringPainted(true);
add(progressBar, gbc);

gbc.gridwidth = 1;
completeLabel = new JLabel(Integer.toString(bytesRead));
add(completeLabel, gbc);

gbc.gridx = 2;
gbc.weightx = 0;
gbc.anchor = GridBagConstraints.EAST;
label = new JLabel("Size:", JLabel.LEFT);
add(label, gbc);

gbc.gridx = 3;
gbc.weightx = 1;
sizeLabel = new JLabel(Integer.toString(fileSize));
add(sizeLabel, gbc);

}

public void run() {
performDownload();

}

public void performDownload() {
int byteCount;
while ((bytesRead < fileSize) && (!stopped)) {
try {
byteCount = inputStream.read(buffer);
if (byteCount == -1) {
stopped = true;
break;

}
else {
outputStream.write(buffer, 0,

byteCount);
bytesRead += byteCount;
progressBar.setValue(bytesRead);
completeLabel.setText(

Integer.toString(
bytesRead));

}

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS118

} catch (IOException ioe) {
stopped = true;
JOptionPane.showMessageDialog(this,

ioe.getMessage(),
"I/O Error",
JOptionPane.ERROR_MESSAGE);

break;
}

}
try {
outputStream.close();
inputStream.close();

} catch (IOException ioe) {};
}

}

Although this application appears correct on the surface, it has one small problem. Specifi-
cally, the AWT event thread and the thread that performs the download share two resources
that are not synchronized: the JProgressBar and the JTextField that are updated to provide
feedback on the download operation’s progress. This is actually a common problem with multi-
threaded applications, but Java’s SwingUtilities class provides a simple solution. When you
create a multithreaded application that needs to modify components after they’ve been made
visible, you can use the invokeLater() and invokeAndWait() methods in SwingUtilities.

These methods allow you to pass a Runnable object instance as a parameter, and they
cause the AWT event thread to execute the run() method of that object. The invokeLater()
method represents an asynchronous request, which means it may return before the event
thread executes the object’s run() method. In contrast, invokeAndWait() represents a syn-
chronous request, meaning that the method waits until the AWT event thread has completed
execution of the object’s run() method before returning. In the case of Downloader, there’s no
reason it should wait for the user interface to be updated before it continues downloading, so
invokeLater() can be used.

Making this modification solves the problem of having two different threads sharing the
same resources, since only a single thread (in other words, the AWT event thread) will access
JProgressBar and JTextField once they’ve been made visible.

public void performDownload() {
int byteCount;
Runnable progressUpdate = new Runnable() {
public void run() {
progressBar.setValue(bytesRead);
completeLabel.setText(

Integer.toString(
bytesRead));

}
};
while ((bytesRead < fileSize) && (!stopped)) {
try {

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 119

byteCount = inputStream.read(buffer);
if (byteCount == -1) {
stopped = true;
break;

}
else {
outputStream.write(buffer, 0,

byteCount);
bytesRead += byteCount;
SwingUtilities.invokeLater(

progressUpdate);
}

} catch (IOException ioe) {
stopped = true;
JOptionPane.showMessageDialog(this,

ioe.getMessage(),
"I/O Error",
JOptionPane.ERROR_MESSAGE);

break;
}

}
try {
outputStream.close();
inputStream.close();

} catch (IOException ioe) {};
}

Controlling Threads
It’s acceptable in some cases to start a thread and simply allow it to die once it exits the run()
method. However, for various reasons, you’ll often want to terminate a thread before it exits
the run() method, or you may simply want to suspend its execution and allow it to resume
later. In the latter case, you may want to suspend its execution for some particular length of
time, or you may want it to be suspended until some condition has been met. To provide the
functions just described, you can create a new subclass of JPanel that defines five buttons (as
shown in Figure 3-3):

• A Start button that causes the download thread to begin execution

• A Sleep button that causes the download thread to suspend its execution for a specific
length of time, which is for five seconds in this case

• A Suspend button that causes the thread to suspend its execution indefinitely

• A Resume button that causes the thread to resume execution after the Suspend button
was previously clicked

• A Stop button that effectively kills the thread by causing it to exit the run() method

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS120

Figure 3-3. The download code becomes more useful when you add buttons that allow you to
control the process.

The DownloadManager class shown in Listing 3-9 displays an instance of Downloader and
creates the buttons just described that will be used to control the execution of the Downloader’s
thread. It takes the same two parameters as the Downloader class, but unlike that class,
DownloadManager allows you to interact with the thread performing the download by clicking
one of the buttons that are displayed. It does that by adding action listeners to each of the
buttons, and you’ll see shortly how to create the code needed for each button to perform the
function requested.

Listing 3-9. Initial DownloadManager Implementation

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.URL;
import javax.swing.*;
import javax.swing.border.*;

public class DownloadManager extends JPanel {

protected Downloader downloader;

protected JButton startButton;
protected JButton sleepButton;
protected JButton suspendButton;
protected JButton resumeButton;
protected JButton stopButton;

public static void main(String[] args) throws Exception {
URL url = new URL(args[0]);
FileOutputStream fos = new FileOutputStream(args[1]);
JFrame f = new JFrame();
DownloadManager dm = new DownloadManager(url, fos);

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 121

f.getContentPane().add(dm);
f.setSize(600, 400);
f.setVisible(true);

}

public DownloadManager(URL source, OutputStream os)
throws IOException {

downloader = new Downloader(source, os);
buildLayout();
Border border = new BevelBorder(BevelBorder.RAISED);
String name = source.toString();
int index = name.lastIndexOf(‘/’);
border = new TitledBorder(border,

name.substring(index + 1));
setBorder(border);

}

protected void buildLayout() {
setLayout(new BorderLayout());
downloader.setBorder(new BevelBorder(BevelBorder.RAISED));
add(downloader, BorderLayout.CENTER);

add(getButtonPanel(), BorderLayout.SOUTH);
}

protected JPanel getButtonPanel() {
JPanel outerPanel;
JPanel innerPanel;

innerPanel = new JPanel();
innerPanel.setLayout(new GridLayout(1, 5, 10, 0));

startButton = new JButton("Start");
startButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
}

});
innerPanel.add(startButton);

sleepButton = new JButton("Sleep");
sleepButton.setEnabled(false);
sleepButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
}

});
innerPanel.add(sleepButton);

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS122

suspendButton = new JButton("Suspend");
suspendButton.setEnabled(false);
suspendButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
}

});
innerPanel.add(suspendButton);

resumeButton = new JButton("Resume");
resumeButton.setEnabled(false);
resumeButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
}

});
innerPanel.add(resumeButton);

stopButton = new JButton("Stop");
stopButton.setEnabled(false);
stopButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
}

});
innerPanel.add(stopButton);

outerPanel = new JPanel();
outerPanel.add(innerPanel);
return outerPanel;

}

}

I’ll now show how to create the functionality needed for each of these buttons and will
then return to the DownloadManager source code to have each button activate the appropriate
functionality.

Starting a Thread
As you’ve seen, starting the execution of a thread is trivial and simply requires that you call the
Thread instance’s start() method. Calling start() doesn’t necessarily cause the thread to run
immediately but simply makes the thread eligible for execution (in other words, makes it
runnable). Once that occurs, the thread will be executed by the processor at the first available
opportunity, although when that occurs is platform-dependent and is affected by many fac-
tors. However, unless the processor is very busy executing other applications or other threads
within the Java Virtual Machine, the thread will usually begin executing almost immediately
when its start() method is called.

You can easily modify the Downloader class to provide a startDownload() method that
starts the thread’s execution, as shown in the following code, and that method will be called

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 123

when the Start button in a DownloaderManager instance is clicked. For now, however, you’ll
simply define the startDownload() method and wait until the methods for all five buttons
have been defined before going back and calling those methods from the buttons’ action
event handlers.

public void startDownload() {
thisThread.start();

}

Making a Thread “Sleep”
The static sleep() method defined in Thread causes the currently executing thread to tem-
porarily stop executing (in other words, to “sleep”) for some specific length of time. You can
specify that length of time either as long representing some number of milliseconds or as
a combination of milliseconds and an int value representing nanoseconds. However, mil-
liseconds provide enough resolution for most situations, so you’ll typically be able to use the
simpler implementation of sleep(). For example, to cause the current thread to pause for two
seconds, you could use the following code:

Thread.sleep(2 * 1000);

Similarly, to sleep for 100 nanoseconds, you could use the following code:

Thread.sleep(0, 100);

Note that both of these methods can throw an InterruptedException if the sleeping thread
is interrupted, a scenario that will be discussed shortly. Since sleep() affects only the thread
that’s currently executing, it must be executed by the thread that should sleep, and that thread
can’t be “forced” to sleep by any other thread. For example, when the Sleep button is clicked,
the actionPerformed() method will be called by the AWT event thread. Since the event thread
can’t force the download thread to sleep, it must instead send a sleep request to the download
thread, and the code executed by the download thread must be designed to recognize and
comply with the request. The easiest way to do so is simply to define a boolean flag inside
Downloader that’s set to true to signal the download thread that it should sleep, and once
the download thread wakes up, it can clear the flag. These steps will be taken each time the
Downloader is about to read another portion of the file being downloaded, as shown in the
bold code of the run() method in Listing 3-10.

Listing 3-10. Implementing the Sleep Function

import java.awt.*;
import java.io.*;
import java.net.*;
import javax.swing.*;

public class Downloader extends JPanel implements Runnable {

protected URL downloadURL;
protected InputStream inputStream;

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS124

protected OutputStream outputStream;
protected byte[] buffer;

protected int fileSize;
protected int bytesRead;

protected JLabel urlLabel;
protected JLabel sizeLabel;
protected JLabel completeLabel;
protected JProgressBar progressBar;

public final static int BUFFER_SIZE = 1000;

protected boolean stopped;
protected boolean sleepScheduled;

public final static int SLEEP_TIME = 5 * 1000; // 5 seconds

protected Thread thisThread;

public static void main(String[] args) throws Exception {
Downloader dl = null;
if (args.length < 2) {
System.out.println("You must specify the URL of the file to download and "+

"the name of the local file to which its contents will be written.");
System.exit(0);

}
URL url = new URL(args[0]);
FileOutputStream fos = new FileOutputStream(args[1]);
try {
dl = new Downloader(url, fos);

} catch (FileNotFoundException fnfe) {
System.out.println("File '" + args[0] + "' does not exist");
System.exit(0);

}
JFrame f = new JFrame();
f.getContentPane().add(dl);
f.setSize(400, 300);
f.setVisible(true);
dl.thisThread.start();

}

public Downloader(URL url, OutputStream os) throws IOException {
downloadURL = url;
outputStream = os;
bytesRead = 0;
URLConnection urlConnection = downloadURL.openConnection();

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 125

fileSize = urlConnection.getContentLength();
if (fileSize == -1) {
throw new FileNotFoundException(url.toString());

}
inputStream = new BufferedInputStream(

urlConnection.getInputStream());
buffer = new byte[BUFFER_SIZE];
thisThread = new Thread(this);
buildLayout();

stopped = false;
sleepScheduled = false;

}

protected void buildLayout() {
JLabel label;
setLayout(new GridBagLayout());
GridBagConstraints gbc = new GridBagConstraints();
gbc.fill = GridBagConstraints.HORIZONTAL;
gbc.insets = new Insets(5, 10, 5, 10);

gbc.gridx = 0;
label = new JLabel("URL:", JLabel.LEFT);
add(label, gbc);

label = new JLabel("Complete:", JLabel.LEFT);
add(label, gbc);

label = new JLabel("Downloaded:", JLabel.LEFT);
add(label, gbc);

gbc.gridx = 1;
gbc.gridwidth = GridBagConstraints.REMAINDER;
gbc.weightx = 1;
urlLabel = new JLabel(downloadURL.toString());
add(urlLabel, gbc);

progressBar = new JProgressBar(0, fileSize);
progressBar.setStringPainted(true);
add(progressBar, gbc);

gbc.gridwidth = 1;
completeLabel = new JLabel(Integer.toString(bytesRead));
add(completeLabel, gbc);

gbc.gridx = 2;

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS126

gbc.weightx = 0;
gbc.anchor = GridBagConstraints.EAST;
label = new JLabel("Size:", JLabel.LEFT);
add(label, gbc);

gbc.gridx = 3;
gbc.weightx = 1;
sizeLabel = new JLabel(Integer.toString(fileSize));
add(sizeLabel, gbc);

}

public void startDownload() {
thisThread.start();

}

public synchronized void setSleepScheduled(boolean doSleep) {
sleepScheduled = doSleep;

}

public synchronized boolean isSleepScheduled() {
return sleepScheduled;

}

public void run() {
performDownload();

}

public void performDownload() {
int byteCount;
Runnable progressUpdate = new Runnable() {
public void run() {
progressBar.setValue(bytesRead);
completeLabel.setText(

Integer.toString(
bytesRead));

}
};
while ((bytesRead < fileSize) && (!stopped)) {
try {
if (isSleepScheduled()) {
try {
Thread.sleep(SLEEP_TIME);
setSleepScheduled(false);

}
catch (InterruptedException ie) {
}

}

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 127

byteCount = inputStream.read(buffer);
if (byteCount == -1) {
stopped = true;
break;

}
else {
outputStream.write(buffer, 0,

byteCount);
bytesRead += byteCount;
SwingUtilities.invokeLater(

progressUpdate);
}

} catch (IOException ioe) {
stopped = true;
JOptionPane.showMessageDialog(this,

ioe.getMessage(),
"I/O Error",
JOptionPane.ERROR_MESSAGE);

break;
}

}
try {
outputStream.close();
inputStream.close();

} catch (IOException ioe) {};
}

}

Note that the setSleepScheduled() and isSleepScheduled() methods are synchronized,
which is necessary since two threads access a resource. Specifically, that resource is the
sleepScheduled flag that will be set by the AWT event thread (when the Sleep button is
clicked) and that will be both set and queried by the download thread.

Suspending a Thread
As you just saw, you can suspend a thread’s execution for some length of time using the
sleep() method. Similarly, you’ll often want to suspend a thread for an indefinite length of
time, usually until some condition is met and the wait() method defined in Object allows you
to do so. However, before a thread can call an object’s wait() method, it must own that object’s
monitor, or an IllegalMonitorStateException will be thrown.

The following modifications to Downloader illustrate how wait() can be used to suspend a
thread’s execution indefinitely; I’ll later show how to modify the DownloadManager class so that
it calls the setSuspended() method to suspend the download thread. Here, too, a boolean flag
value provides a way for the AWT event thread to communicate with the download thread
when one of the DownloadManager buttons (in other words, Suspend) is clicked.

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS128

First, add a new member variable:

protected boolean stopped;
protected boolean sleepScheduled;
protected boolean suspended;

Second, modify the constructor to set this suspended variable to false:

public Downloader(URL url, OutputStream os) throws IOException {
downloadURL = url;
outputStream = os;
bytesRead = 0;
URLConnection urlConnection = downloadURL.openConnection();
fileSize = urlConnection.getContentLength();
if (fileSize == -1) {
throw new FileNotFoundException(url.toString());

}
inputStream = new BufferedInputStream(

urlConnection.getInputStream());
buffer = new byte[BUFFER_SIZE];
thisThread = new Thread(this);
buildLayout();

stopped = false;
sleepScheduled = false;
suspended = false;

}

Third, add accessor and mutator methods that allow the suspended flag to be set and
queried:

public synchronized void setSuspended(boolean suspend) {
suspended = suspend;

}

public synchronized boolean isSuspended() {
return suspended;

}

Finally, modify the performDownload() method as appropriate. This code checks the sus-
pended flag and calls wait() if the flag is assigned a value of true, causing the thread to be
suspended. Later, I’ll show how to add the ability to resume a suspended thread, and when the
thread is resumed, it will clear the suspended flag so that it continues execution unless explic-
itly suspended again.

public void performDownload() {
int byteCount;
Runnable progressUpdate = new Runnable() {
public void run() {

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 129

progressBar.setValue(bytesRead);
completeLabel.setText(

Integer.toString(
bytesRead));

}
};
while ((bytesRead < fileSize) && (!stopped)) {
try {
if (isSleepScheduled()) {
try {
Thread.sleep(SLEEP_TIME);
setSleepScheduled(false);

}
catch (InterruptedException ie) {
}

}
byteCount = inputStream.read(buffer);
if (byteCount == -1) {
stopped = true;
break;

}
else {
outputStream.write(buffer, 0,

byteCount);
bytesRead += byteCount;
SwingUtilities.invokeLater(

progressUpdate);
}

} catch (IOException ioe) {
stopped = true;
JOptionPane.showMessageDialog(this,

ioe.getMessage(),
"I/O Error",
JOptionPane.ERROR_MESSAGE);

break;
}
synchronized (this) {
if (isSuspended()) {
try {
this.wait();
setSuspended(false);

}
catch (InterruptedException ie) {
}

}
}

}

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS130

try {
outputStream.close();
inputStream.close();

} catch (IOException ioe) {};
}

}

In this case, the object that’s used for synchronization is the instance of Downloader, and
that object’s wait() method is called to suspend the download thread. The download thread is
able to invoke wait() because it will implicitly obtain the object’s lock when it enters the syn-
chronized block of code containing the call to wait().

When a thread calls the wait() method and is suspended, it’s added to a list of waiting
threads that’s maintained for each instance of Object. In addition, calling wait() causes
the thread to release control of the object’s monitor, which means that other threads are able
to obtain the monitor for that object. For example, if one thread is blocked because it’s wait-
ing to obtain an object’s monitor and the thread that owns the monitor calls wait(), the first
thread will be given the monitor and allowed to resume execution.

In this case, the wait() method was called with no parameters, which will cause the
download thread to wait indefinitely until another thread wakes it up; the following section
describes how to do so. However, you may sometimes want to have the thread wait for some
finite period of time, in which case you can specify that length of time on the wait() method.
Like sleep(), wait() provides one method that accepts a long value representing some
number of milliseconds and another implementation that also allows you to specify an int
nanosecond value. You can take advantage of these methods to cause a thread to “time out”
when it’s waiting for some resource to become available and that resource doesn’t become
available within the desired length of time.

Resuming a Thread
Since calling wait() with no parameters causes a thread to be suspended indefinitely, you
may be wondering how you can cause the thread to resume execution. To do so, simply have
another thread call either notify() or notifyAll(), both of which are methods defined in
Object. As with wait(), a thread must own the object’s monitor before it can call notify() or
notifyAll(), and if one of those methods is called by a thread that doesn’t own the monitor,
an IllegalMonitorStateException is thrown.

In this case, you can make the download thread “wake up” after it invokes wait() by having
the AWT event thread call notify() or notifyAll() when the Resume button in DownloadManager
is clicked. To accommodate this functionality, you can add a resumeDownload() method to
Downloader as follows:

public synchronized void resumeDownload() {
this.notify();

}

Notice that the resumeDownload() method is synchronized, even though it doesn’t modify
any resources that are shared between the AWT event thread and the download thread. You
want to do this so that the event thread will obtain the Downloader object’s monitor, which is
necessary for the event thread to be able to call the object’s notify() method successfully.

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 131

Also note that calling notify() or notifyAll() doesn’t cause the waiting thread to imme-
diately resume execution. Before any thread that was waiting can resume execution, it must
again obtain the monitor of the object on which it was synchronized. In this case, for example,
when the AWT event thread calls notify() by invoking resumeDownload(), the download thread
is removed from the Downloader object’s wait list. However, you should recall that when the
download thread invoked the wait() method, it implicitly gave up ownership of the monitor,
and it must regain ownership of the monitor before it can resume execution. Fortunately, that
will happen automatically once the monitor becomes available, which in this case will occur
when the AWT event thread exits the resumeDownload() method.

Up to this point, I’ve implied that notify() and notifyAll() are interchangeable, which is
true in this case, but there’s a difference between those two methods that’s important for you
to understand. In this application, there will only ever be one thread (the download thread) on
the object’s wait list, but you’ll sometimes create applications that allow multiple threads to
call wait() for a single object instance. Calling notifyAll() causes all threads that are waiting
to be removed from the wait list, while calling notify() results in only a single thread being
removed. Java doesn’t specify which thread will be removed when notify() is called, and you
shouldn’t make any assumptions in that respect, since it can vary from one JVM implemen-
tation to the next. It may intuitively seem that the first thread that called wait() should be
removed from the list, but that may or may not be the case. Since you can’t cause a specific
thread to be resumed using notify(), you should use it only when you want to wake up a
single waiting thread and don’t care which one is awakened.

Stopping a Thread
Most of the code that’s needed to stop the download thread is already present, since a stopped
flag was previously defined. The download thread tests that flag as it performs the download,
and once the flag is set to true, the download thread exits the run() method and dies. How-
ever, you’ll also want to allow the AWT event thread to set the flag when a DownloadManager’s
Stop button is clicked. Once you make that change, the flag has effectively become a shared
resource that can be used by multiple threads, so access to it must be synchronized through
accessor and mutator methods, making it thread-safe, as shown in Listing 3-11.

Listing 3-11. Adding Stop Support

public synchronized void setStopped(boolean stop) {
stopped = stop;

}

public synchronized boolean isStopped() {
return stopped;

}

public void run() {
int byteCount;
Runnable progressUpdate = new Runnable() {
public void run() {
progressBar.setValue(bytesRead);

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS132

completeLabel.setText(
Integer.toString(
bytesRead));

}
};
while ((bytesRead < fileSize) && (!isStopped())) {
try {
if (isSleepScheduled()) {
try {
Thread.sleep(SLEEP_TIME);
setSleepScheduled(false);

}
catch (InterruptedException ie) {
}

}
byteCount = inputStream.read(buffer);
if (byteCount == -1) {
setStopped(true);
break;

}
else {
outputStream.write(buffer, 0,

byteCount);
bytesRead += byteCount;
SwingUtilities.invokeLater(

progressUpdate);
}

} catch (IOException ioe) {
setStopped(true);
JOptionPane.showMessageDialog(this,

ioe.getMessage(),
"I/O Error",
JOptionPane.ERROR_MESSAGE);

break;
}
synchronized (this) {
if (isSuspended()) {
try {
this.wait();
setSuspended(false);

}
catch (InterruptedException ie) {
}

}
}

}

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 133

try {
outputStream.close();
inputStream.close();

} catch (IOException ioe) {};
}

}

While this implementation will work, it has one weakness: the download thread can’t
be stopped while it’s suspended or sleeping. For example, suppose you start the download
operation and decide to suspend the download. If you then decide to terminate the download
completely after having suspended it, you’re forced to resume the download (in other words,
click the Resume button) and then stop the download. Ideally, it should be possible to stop a
download that was suspended without first resuming the download; the interrupt() method
defined in Thread allows you to do so.

Interrupting a Thread
Each thread maintains a flag that indicates whether the thread has been interrupted, and when
you call a thread’s interrupt() method, that flag is set to true. In addition, if interrupt() is
called while the thread is blocked by a method such as sleep() or wait(), that method will
terminate with an InterruptedException. However, in some cases such as when a thread is
blocked because it’s waiting for an I/O operation to complete, the interrupt flag is set “quietly”
(in other words, no exception is thrown) and the thread’s execution isn’t affected.

To determine whether interrupt() will cause a blocking method to terminate with an
exception, you should examine the API documentation for that method. For example, the
read() method defined in java.io.InputStream can block a thread, but it doesn’t throw
InterruptedException. In contrast, the waitForAll() method in java.awt.MediaTracker blocks
and will result in an InterruptedException being thrown if the thread that called waitForAll()
is interrupted while blocked.

Since some blocking methods throw an InterruptedException and others don’t, you’ll
sometimes need to explicitly test the interrupted flag to determine whether the thread was
interrupted. To accomplish this, you can use either the static interrupted() method or the
nonstatic isInterrupted(). The interrupted() method returns a boolean value that identifies
the state of the currently executing thread’s interrupted flag and clears that flag if it was set.
The isInterrupted() method similarly returns the value of a thread’s interrupted flag but
doesn’t change the state of the flag. Therefore, interrupted() is appropriate if you want to
both test and clear the flag, while isInterrupted() is often a better choice, particularly if you
prefer to leave the flag unchanged. Either is acceptable in many cases, and the choice of which
one to use will depend upon your application. By making the changes in bold in Listing 3-12,
you can interrupt the download thread (and cancel the download) by the AWT event thread,
regardless of the state of the download thread.

Listing 3-12. Supporting the Cancel Function

public void stopDownload() {
thisThread.interrupt();

}

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS134

public void performDownload() {
int byteCount;
Runnable progressUpdate = new Runnable() {
public void run() {
progressBar.setValue(bytesRead);
completeLabel.setText(

Integer.toString(
bytesRead));

}
};
while ((bytesRead < fileSize) && (!isStopped())) {
try {
if (isSleepScheduled()) {
try {
Thread.sleep(SLEEP_TIME);
setSleepScheduled(false);

}
catch (InterruptedException ie) {
setStopped(true);
break;

}
}
byteCount = inputStream.read(buffer);
if (byteCount == -1) {
setStopped(true);
break;

}
else {
outputStream.write(buffer, 0,

byteCount);
bytesRead += byteCount;
SwingUtilities.invokeLater(

progressUpdate);
}

} catch (IOException ioe) {
setStopped(true);
JOptionPane.showMessageDialog(this,

ioe.getMessage(),
"I/O Error",
JOptionPane.ERROR_MESSAGE);

break;
}
synchronized (this) {
if (isSuspended()) {
try {
this.wait();
setSuspended(false);

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 135

}
catch (InterruptedException ie) {
setStopped(true);
break;

}
}

}
if (Thread.interrupted()) {
setStopped(true);
break;

}
}
try {
outputStream.close();
inputStream.close();

} catch (IOException ioe) {};
}

}

Completing DownloadManager
You’ve now added all the necessary functionality to Downloader and can tie that functionality to
the buttons previously defined in DownloadManager by making the changes shown in Listing 3-13.
With these changes in place, you can use those buttons to start, suspend/sleep, resume, and
stop the download that’s in progress (see Figure 3-4).

Listing 3-13. Enabling the Function Buttons

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.URL;
import javax.swing.*;
import javax.swing.border.*;

public class DownloadManager extends JPanel {

protected Downloader downloader;

protected JButton startButton;
protected JButton sleepButton;
protected JButton suspendButton;
protected JButton resumeButton;
protected JButton stopButton;

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS136

public static void main(String[] args) throws Exception {
URL url = new URL(args[0]);
FileOutputStream fos = new FileOutputStream(args[1]);
JFrame f = new JFrame();
DownloadManager dm = new DownloadManager(url, fos);
f.getContentPane().add(dm);
f.setSize(400, 300);
f.setVisible(true);

}

public DownloadManager(URL source, OutputStream os)
throws IOException {

downloader = new Downloader(source, os);
buildLayout();
Border border = new BevelBorder(BevelBorder.RAISED);
String name = source.toString();
int index = name.lastIndexOf('/');
border = new TitledBorder(border,

name.substring(index + 1));
setBorder(border);

}

protected void buildLayout() {
setLayout(new BorderLayout());
downloader.setBorder(new BevelBorder(BevelBorder.RAISED));
add(downloader, BorderLayout.CENTER);

add(getButtonPanel(), BorderLayout.SOUTH);
}

protected JPanel getButtonPanel() {
JPanel outerPanel;
JPanel innerPanel;

innerPanel = new JPanel();
innerPanel.setLayout(new GridLayout(1, 5, 10, 0));

startButton = new JButton("Start");
startButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
startButton.setEnabled(false);
sleepButton.setEnabled(true);
resumeButton.setEnabled(false);
suspendButton.setEnabled(true);
stopButton.setEnabled(true);
downloader.startDownload();

}

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 137

});
innerPanel.add(startButton);

sleepButton = new JButton("Sleep");
sleepButton.setEnabled(false);
sleepButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
downloader.setSleepScheduled(true);

}
});
innerPanel.add(sleepButton);

suspendButton = new JButton("Suspend");
suspendButton.setEnabled(false);
suspendButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
suspendButton.setEnabled(false);
resumeButton.setEnabled(true);
stopButton.setEnabled(true);
downloader.setSuspended(true);

}
});
innerPanel.add(suspendButton);

resumeButton = new JButton("Resume");
resumeButton.setEnabled(false);
resumeButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
resumeButton.setEnabled(false);
suspendButton.setEnabled(true);
stopButton.setEnabled(true);
downloader.resumeDownload();

}
});
innerPanel.add(resumeButton);

stopButton = new JButton("Stop");
stopButton.setEnabled(false);
stopButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
stopButton.setEnabled(false);
sleepButton.setEnabled(false);
suspendButton.setEnabled(false);
resumeButton.setEnabled(false);
downloader.stopDownload();

}
});

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS138

innerPanel.add(stopButton);

outerPanel = new JPanel();
outerPanel.add(innerPanel);
return outerPanel;

}

}

Figure 3-4. The completed application allows you to start, delay, suspend, resume, and stop the
file download.

Deprecated Methods in Thread
You’ve now seen how to add code to an application that will suspend, resume, and stop a
running thread, but if you review the API documentation for the Thread class, you’ll see that
it includes suspend(), resume(), and stop() methods, even though they’re now deprecated.
You can probably guess (correctly) from this fact that those functions were handled “manu-
ally” within the application to avoid using the deprecated methods, but it may not be as
obvious why they’re deprecated.

When one thread wants to stop or suspend another thread, the first thread usually can’t
know whether the second thread is in a state that’s appropriate for it to be suspended. For
example, suppose you’re running the AccountManager example that was defined earlier in this
chapter, where money is transferred between two accounts. If a thread is stopped after it has
removed money from one account but before it has increased the balance in the other account,
that money will again be lost. Similarly, if a thread is suspended while it owns the monitor of
some object, it will be impossible for other threads to obtain that object’s monitor while the
owning thread is suspended.

In effect, suspend() and stop() allow a thread to be suspended or stopped even while it’s
in a state where such an action is inappropriate. Therefore, instead of using those deprecated
methods, you should instead send a request to a thread that will cause it to suspend or stop
itself at an appropriate point. For example, an AccountManager thread should allow itself to be

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 139

stopped or suspended before or after a transfer is performed but not while one is in progress.
Similarly, if some resources may be needed by other threads, the thread being suspended can
release the monitor(s) of those resources before it’s suspended. This reduces the likelihood
of deadlock, which is a common problem with multithreaded applications, as I discussed
previously.

DownloadFiles
The existing implementations of Downloader and DownloadManager provide a great deal of flexi-
bility and functionality, but they have one limitation: you can’t initiate multiple downloads
without running each one in a separate Java Virtual Machine process. To address that limita-
tion, I’ll now show how to create a new DownloadFiles class that allows you to create instances
of DownloadManager by entering URLs in a text field, as shown in Figure 3-5.

Figure 3-5. The DownloadFiles class allows you to use multiple download managers so that
multiple files can be downloaded simultaneously.

The code shown in Listing 3-14 provides the desired functionality. It creates a user inter-
face like the one shown in Figure 3-5 and creates a new DownloadManager instance when the
user enters a URL in the text field and presses Enter (or clicks the Download button). To use
the application, simply compile and execute it and enter the URL of each file you want to
download into the text field. You can then control the downloads using the buttons previously

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS140

defined in the DownloadManager class, and each file will be written to the local drive using the
filename portion of its URL.

Listing 3-14. Initial DownloadFiles Implementation

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;
import javax.swing.*;

public class DownloadFiles extends JPanel {

protected JPanel listPanel;
protected GridBagConstraints constraints;

public static void main(String[] args) {
JFrame f = new JFrame("Download Files");
DownloadFiles df = new DownloadFiles();
for (int i = 0; i < args.length; i++) {
df.createDownloader(args[i]);

}
f.getContentPane().add(df);
f.setSize(600, 400);
f.setVisible(true);

}

public DownloadFiles() {
setLayout(new BorderLayout());
listPanel = new JPanel();
listPanel.setLayout(new GridBagLayout());
constraints = new GridBagConstraints();
constraints.gridx = 0;
constraints.weightx = 1;
constraints.fill = GridBagConstraints.HORIZONTAL;
constraints.anchor = GridBagConstraints.NORTH;
JScrollPane jsp = new JScrollPane(listPanel);
add(jsp, BorderLayout.CENTER);

add(getAddURLPanel(), BorderLayout.SOUTH);
}

protected JPanel getAddURLPanel() {
JPanel panel = new JPanel();
JLabel label = new JLabel("URL:");
final JTextField textField = new JTextField(20);
JButton downloadButton = new JButton("Download");

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 141

ActionListener actionListener = new ActionListener() {
public void actionPerformed(ActionEvent event) {
if (createDownloader(textField.getText())) {
textField.setText("");
revalidate();

}
}

};
textField.addActionListener(actionListener);
downloadButton.addActionListener(actionListener);
panel.add(label);
panel.add(textField);
panel.add(downloadButton);
return panel;

}

protected boolean createDownloader(String url) {
try {
URL downloadURL = new URL(url);
URLConnection urlConn = downloadURL.openConnection();
int length = urlConn.getContentLength();
if (length < 0) throw new Exception(

"Unable to determine content " +
"length for '" + url + "'");

int index = url.lastIndexOf('/');
FileOutputStream fos = new FileOutputStream(

url.substring(index + 1));
BufferedOutputStream bos =

new BufferedOutputStream(fos);
DownloadManager dm = new DownloadManager(

downloadURL, bos);
listPanel.add(dm, constraints);
return true;

}
catch (Exception e) {
JOptionPane.showMessageDialog(this, e.getMessage(),

"Unable To Download",
JOptionPane.ERROR_MESSAGE);

}
return false;

}

}

Although this application provides an easy and convenient way to create instances of
DownloadManager, there’s currently no way to remove those instances once they’ve been added.

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS142

To address that limitation, you might choose to add a button to DownloadFiles that performs
the following operations:

• Interrupts each active thread, terminating its download

• Waits until all threads have died, which may take several seconds depending upon the
speed of your network connection

• Removes all the Downloader instances from the user interface display

An easy way to perform the first operation described (interrupt the active threads) is to
use a ThreadGroup.

ThreadGroup
Just as packages allow you to organize your Java classes in a hierarchy, the ThreadGroup class
allows you to create groups of associated threads and organize them hierarchically. Each
ThreadGroup can have one parent and may have child ThreadGroup instances, and you can add
a Thread to a particular ThreadGroup when the thread is created by passing a reference to that
group to the thread’s constructor:

Runnable runnable;
ThreadGroup myGroup = new ThreadGroup("My ThreadGroup");
.
.
.
Thread t = new Thread(myGroup, runnable);

ThreadGroup wouldn’t be very useful if it simply allowed you to create a collection of
associated threads, but it also provides a convenient way to control those threads. Specifically,
you can use ThreadGroup’s interrupt() to interrupt all its threads with a single method call,
and you can specify the maximum priority that should be valid for a thread in the group.
ThreadGroup also provides suspend(), resume(), and stop() methods that allow you to control
the execution of the threads, but those methods have been deprecated for the reasons
described earlier, so you shouldn’t use them in your application.

As illustrated previously, you can add a Thread to a ThreadGroup by passing a reference to
the group as a parameter when creating the Thread instance. As the following bold code illus-
trates, you can easily modify Downloader to define a ThreadGroup that will contain all download
threads, which will allow you to interrupt them all with a single method call:

public static ThreadGroup downloaderGroup = new ThreadGroup(
"Download Threads");

public Downloader(URL url, OutputStream os) throws IOException {
downloadURL = url;
outputStream = os;
bytesRead = 0;
URLConnection urlConnection = downloadURL.openConnection();

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 143

fileSize = urlConnection.getContentLength();
if (fileSize == -1) {
throw new FileNotFoundException(url.toString());

}
inputStream = new BufferedInputStream(

urlConnection.getInputStream());
buffer = new byte[BUFFER_SIZE];
thisThread = new Thread(downloaderGroup, this);
buildLayout();

stopped = false;
sleepScheduled = false;
suspended = false;

}

Now that each thread associated with a Downloader instance is part of the same ThreadGroup,
the threads can all be stopped with a single call to the ThreadGroup’s interrupt() method.
In this case, that will be done by a static method called cancelAllAndWait() within the
Downloader class:

public static void cancelAllAndWait() {
downloaderGroup.interrupt();

}

To obtain a list of the threads that were active before interrupt() was called, it’s possible
to use the ThreadGroup’s activeCount() and enumerate() methods. As the names imply,
activeCount() returns the number of active threads in the group, while enumerate() stores
a reference to each active thread within a Thread array that’s passed to it as a parameter:

public static void cancelAllAndWait() {
int count = downloaderGroup.activeCount();
Thread[] threads = new Thread[count];
count = downloaderGroup.enumerate(threads);
downloaderGroup.interrupt();

}

To wait for each thread to die, you can use the join() method defined in Thread. When
one thread invokes another’s join() method, the first thread will be blocked until the second
thread dies or until the first thread’s interrupt() method is called. In this case, the AWT
event thread will call each download thread’s join() method once the download threads
have been interrupted.

As with wait() and sleep(), it’s also possible to specify a particular length of time (in mil-
liseconds and optionally in nanoseconds) that the caller should wait when calling a thread’s
join() method. However, if you don’t do so, the caller waits indefinitely until the thread dies.

public static void cancelAllAndWait() {
int count = downloaderGroup.activeCount();
Thread[] threads = new Thread[count];
count = downloaderGroup.enumerate(threads);
downloaderGroup.interrupt();

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS144

for (int i = 0; i < count; i++) {
try {
threads[i].join();

} catch (InterruptedException ie) {};
}

}

With the cancelAllAndWait() method available in Downloader, it’s easy to add a button
to DownloadFiles to use that method. When the new Clear All button is clicked, it will call
cancelAllAndWait(), remove the DownloadManager instances, and refresh the user interface
display (as shown in Figure 3-6). Listing 3-15 shows the code.

Figure 3-6. This version of the user interface includes a button that allows you to cancel all the
downloads that are in progress.

Listing 3-15. Implementing the Clear All Button Functionality

protected JPanel getAddURLPanel() {
JPanel panel = new JPanel();
JLabel label = new JLabel("URL:");
final JTextField textField = new JTextField(20);
JButton downloadButton = new JButton("Download");
ActionListener actionListener = new ActionListener() {

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 145

public void actionPerformed(ActionEvent event) {
if (createDownloader(textField.getText())) {
textField.setText("");
revalidate();

}
}

};
textField.addActionListener(actionListener);
downloadButton.addActionListener(actionListener);
JButton clearAll = new JButton("Cancel All");
clearAll.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
Downloader.cancelAllAndWait();
listPanel.removeAll();
revalidate();
repaint();

}
});
panel.add(label);
panel.add(textField);
panel.add(downloadButton);
panel.add(clearAll);
return panel;

}

Uncaught Exceptions
As mentioned earlier, a thread dies when it exits the run() method of the Runnable object
with which it’s associated. In most cases, this will occur when the thread has executed all the
code within that method, but it can also occur if an exception is thrown that’s not caught. For
example, NullPointerException is perhaps the most common exception that’s encountered
by Java programmers, and it isn’t typically caught and handled because there’s usually no
way for the application to recover when a NullPointerException is thrown. Assuming that a
NullPointerException is thrown during execution of the run() method, either within that
method itself or within other code it calls, and assuming that no attempt is made to catch the
exception, it will cause the thread to die.

By default, an uncaught exception simply causes the thread’s stack trace to be printed
before the thread dies, but you can override this behavior using an uncaught exception han-
dler. How you handle uncaught exceptions depends upon which version of Java you’re using,
with Java 5 and later releases offering more flexibility. Prior to Java 5, the only way to cus-
tomize the handling of an uncaught exception was to override the uncaughtException()
method in the ThreadGroup class, and that method accepts two arguments:

• The Thread object for which the uncaught exception has occurred

• The Throwable object that was thrown but not caught

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS146

Prior to Java 5, an uncaught exception would cause the uncaughtException() method to
be called for the ThreadGroup associated with the thread that generated the exception, and the
default implementation of that method simply displayed the thread’s stack trace. This behavior
is still the default in Java 5, but that release modified the Thread class to allow you to customize
uncaught exception behavior for individual threads instead of all threads associated with a
particular ThreadGroup. Specifically this was done by defining an UncaughtExceptionHandler
interface within the Thread class and adding setUncaughtExceptionHandler() and
getUncaughtExceptionHandler() accessor and mutator methods within that class. The
UncaughtExceptionHandler interface defines an uncaughtException() method with a signature
that’s identical to the ThreadGroup method described previously, and the ThreadGroup class
has been modified to implement that interface.

With the new implementation introduced in Java 5, the uncaughtException() method of
the thread’s UncaughtExceptionHandler is called when an exception isn’t caught. This results in
the same behavior that would occur in earlier releases since the default uncaught exception
handler for a thread is the thread’s own ThreadGroup object. However, this improved approach
provides more flexibility by allowing you to change the thread’s exception handler to an
implementation of your own on a per-thread basis.

Voluntarily Relinquishing the Processor
As you’ve seen, the specific details of how threads share the processor’s time vary from one
platform to the next. The operating system will sometimes ensure that each thread is eventu-
ally given a chance to run, but some platforms are more effective at this than others. Therefore,
if you create a multithreaded application, it’s possible that one or more threads won’t be able to
run if other threads of a higher priority are constantly executing. To prevent this from happen-
ing, you should be aware of situations where a high-priority thread may run for a long time,
and you may want to cause it to periodically relinquish control of the processor voluntarily.

One way of making a thread give up control of the processor is to call the static yield()
method defined in Thread:

Thread.yield();

This method causes the currently executing thread to signal that another thread of the
same priority should be allowed to run. Conceptually, you can think of yield() as causing the
current thread to be moved to the end of the list of runnable threads with the same priority. In
theory, this should allow a different thread to run, but as you saw earlier, the mechanism used
to select the next thread to run is undefined and platform-specific. Therefore, it’s possible that
the same thread that yielded control of the processor will be immediately reselected for execu-
tion, even if other runnable threads of the same priority are available. In other words, yield()
isn’t a completely reliable way to ensure that one thread doesn’t monopolize the processor.

A more reliable method of ensuring that a thread is temporarily prevented from running
is to use the sleep() method, but this approach has a serious drawback. If you use sleep(),
you’re effectively overriding the native platform’s efforts to allocate the processor’s time in an
efficient and “fair” manner among the threads. For example, suppose you’re given the simple
application shown in Listing 3-16.

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 147

Listing 3-16. Minimum and Maximum Priority Threads

public class Test {

public static void main(String[] args) {
Test t = new Test();

}

public Test() {
Runnable runner = new MyRunnable("First");
Thread t = new Thread(runner);
t.setPriority(Thread.MIN_PRIORITY);
t.start();
runner = new MyRunnable("Second");
t = new Thread(runner);
t.setPriority(Thread.MAX_PRIORITY);
t.start();

}

class MyRunnable implements Runnable {

protected String name;

public MyRunnable(String tn) {
name = tn;

}

public void run() {
while (true) {
System.out.println(name);

}
}

}

}

On most platforms, the second thread will be given more of the processor’s time because
it’s assigned a higher priority than the first, which is presumably the desired result. If you’re
concerned that the first thread might be prevented from ever running on some operating sys-
tems, you can modify the run() method as follows:

public void run() {
while (true) {
try {Thread.sleep(500);} catch (Exception e) {};
System.out.println(name);

}
}

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS148

The problem with this approach is that it has effectively rendered the two threads’ priori-
ties meaningless. Since each thread will sleep for half a second as it loops within the run()
method, the result on most systems will be that each thread executes for approximately the
same length of time.

While it’s possible to use sleep() to control how threads are run, you should do so only
with caution and understand that you may defeat the platform’s attempts to execute the
threads in an appropriate manner. In addition, using sleep() for this purpose may succeed
on one platform but fail on another because of differences in the behavior of the operating
systems. Fortunately, most operating systems do a reasonably good job of ensuring that each
thread is given a chance to run, so you can and should normally use yield() instead.

Regardless of whether you use sleep() or yield() you should be aware that there’s no way
in Java to guarantee that low-priority threads will ever be run, at least not while higher-priority
threads are also executing. Given this unpredictability and the increased complexity associated
with scheduling threads of different priorities, you should use priorities with caution.

Concurrency Utilities
As mentioned earlier, using threads complicates your application and has the potential to
create problems. For example, creating and starting a new thread can be a relatively slow
processing, and creating a large number of threads can degrade the performance of your
application. However, thread pooling is a technique that’s commonly used to address this
problem, particularly in applications that repeatedly execute tasks that complete in a rela-
tively short amount of time. By using a thread pool, you can avoid the overhead associated
with creating a new thread by maintaining a group, or pool, of available threads and retrieving
one from the pool when necessary. In other words, this technique allows you to reuse a single
thread repeatedly instead of creating a new thread for each task and allowing it to be destroyed
when the task completes.

Thread pooling is just one function that’s often used by multithreaded applications, and
in the past it was common for programmers to create and use their own implementations.
However, Java 5 included a new set of packages containing interfaces and classes that support
services such as a thread pooling that are commonly needed by multithreaded applications.

Pooling is supported by a number of the interfaces and classes in the java.util.concurrent
package, one of which is the ScheduledThreadPoolExecutor class; the following shows an
example of how it can be used:

ScheduledThreadPoolExecutor executor = new ScheduledThreadPoolExecutor(1);
.
.
.
Runnable runner = getNextTask();
executor.execute(runner);

The instance of ScheduledThreadPoolExecutor created in this sample code maintains a
pool that initially contains a single thread, and each time its execute() method is called, it will
either create a new thread or wait for an existing one to become available to execute the speci-
fied Runnable.

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS 149

While the java.util.concurrent package contains general utility classes useful in multi-
threaded applications, the java.util.concurrent.atomic package contains classes that provide
manipulation and comparison operations for various types of atomic (single-value) variables.
For example, it contains classes called AtomicBoolean, AtomicInteger, and AtomicLong, and each
of those classes in turn contains methods for examining and updating the encapsulated values
in a thread-safe manner.

Another useful package is java.util.concurrent.locks, which contains classes that
support locking capabilities. At a high level, the locking refers to resource locking that’s
conceptually similar to Java’s synchronization capabilities but that provides more robust
capabilities. For example, Java’s synchronization mechanism provides for serialization of
access to resources but doesn’t directly provide a way for multiple threads to share a resource
in a read-only manner while also facilitating write access to that resource. In contrast, the
ReentrantReadWriteLock class, for example, provides that ability and much more.

Summary
In this chapter, I cover the following topics:

• Common reasons for using threads and some of the advantages and disadvantages of
using them

• How to create threads and manage their execution

• How to synchronize access to resources that are used by multiple threads and how to
prevent problems from occurring

• Changes that occurred to the Thread class in Java 2 and how to modify your applica-
tions to take into account those changes

• Java 5’s concurrency utilities

CHAPTER 3 ■ USING THREADS IN YOUR APPLICATIONS150

Using Collections

By definition, an object-oriented application is one that creates and uses objects, and most
useful applications create and manage groups of objects. In fact, maintaining a group, or col-
lection, of objects is done so often that Java’s core library has always included classes designed
specifically for that purpose.

To understand why collection classes are so important, let’s briefly examine the alternative
and what limitations existed. Before object-oriented programming became popular, proce-
dural languages typically used arrays to maintain groups of related values. Arrays are, of course,
supported by Java and heavily used within Java’s core classes, but they do have limitations. To
illustrate those limitations, let’s first suppose your application includes the following class that
maintains student information:

public class Student {

private int studentID;
private String firstName;
private String lastName;

public Student(int id, String fname, String lname) {
studentID = id;
firstName = fname;
lastName = lname;

}

public int getStudentID() {
return studentID;

}

public String getFirstName() {
return firstName;

}

public String getLastName() {
return lastName;

}

151

C H A P T E R 4

■ ■ ■

CHAPTER 4 ■ USING COLLECTIONS152

public String getFullName() {
return getFirstName() + " " + getLastName();

}

}

Now let’s also assume your application also uses a database that includes a table contain-
ing student information, with one row per student, and you want to retrieve the list of students
from that table and load the list into memory using instances of the previous class. You’ll obvi-
ously need some way to maintain that group of Student objects, and an array can easily be
defined with a statement such as this one:

Student[] students;

The problem is that this statement hasn’t really defined an array of Student objects but
has merely created a pointer that can be used to reference such an array. To actually create an
array, you’ll need to include a statement like this one:

students = new Student[30];

Alternatively, you can replace both of the previous statements with a composite state-
ment, such as the following one, that both defines the pointer and creates the array:

Student[] students = new Student[30];

In this case, I’ve arbitrarily decided that the array can reference up to 30 instances of
Student. That may very well be a valid assumption for this example application, but explicitly
specifying the array size this way means the code won’t work correctly if you ever need to
load more than 30 students at one time. That’s because once you create an array, it can never
increase or decrease in size; the array just created is always capable of holding 30 students—
no more and no less.

Of course, if you know that there will normally be 30 or fewer students but that occasion-
ally the number will be as high as 50, you can simply make the array larger:

Student[] students = new Student[50];

This works because the array can technically contain fewer objects than its maximum size
simply by not changing the default null value for some or all of the array’s elements. For exam-
ple, if you perform a database query that you know will normally return 30 or fewer students,
you could store them in the array using code similar to the following:

Student[] students = new Student[50];
java.sql.ResultSet resultSet;
// Perform query
.
.
.
int index = 0;
while (resultSet.next()) {

students[index++] = createStudent(resultSet);
}

.

.

.
// Creates and returns a Student from data in current row of the ResultSet
private Student createStudent(ResultSet resultSet) throws SQLException {

Assuming you were to execute the previous code and assuming that the query returns
fewer than 50 students, the array will effectively contain fewer than 50 students simply because
it doesn’t reference that number of objects. Although this addresses the potential problem of
having more than 30 students by increasing the array size, this solution isn’t perfect. For one
thing, if your requirements suddenly change again so the maximum number of students is now
100, you’ll be forced to modify and recompile your code for it to work correctly. Of course, you
could simply choose an extremely large array size that you’re certain will never need to be
exceeded, such as in the following code:

Student[] students = new Student[100000];

Although this change would allow the code to work with up to 100,000 students, it also
wastes memory. When you create the array, an amount of memory is allocated that’s suffi-
cient to maintain a number of object references that corresponds to the size of the array. In
other words, if you allocate an array using the previous code but then store references to only
30 students in it, the other 99,970 entries represent wasted memory. Ideally, you’d like for an
array to be able to shrink and grow so that it uses only as much memory as it needs to main-
tain the number of objects it contains, but arrays just don’t work that way. Although arrays
are definitely useful, they don’t offer as much flexibility as you’d probably like, and this is why
Java includes classes and interfaces used for managing collections. Figure 4-1 shows a class
diagram with many of the collection classes and interfaces.

Figure 4-1. Java’s collection API includes a wide variety of interfaces and classes.

CHAPTER 4 ■ USING COLLECTIONS 153

The Evolution of Collections
In the earliest versions of Java, the only three collection classes were Vector, Hashtable, and
Stack. Although they provided basic collection capabilities, they weren’t a completely satisfac-
tory solution. For one thing, they didn’t offer enough flexibility to provide programmers with
the functionality that’s needed in many cases. For another, all the methods were synchronized
to make them thread-safe, but that synchronization also caused a performance penalty that’s
present even in single-threaded situations.

Java 2/Java 1.2
Most of the collection classes that are now part of Java’s core libraries were added in Java 2,
and it’s those classes that I’ll cover in this chapter. Unlike the older classes, however, these new
classes weren’t designed to be inherently thread-safe, so if you create a collection object that’s
used by more than one thread, you’ll need to take steps to serialize access to the collection.

Java 5/Java 1.5
Another major change occurred in Java 5, when support for new features was added that
effectively changed the syntax related to using collection classes. In other words, code that
was written for prior versions of Java will by default generate errors when you attempt to com-
pile it with a Java 5 or later compiler. In addition, source code written using the Java 5 syntax
can’t be compiled using an earlier version of Java. Most of this chapter will use the Java 5 syn-
tax since it’s the new standard, but you should be aware of the differences in case you need to
work with code written using an earlier version:

Prior to Java 5, you couldn’t directly add a primitive value to a collection. For example, an
int value could be added only if it was first encapsulated in an instance of the correspon-
ding Integer wrapper. However, Java 5 introduced a feature called autoboxing/unboxing
that allows you to write source code that appears to add primitives to and retrieve them
from collection objects. In reality, the objects are still being encapsulated in wrappers
while they’re inside the collection, but the conversion between primitives and objects is
handled automatically and is concealed from the programmer.

Before Java 5, all objects stored in collections were treated as instances of Object, and you
had no restrictions on the type of object you could add to a collection. It was the responsi-
bility of the programmer to cast an Object to a more specific type when retrieving it from a
collection, and a ClassCastException would occur if you made an incorrect assumption
about the class of object. However, Java 5 introduced a feature called generics that encour-
ages you to indicate what specific class of objects a collection will hold and uses that
information at compile time to ensure that you add instances of only that class.

CHAPTER 4 ■ USING COLLECTIONS154

GENERICS

Programmers had requested adding generics to Java for years; generics serve two purposes, both of which
you'll see in detail later. One advantage of generics is that they eliminate some of the tedious casting that’s
otherwise necessary, which results in code that’s simpler and more readable. The bigger advantage of
generics is that they allow some types of errors to be detected at compile time instead of at runtime, which
improves reliability when the code runs because of the potential errors that were eliminated.

I’ll review in detail later how these changes affect your use of collection classes, but the
important point to understand for now is that the syntax of Java 5 and later releases is incom-
patible with that of earlier releases, and vice versa.

Collection Classes and Interfaces
Before you examine the classes and interfaces that make up Java’s collection library, let’s
review some of the concepts and terminology you need to understand. An object that has
been added to a collection is referred to as an element; some collection classes allow duplicate
elements, and others don’t. In this context, two elements are considered duplicates if a value
of true is returned when they’re compared using the equals() method. For example, the fol-
lowing two objects are duplicate elements:

String first = "Hello";
String second = "Hello";

Some differences between collection classes, besides whether they support duplicate ele-
ments, are whether the elements are ordered and whether the class allows null elements to be
added. The functionality your application requires will determine which class you use; how-
ever, some classes are used often, and others are rarely needed.

Collection
At the top of the class hierarchy is the Collection interface, which defines methods that are
common to most class implementations. Note, however, that some of the methods aren’t appli-
cable to some collection implementations, so just because a method is defined in Collection
doesn’t necessarily mean it’s valid in a given implementation. If you try to call a method that
isn’t valid, an UnsupportedOperationException will be thrown, indicating that the method isn’t
meaningful for that object. Table 4-1 describes some of the most commonly used methods that
are defined in Collection.

CHAPTER 4 ■ USING COLLECTIONS 155

Table 4-1. Commonly Used Methods Defined in Collection

Method Description

add(Object o) Adds the specified object to the collection

remove(Object o) Removes the specified object from the collection

clear() Removes all elements from the collection

size() Returns an integer that indicates how many elements are currently in the
collection

iterator() Returns an object that can be used to retrieve references to the elements
in the collection

Even without the descriptions, you could probably correctly guess what general behavior
to expect from most of these methods, but to illustrate the points made earlier about changes
in Java 5, let’s look at examples of how the methods were used before and after that release.
Suppose you want to create and use an instance of a class that implements the Collection
interface. One of the most frequently used classes is ArrayList, and I’ll discuss it in depth later,
but for now let’s say you simply want to create and use an instance using its no-argument
constructor.

Using Collection Implementations Prior to Java 5
Prior to Java 5, you’d create an instance of a collection object in the same way you’d create any
other object; the following example shows how to do this:

Collection collection = new ArrayList();

Now let’s also assume you have a method that reads from a database and creates instances
of Student until there are no more to be read. If you wanted to add those objects to the collec-
tion, you could use code like this:

Student student = getNextStudent();
while (student != null) {

collection.add(student);
}

Notice that all you did was call the add() method mentioned previously, and this particu-
lar code is unchanged between Java 5 and its earlier releases. As you’ll see, what changed
between releases is primarily how you go about creating collection objects and how you
retrieve objects from a collection.

Now that you’ve created the collection object and added student information to it, how
can you go about retrieving references to those student objects? Table 4-1 mentioned an
iterator() method that allows you to access the elements in a collection, and the documen-
tation for that method indicates it returns an object that implements the Iterator interface
defined in the java.util package. In other words, the iterator() method returns an Iterator
object, which is simply an object that provides methods that allow you to access the objects in
a collection one at a time. In fact, Iterator is a simple interface and includes only the three
methods described in Table 4-2.

CHAPTER 4 ■ USING COLLECTIONS156

Table 4-2. Iterator’s Methods

Method Description

next() Returns a reference to the next Object in the collection

hasNext() Indicates whether the iterator has already returned references to all the objects in
the collection

remove() Removes from the collection the object most recently returned by the next() method

Now let’s suppose you want to print the first and last name of each Student in the collec-
tion, which you can begin to implement by calling the collection’s iterator() method and
looping through the list of elements:

Student student;
Iterator iterator = collection.iterator();
while (iterator.hasNext()) {
}

The only thing that’s missing is to retrieve a reference to each Student and print the name
for each one. To accomplish that, keep in mind you’re currently looking at how this would be
done prior to Java 5 and that I mentioned earlier that in those earlier releases everything in
a collection was treated as an instance of Object. Since you know (or at least think) that your
collection contains only Student instances and since the next() method is defined to return
an instance of Object, you’ll need to cast the return value as a Student, as follows:

Student student;
Iterator iterator = collection.iterator();
while (iterator.hasNext()) {

student = (Student)(iterator.next());
System.out.println(student.getFullName());

}

One point worth noting is that if your collection somehow contained an object other
than an instance of Student, the previous code would generate a ClassCastException when
executed. The problem with treating everything in a collection as an Object is that it becomes
more likely that some type of object other than the one you’re expecting will be added, and
you have no way at compile time to prevent that from occurring.

Another limitation in the collection classes prior to Java 5 was that you could add primi-
tive values to a collection only by first encapsulating them in their corresponding wrapper
classes. For example, let’s suppose you wanted to create a collection containing a group of
random integers. In that case, you’d be required to explicitly create an Integer for each one
and add that wrapper to the collection as follows:

Integer integer;
Random random = new Random();
Collection collection = new ArrayList ();
for (int i = 0; i < 10; i++) {

integer = new Integer (random.nextInt());
collection.add(integer);

}

CHAPTER 4 ■ USING COLLECTIONS 157

Similarly, retrieving the objects from the collection would require you to cast the return
value to an Integer and then call the intValue() method:

Integer integer;
int total = 0;
Iterator iterator = collection.iterator();
while (iterator.hasNext()) {

integer = (Integer)(iterator.next());
total += integer.intValue();

}

While encapsulating primitive values within wrappers isn’t a serious inconvenience, it’d
certainly be preferable to be able to add and retrieve primitive values directly.

Using Collection Implementations in Java 5
Java 5 introduced two new language features that addressed the limitations just discussed
related to collection classes. Generics address the need to explicitly cast objects retrieved from
collections and also reduce runtime errors by detecting more potential problems at compile
time, and autoboxing/unboxing allows you to treat primitives like objects.

To understand generics, it’s first helpful to realize that, within a well-designed applica-
tion, a collection object should almost always be homogenous in terms of the class of objects
it contains. For example, if the Student class were the superclass of the PartTimeStudent and
FullTimeStudent classes, it might be appropriate to add instances of those subclasses to a sin-
gle collection, but it’d probably not be appropriate to store both Student and Integer objects
in the same collection. In practice, you’ll almost never have a reason to store two very differ-
ent types of object in the same collection; when that does occur, it’s more often a mistake
rather than done intentionally. However, as long as collections are simply treated as holding
Object instances, you have no way to ensure at compile time that a given collection is being
used appropriately.

Java 5 addresses this by having you specify in your source code the type of object that
your collection will hold when you create an instance of a collection class. You do this by spec-
ifying the class name between less-than (<) and greater-than (>) characters when you specify
the variable class and the class that’s being instantiated, as follows:

Collection<Student> collection = new ArrayList<Student>();

As you’d expect, this new syntax can’t be successfully compiled by a pre–Java 5 compiler,
but keep in mind a point that may be less intuitive: the old (pre–Java 5) syntax will not by
default compile successfully with a Java 5 compiler. For example, suppose you try to compile
the following code:

Collection collection = new ArrayList ();

This code fails to compile because Java 5 expects you to specify the type of objects to be
stored in the array. However, if you specify the –source 1.4 command-line option, the Java 5
compiler will process the code just as a 1.4 compiler would have without requiring you to
specify the class of objects to be stored in the collection. For example, if the code were found
within a class called StudentProcessor, you could compile it using a command like this:

CHAPTER 4 ■ USING COLLECTIONS158

javac –source 1.4 StudentProcessor

You’ve now seen how creating a collection object changes in 1.5 to accommodate support
for generics, but how is the collection used differently after that? The call to the add() method
doesn’t change, but the most useful feature of generics is that it provides more error checking
at compile time. Let’s now suppose you attempt to write code that adds an Integer to the col-
lection of Student objects, something I’ve already established isn’t desirable in a well-designed
application:

collection.add(new Integer (12345));

Although the previous line would compile successfully in Java 1.4, it won’t compile in Java
5 (assuming the collection was defined to hold instances of Student) because it represents an
attempt to add an object of the wrong type to the collection. This ability to recognize prob-
lems at compile time prevents you from accidentally adding the wrong type of object to a
collection and is the biggest advantage associated with generics.

Another useful feature of generics is that since the type of object a collection holds is now
known by the compiler, it’s not necessary for you to explicitly cast the collection objects back to
the type you expect. Instead, you can simply indicate that the Iterator generates references
to the expected type and then omit the explicit cast to the code that retrieves a reference:

Student student;
Iterator<Student> iterator = collection.iterator();
while (iterator.hasNext()) {

student = iterator.next();
}

This approach results in code that’s more readable and maintainable than the Java 1.4
equivalent because it’s necessary to specify the object type in only one place in Java 5, specif-
ically when you obtain the Iterator reference. After that, you don’t need to specify the type
again regardless of how many different places within the code retrieve objects from the
Iterator.

AUTOBOXING AND UNBOXING

Another improvement in Java 5 was the introduction of autoboxing and unboxing, which eliminates the need to
explicitly encapsulate primitive values within wrapper objects and to retrieve them from those objects when
the primitives are to be stored within a collection. The result is that you can now simplify your code by elimi-
nating the portions that perform the encapsulation and extraction. In reality, the encapsulation is still being
done, but it’s handled by the Java compiler rather than being explicitly included in your code. Autoboxing is
the process of performing the encapsulation before a primitive is stored in a collection, and the following is
an example of how this can improve your code:

Random random = new Random();
Collection<Integer> collection = new ArrayList<Integer>();

continues

CHAPTER 4 ■ USING COLLECTIONS 159

for (int i = 0; i < 10; i++) {
collection.add(random.nextInt());

}

Similarly, unboxing is the process of extracting the primitive value from its corresponding wrapper
object when retrieving data from a collection:

int total = 0;
Iterator<Integer> iterator = collection.iterator();
while (iterator.hasNext()) {

total += iterator.next();
}

Java 5 contains one other feature that’s useful in this context: an enhanced for loop that allows you to
iterate through the objects in a collection using a simplified for statement. To take advantage of this, you
simply specify the class of the objects in the collection, a variable name to assign to each instance, and the
name of the variable that references the collection, as follows:

for (Student student : collection) {
System.err.println(student.getFullName());

}

As you can see, this version of the loop is significantly simpler than the original version that was
required in earlier versions of Java. In fact, it not only eliminates several lines of code but also allows you to
avoid directly using the Iterator interface, simplifying your code further.

Now that you’ve seen the basics of how to use the Collection methods, let’s continue to
examine the other interfaces and classes that make up Java’s collection API.

List
One of the characteristics of a collection class is whether it maintains a meaningful order for
the elements it contains, and the List interface defines such an implementation. In other
words, when you use an implementation of List and retrieve references to the elements,
those elements will be returned in a predictable sequence. The sequence is defined by the
element’s position within the collection, and you specify that position either explicitly or
implicitly when you add the element. Besides accessing the elements serially as you did ear-
lier using the Iterator and Java 5’s abbreviated for syntax, a List also allows you to directly
reference a particular element by specifying its zero-based position within the collection. For
example, the first element in a collection corresponds to position 0, the second element to 1,
and so on.

To better understand how this works, let’s assume you’re using an implementation of
List to maintain a collection of Student objects and you use the add() method defined in
Collection:

List<Student> students = new ArrayList<Student>();
students.add(new Student(12345, "John", "Smith");
students.add(new Student(67890, "Jane", "Smith");

CHAPTER 4 ■ USING COLLECTIONS160

In this case, the object representing the student John Smith occupies the first position
(index 0) within the list, and Jane Smith occupies the second. In other words, when you use
the add() method and don’t explicitly specify a position for the element being added, the ele-
ment is added to the end of the list. Alternatively, if you want to add an element to an arbitrary
position within the List, you can use the add() method defined in the List interface that
includes an index position. For example, continuing the previous code segment, suppose that
you executed the following line:

students.add(1, new Student(13579, "Adam", "Smith");

The first argument specified in this call to the overloaded add() method indicates that the
specified Student object should be inserted into the list at the position corresponding to an
index of 1, a position that was previously occupied by the Jane Smith object. The result of exe-
cuting this line of code will be that the newly added object will be inserted between the two
originally stored in the collection, and the index of the Jane Smith object effectively becomes 2.

An alternative to add() is the set() method, which performs a similar function; however,
while add() inserts the specified object into the collection at the given index, set() replaces
the object currently stored at that position with the one specified. For example, the following
code would result in only two Student objects being stored in the list, the one for John Smith
and the one for Adam Smith, because the object associated with Jane Smith would be replaced
as part of the call to set():

List<Student> students = new ArrayList<Student>();
students.add(new Student(12345, "John", "Smith");
students.add(new Student(67890, "Jane", "Smith");
students.set(1, new Student(13579, "Adam", "Smith");

Removing Elements from a List
Just as List defines an add() method that accepts an index position, the interface also
includes a remove() method that allows you to specify the index of the object to be removed.
Continuing with the previous example, let’s suppose you execute the following line of code:

students.remove(0);

This removes the object at index position 0, which corresponds to the John Smith object
added earlier. With that first element in the collection removed, the indices of the remaining
objects shift downward to reflect the removal, resulting in Jane Smith becoming the first object
and Adam Smith becoming the second object in the collection, with positions of 0 and 1,
respectively.

The fact that index positions aren’t constant for a given object in a List is an important
point to remember; forgetting it can cause you to write code that doesn’t work correctly. For
example, suppose you have a List of objects and an array of integers identifying index posi-
tions of objects that you want to remove from the array and that those index positions are
sorted from lowest to highest in the array. Your first thought might be to write code like this:

int[] deleteIndices;
List myList;
// Populate list, get indices of objects to be deleted

CHAPTER 4 ■ USING COLLECTIONS 161

.

.

.
for (int i = 0; i < deleteIndices.length; i++) {

myList.remove(deleteIndices[i]);
}

The problem with this approach is that it will work correctly only as long as there’s no
more than one index in the deletion array. That’s because as soon as you remove the first
entry, the other indices in the array effectively become invalid because they no longer refer to
the same elements. To understand this, let’s assume you have a list that contains five elements
and your deletion array contains two entries, one with a value of 1 and the other with a value
of 3, indicating that the second and fourth entries should be deleted.

Once you delete the element corresponding to the position of 1 within the array, the other
index no longer refers to the object you intended to delete but instead corresponds to the one
that follows it in the list. The result will be that on the second (and later) iterations the code
shown previously will remove the wrong objects from the list.

An easy way to address this problem is to simply traverse the index list in reverse order,
starting from the last and ending with the first one. Since removing an element affects only the
index of the elements that follow it in the list, this approach will ensure that the correct
objects are removed from the list:

for (int i = deleteIndices.length - 1; i >= 0; i--) {
myList.remove(deletedIndices[i]);

}

Searching for Objects

Although I didn’t really discuss it, you may recall that the Collection interface includes a
remove() method that takes a single Object argument. Although you can use that method,
doing so may limit the scalability of your application; to understand why that’s the case, you
need to understand how List implementations handle that remove() method.

Internally, a List is nothing more than a sequentially arranged group of objects that
isn’t really designed for quick searching. It’s intended to allow you to easily add and remove
elements, to maintain those elements in a particular order, and to access an element at an
arbitrary location, as you’ve just seen. However, what a List isn’t designed to do is to allow you
to quickly search for a particular object within the collection. As you’ll see later, certain other
collection objects do a better job of that, but the ability to quickly search for a given element
isn’t something that List implementations do efficiently. To illustrate this point, let’s suppose
you have a reference to a List object and you want to remove an object from it that was added
earlier. You can use the remove() method that accepts a single Object parameter, as follows:

List list;
Object objectToRemove;
// Initialize list, add some objects to it, get reference to object to remove
.
.
.
list.remove(objectToRemove);

CHAPTER 4 ■ USING COLLECTIONS162

When the remove() method is called, the entire list will be searched sequentially by com-
paring each element in the list to the object passed to the remove() method. This will happen
quickly if the List contains a reasonably small number of elements and/or the element to be
removed is near the front. However, if the List is large and the element to be removed isn’t
near the beginning of the list, many iterations and comparisons will be needed to locate the
object to be removed, and the removal will therefore be relatively slow. In addition, this applies
not only to the remove() method but also to any method that needs to locate a particular
object within a List that’s given a reference to that object. For example, the same limitation
affects the contains() method defined in the Collection interface and the indexOf() method
defined in List.

Although this may seem like a severe limitation, the truth is that many times searching
for an arbitrary object within a large collection isn’t needed, in which case a List may be an
appropriate choice for your application. As you’ll see throughout the course of this chapter,
the key is to be aware of the strengths and weaknesses of each collection implementation so
you can make an appropriate choice.

Using the equals() Method in Collections

Before moving on, it’s worthwhile to make one final point about how List implementations
locate an object. I already established that they do this by iterating through the objects in the
collection and comparing each one to the parameter, such as the one referenced in the call
to remove() in the previous example, but how exactly are they compared to one another? As
you might expect, the equals() method defined in the Object class is used to compare two
objects, which has important implications if you intend to add an instance of a class you’ve
created to a List collection. To understand those implications, let’s suppose you execute the
following code:

List<Student> list = new ArrayList<Student>();
Student s1 = new Student(12345, "John", "Smith");
Student s2 = new Student(12345, "John", "Smith");
list.add(s1);
list.remove(s2);
System.out.println(list.size());

As you can see, this segment creates two objects with identical state, adds the first one
to a List, and then attempts to remove the second one, after which it prints the number of ele-
ments stored in the array. If you guessed that the value printed is 1 (that is, that the first Student
remains an element of the collection even after the remove() method is called), you’re correct.
However, in practice, you’ll typically want two objects with identical state to be treated as if
they’re both an instance of the same object; in any case, it’s helpful to understand what hap-
pens here.

The implementation of equals() that’s defined on the Object class returns a value of
true only if the object passed to the equals() method is the same object as the one for which
the method was called. In other words, no attempt is made to compare the state of the two
objects, but they’re considered “equal” if and only if the two objects are actually the same
object instance. Having just said that this often isn’t the desired behavior, how can you change
it? You can override the equals() method so that it considers two objects equal based on their
state. In this case, for example, you might decide that two Student objects should be equal if the

CHAPTER 4 ■ USING COLLECTIONS 163

identifier value is the same for both, so you might add a method like the following one to the
Student class:

public boolean equals(Object o) {
boolean isEqual = false;
if ((o != null) && (o instanceof Student)) {

Student target = (Student)o;
isEqual = (target.getStudentID() == this.getStudentID());

}
return isEqual;

}

After adding this method to Student, running the code segment listed earlier returns a
zero because the reference to the first Student object is removed from the List when the call
to remove() is passed a reference to the second Student with identical state.

Understanding Other List Characteristics
You need to be aware of these other characteristics of List implementations that will help you
determine whether one of those implementations is the right choice for your application:

• Unlike some other types of collections, a List normally allows duplicate elements.

• List implementations normally support null elements.

The ability to support duplicate elements means you can have two or more elements
equal to one another stored in the List. Those elements could be references to the same
object that has been added more than once, or, as in the previous example, they could be two
different objects that simply have the same state. For example, if you run the following code
segment, it will display a value of 2 to reflect that the same object occurs twice in the List:

List<String> list = new ArrayList<String>();
String test = "Testing";
list.add(test);
list.add(test);
System.out.println(list.size());

In addition, adding the following bold line will cause the code segment to display a
value of 3:

list.add(test);
list.add(null);
System.out.println(list.size());

As you’ll see later, some collection types don’t allow duplicate elements or null values, but
List does support them.

CHAPTER 4 ■ USING COLLECTIONS164

ListIterator
Earlier you saw that the Collection interface defines an iterator() method that returns an
implementation of Iterator, and that interface in turn defines methods for accessing the
objects in a collection and for removing the most recently retrieved object. As Figure 4-1
showed, ListIterator is a subinterface of List, and, as you might expect, ListIterator
defines some additional methods that are appropriate for iterating through List collections.
These methods primarily are related to the characteristics of a list, namely, that the objects in
the collection are assigned a specific order and by extension that each one is associated with
a particular index. So, while the basic Iterator interface allows a forward-only approach to
accessing the object, ListIterator provides both forward and backward movement through
the collection and allows you to retrieve the appropriate index values, as shown in Table 4-3.

Table 4-3. ListIterator’s Methods for Iterating Through a List Implementation

Method Description

hasNext() Returns true if additional forward traversal of the list is possible

hasPrevious() Returns true if additional backward traversal of the list is possible

next() Returns the next element in the list

previous() Returns the previous element in the list

nextIndex() Returns the index of the next element in the list

previousIndex() Returns the index of the previous element in the list

To retrieve a ListIterator for a List implementation, simply call the listIterator()
method that’s defined in the List interface instead of the iterator() method defined in
Collection.

ArrayList
Even though I haven’t previously discussed its characteristics, I used the ArrayList class in
some of the examples, and you’ll find that in practice it’s a class you’ll use often. As its name
implies, ArrayList’s approach to implementing the List interface is simply to define an
Object array and increase the size of that array as necessary to support the number of ele-
ments contained within the collection.

If you understand the functionality defined by the methods in the Collection and List
interfaces, you don’t need to know much else to use ArrayList since it’s simply an implemen-
tation of those interfaces. However, when considering ArrayList, keep in mind the following
characteristics that have been discussed before and that apply to this class:

• An ArrayList can contain duplicate elements.

• You can add null values to an ArrayList.

• ArrayList isn’t an inherently thread-safe class, so if you create an instance that’s to be
used by multiple threads, you’re responsible for synchronizing modifications to the list.

CHAPTER 4 ■ USING COLLECTIONS 165

Thread Safety
In practice, the need to synchronize access to ArrayList applies only to cases where multiple
threads are referencing it while elements are being added or removed. However, if you simply
create and populate an ArrayList within a single thread, it’s safe to have multiple threads
retrieving values from that ArrayList. If you do modify the contents of an ArrayList through
its methods while an iterator is being used to retrieve the contents of the list, the iterator will
in most cases throw a ConcurrentModificationException the next time you attempt to use it.

In practice, thread safety is usually not necessary, but as you’ll see later, Java provides
classes that are thread-safe for those situations where that feature is needed.

Constructors
As you’ve already seen, ArrayList provides a no-argument constructor you can use to create
an instance of the class, but it also provides two other constructors you should know. One of
the other two allows you to pass a Collection object to the constructor, and using that con-
structor will cause the ArrayList to be initially populated with the same elements that are
stored in that other Collection.

The other constructor that ArrayList provides allows you to specify the collection’s “initial
capacity.” To understand what that means, remember that an ArrayList uses an array to main-
tain the references to the elements in the collection. The capacity of an ArrayList is simply the
size of the array it has allocated to hold those references, although the capacity can change as
needed. For example, suppose that an ArrayList has a capacity of ten and it has reached full
capacity, meaning the collection already contains ten elements. If you add another element to
the ArrayList, it will increase its capacity so it’s able to store a reference to the additional ele-
ment. As you saw at the beginning of the chapter, a capacity that’s extremely large (or an array
far larger than is needed to maintain the object references) wastes memory, so ideally you’d like
the capacity of an ArrayList to be as small as possible.

If you know exactly how many elements an ArrayList will hold, you can specify that
number on the constructor, as follows. In this case, you know that the collection will contain
exactly ten elements, so you can specify the capacity on construction.

List<Student> list = new ArrayList<Student>(10);

On the other hand, if you’ve already created an ArrayList and then obtain an estimate of
the capacity it needs or an exact amount, it can be helpful to call the ensureCapacity() method
before adding the elements to the list. In this scenario, imagine that you’ve previously con-
structed an ArrayList but know the number of elements it will contain; therefore, you call
ensureCapacity() to set its capacity accordingly:

public void populateStudentCollection(ArrayList studentList) {
studentList.clear();
int count = getNumberOfStudents();
studentList.ensureCapacity(count);
for (int i = 0; i < count; i++) {

studentList.set(i, getNextStudent());
}

}

CHAPTER 4 ■ USING COLLECTIONS166

Keep in mind that you’re never required to set or update the capacity of an ArrayList; if
you don’t, the capacity will be increased for you automatically. However, if you know or have
an estimate of the capacity that will be needed, specifying it as I’ve shown here will in many
cases cause the ArrayList to use less memory than it would if it changes the capacity itself.

LinkedList
The LinkedList implementation of the List interface doesn’t provide any behavior that’s visi-
bly different from ArrayList, but LinkedList is different in terms of how the list is maintained.
Just as the name of the ArrayList class correctly implies that it uses an array, the LinkedList
class uses a double linked list to manage the collection of objects. What this means is that
each node in the list contains a pointer to the node that precedes it and one to the node that
follows it, which in turn means the list can be traversed in either direction (that is, both for-
ward and backward). A node is simply an object created by the LinkedList when you add an
object to the collection, and the nodes are linked to one another in a way that maintains the
proper sequence for the objects in the list.

The advantages and disadvantages of linked lists are well documented, and in theory
inserting and removing an element to the beginning or end of a linked list should offer a sig-
nificant performance advantage over the same operation performed using (for example) an
ArrayList. In practice, however, the performance advantage is negligible, and the LinkedList
is actually slower in cases where an entry is added to the end and the ArrayList hasn’t reached
full capacity. The reason for this is to a great extent because operations performed on the
middle of a linked list are relatively slow because the nodes must be traversed to reach that
location within the list. In other words, assuming you have a List that contains one million
elements, the following code will execute far more slowly with a LinkedList than with an
ArrayList:

Object value = list.get(500000); // Get an element near the middle

To execute this line of code, a linked list will need to start with either the first node or the
last node and iterate through the list until it reaches the node that corresponds to the speci-
fied index. In other words, the amount of time a LinkedList takes to access a given node is
proportional to that node’s distance from the beginning or end of the list. In contrast, access-
ing an element in the middle of an ArrayList is no faster or slower than accessing one at any
other location.

In addition to generally providing better performance, ArrayList presents another advan-
tage over LinkedList: it uses less memory. That’s because it’s necessary to create a node object
for each element that’s added to a LinkedList. On the other hand, an ArrayList needs to main-
tain only a single object array, and the only time it needs to create a new object is when the
capacity needs to increase. The object creation associated with a LinkedList not only results in
it using more memory but also is another reason why LinkedList is generally slower than
ArrayList, since object creation is a relatively time-consuming process.

The one scenario where you may see a performance improvement when using a LinkedList
is when you’re adding many entries to the beginning of the list. However, this is relatively rare,
and the performance improvement isn’t great, so as a general rule, you should use ArrayList
when you need a List with the characteristics that it and LinkedList provide.

CHAPTER 4 ■ USING COLLECTIONS 167

Vector
As mentioned earlier, Vector is one of the few collection classes that have existed since the
first release of Java, and Vector is similar in terms of behavior to ArrayList. Like ArrayList,
Vector is an implementation of List, but List didn’t exist when Vector was originally defined.
However, when Java’s collection library expanded in Java 1.2/Java 2, the Vector class was retro-
fitted to become an implementation of List to make it consistent with the other collection
classes. Like ArrayList, Vector is able to contain duplicate elements and null values. In fact,
the biggest difference between ArrayList and Vector is that Vector is inherently thread-safe
and ArrayList isn’t.

Although thread safety is a desirable feature, it’s simply not needed in many cases, and
synchronizing is a relatively slow process. In other words, if you use a synchronized collection
class when you don’t need one, your application may be unnecessarily slow. Even if you do
need some level of synchronization, you probably can do a better job of providing it based
on how you know the collection will be used by your application. Vector by necessity takes a
“worst-case” approach to synchronization, which causes its performance to suffer. For this
reason, Vector isn’t often used. (However, you’ll sometimes still see it used by long-time Java
coders and in code written to run on early releases.)

Perhaps the one advantage that Vector does have over ArrayList is that Vector not only
allows you to specify the capacity on construction and change it later but it also allows you to
specify the amount that will be automatically added to its capacity when an increase is needed.

Stack
This is another one of the original collection classes; it extends Vector, and Stack is effectively
just a wrapper around Vector that provides operations that make its behavior match that of a
stack. Instead of the concept of a beginning or end, the stack’s elements are considered to be
accessible from the “top” to the “bottom.” Elements can be added only to the top of the stack,
and the most recently added one is the only one that’s accessible at any given time. In other
words, this is an implementation of a last-in-first-out (LIFO) algorithm.

For the most part, this is just a matter of defining methods that match the terminology
associated with a stack and having those methods function appropriately. For example, while
you’d call add() to add an element to a Vector, you’d call push() to “push” an object onto the
top of the stack. Similarly, while remove() is used to remove an object from a Vector, you can
use pop() to remove the object currently at the top of the stack and retrieve a reference to it.

Although applications do sometimes need the functionality of a stack, it can easily be
accomplished using a more commonly used implementation such as ArrayList. The fact that
the Stack class provides the more academically correct terminology is of questionable value
and may even be confusing to someone who isn’t familiar with the concepts or doesn’t remem-
ber the terminology. In addition, because it’s simply a thin wrapper around Vector, the Stack’s
operations are synchronized and therefore will execute more slowly than one of the newer
classes. Given these disadvantages, you’ll rarely get any real benefit from using the Stack class,
but I mention it here for the sake of completeness.

Set
Now let’s examine another major branch of the collection class hierarchy, specifically the Set
interface and associated subinterfaces and implementing classes. As its name implies, Set is

CHAPTER 4 ■ USING COLLECTIONS168

intended to roughly mimic the idea of a mathematical “set” containing a group of distinct
values. In contrast to the List interface, implementations of Set generally have the following
characteristics:

• They can’t contain duplicate elements.

• The elements may or may not have a predictable order.

• Since the elements can’t be assumed to be in a particular order, no mechanism is
provided for accessing an element based on its index position.

To better illustrate these points, let’s assume you’ve created a code segment like the fol-
lowing one that creates an instance of ArrayList and calls its add() method four times, with
one instance of Student being added twice:

Collection<Student> collection = new ArrayList<Student>();
Student s1 = new Student(12345, "John", "Smith");
Student s2 = new Student(67890, "Jane", "Smith");
Student s3 = new Student(13579, "Adam", "Smith");
collection.add(s1);
collection.add(s1);
collection.add(s2);
collection.add(s3);
for (Student student : collection) {

System.out.println(student.getFullName());
}

Running this code produces the following results displayed, with “John Smith” being dis-
played two times because that Student was added to the collection twice:

John Smith
John Smith
Jane Smith
Adam Smith

However, let’s now suppose you make one small change to the code segment, creating an
instance of HashSet instead of ArrayList:

Collection<Student> collection = new HashSet<Student>();
Student s1 = new Student(12345, "John", "Smith");
Student s2 = new Student(67890, "Jane", "Smith");
Student s3 = new Student(13579, "Adam", "Smith");
collection.add(s1);
collection.add(s1);
collection.add(s2);
collection.add(s3);
for (Student student : collection) {

System.out.println(student.getFullName());
}

CHAPTER 4 ■ USING COLLECTIONS 169

Now the results are very different. For one thing, the names aren’t necessarily displayed in
the same order in which they were added to the collection, and for another, “John Smith” is
displayed only one time:

John Smith
Adam Smith
Jane Smith

The fact that the names are displayed in a different order shouldn’t be surprising since
I already established that the elements in a Set don’t necessarily have a predictable sequence.
In addition, I said that duplicates aren’t allowed, so only one John Smith object in the Set is
also the expected behavior.

As you saw earlier, the way the definition of a duplicate element in the context of a List
is determined is by whether two objects are considered equal based upon the results of the
equals() method. Assuming that the equals() method you added to Student earlier is present,
let’s extend the code segment with the following changes, noting that you’re now adding two
Student objects to the collection that will return true when compared using equals(). Specifi-
cally, the Jane Smith and Tom Jones objects both have identifier values of 67890, which will
cause their equals() methods to return true when compared to one another:

Collection<Student> collection = new HashSet<Student>();
Student s1 = new Student(12345, "John", "Smith");
Student s2 = new Student(67890, "Jane", "Smith");
Student s3 = new Student(13579, "Adam", "Smith");
Student s4 = new Student(67890, "Tom", "Jones");
collection.add(s1);
collection.add(s2);
collection.add(s3);
collection.add(s4);
for (Student student : collection) {

System.out.println(student.getFullName());
}

Running this code segment will produce results similar to the following (although the
order in which the names will be displayed could vary):

John Smith
Adam Smith
Jane Smith
Tom Jones

Obviously, simply overriding the equals() method isn’t enough to make two elements be
considered duplicates in the context of a Set implementation. In fact, one additional step is
necessary that’s actually documented in the equals() method of the java.lang.Object class:
you also need to override hashCode().

CHAPTER 4 ■ USING COLLECTIONS170

Using Collection Objects, Hash Codes, and equals()
If you review the API documentation for the equals() method defined in Object, you’ll find
the following:

Note that it is generally necessary to override the hashCode method whenever
this method is overridden, so as to maintain the general contract for the
hashCode method, which states that equal objects must have equal hash codes.

Since you now know you need to override hashCode(), and since that method must return
the same integer value for objects that are considered equal, an appropriate implementation
of hashCode() can easily be added to the Student class by returning the identifier value:

public int hashCode(){
return studentID;

}

This implementation works well because it satisfies the contract of the hashCode()
method and will return a different hash code value for any two instances of Student that are
considered to be unequal. If you now run the code segment listed earlier, the results now
include only the following three entries:

Adam Smith
John Smith
Jane Smith

You might have expected the Tom Jones object to replace the Jane Smith object when it’s
added to the collection, but this obviously didn’t happen. The reason is that when you attempt
to add an object that’s considered to be a duplicate, the newer duplicate object is merely dis-
carded instead of replacing the one already in the collection that it appears to duplicate.

Overriding the hashCode() method in Student solved the problem, but it raises the ques-
tion of why two objects considered duplicates in a List weren’t treated as duplicates in a Set.
The reason for this is because List simply uses the hashCode() method when locating ele-
ments. Remember, when trying to locate an element for a call such as contains(), the List
iterates through its elements and uses the equals() method to compare the object it’s look-
ing for to each one it contains. In contrast, when you call a method such as contains() for a
Set to determine whether it contains an object, the Set uses that object’s hash code to deter-
mine whether it contains the object or a duplicate of that object. In other words, if you add
an object with a hash code of 24680 to a set that doesn’t already contain an object with that
same hash code, that new object will be added even if its equals() method would return true
when compared to one or more other objects within the set.

Understanding Buckets
To better understand why this works the way it does, it helps to understand that hash codes
provide functionality in Set implementations similar to that of index values stored in a rela-
tional database. When an object is added to the Set, its hash code is used to choose a “bucket”

CHAPTER 4 ■ USING COLLECTIONS 171

into which to place the object. Objects that aren’t equal may have different hash codes and
still wind up in the same bucket, but two objects that are considered equal should always
wind up in the same bucket. The reason this is important is that when the Set goes to deter-
mine whether it contains a particular object, it will use that object’s hash code to determine
which bucket the object should be stored in and iterate through the objects in that bucket,
using the equals() method to determine whether the bucket contains the object. Stated
another way, the hashCode() method is used to derive a subset of objects in which a particular
instance should occur, and the equals() method is used to examine that subset to determine
whether the object is found there.

This concept of how hashCode() and equals() methods are used is an important one,
not only for using instances of Set but also for using implementations of the Map interface
you’ll examine later in the chapter. Overriding hashCode() and equals() isn’t an issue when
you’re using system classes that are part of Java such as String, Date, or the numeric wrappers
(Integer, Float, and so on). However, once you begin adding instances of custom classes like
Student to a Set or a Map, you need to ensure that the equals() and hashCode() methods will
function appropriately, or your code may produce unexpected results.

HashSet
Now that you’re already familiar with the basic behavior of Set implementations, you don’t
need to know much else to understand and use the HashSet class. As previously indicated is
the case for Set implementations, HashSet has the following characteristics:

• No guarantee is made concerning the order in which the elements will be returned
when you’re iterating through them.

• No duplicate elements are allowed, where “duplicate” elements are two objects that
have the same hash code and that return true when compared using the equals()
method.

• The Set is allowed to contain a null element.

Constructors
Although the basic behavior of a HashSet may now be well understood, the constructors pro-
vided may be slightly confusing. Aside from the no-argument constructor used in an earlier
example, constructors exist that allow you to specify an “initial capacity” and a “load factor.”
In reality, those values aren’t used directly by the HashSet class itself but by an instance of
another collection class that HashSet uses called HashMap. You’ll examine the HashMap class
in detail later in this chapter, but for now all that’s important for you to understand is that
HashSet is really just a wrapper around an instance of HashMap. In other words, most of the
code that provides the functionality of a HashSet is actually defined in HashMap and its related
classes. The reason it’s important to know this is because the initial capacity and load factor
are used by HashSet only when it’s creating the instance of HashMap that it will use; you’ll
examine their usage in detail later in this chapter.

CHAPTER 4 ■ USING COLLECTIONS172

LinkedHashSet
This class provides functionality similar to that of HashSet but with one important difference:
the elements are returned in a predictable order, specifically in the same order in which they
were added to the set. This can be useful when fast lookups are needed to determine whether
an object is contained within a Set and when it’s also important to be able to retrieve the ele-
ments and have them returned in the same sequence in which they were added to the set.

TreeSet
TreeSet allows elements to be retrieved in a predictable order, but in this case the elements
are maintained and returned based upon a sorting algorithm instead of the order in which
they were added to the table. That algorithm can be in one of two places, and the constructor
you use when creating a TreeSet will determine which location performs the sorting.

Using Comparable and Natural Order
In many cases, the objects you add to a Set will have what’s known as a natural order, which
means the object implements the Comparable interface defined in the java.lang package. This
means for the given class there’s a way of sorting instances that’s intuitive and appropriate for
many or most situations. For example, the natural order for instances of a numeric wrapper
class, a String or a Date, is from lowest to highest. To illustrate this point, let’s suppose you
execute the following code segment:

TreeSet<Integer> set = new TreeSet<Integer>();
set.add(new Integer (100));
set.add(new Integer (50));
set.add(new Integer (75));
set.add(new Integer (0));
for (Integer i : set) {

System.out.println(i);
}

The results will appear exactly as follows:

0
50
75
100

The numbers are sorted and returned in ascending order because the Integer class imple-
ments the Comparable interface, and the TreeSet is able to take advantage of that. Comparable
defines a single method that returns an integer that identifies the value of an object relative to
some other object, as follows:

public int compareTo(Object o)

CHAPTER 4 ■ USING COLLECTIONS 173

If the object for which this method is called is less than the one it’s being compared to
(represented by the local variable called o), a value less than zero will be returned. Similarly,
if it’s greater than the one it’s being compared to, then it will return a value greater than zero,
and if the two are equal, then a value of zero is returned. In other words, when the Integer
containing a value of 75 is compared to the one containing 50, a positive (greater than zero)
value is returned, and comparing the Integer containing 75 to the one containing 100 causes
a negative (less than zero) to be returned.

The Comparable interface is already implemented in Java’s system classes where a mean-
ingful and intuitive order exists, but what about user-defined classes such as the Student class
you’ve been using? To be able to sort Students, you can easily implement the Comparable inter-
face in that class to assign a natural order so instances of Student can be sorted by TreeSet.
When implementing Comparable, the main question that needs to be answered is, how will
users of the class want instances sorted most often? In this case, sorting the students in ascend-
ing order by last name and then by first name would seem to be the most useful (or “natural”)
arrangement.

You can begin your implementation by creating an assertion that the object passed to
the compareTo() method is also an instance of Student. Given Java 5’s support for generics,
this is likely to be a valid assumption, and if not, there probably isn’t going to be a meaningful
value that can be returned anyway. In other words, it’s reasonable to assume that instances of
Student will be compared only to other instances of Student and not to instances of (for exam-
ple) Date or Integer or some other unrelated class.

public int compareTo(Object o) {
assert (o instanceof Student);

}

You can now assume that the object passed to your method isn’t an instance of some
other class, but what about a null value? Although it’s technically possible to add a null value
to most collections, and by extension possible to compare one to an instance of Student, it’s
not common in practice for this to occur, so expand your assertion state as follows:

public int compareTo(Object o) {
assert ((o instanceof Student) && (o != null));

}

Now that you’ve established that the object passed presumably isn’t a null and is an
instance of Student, you can cast it to the appropriate class:

public int compareTo(Object o) {
assert ((o instanceof Student) && (o != null));
Student s = (Student)o;

}

Now that you have a reference to the Student, you can begin the name comparison with
the last name. Since the String class already implements Comparable, you can take advantage
of that by simply delegating the comparisons to the object that contains the student’s last
name:

public int compareTo(Object o) {
assert ((o instanceof Student) && (o != null));

CHAPTER 4 ■ USING COLLECTIONS174

Student s = (Student)o;
int relativeValue = lastName.compareTo(s.getLastName());
return relativeValue;

}

This code alone is sufficient for cases where the two students’ last names are different,
but what about those where they both have the same last name but a different first name? In
that case, the call to compareTo() you just added will return a value of 0, meaning that the two
last name String values are equal; when that occurs, you need to then perform the same com-
parison using the students’ first names:

public int compareTo(Object o) {
assert ((o instanceof Student) && (o != null));
Student s = (Student)o;
int relativeValue = lastName.compareTo(s.getLastName());
if (relativeValue == 0) {

relativeValue = firstName.compareTo(s.getFirstName());
}
return relativeValue;

}

The implementation of the compareTo() method in Student is now complete. The only
thing that remains is to indicate that the class now implements Comparable:

public class Student implements Comparable {

Once you’ve completed these changes, you could test them using a code segment like this:

Collection<Student> collection = new TreeSet<Student>();
Student s1 = new Student(12345, "John", "Smith");
Student s2 = new Student(24680, "Jane", "Smith");
Student s3 = new Student(13579, "Adam", "Smith");
Student s4 = new Student(67890, "Tom", "Jones");
collection.add(s1);
collection.add(s2);
collection.add(s3);
collection.add(s4);
for (Student student : collection) {

System.out.println(student.getFullName());
}

As expected, running this code will print the names of the students in alphabetical order
by last name and then by first name, as follows:

Tom Jones
Adam Smith
Jane Smith
John Smith

CHAPTER 4 ■ USING COLLECTIONS 175

Using Comparator
As you’ve now seen, it’s easy to use a TreeSet to sort objects based on their natural order. In
fact, no code is required at all as long as the objects to be sorted were created from a class that
implements Comparable. However, sometimes this might not be possible or appropriate. For
example, you might need to sort instances of a class that you can’t modify and that doesn’t
implement Comparable. Even if the class implements Comparable, what about situations where
you want to sort the objects using something other than their natural order? In the example
you just used, for instance, what if you wanted to sort the students in descending order
instead of ascending order?

Fortunately, Java’s collection library provides an easy way for you to sort objects in any
way you want regardless of whether they implement Comparable. It does this by defining an
interface called Comparator that allows you to write comparison code that’s external to a given
class. Comparator defines just two methods: an equals() method with a signature matching
the one defined in the java.lang.Object class and a compare() method that takes two Object
arguments and returns an integer value. That integer value serves exactly the same function as
the value returned by Comparable’s compareTo() method but in this case indicates the value of
the first object relative to the second one.

To see how easily you can use Comparator, let’s suppose you want to sort the Student
objects based on their student identification number instead of the name values. You could
easily create a class like the following one that performs the comparison:

class StudentComparator implements Comparator<Student> {

public int compare(Student s1, Student s2) {
int relativeValue = s1.getStudentID() - s2.getStudentID();
return relativeValue;

}

}

With this class defined, you can now pass an instance of it to the TreeSet constructor to
have the TreeSet use the Comparator implementation when sorting the students, instead of
using the Student objects’ natural order as defined by the Comparable implementation. In
addition, note that the line that displays the list of students has been modified to also display
the identification number, which makes it easier to verify that the code worked as expected:

Collection<Student> collection = new TreeSet<Student>(new StudentComparator());
Student s1 = new Student(12345, "John", "Smith");
Student s2 = new Student(24680, "Jane", "Smith");
Student s3 = new Student(13579, "Adam", "Smith");
Student s4 = new Student(67890, "Tom", "Jones");
collection.add(s1);
collection.add(s2);
collection.add(s3);
collection.add(s4);

CHAPTER 4 ■ USING COLLECTIONS176

for (Student student : collection) {
System.out.println(student.getStudentID() + " " + student.getFullName());

}

Running the modified code produces the following results with the students sorted based
on their identification numbers:

12345 John Smith
13579 Adam Smith
24680 Jane Smith
67890 Tom Jones

Comparable vs. Comparator
As this example illustrates, you should use the Comparable interface to implement comparison
code that can appropriately be stored inside a given class and when there’s a “natural” order
for instances of that class that users can intuitively expect to represent the default order. In
contrast, Comparator is appropriate when the information needed to perform the sorting isn’t
available within the object itself and in other situations where it may not be feasible or appro-
priate to embed the sorting logic within the class.

I should make one final point concerning TreeSet that has to do with whether it supports
adding a null element. I didn’t mention this before because its ability to support a null value
primarily depends upon whether you use natural ordering or a Comparator implementation.
A null value isn’t allowed in a TreeSet if you use natural ordering because the null value can’t
compare itself to other objects within the set. However, if you specify a Comparator object, that
object can be designed to compare the null value with a non-null value and return a value that
will cause the null to be sorted in whatever way is appropriate. In that case, when you’ve used
a Comparator and the implementation is designed to handle the null value, the TreeSet will be
able to contain a null value.

EnumSet
This implementation of Set has a unique function: to serve as a collection for a group of
enumeration values from a single enumeration type that has been defined using Java 5’s enu-
meration syntax. By combining this collection with the new variable argument feature that
was also included in Java 5, you can easily define a set that contains an arbitrary group of enu-
meration values. For example, let’s suppose you’ve defined an enumeration that defines the
days of the week as follows:

public enum DayOfWeek {

Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday;

}

CHAPTER 4 ■ USING COLLECTIONS 177

Given that enumeration, you could easily create a set containing only the weekdays by
using a single line of code as follows. This is possible because one implementation of the over-
loaded of() method allows you to specify a variable number of arguments.

EnumSet<DayOfWeek> schoolDays = EnumSet.of(DayOfWeek.Monday, DayOfWeek.Tuesday,
DayOfWeek.Wednesday, DayOfWeek.Thursday, DayOfWeek.Friday);

You can further verify that this creates a set containing only the weekday values by adding
code like this:

for (DayOfWeek day : schoolDays) {
System.out.println(day);

}

This loop results in the following values being displayed:

Monday
Tuesday
Wednesday
Thursday
Friday

As these results suggest, the order in which the elements of an EnumSet are returned corre-
sponds to the order in which they’re defined within the enumeration. In addition, an EnumSet
can’t contain any null elements, which makes it somewhat different in that respect from other
Set implementations.

Although EnumSet instances can be used in a relatively static manner, it’s entirely possible
to add and remove enumeration elements just as other collections allow you to add and
remove objects:

schoolDays.add(DayOfWeek.Saturday);

In summary, an EnumSet is simply a Set implementation created specifically for use with
enumeration values, and its elements are guaranteed to have an order that corresponds to the
sequence in which they’re defined within the enumeration.

Map
In Figure 4-1 you saw a class diagram with many of the collection interfaces and classes in it.
The Map interface is also part of the collection API, but it was omitted from that diagram partly
because it doesn’t extend Collection or otherwise share a common superinterface, as shown
in Figure 4-2.

CHAPTER 4 ■ USING COLLECTIONS178

Figure 4-2. The Map interface and its associated classes aren’t part of the same hierarchy as the
other components you’ve seen.

Since the Map interface doesn’t extend Collection, you might think that Map is different
from any of the classes and interfaces I’ve discussed up to this point. Although that’s partly
correct in some ways, Map implementations actually have a great deal in common in terms
of their behavior with Set classes. That shouldn’t be entirely surprising, since I already men-
tioned that most of the behavior of a HashSet is actually provided by that class’s use of a
HashMap object. In fact, many of the most commonly used set interfaces and classes corre-
spond to equivalent map definitions, as shown in Table 4-4.

Table 4-4. Map and Set Counterparts

Type Map Set

Interface Map Set

Abstract class AbstractMap AbstractSet

Class HashMap HashSet

Class LinkedHashMap LinkedHashSet

Class TreeMap TreeSet

Class EnumMap EnumSet

CHAPTER 4 ■ USING COLLECTIONS 179

So how is it that a Map and a Set are so different that they don’t share a common interface
ancestor (Collection) but are so similar that they have implementations that mimic one
another? The answer is that while a Set is simply a collection of objects, a Map is a collection
of objects with each one having a corresponding value. In other words, a map represents a
group of key/value pairs, with the keys being analogous to the elements in a set. Because the
functionality of a Map is largely a superset of the functionality defined for a Set, HashSet and
TreeSet use HashMap and TreeMap, respectively, to provide most of their functionality.

Since a Map doesn’t contain a single data type but instead includes key/value pairs, the
syntax that’s used to support generics is slightly different. Instead of specifying a single class,
you must specify two classes: one for the keys and one for the corresponding values. For
example, to create an instance of HashMap, you might use code like this:

HashMap<Integer,Student> map = new HashMap<Integer,Student>();

This code creates a HashMap that allows you to use Integer instances for the keys and
Student objects for the corresponding values. Adding an entry to a Map is simple, but instead
of calling add() and specifying a single object, you call put() and specify two arguments, the
first representing the key and the second representing the value. For example, let’s suppose
you plan to store instances of Student in your newly created HashMap and you want to use each
Student object’s identifier value as the key. In that case, you could use code like this:

HashMap<Integer,Student> map = new HashMap<Integer,Student>();
Student s1 = new Student(12345, "John", "Smith");
Student s2 = new Student(24680, "Jane", "Smith");
Student s3 = new Student(13579, "Adam", "Smith");
Student s4 = new Student(67890, "Tom", "Jones");
map.put(s1.getStudentID(), s1);
map.put(s2.getStudentID(), s2);
map.put(s3.getStudentID(), s3);
map.put(s4.getStudentID(), s4);

Although the student identifier returned by the getStudentID() method is an integer
primitive, autoboxing support automatically converts it into an instance of the Integer wrap-
per before it’s stored in the map.

Once you’ve stored a key/value pair in the map, you can retrieve the value by passing the
key value to the get() method. By far the most useful feature of a Map, and arguably the most
useful feature of any collection class, is the ability to retrieve a value given the appropriate key.
For example, if you have the student identifier and want to retrieve the corresponding Student
for it, you could execute code like the following:

Student s0 = map.get(13579);

This code searches the map for a key equal to 13579 and returns the corresponding Student
value if there’s one or null if no such key exists. This ability to perform an object lookup is
extremely useful, partly because unlike List searches, retrieving an object from a Map using a
key value doesn’t require iteration through the list of keys in the map. Instead, the key’s hash
code locates the corresponding value in a “bucket” as described earlier, which means Map
lookups can be very fast even with extremely large collections.

To maximize the speed of such lookups, you should try to ensure to as great an extent as
possible that two objects that aren’t equal to one another return different hash code values.

CHAPTER 4 ■ USING COLLECTIONS180

It’s technically possible to have every instance of a given class return the same hash code value,
and Map (and Set) implementations will still work correctly in that case. However, their per-
formance will be seriously degraded because all objects will be placed in the same “bucket”
because of having identical hash code values. As mentioned earlier, searches are first done by
determining which “bucket” an object should be placed in given its hash code, and then a lin-
ear search of all objects within that bucket takes place until one that matches the desired value
is found.

While the List and Set implementations allow you to retrieve iterators that return the
element values, Map instances allow you to retrieve both the list of keys (through the keySet()
method that returns a Set containing all keys) and the values (through the appropriately
named values() method that returns a Collection containing all values). For example, the fol-
lowing code shows how you can retrieve the set of key values and then iterate through the set,
displaying each key and retrieving its corresponding values:

Student student;
Set<Integer> keys = map.keySet();
for (Integer i : keys) {

student = map.get(i);
System.out.println("Key: " + i + " Value:" + student.getFullName());

}

Aside from the variations discussed here, Map implementations function very much like
their corresponding Set classes described earlier.

HashMap
Earlier in the chapter I covered the HashSet class and briefly discussed that it included a con-
structor that accepts an integer representing an initial capacity and a floating-point number
representing a load factor. However, I deferred a meaningful examination of those values since
those arguments are in fact not used directly by the HashSet code but by the HashMap that the
HashSet creates to maintain its list of elements.

So, how does HashMap use the initial capacity and load factor? If the words initial capacity
sound familiar, it’s because I previously discussed a parameter by the same name that can be
used when constructing an ArrayList, and as you’d expect, it represents essentially the same
thing here. In this case, the initial capacity is the number of “buckets” that are created for use
by the collection. Once again, it’s best to specify on construction the number of elements that
will be stored in the collection if you know it, because doing so will minimize the amount of
memory used by the collection.

While the capacity is an integer value, the load factor is a floating-point number that
essentially represents a percentage value indicating how many elements can be added to the
HashSet before the capacity will be automatically increased. For example, if the capacity is set
to 100 and the load factor to 0.5, you can add up to 50 elements before the capacity will be
increased (10 × .5 = 50). Once you add the 51st element, for example, the capacity will auto-
matically be roughly doubled, and this process will be repeated as many times as needed.
In effect, the load factor represents the relative importance to your application of speed vs.
memory usage: a low value means that you’re more concerned with lookup speed, while a
high value is appropriate when saving memory is expected to be more important.

CHAPTER 4 ■ USING COLLECTIONS 181

LinkedHashMap
The behavior of LinkedHashMap is essentially the same as HashMap with the exception that it
maintains its entries in a predictable sequence, specifically, the order in which they were
added to the map. In other words, if you add entries to a LinkedHashMap and then retrieve
them through an iterator, they will be returned in the same order in which they were added.

TreeMap
This class maintains its keys in a sorted order either by using their natural order or by using
an implementation of the Comparator interface. The behavior of TreeMap with respect to its key
values is identical to the behavior previously described for the elements in a TreeSet.

EnumMap
Instances of EnumMap allow you to use enumeration values from a single type as keys in the
map. The keys (and by extension their associated values) are maintained in the order in which
the values are defined in the enumeration.

IdentityHashMap
This implementation of the Map interface is different from all others in terms of how it deter-
mines key equality. Like the other Map implementations, it doesn’t allow duplicate entries, but
it’s the way that duplicates are identified within an IdentityHashMap that makes it unique.
Instead of using the equals() method to compare entries, IdentityHashMap compares them
using the == operator. What this means from a functional standpoint is that no two object ref-
erences are considered equal unless they’re references to the same object instance. With other
implementations, the state of the objects is used to determine equality, but in this case an
object’s identity is the only criteria used to determine uniqueness. To illustrate how this affects
the behavior of the map, consider the following code:

IdentityHashMap<Integer,Student> map = new IdentityHashMap<Integer,Student>();
map.put(new Integer (123), null);
map.put(new Integer (123), null);
for (Integer i : map.keySet()) {

System.out.println(i);
}

If you run this code segment, it will display the value “123” twice. Any other map imple-
mentation besides IdentityHashMap would have displayed it only once, because the second
Integer would have been considered a duplicate and wouldn’t have been added. However,
because the IdentityHashMap ignores object state and considers every instance distinct from
every other instance, it can contain entries that would be considered duplicates of one
another (and therefore discarded) in other Map implementations.

Since IdentityHashMap’s behavior is so different from other maps, it may be helpful to
provide one more example to illustrate an important point. Given the following code segment,
consider what you’d expect the output to be when it’s executed:

CHAPTER 4 ■ USING COLLECTIONS182

IdentityHashMap<Integer,Student> map = new IdentityHashMap<Integer,Student>();
Student s1 = new Student(12345, "John", "Smith");
map.put(s1.getStudentID(), s1);
map.put(s1.getStudentID(), s1);
for (Student s : map.values()) {

System.out.println(s.getStudentID() + " " + s.getFullName());
}

If you compile and execute this code, the results will be as follows:

12345 John Smith
12345 John Smith

These results may come as a surprise even to someone with an understanding of how
IdentityHashMap works, because at first glance it would appear that the map contains a dupli-
cate key. The map indeed contains two references to the same Student object, but in fact each
one has a distinct key value that references it. The student identifier is actually a primitive
value, and as you may recall from earlier in the chapter, Java’s autoboxing feature simply cre-
ates wrappers around primitive values when they’re specified. Therefore, the previous two
lines of code that add the Student to the map twice are functionally identical to the following:

map.put(new Integer (s1.getStudentID()), s1);
map.put(new Integer (s1.getStudentID()), s1);

As this illustrates, a separate object is being created for each key value, which explains
why the IdentityHashMap was able to hold what initially appeared to be duplicates even by its
own very restrictive definition.

WeakHashMap
WeakHashMap is another implementation of the Map interface that’s unique, and to fully under-
stand it, one needs to be aware of how Java’s garbage collection mechanism works, in particular
with respect to references to objects being maintained. Suffice it to say, though, it’s usually the
case that an object will not be garbage collected (the memory it uses reclaimed) as long as
there’s at least one reference to the object remaining. However, Java 2 introduced the concept
of a weak reference, which simply means a reference that by itself doesn’t prevent an object
from being garbage collected. An object can have both weak and “strong” (normal) references,
and as long as at least one strong reference exists, the referenced object can never be garbage
collected. Once an object has no references or has only weak references, it becomes eligible for
garbage collection.

Although all other map implementations in the java.util package use strong references,
instances of WeakHashMap use only weak references to their key values. What this means is that
at any given time, a particular key that was added to the map might effectively be removed,
but only if no strong references exist to that object. To illustrate this point, you can run the
following code:

WeakHashMap<Integer,Student> map = new WeakHashMap<Integer,Student>();
Student s1 = new Student(12345, "John", "Smith");

CHAPTER 4 ■ USING COLLECTIONS 183

Student s2 = new Student(24680, "Jane", "Smith");
Student s3 = new Student(13579, "Adam", "Smith");
Student s4 = new Student(67890, "Tom", "Jones");
map.put(s1.getStudentID(), s1);
map.put(s2.getStudentID(), s2);
map.put(s3.getStudentID(), s3);
map.put(s4.getStudentID(), s4);
System.out.println("The map initially contained " + map.size() + " entries");
System.gc();
System.out.println("The map now contains " + map.size() + " entries");

Although it’s not possible to predict for certain what the garbage collector will do (if any-
thing) when the System.gc() method is called, running the previous code may produce the
following results:

The map initially contained 4 entries
The map now contains 0 entries

What happened in this case is that the call to the System.gc() method prompted the
garbage collector to run. Since it found only weak references to the keys associated with the
four Student values, it removed them from the system and by extension from the WeakHashMap.

Understanding how WeakHashMap works also illustrates how it can be valuable. It allows
you to provide a caching mechanism for data without forcing you to explicitly remove items
from the cache to ensure that your application doesn’t run out of memory. Instead, items will
be removed automatically when they’re garbage collected.

ConcurrentHashMap
In most respects, the ConcurrentHashMap is identical to the Hashtable class: it doesn’t allow
duplicates or a null value for the key, its elements aren’t returned in a predictable order, and
it’s thread-safe. However, unlike Hashtable, the ConcurrentHashMap doesn’t implement thread
safety by using Java’s synchronization/locking abilities and therefore provides better perform-
ance than a Hashtable. In addition, ConcurrentHashMap allows you to optimize its performance
if you know in advance how many different threads will be updating its contents. You do this
by specifying the concurrency level parameter when constructing an instance of the class, but
you can’t change it after instantiation.

Unlike the other Map implementations you’ve examined, ConcurrentHashMap isn’t defined
in the java.util package but instead can be found in the java.util.concurrent package that
was added in Java 5. That package contains a variety of classes and interfaces that can be used
by multithreaded applications, including some other collection implementations discussed
later in this chapter.

Queue
This interface was added to the collection API in Java 5, and its implementations are used
to define various types of queues. Queues have a great deal in common with lists; in fact, the

CHAPTER 4 ■ USING COLLECTIONS184

LinkedList class I discussed earlier in the chapter implements both the List and Queue inter-
faces. In addition, a queue that provides LIFO behavior is usually known as a stack, and as
described earlier, the java.util package includes a Stack class that also implements the List
interface.

As its similarity to a List implies, implementations of the Queue interfaces maintain their
elements in a predictable order although the order can vary across implementations. For
example, with a LIFO queue, or stack, the first element in the collection (also known as the
head) is the one that was most recently added. In contrast, the head of a first-in, first-out
(FIFO) queue is the element that was added the earliest. Either type (LIFO or FIFO) can easily
be simulated with a linear collection such as an ArrayList or other List implementation, but
Java provides some helpful Queue implementations, as you’ll see later in the chapter.

Even though its behavior is similar to that of a List, the Queue interface defines methods
with names that are very different from those of the other collection interfaces and classes.
However, the number of methods defined in Queue is small, and Table 4-5 describes them.

Table 4-5. Queue Methods

Method Description

element() Returns a reference to the head element without removing it, throwing an
exception if the queue is empty.

peek() Returns a reference to the head element without removing it, returning null if
the queue is empty.

offer() Adds an element to the queue. Some implementations may reject the addi-
tion, in which case a value of false is returned.

remove() Retrieves a reference to the head element and removes it from the queue,
throwing an exception if the queue is empty.

poll() Retrieves a reference to the head element and removes it from the queue,
returning null if the queue is empty.

PriorityQueue
Even though it implements the Queue interface, a PriorityQueue is really more like a TreeSet or
a TreeMap in that its elements are ordered based upon their “priority,” which is really just either
their natural order or their sequence as determined by an instance of Comparator. In other
words, unlike most Queue implementations, the order of the elements in a PriorityQueue isn’t
affected by the order in which they were added but only by their priorities relative to one
another.

PriorityBlockingQueue
This class isn’t a subclass of PriorityQueue, but the two function in a similar manner, with one
important difference: as the name implies, this class represents a blocking queue. A blocking
queue is one that causes the calling thread to be blocked if the queue is empty, and the thread
will remain blocked until at least one element is added to the queue.

CHAPTER 4 ■ USING COLLECTIONS 185

As you saw in the earlier method descriptions, the typical behavior for a Queue imple-
mentation is to return a null value or throw an exception if an attempt is made to retrieve
an element when none exists in the queue. However, it’s common for applications to create
threads that simply wait for some type of event or information to be received and then take
some action based on that. This type of behavior is where blocking behavior is useful; a
thread can simply request the next element from the queue and will wait until one becomes
available. In effect, the thread acts as a consumer of the elements added to the queue, while
the thread or threads adding elements to the queue represent producers.

This class is defined in the concurrency (java.util.concurrent) package introduced in
Java 5 and is inherently thread-safe. That package defines interfaces and implementations of
those interfaces that represent functionality often needed by multithreaded applications.
Prior to Java 5, it was necessary for an application to include or create its own implementa-
tions of many different types of thread-related classes, but this package includes a robust set
of classes that an application can use directly.

ArrayBlockingQueue
This class represents a blocking queue that uses an array to maintain its elements, and those
elements are returned in FIFO manner. As its name implies, this queue is implemented
using an array, and it has an important difference from many of the other collection classes
you’ve examined. Specifically, you’re required to specify a capacity when creating an instance
of this class, and that capacity can never been exceeded. Attempting to add an element
to an ArrayBlockingQueue that’s already “full” (that is, it’s at capacity) will cause the thread
attempting to add the element to become blocked until an existing element is removed. This
class is defined in the concurrency (java.util.concurrent) package introduced in Java 5 and
is inherently thread-safe.

An example of when you might use this class is when threads are creating tasks that need
to be processed and all the tasks are considered to be of equal priority. In other words, you
want the first task added to the queue to be the first one that’s processed regardless of what
other tasks may be added afterward. In addition, since instances of this class have a fixed
capacity, this is an appropriate choice only when it’s acceptable for producer threads (those
adding elements to the queue) to be blocked without causing your application to function
incorrectly.

LinkedBlockingQueue
This is a blocking queue that uses a linked list to maintain its elements, which are returned in
FIFO order. Like ArrayBlockingQueue, this class can be used as a bounded queue, or one where
a fixed capacity is used and attempts to add elements beyond that capacity will cause the pro-
ducer thread to become blocked. What’s different with this class is that you aren’t required to
specify a capacity, and if you don’t do so, the instance is considered to be unbounded. In other
words, if you specify a capacity, then an instance of LinkedBlockingQueue behaves similarly to
an ArrayBlockingQueue. However, if you create an instance of LinkedBlockingQueue using one
of the constructors that doesn’t include a capacity argument, there will be no limit to the
number of elements that can be added to the queue.

This class is defined in the concurrency (java.util.concurrent) package introduced in
Java 5 and is inherently thread-safe. This class is a good choice when your application needs

CHAPTER 4 ■ USING COLLECTIONS186

a FIFO queue implementation that should block when retrieving an element but not when
adding elements.

ConcurrentLinkedQueue
ConcurrentLinkedQueue represents a queue that returns its elements in FIFO order but doesn’t
block. It’s defined in the concurrency (java.util.concurrent) package introduced in Java 5
and is inherently thread-safe; it’s a good choice for applications that need a thread-safe FIFO
queue that doesn’t block.

SynchronousQueue
This is a blocking queue that can’t contain any elements; instead, it blocks each request to add
an element to the queue until it receives a request to retrieve an element from the queue, and
vice versa. It’s defined in the concurrency (java.util.concurrent) package introduced in
Java 5 and is inherently thread-safe.

A typical use for this class is in an application that contains the type of producer and
consumer threads I’ve discussed before but that wants to block the producer until an ele-
ment it adds to the queue has been retrieved by the consumer. When you have this type of
producer/consumer relationship, it’s typically desirable for the producer to generate ele-
ments as quickly as it can and allow elements to simply wait until the consumer is able to
process them. In other cases, however, it’s more appropriate to ensure that there are no
“waiting” elements.

Given its behavior, SynchronousQueue doesn’t really represent what you’d intuitively
expect from a queue implementation but instead provides a way to facilitate the transfer of
an element from one thread to another.

DelayQueue
Only objects that implement the Delayed interface can be added to this queue, which orders
its elements based upon the amount of time remaining before they can be removed from the
queue. That time is identified by calling the getDelay() method of the Delayed interface. An
object can be retrieved from the queue only once it has expired (its remaining delay is 0) and,
if no expired objects exist, attempts to retrieve an object from the queue will fail. For example,
a call to the poll() method would return null.

This class is useful when you have a group of elements that are time sensitive. That is,
instead of being ordered by their priority/importance or by the order in which they were
added to the queue, a specific target time is associated with each element. An example of
where this might be useful is if you had a series of reminders to send to users and each one
was associated with a particular point in time, you could add those reminders to a DelayQueue
and create a consumer thread that retrieves each one from the queue once its target deadline
has been reached. This is an example of how you could implement this:

public class DelayedReminder implements Delayed {

private String reminderText;
private long delayInSeconds;

CHAPTER 4 ■ USING COLLECTIONS 187

public DelayedReminder(String reminder, long seconds) {
reminderText = reminder;
delayInSeconds = seconds;

}

public String getReminderText() {
return reminderText;

}

public long getDelay(TimeUnit timeUnit) {
return TimeUnit.SECONDS.convert(delayInSeconds, timeUnit);

}

public int compareTo(Delayed delayed) {
return (int)(delayInSeconds - delayed.getDelay(TimeUnit.SECONDS));

}

}

Given this implementation of the Delayed interface, you could use it in code like the
following to add time-sensitive reminders to a DelayQueue:

DelayQueue queue = new DelayQueue();
DelayedReminder reminder = new DelayedReminder("Wake me up in 60 seconds", 60);
queue.add(reminder);
reminder = new DelayedReminder("Wake me up in 30 seconds", 30);
queue.add(reminder);

In this example, the second element added to the queue would actually be returned first
because its delay expires prior to that of the first element.

Tips on Using Collections
Now that you’ve looked at the various collection classes and how they function, I can make
some generalizations about how to use them. For example, you should use a List when you
want to maintain a collection of objects that need to be referenced in a sequence or that will
be referenced based upon their position within the collection. A Map is useful when you want
to be able to quickly locate a particular object using a corresponding key, while a Set is helpful
when you simply want a collection of unique objects and need to be able to quickly establish
whether a given object is a member of that collection. Table 4-6 summarizes some of the col-
lection characteristics and indicates whether the specified characteristic is applicable to each
of the classes I’ve discussed.

CHAPTER 4 ■ USING COLLECTIONS188

Table 4-6. Collection Class Characteristics

Sequential Random Thread- Allows
Class Access? Access? Safe? Duplicates? Sorted?

ArrayList Yes Yes No Yes No

LinkedList Yes Yes No Yes No

Vector Yes Yes Yes Yes No

Stack Yes Yes Yes Yes No

HashSet No Yes No No No

LinkedHashSet No Yes No No No

TreeSet No Yes No No Yes

EnumSet No Yes No No No

HashMap No Yes No No No

LinkedHashMap No Yes No No No

TreeMap No Yes No No Yes

EnumMap No Yes No No No

IdentityHashMap No Yes No No No

WeakHashMap No Yes No No No

ConcurrentHashMap No Yes Yes No No

PriorityQueue Yes No Yes Yes Yes

PriorityBlockingQueue Yes No Yes Yes Yes

ArrayBlockingQueue Yes No Yes Yes No

LinkedBlockingQueue Yes No Yes Yes No

ConcurrentLinkedQueue Yes No Yes Yes No

SychronousQueue Yes No Yes Yes No

DelayQueue Yes No Yes Yes Yes

CHAPTER 4 ■ USING COLLECTIONS 189

Shallow vs. Deep Copies
Some of the collection classes provide a clone() method that the documentation says creates
a shallow copy of the collection. This means the object that’s created results in only a copy of
the collection itself and not the objects it contains. Instead, a collection is created with refer-
ences to the same objects that are contained within the collection that was cloned. This is an
important concept to understand, particularly if the objects in the collection have state that
can be changed. In that situation, a programmer might create a clone of a collection and
modify objects in the newly created collection without realizing that they were also modifying
the objects in the original collection. If you need to create a deep copy of a collection where
the collection and its elements are both copied, then you must implement the code yourself
that will make copies of the elements and store them in the new collection. To better under-
stand the implications of shallow vs. deep copies and how to implement each, you should
refer to Chapter 2.

Referencing an Interface Instead of an Implementation
When you create a new collection object, it’s necessary to explicitly identify the class for which
you want to create an instance. However, you can improve the maintainability of your code in
many cases by maintaining a reference to only the interface the class implements rather than
the class itself. For example, let’s suppose you’ve created this code:

HashSet<Student> students = new HashSet<Student>();
displayAllStudents(students);
.
.
.
private void displayAllStudents(HashSet<Student> students) {

for (Student s : students) {
System.out.println(s.getFullName());

}
}

If you reference an object using its class as shown here, your code is less maintainable
than it could be; to illustrate this point, let’s suppose you decide to change the HashSet to a
TreeSet so its elements will be sorted using their natural order. You’d now need to change not
only the line of code that creates the collection but also the places where that collection’s class
is explicitly referenced, which in this case includes the signature of the displayAllStudents()
method.

A better approach is to simply define the object as an instance of Set or even Collection
if possible, as follows:

Collection<Student> students = new HashSet<Student>();
displayAllStudents(students);
.
.
.
private void displayAllStudents(Collection<Student> students) {

for (Student s : students) {
System.out.println(s.getFullName());

}
}

Notice that with this new approach, changing the code to create and use a TreeSet would
require that the code be changed in only one place, since it’s simply treated as a Collection
when passed to the displayAllStudents() method. The effect can be even more significant in
a real-world application where you might have many references to a given collection object.
In this simplistic example, it was possible to treat the object as a Collection, but in practice,
you’ll often need one or more of the methods defined in the subinterface. When that’s the
case, it’s not usually better to use the more specific interface such as Set instead of the more
generic one (Collection); otherwise, you’re likely to be forced to simply cast the object to a
more specific type in many places.

CHAPTER 4 ■ USING COLLECTIONS190

Keep in mind that this guideline isn’t specific to collection objects but is applicable to
object-oriented programming in general. It’s always better to refer to a less specific type when
possible, but collections are one area where you’ll often have the opportunity to reference an
interface such as List instead of a specific implementation such as ArrayList, and doing so
makes your code more maintainable.

Summary
In this chapter, you’ve examined several important topics related to collections:

• Why they’re needed

• The history of Java’s collection API

• How the List, Set, and Map interfaces and their implementations work

• Some general guidelines for using collection objects

CHAPTER 4 ■ USING COLLECTIONS 191

Using Layout Managers

In Java, you can use the java.awt.Container class and its subclasses to display groups of
components. For example, you might use a JPanel to display a related set of buttons or
add components to a JFrame. Layout managers are classes that control the size and location
of each component that’s added to a container, and in most cases a layout manager is
also responsible for determining the sizes returned from the container’s getMinimumSize(),
getPreferredSize(), and getMaximumSize() methods. Layout managers are important because
they simplify the task of positioning and sizing components and because they allow you to
create flexible user interfaces.

Java provides a number of layout managers that you should be familiar with, and each
one has advantages and disadvantages. Some are easy to use but provide limited flexibility,
and others are flexible but also much more difficult to use. When none of the layout managers
provided with Java suits your needs, you can easily create your own, but it’s not often neces-
sary to do so if you’re familiar with those already available.

Layout Managers and GUI Construction
To assign a layout manager to a container, you must create an instance of the manager and
pass it to the setLayout() method defined in Container. For example, the following code pro-
vides an example of how to create an instance of BorderLayout and assign it to a JPanel:

JPanel panel = new JPanel();
panel.setLayout(new BorderLayout());

You can use the overloaded add() method defined in Container to add a Component to a
container, which then becomes known as the component’s parent container. Similarly, the
component added is referred to as a child component of the container.

Although Container defines a number of different implementations of add(), the follow-
ing are the two used most often:

• add(Component comp)

• add(Component comp, Object constraints)

In both cases, a reference to the child component is sent to the Container. However, the
second implementation also includes a constraints parameter that provides information
normally used by the layout manager to determine where the component should be placed

193

C H A P T E R 5

■ ■ ■

CHAPTER 5 ■ USING LAYOUT MANAGERS194

and/or what its size should be. The specific subclass of Object used for this parameter depends
upon what type of layout manager is involved. For example, if you’re using a GridBagLayout, the
constraints parameter must be an instance of the java.awt.GridBagConstraints class; other
layout managers require you to pass a String value.

Some layout managers don’t support constraints and instead use the order in which com-
ponents are added to their parent container to determine their positions. When you’re using
a layout manager that doesn’t accept constraints, you should use the simpler add() method
shown previously that takes only a single Component parameter. Doing so is equivalent to pass-
ing a null value for the constraint parameter, which means the following two lines of code are
functionally identical to one another:

myContainer.add(someComponent);
myContainer.add(someComponent, null);

On the other hand, using code like this with a layout manager that does support con-
straints will cause the layout manager to assign some default constraint information to the
component. Therefore, unless you’re certain that the default information will produce the
results you want, you should always explicitly specify a constraints parameter when using a
layout manager that supports constraints.

When add() is called, the container adds the component to a list that it maintains and
calls the layout manager’s addLayoutComponent() method. That method is passed references to
the component being added and to the constraints object specified, and this allows the layout
manager to save the constraint information and associate it with the component for later use.

When a layout manager’s layoutContainer() method is called, it’s passed a reference to
the container for which components should be arranged. The layout manager obtains the list
of child components by calling the container’s getComponents() method and sets the size and
location for each visible child using Component methods such as setSize(), setLocation(), and
setBounds(). If the layout manager supports constraints, it will use them to determine each
component’s size and location, but if it doesn’t, it will arrange the components based on the
order in which they occurred in the list returned by getComponents().

To determine what a component’s size should be, the layout manager usually also consid-
ers the container’s size and may call each component’s getPreferredSize(), getMinimumSize(),
or getMaximumSize() methods. However, the layout manager isn’t required to respect the values
returned by those methods, and in some cases, Java’s layout managers ignore them.

Each container has inset values that indicate the number of pixels around the container’s
edges that are reserved and can’t be used to display child components. Those values are encap-
sulated by an instance of java.awt.Insets, which defines four int values, each corresponding
to one side of the container: top, left, bottom, and right. Those values usually describe the
width of the border on the sides of the container, but in some cases, additional space may be
reserved. For example, JDialog and JFrame both include a title bar along their top edges; you
can reserve that space by setting the top inset value appropriately.

When a layout manager calculates the amount of space available in a container, it sub-
tracts the container’s left and right insets from its width and subtracts the top and bottom
insets from the height. In addition, when the layout manager arranges the child components,
it positions them inside the container’s inset area so that none of the components overlays the
reserved portion of space around the container’s edges.

It’s possible to create your own layout manager class, and this chapter describes how to do
so, but the Java core classes include a number of layout managers that are flexible enough to
meet the needs of most applications. The following list identifies the layout manager classes
that are provided with Java; the classes are listed in what’s arguably their order of complexity
starting with the least complex and ending with the most complicated one:

• CardLayout

• FlowLayout

• GridLayout

• BorderLayout

• GridBagLayout

• BoxLayout

When you create an instance of a Container subclass that’s provided with Java (for exam-
ple, JPanel, JFrame, JDialog, and so on), that object will automatically be assigned a layout
manager. Table 5-1 lists some of the classes you might use and also identifies the default
layout manager type for each one.

Table 5-1. Layout Managers Used by Default for Various Component Subclasses

Component Default Layout Manager

JPanel FlowLayout

JFrame (content pane) BorderLayout

JDialog (content pane) BorderLayout

JApplet (content pane) BorderLayout

Box BoxLayout

This chapter examines the capabilities of the layout managers that are provided with Java
and specifically examines the following characteristics of each one:

• How a layout manager instance is constructed

• The constraints that can be specified when adding a child component

• How each child component’s size is calculated

• How each child component’s position is calculated

• What happens when the container has more or less space than it needs to display its
child components

• How the values returned by a container’s getMinimumSize(), getPreferredSize(), and
getMaximumSize() methods are calculated by the layout manager

CHAPTER 5 ■ USING LAYOUT MANAGERS 195

CardLayout
CardLayout allows you to add multiple components to a container, and each component is
added and displayed in the same location. However, only one of the components is visible at
any given time, and you can specify which one that should be by calling the first(), last(),
next(), and previous() methods defined in CardLayout. Those methods refer to the compo-
nents added to the container, and they display the component that was added in the order
corresponding to the method name. For example, first() causes the component added first to
appear, last() causes the most recently added one to appear, and next() and previous() allow
you to iterate through the components in a forward or backward direction. In addition, the
show() method allows you to specify that a particular component should be displayed, regard-
less of the order in which it was added to the container relative to the other components.

The CardLayout class is arguably the least useful of the layout managers included with
Java. Prior to the introduction of Swing, CardLayout was envisioned as a way to create a tabbed
user interface, but the JTabbedPane provides a much better mechanism for doing so. However,
CardLayout may still be useful in some cases, such as when constructing a Windows-style
“wizard” interface that displays a series of panels one at a time.

Constructing a CardLayout
You can specify horizontal and vertical gap values when you create a new instance of
CardLayout, and these gaps will be placed around the edges of the component displayed in
the container. Specifically, the horizontal gap appears on the left and right sides of the com-
ponent, and the vertical gap appears at the top and bottom of the component to separate it
from the edge of the container. Listing 5-1 shows a simple example of how to use CardLayout.

Listing 5-1. Simple CardLayout Test

import java.awt.*;
import javax.swing.*;

public class CardTest extends JFrame {

protected CardLayout layout;

public static void main(String[] args) {
CardTest ct = new CardTest();
ct.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
ct.displayTab("Green Tab");
ct.setSize(400, 300);
ct.setVisible(true);

}

public CardTest() {
JPanel tab;
Container pane = getContentPane();

CHAPTER 5 ■ USING LAYOUT MANAGERS196

layout = new CardLayout();
pane.setLayout(layout);
tab = new JPanel();
tab.setBackground(Color.red);
pane.add(tab, "Red Tab");
tab = new JPanel();
tab.setBackground(Color.green);
pane.add(tab, "Green Tab");
tab = new JPanel();
tab.setBackground(Color.blue);
pane.add(tab, "Blue Tab");

}

public void displayTab(String name) {
layout.show(this.getContentPane(), name);

}

}

Child Component Sizes
Only a single child component is ever visible when a CardLayout is used, and that compo-
nent’s size is set to the container’s available display area. The available display area is defined
as the container’s dimensions minus its insets and any horizontal and vertical gaps that
should be placed around the edges of the child components.

Child Component Locations
The single visible child component always fills the entire available display area of the parent
container, so its location is implicitly defined to be the upper-left corner of the parent.

Resizing Behavior
The size of the component displayed is set to the container’s available display area. If the con-
tainer’s size increases or decreases, a corresponding change occurs to the size of the displayed
component.

Container Size
CardLayout identifies the preferred size of its container as the largest preferred width and
largest preferred height of any child component. Similarly, the minimum size is equal to the
largest minimum width and height values returned by any of the container’s child compo-
nents. The maximum size is effectively set to infinity, since CardLayout’s maximumLayoutSize()
method returns Integer.MAX_VALUE for both the maximum width and maximum height, where
Integer.MAX_VALUE is a constant that represents the largest possible integer (in other words,
int or Integer) value.

CHAPTER 5 ■ USING LAYOUT MANAGERS 197

FlowLayout
FlowLayout arranges the components in rows from left-to-right and top-to-bottom order
based on the order in which they were added to the container, allowing each component to
occupy as much or as little space as it needs. This layout manager is useful when you want to
create a collection of adjacent components that are all allowed to be displayed using their
default sizes.

Constructing a FlowLayout
When creating a new FlowLayout instance, you can specify the alignment that should be used
when positioning the child components. The alignment value should correspond to one of the
constants defined in FlowLayout; specifically, this is LEFT, CENTER, or RIGHT. As mentioned pre-
viously, FlowLayout arranges components in rows, and the alignment specifies the alignment
of the rows. For example, if you create a FlowLayout that’s left aligned, the components in each
row will appear next to the left edge of the container.

The FlowLayout constructors allow you to specify the horizontal and vertical gaps that
should appear between components, and if you use a constructor that doesn’t accept these
values, they both default to 5. Note that unlike the gaps used by some other layout managers,
the gaps generated by a FlowLayout appear not only between adjacent components but also
between components and the edge of the container.

To construct a FlowLayout that’s right aligned and uses a horizontal gap of 10 pixels and
vertical gap of 5 pixels between components, you can use the following code:

FlowLayout fl = new FlowLayout(FlowLayout.RIGHT, 10, 5);

Constraints
FlowLayout doesn’t use any constraints to determine a component’s location or size, and you
should use the simple add(Component) method when adding components to a FlowLayout-
managed container.

Child Component Sizes
Components managed by a FlowLayout are always set to their preferred size (both width and
height), regardless of the size of the parent container.

Child Component Locations
Components added to a FlowLayout-managed container are displayed in rows in left-to-right
and top-to-bottom order based on when each component was added to the container relative
to the others. For example, the first component appears at the top of the container to the left
of other components in the row.

A component’s specific location depends upon three factors: the alignment value used by
the FlowLayout, the size of the component, and the size of the other components that were
added to the layout before it. A FlowLayout instance includes as many components as it can
on each row until the width of the row would exceed the size of the container. In Figure 5-1,
five components have been added to a container that uses a FlowLayout.

CHAPTER 5 ■ USING LAYOUT MANAGERS198

Figure 5-1. An example of the default left alignment used by FlowLayout

Listing 5-2 shows the code you can use to create this display.

Listing 5-2. FlowLayout Behavior

import java.awt.*;
import javax.swing.*;

public class FlowTest extends JFrame {

public static void main(String[] args) {
FlowTest ft = new FlowTest();
ft.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
ft.setSize(400, 300);
ft.setVisible(true);

}

public FlowTest() {
super();
Container pane = getContentPane();
pane.setLayout(new FlowLayout(FlowLayout.LEFT));
pane.add(new JLabel("This is a test"));
pane.add(new JButton("of a FlowLayout"));
pane.add(new JTextField(30));
pane.add(new JTextArea("This is a JTextArea", 3, 10));
pane.add(new JLabel("This is a FlowLayout test with a long string"));

}

}

In this case, the container is sufficiently wide to allow the first two components to be
placed on the first row. However, the third component appears on the next row by itself, and
the fourth and fifth components appear together on another row. The first row appears at the
top of the container, and each subsequent row occurs immediately below the previous one,

CHAPTER 5 ■ USING LAYOUT MANAGERS 199

with the height of a row determined by the height of the tallest component in that row. Each
component within a row is centered vertically within the row, as shown in Figure 5-1.

A component’s horizontal position within a row is determined partly by when it was
added to the container and is affected by the alignment value used by the FlowLayout
instance. In Figure 5-1, the components are left aligned, but in Figure 5-2 and Figure 5-3 you
can see the displays that are generated when the components are right aligned and center
aligned, respectively.

Figure 5-2. An example of how components appear when right aligned with FlowLayout

Figure 5-3. An example of how components appear when center aligned with FlowLayout

Resizing Behavior
Reducing the width of a container managed by a FlowLayout causes the rows to shrink in size,
which may cause some components to be moved to a new or different row. If you reduce the
width of the frame further, then portions of the wider components begin to disappear, as
shown in Figure 5-4.

CHAPTER 5 ■ USING LAYOUT MANAGERS200

Figure 5-4. FlowLayout uses components’ preferred widths even when there isn’t enough
horizontal room to display the entire component.

Similarly, if you reduce the frame’s vertical size so that there’s not enough vertical space
to display all rows, some of the components will become partially or completely inaccessible
(see Figure 5-5).

Figure 5-5. FlowLayout uses components’ preferred heights even when there isn’t enough room to
display the entire component.

Container Size
When calculating the preferred and minimum size values for a container, FlowLayout can’t
make any assumptions about the width of the container or about how many rows of compo-
nents should be created. Instead, the size values are calculated so the container will be wide
enough to contain all child components in a single row. For example, the preferred width
value returned by a FlowLayout is determined by adding three values:

• The left and right inset values of the container

• The amount of space needed to provide horizontal gaps

• The sum of all child components’ preferred widths

In other words, a FlowLayout’s preferred width is the amount of horizontal space needed
to display all its child components from end to end on a single row using their preferred sizes.

CHAPTER 5 ■ USING LAYOUT MANAGERS 201

To determine the container’s preferred height, FlowLayout first identifies the preferred
height of the tallest component in the container. The container’s preferred height is then cal-
culated as the sum of the largest component height, the number of pixels needed to provide
vertical gaps at the top and bottom edges of the container, and the container’s top and bottom
inset values.

The value returned for a container’s minimum size by a FlowLayout is calculated in essen-
tially the same way as the preferred size but by using the minimum sizes of the components in
the container instead of their preferred sizes.

GridLayout
The GridLayout layout manager divides the available space into a grid of cells, evenly allocat-
ing the space among all the cells in the grid and placing one component in each cell. For
example, in Listing 5-3, four buttons are added to a container that uses a GridLayout.

Listing 5-3. Sample GridLayout Application

import java.awt.*;
import javax.swing.*;

public class GridSizeTest extends JFrame {

public static void main(String[] args) {
GridSizeTest gst = new GridSizeTest();
gst.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
gst.pack();
gst.setVisible(true);

}

public GridSizeTest() {
Container pane = getContentPane();
pane.setLayout(new GridLayout(2, 2));
JButton button = new JButton("First");
pane.add(button);
button = new JButton("Second with a very long name");
pane.add(button);
button = new JButton("Hi");
button.setFont(new Font("Courier", Font.PLAIN, 36));
pane.add(button);
button = new JButton("There");
pane.add(button);

}

}

When this code is compiled and executed, it produces a display like the one shown in
Figure 5-6. Notice that all the buttons are allocated the same amount of space, even though one
button’s label is wider than the others and another has a label that’s much taller than the rest.

CHAPTER 5 ■ USING LAYOUT MANAGERS202

Figure 5-6. GridLayout distributes both horizontal and vertical space evenly to the components
regardless of their preferred sizes.

As this example illustrates, GridLayout is useful when some rectangular portion of your
interface contains adjacent components that should all be assigned the same size and when
the amount of space between those components is consistent. For instance, you might use a
GridLayout to create a panel that contains a row of buttons that are all the same size and that
have the same amount of space between one another.

Constructing a GridLayout
When you create an instance of GridLayout, you normally will specify the number of rows
and columns that you want it to provide, and you may choose to specify the amount of hori-
zontal and vertical space that should appear between adjacent components. However, you
can choose to set any of these values after construction using the setRows(), setColumns(),
setHgap(), and setVgap() methods. Listing 5-4 shows an example of creating a GridLayout
and assigning it to a container. This application parses the command-line parameters to
determine how many rows and columns should be available, creates 20 JButton instances,
and adds each button to the container.

Listing 5-4. Creating Rows of Buttons

import java.awt.*;
import javax.swing.*;

public class GridTest extends JFrame {

public static void main(String[] args) {
if (args.length < 2) {
System.out.println("You must enter a row count and a column count");
return;

}
int rows = Integer.parseInt(args[0]);
int cols = Integer.parseInt(args[1]);
GridTest gt = new GridTest(rows, cols);
gt.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
gt.pack();
gt.setVisible(true);

}

public GridTest(int rows, int cols) {

CHAPTER 5 ■ USING LAYOUT MANAGERS 203

Container pane = getContentPane();
pane.setLayout(new GridLayout(rows, cols));
for (int i = 0; i < 20; i++) {
JButton button = new JButton(Integer.toString(i + 1));
pane.add(button);

}
}

}

When you create a GridLayout, you can specify a value of 0 for either the row count or the
column count, but not both. If you set the number of rows to 0, GridLayout creates as many
rows as it needs to display all the components using the specified number of columns. For
example, Figure 5-7 illustrates what will be displayed when 0 is specified for the number of
rows and 3 for the number of columns.

Figure 5-7. You can force GridLayout to use a specific number of columns by specifying a column
count but no row count.

Similarly, if you set the number of columns to 0, the layout manager creates as many
columns as it needs to display the child components using the specified number of rows.
In Figure 5-8, the column count was set to 0 and the row count to 3.

Figure 5-8. You can force GridLayout to use a specific number of rows by specifying a row count
but no column count.

It’s important to understand that the row and column counts you specify are considered
suggestions, and the GridLayout may not actually create the number you request. In most
cases it will, but some exceptions exist. For example, if you specify a nonzero value for both
the row and column count, the column count is effectively ignored, and the layout manager
creates as many columns as it needs using the requested number of rows. In other words,

CHAPTER 5 ■ USING LAYOUT MANAGERS204

specifying both a row and column count produces the same result as specifying 0 for the col-
umn count.

If you specify a value of 3 for the number of rows and 100 for the number of columns using
the GridTest class, the result is the same as shown in Figure 5-8 for zero columns and three
rows. This behavior might seem undesirable, but it happens this way for a reason. Specifically,
it allows the layout manager to handle cases where the number of components in the container
is greater than the product of the row count by the column count. For example, if you specify
a row count of 2 and a column count of 2 but then proceed to add six components to the con-
tainer, GridLayout simply adds another column to the grid so it can display all six components.

As you can see, the number of rows and columns created by a GridLayout isn’t necessarily
equal to the number you request. In fact, the number actually created is calculated with a
simple formula that uses the number of child components in the container (which I’ll call
childComponentCount), the requested number of rows (requestedRows), and the requested
number of columns (requestedColumns). If the requested number of rows is nonzero, the
GridLayout determines the number of rows and columns using the following equations:

actualRows = requestedRows
actualColumns = (childComponentCount + requestedRows - 1) / requestedRows

Note that this formula can lead to a situation where more rows are created than are needed
to display all the components. When that happens, an empty space will appear at the bottom
of the container that represents the unused rows. Since that’s not usually the desired behavior,
you should be aware of this possibility when deciding how many rows to request when creating
a GridLayout. On the other hand, if the requested number of rows (requestedRows) is zero, then
GridLayout uses the following equations instead of the ones shown previously:

actualColumns = requestedColumns
actualRows = (childComponentCount + requestedColumns - 1) / requestedColumns

In most cases, these equations result in the GridLayout creating the number of rows and
columns you specified, but as you’ve seen, that’s not always the case.

Constraints
GridLayout doesn’t use any constraints to determine a component’s location or size, and you
should use the add(Component) method when adding components to a GridLayout-managed
container.

Child Component Sizes
Each cell in a GridLayout is assigned the same width and height, and each child component is
compressed or stretched to fill a single cell. The specific height and width values for the cells
are determined by calculating the available display area and dividing the width by the actual
column count and the height by the actual row count. The available display area is defined as
the dimensions of the container minus its insets and any space needed for the horizontal and
vertical component gaps, as shown in the following equations:

availableWidth = totalWidth - leftInset -
rightInset - ((actualColumns - 1) * horizontalGap)

componentWidth = availableWidth / actualColumns

CHAPTER 5 ■ USING LAYOUT MANAGERS 205

For example, if a component has a width of 400, has right and left insets of 5, has a hori-
zontal gap value of 10 between the components in a row, and contains four columns, the
width of each component will be the following:

availableWidth = 400 - 5 - 5 - ((4 - 1) * 10) = 400 - 10 - 30 = 360
componentWidth = 360 / 4 = 90 pixels

In this case, every component in the container will be 90 pixels wide, and a similar equa-
tion calculates the components’ heights. Note that GridLayout doesn’t respect the values
returned by a component’s getMinimumSize() and getMaximumSize() methods. In other words,
a GridLayout may cause a component to be smaller than its “minimum” size or larger than its
“maximum” size. You can see an example of this behavior by running the GridTest application
defined earlier and resizing the frame that contains the buttons. As the frame’s dimensions
change, the button sizes will be increased or decreased to fill the available display area.

Child Component Locations
GridLayout divides the container into a grid using the actual number of rows and columns that
it calculates is needed. As components are added to the container, they’re placed in the grid
from left to right and from top to bottom based on when they were added to the container rela-
tive to one another. For example, the first component added to the container appears in the
upper-left corner of the screen, and the second one appears to the right of the first (if the grid
provides at least two columns). That continues until an entire row in the grid has been filled.
After that, adding another component will cause it to appear on the second row in the first col-
umn, the next one appears in the second row and second column, and so on.

Resizing Behavior
Since GridLayout forces all child components to fit within the container’s display area, the
component sizes may become very small if the container is allocated less space than it
requests through its getPreferredSize() method. For example, Figure 5-9 illustrates what
happens when the GridTest application runs and its window’s height is reduced. In this case,
the button labels have become vertically very small and are almost unreadable, illustrating the
point made earlier that GridLayout doesn’t respect a component’s minimum size.

Figure 5-9. GridLayout will shrink components if necessary to make them fit within the
available space.

Similarly, if a GridLayout-managed container is made larger than its requested size, the
components within the container will be made sufficiently large to fill the container, regard-
less of their maximum size.

CHAPTER 5 ■ USING LAYOUT MANAGERS206

Container Size
GridLayout calculates the size of its associated container by examining the dimensions of
each child component within the container and recording the largest width and height val-
ues it finds. For example, when a GridLayout is asked for the container’s preferred size, it calls
getPreferredSize() for each child component and records the largest preferred height value
returned by a component. That maximum preferred component height is then multiplied by
the number of rows to be displayed and added to the container’s top and bottom insets,
along with the number of pixels needed to provide the vertical spacing between component
rows. A similar calculation occurs for the container’s width, as follows:

containerHeight = (largestComponentHeight * actualRows) +
((actualRows - 1) * verticalGap) +
(containerTopInset + containerBottomInset)

containerWidth = (largestComponentWidth * actualColumns) +
((actualColumns - 1) * horizontalGap) +
(containerLeftInset + containerRightInset)

The same equation calculates a container’s minimum size, but the largestComponentWidth
and largestComponentHeight values are obtained by calling getMinimumSize() instead of
getPreferredSize().

BorderLayout
BorderLayout divides the container into five areas, and you can add a component to each area.
The five regions correspond to the top, left, bottom, and right sides of the container, along
with one in the center, as illustrated in Figure 5-10.

Figure 5-10. BorderLayout divides the container into five areas: center, top (“north”), left (“west”),
right (“east”), and bottom (“south”).

CHAPTER 5 ■ USING LAYOUT MANAGERS 207

Listing 5-5 shows the code that produced this display. As the code and the button labels
illustrate, each of the five areas is associated with a constant value defined in BorderLayout:
NORTH, SOUTH, EAST, WEST, and CENTER for the top, bottom, right, left, and center regions,
respectively.

Listing 5-5. A BorderLayout Example

import java.awt.*;
import javax.swing.*;
import javax.swing.border.BevelBorder;

public class BorderSample extends JFrame {

public static void main(String[] args) {
BorderSample bs = new BorderSample();
bs.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container pane = bs.getContentPane();
pane.setLayout(new BorderLayout());
Font f = new Font("Courier", Font.BOLD, 36);
JLabel label = new JLabel("North", JLabel.CENTER);
label.setFont(f);
label.setBorder(BorderFactory.createBevelBorder(BevelBorder.RAISED));
pane.add(label, BorderLayout.NORTH);
label = new JLabel("South", JLabel.CENTER);
label.setFont(f);
label.setBorder(BorderFactory.createBevelBorder(BevelBorder.RAISED));
pane.add(label, BorderLayout.SOUTH);
label = new JLabel("East", JLabel.CENTER);
label.setFont(f);
label.setBorder(BorderFactory.createBevelBorder(BevelBorder.RAISED));
pane.add(label, BorderLayout.EAST);
label = new JLabel("West", JLabel.CENTER);
label.setFont(f);
label.setBorder(BorderFactory.createBevelBorder(BevelBorder.RAISED));
pane.add(label, BorderLayout.WEST);
label = new JLabel("Center", JLabel.CENTER);
label.setFont(f);
label.setBorder(BorderFactory.createBevelBorder(BevelBorder.RAISED));
pane.add(label, BorderLayout.CENTER);
bs.setSize(400, 300);
bs.setVisible(true);

}

}

CHAPTER 5 ■ USING LAYOUT MANAGERS208

Note that although five regions are available within a BorderLayout, it’s not necessary to
add a component to each one. Leaving an area empty doesn’t affect the BorderLayout’s behav-
ior, but it may result in the CENTER component being made larger than it would have been
otherwise.

Constructing a BorderLayout
The only parameters you’re allowed to pass to a BorderLayout constructor are the horizontal
and vertical gaps used to separate adjacent components. The vertical gap is inserted below
the NORTH component and above the SOUTH component, and the horizontal gap appears to the
right of the WEST component and to the left of the EAST component. If you use the constructor
that doesn’t accept any parameters, no gaps are inserted.

Constraints
When adding a component to a container that’s using a BorderLayout, you should supply a
constraint that identifies which area should contain the component. The constraint should
be a reference to one of five constants defined in BorderLayout: NORTH, SOUTH, EAST, WEST, or
CENTER. The following code is an example of adding a component to a container that uses a
BorderLayout, where a JLabel instance is added to the NORTH (top) area of the container:

myContainer.add(new JLabel("Hello"), BorderLayout.NORTH);

You can use the simpler form of add() that accepts only a single Component parameter with
no constraints, in which case the component will be added as if you had specified the CENTER
area. However, since this form of add() doesn’t explicitly identify which area the component is
added to and may be confusing to someone reading your code, you should explicitly specify
CENTER instead.

The last component you add to a region is the only one that will be displayed, so if you
add a component and specify an area that’s already occupied, the component that was previ-
ously added will not appear. However, you’ll normally add a single component to a particular
region, so you’ll usually only encounter this behavior with code that was written incorrectly.

Child Component Sizes
The size assigned to a child component by BorderLayout depends upon a number of factors,
including the following: the component’s preferred size, the region of the container in which
the component is displayed, the preferred size of the other components within the container,
and the size of the container:

• North component: The component displayed in the NORTH area is assigned a height
equal to its preferred height and a width equal to the available width of the container.
The available width is defined as the container’s total width minus its right and left
inset values.

• South component: Like the NORTH component, the component displayed in the SOUTH
area is assigned a height equal to its preferred height and a width equal to the available
width of the container.

CHAPTER 5 ■ USING LAYOUT MANAGERS 209

• East component: The component displayed in the EAST area is assigned a width equal
to its preferred width and a height equal to the available height of the container minus
the vertical space occupied by the NORTH and SOUTH components. The available height of
the container is defined as the container’s total height minus its top and bottom inset
values.

• West component: Like the EAST component, the component displayed in the WEST area
is assigned a width equal to its preferred width. Its height is set to the available height of
the container minus the vertical space occupied by the NORTH and SOUTH components.

• Center component: The CENTER component is allocated any space that’s left over inside
the container after the other four components have been allocated space as described
previously. As a result, the CENTER component shrinks and expands to fill the remaining
area, so its size depends upon the size of the container and how much of that space is
taken up by the other components in the container.

Child Component Locations
The location of each child component managed by BorderLayout is explicitly identified when
it’s added to the container. That is, the NORTH component appears at the top of the container,
the SOUTH component at the bottom, the EAST component on the right, and the WEST compo-
nent on the left. The CENTER component occupies any remaining area in the center of the
container.

Resizing Behavior
When BorderLayout manages a container’s components, reducing the container’s vertical size
causes the EAST, CENTER, and WEST components to become “shorter” (smaller vertically) until
there’s only enough vertical space to display the NORTH and SOUTH components. Reducing the
container’s height so that it’s smaller than the combined height of the NORTH and SOUTH compo-
nents (which are always displayed using their preferred height values) causes those two
components to overlap one another, as shown in Figure 5-11.

Figure 5-11. BorderLayout vertically resizes the NORTH and SOUTH components as the container
height changes.

Reducing the width of a container managed by a BorderLayout initially causes the widths
of the NORTH, CENTER, and SOUTH components to become smaller until the CENTER component
eventually disappears completely. At that point, reducing the container’s width further causes
the EAST and WEST components to overlap, as shown in Figure 5-12.

CHAPTER 5 ■ USING LAYOUT MANAGERS210

Figure 5-12. BorderLayout horizontally resizes the EAST and WEST components as the container
height changes.

Increasing the size of a BorderLayout-managed container causes the CENTER component
to become larger and can increase the widths of the NORTH and SOUTH components and the
heights of the EAST and WEST components.

Container Size
The minimum size defined for a container managed by a BorderLayout is calculated by call-
ing the getMinimumSize() method for all components in the container. The minimum widths
of the WEST, CENTER, and EAST components are added together (if they’re present) along with
the value needed to create a horizontal gap, and that sum is treated as a single value. The
value is then compared to the minimum width of the NORTH component and the minimum
width of the SOUTH component, and the largest value of the three is chosen as the container’s
minimum width. The minimum height of the container is selected using a similar approach,
but the sequence of steps is slightly different. The minimum heights of the WEST, CENTER, and
EAST components are compared, and the largest of those three values is selected. That value
is then added to the minimum height of the NORTH and SOUTH components along with the
space needed for vertical gaps, and that value is used as the container’s minimum height.

The preferred size of a BorderLayout-managed container is calculated using the same
approach described previously, except that the getPreferredSize() method is called for each
component instead of getMinimumSize().

GridBagLayout
GridBagLayout is by far the most flexible layout manager that’s included with Java, but it
doesn’t enjoy widespread popularity among Java programmers because of its complexity and
its sometimes nonintuitive behavior. However, GridBagLayout is often the only layout man-
ager flexible enough to arrange components in a particular manner and is used frequently in
spite of the difficulty involved.

CHAPTER 5 ■ USING LAYOUT MANAGERS 211

As its name implies, GridBagLayout bears some similarity to GridLayout but only at a
superficial level. Both divide the container’s available display area into a grid of cells, but
beyond that, GridBagLayout and GridLayout don’t have much in common. Some of the impor-
tant differences between them include the following:

• When using a GridLayout, a component’s position within the grid is determined by
the order in which it’s added to the container relative to other components. With a
GridBagLayout, you can explicitly define the component’s location within the grid.

• Each component in a GridLayout occupies exactly one cell in the grid, but components
managed by a GridBagLayout can span multiple rows and/or columns within the grid.

• GridLayout assigns each row the same height and each column the same width, which
causes every cell in the grid to have the same dimensions. In contrast, GridBagLayout
allows each row to have a separate height and every column its own width, so every cell
in the grid can theoretically have a unique size.

• GridLayout doesn’t support any constraints, while GridBagLayout allows you to specify
a different set of constraint values for each component; those constraints allow you to
customize the component’s size and position within the grid.

If you’re not already familiar with it, you may be wondering why GridBagLayout is consid-
ered so difficult to use by many Java programmers. Some of the possible reasons are as
follows:

• The number of constraints and their interactions: GridBagConstraints encapsulates
eleven constraint values, and each child component is assigned its own instance of
GridBagConstraints. Although no single constraint is particularly difficult to under-
stand, the way in which the constraints interact with one another and with the
constraints of other components is somewhat complex.

• Row height and column width: GridBagLayout’s ability to provide a separate height
for each row and width for each column is one of its primary advantages, but that
capability also adds a great deal of complexity to its use. In some cases, especially with
complex layouts containing many components, it can be difficult to predict what a
component’s size or position will be, and it’s easy to make mistakes that produce results
that are different from what you expected.

• Component location: When you see a component inside a GridLayout, it’s usually easy
to identify which cell the component occupies without examining the source code.
That’s because all cells (and components) are the same size and because the cells are
aligned with one another. In the case of a GridBagLayout, identifying which cell or cells
a component occupies can be difficult, since cell widths and heights can vary and
since a component can span multiple cells.

• Component size: Most other layout managers have simple rules that determine the size
that a component is set to, but GridBagLayout provides much greater flexibility in this
area, as well as more complexity.

CHAPTER 5 ■ USING LAYOUT MANAGERS212

Figure 5-13 provides a simple example of the type of problem that can be difficult to
diagnose when using GridBagLayout. In this case, a frame was created, and a JLabel and a
JTextField were added to it. However, a large gap exists between the label and text field, and
since JLabel instances are transparent by default, there’s no indication of whether the gap is
because of the label’s size or exists for some other reason. Most of the time, a component
includes a border that’s drawn around its edges, and that border provides you with an easy
way to estimate the component’s size. However, some frequently used components such as
JLabel and JPanel don’t include a border by default, and it can be more difficult to determine
their sizes visually.

Figure 5-13. Even if you’re familiar with GridBagLayout, it’s not always obvious why it doesn’t
produce the expected results.

When you’re designing a user interface using a GridBagLayout, this type of problem can
cause a great deal of frustration. However, you can modify your code in some simple ways so
it provides you with visual feedback on the size of your components and/or the cells that they
occupy. For example, when working with a JLabel or JPanel, it can be helpful to temporarily
add a border or set the component’s background color so you can easily identify its edges. The
following code sets the background color for the JLabel used in the previous example, and
Figure 5-14 shows how this is reflected in the interface:

label.setBackground(Color.pink);
label.setOpaque(true);

Figure 5-14. Temporarily changing a component’s background color is one way to determine
what portion of a panel GridBagLayout has allocated to it.

CHAPTER 5 ■ USING LAYOUT MANAGERS 213

In this case, the color was set to green, but you can use any color that contrasts with
the background color of the parent container. Note also that it was necessary to call the
setOpaque() method, since a JLabel normally has a transparent background. Although
setting the label’s background color did establish that the label itself doesn’t occupy the space
between its text and the JTextField, it’s still not clear why such a large gap appears between
the two components.

Another way to provide helpful visual information is to create a JPanel subclass that
overrides the paintComponent() method and uses information provided by GridBagLayout to
draw the borders of each cell within the grid. The getLayoutDimensions() method returns a
two-dimensional array of integer values that identifies the height of each row and width of
each column in the grid. Listing 5-6 shows how this affects the interface when this technique
is used.

Listing 5-6. A Class That Puts Borders Around Layout Cells

import java.awt.*;
import javax.swing.*;

public class GridBagCellPanel extends JPanel {

public void paintComponent(Graphics g) {
super.paintComponent(g);
LayoutManager manager = getLayout();
if ((manager != null) && (manager instanceof GridBagLayout)) {
GridBagLayout layout = (GridBagLayout)manager;
g.setColor(getForeground());
Point p = layout.getLayoutOrigin();
int[][] sizes = layout.getLayoutDimensions();
int[] colWidths = sizes[0];
int[] rowHeights = sizes[1];
int width, height;
int xpos = p.x;
int ypos;
for (int x = 0; x < colWidths.length; x++) {
ypos = p.y;
width = colWidths[x];
for (int y = 0; y < rowHeights.length; y++) {
height = rowHeights[y];
g.drawRect(xpos, ypos, width - 1, height - 1);
g.drawRect(xpos + 1, ypos + 1, width - 3,

height - 3);
ypos += height;

}
xpos += width;

}
}

}

}

CHAPTER 5 ■ USING LAYOUT MANAGERS214

If the user interface is added to an instance of the GridBagCellPanel class, a dark border
appears around the edge of each cell in the grid, as shown in Figure 5-15. This illustrates that
the column containing the label is very large, and the gap exists because the component is
positioned on the left side of its cell.

Figure 5-15. Drawing borders around components makes it apparent how much space a
GridBagLayout has allocated to a component’s cell.

This example illustrates another important point related to GridBagLayout: a component
doesn’t necessarily expand to completely fill the cell or cells that it occupies. A component’s
size is normally set to its preferred or minimum size, and in this case, the component’s pre-
ferred width is considerably smaller than the width of the cell it occupies. It’s important to
keep in mind this distinction between a component’s actual size and its display area or the
area of the container reserved for that component. A component’s display area is the rectan-
gular region defined by the cell or cells assigned to the component. In this case, only a single
cell was assigned to each component, but as mentioned earlier, a cell can span multiple rows
and/or columns.

Constructing a GridBagLayout
GridBagLayout provides only a single, no-argument constructor, so it’s very simple to create one:

GridBagLayout gbl = new GridBagLayout();

Constraints
Each component that’s added to a container managed by a GridBagLayout has an associ-
ated set of constraint values, and those values are encapsulated by an instance of the
GridBagConstraints class.

GridBagConstraints provides two constructors: one that accepts no parameters and
another that accepts the eleven constraint values that are supported. Although you can use
either constructor, code that passes many parameter values to a constructor can be difficult
to understand, even for someone who’s familiar with GridBagLayout, so you should avoid
using that form. GridBagConstraints represents one of the few cases in Java where it’s accept-
able to access the fields within an object without using accessor and mutator methods. In fact,

CHAPTER 5 ■ USING LAYOUT MANAGERS 215

because GridBagConstraints doesn’t provide accessor or mutator methods for its properties,
you must set those properties directly by assigning them values:

GridBagConstraints gbc = new GridBagConstraints();
gbc.gridx = 0;
gbc.gridy = 3;

When you add a component to a container managed by a GridBagLayout, you can use the
add() method that accepts a Component and a constraint’s Object, or you can use the simpler
form that accepts only a Component reference. However, if you use the simpler form, you must
call the setConstraints() method in GridBagLayout to associate the Component with a set of
constraint values. For example, suppose you’ve created the following code:

GridBagLayout layout = new GridBagLayout();
setLayout(layout);
GridBagConstraints constraints = new GridBagConstraints();
JButton button = new JButton("Testing");

You can add the button to the container after first associating it with the set of con-
straints, as in the following code:

layout.setConstraints(button, constraints);
add(button);

Alternatively, you can use the form of the add() method that accepts a parameter repre-
senting constraint information:

add(button, constraints);

Both of these approaches are valid, but the second one is probably somewhat more intu-
itive for most people and requires slightly less code.

Although you’ll typically add more than one component to a container and each compo-
nent will usually have different constraint values from the others, you can use the same
instance of GridBagConstraints for all components. That’s because when you add a component
to a container managed by a GridBagLayout, the layout manager uses the clone() method in
GridBagConstraints to make a “deep copy” of the constraints. In other words, when you add a
component, a copy is made of its associated GridBagConstraints object, and that copy is saved
by the GridBagLayout for later reference. Therefore, you can use a single GridBagConstraints
object repeatedly, since the layout manager uses it just long enough to create a copy of it.

Fields Defined in GridBagConstraints
The following fields are defined in GridBagConstraints, most of which are int values. How-
ever, the insets field is a reference to an instance of the java.awt.Insets class, and weightx
and weighty are double (floating-point) values.

gridx

This constraint allows you to identify the first/leftmost column within the grid that should be
assigned to the component’s display area. The first column (the one at the left edge of the con-
tainer) corresponds to a value of 0, the next column to a value of 1, and so on. For example, to

CHAPTER 5 ■ USING LAYOUT MANAGERS216

specify that a component should begin in the first column, you can add the following code to
your application:

GridBagConstraints constraints = new GridBagConstraints();
constraints.gridx = 0;

By default, the gridx constraint value is set to GridBagConstraints.RELATIVE, which is dis-
cussed in a moment.

gridy

This constraint allows you to identify the first/top row within the grid that should be assigned
to the component’s display area. The first row (the one at the top edge of the container) corre-
sponds to a value of 0, the next row to a value of 1, and so on. For example, to specify that a
component should begin in the third row, you can add the following code to your application:

GridBagConstraints constraints = new GridBagConstraints();
constraints.gridy = 2;

By default, the gridy constraint value is set to GridBagConstraints.RELATIVE.

Relative Positioning

The two examples shown previously both use absolute position values. However, you can set
gridx and/or gridy to the value defined by the RELATIVE constant in GridBagConstraints to
indicate that the component should be positioned relative to some other component. If you
specify RELATIVE for gridx and an absolute value for gridy, the component you add will be
placed at the end of the row identified by the gridy value. For example, Listing 5-7 will create
five JButton instances, adding three of them to the second row using relative positioning.

Listing 5-7. Adding Components with a Relative X Position

import java.awt.*;
import javax.swing.*;

public class RelativeX {

public static void main(String[] args) {
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container pane = f.getContentPane();
pane.setLayout(new GridBagLayout());
GridBagConstraints gbc = new GridBagConstraints();
gbc.gridy = 0;
pane.add(new JButton("First row"), gbc);
gbc.gridx = GridBagConstraints.RELATIVE;
gbc.gridy = 1;
pane.add(new JButton("Second row, first column"), gbc);
pane.add(new JButton("Second row, second column"), gbc);
pane.add(new JButton("Second row, third column"), gbc);

CHAPTER 5 ■ USING LAYOUT MANAGERS 217

gbc.gridy = 2;
pane.add(new JButton("Third row"), gbc);
f.setSize(600, 300);
f.setVisible(true);

}

}

Figure 5-16 shows the display produced by this program.

Figure 5-16. Specifying an absolute Y position and a relative X position causes a component to
appear to the right of the one most recently added for the same Y position.

Similarly, specifying an explicit column/gridx value and RELATIVE for the row/gridy value
causes components to be added on a top-to-bottom basis to the specified column. For exam-
ple, Listing 5-8 will create five JButton instances, adding three of them to the second column
using relative positioning.

Listing 5-8. Adding Components with a Relative Y Position

import java.awt.*;
import javax.swing.*;

public class RelativeY {

public static void main(String[] args) {
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container pane = f.getContentPane();
pane.setLayout(new GridBagLayout());
GridBagConstraints gbc = new GridBagConstraints();
gbc.gridx = 0;
pane.add(new JButton("First column"), gbc);

CHAPTER 5 ■ USING LAYOUT MANAGERS218

gbc.gridx = 1;
gbc.gridy = GridBagConstraints.RELATIVE;
pane.add(new JButton("Second column, first row"), gbc);
pane.add(new JButton("Second column, second row"), gbc);
pane.add(new JButton("Second column, third row"), gbc);
gbc.gridx = 2;
pane.add(new JButton("Third column"), gbc);
f.setSize(500, 300);
f.setVisible(true);

}

}

This version produces the display shown in Figure 5-17.

Figure 5-17. Specifying an absolute X position and a relative Y position causes a component to
appear below the one most recently added for the same X position.

You can also specify RELATIVE for both gridx and gridy when adding a component to a
container. If you do so, the component will be added to the end of the top row (row 0) in the
grid, as in Listing 5-9.

Listing 5-9. Adding Components with Relative X and Y Coordinates

import java.awt.*;
import javax.swing.*;

public class RelativeXY {

public static void main(String[] args) {
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container pane = f.getContentPane();

CHAPTER 5 ■ USING LAYOUT MANAGERS 219

pane.setLayout(new GridBagLayout());
GridBagConstraints gbc = new GridBagConstraints();
gbc.gridx = 1;
gbc.gridy = GridBagConstraints.RELATIVE;
pane.add(new JButton("First row, first column"), gbc);
pane.add(new JButton("Second row"), gbc);
pane.add(new JButton("Third row"), gbc);
gbc.gridx = GridBagConstraints.RELATIVE;
pane.add(new JButton("First row, second column"), gbc);
f.setSize(500, 300);
f.setVisible(true);

}

}

That code results in the display shown in Figure 5-18.

Figure 5-18. Specifying RELATIVE for both the X and Y coordinates results in components being
added to the end of the top row.

fill

By default, a component’s size is set to either its preferred size or its minimum size, regardless
of the size of the cell or cells reserved for it. At the beginning of this section on GridBagLayout,
you saw a JLabel in a column that was much wider than the label’s preferred width, so the
label occupied only a small portion of its available display area. However, you can use the fill
constraint to indicate that the component should be stretched to fill its available display area
horizontally, vertically, or both. For example, Listing 5-10 creates three buttons, and the first
two are displayed using their preferred sizes. However, the third button expands horizontally
to fill the width of its column.

CHAPTER 5 ■ USING LAYOUT MANAGERS220

Listing 5-10. Effects of the fill Constraint

import java.awt.*;
import javax.swing.*;

public class Fill {

public static void main(String[] args) {
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container pane = f.getContentPane();
pane.setLayout(new GridBagLayout());
GridBagConstraints gbc = new GridBagConstraints();
gbc.gridx = 0;
gbc.gridy = GridBagConstraints.RELATIVE;
pane.add(new JButton("This button’s preferred width " +

"is large because its text is long"),
gbc);

pane.add(new JButton("Small centered button"), gbc);
gbc.fill = GridBagConstraints.HORIZONTAL;
pane.add(new JButton("Expands to fill column width"), gbc);
f.setSize(400, 300);
f.setVisible(true);

}

}

Figure 5-19 shows the display produced by this example.

Figure 5-19. You can make a component fill its entire cell vertically and/or horizontally.

CHAPTER 5 ■ USING LAYOUT MANAGERS 221

GridBagConstraints has four constants that you can use to set the fill value:

• HORIZONTAL: This expands the component horizontally to fill its display area.

• VERTICAL: This expands the component vertically to fill its display area.

• BOTH: This expands the component both horizontally and vertically to fill its
display area.

• NONE: The component should be allowed to remain at its natural (preferred or
minimum) size; this is the default value.

gridwidth

This constraint identifies the number of columns that the component spans, and its default
value is 1. For example, in Figure 5-20, the button in the third row spans both columns.

Figure 5-20. Notice that the component in the third row spans two of the columns in the first row.

Listing 5-11 shows the code to create this display.

Listing 5-11. Effects of the gridwidth Constraint

import java.awt.*;
import javax.swing.*;

public class ColumnSpan {

public static void main(String[] args) {
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container pane = f.getContentPane();
pane.setLayout(new GridBagLayout());
GridBagConstraints gbc = new GridBagConstraints();

CHAPTER 5 ■ USING LAYOUT MANAGERS222

gbc.gridx = 1;
gbc.gridy = GridBagConstraints.RELATIVE;
pane.add(new JButton("First row, first column"), gbc);
pane.add(new JButton("Second row"), gbc);
gbc.gridwidth = 2;
pane.add(new JButton("Third row, spans two columns"), gbc);
gbc.gridwidth = 1;
gbc.gridx = GridBagConstraints.RELATIVE;
pane.add(new JButton("First row, second column"), gbc);
f.setSize(400, 300);
f.setVisible(true);

}

}

In this case, the button’s size is set to its preferred width, and the button is centered hori-
zontally within its display area. However, you can make it fill both columns by setting the fill
value, as shown in Listing 5-12.

Listing 5-12. Filling the Entire Column

import java.awt.*;
import javax.swing.*;

public class ColumnSpan {

public static void main(String[] args) {
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container pane = f.getContentPane();
pane.setLayout(new GridBagLayout());
GridBagConstraints gbc = new GridBagConstraints();
gbc.gridx = 1;
gbc.gridy = GridBagConstraints.RELATIVE;
pane.add(new JButton("First row, first column"), gbc);
pane.add(new JButton("Second row"), gbc);
gbc.gridwidth = 2;
gbc.fill = GridBagConstraints.HORIZONTAL;
pane.add(new JButton("Third row, spans two columns"), gbc);
gbc.gridwidth = 1;
gbc.fill = GridBagConstraints.NONE;
gbc.gridx = GridBagConstraints.RELATIVE;
pane.add(new JButton("First row, second column"), gbc);
f.setSize(400, 300);
f.setVisible(true);

}

}

CHAPTER 5 ■ USING LAYOUT MANAGERS 223

With these alterations, the display now looks like Figure 5-21.

Figure 5-21. The components in the top and bottom rows now expand to fill their entire cells.

In addition to specifying an explicit number of columns to span, you can use the
REMAINDER constant defined in GridBagConstraints. This indicates that the component’s
display area should begin with the column specified by the gridx value and that it should fill
all the remaining columns to the right of that column. Figure 5-22 shows an example.

Figure 5-22. Specifying REMAINDER for the width causes the cell’s width to span the rest of the row.

Listing 5-13 shows the code to produce this display.

Listing 5-13. Using the REMAINDERValue for a Width

import java.awt.*;
import javax.swing.*;

public class Remainder {

public static void main(String[] args) {

CHAPTER 5 ■ USING LAYOUT MANAGERS224

JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container pane = f.getContentPane();
pane.setLayout(new GridBagLayout());
GridBagConstraints gbc = new GridBagConstraints();
pane.add(new JButton("First row, first column"), gbc);
pane.add(new JButton("First row, second column"), gbc);
pane.add(new JButton("First row, third column"), gbc);
gbc.gridx = 0;
pane.add(new JButton("Second row"), gbc);
gbc.gridwidth = GridBagConstraints.REMAINDER;
gbc.fill = GridBagConstraints.HORIZONTAL;
pane.add(new JButton(
"Third row, gridwidth set to REMAINDER"), gbc);

f.setSize(600, 300);
f.setVisible(true);

}

}

You can also set a gridwidth value to RELATIVE, which is similar to REMAINDER. However,
RELATIVE causes the component to span all remaining columns except the last one in the grid.
For example, you might make the following modifications to the Remainder class defined ear-
lier:

pane.add(new JButton("Second row"), gbc);
gbc.gridwidth = GridBagConstraints.RELATIVE;
gbc.fill = GridBagConstraints.HORIZONTAL;
pane.add(new JButton("Third row, gridwidth set to RELATIVE"), gbc);

If you compile and execute the code, it will produce a display like the one shown in
Figure 5-23.

Figure 5-23. Specifying RELATIVE for the width causes the cell’s width to span the rest of the row
except for the last column in the row.

CHAPTER 5 ■ USING LAYOUT MANAGERS 225

gridheight

Just as gridwidth defines the number of columns that a component’s display area spans, this
constraint defines the number of rows allocated. As with gridwidth, you can specify RELATIVE,
REMAINDER, or an absolute value. Listing 5-14 provides an example of this.

Listing 5-14. Effects of the gridheight Constraint

import java.awt.*;
import javax.swing.*;

public class GridHeight {

public static void main(String[] args) {
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container pane = f.getContentPane();
pane.setLayout(new GridBagLayout());
GridBagConstraints gbc = new GridBagConstraints();
pane.add(new JButton("First row, first column"), gbc);
pane.add(new JButton("First row, second column"), gbc);
gbc.gridheight = GridBagConstraints.REMAINDER;
gbc.fill = GridBagConstraints.VERTICAL;
pane.add(new JButton("First row, third column"), gbc);
gbc.gridx = 0;
gbc.gridheight = 1;
gbc.fill = GridBagConstraints.NONE;
pane.add(new JButton("Second row"), gbc);
pane.add(new JButton("Third row"), gbc);
f.setSize(600, 300);
f.setVisible(true);

}

}

Figure 5-24 illustrates the behavior of this new class.

Figure 5-24. Specifying REMAINDER for the height causes the cell to span the rest of the rows in the grid.

CHAPTER 5 ■ USING LAYOUT MANAGERS226

The default value for gridheight is 1, which causes the component to occupy a single row
in the grid.

anchor

You can use this constraint to identify how a component should be positioned within its dis-
play area when its size is smaller than that area. The anchor constraint should be set to one of
the following nine values: CENTER, NORTH, NORTHEAST, EAST, SOUTHEAST, SOUTH, SOUTHWEST, WEST,
or NORTHWEST. The default value (CENTER) causes the component to be centered both vertically
and horizontally within its display area, and the other values define a corner or side of the
area. For example, NORTHEAST causes the component to be placed in the upper-right corner of
its display area, EAST causes it to be centered vertically and placed against the right side of its
display area, and so on. To illustrate an example of this behavior, suppose you make the fol-
lowing additions to the GridHeight class defined previously:

gbc.fill = GridBagConstraints.NONE;
gbc.anchor = GridBagConstraints.EAST;
pane.add(new JButton("Second row"), gbc);
gbc.anchor = GridBagConstraints.CENTER;
pane.add(new JButton("Third row"), gbc);

This modification causes the button on the second row to appear in the “east”/right side
of its display area, as shown in Figure 5-25. However, once that button has been added to the
panel, the anchor property changes back to CENTER (the default value), so the button on the
third row appears centered.

Figure 5-25. The anchor constraint affects where and how components are aligned within
their cells.

insets

The insets constraint is a reference to an instance of the Insets class and allows you to define
some number of pixels that should be reserved around the four edges (top, left, bottom, and
right) of the component’s display area. You’ll typically use this to provide whitespace between
components in adjacent rows and columns, just as horizontal and vertical gap values are used

CHAPTER 5 ■ USING LAYOUT MANAGERS 227

by other layout managers. However, GridBagLayout’s approach is much more flexible, because
you can specify a different gap size for every component and also specify a unique size for
each side of the component.

To set the inset values for a component, you can create an instance of Insets or modify
the one that’s created automatically when a GridBagConstraints object is created. The follow-
ing code segment illustrates how to set these values:

GridBagConstraints gbc = new GridBagConstraints();
gbc.insets = new Insets(5, 10, 5, 10);

You can also use the following:

GridBagConstraints gbc = new GridBagConstraints();
gbc.insets.top = 5;
gbc.insets.left = 10;
gbc.insets.bottom = 5;
gbc.insets.right = 10;

If you insert one of these two code segments into the GridHeight class defined earlier,
compile the code, and execute it, it will produce a display like the one shown in Figure 5-26.

Figure 5-26. Insets represent unused space between the outer edges of the components and
their cells.

One final point worth noting relative to insets is that a component is never allowed to
overlay the inset portions of its display area, even if the fill constraint causes the component
be stretched.

ipadx

You can add this value to the component’s preferred or minimum size to determine the width
of the component, and the i refers to the fact that the pad value is added to the component’s
“internal” (in other words, preferred or minimum) width as opposed to its current (displayed)
width. For example, if a component has a preferred width of 40 pixels and you specify a value
of 10 for this constraint, the component will be 50 pixels wide when the components are dis-

CHAPTER 5 ■ USING LAYOUT MANAGERS228

played using preferred widths. You can also make components smaller than their preferred or
minimum sizes by specifying negative pad values, so if you were to specify a value of -10 for
this constraint in the previous example, the component would be assigned a width of 30 pixels
instead of its preferred width of 40 pixels. The default value of this constraint is 0.

ipady

Just as ipadx represents some number that’s added to a component’s preferred or minimum
width, this value is added to the component’s height before it’s displayed. The default value of
this constraint is 0.

weightx

This value determines how to resize the columns in the grid when the container is either wider
or narrower than the area needed to display the components at their preferred or minimum
widths. If all components in a grid have a weightx value of 0.0 (the default), any extra horizon-
tal space is divided evenly between the left and right edges of the container. I provide a detailed
description of how weights are used and how they interact with other constraints later.

weighty

This value determines how to resize the rows within the grid when the container’s height is
larger or smaller than the size needed to display the components using their preferred or min-
imum heights. If all components in a grid have a weighty value of 0.0 (the default), any extra
vertical space is divided evenly between the top and bottom edges of the container.

Calculating Row Heights and Column Widths

The initial calculation of the height of a row happens by determining the amount of space
that’s needed to display the tallest component in the row. The height of a particular compo-
nent is the sum of its preferred or minimum height, the vertical pad value (ipady) specified for
its constraints, and the top and bottom insets that should appear around the component.

Similarly, when calculating the width of a column, the width needed for each compo-
nent is calculated, and the largest value is used as the column’s width. A component’s width
is defined as the sum of its preferred or minimum width, its horizontal pad (ipadx) value, and
its right and left inset values. For example, suppose you’ve created a container with nine
child components, and those components have the width values specified in Table 5-2.

Table 5-2. Preferred Widths of the Components in a Table with Three Rows and Three Columns

Column 1 Column 2 Column 3

35 50 32

47 25 10

28 30 28

Given these nine components and their preferred widths, the width of each of the three
columns can easily be determined by selecting the largest preferred width from each column,
as shown in Table 5-3. This assumes that the ipadx and left and right insets for all components

CHAPTER 5 ■ USING LAYOUT MANAGERS 229

are 0; otherwise, those values will be added to the appropriate component’s width when
determining the column width.

Table 5-3. Column Widths for the Three Columns in the Table

Column 1 Width Column 2 Width Column 3 Width

47 50 32

Calculating Sizes When Components Span Multiple Cells

The process of calculating a row height or column width is slightly more complex when it
involves a component that spans multiple rows or columns. When calculating row heights and
column widths, GridBagLayout processes the components in order of their gridwidth (for col-
umn widths) and gridheight (for row heights) values. For example, to calculate column widths,
the layout manager will first examine the components that have a gridwidth of 1, then those
with a gridwidth of 2, and so on.

When GridBagLayout needs to determine the size of a column and it encounters a compo-
nent that spans multiple columns, it attempts to distribute the component’s preferred width
across those columns. The distribution occurs in left-to-right order, and any remaining width
is distributed to the last column that the component occupies. For example, suppose you have
the same components described earlier, but with a component on the second row that has a
gridwidth value of 2 (in other words, it fills the first two columns). In that case, the column
widths will be calculated as shown in Table 5-4. In this example, the first component in the
second row spans the first two columns (that is, it has a grid width of 2).

Table 5-4. A Component That Spans Multiple Columns

Column 1 Column 2 Column 3

35 50 32

109 10

28 30 28

When the layout manager examines the components with a gridwidth value of 1, it
establishes preliminary widths of 35, 50, and 32 for the three columns. However, when it
examines components with a gridwidth of 2, it determines that the existing column widths
aren’t adequate to allow the components to be displayed properly. This is because of the
component on the second row that spans the first two columns and has a width of 109 pixels.
Since that component’s width exceeds the sum of the preliminary widths for the columns it
occupies (35 + 50 = 85), the width of the second column is increased to 74 (109 – 35 = 74) so
that the component’s size can be accommodated. As Table 5-5 shows, the second column’s
width is expanded to 74 to accommodate the wide component in the first row that spans the
first and second columns.

CHAPTER 5 ■ USING LAYOUT MANAGERS230

Table 5-5. Derived Column Widths

Column 1 Width Column 2 Width Column 3 Width

35 74 44

Weight Values, Row Heights, and Column Widths

One of the more confusing aspects of GridBagLayout is how components’ weightx values
affect column widths and how weighty values affect row heights. When a GridBagLayout
attempts to organize the components in its container, it compares the amount of space it
needs to the actual size of the container. If the two sizes aren’t the same, the layout manager
must decide where and by how much to increase or reduce the size of rows and columns, and
it uses weight values for this purpose. Stated simply, the weight values you specify through
GridBagConstraints assign each row and column a weight, and the amount of space taken
from or added to a row or column is determined by its weight value.

Distributing Extra Space
The following example illustrates how space is distributed, but for the sake of simplicity, it
involves only weightx values and column width adjustments. However, the calculation of row
heights using weighty values takes place in the same way, so the concepts are relevant to both
column widths and row heights.

Let’s assume you’ve created a container that uses a GridBagLayout to manage the size and
position of its child components and that it needs a width of 400 pixels to display the compo-
nents using their minimum sizes. However, let’s also assume that when the layout manager
prepares to arrange the components, it determines that the container is 600 pixels wide. In this
case, the GridBagLayout must determine how to distribute the extra 200 pixels to its columns.

Calculating Column Weights

The first step that the GridBagLayout must take is to calculate a weight for each column, and
that weight will determine how many of the extra 200 pixels are distributed to the column. In
the simplest case where each component has a gridwidth value of 1 (in other words, no com-
ponent spans multiple columns), the weight of a column is defined as the largest weightx
value of any component within that column. For example, suppose that Table 5-6 represents
the weightx values of components in a container.

Table 5-6. weightx Settings for the Components in the Respective Cells

Column 1 Column 2 Column 3

15 10 15

10 25 30

20 50 10

CHAPTER 5 ■ USING LAYOUT MANAGERS 231

Since the weight of a column is defined as the maximum weightx value in that column, the
weights of the three columns in this grid are 20, 50, and 30, respectively, as shown in Table 5-7.
The weight of each column is equal to the largest weightx value selected from all the compo-
nents in the column.

Table 5-7. Weights of the Three Columns

Column 1 Weight Column 2 Weight Column 3 Weight

20 50 30

Note that although this example has been deliberately designed so that the sum of the col-
umn weights is 100, there’s no technical reason why this is necessary: it was simply done that
way here to simplify the example. In fact, as you’ll see shortly, neither the weights’ absolute
values nor their sum is particularly important, but you may find it easier to work with round
numbers.

In the case where a component spans multiple columns, the calculation of a column’s
weight value is slightly more complex. Using a different set of components in some other
container, let’s suppose three rows of components appear in the grid and that the second row
contains a component that spans the second and third columns, as shown in Table 5-8. It’s
easy to guess the weight of the first column, since it’s simply the maximum weightx value
found in that column (1.0). However, it’s probably not as obvious how the weight values of
the remaining two columns are calculated.

Table 5-8. Calculating Weights When a Component Spans Two Columns

Column 1 Column 2 Column 3

0.33 0.25 0.5

1.0 3.0

0.66 0.15 0.5

Table 5-9 shows the weights calculated for the columns.

Table 5-9. Derived Weight Values

Column 1 Weight Column 2 Weight Column 3 Weight

1.0 1.0 2.0

To understand how the weight values were derived for the second and third columns, it’s
important to know that when GridBagLayout calculates column weights, it processes compo-
nents in order based on their gridwidth values. In other words, GridBagLayout first examines
the weightx values of all components that have a gridwidth value of 1, then those that have a
value of 2, and so on. In this case, the layout manager’s first iteration will process seven of the
eight components in the container, initially ignoring the component on the second row that
has a gridwidth of 2. In the process of doing so, it calculates a preliminary column weight of
0.25 for the second column and 0.5 for the third column.

CHAPTER 5 ■ USING LAYOUT MANAGERS232

On the GridBagLayout’s next iteration, it processes the weightx of the component that
spans the second and third columns and must distribute that value (3.0) across the two
columns. It does this by distributing the amount proportionally based upon the preliminary
weight values of the columns. Specifically, it adds together the preliminary column weight
values and divides the weight value of each column by that sum to determine a percentage
of the spanning component’s weightx value that should be distributed to the column.

For example, in this case, the preliminary weight values of the second and third columns
are 0.25 and 0.5, respectively, and the sum of these two values is 0.75. Dividing the prelimi-
nary weight of the second column by 0.75 produces a value of 0.33, and dividing the third
column’s preliminary weight by the total produces a value of 0.67. These values represent
the percentage of the spanning component’s weightx value that will be distributed to each
column. Specifically, one-third (33 percent) will be assigned to the second column, and the
remaining two-thirds (67 percent) will be assigned to the third column. Since the weight of
the component that spans the two columns is 3, it represents a weight of 1 (3.0 * 0.33 = 1.0)
for the second column and 2 (3.0 * 0.67 = 2.0) for the third.

Since the component in the second row represents a weightx value of 1 for the second
column and 2 for the third column, the second column’s final weight value is 1 and the third
column’s final weight is 2.

Converting Weights to Percentages

Now that a weight value has been assigned to each column, those values can determine the
amount of extra space that should be allocated to each column. This happens by first calcu-
lating the sum of all column weight values and dividing each column’s weight by that sum. In
this case, the sum of all the weights is 4 (1.0 + 1.0 + 2.0 = 4), and the first column is given one-
fourth (25 percent) of the extra space. Similarly, the second column is allocated one-fourth
(25 percent) of the space, and the third and final column receives the remaining two-fourths
(50 percent).

Distributing the Extra Space

Having calculated the percentage of extra space that should be added to the width of each
column, it’s easy to determine the number of pixels that will be distributed in this example.
Since there are 200 extra pixels, the first and second columns will be made wider by 50 pixels
(200 * 0.25 = 50), and the third column becomes 100 pixels wider (200 * 0.5 = 100).

Although this example describes a situation where extra space was being added to columns,
the same principles apply when you need to take away space. For example, if the container had
been 200 pixels smaller than it needed to be instead of 200 larger, the three columns would
have been reduced in size by 50, 50, and 100 pixels, respectively.

General Guidelines for Setting Weights
As you can see, GridBagLayout’s behavior with respect to weight values is somewhat complex.
However, you can reduce the complexity in some cases by assigning weightx values only to the
components in a single row and weighty values to those in a particular column. If you do so,
you’re effectively setting the weight value for the entire row or column when you specify it for
the component, which makes it easier to predict how space will be added or taken away.

CHAPTER 5 ■ USING LAYOUT MANAGERS 233

In addition, you may find it easier to use weight values that add up to some round num-
ber such as 1.0 or 100.0, allowing you to easily associate a weight value with a percentage. For
example, given the previous grid, you could specify the weightx values only on the compo-
nents in the first row, as shown in Table 5-10. In this scenario, weights are specified only for
the components in the first row, resulting in the columns’ weights being assigned the corre-
sponding values from those components.

Table 5-10. Specifying Weights for Components in the First Row Only

Column 1 Column 2 Column 3

25.0 25.0 50.0

0.0 0.0

0.0 0.0 0.0

In this case, only the components in the first row were assigned weightx values, and the
sum of those values is 100, making it much more obvious how space will be added or removed
from the columns. Specifically, the first and second columns are allocated 25 percent of any
extra space, and the third one is given the remaining 50 percent.

You may have noticed that in some examples, relatively large weight values (for example,
50, 10, 15, and so on) were used, while smaller ones were specified at other times. I did this
deliberately to illustrate a point: the absolute size of weight values used is unimportant. What
matters is how large those values are relative to one another. In other words, you can produce
the same results using fractional values as you can by using very large numbers. For example,
three columns with weights of 0.25, 0.25, and 0.50 have space distributed to them in the same
amounts that they would if the columns had weights of 100, 100, and 200.

It’s also important to remember that weights don’t necessarily represent the relative sizes
of the cells but rather the relative amount of space that will be added to or taken away from
those cells. For example, if you create a grid with two columns and the second column is
assigned a weight that’s twice as large as the first, you shouldn’t expect the second column
to be twice as large. However, you can correctly assume that the second column will be given
twice as much extra space as the first if excess space is distributed to them.

GridBagTester
Even with a good understanding of GridBagLayout, it can be difficult to assign constraint values
so that your user interface is displayed correctly, and you may find it necessary to repeatedly
modify, compile, and execute your code. However, you can use the GridBagTester utility pro-
vided on the Apress web site to test your user interface classes that use GridBagLayout and to
modify the constraint values graphically until they produce the desired results.

To use GridBagTester, you simply create an instance of it by passing its constructor a
Container that’s managed by a GridBagLayout, and GridBagTester will create a JFrame that dis-
plays the container. In addition, it provides other information that describes the components,
their constraint values, and the rows and columns defined in the container grid:

A table at the top of the frame displays the width and weight of each column in the grid. It
also displays a value that identifies what percentage of space will be added to or taken away
from the column’s width if the container is made wider or narrower than its current width.

CHAPTER 5 ■ USING LAYOUT MANAGERS234

A table on the left side of the frame displays the height and weight of each row in the
grid. It also displays a value that identifies what percentage of space will be added to
or taken away from the row’s height if the container is made taller or shorter than its
current height.

A table at the bottom of the frame displays information about each component in the
container. Specifically, that information includes the component’s name, location within
the container, actual/current size, preferred size, minimum size, and constraint values
assigned to the component. With the exception of the preferred and minimum size val-
ues, all the cells in this table are editable. You can dynamically change a component’s
constraints and immediately see the effect of your change upon its size and position,
as well as the weight and size of any rows and columns it occupies.

GridBagTester relies on a class called NumericTextField that’s used to allow entry of
numeric values; you can also download that class from the web.

As an example of how GridBagTester may be useful, suppose you’ve created a layout
similar to the one shown in Listing 5-15 that allows a first and last name to be entered, along
with an address.

Listing 5-15. A Simple Application That Uses GridBagTester

import java.awt.*;
import javax.swing.*;

public class SimplePanel extends JPanel {

public static void main(String[] args) {
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.getContentPane().add(new SimplePanel());
f.setSize(400, 300);
f.setVisible(true);

}

public SimplePanel() {
super();
GridBagConstraints constraints = new GridBagConstraints();
GridBagLayout layout = new GridBagLayout();
setLayout(layout);

constraints.anchor = GridBagConstraints.WEST;

constraints.gridy = 0;
JLabel label = new JLabel("First name:");
add(label, constraints);

JTextField tf = new JTextField(8);
add(tf, constraints);

CHAPTER 5 ■ USING LAYOUT MANAGERS 235

label = new JLabel("Last name:");
add(label, constraints);

tf = new JTextField(8);
add(tf, constraints);

constraints.gridy = 1;
label = new JLabel("Address:");
add(label, constraints);

tf = new JTextField(10);
add(tf, constraints);

}

}

Initially, it produces a display like the one shown in Figure 5-27.

Figure 5-27. Window that results from running the initial implementation of the
SimplePanel class

Although this display is functional, it’s not very user-friendly. You can improve it by
repeatedly modifying, compiling, and executing your code, but doing so is tedious and time-
consuming. Alternatively, you can make a slight modification to the main() method that will
allow you to view and modify the component’s constraint information:

public static void main(String[] args) {
// JFrame f = new JFrame();
// f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// f.getContentPane().add(new SimplePanel());
// f.setSize(400, 300);
// f.setVisible(true);
GridBagTester gbt = new GridBagTester(new SimplePanel());

}

CHAPTER 5 ■ USING LAYOUT MANAGERS236

When the program runs now, the display is as shown in Figure 5-28.

Figure 5-28. Window that results from running the initial implementation of the SimplePanel class

To test the utility, you might change the gridwidth value of the JTextField on the second
row to REMAINDER and its fill value to HORIZONTAL, which produces the display shown in
Figure 5-29.

Figure 5-29. Changing the grid width value causes the address text field to span the entire row,
resulting in a more usable and appealing interface.

CHAPTER 5 ■ USING LAYOUT MANAGERS 237

This improves the appearance of the display, but it still appears somewhat cluttered
because no gaps appear between the components. To add space between them, you could
change the inset values for all the components so there are 5 pixels above and below and 10
to the left and the right of each component, as shown in Figure 5-30.

Figure 5-30. Adding insets also improves the appearance of the container by adding whitespace
between the child components.

You may also find it helpful to use GridBagTester in addition to the GridBagCellPanel
class defined earlier so that you can easily identify the edges of a cell, as shown in Figure 5-31.

Figure 5-31. Combining GridBagTester and GridBagCellPanel creates an interface that allows
you to easily see the results of various constraint settings.

For example, changing the superclass of SimplePanel from JPanel to GridBagCellPanel
causes a border to be drawn around each cell in the grid:

public class SimplePanel extends GridBagCellPanel {

CHAPTER 5 ■ USING LAYOUT MANAGERS238

Child Component Sizes
The size of a child component in a GridBagLayout depends upon the constraint values speci-
fied for the child component as well as the size of the parent container. Specifically, the ipadx
and ipady values are added to the component’s preferred or minimum width and height,
respectively, and the fill constraint can cause the component to be expanded to fill its avail-
able display area.

I’ve stated a number of times that GridBagLayout uses a component’s preferred size or its
minimum size without explaining the circumstances in which one is used and the other isn’t.
Very simply, GridBagLayout attempts to use the preferred sizes of the child components, but
it does so only if the container is large enough to display all the child components using their
preferred sizes. Otherwise, the GridBagLayout reformats the display using the components’
minimum sizes. However, GridBagLayout respects minimum sizes and will never make a com-
ponent smaller than that size unless you specify a negative value for either the ipadx property
or the ipady property. In addition, it always adds the ipadx and ipady values to either the pre-
ferred size or the minimum size, depending upon which one is being used.

To illustrate this behavior, let’s first review the components’ sizes in Figure 5-31, paying
particular attention to the JTextField instances. Notice that with the exception of the
JTextField on the second row, which has been stretched to fill three columns, each of the
components is displayed using its preferred size. You should also note that although the
JLabel instances have the same values for preferred and minimum sizes, the JTextField
instances don’t. The JTextField minimum width values are much smaller than the preferred
widths (for example, a minimum width of 4 pixels and a preferred width of 88 pixels). Since
that’s the case, you can expect that if the panel becomes too small to display the components
using their preferred widths, the text fields will shrink to their minimum sizes. As shown in
Figure 5-32, that’s exactly what happens when the dialog is made slightly narrower, reducing
the container’s width as well. The second and fourth columns have been reallocated 24 pixels
wide each, since they both contain a JTextField with a minimum width of 4 and left and
right inset values of 10.

Figure 5-32. Making the window narrower causes the text fields to “collapse” when they revert
from their preferred widths to their minimum widths.

CHAPTER 5 ■ USING LAYOUT MANAGERS 239

This behavior is somewhat undesirable, since the text fields can shrink dramatically in
size to the point of being unusable. One solution to the problem is to set the weightx values
of the text fields so they don’t shrink as much. For example, if you set the weightx for both of
the JTextField instances in the first row to 0.5 and set their fill values to HORIZONTAL, they’ll
grow and shrink as the width of the container changes (see Figure 5-33). You could also use
the ipadx values to ensure that the JTextField instances don’t become unusable when set to
their minimum sizes. However, doing so would also result in the specified number of pixels
being added to the JTextField widths when they’re displayed using their preferred sizes,
causing them to be larger than necessary in that case and wasting screen space.

Figure 5-33. Text field behavior improves when the weightx and fill values are modified.

The fill value also can affect a component’s size, but it’s applied only after the grid’s row
and column sizes have been calculated. In other words, the fill value can affect the size of a
component within its display area, but unlike constraints such as ipadx, ipady, and insets,
it’s not used in calculating the size of that area. Similarly, the weight values are applicable
only after the initial cell sizes have been calculated using the component sizes, pads, and
inset values.

Child Component Locations
The location of each child component in a GridBagLayout-managed container is determined
primarily by the component’s display area, which is identified by its gridx, gridy, gridwidth,
and gridheight values. Those values define the rectangular region within the grid that make
up the component’s display area, and the component will be displayed somewhere inside
that area.

In addition to the number and location of cells that the component occupies, its anchor
constraint affects where a component is located within those cells. By default, a component is
centered both vertically and horizontally within its display area.

CHAPTER 5 ■ USING LAYOUT MANAGERS240

Resizing Behavior
If you shrink a container managed by a GridBagLayout so it can no longer display its compo-
nents using their preferred sizes, it reformats the display using their minimum sizes. If the
container continues to shrink until the components can’t be displayed using their minimum
sizes, then portions of the display will disappear from the panel, as shown in Figure 5-34.

Figure 5-34. GridBagLayout uses preferred sizes if enough space is available but reverts to the
minimum size if necessary.

Container Size
To calculate the preferred width of a container, GridBagLayout adds the widths of all grid
columns in the container, and those widths are calculated using the preferred width of each
component in the column. The sum of those width values is added to the container’s left and
right inset values to obtain the container’s preferred width, and its preferred height is calcu-
lated in the same manner using the components’ preferred heights.

The container’s minimum size is calculated in the same manner, except that it uses the
components’ minimum size values instead of their preferred sizes. GridBagLayout doesn’t
impose any maximum size limit on the container.

BoxLayout
Each of the five layout managers discussed so far is defined in the java.awt package and has
been available since Java 1.0. However, BoxLayout is a more recent addition to Java and is
included in the javax.swing package. BoxLayout is an attempt to provide some of the flexibil-
ity of GridBagLayout without the complexity involved in its use.

A BoxLayout allows you to create either a single row or a single column of components. In
other words, the components you add to a BoxLayout are arranged vertically from top to bot-
tom or horizontally from left to right.

BoxLayout is different from the other layout managers in a number of ways, and it uses
some properties defined in Component that the other layout managers ignore. For example,

CHAPTER 5 ■ USING LAYOUT MANAGERS 241

BoxLayout respects a component’s maximum size and will never make the component larger
than the dimensions specified by that property. In addition, a BoxLayout that arranges its
components vertically (or a “vertical BoxLayout”) uses each component’s alignment along
the X axis, which is available through the getAlignmentX() method in Component. Similarly,
BoxLayout uses the components’ alignments along the Y axis (and the corresponding
getAlignmentY() method) when it arranges them horizontally.

BoxLayout is different from the other layout managers in one other important way: it uses
a component’s maximum size to determine the amount of space that the component should
occupy. In many cases, a component’s maximum size is the same as or is close to its preferred
size. However, as you’ll see later, some components have large maximum size values, which
can produce unexpected or undesirable results when used with a BoxLayout.

Alignment Values, Ascents, and Descents
Component alignment values play a major role in determining how components are posi-
tioned within a BoxLayout-managed container, but before I can cover how alignment values
are used, it’s necessary to define some terms.

A component’s alignment is represented by a float value that can range from 0.0 to 1.0,
and you may find it helpful to think of this number as a percentage value, with 0.0 represent-
ing 0 percent and 1.0 representing 100 percent. By default, a component’s X and Y alignment
values are both set to 0.5. The component’s ascent value is calculated by multiplying one of its
dimensions by one of its alignment values. For example, if you’re using a horizontal BoxLayout,
you could calculate the preferred height ascent for a component by multiplying the compo-
nent’s preferred height by its Y alignment value, as in the following equation:

Dimension prefSize = comp.getPreferredSize();
int ascent = (int)(prefSize.height * comp.getAlignmentY());

Similarly, a component’s descent value is calculated by subtracting the component’s
ascent value from the size that was used to calculate the ascent, as follows:

int descent = prefSize.height - ascent;

In other words, the sum of the ascent and descent values is equal to the dimension that
was used to calculate them, and they represent the portions of the component that lie on
either side of an imaginary line. For example, suppose that the previous code was executed for
a component with a preferred height of 400 pixels and that the component’s Y alignment value
is 0.25. The ascent value would be 100 (400 * 0.25 = 100), and the descent value would be 300
(400 – 100 = 300).

Note that you can calculate ascent and descent values from a component’s preferred,
minimum, or maximum sizes, and as you’ll see, each one plays a role in BoxLayout’s behavior.
In addition, the “ascent” and “descent” concepts apply to both a component’s horizontal size
as well as its vertical size, although only one (either vertical or horizontal) is used in a given
BoxLayout. A component’s horizontal ascent and descent are used when it’s added to a vertical
BoxLayout, while its vertical ascent and descent are used when it’s in a horizontal BoxLayout. If
this seems somewhat confusing, keep in mind that the horizontal placement of components
in a horizontal box is simple—they appear next to one another from left to right. Similarly,
for a vertical box, components are simply “stacked” from top to bottom. In either case, the
alignment, ascent, and descent values calculate the component’s position in the remaining

CHAPTER 5 ■ USING LAYOUT MANAGERS242

dimension. You can see an example of this behavior by compiling Listing 5-16, which uses a
vertical BoxLayout.

Listing 5-16. A Simple BoxLayout Test

import java.awt.*;
import javax.swing.*;

public class BoxTest {

public static void main(String[] args) {
JFrame f = new JFrame("Vertical BoxLayout-managed container");
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container pane = f.getContentPane();
pane.setLayout(new BoxLayout(pane, BoxLayout.Y_AXIS));
for (float align = 0.0f; align <= 1.0f; align += 0.25f) {
JButton button = new JButton("X Alignment = " + align);

button.setAlignmentX(align);
pane.add(button);

}
f.setSize(400, 300);
f.setVisible(true);

}

}

When executed, this code produces a display like the one shown in Figure 5-35.

Figure 5-35. An example of a component with varying alignment values arranged by a BoxLayout

In addition to the alignment values assigned to each component, an alignment value
is calculated for a container when it’s managed by a BoxLayout. The container’s horizontal
alignment is calculated by a vertical BoxLayout, and the vertical alignment is used by a hori-
zontal BoxLayout. These are accessible through LayoutManager2’s getLayoutAlignmentX() and

CHAPTER 5 ■ USING LAYOUT MANAGERS 243

getLayoutAlignmentY() methods, although BoxLayout is currently the only layout manager
that returns a meaningful value from those methods.

Layout Alignment Calculations
For a vertical BoxLayout, the container’s X alignment is used to position components within
the container, and its value is derived from the X alignment values of those components. The
layout manager first examines each component and identifies the largest minimum width
ascent and minimum width descent (in other words, ascent and descent values calculated
using the components’ minimum widths) of any component. Once it has identified those two
values, it calculates their sum and divides the largest minimum width ascent by that sum, and
the result of that calculation becomes the container’s alignment.

For example, let’s assume Table 5-11 describes the components in a container managed
by a vertical BoxLayout. As mentioned, the ascent value is calculated by multiplying the
dimension (in this case, the width) by the alignment value, and the descent is the dimension
value minus the ascent.

Table 5-11. Minimum Width, X Alignment, Ascent, and Descent Values for Five Components

Minimum Width X Alignment Ascent Descent

90 0.20 18 72

36 0.75 27 9

80 0.25 20 60

72 0.50 36 36

28 1.00 28 0

In this case, the largest ascent value is 36 and the largest descent is 72. Therefore, the
container’s alignment value is 0.33, as calculated using this formula:

alignment = max(ascent) / (max(ascent) + max(descent))

or using this formula:

alignment = 36 / (36 + 72) = 0.33

Note that although this example examines the calculation of the X alignment for a vertical
BoxLayout, the calculations are the same for a horizontal BoxLayout, although the components’
Y alignments and height values are used instead.

Now that you’ve examined how a container’s alignment is calculated, you may be wonder-
ing why it’s important. Conceptually, you can think of the container’s alignment as defining an
imaginary line (or axis) inside the container around which the components are positioned.
For example, for a vertical BoxLayout, a component with an X alignment of 0.0 will normally
be placed completely to the right of the axis. Similarly, a component with an alignment of 1.0
appears entirely to the left, while a component with an alignment of 0.5 is centered on the axis.
In other words, you can think of the component’s alignment as a value that determines what
portion of the component appears to the left of the container’s axis.

To identify the location of a container’s axis, you can multiply the appropriate alignment
value by the corresponding dimension. For example, if you’re using a horizontal container,

CHAPTER 5 ■ USING LAYOUT MANAGERS244

you’d multiply the container’s actual/current height by its Y alignment value. In Figure 5-36,
the container’s axis is represented graphically by a thick, dark-colored line (although you nor-
mally won’t see such an indication of its location when using a BoxLayout).

Figure 5-36. The container’s axis is displayed graphically to show an example of how BoxPanel
can be used.

However, it’s easy to implement this functionality, which serves a purpose similar to that
of the GridBagCellPanel class defined earlier, as shown in Listing 5-17.

Listing 5-17. Drawing Borders Within a BoxLayout-Managed Container

import java.awt.*;
import javax.swing.*;

public class BoxPanel extends JPanel {

public void paintChildren(Graphics g) {
super.paintChildren(g);
Dimension size = getSize();
LayoutManager manager = getLayout();
if ((manager != null) && (manager instanceof BoxLayout)) {
BoxLayout layout = (BoxLayout)manager;
// There's currently no accessor method that allows
// us to determine the orientation (vertical or
// horizontal) used by a BoxLayout, so we'll hard-code
// this class to assume vertical orientation
boolean vertical = true;
if (vertical) {
int axis = (int)(layout.getLayoutAlignmentX(this) *

size.width);
g.fillRect(axis - 1, 0, 3, size.height);

}

CHAPTER 5 ■ USING LAYOUT MANAGERS 245

else {
int axis = (int)(layout.getLayoutAlignmentY(this) *

size.height);
g.fillRect(0, axis - 1, size.width, 3);

}
}

}

}

Once you’ve compiled BoxPanel, you can easily modify the BoxTest application defined
earlier so that it uses BoxTest:

public static void main(String[] args) {
JFrame f = new JFrame("Vertical BoxLayout-managed container");
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container pane = new BoxPanel();
f.setContentPane(pane);
pane.setLayout(new BoxLayout(pane, BoxLayout.Y_AXIS));
for (float align = 0.0f; align <= 1.0f; align += 0.25f) {
JButton button = new JButton("X Alignment = " + align);
button.setAlignmentX(align);
pane.add(button);

}
f.setSize(400, 300);
f.setVisible(true);

}

Constructing a BoxLayout
BoxLayout is somewhat different from the other layout managers in that its constructor must
be passed a reference to the Container instance that uses it. In addition, you must specify how
the BoxLayout should arrange its components: vertically (in a column) or horizontally (in a
row), specifying either the BoxLayout.Y_AXIS constant or the BoxLayout.X_AXIS constant,
respectively. For example, you can use the following code to create a BoxLayout that will dis-
play its components in a column:

JPanel panel = new JPanel();
BoxLayout bl = new BoxLayout(panel, BoxLayout.Y_AXIS);
panel.setLayout(bl);

In addition to creating a BoxLayout this way, the Box class provides an alternative.
Specifically, it includes static getVerticalBox() and getHorizontalBox() factory methods
that return an instance of Box that uses a BoxLayout to arrange its components. As you might
expect, getVerticalBox() returns a container that arranges its components vertically, while
getHorizontalBox() returns one that arranges its components horizontally. I discuss the Box
class in more detail shortly.

CHAPTER 5 ■ USING LAYOUT MANAGERS246

Constraints
BoxLayout doesn’t support constraints in the traditional sense, and you should use the simple
form of add() when adding a component to a parent container. However, a component’s
alignment values effectively act as constraints by defining how the component should be
placed within its parent container. In addition, JComponent defines setAlignmentX() and
setAlignmentY() mutator methods that allow you to set those values instead of creating a
subclass that overrides the accessor methods.

Child Component Sizes
Before setting the widths of components in a vertical box, BoxLayout calculates an ascent and
a descent value for the container using its current/actual width and its derived alignment
value. In other words, the BoxLayout determines how much space is available on each side of
the container’s axis.

When setting the size of a component in a vertical box, BoxLayout calculates the compo-
nent’s maximum width ascent and maximum width descent. It then compares the component’s
ascent to the container’s ascent and compares the component’s descent to the container’s
descent, selecting the smaller value in each case. In other words, BoxLayout tries to use the
component’s maximum width, but if that width exceeds the size available within the con-
tainer, it uses the container’s preferred width instead.

For many components, this behavior is acceptable because the maximum width is the
same as or is close to the preferred width, but in some cases, the results may not be what you
intended. For example, the existing implementation of BoxTest displays buttons with different
alignment values using the buttons’ preferred sizes. This behavior is consistent with the way
that most other layout managers handle button instances and is appropriate for most situa-
tions. However, suppose you modify the code so it creates instances of JTextField instead of
instances of JButton:

import java.awt.*;
import javax.swing.*;

public class BoxTest {

public static void main(String[] args) {
JFrame f = new JFrame("Vertical BoxLayout-managed container");
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container pane = new BoxPanel();
f.setContentPane(pane);
pane.setLayout(new BoxLayout(pane, BoxLayout.Y_AXIS));
for (float align = 0.0f; align <= 1.0f; align += 0.25f) {

// JButton button = new JButton("X Alignment = " + align);
// button.setAlignmentX(align);
// pane.add(button);

JTextField tf = new JTextField("X Alignment = " + align, 10);
tf.setAlignmentX(align);
pane.add(tf);

CHAPTER 5 ■ USING LAYOUT MANAGERS 247

}
f.setSize(400, 300);
f.setVisible(true);

}

}

As Figure 5-37 illustrates, making these changes to the code does indeed cause text fields
to appear in place of the buttons, but unlike the buttons, the text fields are stretched to fill the
parent container.

Figure 5-37. Text field behavior with BoxLayout isn’t always appropriate.

This occurs because unlike JButton, the JTextField class returns an extremely large value
for its maximum width and height, and BoxLayout uses each component’s maximum width to
determine its size.

Notice that in this example, the container is also filled vertically. When managing a verti-
cal box, BoxLayout attempts to stretch components to fill the container vertically, although it
respects the components’ maximum size values. If the components can’t be stretched to fill
the area vertically, then whitespace appears at the bottom (or at the right for a horizontal box),
as shown earlier.

When components must be stretched vertically because the container is larger than their
combined heights, BoxLayout first calculates how much space remains to be filled. It then
stretches each component vertically by comparing the component’s maximum height to its
preferred height and allocates the extra space based on that difference. In other words, the
closer a component’s maximum size is to its preferred size, the less that component will be
stretched. Components that have the same value for their maximum and preferred sizes will
not be stretched at all, and no component is ever made larger than its maximum size by
BoxLayout.

Although this discussion examines how a BoxLayout sets the sizes for child components in
vertical boxes, the same concepts are applicable to horizontal boxes, but their width values
are used instead of their heights.

CHAPTER 5 ■ USING LAYOUT MANAGERS248

Child Component Locations
The exact location of a child component within a BoxLayout is determined by a complex inter-
action between the child’s size values, its alignment, and the size and alignment values of the
other children in the container. In addition, the order in which a component is added to the
container affects its location, since child components are displayed in top-to-bottom order for
a vertical box and left-to-right order for a horizontal one.

In general, a child component’s position is determined by its alignment values and the
parent container’s alignment value. If the child has an alignment value of 0.0, it appears to the
right of or below the container’s axis. Similarly, an alignment of 0.5 causes it to be centered on
the axis, and a value of 1.0 causes it to appear left of or above the axis.

Resizing Behavior
Increasing and reducing the size of the parent container causes the absolute position of the
container’s axis to change, but the child components remain at the same position relative to
the axis. If the child components were compressed, their sizes will increase as the container
grows, or they may shrink if the container shrinks. For example, Figure 5-38 shows the results
of running the modified BoxTest application and reducing the size of the frame.

Figure 5-38. The text fields become smaller as the size of the BoxLayout-controlled parent con-
tainer decreases.

Container Size
The container’s minimum, preferred, and maximum sizes returned by a BoxLayout are the
sizes needed to display the components using their minimum, preferred, and maximum
sizes, respectively. For example, when using a vertical box, each child component’s size is
calculated using the techniques described earlier; the height of the container will be the sum
of the child components’ heights, and the container’s width will be equal to the width of the
widest child component.

Swing’s Box Class
In addition to BoxLayout, Swing includes the Box class, which provides functionality that’s used
to support BoxLayout. Box is a subclass of java.awt.Container, and you can use an instance of it
as a visual component if it’s convenient to do so. However, you should keep in mind that as a
direct subclass of Container, Box doesn’t inherit the functionality of JComponent, which you’ll
often need.

CHAPTER 5 ■ USING LAYOUT MANAGERS 249

In addition to acting as a visual component, Box provides a number of static “factory meth-
ods” that can be used to create instances of components that make using BoxLayout easier. For
example, the createHorizontalBox() and createVerticalBox() methods return instances of Box
that use a horizontal and vertical BoxLayout, respectively.

Box also provides factory methods that create transparent components that you can add
to a BoxLayout-managed container to provide space between the other components. The three
types of components provided by Box are rigid areas, glue components, and struts.

Rigid Areas
A rigid area is simply a component with no visual representation that has the same dimen-
sions for its minimum and maximum sizes. You must specify the dimensions to be used when
you create a rigid area, which you can do by calling the static createRigidArea() method in
the Box class. In Figure 5-39, a rigid area with a height of 15 has been added between each but-
ton in the original BoxTest class.

Figure 5-39. Rigid areas with heights of 15 here generate whitespace between the components
arranged by the BoxLayout.

You can achieve this by modifying the code as follows:

import java.awt.*;
import javax.swing.*;

public class BoxTest {

public static void main(String[] args) {
JFrame f = new JFrame("Vertical BoxLayout-managed container");
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container pane = new BoxPanel();
f.setContentPane(pane);
BoxLayout bl = new BoxLayout(pane, BoxLayout.Y_AXIS);
pane.setLayout(bl);

CHAPTER 5 ■ USING LAYOUT MANAGERS250

for (float align = 0.0f; align <= 1.0f; align += 0.25f) {
JButton button = new JButton("X Alignment = " + align);
button.setAlignmentX(align);
pane.add(button);
pane.add(Box.createRigidArea(new Dimension(0, 15)));

}
f.setSize(400, 300);
f.setVisible(true);

}
}

Glue
Like a rigid area, a glue component is simply a component with no visual representation, but
unlike a rigid area, you’re not allowed to specify a size when creating an instance of a glue com-
ponent. That’s because while rigid areas occupy some fixed amount of space within containers,
glue components expand and contract based on the amount of space that’s left unused by
other (in other words, nonglue) components. If you think this brief description doesn’t describe
behavior that’s conceptually similar to real-life glue, you’re not alone. While “real” glue causes
things to “stick together,” Swing’s glue components actually allow other components to be
spread apart from one another. Regardless of whether the name is appropriate, glue is the term
we’re stuck with (pun intended).

Which method you call to create a glue object depends upon the orientation of the
BoxLayout you’re using. For a vertical box, you should call the static createVerticalGlue()
method, while createHorizontalGlue() is intended to be used with a horizontal box.

Glue objects fill any extra vertical or horizontal space in a container so that the space won’t
appear at the bottom or right side of the container. Instead, the space is usually distributed
evenly to the glue components. Note that unlike a rigid area, glue components expand and
contract to fill the area between components when the container’s size increases or decreases.
The following is an example of how to use glue, where the BoxTest application has been modi-
fied to add a glue component below each button:

import java.awt.*;
import javax.swing.*;

public class BoxTest {

public static void main(String[] args) {
JFrame f = new JFrame("Vertical BoxLayout-managed container");
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container pane = new BoxPanel();
f.setContentPane(pane);
pane.setLayout(new BoxLayout(pane, BoxLayout.Y_AXIS));
for (float align = 0.0f; align <= 1.0f; align += 0.25f) {
JButton button = new JButton("X Alignment = " + align);
button.setAlignmentX(align);
pane.add(button);

CHAPTER 5 ■ USING LAYOUT MANAGERS 251

pane.add(Box.createVerticalGlue());
}
f.setSize(400, 300);
f.setVisible(true);

}

}

Executing this code produces results like those shown in Figure 5-40, where the extra
vertical space is distributed evenly to each of the glue components.

Figure 5-40. These buttons are separated by “vertical glue.”

As mentioned earlier, extra vertical space is distributed by a vertical BoxLayout based on
the difference between a component’s maximum vertical size and its preferred vertical size. As
you might guess, glue components are simply “dummy” components with a large maximum
size and a minimum size of 0, so in many cases, all extra space will be assigned to them. How-
ever, as you saw earlier with JTextField instances, it’s possible for other components with
large maximum sizes to accidentally be made inappropriately large by a BoxLayout, and this
can occur even when glue components are used.

Struts
One definition of the word strut in the dictionary is, “a brace fitted into a framework to resist
pressure in the direction of its length.” Unlike glue components, struts are appropriately
named. Struts are similar to rigid areas but with an important difference: instead of specifying
both the width and height of the component, you specify a strut’s size in only one dimension.
Specifically, you specify the width when you call createHorizontalStrut() and the height
when calling createVerticalStrut(). The strut uses the value you specify for its minimum,
preferred, and maximum size in that dimension and uses 0 for the other dimension when set-
ting its minimum and preferred heights. However, when setting the maximum size, Box uses a
very large value for the remaining dimension (width for a vertical box and height for a hori-
zontal box), and this can cause undesirable results. Specifically, the presence of a very large

CHAPTER 5 ■ USING LAYOUT MANAGERS252

strut component in the BoxLayout can result in its container being assigned a size that’s larger
than what was intended.

Because rigid areas can provide the same functionality and because there’s a potential
problem associated with the use of struts, you should avoid struts and use rigid areas instead.

Guidelines for Using Layout Managers
Now that I’ve covered the advantages and disadvantages of the layout managers included with
Java, it’s appropriate to discuss some general topics related to how to use layout managers.

Combining Layout Managers
In the previous discussions of layout managers, I treated each one independently of the
other, but it’s common practice for a user interface to use multiple layout managers. In fact,
you’ll often find it necessary or desirable to create a container that uses one type of layout
manager and add child containers to that parent that use different types of layout managers.
For example, suppose you want to create a user interface like the one shown in Figure 5-41.
In this case, the component at the top is displayed using its preferred height and fills the
width of the container. In addition, a row of buttons that are equal in size occupies the bot-
tom, and a component in the center fills the remaining area.

Figure 5-41. Creating even a simple screen such as this one is difficult to do with a single layout
manager.

To some extent, BorderLayout provides the functionality needed to create this component,
but you can’t use it directly to create the bottom row of buttons. That’s because BorderLayout
allows only a single component to be added to a location, such as the SOUTH portion of its con-
tainer. You can resolve this problem by adding the two buttons to a container such as a JPanel
and adding that panel to the parent managed by a BorderLayout. Since the buttons should be
given the same size, GridLayout is the obvious choice for the container that the buttons will be
added to; Listing 5-18 shows the code to implement this.

CHAPTER 5 ■ USING LAYOUT MANAGERS 253

Listing 5-18. Combining Layout Managers

import java.awt.*;
import javax.swing.*;

public class Embedded extends JFrame {

public static void main(String[] args) {
Embedded e = new Embedded();
e.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
e.setSize(400, 300);
e.setVisible(true);

}

public Embedded() {
Container pane = getContentPane();
pane.setLayout(new BorderLayout());
pane.add(getHeader(), BorderLayout.NORTH);
pane.add(getTextArea(), BorderLayout.CENTER);
pane.add(getButtonPanel(), BorderLayout.SOUTH);

}

protected JComponent getHeader() {
JLabel label = new JLabel("Embedded Layout Manager Test",

JLabel.CENTER);
label.setFont(new Font("Courier", Font.BOLD, 24));
return label;

}

protected JComponent getTextArea() {
return new JTextArea(10, 10);

}

protected JComponent getButtonPanel() {
JPanel inner = new JPanel();
inner.setLayout(new GridLayout(1, 2, 10, 0));
inner.add(new JButton("Ok"));
inner.add(new JButton("Cancel"));
return inner;

}

}

As shown in Figure 5-42, this code doesn’t quite achieve the desired results, since the but-
tons have been stretched to fill the width of the container.

CHAPTER 5 ■ USING LAYOUT MANAGERS254

Figure 5-42. The top portion of the window is correct, but the buttons at the bottom have
expanded to fill the entire width of the container.

That’s because the buttons’ parent container was stretched by the BorderLayout so that its
width is equal to the width of the frame, and that in turn causes the GridLayout to stretch the
buttons to fill their parent container. To fix this problem, it’s necessary to put the panel man-
aged by the GridLayout into another container that won’t stretch it. Since FlowLayout always
displays components using their preferred size, you can use it to provide this behavior, so
define an additional FlowLayout-managed JPanel, add the button panel to it, and add the
button panel to the content pane:

protected JComponent getButtonPanel() {
JPanel inner = new JPanel();
inner.setLayout(new GridLayout(1, 2, 10, 0));
inner.add(new JButton("Ok"));
inner.add(new JButton("Cancel"));
JPanel outer = new JPanel();
outer.setLayout(new FlowLayout());
outer.add(inner);
return outer;
// return inner;

}

Finally, running this modified code produces the desired interface that was illustrated at
the start of this section.

You’ll often find it necessary to embed containers within other containers and to use dif-
ferent layout managers when doing so. If you’re creating a complex user interface, it’s often
helpful to conceptually break the interface down into smaller, simpler portions that can be
created using the existing layout managers. Those smaller pieces can then be created and
combined into the large, complex interface instead of trying to produce the desired results
with a single layout manager.

CHAPTER 5 ■ USING LAYOUT MANAGERS 255

Absolute Positioning Without a Layout Manager
Although there’s rarely a reason to do so, you can completely avoid using a layout manager
when designing an interface. However, if you don’t use a layout manager, you’re responsible for
explicitly setting the size and position of each component within a container using Component
methods such as setSize(), setLocation(), and setBounds(). This approach is rarely desirable,
because it usually results in an interface that must be revised to appropriately handle even
minor changes.

If you want to remove the layout manager from a container and explicitly set the size and
position of the components in that container, you can call the setLayout() method and spec-
ify a null value, as shown in the following code:

JPanel panel = new JPanel();
panel.setLayout(null);

When a container displays its child components, it does so using the position and size
values assigned to those components, which are usually set by a layout manager. If you add
a component to a container and don’t set the component’s location, it will appear at the con-
tainer’s origin (in other words, at coordinates 0, 0). However, if you add a component to a
container and don’t specify the component’s size, it will not appear at all, because its width
and height values will both be 0. The preferred, minimum, and maximum size values are used
by layout managers to determine the size that should be used for a component, but compo-
nents aren’t automatically set to any of those three sizes when created.

Invisible Components
Components that have their visibility flag set to false don’t appear when their parent container
is displayed, and you can query and modify the visibility flag using Component’s isVisible() and
setVisible() methods. In general, layout managers ignore invisible components inside their
layoutContainer() method, causing the container to be formatted as though the invisible com-
ponents had not been added.

You’ll most often use invisible components when some portion of your user interface
shouldn’t always be displayed. For example, your interface might have a menu item that
allows the user to toggle the display status of some element such as a toolbar or status bar.
In that case, you could add the element to the container when the container is being con-
structed but make it invisible until it should be displayed.

Depending upon the superclass of the component that’s made visible or invisible, it may
be necessary for you to use revalidate() to cause the layout manager to reposition and resize
the components in the container. JComponent subclasses automatically trigger this behavior,
but others don’t.

Specifying an Index When Adding a Component
Earlier, you saw that each Container maintains a list of child components and that the com-
ponents are listed in the order in which they were added to the container. Normally when a
component is added to a container, that component is added to the end of the container’s
list. However, if you prefer to insert the component at a particular position within the list,
you can use one of two additional forms of the add() method that weren’t previously men-
tioned in this chapter:

CHAPTER 5 ■ USING LAYOUT MANAGERS256

• add(Component comp, int index)

• add(Component comp, Object constraints, int index)

As you’ve seen, some layout managers position child components within the container
based on when they were added. In reality, that behavior is based on the component’s index
value (its position within the parent container’s list), which is assumed to reflect the sequence
in which the components were added to the container. In most cases where the index value is
significant, you’ll simply add components in the order you want them to appear. However, for
various reasons, it’s not always possible or desirable to do so, and you’ll want to explicitly
specify an index value when adding a child component.

A component’s place in the list is sometimes significant for another reason as well, since
its index value (also called its Z-order) defines its position on the Z axis. In other words, the
order in which two components appear in their parent container’s list determines which com-
ponent appears “in front of” the other. When a container receives a paint() request, it paints
its children in reverse order (from last to first), so the most recently added child appears
“behind” the others, and the first one appears “in front.”

Z-order isn’t usually important because layout managers normally don’t allow compo-
nents to occupy the coordinates within their parent container. However, if you’re not using a
layout manager or if you’re using one that allows components to overlap one another, Z-order
can become significant. For example, the following application defines two JButton instances
that partially overlap:

import java.awt.*;
import javax.swing.*;

public class ZOrder extends JPanel {

public static void main(String[] args) {
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setContentPane(new ZOrder());
f.setSize(400, 300);
f.setVisible(true);

}

public ZOrder() {
setLayout(null);
JButton first = new JButton("This button is added first");
first.setBounds(20, 50, 200, 30);
add(first);
JButton second = new JButton("This button is added second");
second.setBounds(120, 65, 200, 30);
add(second);

}

}

CHAPTER 5 ■ USING LAYOUT MANAGERS 257

If you compile and run this application, it displays the first button in front of the second
one, as shown in Figure 5-43, which is the expected result based on the behavior described.

Figure 5-43. The “first” button appears on top of the “second” one, at least initially.

However, if you move the cursor over the second button, that button will appear in front
of the first one, which may seem to contradict the statements that have been made concern-
ing Z-order (see Figure 5-44).

Figure 5-44. Once the cursor is moved over the “second” button, it appears to be on top of the
“first” one.

In reality, the second button is still behind the first one in those cases, but it has been
repainted while the first one hasn’t been, so the second one seems to be in front. Moving the
mouse over a component causes the component to be repainted so that it will repair the
“damage” done when the cursor painted over part of the component, which is why this
behavior occurs. You can prove that the first button is still in front by moving the mouse over
the portion of the interface where the two buttons overlap one another, at which time the first
button will be repainted and again appear in front of the second one.

CHAPTER 5 ■ USING LAYOUT MANAGERS258

Note that unlike a component’s X and Y coordinates, Z-order can be set only when a com-
ponent is added to a container. Therefore, if you want to change a component’s Z-order, you
must remove it from the container and add it again, explicitly specifying the new index value
when you call the add() method.

Creating Your Own Layout Manager
The layout managers you’ve examined so far are a standard part of Java and provide enough
functionality to allow you to create very complex and flexible layouts. However, the existing
layout managers are sometimes not capable of setting the size or position of components the
way you’d like, and in that situation, you may choose to create your own layout manager.

For example, suppose you want to create a component that allows you to select items
from a list like the one shown in Figure 5-45 and that you have the following requirements that
must be met:

• The column of buttons in the middle of the component should always be displayed
using its preferred size.

• The two JList components should both be the same size vertically and horizontally,
and they should shrink or expand to fill the container’s remaining horizontal space
after the center component has been allocated its preferred size.

Figure 5-45. Creating a panel like the one shown here can be difficult with Java’s standard
layout managers.

Given these requirements, none of the layout managers you’ve already seen is appropri-
ate for this custom component, primarily because of the requirement that the two JList
components be the same size. Only GridLayout allows you to ensure that two components
have the same horizontal and vertical size, but using that layout manager would also cause
the button column in the center to have the same size as the JList instances. GridBagLayout
allows you to assign all components in a row the same height or all components in a column
the same width, but it doesn’t provide you with a way to make components the same size in

CHAPTER 5 ■ USING LAYOUT MANAGERS 259

both dimensions. In this case, it’s necessary to create a layout manager to support this compo-
nent; for this example, you’ll name this new layout manager class DividerLayout.

As it turns out, creating a custom layout manager is simple. All you need to do is create a
class that implements the LayoutManager2 interface defined in the java.awt package. You’ll
begin by examining the methods defined in LayoutManager2 that your custom layout manager
class must implement, and then you’ll examine those in the LayoutManager class, since it’s the
superclass of LayoutManager2.

When considering how you’ll implement these methods, keep in mind that a layout man-
ager instance is associated with and used by a Container and that these methods shouldn’t
normally be called directly by your application code.

With the exception of removeLayoutComponent() and the overloaded addLayoutComponent(),
all methods defined in LayoutManager and LayoutManager2 are passed a reference to the parent
container associated with the layout manager instance.

LayoutManager2 Methods
This interface defines five methods, three of which will normally contain little or no code.
LayoutManager2 didn’t exist in Java 1.0 but was added in 1.1 to provide support for new fea-
tures such as alignment values, maximum sizes (Java 1.0 supported only minimum and
preferred sizes), and a more generic add() method.

addLayoutComponent(Component, Object)
This method is called by the layout manager’s container when its add() method is invoked,
indicating that a component should be added to the container. The container passes the
request along to the layout manager so that the manager can take whatever action is neces-
sary, such as creating a copy of the constraint information and defining a relationship
between the component and the constraint data. For example, GridBagLayout creates a clone
of the GridBagConstraints object that’s passed to it and associates that GridBagConstraints
clone with the component by adding an entry to a Hashtable.

As mentioned earlier in this chapter, the layout manager isn’t responsible for maintaining
a list of the components that have been added to the container. That task is performed by the
container itself, and the list of components maintained by the container is accessible through
its getComponents() method. In fact, FlowLayout and GridLayout don’t maintain references to
the components added to the layout, since they don’t support any constraint information.
Instead, they position each component based on when it was added to the Container, and
they’re able to do this because the array returned by getComponents() lists the components
in the order in which they were added to the container. Only when a layout manager needs to
associate constraint information with a component will it normally maintain references to
the components.

When you create a custom layout manager, you’ll need to decide whether any constraint
information should be specified when a component is added. If the layout manager doesn’t
need constraint information, then the application can simply call the add() method in
Container that accepts a single component instance.

If your layout manager does need constraint information, you can create a custom class
such as GridBagConstraints that encapsulates the information, or if the constraint informa-
tion is simple, you can use an existing class. For example, the DividerLayout requires some

CHAPTER 5 ■ USING LAYOUT MANAGERS260

type of constraint information that identifies which position (left, center, or right) the com-
ponent should occupy. Since DividerLayout is somewhat similar to BorderLayout, for this
example you’ll define three String constants called WEST, CENTER, and EAST that correspond
to the three positions available within the container:

import java.awt.*;

public class DividerLayout implements LayoutManager2 {

public final static String WEST = "WEST";
public final static String EAST = "EAST";
public final static String CENTER = "CENTER";

protected Component westComponent;
protected Component centerComponent;
protected Component eastComponent;

// Methods go here ...
}

In addition, DividerLayout needs to associate a component with its constraint value so
that the component’s position can be selected when the time comes to set the sizes and posi-
tions of the container’s child components:

public void addLayoutComponent(Component comp, Object constraints) {
if (WEST.equalsIgnoreCase((String)constraints)) {
westComponent = comp;

}
else if (CENTER.equalsIgnoreCase((String)constraints)) {
centerComponent = comp;

}
else if (EAST.equalsIgnoreCase((String)constraints)) {
eastComponent = comp;

}
}

maximumLayoutSize()
This method is called by a container when its getMaximumSize() method is called. The layout
manager is responsible for calculating the amount of space that the container needs in order
to display all its components using their maximum sizes.

In the case of DividerLayout, it identifies the largest height value from the three compo-
nents and determines which of the two outer components has a larger width value. That width
value is multiplied by 2 since there are two “outer” components that will be assigned identical
widths, and the result is added to the width of the center component, as follows:

public Dimension maximumLayoutSize(Container target) {
Dimension size;

CHAPTER 5 ■ USING LAYOUT MANAGERS 261

int width = 0;
int height = 0;
if ((westComponent != null) && (westComponent.isVisible())) {
size = westComponent.getMaximumSize();
width = Math.max(width, size.width);
height = Math.max(height, size.height);

}
if ((eastComponent != null) && (eastComponent.isVisible())) {
size = eastComponent.getMaximumSize();
width = Math.max(width, size.width);
height = Math.max(height, size.height);

}
width *= 2;
if ((centerComponent != null) && (centerComponent.isVisible())) {
size = centerComponent.getPreferredSize();
width += size.width;
height = Math.max(height, size.height);

}
return new Dimension(width, height);

}

getLayoutAlignmentX() and getLayoutAlignmentY()
These methods are provided for layout managers such as BoxLayout that use an alignment
value to position the components within the container. Like most layout managers, however,
DividerLayout doesn’t use alignment values, so the value returned isn’t important; the follow-
ing code shows “dummy” implementations:

public float getLayoutAlignmentX(Container target) {
return 0.0f;

}
public float getLayoutAlignmentY(Container target) {
return 0.0f;

}

invalidateLayout()
This method is called to indicate to the layout manager that it should clear any cached infor-
mation related to the size and position of the container’s components. This is related only
to information that has been derived by the layout manager itself, and a call to this method
doesn’t indicate constraint information that was explicitly passed to the layout manager should
be discarded. For example, if your layout manager performs computations that are slow and
complex, it may be worthwhile to cache the results of those computations. Like most layout
managers, no action needs to be taken in DividerLayout’s implementation of this method:

public void invalidateLayout(Container target) {
}

CHAPTER 5 ■ USING LAYOUT MANAGERS262

LayoutManager Methods
This is the interface originally included in Java 1.0 for creating a layout manager. It defines
basic methods related to managing the components added to a container.

addLayoutComponent (String, Component)
This is the method that was originally used for adding a child component to a parent con-
tainer, but this method has effectively been deprecated. It’s not marked as deprecated by a
javadoc-style @deprecated tag, but it’s deprecated conceptually, because another, more flexible
method exists and should be used instead. In fact, as you’ll see shortly, the implementation
of this method in DividerLayout does nothing more than call its replacement, which is the
addLayoutComponent() method defined in LayoutManager2.

This method was provided to allow String constraint values to be passed to CardLayout
and BorderLayout instances. However, because this method accepts only a String value, you
can’t pass any other type of object to represent the constraints. For example, since an instance
of GridBagConstraints isn’t a subclass of String, you can’t use it as an argument with the add()
method in Java 1.0. Instead, it’s necessary to call GridBagLayout’s setConstraints() method to
associate the GridBagConstraints with a component, as shown in the following code:

GridBagLayout gbl = new GridBagLayout();
setLayout(gbl);
GridBagConstraints gbc = new GridBagConstraints();
Button btn = new Button("Testing");
gbl.setConstraints(btn, gbc);
add(btn);

With the addition of the more generic addLayoutComponent() method in LayoutManager2,
it’s now possible to pass any type of Object to the layout manager when you call add(). In
Java 1.1, GridBagLayout was modified to extend LayoutManager2, so you can now add a compo-
nent to a container and specify that component’s constraints at the same time, as follows:

GridBagLayout gbl = new GridBagLayout();
setLayout(gbl);
GridBagConstraints gbc = new GridBagConstraints();
Button btn = new Button("Testing");
// gbl.setConstraints(btn, gbc);
// add(btn);
add(btn, gbc);

As mentioned, you’ll normally implement this method by delegating the call to the
addLayoutComponent() method defined in LayoutManager2, which you can do by simply
reversing the order of the parameter values as follows. Alternatively, you may simply choose
to ignore a call to this method completely if your custom layout manager doesn’t accept a
String instance for a constraint parameter.

public void addLayoutComponent(String name, Component comp) {
// The following line can be commented out without
// affecting this layout manager
addLayoutComponent(comp, name);

}

CHAPTER 5 ■ USING LAYOUT MANAGERS 263

removeLayoutComponent()
This method is called when a component is removed from the container. Your custom layout
manager should remove any references to the component, as well as any data it maintains
that’s related to the component, such as constraint information. The following is the imple-
mentation of this method in DividerLayout:

public void removeLayoutComponent(Component comp) {
if (comp == westComponent) {
westComponent = null;

}
else if (comp == centerComponent) {
centerComponent = null;

}
else if (comp == eastComponent) {
centerComponent = null;

}
}

preferredLayoutSize() and minimumLayoutSize()
preferredLayoutSize() is similar to the maximumLayoutSize() method described earlier; in
fact, its implementation will often differ only in that it calls the getPreferredSize() method
for each component instead of getMaximumSize(). The purpose of this method is to calculate
the preferred size of the Container instance associated with this layout manager. The following
is the implementation of this method in DividerLayout:

public Dimension preferredLayoutSize(Container parent) {
Dimension size;
int width = 0;
int height = 0;
if ((westComponent != null) && (westComponent.isVisible())) {
size = westComponent.getPreferredSize();
width = Math.max(width, size.width);
height = Math.max(height, size.height);

}
if ((eastComponent != null) && (eastComponent.isVisible())) {
size = eastComponent.getPreferredSize();
width = Math.max(width, size.width);
height = Math.max(height, size.height);

}
width *= 2;
if ((centerComponent != null) && (centerComponent.isVisible())) {
size = centerComponent.getPreferredSize();
width += size.width;
height = Math.max(height, size.height);

}
return new Dimension(width, height);

}

CHAPTER 5 ■ USING LAYOUT MANAGERS264

Similarly, minimumLayoutSize() differs only in that it calls the getMinimumSize() method
instead of getPreferredSize() or getMaximumSize(); the purpose of this method is to calculate
the minimum size of the Container instance associated with this layout manager:

public Dimension minimumLayoutSize(Container parent) {
Dimension size;
int width = 0;
int height = 0;
if ((westComponent != null) && (westComponent.isVisible())) {
size = westComponent.getMinimumSize();
width = Math.max(width, size.width);
height = Math.max(height, size.height);

}
if ((eastComponent != null) && (eastComponent.isVisible())) {
size = eastComponent.getMinimumSize();
width = Math.max(width, size.width);
height = Math.max(height, size.height);

}
width *= 2;
if ((centerComponent != null) && (centerComponent.isVisible())) {
size = centerComponent.getPreferredSize();
width += size.width;
height += Math.max(height, size.height);

}
return new Dimension(width, height);

}

layoutContainer()
This is the method that’s responsible for setting the size and position of the child components
within a container and is called when the container’s doLayout() method is invoked.

Within this method, you’ll typically use the preferred, minimum, or maximum compo-
nent sizes, or some combination of those, and you should use methods defined in Component
such as setSize(), setLocation(), and setBounds() to modify each component’s size and/or
position.

When implementing layoutContainer(), you should keep in mind that the size of the
container may or may not be the same size that your class returned from minimumLayoutSize(),
preferredLayoutSize(), or maximumLayoutSize(). In other words, you may have to allocate
excess space or shrink your components, depending upon what you decide is appropriate for
your layout manager. For example, in the case of DividerLayout, the two outer components are
expected to shrink or expand to fill the space that remains after the middle component is allo-
cated its preferred size.

Finally, you should be aware that it’s standard practice to ignore components that are
invisible, which can be determined by calling the isVisible() method. I discuss the reasons
for making components invisible in more detail later, but you should keep this guideline in
mind when designing a custom layout manager. Listing 5-19 shows the implementation of
layoutContainer() and includes logic that will ignore components that are invisible.

CHAPTER 5 ■ USING LAYOUT MANAGERS 265

Listing 5-19. Implementing layoutContainer()

public void layoutContainer(Container container) {
Insets insets = container.getInsets();
Dimension westSize = new Dimension(0, 0);
Dimension centerSize = new Dimension(0, 0);
Dimension eastSize = new Dimension(0, 0);
Rectangle centerBounds = new Rectangle(0, 0, 0, 0);
Dimension containerSize = container.getSize();
int centerX = containerSize.width / 2;
int centerY = containerSize.height / 2;
if ((centerComponent != null) &&

(centerComponent.isVisible())) {
centerSize = centerComponent.getPreferredSize();
centerSize.width = Math.min(centerSize.width,

containerSize.width - insets.left -
insets.right);

centerSize.height = Math.min(centerSize.height,
containerSize.height - insets.top -
insets.bottom);

centerComponent.setBounds(centerX -
(centerSize.width / 2),
centerY - (centerSize.height / 2),
centerSize.width, centerSize.height);

centerBounds = centerComponent.getBounds();
}
if ((westComponent != null) && (westComponent.isVisible())) {
westSize = westComponent.getPreferredSize();

}
if ((eastComponent != null) && (eastComponent.isVisible())) {
eastSize = eastComponent.getPreferredSize();

} int maxWidth = Math.min(westSize.width, eastSize.width);
maxWidth = Math.max(maxWidth, (containerSize.width -

centerBounds.width - insets.left -
insets.right) / 2);

int maxHeight = Math.min(westSize.height, eastSize.height);
maxHeight = Math.min(maxHeight, containerSize.height -

insets.top - insets.bottom);
if (westComponent != null) {
westComponent.setBounds(centerBounds.x - maxWidth,

centerY - (maxHeight / 2),
maxWidth, maxHeight);

}
if (eastComponent != null) {
eastComponent.setBounds(centerBounds.x +

centerBounds.width,
centerY - (maxHeight / 2),
maxWidth, maxHeight);

}
}

CHAPTER 5 ■ USING LAYOUT MANAGERS266

Using a Custom Layout Manager
You’ve now examined each of the methods you must implement to create a custom layout
manager, and you can download the completed DividerLayout source code from the Apress
web site. To see how it’s used, you can also download, compile, and run the SelectorPanel
class stored there as well.

Finally, you can easily test this new class by compiling and executing the following code:

import java.awt.*;
import javax.swing.*;

public class SelectorTest extends JPanel {

public static void main(String[] args) {
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container pane = f.getContentPane();
pane.setLayout(new BorderLayout());
Object[] values = {"Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday"};
SelectorPanel sp = new SelectorPanel(values);
sp.setBorder(BorderFactory.createEmptyBorder(5, 10, 5, 10));
pane.add(sp);
f.setSize(400, 300);
f.setVisible(true);

}

}

Summary
In this chapter, I covered the following topics related to layout managers:

• The layout managers provided with the Java core classes and how they work

• How and when to create a custom layout manager class

• How to use layout managers together to build complex user interfaces

• How and when to use absolute positioning instead of a layout manager

• The behavior of layout managers with respect to invisible components

• The importance of Z-order and how to control it

CHAPTER 5 ■ USING LAYOUT MANAGERS 267

Using Swing’s JTable

Many applications need to display data in a tabular form, and Swing provides a table com-
ponent (also sometimes called a grid) that allows you to do so. The JTable class, defined in
the javax.swing package, provides a great deal of functionality that you can use to create a
user interface for viewing and updating data. This chapter covers some of the functionality
that’s commonly needed when using a table component and illustrates how to implement it
using JTable. In the process, you’ll learn a great deal about how JTable works, how to use its
existing capabilities, and how to extend its capabilities.

In this chapter, I’ll cover a variety of topics related to JTable, including the following:

• Creating a data model for a table

• Assigning column widths

• Using different data models

• Cell rendering and editing

• Handling cell selections

• Working with table headers

• Implementing sort functionality for table rows

Figure 6-1 shows an example of how a JTable component appears.

Figure 6-1. An example of how a JTable might be used

269

C H A P T E R 6

■ ■ ■

CHAPTER 6 ■ USING SWING'S JTABLE270

Besides the obvious ability to display information, JTable also allows you to easily edit the
information, set column headers and widths, and control how information is displayed within
the table. However, the most basic function is that of displaying the data, and before you can
display information in a JTable, you must encapsulate the data in a data model and make the
model available to the table.

The Data Model
In addition to the JTable class, which represents the visual table component, Swing
provides a number of support classes that are used by JTable, and they’re defined in the
javax.swing.table package. Perhaps the most important support class is TableModel, which
defines the interface between a JTable and its data model. Like other Swing components,
JTable uses a model/view/controller design that separates the visual component (a JTable
instance) from its data (a TableModel implementation). This provides greater flexibility and
reusability but can also make JTable more complex to use. Fortunately, programmers can
insulate themselves from much of the complexity by using some of the default implementa-
tions provided with Swing.

As you might expect, the TableModel associated with a JTable is responsible for providing
the table with the data that it displays, but the model is also responsible for providing some
information that may not be as obvious, including the following:

• The dimensions of the table (in other words, the number of rows and the number of
columns in the table)

• The type of data contained within each column within the table

• The column headers that should be displayed

• Whether the value in a given cell can be edited

Although this example is somewhat contrived, you’ll use the data that’s hard-coded in
Listing 6-1 for most of the chapter. In reality, the data displayed in a JTable is usually retrieved
from some external source such as a relational database table. However, the TableValues class
is convenient because it can be created easily and allows you to create sample JTable code
without also writing JDBC code, which makes the examples easier to follow.

Listing 6-1. A Class That Contains Table Data

import java.util.Calendar;
import java.util.GregorianCalendar;

public class TableValues {

public final static int FIRST_NAME = 0;
public final static int LAST_NAME = 1;
public final static int DATE_OF_BIRTH = 2;
public final static int ACCOUNT_BALANCE = 3;
public final static int GENDER = 4;

public final static boolean GENDER_MALE = true;
public final static boolean GENDER_FEMALE = false;

public Object[][] values = {
{
"Clay", "Ashworth",
new GregorianCalendar(1962, Calendar.FEBRUARY, 20).getTime(),
new Float(12345.67), new Boolean(GENDER_MALE)

}, {
"Jacob", "Ashworth",
new GregorianCalendar(1987, Calendar.JANUARY, 6).getTime(),
new Float(23456.78), new Boolean(GENDER_MALE)

}, {
"Jordan", "Ashworth",
new GregorianCalendar(1989, Calendar.AUGUST, 31).getTime(),
new Float(34567.89), new Boolean(GENDER_FEMALE)

}, {
"Evelyn", "Kirk",
new GregorianCalendar(1945, Calendar.JANUARY, 16).getTime(),
new Float(-456.70), new Boolean(GENDER_FEMALE)

}, {
"Belle", "Spyres",
new GregorianCalendar(1907, Calendar.AUGUST, 2).getTime(),
new Float(567.00), new Boolean(GENDER_FEMALE)

}
};

}

At this point, the class contains only data and no executable code, but as you’ll see shortly,
you can easily transform it into a TableModel implementation that can expose the data to a
JTable. Before doing so, you may want to briefly study the class diagram shown in Figure 6-2,
which describes the TableModel interface and its methods.

Figure 6-2. A simple class diagram showing the methods defined in TableModel

With nine methods to implement, the interface might appear complex and tedious to
implement to someone who wants to create a table quickly. However, Java also provides the
AbstractTableModel and DefaultTableModel classes, which both implement the TableModel

CHAPTER 6 ■ USING SWING'S JTABLE 271

interface and which can be used with minimal effort. In fact, you can extend the
AbstractTableModel by implementing three simple methods:

• One that returns the row count

• Another that returns the column count

• A third that returns the value associated with a particular cell

Listing 6-2 shows an example of how to implement this; the code modifies the
TableValues class to extend AbstractTableModel and implements its three abstract methods.

Listing 6-2. Extending AbstractTableModel

import java.util.Calendar;
import java.util.GregorianCalendar;
import javax.swing.table.AbstractTableModel;

public class TableValues extends AbstractTableModel {

public final static int FIRST_NAME = 0;
public final static int LAST_NAME = 1;
public final static int DATE_OF_BIRTH = 2;
public final static int ACCOUNT_BALANCE = 3;
public final static int GENDER = 4;

public final static boolean GENDER_MALE = true;
public final static boolean GENDER_FEMALE = false;

public Object[][] values = {
{
"Clay", "Ashworth",
new GregorianCalendar(1962, Calendar.FEBRUARY, 20).getTime(),
new Float(12345.67), new Boolean(GENDER_MALE)

}, {
"Jacob", "Ashworth",
new GregorianCalendar(1987, Calendar.JANUARY, 6).getTime(),
new Float(23456.78), new Boolean(GENDER_MALE)

}, {
"Jordan", "Ashworth",
new GregorianCalendar(1989, Calendar.AUGUST, 31).getTime(),
new Float(34567.89), new Boolean(GENDER_FEMALE)

}, {
"Evelyn", "Kirk",
new GregorianCalendar(1945, Calendar.JANUARY, 16).getTime(),
new Float(-456.70), new Boolean(GENDER_FEMALE)

}, {

CHAPTER 6 ■ USING SWING'S JTABLE272

"Belle", "Spyres",
new GregorianCalendar(1907, Calendar.AUGUST, 2).getTime(),
new Float(567.00), new Boolean(GENDER_FEMALE)

}
};

public int getRowCount() {
return values.length;

}

public int getColumnCount() {
return values[0].length;

}

public Object getValueAt(int row, int column) {
return values[row][column];

}

}

Creating a TableModel implementation is a trivial matter when using AbstractTableModel,
and in this case, it requires just a single line for each of the three methods implemented.
Although the DefaultTableModel provides a way to create a TableModel that’s sometimes even
easier, its use isn’t recommended, primarily because it creates its own references to the cell
data. Besides being less scalable and less flexible, that approach complicates the issue of edit-
ing, which I’ll cover later. To understand why DefaultTableModel isn’t scalable, it’s necessary to
have some understanding of how JTable works.

As you’ve seen, the TableModel is responsible for indicating how many rows and columns
the table contains, and getRowCount() and getColumnCount() are called immediately when a
table is created and displayed. However, the table never maintains references to the data from
the TableModel but simply accesses the information long enough to render it when needed.
For example, suppose you create a model that returns a value of 100 from getRowCount(), but
your table is inside a JScrollPane and the display area is large enough to display only ten rows
at once. When the table is displayed, it will initially access the first ten rows of data in the
TableModel and will access the data for the other rows only when (or if) you scroll down so
that they’re displayed within the JScrollPane’s viewport. Why is this behavior important? It
allows you to display extremely large amounts of data within a JTable without having all the
data loaded into memory simultaneously. Instead, your TableModel can load the data it needs
in an “on-demand” (or if you prefer, “just-in-time”) fashion, which allows you to minimize the
amount of memory used.

With this point in mind, let’s return to the discussion of DefaultTableModel and con-
sider the implications of it creating a reference to each of the data items it encapsulates.
Since it requires a reference to each item, all its data must be in memory for as long as the
model is in use; it can’t respond to data retrieval requests on an “as-needed” basis. There-
fore, since DefaultTableModel has potentially serious drawbacks and is only slightly easier
to use, you should generally use AbstractTableModel instead. You may still choose to use
DefaultTableModel if your table will contain only a small amount of data, since it’s always

CHAPTER 6 ■ USING SWING'S JTABLE 273

faster to have data cached in memory. However, if your table will contain a large amount of
data and memory utilization is a concern, you’ll want to use AbstractTableModel. When you
create a subclass of AbstractTableModel, that class is completely responsible for accessing
the data that’s needed by the table. Your implementation might cache data in memory the
way DefaultTableModel does, or you might leave the data in some external location such
as a relational database and access it only when it’s needed. In the case of the TableValues
class, you hard-coded data into a class for the sake of convenience, but a more realistic
scenario would be to have the data retrieved from a database or a disk file.

Now that you’ve created a TableModel implementation, it’s possible to create a JTable and
populate it with the data stored in the TableValues class, as shown in the following code:

import java.awt.*;
import javax.swing.*;

public class SimpleTableTest extends JFrame {

protected JTable table;

public static void main(String[] args) {
SimpleTableTest stt = new SimpleTableTest();
stt.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
stt.setSize(400, 200);
stt.setVisible(true);

}

public SimpleTableTest() {
Container pane = getContentPane();
pane.setLayout(new BorderLayout());
TableValues tv = new TableValues();
table = new JTable(tv);
pane.add(table, BorderLayout.CENTER);

}

}

This application provides a simple table that displays the TableValues data, as shown in
Figure 6-3.

Figure 6-3. The initial display produced by the SimpleTableTest class

CHAPTER 6 ■ USING SWING'S JTABLE274

However, this has several problems. For example, if the frame is resized so that it’s smaller
than the table, portions of the data are invisible and inaccessible, as shown in Figure 6-4.

Figure 6-4. Making the frame smaller causes the cells to partially conceal their contents.

In addition, several of the columns format their data in a way that’s not appropriate or not
ideal. For example, the Gender column displays “true” or “false” instead of “Male” or “Female,”
and the Account Balance column correctly displays the numeric value but doesn’t use cur-
rency conventions.

Using JScrollPane with JTable
As in any case where there may be too much information to display at one time, you can use
the JScrollPane class to allow large amounts of data to be viewed. In fact, instances of JTable
should almost always be displayed inside a JScrollPane, because as well as allowing you to
view large tables, JScrollPane also provides support for column headers.

You can supply the column headers by implementing the getColumnName() method in
your TableModel, or they will default to a letter of the alphabet, with a header of A for the first
column, B for the second, and so on. Listing 6-3 shows a modified version of TableValues that
returns the column names.

Listing 6-3. Specifying Column Names

import java.util.Calendar;
import java.util.GregorianCalendar;
import javax.swing.table.AbstractTableModel;

public class TableValues extends AbstractTableModel {

public final static int FIRST_NAME = 0;
public final static int LAST_NAME = 1;
public final static int DATE_OF_BIRTH = 2;
public final static int ACCOUNT_BALANCE = 3;
public final static int GENDER = 4;

public final static boolean GENDER_MALE = true;
public final static boolean GENDER_FEMALE = false;

CHAPTER 6 ■ USING SWING'S JTABLE 275

public final static String[] columnNames = {
"First Name", "Last Name", "Date of Birth", "Account Balance",
"Gender"

};

public Object[][] values = {
{
"Clay", "Ashworth",
new GregorianCalendar(1962, Calendar.FEBRUARY, 20).getTime(),
new Float(12345.67), new Boolean(GENDER_MALE)

}, {
"Jacob", "Ashworth",
new GregorianCalendar(1987, Calendar.JANUARY, 6).getTime(),
new Float(23456.78), new Boolean(GENDER_MALE)

}, {
"Jordan", "Ashworth",
new GregorianCalendar(1989, Calendar.AUGUST, 31).getTime(),
new Float(34567.89), new Boolean(GENDER_FEMALE)

}, {
"Evelyn", "Kirk",
new GregorianCalendar(1945, Calendar.JANUARY, 16).getTime(),
new Float(-456.70), new Boolean(GENDER_FEMALE)

}, {
"Belle", "Spyres",
new GregorianCalendar(1907, Calendar.AUGUST, 2).getTime(),
new Float(567.00), new Boolean(GENDER_FEMALE)

}
};

public int getRowCount() {
return values.length;

}

public int getColumnCount() {
return values[0].length;

}

public Object getValueAt(int row, int column) {
return values[row][column];

}

public String getColumnName(int column) {
return columnNames[column];

}

}

CHAPTER 6 ■ USING SWING'S JTABLE276

You’ll now modify the SimpleTableTest constructor so that it encloses the table within a
JScrollPane:

public SimpleTableTest() {
Container pane = getContentPane();
pane.setLayout(new BorderLayout());
TableValues tv = new TableValues();
table = new JTable(tv);
// pane.add(table, BorderLayout.CENTER);
JScrollPane jsp = new JScrollPane(table);
pane.add(jsp, BorderLayout.CENTER);

}

Now that the table is displayed inside a JScrollPane, the column headers appear, as
shown in Figure 6-5.

Figure 6-5. Tables are normally displayed within a JScrollPane, which allows the headers to
appear and results in vertical scrollbars appearing when needed.

You might also expect that resizing the frame (and as a result, the table) will cause scroll-
bars to appear when there’s not enough space to display all the data. As Figure 6-6 shows, a
vertical scrollbar does appear when the table is reduced in size, but instead of a horizontal
scrollbar appearing, each column shrinks and expands along with the table.

Figure 6-6. Instead of a horizontal scrollbar appearing when the table is too narrow to com-
pletely display its contents, the cells become smaller.

To understand why this occurs, it’s necessary to examine the design of JTable and how
some of its support classes function.

CHAPTER 6 ■ USING SWING'S JTABLE 277

JTable’s Column-Oriented Design
The design of the JTable component is very much column-oriented, and each JTable contains a
reference to an implementation of the TableColumnModel interface. A TableColumnModel, such as
DefaultTableColumnModel defined in javax.swing.table, describes a set of columns displayed
by a JTable and represents each column with an instance of the TableColumn class. For exam-
ple, suppose you define a TableModel that contains five columns of data. If you then create an
instance of JTable using that model, the table creates an instance of DefaultTableColumnModel,
retrieves the column count from the TableModel, and creates and adds five TableColumn
instances to the DefaultTableColumnModel.

Each instance of TableColumn contains information such as the column header; the cur-
rent, minimum, maximum, and preferred width values for the column; and a flag that indicates
whether the column can be resized. When created, a column’s current and preferred width val-
ues are initially set to 75, the minimum is set to 15, and the maximum width is effectively set to
infinity (Integer.MAX_VALUE).

After you create a column, you can change its width values explicitly by using the
setWidth(), setMinWidth(), setMaxWidth(), and setPreferredWidth() methods for the current,
minimum, maximum, and preferred widths, respectively. In addition, you can modify a col-
umn’s current width if the size of the table that it’s a part of changes.

Each JTable instance has an auto resize mode setting, which can be one of five values that
correspond to constants defined in JTable:

• AUTO_RESIZE_ALL_COLUMNS

• AUTO_RESIZE_LAST_COLUMN

• AUTO_RESIZE_NEXT_COLUMN

• AUTO_RESIZE_OFF

• AUTO_RESIZE_SUBSEQUENT_COLUMNS

The value of this setting determines how or if the table’s columns are resized when the
width of the table or one of the columns changes.

Table Resizing
If the table’s auto resize mode is set to AUTO_RESIZE_OFF, changing the size of the table doesn’t
affect the current size of the columns within the table. When it’s set to any of the other four
values, however, a change to the table’s width is distributed among all the columns in the table
proportionally based on their preferred sizes. For example, suppose that a table contains two
columns and that one of the columns has a preferred width of 200 and the other a preferred
width of 100. In that case, the first column occupies two-thirds of the table’s horizontal space,
and the second column occupies the remaining one-third. If the table is then made 30 pixels
wider, 20 of the additional pixels will be distributed to the first column, and 10 to the second
one. This allows the column sizes to remain proportionally the same relative to one another,
regardless of changes to the table’s actual size.

CHAPTER 6 ■ USING SWING'S JTABLE278

If a table’s mode is AUTO_RESIZE_OFF and the sum of all the column widths is greater than
the table’s width, then a horizontal scrollbar appears. To see this behavior, let’s make another
minor change to the SimpleTableTest constructor:

public SimpleTableTest() {
Container pane = getContentPane();
pane.setLayout(new BorderLayout());
TableValues tv = new TableValues();
table = new JTable(tv);
table.setAutoResizeMode(JTable.AUTO_RESIZE_OFF);
// pane.add(table, BorderLayout.CENTER);
JScrollPane jsp = new JScrollPane(table);
pane.add(jsp, BorderLayout.CENTER);

}

Each column maintains its default width (75), and when the table is made too narrow to
display all the columns, a horizontal scrollbar appears. Any other auto resize mode causes the
columns to expand or contract when the table is resized, as shown in Figure 6-7.

Figure 6-7. Changing the auto resize mode results in a scrollbar appearing when the table isn’t
wide enough to display the contents of all its columns.

Column Resizing
Now that you’ve seen how changing the width of a table can affect the width of the columns
within that table, it’s also important to examine how changing the width of one column can
change the widths of the others. You can change a column’s width programmatically via the
mutator methods for the four width values (current, minimum, maximum, and preferred),
or you can modify it through the user interface provided by JTable.

When one column’s size is changed, its effect on the widths of the other columns
depends upon the table’s auto resize mode setting; I describe the behavior associated with
each setting next.

CHAPTER 6 ■ USING SWING'S JTABLE 279

AUTO_RESIZE_OFF
When auto resizing is disabled, changing the width of one column has no effect on the size
of the other columns in the table. This may result in the table being too small to display all
the columns, in which case a horizontal scrollbar appears (if the table is contained within a
JScrollPane). Alternatively, resizing a column may result in the table being larger than the
combined width of all the columns, in which case some amount of whitespace appears inside
the table.

AUTO_RESIZE_NEXT_COLUMN
With this setting, when a change is made to the width of a column, the column to the right of
that column (in other words, the next column) gains or loses horizontal space. In Figure 6-8,
the Date of Birth column has been increased in size, which results in the column to its right
(Account Balance) becoming narrower.

Figure 6-8. An example of AUTO_RESIZE_NEXT_COLUMN

AUTO_RESIZE_SUBSEQUENT_COLUMNS
This setting is similar to AUTO_RESIZE_NEXT_COLUMN, except that when a column is resized, all
the other columns to its right gain or lose width. In Figure 6-9, the Date of Birth column has
been made wider, which causes the two columns that follow it (Account Balance and Gender)
to become narrower.

Figure 6-9. As the Date of Birth column is made wider, the columns to its right become narrower.

CHAPTER 6 ■ USING SWING'S JTABLE280

The difference between the original width of the resized column and its new width is
referred to as the delta value, and this amount is distributed proportionally among the
columns to the right of the resized column.

AUTO_RESIZE_LAST_COLUMN
When this setting is used and a column is resized, the delta value is applied to the last column
in the table to make it wider or narrower than it was. In Figure 6-10, the Date of Birth column
has been made wider, causing the Gender column to become narrower by the same amount.

Figure 6-10. With AUTO_RESIZE_LAST_COLUMN, the last column’s size changes to accommodate
changes to the other columns’ sizes.

AUTO_RESIZE_ALL_COLUMNS
This is the default setting for a new instance of JTable and causes any changes to one col-
umn’s width to be proportionally distributed among all other columns in the table. When the
Date of Birth column becomes larger, the delta value is divided among the other columns in
the table, causing them to become narrower, as shown in Figure 6-11.

Figure 6-11. With AUTO_RESIZE_ALL_COLUMNS, resizing one column causes all the others to increase
or decrease in size accordingly.

CHAPTER 6 ■ USING SWING'S JTABLE 281

Cell Rendering
As mentioned earlier, the data in several of the columns isn’t displayed in an ideal fashion.
Specifically, you can improve three things:

• The Date of Birth column displays both a date and time but should display only a date,
and that date should be in a format that doesn’t include the day of the week.

• The Account Balance column displays a simple numeric value but should use currency-
formatting conventions.

• The Gender column displays a somewhat nonintuitive value of “true” or “false” instead
of “Male” or “Female.”

JTable cells are drawn by cell renderers, which are classes that implement the
TableCellRenderer interface. That interface defines a single getTableCellRendererComponent()
method that returns a reference to the Component that will perform the drawing operation.
However, since it’s often convenient to define a single class that implements TableCellRenderer
and can perform the rendering, a TableCellRenderer will often simply return a reference to
itself. The following are the parameters passed to getTableCellRendererComponent():

• A reference to the JTable that contains the cell being drawn

• A reference to the cell’s value

• A boolean flag that indicates whether the cell is selected

• A boolean flag that indicates whether the cell has the input focus

• The row index of the cell being drawn

• The column index of the cell being drawn

In addition to returning a reference to the rendering component, getTableCellRenderer➥

Component() is responsible for initializing the component’s state. Notice that one of the
parameters listed previously is a reference to the value stored in the cell that’s about to be ren-
dered, and some representation of that value is usually stored in the rendering component
before a reference to it is returned.

As you’ll see shortly, JTable provides predefined renderers that you can use to have your
data displayed properly, but first you’ll look at how easily you can define custom renderer
classes.

Creating Custom Renderers
The class in Listing 6-4 provides an example of a custom renderer, and it will be used to dis-
play the values in the Gender field in the sample application’s table. Those values currently
appear as a text string of “true” or “false” depending upon the cell’s value, but this renderer
will cause them to be drawn by a JComboBox.

CHAPTER 6 ■ USING SWING'S JTABLE282

Listing 6-4. Cell Renderer for the Gender Column

import java.awt.Component;
import javax.swing.JComboBox;
import javax.swing.JTable;
import javax.swing.table.TableCellRenderer;

public class GenderRenderer extends JComboBox implements TableCellRenderer {

public GenderRenderer() {
super();
addItem("Male");
addItem("Female");

}

public Component getTableCellRendererComponent(JTable table,
Object value, boolean isSelected, boolean hasFocus,
int row, int column) {

if (isSelected) {
setForeground(table.getSelectionForeground());
super.setBackground(table.getSelectionBackground());

} else {
setForeground(table.getForeground());
setBackground(table.getBackground());

}

boolean isMale = ((Boolean)value).booleanValue();
setSelectedIndex(isMale ? 0 : 1);
return this;

}

}

When an instance of this class is created, it adds two items to its list: a Male selection and
a Female selection. The getTableCellRendererComponent() performs some simple color selec-
tion for the foreground and background and then selects the appropriate gender based on the
cell’s value (Male for true and Female for false). Once this renderer class has been created,
you can specify that it should be used for the Gender column by making the following changes
to SimpleTableTest:

import java.awt.*;
import javax.swing.*;
import javax.swing.table.*;

public class SimpleTableTest extends JFrame {

CHAPTER 6 ■ USING SWING'S JTABLE 283

protected JTable table;

public static void main(String[] args) {
SimpleTableTest stt = new SimpleTableTest();
stt.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
stt.setSize(400, 200);
stt.setVisible(true);

}

public SimpleTableTest() {
Container pane = getContentPane();
pane.setLayout(new BorderLayout());
TableValues tv = new TableValues();
table = new JTable(tv);
TableColumnModel tcm = table.getColumnModel();
TableColumn tc = tcm.getColumn(TableValues.GENDER);
tc.setCellRenderer(new GenderRenderer());
JScrollPane jsp = new JScrollPane(table);
pane.add(jsp, BorderLayout.CENTER);

}

}

When you compile and execute the modified version of the application, it produces a dis-
play like the one shown in Figure 6-12. Notice that the “true” and “false” strings that previously
appeared in the Gender column now seem to have been replaced by instances of JCheckBox.

Figure 6-12. With a custom renderer, the Gender column’s contents appear as JCheckBox compo-
nents instead of text.

It’s important to realize that renderers aren’t really added to JTable instances the way that
visual components are added to a Container, which in this case means that the table doesn’t
contain any instances of JCheckBox. Instead, when the table is painted, each cell delegates
responsibility for drawing its contents, which is done by passing a Graphics object to a ren-
derer component’s paint() method, and the drawing region is set to correspond to the area
occupied by the cell. In other words, no instances of JCheckBox were added to the JTable in
this example, but rather a single instance of JCheckBox drew itself onto the area occupied by

CHAPTER 6 ■ USING SWING'S JTABLE284

each cell in the Gender column. This approach may seem unnecessarily complex, but it allows
a single component to draw most or all of a table’s cells instead of requiring the table to allo-
cate a component for each cell, which would consume far more memory.

In many cases, the easiest way to define a custom cell renderer is to extend Swing’s
DefaultTableCellRenderer, which as its name implies is the default renderer for cells in a
JTable. DefaultTableCellRenderer extends JLabel, and it displays cell values using their
String representations. An object’s String representation is obtained by calling its toString()
method, and DefaultTableCellRenderer passes that representation to the setText() method
it inherits from JLabel. This behavior is implemented in the setValue() method, which is
passed a reference to the value of the cell that’s about to be rendered:

protected void setValue(Object value) {
setText((value == null) ? "" : value.toString());

}

In effect, DefaultTableCellRenderer is simply a JLabel that sets its own text based on the
value of the cell being rendered.

In many cases, calling toString() isn’t an appropriate way to obtain a representation of
the cell’s value, and an example of this is the Account Balance column in the sample applica-
tion. The values displayed in that column are technically correct, but they’re not formatted in
a manner that makes it obvious that they represent currency values. However, you can easily
address this by creating a custom TableCellRenderer and assigning it responsibility for draw-
ing the cells in that column:

import java.text.NumberFormat;
import javax.swing.table.DefaultTableCellRenderer;

public class CurrencyRenderer extends DefaultTableCellRenderer {

public CurrencyRenderer() {
super();
setHorizontalAlignment(javax.swing.SwingConstants.RIGHT);

}

public void setValue(Object value) {
if ((value != null) && (value instanceof Number)) {
Number numberValue = (Number)value;
NumberFormat formatter = NumberFormat.getCurrencyInstance();
value = formatter.format(numberValue.doubleValue());

}
super.setValue(value);

}

}

This simple class does just two things: it changes the label’s horizontal alignment during
construction, and it overrides the setValue() method defined in DefaultTableCellRenderer.
Since you know that this renderer class will be used only to render the cells containing

CHAPTER 6 ■ USING SWING'S JTABLE 285

numeric values, you can cast the cell’s value to a Number and then format the value as a
currency using Java’s NumberFormat class.

Now that you’ve created a custom renderer for the Account Balance column, you need to
have the table use the renderer when drawing the cells in that column, which you can do by
explicitly assigning it to the TableColumn as you did in the previous example. However, there’s
another way to accomplish this that’s worth mentioning and that’s more appropriate in many
cases. Besides associating a renderer with a particular column, you can also associate it with a
particular type of data, and the renderer will then be used to draw all cells in columns that
contain that type of data.

When a JTable is initialized, it creates a map that defines associations between classes
and renderers, and it uses that map to select a cell renderer when drawing cells in columns for
which no renderer was explicitly set. In other words, if you haven’t explicitly assigned a ren-
derer to a column as you did earlier, JTable will select a renderer based upon the type of data
stored in that column. It determines the column’s data type by calling the getColumnClass()
method in the TableModel, and that method returns an instance of Class. However, the imple-
mentation of getColumnClass() in AbstractTableModel simply indicates that all its columns
contain instances of Object:

public Class getColumnClass(int columnIndex) {
return Object.class;

}

Since AbstractTableModel can’t know what kind of data its subclasses will contain, the
only assumption it can safely make is that each cell contains an instance of Object; however,
in practice, the cells will almost certainly contain instances of some subclass of Object such
as Float, Date, and so on. Therefore, if you want the table to be able to determine the specific
type of data its columns contain, you must override getColumnClass() in your TableModel
class. For example, since all the values in the Account Balance column are instances of Float,
you could add the following getColumnClass() implementation to the TableValues class:

public Class getColumnClass(int column) {
Class dataType = super.getColumnClass(column);
if (column == ACCOUNT_BALANCE) {
dataType = Float.class;

}
return dataType;

}

Now that the JTable is able to determine that the Account Balance column contains Float
data, you need to associate the CurrencyRenderer class with that data type, which you can eas-
ily do by calling setDefaultRenderer():

public SimpleTableTest() {
Container pane = getContentPane();
pane.setLayout(new BorderLayout());
TableValues tv = new TableValues();
table = new JTable(tv);
TableColumnModel tcm = table.getColumnModel();
TableColumn tc = tcm.getColumn(TableValues.GENDER);

CHAPTER 6 ■ USING SWING'S JTABLE286

tc.setCellRenderer(new GenderRenderer());
table.setDefaultRenderer(Float.class, new CurrencyRenderer());
JScrollPane jsp = new JScrollPane(table);
pane.add(jsp, BorderLayout.CENTER);

}

This new addition to SimpleTableTest causes CurrencyRenderer to become the default ren-
derer for all columns containing Float data. Therefore, CurrencyRenderer will be used to draw
the cells in the Account Balance column because no renderer was assigned to the column and
because getColumnClass() now indicates that the column contains Float data. Figure 6-13
shows an example of how the interface will appear when the program is executed with these
modifications.

Figure 6-13. CurrencyRenderer has been associated with columns containing floating-point data.

At this point, you may be wondering what happens when no renderer has been explicitly
assigned to a column and no entry in the table’s class-to-renderer map matches the column’s data
type. You’re correct if you guessed that the rendering is handled by DefaultTableCellRenderer,
but it’s important to understand exactly how that occurs.

When no renderer has been explicitly assigned to a column and no entry for the column’s
Class is found in the table’s class-to-renderer map, JTable traverses the inheritance hierarchy
of the column’s Class, searching the class-to-renderer map for an entry corresponding to each
superclass until it locates one. For example, if getColumnClass() indicates that the column
contains Float data but no entry for Float is found in the class-to-renderer map, JTable next
attempts to locate a map entry that corresponds to Float’s immediate superclass, which is
Number. If it also doesn’t find an entry for Number, it will attempt to retrieve an entry for Object
(Number’s immediate superclass), which will always succeed because the map automatically
contains an entry that associates Object columns with DefaultTableCellRenderer.

To summarize JTable’s behavior, the steps for locating a renderer are as follows:

1. If a renderer has been set for the cell’s TableColumn, use that renderer.

2. Obtain a reference to a Class instance by calling the TableModel’s getColumnClass()
method.

3. If a renderer has been mapped to that Class, use that renderer.

4. Obtain a reference to the Class instance of the type’s superclass, and repeat the previ-
ous step until a match is found.

CHAPTER 6 ■ USING SWING'S JTABLE 287

This approach provides a great deal of flexibility in assigning renderers to table cells, since
it allows you to create a renderer and have it handle rendering for columns with a specific data
type, along with any subclasses of that type.

JTable’s Default Renderers
You’ve now seen how to create custom renderers and how to associate a renderer with a given
type of data. However, it’s often not necessary to do either one, since JTable includes a num-
ber of predefined renderers for commonly used data types, and entries for those renderers are
automatically included in its class-to-renderer map. For example, I already mentioned that an
entry exists in the map that associates Object columns with DefaultTableCellRenderer, but
other, more sophisticated renderers are provided as well. This means that if one of the prede-
fined renderers is appropriate for your application, the only coding you need to do is to
identify your columns’ data types in an implementation of getColumnClass() so that JTable
will use the appropriate renderers. To put this to use, you’ll use JTable’s predefined renderer
for instances of java.util.Date by simply modifying TableValues so it indicates that the Date
of Birth column contains instances of Date:

public Class getColumnClass(int column) {
Class dataType = super.getColumnClass(column);
if (column == ACCOUNT_BALANCE) {
dataType = Float.class;

}
else if (column == DATE_OF_BIRTH) {
dataType = java.util.Date.class;

}
return dataType;

}

As you saw earlier, the date values displayed by DefaultTableCellRenderer were lengthy
and included a time (since Java’s Date class represents both a date and a time). However,
JTable’s predefined date renderer produces a shorter, more appropriate representation of
each date value, as shown in Figure 6-14.

Figure 6-14. JTable’s default date renderer produces an abbreviated month.

In addition to java.util.Date, JTable includes predefined renderers for a number of
other classes, including the following.

CHAPTER 6 ■ USING SWING'S JTABLE288

java.lang.Number
This is the superclass of the numeric wrappers such as Integer, Float, Long, and so on. The
renderer that’s defined for Number is a subclass of DefaultTableCellRenderer that simply sets
its alignment value to RIGHT as you did in CurrencyRenderer. In other words, the Number ren-
derer displays the toString() representation of the cell values, but it displays the text adjacent
to the right side of the cell instead of the left (the default). Figure 6-15 shows an example of
how this would appear if used with the Account Balance column in the SampleTableTest class.

Figure 6-15. The default formatter for Number instances right-aligns the displayed values.

javax.swing.ImageIcon
The renderer associated with this class allows you to display instances of ImageIcon within a
table. The renderer is simply an instance of DefaultTableCellRenderer that takes advantage of
the fact that a JLabel can contain both text and an icon. Instead of rendering the cell by set-
ting its text value, this renderer sets its icon instead.

java.lang.Boolean
When this renderer is used, it displays the value for the cell as a JCheckBox that’s either
checked (when the cell’s value is true) or unchecked (when the value is false). Figure 6-16
shows an example of how it would appear if used with the Gender column SimpleTableTest.

Figure 6-16. Boolean values are rendered using check boxes.

CHAPTER 6 ■ USING SWING'S JTABLE 289

Editing Table Cells
Although each cell in the Gender column now appears to be a JComboBox, it’s not possible to
change the gender that’s selected. In fact, none of the cells in the table is editable, and clicking
them merely causes the row to be selected. To change this behavior, you must override the
isCellEditable() method, because the implementation in DefaultTableModel always returns
false. However, you can change this easily by adding the following code to TableValues:

public boolean isCellEditable(int row, int column) {
if (column == GENDER) {
return true;

}
return false;

}

This indicates that the cells in the Gender column are now editable. However, if you click a
cell in that column intending to select a gender from a JComboBox, you may be surprised to find
that nothing happens except that the row you clicked becomes selected. If you double-click the
cell, a JTextField appears that’s initialized with the string equivalent of the cell’s Boolean value
(true or false), and you can edit the data in the text field, as shown in Figure 6-17.

Figure 6-17. Double-clicking a cell causes a text field to appear.

You may be surprised that a text field appears when you edit the cell, because the cell
seems to contain a JComboBox, but remember that table cells don’t actually contain any compo-
nents. The cells are simply drawn by components (in other words, the renderers), and in this
case, the component happens to be a JComboBox. However, editing is a completely separate
process that may or may not be handled by the same type of component that performed the
rendering. For example, the default rendering component used by JTable is a JLabel, while the
default editing component is a JTextField, which is why a text field appeared in this case.

Regardless of which type of component is used, it may seem that the cells are finally
editable, which is partly true, but if you enter a value into one of these cells, the value you type
is discarded once you complete the editing. To understand why this occurs and what to do
about it, you should be familiar with cell editors and how JTable handles the editing of its cells.

CHAPTER 6 ■ USING SWING'S JTABLE290

Cell Editors
Just as cell renderers control the way that cells’ values are drawn, cell editors handle cell
value editing. Editors are slightly more complex than renderers but have many similarities
to renderers:

• An editor can be assigned to one or more TableColumn instances.

• An editor can be associated with one or more data types (classes) and will be used to
display that type of data when no editor is associated with a cell’s column.

• Existing visual components are used to provide editing capabilities, just as they’re used
by renderers to draw cell values. In fact, the same type of visual component that’s used
as a cell’s renderer is often used for its editor as well. For example, a cell might be
assigned a renderer that uses a JComboBox and an editor that uses the same component.

You can assign an editor to one or more TableColumn instances or object types using the
setCellEditor() method in TableColumn and setDefaultEditor() in JTable, respectively.
However, the implementation of the TableCellEditor interface is more complex than
TableCellRenderer, and to understand the methods defined in TableCellEditor, it’s useful
to examine how editors interact with JTable instances.

When a JTable detects a mouse click over one of its cells, it calls the isCellEditable()
method in the TableModel. That method returns a value of false if the cell shouldn’t be
editable, in which case processing terminates, and no further action is taken. However, if the
method returns true, then the table identifies the cell editor for that cell and calls the editor’s
isCellEditable() method as well. Although TableModel and CellEditor both define methods
called isCellEditable(), an important difference exists between the two. Specifically, the
TableModel method is passed only row and column index values, while the CellEditor method
is also passed the EventObject representing the mouse click. You can use this, for example, to
check the “click count” stored in the event. A cell must be double-clicked before it’s edited,
which is exactly the behavior observed earlier when editing the Gender column values. In
other words, the isCellEditable() method returns a value of false when the click count is 1,
while it returns true if the count is greater than 1. This behavior allows the cell editor to distin-
guish between a request to select the cell (a single click) and a request to edit the cell (a
double-click).

The edit operation is allowed to proceed only if both isCellEditable() methods return
a value of true. When that’s the case, the editing is initiated by calling the getTableCell➥

EditorComponent() method, which is passed the following parameters:

• A reference to the JTable that contains the cell being edited

• A reference to the cell’s current value

• A boolean flag that indicates whether the cell is selected

• The row index of the cell being edited

• The column index of the cell being edited

CHAPTER 6 ■ USING SWING'S JTABLE 291

If these parameters look familiar, it’s because they’re almost identical to those passed to
the getTableCellRendererComponent() method in TableCellRenderer. The only difference is
that this method isn’t passed a boolean value indicating whether the cell has the input focus,
since that’s implied because the cell is being edited.

Before returning a reference to the component that’s responsible for handling editing,
getTableCellEditorComponent() should prepare the editor by initializing its value appropri-
ately so that it matches the current cell value. For example, let’s assume you’re creating an
editor that allows users to select either Male or Female from a JComboBox that represents the
Gender column value in TableValues. In that case, you should prepare the JComboBox that per-
forms the editing by selecting the item it contains that corresponds to the cell’s gender value:
Male if the cell’s value is true and Female if the value is false.

Once the editing component has been prepared and returned from the
getTableCellEditorComponent() method, the JTable sets the size and location of that com-
ponent so it’s directly “over” the cell being edited. This makes it appear that the cell is edited
in place, when in fact, a component that supports editing (such as a JTextField or in this
case, a JComboBox) has been superimposed over the cell.

With the editing component positioned over the cell being edited, the event that origi-
nally triggered the edit processing is posted to the editing component. For example, in the
case of a JComboBox-based editor, the same mouse event that initiated the editing is passed to
the combo box, possibly causing it to display its drop-down menu when editing starts. Finally,
the CellEditor’s shouldSelectCell() method is passed the same mouse event object, and if it
returns true, the cell (and possibly others, depending upon the table’s selection settings) is
selected.

Each CellEditor is required to implement the addCellEditorListener() and
removeCellEditorListener() methods, and the CellEditorListener interface defines two
methods: editingStopped() and editingCanceled(). In practice, the only listener is usually
the JTable itself, which is notified when editing is stopped or canceled. In addition, the
CellEditor must implement the cancelCellEditing() and stopCellEditing() methods,
which call the editingStopped() and editingCanceled() methods of registered listeners.

A request to end editing can come either from the JTable that contains the cell or from
the editor component itself. For example, suppose you click one cell and begin editing its
value. If you then click a different cell, the JTable calls the stopCellEditing() method of the
first cell’s editor before it initiates editing the second cell. Alternatively, the editor component
may stop the editing when some event occurs that implies that editing is complete. For exam-
ple, when using a JComboBox as an editor, if it receives an ActionEvent message indicating that
a selection was made, then it’s appropriate to terminate the edit. Similarly, a JTextField might
signal that editing has ended when it detects that the Return key was pressed.

Regardless of where the request originates to end editing, the JTable’s editingStopped()
method is called since it’s a registered CellEditorListener. Inside this method, the table calls
the editor’s getCellEditorValue() method to retrieve the cell’s new value and passes that value
to the setValueAt() method in the JTable’s TableModel. That is, it retrieves the cell’s new value
from the editor and sends it to the data model so it can be stored “permanently.”

The class in Listing 6-5 defines a component you can use to provide editing of the rows in
the Gender column defined in TableValues. It defines a subclass of JComboBox that initializes
itself with Male and Female entries and listens for changes to its state (in other words, waits
for a selection to be made).

CHAPTER 6 ■ USING SWING'S JTABLE292

When editing is initiated for one of the cells in the Gender column, the
getTableCellEditorComponent() method is called, giving the editor a chance to initialize its
state before it’s made visible. In this case, the editor simply makes either Male or Female the
selected entry based on the value stored in the cell being edited. When the user selects an item
in the JComboBox, fireEditingStopped() is called, which signals to the table that the edit ses-
sion has ended. The table will then call getCellEditorValue() to retrieve the new value that
should be stored in the cell and will pass that value to the TableModel’s setValueAt() method.

Listing 6-5. An Editor for the Gender Column

import java.awt.Component;
import java.util.EventObject;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import javax.swing.table.*;

public class GenderEditor extends JComboBox implements TableCellEditor {

protected EventListenerList listenerList = new EventListenerList();
protected ChangeEvent changeEvent = new ChangeEvent(this);

public GenderEditor() {
super();
addItem("Male");
addItem("Female");
addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
fireEditingStopped();

}
});

}

public void addCellEditorListener(CellEditorListener listener) {
listenerList.add(CellEditorListener.class, listener);

}

public void removeCellEditorListener(CellEditorListener listener) {
listenerList.remove(CellEditorListener.class, listener);

}

protected void fireEditingStopped() {
CellEditorListener listener;
Object[] listeners = listenerList.getListenerList();
for (int i = 0; i < listeners.length; i++) {
if (listeners[i] == CellEditorListener.class) {

CHAPTER 6 ■ USING SWING'S JTABLE 293

listener = (CellEditorListener)listeners[i + 1];
listener.editingStopped(changeEvent);

}
}

}

protected void fireEditingCanceled() {
CellEditorListener listener;
Object[] listeners = listenerList.getListenerList();
for (int i = 0; i < listeners.length; i++) {
if (listeners[i] == CellEditorListener.class) {
listener = (CellEditorListener)listeners[i + 1];
listener.editingCanceled(changeEvent);

}
}

}

public void cancelCellEditing() {
fireEditingCanceled();

}

public boolean stopCellEditing() {
fireEditingStopped();
return true;

}

public boolean isCellEditable(EventObject event) {
return true;

}

public boolean shouldSelectCell(EventObject event) {
return true;

}

public Object getCellEditorValue() {
return new Boolean(getSelectedIndex() == 0 ? true : false);

}

public Component getTableCellEditorComponent(JTable table,
Object value, boolean isSelected, int row, int column) {

boolean isMale = ((Boolean)value).booleanValue();
setSelectedIndex(isMale ? 0 : 1);
return this;

}

}

CHAPTER 6 ■ USING SWING'S JTABLE294

Now that you’ve defined the editor component, you need to associate it with the Gender
column, as shown in the following code:

public SimpleTableTest() {
Container pane = getContentPane();
pane.setLayout(new BorderLayout());
TableValues tv = new TableValues();
table = new JTable(tv);
TableColumnModel tcm = table.getColumnModel();
TableColumn tc = tcm.getColumn(TableValues.GENDER);
tc.setCellRenderer(new GenderRenderer());
tc.setCellEditor(new GenderEditor());
table.setDefaultRenderer(Float.class, new CurrencyRenderer());
JScrollPane jsp = new JScrollPane(table);
pane.add(jsp, BorderLayout.CENTER);

}

When this code is compiled and run, a JComboBox correctly appears, is initialized with
the appropriate gender value, and allows you to select either Male or Female, as shown in
Figure 6-18.

Figure 6-18. Changing the cell editor causes a JComboBox to appear when the cell is edited.

However, selecting a different value from the one already stored in the cell doesn’t result
in the cell’s value being modified. That’s because the value is never changed in the TableModel;
you can do this by implementing the setValueAt() method in the TableValues class:

public void setValueAt(Object value, int row, int column) {
values[row][column] = value;

}

DefaultCellEditor
It’s not necessary in every case to build a completely new cell editor. In fact, the
DefaultCellEditor class allows you to easily create editor components using a JCheckBox,
JComboBox, or JTextField. All that’s necessary is to create an instance of DefaultCellEditor
and pass it an instance of one of these three components. However, the DefaultCellEditor
isn’t very flexible, and you’ll often need to create your own editor as in this case.

CHAPTER 6 ■ USING SWING'S JTABLE 295

Table Selection Settings
From a selection perspective, JTable is a two-dimensional component: each selected cell has
both a row and column index. In contrast, JList selections are one-dimensional, since only a
row index value is associated with each cell. Because of its two-dimensional nature, a JTable’s
selection information can’t be maintained by a single ListSelectionModel, because that inter-
face supports only one-dimensional selection information. To address this issue, JTable uses
two DefaultListSelectionModel instances:

• One that’s maintained directly by the JTable itself for row selection information

• Another that’s maintained through the TableColumnModel for column selections

I mentioned earlier that when a cell is selected, other cells might also become selected,
depending upon the table’s selection settings. In fact, the JTable component is flexible in
terms of the types of selections that can be made and supports a number of different set-
tings related to selection behavior. To manage its selection behavior, JTable uses the
ListSelectionModel interface and its DefaultListSelectionModel implementation:

Row selections: If enabled, row selection mode indicates that when a cell is selected,
all other cells in its row should become selected as well. This is the default behavior
for a JTable, where an entire row is selected when a single cell in that row was clicked.
JTable provides accessor and mutator methods called getRowSelectionAllowed() and
setRowSelectionAllowed(), respectively, and these methods allow you to query and
enable or disable row selection mode.

Column selections: Just as JTable supports a row selection mode, it also supports a col-
umn selection mode, where selecting one cell causes all cells in its column to become
selected. The getColumnSelectionAllowed() and setColumnSelectionAllowed() accessor
and mutator methods allow you to query and modify this mode.

Cell selections: In cell selection mode, selecting a cell doesn’t cause any other cells in the
table to become selected. The getCellSelectionEnabled() and setCellSelectionEnabled()
methods query and modify the cell selection mode for a JTable. Enabling cell selection
mode effectively disables the row and column selection modes.

Combining Row, Column, and Cell Selection Modes
You can use the row and column selection modes together so that clicking a cell causes all
other cells in the same row or column to be selected. However, enabling cell selection mode
overrides the row and column selection modes, causing them to be ignored as if they were
both disabled. For example, suppose you create the following code segment:

JTable table;
.
.
.
table.setRowSelectionAllowed(true);
table.setColumnSelectionAllowed(true);
table.setCellSelectionEnabled(true);

CHAPTER 6 ■ USING SWING'S JTABLE296

As long as cell selection mode is enabled, the row and column selection modes are effec-
tively disabled, and only cell selections are allowed. Therefore, although there are three
selection settings, there are only four meaningful combinations of those three settings:

• Only row selection mode is enabled.

• Only column selection mode is enabled.

• Cell selection mode is enabled (the other two are ignored).

• All three (row, column, and cell) selection modes are disabled.

In this last case, the behavior is what you’d probably expect; with all three modes dis-
abled, no cells can be selected.

List Selection Modes
When some type of cell selection occurs, one or both of the ListSelectionModel instances are
updated to reflect the selection(s) made (the specific changes to those models will depend on
the selection mode or modes enabled). By default, each model can maintain multiple value
ranges (or intervals). For example, given the selections shown in Figure 6-19, the selection
model that’s responsible for recording row selections might record that items 0 through 1 and
items 3 through 4 are selected (a total of four rows).

Figure 6-19. In this example, two sets of rows are selected: the two top and the two bottom rows.

To select two intervals like this, perform the following steps:

1. Click the top row.

2. Press and hold down the Shift key, and click the second row. At this point, the first
range (0 through 1) of rows has been selected.

3. Release the Shift key, press and hold down the Ctrl key, and click the fourth row.

4. Release the Ctrl key, press and hold down the Shift key, and click the last row—the
second range of rows (3 through 4) has now been selected.

As you can see, holding down the Shift key while making a selection indicates you want
to select the second in a pair of values that defines a range of values (for example, a set of

CHAPTER 6 ■ USING SWING'S JTABLE 297

consecutive rows). Holding down the Ctrl key while making a selection indicates that any
previous selections shouldn’t be cleared before making another selection. An alternative
approach to using the Shift key to select a range of values is to drag the mouse (in other words,
press and hold down the left mouse button while moving the cursor) from one cell to another.
For example, in this case, you could click a cell in the top row and drag the mouse to the sec-
ond row to select the first range of rows.

This example illustrates the default mode, known as multiple-interval selection, which is
one of three modes that the ListSelectionModel supports. The other two modes are single-
interval selection and single selection.

As its name implies, single-interval selection mode allows a model to maintain a single
interval instead of multiple intervals. For example, if you repeat the previous steps with single-
interval selection, the first range of values (rows 0 through 1) become deselected when you
attempt to select the second interval (rows 3 through 4).

In single-selection mode, a ListSelectionModel allows only a single item to be selected,
and no range of items is allowed. Any attempt to select another item will cause the previously
selected item to be deselected. For example, when you enable column selection mode in con-
junction with single-selection mode, you can select only a single column at a time.

As mentioned earlier, each JTable maintains two ListSelectionModel instances and pro-
vides a setSelectionMode() method that sets the selection mode for both instances. Each
selection mode is represented by a constant value defined in ListSelectionModel:

• MULTIPLE_INTERVAL_SELECTION

• SINGLE_INTERVAL_SELECTION

• SINGLE_SELECTION

Note, however, that JTable doesn’t provide a getSelectionMode() method; to determine
the current mode, you must retrieve that information from one of the ListSelectionModel
instances, as illustrated in the following code:

JTable table;
.
.
.
int oldSelectionMode = table.getSelectionModel().getSelectionMode();
table.setSelectionMode(ListSelectionModel.SINGLE_INTERVAL_SELECT);

Selection Mode Combinations
As mentioned earlier, five combinations of row, column, and cell selection modes are avail-
able. In addition, three ListSelectionModel modes are available, which results in fifteen
combinations. Although this provides you with a great deal of flexibility in how table cells are
selected, it also results in a somewhat confusing array of choices. However, by temporarily
making the following modifications to SimpleTableTest, you can select the table and list selec-
tion modes used, which allows you to experiment with the behavior of different combinations,
as shown in Listing 6-6.

CHAPTER 6 ■ USING SWING'S JTABLE298

Listing 6-6. Selection Mode Testing

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.table.*;
import javax.swing.border.*;

public class SimpleTableTest extends JFrame {

protected JTable table;

public static void main(String[] args) {
SimpleTableTest stt = new SimpleTableTest();
stt.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
stt.setSize(400, 200);
stt.setVisible(true);

}

public SimpleTableTest() {
Container pane = getContentPane();
pane.setLayout(new BorderLayout());
TableValues tv = new TableValues();
table = new JTable(tv);
TableColumnModel tcm = table.getColumnModel();
TableColumn tc = tcm.getColumn(TableValues.GENDER);
tc.setCellRenderer(new GenderRenderer());
tc.setCellEditor(new GenderEditor());
table.setDefaultRenderer(Float.class, new CurrencyRenderer());
JScrollPane jsp = new JScrollPane(table);
pane.add(jsp, BorderLayout.CENTER);

JPanel outerPanel = new JPanel();
outerPanel.setLayout(new GridLayout(1, 2, 0, 0));
JPanel innerPanel = new JPanel();
innerPanel.setLayout(new FlowLayout());
JCheckBox modeBox = new JCheckBox("Row", true);
modeBox.addItemListener(new ItemListener() {
public void itemStateChanged(ItemEvent event) {
JCheckBox box = (JCheckBox)(event.getSource());
table.setRowSelectionAllowed(box.isSelected());

}
});
innerPanel.add(modeBox);
modeBox = new JCheckBox("Column");
modeBox.addItemListener(new ItemListener() {
public void itemStateChanged(ItemEvent event) {
JCheckBox box = (JCheckBox)(event.getSource());
table.setColumnSelectionAllowed(box.isSelected());

CHAPTER 6 ■ USING SWING'S JTABLE 299

}
});
innerPanel.add(modeBox);
modeBox = new JCheckBox("Cell");
modeBox.addItemListener(new ItemListener() {
public void itemStateChanged(ItemEvent event) {
JCheckBox box = (JCheckBox)(event.getSource());
table.setCellSelectionEnabled(box.isSelected());

}
});
innerPanel.add(modeBox);

BevelBorder bb = new BevelBorder(BevelBorder.RAISED);
TitledBorder tb = new TitledBorder(bb, "Table Selection Types");
innerPanel.setBorder(tb);
outerPanel.add(innerPanel);
innerPanel = new JPanel();
innerPanel.setLayout(new FlowLayout());
JComboBox listModes = new JComboBox();
listModes.addItem("Single Selection");
listModes.addItem("Single Interval Selection");
listModes.addItem("Multiple Interval Selections");
listModes.setSelectedIndex(2);
listModes.addItemListener(new ItemListener() {
public void itemStateChanged(ItemEvent event) {
JComboBox box = (JComboBox)(event.getSource());
int index = box.getSelectedIndex();
switch (index) {
case 0:
table.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
break;

case 1:
table.setSelectionMode(ListSelectionModel.SINGLE_INTERVAL_SELECTION);
break;

case 2:
table.setSelectionMode(ListSelectionModel.MULTIPLE_INTERVAL_SELECTION);
break;

}
}

});
innerPanel.add(listModes);
bb = new BevelBorder(BevelBorder.RAISED);
tb = new TitledBorder(bb, "List Selection Modes");
innerPanel.setBorder(tb);
outerPanel.add(innerPanel);

pane.add(outerPanel, BorderLayout.SOUTH);
}

}

CHAPTER 6 ■ USING SWING'S JTABLE300

As shown in Figure 6-20, this code adds a pair of panels to the bottom of the SimpleTableTest
interface. The panel on the left allows you to enable and disable row, column, and cell selec-
tions, while the panel on the right contains a JComboBox that allows you to choose a selection
mode. The selections you make in the check boxes and the combo box are detected and used
to update the selection state of the JTable, which provides you with the ability to experiment
with different selection modes.

Figure 6-20. This testing utility allows you to graphically control the selection settings in a table
to see how those changes affect its appearance.

Setting Selections Programmatically
In addition to user-generated events that change which cells are selected within a table, it’s
also possible to set and query a JTable’s selections programmatically; Table 6-1 describes the
methods available for doing so.

Table 6-1. Cell Selection Methods

Method Behavior

getSelectedRowCount() Returns the number of rows in the table that are currently
selected.

getSelectedRows() Returns an array of integers, each one representing the index
value of a currently selected row in the table.

getSelectedRow() Returns an integer index value that identifies the first row (the
row closest to the top of the table) that’s selected. This is useful
when only a single row can be selected.

Each row within the range of values (inclusive) is selected. Any
rows not in that range that were selected prior to this method
call are deselected.

Each row within the range of values (inclusive) is selected.

getSelectedColumnCount() Returns the number of columns in the table that are currently
selected.

getSelectedColumns() Returns an array of integers, each one representing the index
value of a currently selected column in the table.

continued

addRowSelectionInterval
(int index0, int index1)

setRowSelectionInterval
(int index0, int index1)

CHAPTER 6 ■ USING SWING'S JTABLE 301

Table 6-1. Continued

Method Behavior

getSelectedColumn() Returns an integer index value that identifies the first column
(the row closest to the left side of the table) that’s selected. This
is useful only when a single column can be selected.

Each column within the range of values (inclusive) is selected.
Any columns not in that range that were selected prior to this
method call are deselected.

addColumnSelectionInterval() Two integer values are passed to this method, and each column
within the range of values (inclusive) is selected.

All these methods are defined in JTable, but each of them delegates the request to a
ListSelectionModel. Specifically, the row selection method calls are delegated to the model
maintained by the JTable itself (the row model), while the column selection calls are handled
by the selection model maintained by the table’s TableColumnModel implementation.

Table Headers
As implemented by JTable, the column headers don’t provide much functionality. They don’t
seem to respond when clicked, and they display only a single row of text that describes the
columns.

However, when designing your user interface, you may want to add functionality to the
headers. For example, you might want to provide a tooltip for each header, allow a column
to be selected or sorted when its header is clicked, and allow multiple lines of text to be dis-
played in the header. By understanding how JTable headers function, you can provide these
capabilities and more.

Drawing Headers
Just as a table’s data cells are drawn using renderers that are instances of JLabel by default, so
are the table’s header cells. The renderer for a given column’s header is accessible through the
TableColumn instance for that column; you can obtain it by calling the getHeaderRenderer()
method. For example, the following code obtains a reference to the renderer for the second
column in a table:

JTable table;
.
.
.
TableColumnModel tcm = table.getColumnModel();
TableColumn tc = tcm.getColumn(1);
TableCellRenderer tcr = tc.getHeaderRenderer();

In addition to retrieving the header renderer, it’s also possible to set it. For example, you
might want to create a renderer that displays multiple rows of header text, since JLabel doesn’t

setColumnSelectionInterval
(int index0, int index1)

CHAPTER 6 ■ USING SWING'S JTABLE302

provide this functionality. Multiline column headers can be useful because they allow you to
display longer header text without wasting precious horizontal space in the table’s display area;
the following is an example of how a multiline header renderer might be implemented:

import java.awt.*;
import java.util.StringTokenizer;
import javax.swing.*;
import javax.swing.table.TableCellRenderer;

public class MultiLineHeaderRenderer extends JPanel implements TableCellRenderer {

public Component getTableCellRendererComponent(JTable table,
Object value, boolean isSelected, boolean hasFocus,
int row, int column) {

JLabel label;
removeAll();
StringTokenizer strtok = new StringTokenizer((String)value, "\r\n");
setLayout(new GridLayout(strtok.countTokens(), 1));
while (strtok.hasMoreElements()) {
label = new JLabel((String)strtok.nextElement(), JLabel.CENTER);
LookAndFeel.installColorsAndFont(label,

"TableHeader.background",
"TableHeader.foreground",
"TableHeader.font");

add(label);
}
LookAndFeel.installBorder(this, "TableHeader.cellBorder");
return this;

}

}

This renderer requires that the column header contain an embedded carriage return or
linefeed character where the text should be split, so you’ll make such a modification to the
Account Balance header as defined in TableValues:

public final static boolean GENDER_MALE = true;
public final static boolean GENDER_FEMALE = false;

public final static String[] columnNames = {"First Name", "Last Name",
"Date of Birth", "Account\nBalance", "Gender"};

When the MultiLineHeaderRenderer is called to prepare the rendering component, it
parses the header text, creates a separate JLabel for each line, and adds the label to a JPanel.
It also sets the colors and font used by each label so that it matches the values normally used
by a JTable header renderer. Finally, the renderer adds a border to the JPanel so that its
appearance matches that of other table column headers, as shown in Figure 6-21.

CHAPTER 6 ■ USING SWING'S JTABLE 303

Figure 6-21. Headers greatly improve the appearance of a table by describing the contents of its
columns.

The final step is to assign an instance of MultiLineHeaderRenderer to the Account Balance
TableColumn instance so the header fits within the horizontal space allocated for the column:

public SimpleTableTest() {
Container pane = getContentPane();
pane.setLayout(new BorderLayout());
TableValues tv = new TableValues();
table = new JTable(tv);
TableColumnModel tcm = table.getColumnModel();
TableColumn tc = tcm.getColumn(TableValues.GENDER);
tc.setCellRenderer(new GenderRenderer());
tc.setCellEditor(new GenderEditor());
MultiLineHeaderRenderer mlhr = new MultiLineHeaderRenderer();
tc = tcm.getColumn(TableValues.ACCOUNT_BALANCE);
tc.setHeaderRenderer(mlhr);
table.setDefaultRenderer(Float.class, new CurrencyRenderer());
JScrollPane jsp = new JScrollPane(table);
pane.add(jsp, BorderLayout.CENTER);

}

Tooltips and Renderer Reuse
Now that you’ve examined how to access and create header renderers, it’s easy to add tooltips
to headers. Assuming that the renderer component is a subclass of JComponent, all that’s nec-
essary is to access the header renderer and call the setToolTipText() method. For example,
the following change results in a tooltips being set for the Account Balance column:

public SimpleTableTest() {
Container pane = getContentPane();
pane.setLayout(new BorderLayout());
TableValues tv = new TableValues();

CHAPTER 6 ■ USING SWING'S JTABLE304

table = new JTable(tv);
TableColumnModel tcm = table.getColumnModel();
TableColumn tc = tcm.getColumn(TableValues.GENDER);
tc.setCellRenderer(new GenderRenderer());
tc.setCellEditor(new GenderEditor());
MultiLineHeaderRenderer mlhr = new MultiLineHeaderRenderer();
mlhr.setToolTipText("This is the person’s current account balance");
tc = tcm.getColumn(TableValues.ACCOUNT_BALANCE);
tc.setHeaderRenderer(mlhr);
table.setDefaultRenderer(Float.class, new CurrencyRenderer());
JScrollPane jsp = new JScrollPane(table);
pane.add(jsp, BorderLayout.CENTER);

}

This results in the display shown in Figure 6-22.

Figure 6-22. You can use tooltips to provide greater detail on what data is contained within
a column.

You should be aware of one potential problem when specifying tooltips; the problem
is related to the way cell renderers are used. Although you’ve assigned the header renderer
responsibility for rendering only one column header, it’s common for a single renderer to
handle the rendering for all the columns in a table. In other words, just as you saw earlier
that a single renderer can draw many (or all) of the data cells in a table, the same is true of a
column header renderer. For example, a single instance of MultiLineHeaderRenderer can
draw the headers for both the Account Balance and Date of Birth columns. However, in the
previous case where the tooltip text was set, it isn’t appropriate to use the same renderer to
draw more than one column header. That’s because the renderer was assigned information
that’s related to a specific column (the tooltip for the Account Balance column), and using it to
render another column will have undesirable consequences. Specifically, the incorrect tooltip
text is displayed for the Date of Birth column when the same MultiLineHeaderRenderer
instance is used for both it and the Account Balance column, as shown in Figure 6-23.

CHAPTER 6 ■ USING SWING'S JTABLE 305

Figure 6-23. Using the same renderer for multiple problems may not produce the desired results if
the renderer maintains information specific to a particular column.

You can address this problem in a number of ways, with the most obvious being assigning
a different instance of the MultiLineHeaderRenderer class to each table column, each of which
could have its own tooltip. However, assigning a different renderer to each column isn’t really
an ideal solution, and as you’ll see shortly, you can address this problem better by using the
table’s header component.

JTableHeader
As you may recall, running the implementation of SimpleTableTest defined at the beginning
of this chapter resulted in a table being displayed with no column headers. However, when
the JTable was added to a JScrollPane, headers appeared that displayed the labels returned
by the getColumnName() method. Column headers are automatically created whenever a
table is displayed within a JScrollPane, and they’re displayed in the scroll pane’s column
header viewport. The column header viewport is an area above the main display portion of
a JScrollPane, and you can access and modify the component stored in that area using the
getColumnHeader() and setColumnHeader() methods. For example, to store an instance of
JButton in the column header, you could temporarily modify the SimpleTableTest class, as
shown here:

public SimpleTableTest() {
Container pane = getContentPane();
pane.setLayout(new BorderLayout());
TableValues tv = new TableValues();
table = new JTable(tv);
TableColumnModel tcm = table.getColumnModel();
TableColumn tc = tcm.getColumn(TableValues.GENDER);
tc.setCellRenderer(new GenderRenderer());
tc.setCellEditor(new GenderEditor());
MultiLineHeaderRenderer mlhr = new MultiLineHeaderRenderer();
mlhr.setToolTipText("This is the person’s current account balance");
tc = tcm.getColumn(TableValues.ACCOUNT_BALANCE);
tc.setHeaderRenderer(mlhr);
table.setDefaultRenderer(Float.class, new CurrencyRenderer());

CHAPTER 6 ■ USING SWING'S JTABLE306

JScrollPane jsp = new JScrollPane(table) {
public void setColumnHeaderView(Component comp) {
super.setColumnHeaderView(new JButton("This is a JButton"));

}
};
pane.add(jsp, BorderLayout.CENTER);

}

This code overrides the setColumnHeaderView() method in the scroll pane and, instead
of setting it to the parameter passed to that method, stores a JButton instance as the column
header, as shown in Figure 6-24.

Figure 6-24. You can use any component to display headers, although the component normally
used for that purpose is an instance of JTableHeader.

Although you won’t often need to use this method, it illustrates that you can use any com-
ponent as a row header. The obvious question, however, is, what type of component is used by
default? The answer is that the column header is normally an instance of JTableHeader.

JTableHeader is a visual component that provides most of the user interface behavior
related to moving and resizing columns. For example, when you resize a column using mouse
drags as described earlier, you’re interacting with a JTableHeader instance. In addition, you can
reorder columns in a table by moving the cursor over a table header, pressing the left mouse
button, and dragging the column to a different position within the table. The JTableHeader
class also provides that functionality.

Another responsibility of JTableHeader is to return tooltip text, which usually occurs
when the cursor lingers over one of the table’s column headers. This may surprise you, since
you saw earlier that setting the tooltip text for the header renderer allowed you to modify
the tooltip, which seems to indicate it’s the header renderer and not the JTableHeader that’s
responsible for providing a tooltip. In fact, the JTableHeader is responsible for doing so, but it
normally delegates requests for tooltip text to the header renderers.

When getToolTipText() is called, it’s passed a MouseEvent that allows the JTableHeader
to determine which column header is underneath the cursor. It then selects the header ren-
derer for that column and returns the tooltip text provided by the renderer. This approach
works fine if each column has its own header renderer, because you can then set a separate
tooltip for each column, but it’s not as appropriate when a single renderer is responsible for
drawing multiple column headers. To address this limitation, you can easily create a subclass

CHAPTER 6 ■ USING SWING'S JTABLE 307

of JTableHeader that maintains an array of tips and returns one from that array instead of
obtaining it from a header renderer:

import java.awt.event.MouseEvent;
import javax.swing.table.*;

public class JTableHeaderToolTips extends JTableHeader {

protected String[] toolTips;

public JTableHeaderToolTips(TableColumnModel tcm) {
super(tcm);

}

public void setToolTips(String[] tips) {
toolTips = tips;

}

public String getToolTipText(MouseEvent event) {
String tip = super.getToolTipText(event);
int column = columnAtPoint(event.getPoint());
if ((toolTips != null) && (column < toolTips.length) &&

(toolTips[column] != null)) {
tip = toolTips[column];

}
return tip;

}

}

When this JTableHeader subclass receives a request for a tooltip, it determines which col-
umn is under the mouse and attempts to return a tip from its own array instead of the one
that’s provided by the column’s header renderer. You can use an instance of this class by mak-
ing the following changes to SimpleTableTest:

public SimpleTableTest() {
Container pane = getContentPane();
pane.setLayout(new BorderLayout());
TableValues tv = new TableValues();
table = new JTable(tv);
TableColumnModel tcm = table.getColumnModel();
TableColumn tc = tcm.getColumn(TableValues.GENDER);
tc.setCellRenderer(new GenderRenderer());
tc.setCellEditor(new GenderEditor());
MultiLineHeaderRenderer mlhr = new MultiLineHeaderRenderer();

// mlhr.setToolTipText("This is the person's current account balance");
tc = tcm.getColumn(TableValues.ACCOUNT_BALANCE);
tc.setHeaderRenderer(mlhr);

CHAPTER 6 ■ USING SWING'S JTABLE308

JTableHeaderToolTips jthtt =
new JTableHeaderToolTips(table.getColumnModel());

jthtt.setToolTips(new String[] {"Customer's First Name",
"Customer's Last Name", "Customer's Date of Birth",
"Customer's Account Balance", "Customer's Gender"});

table.setTableHeader(jthtt);
table.setDefaultRenderer(Float.class, new CurrencyRenderer());
JScrollPane jsp = new JScrollPane(table);
pane.add(jsp, BorderLayout.CENTER);

}

With this code in place, moving the mouse over each column header results in that col-
umn’s tooltip text being displayed, as shown in Figure 6-25.

Figure 6-25. The customized header component contains the tooltips for all columns instead of
just one.

The key to providing this functionality is the ability to determine which column is under-
neath the cursor when the tooltip text was requested, which you do using the columnAtPoint()
method defined in JTableHeader. You can use the same technique to display a tooltip on a per-
cell basis within the JTable’s data area by overriding JTable’s getToolTipText() method and
using its rowAtPoint() and columnAtPoint() methods to identify which cell is underneath the
cursor.

Another way in which you might use JTableHeader is to detect and handle mouse events
that occur over the headers. For example, suppose your application allows a user to select
a table column, and you find that users instinctively tend to click column headers in an
attempt to cause the column to become selected. However, JTable doesn’t provide this
behavior by default, so if you want a mouse click on a column header to result in the column
being selected, you must implement the behavior yourself by detecting the click and per-
forming the selection. Unlike requests for tooltips, which are delegated to the appropriate
header renderer, mouse events aren’t sent to the renderers. Therefore, if you want to be noti-
fied of mouse events, you must register as a listener of the JTableHeader. The code in Listing
6-7 enables column selection mode and adds a mouse listener to the table header. When a
click event occurs on a header, the listener determines which column the event is associated
with and selects that column.

CHAPTER 6 ■ USING SWING'S JTABLE 309

Listing 6-7. Selecting a Column Using Its Header

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.table.*;

public class SimpleTableTest extends JFrame {

protected JTable table;
protected SortedColumnHeaderRenderer renderer;

public static void main(String[] args) {
SimpleTableTest stt = new SimpleTableTest();
stt.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
stt.setSize(400, 200);
stt.setVisible(true);

}

public SimpleTableTest() {
Container pane = getContentPane();
pane.setLayout(new BorderLayout());
TableValues tv = new TableValues();
table = new JTable(tv);
table.setRowSelectionAllowed(false);
table.setColumnSelectionAllowed(true);
TableColumnModel tcm = table.getColumnModel();
TableColumn tc = tcm.getColumn(TableValues.GENDER);
tc.setCellRenderer(new GenderRenderer());
tc.setCellEditor(new GenderEditor());
MultiLineHeaderRenderer mlhr = new MultiLineHeaderRenderer();
tc = tcm.getColumn(TableValues.ACCOUNT_BALANCE);
tc.setHeaderRenderer(mlhr);
JTableHeaderToolTips jthtt =

new JTableHeaderToolTips(table.getColumnModel());
jthtt.setToolTips(new String[] {"Customer's First Name",

"Customer's Last Name", "Customer's Date of Birth",
"Customer's Account Balance", "Customer's Gender"});

table.setTableHeader(jthtt);
table.setDefaultRenderer(Float.class, new CurrencyRenderer());
JScrollPane jsp = new JScrollPane(table);
pane.add(jsp, BorderLayout.CENTER);
addHeaderListener();

}

public void addHeaderListener() {
table.getTableHeader().addMouseListener(new MouseAdapter() {
public void mousePressed(MouseEvent event) {

CHAPTER 6 ■ USING SWING'S JTABLE310

JTableHeader header = (JTableHeader)(event.getSource());
int index = header.columnAtPoint(event.getPoint());
table.setColumnSelectionInterval(index, index);

}
});

}

}

Creating Row Headers
For many displays, column headers are sufficient, but you’ll sometimes want to create row
headers for the data in a JTable. As it turns out, this is easy to do, since the JScrollPane pro-
vides not only a viewport for column headers but also one for row headers. Unlike the column
header viewport, the row viewport is empty by default, but it’s trivial to create your own
header and have it displayed.

You can use the class in Listing 6-8 as a row header; it’s simply a JTable that displays a
single column with the index value (starting at 1 instead of 0) of each row displayed in that
column. The class is very simple, and in fact, much of its code exists simply to make minor
adjustments to its appearance and behavior, such as preventing its cells from being selected.

Listing 6-8. Row Header Component

import javax.swing.*;
import javax.swing.table.*;

public class RowNumberHeader extends JTable {

protected JTable mainTable;

public RowNumberHeader(JTable table) {
super();
mainTable = table;
setModel(new RowNumberTableModel());
setPreferredScrollableViewportSize(getMinimumSize());
setRowSelectionAllowed(false);
JComponent renderer = (JComponent)getDefaultRenderer(Object.class);
LookAndFeel.installColorsAndFont(renderer,

"TableHeader.background",
"TableHeader.foreground",
"TableHeader.font");

LookAndFeel.installBorder(this, "TableHeader.cellBorder");
}

public int getRowHeight(int row) {
return mainTable.getRowHeight();

}

CHAPTER 6 ■ USING SWING'S JTABLE 311

class RowNumberTableModel extends AbstractTableModel {

public int getRowCount() {
return mainTable.getModel().getRowCount();

}

public int getColumnCount() {
return 1;

}

public Object getValueAt(int row, int column) {
return new Integer(row + 1);

}

}

}

After defining this class, you can use it by making a temporary change to the
SimpleTableTest class:

public SimpleTableTest() {
Container pane = getContentPane();
pane.setLayout(new BorderLayout());
TableValues tv = new TableValues();
table = new JTable(tv);
table.setRowSelectionAllowed(false);
table.setColumnSelectionAllowed(true);
TableColumnModel tcm = table.getColumnModel();
TableColumn tc = tcm.getColumn(TableValues.GENDER);
tc.setCellRenderer(new GenderRenderer());
tc.setCellEditor(new GenderEditor());
MultiLineHeaderRenderer mlhr = new MultiLineHeaderRenderer();
tc = tcm.getColumn(TableValues.ACCOUNT_BALANCE);
tc.setHeaderRenderer(mlhr);
JTableHeaderToolTips jthtt =

new JTableHeaderToolTips(table.getColumnModel());
jthtt.setToolTips(new String[] {"Customer's First Name",

"Customer's Last Name", "Customer's Date of Birth",
"Customer's Account Balance", "Customer's Gender"});

table.setTableHeader(jthtt);
table.setDefaultRenderer(Float.class, new CurrencyRenderer());
JScrollPane jsp = new JScrollPane(table);
JViewport jvp = new JViewport();
jvp.setView(new RowNumberHeader(table));
jsp.setRowHeader(jvp);
pane.add(jsp, BorderLayout.CENTER);
addHeaderListener();

}

CHAPTER 6 ■ USING SWING'S JTABLE312

When executed, each table row includes a number on the left side, as shown in Figure 6-26.

Figure 6-26. Although column headers are used more frequently, it’s sometimes also helpful to use
row headers, such as in this case where each row is numbered.

Frozen Columns
In addition to displaying row headers, it’s sometimes desirable to “freeze” one or more columns
in the table so they’re visible even when the user scrolls right or left horizontally. For example,
in the case of this data, it might be desirable to freeze the first column (First Name) so it’s
always visible. You can do this, but it’s slightly more complex than creating simple row labels.

The steps are as follows:

1. Create a JTable that you’ll call the main table, and enclose it in a JScrollPane. This
table will display the nonfrozen data.

2. Create a second JTable that you’ll call the header table, and add it to a JScrollPane as
well. This table should use the same TableModel as the main table but will display the
frozen column(s).

3. Create an empty TableColumnModel that will later be assigned to the header table.

4. Remove the TableColumn instances from the main table’s TableColumnModel for each
column to be frozen, and add them to the column model created in the previous step.

5. Assign the column model that now contains the frozen TableColumn instances to the
header table using setColumnModel().

6. The JScrollPane that contains the header table should now also contain a JTableHeader
in its column header viewport. Obtain a reference to it, and move it to the upper-left
corner of the JScrollPane that contains the main table. You can do this using the scroll
pane’s setCorner() method.

7. Set the header table’s preferred scrollable viewport width so it’s just large enough to dis-
play the frozen columns. Its default width is 450, which is usually larger than necessary.

In effect, to freeze columns, you split the JTable into two separate tables, display the table
containing the frozen columns as the JScrollPane’s row header, and move that table’s column
headers to the upper-left corner of the outer scroll pane. Listing 6-9 shows how to implement
this behavior.

CHAPTER 6 ■ USING SWING'S JTABLE 313

Listing 6-9. A Frozen Column Header Component

import java.awt.*;
import javax.swing.*;
import javax.swing.table.*;

public class FrozenColumnHeader extends JScrollPane {

protected JTable mainTable;
protected JTable headerTable;
protected int columnCount;

public FrozenColumnHeader(JTable table, int columns) {
super();
mainTable = table;
headerTable = new JTable(mainTable.getModel());
getViewport().setView(headerTable);
columnCount = columns;

}

public void addNotify() {
TableColumn column;
super.addNotify();
TableColumnModel mainModel = mainTable.getColumnModel();
TableColumnModel headerModel = new DefaultTableColumnModel();
int frozenWidth = 0;
for (int i = 0; i < columnCount; i++) {
column = mainModel.getColumn(0);
mainModel.removeColumn(column);
headerModel.addColumn(column);
frozenWidth += column.getPreferredWidth() + headerModel.getColumnMargin();

}
headerTable.setColumnModel(headerModel);
Component columnHeader = getColumnHeader().getView();
getColumnHeader().setView(null);
JScrollPane mainScrollPane = (JScrollPane)SwingUtilities.getAncestorOfClass(

JScrollPane.class, mainTable);
mainScrollPane.setCorner(JScrollPane.UPPER_LEFT_CORNER, columnHeader);
headerTable.setPreferredScrollableViewportSize(

new Dimension(frozenWidth, 0));
}

}

You can use this class by creating an instance of it and passing a reference to a JTable to
the constructor, along with the number of columns from that table to freeze. For example, the
following modification to SimpleTableTest causes the First Name column to be frozen:

CHAPTER 6 ■ USING SWING'S JTABLE314

public SimpleTableTest() {
Container pane = getContentPane();
pane.setLayout(new BorderLayout());
TableValues tv = new TableValues();
table = new JTable(tv);
table.setRowSelectionAllowed(false);
table.setColumnSelectionAllowed(true);
TableColumnModel tcm = table.getColumnModel();
TableColumn tc = tcm.getColumn(TableValues.GENDER);
tc.setCellRenderer(new GenderRenderer());
tc.setCellEditor(new GenderEditor());
MultiLineHeaderRenderer mlhr = new MultiLineHeaderRenderer();
tc = tcm.getColumn(TableValues.ACCOUNT_BALANCE);
tc.setHeaderRenderer(mlhr);
JTableHeaderToolTips jthtt =

new JTableHeaderToolTips(table.getColumnModel());
jthtt.setToolTips(new String[] {"Customer's First Name",

"Customer's Last Name", "Customer's Date of Birth",
"Customer's Account Balance", "Customer's Gender"});

table.setTableHeader(jthtt);
table.setDefaultRenderer(Float.class, new CurrencyRenderer());
JScrollPane jsp = new JScrollPane(table);
JViewport jvp = new JViewport();
jvp.setView(new FrozenColumnHeader(table, 1));
// The following line isn't necessary but is done
// to illustrate that the "frozen" columns remain
// visible even when the main table is scrolled
table.setAutoResizeMode(JTable.AUTO_RESIZE_OFF);
jsp.setRowHeader(jvp);
pane.add(jsp, BorderLayout.CENTER);
addHeaderListener();

}

When you execute this code, you can resize the frame so it’s too narrow to display all
the columns in the table. However, regardless of which portion of the table is displayed, the
“frozen” column on the left will remain visible, as shown in Figure 6-27.

Figure 6-27. Frozen column headers are useful when the table data is wider than can be displayed.

CHAPTER 6 ■ USING SWING'S JTABLE 315

Although this example illustrates how to freeze a single column, you can apply this same
technique if you want to freeze multiple columns. You can also use this approach to freeze
rows of data simply by adding a table containing the rows to the JScrollPane’s column header
viewport.

Sorting Table Rows
When displaying information in a JTable, you’ll sometimes want to sort the rows in the table
based on the values in one or more of the columns. Since sorting is a slow and potentially
complex task, you should try to have the data sorted by some external application. For exam-
ple, if you’re displaying data from a relational database, you can have the database present the
rows to you in sorted order by indicating that fact in the SELECT statement you issue. However,
for various reasons, it’s sometimes necessary for you to take responsibility for sorting the data
in a table, and since JTable doesn’t directly support sorting, you must implement the code
that will provide this behavior.

To sort the data displayed in a table, you can use one of two approaches: sort the data
“in place” or add a sorting layer between the JTable and the TableModel that contains the
data. To sort the data in place means you logically change the position of the data in the
arrays or collection objects that contain the data. For example, in the case of the data defined
in TableValues, you’d rearrange the values within the array so they occur in sorted order.

A somewhat more flexible approach is to add a sorting layer between the table and its
data model. Specifically, this involves creating a second TableModel that I’ll call the sort model,
and this model contains a reference to the original model (such as an instance of TableValues)
that I’ll call the source model. In this case, the source model’s data need not ever be moved or
changed in any way. Instead, the sort model can create a list of index values that reference the
source model data in sorted order. For example, say that three string values are stored in the
source model:

• Kirk

• Ashworth

• Spyres

The sort model can sort these strings and build a set of index values that references them
in sorted (ascending) order. In this case, the index values are as follows:

• 1

• 0

• 2

By using this list of index values to reference the rows in the source model, the data
can appear to be sorted, when in reality, it’s still stored in its original unsorted order.
ortedTableModel is a simple class that you can download from the Apress web site and that
consists largely of a sortRows() method, an inner class used to perform the sorting, and
TableModel methods that delegate their functionality to the source model. In addition, its

CHAPTER 6 ■ USING SWING'S JTABLE316

getValueAt() and setValueAt() methods perform a sort of translation on the row index
value, so the caller (usually a JTable instance) sees the model data in sorted order.

Using this class, you can display table data in sorted order. The following code sorts
the table data in ascending order based on the values in the Account Balance column:

public SimpleTableTest() {
Container pane = getContentPane();
pane.setLayout(new BorderLayout());
TableValues tv = new TableValues();
SortedTableModel stm = new SortedTableModel(tv);
stm.sortRows(TableValues.ACCOUNT_BALANCE, true);
table = new JTable(stm);
table.setRowSelectionAllowed(false);
table.setColumnSelectionAllowed(true);
TableColumnModel tcm = table.getColumnModel();
TableColumn tc = tcm.getColumn(TableValues.GENDER);
tc.setCellRenderer(new GenderRenderer());
tc.setCellEditor(new GenderEditor());
MultiLineHeaderRenderer mlhr = new MultiLineHeaderRenderer();
tc = tcm.getColumn(TableValues.ACCOUNT_BALANCE);
tc.setHeaderRenderer(mlhr);
JTableHeaderToolTips jthtt =

new JTableHeaderToolTips(table.getColumnModel());
jthtt.setToolTips(new String[] {"Customer's First Name",

"Customer's Last Name", "Customer's Date of Birth",
"Customer's Account Balance", "Customer's Gender"});

table.setTableHeader(jthtt);
table.setDefaultRenderer(Float.class, new CurrencyRenderer());
JScrollPane jsp = new JScrollPane(table);
pane.add(jsp, BorderLayout.CENTER);
addHeaderListener();

}

This code produces the display shown in Figure 6-28.

Figure 6-28. Using SortedTableModel results in rows being sorted based on the value of one of the
columns, in this case the Account Balance column.

CHAPTER 6 ■ USING SWING'S JTABLE 317

Dynamic Sort Column Selection
In the previous example, a specific sort column was hard-coded into the application and
couldn’t be changed once the application was executed. However, it’s easy to create a user
interface that allows the sort column to be selected dynamically. You can simply create a
header renderer that detects mouse clicks, determines which column header the cursor was
over, and sorts the table based on the values in that column, as shown in Listing 6-10.

Listing 6-10. Header Component for Selecting the Sort Column

import java.awt.*;
import javax.swing.*;
import javax.swing.table.*;
import javax.swing.plaf.basic.BasicArrowButton;

public class SortedColumnHeaderRenderer implements TableCellRenderer {

protected TableCellRenderer textRenderer;
protected SortedTableModel sortedModel;
protected int sortColumn = -1;
protected boolean sortAscending = true;

public SortedColumnHeaderRenderer(SortedTableModel model,
TableCellRenderer renderer) {

sortedModel = model;
textRenderer = renderer;

}

public SortedColumnHeaderRenderer(SortedTableModel model) {
this(model, null);

}

public Component getTableCellRendererComponent(JTable table, Object value,
boolean isSelected, boolean hasFocus, int row, int column) {

Component text;
JPanel panel = new JPanel();
panel.setLayout(new BorderLayout());

if (textRenderer != null) {
text = textRenderer.getTableCellRendererComponent(table,

value, isSelected, hasFocus, row, column);
}
else {
text = new JLabel((String)value, JLabel.CENTER);
LookAndFeel.installColorsAndFont((JComponent)text,

"TableHeader.background",
"TableHeader.foreground",

CHAPTER 6 ■ USING SWING'S JTABLE318

"TableHeader.font");
}
panel.add(text, BorderLayout.CENTER);

if (column == sortColumn) {
BasicArrowButton bab = new BasicArrowButton((sortAscending ?

SwingConstants.NORTH : SwingConstants.SOUTH));
panel.add(bab, BorderLayout.WEST);

}
LookAndFeel.installBorder(panel, "TableHeader.cellBorder");
return panel;

}

public void columnSelected(int column) {
if (column != sortColumn) {
sortColumn = column;
sortAscending = true;

}
else {
sortAscending = !sortAscending;
if (sortAscending) sortColumn = -1;

}
if (sortColumn != -1) {
sortedModel.sortRows(sortColumn, sortAscending);

}
else {
sortedModel.clearSort();

}
}

}

I need to make two important points concerning this renderer. First, it can be passed a
reference to another renderer that will be delegated responsibility for drawing the column
header text. That allows you to combine the functionality of this renderer with that of some
other renderer, such as the MultiLineHeaderRenderer. In other words, you can create a table with
headers that both display multiline text and allow you to dynamically select the sort column.

Also, this class maintains a variable that identifies which column is sorted. Because
that’s the case, you should use a single instance of this class to render all columns that can
be selected for sorting.

When you assign this renderer to the header cells, it allows you to sort on a particular
column by clicking that column’s header. The first time you click a column header, the table
rows are sorted in ascending order based on that column’s values. If you click again on the
same column header, the rows are resorted, this time in descending order, and clicking a third
time causes the table data to be displayed in its original unsorted order. When the table data
is sorted, a visual indicator appears that illustrates how the data is sorted: an up arrow for
ascending order and a down arrow for descending, as shown in Figure 6-29.

CHAPTER 6 ■ USING SWING'S JTABLE 319

Figure 6-29. In this example, the table is not only sorted but also provides graphical information
that indicates how it’s sorted.

Listing 6-11 shows an example of how to use the renderer.

Listing 6-11. Using the Column Sorting Header

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.table.*;

public class SimpleTableTest extends JFrame {

protected JTable table;
protected SortedColumnHeaderRenderer renderer;

public static void main(String[] args) {
SimpleTableTest stt = new SimpleTableTest();
stt.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
stt.setSize(400, 200);
stt.setVisible(true);

}

public SimpleTableTest() {
Container pane = getContentPane();
pane.setLayout(new BorderLayout());
TableValues tv = new TableValues();
SortedTableModel stm = new SortedTableModel(tv);

// stm.sortRows(TableValues.ACCOUNT_BALANCE, true);
table = new JTable(stm);
table.setRowSelectionAllowed(false);
table.setColumnSelectionAllowed(true);
TableColumnModel tcm = table.getColumnModel();
TableColumn tc = tcm.getColumn(TableValues.GENDER);
tc.setCellRenderer(new GenderRenderer());
tc.setCellEditor(new GenderEditor());
MultiLineHeaderRenderer mlhr = new MultiLineHeaderRenderer();

CHAPTER 6 ■ USING SWING'S JTABLE320

// tc = tcm.getColumn(TableValues.ACCOUNT_BALANCE);
// tc.setHeaderRenderer(mlhr);

renderer = new SortedColumnHeaderRenderer(stm, mlhr);
int count = tcm.getColumnCount();
for (int i = 0; i < count; i++) {
tc = tcm.getColumn(i);
tc.setHeaderRenderer(renderer);

}
JTableHeaderToolTips jthtt =

new JTableHeaderToolTips(table.getColumnModel());
jthtt.setToolTips(new String[] {"Customer's First Name",

"Customer's Last Name", "Customer's Date of Birth",
"Customer's Account Balance", "Customer's Gender"});

table.setTableHeader(jthtt);
table.setDefaultRenderer(Float.class, new CurrencyRenderer());
JScrollPane jsp = new JScrollPane(table);
pane.add(jsp, BorderLayout.CENTER);
addHeaderListener();

}

public void addHeaderListener() {
table.getTableHeader().addMouseListener(new MouseAdapter() {
public void mousePressed(MouseEvent event) {
JTableHeader header = (JTableHeader)(event.getSource());
int index = header.columnAtPoint(event.getPoint());
renderer.columnSelected(index);
table.setColumnSelectionInterval(index, index);

}
});

}

}

In addition to the changes shown previously, you can make the other column headers in
TableValues display multiple lines of text by embedding linefeed characters in them:

public final static String[] columnNames = {"First\nName", "Last\nName",
"Date of\nBirth", "Account\nBalance", "Gender"};

Using Comparable
One limitation of this approach to sorting that you should be aware of is that it uses the
Comparable interface to determine the value of one object relative to another (in other words,
less than, greater than, or equal to). However, this usually isn’t a problem, because in Java 2,
that interface is implemented by most classes that can be sorted in a meaningful way. For
example, the numeric wrapper classes (for example, Integer, Float, Long, and so on), String,
Date, and several others all implement Comparable. However, Boolean doesn’t, because

CHAPTER 6 ■ USING SWING'S JTABLE 321

although it’s obvious that a value of true isn’t equal to a value of false, it’s unclear which
value should be considered greater than or less than the other one. In fact, if you click the
header of the Gender column, the program generates a ClassCastException when trying to
cast the Boolean values in that column to instances of Comparable.

One way to address this problem is to have the code that initiates sorting examine the
type of data in the column to ensure that the values can be sorted. As you’ve seen, you can
obtain the column’s data type by calling the TableModel’s getColumnClass() method, and you
can use the Class object returned from that method to determine whether the objects in the
column are instances of a class that implements Comparable. You can easily do this by making
the following changes to the addHeaderListener() method defined in SimpleTableTest:

public void addHeaderListener() {
table.getTableHeader().addMouseListener(new MouseAdapter() {
public void mousePressed(MouseEvent event) {
JTableHeader header = (JTableHeader)(event.getSource());
int index = header.columnAtPoint(event.getPoint());
Class dataType = table.getModel().getColumnClass(index);
Class[] interfaces = dataType.getInterfaces();
for (int i = 0; i < interfaces.length; i++) {
if (interfaces[i].equals(java.lang.Comparable.class)) {
renderer.columnSelected(index);
break;

}
}
table.setColumnSelectionInterval(index, index);

}
});

}

As Figure 6-30 illustrates, this code does indeed prevent the application from attempting
to sort the Boolean values in the Gender column. Instead, the column is simply selected.

Figure 6-30. Sorting isn’t appropriate for every column, since some values don’t have a meaning-
ful sort order relative to one another, such as the contents of the Gender column.

However, this has one remaining problem: although it’s true that clicking the Gender
column doesn’t result in that column being resorted, clicking the First Name and Last Name
column headers also doesn’t seem to have any effect. This is because the only two columns for

CHAPTER 6 ■ USING SWING'S JTABLE322

which the TableModel (specifically, the TableValues class) returns a meaningful value are Date
of Birth and Account Balance, and it indicates that all other columns contain Object values.
In other words, the application won’t sort on the First Name, Last Name, or Gender columns
because it knows only that those columns contain Object instances, and Object doesn’t imple-
ment the Comparable interface. However, you can easily address this by simply updating the
getColumnClass() method in TableValues so that it more accurately describes the data types
of all the columns it encapsulates:

public Class getColumnClass(int column) {
Class dataType = super.getColumnClass(column);
if (column == ACCOUNT_BALANCE) {
dataType = Float.class;

}
else if (column == DATE_OF_BIRTH) {
dataType = java.util.Date.class;

}
else if ((column == FIRST_NAME) || (column == LAST_NAME)) {
dataType = String.class;

}
else if (column == GENDER) {
dataType = Boolean.class;

}
return dataType;

}

With this modification, you can now sort on all the columns except for Gender, which
is the correct behavior. In this case, all the classes used for sorting were part of the Java core
classes, but you may want to sort on some user-defined class that’s specific to your applica-
tion. Fortunately, implementing the Comparable interface is trivial, and I provided an example
of how to do so in the SortedItemHolder inner class shown earlier.

Adding and Removing Table Rows
In all the examples you’ve seen so far, no JTable data was changed, added, or removed pro-
grammatically. However, you’ll sometimes want to dynamically change the data in a JTable
after it’s displayed, and all that’s necessary is to make the changes to your TableModel and then
notify its listeners (in other words, the JTable instance) that the data was modified.

For example, Listing 6-12 provides a simple one-column table and a text field that allows
you to add lines of text to the table.

Listing 6-12. Adding Table Rows

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import javax.swing.table.*;
import java.util.Vector;

CHAPTER 6 ■ USING SWING'S JTABLE 323

public class RowAdder extends JFrame {

protected SimpleModel tableData;
protected JTable table;
protected JTextField textField;

public static void main(String[] args) {
RowAdder ra = new RowAdder();
ra.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
ra.setSize(400, 300);
ra.setVisible(true);

}

public RowAdder() {
Container pane = getContentPane();
pane.setLayout(new BorderLayout());
tableData = new SimpleModel();
table = new JTable(tableData);
table.getColumnModel().getColumn(0).setPreferredWidth(300);
JScrollPane jsp = new JScrollPane(table);
pane.add(jsp, BorderLayout.CENTER);
textField = new JTextField();
textField.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
addLineToTable();

}
});
pane.add(textField, BorderLayout.SOUTH);

}

protected void addLineToTable() {
tableData.addText(textField.getText());
textField.setText("");

}

class SimpleModel extends AbstractTableModel {

protected Vector textData = new Vector();

public void addText(String text) {
textData.addElement(text);
fireTableDataChanged();

}

public int getRowCount() {
return textData.size();

}

CHAPTER 6 ■ USING SWING'S JTABLE324

public int getColumnCount() {
return 1;

}

public Object getValueAt(int row, int column) {
return textData.elementAt(row);

}

}

}

This code creates a JTable and allows you to enter text in a text field and press the Return
key to add that text to the table, as shown in Figure 6-31.

Figure 6-31. This simplistic interface illustrates how rows can be added to a table dynamically.

When that occurs, the data is added to the TableModel, and the fireTableDataChanged()
method is called. That method is provided by AbstractTableModel as a convenience, but
even if your TableModel isn’t a subclass of AbstractTableModel, it’s still trivial to refresh the
table display when your data changes. All that’s necessary is to construct an instance of
TableModelEvent and pass it as the parameter to the tableChanged() method of all listeners
that registered with the TableModel through its addTableModelListener() method. The follow-
ing code segment illustrates how to do this:

protected EventListenerList listenerList = new EventListenerList();
.
.
.
public void notifyListenersOfDataChange() {
TableModelEvent event = new TableModelEvent(this);
Object[] listeners = listenerList.getListenerList();
for (int i = 0; i < listeners.length; i++) {

CHAPTER 6 ■ USING SWING'S JTABLE 325

if (listeners[i] == TableModelListener.class) {
TableModelListener listener = (TableModelListener)(listeners[i + 1]);
listener.tableChanged(event);

}
}

}

This code illustrates how easily you can notify listeners (in practice, usually a single JTable
instance) of a change to a TableModel’s data. However, as mentioned, AbstractTableModel
implements this functionality for you. It also includes a number of fireTable() methods
that create a TableModelEvent containing information about specifically what type of change
(insert, update, or delete) occurred, along with the rows and columns that were affected by the
change. You can use those methods to cause your table to be refreshed when you have made
insertions, updates, or deletions to the data in the table’s model.

Displaying a Particular Table Row
In the RowAdder class just defined, a row is added to the table each time the Return key is
pressed in a text field. The first dozen or so rows appear immediately in the table, but eventu-
ally, there’s not enough room to display all the table rows, and a vertical scrollbar appears. At
that point, since new rows are added to the end of the table, they won’t be visible unless you
manually scroll to the bottom of the table. However, when you’re adding data to a table like
this, it’s often helpful to scroll the table automatically so that it always shows the most recently
added row. You can do this by accessing the JViewport instance that’s associated with the
table’s scroll pane and changing the view position so that the bottom row appears at the scroll
pane. You can easily modify the RowAdder class previously defined to perform this operation,
as follows:

public RowAdder() {
Container pane = getContentPane();
pane.setLayout(new BorderLayout());
tableData = new SimpleModel();
table = new JTable(tableData);
table.getColumnModel().getColumn(0).setPreferredWidth(300);
table.addComponentListener(new TableScroller());
JScrollPane jsp = new JScrollPane(table);
pane.add(jsp, BorderLayout.CENTER);
textField = new JTextField();
textField.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
addLineToTable();

}
});
pane.add(textField, BorderLayout.SOUTH);

}

CHAPTER 6 ■ USING SWING'S JTABLE326

class TableScroller extends ComponentAdapter {

public void componentResized(ComponentEvent event) {
int lastRow = tableData.getRowCount() - 1;
int cellTop = table.getCellRect(lastRow, 0, true).y;
JScrollPane jsp = (JScrollPane)SwingUtilities.getAncestorOfClass(

JScrollPane.class, table);
JViewport jvp = jsp.getViewport();
int portHeight = jvp.getSize().height;
int position = cellTop - (portHeight - table.getRowHeight() -

table.getRowMargin());
if (position >= 0) {
jvp.setViewPosition(new Point(0, position));

}
}

}

The componentResized() method obtains the last row’s size and coordinates by calling the
table’s getCellRect() method. It then uses the row’s vertical position, the size of the viewport,
and the height of the row to adjust the view position so the last row is displayed at the bottom
of the table. By using functionality similar to this, you can ensure that any given table row is
visible, such as in this case where a new row was added to the table and should be displayed.

Summary
In this chapter, you examined the functionality provided by JTable and how it provides those
capabilities. Specifically, I discussed the following:

• How to create a TableModel

• Column resizing modes

• How to render and edit table cells

• Selection modes

• JTableHeader and how it can provide an improved user interface

• How to create numbered rows and frozen columns

• How to implement sorting

• How to handle dynamic updates to the table data

CHAPTER 6 ■ USING SWING'S JTABLE 327

Using Swing’s JTree

The JTree component defined in the javax.swing package is commonly used to display
hierarchical data such as the contents of a file system. Even if you’ve never used JTree before,
you’ve almost certainly seen a component like the one that appears on the left side of the
Windows Explorer application (see Figure 7-1).

Figure 7-1. Windows Explorer represents the relationships between a set of disks and directories.

This chapter describes how to use JTree and illustrates how to provide some functionality
that’s often needed. Specifically, in this chapter I’ll cover the following:

• Understanding the terminology related to tree structures and the data they display

• Using JTree’s support classes and interfaces

• Constructing and manipulating the data model associated with a tree

• Controlling how the items in a tree are drawn (rendered) and edited

• Selecting items in a tree and detecting when selections change

• Controlling which portions of a tree’s data are displayed (expanded) or concealed
(collapsed)

329

C H A P T E R 7

■ ■ ■

CHAPTER 7 ■ USING SWING'S JTREE330

JTree Terminology
Before discussing how to use JTree, I’ll define the terminology that describes the different
parts of a tree and its behavior. Each item that’s displayed in the tree is referred to as a node,
and every JTree contains a single root node that resides at the top of the node hierarchy (see
Figure 7-2).

Figure 7-2. Each row of the tree is referred to as a node, and a tree typically displays a top
root node.

Each node is either a branch node or a leaf node, although the exact meanings of those
terms can vary. Leaf node can refer to a node that doesn’t contain other nodes, or it can refer to
a node that can’t contain other nodes. Branch node similarly can mean a node that does con-
tain other nodes or one that can contain other nodes. In other words, a node that doesn’t
contain other nodes can be described as either a leaf node or a branch node; I discuss the
variation in meaning in more detail later.

When a branch node does contain other nodes, it’s said to be the parent of those nodes,
and they’re referred to as children of that branch and siblings of one another. In Figure 7-2, the
Adam node is the parent of Cain, Abel, and Seth, and those three are likewise children of Adam
and siblings of one another. Since the parent-child relationship is relative (it describes one
node’s relationship to another), a single node can be both a parent and a child. For example,
Seth is both a parent (relative to Enos) and a child (relative to Adam).

All nodes that are contained by a branch node either directly or indirectly are referred to
as the branch’s descendents, and the branch itself is likewise referred to as an ancestor of its
descendents. In Figure 7-2, the Adam node is the ancestor of all other nodes in the tree, and
those nodes are all descendents of Adam. A closely related concept is that of a subtree, which
is simply a tree node and all of its descendents, since that collection of nodes effectively forms
a separate “tree within the tree.”

The JTree component normally allows a parent node to be displayed in one of two states:
with its children visible or with its children concealed. When a node’s children are visible,
that node is expanded; a collapsed node is one for which its descendents are concealed. It’s
normally possible for you to toggle this state by clicking the node’s handle, which is a small
image that appears to the left of the node. Figure 7-3 shows two instances of JTree that con-
tain the same data, but two of the three nonroot nodes (colors and food) in the left tree are
expanded, while all three of those in the right tree are collapsed. Note that the appearance

Root Node

Nodes

of the handle varies slightly based upon the state (expanded or collapsed) of the node with
which it’s associated.

Figure 7-3. A collapsed tree node is one that has descendents that aren’t displayed, and the
appearance of the node’s handle indicates when it’s collapsed.

When a node is collapsed, all of its descendents are hidden, because those nodes can’t
be seen, while a node for which all ancestors are expanded is considered viewable. The term
viewable correctly implies that a node is eligible to be seen but not that it’s currently visible.
The reason for this distinction is that like JTable components, JTree instances often contain
too much data to be able to display all of their nodes simultaneously, and for that reason, trees
are often contained inside instances of JScrollPane. Only when a node is actually visible is it
considered displayed, which means the node lies within the portion of the tree that’s currently
visible in the JScrollPane.

Creating a JTree
Creating a JTree instance is easy to do (see Listing 7-1), and many different constructors are
provided, although the no-argument constructor populates the tree with dummy data like
that shown in Figure 7-3. Several others accept a list of items in the form of an object array,
Vector, or Hashtable.

Listing 7-1. Creating a New JTree

import javax.swing.*;

public class SimpleTreeTest extends JFrame {

public static void main(String[] args) {
SimpleTreeTest stt = new SimpleTreeTest();
stt.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
stt.setSize(250, 250);

CHAPTER 7 ■ USING SWING'S JTREE 331

stt.setVisible(true);
}

public SimpleTreeTest() {
Object[] genealogy = {"Jeff", "Joseph", "Pearl", "Owen", "Sarah",

"John"};
JTree tree = new JTree(genealogy);
JScrollPane jsp = new JScrollPane(tree);
getContentPane().add(jsp);

}

}

This results in a display like the one shown in Figure 7-4.

Figure 7-4. A simple tree with six sibling nodes visible

It may appear at first glance that there’s no root node or that each of the six nodes in the
array passed to the JTree constructor is somehow a root node. In reality, this constructor pro-
duces a JTree instance that has a concealed root node, and each of the objects in the array
parameter is made a child of that invisible root. To view the root node, add a line of code that
calls the setRootVisible() method:

public SimpleTreeTest() {
Object[] genealogy = {"Jeff", "Joseph", "Pearl", "Owen", "Sarah",

"John"};
JTree tree = new JTree(genealogy);
tree.setRootVisible(true);
JScrollPane jsp = new JScrollPane(tree);
getContentPane().add(jsp);

}

This results in a display like the one shown in Figure 7-5.

CHAPTER 7 ■ USING SWING'S JTREE332

Figure 7-5. In this example, the root node appears because you’ve explicitly indicated it should
be displayed.

Here the node values are all instances of the String class, but you can use any type of
object as a node. JTree’s default behavior is to display the value returned by each object’s
toString() method, which in this case is simply the String value itself.

In this example, each of the six nodes is assumed to be a leaf node since there are no
children defined, but it’s possible to use this technique to create more complex tree struc-
tures. For example, you could add a second level of nodes by modifying the following code:

public SimpleTreeTest() {
Object[] genealogy = {"Jeff", "Joseph", "Pearl", "Owen", "Sarah",

"John"};
genealogy[0] = new Object[] {"Jerry", "Selma", "Joe", "Evelyn"};
JTree tree = new JTree(genealogy);
tree.setRootVisible(true);
JScrollPane jsp = new JScrollPane(tree);
getContentPane().add(jsp);

}

This modification changed the first element in the genealogy array from a String into
another array, and when this code is compiled and executed, it produces a tree like the one
shown in Figure 7-6.

Figure 7-6. Defining a node as an array results in the array elements being represented as
children within the tree.

CHAPTER 7 ■ USING SWING'S JTREE 333

Although this displays the data in a way that’s largely appropriate, the toString() method
of the second object array returns a value ([Ljava.lang.Object;@2701e) that’s not meaningful.
You can address this problem in several ways, but one easy way is to use either Vector or
Hashtable instead of an array and override the object’s toString() method so it returns the
desired value. The following code segment illustrates how you can do this:

public SimpleTreeTest() {
Object[] genealogy = {"Jeff", "Joseph", "Pearl", "Owen", "Sarah",

"John"};
java.util.Vector v = new java.util.Vector() {
public String toString() {
return "Jeff";

}
};
v.addElement("Jerry");
v.addElement("Selma");
v.addElement("Joe");
v.addElement("Evelyn");
genealogy[0] = v;
JTree tree = new JTree(genealogy);
tree.setRootVisible(true);
JScrollPane jsp = new JScrollPane(tree);
getContentPane().add(jsp);

}

As expected, this modified version of the code displays the name Jeff for the first child
node’s label instead of the cryptic value returned by the Object array (see Figure 7-7).

Figure 7-7. By changing the value returned by an object’s toString() method, you can control
what’s displayed for that object when it’s part of a tree.

However, this approach is less than ideal, and as you’ll see later in this chapter, the classes
and interfaces in the javax.swing.tree package provide a better way to define the nodes in a
tree and their parent-child relationships. Prior to that discussion, it’s useful to examine the
TreeModel interface, which defines the methods that are invoked by JTree to retrieve the data
it displays.

CHAPTER 7 ■ USING SWING'S JTREE334

TreeModel
Like other Swing components, an instance of the JTree class defined in javax.swing repre-
sents the component view, and some other object represents the model. In other words, the
model is the object that encapsulates the data to be displayed, and the view (a JTree instance)
is the visual representation of that data. For a class to serve as a JTree model, it must imple-
ment TreeModel, an interface that’s defined in the javax.swing.tree package. I describe each
of the methods defined in TreeModel next, although you won’t normally call these methods
yourself. Instead, an instance of JTree typically uses them to obtain the data it displays.

addTreeModelListener(), removeTreeModelListener()
An instance of a TreeModelListener implementation is passed to these methods, which are
used to add and remove listeners to and from a list of objects that want to be notified of
changes to the tree data. Each listener is notified when a node is added or removed from the
tree and when the tree’s structure otherwise changes. In practice, the only registered listener
of a given TreeModel instance will be the JTree instance associated with the model, and by
registering as a listener, the tree can be notified of changes to the data it displays.

getRoot()
This method returns the object representing the tree’s root node. In the previous examples, a
root node was constructed automatically, and the objects in the array or Vector passed to the
JTree constructor were made children of that root node. In most cases, however, you’ll con-
struct your own root node, add children to it, and pass it to a JTree constructor.

getChildCount()
An object representing one of the previously identified tree nodes (the root node or one of its
descendents) is passed to this method, which returns an integer value that identifies the num-
ber of children associated with that node.

getChild()
An object representing one of the previously identified tree nodes is passed to this method
along with an integer index value, and a reference to the appropriate child node is returned.
The specific node returned is based on the value of the index parameter and corresponds to
the child’s position within its parent’s list of children. For example, if the index value is 0, the
first child node (the one that appears directly below its parent) is returned, and a value of 1
returns the second child node, and so on. In the following code segment, the third child of
the node represented by parent is returned:

TreeModel model;
Object childNode, parentNode;
.
.
.

Object childNode = model.getChild(parentNode, 2);

CHAPTER 7 ■ USING SWING'S JTREE 335

getIndexOfChild()
This method provides functionality that’s essentially the opposite of that provided by getChild().
While getChild() returns a child node given an index, getIndexOfChild() returns the index
associated with a specific child node. Two parameters representing tree nodes are passed
to this method: one that’s a parent and another representing one of that parent’s children;
getIndexOfChild() returns an integer that identifies the child’s position within the parent’s list
of children. For example, if getIndexOfChild() is called and passed a reference to a node that’s
the third child of the specified parent node, it returns a value of 2. If a parent-child relation-
ship doesn’t exist between the two nodes, a value of -1 is returned.

isLeaf()
This method is passed an object that has previously been identified by the TreeModel as one
of the nodes in the tree, and it should return a boolean value of true if that object represents
a leaf node. As mentioned earlier, it’s possible for leaf node to refer either to a node that can’t
have children or to one that simply doesn’t currently have children, which is why it’s necessary
to define both this method and getChildCount(). Depending upon which definition of leaf
node is applied, it may or may not be possible to identify leaf nodes based solely upon a node’s
child count.

valueForPathChanged()
This method is passed an instance of TreePath and an Object representing the new value that’s
to be associated with the node identified by the TreePath and is called when the node’s value
has changed. For example, when the editing of a tree node is completed and the new value
should be saved, this method is called to cause the TreeModel to update its data accordingly.
I discuss TreePath, which identifies a specific node within the tree, later in this chapter.

Creating Tree Nodes
Now that you’ve seen how TreeModel encapsulates the data displayed in a JTree, you’ll exam-
ine the interfaces and class provided in the javax.swing.tree package that allow you to easily
create and manipulate tree nodes. The class most commonly used to represent a tree node
is DefaultMutableTree, an implementation of the MutableTreeNode interface, which is in turn
a subinterface of TreeNode. Although you won’t often find it necessary to create your own
TreeNode or MutableTreeNode implementations, a familiarity with those interfaces and some
knowledge of how they can be implemented is helpful when using JTree.

TreeNode
One point that should be apparent from the description of TreeModel is that a model is respon-
sible for providing information, such as whether a given node is a leaf or a branch and such
as a list of each node’s children. Although it might be technically possible to store that infor-
mation in the TreeModel itself, doing so is difficult and complex at best. A better approach is
to allow each node to maintain its own information, and TreeNode provides an interface that
a TreeModel can use to retrieve the data from the node. In fact, of the seven TreeNode methods,
four of them map directly to methods in TreeModel. The DefaultTreeModel class described
later in this chapter takes advantage of that by supporting only objects that implement

CHAPTER 7 ■ USING SWING'S JTREE336

TreeNode, allowing it to delegate responsibility for the four methods listed in Table 7-1 to the
nodes themselves.

Table 7-1. TreeNode Methods

TreeModel Method Corresponding Method in TreeNode

getChild() getChildAt()

getChildCount() getChildCount()

getIndexOfChild() getIndex()

isLeaf() isLeaf()

Although the names vary slightly in two cases, the only difference between the parameter
lists of the methods in a pair is the presence or absence of an Object that represents the node
for which the information should be provided. For example, the TreeModel’s getChildCount()
method accepts a single Object parameter that identifies the parent node for which the child
count should be returned:

public int getChildCount(Object parent);

In contrast, the getChildCount() method in TreeNode is defined to return the child count
of the object for which the method is called (the this object), so no identifying node parame-
ter is required:

public int getChildCount();

Since all nodes in a DefaultTreeModel must be instances of TreeNode, the implementation
of getChildCount() in that model implementation is trivial:

public class DefaultTreeModel implements TreeModel {

public int getChildCount(Object parent) {
return ((TreeNode)parent).getChildCount();

}
// ...

getChildCount()

This method returns an integer value that identifies the number of children that the node has,
and it’s called by the method of the same name in TreeModel.

getChildAt()

A single integer index value is passed to getChildAt(), and it returns the TreeNode correspond-
ing to the child node at the specified index. For example, a parent’s first child corresponds to
a value of 0, the second to a value of 1, and so on. A TreeModel can use this method to delegate
responsibility for identifying a child’s index by calling getChildAt() from the getChild()
method in the TreeModel implementation.

CHAPTER 7 ■ USING SWING'S JTREE 337

getIndex()

The functionality of this method is essentially the opposite of that found in getChildAt(), and
although getChildAt() returns a TreeNode given an index, this method is passed a TreeNode
and returns that node’s index. By calling this method from the getIndexOfChild() method in
TreeModel, a model can delegate responsibility for that function to the node itself.

children()

This method returns an instance of java.util.Enumeration containing the TreeNode objects
that are the children of this node.

getParent()

This method returns a reference to the TreeNode that’s the parent of this node, unless this node
represents the root node, in which case getParent() returns a value of null.

isLeaf()

This method should return a value of true if the node represents a leaf node or false if it
represents a branch node. JTree’s normal behavior is to display an icon for leaf nodes that’s
different from the one it displays for branch nodes, and this method determines which icon
is associated with the node.

getAllowsChildren()

As its name implies, this method returns a boolean value that indicates whether the node is
eligible to have children. If the node supports children, it should return a value of true, while
nodes that don’t support children should return false.

Nodes Without Children: Leaf or Branch?
As previously mentioned, you can use the terms leaf and branch in one of the following
two ways:

• Leaf nodes are those that don’t have any children, while branch nodes are those that
do have children.

• Alternatively, leaf nodes are those that can’t have children, while branch nodes are
those that can, which may include some nodes without children.

This ambiguity can be confusing, and it may seem unnecessarily so, but the reason for
this vagueness is that you may want the first meaning to apply in some cases and the second
to apply in others. For example, suppose you’re using JTree to display genealogy/lineage
information (a “family tree”). In that situation, it’s probably reasonable to apply the first set
of definitions to the JTree: leaf nodes represent individuals who don’t (or didn’t) have any
children, while branch nodes are people who do (or did) have children. However, let’s also
consider the case where you’re using a JTree to represent the contents of a file system. In that
case, you’d probably want each directory displayed as a branch node, even if the directory
doesn’t contain any children (files or other directories). In other words, empty directories

CHAPTER 7 ■ USING SWING'S JTREE338

should be represented by the same icon as those that aren’t empty, meaning that the node
type (leaf or branch) should be determined by a node’s ability to contain children instead of
whether it actually does.

You’ve probably guessed that JTree supports both sets of definitions, which is indeed the
case, but you may be wondering how to control which one is used. It’s ultimately the responsi-
bility of the TreeModel to make that determination, since its isLeaf() method is responsible
for classifying a node as a leaf or branch. The TreeModel can determine which value should be
returned from that method, or it can delegate responsibility to the node itself. For example, if
you’ve created a TreeModel implementation that contains a set of objects that all implement
TreeNode, you could implement the model’s isLeaf() method in many ways. For example, the
following implementation simply leaves it up to each node to determine whether the node is a
branch of a leaf node:

public class MyTreeModel implements TreeModel {

public boolean isLeaf(Object node) {
return ((TreeNode)node).isLeaf();

}
// ...

You’ll more commonly want the model itself to determine whether a node is a leaf or a
branch so all the nodes in the tree are classified consistently. The following implementation
uses the first definition given earlier, returning true from isLeaf() if the node doesn’t have
any children or false if it does have children:

public boolean isLeaf(Object node) {
return ((TreeNode)node).getChildCount() == 0;

}

Similarly, the following implementation uses the second definition of a leaf node, return-
ing true from isLeaf() if the node is capable of having children (regardless of whether it
currently does have children):

public boolean isLeaf(Object node) {
return ((TreeNode)node).getAllowsChildren();

}

Another approach is to create a TreeModel that can use either definition. For example, you
might create an implementation such as the following one that allows you to set a boolean
value called asksAllowsChildren. When that value is true, the node’s getAllowsChildren()
method determines whether the node is a leaf or branch node (using the second definition).
However, when the value of asksAllowsChildren is false, the node’s type (leaf or branch) is
determined by the presence or absence of children (the first definition).

public class MyTreeModel implements TreeModel {

protected boolean asksAllowsChildren;

public void setAsksAllowsChildren(boolean asks) {

CHAPTER 7 ■ USING SWING'S JTREE 339

asksAllowsChildren = asks;
}

public boolean isLeaf(Object node) {
boolean result;
TreeNode treenode = (TreeNode)node;
if (asksAllowsChildren) {
result = treenode.getAllowsChildren();

}
else {
result = (treenode.getChildCount() == 0);

}
return result;

}

// ...

The previous approach is similar to that used by DefaultTreeModel, which is the only
TreeModel implementation supplied with Swing. In fact, the only difference is that instead of
calling the TreeNode’s getChildCount() method if asksAllowChildren is false, DefaultTreeModel
calls the node’s isLeaf() method. When using DefaultTreeModel, therefore, choosing a defini-
tion of leaf and branch is as easy as calling setAsksAllowsChildren(). The default behavior
is to classify all nodes without children as leaf nodes, but by passing a value of true to
setAsksAllowsChildren(), you can cause the alternate definition to be used instead.

MutableTreeNode
I gave some examples at the beginning of this chapter to show how to create a JTree, and in
those cases, a single object instance (a String) represented both a node and the value associ-
ated with that node. As you’ve seen, however, it can be helpful to create a class that implements
TreeNode, in which case it’s necessary to separate the value associated with a node from the
class that implements TreeNode.

For example, you couldn’t create a subclass of java.lang.String that implements
TreeNode because String is a final class, and even if possible, it wouldn’t be desirable from
an object-oriented design standpoint. A better solution is to create an interface that extends
TreeNode and adds support for a user object, which is simply a value that’s associated with the
node, and MutableTreeNode does just that. The Mutable portion of this interface’s name indi-
cates it defines methods that can be called to modify the state of the node, specifically its
parent, its list of child nodes, and the associated user object value. The following sections
describe the methods defined in MutableTreeNode; I give examples in each case of how you
might implement the method.

setUserObject()

Use setUserObject() to specify the value of the user object for this node. A single Object
parameter is passed to this method, and a class that implements this interface should

CHAPTER 7 ■ USING SWING'S JTREE340

normally save a reference to that object. You can do this with a simple mutator method, as
follows:

public class MyMutableTreeNode implements MutableTreeNode {

protected Object userObject;

public void setUserObject(Object value) {
userObject = value;

}

setParent()

You should use setParent() to store a reference to the node’s parent, passing it a reference to
a MutableTreeNode. A class that implements this interface will typically choose to save a refer-
ence to the parent node, as in the following code:

public class MyMutableTreeNode implements MutableTreeNode {

protected MutableTreeNode parent;

public void setParent(MutableTreeNode newParent) {
parent = newParent;

}

remove()

This overloaded method has two versions: one that’s passed an integer index value that identi-
fies the child to be removed and another that’s passed a reference to the MutableTreeNode to
be removed. When called, remove() should set the child node’s parent to null and remove the
child from this parent node’s list of child nodes, as in the following code:

public class MyMutableTreeNode implements MutableTreeNode {

protected java.util.Vector children = new java.util.Vector();

public void remove(MutableTreeNode child) {
remove(children.indexOf(child));

}

public void remove(int index) {
MutableTreeNode child = (MutableTreeNode)(children.remove(

index));
child.setParent(null);

}

CHAPTER 7 ■ USING SWING'S JTREE 341

removeFromParent()

As its name suggests, this method is responsible for removing the node from its parent; the
following is an example of how you can implement this:

public class MyMutableTreeNode implements MutableTreeNode {

protected java.util.Vector children = new java.util.Vector();

public void removeFromParent() {
// Obtain a reference to this node's parent
MutableTreeNode parent = (MutableTreeNode)getParent();
// If it has a parent, remove it from that parent node first
if (parent != null) {
parent.remove(child);

}
}

insert()

Two parameters are passed to this method: a reference to an instance of MutableTreeNode and
an index value that identifies where the node should be inserted relative to the parent node’s
existing children. For example, if the index value is 0, the node being inserted is made the first
child of this node, and the index values of the other children are incremented by 1.

If you create your own implementation of MutableTreeNode, you should ensure that the
setParent() method of the node being inserted is called and passed a reference to this node,
as shown in the following sample code. You should also ensure that the node being added is
removed from any parent to which it had previously been assigned so that the child isn’t refer-
enced by more than one parent. The following is an example of how you can implement this:

public class MyMutableTreeNode implements MutableTreeNode {

protected java.util.Vector children = new java.util.Vector();

public void insert(MutableTreeNode child, int index) {
// If node has a parent, remove it from that parent first
child.removeFromParent();
// Insert the child into the list at the specified location
children.insertElementAt(child, index);
// Now set its parent to this node
child.setParent(this);

}

DefaultMutableTreeNode
It should be obvious from the descriptions of the methods in TreeNode and MutableTreeNode
that it’s easy to create your own implementations of those interfaces. As mentioned earlier,
however, it’s rarely necessary to do so because the javax.swing.tree package also includes

CHAPTER 7 ■ USING SWING'S JTREE342

DefaultMutableTreeNode, and the behavior of this class is appropriate for most applications.
In addition to its many methods, DefaultMutableTreeNode contains four fields, although each
of them exists solely to support the implementation of the TreeNode and MutableTreeNode
methods:

• A reference to a parent MutableTreeNode, the value of which is returned by getParent().

• A collection of child nodes that are all instances of MutableTreeNode. The child nodes
are accessible through a variety of methods, including children(), getChildAt(), and
many others.

• A reference to a user object that’s accessible through the getUserObject() and
setUserObject() accessor and mutator methods. As mentioned earlier, the user object
allows you to associate a value with a node, and you can use any type of Object; note,
however, that the reference to the user object is transient, which means the user object
will not be marshaled along with the node that references whether the node is serialized.

• A flag named allowsChildren that you can use to specify whether this node is allowed
to have children. That flag is accessible through the getAllowsChildren() and
setAllowsChildren() methods.

Creating DefaultMutableTreeNode Instances

You can create and use instances of DefaultMutableTreeNode easily, and only three construc-
tors are defined. One constructor accepts no parameters, another expects a user object
(Object) value, and the third allows you to specify a user object and a boolean value that indi-
cates whether the node allows children to be added. The first two constructors result in an
instance that allows children, so to create a node with an initial user object value of “Hello”
that accepts children, you could use the following code:

DefaultMutableTreeNode node = new DefaultMutableTreeNode("Hello");

It’s equally simple to add children to a node, since in addition to the insert() method
defined in MutableTreeNode, DefaultMutableTreeNode also includes a method called add(),
which appends the specified node to the end of the list of children:

DefaultMutableTreeNode parent = new DefaultMutableTreeNode("Adam");
DefaultMutableTreeNode child = new DefaultMutableTreeNode("Cain");
parent.add(child);

Note that before a node is added as a child of some other node, it’s first removed from
the child list of any existing parent it may have. For example, suppose you execute the follow-
ing code:

DefaultMutableTreeNode parent = new DefaultMutableTreeNode("Adam");
DefaultMutableTreeNode child = new DefaultMutableTreeNode("Cain");
parent.add(child);
DefaultMutableTreeNode otherParent = new DefaultMutableTreeNode("Eve");
otherParent.add(child);

CHAPTER 7 ■ USING SWING'S JTREE 343

The first three lines shown are identical to those of the previous code segment, so they
obviously will produce the same results. However, when otherParent’s add() method is called,
the child node will first be removed from its existing parent (in other words, Adam), and only
then will it be added to otherParent’s list of children. This behavior ensures that a child node
only ever has a single parent and that no parent node has references to children that have
been added to some other parent.

Using DefaultMutableTreeNode

DefaultMutableTreeNode contains many methods in addition to those needed to implement the
TreeNode and MutableTreeNode interfaces, and most of the methods have names that should be
self-explanatory. For example, getFirstChild() and getLastChild() return references to the
node’s first and last child nodes, respectively. In fact, most methods in DefaultMutableTreeNode
retrieve some node or group of nodes that has some relationship to the node for which the
method is called. Some of the remaining methods (such as isNodeXXX()) determine whether
some specific type of relationship exists between this node and another. For example,
isNodeRelated() is passed a reference to a TreeNode and returns a value of true if any type
of relationship exists between that node and the one for which the method is called. In other
words, it returns true if the two nodes are contained within the same tree.

Although the purpose of most of the methods should be obvious from their names, others
may be less intuitive; in the following sections, I describe some of the methods likely to fall
into the latter category.

getLevel(), getDepth()
A node’s level refers to the number of parent nodes that must be traversed to reach the root
node, and a node’s depth represents the maximum number of levels that currently exist below
the node. In other words, the level value is derived by counting the number of levels that must
be traveled “up” the tree until the root node is reached. In contrast, the depth is the maximum
number of levels that can be traversed “down” the tree from that node.

For each node in the fully expanded tree in Figure 7-8, the level and depth of each node in
the tree is shown in Table 7-2.

Figure 7-8. A sample tree that’s used to illustrate levels and depths within a tree’s nodes

CHAPTER 7 ■ USING SWING'S JTREE344

Table 7-2. Levels and Depths in Figure 7-8

Node Name Level Depth

Living Things 0 4

Animals 1 3

Mammals 2 2

Dogs 3 0

Cats 3 1

Siamese 4 0

Persian 4 0

Reptiles 2 1

Alligators 3 0

Snakes 3 0

Plants 1 1

Flowers 2 0

Trees 2 0

getSharedAncestor()
To use this method, you must pass a reference to another DefaultMutableTreeNode, and
getSharedAncestor() returns a reference to the first node that’s a common ancestor of that
parameter node and the one for which this method was called. For example, if a reference to
the Persian node in the previous tree is passed to the getSharedAncestor() method of the
Alligators node (or vice versa), a reference to the Animals node is returned.

getPath(), getUserObjectPath()
When you call the getPath() method, it returns an array of TreeNode objects that represent the
nodes that must be traversed from the root node to reach the node for which the method is
called. For example, if this method is called for the Reptiles node in the previous tree, it will
return references to three nodes: Living Things, Animals, and Reptiles. Note that the first entry
in the array is always the root node, and the last is always the node for which this method was
called.

The getUserObjectPath() method is similar to getPath(), but instead of returning refer-
ences to the TreeNode objects, it instead returns an Object array representing the user object
associated with each node in the path. If the path includes nodes that haven’t been assigned
user object values, null values will appear in the appropriate places within the array returned
by getUserObjectPath().

pathFromAncestorEnumeration()
To use this method, you must pass it a TreeNode representing an ancestor of the node for
which the method is called. Like getPath(), this method returns a list of nodes, but it has
two differences. First, pathsFromAncestorEnumeration() returns an Enumeration instead of an
array; second, the list of nodes begins with the ancestor you identified instead of the tree’s

CHAPTER 7 ■ USING SWING'S JTREE 345

root node. Therefore, the first node in the list will always be the ancestor node parameter, and
the last node will (as in the case of getPath()) always be the node against which the method
was invoked.

For example, if you call pathFromAncestorEnumeration() for the Siamese node in the previ-
ous tree and pass it a reference to the Mammals node, it will return an enumeration containing
references to three nodes: Mammals, Cats, and Siamese (in that order).

This method throws an IllegalArgumentException if the node passed to it isn’t an ances-
tor of the node against which the method is invoked. Therefore, you should be prepared to
handle the exception, or you should ensure that the argument node is indeed an ancestor
before calling this method.

Obtaining a List of Nodes
The last four DefaultMutableTreeNode methods you’ll examine all obtain a list of the nodes in
a tree or the subtree defined by the node for which the method is invoked. For example, if you
call one of these methods for the root node shown in the previous tree, it will return a list that
contains an entry for each of the nodes in the tree. However, if you call the method for the
Reptiles node, the list will contain entries only for the Reptiles, Alligators, and Snakes nodes.

Since these four methods all return an Enumeration containing a node and all its descen-
dent nodes, the obvious question is, how do these methods differ? As you might expect, the
difference is in the order in which the nodes occur in the list that’s returned.

depthFirstEnumeration(), postorderEnumeration()
These two methods are effectively synonyms for one another, since they both produce the
same results, returning a list generated using a depth-first, or postorder, traversal of the appro-
priate tree nodes. When a node is being processed using this approach, it’s first examined to
determine whether it has any children. If it does, each child is processed before the parent
node is added to the list, and this behavior is repeated recursively until a node is reached that
doesn’t have children. A parent is added to the list that’s being built only after any child nodes
have been processed, and it’s that behavior that gives postorder traversal its name. Since chil-
dren are added before their parents, the node for which this method is called is always the last
node in the list returned.

To illustrate this technique, let’s assume you call depthFirstEnumeration() or
postorderEnumeration() for the Cats node shown in the previous tree. Since that node has
two children, they will be processed before the Cats node is added to the list, and since
those two children don’t have any descendents, they’re simply added to the list without addi-
tional recursive calls. Once the two child nodes have been processed, the parent Cats node
is added to the list, and an Enumeration is returned that contains references to the three
nodes in the following order:

• Siamese

• Persian

• Cats

Figure 7-9 shows the sequence in which the nodes are traversed.

CHAPTER 7 ■ USING SWING'S JTREE346

Figure 7-9. With depth-first enumeration, the children are processed before their parents.

Similarly, if one of these methods is called for the Mammals node, the Dog node will be the
first in the list, because it’s the first node found that doesn’t have any children. After that, the
next three nodes processed will be the same ones added to the list in the previous example, and
finally the Mammals node itself is added, resulting in the following entries in the list returned:

• Dogs

• Siamese

• Persian

• Cats

• Mammals

Figure 7-10 represents the sequence graphically.

Figure 7-10. A more complex example of how depth-first enumeration works

4

2

3

1

5

3

1

2

CHAPTER 7 ■ USING SWING'S JTREE 347

Since these two methods (depthFirstEnumeration() and postorderEnumeration())
produce the same results, which one you should use is largely a matter of personal prefer-
ence. For instance, you may find it easier to remember that this technique involves
processing nodes in a depth-first order, in which case you might be more inclined to use
depthFirstEnumeration().

breadthFirstEnumeration()
This type of enumeration is easier to visualize, since it traverses the nodes in order of their
level, and nodes that are at the same level are listed in order from top to bottom. For example,
if you call this method for the Animals node of the previous tree, it first adds that node to the
list, since it’s the top node. The next two nodes added are Mammals and Reptiles (which are
both children of Animals) followed by Dogs, Cats, Alligators, Snakes, and finally Siamese and
Persian. In other words, this method starts with the node specified and works its way through
the tree from the closest descendents to the most distant ones. The name is derived from the
fact that this technique results in the tree’s breadth/width being traversed before its depth
when the tree is visualized with the root node at the top and the most distant descendants at
the bottom. Figure 7-11 shows a visual representation of this sequence.

Figure 7-11. Breadth-first enumeration traverses a set of nodes based on their level.

preorderEnumeration()
This technique most closely resembles the depthFirstEnumeration()/postorderEnumeration()
methods described previously, but each parent is added to the list before its children are
processed recursively instead of afterward. The resulting order of the nodes is the same order
that they appear from top to bottom in the JTree. In the case of the previous tree, calling
preorderEnumeration() for the root node causes the nodes to appear in the list in the follow-
ing order:

5

8

9

4

2

1

3

6

7

CHAPTER 7 ■ USING SWING'S JTREE348

• Living Things

• Animals

• Mammals

• Dogs

• Cats

• Siamese

• Persian

• Reptiles

• Alligators

• Snakes

• Plants

• Flowers

• Trees

TreePath
When working with a Vector or array of values, you can reference each value by using its
index, as illustrated in the following code segment where the second value in a Vector and
third value in an array are printed:

Vector v;
Object[] array;
// ...

System.out.println(v.elementAt(1));
System.out.println(array[2]);

You can use this simple index approach for an array or Vector, because those objects
represent linear (one-dimensional) data structures. In other words, each value is assigned a
position that can be uniquely identified by a simple whole number (0, 1, 2, 3, and so on). How-
ever, the hierarchical structure of nodes in a JTree makes it somewhat more difficult to define
a technique for identifying a particular node within the tree.

JTree does use index values to identify visible nodes within a tree, assigning each node
a value based on its vertical position within the tree. The root node is always at the top of the
tree, so its position (when it’s visible) corresponds to an index value of 0, and each node below
it is assigned a unique value, as shown in Figure 7-12.

CHAPTER 7 ■ USING SWING'S JTREE 349

Figure 7-12. A node’s index corresponds to its vertical location within the tree given the current
state (collapsed or expanded) of the tree’s nodes.

Although some of the methods in JTree allow you to reference nodes in this manner, you
should keep in mind that a node’s index value depends upon the state of the tree.

To illustrate this point, suppose that the previous tree is partially collapsed so the children
of the Jeff node aren’t visible. As Figure 7-13 shows, most of the visible rows’ index values have
changed, which shows that a given index can’t be relied upon to consistently identify a partic-
ular node.

Figure 7-13. Note that the index value for each child of the Jeff node has changed as a result of the
parent being collapsed.

In addition, adding or deleting nodes or even changing the position of a node within the
tree can cause a node’s index value to change. Therefore, you should use index values only to
refer to the node at a given vertical position within the tree, not as a means of identifying a
specific node. For that purpose, you should use an instance of TreePath, which is a class
defined in the javax.swing.tree package.

As its name implies, a TreePath encapsulates a node’s path, which is simply a list of nodes
that must be traversed (usually starting from the root node) to reach the node identified by
the path. For example, you could construct the TreePath associated with the soccer node in

CHAPTER 7 ■ USING SWING'S JTREE350

Figure 7-14 by creating a three-element array containing references to the JTree, sports, and
soccer nodes, in that order.

Figure 7-14. To reach the soccer node shown in this tree, you’d need to traverse the JTree, sports,
and soccer nodes.

As you saw earlier, you can use the getPath() method in DefaultMutableTreeNode to obtain
such an array, and you can use it to create an instance of TreePath using the following code:

DefaultMutableTreeNode myNode;
// ...

// This code assumes that the node has been added to the tree
TreePath path = new TreePath(myNode.getPath());

Unlike an index value, a path can always be used to identify a specific node regardless of
which portions of a tree are collapsed or expanded. For that reason, most of the methods in
JTree that perform some operation related to a specific node allow you to identify that node
through a TreePath. Some JTree methods are overloaded, providing one implementation that
allows you to specify a TreePath and another that allows you to specify an index value that
identifies a visible node based on its vertical position (as described previously). In general,
you should use the TreePath implementation instead of the index implementation, since
TreePath values are less sensitive to changes in the tree’s state.

TreeModelListener
TreeModelListener is an interface that can be implemented by classes that will register as
listeners of TreeModel events, such as the addition, deletion, or modification of nodes in the
model. In practice, the only listener registered with a model is usually the JTree that uses the
model, and it uses this interface to receive notification of changes to the data it displays. Only
four methods are defined in TreeModelListener; I describe them in the next sections.

treeNodesChanged()
This method is called when one or more of the nodes within the model has experienced a
state change (for example, the user object value associated with the node changes). Note that

CHAPTER 7 ■ USING SWING'S JTREE 351

this method shouldn’t be called to notify listeners of structural changes to the tree (an inser-
tion, deletion, or change in the position of nodes) because other TreeModelListener methods
offer that functionality.

treeNodesInserted()
The treeNodesInserted() method is called for each registered listener after nodes have been
inserted into the tree.

treeNodesRemoved()
Just as treeNodesInserted() is called after nodes have been added to the model/tree, this
method is called after nodes have been removed. This method is called only one time for each
removal, even if a node with descendents is removed, which effectively means multiple nodes
have been eliminated from the tree.

treeStructureChanged()
When this method is called, it indicates that a significant change (in other words, something
more complex than the simple addition, modification, or deletion of nodes) was made to the tree
or to some portion of the tree below a particular node. For example, treeStructureChanged()
may be called if the current root node is replaced with a different one, which results in the
entire tree structure being replaced.

TreeModelEvent
Each of the methods defined in TreeModelListener is passed a reference to a TreeModelEvent
object that can be used to obtain information about the source and nature of the event that
occurred. The following sections describe the methods defined in TreeModelEvent, and each
one includes an explanation of when and how to use the methods.

getTreePath(), getPath()
These methods identify the parent node of the nodes that have been modified, inserted, or
deleted. When getTreePath() is called, it returns an instance of TreePath that identifies the
parent of the affected nodes, while getPath() returns the array of Object values that are
encapsulated by the TreePath. In other words, these methods provide essentially the same
information in two different forms.

getChildren()
Just as getPath() and getTreePath() identify the parent of the nodes that were inserted,
updated, or deleted, this method can obtain references to the specific nodes that triggered the
event. It returns an array of Object values, and each entry in the array represents one of the
nodes that was modified, added, or removed.

CHAPTER 7 ■ USING SWING'S JTREE352

getChildIndices()
You can use this method within calls to treeNodesChanged(), treeNodesRemoved(), and
treeNodesInserted() to identify the nodes that were changed, removed, or inserted. An array
of integer values is returned, and each integer represents the index into a parent’s list of chil-
dren. In the case of a deletion, the index identifies the position that the node held in the
parent’s list before the node was deleted, while the index represents the node’s current posi-
tion when an update or insertion has occurred. For example, if the second and fourth children
of some node are modified, this method returns an int array with two elements: the first with
a value of 1 and the second entry with a value of 3.

DefaultTreeModel
The DefaultTreeModel class defined in javax.swing.tree is the only TreeModel implementation
supplied with Java, but it’s easy to use and is appropriate for most applications. However, it
supports only those nodes that are instances of DefaultMutableTreeNode, so you must ensure
your nodes are all instances of that class or create your own TreeModel implementation.

It’s easy to create an instance of DefaultTreeModel, although you won’t normally do so
explicitly but will instead allow a JTree to create one automatically. For example, the code seg-
ments at the beginning of this chapter that created String arrays and passed them to a JTree
constructor resulted in the creation of a DefaultTreeModel. To access a JTree’s existing model,
simply call its getModel() method, which returns an instance of TreeModel that you can cast to
DefaultTreeModel (or some other class) if you know which type of model is being used.

If you want to create a model, simply use the constructor that accepts an instance of a
TreeNode as in the following example, and that node will be used as the root node of your tree.
Once the model has been created, it can be passed to a JTree constructor or specified as the
model of an existing tree by calling the JTree’s setModel() method.

TreeNode myRoot;
JTree myTree;
// ...

DefaultTreeModel myModel = new DefaultTreeModel(myRoot);
myTree = new JTree(myModel);

Alternatively, the following JTree setModel() works:

TreeNode myRoot;
JTree myTree = new JTree();
// ...

DefaultTreeModel myModel = new DefaultTreeModel(myRoot);
myTree.setModel(myModel);

In addition to implementing the TreeModel methods, DefaultTreeModel also provides
pairs of methods that make it easy for you to modify the structure of the tree and to notify
listeners of changes. Each pair consists of a method that performs the modification (for
example, inserting a node) and another method that creates an appropriate TreeModelEvent
and notifies any registered listeners of the modification. Table 7-3 describes those methods.

CHAPTER 7 ■ USING SWING'S JTREE 353

Table 7-3. TreeModel Methods

Update Method Notification Method Typical Use

setRoot() nodeStructureChanged() Setting a new root node

valueForPathChanged() nodesChanged() Modifying a node’s value

insertNodeInto() nodesWereInserted() Inserting a node

removeNodeFromParent() nodesWereRemoved() Deleting a node

It’s not necessary for you to invoke both methods when you make a change to the tree’s
structure, since each of the update methods listed in Table 7-3 will call the corresponding
notification method for you. However, if you make changes to a node (for example, modify
its value, insert or delete children, and so on) directly instead of through the model’s update
method, you should call the appropriate notification method. For example, suppose you want
to insert several nodes into the tree and you have a reference to the parent to which they
should be added. You can use the insertNodeInto() method (which is the preferred approach),
or you can perform the insertion “manually” and then call the notification method. The follow-
ing example illustrates how to use insertNodeInto() given an array of nodes to be inserted:

MutableTreeNode parentNode;
MutableTreeNode[] childrenToAdd;
JTree tree;
// ...

DefaultTreeModel model = (DefaultTreeModel)(tree.getModel());
for (int i = 0; i < childrenToAdd.length; i++) {
model.insertNodeInto(childrenToAdd[i], parentNode, i);

}

This is a convenient approach because it prevents you from having to construct your
own TreeModelEvent object and explicitly request that registered listeners be notified. How-
ever, one problem with this approach is that it will generate a separate TreeModelListener
notification for each node inserted, which can be undesirable from a performance standpoint
if you’re inserting a larger number of nodes. In that case, it may be preferable to perform the
insertions directly and then request that a notification be sent, as in the following segment:

MutableTreeNode parentNode;
MutableTreeNode[] childrenToAdd;
JTree tree;
// ...

DefaultTreeModel model = (DefaultTreeModel)(tree.getModel());
int[] indices = new int[childrenToAdd.length];
for (int i = 0; i < childrenToAdd.length; i++) {
parentNode.insert(childrenToAdd[i], i);
indices[i] = i;

}
model.nodesWereInserted(parentNode, indices);

CHAPTER 7 ■ USING SWING'S JTREE354

Although this example illustrates only how insertNodeInto() and nodesWereInserted() are
used, the other methods function essentially the same way. For example, valueForPathChanged()
simply sets the user object of the node you identify with a TreePath and then calls the
nodeChanged() method (which in turn calls nodesChanged() to notify listeners that the node
changed). In most cases, these notification methods will simply cause the JTree to refresh its
appearance so it reflects the modified state of its TreeModel.

Another DefaultTreeModel method worth mentioning is reload(), which is overloaded
with two implementations: one that doesn’t accept any parameters and another that accepts a
single TreeNode reference. Like setRoot(), the reload() methods call nodeStructureChanged(),
and these methods are useful when the tree or some portion of it has changed significantly.
However, reload() also causes all nodes with children to be collapsed, so you shouldn’t call it
if you want to maintain the visual state of your JTree.

Rendering Tree Nodes
Responsibility for drawing the nodes within a tree (also sometimes called cells) is assigned
to an implementation of TreeCellRenderer, an interface defined in javax.swing.tree. That
interface defines a single getTreeCellRendererComponent() method, which is responsible for
preparing and returning a Component that’s used to draw the cell. In other words, for each visi-
ble node in a JTree, the paint() method of the renderer associated with the tree is used to
draw the node. TreeCellRenderer implementations often extend an existing visual component
(for example, JLabel), which allows the renderer to be created easily. For example, a renderer
is easy to create by extending JLabel because that class already contains painting/rendering
logic that’s appropriate in many cases for displaying tree nodes.

When called, the getTreeCellRendererComponent() method is passed the following
parameters:

• A reference to the JTree with which the node is associated

• An Object representing the node’s value

• A boolean value that indicates whether the node is currently selected

• A boolean value that indicates whether the node is currently expanded

• A boolean value that indicates whether the node is a leaf

• An integer that identifies the node’s vertical position within the tree

• A boolean value that indicates whether the node currently has the input focus

Before getTreeCellRendererComponent() returns a reference to the renderer, it should first
use the previous parameter values to modify the state of the component appropriately. At a
minimum, you should use the parameter representing the node’s value to initialize the ren-
derer component so it displays that value when its paint() method is called. You’ll also typically
want to initialize the component based on the state of the node being rendered, such as using
different background colors to identify selected nodes as opposed to those that aren’t selected.

By default, JTree instances create and use an instance of DefaultTreeCellRenderer, which
is a subclass of JLabel. When its getTreeCellRendererComponent() method is called, this class
first converts the node’s value into a String by passing a reference to the value to the tree’s

CHAPTER 7 ■ USING SWING'S JTREE 355

convertValueToText() method. That method simply calls the value object’s toString() method
and returns the result (see Figure 7-15), although you can modify that behavior by creating
your own JTree subclass and overriding convertValueToText().

Figure 7-15. The classes and methods used by default to render the nodes in a tree

Once the DefaultTreeCellRender has obtained a text representation of the node’s value,
it sets foreground and background colors appropriately based upon whether the node is
selected and then obtains an icon. The specific icon displayed is based upon whether the
node is a leaf or a branch and, if a branch, whether it’s currently expanded or contracted. If
you prefer to use icons other than those provided with the active look and feel, you can mod-
ify the appropriate properties in a DefaultTreeCellRenderer. Accessor and mutator methods
are provided for each of the properties listed in Table 7-4, and you can easily customize a
JTree’s appearance through these methods.

Table 7-4. JTree Appearance Methods

DefaultTreeCellRenderer Property Description

backgroundNonSelectionColor Background color used when node not selected

backgroundSelectionColor Background color used when node is selected

borderSelectionColor Color used to draw the component’s border

leafIcon Icon used for leaf nodes

closedIcon Icon used for collapsed branch nodes

openIcon Icon used for expanded branch nodes

textNonSelectionColor Text color used when node not selected

textSelectionColor Text color used when node is selected

activeUI: BasicTreeUI

1. getTreeCellRendererComponent(value)

nodeRenderer: DefaultTreeCellRenderer

2. convertValueToText(value)

table: JTable

3. toString()

value: Object

CHAPTER 7 ■ USING SWING'S JTREE356

For example, suppose you want to use your own icon for leaf nodes instead of the default
icon. To do so, you simply need to obtain a reference to the DefaultTreeCellRenderer and call
the appropriate mutator method, as shown in the following code:

javax.swing.JTree myTree;
javax.swing.Icon myCustomLeafIcon =

new ImageIcon("D:/brett/temp/myicon.gif");
// ...

DefaultTreeCellRenderer renderer =
(DefaultTreeCellRenderer)(myTree.getCellRenderer());

renderer.setLeafIcon(myCustomLeafIcon);

Creating a Custom Renderer
Although the DefaultTreeCellRenderer class is appropriate in many cases, you’ll sometimes
need to create a custom renderer when you want to display node(s) in a manner that’s not
possible when using the default renderer. Creating a custom renderer for use with a JTree is
easy to do, and the process is almost identical to that used for creating renderers for JTable
cells. Simply create an implementation of TreeCellRenderer, and specify that the JTree should
use that renderer to draw its nodes. For example, let’s suppose you’ve defined a class similar to
the one in Listing 7-2 that encapsulates a true/false test question and the answer given to it.

Listing 7-2. True and False Q&A

public class TrueFalseQuestion {

protected final String question;
protected boolean answer;

public TrueFalseQuestion(String quest) {
question = quest;

}

public String getQuestion() {
return question;

}

public boolean getAnswer() {
return answer;

}

public void setAnswer(boolean ans) {
answer = ans;

}

CHAPTER 7 ■ USING SWING'S JTREE 357

public String toString() {
return question + " = " + answer;

}

}

Since this class encapsulates a single immutable (unchangeable) String value and a
mutable boolean value, it’s an ideal candidate to be rendered by a JCheckBox. Let’s further
assume you want to create a user interface that displays a group of these objects in a JTree.
You could attempt to do so using the default renderer with code like that shown in Listing 7-3.

Listing 7-3. Using the Default Renderer in a Sample Final Exam

import javax.swing.*;
import javax.swing.tree.*;

public class TreeTest extends JFrame {

protected final static String[] questions = {
"Green Kryptonite is only deadly " +
"to beings from Krypton with superpowers",
"Red Kryptonite’s effects are permanent",
"Gold Kryptonite permanently enhances superpowers",
"Blue Kryptonite affects only Bizarros",
"White Kryptonite affects only marine life",
"Jewel Kryptonite was formed from Krypton’s " +
"Jewel Mountains"};

public static void main(String[] args) {
TreeTest tt = new TreeTest();
tt.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
tt.setSize(500, 200);
tt.setVisible(true);

}

public TreeTest() {
super("Smallville University Final Exam");
JTree tree = new JTree(getRootNode());
JScrollPane jsp = new JScrollPane(tree);
getContentPane().add(jsp);

}

protected MutableTreeNode getRootNode() {
DefaultMutableTreeNode root, child;
TrueFalseQuestion question;

CHAPTER 7 ■ USING SWING'S JTREE358

root = new DefaultMutableTreeNode(
"Kryptonite Questions -- Check all " +
"of the following that are true " +
"statements");

for (int i = 0; i < questions.length; i++) {
question = new TrueFalseQuestion(questions[i]);
child = new DefaultMutableTreeNode(question);
root.add(child);

}
return root;

}

}

In this case, however, the display won’t produce the desired results (see Figure 7-16).

Figure 7-16. The instances of TrueFalseQuestion are represented visually using their toString()
values.

As described earlier, the default renderer is a JLabel that renders a node’s value by dis-
playing its text representation (the String returned by the object’s toString() method) and
an appropriate icon. In this case, the test questions should be represented by instances of
JCheckBox, and no icons should appear. You can accomplish this by simply creating a
TreeCellRenderer implementation that extends JCheckBox, but you’ll instead extend the
existing DefaultTreeCellRenderer. The reason for this is that it’s not appropriate to render
all tree nodes as check boxes, only those that are instances of TrueFalseQuestion. For exam-
ple, the Kryptonite Questions branch node should continue to be rendered as a label, but its
children (which are instances of TrueFalseQuestion) should be rendered as check boxes. By
extending DefaultTreeCellRenderer, you can create a class that handles TrueFalseQuestion
nodes but delegates rendering responsibilities to its superclass for other node types.

Listing 7-4 does just that: it examines the value parameter passed to getTreeCell➥

RendererComponent(), and if that value doesn’t encapsulate a TrueFalseQuestion instance,
it allows the superclass code to render the node. If, on the other hand, the node is a
TrueFalseQuestion, the text and selection status of a JCheckBox are updated appropriately,
and that component is allowed to perform the rendering operation.

CHAPTER 7 ■ USING SWING'S JTREE 359

Listing 7-4. JTree Example Rendering Operation

import java.awt.*;
import javax.swing.*;
import javax.swing.tree.*;

public class QuestionCellRenderer extends DefaultTreeCellRenderer {

protected JCheckBox questionRenderer = new JCheckBox();

public Component getTreeCellRendererComponent(JTree tree,
Object value, boolean selected, boolean expanded,
boolean leaf, int row, boolean hasFocus) {

if (value instanceof DefaultMutableTreeNode) {
DefaultMutableTreeNode node =

(DefaultMutableTreeNode)value;
Object userObject = node.getUserObject();
if (userObject instanceof TrueFalseQuestion) {
TrueFalseQuestion question =

(TrueFalseQuestion)userObject;
prepareQuestionRenderer(question, selected);
return questionRenderer;

}
}
return super.getTreeCellRendererComponent(tree, value,

selected, expanded, leaf, row, hasFocus);
}

protected void prepareQuestionRenderer(TrueFalseQuestion tfq,
boolean selected) {

questionRenderer.setText(tfq.getQuestion());
questionRenderer.setSelected(tfq.getAnswer());
if (selected) {
questionRenderer.setForeground(

getTextSelectionColor());
questionRenderer.setBackground(

getBackgroundSelectionColor());
}
else {
questionRenderer.setForeground(

getTextNonSelectionColor());
questionRenderer.setBackground(

getBackgroundNonSelectionColor());
}

}

}

CHAPTER 7 ■ USING SWING'S JTREE360

To use this renderer, simply create an instance of it and assign that object to the JTree.
The following is an example of how to do this, showing a modified version of the TreeTest
constructor defined earlier:

public TreeTest() {
super("Smallville University Final Exam");
JTree tree = new JTree(getRootNode());
QuestionCellRenderer renderer = new QuestionCellRenderer();
tree.setCellRenderer(renderer);
JScrollPane jsp = new JScrollPane(tree);
getContentPane().add(jsp);

}

When this code is compiled and executed, it renders the TrueFalseQuestion objects as
instances of JCheckBox, as illustrated in Figure 7-17.

Figure 7-17. Displaying the questions next to check boxes that indicate the user’s answer is much
more appealing and intuitive.

At this point, the tree’s appearance is appropriate, but its behavior isn’t. If you attempt to
check one of the boxes that appear in the frame, nothing will happen, which is because JTree
doesn’t allow you to edit its cells by default. However, you can control that behavior by calling
the tree’s setEditable() method:

public TreeTest() {
super("Smallville University Final Exam");
JTree tree = new JTree(getRootNode());
QuestionCellRenderer renderer = new QuestionCellRenderer();
tree.setCellRenderer(renderer);
tree.setEditable(true);
JScrollPane jsp = new JScrollPane(tree);
getContentPane().add(jsp);

}

After making this change, you’ll be able to initiate editing of a node’s value by clicking
the node three times or by clicking once on a node that’s already selected. However, when
you attempt to edit a node, the results will probably not be what you expect. Instead of the
JCheckBox’s state changing, a text representation of the TrueFalseQuestion appears in a
JTextBox; it will remain there until you press Enter to complete the edit. To understand why

CHAPTER 7 ■ USING SWING'S JTREE 361

this occurs and how to provide more appropriate behavior, it’s necessary to understand the
editing mechanism used by instances of JTree.

Editing Tree Nodes
Tree cell editing is conceptually similar to rendering, although some important differences
exist. Just as a renderer is associated with each JTree, a TreeCellEditor is also assigned to
every tree. TreeCellEditor is an interface defined in javax.swing.tree and is a subclass of the
CellEditor interface (which is also the superinterface of the TableCellEditor interface used
by JTable instances). Figure 7-18 illustrates the relationships between these interfaces and
classes, as well as the DefaultCellEditor class discussed in a moment.

Figure 7-18. The relationships between the classes and interfaces involved in editing tree and
table cells

By default, each JTree creates and uses an instance of DefaultTreeCellEditor to manage
the editing of its nodes, although you can create your own TreeCellEditor implementation or
create a subclass of DefaultTreeCellEditor. Just as a tree’s renderer provides a method that
returns a rendering component, each TreeCellEditor provides a getTreeCellEditorComponent()
method that returns an editing component. In addition, just as the DefaultTreeCellRenderer
is a JLabel subclass that displays each node’s value as a text string, the DefaultTreeCellEditor
uses a JTextField to allow editing of those values. Before describing the behavior of the
DefaultTreeCellEditor class, it’s helpful to understand how a determination is made that a
tree node/cell should be edited.

When a JTree is created, it uses a subclass of BasicTreeUI (defined in javax.swing.
plaf.basic) to provide the tree’s appearance. The BasicTreeUI creates listeners that will be
notified of events that occur such as mouse clicks, since those events can trigger behavior
such as the selection or editing of a tree node. When a mouse click event is detected by the
listener and the click occurred over a node, the BasicTreeUI’s startEditing() method is
called, which is responsible for determining whether the mouse click should cause editing

JTree <<Interface>>
CellEditor

JTable

DefaultTreeCellEditor

<<Interface>>
TreeCellEditor

DefaultCellEditor
<<Interface>>
TableCellEditor

CHAPTER 7 ■ USING SWING'S JTREE362

to begin. If so, editing is initiated, and startEditing() returns a value of true. On the other
hand, if startEditing() determines that the mouse event shouldn’t cause an edit to be per-
formed, it returns a value of false, which will cause the BasicTreeUI’s selectPathForEvent()
to be invoked, allowing the mouse event to be interpreted as a request to select the node
instead of a request to begin editing it. In other words, the tree first attempts to interpret a
mouse click as an attempt to edit a node and then as an attempt to select the node.

When deciding whether the mouse event should cause an edit operation to occur,
BasicTreeUI’s startEditing() method first determines whether the tree considers the cell eligi-
ble for editing by calling the JTree’s isPathEditable() method. That method returns the value
of the boolean flag called editable, which is controlled by the setEditable() method in JTree
that you used earlier to allow tree nodes to be edited. As you’ll see later, you can control whether
individual nodes are editable by creating a JTree subclass that overrides isPathEditable(). You
can use this approach when you want to allow only some of the tree’s nodes to be edited, as
opposed to the previous technique, which makes all nodes eligible for editing.

Assuming that the JTree allows its nodes to be edited, the startEditing() method in
BasicTreeUI next calls the cell editor’s getTreeCellEditorComponent() method and then its
isCellEditable() method. If the cell editor also gives its permission to initiate editing (in
other words, its isCellEditable() method returns true), the editor component is added to
the JTree at the position of the node being edited, and editing is allowed to begin. Figure 7-19
shows most of the behavior just described.

Figure 7-19. Editing a tree cell involves a somewhat complex sequence of events.

: BasicTreeUIMouseHandler

: BasicTreeUI

Inner class
defined inside
BaseTreeUI

1. startEditing(treePath,mouseEvent)

2. isPathEditable(treePath)

tree : JTree

3. getTreeCellEditorComponent()
5. isCellEditable(mouseEvent)

editingComponent : DefaultTreeCellEditor 9. shouldStartEditingTime(mouseEvent)
10. startEditingTimer()

4. getTreeCellEditorComponent()
6. isCellEditable(mouseEvent)

8. shouldEditimmediately(mouseEvent)

'immediate' edit
triggered by triple
click

7. getClickCount()

realEditor : DefaultCellEditor

mouseEvent : MouseEvent

Editing timer started
after single click of
selected node, editing
begins after 1200
milliseconds have
elapsed

CHAPTER 7 ■ USING SWING'S JTREE 363

When it’s determined that the editing of a cell should end, the CellEditor’s stopCellEditing()
or cancelCellEditing() method is called. For editing to be stopped means that changes made
during the edit session should be saved; canceling an edit means to discard any changes and
restore the node’s value to its original state. In the case of a JTextField-based editor, for exam-
ple, editing ends when the Enter key is pressed (which generates an ActionEvent for the text
field), when a node other than the one being edited is selected with the mouse, or when the
Escape key is pressed. The first scenario described (when the Enter key is pressed) causes edit-
ing to be stopped, and the other two are examples of how editing can be canceled. In other
words, pressing the Enter key causes your changes to be saved, while selecting a different node
or pressing Escape causes them to be discarded.

When editing ends (in other words, is stopped or canceled), the editor component is
removed from the JTree and the editor’s getCellEditorValue() method is called to retrieve
the node’s new value. That value is then passed to the valueForPathChanged() method of the
TreeModel associated with the JTree, causing the value returned by the editor to be propa-
gated to the model (in other words, the modified value is saved in the tree’s data model).

Now that you understand how cell editing occurs, I can now return to the topic of the
DefaultTreeCellEditor class mentioned earlier.

DefaultTreeCellEditor and DefaultCellEditor
Previously you saw that the DefaultTreeCellRenderer class serves as both the TreeCellRenderer
implementation and the renderer component, which it does by implementing TreeCellRenderer
and by extending JLabel, respectively. In contrast, although DefaultTreeCellEditor does imple-
ment TreeCellEditor, it’s not the editing component. (It doesn’t extend JTextField.) Instead,
it maintains a reference to another object that handles the editing, specifically an instance of
DefaultCellEditor. DefaultCellEditor implements both TreeCellEditor and TableCellEditor,
and it’s used by JTable in addition to JTree as the default cell editor component.

In fact, you can use DefaultCellEditor by itself to perform tree cell editing without any
involvement from DefaultTreeCellEditor. To illustrate this, simply compile and execute code
like the following segment that creates a new tree and sets it editor to a new instance of
DefaultCellEditor that uses a JTextField for editing:

JTree tree = new JTree();
// ...

tree.setCellEditor(new DefaultCellEditor(new JTextField()));
tree.setEditable(true);

When this code executes, you can edit a tree node by double-clicking it, which causes the
JTextField to appear in the node’s location (see Figure 7-20).

CHAPTER 7 ■ USING SWING'S JTREE364

Figure 7-20. Double-clicking a tree cell with editing enabled causes a text field to appear in
which the cell’s text representation is displayed and can be edited.

The problem with this behavior that DefaultTreeCellEditor is designed to address is that
the editing component (in this case, the JTextField) covers all the node’s display area includ-
ing its icon. Notice, for example, that no icon is displayed for the node being edited (baseball).
Recall that by default nodes are rendered by a JLabel (which includes both an icon and a text
area) but are edited by a JTextField (which doesn’t support icons). DefaultTreeCellEditor
overcomes this problem by creating an editing container that consists of an icon extracted
from the TreeCellRenderer and the editing component itself (for example, a JTextField).

In addition to providing a single class that can be used for both table and tree editing,
DefaultCellEditor allows you to perform the editing with a JTextField, JComboBox, or
JCheckBox. In addition, since mouse clicks are the traditional way of initiating the edit of a cell,
DefaultCellEditor maintains a value that you can set to control the number of clicks required
to begin an edit operation. For example, setting the value to 2 makes it necessary for the user
to double-click a cell to initiate an edit session. This allows you to easily distinguish between
a request to select a cell (in other words, a single click) and a request to edit (a double-click).

DefaultTreeCellEditor Behavior
Continuing the discussion of DefaultTreeCellEditor, recall that its isCellEditable()
method is called by the BasicTreeUI to determine whether editing should begin. When
DefaultTreeCellEditor’s isCellEditable() method is called, it in turn calls the implemen-
tation of isCellEditable() in the DefaultCellEditor to which it maintains a reference. The
DefaultCellEditor will return a value of true if the click count associated with the mouse
event is at least as great as the number of clicks it has been programmed to require and will
return false otherwise. If it does return false, the DefaultTreeCellEditor will likewise return
that value, and editing won’t be started, although the JTree sets the click count to 1, so this
method will normally always return true.

Once the DefaultTreeCellEditor has queried the DefaultCellEditor to determine
whether editing should be started, it next checks for a special case: three or more mouse
clicks. When this occurs, it triggers an “immediate edit” that causes editing of the node to
begin immediately. Finally, if you single-click a node that’s already selected, a timer is started,

CHAPTER 7 ■ USING SWING'S JTREE 365

and a “delayed edit” will occur 1.2 seconds later as long as you don’t select a different node
before that time elapses. Stated simply, the behavior of a DefaultTreeCellEditor is such that
a “triple-click” (three quick, successive mouse clicks) causes editing to begin immediately,
while a single-click of an already selected node causes editing to begin 1.2 seconds later.

Creating a Custom Editor
You’ll now create a custom editor that you can use to edit TrueFalseQuestion nodes that are
rendered by the QuestionCellRenderer class defined earlier. It’s appropriate in some cases to
use one type of component for drawing nodes and a different type for editing their values (for
example, a JLabel for rendering and a JTextField for editing). In this case, however, JCheckBox
is an appropriate choice for both rendering and editing, so this custom editor class will use a
JCheckBox just as the previously defined custom renderer class did.

Before creating the custom editor, an obvious question that must be answered is which
existing class (if any) should be used as the superclass. Although DefaultTreeCellEditor
might seem like an obvious choice, it’s moderately complex and is somewhat coupled to the
use of a JTextField for editing. In contrast, DefaultCellEditor is more generic and includes
a constructor that accepts a single parameter representing the JCheckBox to be used for edit-
ing. Therefore, you can begin the implementation of the custom editor class by extending
DefaultCellEditor and providing a no-argument constructor that creates a new JCheckBox
and passes it to the superclass constructor:

import java.awt.*;
import javax.swing.*;
import javax.swing.tree.*;

public class QuestionCellEditor extends DefaultCellEditor {

public QuestionCellEditor() {
super(new JCheckBox());

}

// More methods and member variables here ...

}

Since DefaultCellEditor already implements TreeCellEditor, it’s not necessary to
explicitly specify that interface in QuestionCellEditor, but it’s necessary to override the
getTreeCellEditorComponent() method. Although DefaultCellEditor already supports the
use of a JCheckBox instance for editing, it assumes that the value being edited is a Boolean
value. In this case, however, the value being edited is an instance of TrueFalseQuestion,
and getTreeCellEditorComponent() must be implemented accordingly. Doing so is very
much like implementing getTreeCellRendererComponent() in a renderer class. Specifically,
all you must do is initialize the component used for editing so it will contain the appropriate
initial value when it’s made visible to the user. For the QuestionCellEditor class, this means
setting the JCheckBox’s text and selection state values to match the question and answer
values encapsulated by the TrueFalseQuestion object. Note that the TrueFalseQuestion

CHAPTER 7 ■ USING SWING'S JTREE366

instance is encapsulated within an instance of DefaultMutableTreeNode when it’s passed
to getTreeCellEditorComponent(), and it’s the responsibility of getQuestionFromValue()
to extract it.

protected TrueFalseQuestion question;

public Component getTreeCellEditorComponent(JTree tree, Object value,
boolean selected, boolean expanded, boolean leaf,
int row) {

JCheckBox editor = null;
question = getQuestionFromValue(value);
if (question != null) {
editor = (JCheckBox)(super.getComponent());
editor.setText(question.getQuestion());
editor.setSelected(question.getAnswer());

}
return editor;

}

public static TrueFalseQuestion getQuestionFromValue(
Object value) {

if (value instanceof DefaultMutableTreeNode) {
DefaultMutableTreeNode node =

(DefaultMutableTreeNode)value;
Object userObject = node.getUserObject();
if (userObject instanceof TrueFalseQuestion) {
return (TrueFalseQuestion)userObject;

}
}
return null;

}

The only other change you must make to this class is to override the getCellEditorValue()
method. That method is called when editing is completed so that the modified value can
be stored in the TreeModel associated with the tree. In this case, the object being edited
was a TrueFalseQuestion, so getCellEditorValue() should return an instance of that class.
Since a reference to the object being edited is maintained in QuestionCellEditor, it can
simply update that object based on the results of the edit and return a reference to it from
getCellEditorValue(). However, it would be equally valid to create a new instance of
TrueFalseQuestion and return a reference to that object instead.

public Object getCellEditorValue() {
JCheckBox editor = (JCheckBox)(super.getComponent());
question.setAnswer(editor.isSelected());
return question;

}

CHAPTER 7 ■ USING SWING'S JTREE 367

Since the TrueFalseQuestion object passed to getTreeCellEditorComponent() is
encapsulated within a DefaultMutableTreeNode, you might have expected it to also be
necessary to return a DefaultMutableTreeNode from getCellEditorValue(). However, this
isn’t required because the DefaultTreeModel class automatically encapsulates the objects
passed to its valueForPathChanged() method inside instances of DefaultMutableTreeNode.
In other words, the value object passed to getTreeCellEditorComponent() is normally a
DefaultMutableTreeNode that encapsulates the “real” data (the user object), but you shouldn’t
wrap data in a DefaultMutableTreeNode before returning it from getCellEditorValue().

Finally, with the editor class defined, you can create an instance of it, assign that object
responsibility for the editing of a JTree’s nodes, and enable the nodes for editing:

public TreeTest() {
super("Smallville University Final Exam");
JTree tree = new JTree(getRootNode());
QuestionCellRenderer renderer = new QuestionCellRenderer();
tree.setCellRenderer(renderer);
QuestionCellEditor editor = new QuestionCellEditor();
tree.setCellEditor(editor);
tree.setEditable(true);
JScrollPane jsp = new JScrollPane(tree);
getContentPane().add(jsp);

}

Unfortunately, a problem exists with this code: because it enables editing for all cells and
because the root node doesn’t represent a TrueFalseQuestion, an exception will occur if you
attempt to edit that node.

Limiting Edits to Certain Nodes
To complete this application, you may want to allow some nodes to be edited while prevent-
ing others from being modified. In the case of the TreeTest application, simply setting the
JTree’s editable property to true will allow all nodes to be edited, including the header/root
node that’s simply a String instead of TrueFalseQuestion. As mentioned earlier, a node’s
ability to be edited is controlled by the isPathEditable() method in JTree, and by creating a
subclass and overriding that method, you can modify the default behavior. The following code
segment does just that, returning a value of true for nodes that represent TrueFalseQuestion
instances and false for all other nodes:

public TreeTest() {
super("Smallville University Final Exam");
JTree tree = new JTree(getRootNode()) {
public boolean isPathEditable(TreePath path) {
Object comp = path.getLastPathComponent();
if (comp instanceof DefaultMutableTreeNode) {
DefaultMutableTreeNode node =

(DefaultMutableTreeNode)comp;
Object userObject = node.getUserObject();

CHAPTER 7 ■ USING SWING'S JTREE368

if (userObject instanceof TrueFalseQuestion) {
return true;

}
}
return false;

}
};
QuestionCellRenderer renderer = new QuestionCellRenderer();
tree.setCellRenderer(renderer);
QuestionCellEditor editor = new QuestionCellEditor();
tree.setCellEditor(editor);
tree.setEditable(true);
JScrollPane jsp = new JScrollPane(tree);
getContentPane().add(jsp);

}

Customizing Branch Node Handles
When customizing the nodes’ appearance earlier, you may have noticed that creating a
custom renderer had no effect upon the handle icons used to indicate whether branch
nodes are expanded or collapsed. That’s because the handle icon is drawn by the tree’s
user interface (UI) object instead of the cell renderer. For a JTree, that object is a subclass
of BasicTreeUI (such as the MetalTreeUI class that’s used when the Java or Metal look and
feel is active), and BasicTreeUI maintains two icons: one for collapsed branch nodes and
another for expanded nodes.

You have two ways to modify these icons; the approach you take will depend upon
whether you want to modify them for all JTree instances or for a single instance. To modify
them for a single JTree instance, obtain a reference to the instance of BasicTreeUI that’s associ-
ated with the tree and call its setCollapsedIcon() and setExpandedIcon() methods as follows:

import javax.swing.plaf.basic.*;
// ...
javax.swing.Icon customExpandedIcon;
javax.swing.Icon customCollapsedIcon;
// ...

JTree myTree = new JTree();
// Obtain a reference to the BasicTreeUI used by this tree
BasicTreeUI ui = (BasicTreeUI)(myTree.getUI());
// Now set the icons it uses for branch node handles
ui.setExpandedIcon(customExpandedIcon);
ui.setCollapsedIcon(customCollapsedIcon);

If, on the other hand, you want to change the icons for all instances of JTree, you can use
the UIManager’s put() method. When a new BasicTreeUI is created, it retrieves the pair of icons
maintained by the UIManager, so by changing those two icons, you’ll effectively be changing

CHAPTER 7 ■ USING SWING'S JTREE 369

the icons used by each new JTree instance that’s created. The following code illustrates how
you can do this:

javax.swing.Icon customExpandedIcon;
javax.swing.Icon customCollapsedIcon;
// ...

UIManager.put("Tree.expandedIcon", customExpandedIcon);
UIManager.put("Tree.collapsedIcon", customCollapsedIcon);

It’s also possible to eliminate the handle icons completely by creating a BasicTreeUI
subclass that returns false from its shouldPaintExpandControlMethod(). As its name implies,
that method’s purpose is to determine whether a handle icon should be displayed at all.
It’s normally used to prevent handles from being displayed next to leaf nodes and the root
node, which doesn’t display a handle unless you call the JTree’s setShowsRootHandles()
method and pass it a value of true. Here, however, you can create an implementation of
shouldPaintExpandControlMethod() that always returns false, which prevents handles from
appearing next to any of the nodes. The easiest way to override the method is to create an
anonymous inner class as follows, where the appropriate BasicTreeUIClass is extended:

JTree myTree = new JTree();
javax.swing.plaf.metal.MetalTreeUI customUI =

new javax.swing.plaf.metal.MetalTreeUI() {
protected boolean shouldPaintExpandControl(TreePath path, int row,

boolean isExpanded, boolean wasExpanded, boolean leaf) {
return false;

}
};
myTree.setUI(customUI);

As Figure 7-21 shows, this code causes the branch nodes within the tree to be drawn with-
out handles, although the nodes can still be expanded and collapsed by double-clicking them
(if editing isn’t enabled) or by using the right and left arrow keys.

Figure 7-21. It’s possible and occasionally desirable to eliminate the node handles completely.

CHAPTER 7 ■ USING SWING'S JTREE370

Line Style with the Java/Metal Look and Feel
All the examples shown in this chapter so far have used the Java (or Metal) look and feel, but
Figure 7-22 and Figure 7-23 illustrate how JTree instances are drawn when using the Motif
and Windows look and feels, respectively.

Figure 7-22. A JTree drawn using the Motif look and feel

Figure 7-23. A JTree drawn using the Windows look and feel

As these figures show, the Java look and feel is the only one that doesn’t draw lines
between the nodes in a JTree, although it’s possible to modify this behavior. To do so, call
the JTree’s putClientProperty() method to modify the JTree.lineStyle property as follows,
specifying one of three line styles: None (the default), Angled, or Horizontal:

JTree myTree = new JTree();

myTree.putClientProperty("JTree.lineStyle", "Angled");

The Angled style draws lines between the parent nodes and their children, and the
Horizontal style results in a line being drawn above each node that has children. Figure 7-24
and Figure 7-25 illustrate the Angled and Horizontal styles, respectively.

CHAPTER 7 ■ USING SWING'S JTREE 371

Figure 7-24. An example of the Angled line style

Figure 7-25. An example of the Horizontal line style

Note that this technique works only with the Java/Metal look and feel, and you can’t use it
to modify the lines drawn between nodes with the Motif or Windows look and feels.

Node Selection
Many applications allow users to select one or more nodes within a JTree for some purpose.
For example, suppose you want users to be able to select nodes graphically using only a
mouse so that they can perform some operation (such as deletion from the tree) on the
selected nodes. It’s easy to make selections when using JTree; you can do this by simply
moving the cursor over the node you want to select and pressing the left mouse button. As
illustrated in Figure 7-26, DefaultTreeCellRenderer highlights selected nodes by rendering
them with colors that are different from those used for unselected nodes.

Figure 7-26. How a JTree appears when the basketball and soccer nodes are highlighted

CHAPTER 7 ■ USING SWING'S JTREE372

The selection of a JTree’s nodes is controlled by an implementation of TreeSelectionModel,
and the DefaultTreeSelectionModel class is used by default. Although it’s possible to create
your own selection model implementation, you’ll rarely have any reason to do so, since
DefaultTreeSelectionModel is flexible. In any case, you can specify which model should
be used or retrieve a reference to the existing model using the setSelectionModel() and
getSelectionModel() methods defined in JTree. If you want to prevent any tree nodes from
being selected, simply pass a null value to setSelectionModel(), as shown in the following
code segment:

JTree myTree = new JTree();
// The following code will prevent the user from selecting nodes in the tree
myTree.setSelectionModel(null);

Selection Modes
TreeSelectionModel supports three selection modes, each of which is represented by a con-
stant value defined in that interface. The following are those constants and the behavior
associated with each one:

• SINGLE_TREE_SELECTION: When this selection mode is active, only a single node can be
selected at any given time. Each time you select a node, any node that was previously
selected becomes deselected.

• CONTIGUOUS_TREE_SELECTION: This mode allows you to define a single range of nodes
(a set of “contiguous” nodes), and all the nodes within that range become selected.

• DISCONTIGUOUS_TREE_SELECTION: With this selection mode, which is the default, no
restrictions exist on how many nodes can be selected or on where the nodes that are
selected must be positioned relative to one another. Any group of nodes within the tree
can be selected at any time.

To set the selection mode, simply call the TreeSelectionModel’s setSelectionMode()
method, passing it the value of one of the three constants defined previously. For example,
to set the selection mode for a given JTree, you could use code such as the following:

JTree myTree = new JTree();
TreeSelectionModel model = myTree.getSelectionModel();
model.setSelectionMode(TreeSelectionModel.CONTIGUOUS_TREE_SELECTION);

For the most part, the selection modes are simple and easy to understand, but I’ll briefly
illustrate how contiguous selections work. As mentioned, a contiguous selection is simply a
group of adjacent (or contiguous) nodes. Given the tree shown in Figure 7-27, suppose you
want to select all the nodes in the tree beginning with February and ending with October.

CHAPTER 7 ■ USING SWING'S JTREE 373

Figure 7-27. You’ll often want to select a range of nodes.

One way of doing this is to press and hold down the Ctrl key while clicking each node sep-
arately, but a quicker way is to select the appropriate range of nodes. For example, you might
first click the February node and then press and hold down the Shift key while clicking the
October node, resulting in the desired range of nodes being selected, as shown in Figure 7-28.
In this case, the February node is referred to as the anchor selection, since it’s the first node
used to define the range of contiguous nodes, and the October node is referred to as the lead
selection.

Figure 7-28. The anchor selection (February in this case) is the first node in a range selected, and
the lead selection (October) is the node at the opposite end of the selection range.

CHAPTER 7 ■ USING SWING'S JTREE374

I should make two important points concerning the behavior of JTree and
DefaultSelectionModel and which nodes are selected when you use the mouse in this
manner. First, selecting a branch node such as the colors, sports, or food nodes in Figure 7-29
won’t cause that node’s children to be selected.

Figure 7-29. Selecting a node with children doesn’t cause those child nodes to also be selected.

Second, be aware that mouse-initiated selections apply only to viewable nodes, recalling
that a viewable node is one for which all ancestors are expanded. To illustrate this point, sup-
pose you select a range of nodes displayed by the tree in Figure 7-30 by first selecting yellow
and then hot dogs. This will result in exactly four nodes being selected: yellow, sports, food,
and hot dogs. Note that although the sports node is selected, its children remain unselected,
which you can see by expanding that node (see Figure 7-31) and noting that its children aren’t
selected.

Figure 7-30. In this example, the children of the sports node aren’t considered to be selected
because their parent is collapsed.

CHAPTER 7 ■ USING SWING'S JTREE 375

Figure 7-31. Expanding the selected node reveals that its children weren’t selected as part of the
range selection.

TreeSelectionListener
You’ll sometimes want to be notified when tree selection changes have been made, and by
creating an instance of TreeSelectionListener and registering it with the JTree, you can
receive such notification. This interface defines a single valueChanged() method that’s called
when the selection state of one or more nodes has changed. In other words, registered listen-
ers are notified when unselected nodes become selected, as well as when selected nodes
become unselected. For example, to create a listener using an anonymous inner class, you
could write code similar to this:

import javax.swing.event.*;
// ...
JTree myTree = new JTree();
myTree.addTreeSelectionListener(new TreeSelectionListener() {
public void valueChanged(TreeSelectionEvent event) {
// Add code here to handle selection changes

}
});

TreeSelectionEvent
As the previous code segment illustrates, the valueChanged() method defined in
TreeSelectionListener is passed an instance of TreeSelectionEvent. You can use the
following methods in TreeSelectionEvent to obtain information that describes the type of
selection change that occurred and to determine which nodes were involved in the change.

CHAPTER 7 ■ USING SWING'S JTREE376

getPaths(), getPath()
You can use these methods to determine which path or paths were involved in the selection
change that occurred. The getPaths() method returns an array of TreePath objects, each of
which identifies a node that experienced a selection state change. The getPath() method
returns a single TreePath object and is provided as a convenience for those times when you’re
using SINGLE_TREE_SELECTION mode and need to obtain a reference only to a single TreePath
object. If you’re using either of the other selection modes, getPath() returns the first path in
the array that’s provided by getPaths().

isAddedPath()
This overloaded method has three implementations, each of which returns a boolean value
that indicates whether some specific node/path became selected (as opposed to deselected).
One implementation accepts a TreePath that should be equal to one of those returned by
getPaths(), and another accepts an integer index value that should be greater than zero and
less than the number of paths returned by getPaths(). In both cases, the parameter value
identifies a specific node/path for which the selection state changed, and this method returns
a value of true if the node was selected or false if it was deselected. The third implementation
of isAddedPath() doesn’t accept parameters, and like getPath(), it’s provided as a convenience
for cases where only a single path can be selected at any given time.

getNewLeadSelectionPath(), getOldLeadSelectionPath()
Each of these methods returns a reference to a TreeNode representing the new (after the selec-
tion state change occurs) and old (before the change occurs) lead selection paths. In most
cases, your application won’t need to be concerned with lead (or anchor) paths, so these
methods aren’t normally used.

Selection Methods in JTree
While the methods defined in TreeSelectionEvent are useful for identifying nodes that are
newly selected or deselected, you’ll often want to retrieve a list of all selected nodes. In addi-
tion, it’s often desirable to select nodes programmatically, and JTree contains methods that
allow you to do all these things. For example, getSelectionPaths() returns an array of TreePath
objects that identifies all paths/nodes that are currently selected, and setSelectionPaths()
allows your code to specify which paths should be selected. If you want to identify paths
using their index (vertical position) values instead of TreeNode instances, you can use the
getSelectionRows() and setSelectionInterval() methods instead.

Listing 7-5 provides an example of how you can use getSelectionPaths() to create an
application that displays a pop-up menu that can be used to delete the currently selected
nodes, as illustrated in Figure 7-32.

This application displays a JTree and adds a MouseListener that will cause a JPopupMenu
to appear when a right mouse click occurs. If the user activates the Delete menu item in that
pop-up menu, the deleteSelectedItems() method is called, which deletes the currently
selected nodes from the tree.

CHAPTER 7 ■ USING SWING'S JTREE 377

Listing 7-5. JTree Pop-up Menu: Delete Select/Use Example

import java.awt.event.*;
import javax.swing.*;
import javax.swing.tree.*;

public class DeleteNodes extends JFrame {

protected JTree tree;

public static void main(String[] args) {
DeleteNodes dn = new DeleteNodes(new JTree());
dn.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
dn.setSize(400, 300);
dn.setVisible(true);

}

public DeleteNodes(JTree jt) {
super("Node Selection");
tree = jt;
getContentPane().add(tree);
tree.addMouseListener(new MouseAdapter() {
public void mousePressed(MouseEvent event) {
if (((event.getModifiers() &

InputEvent.BUTTON3_MASK)
!= 0) &&
(tree.getSelectionCount() > 0)) {

showMenu(event.getX(), event.getY());
}

}
});

}

protected void showMenu(int x, int y) {
JPopupMenu popup = new JPopupMenu();
JMenuItem mi = new JMenuItem("Delete");
TreePath path = tree.getSelectionPath();
Object node = path.getLastPathComponent();
if (node == tree.getModel().getRoot()) {
mi.setEnabled(false);

}
popup.add(mi);
mi.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
deleteSelectedItems();

}
});

CHAPTER 7 ■ USING SWING'S JTREE378

popup.show(tree, x, y);
}

protected void deleteSelectedItems() {
DefaultMutableTreeNode node;
DefaultTreeModel model =

(DefaultTreeModel)(tree.getModel());
TreePath[] paths = tree.getSelectionPaths();
for (int i = 0; i < paths.length; i++) {
node = (DefaultMutableTreeNode)(

paths[i].getLastPathComponent());
model.removeNodeFromParent(node);

}
}

}

Figure 7-32. You’ll often want to allow users to perform operations on the selected node(s) in
a tree, and getSelectionPaths() can be helpful when doing this.

Notice that this application is designed to allow you to perform the deletion only when
the root node is not one of the nodes selected, which is necessary because DefaultTreeModel
requires the presence of a root node. If you select the root node and then press the right
mouse button, the pop-up menu will still appear, but the Delete menu item will be disabled,
preventing you from performing the operation.

Collapsing and Expanding Nodes
In most cases, you’ll leave the responsibility for collapsing and expanding nodes to the user,
who will do so graphically with the mouse. However, sometimes it’s convenient or necessary
to expand or collapse nodes programmatically, which you can do easily. To do so, use the
expandPath() and collapsePath() methods or the expandRow() and collapseRow() methods
defined in JTree. As their names imply, the first pair of methods require that you specify a
TreePath parameter that identifies the node to be expanded or collapsed. In contrast, the
second pair allows you to identify the node by specifying its position index (an integer value
representing its vertical position within the tree).

CHAPTER 7 ■ USING SWING'S JTREE 379

For example, say you have the tree shown in Figure 7-33.

Figure 7-33. You can collapse and expand tree nodes programatically easily using the methods
provided in JTree.

To collapse the sports node, you can execute the following code:

JTree myTree = new JTree();
// ...
myTree.collapseRow(2);

Similarly, to expand the food node, you can execute the following statement:

myTree.expandRow(7);

Detecting Collapses and Expansions
In addition to being able to expand and collapse nodes programmatically, it’s also sometimes
useful to be notified when those operations occur. Fortunately, JTree supports two types of
listeners that allow you to receive such notifications, one of which notifies you before the
operation occurs and another that notifies listeners after the change has occurred.

TreeExpansionListener
By implementing this interface, you can create an object that can register with a JTree
to receive notifications after one of the tree’s nodes has been expanded or collapsed.
TreeExpansionListener defines two methods, both of which are passed instances
of TreeExpansionEvent. That event class provides a single getPath() method that returns
an instance of TreePath to identify the node that was expanded or collapsed.

To register an object so it will receive these notifications, simply call the JTree’s
addTreeExpansionListener() method, passing a reference to the object that implements
TreeExpansionListener. You can also use the tree’s removeTreeExpansionListener() to
prevent the listener from receiving further notifications.

CHAPTER 7 ■ USING SWING'S JTREE380

treeCollapsed()

This method is called for all registered listeners after one of the tree’s nodes has been
collapsed. You can use the TreeExpansionEvent parameter’s getPath() method to obtain
access to a TreePath object that identifies the node that was collapsed.

treeExpanded()

This method is called for all registered listeners after one of the tree’s nodes has been
expanded. You can use the TreeExpansionEvent parameter’s getPath() method to obtain
access to a TreePath object that identifies the node that was expanded.

TreeWillExpandListener
Like TreeExpansionListener, this interface creates listeners that will be notified of requests
to collapse and expand nodes. However, as its name implies, this interface identifies listeners
that are notified of those operations before they occur instead of afterward. This allows you
to populate a tree’s data in an “on-demand” fashion, creating a node’s children (and loading
the data associated with those children) only when the node is about to be expanded and its
children displayed. In addition, this interface allows you to actually prevent (or “veto”) the
pending operation by throwing an exception from the notification method. To do so, create
and throw an instance of the ExpandVetoException class defined in the javax.swing.tree
package. That class provides two constructors, both of which require that you pass a reference
to a TreeExpansionEvent object. One of the two constructors also allows you to specify an error
message that will be passed to the exception object’s constructor and used as its message text.

The following code illustrates how you can implement a TreeWillExpandListener using
an anonymous inner class, and this listener will allow all expansions but prevent/veto all
attempts to collapse the tree’s nodes:

import javax.swing.event.*;
// ...
JTree myTree = new JTree();
myTree.addTreeWillExpandListener(new TreeWillExpandListener() {
public void treeWillExpand(TreeExpansionEvent event)

throws ExpandVetoException {
System.out.println("Expanding path " + event.getPath());

}

public void treeWillCollapse(TreeExpansionEvent event)
throws ExpandVetoException {

throw new ExpandVetoException(event, "Collapses not allowed");
}

});

Note that it’s never necessary for you to handle an ExpandVetoException, even if an expan-
sion or collapse operation you initiate programmatically (through JTree’s collapseXXX() and
expandXXX() methods) is vetoed. However, if you want your code to determine whether the

CHAPTER 7 ■ USING SWING'S JTREE 381

operation was successful, the expandXXX() or collapseXXX() call can be followed by a call to
JTree’s isExpanded() or isCollapsed() methods. Those return boolean values that will allow
you to determine whether the node’s expansion state matches what it should be if the
requested operation succeeded; the following is an example of how you can use them:

JTree myTree;
TreePath somePath;
// ...

myTree.expandPath(somePath);
if (myTree.isExpanded(somePath)) {
System.out.println("Expansion succeeded");

}
else {
System.out.println("Expansion failed");

}

treeWillExpand()

This method is called for all registered listeners before one of the tree’s nodes is expanded. You
can use the TreeExpansionEvent parameter’s getPath() method to obtain access to a TreePath
object that identifies the node that will be expanded, and throwing an ExpandVetoException
from this method will prevent the expansion from occurring.

treeWillCollapse()

This method is called for all registered listeners before one of the tree’s nodes is collapsed. You
can use the TreeExpansionEvent parameter’s getPath() method to obtain access to a TreePath
object that identifies the node that will be collapsed, and throwing an ExpandVetoException
from this method will prevent the collapse from occurring.

Summary
I covered the following in this chapter:

• Terminology related to tree structures and the data they display

• JTree’s support classes and interfaces

• How to construct and manipulate the data model associated with a tree

• How to control how the items in a tree are drawn (rendered) and edited

• How to select items in a tree and detect when selections change

• How to control which portions of a tree’s data are displayed (expanded) or concealed
(collapsed)

CHAPTER 7 ■ USING SWING'S JTREE382

Adding Cut-and-Paste
Functionality

Cut-and-paste functionality is extremely useful because it allows you to transfer data
between user interface components and even between different applications. In general,
cut-and-paste operations are performed on components that support the concept of a selec-
tion, and the operations are initiated by the keyboard and performed for the component that
currently has the input focus.

Swing components didn’t provide support for these functions when cut-and-paste capa-
bilities were initially added to Java, but major changes were made in Java 1.4 that included
automatic support within Swing components. As a result, you’ll often be able to use cut-and-
paste operations within your application without writing any extra code, but it’s still helpful to
be familiar with the API for situations where it’s needed, such as when you need to create a
custom Swing component. For example, in this chapter I’ll show you how to create a compo-
nent that can edit images; cut, copy, and paste operations are essential in such an application.
Although the data transfer API simplifies implementing this as much as possible; adding cut-
and-paste support to a component that doesn’t already support it is a nontrivial exercise and
at least as of this writing isn’t well-documented by Sun. To understand how to perform cut-
and-paste operations, you’ll examine the following topics:

• Clipboards and their relevance to cut-and-paste operations

• The classes and interfaces Java provides that support these operations

• How to cut, copy, and paste various data types

Even if you don’t intend to provide cut-and-paste functions, it’s still a good idea to under-
stand how to implement them, particularly if your application needs to support drag-and-drop
operations. Chapter 9 covers Java’s drag-and-drop capabilities, but much of the information
covered here is relevant to that discussion as well.

The package containing the classes and interfaces related to cut-and-paste operations is
fairly small, and the number of classes and interfaces that are really important is even smaller.
In fact, the ones shown in Figure 8-1 are the ones you’ll primarily need to be concerned with if
you implement cut-and-paste support.

383

C H A P T E R 8

■ ■ ■

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY384

Figure 8-1. The classes and interfaces relevant to implementing cut-and-paste support in Java

Clipboards: Where Cut and Copied Data Is Stored
Usually when you cut or copy data from an application and then terminate the application,
the data you extracted can still be pasted to some other location. For example, if you copy text
from a word processor, you’ll be able to paste that text to another application even after the
word processor is no longer running. As you might expect, that’s possible because the data is
copied to a location outside the application from which it was extracted. The resource pro-
vided for that purpose is called a clipboard, and in Java, a clipboard is represented by an
instance of the Clipboard class defined in java.awt.datatransfer. Although you can create
your own instances of Clipboard in Java, you won’t usually need or want to do so. Instead,
you’ll use the system clipboard that represents the underlying operating system’s clipboard,
and you can obtain a reference to it through an instance of Toolkit.

The Toolkit class defined in java.awt provides a variety of utility functions related to user
interface behavior. You can access an instance of Toolkit by calling the getToolkit()method
in Component, like so:

JButton btn = new JButton("Hello");
Toolkit tk = btn.getToolkit();

or by using the static getDefaultToolkit() method defined in Toolkit:

Toolkit tk = Toolkit.getDefaultToolkit();.

Once you’ve obtained a reference to a Toolkit, you can access the system clipboard by
calling getSystemClipboard():

Clipboard scb = Toolkit.getDefaultToolkit().getSystemClipboard();

Using the System Clipboard
The system clipboard should theoretically allow you to cut or copy data from a Java applica-
tion and paste that data into a Java or non-Java application, but, unfortunately, it isn’t that

simple. The way in which data is stored often isn’t as simple as you might expect it to be based
upon its visual representation. For example, documents created by an application such as
Microsoft Word may appear to contain simple text information that can be easily transferred
from that application to (for example) a Swing component such as JTextField. In reality,
though, the document probably contains formatting and other information that’s not visible
and that may not be transferable in any meaningful way to another application. In addition,
an application such as Microsoft Word can take advantage of operating system–specific
features that aren’t supported in a Java application that’s supposed to run correctly on any
platform where Java is supported. Finally, clipboard transfers are also complicated by the
numerous character sets that are available and used. (However, this limitation at least is
usually reasonably simple to overcome.)

The main point to keep in mind is simply that not every data type can be transferred
between Java and native applications. Some of the most important types can be transferred,
though, and later in this chapter you’ll see what kinds of data you can safely store in the clip-
board from a Java application. First, however, you’ll examine Clipboard and the classes
associated with it.

Using Clipboard
The Clipboard class includes three methods: getContents(), setContents(), and getName().
You’ll rarely have any reason to access the clipboard’s name, so the only two methods of
interest are setContents() and getContents(). As their names imply, those methods set and
retrieve the clipboard’s contents, so you’ll use setContents() for cut/copy operations and
getContents() when pasting data.

setContents()
The setContents() method is passed two parameters:

• A reference to an implementation of the Transferable interface

• A reference to an implementation of the ClipboardOwner interface

The Transferable parameter represents the data you want to store in the clipboard, while
the ClipboardOwner is an object that should be notified when the data being stored is later
overwritten.

getContents()
This method returns an instance of Transferable to the caller, and that object represents the
contents of the clipboard. If the clipboard is empty or contains a type of data that Java can’t
process, getContents() returns a null value.

Using Transferable
To store data in the clipboard, you must wrap it in an instance of a Transferable implementa-
tion, and data is similarly encapsulated when you read it from the clipboard. In addition to
serving as a container for clipboard data, a Transferable implementation provides methods
that allow you to determine the type of data it contains.

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY 385

Many different applications can store data in the clipboard, and these applications use
many different data formats. For example, information cut or copied from a text editor is very
different from data stored by an application that allows you to edit image files. In addition, the
image editor’s data is probably not meaningful to the text editor, and vice versa. As you might
expect, when information is stored in the clipboard, the type of data it represents is recorded
as well. This allows an application to determine whether the data represents a type that it’s
able to process, and if so, the user may be able to paste the data into that application.

In many cases, it’s oversimplifying matters to associate data with a single, specific
type, because information can often be represented in more than one way. If you create an
instance of Java’s Integer wrapper class, you’ll normally think of it as an Integer object, and
rightly so. However, if you examine the API documentation for Integer, you’ll see it has a
large number of methods that allow you to extract the value it encapsulates in many different
forms. For example, you can call the intValue(), longValue(), and floatValue() methods
to obtain a reference to an int, long, or float primitive instead of an Integer. In addition,
you can call toString() to obtain a String representation of the numeric value, as well as
toBinaryString(), toHexString(), and so on. The point is that even this simple piece of infor-
mation can be retrieved in many different (but equally valid) forms, and that’s often true of
data in the clipboard as well.

This is why one of the responsibilities of a Transferable implementation is to identify the
different formats in which the data it encapsulates can be retrieved. Each type is represented
by an instance of DataFlavor, which you’ll examine in detail shortly. First, however, you’ll look
at Transferable’s methods and then at the ClipboardOwner interface.

getTransferDataFlavors()
This method returns an array of DataFlavor objects that identify the different data formats
(“flavors”) that are supported by the Transferable. For example, if you cut or copy text from a
StyledDocument in Java, it may be possible to read the clipboard contents in more than one for-
mat. One flavor could represent text with its style information (for example, colors, fonts, and
so on) intact, and that representation might be used to insert the text into a StyledDocument.
However, to allow the text to be pasted into a JTextField, you’d use a flavor that represents the
text data stripped of its style information.

The DataFlavor instances returned by getTransferDataFlavors() are ordered based on
which format provides the most detailed (or “richest”) version of the data. This allows an appli-
cation to select the best flavor by identifying the first one in the list that it can accept. In the
previous example, the flavor representing styled text would appear first in the list, since it pro-
vides the most detailed representation of the data in the clipboard.

isDataFlavorSupported()
You can use this method to determine whether a specific DataFlavor is supported by the
Transferable. It accepts a DataFlavor as a parameter and returns a boolean value of true if the
specified flavor is supported.

When isDataFlavorSupported() is called, it should compare the DataFlavor that was passed
as a parameter to the flavors in the list of those it supports. In other words, if the DataFlavor
parameter is equal to one of the flavors that would be returned by getTransferDataFlavors(),
this method should return true.

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY386

Note that when comparing DataFlavor instances, you should be sure to use the equals()
method instead of the equality (==) operator. It’s usually not important whether two DataFlavor
references point to the same object instance. Instead, your code should establish whether two
instances describe the same type of data, and you can determine that using DataFlavor’s
implementation of the equals() method.

getTransferData()
This method returns the data encapsulated by the Transferable, and as you might expect, an
instance of DataFlavor must be specified as a parameter. If that parameter represents a flavor
that’s not supported, an UnsupportedFlavorException is thrown. Otherwise, the data is returned
to the caller in the requested format.

Note that you must also declare java.io.IOException as a checked exception that can be
thrown by this method.

Using ClipboardOwner
In addition to Transferable, an instance of a ClipboardOwner implementation is passed as
a parameter to the setContents() method. The ClipboardOwner interface defines a single
lostOwnership() method that’s called when the data being stored in the clipboard is later
overwritten by another call to setContents(). In other words, the ClipboardOwner object is
temporarily registered as a listener of the clipboard data, and that owner will receive a notifi-
cation when the clipboard is next modified.

You’re free to use the ClipboardOwner in any way that’s helpful, but you often won’t need
to take any action when data you stored in the clipboard has been overwritten. When that’s
the case, you can pass a null value to setContents() for the ClipboardOwner, or you can imple-
ment a “dummy” lostOwnership() method that contains no code. However, as you’ll see,
ClipboardOwner can sometimes play an important role in maintaining clipboard data.

The StringSelection class defined in java.awt.datatransfer implements both Transferable
and ClipboardOwner, and it allows you to store and retrieve text data. Although Java’s data
transfer API may appear somewhat complex, it’s easy to cut and paste text. For example, the
following code segment stores “Hello” in the clipboard using the StringSelection class:

Clipboard cb = Toolkit.getDefaultToolkit().getSystemClipboard();
StringSelection ss = new StringSelection("Hello");
cb.setContents(ss, ss);

Note that in this case, the StringSelection instance was used for both parameter values
passed to the setContents() method. That’s possible because StringSelection implements
both the Transferable and ClipboardOwner interfaces (although its lostOwnership() method
currently doesn’t contain any code).

When you encapsulate data in a Transferable and store that Transferable in the clip-
board, you shouldn’t modify the data until after lostOwnership() is called. Java’s data transfer
specification allows a “lazy data model” to be used, which means that calling setContents()
may or may not result in the data being copied from the Transferable into the clipboard. In
some cases, the data isn’t retrieved until a request is made to read the contents of the clip-
board, so you should leave the data intact, at least until lostOwnership() is called.

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY 387

For example, suppose your application uses a Transferable that encapsulates an array
of integer values, and an instance of that class is stored in the clipboard. For the original
data to be accessible, the values in the array must remain unchanged even after you call
the setContents() method. Only when the ClipboardOwner’s lostOwnership() notification
occurs can your application safely make changes to the array. Later in the chapter, you’ll see
how you can design your code with this behavior in mind. However, you should be aware
that if your application terminates before the data it stored in the clipboard is retrieved, the
information won’t be available to other applications via the clipboard.

Using DataFlavor
As mentioned earlier, an instance of DataFlavor identifies a specific type of data supported by
a Transferable implementation. DataFlavor defines three properties that are used to describe
the data type:

• A human-readable name: The human-readable name is provided as a convenience,
and its use is optional. It does allow you to associate a user-friendly name with a data
flavor, so you may choose to use it in your application.

• A representation class: A DataFlavor’s representation class identifies the type of Java
object returned from a Transferable when its getContents() method is passed a refer-
ence to that DataFlavor. The representation class is maintained in DataFlavor as an
instance of java.lang.Class.

• A Multipurpose Internet Mail Extensions (MIME) type: The third property stored in a
DataFlavor is a MIME type, which is represented as a String value.

Introducing MIME Types
If you only ever needed to transfer data between Java applications, then the representation
class maintained in DataFlavor would be sufficient to describe the type of data in the clip-
board. For example, if you were to store text information in the clipboard, you could associate
the data with the java.lang.String class, but that association would be meaningful only to
Java programs.

However, to transfer data between Java and non-Java applications, it’s necessary to assign
each data type a name that’s not specific to Java. In addition, since Java applications can run
on many platforms, the data type’s name shouldn’t be tied to a particular application or
platform. In other words, what’s needed is a set of platform-independent, language-neutral
names that are associated with different types of data (for example, text, graphics, audio, and
so on). Fortunately, such names have already been defined and are used by DataFlavor.

MIME is an Internet standard that allows different types of data to be embedded within
electronic mail documents. This is accomplished partly through the definition of content
types (or simply, MIME types), which are names associated with commonly used data types.

A MIME type consists of a top-level media type that describes the general category of the
data and a subtype that defines a more specific type of data, with the two types separated by a
forward slash (/). For example, simple character data with no attributes (such as font, color, or
formatting information) is defined as text/plain. Other top-level types include image, audio,

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY388

video, and application, so some examples of other MIME types are image/gif, image/jpeg,
text/html, and video/mpeg. A large number of data types are registered with the Internet
Assigned Numbers Authority (IANA), including those just mentioned. Applications that read
and write those data types are encouraged to use and recognize the MIME types, and a
process exists for registering a new MIME type when one doesn’t already exist.

You can also define custom MIME types for your application to use, in which case you
should use a top-level type of application. You can use any subtype name you’d like, but it should
begin with “x-” to indicate that it’s an unregistered type. Finally, application/octet-stream is a
generic type to describe binary data of an unknown format.

In addition to the type and subtype, a MIME type can include additional parameters that
describe the data. For example, while text/plain might seem adequate to identify simple text
data, the issue is complicated by the existence of a large number of different character sets. To
address this, you can use parameters to provide an even more detailed description of the type
of data a MIME type represents. A parameter consists of a type/value pair separated by an
equal (=) sign, and parameters are delimited by semicolon (;) characters. For example, the fol-
lowing MIME types describe three varieties of text data:

• text/plain; charset=unicode

• text/plain; charset=ascii

• text/plain; charset=iso-8859-1

Creating an Instance of DataFlavor
You can create a new DataFlavor using the constructor that takes a single String parameter
representing a MIME type. For example, the following creates an instance of DataFlavor
that represents Rich Text Format (RTF) data:

DataFlavor rtfFlavor = new DataFlavor("text/rtf; charset=ascii");

When you use this constructor, the representation class for the DataFlavor is set to
java.io.InputStream, which has a special significance with respect to transferable data. A
variation of this constructor is also provided that allows you to specify the human-readable
name that should be assigned to the DataFlavor. If you want to assign the name, you can use
that constructor, or you can call the setHumanPresentableName() method after the DataFlavor
has been created.

Depending upon the type of data contained within your application, you may sometimes
want to store an instance of a serializable Java object in the clipboard instead of raw data, and
a different constructor is provided for that purpose. It requires you to pass an instance of
java.lang.Class that identifies the representation class and a String that identifies the
human-readable name, as follows:

DataFlavor myFlavor = new DataFlavor(MySerial.class, "A class I created");

When you use this constructor, the MIME type for the DataFlavor is set to application/
x-java-serialized-object. Since a serialized Java object is meaningful only to a Java Virtual
Machine (JVM), this type of DataFlavor is useful only when transferring information between
Java applications.

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY 389

You’ve now looked at the two categories of DataFlavor instances: those that are associated
with a particular MIME type and those that are related to a particular Java class. When creat-
ing your own DataFlavor, the type of flavor you create will depend on the type of data being
cut and pasted, as well as the type of applications involved in the transfer. For example, if you
intend to cut and paste data only between Java applications, you should define flavors that are
class-based and use serialized object instances. However, if you intend to transfer between
Java and non-Java (or “native”) applications, you should use a MIME-based DataFlavor that
has a representation class of InputStream. Doing so allows the JVM to transfer the clipboard
data to a native application as a stream of binary data that conforms to some agreed-upon
protocol (in other words, a MIME type).

Storing and Retrieving Serialized Java Objects
To illustrate how to store and retrieve serialized Java objects, I’ll now show you how to create a
crude image-editing application. The application will allow you to select portions of an image
and cut, copy, or paste selections to and from the clipboard.

The ImageEditor class displays the contents of an image file in a JFrame and allows you to
select a rectangular portion of the image by dragging the mouse. The selected area is identi-
fied by a brightly colored rectangle that’s drawn as the mouse is dragged.

Once you’ve selected a portion of the image, you can right-click to display a pop-up menu
that allows you to cut or copy the selection (see Figure 8-2).

Figure 8-2. Image-editing applications typically allow you to cut or copy one portion of an image
and paste it somewhere else.

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY390

Listing 8-1 provides this functionality (although the performCut(), performCopy(), and
performPaste() methods aren’t complete yet). Specifically, this application uses an ImageIcon
and a JLabel to display the contents of an image file, and it listens for mouse events, drawing a
selection square around the selected area as the mouse is dragged. In addition, it creates a
pop-up menu that’s displayed when the right mouse button is pressed.

Listing 8-1. Cut/Copy Functionality

import java.awt.*;
import java.awt.datatransfer.*;
import java.awt.event.*;
import java.awt.image.*;
import javax.swing.*;

public class ImageEditor extends JPanel {

public final static int LINE_WIDTH = 2;

protected ImageIcon icon;
protected Point start = new Point(0, 0);
protected Point finish = new Point(0, 0);
protected Point pastePoint;

protected JPopupMenu popupMenu;
protected AbstractAction cutAction;
protected AbstractAction copyAction;
protected AbstractAction pasteAction;

public static void main(String[] args) {
if (args.length == 0) {
System.out.println("You must specify the name of an image file");
return;

}
ImageEditor editor = new ImageEditor(args[0]);
JFrame f = new JFrame(args[0]);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setContentPane(editor);
f.setSize(400, 300);
f.setVisible(true);

}

public ImageEditor(String name) {
super();
buildPopupMenu();
setBackground(Color.black);
setLayout(new GridLayout(1, 1, 0, 0));
icon = new ImageIcon(name);

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY 391

JLabel label = new JLabel(icon);
label.setHorizontalAlignment(SwingConstants.LEFT);
label.setVerticalAlignment(SwingConstants.TOP);
label.addMouseListener(new MouseAdapter() {
public void mousePressed(MouseEvent event) {
handleMouseDown(event);

}
});
label.addMouseMotionListener(new MouseMotionAdapter() {
public void mouseDragged(MouseEvent event) {
handleMouseDrag(event);

}
});
JScrollPane jsp = new JScrollPane(label);
add(jsp);

}

protected void handleMouseDown(MouseEvent event) {
if ((event.getModifiers() & InputEvent.BUTTON1_MASK) != 0) {
start = event.getPoint();
finish = event.getPoint();

}
else if ((event.getModifiers() & InputEvent.BUTTON3_MASK) != 0) {
displayPopupMenu(event.getPoint());
pastePoint = event.getPoint();

}
}

protected void handleMouseDrag(MouseEvent event) {
finish = event.getPoint();
repaint();

}

protected void buildPopupMenu() {
popupMenu = new JPopupMenu();
copyAction = new AbstractAction("Copy") {
public void actionPerformed(ActionEvent event) {
performCopy();

}
};
popupMenu.add(copyAction);
cutAction = new AbstractAction("Cut") {
public void actionPerformed(ActionEvent event) {
performCut();

}
};

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY392

popupMenu.add(cutAction);
pasteAction = new AbstractAction("Paste") {
public void actionPerformed(ActionEvent event) {
performPaste();

}
};
popupMenu.add(pasteAction);

}

protected void displayPopupMenu(Point p) {
Clipboard cb = getToolkit().getSystemClipboard();
Transferable t = cb.getContents(this);
boolean isSelected = !(start.equals(finish));
cutAction.setEnabled(isSelected);
copyAction.setEnabled(isSelected);
popupMenu.show(this, p.x, p.y);

}

protected void performCopy() {
}

protected void performCut() {
}

protected void performPaste() {
}

protected Rectangle getSelectedArea() {
int width = finish.x - start.x;
int height = finish.y - start.y;
return new Rectangle(start.x, start.y, width, height);

}

protected int[] getPixels(Rectangle area) {
int[] pixels = new int[area.width * area.height];
PixelGrabber pg = new PixelGrabber(icon.getImage(), area.x,

area.y, area.width,
area.height, pixels, 0,
area.width);

try {
pg.grabPixels();

} catch (Exception e) {};
return pixels;

}

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY 393

protected void setPixels(int[] newPixels, Rectangle area) {
int pixel;
Image image = icon.getImage();
int imageWidth = icon.getIconWidth();
int imageHeight = icon.getIconHeight();
int[] oldPixels = new int[imageWidth * imageHeight];
PixelGrabber pg = new PixelGrabber(image, 0, 0, imageWidth,

imageHeight, oldPixels, 0,
imageWidth);

try {
pg.grabPixels();

} catch (Exception e) {};
for (int y = 0; y < area.height; y++) {
if (imageHeight <= area.y + y) {
break;

}
for (int x = 0; x < area.width; x++) {
if (imageWidth <= area.x + x) {
break;

}
oldPixels[((area.y + y) * imageWidth) + area.x + x] =
newPixels[(area.width * y) + x];

}
}
MemoryImageSource mis = new MemoryImageSource(imageWidth,

imageHeight, oldPixels, 0, imageWidth);
icon.setImage(createImage(mis));
repaint();

}

public void paint(Graphics g) {
super.paint(g);
int width = finish.x - start.x;
int height = finish.y - start.y;
if ((width > 0) && (height > 0)) {
g.setColor(Color.blue);
for (int i = 0; i < LINE_WIDTH; i++) {
g.drawRect(start.x + i, start.y + i, width, height);

}
}

}

}

To support the cut-and-paste operations, you must define a Java class that can be used
to encapsulate a portion of the image that’s cut or copied. In addition, it’s necessary to define

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY394

an implementation of Transferable that can be stored in and retrieved from the clipboard.
Although these two functions could easily be combined in a single class, we’ll implement
them separately to provide a more cohesive design for the application.

The ImageData class defined in Listing 8-2 can store part of an image that’s cut or copied,
along with the width and height of that area. Note that it implements the Serializable inter-
face, which allows instances of ImageData to be serialized.

Listing 8-2. ImageData

public class ImageData implements java.io.Serializable {

protected int width;
protected int height;
protected int[] pixelData;

public ImageData(int width, int height, int[] pixels) {
this.width = width;
this.height = height;
pixelData = pixels;

}

public int getWidth() {
return width;

}

public int getHeight() {
return height;

}

public int[] getPixelData() {
return pixelData;

}

}

The next task is to define the Transferable implementation that can store image data in the
clipboard, as shown next. You’ll also have this class implement ClipboardOwner so it can be noti-
fied when its data is no longer stored in the clipboard. In this case, however, the lostOwnership()
implementation doesn’t do anything when that occurs.

import java.awt.datatransfer.*;

public class ImageSelection implements Transferable, ClipboardOwner {

public void lostOwnership(Clipboard cb, Transferable t) {}

}

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY 395

Since ImageSelection encapsulates an instance of ImageData, a constructor should be
defined that accepts an ImageData object and stores a reference to the object:

import java.awt.datatransfer.*;

public class ImageSelection implements Transferable, ClipboardOwner {

protected ImageData imageData;

public ImageSelection(ImageData data) {
imageData = data;

}

public void lostOwnership(Clipboard cb, Transferable t) {
}

}

In addition, it’s necessary for ImageSelection to identify the data formats it supports. To
provide that capability, define a single DataFlavor with a representation class of ImageData and
a MIME type of application/x-java-serialized-object. In other words, this flavor represents
serialized ImageData instances:

import java.awt.datatransfer.*;

public class ImageSelection implements Transferable, ClipboardOwner {

protected ImageData imageData;

public final static DataFlavor IMAGE_DATA_FLAVOR =
new DataFlavor (ImageData.class, "Image Data");

public ImageSelection(ImageData data) {
imageData = data;

}

public void lostOwnership(Clipboard cb, Transferable t) {
}

}

Although the DataFlavor was defined inside the Transferable class in this case, you may
or may not choose to use this approach when creating your own Transferable implementa-
tions. The issue of where to define a DataFlavor is strictly one of good object-oriented design
and has no effect on the flavor’s usability.

To complete the ImageSelection class, you must implement the Transferable methods.
First write the code for getTransferDataFlavors(), which you can do by defining a static array
of DataFlavor objects and returning a reference to that array:

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY396

import java.awt.datatransfer.*;

public class ImageSelection implements Transferable, ClipboardOwner {

protected ImageData imageData;

public final static DataFlavor IMAGE_DATA_FLAVOR =
new DataFlavor (ImageData.class, "Image Data");

protected final static DataFlavor [] flavors = {
IMAGE_DATA_FLAVOR

};

public ImageSelection(ImageData data) {
imageData = data;

}

public DataFlavor [] getTransferDataFlavors() {
return flavors;

}

public void lostOwnership(Clipboard cb, Transferable t) {
}

}

The isDataFlavorSupported() method is equally simple, and all that’s necessary is to loop
through the flavors in the array and compare each one to the parameter value:

import java.awt.datatransfer.*;

public class ImageSelection implements Transferable, ClipboardOwner {

protected ImageData imageData;

public final static DataFlavor IMAGE_DATA_FLAVOR =
new DataFlavor (ImageData.class, "Image Data");

protected final static DataFlavor [] flavors = {
IMAGE_DATA_FLAVOR

};

public ImageSelection(ImageData data) {
imageData = data;

}

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY 397

public DataFlavor [] getTransferDataFlavors() {
return flavors;

}

public boolean isDataFlavorSupported(DataFlavor flavor) {
for (int i = 0; i < flavors.length; i++) {
if (flavor.equals(flavors[i])) {
return true;

}
}
return false;

}

public void lostOwnership(Clipboard cb, Transferable t) {}

}

Finally, getTransferData() must be implemented, which is responsible for returning data
in the requested flavor. In this case, only IMAGE_DATA_FLAVOR is supported, and that flavor can
be provided simply by returning a reference to the encapsulated data object:

import java.awt.datatransfer.*;

public class ImageSelection implements Transferable, ClipboardOwner {

protected ImageData imageData;

public final static DataFlavor IMAGE_DATA_FLAVOR =
new DataFlavor (ImageData.class, "Image Data");

protected final static DataFlavor [] flavors = {
IMAGE_DATA_FLAVOR

};

public ImageSelection(ImageData data) {
imageData = data;

}

public Object getTransferData(DataFlavor flavor)
throws java.io.IOException, UnsupportedFlavorException {

if (flavor.equals(IMAGE_DATA_FLAVOR)) {
return imageData;

}
throw new UnsupportedFlavorException(flavor);

}

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY398

public DataFlavor [] getTransferDataFlavors() {
return flavors;

}

public boolean isDataFlavorSupported(DataFlavor flavor) {
for (int i = 0; i < flavors.length; i++) {
if (flavor.equals(flavors[i])) {
return true;

}
}
return false;

}

public void lostOwnership(Clipboard cb, Transferable t) {}

}

Now that the Transferable implementation is complete, all that’s left is to write the code
in ImageEditor to perform the cut, copy, and paste operations. Since most of the needed func-
tionality is already present, you have very little work to do.

In the case of the performCopy() method, you can create an instance of ImageSelection
and store it in the clipboard using the setContents() method, as follows:

protected void performCopy() {
Rectangle r = getSelectedArea();
int[] pixels = getPixels(r);
ImageData data = new ImageData(r.width, r.height, pixels);
ImageSelection selection = new ImageSelection(data);
Clipboard cb = getToolkit().getSystemClipboard();
cb.setContents(selection, selection);

}

The cut operation is almost identical but has one additional step. After the image data is
copied to the clipboard, the pixels that were copied are set to zero in the original image (in
other words, they’re “removed” from the image).

protected void performCut() {
Rectangle r = getSelectedArea();
int[] pixels = getPixels(r);
ImageData data = new ImageData(r.width, r.height, pixels);
ImageSelection selection = new ImageSelection(data);
Clipboard cb = getToolkit().getSystemClipboard();
cb.setContents(selection, selection);
for (int i = 0; i < pixels.length; i++) {
pixels[i] = 0;

}
setPixels(pixels, r);

}

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY 399

Finally, you can complete the performPaste() method. It must obtain a reference to the
Transferable stored in the clipboard (if any), ensure that the data can be retrieved in the sup-
ported format, and overwrite a portion of the image with that data:

protected void performPaste() {
Clipboard cb = getToolkit().getSystemClipboard();
try {
Transferable t = cb.getContents(this);
if (t.isDataFlavorSupported(

ImageSelection.IMAGE_DATA_FLAVOR)) {
ImageData data = (ImageData)(t.getTransferData(

ImageSelection.IMAGE_DATA_FLAVOR));
Rectangle area = new Rectangle(start.x, start.y,

data.getWidth(), data.getHeight());
int[] pixels = data.getPixelData();
setPixels(pixels, area);

}
}
catch (Exception e) {
JOptionPane.showMessageDialog(this,

"Unable to paste clipboard data");
}

}

Finally, you can also make a minor change to ImageEditor that causes the Paste menu
item to be disabled when the clipboard doesn’t contain the supported data flavor:

protected void displayPopupMenu(Point p) {
Clipboard cb = getToolkit().getSystemClipboard();
Transferable t = cb.getContents(this);
boolean isSelected = !(start.equals(finish));
cutAction.setEnabled(isSelected);
copyAction.setEnabled(isSelected);
boolean canPaste = ((t != null) &&

(t.isDataFlavorSupported(
ImageSelection.IMAGE_DATA_FLAVOR)));

pasteAction.setEnabled(canPaste);
popupMenu.show(this, p.x, p.y);

}

To execute this application, compile and run it, specifying the name of a GIF or JPEG file
as the first command-line parameter. For example:

java ImageEditor Vacation.gif

To select an area of the image to cut or paste, move the mouse to the upper-left corner
of the region, and press and hold the left mouse button. As you drag the cursor, a brightly col-
ored rectangle appears that identifies the selected area. Once you make a selection, you can
right-click to access a JPopupMenu with Cut, Copy, and Paste menu items.

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY400

Select Cut or Copy, and then move the mouse to the location where you want to paste the
image data. Click to select the location where the image data should be pasted, and then
right-click to bring up the pop-up menu again and perform the paste operation.

Although this application may appear correct, there’s a problem with it. If you perform a
cut and paste instead of a copy and paste, the area you paste the selection into is cleared. For
example, as shown in Figure 8-3, an area of the image has been selected and cut and is about
to be pasted to a different location.

Figure 8-3. Cutting a portion of the image with the intention of pasting it to another location

However, pasting the data causes the area to be cleared instead of overwritten with the
selection, as shown in Figure 8-4.

Figure 8-4. Instead of pasting the data that was cut, the paste operation cleared an area under
the cursor that’s equal in size to the data that was cut.

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY 401

This problem illustrates a point made earlier related to modifying data after it’s stored in
the clipboard. In this case, the data that’s cut is stored in an int array, and that array is used by
ImageEditor after the data is stored in the clipboard but before the data is pasted. Intuitively,
you might expect that storing data in the clipboard creates a copy of the data and that making
changes to the array after it has been stored won’t affect the clipboard contents. However, as
you can see from this example, that’s not always the case.

Fortunately, the problem is easy to fix; just modify the ImageData class so it creates a copy
of the array instead of maintaining a reference to the original data. This prevents ImageEditor
from modifying the data in the clipboard, since it no longer has a reference to the same array
that’s stored there:

public class ImageData implements java.io.Serializable {

protected int width;
protected int height;
protected int[] pixelData;

public ImageData(int width, int height, int[] pixels) {
this.width = width;
this.height = height;
pixelData = (int[])(pixels.clone());

}

public int getWidth() {
return width;

}

public int getHeight() {
return height;

}

public int[] getPixelData() {
return pixelData;

}

}

Transferring Between Java And Native
Applications
So far, you’ve looked only at storing Java objects in the clipboard. However, in some cases,
it’s useful to be able to transfer data between Java and non-Java applications.

It might seem that Java’s MIME-based approach to identifying the content type of a
Transferable’s data would make it easy to transfer data between Java and non-Java appli-
cations. However, this isn’t the case, primarily because each operating system’s clipboard
supports its own proprietary data types instead of standard MIME types. For example,

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY402

Windows defines the CF_TEXT, CF_DIB, and CF_HDROP clipboard types for text, bitmap (image),
and file selection data, respectively.

Although native clipboards don’t use MIME types, it’s possible in some cases to define a
mapping between a native platform’s clipboard type and a MIME type. In fact, that’s exactly
what occurs when you use the StringSelection class provided with Java. When you call the
setContents() method to store a StringSelection in the clipboard, the text is automatically
converted to an appropriate native clipboard format (for example, CF_TEXT) so that it’s read-
able by non-Java applications. Similarly, when getContents() is called, the data is translated
from the native format, such as CF_TEXT, into a String encapsulated by an instance of
StringSelection. In the future, other Transferable types may exist that are translated auto-
matically for you this way, but text data is the only type currently supported for clipboard
operations.

In Java 1.2, StringSelection supported two flavors, both of which are represented by
constants defined in DataFlavor: stringFlavor and plainTextFlavor. While stringFlavor is
used to transfer serialized String instances between Java programs, plainTextFlavor was
created for text transfers between Java and non-Java applications. However, because of prob-
lems in the design and implementation of StringSelection, plainTextFlavor was deprecated
in Java 1.3, so you should avoid using it.

Writing Arbitrary Binary Data
To store binary data in the clipboard, you must define a DataFlavor that represents the MIME
type associated with the data and that has a representation class of InputStream. A Transferable
that supports the flavor should provide an InputStream that returns a stream of bytes in the
appropriate format for the MIME type.

Normally when you write binary data to the clipboard, it will be necessary to write it
using a format that one or more other applications are able to interpret. In some cases, you
can do this through a codec, which is software that performs data conversions between two or
more formats. For example, Sun provides a codec with the Java 2D API that allows you to con-
vert data representing a JPEG image to and from an instance of Java’s BufferedImage class.

I’ll now show how to modify the ImageSelection class so that it supports an additional
DataFlavor representing the image/jpeg MIME type (see Listing 8-3). When that flavor is
requested on a call to getTransferData(), an InputStream is returned that can be used to
read a stream of bytes in JPEG format.

Listing 8-3. Enhancing ImageSelection

import java.awt.*;
import java.awt.datatransfer.*;
import java.awt.image.*;
import java.io.*;
import com.sun.image.codec.jpeg.*;

public class ImageSelection implements Transferable, ClipboardOwner{

protected ImageData imageData;

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY 403

public final static DataFlavor IMAGE_DATA_FLAVOR =
new DataFlavor (ImageData.class, "Image Data");

public final static DataFlavor JPEG_MIME_FLAVOR =
new DataFlavor ("image/jpeg", "JPEG Image Data");

protected final static DataFlavor [] flavors = {
JPEG_MIME_FLAVOR, IMAGE_DATA_FLAVOR

};

public ImageSelection(ImageData data) {
imageData = data;

}

public Object getTransferData(DataFlavor flavor)
throws java.io.IOException, UnsupportedFlavorException {

if (flavor.equals(IMAGE_DATA_FLAVOR)) {
return imageData;

} else if (flavor.equals(JPEG_MIME_FLAVOR)) {
return getJPEGInputStream();

}
throw new UnsupportedFlavorException(flavor);

}

protected InputStream getJPEGInputStream() throws IOException {
int width = imageData.getWidth();
int height = imageData.getHeight();
MemoryImageSource mis = new MemoryImageSource(width, height,

imageData.getPixelData(), 0, width);
BufferedImage bi =
new BufferedImage(width, height, BufferedImage.TYPE_3BYTE_BGR);

Graphics2D g2d = bi.createGraphics();
Image img = Toolkit.getDefaultToolkit().createImage(mis);
g2d.drawImage(img, 0, 0, null);
ByteArrayOutputStream baos = new ByteArrayOutputStream();
JPEGImageEncoder jie = JPEGCodec.createJPEGEncoder(baos);
jie.encode(bi);
baos.close();
return new ByteArrayInputStream(baos.toByteArray());

}

public DataFlavor [] getTransferDataFlavors() {
return flavors;

}

public boolean isDataFlavorSupported(DataFlavor flavor) {
for (int i = 0; i < flavors.length; i++) {

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY404

if (flavor.equals(flavors[i])) {
return true;

}
}
return false;

}

public void lostOwnership(Clipboard cb, Transferable t) {}

}

Note that, in this example, the binary data corresponds to a specific MIME format,
specifically that of a JPEG image. If you want to write binary data that doesn’t correspond to
an existing MIME type, you can create a custom type (for example, application/x-mybinary)
or simply use the generic application/octet-stream type.

Once the problems with Java’s data transfer API have been resolved, you’ll be able to trans-
fer data between Java and non-Java applications by storing the data as a stream of binary data
as I did in this example. In the meantime, however, you can test the functionality added to
ImageSelection by adding a pop-up menu item to ImageEditor. That menu item should allow
you to retrieve the contents of the clipboard as a stream of JPEG data and save the data to a disk
file. In other words, you can cut or copy a portion of an image and save the selection to disk as a
new JPEG file by making the following changes. To do this, first define an AbstractAction that
corresponds to the new menu item:

protected JPopupMenu popupMenu;
protected AbstractAction cutAction;
protected AbstractAction copyAction;
protected AbstractAction pasteAction;
protected AbstractAction saveAction;

Next, add a new menu item to the pop-up menu:

protected void buildPopupMenu() {
popupMenu = new JPopupMenu();
copyAction = new AbstractAction("Copy") {
public void actionPerformed(ActionEvent event) {
performCopy();

}
};
popupMenu.add(copyAction);
cutAction = new AbstractAction("Cut") {
public void actionPerformed(ActionEvent event) {
performCut();

}
};
popupMenu.add(cutAction);
pasteAction = new AbstractAction("Paste") {
public void actionPerformed(ActionEvent event) {
performPaste();

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY 405

}
};
popupMenu.add(pasteAction);
saveAction = new AbstractAction("Save") {
public void actionPerformed(ActionEvent event) {
performSave();

}
};
popupMenu.add(saveAction);

}

Finally, implement the method that will perform the save operation, and update the code
that sets the state of the menu items so the Save menu item is enabled only when there’s data
in the clipboard:

protected void displayPopupMenu(Point p) {
Clipboard cb = getToolkit().getSystemClipboard();
Transferable t = cb.getContents(this);
boolean isSelected = !(start.equals(finish));
cutAction.setEnabled(isSelected);
copyAction.setEnabled(isSelected);
boolean canPaste = ((t != null) &&

(t.isDataFlavorSupported(
ImageSelection.IMAGE_DATA_FLAVOR)));

pasteAction.setEnabled(canPaste);
saveAction.setEnabled(canPaste);
popupMenu.show(this, p.x, p.y);

}

protected void performSave() {
JFileChooser jfc = new JFileChooser();
jfc.showSaveDialog(this);
java.io.File f = jfc.getSelectedFile();
Clipboard cb = getToolkit().getSystemClipboard();
Transferable t = cb.getContents(this);
DataFlavor flavor = ImageSelection.JPEG_MIME_FLAVOR;
if ((!(f == null)) && (!(t == null))

&& (t.isDataFlavorSupported(flavor))) {
try {
java.io.FileOutputStream fos =
new java.io.FileOutputStream(f);

java.io.InputStream is =
(java.io.InputStream) (t.getTransferData(flavor));

int value = is.read();
while (value != -1) {
fos.write((byte) value);
value = is.read();

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY406

}
fos.close();
is.close();

} catch (Exception e) {}
}

}

Add a new menu item to the pop-up menu:

protected void displayPopupMenu(Point p) {
JPopupMenu jpm = new JPopupMenu();
jpm.add(new AbstractAction("Copy") {
public void actionPerformed(ActionEvent event) {
performCopy();

}
});
jpm.add(new AbstractAction("Cut") {
public void actionPerformed(ActionEvent event) {
performCut();

}
});
jpm.add(new AbstractAction("Paste") {
public void actionPerformed(ActionEvent event) {
performPaste();

}
});
jpm.add(new AbstractAction("Save") {
public void actionPerformed(ActionEvent event) {
performSave();

}
});
jpm.show(this, p.x, p.y);

}

And add the code to actually perform the operation:

protected void performSave() {
JFileChooser jfc = new JFileChooser();
jfc.showSaveDialog(this);
java.io.File f = jfc.getSelectedFile();
Clipboard cb = getToolkit().getSystemClipboard();
Transferable t = cb.getContents(this);
DataFlavor flavor = ImageSelection.JPEG_MIME_FLAVOR;
if ((!(f == null)) && (!(t == null))

&& (t.isDataFlavorSupported(flavor))) {
try {
java.io.FileOutputStream fos =
new java.io.FileOutputStream(f);

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY 407

java.io.InputStream is =
(java.io.InputStream) (t.getTransferData(flavor));

int value = is.read();
while (value != -1) {
fos.write((byte) value);
value = is.read();

}
fos.close();
is.close();

} catch (Exception e) {}
}

}

Summary
In this chapter, you examined Java’s cut-and-paste capabilities and learned how to use them
in conjunction with the clipboard.

CHAPTER 8 ■ ADDING CUT-AND-PASTE FUNCTIONALITY408

Adding Drag-and-Drop
Functionality

In a drag-and-drop operation, data is moved (dragged) from one location and stored (dropped)
in another. For example, most operating systems provide a utility similar to Windows Explorer,
which allows you to perform drag-and-drop operations on a list of available files. Drag-and-
drop functionality provides an intuitive visual representation of moving or copying data from
one location to another and is an important part of most modern operating systems. Many
applications use it in a variety of ways, so it’s helpful to be familiar with the functionality that’s
available in Java 2.

Most of the classes associated with drag-and-drop functionality are defined in the
java.awt.dnd package, but some parts of the data transfer API defined in java.awt.datatransfer
are also used. The classes defined in java.awt.dnd may seem complex and confusing, but the
truth is that it’s not difficult to add drag-and-drop capabilities to your applications. In fact,
once the data to be dragged is wrapped in a Transferable, you usually won’t have much more
code to write.

The Transferable interface in the java.awt.datatransfer package serves the same
purpose in a drag-and-drop operation that it does when used to cut and paste. Specifically,
a Transferable encapsulates the data that’s dragged and provides DataFlavor instances that
identify the formats in which the data can be retrieved.

In this chapter, you’ll examine the following issues:

• The fundamental concepts associated with drag-and-drop operations

• How to add drag support to components so they can be used to initiate drag-and-drop
operations

• How to add drop support to components so they can be used to terminate drag-and-
drop operations

• Issues related to different types of transfers (for example, those between Java and native
applications, as opposed to transferring within a single Java Virtual Machine [JVM])

• How to implement autoscroll support for drop targets contained within a scroll pane

• Issues related to transferring text data between Java and native applications

409

C H A P T E R 9

■ ■ ■

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY410

Introducing Drag-and-Drop Operation Types
Just as cut, copy, and paste functions are collectively referred to as cut and paste, the phrase
drag and drop refers to several different operations. In a move operation, the data that’s
dragged is removed from its original location and stored in some other location. A copy opera-
tion is similar to a move, except that the original data remains intact and a copy of it is created
and stored in the drop location. Finally, a link or reference operation results in the creation of
a representation of or a reference to the original data. For example, the terminology varies
across platforms, but most operating systems allow you to create file shortcuts or aliases.

The way in which drag-and-drop operations start and end varies from one operating
system to the next, because each platform defines its own set of gestures for those purposes.
Those gestures are usually a combination of mouse button and key presses, and the buttons
and keys involved are referred to as modifiers.

For example, on Windows, you can initiate a move operation by clicking and then dragging
the cursor (in other words, moving the mouse with the left button still pressed). You initiate a
copy operation by performing the same steps while also holding down the Ctrl key. Finally, a
link operation requires you to press and hold down both the Shift and Ctrl keys while dragging
the mouse. In each case, the object that’s dragged is usually either the component that was
underneath the cursor when the left button was initially pressed or some data item that the
component represents.

When the appropriate drag gestures have been performed, the drag operation is initiated
by an object called a drag source, and the drop is handled by an object called a drop target.
You’ll write code to control the behavior of the drag source and drop target, and that code can
take any action that’s appropriate for the application. In some cases, your code may choose to
perform an operation (copy, move, or link) other than the one associated with the user’s ges-
tures. For example, if a Windows user requests a copy operation by pressing the Ctrl key while
dragging, your application might choose to perform a move instead if the copy operation isn’t
appropriate in the context of that application.

The individual drag-and-drop operations (and some combinations) are represented by
int values defined in the DnDConstants class. Specifically, those constants are as follows:

• ACTION_MOVE

• ACTION_COPY

• ACTION_REFERENCE

• ACTION_LINK

• ACTION_COPY_OR_MOVE

Reference and link are synonyms for the same operation, so their associated constants are
assigned the same value. The ACTION_COPY_OR_MOVE constant is provided as a convenience
since it represents a commonly used combination.

Using the Predefined Cursors
During drag-and-drop operations, it’s common practice to provide visual feedback to the user
concerning the state of the operation, and one way you can do this is through the cursor that’s

displayed. A pair of cursors exists for each of the three operation types, and those cursors are
accessible through constants defined in DragSource. Each pair includes a drop cursor that’s
normally displayed when the cursor is over a component that can accept a drop and a no-
drop cursor when the cursor is over components that can’t accept a drop (see Table 9-1).

Table 9-1. Cursor Constants Defined in DragSource

Action Drop Cursor No-Drop Cursor

Move DefaultMoveDrop DefaultMoveNoDrop

Copy DefaultCopyDrop DefaultCopyNoDrop

Link DefaultLinkDrop DefaultLinkNoDrop

You won’t normally find it necessary to use these constants, because in most cases,
Java’s drag-and-drop facility will change the cursor for you automatically to reflect the status
of the drag-and-drop operation. In general, the only time you need to select one of these cur-
sors is when initiating a drag event, in which case you’ll specify the initial cursor that should
be displayed. As you’ll see later, that cursor should normally be one of the no-drop cursors
identified in Table 9-1.

Performing File Selection Drops from Native
Applications
In the previous chapter, you saw that each DataFlavor contains a MIME type used to identify
the specific data format the flavor represents. However, each operating system defines its
own proprietary data types, and to transfer data between a Java and native application, a
DataFlavor’s MIME type must be mapped to an equivalent native type. For example, to trans-
fer text information between Java and native Windows applications, Java automatically
converts a StringSelection in the clipboard to the CF_TEXT type, and vice versa.

While text information is the type of data most commonly involved in cut-and-paste oper-
ations, file selections represent the most frequently used data type in drag-and-drop operations.

In the same way that Java provides an automatic conversion of clipboard text data, it also
performs a translation that allows you to drag and drop file selections between Java and native
applications. Those selections are represented by a Transferable that supports a DataFlavor
with a MIME type of application/x-java-file-list and a representation class of java.util.List.
The List object returned by this type of Transferable contains a collection of java.io.File
objects that identify the files selected. If you drop files from a native application onto a Java
program, Java automatically creates an instance of java.util.List containing File objects
and wraps that list in a Transferable.

Adding Drop Support
Although it might seem more logical to begin with support for dragging, I’ll first cover how to
handle drops in Java. Drop support is somewhat easier to implement, and this approach pro-
vides a good opportunity to illustrate how Java can accept data that’s dropped from a native
application, such as Windows Explorer.

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY 411

To demonstrate how to implement drop support, I’ll show how to create a subclass of
JPanel called ImageViewer that accepts image file selection drops (see Figure 9-1). For each file
that’s dropped, ImageViewer creates an ImageIcon and displays the icon in a JLabel.

Figure 9-1. The ImageViewer application

Listing 9-1 represents the initial implementation of ImageViewer. The getLabelFromFile()
method is passed an instance of File and attempts to use that file to create and return a
JLabel. Since you want to be able to add JLabel instances to any point in the container,
ImageViewer doesn’t use a layout manager. Therefore, it’s necessary to explicitly set the size
and position of each component added, and addNewComponent() provides that.

Listing 9-1. ImageViewer

import java.awt.*;
import java.awt.datatransfer.*;
import java.awt.dnd.*;
import java.io.*;
import javax.swing.*;

public class ImageViewer extends JPanel {

public static void main(String[] args) {
JFrame f = new JFrame("ImageViewer");
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setContentPane(new ImageViewer());
f.setSize(400, 300);
f.setVisible(true);

}

public ImageViewer() {
super();
setLayout(null);

}

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY412

protected JLabel getLabelFromFile(File f) {
ImageIcon icon = new ImageIcon(f.getAbsolutePath());
JLabel label = new JLabel(icon);
label.setText(f.getName());
label.setHorizontalTextPosition(JLabel.CENTER);
label.setVerticalTextPosition(JLabel.BOTTOM);
return label;

}

protected void addNewComponent(Component comp, Point location) {
comp.setLocation(location);
comp.setSize(comp.getPreferredSize());
add(comp);
repaint();

}

}

With the basic functionality implemented, you can begin to add drop support to the
custom component, and the first step in doing so is to associate it with a drop target.

DropTarget
Before you can perform drops on a Component, you must create an instance of DropTarget and
associate it with the component, which can be done in several different ways. However, the
easiest approach in most cases is to provide a reference to the component when you create
the DropTarget. Once it has been created, you can enable and disable a DropTarget by calling
its setActive() method, and its state can be queried using isActive().

The DropTarget receives notification of events related to the drag-and-drop operation and
provides support for a single listener that’s also notified of those events. To handle drops, you
must define a DropTargetListener implementation and associate it with a DropTarget just as
you did for the drop component.

DropTargetListener
A DropTargetListener has two primary responsibilities: providing drag-under effects during
a drag-and-drop operation and handling the recipient’s side of a drop when it occurs. Drag-
under effects are changes made to the drop component’s appearance that provide feedback to
the user during the drag operation. For example, if you create a DropTargetListener for use
with a JTable, you might implement code that highlights the cell underneath the cursor as it
moves across the table. I’ll provide an example of this later in the chapter, but for now, drag-
under effects are an advanced topic and in practice are often not needed.

In addition to the drag-under effects, a DropTargetListener is responsible for handling the
drop operation, which typically involves storing the data that’s dropped or a reference to the
data. How and where the data is stored is application-specific and usually depends on the
operation type (move, copy, or link), the type of data dropped, and the type of component onto
which it’s dropped. In the case of ImageViewer, the DropTargetListener uses the file selections
to create JLabel instances, and the labels are added to the panel at the drop location.

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY 413

ImageViewer contains an inner class, shown in Listing 9-2, that provides an implementa-
tion of DropTargetListener. I’ll cover each of the five methods defined in DropTargetListener
in detail in this chapter, but in many cases, you’ll need to write code only for drop(), which
(as its name implies) is called when a drop occurs. To use this inner class, insert it into the
ImageViewer class after the addNewComponent() method.

Listing 9-2. Providing an Implementation of DropTargetListener

class MyDropListener implements DropTargetListener {

public void dragEnter(DropTargetDragEvent event) {
}

public void dragExit(DropTargetEvent event) {
}

public void dragOver(DropTargetDragEvent event) {
}

public void dropActionChanged(DropTargetDragEvent event) {
}

public void drop(DropTargetDropEvent event) {
}

}

It’s now possible to create a DropTarget, which you’ll do using a constructor that’s passed
a reference to the drop component (in other words, the ImageViewer instance), the operations
the target supports, and a reference to a DropTargetListener:

public ImageViewer() {
super();
setLayout(null);
DropTarget dt = new DropTarget(this,

DnDConstants.ACTION_COPY_OR_MOVE,
new MyDropListener());

}

Events Passed to DropTargetListener Methods

Now that you’ve created the DropTarget, it’s necessary to complete the implementation of the
methods within MyDropListener. To better understand how those methods are used, you need
to examine the event objects that are passed to them.

DropTargetEvent
This is the superclass of the DropTargetDragEvent and DropTargetDropEvent classes discussed
next, and an instance of this class is passed to dragExit(). However, DropTargetEvent doesn’t
define any methods or properties you’ll normally use.

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY414

DropTargetDragEvent
An instance of DropTargetDragEvent is passed to the dragEnter(), dragOver(), and
dropActionChanged() methods. DropTargetDragEvent allows those methods to identify the
type of data being dragged, as well as the specific location of the cursor and other information
regarding the current operation. In addition, this event object provides methods that allow the
drag operation to be accepted or rejected, and I discuss the reasons for doing so and conse-
quences of those actions later.

getCurrentDataFlavors(), getCurrentDataFlavorsAsList(), isDataFlavorSupported()
These methods allow you to determine which DataFlavor(s) can be used to transfer data
if a drop occurs. While getCurrentDataFlavors() returns an array of DataFlavor instances,
getCurrentDataFlavorsAsList() returns a java.util.List containing the valid flavors. When
you need to determine whether the data can be retrieved using a specific flavor, you should
use isDataFlavorSupported(). That method returns a boolean value of true if the flavor you
pass to it as a parameter is supported.

These methods are often used by a DropTargetListener to determine whether the data
being dragged can be represented in a form that the drop target can process. If not, it’s com-
mon for the drop target to reject the drag operation; the implications of which are discussed
later.

getLocation()
You can use this method to determine where the cursor was located when the event occurred.
An instance of java.awt.Point is returned that identifies the cursor’s position within the com-
ponent across which it’s being dragged, and the position is relative to the component’s origin
(coordinates 0, 0).

This method is most commonly used to provide drag-under effects. For example, if data
is dragged across a JTable, the drop target may use the cursor’s location to determine which
table cell is underneath the cursor and select or highlight that cell appropriately.

getSourceActions()
A drop target may need to determine what operations are supported by the drag source, and
this method makes it possible to obtain that information.

acceptDrag()
This method indicates that the drop target is prepared to accept a drop, and you should
specify the operation type that the target will perform if a drop does occur. That type should
be one of the types supported by the drag source, which can be identified by calling
getSourceActions().

You’re not required to call this method within the DropTargetListener methods. However,
you should call acceptDrag() if your drop target wants to perform an operation other than the
one selected by the user.

rejectDrag()
A call to rejectDrag() indicates that your drop target isn’t prepared to accept a drop, and the
reasons for that can vary from one application to the next. A drag is often rejected when the
type of data being dragged can’t be processed by the drop target or when the cursor is over an

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY 415

area of the component that can’t accept drops. For example, ImageViewer rejects drags when
the data being dragged can’t be retrieved using the javaFileListFlavor data flavor.

getDropAction()
This method identifies the operation type that the user currently has selected and returns an
int value that corresponds to one of the action constants defined in DragSource: ACTION_MOVE,
ACTION_COPY, or ACTION_LINK/ACTION_REFERENCE.

If your drop target can support more than one type of operation, it normally should use
this method to select the operation that was requested by the user.

DropTargetDropEvent

An instance of DropTargetDropEvent is passed to the drop() method when a drop occurs. Many
of the methods in this class are identical in name and function to those in DropTargetDragEvent,
so I’ll discuss only those that are unique to DropTargetDropEvent.

acceptDrop()
This method is essentially the same as acceptDrag() and indicates to the caller which opera-
tion is to be performed on the data that’s transferred. This method should be called before the
data is accessed using getTransferable(), or that call may fail.

rejectDrop()
You should call this method if your drop target can’t perform the requested operation.

getTransferable()
This method can be called to retrieve a Transferable that encapsulates the data that was
dropped. Note that it should be called only after your drop target has invoked acceptDrop().

isLocalTransfer()
Use this method to find out if the drag-and-drop operation has taken place within a single
JVM (in other words, when this is a local transfer). It’s sometimes important to distinguish
local from remote transfers, and I describe the reasons for doing so in detail later in this
chapter.

dropComplete()
Once your drop processing is finished, you should call the dropComplete() method to signal
the completion of the drop operation. A parameter value of true indicates that the transfer
was successful; false indicates it wasn’t.

Drag Sessions

Several of the methods in DropTargetListener are called as a result of cursor movement, and
to accurately determine when they’re invoked, it’s necessary to identify what I’ll call a drag
session. A drag session begins when the cursor enters the component’s display area and ends
when it exits the display area or when a drop occurs. In most cases, only one drag session
occurs per component in a single drag-and-drop operation. However, the user may choose to

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY416

repeatedly move the cursor over a component and then away from it for some reason. In gen-
eral, you won’t need to concern yourself with drag sessions, but the concept is relevant to
some of the DropTargetListener behavior described next.

Rejecting Drags and Drops

When your drop target wants to indicate that it won’t accept a drop, it can call rejectDrag()
from within the dragEnter(), dragOver(), and dropActionChanged() methods. When a drag is
rejected, the cursor changes to a no-drop cursor, and if a drop occurs during that drag session,
it’s ignored (in other words, the drop() method isn’t called).

Note that a drag rejection is effective only for the current drag session, and if the cursor
exits and reenters the component’s display area, any previous rejection is effectively canceled.
This isn’t a problem in most cases, because the same conditions that caused your code to
reject the drag in one drag session normally will still exist in another. However, you should
realize that rejecting a drag doesn’t permanently prevent the drop from completing.

It’s also important to know that rejecting a drag doesn’t prevent further DropTargetListener
notifications. For example, if you reject a drag operation from the dragEnter() method,
dragOver() will still be called as the cursor moves over the component, and dragExit() will
be called when the cursor exits the component area. As you’ll see later, it’s even possible to
accept a drag after you’ve rejected a previous one in the same drag session.

Given the choice between rejecting a drop request or rejecting a drag operation and pre-
venting the drop request from occurring, you may be wondering which you should choose. In
most cases, it’s appropriate to reject the drag operation, because you’ll usually know at that
time (in other words, before the drop actually occurs) whether you intend to allow the drop to
take place. However, sometimes the state of the drop target may change while the drag is tak-
ing place, which in turn may affect its ability to accept the drop. In other words, if you can’t be
certain whether a drop target will accept the drop until it actually occurs, you should accept
the drag requests and reject the drop if necessary.

DropTargetListener Methods

Now that you’ve examined the event objects that are passed to the DropTargetListener meth-
ods, you’ll see when those methods are called and how you should use them.

dragEnter()
During a drag-and-drop operation, this method is called when the cursor enters the display
area of the component associated with the DropTarget. You may want to use this method to
initiate drag-under effects for the component, or you may choose to accept or reject the drag
operation. ImageViewer uses dragEnter() to reject the drag operation when the data being
dragged isn’t a list of files:

public void dragEnter(DropTargetDragEvent event) {
if (event.isDataFlavorSupported(

DataFlavor.javaFileListFlavor)) {
return;

}
event.rejectDrag();

}

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY 417

dragOver()
This method is passed an instance of DropTargetDragEvent and is called when the cursor
moves after it has previously entered the display area of the drop component. If you’re provid-
ing drag-under effects, you may need to update them each time dragOver() is called. However,
if you’re not providing drag-under effects, you won’t need to implement this method, which is
the case with the ImageViewer application.

dragExit()
An instance of DropTargetEvent is passed to this method, which is called when the cursor exits
the display area of the drop component. If you’re providing drag-under effects, you normally
should discontinue them when dragExit() is invoked. As with dragOver(), you won’t normally
implement this method if you’re not providing drag-under support.

drop()
This method is called when a drop occurs, and it’s responsible for accepting or rejecting the drop
and for processing the dropped data. When a drop takes place over an instance of ImageViewer,
for example, the file selections that were dropped must be converted into JLabel instances and
added to the container, as shown in Listing 9-3.

Listing 9-3. Handling Drop Operations

import java.awt.*;
import java.awt.datatransfer.*;
import java.awt.dnd.*;
import java.io.*;
import javax.swing.*;

public class ImageViewer extends JPanel {

public static void main(String[] args) {
JFrame f = new JFrame("ImageViewer");
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setContentPane(new ImageViewer());
f.setSize(400, 300);
f.setVisible(true);

}

public ImageViewer() {
super();
setLayout(null);
DropTarget dt = new DropTarget(this,

DnDConstants.ACTION_COPY_OR_MOVE,
new MyDropListener());

}

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY418

protected JLabel getLabelFromFile(File f) {
ImageIcon icon = new ImageIcon(f.getAbsolutePath());
JLabel label = new JLabel(icon);
label.setText(f.getName());
label.setHorizontalTextPosition(JLabel.CENTER);
label.setVerticalTextPosition(JLabel.BOTTOM);
return label;

}

protected void addNewComponent(Component comp, Point location) {
comp.setLocation(location);
comp.setSize(comp.getPreferredSize());
add(comp);
repaint();

}

class MyDropListener implements DropTargetListener {

public void dragEnter(DropTargetDragEvent event) {
if (event.isDataFlavorSupported(

DataFlavor.javaFileListFlavor)) {
return;

}
event.rejectDrag();

}

public void dragExit(DropTargetEvent event) {
}

public void dragOver(DropTargetDragEvent event) {
}

public void dropActionChanged(DropTargetDragEvent event) {
}

public void drop(DropTargetDropEvent event) {
if (event.isDataFlavorSupported(

DataFlavor.javaFileListFlavor)) try {
event.acceptDrop(DnDConstants.ACTION_COPY);
Transferable t = event.getTransferable();
java.util.List list = (java.util.List)(

t.getTransferData(
DataFlavor.javaFileListFlavor));

java.util.Iterator i = list.iterator();

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY 419

while (i.hasNext()) {
JLabel label = getLabelFromFile(

(File)(i.next()));
addNewComponent(label, event.getLocation());

}
event.dropComplete(true);

} catch (Exception e) {
event.dropComplete(false);

}
}

}

}

The first action this drop() implementation takes is to determine whether
javaFileListFlavor can be used to retrieve the data. That test isn’t really needed because
a similar test was already performed in dragEnter(), and drop() won’t be called if the drag
was rejected. However, I’ll leave the code in place because I’ll later show how to modify
ImageViewer to accept an additional DataFlavor. When you make that change, the drop()
method must distinguish between the two flavors so that it can handle each of them
differently.

After the data type has been verified, acceptDrop() is called and is passed the type of
operation to be performed. As you may recall, the drop target is able to support both move
and copy (ACTION_COPY_OR_MOVE) operations, but a single operation should be specified when
calling acceptDrop(). In many cases, the copy and move operations are handled the same
way by a drop target, but it’s still important to select the appropriate operation. That’s
because the drag source is notified of which operation was selected, and the drag source
processing often varies based on that selection.

After accepting the drop operation, the method shown in Listing 9-3 retrieves the
Transferable data, extracts the file list from it, creates a JLabel for each file, and adds the
labels to the container. Once the data has been successfully retrieved and processed,
dropComplete() is called and is passed a parameter value of true, indicating that the drop
was successful.

In addition to identifying the type of operation accepted by the drop target, a drag source
is also able to determine whether the drop operation completed successfully. That informa-
tion is needed so that the drag source can take appropriate action based on the outcome of
the drop. For example, if a move operation was requested and the drop was successful, the
drag source often must remove the dragged data from its original location.

dropActionChanged()
Earlier you saw that the type of operation to perform is determined by the status of keyboard
and mouse modifier buttons. However, it’s possible for the user to change the selected drop
action after a drag has been initiated by changing the state of those modifiers. For example,
if you begin a copy operation on Windows and then release the Ctrl key while dragging the
data, you’ve effectively changed the requested drop action. When such a change does occur,
this method is called to notify the DropTargetListener of the modification. You’ll need to

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY420

implement this method only if your application needs to take some action when the drop
action changes, which isn’t the case with ImageViewer.

Drop Enabling ImageViewer
You’ve now created all the code that’s necessary to allow ImageViewer to display image files
that are dropped on it. If you compile and run this application, you’ll be able to drop image
file selections onto the window. For example, once this application’s user interface appears, you
should start Windows Explorer (or a similar application) and use that application to drag GIF
and JPEG files and drop them into the frame created by ImageViewer, as shown in Figure 9-2.

Figure 9-2. Dragging an image file from a native window and dropping it onto the application to
display it

Adding Drag Support
Now that ImageViewer is able to process file selection drops, I’ll show how to add drag support
so that it’s possible to drag and drop the JLabel objects that were created. Once that’s done, it
will be possible to move the labels around within a single ImageViewer and to move a label
from one instance of ImageViewer to another.

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY 421

Defining a Transferable
Before data can be dragged, it must be wrapped in a Transferable implementation, just as you
did in the previous chapter for cut-and-paste operations. To support the Transferable imple-
mentation for JLabel instances, you’ll first define a DataFlavor that describes the type of data
encapsulated by the Transferable:

public class ImageViewer extends JPanel {

public final static DataFlavor LABEL_FLAVOR =
new DataFlavor(JLabel.class, "Label Instances");

The DataFlavor constructor used here allows you to create flavors that describe serialized
Java objects, and this data flavor’s MIME type is set to application/x-java-serialized-object
accordingly. JLabel instances are serializable because Component (which JLabel inherits from)
implements the Serializable interface.

With the DataFlavor defined, you can create a Transferable implementation, which in
this case is defined as an inner class of ImageViewer named LabelSelection, as shown in
Listing 9-4.

Listing 9-4. LabelSelection

class LabelSelection implements Transferable {

private DataFlavor[] flavors = {
LABEL_FLAVOR

};

protected JLabel label;

public LabelSelection(JLabel lbl) {
label = lbl;

}

public DataFlavor[] getTransferDataFlavors() {
return flavors;

}

public boolean isDataFlavorSupported(DataFlavor flavor) {
for (int i = 0; i < flavors.length; i++) {
if (flavors[i].equals(flavor)) {
return true;

}
}
return false;

}

public Object getTransferData(DataFlavor flavor)
throws UnsupportedFlavorException, IOException {

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY422

if (flavor.equals(LABEL_FLAVOR)) {
return label;

}
throw new UnsupportedFlavorException(flavor);

}

}

Now that you’ve created a Transferable that encapsulates a JLabel, you can write the
code that initiates a drag operation.

Obtaining a Drag Source
Earlier you saw that an instance of DropTarget is created for each component that should be
able to receive drops. In contrast, an application normally has only one drag source. That’s
because although many drop targets can exist simultaneously, only one drag operation can
be in progress at any given time since you have only one mouse with which to control an
operation.

As you might expect, a drag source in Java is represented by an instance of the
DragSource class, and a singleton instance of that class is accessible through the static
getDefaultDragSource() method:

DragSource source = DragSource.getDefaultDragSource();

As you’ll see, DragSource and DropTarget have many similarities, and one of those
similarities is that, like DropTarget, a DragSource can support a listener.

In the case of ImageViewer, you want to be able to drag each JLabel that’s added to the
container. To accomplish this, you’ll first modify the addNewComponent() method so that the
default drag source is accessed each time a JLabel is added:

protected void addNewComponent(Component comp, Point location) {
DragSource source = DragSource.getDefaultDragSource();
comp.setLocation(location);
comp.setSize(comp.getPreferredSize());
add(comp);
repaint();

}

At this point, it may not be obvious what to do with the DragSource. No DragSource
constructor exists to which you can pass a reference to the label being added, and an
addDragSourceListener() method isn’t available. Instead, your application should register
a listener indirectly by creating a DragGestureRecognizer.

Drag Gesture Recognizers
The gestures used to initiate drag-and-drop operations can vary from one operating system
to the next. For example, a move operation is initiated on Windows by clicking and then
dragging the cursor. However, other operating systems may use different key/button combi-
nations to initiate the same operation.

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY 423

Ideally, a Java application should be able to recognize the gestures that are appropriate
for the platform on which it’s running, but at the same time, an application shouldn’t contain
code that’s specific to any one platform. DragGestureRecognizer allows you to satisfy both
requirements by providing a level of abstraction between your application and the recognition
of gestures that should initiate a drag-and-drop operation.

Just as you create a DropTarget for each component that can accept drops, it’s necessary
to create a DragGestureRecognizer for each component that can be used to initiate a drag. The
parameters passed to the DragGestureRecognizer constructor are similar to those passed to a
DropTarget: a Component instance, the operations supported, and a listener. In this case, how-
ever, the listener is an implementation of DragGestureListener:

protected void addNewComponent(Component comp, Point location) {
DragSource source = DragSource.getDefaultDragSource();
source.createDefaultDragGestureRecognizer(comp,

DnDConstants.ACTION_COPY_OR_MOVE,
new MyGestureListener());

comp.setLocation(location);
comp.setSize(comp.getPreferredSize());
add(comp);
repaint();

}

class MyGestureListener implements DragGestureListener {

public void dragGestureRecognized(DragGestureEvent event) {}

}

Although you can create your own DragGestureRecognizer class, you’ll rarely have a rea-
son to do so. Instead, you’ll normally obtain an instance of the default DragGestureRecognizer
class that’s provided by the singleton DragSource. When you do so, the DragGestureRecognizer
registers itself as a listener of the component’s events so that it can determine when a drag
operation should be started. It accomplishes this by monitoring the component events, and
when it detects that the user has taken the appropriate action(s) to begin dragging, it sends a
notification to the DragGestureListener by calling its dragGestureRecognized()method.

DragGestureListener
The DragGestureListener interface defines a single method that’s called when a DragGesture➥

Recognizer determines that a drag operation has been requested.

dragGestureRecognized()

This method is called when a DragGestureRecognizer determines that the user has requested
a drag operation using the standard gestures for the current platform. It’s the responsibility of
dragGestureRecognized() to initiate the drag operation once it has determined that the drag
should be allowed to take place.

Many times, such as in the ImageViewer application, the drag can be allowed to start
unconditionally when dragGestureRecognized() is called. However, if the drag component is

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY424

a more sophisticated control such as a JTable or JTree, you may want to be more selective. In
the case of a JTree, you might allow the user to drag nodes around within the tree but allow
only certain nodes to be dragged (for example, only leaf nodes). In that case, you might ignore
gestures that occur over nodes that can’t be dragged, or you may display an error message
when the user attempts to drag an ineligible node.

DragGestureEvent
Among other things, an instance of DragGestureEvent describes the events that were detected
by the DragGestureRecognizer. A number of methods within DragGestureEvent allow you to
access the InputEvent objects that describe those events, although there’s almost never a rea-
son for you to do so. In fact, if you create code that’s dependent upon platform-specific event
information, you’ll have defeated the purpose of using a DragGestureRecognizer.

In many cases, the only method you’ll use in DragGestureEvent is startDrag(). However,
some other methods can be helpful, and I’ll cover each of them briefly.

getComponent()

This method returns a reference to the component associated with the DragGestureRecognizer.
In the case of ImageViewer, this is an instance of JLabel.

getDragAction()

The specific operation type requested (move, copy, or link/reference) is returned by this
method. It’s represented as an int value and will be one of the following: ACTION_MOVE,
ACTION_COPY, or ACTION_LINK (which is equivalent to ACTION_REFERENCE).

getDragOrigin()

You can use this method to determine where the cursor was located when the drag was
started. It returns an instance of java.awt.Point that identifies the cursor’s position relative
to the component origin (in other words, coordinates 0, 0).

getDragSource()

This returns a reference to the DragSource that created the DragGestureRecognizer.

getSourceAsDragGestureRecognizer()

This method returns a reference to the DragGestureRecognizer.

startDrag()

In many cases, startDrag() is the only method you’ll call from your dragGestureRecognized()
implementation, and as its name implies, it initiates the drag operation. The parameters you
can specify when calling startDrag() are as follows:

• The initial Cursor to display during the operation.

• An image used to visually represent the data while it’s being dragged. Some operating
systems (including Windows) don’t support drag images and will ignore this parameter

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY 425

value. To determine whether drag image support is available, your application can call
the static isDragImageSupported() method in DragSource.

• The location (represented by an instance of java.awt.Point) relative to the cursor’s
“hotspot” where the drag image will be displayed if it’s supported.

• A Transferable that encapsulates the data to be moved, copied, or linked.

• An instance of a DragSourceListener implementation that’s used to track the progress
of the operation and to perform tasks that are the responsibility of the initiator of the
operation.

The startDrag() method has two implementations, one of which accepts all five of the
parameters just described. However, you’ll use the simpler version that allows the drag image
and coordinate parameters to be omitted. Listing 9-5 is a partial listing of the modified
ImageViewer class.

Listing 9-5. Modified ImageViewer Class (Partial Listing)

public class ImageViewer extends JPanel {

public final static DataFlavor LABEL_FLAVOR =
new DataFlavor(JLabel.class, "Label Instances");

protected DragSourceListener sourceListener;
protected JLabel draggedComponent;

public static void main(String[] args) {
JFrame f = new JFrame("ImageViewer");
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setContentPane(new ImageViewer());
f.setSize(400, 300);
f.setVisible(true);

}

public ImageViewer() {
super();
setLayout(null);
DropTarget dt = new DropTarget(this,

DnDConstants.ACTION_COPY_OR_MOVE,
new MyDropListener());

sourceListener = new MySourceListener();
}

protected JLabel getLabelFromFile(File f) {
ImageIcon icon = new ImageIcon(f.getAbsolutePath());
JLabel label = new JLabel(icon);
label.setText(f.getName());

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY426

label.setHorizontalTextPosition(JLabel.CENTER);
label.setVerticalTextPosition(JLabel.BOTTOM);
return label;

}

protected void addNewComponent(Component comp, Point location) {
DragSource source = DragSource.getDefaultDragSource();
source.createDefaultDragGestureRecognizer(comp,

DnDConstants.ACTION_COPY_OR_MOVE,
new MyGestureListener());

comp.setLocation(location);
comp.setSize(comp.getPreferredSize());
add(comp);
repaint();

}

class MyGestureListener implements DragGestureListener {

public void dragGestureRecognized(DragGestureEvent event) {
Cursor cursor = null;
draggedComponent = (JLabel)(event.getComponent());
switch (event.getDragAction()) {
case DnDConstants.ACTION_MOVE:
cursor = DragSource.DefaultMoveNoDrop;
break;

case DnDConstants.ACTION_COPY:
cursor = DragSource.DefaultCopyNoDrop;
break;

case DnDConstants.ACTION_LINK:
cursor = DragSource.DefaultLinkNoDrop;
break;

}
event.startDrag(cursor,

new LabelSelection(draggedComponent),
sourceListener);

}
}

class MySourceListener implements DragSourceListener {

public void dragEnter(DragSourceDragEvent event) {};
public void dragExit(DragSourceEvent event) {};
public void dragOver(DragSourceDragEvent event) {};
public void dropActionChanged(DragSourceDragEvent event) {};
public void dragDropEnd(DragSourceDropEvent event) {};

}

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY 427

The dragGestureRecognized() method defined here selects an appropriate no-drop
cursor based on the operation type. A no-drop cursor is chosen because it’s standard practice
to prevent the drop from occurring until after the cursor exits the display area of the compo-
nent being dragged. Stated more simply, you must move the data somewhere before you
can drop it.

The second parameter passed to startDrag() in Listing 9-5 is an instance of the
LabelSelection class that was defined earlier. That class implements Transferable and
maintains a reference to the JLabel that will be dragged.

Finally, startDrag() is passed as a reference to a DragSourceListener that can be used to
track the drag operation. In most cases, it’s possible to use a single DragSourceListener for all
the DragGestureRecognizers since only a single drag-and-drop operation can be in progress at
any given time.

You’ve now done everything that’s necessary to begin the drag operation. At this point,
all that’s left is to handle the drop, and most of the code necessary to do so is similar to code
you’ve already written. In fact, simply add another block of code, shown in Listing 9-6, to the
existing drop() method so that it can process Transferable instances that encapsulate labels.

Listing 9-6. Handling the Drop Operation

public void drop(DropTargetDropEvent event) {
if (event.isDataFlavorSupported(DataFlavor.javaFileListFlavor)) {
try {
event.acceptDrop(DnDConstants.ACTION_COPY);
Transferable t = event.getTransferable();
java.util.List list = (java.util.List)

(t.getTransferData(DataFlavor.javaFileListFlavor));
java.util.Iterator i = list.iterator();
while (i.hasNext()) {
JLabel label = getLabelFromFile((File)(i.next()));
addNewComponent(label, event.getLocation());

}
event.dropComplete(true);

} catch (Exception e) {
event.dropComplete(false);

}
} else if (event.isDataFlavorSupported(LABEL_FLAVOR)) {
try {
event.acceptDrop(DnDConstants.ACTION_MOVE);
Transferable t = event.getTransferable();
JLabel label = (JLabel)(t.getTransferData(LABEL_FLAVOR));
addNewComponent(label, event.getLocation());
event.dropComplete(true);

} catch (Exception e) {
event.dropComplete(false);

}
}

}

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY428

As you may recall, the original implementation of MyDropListener’s dragEnter() method
rejects drags when the data can’t be accessed using javaFileListFlavor. However, since you
now also provide support for LABEL_FLAVOR, you should modify the dragEnter() method to
allow that flavor as well:

class MyDropListener implements DropTargetListener {

public void dragEnter(DropTargetDragEvent event) {
if ((event.isDataFlavorSupported(

DataFlavor.javaFileListFlavor)) ||
(event.isDataFlavorSupported(
LABEL_FLAVOR))) {

return;
}
event.rejectDrag();

}

At this point, ImageViewer supports both drag-and-drop operations; however, if you exe-
cute the application in its current state, you’ll see that something is still missing. Each time
you drag and drop a JLabel, the original remains intact, and a duplicate of it appears at the
drop location, as shown in Figure 9-3.

Figure 9-3. Incomplete drag-and-drop implementation

This occurs despite that the move operation is selected by the drop target; to understand
why this happens, it’s necessary to understand why the object serialization facility is used to
transfer Java objects.

An object reference is meaningful only within the JVM in which it exists, so an object
can’t really be moved when data is dragged from one JVM instance and dropped onto another.
However, it’s possible to create a copy of an object by sending a representation of it to the
target JVM, which can then create a duplicate. That’s exactly what Java’s object serialization
provides and is the reason why it’s necessary for the drag source to delete the original JLabel.
Serialized objects are never really moved but are copied, so to simulate a move in a drag-and-
drop operation, the original object must be deleted after its copy is created.

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY 429

Later you’ll see how you can transfer an object reference when a drag-and-drop operation
occurs within a single JVM instance. However, any time you use a DataFlavor with a MIME
type of application/x-java-serialized-object, your drop target receives a copy of the original
object instead of a reference to it.

I’ve now established why the drag source in ImageViewer must delete the original label
after it’s dropped, but you haven’t yet implemented any code to do so. To identify the appro-
priate place for that logic, it’s necessary to be familiar with the DragSourceListener interface,
its methods, and the event objects passed to those methods.

DragSourceListener
The drag source has two primary responsibilities: removing the source data from its previous
location in a move operation and providing drag-over effects. As you may recall, drag-under
effects are provided by the drop target and are used to modify the appearance of the drop
component. In contrast, drag-over effects are related to the cursor’s appearance and are pro-
vided by the drag source. For example, when a drag occurs over a component that can’t accept
a drop, the drag source is responsible for displaying a no-drop cursor.

You won’t normally find it necessary to provide drag-over effects because in most cases
the appropriate cursor appears automatically. If you move the cursor over a component that’s
not able to accept the drop or if a drag is rejected, a no-drop cursor appears. However, some-
times you may want to customize the appearance of the cursor so that it’s different from
what’s displayed by default.

To change the cursor, you must obtain a reference to the DragSourceContext using the
getDragSourceContext() defined in DragSourceEvent and inherited by its subclasses. Once you
have a DragSourceContext reference, you can call the setCursor() method as follows:

public void dragOver(DragSourceDragEvent event) {
// Normally some condition logic would go here
DragSourceContext dsc = event.getDragSourceContext();
dsc.setCursor(DragSource.DefaultCopyNoDrop);

}

Now that you’ve seen what the DragSourceListener interface is responsible for, you’ll
examine each of the methods it defines.

dragEnter()

This method is called when the cursor enters the display area of a drop component, and you
may remember that a method by this same name is defined in the DropTargetListener inter-
face. When the cursor enters a drop component’s display area, the drop target’s dragEnter()
method is called first, followed by that of the drag source. However, that latter call occurs only
if the first drop target’s dragEnter() method doesn’t reject the drag operation.

dragOver()

This method is called when the cursor is moved after it has previously entered the drop com-
ponent’s display area. A method by the same name is defined in DropTargetListener, and this
one is called only after that one has executed. In other words, dragOver() is first called for the

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY430

drop target and then called for the drag source. However, if the drop target rejects the opera-
tion, the drag source’s method isn’t called.

dragExit()

This method is called when the cursor exits the display area of a drop component.

dropActionChanged()

A call to dropActionChanged() indicates that the status of a modifier used to select the drop
action (for example, the Ctrl or Shift key) has changed. A method with the same name as this
one is defined in DropTargetListener, and this one is called only after that one has executed.
In other words, dropActionChanged() is first called for the drop target and then called for the
drag source. However, if the drop target rejects the operation, the drag source’s method isn’t
called.

dragDropEnd()

After a drop has occurred and the DropTargetListener’s drop() method is invoked, dragDropEnd()
is called to notify the drag source that the drop has completed. As you’ll see shortly, the event
object passed to this method allows it to determine the type of operation selected by the drop
target and to determine the value specified when the drop target called dropComplete(). In
other words, this method can determine whether the drop completed successfully.

Since this method is called once the drop has completed and because it allows you to
determine the final status of the operation, you should use dragDropEnd() to perform the
DragSourceListener’s cleanup-related tasks.

Event Objects Passed to DragSourceListener Methods
Now that you’ve learned about the methods defined by DragSourceListener, it’s appropriate
to examine the event objects passed to those methods.

DragSourceEvent

This is the superclass of the DragSourceDragEvent and DragSourceDropEvent classes defined
next. However, DragSourceEvent doesn’t provide any methods you’ll use.

DragSourceDragEvent

An instance of DragSourceDragEvent class is passed to the dragEnter(), dragOver(), and
dropActionChanged() methods. Unlike a drop target, a drag source can’t accept or reject a drag,
so the methods provided by this event object are purely informational.

getTargetActions()
This method identifies the intersection of the actions supported by the drag source and those
supported by the drop target. For example, suppose that the drag source supports move, copy,
and link operations, but the drop target supports only move and link. In that case, the value
returned by getTargetActions() would equal the combined values of the ACTION_MOVE and
ACTION_LINK constants. In other words, this method identifies the operations that both the
drag source and the drop target support.

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY 431

getUserAction()
The operation requested by the user is identified by this method and is based on the current
state of the modifier keys and buttons.

getDropAction()
This identifies the effective drop action, which is defined as the intersection of the target
actions and the current user action. If the user has selected an action that the drag source or
the drop target doesn’t support, this value will be equal to the ACTION_NONE constant defined in
DnDConstants.

getGestureModifiers()
You can use this method to determine the state of the modifiers that determine the type of
operation requested. For example, this value identifies the state of the mouse buttons and the
Shift, Alt, and Ctrl keys. For more information on how to interpret the value returned by this
method, see the modifier constants defined in java.awt.event.InputEvent.

DragSourceDropEvent

An instance of this class is passed to dragDropEnd(), which is called after the drop has been
processed by the drop target.

getDropAction()
You can use this method to determine which operation the drop target selected. In other
words, this identifies the action specified when the DropTargetListener’s drop() method
called acceptDrop().

You’ll normally use this value to determine what action your DragSourceListener should
take. If a move operation was selected, the data that was dropped usually must be removed
from its original location by the drag source.

getDropSuccess()
While the getDropAction() method identifies the action selected by the drop target, this
method provides an indication of the value specified by the target when dropComplete() was
called. In other words, this method returns a value of true if the drop completed successfully
or false otherwise.

Drag Source Handling of Drop Completion
Now that I’ve reviewed the events and methods associated with DragSourceListener, it should
be obvious how to fix the problem with ImageViewer that was identified earlier. When a JLabel
is moved, the drag source is responsible for removing the label from its original location, and
that should be done in the dragDropEnd() method.

Listing 9-7 highlights the modifications to dragDropEnd(). Note that most of the cleanup
performed in that method depends upon both the successful completion of the drop and the
type of operation selected by the drop target. If the target selects an operation other than
ACTION_MOVE, the original JLabel component won’t be removed.

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY432

Listing 9-7. Updating the dragDropEnd() Method

class MySourceListener implements DragSourceListener {

public void dragEnter(DragSourceDragEvent event) {};
public void dragExit(DragSourceEvent event) {};
public void dragOver(DragSourceDragEvent event) {};
public void dropActionChanged(DragSourceDragEvent event) {};

public void dragDropEnd(DragSourceDropEvent event) {
if ((event.getDropSuccess())

&& (event.getDropAction() == DnDConstants.ACTION_MOVE)) {
remove(draggedComponent);
repaint();

}
draggedComponent = null;

}
}

Performing Local Transfers
When dragging and dropping Java objects, as ImageViewer now allows you to do, you’ll
encounter two categories of transfer operations. In a local transfer, the drag source and drop
target (and the data transferred) reside in a single JVM instance, while a remote transfer
involves moving data from one JVM instance to a different one.

The DataFlavor used by ImageViewer has a representation class of JLabel, and its MIME type
defaults to application/x-java-serialized-object. As mentioned earlier, using that MIME type
always results in the drop target receiving a copy of the original object instead of a reference
to it, even in a local transfer. However, it’s sometimes desirable in local transfers to pass
a reference to the original data instead of a copy. For example, you might want to do so if the
data can’t be serialized or if you want to improve the performance of local transfers, since seri-
alization can be relatively slow. To illustrate how to pass object references, you’ll now see how
to modify ImageViewer to do so when a local transfer takes place.

Introducing Local Object Data Flavors
To perform reference transfers, you must define a DataFlavor that has a representation class
corresponding to the type of object to be transferred, which in this case is JLabel. In addition,
the flavor’s MIME type should be set to the javaJVMLocalObjectMimeType string constant
defined in DataFlavor. However, it may not be immediately obvious how to create a flavor that
fulfills these two requirements.

You saw earlier that DataFlavor provides two types of constructors: one that allows you to
specify the flavor’s MIME type and another that allows you to identify its representation class.
In this case, you want to specify both items, but there doesn’t appear to be a constructor that
allows you to do so. In addition, there are no mutator methods for either the MIME type or the
representation class, so it’s not possible to modify those values after construction.

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY 433

In fact, it’s possible to specify both values using the DataFlavor constructor that accepts a
MIME type String. You can do this by specifying the representation class as a parameter that’s
appended to the MIME type, as follows:

public class ImageViewer extends JPanel {

public final static DataFlavor LABEL_FLAVOR =
new DataFlavor(JLabel.class, "Label Instances");

public final static DataFlavor LOCAL_LABEL_FLAVOR = new DataFlavor(
DataFlavor.javaJVMLocalObjectMimeType +
"; class=javax.swing.JLabel", "Local Label");

The LOCAL_LABEL_FLAVOR will be created with a MIME type of application/x-java-jvm-
local-objectref (the value stored in javaJVMLocalObjectMimeType), a representation class of
JLabel, and a human-readable name of “Local Label.”

Since this new DataFlavor will be used with LabelSelection to transfer JLabel references,
it’s necessary to update LabelSelection appropriately. In addition to adding LOCAL_LABEL_FLAVOR
to the list of flavors supported by LabelSelection, you must create a block of code in
getTransferData(), as shown in Listing 9-8.

Listing 9-8. Supporting the Local Label Flavor

class LabelSelection implements Transferable {

private DataFlavor[] flavors = {LABEL_FLAVOR, LOCAL_LABEL_FLAVOR};

protected JLabel label;

public LabelSelection(JLabel lbl) {
label = lbl;

}

public DataFlavor[] getTransferDataFlavors() {
return flavors;

}

public boolean isDataFlavorSupported(DataFlavor flavor) {
for (int i = 0; i < flavors.length; i++) {
if (flavors[i].equals(flavor)) return true;

}
return false;

}

public Object getTransferData(DataFlavor flavor) throws
UnsupportedFlavorException, IOException {

if (flavor.equals(LABEL_FLAVOR)) {
return label;

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY434

}
else if (flavor.equals(LOCAL_LABEL_FLAVOR)) {
return label;

}
throw new UnsupportedFlavorException(flavor);

}

}

It may seem strange that the code in getTransferData() is the same for LABEL_FLAVOR
and LOCAL_LABEL_FLAVOR. After all, LABEL_FLAVOR is used to retrieve a serialized copy of the
object, while LOCAL_LABEL_FLAVOR is intended to provide a reference to the original object.
The reason that this code will work as expected is that Java’s drag-and-drop facility treats
the application/x-java-serialized-object MIME type used by LABEL_FLAVOR as a special case.
When data is retrieved using that type, the drag-and-drop facility ensures that a serialized copy
of the object is returned, even in a local transfer. In other words, if you use application/x-java-
serialized-object, you always get a copy of the data and never a reference to the original
when calling getTransferData(). In contrast, when other MIME types are used (for example,
LOCAL_LABEL_FLAVOR), no special processing occurs, and getTransferData() is allowed to
return a reference to the original object.

Handling the Reference Transfer
Now that I’ve defined a DataFlavor for transferring object references and added support for it to
the Transferable implementation, it’s easy to modify ImageViewer to support reference transfers.
All that’s needed is a change to the drop() method so that it uses the new LOCAL_LABEL_FLAVOR
when possible (see Listing 9-9).

Listing 9-9. Reference Transfer Support

public void drop(DropTargetDropEvent event) {
if (event.isDataFlavorSupported(DataFlavor.javaFileListFlavor)) {
try {
event.acceptDrop(DnDConstants.ACTION_COPY);
Transferable t = event.getTransferable();
java.util.List list = (java.util.List)

(t.getTransferData(DataFlavor.javaFileListFlavor));
java.util.Iterator i = list.iterator();
while (i.hasNext()) {
JLabel label = getLabelFromFile((File)(i.next()));
addNewComponent(label, event.getLocation());

}
event.dropComplete(true);

} catch (Exception e) {
event.dropComplete(false);

}
} else if (event.isDataFlavorSupported(LABEL_FLAVOR)) {
try {

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY 435

event.acceptDrop(DnDConstants.ACTION_MOVE);
Transferable t = event.getTransferable();
boolean doLocal = (event.isLocalTransfer() &&

(t.isDataFlavorSupported(LOCAL_LABEL_FLAVOR)));
DataFlavor flavor = (doLocal ? LOCAL_LABEL_FLAVOR : LABEL_FLAVOR);
JLabel label = (JLabel)(t.getTransferData(flavor));
addNewComponent(label, event.getLocation());
event.dropComplete(true);

} catch (Exception e) {
event.dropComplete(false);

}
}

}

You’ve now made several changes to ImageViewer that should allow it to correctly process
reference transfers. However, if you run the application and try to drag and drop JLabel
instances within a single ImageViewer application, you may be surprised by the results. Instead
of moving to the drop location, the labels disappear from the panel when they’re dropped.

You may recall that the DropTargetListener’s drop() method is called when the drop
occurs, and that method adds the label that’s dropped to the ImageViewer container. Once
drop() has executed, the DragSourceListener’s dragDropEnd() method is called to allow the
drag source to remove the original data, as follows:

public void dragDropEnd(DragSourceDropEvent event) {
if ((event.getDropSuccess()) &&

(event.getDropAction() ==
DnDConstants.ACTION_MOVE)) {

remove(draggedComponent);
repaint();

}
draggedComponent = null;

}

In this case, the drop target adds the dropped label to its new container, and the drag
source removes it from its old container. In a local transfer using ImageViewer, the “old” and
“new” containers are actually the same object, but that fact isn’t relevant to the problem. What
is important, however, is the order in which the drag source and drop target processing takes
place.

Since drop() is called before dragDropEnd(), the component is added to its new container
before being removed from the old one. When it’s added, logic in the java.awt.Container class
causes the label to be removed from its old container, which is done to ensure that a Component
can only ever reside within a single parent container at any given time. After drop() completes,
dragDropEnd() is called and, being unaware that the label was already removed from its old
container, proceeds to remove the component from its container. The result of this second
removal is the effective deletion of the label, since no more references to it exist.

It might seem that one way to address this problem is to have the drag source determine
the type of transfer (local or remote) and handle the drop differently for each type.

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY436

For example, the drag source could be designed so that it doesn’t remove the JLabel from its
parent container when a local transfer takes place. Unfortunately, the DragSourceDropEvent
object passed to dragDropEnd() provides just two items of information: the type of operation
selected by the drop target and an indication of the success or failure of the transfer. There-
fore, a drag source can’t distinguish local transfers from remote transfers.

On the other hand, the drop target can distinguish between local and remote transfers,
and that capability provides a solution to this problem. Since the drag source removes only
the label from its old container when a move occurs, you can address the problem by chang-
ing the drop target so that it selects an operation other than move.

Performing Link/Reference Operations
It has been mentioned that Java’s drag-and-drop support defines a link or reference operation
in addition to move and copy. However, the purpose of the link/reference operation may not
be obvious, since there’s no consistent meaning associated with the terms link or reference.
Although move and copy mean the same thing on all platforms, Windows may define a refer-
ence operation that’s completely different from the Solaris reference operation.

Since the meaning of the reference operation is vague, you shouldn’t use it to drag and
drop data between Java and native applications; however, when transferring data between
Java applications, the link/reference operation has been assigned a specific meaning. In the
context of a local transfer, the reference operation is used to transfer a reference to some
object, just as ImageViewer is now capable of doing. Similarly, when you’re performing remote
transfers between Java applications, the data that’s transferred should be some representation
of the original object but not a copy of it. For example, you might pass a reference to a remote
object defined using Java’s Remote Method Invocation (RMI) facilities if the data that’s being
dragged represents some remote resource.

Given this definition of the reference operation, you can make a small change to ImageViewer
that accomplishes two things. First, it correctly identifies a local transfer within ImageViewer as
a reference operation instead of a move. Second, it prevents the drag source from incorrectly
deleting the component that’s dragged in a local transfer, as shown in Listing 9-10.

Listing 9-10. Handling Local Transfers

public void drop(DropTargetDropEvent event) {
if (event.isDataFlavorSupported(DataFlavor.javaFileListFlavor)) {
try {
event.acceptDrop(DnDConstants.ACTION_COPY);
Transferable t = event.getTransferable();
java.util.List list = (java.util.List)

(t.getTransferData(DataFlavor.javaFileListFlavor));
java.util.Iterator i = list.iterator();
while (i.hasNext()) {
JLabel label = getLabelFromFile((File)(i.next()));
addNewComponent(label, event.getLocation());

}

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY 437

event.dropComplete(true);
} catch (Exception e) {
event.dropComplete(false);

}
} else if (event.isDataFlavorSupported(LABEL_FLAVOR)) {
try {
int operation = (event.isLocalTransfer()

? DnDConstants.ACTION_REFERENCE
: DnDConstants.ACTION_MOVE);

event.acceptDrop(operation);
Transferable t = event.getTransferable();
boolean doLocal = (event.isLocalTransfer() &&

(t.isDataFlavorSupported(LOCAL_LABEL_FLAVOR)));
DataFlavor flavor = (doLocal ? LOCAL_LABEL_FLAVOR : LABEL_FLAVOR);
JLabel label = (JLabel)(t.getTransferData(flavor));
addNewComponent(label, event.getLocation());
event.dropComplete(true);

} catch (Exception e) {
event.dropComplete(false);

}
}

}

Local transfers have other implications that you must consider as well, including how to
support the copy operation. That operation is easy to support in a remote transfer because the
drop target always receives a copy of the data, but for local transfers, you need some way to
create a copy of the data that’s dropped. Some classes simplify this for you by overriding the
clone() method defined in java.lang.Object, but many (including JLabel) don’t.

Transferring Between Java and Native
Applications
You’ve already seen that it’s possible to drop file selections made from a native application
into a Java application. Those selections are represented by a Transferable that returns an
instance of java.util.List, and that list contains java.io.File objects that identify the files
selected. In reality, of course, the native platform doesn’t use any Java classes when it allows
users to make file selections. However, Java’s drag-and-drop facility automatically converts the
native type (for example, CF_HDROP on Windows) into a form that your Java application can use
easily, just as the clipboard facility does with text data.

In some cases, you may want to transfer data between a Java application and a native
application in a format that isn’t converted automatically (for example, image data). However,
for your application to perform some sort of processing of data dropped from a native appli-
cation, it usually must convert the information into a more convenient format. For example,
if Device Independent Bitmap (DIB) data is dragged from a native Windows application and
dropped onto your Java program, you’ll probably want to convert the information to a more

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY438

useable format such as an instance of java.awt.Image. Similarly, when dragging data from a
Java application and dropping onto a native application, it’s necessary to provide the infor-
mation in a format that the native program can process (for example, DIB). In the previous
chapter, an application was created that could convert pixel data from an instance of Image
into a JPEG-compatible byte string using a codec that’s provided with the Java 2D API.

Once you’re able to perform data conversions, you must complete one other task before
you can drag and drop that type of data between Java and native applications. Specifically, you
must define the mapping between the MIME type you’ll use and the corresponding platform-
specific data type; you define the mapping by adding an entry to the flavormap.properties
file. That file is located in the /jre/lib/ subdirectory of your JDK/JRE installation.

If you edit the file, you’ll see entries for some of the data types that can already be trans-
ferred between Java and native applications, such as file selections (HDROP on Windows) and
text. The format for entries in flavormap.properties is as follows:

NATIVE=MIME Type

NATIVE is the name of the native data type you intend to use (for example, HDROP), and
MIME Type is the MIME type that a compatible DataFlavor encapsulates. For example, to add
an entry for DIB data, you could specify the following entry:

DIB=image/x-win-bmp; class=java.io.InputStream

With this entry added to the file, you’ll be able to drag and drop DIB information between
Java and non-Java applications. When you drop DIB information onto a Java application, it’s
automatically wrapped in a Transferable that returns an InputStream, and you can use that
stream to read the raw DIB data. To support the dragging of DIB data from a Java application
to a Windows program, you must first define a DataFlavor that uses the previous MIME type,
as in the following example:

DataFlavor DIBFlavor = new DataFlavor("image/x-win-bmp", "DIB Data");

Note that it’s not necessary to identify the representation class as InputStream, since the
DataFlavor constructor used here selects that value by default.

The next step is to create a Transferable that supports this flavor by returning an
InputStream that produces a sequence of bytes conforming to the DIB format. Converting
data between the DIB and Java image formats is a nontrivial exercise and is beyond the scope
of this book.

The FlavorMap interface in java.awt.datatransfer defines a mapping between native data
types and MIME types. A default map is created using the entries in flavormap.properties, and
that map is accessible through the SystemFlavorMap class. When performing drag-and-drop
operations, you can specify the map that should be used to translate data types, but if you
don’t do so, the default map is used instead.

When you drag Transferable data from a Java application and drop it onto a native pro-
gram, the MIME types that the Transferable supports are extracted from its DataFlavor list.
For each MIME type that has a matching entry in the FlavorMap, a corresponding native type

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY 439

is identified to the native application, which uses that information to process the data that’s
dropped.

A similar conversion takes place when you drag data from a native application and drop it
onto a Java program. In that case, Java’s drag-and-drop facility wraps the data from the native
application in a Transferable and provides a DataFlavor for each native type corresponding to
a MIME type in the FlavorMap.

Transferring Text Data
In the previous chapter on cut-and-paste operations, you saw that text information can be
transferred with minimal effort using the clipboard facility and the StringSelection class that
implements Transferable. Unfortunately, dragging and dropping text information is some-
what more complex.

Before exploring the issues involved in the transfer of text information, let’s briefly
review StringSelection. You may recall that it encapsulates a String and is able to return
the text in one of two flavors, each of which is represented by a constant in DataFlavor. The
stringFlavor constant has a representation class of java.lang.String, has a MIME type of
application/x-java-serialized-object, and represents a serialized String object. That flavor
can be used to transfer text between only Java applications since a serialized Java object isn’t
meaningful to a native application.

In contrast, the plainTextFlavor was specifically intended to provide the ability to
transfer text data between Java and native applications and has a representation class of
java.io.InputStream and a MIME type of text/plain. In other words, passing this flavor to a
StringSelection’s getTransferData() method should return an InputStream that produces
a stream of text data.

Transferring Text Between Java and Native Applications
Transferring text data between Java and native applications is more complicated than Java-to-
Java transfers, mostly because no single character set is used on all platforms, or even by all
applications on a single platform. For example, Java applications maintain text information
using Unicode, but native applications can and frequently do use other character sets, such as
ASCII and ISO 8859-1. Therefore, it’s often necessary to perform conversions when transfer-
ring text data between Java and native applications.

In the previous chapter, you saw that it’s possible to transfer text data between Java and
native applications using the clipboard (in other words, cutting and pasting), and it wasn’t
necessary to perform any sort of character set conversions. In reality, they’re performed but
are handled automatically and transparently by Java’s clipboard facility. In contrast, you’re
responsible for performing such conversions when transferring text using drag-and-drop
operations.

Transferring Text from Java to Native Applications
If you wrap text data in a StringSelection and drag it over a native application, the application
will probably not accept a drop of that data. That’s because most applications can’t process
either of the two flavors supported by StringSelection (in other words, stringFlavor and

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY440

plainTextFlavor). It shouldn’t be surprising that native applications can’t accept stringFlavor
data, since that flavor represents an instance of a serialized Java object. However, you might
expect that plainTextFlavor could be used since it has a MIME type of text/plain.

To understand why plainTextFlavor can’t be used in a Java-to-native transfer of text
information, it’s necessary to review the definition of that flavor, which is as follows:

text/plain; class=java.io.InputStream; charset=unicode

As you can see, plainTextFlavor represents an InputStream that returns a sequence of
bytes representing Unicode character data. Unfortunately, this prevents it from being used by
programs that can’t process Unicode data and is the reason why most native applications
won’t allow you to drop text that’s encapsulated in an instance of StringSelection.

Note that because it fails when used with StringSelection and since it can’t be used to
transfer data from Java to native applications, the plainTextFlavor constant defined in
DataFlavor is deprecated in Java 1.3, so you should avoid using it.

Transferring Text from Native Applications to Java
As mentioned earlier, dragging data from a native program and dropping it onto a Java appli-
cation causes the data to be wrapped in a generic Transferable object. That object will also
contain a list of DataFlavor instances that were created by mapping native types to MIME
types using the entries in a FlavorMap.

In the case of text data transfers, the DataFlavor will normally have a MIME type of
text/plain and includes a parameter that identifies the character set associated with the data.
For example:

text/plain; charset=ascii
text/plain; charset=iso-8859-1

As these definitions imply, the InputStream provided by the Transferable will produce
a stream of bytes representing the text information as it was stored by the native application.
For example, in the case of the first definition listed previously, the InputStream would return
a sequence of ASCII characters. Therefore, if your application needs to process the informa-
tion as an instance of String, the data must first be converted from ASCII to Unicode.

In Java 1.3, a method was added to DataFlavor that makes it easy for you to perform char-
acter set conversions. The getReaderForText() method requires that you pass a Transferable
instance as a parameter, and it returns an appropriate subclass of java.io.Reader that will
convert the native character data into Unicode. If you’re using an earlier version of Java, you’ll
need to implement functionality similar to that found in getReaderForText(), but it’s not diffi-
cult to do so; Listing 9-11 shows an example of how to accomplish this.

Listing 9-11. Implementing getReaderForText()

public static Reader getReaderForText(Transferable trans)
throws IOException, UnsupportedFlavorException {

DataFlavor[] flavors = trans.getTransferDataFlavors();

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY 441

for (int i = 0; i < flavors.length; i++) {
if ((!(flavors[i].isMimeTypeEqual("text/plain")))

|| (!(flavors[i].getRepresentationClass()
.equals(java.io.InputStream.class)))) {

continue;
}
InputStream stream =
(InputStream) (trans.getTransferData(flavors[i]));

String encoding = flavors[i].getParameter("charset");
return new InputStreamReader(stream, encoding);

}
throw new IllegalArgumentException("No text/plain flavor found " +

"with an InputStream representation class");
}

The getReaderForText() method shown in Listing 9-11 locates a DataFlavor with a MIME
type of text/plain and a representation class of InputStream. It then retrieves a reference to the
InputStream that can be used to provide the data and extracts the character set (also called a
character encoding) name from the DataFlavor. Using the InputStream and character set name,
a new instance of InputStreamReader is created that can be used to convert the text data from
its native representation into Unicode characters.

When handling text data that was dropped from a native application, you can use
getReaderForText() to convert the data into a String using code similar to that shown in
Listing 9-12.

Listing 9-12. Using getReaderForText()

public void drop(DropTargetDropEvent event) {
StringBuffer result = new StringBuffer();
event.acceptDrop(DnDConstants.ACTION_COPY);
DataFlavor[] flavors = event.getCurrentDataFlavors();
Transferable t = event.getTransferable();
try {
Reader r = getReaderForText(t);
int nextChar = r.read();
while (nextChar != -1) {
result.append((char)nextChar);
nextChar = r.read();

}
event.dropComplete(true);

} catch (Exception e) {
event.dropComplete(false);

}
System.out.println("String ‘" + result + "‘ was dropped");

}

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY442

Creating a New Transferable for Text Data
As you’ve seen, StringSelection has some significant limitations when used in drag-and-
drop operations. Specifically, it often can’t be used to transfer text data from Java to non-Java
applications because it can provide the data only as a stream of Unicode characters. In addi-
tion, transfers from one Java application to another fail if the recipient attempts to use
plainTextFlavor, which StringSelection claims to support.

The easiest way to address these problems is to create a new Transferable that provides
the ability to transfer text data but that doesn’t have the limitations of StringSelection. The
TextSelection class shown in Listing 9-13 fulfills those requirements.

Listing 9-13. TextSelection Source Code

import java.awt.datatransfer.*;
import java.io.*;

public class TextSelection implements Transferable {

protected String text;

public final static DataFlavor UNICODE_FLAVOR = new DataFlavor(
"text/plain; charset=unicode; " +
"class=java.io.InputStream", "Unicode Text");

public final static DataFlavor LATIN1_FLAVOR = new DataFlavor(
"text/plain; charset=iso-8859-1; " +
"class=java.io.InputStream", "Latin-1 Text");

public final static DataFlavor ASCII_FLAVOR = new DataFlavor(
"text/plain; charset=ascii; " +
"class=java.io.InputStream", "ASCII Text");

public static DataFlavor[] SUPPORTED_FLAVORS = {DataFlavor.stringFlavor,
UNICODE_FLAVOR, LATIN1_FLAVOR, ASCII_FLAVOR};

public TextSelection(String selection) {
text = selection;

}

public DataFlavor[] getTransferDataFlavors() {
return SUPPORTED_FLAVORS;

}

public boolean isDataFlavorSupported(DataFlavor flavor) {
for (int i = 0; i < SUPPORTED_FLAVORS.length; i++) {
if (SUPPORTED_FLAVORS[i].equals(flavor)) return true;

}

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY 443

return false;
}

public Object getTransferData(DataFlavor flavor) throws
IOException, UnsupportedFlavorException {

if (flavor.equals(DataFlavor.stringFlavor)) {
return text;

}
else if ((flavor.isMimeTypeEqual("text/plain")) &&

(flavor.getRepresentationClass().equals(
java.io.InputStream.class))) try {

String encoding = flavor.getParameter("charset");
if ((encoding != null) && (encoding.length() > 0)) {
return new ByteArrayInputStream(
text.getBytes(encoding));

}
return new ByteArrayInputStream(text.getBytes());

} catch (Exception e) {};
throw new UnsupportedFlavorException(flavor);

}

}

You can use this class when you want to drag text from a Java application to a native
application; to do so, simply encapsulate the String in an instance of TextSelection by pass-
ing it to the constructor as follows:

String transferText;
.
.
.
TextSelection ts = new TextSelection(transferText);

In other words, you can use this class in the same way you’d use Java’s StringSelection,
but it doesn’t have the limitations that exist with that class.

The only part of this class that might require explanation is the getTransferData()
method, specifically the code block that returns a ByteArrayInputStream. However, it’s easy to
understand when you know that getBytes() provides functionality that’s essentially the oppo-
site of what StringReader was used for earlier. In other words, while StringReader converts
native character data to Unicode, getBytes() can be used to convert Unicode text into some
other format, such as ASCII or ISO-8859-1.

Depending upon the platform and applications you’re using, you may find it necessary
to include additional DataFlavor definitions in TextSelection for it to function properly.

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY444

Summary
In this chapter, I covered issues related to Java’s drag-and-drop support, including the
following:

• The fundamental concepts associated with drag-and-drop operations

• How to add drag support to components so they can be used to initiate drag-and-drop
operations

• How to add drop support to components so they can be used to terminate drag-and-
drop operations

• Issues related to different types of transfers (for example, those between Java and native
applications, as opposed to a transfer within a single JVM)

• Issues related to the transfer of text data between Java and native applications

CHAPTER 9 ■ ADDING DRAG-AND-DROP FUNCTIONALITY 445

Printing

Java matured very quickly in most respects after it was first introduced, but for a long time
printing was one of Java’s weakest points. In fact, Java 1.0 didn’t offer any support for printing at
all. Java 1.1 included a class called PrintJob in the java.awt package, but the printing capabili-
ties supported by that class were somewhat crude and unreliable. When Java 1.2 (or “Java 2”)
was introduced, it included a completely separate mechanism (called the Java 2D printing API)
for printing designed around PrinterJob and other classes and interfaces defined in the new
java.awt.print package. This rendered the PrintJob-based printing mechanism (also known
as AWT printing) largely obsolete, although PrintJob has never been deprecated and at least of
this writing is still technically a supported class.

Additional changes were made in Java 1.3 when PrintJob’s capabilities expanded to allow
the setting of job and page attributes using the appropriately named JobAttributes and
PageAttributes classes within the java.awt package. With the release of Java 1.3, the printing
capabilities were reasonably robust, but some problems still existed aside from the confusion
associated with having two completely separate printing facilities. For one thing, both facili-
ties used an implementation of the java.awt.Graphics class for rendering the content to be
printed, which meant anything that needed to be printed had to be rendered as a graphical
image. In addition, the newer and generally more robust PrinterJob facility provided only
limited support for setting attributes associated with the job. Finally, neither facility provided
a way to programmatically select the target printer.

The biggest change in Java’s printing capabilities to date came with the release of Java 1.4,
when the Java print service API was introduced. This third implementation of printing sup-
port in Java addressed the limitations that were just described using an implementation of the
PrintService and DocPrintJob interfaces defined in the javax.print package. Because this
new API represents a superset of the functionality defined by the two older printing facilities,
it’s the one you should normally use and will be the focus of this chapter.

At a high level, the steps involved in using the Java print service API are straightforward:

1. Locate print services (printers), optionally limiting the list of those returned to the
ones that support the capabilities your application needs. Print services are repre-
sented as instances of PrintService implementations.

2. Create a print job by calling the createPrintJob() method defined in the PrintService
interface. The print job is represented by an instance of DocPrintJob.

447

C H A P T E R 1 0

■ ■ ■

CHAPTER 10 ■ PRINTING448

3. Create an implementation of the Doc interface that describes the data you want to
print. You also have the option of creating an instance of PrintRequestAttributeSet
that describes the printing options you want.

4. Initiate printing by calling the print() method defined in the DocPrintJob interface,
specifying the Doc you created in the previous step and the PrintRequestAttributeSet
or a null value.

You’ll now examine each of these steps and see how to achieve them.

■Note Within this chapter I’ll use the terms printer and print service interchangeably because in most
cases a print service is nothing more than a representation of a physical printer. The more generic print
service reflects that the output can theoretically be sent to something other than a printer. For example, a
print service might not print the output at all but instead write it to a disk file. In other words, all printers are
represented by a print service, but not every print service necessarily corresponds to a physical printer. In
practice, though, it’s likely you’ll almost always send your content to a printer, which is why I’ll sometimes
use the simpler printer term instead of the more technically accurate print service.

Locating Print Services
You locate a printer using one of three static methods defined in the PrintServiceLookup class.
The simplest of the three methods is lookupDefaultPrintService(), and as its name implies, it
returns a reference to the service that represents your default printer:

PrintService service = PrintServiceLookup.lookupDefaultPrintService();

Although this method is simple and convenient, using it to select which printer to send
output to means you’re implicitly assuming that the user’s default printer will always be able
to support the capabilities your application needs in order to be able to print its output cor-
rectly. In practice, you’ll typically want to select only those printers that are able to handle
the type of data you want to print and that support the features your application needs,
such as color or two-sided printing. To retrieve the list of all defined printers or to retrieve
a list that’s limited to printers supporting certain capabilities, you’ll want to use one of two
other static methods defined in PrintServiceLookup: either lookupPrintServices() or
lookupMultiDocPrintServices().

The lookupPrintServices() method accepts two parameters: an instance of DocFlavor and
an instance of some implementation of the AttributeSet interface. As you’ll see shortly, you can
use both of these to limit the list of printers returned by the method, but lookupPrintServices()
allows you to specify a null value for either or both of the two parameters. By specifying a null
value for both parameters, you’re effectively requesting that the method return a PrintService
instance for every printer that’s available. At this point, you haven’t really examined the meth-
ods defined in PrintService, but one of them is the getName() method, which returns a String

representing the name of the printer. You can display a list of all printers available on your sys-
tem by compiling and running code like this:

PrintService[] services = PrintServiceLookup.lookupPrintServices(null, null);
for (int i = 0; i < services.length; i++) {

System.out.println(services[i].getName());
}

For example, if you have access to printers named Alpha, Beta, and Gamma that are
attached to a server named PrintServer, running the previous code produces this output:

\\PrintServer\Alpha
\\PrintServer\Beta
\\PrintServer\Gamma

Now let’s examine the parameters you can pass to the lookupPrintServices() method and
see how they allow you to limit the printers returned to those with only certain capabilities.

DocFlavor
The first parameter you can specify on a call to lookupPrintServices() is an instance of the
DocFlavor class, which describes the type of data to be printed and how that data is stored. In
most cases, it won’t be necessary for you to create a new instance of DocFlavor because Java
includes many predefined instances, allowing you to simply pass a reference to one of those
instances to lookupPrintServices(). However, let’s look at the DocFlavor constructor and
methods to understand how an instance is used by a print service.

The two arguments required when creating an instance of DocFlavor are both String
instances, with one representing a MIME type and the other being the name of a representa-
tion class. As you might expect from the discussion in Chapter 8, the MIME type is used by
a DocFlavor to describe the type of data to be printed. For example, if you’re printing a GIF
file, you’ll need to use a DocFlavor that has a MIME type of image/gif. Similarly, you might
use a MIME type of text/plain if you’re printing text information or text/html for an HTML
document.

Representation Class
While the MIME type describes the type of data to be printed, the representation class describes
how that data is to be made available to the print service. DocFlavor includes seven static inner
classes, with each one corresponding to a representation class and each one corresponding to a
different way of encapsulating the data that’s to be printed.

Table 10-1 shows the names of the static inner classes defined within DocFlavor and their
corresponding representation classes. Note that aside from SERVICE_FORMATTED (which I’ll
discuss in detail later), each one is described as being associated with either “binary” or “char-
acter” data. In reality, the distinction is somewhat artificial because character data is really
just a specialized form of binary data, in this case referring to binary data that contains only
human-readable characters and perhaps some formatting characters such as tabs, carriage

CHAPTER 10 ■ PRINTING 449

returns, and so on. However, the distinction is important because it reflects that character-
oriented representation classes aren’t appropriate for storing binary data that’s to be printed.
For example, you wouldn’t store a representation of a GIF image in a character array or a
String, and you wouldn’t make it accessible through a Reader implementation. On the other
hand, since “character” data is just a specialized type of binary data, it’s entirely appropriate to
store text information in a byte array or make it accessible through an InputStream or via a URL.

Table 10-1. DocFlavor’s Predefined Representation Classes

Inner Class Name Representation Class Data Type

BYTE_ARRAY [B (byte[]) Binary

CHAR_ARRAY [C (char[]) Character

INPUT_STREAM java.io.InputStream Binary

READER java.io.Reader Character

SERVICE_FORMATTED java.awt.print.Pageable or java.awt.print.Printable Other

STRING java.lang.String Character

URL java.net.URL Binary

Each of these static inner classes defined within DocFlavor corresponds to a particular
representation class, but remember that I said each DocFlavor instance encapsulates both
a representation class and a MIME type that identifies the type of data to be printed. To
access an instance of DocFlavor that corresponds to both the representation class and the
MIME type of the content you want to print, you’ll need to reference an inner class within
one of the inner classes listed in Table 10-1. For example, let’s suppose you want to print a
GIF file that’s available on the web through a URL. In this case, the obvious choice for the
representation class is java.net.URL, which is associated with the static class named URL
that’s defined within DocFlavor. If you browse the documentation for that inner class, you’ll
find that it in turn defines a number of static inner classes, each one corresponding to a
particular MIME type representing data types commonly supported by printers. Table 10-2
shows the inner classes defined within DocFlavor.URL and their corresponding MIME types.

Table 10-2. The DocFlavor.URL Inner Classes

Static Inner Class MIME Type

AUTOSENSE application/octet-stream

GIF image/gif

JPEG image/jpeg

PCL application/vnd-hp.PCL

PDF application/pdf

PNG image/png

POSTSCRIPT application/postscript

TEXT_HTML_HOST text/html

CHAPTER 10 ■ PRINTING450

Static Inner Class MIME Type

TEXT_HTML_US_ASCII text/html;charset=us-ascii

TEXT_HTML_UTF_16 text/html;charset=utf-16

TEXT_HTML_UTF_16BE text/html;charset=utf-16be

TEXT_HTML_UTF_16LE text/html;charset=utf-16le

TEXT_HTML_UTF_8 text/html;charset=utf-8

TEXT_PLAIN_HOST text/plain

TEXT_PLAIN_US_ASCII text/plain;charset=us-ascii

TEXT_PLAIN_UTF_16 text/plain;charset=utf-16

TEXT_PLAIN_UTF_16BE text/plain;charset=utf-16be

TEXT_PLAIN_UTF_16LE text/plain;charset=utf-16le

TEXT_PLAIN_UTF_8 text/plain;charset=utf-8

Since you’ll print a GIF image that’s available through a URL, you can access an appropri-
ate DocFlavor instance using this code:

DocFlavor flavor = DocFlavor.URL.GIF;

This code creates a reference to the static instance of DocFlavor that has a representation
class of java.net.URL and a MIME type of image/gif.

The classes listed in Table 10-2 are defined within the DocFlavor.URL class, but what
about the other six inner classes defined within DocFlavor? Again, I’ll defer a discussion of
SERVICE_FORMATTED until later, but as for the classes associated with binary data types, all
three (BYTE_ARRAY, INPUT_STREAM, and URL) include inner classes with the names shown in
Table 10-2. So, for example, if you had loaded the GIF data into a byte array, you might
instead choose to use code like this:

DocFlavor flavor = DocFlavor.BYTE_ARRAY.GIF;

Just as the three DocFlavor inner classes associated with binary data types include their
own inner classes, the three associated with character data types include a different set of
inner classes, as shown in Table 10-3.

Table 10-3. CHAR_ARRAY, READER, and STRING

Static Inner Class MIME Type

TEXT_HTML text/html;charset=utf-16

TEXT_PLAIN text/plain;charset=utf-16

So, for example, if you wanted to print plain-text data that’s stored in an instance of
String, you could use code like the following:

DocFlavor flavor = DocFlavor.STRING.TEXT_PLAIN;

CHAPTER 10 ■ PRINTING 451

Similarly, if the text data represented an HTML document and you wanted to have the
data printed as it would appear within a web browser, you could use the following:

DocFlavor flavor = DocFlavor.STRING.TEXT_HTML;

Choosing the Right Printer
Remember that the discussion of DocFlavor began with a desire to make sure the printer you
use actually supports the type of data that’s to be printed and the delivery mechanism (repre-
sentation class) you intend to use. This might seem like an unnecessary step, but in reality you
may be surprised at which document types a given printer supports. For example, the text-
oriented types just described might seem as though they’d be the simplest ones to support,
so if your application is printing plain or HTML text, you might be tempted to simply select
the first available print service and send the output to that printer. As it turns out, though,
many printers don’t support the text-based representation classes, and if you attempt to send
output to a printer that doesn’t support the DocFlavor you select, an exception will be thrown
like the following:

Exception in thread "main" sun.print.PrintJobFlavorException: invalid flavor
at sun.print.Win32PrintJob.print(Win32PrintJob.java:290)
at PrintTest.main(PrintTest.java:11)

Now that you’ve seen how to obtain a reference to a DocFlavor and I’ve discussed the
importance of selecting a printer that supports the selected flavor, I’ll show how you can use
it to make sure you use a printer that supports the flavor you need. As I discussed earlier, the
lookupPrintServices() allows you to specify a DocFlavor as its first argument, and if you spec-
ify a non-null value, the method will return only the PrintService instances that correspond
to printers that support the specified DocFlavor. For example, the following code will retrieve
an array that identifies all printers on your system that can print GIF images that are refer-
enced via a URL:

DocFlavor flavor = DocFlavor.URL.GIF;
PrintService[] services = PrintServiceLookup.lookupPrintServices(flavor, null);

Alternatively, if your application has already retrieved a reference to a PrintService
and you want to determine whether it supports a particular flavor, you can call the
isDocFlavorSupported() method. In the following code segment, a reference to the default
printer is obtained, and an error message will be displayed if it’s not able to print a GIF
image retrieved via a URL:

PrintService service = PrintServiceLookup.lookupDefaultPrintService();
DocFlavor flavor = DocFlavor.URL.GIF;
if (!service.isDocFlavorSupported(flavor)) {

System.err.println("The printer does not support the appropriate DocFlavor");
}

CHAPTER 10 ■ PRINTING452

AttributeSet
As you’ve now seen, a DocFlavor describes the data to be printed and can be used to ensure
that a PrintService supports the corresponding type of data. However, your application may
also need to select a printer based upon the features that the printer supports. For example, if
you’re printing a graph that uses different colors to convey information, you might want to see
if a given service supports color printing and, if not, either prevent the printer from being
used or render a representation of the graph that doesn’t rely on colors.

Characteristics such as the ability to print in color, to print on both sides of a page, or to
use different orientations (portrait or landscape) are referred to as a printer’s attributes, and the
javax.print.attribute package contains many classes and interfaces you can use to describe
those attributes. One of those interfaces is AttributeSet, which was mentioned earlier as the
second parameter that can be specified on a call to lookupPrintServices(). As you might
expect, an implementation of AttributeSet represents a collection of attributes, and specifying
a non-null value on the call to lookupPrintServices() will result in only print services being
returned that support those attributes. In other words, if you specify both a DocFlavor and an
AttributeSet on a call to lookupPrintServices(), the method will return only those printers
that support both the specified flavor and the appropriate attributes.

Attribute
Given that an AttributeSet is a collection of attributes, the obvious question is, how do
you go about specifying the attribute values that should make up that collection? The
javax.print.attribute package also includes an interface named Attribute, and as you’ll see
shortly, you create the collection of attributes by adding instances of Attribute to an AttributeSet
by calling the add() method. Reviewing the documentation for the Attribute interface reveals that
a large number of implementations are defined within the javax.print.attribute.standard pack-
age, and it’s those classes you’ll use. Before you see how that’s done, it’s helpful to review the other
interfaces in the javax.print.attribute package along with their implementations.

Attribute Roles
So far I’ve described attributes as capabilities of a print service, and while that’s largely true,
it’s really something of an oversimplification, at least in terms of how Java supports attributes.
For each different attribute, Java associates it with one or more “role,” and the attribute is valid
only in the context of the role(s) with which it’s assigned. In other words, various places within
the Java print service attributes are used, and not every attribute is valid within every context.

To better understand this, consider the OrientationRequested and ColorSupported imple-
mentations of Attribute that are defined within the javax.print.attribute.standard package.
The OrientationRequested attribute is one you can specify when creating a document to be
printed and allows you to specify the orientation (such as portrait or landscape) that should
be used when printing the document. In contrast, ColorSupported is an attribute that can be
returned when you call the getAttributes() method of the PrintService interface. In other
words, OrientationRequested is an attribute you use to pass information to the print service,
and ColorSupported is one that the print service uses to provide you with information about the
printer’s abilities. You can’t specify ColorSupported as an attribute when creating a document to

CHAPTER 10 ■ PRINTING 453

be printed because the printer’s ability to print in color isn’t something your application is able
to control.

Interfaces and Implementations
When you first look at the interfaces and classes defined in the javax.print.attribute
package, it may appear to present a confusing list of choices when it comes to the interfaces
and classes defined there. Aside from the Attribute and AttributeSet interfaces and the
HashAttributeSet class that implements AttributeSet, the javax.print.attribute package
has four sets of subinterfaces and classes, as shown in Table 10-4 and Figure 10-1.

Table 10-4. Interfaces and Classes Defined Within the javax.print.attribute Package

Attribute Subinterface AttributeSet Subinterface AttributeSet Subclass

DocAttribute DocAttributeSet HashDocAttributeSet

PrintJobAttribute PrintJobAttributeSet HashPrintJobAttributeSet

PrintRequestAttribute PrintRequestAttributeSet HashPrintRequestAttributeSet

PrintServiceAttribute PrintServiceAttributeSet HashPrintServiceAttributeSet

Figure 10-1. The class hierarchy of a portion of the javax.print.attribute package

So, why do you need all these various interfaces and implementations, particularly since
the more generalized Attribute, AttributeSet, and HashAttributeSet are provided? The
answer is that these specializations are defined to ensure that only the appropriate attributes
are used within the role(s) where they’re valid. For example, I mentioned that one place

CHAPTER 10 ■ PRINTING454

where you can use attributes is when creating a document that’s to be printed and that
some attributes such as ColorSupported aren’t valid within that context. When creating such a
document, you’ll use the DocAttributeSet interface (or more specifically, its HashDocAttributeSet
implementation), and the implementation will allow you to add only attributes that implement
the DocAttribute interface. The four different types of roles are as follows:

• Doc: Specified when creating a document that’s to be printed to describe how the
document should be printed

• PrintJob: Attributes returned from the print job to describe the state of the job

• PrintRequest: Attributes passed to the print job when a request is made to initiate
printing

• PrintService: Returned by a PrintService to describe the capabilities of the service

To see how this works, let’s create an instance of a DocAttributeSet and then attempt to
set both the OrientationRequested and ColorSupported attributes for that AttributeSet. The
HashDocAttributeSet defines a no-argument constructor, so you can create an instance easily
as follows:

DocAttributeSet attrs = new HashDocAttributeSet();

Now that you’ve created the AttributeSet, you can call its add() method and pass
to it instances of Attribute implementations. If you examine the documentation for
the OrientationRequested class, you’ll see it includes references to a number of static
OrientationRequest instances with each one corresponding to a document orientation such
as portrait or landscape. To specify the orientation you want, all you need to do is pass a ref-
erence to the appropriate static instance to the add() method as follows:

DocAttributeSet attrs = new HashDocAttributeSet();
attrs.add(OrientationRequested.PORTRAIT);

The ColorSupported class is slightly different but equally simple to use, and it defines two
static instances: one that indicates that color printing is supported and another that indicates
it’s not supported. You can attempt to add a ColorSupported attribute to the DocAttributeSet
with code like this:

DocAttributeSet attrs = new HashDocAttributeSet();
attrs.add(OrientationRequested.PORTRAIT);
attrs.add(ColorSupported.SUPPORTED);

As mentioned earlier, it’s not appropriate to specify whether to support color printing
because this isn’t something an application is allowed to control. In other words, the
ColorSupported attribute isn’t valid within the context of a set of document attributes, and
as a result, attempting to run the previous code will cause a ClassCastException to be thrown
when it attempts to add the ColorSupported attribute.

To understand how this works, remember that each AttributeSet subinterface (in this
case, DocAttributeSet) has a corresponding Attribute subinterface (DocAttribute) and an

CHAPTER 10 ■ PRINTING 455

implementation class (HashDocAttributeSet). When an attempt is made to add an attribute,
the implementation class tries to cast the Attribute parameter to the corresponding subinter-
face type, which in turn ensures that only attributes appropriate for that context can be added
successfully.

In this case, the add() method of HashDocAttributeSet is first called with an instance
of OrientationRequested, and it successfully casts that object to a DocAttribute, because as
Figure 10-2 shows, OrientationRequested implements that interface. In contrast, however,
passing an instance of ColorSupported fails because ColorSupported doesn’t implement
DocAttribute.

Figure 10-2. The class hierarchy of a portion of the javax.print.attribute package

As this example illustrates, the four different groups of interfaces and classes shown in
Table 10-4 ensure that only the appropriate attributes are used within the appropriate context.
Notice that a great deal of overlap occurs between roles and the various attributes, so many
of the attributes are associated with more than one role. For example, many of the attributes
implement both PrintJobAttribute and PrintRequestAttribute because many of the attrib-
utes that are maintained and provided to you by a print job correspond to attributes you can
specify when you request that printing be initiated. You can, for instance, both specify the job
name by adding it to a PrintRequestAttributeSet and retrieve the name of the job during
printing by retrieving it from a PrintJobAttributeSet. As a result, the JobName attribute class
implements both PrintRequestAttribute and PrintJobAttribute.

AttributeSet and HashAttributeSet
You’ve now seen why the four groups of subclasses exist, but what about the base AttributeSet
interface and the HashAttributeSet superclass? AttributeSet/HashAttributeSet is used in
situations where you can’t assume that only attributes associated with a single role will need
to be stored in a collection. Remember that earlier in the chapter I mentioned that the
lookupPrintServices() method allows you to specify an AttributeSet parameter that will
limit which print services are returned. On the surface it might appear that it’d be better to
require that an instance of PrintServiceAttributeSet be specified, but many of the attributes
you might want to specify don’t implement PrintServiceAttribute.

CHAPTER 10 ■ PRINTING456

Let’s assume you want the lookupPrintServices() method to retrieve only services that
support both color printing and landscape printing. Those attributes correspond to the
ColorSupported and OrientationRequested attributes, respectively, but notice that those two
attribute classes don’t share a common role: ColorSupported is a PrintServiceAttribute, and
OrientationRequested is associated with all three of the other roles (Doc, PrintRequest, and
PrintJob), as shown in Figure 10-2. What this means is that there’s no single role-specific
AttributeSet interface/class that can contain both a ColorSupported attribute and a Sides
attribute.

The way to create an AttributeSet that contains both an OrientationRequested and a
ColorSupported instance is to simply use an instance of the generic HashAttributeSet. Unlike
its subclasses, it doesn’t limit you to adding attributes associated with a particular role, so you
can successfully execute the following code:

AttributeSet attrs = new HashAttributeSet();
attrs.add(ColorSupported.SUPPORTED);
attrs.add(OrientationRequested.LANDSCAPE);
PrintService[] services = PrintServiceLookup.lookupPrintServices(null, attrs);

Printer Selection via User Interface
Up to this point, I’ve assumed that the printer to be used would be selected programmatically
by the application. In practice, however, it’s more common to simply display a dialog and
allow the user to select which printer to use when printing the output. Fortunately, Java makes
it easy to do just that by using the static printDialog() method in the ServiceUI class defined
within the javax.print package.

Aside from the location of the dialog to be displayed, the only parameter values that must
be specified on the call to printDialog() are these:

• An array of PrintService instances from which the user can choose.

• The default PrintService.

• An instance of PrintRequestAttributeSet. This is used to populate the dialog that’s
displayed, and it returns any changes that were made by the user before the dialog was
dismissed.

To illustrate how this works, you can use the following simple code segment to display a
print dialog:

PrintService[] services = PrintServiceLookup.lookupPrintServices(null, null);
PrintService svc = PrintServiceLookup.lookupDefaultPrintService();
PrintRequestAttributeSet attrs = new HashPrintRequestAttributeSet();
PrintService selection = ServiceUI.printDialog(

null, 100, 100, services, svc, null, attrs);

When run, the code produces a dialog like the one shown in Figure 10-3.

CHAPTER 10 ■ PRINTING 457

Figure 10-3. The printer dialog

As this code illustrates, the value returned from the printDialog() method is an instance
of PrintService that identifies which printer the user selected or null if the user canceled the
printer dialog. In addition, the PrintRequestAttributeSet is updated to reflect any changes
made by the user through the dialog, such as the number of copies to be printed.

By using the printDialog() method, you can allow the user to select which printer their
output will be sent to, providing the kind of functionality that users have come to expect from
professional applications.

Creating a Print Job
This is the simplest step involved in printing, because once you’ve obtained a reference to a
PrintService, all you need to do is call its createPrintJob() method like so:

PrintService service;
.
.
.
DocPrintJob job = service.createPrintJob();

As indicated in the code, the value returned from createPrintJob() is an instance of
DocPrintJob, an object that allows you to control and monitor the status of the printing opera-
tion. To initiate printing, you’ll call the DocPrintJob object’s print() method, but before you do
so you’ll need to define the document to be printed and optionally a PrintRequestAttributeSet.
You’ve already seen how to construct and populate an AttributeSet, so I won’t review that step;
instead, you’ll see how you go about defining the document to be printed.

CHAPTER 10 ■ PRINTING458

Defining the Document to Print
The next step in printing is to define the document that’s to be printed, which is done by creat-
ing an instance of an implementation of the Doc interface defined in the javax.print package.
Each instance of Doc has two mandatory attributes and an optional one:

• An Object that represents the data to be printed

• An instance of DocFlavor that describes the type of data to print

• An optional DocAttributeSet containing attributes to use when printing the document

Reviewing the documentation for the Doc interface reveals that the javax.print package
includes an implementation of the interface named SimpleDoc, which has a constructor that
takes three arguments that match the three attributes described previously. To see how to con-
struct an instance of SimpleDoc, let’s assume you want to print two copies of a GIF image that’s
stored at http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif.

All that’s needed to construct a SimpleDoc instance that describes the document to be
printed is to create a URL that points to the image, obtain a reference to the appropriate
DocFlavor, and pass those two objects to the SimpleDoc constructor as follows:

URL url = new URL(
"http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif");

DocFlavor flavor = DocFlavor.URL.GIF;
SimpleDoc doc = new SimpleDoc(url, flavor, null);

Initiating Printing
The final step involved in printing is to call the DocPrintJob’s print() method, passing
it the Doc object that describes the data to be printed and optionally an instance of
PrintRequestAttributeSet. For the sake of simplicity, I’ll assume the default printer sup-
ports the flavor and attributes you need, in which case you could use the following code to
print two copies of the GIF file referenced in the previous example:

PrintService service = PrintServiceLookup.lookupDefaultPrintService();
DocPrintJob job = service.createPrintJob();
URL url = new URL(

"http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif ");
DocFlavor flavor = DocFlavor.URL.GIF;
Doc doc = new SimpleDoc(url, flavor, null);
PrintRequestAttributeSet attrs = new HashPrintRequestAttributeSet();
attrs.add(new Copies(2));
job.print(doc, attrs);

Note that in some cases printing is performed asynchronously, in which case the call
to print() may return before printing has actually completed. If your application needs to
know the status of the print job, you should use a PrintJobListener to monitor its status, as
described next.

CHAPTER 10 ■ PRINTING 459

Monitoring and Controlling a Print Job
To monitor the status of a print job, you can create an implementation of PrintJobListener
and register it as a listener by calling the addPrintJobListener() method defined within
DocPrintJob. PrintJobListener is defined within the javax.print.event package, and it
defines a number of methods that are called to indicate various changes related to the state
of the print job, such as when data transfer completes and when the job has failed or requires
attention. Although their names are largely self-explanatory, the methods defined within
PrintJobListener are listed in Table 10-5 along with a description of when each one is called.

Table 10-5. Methods Defined Within the PrintJobListener Interface

Method Description

printDataTransferCompleted() Data has been successfully transmitted from the client to
the print service.

printJobCanceled() The print job was canceled.

printJobCompleted() The job has completed.

printJobFailed() The print job has failed and must be resubmitted for the
document to be printed successfully.

printJobNoMoreEvents() No more calls to any of the methods in this interface will be
called for this print job.

printJobRequiresAttention() An error has occurred that may be recoverable, such as the
printer running out of paper.

If you’re interested only in a subset of these methods, you may find it convenient to use the
PrintJobAdapter implementation class that provides “stub” implementations for each of the
methods listed in Table 10-5. In other words, it defines methods that don’t do anything when
those methods are called, and by overriding only the method(s) that are of interest to your
application, you can quickly and easily define your own PrintJobListener implementation:

PrintService service = PrintServiceLookup.lookupDefaultPrintService();
DocPrintJob job = service.createPrintJob();
job.addPrintJobListener(new PrintJobAdapter() {

public void printDataTransferCompleted(PrintJobEvent event) {
System.out.println("Data transfer is complete");

}
public void printJobNoMoreEvents(PrintJobEvent event) {

System.out.println("No more events will be received");
}

});

Monitoring Attribute Changes
Aside from monitoring the status of the print job itself, it’s also sometimes helpful to monitor
changes to the attributes that may change during printing. For example, let’s suppose your
application is printing a multipage document, and it wants to provide the user with some kind
of indication of which page is currently being printed. You can accomplish this by registering a

CHAPTER 10 ■ PRINTING460

PrintJobAttributeListener with the DocPrintJob and optionally by specifying which attrib-
utes are of interest to your application.

The process of registering a PrintJobAttributeListener is similar to the approach
you just saw for registering a PrintJobListener and is done using the addPrintJob➥

AttributeListener() method defined in DocPrintJob. One important difference, however, is
that addPrintJobAttributeListener() accepts not only a PrintJobAttributeListener but also
an optional instance of PrintJobAttributeSet that can be used to specify which attributes are
of interest to the listener. By registering an attribute listener, you’re indicating you want the lis-
tener to be notified of changes to the attributes associated with the print job. If you specify a
null value for the PrintJobAttributeSet parameter, the listener will be notified of all attribute
changes. However, if you specify a non-null value, the listener will be notified only of attrib-
utes that are included in the PrintJobAttributeSet you specify.

To see an example of this, let’s create and use an instance of PrintJobAttributeListener
to monitor which page is currently being printed. The first step is to create the implementa-
tion, which can be done as shown next. Notice that PrintJobAttributeListener defines only a
single attributeUpdate() method that must be implemented.

PrintJobAttributeListener listener = new PrintJobAttributeListener() {
public void attributeUpdate(PrintJobAttributeEvent event) {

PrintJobAttributeSet attrSet = event.getAttributes();
Attribute attr = attrSet.get(JobMediaSheetsCompleted.class);
if (attr != null) {

JobMediaSheetsCompleted sheets = (JobMediaSheetsCompleted)attr;
System.out.println("Finished printing page " + sheets.getValue());

}
}

};

Within the attributeUpdate() method, you first retrieve the PrintJobAttributeSet that
encapsulates the attribute(s) being reported as having changed. Once that’s done, you can
attempt to retrieve from the set the specific attribute you’re interested in, and if it’s found
within the set, you cast it to the appropriate class and display a message indicating which
page has finished printing.

Once the PrintJobAttributeListener implementation has been created, you can easily
register it as a listener using code like that in the following bold line:

PrintService service = PrintServiceLookup.lookupDefaultPrintService();
DocPrintJob job = service.createPrintJob();
job.addPrintJobAttributeListener(listener, null);

In this case, you specified a null value for the second parameter, which will result in the
attributeUpdate() method being called when the value of any attribute changes. Alterna-
tively, you could construct an instance of PrintJobAttributeSet, populate it with the specific
type of attribute you want to monitor, and specify that set when adding the listener, as follows:

PrintJobAttributeSet attrs = new HashPrintJobAttributeSet();
attrs.add(new JobMediaSheetsCompleted(0));
PrintService service = PrintServiceLookup.lookupDefaultPrintService();
DocPrintJob job = service.createPrintJob();
job.addPrintJobAttributeListener(listener, attrs);

CHAPTER 10 ■ PRINTING 461

With this modification, the attributeUpdate() method will be called only when or if the
JobMediaSheetsCompleted attribute changes for the print job.

When using attribute listeners, it’s important to remember that not all attributes will
be supported by all print services. If the print service you’re using doesn’t support the
JobMediaSheetsCompleted attribute, then the code you’ve just created won’t do anything
because that attribute will never be updated.

Canceling a Print Job
You’ve now seen how to initiate and monitor the status of a print job, but what if the user
wants to cancel the job before it has completed? Well, it’s important to mention that like many
of the other capabilities I’ve discussed, the ability to cancel a print job will vary from one print
service to the next, so you shouldn’t assume a print job can be canceled. However, the Java
print service API includes an interface called CancelablePrintJob that extends DocPrintJob,
and if the print job that’s created by the print service implements CancelablePrintJob, you
can call its cancel() method to cancel the job. This is an example of how to accomplish this:

if (job instanceof CancelablePrintJob) {
CancelablePrintJob cancelable = (CancelablePrintJob)job;
cancelable.cancel();

}

Introducing Service-Formatted Printing
All the printing you’ve been doing so far is referred to by the Java print service API as client
formatted, but earlier in the chapter I mentioned an alternative approach called service format-
ted. Since your application code represents the “client,” you might expect service-formatted
printing to be easier because the name implies that the print service will do more of the (for-
matting) work. In reality, though, using service-formatted printing means your code has more
control over formatting, and in this case more control means additional complexity.

So, what exactly is service-formatted printing? It’s really just a way of integrating the
Java print service API I’ve been discussing with the older Java 2D printing API that was first
introduced in Java 1.3. Java’s 2D printing works by passing an instance of Graphics to your
application when a page is to be printed and allowing your application to draw the output
that should appear on the printed page.

A Graphics object is a representation of a hardware device onto which graphics can be
drawn, such as a monitor or printer, and it includes methods such as drawImage(), drawLine(),
and drawRect() that allow you to draw images, lines, and rectangles, respectively, on the corre-
sponding device. Graphics instances are most commonly used to have components draw
themselves onto a computer monitor, but in this case the Graphics object represents a printer,
and the same logic that’s used to draw a component onto a screen can be used to print that
component. In other words, your application can use the Java 2D printing API to have AWT
and Swing components draw (or render) themselves onto a printed page using the same logic
they normally use to draw themselves within a window displayed on your monitor. This is par-
ticularly useful for creating What-You-See-Is-What-You-Get (WYSIWYG) printouts, but it can
also be helpful when creating elegantly formatted output.

To use service-formatted printing, you’ll need to choose from one of the three variations
that are supported: PAGEABLE, PRINTABLE, or RENDERABLE_IMAGE. The first two are based upon

CHAPTER 10 ■ PRINTING462

the Pageable and Printable interfaces defined within the java.print package, and the third is
related to the RenderableImage class defined within the java.awt.image.renderable package.
To understand how these are used, let’s begin by looking at some of the concepts related to
how 2D printing works.

Java’s 2D printing API supports a resolution of 72 dots per inch (DPI), which means each
pixel you draw onto a Graphics object will occupy 1/72nd of an inch (approximately 0.3528 mil-
limeters) on the printed page. That unit of measure (in other words, 1/72nd of an inch) is called
a point and is used by the 2D printing facility to represent locations and size values. So, for
example, a sheet of letter-sized (8.5 inches wide and 11 inches long) paper is 612 (8.5 * 72 = 612)
points wide and 792 (11 * 72 = 792) points long. Based on this information, it might seem that
you could produce printed output up to 612 points wide and 792 points long on letter-sized
paper. However, most printers are physically capable of printing only onto a subset (although
normally a very large one) of the total area available on the paper or other media used in print-
ing. That subset is represented as a rectangular area known as the printable area, and as you’ll
see later, it’s particularly important to keep this in mind when using service-formatted printing.
The portions of a page that are unusable (which I’ll call the hardware margins) vary from one
model of printer to the next, but the shaded area in Figure 10-4 provides an example of the area
that may be unavailable. The darker color represents the hardware margins, the lighter color
represents user-specified margin settings, and the white rectangle in the center represents the
area available for printing.

■Note Although I refer in this chapter to printing on “paper” and Java even defines a class by that name,
the generic term media is really more appropriate because many printers support printing to things other
than paper (for example, transparencies).

Figure 10-4. Hardware margins, user-specified margins, and the printable area

CHAPTER 10 ■ PRINTING 463

Hardware margins aren’t normally a serious limitation because most applications use
margin sizes that are greater than those imposed upon them by the hardware. For example,
you might want to have 1-inch margins on each side of a printed text document to improve
readability, so Figure 10-4 shows the approximate area of a letter-sized page that’s available
with margins of that size. The area inside the margins available for printing is known as the
imageable area, and you’ll need to take the size and position of that area into consideration
during printing.

Support Classes
To understand how to use the 2D printing API, it’s helpful to review the classes that support it.
Specifically, you’ll examine the Paper, PageFormat, and Book classes and the Printable and
Pageable interfaces. Table 10-6 describes these classes and interfaces.

Table 10-6. Some Interfaces and Classes Defined in the Java 2D Printing API

Name Type Description

Paper Class Describes the physical characteristics of a given type
of paper

PageFormat Class Describes the size and orientation of a page that’s to
be printed

Printable Interface Represents a single printable page

Pageable Interface Represents a collection of printable pages

Book Class A convenient implementation of the Pageable inter-
face

Figure 10-5 illustrates the relationship between the Java 2D printing API support classes.

Figure 10-5. The relationship between the Java 2D printing API support classes

Paper
The java.awt.print.Paper class encapsulates two pieces of information: the physical size of
the paper you’re printing on and the size and position of the imageable area. Paper includes a

CHAPTER 10 ■ PRINTING464

single no-argument constructor that initializes its properties to correspond to U.S. letter-sized
paper with 1-inch margins on each side (top, left, bottom, and right) of the page.

It’s actually somewhat misleading to suggest that instances of Paper maintain margin
information—they don’t (at least not explicitly). However, margin sizes can be derived using
the paper size and imageable area information. For example, if the imageable area is located
144 points from the left edge of the paper, the paper effectively has a 2-inch (144 / 72 = 2) left
margin. The right margin can be similarly calculated by subtracting the width of the image-
able area and the width of the left margin from the total width of the paper.

For the most part, the methods defined in Paper are simple accessor and mutator meth-
ods that allow you to reference the encapsulated information.

getWidth(), getHeight(), setSize()

These methods allow you to modify and query the physical dimensions of the paper. Those
values are maintained as double primitives that identify the paper size in points. For example,
since Paper’s values default to those of a letter-sized piece of paper, the initial width value of a
Paper instance is 612 (8.5 * 72 = 612), and the initial height is 792 (11 * 72 = 792).

setImageableArea(), getImageableX(), getImageableY(), getImageableWidth(),
getImageableHeight()

These methods allow you to modify and query the size and location of the imageable area.
The setImageableArea() method requires four double parameter values: the X position,
Y position, width, and height of the paper’s imageable area. For example, to set the imageable
area for a letter-sized piece of paper that should have 1-inch left and right margins and
1.5-inch top and bottom margins, you could use the following code:

double paperWidth = 8.5 * 72;
double paperHeight = 11 * 72;
double xMargin = 1.0 * 72;
double yMargin = 1.5 * 72;
double areaWidth = paperWidth - (xMargin * 2);
double areaHeight = paperHeight - (yMargin * 2);
Paper p = new Paper();
p.setImageableArea(xMargin, yMargin, areaWidth, areaHeight);

Note that these are point values, so the margin sizes must be converted from inches to
points before calling setImageableArea().

clone()

Paper implements the Cloneable interface and overrides the clone() method inherited from
java.lang.Object. This allows you to easily create copies of a Paper object.

Using Paper with Alternative Paper Sizes
As you saw previously, it’s easy to set the imageable area size for an instance of Paper. Simi-
larly, you’ll sometimes want to adjust the paper size and margins to correspond to some type

CHAPTER 10 ■ PRINTING 465

of paper other than U.S. letter size. For example, you could use the following code to create
an instance of Paper that will be used to print to A4-sized pages (210 millimeters wide and
297 millimeters long) with 25-millimeter margins around each edge:

Paper paperA4 = new Paper();
double inchesPerMillimeter = 0.0394;
double widthInInches = inchesPerMillimeter * 210;
double heightInInches = inchesPerMillimeter * 297;
double marginSizeInInches = inchesPerMillimeter * 25;
double widthInPoints = widthInInches * 72;
double heightInPoints = heightInInches * 72;
double marginSizeInPoints = marginSizeInInches * 72;
double availableWidth = widthInPoints - (marginSizeInPoints * 2);
double availableHeight = heightInPoints - (marginSizeInPoints * 2);
paperA4.setImageableArea(marginSizeInPoints, marginSizeInPoints,

availableWidth, availableHeight);

PageFormat
While Paper describes the physical attributes of the paper used in printing, the PageFormat
class describes the logical characteristics of one or more printed pages. Depending upon the
orientation (portrait or landscape) used when printing, the physical attribute values may be
identical to the logical attributes.

An instance of PageFormat is passed to the print() method when it’s called so the Printable
implementation can determine the size and location of the imageable area on the page and con-
fine its rendering to that region accordingly.

setOrientation(), getOrientation()

These methods allow you to modify and query the orientation value for the page(s) printed
using this PageFormat object. The orientation is maintained as an int value that corre-
sponds to one of the following constants defined in PageFormat: PORTRAIT, LANDSCAPE, or
REVERSE_LANDSCAPE.

getPaper(), setPaper()

PageFormat maintains a reference to a Paper object, and these methods allow you to obtain a
copy of that object and to replace it. The default Paper object corresponds to U.S. letter-sized
paper with 1-inch margins on each side.

It’s important to understand that getPaper() returns a copy of the PageFormat’s Paper
object instead of a reference to the original.

Therefore, if you want to modify the paper’s size or imageable area values, you must call
getPaper(), modify the object returned, and then call setPaper() to update the PageFormat’s
reference. The following is an example of this:

CHAPTER 10 ■ PRINTING466

PageFormat pf = new PageFormat();
Paper p = pf.getPaper();
p.setImageableArea(0, 0, p.getWidth(), p.getHeight());
pf.setPaper(p);

getMatrix()

This method returns a matrix that can rotate an image appropriately so its orientation is cor-
rect when it’s printed. However, such rotations are performed automatically and transparently
based on the orientation value you select, so you won’t normally use this method directly.

getWidth(), getHeight()

These methods return the logical size of the paper, as opposed to the physical size returned
by the methods of the same name in Paper. The physical size identifies the actual size of the
paper and always produces the same value for a certain type of paper (for example, U.S. letter
size). On the other hand, the logical size represents the paper size that’s adjusted based on the
selected orientation. If you use portrait orientation, the logical width and height are the same
as the physical width and height. However, if you select landscape orientation, you’ve effec-
tively rotated the paper, although in reality the data itself is logically rotated before it’s printed.
When either LANDSCAPE or REVERSE_LANDSCAPE is specified for the orientation value, the paper’s
logical width equals its physical height, and its logical height equals its physical width.

getImageableX(), getImageableY(), getImageableWidth(), getImageableHeight()

In much the same way that getWidth() and getHeight() translate the physical paper size
into a logical size, these methods convert Paper’s imageable area values based on the selected
orientation.

clone()

This method is overridden from the Object implementation to allow you to easily create
copies of a PageFormat instance.

Printable
Printable defines a single print() method that’s called when a page should be rendered and
is passed a reference to a Graphics object that represents the page being rendered. If you’re
already familiar with Graphics, it’s probably because an instance is passed to the paint()
method of AWT and Swing components when they’re displayed as part of a user interface. As
you may suspect, because components are already able to render themselves onto a Graphics
object, it’s easy to print them; you’ll see how to do so later in the chapter.

CHAPTER 10 ■ PRINTING 467

print()
This method is called one or more times during printing so the Printable implementation can
render a page of output. Three parameter values are passed to print() that allow it perform
the rendering appropriately:

• A Graphics object representing the page being rendered.

• A PageFormat object that describes the logical characteristics of the paper onto which
printing will occur.

• An integer value that identifies the page to render. This is necessary because a single
Printable instance may be responsible for printing multiple pages.

Some printer jobs produce output that’s easy to render, and other times jobs may be com-
plex and involve a large number of rendering operations. For the more complicated printer
jobs, it may not be practical to determine in advance how many pages will be printed. For that
reason, print() is required to return a value that indicates whether it was able to render the
requested page. The value should correspond to one of two constants defined in Printable:
PAGE_EXISTS if the page was successfully rendered or NO_SUCH_PAGE if the Printable couldn’t
render the requested page. When you identify a Printable implementation to PrinterJob and
initiate printing, the print() method is called repeatedly until it returns a value of NO_SUCH_PAGE.
Therefore, you’d typically include logic similar to the following in your print() method to cause
the print job to end after printing a single page:

public int print(Graphics g, PageFormat pageFormat, int pageNumber) {
if (pageNumber == 0) {
// Rendering logic would normally go here
return Printable.PAGE_EXISTS;

}
else {
return Printable.NO_SUCH_PAGE;

}
}

In effect, your print() method is responsible for identifying the printing equivalent of an
“end-of-file” condition, and until it does so, PrinterJob will continue to print pages rendered
by your Printable.

■Note The page number passed to print() is zero-indexed, meaning that a value of 0 represents the
first page, 1 represents the second page, and so on.

Sample Printing Application
It’s now possible to create a simple printing application using the classes described previously.
The application shown in Listing 10-1 requires the user to specify the name of an image (for
example, a GIF or JPEG) file as the first command-line parameter, and the constructor uses

CHAPTER 10 ■ PRINTING468

that file to create an instance of java.awt.Image. Although this example illustrates only how to
print an image, you’ll see later in the chapter that it’s just as easy to print Swing components.

Listing 10-1. Simple Printing Application

import java.awt.*;
import java.awt.print.*;
import javax.print.*;
import javax.print.attribute.*;
import javax.print.attribute.standard.*;
import javax.swing.ImageIcon;

public class ImagePrint {

protected ImageIcon printImage;

public static void main(String[] args) throws Exception {
ImagePrint ip = new ImagePrint(args[0]);
ip.performPrint();
System.exit(0);

}

public ImagePrint(String fileName) {
printImage = new javax.swing.ImageIcon(fileName);

}

private void performPrint() throws Exception {
// Remaining code goes here ...

}

}

To print the loaded image, you must define an implementation of Printable that will
print the image. In this case, an inner class provides the Printable implementation; the
print() method is implemented as outlined a moment ago and simply uses the Graphics
class’s drawImage() method to print the image specified on the command line:

class MyPrintable implements Printable {

public int print(Graphics g, PageFormat pf, int pageIndex) {
if (pageIndex == 0) {
g.drawImage(printImage.getImage(), 0, 0, null);
return Printable.PAGE_EXISTS;

}
return Printable.NO_SUCH_PAGE;

}

}

CHAPTER 10 ■ PRINTING 469

Finally, you can obtain a reference to the default print service, create a DocPrintJob, and
use it to initiate printing:

public void performPrint() throws Exception {
PrintService service = PrintServiceLookup.lookupDefaultPrintService();
DocPrintJob job = service.createPrintJob();
DocFlavor flavor = DocFlavor.SERVICE_FORMATTED.PRINTABLE;
SimpleDoc doc = new SimpleDoc(new MyPrintable(), flavor, null);
job.print(doc, null);

}

If you compile and execute this application, you may be somewhat surprised by the
results. Instead of the image being printed inside the imageable area, it’s aligned at the upper-
left corner of the page, and a section is missing from both the top and left sides of the image
(see Figure 10-6). This occurs because the Graphics object passed to print() is “clipped” to
prevent you from drawing outside the imageable area even though the origin (coordinates 0,
0) of the Graphics object corresponds to the upper-left edge of the paper.

Figure 10-6. By default the drawing is done relative to the upper-left corner of the paper even if a
portion of the image falls outside the imageable area.

You can partially solve this by reducing the margins and therefore increasing the image-
able area, but that doesn’t eliminate the problem because the portion of the image outside
the hardware margins would still be clipped. A better solution to this problem is to change the

CHAPTER 10 ■ PRINTING470

coordinates specified on the call to drawImage(). However, an even better solution is to adjust
the Graphics object’s origin so it corresponds to the corner of the imageable area, instead of
the corner of the page. You can do this using translate(), which causes all subsequent draw-
ing operations to be offset by the specified number of pixels. Conceptually, you may find it
easier to think of translate() as moving the rendered output down and/or to the right when
positive translation values are specified or moving up and to the left for negative values.

public int print(Graphics g, PageFormat pf, int pageIndex) {
g.translate((int)(pf.getImageableX()),

(int)(pf.getImageableY()));
if (pageIndex == 0) {
g.drawImage(printImage.getImage(), 0, 0, null);
return Printable.PAGE_EXISTS;

}
return Printable.NO_SUCH_PAGE;

}

If you make this modification and execute the ImagePrint application, the upper-left por-
tion of the image will be aligned with the upper-left corner of the imageable area, preventing
it from being clipped on the top or left sides (see Figure 10-7).

Figure 10-7. By using the translate() method, you can perform your drawing as if the upper-left
corner of the imageable area corresponds to the coordinates 0, 0.

CHAPTER 10 ■ PRINTING 471

Scaling

Up to this point, I haven’t made any assumptions about the Graphics object passed to the
print() method, but in fact it will always be an instance of Graphics2D, which means it sup-
ports the capabilities defined within that class associated with the Java 2D API for graphics
and imaging. To take advantage of the Graphics2D methods, simply cast the Graphics object
as follows:

public int print(Graphics g, PageFormat pf, int page) {
Graphics2D g2d = (Graphics2D)g;

■Note Part of the reason the Java 2D printing API is useful is because you have almost complete control
over how the printed output appears. However, another reason that it’s worthwhile is because it allows you
to use the powerful Java 2D API for graphics and imaging.

One of the capabilities provided by Graphics2D is the ability to perform scaling, which
changes the size of the output you render. For example, suppose you modify the scale factor
so it renders your output at half its normal size. In that case, an image that’s 100 pixels wide
and 50 pixels in height will be only 50 pixels wide and 25 in height when rendered and printed.
In other words, scaling allows you to shrink or enlarge your output, and you can use this tech-
nique to ensure that your data will fit on a printed page.

When you set a scale factor for a Graphics2D object, you normally should use the same
value for both the width and the height. This causes your output to have the same proportions
it’d have if it hadn’t been scaled, while using two different scale values will distort your output.
For example, if you’re rendering a square but you use one value to scale the width and a differ-
ent value to scale the height, the shape will be rendered as a rectangle instead of a square.

You’ll typically select a scale factor by calculating the value that can be used to make the
output as large as possible while still fitting within a single page, and the calculations for doing
so are simple. For example, let’s suppose you want to print an image that doesn’t fit onto a sin-
gle page like the one shown in Figure 10-8.

To print the entire image on a single page, you could make the following changes to
ImagePrint to ensure that the image being printed fits exactly within the imageable area:

public int print(Graphics g, PageFormat pf, int pageIndex) {
Graphics2D g2d = (Graphics2D)g;
g.translate((int)(pf.getImageableX()),

(int)(pf.getImageableY()));
if (pageIndex == 0) {

double pageWidth = pf.getImageableWidth();
double pageHeight = pf.getImageableHeight();
double imageWidth = printImage.getIconWidth();
double imageHeight = printImage.getIconHeight();
// Find out what scale factor should be applied
// to make the image's width small enough to
// fit on the page

CHAPTER 10 ■ PRINTING472

double scaleX = pageWidth / imageWidth;
// Now do the same for the height
double scaleY = pageHeight / imageHeight;
// Pick the smaller of the two values so that
// the image is as large as possible while
// not exceeding either the page's width or
// its height
double scaleFactor = Math.min(scaleX, scaleY);
// Now set the scale factor
g2d.scale(scaleFactor, scaleFactor);
g.drawImage(printImage.getImage(), 0, 0, null);
return Printable.PAGE_EXISTS;

}
return Printable.NO_SUCH_PAGE;

}

Figure 10-8. The image is too large to be printed on a single page, so the right and bottom por-
tions of it are clipped outside of the imageable area.

CHAPTER 10 ■ PRINTING 473

With this change made, the image is scaled so it fits exactly within the imageable area, as
shown in Figure 10-9. A complete discussion of the Java 2D graphics and imaging API is beyond
the scope of this chapter, but by using it along with the Java 2D printing API, you can create
professionally formatted output.

Figure 10-9. Scaling lets you take advantage of the imageable area without having a portion of
your output clipped.

Other Support Classes
Although Printable is perhaps the most important interface for you to be familiar with, you
may also find it helpful to familiarize yourself with the Pageable interface and the Book imple-
mentation of that interface, so I’ll close this chapter by briefly reviewing them.

Pageable

Earlier I mentioned that service-formatted printing supports an interface called Pageable, and
that interface is useful when your application needs to print multiple pages, particularly when
those pages have different formatting needs. The Pageable interface defines a set of methods
that can be used to create a collection of Printable/PageFormat pairs, with each pair corre-
sponding to a printed page.

CHAPTER 10 ■ PRINTING474

getPrintable()
Given a page number, this method returns the Printable implementation responsible for
rendering the page.

getPageFormat()
Given a page number, this method returns the PageFormat that describes the logical character-
istics of the page.

getNumberOfPages()
This method should return an int value that identifies the number of pages encapsulated by
this Pageable object. Sometimes, however, it may not be possible to provide the page count
before the printing occurs. In that case, you should return the UNKNOWN_NUMBER_OF_PAGES con-
stant defined in Pageable.

Book

Book is an implementation of the Pageable interface and defines methods that allow you to
add pairs of Printable/PageFormat objects to the collection. In addition to the three methods
defined in the Pageable interface, Book implements the methods described next.

append()
This overloaded method has two implementations, although both of them require a
Printable parameter and a PageFormat parameter. One implementation assumes that
the Printable/PageFormat pair will be used to print a single page, and the other implementa-
tion allows you to specify the number of pages that the pair should render. For example, if
you’ve already initialized a number of Printable and PageFormat objects, you could use code
similar to the following to encapsulate those objects in an instance of Book:

Printable myPrintable1, myPrintable2, myPrintable3;
PageFormat myFormat1, myFormat2, myFormat3;
// ...
Book myBook = new Book();
myBook.append(myPrintable1, myFormat1);
myBook.append(myPrintable2, myFormat2, 5);
myBook.append(myPrintable3, myFormat3);

This code segment creates a Book that can print seven pages. The first page will be rendered
by myPrintable1, the next five rendered by myPrintable2, and the last page by myPrintable3.
When a particular page is to be rendered, the print() method of the associated Printable object
is called and is passed a reference to the PageFormat object that was added to the book along
with the Printable.

setPage()
While append() adds a Printable/PageFormat pair to the end of the Book’s list, this method
stores a pair at a specific page location. For example:

Book myBook = new Book();
MyBook.append(myPrintable1, myFormat1, 5);
MyBook.setPage(2, myPrintable2, myFormat2);

CHAPTER 10 ■ PRINTING 475

This code segment initializes a Book that can print five pages, with myPrintable1 and
myFormat1 used for pages 1, 2, 4, and 5 and myPrintable2 and myFormat2 used for page 3. As is
the case with the print() method, the page index values specified on setPage() calls are zero-
indexed, meaning that the first page corresponds to a value of 0, so the parameter 2 in the
previous arguments to setPage() refers to the third page.

RenderableImage

As its name implies, the RenderableImage interface defined in the java.awt.image.renderable
package represents an image that can have operations such as rotation or cropping applied
to it in a resolution-independent manner. If your application works with an instance of
RenderableImage, you can specify an instance of this class as the object to be printed as
follows:

RenderableImage image;
.
.
.
PrintService service = PrintServiceLookup.lookupDefaultPrintService();
DocPrintJob job = service.createPrintJob();
DocFlavor flavor = DocFlavor.SERVICE_FORMATTED.RENDERABLE_IMAGE;
SimpleDoc doc = new SimpleDoc(image, flavor, null);
job.print(doc, null);

Summary
In this chapter, I covered the following:

• A brief history of Java’s printing capabilities

• How to find print services

• How to limit which services are returned by specifying document flavors and attributes

• How to initiate client-formatted printing

• How to create and control a print job

• How to monitor a print job

• How to use service-formatted printing

• The basics of the Java 2D printing API

CHAPTER 10 ■ PRINTING476

Introducing Java Database
Connectivity (JDBC)

When your application creates or uses large amounts of data, it’s usually necessary for that
information to be stored in a database. The most widely used type is a relational database,
and some examples of relational database products are Oracle, DB2, Sybase, Informix, and
Microsoft SQL Server. A relational database product is sometimes referred to as a relational
database management system (RDBMS, or simply DBMS), while a database usually refers to
a collection of data managed by a DBMS.

Java’s support for relational databases is provided through the Java Database Connectivity
(JDBC) API that’s largely contained in the java.sql package and consists of some interfaces
and a handful of simple classes. Just as Java programs are intended to work on many different
platforms, JDBC is designed to allow your application to communicate with many different
database systems.

Using JDBC is simple, and you need to take only a few steps to add database functionality
to your application. The steps involved are as follows:

1. Select/obtain a JDBC driver, or use the JDBC-ODBC bridge driver described later that’s
included in Java’s core classes. If you don’t use the bridge driver, you must add the
driver code to your CLASSPATH just as you would any other third-party library.

2. Obtain a database connection using DriverManager or a DataSource and a URL that’s
appropriate for the driver you’re using.

3. Create a Statement or an instance of one of its subinterfaces (in other words,
PreparedStatement or CallableStatement), and use it to execute SQL commands.

For example, the code shown in Listing 11-1 uses the bridge driver mentioned previously
to create a connection to an ODBC data source called projava, performs a query, and sends
the data returned by that query to standard output.

Listing 11-1. JDBC Example

String userid = "bspell";
String password = "brett";
// Register the driver with DriverManager

477

C H A P T E R 1 1

■ ■ ■

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)478

new sun.jdbc.odbc.JdbcOdbcDriver();
// Get a connection
Connection conn = DriverManager.getConnection("projava",

userid, password);
// Create a statement for executing SQL
Statement stmt = conn.createStatement();
// Execute a query / SELECT statement
ResultSet rset = stmt.executeQuery("SELECT * FROM TESTTABLE");
ResultSetMetaData rsmd = rset.getMetaData();
// Find out how many columns were returned by the query
int count = rsmd.getColumnCount();
// Loop until all rows have been processed
while (rset.next()) {
// Loop until all columns in current row have been processed
for (int i = 1; i <= count; i++) {
// Print out the current value
System.out.print(rset.getObject(i));
// Put a comma between each value
if (i < count) {
System.out.println(",");

}
}
// Start the next row's values on a new line
System.out.println("");

}
// Close the database objects
rset.close();
stmt.close();
conn.close();

In this chapter, you’ll examine each of the following topics related to using JDBC:

• Selecting and obtaining driver types

• Obtaining a connection to a database

• Executing SQL statements and stored procedures

• Understanding data types defined in JDBC and how they relate to “native” types

• Managing transactions

• Implementing database connection pooling

• Processing errors and warnings generated by JDBC functions

• Debugging guidelines for database applications

SQL Standards and JDBC Versions
Providing a single interface to many DBMS products is difficult because each product sup-
ports a unique collection of features and data types. For example, while SQL Server supports
a boolean data type, Oracle doesn’t; however, you can simulate boolean data using numeric
fields. Even when two DBMS products provide the same functionality, the way you use that
functionality on one DBMS can be very different from the way it’s used on the other. Fortu-
nately, JDBC provides a layer of abstraction between your application and the specific details
of how to perform a particular task.

Variation between DBMS products has been limited somewhat by organizations that have
established standards for the Structured Query Language (SQL). The most widely adopted and
well-known standard is the SQL2 standard (also known as SQL92), although a more recent
standard called SQL3 has emerged. SQL3 is partly an attempt to address what’s perceived as
a serious limitation of SQL2: its lack of support for object-oriented concepts. When SQL2 was
designed, object-oriented programming wasn’t yet widely adopted, and the result is that SQL
as defined by SQL2 is poorly suited to object persistence. In fact, an entire category of prod-
ucts has emerged to address this problem using technology called object-relational mapping;
you’ll examine that topic in more detail in the next chapter.

The JDBC 1.x API specification defined functionality based on the SQL2/SQL92 stan-
dard, and support for that specification was included in the Java 1.1 core classes and defined
within the java.sql package. When the JDBC 2.0 specification was released, it included some
functionality that was expected to be used primarily on application servers and that wasn’t
originally intended to be included in the Standard Edition of Java. As a result, the JDBC 2.x
functionality included changes to the “core” java.sql package and also defined a new javax.sql
“standard extension” package that contained classes related to the newly defined server func-
tionality. Eventually, however, the javax.sql package became part of the Java 2 Standard
Edition, so you’ll now find both java.sql and javax.sql if you examine the documentation
for that edition. As of this writing, the current version of the JDBC specification is 3.0, and it
also included changes that affected both the java.sql and javax.sql packages.

As you read this chapter, an important point to be aware of is that the features available to
your application will depend upon which implementation of JDBC you’re using. For example,
if you’re using an implementation of the JDBC 2.x API, you won’t be able to use features that
were added in the 3.0 specification. For that reason, it’s obviously desirable to pick an imple-
mentation of the latest specification, but that’s not always possible depending upon which
database you’re using. When writing your application, you should ensure you use only those
JDBC features that will be available to you, and the way to determine this is to find out which
JDBC driver (explained next) you’ll be using and consult its documentation to learn which API
specification it supports.

JDBC Drivers
The most important part of the java.sql package is its collection of interfaces, because they
define how your application interacts with a relational database. One of those interfaces is
Driver, and it includes a method that’s used to obtain database connections, although you
won’t normally invoke that method directly. The phrase JDBC driver sometimes refers specifi-
cally to a Driver implementation, but more often it refers to a group of related files that provide

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 479

access to a particular type of DBMS. Those files typically include implementations of the
java.sql interfaces (including Driver), along with other support classes that are needed to
provide database access.

A JDBC driver is usually packaged as a ZIP or JAR file, and you can obtain drivers from a
variety of sources.

Most DBMS vendors supply at least one driver for use with their own database, usually at
no cost. However, third parties also sell drivers, and those often provide better performance
and/or reliability than the database vendor implementations. A list of known drivers is avail-
able on Sun’s web site and includes information such as the DBMS product(s) each driver
supports, the driver type, and the specific JDBC features it supports. Note that it’s not neces-
sary for a driver to support all features defined in the JDBC specification for the driver to be
considered JDBC-compliant, although most drivers do support most features. If there’s a spe-
cific feature that your application is or will be dependant upon, you should test the driver in
advance before choosing it or contact the vendor that supplies the driver before purchasing it
to ensure that it supports the desired functionality.

Like any other third-party library, a JDBC driver that you obtain for use within your appli-
cation must be added to your CLASSPATH when the application is executed. For example, if
you’ve downloaded a driver that’s packaged as a ZIP file called CLASSES111.ZIP stored in the
C:/brett/temp directory, you could use the following statement to execute an application
called MyDatabaseApp and include the driver in your CLASSPATH:

java –classpath=C:/brett/temp/CLASSES111.ZIP MyDatabaseApp

Driver Types
JDBC drivers are divided into four categories, or types, based on how they provide a connec-
tion to the database. Each category has unique advantages and disadvantages, and it’s common
for driver vendors to provide more than one type of JDBC driver for a database. For example,
Oracle Corporation provides both a type-2 and a type-4 driver for their DBMS.

Type 1: Connection Through an ODBC Data Source
Microsoft’s Open Database Connectivity (ODBC) is conceptually similar to JDBC and is widely
used to provide relational database connectivity. In fact, ODBC is provided with the Windows
operating system, and you can define an ODBC data source through the Data Sources dialog
box, as shown in Figure 11-1.

Figure 11-1. Windows allows you to list the ODBC data sources defined on your system.

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)480

A data source is simply a way of associating a name with a particular database, and when
creating a new data source, you must select the ODBC driver used to access the database, as
shown in Figure 11-2.

Figure 11-2. To define a new data source, you must first select the type to create.

The only JDBC driver supplied with the Java core classes is a type-1 driver that’s com-
monly referred to as the JDBC-ODBC bridge driver. Although this driver isn’t very robust, it’s
usually sufficient for performing simple tests and for developing small applications. A type-1
JDBC driver is simply a driver that accesses a database through an ODBC data source. To
obtain a database connection from a type-1 driver, you must identify the name of the ODBC
data source to which you want to connect. The JDBC driver then satisfies your application’s
requests by converting JDBC operations into the equivalent ODBC operations and returning
the results.

This type of driver is useful because it allows you to use any database that’s accessible
through ODBC, but it requires that ODBC be installed on each client machine. That’s usually
not a problem if your application’s database code will run only on Windows because ODBC
is included in Windows by default, but if your client will run on other platforms, the absence
of ODBC may be an issue. In addition, type-1 drivers suffer from poor performance because
each operation is processed by two different drivers: a JDBC driver and an ODBC driver.

Type 2: Connection Through Native Client Networking Code
Most DBMS products provide a client interface that allows you to interact with the database
server. For example, Oracle provides the SQL*Plus application that allows you to connect to a
database, issue SQL statements, and view the results of those statements (the rows returned
from a query). However, before you can use SQL*Plus, you must install Oracle’s networking
software that allows a client to communicate with the database server.

A type-2 JDBC driver includes both Java and native code, and it communicates with the
client-side network software of a particular DBMS. It provides better performance than a
type-1 driver does, but it can make distributing your application more difficult since you must
ensure that each client has the networking software installed.

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 481

Type 3: Connection Through Middleware
This type of driver is written entirely in Java, and it sends database requests to a server com-
ponent. Those requests are transmitted using a protocol that’s not specific to any database,
and the server component is responsible for converting it into the appropriate format before
forwarding the request to a particular DBMS.

A type-3 driver has the disadvantage of requiring a server-side component, but it does
allow you to change the DBMS being used on the server without affecting your client code.

Type 4: Direct Connection to DBMS
A type-4 driver is written entirely in Java, and it communicates directly with a DBMS server
using the appropriate protocol for that type of server. For example, in the case of Oracle’s
type-4 driver, a socket connection is opened between the JDBC application and the database
server.

This type of driver is easy to use because the only component needed is the driver itself,
which can easily be packaged with a Java application. No other client- or server-side software
is required, which simplifies distributing your application.

Table 11-1 summarizes the advantages and disadvantages of the various driver types.

Table 11-1. Advantages and Disadvantages of Each Driver Type

Driver Type Advantages Disadvantages

1 Performance may not be as good as
a driver of a different type.

2 Uses native code and is therefore
platform-dependent.

3 Platform-independent. Requires both a client and a
corresponding server
implementation.

4 Platform-independent. Performance may not be as good as
a driver of a different type.

Obtaining a Database Connection
As mentioned earlier, you can use an implementation of the Driver interface to obtain a
database connection, although you shouldn’t call the methods in that class directly. Instead,
you should request a connection from the DriverManager singleton through its static
getConnection() methods.

When you call getConnection(), DriverManager passes the parameter values specified to
each registered driver until it finds one that’s able to establish a connection using those val-
ues. Although you can explicitly register a driver by calling the registerDriver() method, you
don’t have to do so. When an instance of a Driver implementation is created, it automatically
registers itself with the DriverManager, so you can register a driver implicitly by instantiating it
as follows:

Performance is generally very good.

Allows Java program code to use
any database that provides an
ODBC driver.

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)482

new oracle.jdbc.driver.OracleDriver();

or as follows:

Class.forName("oracle.jdbc.driver.OracleDriver");

Alternatively, you can have drivers loaded automatically by setting the value of the
jdbc.drivers system property when starting a Java Virtual Machine (JVM). The jdbc.drivers
property should contain the names of the Driver classes to be loaded and can be set using
the –D option available on most JVM implementations. The following command executes the
main() method of the Java class named Test after loading the JDBC-ODBC bridge driver. You
can specify multiple drivers by separating the fully qualified Driver class names (the package
and class names) with the colon (:) character:

java –Djdbc.drivers=sun.jdbc.odbc.JdbcOdbcDriver Test

JDBC URL Formats
At a minimum, you must specify a JDBC URL when calling getConnection(), although a user
ID and password are often provided as well. The URL identifies the specific database you want
to connect to, while the user ID and password provide the authentication information that the
database may require before a connection can be created.

The JDBC URL isn’t a traditional URL that can be represented by an instance of
java.net.URL but is a String value that identifies a particular JDBC driver and database.
The general format of a JDBC URL is jdbc:<subprotocol>:<subname>, where the values of
<subprotocol> and <subname> vary based on the database you want to connect to and the
driver being used. For example, to use the JDBC-ODBC bridge driver to connect to an ODBC
data source named projava, you’d specify the URL jdbc:odbc:projava.

This example is actually somewhat simplistic, because JDBC URLs are usually slightly
more complex than the one shown previously. For example, Oracle’s type-4 (or thin-client
as Oracle refers to it) driver requires you to create a <subname> that includes three items:

• The host name of the machine that the DBMS server is running on

• The port number that it uses to listen for incoming connections

• The name of the database to which you want to connect

To use Oracle’s thin-client driver to connect to the database projava maintained on a
server named oraserve that uses port 1521, you’d specify the following URL:

jdbc:oracle:thin:@oraserver:1521:projava

Keep in mind that the URL isn’t just vendor-specific but driver-specific. For example,
besides the thin-client driver mentioned, Oracle also offers a type-2 (or OCI), and to connect
to the same database with that driver, you’d instead use the following URL:

jdbc:oracle:oci8:@projava

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 483

Since the format of the URL is driver-specific, you should review the documentation asso-
ciated with the driver you’re using to determine the correct format of a URL.

Connection
A database connection is represented in JDBC by an instance of the Connection class, and as
you might expect, an instance of that class is returned by DriverManager’s getConnection()
methods. The following code segment loads an Oracle driver (which will register itself with
the DriverManager) and then obtains a database connection:

Class.forName("oracle.jdbc.driver.OracleDriver");
String url = "jdbc:oracle:thin:@oraserver:1521:projava";
Connection connect = DriverManager.getConnection(url, "bspell", "brett");

Obtaining Connections from a DataSource
(2.x Optional Package)
The technique just described for obtaining a database connection is easy to use, but it does
have one drawback. Since you must load a driver and construct a driver- and database-specific
URL, this approach causes your application to be tightly coupled to a specific driver and data-
base. Although there are ways to address those weaknesses, no standard solution was defined
until JDBC 2.x, when the DataSource interface was introduced as part of the optional package.

A DataSource is simply a class that provides a layer of abstraction between your applica-
tion and the information needed to connect to a database. That information may include the
“identity” of the Driver class, the information needed to construct a valid URL, and a user ID
and password. Like DriverManager, DataSource provides getConnection() methods that can be
used to obtain database connections.

As of this writing, most DataSource implementations aren’t in widespread use, but the
JavaSoft documentation suggests that a DataSource will most commonly be accessed through
the Java Naming and Directory Interface (JNDI). JNDI is an API that defines methods used to
associate names with resources and provide access to those resources through a directory. In
this case, the resource would be a DataSource that’s able to obtain a connection to a particular
database; the following is an example of how JNDI and the DataSource might be used:

Context ctx = new InitialContext();
DataSource source = (DataSource)(ctx.lookup("jdbc/projava"));
Connection connect = source.getConnection();

With this approach, your application code is coupled only to the name assigned to the
database (projava) instead of a particular driver and URL. In fact, this technique allows both
the driver and the information used to connect to the database to be modified without requir-
ing any changes to your source code.

Although DataSource is described in the DriverManager API documentation as “the pre-
ferred means of connecting to a data source,” DataSource implementations are currently rare.
If one isn’t provided for you with the driver you’re using, your only options are to continue to
use DriverManager for obtaining connections or to create your own DataSource implementa-
tion. Since DriverManager isn’t deprecated, it’s still appropriate to use that class, and in many
cases this will be the easiest approach. However, you can create a DataSource like the one

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)484

shown in Listing 11-2 that can be used with either of the JDBC drivers provided by Oracle.
When executing the application, you should ensure that one of the two drivers is included
in your application’s CLASSPATH as described earlier.

This class provides two constructors, and the one you should use will depend upon
which driver you’re using. One constructor accepts only a “system ID” parameter, which is
the only value needed for the type-2 driver, while the other constructor also accepts a host
name and port number, which you should use with the type-4 driver. The getConnection()
method returns a Connection given a user ID and password, while getSubname() is responsi-
ble for building the “subname” portion of the URL that’s used to obtain the connection.

Listing 11-2. OracleDataSource Class

import java.io.PrintWriter;
import java.sql.*;
import javax.sql.*;

public class OracleDataSource implements DataSource {

static {
new oracle.jdbc.driver.OracleDriver();

}

protected boolean usingThinDriver;

protected String description = "Oracle Data Source";
protected String serverName;
protected int portNumber;
protected String databaseName;

public OracleDataSource(String host, int port, String sid) {
setServerName(host);
setPortNumber(port);
setDatabaseName(sid);
usingThinDriver = true;

}

public OracleDataSource(String sid) {
setDatabaseName(sid);
usingThinDriver = false;

}

public boolean isUsingThinDriver() {
return usingThinDriver;

}

public void setUsingThinDriver(boolean thin) {
usingThinDriver = thin;

}

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 485

public String getDescription() {
return description;

}

public void setDescription(String desc) {
description = desc;

}

public String getServerName() {
return serverName;

}

public void setServerName(String name) {
serverName = name;

}

public int getPortNumber() {
return portNumber;

}

public void setPortNumber(int port) {
portNumber = port;

}

public String getDatabaseName() {
return databaseName;

}

public void setDatabaseName(String name) {
databaseName = name;

}

public Connection getConnection() throws SQLException{
return getConnection(null, null);

}

public Connection getConnection(String userid, String password)
throws SQLException {

String url = "jdbc:oracle:" + getSubname();
return DriverManager.getConnection(url, userid, password);

}

protected String getSubname() {
return (isUsingThinDriver()

? "thin:@" + getServerName() + ":" + getPortNumber() + ":" +

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)486

getDatabaseName()
: "oci8:@" + getDatabaseName());

}

public int getLoginTimeout() throws SQLException {
return DriverManager.getLoginTimeout();

}

public PrintWriter getLogWriter() throws SQLException {
return DriverManager.getLogWriter();

}

public void setLoginTimeout(int timeout) throws SQLException {
DriverManager.setLoginTimeout(timeout);

}

public void setLogWriter(PrintWriter writer) throws SQLException {
DriverManager.setLogWriter(writer);

}

}

I need to make several important points concerning this DataSource implementation.
First, the property names (description, serverName, portNumber, and databaseName) weren’t
selected arbitrarily but are defined in the JDBC 2.x specification. When creating a DataSource
property, you should use the name documented in the specification when one has been
defined for the type of property you’re creating.

Second, it’s also worth noting that some of the methods defined in DataSource are identical
to those implemented in DriverManager, and in the case of OracleDriver, those methods sim-
ply call their DriverManager equivalent. This duplication of methods is because of DataSource
having effectively superceded DriverManager as the preferred mechanism for creating connec-
tions, although as mentioned earlier, it’s still appropriate in most cases to use DriverManager.

Finally, although it wasn’t done in this case, you may want to include user ID and password
values when creating a DataSource instance so that those values don’t need to be specified each
time your application requests a database connection.

DatabaseMetaData
The DatabaseMetaData interface defines a large number of methods that allow you to identify
the capabilities of the DBMS and the JDBC driver, as well as allowing you to obtain a descrip-
tion of the contents of the database. For example, you can retrieve the list of schemas defined
in the database, the tables within each schema, the columns within each table, and the
characteristics of those columns, such as their size and data types. In addition, you can use
DatabaseMetaData to identify primary and foreign keys, indices, and many other items.

In general, the methods in DatabaseMetaData fall into one of two categories: those for
describing features and functionality and those that describe the contents of the database.

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 487

The methods that describe database features and functionality typically return a boolean,
an int, or a String; some examples include the following:

• supportsOuterJoins() returns a boolean that indicates whether the database supports
outer joins.

• getMaxConnections() returns an int that identifies the maximum number of simultane-
ous connections that can be open to the database.

• getDatabaseProductName() returns the name of the DBMS product.

In contrast, the methods that describe the contents of the database do so by returning
an implementation of ResultSet, an interface described later in the chapter that’s normally
used in JDBC to represent the results of a query. Examples of this category of method include
getSchemas(), which returns a list of schemas defined in the database, and getTables(), which
as its name implies returns a list of the tables defined.

Once you’ve successfully connected to the database, it’s possible to obtain a reference to
an instance of DatabaseMetaData using code similar to the following:

Connection connect = DriverManager.getConnection(url, "bspell", "brett");
DatabaseMetaData dmd = connect.getMetaData();

As Figure 11-3 shows, the DatabaseBrowser application in Listing 11-3 allows you to browse
the tables in a database, and you accomplish this by using DatabaseMetaData to dynamically
identify the accessible tables. Since this code uses the JDBC-ODBC bridge driver, you don’t
need to obtain any third-party drivers to run the application.

Figure 11-3. The DatabaseBrowser application allows you to browse the information in a
database.

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)488

Listing 11-3. DatabaseBrowser Application

import java.awt.*;
import java.awt.event.*;
import java.sql.*;
import java.util.Vector;
import javax.swing.*;
import javax.swing.table.*;

public class DatabaseBrowser extends JFrame {

protected Connection connection;
protected JComboBox catalogBox;
protected JComboBox schemaBox;
protected JComboBox tableBox;
protected JTable table;

public static void main(String[] args) throws Exception {
new sun.jdbc.odbc.JdbcOdbcDriver();
DatabaseBrowser db = new DatabaseBrowser();

}

public DatabaseBrowser() throws Exception {
super("Database Browser");
ConnectionDialog cd = new ConnectionDialog(this);
connection = cd.getConnection();
buildFrameLayout();
setSize(600, 450);
setVisible(true);

}

protected void buildFrameLayout() {
Container pane = getContentPane();
pane.add(getSelectionPanel(), BorderLayout.NORTH);
table = new JTable();
table.setAutoResizeMode(JTable.AUTO_RESIZE_OFF);
refreshTable();
pane.add(new JScrollPane(table), BorderLayout.CENTER);
pane.add(getFrameButtonPanel(), BorderLayout.SOUTH);

}

protected JPanel getSelectionPanel() {
JLabel label;
JPanel panel = new JPanel();
panel.setLayout(new GridBagLayout());
GridBagConstraints gbc = new GridBagConstraints();
gbc.gridy = 0;

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 489

gbc.insets = new Insets(5, 10, 5, 10);
label = new JLabel("Catalog", JLabel.RIGHT);
panel.add(label, gbc);
label = new JLabel("Schema", JLabel.RIGHT);
panel.add(label, gbc);
label = new JLabel("Table", JLabel.RIGHT);
panel.add(label, gbc);

gbc.gridy = 1;
catalogBox = new JComboBox();
populateCatalogBox();
panel.add(catalogBox, gbc);
schemaBox = new JComboBox();
populateSchemaBox();
panel.add(schemaBox, gbc);
tableBox = new JComboBox();
populateTableBox();
panel.add(tableBox, gbc);

catalogBox.addItemListener(new ItemListener() {
public void itemStateChanged(ItemEvent event) {
String newCatalog = (String)(

catalogBox.getSelectedItem());
try {
connection.setCatalog(newCatalog);

} catch (Exception e) {};
populateSchemaBox();
populateTableBox();
refreshTable();

}
});

schemaBox.addItemListener(new ItemListener() {
public void itemStateChanged(ItemEvent event) {
populateTableBox();
refreshTable();

}
});

tableBox.addItemListener(new ItemListener() {
public void itemStateChanged(ItemEvent event) {
refreshTable();

}
});
return panel;

}

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)490

protected void populateCatalogBox() {
try {
DatabaseMetaData dmd = connection.getMetaData();
ResultSet rset = dmd.getCatalogs();
Vector values = new Vector();
while (rset.next()) {
values.addElement(rset.getString(1));

}
rset.close();
catalogBox.setModel(new DefaultComboBoxModel(values));
catalogBox.setSelectedItem(connection.getCatalog());
catalogBox.setEnabled(values.size() > 0);

} catch (Exception e) {
catalogBox.setEnabled(false);

}
}

protected void populateSchemaBox() {
try {
DatabaseMetaData dmd = connection.getMetaData();
ResultSet rset = dmd.getSchemas();
Vector values = new Vector();
while (rset.next()) {
values.addElement(rset.getString(1));

}
rset.close();
schemaBox.setModel(new DefaultComboBoxModel(values));
schemaBox.setEnabled(values.size() > 0);

} catch (Exception e) {
schemaBox.setEnabled(false);

}
}

protected void populateTableBox() {
try {
String[] types = {"TABLE"};
String catalog = connection.getCatalog();
String schema = (String)(schemaBox.getSelectedItem());
DatabaseMetaData dmd = connection.getMetaData();
ResultSet rset = dmd.getTables(catalog, schema, null,

types);
Vector values = new Vector();
while (rset.next()) {
values.addElement(rset.getString(3));

}

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 491

rset.close();
tableBox.setModel(new DefaultComboBoxModel(values));
tableBox.setEnabled(values.size() > 0);

} catch (Exception e) {
tableBox.setEnabled(false);

}
}

protected JPanel getFrameButtonPanel() {
JPanel panel = new JPanel();
JButton button = new JButton("Exit");
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
System.exit(0);

}
});
panel.add(button);
return panel;

}

protected void refreshTable() {
String catalog = (catalogBox.isEnabled() ?

catalogBox.getSelectedItem().toString() :
null);

String schema = (schemaBox.isEnabled() ?
schemaBox.getSelectedItem().toString() :
null);

String tableName = (String)tableBox.getSelectedItem();
if (tableName == null) {
table.setModel(new DefaultTableModel());
return;

}
String selectTable = (schema == null ? "" : schema + ".") +

tableName;
if (selectTable.indexOf(‘ ‘) > 0) {
selectTable = "\"" + selectTable + "\"";

}
try {
Statement stmt = connection.createStatement();
ResultSet rset = stmt.executeQuery("SELECT * FROM " +

selectTable);
table.setModel(new ResultSetTableModel(rset));

} catch (Exception e) {};
}

class ConnectionDialog extends JDialog {

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)492

protected JTextField useridField;
protected JTextField passwordField;
protected JTextField urlField;

protected boolean canceled;
protected Connection connect;

public ConnectionDialog(JFrame f) {
super(f, "Connect To Database", true);
buildDialogLayout();
setSize(300, 200);

}

public Connection getConnection() {
setVisible(true);
return connect;

}

protected void buildDialogLayout() {
JLabel label;

Container pane = getContentPane();
pane.setLayout(new GridBagLayout());
GridBagConstraints gbc = new GridBagConstraints();
gbc.anchor = GridBagConstraints.WEST;
gbc.insets = new Insets(5, 10, 5, 10);

gbc.gridx = 0;
gbc.gridy = 0;
label = new JLabel("Userid:", JLabel.LEFT);
pane.add(label, gbc);

gbc.gridy++;
label = new JLabel("Password:", JLabel.LEFT);
pane.add(label, gbc);

gbc.gridy++;
label = new JLabel("URL:", JLabel.LEFT);
pane.add(label, gbc);

gbc.gridx = 1;
gbc.gridy = 0;

useridField = new JTextField(10);
pane.add(useridField, gbc);

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 493

gbc.gridy++;
passwordField = new JTextField(10);
pane.add(passwordField, gbc);

gbc.gridy++;
urlField = new JTextField(15);
pane.add(urlField, gbc);

gbc.gridx = 0;
gbc.gridy = 3;
gbc.gridwidth = GridBagConstraints.REMAINDER;
gbc.anchor = GridBagConstraints.CENTER;
pane.add(getButtonPanel(), gbc);

}

protected JPanel getButtonPanel() {
JPanel panel = new JPanel();
JButton btn = new JButton("Ok");
btn.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
onDialogOk();

}
});
panel.add(btn);
btn = new JButton("Cancel");
btn.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
onDialogCancel();

}
});
panel.add(btn);
return panel;

}

protected void onDialogOk() {
if (attemptConnection()) {
setVisible(false);

}
}

protected void onDialogCancel() {
System.exit(0);

}

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)494

protected boolean attemptConnection() {
try {
connect = DriverManager.getConnection(

urlField.getText(),
useridField.getText(),
passwordField.getText());

return true;
} catch (Exception e) {
JOptionPane.showMessageDialog(this,

"Error connecting to " +
"database: " + e.getMessage());

}
return false;

}

}

class ResultSetTableModel extends AbstractTableModel {

protected Vector columnHeaders;
protected Vector tableData;

public ResultSetTableModel(ResultSet rset)
throws SQLException {

Vector rowData;
ResultSetMetaData rsmd = rset.getMetaData();
int count = rsmd.getColumnCount();
columnHeaders = new Vector(count);
tableData = new Vector();
for (int i = 1; i <= count; i++) {
columnHeaders.addElement(rsmd.getColumnName(i));

}
while (rset.next()) {
rowData = new Vector(count);
for (int i = 1; i <= count; i++) {
rowData.addElement(rset.getObject(i));

}
tableData.addElement(rowData);

}
}

public int getColumnCount() {
return columnHeaders.size();

}

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 495

public int getRowCount() {
return tableData.size();

}

public Object getValueAt(int row, int column) {
Vector rowData = (Vector)(tableData.elementAt(row));
return rowData.elementAt(column);

}

public boolean isCellEditable(int row, int column) {
return false;

}

public String getColumnName(int column) {
return (String)(columnHeaders.elementAt(column));

}

}

}

Statement
Once you’ve obtained a database connection through DriverManager or through a DataSource,
you can create a Statement object. A Statement allows you to execute SQL commands, and you
can create an instance of Statement by calling Connection’s createStatement() method:

Connection connect = DriverManager.getConnection("jdbc:odbc:projava");
Statement stmt = connect.createStatement();

In JDBC 1.x, the Statement interface defines three methods for executing SQL commands,
and JDBC 2.x adds a fourth. The specific methods used will depend upon the type of state-
ments you’re executing and the type of results returned by those statements.

You can reuse a single instance of Statement repeatedly to execute SQL statements, and
simple applications usually need to create only one Statement. However, each instance allows
only a single SQL command to be active at any given time, so you may sometimes need to
create multiple Statement objects. For example, if your application needs to perform a query
while the results of a previous query are still being processed, the two queries must be issued
from different Statement instances.

executeUpdate()
This method allows you to execute most Data Manipulation Language (DML) statements
(INSERT, UPDATE, and DELETE) and Data Definition Language (DDL) statements (CREATE TABLE,
CREATE VIEW, and so on). It accepts a single String parameter that represents the SQL statement

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)496

to be executed and returns an integer value identifying the number of rows that were modified
by the statement. The following are examples of how to use executeUpdate():

Statement stmt = connect.createStatement();
int rowsChanged = stmt.executeUpdate(

"UPDATE MYTABLE SET ACCTSTATUS = 0 WHERE CUSTID = 123");
rowsChanged = stmt.executeUpdate(

"UPDATE HERTABLE SET ACCTBAL = 0 WHERE CUSTID = 123");

For DDL commands, a value of zero is always returned by executeUpdate().

executeQuery()
When you want to perform a query (issue a SELECT statement), you can do so using the
executeQuery() method. This method requires a String parameter representing the statement
to be executed, and it returns a ResultSet that can be used to process the results of the query:

ResultSet rset = stmt.executeQuery("SELECT * FROM MYTABLE");

I’ll provide a detailed description of how to use ResultSet later in this chapter.

execute()
In some unusual cases, a single SQL statement can return multiple update counts or
ResultSet instances, and you should use this method when you expect that to be the case.
Like executeUpdate() and executeQuery(), this method is passed a String parameter repre-
senting the statement to be executed, but execute() returns a boolean value instead of an int
or a ResultSet. That value identifies the data type of the first return value and will be true if
the first value is a ResultSet or false if it’s an integer.

You can iterate through the return values by calling getMoreResults(), which returns
a boolean value with the same meaning as the value returned by execute(). ResultSet
instances and integer update counts can be retrieved from the queue using getResultSet()
and getUpdateCount(), respectively, but when getUpdateCount() returns a value of -1, the end
of the result queue has been reached.

addBatch(), executeBatch()
The executeUpdate() method described previously is simple and easy to use but has one
disadvantage: each SQL statement executed is immediately sent to the database. While that
isn’t a problem as long as a small number of updates are being executed, it can result in poor
performance when making many changes to a database. The DBMS server and the client
application typically reside on different machines, which means that each invocation of
executeUpdate() will incur the overhead associated with a network call. That overhead is
usually substantial, and it’s much more efficient to transfer a large amount of data in a single
network call than it is to transfer smaller amounts of data using many calls.

The addBatch() method can be called multiple times for a Statement and allows you to
create a group (or batch) of update (INSERT, UPDATE, DELETE) statements. Once you’ve added
the statements you want to include in the batch, executeBatch() will send those statements

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 497

to the DBMS using a single network call, and the results are returned as an array of int values.
Since batch updates greatly reduce network overhead, they can significantly improve an
application’s performance. This is a simple example of how to use batch updates:

Statement stmt = connect.createStatement();
stmt.addBatch("UPDATE MYTABLE SET STATUS = 5 WHERE CUSTID = 123");
stmt.addBatch("UPDATE HISTABLE SET FIRSTNAME = ‘John’ WHERE CUSTID = 456");
int[] results = stmt.executeBatch();

When all the updates in a batch complete normally, executeBatch() returns an array of
integer values, and there will be an array element for each update statement. Like the integer
value returned by executeUpdate(), each integer identifies the number of rows the statement
changed or will be -2 if that number couldn’t be determined.

A JDBC driver may or may not continue executing batch update statements after one of
them fails. When an error does occur, a BatchUpdateException is thrown that can be used to
retrieve the integer values for the statements that were executed. If the driver continued to
execute updates after a failure, the BatchUpdateException’s getUpdateCounts() method will
return an array of integers for every statement in the batch, including a count value of -3 as
the array element for a statement that wasn’t executed successfully. If the driver stopped exe-
cuting statements once a failure occurred, the integer array will contain only count values for
the statements prior to the one that failed. Regardless of the outcome, the list of SQL com-
mands in the Statement’s batch is cleared once executeBatch() completes. You can also clear
the list of statements without executing them by calling the clearBatch() method.

PreparedStatement
When you call one of Statement’s execute() methods, the SQL statement specified is “compiled”
by the JDBC driver before being sent to the DBMS. In many cases, you’ll want to execute multi-
ple statements that are similar and may differ only by a single parameter value. For example,
you might execute SQL statements like these:

Statement stmt = connect.createStatement();
stmt.executeUpdate(

"UPDATE MYTABLE SET FNAME = 'Jacob' WHERE CUSTID = 123");
stmt.executeUpdate(

"UPDATE MYTABLE SET FNAME = 'Jordan' WHERE CUSTID = 456");
stmt.executeUpdate(

"UPDATE MYTABLE SET FNAME = 'Jeffery' WHERE CUSTID = 789");

Compiling each SQL statement can result in poor performance if a large number of state-
ments are executed. However, this example illustrates the usefulness of PreparedStatement,
which is a subclass of Statement. PreparedStatement allows you to compile a statement one
time and use substitution parameters to modify the final SQL statement that’s executed. In
this case, for example, you might create a PreparedStatement using code like this:

PreparedStatement pstmt = connect.prepareStatement(
"UPDATE MYTABLE SET FNAME = ? WHERE CUSTID = ?");

The two question marks (?) in the statement represent substitution parameters, and you
can use the setXXX() methods defined in PreparedStatement to specify values for those fields.

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)498

For example, the following code is functionally equivalent to the group of statements used
earlier:

PreparedStatement pstmt = connect.prepareStatement(
"UPDATE MYTABLE SET FNAME = ? WHERE CUSTID = ?");

pstmt.setString(1, "Jacob");
pstmt.setInt(2, 123);
pstmt.executeUpdate();

pstmt.setString(1, "Jordan");
pstmt.setInt(2, 456);
pstmt.executeUpdate();

pstmt.setString(1, "Jeffery");
pstmt.setInt(2, 789);
pstmt.executeUpdate();

This approach is much more efficient because the statement is compiled only once, but
it’s executed several times.

Note that the substitution field index values are one-based instead of zero-based, mean-
ing that the first question mark corresponds to field 1, the second to field 2, and so on.

Another advantage of using a PreparedStatement instead of a Statement is that it partially
insulates your application from the details of creating a valid SQL statement. For example,
suppose you attempt to execute the following code:

Statement stmt = connect.createStatement();
String insertText = "This won't work";
String sqlText = "UPDATE MYTABLE SET FNAME = '" + insertText + "' " +

"WHERE CUSTID = 123");
stmt.executeUpdate(sqlText);

The SQL statement that’s constructed in the code segment listed previously will fail
because of the embedded single quote/apostrophe character in the word won’t. In other
words, the SQL statement will contain the following text:

UPDATE MYTABLE SET FNAME = 'This won't work' WHERE CUSTID = 123

It’s possible to solve this problem (and use a Statement) by changing each embedded
apostrophe into a pair of apostrophes. However, that approach is moderately complex and
requires you to perform a conversion on any string that may have embedded apostrophes
before using the string in a SQL statement.

A related problem occurs when embedding date values in a SQL statement, since each
DBMS can define its own date format. For example, the following statement may be valid for
one DBMS but not another:

UPDATE ACCTINFO SET DATEOFSALE = '09-FEB-2001' WHERE ACCTNUM = 456

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 499

A third problem occurs when you want to store binary data in a database. SQL supports
text, numeric, and date information but doesn’t define a way for you to embed a series of byte
values in a SQL statement.

Fortunately, PreparedStatement provides an easy solution for all three of these problems.
Instead of embedding the data value directly inside the SQL statement, you can simply define a
substitution parameter and use a setXXX() method to store the appropriate value. When you do
so, the JDBC driver assumes responsibility for creating a valid SQL statement, which insulates
your application from the details of embedding a particular type of data. For example, you can
store a String value (with or without embedded quotation marks) in a PreparedStatement using
code like this:

String insertText = "This won't work";
PreparedStatement pstmt = connect.prepareStatement(

"UPDATE MYTABLE SET FNAME = ? " +
"WHERE CUSTID = 123");

pstmt.setString(1, insertText);
pstmt.executeUpdate();

You can specify a Date value the same way, as illustrated next. Note, however, that an
instance of java.util.Date must first be converted into an instance of java.sql.Date.

java.util.Date dateValue = new java.util.Date();
java.sql.Date sqlDate = new java.sql.Date(dateValue.getTime());
PreparedStatement pstmt = connect.prepareStatement(

"UPDATE ACCTINFO SET DATEOFSALE = ? " +
"WHERE ACCTNUM = 456");

pstmt.setDate(1, sqlDate);
pstmt.executeUpdate();

Finally, an array of byte values can be stored by encapsulating them in a
ByteArrayInputStream and storing a reference to that stream using setBinaryStream():

byte[] pixelValues;
// ...
PreparedStatement pstmt = connect.prepareStatement(

"UPDATE APPIMAGES SET IMAGEDATA = ? " +
"WHERE IMAGEID = 789");

ByteArrayInputStream bais = new ByteArrayInputStream(pixelValues);
pstmt.setBinaryStream(1, bais, pixelValues.length);

CallableStatement
CallableStatement is a subclass of PreparedStatement, and this class allows you to execute
stored procedures, or programs stored inside a database. Stored procedures are usually written
in a proprietary language such as Oracle’s PL/SQL, and they typically contain a combination of
SQL statements and structured programming instructions. The following is the simplest ver-
sion of a stored procedure call, where myProcedure is a stored procedure that performs a query:

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)500

String procedureCall = "{call myProcedure}";
CallableStatement cstmt = connect.prepareCall(procedureCall);
ResultSet rset = cstmt.executeQuery();

Note that the string used to call the stored procedure is enclosed in braces. This is done
because the syntax for calling stored procedures isn’t a standard part of SQL, so JDBC supports
these calls through its escape syntax. The escape syntax is used for nonstandard SQL exten-
sions that are supported by JDBC, and it indicates to the driver that the escape text must be
converted into a form that’s appropriate for the DBMS.

Like Java methods, stored procedures may allow you to pass parameter values (in stored
procedure terminology, an IN parameter) and may provide a return value (or result parame-
ter). Unlike Java methods, however, stored procedures can return multiple values through
OUT parameters, and a parameter can be an IN parameter, an OUT parameter, or both (INOUT).
Parameters are identified by question marks in CallableStatement commands the same way
that substitution fields are identified for PreparedStatement commands. For example, to call
myProcedure and indicate that it returns a result parameter, you could execute the following:

String procedureCall = "{?= call myProcedure}";

You can specify IN and OUT parameters inside parentheses as illustrated in the following
example, where three parameters are specified for myProcedure:

String procedureCall = "{?= call myProcedure(?, ?, ?)}";

Before calling a stored procedure, you must provide a value for each IN parameter and
identify the type of data that will be returned by each OUT parameter. You provide a value for
an IN parameter in the same way as you set values for PreparedStatement instances—using the
setXXX() methods:

String procedureCall = "{?= call myProcedure(?, ?, ?)}";
CallableStatement cstmt = connect.prepareCall(procedureCall);
cstmt.setString(2, "Hello");
cstmt.setInt(3, 123);
cstmt.setBoolean(4, true);

Identifying the type of data returned by each OUT parameter is equally simple; you do so
using CallableStatement’s registerOutParameter() method. When calling that method, you
must specify the index of the parameter and an integer value that corresponds to one of the
data types defined in java.sql.Types, which is described next. In this example, the result
parameter is expected to return a numeric value, and the second of the three IN parameters is
also declared as an OUT (or more accurately, as an INOUT) parameter that returns character data:

Connection connect = null;
String procedureCall = "{?= call myProcedure(?, ?, ?)}";
CallableStatement cstmt = connect.prepareCall(procedureCall);
cstmt.setString(2, "Hello");
cstmt.setInt(3, 123);
cstmt.setBoolean(4, true);
cstmt.registerOutParameter(1, Types.NUMERIC);
cstmt.registerOutParameter(3, Types.VARCHAR);

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 501

Once the stored procedure has been executed, you can retrieve values from the result,
OUT, and INOUT parameters using the getXXX() methods defined in CallableStatement:

String procedureCall = "{?= call myProcedure(?, ?, ?)}";
CallableStatement cstmt = connect.prepareCall(procedureCall);
cstmt.setString(2, "Hello");
cstmt.setInt(3, 123);
cstmt.setBoolean(4, true);
cstmt.registerOutParameter(1, Types.NUMERIC);
cstmt.registerOutParameter(3, Types.VARCHAR);
cstmt.execute();
java.math.BigDecimal bd = cstmt.getBigDecimal(1);
String str = cstmt.getString(3);

Named Parameters
In all the code examples you’ve seen so far, a position index identified which parameter to set
or retrieve. However, the JDBC 3.0 specification supports the ability to reference parameters
by name, allowing you to create code that’s more readable, like this:

cstmt.setString("Greeting", "Hello");
cstmt.setInt("CustNumber", 123);
cstmt.setBoolean("Registered", true);

ParameterMetaData
Just as the DatabaseMetaData provides metadata about the database, an instance of
ParameterMetaData describes the parameters associated with a PreparedStatement. You can
use this information to dynamically obtain information about the types of data associated
with the parameters in a PreparedStatement, and the following code illustrates an example
of how you can use it to display the data type name associated with the underlying database
column:

PreparedStatement pstmt;
// …
ParameterMetaData pmd = pstmt.getParameterMetaData();
int count = pmd.getParameterCount();
for (int i = 1; i <= count; i++) {

System.out.println("Parameter " + i +
" is associated with a column of type " + pmd.getColumnTypeName(i);

}

Note that ParameterMetaData is also available for implementations of CallableStatement,
which is a subinterface of PreparedStatement, and ParameterMetaData also allows you to deter-
mine the mode (IN, OUT, or INOUT) of each parameter.

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)502

JDBC Data Types
SQL defines a number of standard data types, and those types are represented in Java by inte-
ger constants defined in the java.sql.Types class. As indicated in Table 11-2, JDBC defines a
mapping between each SQL data type and a Java class that’s able to encapsulate values of that
type. The table lists each SQL type/Types constant, its associated Java class, and an indication
of the release (JDBC 1.x or 2.x) in which the type was introduced.

Table 11-2. SQL Type/Types Constant

SQL Type/Types Constant Associated Java Type JDBC Version

ARRAY java.sql.Array 2.x

BIGINT long 1.x

BINARY byte[] 1.x

BIT boolean 1.x

BLOB java.sql.Blob 2.x

BOOLEAN boolean 3.x

CHAR String 1.x

CLOB java.sql.Clob 2.x

DATALINK java.net.URL 3.x

DATE java.sql.Date 1.x

DECIMAL java.math.BigDecimal 1.x

DISTINCT (See the “DISTINCT” section.) 2.x

DOUBLE double 1.x

FLOAT double 1.x

INTEGER int 1.x

JAVA_OBJECT (See the “JAVA_OBJECT” section.) 2.x

LONGVARBINARY byte[] 1.x

LONGVARCHAR String 1.x

NULL null 1.x

NUMERIC java.math.BigDecimal 1.x

OTHER (See the “OTHER” section.) 1.x

REAL float 1.x

REF java.sql.Ref 2.x

SMALLINT short 1.x

STRUCT java.sql.Struct 2.x

TIME java.sql.Time 1.x

TIMESTAMP java.sql.Timestamp 1.x

TINYINT byte 1.x

VARBINARY byte[] 1.x

VARCHAR String 1.x

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 503

Most of these types should be self-explanatory, but some that may not be are
described next.

ARRAY
Most database columns can contain only a single value of a simple data type in each row.
However, the SQL3 standard provides support for an ARRAY type that allows you to define
columns that contain an array of values in each row.

To store an array in a database column, you can use code like this:

String[] names = {"Jacob", "Jordan", "Jeffery"};
PreparedStatement ps = connect.prepareStatement(

"UPDATE NAMETABLE SET NAMECOL = ? WHERE EMPLOYEE = 123");
ps.setObject(1, names);
ps.executeUpdate();

To read an array of values from a database row, you can use the getArray() method in
ResultSet:

String[] names;
Statement stmt = connect.createStatement();
ResultSet rset = stmt.executeQuery(

"SELECT * FROM NAMETABLE WHERE EMPLOYEE = 123");
if (rset.next()) {
Array sqlArray = rset.getArray("NAMECOL");
names = (String[])(sqlArray.getArray());
for (int i = 0; i < names.length; i++) {
System.out.println(names[i]);

}
}

Alternatively, you can use the getResultSet() method defined in Array instead of
getArray(). The following code segment will produce the same output as the one shown pre-
viously, but it retrieves the values through a ResultSet instead of an array of String instances:

Statement stmt = connect.createStatement();
ResultSet rset = stmt.executeQuery(

"SELECT * FROM NAMETABLE WHERE EMPLOYEE = 123");
if (rset.next()) {
Array sqlArray = rset.getArray("NAMECOL");
ResultSet arraySet = sqlArray.getResultSet();
while (arraySet.next()) {
System.out.println(arraySet.getObject(2));

}
}

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)504

BLOB, CLOB
When you perform a query and access a value stored in a table row, you normally must
retrieve the entire value. For example, if you perform a query that returns table rows contain-
ing character data, the full-text value is returned when you call getString() or getObject().
That behavior is acceptable in most cases, but it can be a problem when reading data from
columns that contain extremely large values. For example, if a column contains binary data
that represents a large audio or video “clip,” it may be undesirable or even impossible to read
the entire clip into memory at one time because of its size.

SQL3 defines the Binary Large Object (BLOB) and Character Large Object (CLOB) types
that are represented by the Blob and Clob interfaces in java.sql. These new types allow you to
retrieve and update specific portions of a database column’s value instead of requiring that the
entire value be read into memory. In addition, the Blob and Clob interfaces define methods
that allow you to search for a particular sequence of byte values (for BLOBs) or characters (for
CLOBs) without first retrieving the data you’re searching against from the database. For exam-
ple, the following code performs a query, obtains a Clob from the ResultSet, and searches for
Pro Java Programming in the text stored in the database. If that string is found, up to 100 char-
acters are read from the database starting at the position where the search text was located.

ResultSet rset = stmt.executeQuery(
"SELECT * FROM MYBOOK WHERE TEXTID = 123");

Clob myClob = rset.getClob("CHAPTERTEXT");
long index = myClob.position("Pro Java Programming", 0);
if (index != -1) {
String theText = myClob.getSubString(index, 100);

}

DATALINK
The JDBC 3.0 specification introduced this data type, and it’s used to represent a URL. A URL
can be stored as a parameter in a PreparedStatement using the setURL() method and can be
retrieved from a query using the getURL() methods defined within ResultSet, as follows:

Connection conn;
URL url;
// . . .
PreparedStatement pstmt = conn.prepareStatement(

"DELETE FROM FAVORITE WHERE BROWSER_HISTORY = ?");
pstmt.setURL(1, url);

DATE, TIME, TIMESTAMP
The DATE type defined by SQL represents a date (day, month, and year) value only, TIME repre-
sents a time (hours, minutes, and seconds) only, and TIMESTAMP is a combination of a date and
a time. Each of these is represented by a java.util.Date subclass defined in java.sql such as
the java.sql.Timestamp class.

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 505

The java.util.Date class couldn’t be used directly to represent a TIMESTAMP because SQL’s
definition of that type requires that it support nanosecond values, while java.util.Date sup-
ports nothing smaller than milliseconds.

DISTINCT
SQL3 supports user-defined types (UDTs) that allow users to define new data types based on
existing types. A distinct data type is a user-defined type that’s based on a single existing SQL
data type. For example, you might want to create a new type to represent the two-character
language codes used by Java’s Locale object, which can be accomplished with the following
SQL command:

CREATE TYPE LANGUAGECODE AS CHAR(2);

Once a distinct type has been created, it can be used when defining the columns that
make up tables within the database. You can retrieve the value of a distinct data type from
a ResultSet by using the getXXX() method that’s appropriate for the underlying type. In
this case, for example, you’d use getString() to retrieve the value stored in a LANGUAGECODE
column.

STRUCT
Structured types are similar to distinct types, but structured types allow you to create more
complex data types. Although conceptually similar to classes, a SQL structured type contains
only data, while classes typically contain both data and logic. For example, suppose you have
a Java class like this one:

public class Student {

public String name;
public int studentID;
public java.util.Date dateOfBirth;
public float testScore;

}

In practice, this class would normally contain accessor and mutator methods for its
properties, although those are omitted here for the sake of simplicity. In any case, given this
Student class, an equivalent structured type could be created using a SQL command similar
to this one:

CREATE TYPE STUDENT {
STUDENTNAME VARCHAR(20),
STUDENTID NUMERIC(10),
DATEOFBIRTH DATE,
TESTSCORE NUMERIC(5, 2)

}

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)506

Once a structured type has been created, it can be used when defining the columns that
make up database tables.

Since they’re conceptually similar to classes, structured types can be useful for providing
object persistence; Chapter 12 discusses that.

REF
Just as SQL3’s structured types are similar to classes, its new REF type provides functionality
similar to that of an object reference, and a SQL3-compliant DBMS will allow you to create
columns containing references to structured type instances. For example, if you define the
STUDENT structured type described previously, you can define table columns that contain refer-
ences to instances of STUDENT.

Although conceptually similar to one another, an instance of SQL’s REF type doesn’t map
directly to a Java object reference. You can’t, for example, create an instance of the Student
class and store a reference to that object in a database. It’s possible to obtain access to a REF
using the ResultSet’s getRef() method that returns an instance of java.sql.Ref. However, Ref
doesn’t currently provide any useful functionality. Intuitively, you might expect a Ref to allow
you to access the values stored in the structured type/object instance, but that isn’t the case.
To access those values, you must perform a query/SELECT and specify the Ref value in a WHERE
clause just as you would a traditional primary key.

JAVA_OBJECT
A DBMS may provide direct support for storing Java objects in the database, and this type
identifies columns that contain some type of Java object.

OTHER
This value represents columns that have a type that the JDBC driver was unable to map to
a known SQL type.

ResultSet
An instance of ResultSet is returned from executeQuery(), and one or more instances may be
returned from execute(). A ResultSet is a representation of the data returned by your query,
and it allows you to process the results one row at a time. Before you can process a row, you
must move the ResultSet’s cursor (pointer) to that row, and the row that’s pointed to by the
cursor is called the current row. When a ResultSet is created, the cursor is initially positioned
before the first row.

You should be aware that the data returned by your query isn’t usually stored in the
ResultSet object. In most cases, the data remains on the database server and only when the
cursor moves to a particular row is that row read from the server and cached by the ResultSet.
This allows you to perform queries that return a much larger volume of data than can be
cached in your machine’s memory.

Instances of ResultSet are sometimes returned by methods in java.sql when no query
has been issued explicitly. For example, some of the methods defined in DatabaseMetaData

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 507

return data in the form of a ResultSet, as previously illustrated in the DatabaseBrowser appli-
cation in Listing 11-3.

It’s helpful to review some ResultSet properties before describing the methods defined in
that interface, because its properties determine which of a ResultSet’s methods you’re able to
use for a particular instance and how they function.

Forward-Only vs. Scrollable (Scrollability Type)
Scrollability describes the type of cursor movement that’s allowed, and a forward-only
ResultSet allows the cursor to be moved forward only one row at a time using the next()
method. However, with a scrollable ResultSet, you can use a variety of methods to position
the cursor. It can be moved forward or backward, and it can be moved in those directions by
any number of rows. In addition, it’s possible to move the cursor to a specific row (in other
words, to use absolute instead of relative positioning), including the first and last rows in the
ResultSet.

Only the next() method is defined in JDBC 1.x, and the other cursor positioning methods
were added to ResultSet as part of the JDBC 2.x enhancements. Even if a JDBC driver is com-
pliant with the 2.x specification, it may not allow you to create a scrollable ResultSet.

You can determine which ResultSet types are supported by calling the supports➥

ResultSetType() method in DatabaseMetaData.

Read-Only vs. Updatable (Concurrency Mode)
ResultSet defines a large number of getXXX() methods that allow you to read column values
from the current row (for example, getString(), getFloat(), and so on), and it includes a
corresponding updateXXX() method for each getXXX(). While it’s always possible to call the
read/get methods, a ResultSet’s concurrency mode determines whether you can use the
write/update methods. As its name implies, a read-only ResultSet allows you only to read the
data, while an updatable ResultSet allows you both to read the data and to modify it through
the ResultSet.

The updateXXX() methods were added to ResultSet as part of the enhanced functionality
of JDBC 2.x, but even some JDBC 2.x–compliant drivers may not support updatable result sets.

However, your application can determine which concurrency modes are supported by
calling the supportsResultSetConcurrency() method in DatabaseMetaData.

Update Sensitivity
While you’re using a ResultSet to process the results of a query, it’s usually possible for other
users/applications to modify the rows in the database that were returned by your query.
Update sensitivity indicates whether the ResultSet will reflect changes that are made to the
underlying data after the ResultSet is created. Those updates are known as “changes by
others” to distinguish them from changes made to the data using an updatable ResultSet’s
updateXXX() methods. If you call a getXXX() method to read data from the current row, a sen-
sitive ResultSet will return the data stored in the underlying database even if the data was
changed by another user after the ResultSet was created. However, an insensitive ResultSet
doesn’t detect such changes and may return outdated information.

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)508

Update sensitivity doesn’t imply that a ResultSet is sensitive to all types of changes. For
example, a ResultSet might be sensitive to row deletions but not to row updates or insertions.
In addition, a ResultSet’s sensitivity to “changes by others” can be different from its sensitivity
to its own changes (modifications to the data made through the updateXXX() methods). How-
ever, DatabaseMetaData provides methods that allow you to determine which types of changes
are visible for a given ResultSet type.

Holdability
In some cases, you’ll use a particular database connection to make changes to data while ref-
erencing the data in a ResultSet that was created using that same connection, but this may
not always be possible. That’s because some implementations will automatically close any
open ResultSet instances when the commit() method is called for the Connection used to cre-
ate those ResultSets. However, you may be able to control this behavior by specifying the
cursor holdability you need when creating a Statement (or one of its subinterfaces) implemen-
tation. In other words, holdability describes the ability of a ResultSet to remain open even
when changes are committed for the underlying Connection.

Selecting ResultSet Properties
To set the scrollability, concurrency, and sensitivity properties, you must specify the appropriate
values when creating a Statement. The code segments shown earlier used the createStatement()
method that doesn’t accept any parameter values, but another version of createStatement()
allows you to specify two integer values representing ResultSet properties:

int resultSetType, resultSetConcurrency;
// ...
Statement stmt = connect.createStatement(resultSetType,

resultSetConcurrency);

The resultSetType parameter represents a combination of the scrollability and sensitivity
properties, and it should be assigned one of the following constants defined in ResultSet:
TYPE_FORWARD_ONLY, TYPE_SCROLL_INSENSITIVE, or TYPE_SCROLL_SENSITIVE.

The resultSetConcurrency value represents the concurrency mode for ResultSet instances
created by this statement and should be assigned the value of either CONCUR_READ_ONLY or
CONCUR_UPDATABLE.

You can use these constants and the createStatement() method shown previously to cre-
ate a Statement that will produce ResultSet instances with the desired properties. For example,
you can use code similar to the following to create a Statement and request that the ResultSet
instances it creates be scrollable, sensitive to others’ changes, and updatable:

Statement stmt = connect.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);

Note that if you specify a type of ResultSet that’s not supported by the driver, it won’t
generate an error when createStatement() is called.

Instead, the Statement will produce ResultSet instances that match the type you requested
as closely as possible. In this case, for example, if the driver supports updatable ResultSet
instances but not scrolling, it will create forward-only instances that are updatable.

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 509

You may also be able to denote the desired holdability by specifying a third parameter
as in the following example and specifying either the HOLD_CURSORS_OVER_COMMIT or the
CLOSE_CURSORS_AT_COMMIT constant defined in ResultSet:

Statement stmt = connect.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE),
ResultSet.HOLD_CURSORS_OVER_COMMIT

Performance Hints
For drivers that support JDBC 2.x, it’s possible to provide information that can improve the
performance of a ResultSet. As mentioned earlier, a row is normally retrieved from the data-
base only after it becomes the ResultSet’s current row, but JDBC 2.x allows buffering or
prefetching of rows by a ResultSet.

The fetch size specifies the number of rows that the ResultSet should retrieve from the
database each time it needs to read new rows, and that value is set using the setFetchSize()
method. In other words, when the driver is capable of buffering database records, this value
identifies the maximum number of records that should be buffered. For example, suppose you
execute the following code:

ResultSet rset = stmt.executeQuery("SELECT * FROM MYTABLE");
rset.setFetchSize(10);

If you execute the ResultSet’s next() method, it should retrieve ten records from the
database and store them in a buffer. As your application executes the next() method again to
process more records, the ResultSet won’t request more data from the database until all ten
of the original records have been processed. Once that occurs, the ResultSet will retrieve up
to ten more records, and the process will be repeated. Just as performing updates in a batch
improved performance by reducing network calls, this type of record buffering can improve
performance for the same reason.

You can also suggest a fetch direction to the driver, and doing so may improve its perform-
ance by identifying the direction in which you plan to process the records in a ResultSet. You
specify the fetch direction using the setFetchDirection() method, and that method requires
an integer parameter value that should be equal to FETCH_FORWARD or to FETCH_REVERSE, both
of which are constants defined in ResultSet.

Note that the fetch size and fetch direction settings are described as hints because the
driver may choose to ignore one or both of those values. In fact, a driver may not even support
prefetching/buffering of rows at all.

Using ResultSet
Almost all the methods defined in ResultSet fall into one of three categories: cursor position-
ing, data retrieval, and data modification.

Cursor Positioning
The positioning methods allow you to change the position of the cursor so you can select
which row to process. As mentioned earlier, JDBC 1.x supports only the next() method, which

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)510

moves the cursor forward one row, and even some JDBC 2.x drivers may not support scrolla-
ble ResultSet instances.

The next() method doesn’t accept any parameter values and returns a boolean value that
indicates whether another row was found. In other words, the value returned from next() is
the ResultSet equivalent of an end-of-file indicator. If it returns true, the cursor points to a
valid row that can be processed, but if it returns false, the cursor has moved beyond the last
row in the ResultSet.

The following code segment shows how to iterate through the rows in a ResultSet using
next():

ResultSet rset = stmt.executeQuery("SELECT * FROM MYTABLE");
while (rset.next()) {
// Process the current row here

}

The other positioning methods mentioned earlier aren’t described in detail here, but
they’re equally simple to use and allow you to move the cursor to any row in the ResultSet. You
can use relative positioning to move the cursor forward or back a specified number of rows, or
you can use absolute positioning to move the cursor to a specific row. For example, to move the
cursor back five rows from its current position, you could execute the following code:

ResultSet rset;
// ...
rset.relative(-5);

In addition, positioning methods are provided that move the cursor to (or before) the first
row in the ResultSet and to (or after) the last row.

Data Retrieval
The getXXX() methods defined in ResultSet allow you to retrieve data from the current row,
and the specific method used determines the type of value returned. For example, getBytes()
returns an array of bytes, getString() returns a String instance, getInt() an int value, and so
on. In most cases you’ll know in advance which data type is stored in a particular column, but
if you don’t know, you may want to use the getObject() method. When getObject() is called, it
returns an Object that’s appropriate for the type of data stored in the column, such as a String
for character data, a byte array for raw binary data, an appropriate wrapper object for primi-
tive types (for example, a BigDecimal for numeric data), and so on.

Two implementations are provided for each data retrieval getXXX() method defined in
ResultSet: one that accepts an integer parameter and another that requires a String. The inte-
ger value represents the position within the ResultSet of the column from which the data
should be retrieved and is one-based. For example, to retrieve a String value from the second
column, you could use code similar to the following:

ResultSet rset;
// ...
String columnValue = rset.getString(2);

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 511

The getXXX() methods that accept a String parameter require that the String be equal to
the name of one of the columns in the ResultSet:

ResultSet rset;
// ...
String columnValue = rset.getString("FIRSTNAME");

Note that some drivers may not allow you to retrieve a column’s value more than once
and/or require that you must access the columns in left-to-right order. If your application’s
design makes it necessary to access the data repeatedly, you may need to read the data from
the ResultSet and cache it in memory to allow your code to function properly.

Data Modification
When a ResultSet is updatable, you can use its updateXXX() methods to modify the data in the
current row, while insertRow() and deleteRow() insert a new row and delete the current row,
respectively.

The updateXXX() methods are similar to the getXXX() in that you can specify either a col-
umn’s name or its index in the ResultSet. For example, to update the third column with a float
value, you could execute code like this:

ResultSet rset;
// ...
rset.updateFloat(3, 123.45f);

Modifications you make to the ResultSet’s data aren’t immediately propagated to the
underlying database.

Calling updateRow() causes any changes made to the current row to be saved, while
cancelRowUpdates() causes your changes to be discarded.

The refreshRow() method also causes any updates to be discarded, but there’s an impor-
tant difference between it and cancelRowUpdates(). While cancelRowUpdates() causes the
row’s original values to be restored, refreshRow() actually rereads the row from the database.
This can be useful if the information may have changed in a way that can affect the behavior
of your application.

Determining the Number of Rows Returned
You’ll often want to determine the number of rows returned by a query before processing the
ResultSet data, but JDBC 1.x doesn’t provide any way to do so directly. You have at least two
ways of doing so indirectly, but both of them require you to execute an extra SELECT statement,
and neither of them is acceptable in all situations.

One option is to issue a SELECT statement that uses the aggregate COUNT(*) function to
determine the number of records. This approach is easy to implement, but it requires you to
effectively perform the same query twice, which can significantly degrade the performance of
your application since queries are often very time-consuming. However, this approach may
be acceptable with smaller databases, and the following is an example of how to use COUNT(*):

int recordCount;
Statement stmt = connect.createStatement();

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)512

// Get the number of records matching the search criteria
ResultSet rset = stmt.executeQuery(
"SELECT COUNT(*) FROM EMPLOYEE WHERE SALARY < 50000");

if (rset.next()) {
recordCount = rset.getInt(1);

}
// Now get the real data
rset = stmt.executeQuery("SELECT * FROM EMPLOYEE WHERE SALARY < 50000");

The only other approach available with JDBC 1.x is to perform the same query twice, iter-
ating through the records returned the first time to obtain a count. This technique may be
appropriate when the number of records returned in the ResultSet is small but is usually not
acceptable for larger amounts of data.

int recordCount = 0;
Statement stmt = connect.createStatement();
// Get the number of records matching the search criteria
ResultSet rset = stmt.executeQuery(

"SELECT * FROM EMPLOYEE WHERE SALARY < 50000");
while (rset.next()) {
recordCount++;

}
// Now get the real data
rset = stmt.executeQuery("SELECT * FROM EMPLOYEE WHERE SALARY < 50000");

JDBC 2.x provides an easier and more efficient way to determine the number of rows
encapsulated by a ResultSet but only when the ResultSet is scrollable. Specifically, you can
use the last() method defined in JDBC 2.x to move the cursor to the last row in the ResultSet
and then call getRow() to retrieve the index of the current row:

int recordCount;
Statement stmt = connect.createStatement();
// Get the data
ResultSet rset = stmt.executeQuery(

"SELECT COUNT(*) FROM EMPLOYEE WHERE SALARY < 50000");
// Move the cursor to the last row
rset.last();
// Get the current row's index (i.e., the number of rows in the ResultSet)
recordCount = rset.getRow();
// Restore the cursor to its previous position
rset.beforeFirst();

Retrieving Automatically Generated Keys
In many cases, the data you want to store doesn’t inherently include a value that can be used
as the primary key in a database table. For example, let’s suppose you’re creating an applica-
tion that will store information about the customers of a business and you need some sort of
unique identifier for each customer. You could require that each customer provide an existing

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 513

unique identifier such as a Social Security number or a driver’s license number, but you have
no guarantee that each customer will have either one or will know it and be willing to provide
it. As a result, it’s often better to use an identifier that’s meaningful only within your database
and that’s unique within that context; for this reason, most database systems support the con-
cept of an autogenerated key. In most cases, this is simply a number (usually an integer) that’s
automatically incremented each time a new record is added to the table, and you can allow
this number to be automatically created and used as the record’s primary key.

The only problem with autogenerated keys is that because they’re not assigned by your
application, there’s no way for your code to know in advance what key has been assigned to a
given record. For example, let’s suppose you create a class like the following one that describes
a Customer as having a unique identifier and a name:

public class Customer {

private int customerID;
private String name;

public int getCustomerID() {
}

public void setCustomerID(int id) {
customerID = id;

}

public String getName() {
return name;

}

public void setName(String nm) {
name = nm;

}

}

Now let’s also assume you’ve created a database table that includes an autogenerated key
for the customer identifier and that you’ve created a method that can add a newly created
Customer:

public void addNew(Customer customer, Connection conn) throws SQLException {
PreparedStatement pstmt = conn.prepareStatement(

"INSERT INTO CUSTOMER (NAME) VALUES (?)");
pstmt.setString(1, customer.getName());
pstmt.executeUpdate();
pstmt.close();

}

The problem is that after executing this code you now have an instance of Customer in
memory that doesn’t contain the unique identifier that was created when the record was

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)514

added to the database. Fortunately, JDBC 3.0 defines a way that autogenerated keys like the
customer identifier, which is done by calling the getGeneratedKeys() method defined in the
Statement interface. That method returns a ResultSet that contains a row for each autogener-
ated key and can be used to update the Customer object:

pstmt.executeUpdate();
ResultSet rset = pstmt.getGeneratedKeys();
if (rset.next()) {

int customerID = rset.getInt(1);
customer.setCustomerID(customerID);

}

ResultSetMetaData
As described earlier, DatabaseMetaData can determine the capabilities of the DBMS and the
JDBC driver, as well as examine the contents of the database. Similarly, ResultSetMetaData can
obtain information that describes the columns returned by a query, such as each column’s
name and the type of data it contains. ResultSetMetaData can also determine the number of
columns returned by a query, so you could use a code segment like the following one to dis-
play the column names and values returned by a query:

public void printResultSet(ResultSet rset) throws SQLException {
ResultSetMetaData rsmd = rset.getMetaData();
int count = rsmd.getColumnCount();
for (int i = 0; i < count; i++) {
System.out.print((i == 0 ? "" : "\t") +
rsmd.getColumnName(i + 1));

}
System.out.println();
while (rset.next()) {
for (int i = 0; i < count; i++) {
System.out.print((i == 0 ? "" : "\t") +
rset.getObject(i + 1));

}
System.out.println();

}
}

RowSet
The RowSet interface extends ResultSet and provides some potentially useful functionality.
Unlike a ResultSet, which is returned by methods that are used to execute query statements,
your application can create instances of RowSet directly. After creating an instance of RowSet,
you must provide it with the information needed to connect to a database, specifically a user
ID, a password, and a URL or a DataSource name. In addition, you must specify a command

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 515

string, which is simply a String representing a SELECT statement that produces the data that
the RowSet encapsulates.

As mentioned earlier, a row represented by a ResultSet generally remains in the database
until it becomes the current row (in other words, until the cursor is moved to that row). How-
ever, a cached RowSet may choose to read the records it encapsulates into memory, which
provides several benefits:

• The RowSet needs to connect to the database just long enough to retrieve all its records,
while a ResultSet maintains an open connection to the database until the ResultSet
is closed. This type of RowSet that doesn’t normally have an open connection to the
database is known as a disconnected RowSet, while a connected RowSet maintains a
connection as long as it’s open.

• The cached RowSet and its contents can be serialized and stored in a disk file or trans-
mitted across a network.

• A cached RowSet can simulate JDBC 2.x features such as scrolling and updatability even
if the underlying JDBC driver doesn’t support those features. Since the rows from the
database are stored in memory, they can be accessed in any order to simulate a scrolla-
ble ResultSet; simulating an updatable ResultSet is even easier, since the RowSet needs
only to provide updateXXX() implements that modify the cached data.

RowSet provides one other useful feature that ResultSet doesn’t. Specifically, RowSet gen-
erates events that allow listeners to be notified when the RowSet is changed in some way. For
example, notifications are sent when the RowSet is populated with data, when the cursor
moves, and when the RowSet’s data is changed.

Although you can create your own RowSet implementations, Sun provides an example; at
the time of this writing, it’s available on Sun’s JDBC web site (http://java.sun.com/products/
jdbc/). Sun’s CachedRowSet is a cached, disconnected RowSet that can be used to retrieve small
amounts of data from a database and transfer them between different machines. Although it
can theoretically be used to read larger amounts of data, memory constraints generally make
it impossible or at least undesirable to do so.

The following shows an example of how to use the CachedRowSet. This segment creates a
RowSet that encapsulates the data in the TEST database table and stores a serialized represen-
tation of the RowSet in a disk file named rowset.ser.

CachedRowSet rowSet = new CachedRowSet();
rowSet.setCommand("SELECT * FROM TEST");
rowSet.setUrl("jdbc:odbc:mytestdb");
rowSet.setUsername("bspell");
rowSet.setPassword("brett");
rowSet.execute();
FileOutputStream fos = new FileOutputStream("rowset.ser");
ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeObject(rowSet);
oos.close();

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)516

Transactions
Applications often need to make related changes to more than one database table, and it’s
usually important that either all of the changes succeed or none of them do. The classic exam-
ple of this is an application that transfers money from one bank account to another, perhaps
from a savings account to a checking account, or vice versa (see Listing 11-4). If the two
account balances are stored in separate tables, it’s necessary to issue two UPDATE statements:
one that subtracts the appropriate amount from the first table and another that adds the
appropriate amount to the second table.

Listing 11-4. Banking Application

import java.sql.*;

public class TransTest {

protected String url = "jdbc:odbc:banktest";
protected String userid = "bspell";
protected String password = "brett";

public void transferFunds(float transferAmount, int accountNumber,
String fromTable, String toTable) throws SQLException,
InvalidTransferException {

Statement stmt = null;
ResultSet rset = null;
Connection conn = DriverManager.getConnection(url, userid,

password);
try {
stmt = conn.createStatement();
rset = stmt.executeQuery("SELECT BALANCE FROM " + fromTable +

" WHERE ACCOUNTID = " + accountNumber);
rset.next();
float fromBalance = rset.getFloat(1);
if (fromBalance < transferAmount) {
throw new InvalidTransferException("Insufficient funds available");

}
rset.close();
rset = stmt.executeQuery("SELECT BALANCE FROM " + toTable +

" WHERE ACCOUNTID = " + accountNumber);
rset.next();
float toBalance = rset.getFloat(1);
fromBalance -= transferAmount;
toBalance += transferAmount;
stmt.executeUpdate("UPDATE " + fromTable + " SET BALANCE = " +

fromBalance + " WHERE ACCOUNTID = " + accountNumber);
stmt.executeUpdate("UPDATE " + toTable + " SET BALANCE = " +

toBalance + " WHERE ACCOUNTID = " + accountNumber);

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 517

} finally {
if (rset != null) rset.close();
if (stmt != null) stmt.close();
conn.close();

}
}

class InvalidTransferException extends Exception {

public InvalidTransferException(String message) {
super(message);

}

}

}

Unfortunately, this code has a potential problem. It’s possible for the application to be
interrupted after it has deducted the transfer amount from the checking account but before
that amount is added to the savings account balance. If such an interruption does occur, the
customer will lose money, which isn’t desirable for the customer. Similarly, if the order of the
updates is reversed and an interruption occurs, the customer’s accounts will collectively con-
tain more money than they did before the transfer was initiated, and that outcome is even less
desirable for the bank.

A transaction is a collection of related updates that should either fail or succeed as a
group. Updates that are part of a transaction are issued in the same way that nontransactional
updates are issued, and there’s no batch-like facility in JDBC for defining the updates in a
transaction. However, methods are available that allow you to define the beginning and end
of a transaction, and you must use those methods to make updates part of a transaction.

At any point during a transaction, you can end the transaction and discard (or roll back)
the changes that have occurred, which you’ll frequently do if one of the updates generates an
error. However, if the updates all complete successfully, you’ll normally end the transaction
and save (or commit) the changes that were made.

When using JDBC, it’s not necessary to explicitly identify the start of a transaction because
all updates are considered part of a transaction. However, a commit operation is performed by
default after each update, which effectively disables transaction processing since a transaction
is useful only when it includes multiple updates. You can disable the default behavior (and
enable transactions) by passing a value of false to the setAutoCommit() method in Connection.

Connection also defines commit() and rollback() methods that end the current transac-
tion and save or discard the changes that were part of the transaction. Note that only a single
transaction can be active for a Connection at any given time, so if your application needs to
have multiple transactions active simultaneously, you must obtain a connection for each
transaction.

You can easily update the class shown in Listing 11-5 to use transactions to ensure that
either both balances are updated or neither one is changed.

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)518

Listing 11-5. The Modified Banking Application

import java.sql.*;

public class TransTest {

protected String url = "jdbc:odbc:banktest";
protected String userid = "bspell";
protected String password = "brett";

public void transferFunds(float transferAmount, int accountNumber,
String fromTable, String toTable) throws SQLException,
InvalidTransferException {

Statement stmt = null;
ResultSet rset = null;
Connection conn = DriverManager.getConnection(url, userid,

password);
conn.setAutoCommit(false);
try {
stmt = conn.createStatement();
rset = stmt.executeQuery("SELECT BALANCE FROM " + fromTable +

" WHERE ACCOUNTID = " + accountNumber);
rset.next();
float fromBalance = rset.getFloat(1);
if (fromBalance < transferAmount) {
throw new InvalidTransferException("Insufficient funds available");

}
rset.close();
rset = stmt.executeQuery("SELECT BALANCE FROM " + toTable +

" WHERE ACCOUNTID = " + accountNumber);
rset.next();
float toBalance = rset.getFloat(1);
fromBalance -= transferAmount;
toBalance += transferAmount;
stmt.executeUpdate("UPDATE " + fromTable + " SET BALANCE = " +

fromBalance + " WHERE ACCOUNTID = " + accountNumber);
stmt.executeUpdate("UPDATE " + toTable + " SET BALANCE = " +

toBalance + " WHERE ACCOUNTID = " + accountNumber);
conn.commit();

} catch (SQLException sqle) {
conn.rollback();
throw sqle;

} finally {
if (rset != null) rset.close();
if (stmt != null) stmt.close();
conn.close();

}
}

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 519

class InvalidTransferException extends Exception {

public InvalidTransferException(String message) {
super(message);

}

}

}

Note that this code differs from the original implementation in two ways. First, it dis-
ables the autocommit feature so that the first account update won’t be permanently saved
until/unless commit() is called explicitly. Second, it intercepts any SQLException before it’s
returned to the caller and performs a rollback() on the connection, which will ensure that the
data in the database is restored to its original condition when an error occurs. This is important
to do because the second update might fail even though the first one had succeeded.

Savepoints
When discussing the rollback() method and its effect on a transaction, I’ve so far assumed
that calling the method will cause all changes to be canceled for the transaction, and in the
examples you’ve seen that’s indeed what happens. However, JDBC 3.0 added support for
a new concept called savepoints that allows you to designate a particular transaction state
to which you can roll back without canceling all changes made since the beginning of the
transaction.

To understand how this can be useful and see how it’s done, let’s assume you’re saving
two sets of changes to a database within a single transaction:

Connection conn;
// …
performFirstUpdate(conn);
performSecondUpdate(conn);
conn.commit();

Assuming that an error occurs during the second set of updates, your options are to
either commit all the work that has been done or roll back all the work. However, let’s suppose
in certain circumstances you want to roll back only the changes made in the second set of
updates when an error occurs while they’re being processed. If you’re using a JDBC driver that
supports savepoints, you can create a savepoint before starting the second set of updates and
roll back only the changes made in that set if an error occurs:

Connection conn;
Savepoint savepoint = null;
// …
try {

performFirstUpdate(conn);
savepoint = conn.setSavepoint();

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)520

performSecondUpdate(conn);
conn.commit();

}
catch (SQLException sqle) {

if (savepoint != null) {
conn.rollback(savepoint);

}
else {

conn.rollback();
}

}

Note that you can have more than one savepoint per transaction, and you can associate a
name with each one, allowing you to roll back by specifying that name instead of by providing
a reference to the specific Savepoint:

Savepoint sp1 = conn.setSavepoint("first");
// …
Savepoint sp2 = conn.setSavepoint("second");
// …
conn.rollback("first");

Read-Only Transactions
Up to this point, I’ve discussed transactions only in the context of update operations. While
they’re often most useful when performing updates, transactions can be used with query
operations as well. For example, issuing a SELECT statement twice within the same transaction
should result in the query returning the same results the second time as it did originally, even
if the underlying data is modified between the two queries. In other words, transactions can
be used with query operations to ensure that they return consistent results.

It’s important to realize that regardless of the type of SQL statements used, transaction
support is provided by the DBMS and not by the JDBC driver. In addition, depending upon
how the DBMS implements transaction support, a number of problems can occur when mul-
tiple transactions access the same data; the following sections describe those problems. Later,
I’ll show how you can avoid these scenarios, or at least select which ones your application will
allow to occur.

Dirty Reads
A dirty read occurs when a table row is modified as part of one transaction and a second
transaction performs a query that returns the modified row despite that the modification
hasn’t been committed. This behavior is inappropriate since the first transaction may choose
to roll back the update, in which case the second transaction has effectively read invalid (or
“dirty”) data.

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 521

Nonrepeatable Reads
As mentioned, performing the same query multiple times in a single transaction should pro-
duce the same results each time. In some cases, however, the updates or deletions made by
one transaction can affect the query results of another transaction. For example, suppose that
transaction A performs a query that returns ten rows, after which transaction B deletes one of
those rows from the database. If transaction A then executes the same query and only nine
rows are returned, a nonrepeatable read has occurred.

Phantom Reads
This type of problem is similar to the nonrepeatable read but is related to rows that are
inserted. For example, suppose that transaction A performs a query that returns five rows,
after which transaction B inserts a new row that meets the criteria specified by transaction A.
If A then reissues the query and sees the newly inserted row, a phantom read has occurred.

Transaction Isolation Levels
Many applications don’t support multiple transactions and won’t experience the problems
just described. However, for some database-intensive applications where the integrity of the
data is important, it’s necessary to eliminate these problems or at least control which ones can
occur. Most DBMS products provide some degree of control over these problems, and they
usually do so through data locking. Locking is a technique that makes some or all of the data
in a table unavailable while it’s being read or updated by a transaction. If other transactions
attempt to access locked data, their requests will fail, or more frequently, they will be made to
wait until the transaction that caused the lock to occur has ended.

In the simplest case, an entire table can be locked as long as its data is referenced by an
active transaction, which will prevent any of the three problems just described from occur-
ring. However, that approach has the disadvantage of making the table’s data unavailable to
other applications for what could be a large amount of time, and that behavior may be unac-
ceptable. In other words, you should avoid dirty reads, nonrepeatable reads, and phantom
reads but only by sacrificing accessibility to the data to some extent.

In practice, the ideal balance between data integrity and data accessibility varies from
one application to another. Some applications are more concerned with accessibility to the
data, others are primarily concerned with data integrity, and still others may seek a “middle
ground” between the two extremes. Since application needs vary, transaction isolation levels
are provided to allow an application to select an appropriate balance between accessibility
and transaction integrity.

Four transaction isolation levels exist, and each one is represented in JDBC by a constant
defined in Connection. A given DBMS product may not support all four levels, but you can
determine which ones are supported using the supportsTransactionIsolationLevel()
method defined in DatabaseMetaData.

Table 11-3 describes the four isolation levels, with the first one representing maximum
accessibility and minimum data integrity and the last one representing the opposite extreme.

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)522

Table 11-3. Four Transaction Isolation Levels

Isolation Level Description

Read Uncommited This transaction isolation level is represented by the
TRANSACTION_READ_UNCOMMITTED constant, and it allows dirty,
nonrepeatable, and phantom reads to occur.

Read Committed This level is represented by TRANSACTION_READ_COMMITTED, and
it allows only nonrepeatable and phantom reads to occur; dirty
reads are prevented.

Repeatable Read This level is represented by TRANSACTION_REPEATABLE_READ and
allows only phantom reads to occur while preventing dirty and
nonrepeatable reads.

Serializable Dirty, nonrepeatable, and phantom reads are all prevented from
occurring when this level is used, which is represented by the
TRANSACTION_SERIALIZABLE constant.

The default isolation level that’s in effect will vary from one DBMS product to the
next, although you can determine which one is active for a given Connection by calling its
getTransactionIsolationLevel() method. That method returns an integer value equal to
one of the four constants that represent the different isolation levels.

Setting a Connection’s Transaction Isolation Level
Once you’ve selected an appropriate isolation level and ensured that it’s available with
the DBMS your application uses, you can easily specify the desired level by calling the
setTransactionIsolation() method in Connection:

connect.setTransactionIsolation(Connection.TRANSACTION_REPEATABLE_READ);

Table 11-4 lists the isolation levels and identifies which types of problems can occur with
each one.

Table 11-4. Potential Problems Associated with Each Isolation Level

Isolation Level Dirty Nonrepeatable Phantom

Read Uncommitted Allowed Allowed Allowed

Read Committed Prevented Allowed Allowed

Repeatable Read Prevented Prevented Allowed

Serializable Prevented Prevented Prevented

Distributed Transactions
The transaction capabilities discussed up to this point are applicable to changes made to
tables in a single database. In some cases, however, you may want to make related changes
to tables stored in databases residing on different machines, perhaps involving two completely

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 523

different DBMS products. For example, you might want to make an update to an Oracle data-
base on one server and a Sybase database on a different machine and need those updates to
be made as a single unit. That type of operation is known as a distributed transaction and is
supported in Java through the Java Transaction API (JTA) and Java Transaction Service (JTS).
However, a detailed discussion of distributed transactions is beyond the scope of this book.

Connection Pooling
Creating a database connection is a relatively slow process, and if an application repeatedly
opens and closes many connections, it may have a serious negative impact on the speed of
the application and thus on its value. However, you can improve performance by using con-
nection pooling, a technique that allows existing connections to be reused.

A connection pool manager can be implemented as part of a JDBC driver or as a separate
component if the driver doesn’t support pooling. The JDBC 2.x optional package includes
interfaces used to perform connection pooling and partially describes how a connection pool
manager should be implemented. If the driver you’re using supports JDBC 2.x–style connec-
tion pooling, you can get an instance of a PooledConnection from a DataSource by calling the
getPooledConnection() method. Once you’ve done so, you can obtain a database connection
by calling the PooledConnection object’s getConnection() method as follows:

String url = "jdbc:oracle:thin:@myserver:1521:mydata";
String userid = "bspell";
String password = "brett";
OracleConnectionPoolDataSource ocpds = new OracleConnectionPoolDataSource();
ocpds.setURL(url);
ocpds.setUser(userid);
ocpds.setPassword(password);
PooledConnection pool = ocpds.getPooledConnection();
// . . .
Connection conn = pool.getConnection();

When a database connection is requested from a pool manager, the manager attempts to
provide one from its pool of existing connections, but if that pool is empty, a new connection
is created and returned instead. Once an application has finished using a connection, the
connection is returned to the pool manager instead of being closed, which allows the man-
ager to avoid the overhead of creating a new connection the next time one is needed.

This description is somewhat misleading because it implies that a true database connec-
tion is returned by the pool manager and that the application using the connection is aware
of and cooperates with the pool manager by “giving back” connections. In reality, the manager
returns a proxy object that maintains a reference to a real database connection created by a
JDBC driver. Most of the proxy’s methods simply delegate their functionality to the real con-
nection, but the proxy’s close() method returns the real database connection to the pool
manager instead of closing the connection. Listing 11-6 illustrates how such a proxy might be
implemented.

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)524

Listing 11-6. Implementing a Proxy

import java.sql.*;

public class ProxyConnection implements Connection {

protected Connection realConnection;

public ProxyConnection(Connection connect) {
realConnection = connect;

}

public void clearWarnings() throws SQLException {
realConnection.clearWarnings();

}

public void close() throws SQLException {
// Don't close the real connection. Return it to the pool
// manager instead. This example assumes the existence of
// a class named PoolManager that's responsible for connection
// pool management.
PoolManager.connectionClosed(realConnection);

}

public void commit() throws SQLException {
realConnection.commit();

}

public Statement createStatement() throws SQLException {
return realConnection.createStatement();

}

// etc.

In other words, the proxy object maintains a reference to a “real” Connection and inter-
cepts the calls that are made. This design makes connection pooling transparent to your
application, because a pooled connection behaves the same way that a nonpooled connec-
tion does.

Pooling Properties
Just as you saw earlier that JDBC defines some standard property names that are commonly
used across DataSource implementations, the JDBC 3.0 specification includes definitions of
properties that are commonly used in connection pooling (see Table 11-5). In most cases,
these properties should be set only through a configuration file, but the definition of these
standard names makes it more likely that you can (if necessary) replace one JDBC driver with
another without having to change your configuration options.

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 525

Table 11-5. Pooling Properties

Property Description

initialPoolSize Number of database connections that should be created when a
connection pool is created.

minPoolSize Minimum number of database connections that the pool should
contain. If 0, connections will only be created when they are requested.

maxPoolSize Maximum number of database connections that the pool should
contain. A value of 0 means that there isn’t a maximum number that
can be available in the pool.

maxIdleTime Number of seconds that a connection can remain unused in the pool
before it’s closed. A value of 0 means that unused connections should
never be closed.

maxStatements Maximum number of statements that the pool should be allowed to
cache.

propertyCycle Number of seconds that should elapse between attempts to enforce the
behavior associated with other properties.

Errors and Warnings
Errors can occur for many reasons when performing database operations, and most of the
methods defined in the java.sql package can throw SQLException, which is described next.

SQLException
Like other Exception subclasses, SQLException includes a message that describes the nature of
the error, and it can be retrieved by calling getMessage(). However, SQLException also provides
other properties you may find helpful, and the methods used to access them are described next.

getNextException(), setNextException()
These methods allow you to modify or retrieve the reference to the next instance of SQLException
in a chain of exceptions. Multiple errors can occur during a single operation in some cases,
and this chaining technique allows an instance of SQLException to be created for each error.

getErrorCode()
This method returns an integer value that describes the error, although the meaning of that
value is driver-specific. To interpret the meaning of this value, you should consult the docu-
mentation associated with the driver and/or the DBMS.

getSQLState()
The SQLState value is a five-character String that identifies the nature of the error that
occurred. This value is defined by the X/OPEN SQL standard and is common to all DBMS
implementations that have adopted the standard. Since the SQLState provides a specific indi-
cation of the type of problem that occurred, your application may be able to use it to recover
from an error or otherwise handle (or ignore) it appropriately.

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)526

The SQLState consists of two parts: the first two characters, which are unfortunately
called the class, and the last three characters, known as the subclass. A class effectively identi-
fies a high-level type of error, while a subclass identifies a more specific error. Classes and
subclasses can be either standard (defined as part of the X/OPEN specification) or implemen-
tation-defined (specific to a particular DBMS product). Standard classes and subclasses begin
with one of the characters 0–4 or A–H. Subsequent characters and the first character of an
implementation-defined class or subclass can be any letter or digit (0–9, A–Z).

Table 11-6 lists some standard classes and subclasses, along with the associated condition
(description of the class) or subcondition (description of the subclass). Note that some classes
don’t have subclasses because the class itself is sufficient to describe in detail the type of prob-
lem that occurred.

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 527

Table 11-6. SQL State Values

Class Condition Subclass Subcondition

00 Successful 000

01 Warning 000

001 Cursor operation conflict

002 Disconnect error

003 Null value eliminated in set function

004 String data right truncation

005 Insufficient item descriptor areas

006 Privilege not revoked

007 Privilege not granted

008 Implicit zero-bit padding

009 Search condition too long for schema

00A Query expression too long for schema

02 No data 000

07 Dynamic SQL error 000

001 using clause doesn’t match parameters

002 using clause doesn’t match target

003 Cursor specification cannot be executed

004 using clause required for parameters

005 Prepared statement, not a cursor spec

006 Restricted data type attribute violation

007 using clause required for result fields

008 Invalid descriptor count

009 Invalid descriptor index

08 Connection exception 000

001 Client unable to establish connection

Continued

Table 11-6. Continued

Class Condition Subclass Subcondition

002 Connection name already in use

003 Connection doesn’t exist

004 Server rejected connection request

006 Connection failure

007 Transaction resolution unknown

0A Feature not supported 000

001 Multiple server transactions

21 Cardinality violation 000

22 Data exception 000

001 String data right truncation

002 Null value without indicator

003 Numeric value out of range

005 Assignment error

007 Invalid DATETIME format

008 DATETIME field overflow

009 Invalid time zone displacement value

011 Substring error

012 Division by zero

015 Interval field overflow

018 Invalid character value for cast

019 Invalid escape character

021 Character not supported

022 Indicator overflow

023 Invalid parameter value

024 Unterminated C string

025 Invalid escape sequence

026 String data length mismatch

027 Trim error

23 000

24 Invalid cursor state 000

25 Invalid transaction state 000

26 000

27 000

28 000Invalid authorization
specification

Triggered data change
violation

Invalid SQL statement
name

Integrity constraint
violation

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)528

Table 11-6. Continued

Class Condition Subclass Subcondition

2A 000

2B 000

2C Invalid character set name 000

2D 000

2E Invalid connection name 000

33 000

34 Invalid cursor name 000

35 Invalid condition number 000

37 000

3C Ambiguous cursor name 000

3D Invalid catalog name 000

3F Invalid schema name 000

40 Transaction rollback 000

42 000

44 Check option violation 000

HZ Remote database access 000

Syntax error or access
rule violation

Syntax error or access
rule violation in
dynamic SQL
statement

Invalid SQL descriptor
name

Invalid transaction
termination

Dependent privilege
descriptors still exist

Syntax error or access
rule violation in SQL
statement

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 529

SQLWarning
SQLException is somewhat unusual in that it’s used by JDBC in two different ways. First, as
previously noted, it can be thrown by many of the java.sql methods, and in that way it’s simi-
lar to other exception classes. However, many types of errors can occur that aren’t critical and
that won’t cause your application’s execution to be interrupted. For example, if you read a
floating-point value into an integer field using the ResultSet’s getInt() method, you may lose
a portion of the original value. That type of problem may be of interest to your application but
in many cases should be ignored, so it doesn’t result in an exception being thrown. Instead,
an instance of SQLWarning (a subclass of SQLException) is created and appended to a list main-
tained by the object that generated the warning, which in this example would be a ResultSet.
Connection, Statement, and ResultSet can all generate warnings, and each of those classes
provides a getWarnings() method accordingly. That method returns the first SQLWarning
instance in the object’s list, and the list effectively serves as an error log. In other words, when
any event generates a warning, an instance of SQLWarning is quietly (without being thrown
or otherwise interrupting your application) added to the list of warnings maintained for the
object that generated it. In addition to the getWarnings() methods, Connection, Statement,

and ResultSet each provide a clearWarnings() method that can be used to remove all warn-
ings currently chained.

Debugging
JDBC provides a logging facility that driver classes can use to display diagnostic information.
For example, the driver may generate a message each time one of its classes’ methods is called,
and/or it may display the SQL statements that are actually sent to the DBMS. Those statements
are sometimes different from the ones your code specifies, because the driver often modifies
statements before forwarding them to the database, such as when it fills in the parameter
values specified for a PreparedStatement. In addition, the message log may contain SQL state-
ments that were issued by the driver itself that don’t correspond to any statements explicitly
executed by your application.

This logging facility first appeared in JDBC 1.x and can be used by passing a reference to
a PrintStream to the static setLogStream() method in DriverManager. For example, you might
execute the following code to have the messages sent to standard output:

DriverManager.setLogStream(System.out);

In JDBC 2.x, the setLogStream() method was deprecated and replaced by setLogWriter(),
which is passed an instance of PrintWriter. The following code creates an instance of
PrintWriter using System.out and calls setLogWriter() to direct messages to standard output:

OutputStreamWriter osw = new OutputStreamWriter(System.out);
PrintWriter pw = new PrintWriter(osw);
DriverManager.setLogWriter(pw);

The following listing provides an example of the output that may be produced by this code:

Fetching (SQLFetch), hStmt=5312212
End of result set (SQL_NO_DATA)
Free statement (SQLFreeStmt), hStmt=5312212, fOption=1
*Connection.createStatement
Allocating Statement Handle (SQLAllocStmt), hDbc=5311148
hStmt=5312212
Registering Statement sun.jdbc.odbc.JdbcOdbcStatement@63cb330d
*Statement.executeQuery (SELECT * FROM Attribute)
*Statement.execute (SELECT * FROM Attribute)
Free statement (SQLFreeStmt), hStmt=5312212, fOption=0
Executing (SQLExecDirect), hStmt=5312212, szSqlStr=SELECT * FROM Attribute
Number of result columns (SQLNumResultCols), hStmt=5312212
value=8
Number of result columns (SQLNumResultCols), hStmt=5312212
value=8
*ResultSet.getMetaData
*ResultSetMetaData.getColumnName (1)
Column attributes (SQLColAttributes), hStmt=5312212, icol=1, type=1
value (String)=AttributeKey

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC)530

Releasing Resources
One of the characteristics of Java that makes it easy to use is its automatic garbage collection.
In most cases, it’s acceptable to release a resource simply by eliminating references to the
object that represents it, and the same is true to some degree of database resources (for
instance, instances of Connection, Statement, and ResultSet). For example, if you create a
connection to a database, you can release it by simply dereferencing it as follows:

String url = "jdbc:oracle:thin:@oraserver:1521:projava";
Connection connect = DriverManager.getConnection(url, "bspell", "brett");
// ...
connect = null;

Although this approach should eventually result in the connection being closed, that won’t
occur until the garbage collector reclaims the Connection object. However, the garbage collec-
tor may never run, and even if it does, this code could result in the connection remaining open
(but unused) for a long time. To avoid this problem, you should always explicitly release data-
base resources by calling the close() method that’s defined in Connection, Statement, and
ResultSet:

String url = "jdbc:oracle:thin:@oraserver:1521:projava";
Connection connect = DriverManager.getConnection(url, "bspell", "brett");
// ...
connect.close();
connect = null;

Not only will failure to explicitly release resources prevent other applications from using
those resources, but it may also degrade the performance of your application if a large number
of connections are created. It’s particularly important to close connections when connection
pooling is in use, since a failure to do so will usually prevent the Connection from being
returned to the pool manager until the garbage collector runs.

Summary
In this chapter, you looked at each of the following topics:

• Selecting and obtaining a driver

• Obtaining a connection to a database

• Executing SQL statements and stored procedures

• Understanding the data types defined in JDBC and how they relate to “native” types

• Managing transactions

• Implementing database connection pooling

• Processing errors and warnings generated by JDBC functions

• Debugging guidelines for database applications

CHAPTER 11 ■ INTRODUCING JAVA DATABASE CONNECTIVITY (JDBC) 531

Internationalizing Your
Applications

Occasionally software applications are used by only a small number of people within a lim-
ited geographic area, but it has become increasingly common for an application to be used
by many people in different parts of the world. In some cases, it’s possible to require all your
application’s users to understand a single language and use the same symbols and formatting
for items such as dates, times, and numeric values. However, most users prefer to work with
the language and formatting conventions they’re most comfortable with, and by taking that
into consideration when designing your application, you can accommodate their wishes.

Modifying or designing an application so it supports more than one language and set
of formatting conventions is known as internationalization (or i18n, because 18 characters
appear between the i and the n). As evidenced by its use of Unicode, Java was designed with
internationalization in mind, and a number of classes were introduced in Java 1.1 that make
it easy to internationalize your applications.

Closely related to internationalization is localization, which is the process of ensuring
that an application will function appropriately when used in a particular region of the world.
The most obvious step you must take to localize an application is to ensure that it displays
text in the user’s native language. This requires you to provide a translation for each text item
that can be written or displayed by the application, and Java doesn’t provide any facilities for
automatically translating messages. However, it does provide an easy way for you to define
collections of text messages, with each collection representing a particular language, and
Java makes it easy for your application to select the appropriate translation of a text item.
Where internationalization aims to create applications that can support more than one lan-
guage, localization provides the extra language support for internationalized applications.

In addition to providing a translation for each message, an internationalized application
should also display information using the appropriate symbols and conventions when for-
matting information such as dates, times, and numeric values. For example, the mm/dd/yy
(two-digit month, day, and year) format for dates is appropriate for most users in the United
States but isn’t commonly used in other countries. Similarly, numeric values are represented
in different ways in different parts of the world, especially currency values.

Just as an internationalized application must customize the output it produces, it must
also handle user input appropriately. If a user is allowed to enter text that represents a num-
ber, the application must be able to parse the text and convert it into a numeric type (say, a

533

C H A P T E R 1 2

■ ■ ■

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS534

double or long value). In addition, a date that was entered by the user will typically need to
be converted into an instance of java.util.Date before it can be used or stored by the appli-
cation. It’s also sometimes necessary to parse text and isolate individual sentences, lines,
words, or characters in the text, which is a complex task to perform for some languages.

In some cases, a user’s language can be implicitly identified based on the user’s location.
For example, a user in the United States or United Kingdom can reasonably be expected to
prefer English messages. In other cases, two or more languages may be commonly used in the
same country, such as in Canada where both English and French are widely spoken. However,
even if two different users share the same language, you can’t assume they also share the same
formatting conventions for dates, times, and numeric values.

To be able to internationalize your applications, you’ll need to know about the following
topics:

• Locales

• Resource bundles

• Formatting and parsing

Locales
As I’ve established, a user’s country can’t necessarily be used to select the language that an
application can use, and a language isn’t sufficient to determine the formatting conventions
for dates, times, and numeric values. However, it’s usually true that a region can be defined
that has one dominant language and set of formatting conventions, and that region can be
defined by geographic, political, or simply cultural boundaries. Java’s Locale class identifies
such a region, and each instance of Locale contains three property values:

• The language code is a two-character String value that’s equal to one of the
codes defined by the ISO-639 standard; you can find a list of language codes at
http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt.

• Similarly, the country code is a two-character String that’s assigned the
value of an ISO-3166 country identifier, a list of which is available at
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html.

• The variant value is optional and can be omitted, but it may be useful in some
cases. For example, you can use multiple variations of a single language within a
country, and the variant allows you to identify the version that’s used. For example,
two versions of the Norwegian language are used in Norway, so you can use the
variant to distinguish between them.

The java.util.Locale class itself doesn’t provide much functionality that’s useful for
internationalization, but an instance of Locale can be passed to some methods defined in
Java’s core classes, and those methods will produce the results appropriate for that Locale.
For example, java.text.NumberFormat provides a getNumberInstance() factory method that

creates an object that can be used to format numeric values. If you pass an instance of Locale
to the factory method, it will return an object that formats numeric values in a manner that’s
appropriate for the Locale you specified. Most of those methods that accept a Locale para-
meter have a counterpart that doesn’t accept such a parameter, and those that don’t use the
default Locale. The default Locale is simply a static instance of Locale that’s selected for you
based on your operating system settings, and you can query and modify the default through
the static getDefault() and setDefault() methods in the Locale class.

Although you can create an instance of Locale, some instances are provided for you as
predefined constants in the Locale class. Some of those constants represent a Locale with only
a language specified (for example, Locale.ENGLISH, Locale.FRENCH, and Locale.GERMAN), while
others represent both a language and a country (for example, Locale.US, Locale.FRANCE, and
Locale.GERMANY). In addition to those constants, Java includes the information needed to
support a large number of locales; you can obtain an array of those supported by calling the
getAvailableLocales() method. For each Locale identified by that method, Java provides the
ability to display dates, times, and numeric values using the conventions appropriate for that
Locale. In addition, Java provides the ability to parse and compare String instances that con-
sist of characters used in the Locale.

To create a Locale, you must use either the constructor that accepts country and language
codes or the constructor that accepts those values in addition to a variant. For example, to
create a Locale for Cajun French used in the United States, you could use the following:

Locale cajunFrenchLocale = new Locale("fr", "US", "CAJUN");

In addition to allowing you to access its country, language, and variant values, each
Locale provides a getDisplayName() method that returns the name of the locale. By default,
the method returns a name in the language appropriate for the user’s default locale. As with
many other methods, though, getDisplayName() allows you to explicitly specify a Locale. If
you do so, the name returned will be a string that’s appropriate for display in the Locale
specified. For example, suppose your default locale is set to Locale.US and you execute the
following line of code:

System.out.println(Locale.US.getDisplayName());

When you do so, the output will appear like this:

English (United States)

However, you could instead choose to display the Locale’s name in a form that’s appropri-
ate for a user in France using code like this:

System.out.println(Locale.US.getDisplayName(Locale.FRANCE));

Executing this code will produce the following output:

anglais (États-Unis)

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 535

Many times, you’ll want to display a representation of a Locale using the language that’s
associated with that instance, which you can do with code similar to this:

Locale someLocale;
// Assign a reference to an instance of Locale to the variable just defined
// . . .
System.out.println(someLocale.getDisplayName(someLocale));

Resource Bundles
Perhaps the most obvious step you must take to internationalize an application is to store the
text it displays in an external location. For example, suppose you have the following trivial
application:

public class Hardcoded {
public static void main(String[] args) {
System.out.println("The number of arguments entered is " +

args.length);
}

}

This small program can’t be made to support more than one language or locale without
modifying the source code, because the message text is embedded (or hard-coded) within the
source. However, Java’s resource bundles allow you to store strings, image files, or any other
type of resource in files outside your application’s source code.

Specifically, the java.util.ResourceBundle class allows you to create a separate resource
bundle for each Locale you want to support in your code and have the appropriate bundle
selected dynamically at runtime.

A ResourceBundle is a class that encapsulates a set of resources, each of which is associated
with a unique key value that’s an instance of java.lang.String. To access a particular resource,
you simply obtain a reference to the ResourceBundle and call its getObject() method, passing
a reference to the String that identifies the resource to which you want to obtain a reference.
Resources will often be text information that has been localized but can be any object that’s
needed to internationalize your application. Since instances of String are the most common
type of data stored in and retrieved from instances of ResourceBundle, a getString() method
is provided in addition to getObject(). The getString() method simply casts the resource you
retrieve to a String object.

Note that the resource keys are case-sensitive, so when calling getObject() or getString(),
you must ensure the String you specify is capitalized appropriately. If you specify a key that
isn’t an exact match for a resource defined in the ResourceBundle, a MissingResourceException
is thrown.

Once an appropriate ResourceBundle has been created, which you’ll see how to do shortly,
the Hardcoded application shown previously could be easily modified to remove the embed-
ded message text as follows:

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS536

import java.util.*;

public class Hardcoded {

public static void main(String[] args) {
ResourceBundle myBundle = ResourceBundle.getBundle(

"MyResources");
// System.out.println("The number of arguments entered is " +
// args.length);

String msg = myBundle.getString("MsgText");
System.out.println(msg + args.length);

}
}

In this case, a resource bundle named MyResources was created that contains a resource
with a key of MsgText. This modified application loads the resource bundle, obtains a refer-
ence to the MsgText resource, casts it to a String, and uses that text to produce its output. With
this modified design, you can make the Hardcoded application support more than one Locale,
and it will display the message text in the appropriate language for each one.

In the previous example, no Locale was specified on the call to getBundle(), but a differ-
ent implementation of that method allows you to do so. For example, if you wanted to load
the ResourceBundle containing Canadian French messages, you could use code like this:

ResourceBundle myBundle = ResourceBundle.getBundle(
"MyResources", Locale.CANADA_FRENCH);

When you call its getBundle() method, ResourceBundle attempts to load each class file
with a variation of the name that was specified. It first looks for classes with the explicitly
specified Locale values (in other words, language, country, and variant codes) appended to
the name and then to classes with the default Locale’s values. For example, if the default
Locale is Locale.US in this case, getBundle() will load each of the following files if they exist:

MyResources_fr_CA.class
MyResources_fr.class
MyResources_en_US.class
MyResources_en.class
MyResources.class

Note that getBundle() also attempts to use the variant name if one is specified, but in this
case, both the default (Locale.US) and the explicitly specified instance (Locale.CANADA_FRENCH)
have a variant that’s set to the empty string (""). In other words, the search order used when
loading a ResourceBundle file can be summarized by the following list. In this list, (1) repre-
sents the explicitly specified Locale, (2) represents the default locale, and basename represents
the String argument passed to getBundle().

basename_language(1)_country(1)_variant(1).class
basename_language(1)_country(1).class
basename_language(1).class

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 537

basename_language(2)_country(2)_variant(2).class
basename_language(2)_country(2).class
basename_language(2).class
basename.class

As you’ll see shortly, there’s an important reason why calling getBundle() loads each of
these classes if they exist instead of simply loading the first one that’s found.

Creating a ResourceBundle
ResourceBundle is an abstract class, and although you can create your own direct subclass, you
don’t need to normally do so. Instead, you’ll create a subclass of either ListResourceBundle or
PropertyResourceBundle, which are convenience classes provided with Java that make it easier
for you to create a ResourceBundle. If you’re going to be using images or other objects in your
ResourceBundle, then a ListResourceBundle is the one to use, while the PropertyResourceBundle
is a better choice for use with text.

ListResourceBundle
Creating a subclass of ListResourceBundle is simple; you need to implement only a single
getContents() method that returns a two-dimensional array of key/resource pairs.

To learn how to create a ListResourceBundle subclass, suppose you want to international-
ize the application shown in Listing 12-1 that displays a dialog and requests the user to click
the button corresponding to the correct answer. Figure 12-1 shows the application in action.

Listing 12-1. JavaQuestion Application

import java.util.*;
import javax.swing.*;

public class JavaQuestion {

public static void main(String[] args) {
ImageIcon flagIcon = new ImageIcon("flags/unitedstates.gif");
String[] options = {"Yes", "No"};
JOptionPane pane = new JOptionPane(

"Is Java an object-oriented programming language?",
JOptionPane.QUESTION_MESSAGE, 0, flagIcon, options);

JDialog dlg = pane.createDialog(null, "Java Question");
dlg.setModal(true);
dlg.setVisible(true);
String selection = (String)(pane.getValue());
boolean selectedYes = (selection == options[0]);

}
}

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS538

Figure 12-1. The JavaQuestion application displays an icon and prompts the user to answer a
question.

As shown in Listing 12-1, this code uses four text resources and an ImageIcon that should
be localized based on the default Locale, and a ResourceBundle named MyResources can easily
be created like the following one. As you can see, this class simply defines each resource and
maps it to a String key, while the getContents() method returns a reference to the array con-
taining the key/value pairs.

import java.util.*;
import javax.swing.*;

public class MyResources extends ListResourceBundle {

protected static Object[][] resources = {
{"WhatIsJava", "What is Java?"},
{"JavaIsLang", "Is Java an object-oriented " +

"programming language"},
{"LabelYes", "Yes"},
{"LabelNo", "No"},
{"FlagIcon", new ImageIcon("flags/unitedstates.gif")}

};

public Object[][] getContents() {
return resources;

}

}

If the application that uses these resources is intended to also be used by German-speaking
people, you could create an equivalent ResourceBundle called MyResources_de:

import java.util.*;
import javax.swing.*;

public class MyResources_de extends ListResourceBundle {

protected static Object[][] resources = {
{"WhatIsJava", "Was ist Java?"},
{"JavaIsLang", "Ist Java eine objektorientierte " +

"Programmiersprache?"},

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 539

{"LabelYes", "Ja"},
{"LabelNo", "Nein"},
{"FlagIcon", new ImageIcon("flags/germany.gif")}

};

public Object[][] getContents() {
return resources;

}
}

This definition of a German-language ResourceBundle illustrates an important point.
Although it may be possible for all German-speaking users to share the text in this bundle, it’s
not appropriate for them to share the same flag icon, since the German language is spoken in
more than one country. It wouldn’t be correct, for example, to display Germany’s flag for a user
in Switzerland, although it might be appropriate to use the same text resources for both. Fortu-
nately, Java’s internationalization capabilities were designed to easily address this problem.

As mentioned earlier, getBundle() creates a ResourceBundle for each of the variations it finds
for the specified bundle name. In this case, both MyResources_de.class and MyResources.class
will be loaded if a German Locale (for example, Locale.GERMAN or Locale.GERMANY) is the default
or is specified explicitly when getBundle() is called. In addition, the bundles are arranged in a
logical hierarchy, and if you request a resource that isn’t found in the “lowest” bundle, the hier-
archy will be searched until a bundle is found that does contain the resource. In this case, for
example, if you request a resource that isn’t defined in MyResources_de.class but is defined in
MyResources.class, the value from MyResources will be returned.

You can take advantage of this behavior by defining only the resources in a “lower” bun-
dle that should be different from those in a “higher” bundle. For example, to address the issue
described earlier of the German flag being returned for Swiss users, it’s possible to simply
define a new German Swiss (MyResources_de_CH) bundle, like this:

import java.util.*;
import javax.swing.*;

public class MyResources_de_CH extends ListResourceBundle {

protected static Object[][] resources = {
{"FlagIcon", new ImageIcon("flags/switzerland.gif")}

};

public Object[][] getContents() {
return resources;

}
}

When a Swiss German bundle is used, the FlagIcon resource will be retrieved from that
bundle. Other resources, such as the message text items, will effectively be “inherited” from the
MyResources_de bundle because they aren’t defined in MyResources_de_CH (see Figure 12-2).

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS540

Figure 12-2. Modifying the application to produce different results depending upon which
bundle’s resources are used

With the base (MyResources), German (MyResources_de), and Swiss German
(MyResources_de_CH) bundle classes created, you can modify the JavaQuestion application
to retrieve its resources from a ResourceBundle:

import java.util.*;
import javax.swing.*;

public class JavaQuestion {

protected static ResourceBundle resources =
ResourceBundle.getBundle("MyResources");

public static void main(String[] args) {
ImageIcon flagIcon = (ImageIcon)(resources.getObject(

"FlagIcon"));
String[] options =
{resources.getString("LabelYes"), resources.getString("LabelNo")};

JOptionPane pane = new JOptionPane(
resources.getString("JavaIsLang"),
JOptionPane.QUESTION_MESSAGE,
0, flagIcon, options);

JDialog dlg = pane.createDialog(null,
resources.getString("WhatIsJava"));

dlg.setModal(true);
dlg.setVisible(true);
String selection = (String)(pane.getValue());
boolean selectedYes = (selection == options[0]);

}
}

PropertyResourceBundle
The ListResourceBundle in the previous example included an ImageIcon, but in practice, your
bundles will often contain only text data. In addition, it’s somewhat inconvenient to recompile
a ListResourceBundle class each time a new resource is added, updated, or deleted. However,
in addition to the ListResourceBundle, Java also includes the PropertyResourceBundle, and it
provides a more convenient way to package text resources.

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 541

Specifically, you can create a properties file, which is a flat file containing key/value pairs,
with a pair on each line and the key and value separated by an equal (=) sign. For example,
you could create a properties file containing the previously defined German messages:

WhatIsJava=Was ist Java?
JavaIsLang=Java ist eine objektorientierte Programmiersprache
LabelYes=Ja
LabelNo=Nein

Unlike ListResourceBundle, you don’t need to define a new Java class to use a
PropertyResourceBundle. Instead, you create a file with a .properties extension and add
property information to it like that shown previously. When you call getBundle(), it will
search for properties files in addition to ResourceBundle subclasses, and getBundle() will
automatically create a PropertyResourceBundle when it finds a .properties file. If it doesn’t
find a match after searching, it will go to the base filename if available. For example, with
these messages stored in a file named ResourceTest_de.properties, you could access them
using the following code:

ResourceBundle bundle = ResourceBundle.getBundle(
"ResourceTest", Locale.GERMAN);

Locale-Sensitive Formatting and Parsing
Creating localized messages is only one of the tasks you must perform to internationalize your
applications. You must also ensure dates, times, and numeric values are formatted appropri-
ately for the Locale when displayed, and your applications must be able to parse these data
types correctly when they’re entered by a user. For example, if you provide a text field that
allows a user to enter a date value, you’ll typically want to convert the text entered in that field
into an instance of java.util.Date.

Java provides the ability to format and parse date, time, and numeric values by creating
instances of java.text.NumberFormat (for numeric values) and java.text.DateFormat (for
dates and times). Both of those classes provide factory methods that allow you to obtain a for-
matter for a specified Locale or for the default Locale. For example, the following five lines of
code obtain formatters that use the default Locale’s date, time, numeric, currency, and per-
cent conventions, respectively:

DateFormat dateFormatter = DateFormat.getDateInstance();
DateFormat timeFormatter = DateFormat.getTimeInstance();
NumberFormat numberFormatter = NumberFormat.getNumberInstance();
NumberFormat currencyFormatter = NumberFormat.getCurrencyInstance();
NumberFormat percentFormatter = NumberFormat.getPercentInstance();

These Format objects actually provide two types of functionality. First, they allow you
to convert the value of a Java object or primitive (for example, an instance of Date or a long
value) into a text string that’s formatted according to the conventions of the appropriate
Locale. Second, they allow you to perform the opposite type of conversion, where a string
(perhaps one entered by your application’s user) can be converted into an appropriate object

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS542

or primitive type. For example, DateFormat converts java.util.Date instances into text and
can convert a text representation of a date into an instance of Date.

Formatting and Parsing Dates
Date values are represented differently in various locales, even in those that use the same
language. As noted earlier, the mm/dd/yy format is the most commonly used format in the
United States, but much of the rest of the world (including other English-speaking regions)
uses dd/mm/yy instead.

Even within a single Locale, different date formats are often used. For example, each of
the following represents a format in which a date might be displayed in the United States:

03/19/00
March 19, 2000
Sunday, March 19, 2000

To obtain a reference to a DateFormat object that can be used to format and parse dates,
you can call the static getDateInstance() method in the DateFormat class. When calling
getDateInstance(), you can specify a Locale, and if you don’t do so, a DateFormat object is
returned that will format dates based on the conventions of your default Locale. In addition,
getDateInstance() allows you to specify a style, which is an integer value that’s equal to one
of four constants defined in DateFormat: SHORT, MEDIUM, LONG, or FULL. The style value indicates
how detailed a description of the date will be produced by the DateFormat instance. For exam-
ple, SHORT generates brief strings (for example, “03/19/00”), while MEDIUM, LONG, and FULL each
provide increasingly more detailed date representations (for example, FULL generates “Sunday,
March 19, 2000”). In the following sections, you’ll get to see by example what effect each of
these constants has on the output.

Formatting Dates
Once you’ve created an instance of DateFormat, you can use it to convert the value of a
java.util.Date instance into a text string by calling the DateFormat’s format() method. The
following code segment creates a LONG-style DateFormat that will use the conventions that are
appropriate for the predefined FRANCE Locale and uses the Dateformat object to display the
current date:

DateFormat formatter = DateFormat.getDateInstance(DateFormat.LONG,
Locale.FRANCE);

System.out.println(formatter.format(new java.util.Date()));

Running this code segment will produce this output line:

19 mars 2000

If you’d like to see the various formats that are included for the version of Java you’re using,
you could write an application that uses the static getAvailableLocales() method defined in
Locale to display the various formats for a given date using each Locale (see Figure 12-3).

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 543

Figure 12-3. Some of the many different date formats associated with various locales

Parsing Dates
Just as you’ll want your application to display dates according to the local conventions,
you’ll also want it to be able to convert a date string entered by a user into an instance of
java.util.Date. To convert a string representation of a date into an instance of Date, simply
create an instance of DateFormat and use its parse() method as follows:

public static void main(String[] args) throws ParseException {
DateFormat formatter = DateFormat.getDateInstance(DateFormat.SHORT);
java.util.Date dateValue = formatter.parse(args[0]);

}

Note that a ParseException is thrown if the date string passed to the parse() method
doesn’t represent a valid date as defined by the appropriate Locale’s formatting conventions.
There will also potentially be an ArrayIndexOutOfBoundsException thrown if no argument is
provided.

Parsing and DateFormat’s Leniency Mode

As mentioned earlier, you can use instances of DateFormat to convert String representations of
date and time values into instances of Date. For example, the following application converts the
first command-line parameter into a Date value using the SHORT form of the default Locale’s
date-formatting conventions:

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS544

import java.text.*;
import java.util.Date;

public class DateTest {

public static void main(String[] args) throws ParseException {
DateFormat formatter = DateFormat.getDateInstance(DateFormat.SHORT);
Date theDate = formatter.parse(args[0]);
System.out.println(theDate);

}
}

In most cases, entering an invalid date string will result in the parse() method throwing a
ParseException. However, in some versions of Java, you can enter text that doesn’t represent
a valid date without an exception being thrown. For example, you might execute the following
application while using the Java 1.1 core classes:

java DateTest 02/09/hello

Depending upon the version of Java you’re using, the invalid date (“02/09/hello”) may
incorrectly produce these results:

Mon Feb 09 00:00:00 CST 0001

In this case, the invalid year (“hello”) was converted to a value of 0001. This occurs because
the DateFormat’s leniency mode is enabled, which causes it to attempt to “guess” what date the
String was intended to represent.

In most cases, you’ll want DateFormat’s parse() method to both convert and validate the
date that was entered. In other words, the main purpose of parse() is to convert a String into
a Date, but it’s also responsible for ensuring that the text it converts represents a valid date.
However, the previous code segment may fail to correctly notify your application (by throwing
a ParseException) that the date was invalid. To ensure it does so, you can call the setLenient()
method as follows, specifying that lenient parsing of dates should be disabled:

import java.text.*;
import java.util.Date;

public class DateTest {

public static void main(String[] args) throws ParseException {
DateFormat formatter = DateFormat.getDateInstance(DateFormat.SHORT);
formatter.setLenient(false);
Date theDate = formatter.parse(args[0]);
System.out.println(theDate);

}
}

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 545

Formatting and Parsing Times
If you want to format and/or parse time values instead of dates, you can use the
getTimeInstance() factory method defined in DateFormat as in the following code segment:

DateFormat formatter = DateFormat.getTimeInstance();

Like getDateInstance(), the getTimeInstance() method allows you to specify a style
(and optionally a Locale); Figure 12-4 shows some of the combinations.

Figure 12-4. Previewing how the current time is displayed using various combinations of format
and locale

Formatting and Parsing Numeric Values
While DateFormat allows you to format and parse date and time values, NumberFormat allows
you to format and parse numeric values. In this context, numeric values refers collectively to
plain numeric values as well as currency and percentage values, although a different factory
method is provided for each of the three types. To obtain a reference to a formatter/parser for
plain numeric data, use the getNumberInstance() method in NumberFormat. As with DateFormat,
you can specify a Locale, but NumberFormat doesn’t support different styles.

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS546

NumberFormat provides format() methods that can be passed either a long value or a dou-
ble value, so you can pass any numeric primitive type to those methods for formatting. For
example, given the following code segment:

NumberFormat formatter = NumberFormat.getNumberInstance(Locale.US);
System.out.println(formatter.format(123456.78));

executing the code will produce the following output:

123,456.78

There isn’t as much variation in the way that numbers are formatted around the world as
there is variation in how dates and times are displayed, but there are some differences. For
example, the United States and many other countries use the period (.) to represent the deci-
mal point and commas (,) or a space to separate every three characters to the left of the decimal.
However, other countries (for example, Germany) reverse the meaning of these two characters,
using the comma to represent the decimal point and the period as the digit separator. For
example, suppose you modify the previous code segment as follows:

NumberFormat formatter = NumberFormat.getNumberInstance(Locale.GERMANY);
System.out.println(formatter.format(123456.78));

Executing this code will produce the following output:

123.456,78

Like DateFormat instances, NumberFormat objects can be used for both formatting and
parsing, and while DateFormat’s parse() method returns an instance of java.util.Date,
NumberFormat’s parse() returns an instance of java.lang.Number. However, Number provides
convenience methods that allow you to retrieve the encapsulated value as any primitive type,
so it’s easy to convert a numeric String into a given type. For example, you could use the fol-
lowing code segment to convert the first command-line parameter into an int value:

public static void main(String[] args) throws ParseException {
NumberFormat formatter = NumberFormat.getNumberInstance();
int value = formatter.parse(args[0]).intValue();

}

With Locale set to GERMANY, this code will take the figure “123,45” and return “123” as a
result. As with DateFormat, NumberFormat’s parse() method will throw a ParseException if the
string that’s parsed doesn’t represent a valid number.

NumberFormat Example
Although the conventions used for percentage and plain numeric values don’t vary much from
one Locale to the next, the conventions used for currency values vary widely (see Figure 12-5).

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 547

Figure 12-5. Previewing how a currency value is displayed using various combinations of format
and locale

MessageFormat
The ResourceBundle class provides a convenient way to encapsulate messages, but it’s often
necessary to insert strings inside those messages before displaying them. For example, sup-
pose you want to display a message describing the number of users who are logged into an
application. You might display a message like the following one, changing the integer at the
beginning of the message to display the appropriate numeric value:

10 users are currently logged on.

On the surface, it may seem you can simply define the non-numeric portion of the text in
a message and append it to the number of users. For example:

ResourceBundle bundle;
int userCount;
// …
// The ResourceBundle includes a CurrentUsers key that's associated with
// the message shown below:
//

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS548

// users are currently logged on.
//
String msgText = (String)(bundle.getObject("CurrentUsers"));
System.out.println(userCount + msgText);

The problem with this approach is that when the “users are currently logged on” text is
translated to another language, it may not be grammatically correct to simply append the
message text to the numeric value. For example, the equivalent message in Spanish is as
follows:

Entran a 10 utilizadores actualmente.

One way of addressing this is to break the message into two segments: one that represents
the text that should precede the numeric value and the other containing the text that follows
it. In the English ResourceBundle, the text that precedes the value would be empty, while the
Spanish version would be assigned an “Entran a” value. However, that approach would require
you to define multiple resources for each message that contains substitution parameters (for
example, the numeric value). Splitting a single message into multiple resources would make
your code more confusing and make the ResourceBundle file maintenance (in other words,
updating and deleting messages) more tedious and error-prone. Fortunately, Java provides the
java.text.MessageFormat class that allows you to format messages with substitution parame-
ters. It does this by allowing you to format strings into pattern strings at the places you specify
in your code.

To use MessageFormat, simply create an instance using the constructor that accepts a sin-
gle String parameter. That String should represent message text with substitution parameters
identified by numeric values in braces, as follows:

{0} users are currently logged on.

To format this message properly, you must construct an array of objects and pass that array
to the format() method of the MessageFormat you created. When you do so, the substitution
parameter values embedded in the message text will be replaced by a String representation of
the corresponding object in the array. In this case, only a single substitution parameter has a
value of 0, so you can construct an array that contains a single object representing the number
of users logged on:

Object[] values = {new Integer(userCount)};

The 0 value in the message identifies the index of the array element that should be placed
in the substitution field, which in this case is an Integer representing the user count.

You can pass the array of values to the format() method, and it will produce a String rep-
resenting the message text with the substitution parameter values embedded within it. For
example, suppose you’ve defined a properties file like the following one that’s suitable for use
by a PropertyResourceBundle:

CurrentUsers={0} users are currently logged on.

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 549

To format this text with the substitution parameter, simply create an instance of
MessageFormat and call its format() method, passing an array of objects that should be used
for the substitution parameters. In this case, a single parameter is specified, so the array
needs to contain only a single Object, and any additional instances are ignored:

ResourceBundle bundle = ResourceBundle.getBundle("FormatMessages");
int userCount;
// …
// The ResourceBundle includes a CurrentUsers key that's associated with
// the message shown below:
//
// users are currently logged on.
//
String msgText = (String)(bundle.getObject("CurrentUsers"));
MessageFormat msgFormat = new MessageFormat(msgText);
Object[] values = {new Integer(userCount)};
System.out.println(msgFormat.format(values));

If the value of userCount is 15, the previous code segment will produce the following
output:

15 users are currently logged on.

Since it allows you to dynamically construct messages based on their substitution param-
eters, MessageFormat allows you to avoid creating code that’s specific to a Locale. For example,
when a Spanish equivalent of the ResourceBundle is created, the substitution parameter can
simply be moved to the appropriate location within the message:

Entran a {0} utilizadores actualmente.

In effect, MessageFormat shifts the responsibility for creating grammatically correct output
from the Java programmer to the person who provides message translation.

I used a single substitution parameter in this example, but it’s equally simple to specify
multiple parameters when using MessageFormat. For example, you might want to create a mes-
sage with the following text:

$123.40 was deposited at 10:49 AM on March 21, 2000.

In this case, a currency value, date, and time are included in the message output, and the
date and time should be derived from a single instance of java.util.Date. To accomplish this,
you might initially create a message like this one:

Deposit={0} was deposited at {1} on {1}.

Note that the second object in the array is referenced twice in this message, and in fact,
MessageFormat allows you to use an object as many times as you want. In addition, it has no

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS550

requirement that you must use each object in the array within the message, so it’s valid for
the array to contain extraneous objects. In this example, there’s no reason to add elements
to the array that aren’t used in the message, but in practice, you may want to format() an array
that’s used for other purposes within your application.

Given the message defined previously, you could create code like the following to display
the message:

ResourceBundle bundle = ResourceBundle.getBundle("FormatMessages");
float depositAmount = 123.4f;
// …
String msgText = (String)(bundle.getObject("Deposit"));
MessageFormat msgFormat = new MessageFormat(msgText);
Object[] values = {new Float(depositAmount), new java.util.Date()};
System.out.println(msgFormat.format(values));

However, executing this code doesn’t produce the desired results but instead produces
output similar to this:

123.4 was deposited at 3/21/00 10:49 AM on 3/21/00 10:49 AM.

This occurs because the message text defined earlier doesn’t contain any information that
specifies how the data should be formatted. When you don’t do so, the default Locale’s format-
ting styles for numbers and date/time values are used. However, MessageFormat allows you to
provide information within the message text that describes how the values should be format-
ted. For example, you could make the following changes to display the first parameter as a
currency value, the second parameter as a SHORT-style time, and the third as a LONG-style date:

Deposit={0,number,currency} was deposited at {1,time,short} on {1,date,long}.

Making this modification to the message text results in the output being correctly
formatted:

$123.40 was deposited at 10:49 AM on March 21, 2000.

The second item you can specify in the substitution field is referred to as the element
format and must be one of the following: time, date, number, or choice. The third item is the
element style and must be short, medium, long, or full for date/time values or currency,
percent, or integer for numeric values. The choice element format is useful when the message
text that should be displayed is dependent upon the value of the substitution parameter; I’ll
describe how to use choice later in this chapter.

Specifying a Locale
When you create an instance of MessageFormat, it uses the default Locale to format the substi-
tution values using instances of DateFormat, NumberFormat, and ChoiceFormat. For example, if
the default Locale is equal to Locale.US, date and time values are formatted using U.S. format-
ting conventions, but you can change the Locale used by a MessageFormat instance by calling

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 551

its setLocale() method. However, once you’ve modified the Locale, you must reapply the
message pattern, using applyPattern() as follows:

ResourceBundle bundle = ResourceBundle.getBundle("FormatMessages");
float depositAmount = 123.4f;
// …
String msgText = (String)(bundle.getObject("Deposit"));
MessageFormat msgFormat = new MessageFormat(msgText);
msgFormat.setLocale(Locale.FRANCE);
msgFormat.applyPattern(msgFormat.toPattern());
Object[] values = {new Float(depositAmount), new java.util.Date()};
System.out.println(msgFormat.format(values));

This code displays the same message shown earlier, but it uses French currency and
date/time formatting conventions as follows:

F123,40 was deposited at 10:49 AM on mars 21, 2000.

Specifying a Format Object
When you specify a Date object as a parameter, MessageFormat creates an instance of DateFormat
that it uses to convert the Date’s value to a String. Similarly, numeric values are formatted
using instances of NumberFormat that are constructed automatically.

In most cases, it’s appropriate to allow MessageFormat to construct DateFormat,
NumberFormat, and ChoiceFormat objects for you. However, you’ll sometimes want to con-
struct one explicitly and have it used by MessageFormat. For example, you might want to
change the previous code so it displays dates using Italian formatting standards while still
allowing other fields to be formatted using the default Locale. To accomplish this, you could
use the setFormat() method as follows:

ResourceBundle bundle = ResourceBundle.getBundle("FormatMessages");
float depositAmount = 123.4f;
// …
String msgText = (String)(bundle.getObject("Deposit"));
MessageFormat msgFormat = new MessageFormat(msgText);
DateFormat timeFormat = DateFormat.getTimeInstance(

DateFormat.LONG, Locale.ITALY);
msgFormat.setFormat(1, timeFormat);
DateFormat dateFormat = DateFormat.getDateInstance(

DateFormat.LONG, Locale.ITALY);
msgFormat.setFormat(2, dateFormat);
Object[] values = {new Float(depositAmount), new java.util.Date()};
System.out.println(msgFormat.format(values));

If your default Locale is equal to Locale.US, the output from this code segment will
appear like this:

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS552

$123.40 was deposited at 9.46.22 CST on 22 marzo 2000.

Note that the index value specified on setFormat() corresponds to the index of a substitu-
tion field, not a substitution value. In other words, that index identifies the zero-based location
of the substitution field within the message, where the first field corresponds to a value of 0,
the second to a value of 1, and so on. Don’t confuse this with the values within the substitution
fields themselves (for example, {0}, {1}, and so on), which represent indices into the array of
parameter values.

In addition to the setFormat() method, MessageFormat also provides setFormats(), which
allows you to specify an array of Format objects (for example, instances of NumberFormat or
DateFormat). For example, the following code segment produces the same output as the previ-
ous one, but it uses a slightly different approach. It retrieves the array of Format objects built
by the MessageFormat instance and overrides the second and third substitution formats with
instances that use the Locale for Italy.

ResourceBundle bundle = ResourceBundle.getBundle("FormatMessages");
float depositAmount = 123.4f;
// …
String msgText = (String)(bundle.getObject("Deposit"));
MessageFormat msgFormat = new MessageFormat(msgText);
Format[] formats = msgFormat.getFormats();
formats[1] = DateFormat.getTimeInstance(

DateFormat.LONG, Locale.ITALY);
formats[2] = DateFormat.getDateInstance(

DateFormat.LONG, Locale.ITALY);
msgFormat.setFormats(formats);
Object[] values = {new Float(depositAmount), new java.util.Date()};
System.out.println(msgFormat.format(values));

ChoiceFormat
When creating a message that contains a numeric value, it’s often not sufficient to simply
insert the number into the message, because the text may be grammatically incorrect for
some values. For example, the message described earlier that identifies the number of logged-
on users can display each of the following:

0 users are currently logged on.
1 users are currently logged on.
2 users are currently logged on.

Notice that the message produced when a single user is logged on (“1 users are currently
logged on.”) is grammatically incorrect. In addition, a better message when there are zero
users would be “No users are currently logged on.” Attempting to produce these results by
modifying the Java source code would result in the same type of Locale-specific coding that
appeared earlier, but the ChoiceFormat class provides a solution to this problem.

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 553

To create an instance of ChoiceFormat, you can use the constructor that accepts two
parameters: an array of double values in ascending order and an array of String instances.
When you call ChoiceFormat’s format() method and pass it an instance of a numeric wrapper
class (for example, Integer, Float, Byte, and so on), it returns one of the String values from
the array based on the value of that numeric object. For example, suppose you create a
ChoiceFormat using the following code:

double[] limits = {0d, 1d, 2d};
String[] values = {"x < 1", "1 <= x < 2", "x >= 2"};
ChoiceFormat cf = new ChoiceFormat(limits, values);

This ChoiceFormat defines three ranges of numbers: less than one, between one and two,
and greater than or equal to two. Note that the first value in the list (in this case, zero) is effec-
tively ignored with respect to defining ranges, but you must include it and ensure that it’s less
than the second value. Given this ChoiceFormat, you can call its format() method and pass it
instances of a Number subclass such as Integer. Passing a value that’s less than one will cause
the first String to be printed, while a value greater than or equal to one but less than two
causes the second value to be printed. Finally, values greater than or equal to two cause the
third message to be printed. For example, you might execute code like this:

System.out.println(cf.format(new Integer(0)));
System.out.println(cf.format(new Integer(1)));
System.out.println(cf.format(new Integer(2)));

Compiling and executing this output will produce these results:

x < 1
1 <= x < 2
x >= 2

As you may suspect, you can use ChoiceFormat to resolve the problem with the value of
a substitution parameter affecting the appropriate grammar in a message. For example, you
could write the following code to generate the appropriate output based on the number of
users who are logged on:

ResourceBundle bundle = ResourceBundle.getBundle("FormatMessages");
int userCount;
// …
// The ResourceBundle includes a CurrentUsers key that's associated with
// the message shown below:
//
// {0} currently logged on.
//
Integer countValue = new Integer(userCount);
String msgText = (String)(bundle.getObject("CurrentUsers"));
double[] borderValues = {0d, 1d, 2d};
String[] descriptions = {"No users are", "One user is", "{0} users are"};
ChoiceFormat choice = new ChoiceFormat(borderValues, descriptions);

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS554

Object[] values = {choice.format(countValue)};
MessageFormat msgFormat = new MessageFormat(msgText);
msgFormat.applyPattern(msgFormat.format(values));
values[0] = countValue;
System.out.println(msgFormat.format(values));

This code segment first creates a ChoiceFormat that contains the String that’s appropriate
for the number of logged-on users. It then uses MessageFormat to add that String to the mes-
sage stored in the ResourceBundle and finally uses MessageFormat again to insert the number
of users (when that number is greater than 1).

Besides being somewhat confusing, this code has another serious drawback: portions of the
message text are embedded within it. This is a problem that ResourceBundle and MessageFormat
are intended to eliminate. Fortunately, MessageFormat provides a way to use ChoiceFormat
objects without creating them directly as was done here. Just as it’s possible to specify an ele-
ment format for date, time, and numeric values (in other words, DateFormat and NumberFormat
instances), it’s also possible to specify one for ChoiceFormat values. To do so, you simply specify
choice for the element format and create an element style that represents the limit values and
the String that corresponds to each one as follows:

CurrentUsers=
{0,choice,0#No users are|1#One user is|2#{0} users are} currently logged on.

Notice that a substitution parameter with an index of zero appears in two places in this
message. It’s used first at the beginning of the message, where it identifies the choice value
and again within the third and final message that can be produced by the choice. In each case,
that parameter represents the number of users who are logged on, and it’s first used by the
choice to select which of its three text strings should be used. For example, if there are ten
users logged on, MessageFormat uses the choice to create the following intermediate message:

{0} users are currently logged on.

Once the choice has been processed, MessageFormat will perform its normal processing
that causes the number of users to be inserted into the message to produce the following cor-
rect output:

10 users are currently logged on.

To use this new message, you can simplify the previous code segment as follows:

ResourceBundle bundle = ResourceBundle.getBundle("FormatMessages");
int userCount;
// …
String myText = (String)(bundle.getObject("CurrentUsers"));
MessageFormat mf = new MessageFormat(myText);
Object[] vals = {new Integer(userCount)};
System.out.println(mf.format(vals));

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 555

By implicitly using ChoiceFormat this way, you can ensure your messages are grammati-
cally correct while still maintaining the separation of message text from application code.

Parsing Text Data
You’ll often find it necessary to parse text information that has been entered by a user. For exam-
ple, you may need to split text across multiple lines if it’s displayed in a component that’s too
narrow to display the string on a single line. In other cases, you may want to identify each word
or sentence that was entered or simply process each character. These are all relatively easy oper-
ations to perform in English, but some other languages have complex rules that govern what’s
considered a sentence or a word. Even identifying a single character can be complex, particu-
larly in some Asian languages, because a single logical character in one of those languages can
be represented by a sequence of multiple Unicode characters. Fortunately, Java provides the
BreakIterator class that can be used to parse text using the rules for a given Locale.

BreakIterator
To use a BreakIterator, you must obtain an instance of the appropriate type from one
of the factory methods that are defined; those methods are getCharacterInstance(),
getWordInstance(), getLineInstance(), and getSentenceInstance(). Two implementations
of each of those methods are provided: one that accepts a Locale parameter and another
that uses the default Locale.

Once you’ve obtained a BreakIterator, you must identify the String that’s to be parsed
by calling the setText() method. The BreakIterator works by maintaining an index value in
the text, and when you call a method to locate the next break position, that index is adjusted
appropriately. The next() method moves the index to the next boundary in the text field and
returns the position of that boundary or a value of BreakIterator.DONE when no more bound-
aries can be found. For example, the following code segments show how you can identify
sentence boundaries using a BreakIterator:

BreakIterator bi = BreakIterator.getSentenceInstance();
String sent = "This is a sentence! Is this a sentence too? " +

"This is the last sentence.";
bi.setText(sent);
int lastIndex = bi.first();
int currentIndex = bi.next();
while (currentIndex != BreakIterator.DONE) {
System.out.println(sent.substring(lastIndex, currentIndex));
lastIndex = currentIndex;
currentIndex = bi.next();

}

If you compile and execute this code, it will produce the following output:

This is a sentence!
Is this a sentence too?
This is the last sentence.

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS556

Note that BreakIterator provides methods for moving both forward and backward
through a string to identify its boundaries, although you’ll typically process them in a forward
direction as was done here. You should also be aware that the whitespace characters (spaces
in this example) are grouped with the sentence they follow. For example, the first two sen-
tences shown previously will each include a trailing space, since a space is included in the
sample text between each of the three sentences.

Character Iteration
As mentioned earlier, identifying each character in a String is trivial in some languages but
not in others. For example, characters with accents such as the ä or ë characters that represent
one logical character can be represented by two “physical” characters: the base character (for
example, a or e) followed by a diacritical mark (¨). By using BreakIterator, you can identify
each individual logical character within a String, regardless of how it’s stored.

Word Iteration
Although relatively simple for English text, identifying word boundaries can be complex in
some languages, but BreakIterator allows you to do so easily. When using a word iterator,
boundaries are identified on each side of punctuation characters as well as around the words
themselves. For example, the following sentence will be broken into eight separate pieces:

This is a test.

The eight pieces that a word iterator will identify are the four words within the sentence,
the three whitespace regions (in other words, the space characters) between those words, and
the period at the end of the sentence.

Line Iteration
Line iteration is useful when you need to find an appropriate location within a String where
the text can be split across lines. For example, you might do so if implementing word wrap
behavior like that found in JTextArea, where a single word isn’t allowed to span multiple lines.
In the case of English text, line boundaries occur at spaces and at hyphens, since it’s consid-
ered acceptable to split a hyphenated word across two lines.

Sentence Iteration
As illustrated earlier, this type of BreakIterator allows you to identify the beginning and end
of sentences.

BreakIterator Example
Listing 12-2 provides an application that allows you to test the behavior of the various types
of BreakIterator. It produces a user interface like the one shown in Figure 12-6, which allows
you to select a Locale and a BreakIterator type (character, word, line, or sentence), enter
some text, and have the text parsed by a BreakIterator.

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 557

Figure 12-6. BreakIterator contains sophisticated logic for identifying sentence breaks.

When the text is parsed by pressing the Refresh button, the boundaries identified by the
BreakIterator are used to add the separate pieces of text to a JList, allowing you to scroll to
view all of the parsed items.

Listing 12-2. Testing BreakIterator

import java.awt.*;
import java.awt.event.*;
import java.text.*;
import java.util.*;
import javax.swing.*;

public class IteratorTest extends JPanel {

protected JComboBox localeButton;

protected JTextArea textArea;

protected JRadioButton charButton;
protected JRadioButton wordButton;
protected JRadioButton lineButton;
protected JRadioButton sentButton;

protected JLabel countLabel;
protected JButton refreshButton;

protected JList itemList;

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS558

// Create a window for the Iterator test
// and make sure that later components will fit
public static void main(String[] args) {
JFrame f = new JFrame("Iterator Test");
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setContentPane(new IteratorTest());
f.pack();
f.setVisible(true);

}

public IteratorTest() {
buildLayout();
refreshDisplay();

}

protected void buildLayout() {
setLayout(new GridBagLayout());
GridBagConstraints gbc = new GridBagConstraints();

// Set up the contents of the Locale combo box
gbc.gridx = 0;
gbc.gridy = 0;
localeButton = new JComboBox(Locale.getAvailableLocales());
localeButton.setRenderer(new LocaleListCellRenderer());
localeButton.setSelectedItem(Locale.getDefault());
add(localeButton, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;
gbc.fill = GridBagConstraints.BOTH;
gbc.weightx = 1;

// Set up the input area panel
gbc.gridy++;
gbc.weighty = 1;
textArea = new JTextArea(5, 20);
textArea.setLineWrap(true);
textArea.setWrapStyleWord(true);
JScrollPane jsp = new JScrollPane(textArea,

JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED,
JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);

add(jsp, gbc);

// Add a panel for the choice buttons
gbc.gridy++;
gbc.weighty = 0;
add(getTypePanel(), gbc);

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 559

// Add a panel for the refresh button and the count label
gbc.gridy++;
add(getCountPanel(), gbc);

// Add a panel for the parsed output
gbc.gridy++;
gbc.weighty = 1;
itemList = new JList();
add(new JScrollPane(itemList), gbc);

}

// Create the panel for the choice buttons
protected JPanel getTypePanel() {
JPanel panel = new JPanel();
panel.setLayout(new GridLayout(2, 2, 20, 0));
charButton = new JRadioButton("Character", true);
panel.add(charButton);
wordButton = new JRadioButton("Word");
panel.add(wordButton);
lineButton = new JRadioButton("Line");
panel.add(lineButton);
sentButton = new JRadioButton("Sentence");
panel.add(sentButton);

// Add the buttons to a group
ButtonGroup group = new ButtonGroup();
group.add(charButton);
group.add(wordButton);
group.add(lineButton);
group.add(sentButton);
return panel;

}

// Create a panel for the refresh button and the count label
protected JPanel getCountPanel() {
JPanel panel = new JPanel();
JLabel label = new JLabel("Count:", JLabel.RIGHT);
panel.add(label);
countLabel = new JLabel("", JLabel.LEFT);
Dimension size = panel.getPreferredSize();
size.width = Math.min(size.width, 100);
countLabel.setPreferredSize(size);
panel.add(countLabel);

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS560

// Add the refresh button
refreshButton = new JButton("Refresh");
refreshButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
refreshDisplay();

}
});
panel.add(refreshButton);
return panel;

}

protected void refreshDisplay() {
int startIndex, nextIndex;
Vector items = new Vector();
// Get the input text
String msgText = textArea.getText();
// Set the locale and prepare the iterator
Locale locale = (Locale)(localeButton.getSelectedItem());
BreakIterator iterator = null;
// Work out which button is selected and set the iterator
if (charButton.isSelected()) {
iterator = BreakIterator.getCharacterInstance(locale);

}
else if (wordButton.isSelected()) {
iterator = BreakIterator.getWordInstance(locale);

}
else if (lineButton.isSelected()) {
iterator = BreakIterator.getLineInstance(locale);

}
else if (sentButton.isSelected()) {
iterator = BreakIterator.getSentenceInstance(locale);

}
iterator.setText(msgText);
startIndex = iterator.first();
nextIndex = iterator.next();

// Find the breaks in the input text
// and add the substrings for output
while (nextIndex != BreakIterator.DONE) {
items.addElement(msgText.substring(startIndex, nextIndex));
startIndex = nextIndex;
nextIndex = iterator.next();

}
countLabel.setText(Integer.toString(items.size()));
itemList.setListData(items); // Output the parsed input

}

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 561

// Combo box to select the available locales
class LocaleListCellRenderer extends DefaultListCellRenderer {
public Component getListCellRendererComponent(

JList list, Object value, int index,
boolean isSelected, boolean hasFocus) {

Locale locale = (Locale)(value);
return super.getListCellRendererComponent(

list, locale.getDisplayName(),
index, isSelected, hasFocus);

}
}

}

Text Comparisons and Sorting
It’s sometimes necessary for your application to compare instances of String to one another,
such as when the text items in a collection are being sorted. For example, you might want to
sort a list of names alphabetically, which you’d accomplish by comparing the names to one
another.

Although Java’s String class provides compareTo() and compareToIgnoreCase() methods,
those methods may not return the correct results when comparing non-ASCII characters. As
with parsing, the rules that govern String comparisons are simple in some cases but not in
others. Fortunately, the java.text package includes the Collator class that can be used to
perform Locale-specific comparisons of strings, and you can obtain an instance of Collator
by calling the getInstance() method. Like many of the other methods related to internation-
alization, two implementations of getInstance() are available: one that accepts a Locale
argument and another that doesn’t. The no-argument version returns a Collator that’s appro-
priate for the default Locale, while the implementation that accepts a Locale parameter returns
a Collator that sorts based on the conventions of the specified Locale.

Once you’ve obtained a reference to a Collator object for the appropriate Locale, you can
call the compare() method that accepts two String parameters and returns an int value. The
return value indicates the relative value of the first string to the second, as shown in Table 12-1.

Table 12-1. Values Returned by the compare() Method Defined in Collator

Relative Values of the String Parameters Value Returned by compare()

First string less than the second string Less than zero

First string equal to the second string Zero

First string greater than the second string Greater than zero

The following code segments illustrate how to perform a comparison that will work
correctly regardless of the user’s Locale:

String first, second;
// …
Collator coll = Collator.getInstance();

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS562

int result = coll.compare(first, second);
if (result < 0) {
System.out.println("First String is less than second");

}
else if (result == 0) {
System.out.println("First String is equal to the second");

}
else if (result > 0) {
System.out.println("First String is greater than the second");

}

Sorting the objects in a java.util.List implementation is even easier, since the
Collections class in java.util provides a static sort() method you can use. For example,
if you create a Vector containing String values and you want to sort those values, you can
pass that Vector as a parameter to the sort() method in Collections. The only requirements
for using sort() are that each object in the List must implement the java.lang.Comparable
interface (which is true of most wrapper classes) and that a comparison between any two of
the elements is meaningful. In general, for a comparison to be meaningful, the two elements
must be instances of the same type of object.

By default, the sort() method in Collections sorts using the rules for the default Locale.
However, you can create a Collator instance and pass that to the sort() method along with
the List implementation to have the items in the list sorted according to the Locale associ-
ated with your Collator object. For example, if your default Locale isn’t equal to Locale.JAPAN
but the text to be sorted was entered by a Japanese user, you could use code such as the fol-
lowing to ensure that the sorting is performed correctly:

// This Vector will contain the items to be sorted
Vector textItems;
// …
Collator coll = Collator.getInstance(Locale.JAPAN);
Collections.sort(textItems, coll);

Collator Strength
Sorting is sometimes not as simple as it may appear, even when sorting English text that con-
tains only simple Latin characters. For example, depending upon the circumstances, it may
or may not be the case that “hello” should be considered equal to “Hello”; in addition, for
languages where characters can be used with or without an accent (for example, “pêche” vs.
“péché”), it may or may not be desirable to consider the presence or absence of accents when
comparing String values. Fortunately, the Collator class allows you to select a strength value
that determines which type of differences between characters (if any) will be ignored.

The four strength values supported by Collator are represented by constants defined in
that class: PRIMARY, SECONDARY, TERTIARY, and IDENTICAL. These constants define how closely
two characters must match one another for them to be considered equal. Although the spe-
cific rules for making that determination are Locale-specific, some generalizations can be
made. For example, it’s commonly the case that a primary difference means that two charac-
ters represent different letters of the alphabet, and the difference between A and B is primary,

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 563

but the difference between A and a isn’t. A secondary difference between two characters indi-
cates that their accents are different or that one has an accent while the other doesn’t. For
instance, the difference between é and ê is considered a secondary difference. Finally, a terti-
ary difference in this case refers to the case of the letter, such as when comparing e to E. As
described in Table 12-2, the four constants defined in Collator allow you to specify how
closely two characters must match one another for them to be considered equal.

Table 12-2. Collator Strengths and Types of Differences

Collator Constant Type of Differences Considered Significant

PRIMARY Primary

SECONDARY Primary and secondary

TERTIARY Primary, secondary, and tertiary

IDENTICAL All

IDENTICAL differs from TERTIARY in that it differentiates between precomposed characters
with accents and combined characters with accents. By setting the strength of a Collator, you
can control how items are sorted; the following is an example of how to set the strength:

Collator coll = Collator.getInstance();
coll.setStrength(Collator.PRIMARY);

Decomposition Mode
The Collator class also supports a decomposition mode that determines how composed
characters are handled by the Collator instance. Examples of composed characters are those
that contain accents, which are usually broken down (or decomposed) for comparison opera-
tions. For example, the é character in “péché” would be decomposed into two characters: the
base letter (lowercase e) followed by the acute character (´). In other words, when it’s decom-
posed, “péché” is seven characters long instead of five, and the purpose of this decomposition
is to ensure that the result of a comparison is correct.

Depending upon the language being used, it may or may not be necessary for Collator
to perform decomposition. For example, decomposition isn’t necessary at all when comparing
only English text. Since decomposition causes comparison operations to run more slowly, you
may choose to disable decomposition entirely if you’re certain your application will only ever
compare String values that don’t require it.

If your application can be used with languages that require some level of decomposition,
you must choose between canonical decomposition (the default value for instances of Collator)
and full decomposition. Canonical decomposition is appropriate for most languages and will
provide correct comparisons for all canonical variants defined in the Unicode 2.0 standard.
However, if your application supports Katakana characters, for example, you may find it nec-
essary to use full decomposition despite its relatively slow performance. For information on
which character sets require full decomposition, you should visit the Unicode home page at
http://www.unicode.org/. (Katakana characters are traditional Japanese handwriting.)

Each of the composition modes is represented by a constant defined in Collator,
and you can modify and query a Collator’s mode using the setDecomposition() and
getDecomposition() methods. The three constants representing composition modes are

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS564

NO_DECOMPOSITION, CANONICAL_DECOMPOSITION, and FULL_DECOMPOSITION; the following is an
example of how to use them:

Collator coll;
String first, second;
// …
// We may be comparing Katakana characters
coll.setDecomposition(Collator.FULL_DECOMPOSITION);
int result = coll.compare(first, second);

Internationalizing an Application
You’ll now briefly examine the steps you must take to internationalize an existing application.
In this case, the application is a simple program that allows the user to maintain a collection
of instances of the Person class shown in Listing 12-3.

Listing 12-3. Person Class

import java.util.Date;

public class Person implements java.io.Serializable {

protected String firstName;
protected String lastName;
protected String address;
protected Date dateOfBirth;

public Person(String fn, String ln, String addr, Date dob) {
super();
setFirstName(fn);
setLastName(ln);
setAddress(addr);
setDateOfBirth(dob);

}

public Person() {
this(null, null, null, null);

}

public void setFirstName(String fn) {
firstName = fn;

}

public String getFirstName() {
return firstName;

}

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 565

public void setLastName(String ln) {
lastName = ln;

}

public String getLastName() {
return lastName;

}

public void setAddress(String addr) {
address = addr;

}

public String getAddress() {
return address;

}

public void setDateOfBirth(Date dob) {
dateOfBirth = dob;

}

public Date getDateOfBirth() {
return dateOfBirth;

}
}

As shown in Figure 12-7, the EditPersonList application allows entries to be added,
updated, and deleted, and it stores those entries in a disk file named people.ser. Listing 12-4
shows the code for the EditPersonList application.

Figure 12-7. A simple application that allows data to be edited and stored

Listing 12-4. EditPersonList Application

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.text.*;
import java.util.*;
import javax.swing.*;

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS566

public class EditPersonList extends JFrame {

protected Vector personList;
protected int currentIndex;

protected JButton addButton;
protected JButton deleteButton;
protected JButton clearButton;

protected JButton nextButton;
protected JButton previousButton;

protected PersonPanel personPanel;

public static void main(String[] args) throws Exception {
EditPersonList epl = new EditPersonList("Edit List");
epl.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
epl.setVisible(true);

}

public EditPersonList(String title) throws Exception {
super(title);
buildLayout();
File f = new File("people.ser");
if (f.exists()) {
FileInputStream fis = new FileInputStream(f);
ObjectInputStream ois = new ObjectInputStream(fis);
personList = (Vector)(ois.readObject());

}
else {
personList = new Vector();

}
currentIndex = 0;
displayCurrentPerson();
pack();

}

protected void buildLayout() {
Container pane = getContentPane();
personPanel = new PersonPanel();
pane.add(personPanel, BorderLayout.CENTER);
pane.add(getButtonPanel(), BorderLayout.SOUTH);

}

protected JPanel getButtonPanel() {
JPanel panel = new JPanel();
panel.setLayout(new GridLayout(1, 5, 10, 0));

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 567

addButton = new JButton("Add");
panel.add(addButton);
clearButton = new JButton("Clear");
panel.add(clearButton);
deleteButton = new JButton("Delete");
panel.add(deleteButton);

nextButton = new JButton("Next");
panel.add(nextButton);
previousButton = new JButton("Previous");
panel.add(previousButton);

addButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
Person p = new Person();
if (personPanel.updatePerson(p)) {
personList.addElement(p);
currentIndex = personList.size() - 1;
displayCurrentPerson();

}
savePersonList();

}
});

clearButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
personPanel.clear();

}
});

deleteButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
personList.removeElementAt(currentIndex);
if (currentIndex >= personList.size()) {
currentIndex = personList.size() - 1;

}
savePersonList();
displayCurrentPerson();

}
});

nextButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
currentIndex++;
displayCurrentPerson();

}
});

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS568

previousButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
currentIndex--;
displayCurrentPerson();

}
});

return panel;
}

protected void displayCurrentPerson() {
if ((currentIndex >= 0) && (currentIndex < personList.size())) {
personPanel.displayPerson((Person)

(personList.elementAt(currentIndex)));
}
else {
personPanel.clear();

}
previousButton.setEnabled(currentIndex > 0);
nextButton.setEnabled(currentIndex < personList.size() - 1);

}

protected void savePersonList() {
File f = new File("people.ser");
try {
FileOutputStream fos = new FileOutputStream(f);
ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeObject(personList);
oos.close();

} catch (IOException ioe) {};
}

class PersonPanel extends JPanel {
protected JTextField firstNameField;
protected JTextField lastNameField;
protected JTextField addressField;
protected JTextField dobField;

public PersonPanel() {
buildLayout();

}

protected void buildLayout() {
JLabel label;
setLayout(new GridBagLayout());
GridBagConstraints gbc = new GridBagConstraints();
gbc.weightx = 1;

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 569

gbc.fill = GridBagConstraints.HORIZONTAL;
gbc.insets = new Insets(5, 10, 5, 10);

gbc.gridy = 0;
label = new JLabel("First name:", JLabel.LEFT);
add(label, gbc);

firstNameField = new JTextField(10);
add(firstNameField, gbc);

label = new JLabel("Last name:", JLabel.LEFT);
add(label, gbc);

lastNameField = new JTextField(10);
add(lastNameField, gbc);

gbc.gridy++;
label = new JLabel("Address:", JLabel.LEFT);
add(label, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;
addressField = new JTextField(10);
add(addressField, gbc);

gbc.gridwidth = 1;
gbc.gridy++;
label = new JLabel("Date of Birth:", JLabel.LEFT);
add(label, gbc);

dobField = new JTextField(10);
add(dobField, gbc);

}

public void clear() {
firstNameField.setText("");
lastNameField.setText("");
addressField.setText("");
dobField.setText("");

}

public void displayPerson(Person p) {
firstNameField.setText(p.getFirstName());
lastNameField.setText(p.getLastName());
addressField.setText(p.getAddress());
DateFormat formatter = DateFormat.getDateInstance(DateFormat.SHORT);
dobField.setText(formatter.format(p.getDateOfBirth()));

}

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS570

public boolean updatePerson(Person p) {
String firstName = firstNameField.getText();
String lastName = lastNameField.getText();
String address = addressField.getText();
Date dateOfBirth = null;
DateFormat parser = DateFormat.getDateInstance(DateFormat.SHORT);
try {
dateOfBirth = parser.parse(dobField.getText());

}
catch (ParseException pe) {
JOptionPane.showMessageDialog(this, pe.getMessage(),

"Invalid Date",
JOptionPane.ERROR_MESSAGE);

return false;
}
p.setFirstName(firstName);
p.setLastName(lastName);
p.setAddress(address);
p.setDateOfBirth(dateOfBirth);
return true;

}
}

}

No String comparisons are performed in this class, and the only parsing operation occurs
when a String entered by the user is converted into a Date instance. Therefore, you can inter-
nationalize this class simply by removing the Locale-specific text that’s embedded within it.
Specifically, those strings are the JFrame’s title, the JOptionPane’s title, the JButton labels, and
the text displayed within the user interface panel (PersonPanel).

Although a String is specified for the name of the file that’s used to store the People
instances, that name isn’t visible to users of the application and doesn’t need to be stored in
the ResourceBundle.

Since all the resources that must be isolated from the source code are text strings, you can
create a PropertyResourceBundle like the following one named PeopleResources.properties:

FrameTitle=Edit List
Button_Label_Add=Add
Button_Label_Clear=Clear
Button_Label_Delete=Delete
Button_Label_Next=Next
Button_Label_Previous=Previous
Label_Text_FirstName=First name:
Label_Text_LastName=Last name:
Label_Text_Address=Address:
Label_Text_DOB=Date of Birth:
Dialog_Title_Invalid_Date=Invalid Date
Menu_Locale=Locale

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 571

Although you can use any identifiers/keys you find appropriate, it’s usually helpful to
use names that describe how the resource is used (for example, Button_XXX for button labels,
Label_XXX for JLabel text, and so on). This can provide an intuitive clue that helps you to
determine how and/or where a particular resource is used within your application.

With a file defined that contains the resources, it’s easy to modify the EditPersonList class
so that it uses the external resources instead of embedding the messages (see Listing 12-5).

Listing 12-5. EditPersonList Class

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.text.*;
import java.util.*;
import javax.swing.*;

public class EditPersonList extends JFrame {

protected Vector personList;
protected int currentIndex;

protected JButton addButton;
protected JButton deleteButton;
protected JButton clearButton;

protected JButton nextButton;
protected JButton previousButton;

protected PersonPanel personPanel;

protected static ResourceBundle resources =
ResourceBundle.getBundle("PeopleResources");

public static void main(String[] args) throws Exception {
EditPersonList epl = new EditPersonList(resources.getString("FrameTitle"));
epl.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
epl.setVisible(true);

}

public EditPersonList(String title) throws Exception {
super(title);
buildLayout();
File f = new File("people.ser");
if (f.exists()) {
FileInputStream fis = new FileInputStream(f);
ObjectInputStream ois = new ObjectInputStream(fis);
personList = (Vector)(ois.readObject());

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS572

}
else {
personList = new Vector();

}
currentIndex = 0;
displayCurrentPerson();
pack();

}

protected void buildLayout() {
Container pane = getContentPane();
personPanel = new PersonPanel();
pane.add(personPanel, BorderLayout.CENTER);
pane.add(getButtonPanel(), BorderLayout.SOUTH);

}

protected JPanel getButtonPanel() {
JPanel panel = new JPanel();
panel.setLayout(new GridLayout(1, 5, 10, 0));

addButton = new JButton(resources.getString("Button_Label_Add"));
panel.add(addButton);
clearButton = new JButton(resources.getString("Button_Label_Clear"));
panel.add(clearButton);
deleteButton = new JButton(resources.getString("Button_Label_Delete"));
panel.add(deleteButton);

nextButton = new JButton(resources.getString("Button_Label_Next"));
panel.add(nextButton);
previousButton = new JButton(resources.getString("Button_Label_Previous"));
panel.add(previousButton);

addButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
Person p = new Person();
if (personPanel.updatePerson(p)) {
personList.addElement(p);
currentIndex = personList.size() - 1;
displayCurrentPerson();

}
savePersonList();

}
});

clearButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
personPanel.clear();

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 573

}
});

deleteButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
personList.removeElementAt(currentIndex);
if (currentIndex >= personList.size()) {
currentIndex = personList.size() - 1;

}
savePersonList();

displayCurrentPerson();
}

});

nextButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
currentIndex++;
displayCurrentPerson();

}
});

previousButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
currentIndex--;
displayCurrentPerson();

}
});

return panel;
}

protected void displayCurrentPerson() {
if ((currentIndex >= 0) && (currentIndex < personList.size())) {
personPanel.displayPerson((Person)

(personList.elementAt(currentIndex)));
}
else {
personPanel.clear();

}
previousButton.setEnabled(currentIndex > 0);
nextButton.setEnabled(currentIndex < personList.size() - 1);

}

protected void savePersonList() {
File f = new File("people.ser");
try {
FileOutputStream fos = new FileOutputStream(f);
ObjectOutputStream oos = new ObjectOutputStream(fos);

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS574

oos.writeObject(personList);
oos.close();

} catch (IOException ioe) {};
}

class PersonPanel extends JPanel {
protected JTextField firstNameField;
protected JTextField lastNameField;
protected JTextField addressField;
protected JTextField dobField;

public PersonPanel() {
buildLayout();

}

protected void buildLayout() {
JLabel label;
setLayout(new GridBagLayout());
GridBagConstraints gbc = new GridBagConstraints();
gbc.weightx = 1;
gbc.fill = GridBagConstraints.HORIZONTAL;
gbc.insets = new Insets(5, 10, 5, 10);

gbc.gridy = 0;
label = new JLabel(resources.getString(

"Label_Text_FirstName"), JLabel.LEFT);
add(label, gbc);

firstNameField = new JTextField(10);
add(firstNameField, gbc);

label = new JLabel(resources.getString(
"Label_Text_LastName"), JLabel.LEFT);

add(label, gbc);

lastNameField = new JTextField(10);
add(lastNameField, gbc);

gbc.gridy++;
label = new JLabel(resources.getString(

"Label_Text_Address"), JLabel.LEFT);
add(label, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;
addressField = new JTextField(10);
add(addressField, gbc);

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 575

gbc.gridwidth = 1;
gbc.gridy++;
label = new JLabel(resources.getString(

"Label_Text_DOB"), JLabel.LEFT);
add(label, gbc);

dobField = new JTextField(10);
add(dobField, gbc);

}

public void clear() {
firstNameField.setText("");
lastNameField.setText("");
addressField.setText("");
dobField.setText("");

}

public void displayPerson(Person p) {
firstNameField.setText(p.getFirstName());
lastNameField.setText(p.getLastName());
addressField.setText(p.getAddress());
DateFormat formatter = DateFormat.getDateInstance(DateFormat.SHORT);
dobField.setText(formatter.format(p.getDateOfBirth()));

}

public boolean updatePerson(Person p) {
String firstName = firstNameField.getText();
String lastName = lastNameField.getText();
String address = addressField.getText();
Date dateOfBirth = null;
DateFormat parser = DateFormat.getDateInstance(DateFormat.SHORT);
try {
dateOfBirth = parser.parse(dobField.getText());

}
catch (ParseException pe) {
JOptionPane.showMessageDialog(this, pe.getMessage(),

resources.getString("Dialog_Title_Invalid_Date"),
JOptionPane.ERROR_MESSAGE);

return false;
}
p.setFirstName(firstName);
p.setLastName(lastName);
p.setAddress(address);
p.setDateOfBirth(dateOfBirth);
return true;

}
}

}

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS576

Changing the Locale at Runtime
In many cases, it’s acceptable to always use the default Locale or to require the user to select
a Locale when logging on and use that Locale for the duration of the user’s session. However,
you’ll sometimes want to allow users to change their Locale preference while the application
is running. Although providing this capability requires more work, it’s usually not technically
difficult to do so. Normally all that’s necessary is to provide methods that will update
the user interface components when the Locale selection changes. For example, you can
change the EditPersonList application as shown in Listing 12-6 to provide a menu with one
JRadioButtonMenuItem for English and another for German. When one of those buttons is
clicked, the ResourceBundle is reloaded based on the selection and the messages are updated
as shown in Figure 12-8.

Listing 12-6. Modified EditPersonList Application

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.text.*;
import java.util.*;
import javax.swing.*;

public class EditPersonList extends JFrame {

protected Vector personList;
protected int currentIndex;

protected JButton addButton;
protected JButton deleteButton;
protected JButton clearButton;

protected JButton nextButton;
protected JButton previousButton;

protected PersonPanel personPanel;

protected JMenu localeMenu;

protected static ResourceBundle resources =
ResourceBundle.getBundle("PeopleResources");

public static void main(String[] args) throws Exception {
EditPersonList epl = new EditPersonList(resources.getString("FrameTitle"));
epl.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
epl.setVisible(true);

}

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 577

public EditPersonList(String title) throws Exception {
super(title);
buildLayout();
File f = new File("people.ser");
if (f.exists()) {
FileInputStream fis = new FileInputStream(f);
ObjectInputStream ois = new ObjectInputStream(fis);
personList = (Vector)(ois.readObject());

}
else {
personList = new Vector();

}
currentIndex = 0;
displayCurrentPerson();
pack();

}

protected void buildLayout() {
JMenuItem menuItem;

Container pane = getContentPane();
personPanel = new PersonPanel();
pane.add(personPanel, BorderLayout.CENTER);
pane.add(getButtonPanel(), BorderLayout.SOUTH);

JMenuBar jmb = new JMenuBar();
localeMenu = new JMenu(resources.getString("Menu_Locale"));
jmb.add(localeMenu);

ButtonGroup group = new ButtonGroup();

menuItem = new JRadioButtonMenuItem(
Locale.ENGLISH.getDisplayName(Locale.ENGLISH), true);

localeMenu.add(menuItem);
menuItem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
resources = ResourceBundle.getBundle(

"PeopleResources", Locale.ENGLISH);
updateLabels();
pack();

}
});
group.add(menuItem);

menuItem = new JRadioButtonMenuItem(
Locale.GERMAN.getDisplayName(Locale.GERMAN));

localeMenu.add(menuItem);

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS578

menuItem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
resources = ResourceBundle.getBundle(

"PeopleResources", Locale.GERMAN);
updateLabels();
pack();

}
});
group.add(menuItem);

setJMenuBar(jmb);
}

protected JPanel getButtonPanel() {
JPanel panel = new JPanel();
panel.setLayout(new GridLayout(1, 5, 10, 0));

addButton = new JButton(resources.getString("Button_Label_Add"));
panel.add(addButton);
clearButton = new JButton(resources.getString("Button_Label_Clear"));
panel.add(clearButton);
deleteButton = new JButton(resources.getString("Button_Label_Delete"));
panel.add(deleteButton);

nextButton = new JButton(resources.getString("Button_Label_Next"));
panel.add(nextButton);
previousButton = new JButton(resources.getString("Button_Label_Previous"));
panel.add(previousButton);

addButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
Person p = new Person();
if (personPanel.updatePerson(p)) {
personList.addElement(p);
currentIndex = personList.size() - 1;
displayCurrentPerson();

}
savePersonList();

}
});

clearButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
personPanel.clear();

}
});

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 579

deleteButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
personList.removeElementAt(currentIndex);
if (currentIndex >= personList.size()) {
currentIndex = personList.size() - 1;

}
savePersonList();

displayCurrentPerson();
}

});

nextButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
currentIndex++;
displayCurrentPerson();

}
});

previousButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
currentIndex--;
displayCurrentPerson();

}
});

return panel;
}

protected void displayCurrentPerson() {
if ((currentIndex >= 0) && (currentIndex < personList.size())) {
personPanel.displayPerson((Person)

(personList.elementAt(currentIndex)));
}
else {
personPanel.clear();

}
previousButton.setEnabled(currentIndex > 0);
nextButton.setEnabled(currentIndex < personList.size() - 1);

}

protected void savePersonList() {
File f = new File("people.ser");
try {
FileOutputStream fos = new FileOutputStream(f);
ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeObject(personList);

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS580

oos.close();
} catch (IOException ioe) {};

}

protected void updateLabels() {
setTitle(resources.getString("FrameTitle"));
personPanel.updateLabelText();
localeMenu.setText(resources.getString("Menu_Locale"));
addButton.setText(resources.getString("Button_Label_Add"));
clearButton.setText(resources.getString("Button_Label_Clear"));
deleteButton.setText(resources.getString("Button_Label_Delete"));
nextButton.setText(resources.getString("Button_Label_Next"));
previousButton.setText(resources.getString(

"Button_Label_Previous"));
}

class PersonPanel extends JPanel {
protected JTextField firstNameField;
protected JTextField lastNameField;
protected JTextField addressField;
protected JTextField dobField;

protected JLabel firstNameLabel;
protected JLabel lastNameLabel;
protected JLabel addressLabel;
protected JLabel dateOfBirthLabel;

public PersonPanel() {
buildLayout();

}

protected void buildLayout() {
// JLabel label;

setLayout(new GridBagLayout());
GridBagConstraints gbc = new GridBagConstraints();
gbc.weightx = 1;
gbc.fill = GridBagConstraints.HORIZONTAL;
gbc.insets = new Insets(5, 10, 5, 10);

gbc.gridy = 0;
firstNameLabel = new JLabel(resources.getString(

"Label_Text_FirstName"), JLabel.LEFT);
add(firstNameLabel, gbc);

firstNameField = new JTextField(10);
add(firstNameField, gbc);

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 581

lastNameLabel = new JLabel(resources.getString(
"Label_Text_LastName"), JLabel.LEFT);

add(lastNameLabel, gbc);

lastNameField = new JTextField(10);
add(lastNameField, gbc);

gbc.gridy++;
addressLabel = new JLabel(resources.getString(

"Label_Text_Address"), JLabel.LEFT);
add(addressLabel, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;
addressField = new JTextField(10);
add(addressField, gbc);

gbc.gridwidth = 1;
gbc.gridy++;
dateOfBirthLabel = new JLabel(resources.getString(

"Label_Text_DOB"), JLabel.LEFT);
add(dateOfBirthLabel, gbc);

dobField = new JTextField(10);
add(dobField, gbc);

}

public void clear() {
firstNameField.setText("");
lastNameField.setText("");
addressField.setText("");
dobField.setText("");

}

public void displayPerson(Person p) {
firstNameField.setText(p.getFirstName());
lastNameField.setText(p.getLastName());
addressField.setText(p.getAddress());
DateFormat formatter = DateFormat.getDateInstance(DateFormat.SHORT);
dobField.setText(formatter.format(p.getDateOfBirth()));

}

public boolean updatePerson(Person p) {
String firstName = firstNameField.getText();
String lastName = lastNameField.getText();
String address = addressField.getText();
Date dateOfBirth = null;

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS582

DateFormat parser = DateFormat.getDateInstance(DateFormat.SHORT);
try {
dateOfBirth = parser.parse(dobField.getText());

}
catch (ParseException pe) {
JOptionPane.showMessageDialog(this, pe.getMessage(),

resources.getString("Dialog_Title_Invalid_Date"),
JOptionPane.ERROR_MESSAGE);

return false;
}
p.setFirstName(firstName);
p.setLastName(lastName);
p.setAddress(address);
p.setDateOfBirth(dateOfBirth);
return true;

}

public void updateLabelText() {
firstNameLabel.setText(resources.getString("Label_Text_FirstName"));
lastNameLabel.setText(resources.getString("Label_Text_LastName"));
addressLabel.setText(resources.getString("Label_Text_Address"));
dateOfBirthLabel.setText(resources.getString("Label_Text_DOB"));

}

}
}

Figure 12-8. Dynamically changing the Locale that’s used

Notice that the main difference between this modified version of EditPersonList and the
previous implementation is the presence of methods that update the displayed text. In addi-
tion, JLabel instances that were defined locally within a method are assigned to class-level
instance variables so that the labels can be modified when the Locale changes.

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 583

For this modified EditPersonList class to work, you should also define a file that contains
the German language equivalent of the English text defined earlier. The following is an exam-
ple of this, which could be stored in a file called PeopleResources_de.properties:

FrameTitle=Redigieren Sie Liste
Button_Label_Add=Einsetzen
Button_Label_Clear=L\u00F6schen
Button_Label_Delete=L\u00F6schung
Button_Label_Next=Zun\u00E4chst
Button_Label_Previous=Vorhergehend
Label_Text_FirstName=Vorname:
Label_Text_LastName=Letzer Name:
Label_Text_Address=Adresse:
Label_Text_DOB=Geburtsdatum:
Dialog_Title_Invalid_Date=Unzul\u00E4ssiges Datum
Menu_Locale=Locale

native2ascii
As the previous example illustrates, you can embed characters with a PropertyResourceBundle
file just as with a Java source code file: using \unnnn, where nnnn is the hexadecimal value of
the Unicode character you want to define. In fact, this may be the only way you can enter
characters that aren’t included in the character set supported by your keyboard. The problem
with this approach is that it’s not convenient if a user whose keyboard supports the characters
is editing the file. For example, a German user editing the PeopleResources_de.properties file
defined previously would probably prefer to enter the accented character directly instead of
entering each character’s Unicode value.

As you can see, it’s sometimes desirable to represent characters with their Unicode value
but not always. Fortunately, Java provides the native2ascii utility that allows you to convert
files between these two formats. In addition, you should use only ASCII characters when cre-
ating class names.

By default, native2ascii converts a file that contains “native” (in other words, non–Latin 1)
characters into a format that contains the Unicode representation of those characters, but it
also allows you to perform the reverse operation. For example, to convert the \unnnn characters
in the PeopleResources_de.properties file shown previously into their native equivalents, you
could enter the following:

native2ascii –reverse PeopleResources_de.properties PeopleResources_de.native

The –reverse option indicates that native2ascii should convert Unicode (for example,
\unnnn) characters into their native equivalents, and the converted output will be stored in a
file named PeopleResources_de.native. That file will contain the converted contents of the
original PeopleResources_de.properties file:

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS584

FrameTitle=Redigieren Sie Liste
Button_Label_Add=Einsetzen
Button_Label_Clear=Löschen
Button_Label_Delete=Löschung
Button_Label_Next=Zunächst
Button_Label_Previous=Vorhergehend
Label_Text_FirstName=Vorname:
Label_Text_LastName=Letzer Name:
Label_Text_Address=Adresse:
Label_Text_DOB=Geburtsdatum:
Dialog_Title_Invalid_Date=Unzulässiges Datum
Menu_Locale=Locale

Similarly, you can reconvert this file with native characters using the following command
that produces output identical to that found in the original PeopleResources_de.properties file:

native2ascii PeopleResources_de.native PeopleResources_de.unicode

You can also use the –encoding option with native2ascii, which will cause it to use the
character encoding that you specify when performing conversions between native and Unicode
values. If you do so, you must specify the canonical name of an encoding that’s supported by
Java’s InputStreamReader and OutputStreamWriter classes.

Summary
In this chapter you looked briefly at locales and resource bundles. You learned how the for-
matting for dates and currency vary with locale and how you need to keep this in mind when
producing applications for an international market.

To make your applications internationalized and localized, you used MessageFormat and
ChoiceFormat in conjunction with resource bundles. This has enabled the appropriate infor-
mation to be displayed for the locale in which the application is run.

Because characters can vary from language to language, you’ve had to learn a little about
parsing characters. BreakIterator is there to help you with this.

CHAPTER 12 ■ INTERNATIONALIZ ING YOUR APPLICATIONS 585

Using XML

A lthough the two aren’t inherently tied together, the eXtensible Markup Language (XML) and
Java are often discussed in the same context. This chapter explains why this is the case and pro-
vides an overview of XML, along with a description of some of the tools available and when and
how to use them. You’ll look at the following:

• What XML is and how to create an XML document

• Parsing and validating XML documents using the Document Object Model (DOM)

• Using XML namespaces to eliminate ambiguities where a document uses multiple
DTDs

• Transforming XML documents with eXtensible Stylesheet Language Transforma-
tions (XSLT)

Like the HyperText Markup Language (HTML), XML is an implementation of the Standard
Generalized Markup Language (SGML). Although SGML is extremely flexible and powerful, it’s
also complex and difficult to use, and XML is an attempt to provide most of SGML’s functional-
ity without its complexity. The extensible part of XML means that, unlike HTML, you’re free to
define your own tags, which as you’ll see is a very useful feature.

The following listing provides a simple example of an XML document; one of the first
things you may notice is how much it resembles HTML:

<?xml version="1.0" ?>

<book>
<title>Pro Java Programming</title>
<author>Brett Spell</author>
<publisher>Apress</publisher>

<tableOfContents showPageNumbers="Yes">
<tocEntry>Printing</tocEntry>
<tocEntry>Cut And Paste</tocEntry>
<tocEntry>Drag And Drop</tocEntry>

</tableOfContents>
</book>

Some differences between XML and HTML aren’t obvious from this example. For one,
blank lines and indentation (the whitespace) in an HTML document is largely ignored, but 587

C H A P T E R 1 3

■ ■ ■

CHAPTER 13 ■ USING XML588

as you’ll see in detail later, that’s not the case with XML. Another difference is that XML is
case-sensitive, while HTML normally isn’t.

XML vs. HTML
XML is much more than just an improved version of HTML, and it’s helpful, when trying to
understand how and why XML is useful, to compare it to HTML and to review some of HTML’s
weaknesses. For example, suppose you construct the following HTML document that’s similar
to the previous XML document:

<HTML>
<CENTER><H1>Pro Java Programming</H1></CENTER>
<H4>Brett Spell</H4>

<H3>Table Of Contents</H3>

Printing
Cut and Paste
Drag and Drop

<H4>Apress</H4>
<IMG SRC="http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif"

ALT="Cover Image" />
</HTML>

When viewed in a web browser, this document produces a display like Figure 13-1.

Figure 13-1. The HTML document describes the information to be displayed and also how that
information should be formatted.

Although similar from a purely conceptual standpoint, an important difference emerges
when you compare the HTML document with its XML equivalent. The HTML version is a
combination of data (a book’s name, author, and publisher) and instructions called tags
(<CENTER>, <H1>, and <H4>) that describe the relationships between the data items and how
they should be displayed. In some cases, such as , the tag both describes the structure of
the data and implicitly describes how it should be displayed. In other words, the data in an
HTML document is tightly coupled to the tags used to control how the data is displayed; as in
the case of object-oriented design, tight coupling is undesirable because it limits reusability.

For example, suppose you want to print the information contained in the previous HTML
document instead of displaying it in a web browser. One option is to produce printed output
that’s similar (or identical) to the output produced by displaying the document in a browser.
However, you might instead want to create printed documentation that has a different format
from the browser display. Printed output obviously has different characteristics from a browser
display, and it may be inappropriate or impossible to use the same characteristics in both
cases. For one thing, it’s common to use a black-and-white laser printer, while browsers nor-
mally assume they’re used with a color monitor. Therefore, using different colors to highlight
some portion of a document may be appropriate for a browser but inappropriate for printed
output. Similarly, while hyperlinks are commonly embedded in HTML documents, they’re not
helpful when viewing printed output. In the following example, the HTML document contains
a reference to another chapter that can be accessed by clicking the hyperlink text:

The DataFlavor class is covered more thoroughly in the chapter on
cut and paste.

When printing this information, it might be more appropriate to refer to a page number
or perhaps to include endnotes that describe the URLs referenced within the document (see
Figure 13-2).

Figure 13-2. When printing, it’s often helpful to format data differently from the way it was
displayed.

In addition to printing, many different media can be used for representing data besides a
web browser. You might prefer to display the data on a device with a less powerful user inter-
face such as that provided by a cell phone. Alternatively, you may want to display the data using
an interface that’s more flexible than the one offered by a browser, such as a Swing-based
“thick-client” application interface.

The important thing to realize is that you’ll sometimes need to be able to present more
than one view of your data, but HTML makes this difficult at best. On the surface, it may seem
that the data within an HTML document could be displayed in other forms by parsing the

CHAPTER 13 ■ USING XML 589

document and converting its contents. Unfortunately, it often isn’t practical for at least two
reasons:

• Because an HTML document doesn’t contain information that describes its data

• Because HTML documents aren’t required to be well-formed documents

In the next sections, you’ll first examine the significance of having information that
describes the data (sometimes referred to as metadata), and then you’ll see what well-formed
means and why it’s important.

Describing the Data
Let’s assume you attempt to create code that parses the HTML document defined earlier. To
display the data in some arbitrary format, the parsing code must be able to identify specific
portions of the data within the document such as the author, publisher, and so on. Unfortu-
nately, this is difficult to do reliably because no information in the document indicates that a
particular piece of data represents some specific type of information. Although a human reader
might easily guess that Apress refers to the publisher, it’s not feasible to expect a software appli-
cation to make the same deduction. You could “hard-code” an application so that it assumes
that the second <H4> tag in a document identifies the book publisher, but that approach is
inflexible and unreliable. If the order of the tags changes, or if an additional <H4> tag is inserted
prior to the existing ones, the technique would no longer work correctly. In other words,
scanning for <H4> tags is inappropriate because that tag doesn’t describe the type of data that
follows it; it simply describes how the data is to be displayed.

In contrast, XML describes only the data and doesn’t include tags that explicitly describe
how the data is displayed. For example, the <publisher> tag defined in the earlier sample XML
document indicates what type of data follows it without specifying how that information
should appear. By building an application that “understands” the significance of a <publisher>
tag, you can create code that reliably interprets the contents of XML documents, even if their
contents change.

Well-Formed Documents
Although the HTML document defined earlier qualifies as a well-formed document, it’s not
necessary that this be true for HTML to be considered valid, at least not by most browsers.
However, well-formed documents are much easier to parse correctly and are easier for applica-
tions to represent internally. The following list summarizes the characteristics of a well-formed
document:

• The document must contain an end tag for each start tag, except for empty elements
(described in a moment).

• Attribute values must be enclosed in quotes.

• Special characters used to define tags, called markup-start characters, must be repre-
sented by their equivalent escape sequences (described later).

• The document can’t contain any overlapping tags (the most recently opened tag must
be the first to be closed).

CHAPTER 13 ■ USING XML590

Unlike HTML, XML documents must always be well-formed. This means they’re easy to
parse and easy to represent in memory using collections of objects. Before learning how you
can do this, however, it’s important to understand each of the four characteristics of a well-
formed document so you’ll know how to create a valid XML document.

Matching Start and End Tags
In most cases, each start tag (for example, <HTML>, <CENTER>, <H1>, and so on) in the HTML
document has a corresponding end tag (</HTML>, </CENTER>, and </H1>) that identifies the
tag’s effective range. Each pair of start and end tags is collectively referred to as an element,
an important term I’ll use frequently through this chapter. However, browsers generally don’t
require you to specify end tags in HTML documents; you could omit most of the tags in the
sample document without affecting how the document is displayed. This lenient approach
doesn’t have any significant advantage, however; in fact, it has the disadvantage of making
HTML documents more difficult to parse reliably. Since ease of parsing is important for its
intended purpose, XML requires that each start tag have an end tag, with the exception of
empty elements.

While it may appear that the tag in the HTML document violates this rule and there-
fore prevents the document from being well-formed, that isn’t the case. This is an example of
an empty element, or an element for which it isn’t necessary or meaningful to put information
between the start and end tags. Since the attributes (SRC and ALT) within the tag contain
all the information needed by the element, you don’t need to provide a corresponding
tag. Instead, in XML the start tag is identified as defining an empty element by ending it with a
combination of the forward slash and a greater-than character, as shown in the following tag.
In contrast, other tags are terminated with the greater-than character only.

<IMG SRC="http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif"
ALT="Cover Image" />

Attribute Values and Quotation Marks
Some HTML tags allow you to specify attributes, where an attribute/value pair consists of an
attribute name and a value that’s assigned to the attribute, with the two separated by an equal
(=) sign. For example, the following element contains two attributes named SRC and ALT:

<IMG SRC="http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif"
ALT="Cover Image" />

As this example illustrates, you can enclose attribute values within quotation marks, and
you must do so for each attribute value that contains embedded spaces (as in the case of the
previous ALT attribute). In contrast, when the value doesn’t contain spaces, it’s not only possi-
ble to omit the quotation marks, but excluding them is common practice. For example, the
following variation of the tag (in which the quotation marks around the SRC attribute’s
value have been removed) is considered valid HTML:

<IMG SRC=http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif
ALT="Cover Image" />

CHAPTER 13 ■ USING XML 591

Unfortunately, this causes those documents to be more difficult to parse, since it compli-
cates the task of identifying the end of an attribute value. XML documents also allow you to
specify attributes, but to ensure that the elements and their attributes can be parsed easily,
you must place quotation marks around each attribute value. Therefore, while the previous
 tag may be valid as part of an HTML document, it isn’t acceptable in XML.

Representing Markup-Start Characters
Some characters such as the less-than (<) sign, greater-than (>) sign, and ampersand (&) have
special meanings in the context of an XML document and can’t be used directly in the docu-
ment. For example, if you modified the Cut and Paste and Drag and Drop text from the earlier
sample HTML document to read Cut & Paste and Drag & Drop as shown in the following code,
a parser will fail to process the document correctly:

Printing
Cut & Paste
Drag & Drop

In fact, one of the things the ampersand is used for is to allow you to embed these spe-
cial characters into documents indirectly by providing an abbreviated name for each one
that can be used in place of the character. To use the abbreviated name, place an ampersand
before the name and a semicolon after it, and each sequence will be replaced with the char-
acter that it represents when the document is loaded. Table 13-1 lists some of the characters
for which abbreviated names have been defined and the sequences you should use to repre-
sent those characters in XML documents.

Table 13-1. Special Characters in XML

Name Character Equivalent Sequence

Less-than sign < <

Greater-than sign > >

Apostrophe ' '

Quotation mark " "

Ampersand & &

For example, if you want to embed a less-than sign in a document, you can use the <
string instead of the less-than (<) sign itself. Similarly, to embed ampersands into a document,
you code & instead, as shown in the following code:

Printing
Cut & Paste
Drag & Drop

CHAPTER 13 ■ USING XML592

When a document containing the previous sequences loads, each occurrence of &
will be replaced with & during the processing of the document. As you’ll see, these sequences
are examples of entity references, and I’ll describe them in more detail later in this chapter.

Overlapping Elements
Two elements overlap when one element “contains” a start tag but doesn’t contain the associ-
ated end tag. For example:

Printing
Cut and Paste

Drag and Drop

Instead of the unordered list () element being contained entirely within the bold ()
element, the two now overlap, and the bold property applies only to some of the items in the
unordered list instead of to all of them. Although overlapping tags are often created acciden-
tally and are confusing at best, they’re tolerated by most browsers. Unfortunately, they not
only make parsing an HTML document more difficult but they also greatly increase the com-
plexity involved in creating a representation of such a document.

To better understand this point, suppose you’ve created a set of classes used to represent
the structure of an HTML document you’re parsing. For example, you might create a class
called UnorderedList that contains a collection of ListItem objects, and those objects might
be maintained in a Vector or Hashtable. As long as there are no overlapping tags, creating such
a representation of the document’s contents and characteristics is reasonably simple; you can
do so by creating an object hierarchy, as shown in Figure 13-3.

Figure 13-3. If a document is well-formed, the relationship between the elements is a hierarchical
one, with each descendent contained between its parent’s start and end tags.

<center>

<h1> <h3>

<h4> <h4>

<html>

CHAPTER 13 ■ USING XML 593

However, when the document is modified as shown previously to contain overlapping
nodes, it’s not possible to use a hierarchical tree structure to represent its contents.

When and Why to Use XML
Now that you understand some of the deficiencies associated with HTML, you may still be
wondering when and why you’d use XML. It’s obviously easier to parse and to represent inter-
nally than HTML, but when is it useful to take advantage of those characteristics? One use for
XML that I’ve already mentioned is for providing multiple views of data. In effect, the XML
document defines the data model, and you can create more than one view of that model
based upon the needs of your application. You’ll examine this capability in more depth later
in the chapter when I discuss the eXtensible Stylesheet Language (XSL), which allows you to
transform an XML document’s content into some other form such as HTML.

Another significant application of XML is for representing data that’s to be transferred
between different applications. Since XML describes data and is easy to parse but isn’t tied to
a particular programming language, it allows you to transfer information between applica-
tions easily, even if those applications reside on different operating systems or are written in
different programming languages. In fact, it’s often said that just as Java provides interoper-
ability across platforms for executable code, XML provides the same type of interoperability
for data.

An important variation of this is when businesses use XML to submit various types of
electronic documents to other businesses, including purchase orders, invoices, and so on. In
the past, the preferred technology for doing this was Electronic Document Interchange (EDI)
and the X12 standards. X12 defines a number of electronic documents and a specific format
for each one, and many organizations use it. However, those documents are somewhat inflexi-
ble and complex, and EDI hasn’t been as widely adopted as many had predicted. In contrast,
XML allows companies to easily create their own formats for electronic documents that can
be changed without requiring the company’s business partners (or a standards organization)
to first update their application code.

One other use of XML that’s worth mentioning is for creating configuration files. In the
early days of Windows, it was common for applications to create and use their own initializa-
tion (.ini) file that contained configuration information. Although simple to implement and
easy to edit, those files are somewhat restrictive and have been largely abandoned by Windows
applications in favor of the Windows registry, which contains a hierarchical collection of con-
figuration information, allowing each application to reference values stored in its “branch” of
the registry tree, as shown in Figure 13-4.

Since an XML document represents a collection of hierarchical data, it’s a good candi-
date for the type of configuration information that’s stored in the Windows registry. In fact,
version 1.1 of the Enterprise JavaBeans specification requires deployment descriptors to be
written in XML instead of the serialized object representation required by the 1.0 specification.
A deployment descriptor is essentially a configuration file that describes how an Enterprise
JavaBean is to be used, such as which users are allowed to access the bean. While the serial-
ized object approach was convenient for the Enterprise JavaBeans server, it complicates how
users can edit the deployment descriptor. The advantage of using XML is that it’s both human-
readable and can be parsed easily, which means it represents a format that’s convenient for
both humans and software.

CHAPTER 13 ■ USING XML594

Figure 13-4. One of XML’s strengths is its ability to allow you to provide configuration parameters
like those found in the Windows registry.

Creating an XML Document
Because creating and editing XML documents can take place with simple text editor/word
processor applications, it’s easy to create a new document. Aside from the requirement that
it be well-formed, there are almost no restrictions on what an XML document must contain.
However, let’s review the document that was defined at the beginning of this chapter; it illus-
trates some important points:

<?xml version="1.0" ?>

<book>
<title>Pro Java Programming</title>
<author>Brett Spell</author>
<publisher>Apress</publisher>

<tableOfContents showPageNumbers="Yes">
<tocEntry>Printing</tocEntry>
<tocEntry>Cut and Paste</tocEntry>
<tocEntry>Drag and Drop</tocEntry>

</tableOfContents>

</book>

CHAPTER 13 ■ USING XML 595

Unlike the rest of the file, the first line doesn’t describe the data in the document. Instead,
it’s a processing instruction, sometimes simply referred to as a PI; you can use processing
instructions to provide special information to applications that may process the document’s
contents in some way. In this case, the instruction identifies the file as an XML document and
specifies which version of XML was used to create the document. Although only the version
attribute was specified here, the instruction actually supports two other attributes: encoding
and standalone. As its name implies, encoding indicates which character set was used to con-
struct the document, while standalone (which must be assigned a value of yes or no) indicates
whether the document contains references to other files. For example, a file that doesn’t con-
tain external references and that was created using the UTF-8 character set might contain the
following instruction:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

You’ll often see the encoding attribute used at the beginning of an XML document, but
standalone is rarely specified.

Root Elements
One other point to make concerning the structure of an XML document is that it must have
only one element at the outermost level, and that element is known as the root element. In
the previous document, the <book> element contains all the other data elements, and only the
<?xml> processing instruction lies outside that element, so <book> is the root element. Since
there may be only one root element, it’s not valid, for example, to include another element at
the same level in the document, as in the following listing:

<book>
<title>Pro Java Programming</title>

...
</book>

<tableOfContents>
...
</tableOfContents>

In general, the prolog (the part of an XML document before the root element’s start tag)
consists of an optional <?xml> declaration, zero or more comments, processing instructions,
and whitespace characters, followed by an optional Document Type Declaration (DTD). A DTD
describes the structure to which the data should conform and is used by validating parsers
to ensure that a document is correct, but the details of defining a DTD aren’t included in this
chapter.

Components of an XML Document
Like HTML, XML allows you to use elements (with or without attributes) within the root
element, and those elements can contain text or other elements. For example, the following
<tableOfContents> element contains a showPageNumber attribute with a value of "Yes", together
with three other elements, each of which contains text data:

CHAPTER 13 ■ USING XML596

<tableOfContents showPageNumbers="Yes">
<tocEntry>Printing</tocEntry>
<tocEntry>Cut and Paste</tocEntry>
<tocEntry>Drag and Drop</tocEntry>

</tableOfContents>

Empty tags are valid in XML, so both of the following elements are acceptable:

<exampleElement></exampleElement>
<exampleElement/>

XML also allows you to specify comments within your documents in the same way you do
within HTML:

<!-- This is a comment -->
<title>Pro Java Programming</title>
<author>Brett Spell</author>
<publisher>Apress</publisher>

A similar but more powerful feature of XML is its support for CDATA (character data)
sections, which are portions of the document that are never parsed. The beginning of such
a section is identified by <![CDATA[and terminated with]]>, and everything between those
character sequences is ignored by an XML parser. For example:

<title>Pro Java Programming</title>
<![CDATA[
The <title> element identifies the title of this book. I can put open tags
without close tags (or vice versa) here because this entire block will be
ignored by XML parsers.
]]>
<author>Brett Spell</author>
<publisher>Apress</publisher>

On the surface, it may appear that a CDATA section is functionally identical to a comment,
but an important difference exists. Some parsers may examine the text in a comment block,
and although the text is generally ignored, using reserved characters (for example, <, >, and &)
in a comment may cause the parser to fail. However, the information in a CDATA block is always
ignored by a parser, so you can include any information between the <![CDATA[and]]>
delimiters without affecting the parsing of the document. In fact, you can even include text
that would normally be interpreted as XML tags without being concerned about the parser
attempting to parse and validate the information.

Parsing and Validation
I’ve mentioned that one of XML’s most important features is its ability to be parsed and vali-
dated easily, and as you might expect, Java’s core libraries include classes that allow you to
perform those operations. The classes are part of the Java API for XML Processing (JAXP) and
are contained within the javax.xml package and its subpackages, along with org.w3c.dom and

CHAPTER 13 ■ USING XML 597

org.xml.sax and their subpackages. The latter two packages contain the specific implemen-
tations that correspond to the primary standards that have emerged for parsing XML: DOM
and the Simple API for XML (SAX). Although DOM and SAX both represent techniques for
parsing, they represent two very different approaches to doing so, and they both have their
own strengths and weaknesses:

DOM was defined by the World Wide Web Consortium (W3C) and is the more powerful
of the two technologies, allowing you to parse, validate, and update an XML document.
This is usually done by reading the entire document into memory, where it’s maintained
as a hierarchical collection of objects. By modifying that collection of objects, you can
change the structure and content of the document in memory, after which you can save
the updated document again to some external location. In addition, DOM allows you to
create an entirely new document, which as you’ll see later is a very useful feature.

In contrast, SAX was created as a result of a mailing list discussion and provides sequen-
tial, read-only access to the document’s contents. In other words, SAX doesn’t provide
any facility for creating or modifying a document, and it doesn’t allow you to examine
an arbitrary portion of the document. (It doesn’t provide “random access” to the docu-
ment’s contents.) Instead, it allows you to register various types of listeners with a parser,
and the parser will notify the appropriate listener for each portion of the document it
processes. This approach is sometimes referred to as event-based because it treats each
portion of the document as an event for which it sends a notification. Although some
programmers may not find this approach intuitive, SAX is simple to use and has the
advantage of not requiring that the entire document be loaded into memory at once.
While that may not be a significant advantage for smaller documents, it can be an
important factor when processing extremely large XML files.

Note that in this chapter, DOM refers to W3C’s DOM Level 2 recommendation, where
a recommendation is simply a completed standard. As of this writing, JAXP supports DOM
Level 2, although it’s likely at some point in the future to support the newer Level 3 specifica-
tion. For the full details of DOM, see http://www.w3.org/DOM/.

Similarly, SAX refers to version 2.0 of the SAX standard, which is the version used by
JAXP’s current SAX parser implementation, although the SAX 2.0 specification is now available
at http://www.saxproject.org/.

Parsing with the DOM Implementation in JAXP
As described earlier, DOM is more powerful than SAX in some ways and can be more intuitive,
especially if you’re already familiar with hierarchical tree structures such as those used by
Swing’s JTree component. In fact, although no direct relationship exists between JTree and
DOM, you may find it helpful to review Chapter 7, which covers JTree, because much of the
terminology defined there relating to tree structures applies to DOM as well.

As mentioned earlier, a SAX parser scans an XML document sequentially and reports the
contents of the document through events. In contrast, a DOM parser creates a collection of
objects in memory that represents the document’s contents, and those objects are implemen-
tations of the interfaces defined in the org.w3c.dom package (see Figure 13-5).

CHAPTER 13 ■ USING XML598

Figure 13-5. A class diagram that illustrates the relationships between the classes and interfaces
used by the DOM parser in JAXP

With a few exceptions, each interface represents some particular type of information
found in an XML document, and using a hierarchical collection of these objects, DOM is able
to create a structure that mimics the document’s contents. For example, suppose you process
the following XML data with a DOM parser:

<tableOfContents showPageNumbers="Yes">
<tocEntry>Printing</tocEntry>
<tocEntry>Cut and Paste</tocEntry>
<tocEntry>Drag and Drop</tocEntry>

</tableOfContents>

DOM will represent the <tableOfContents> element with an object that implements the
Element interface, and that object will contain a reference to a single Attr representing the
showPageNumbers attribute. In addition, the Element object will contain a child node for each
of the <tocEntry> items, and they in turn will each contain a single Text node representing
the text between the start and end tags of each element. Figure 13-6 illustrates this, but it
omits what can be an important detail—that nodes are also created for whitespace such as
carriage returns, linefeeds, tabs, and spaces. It’s possible in many cases to ignore the nodes

<<Interface>>
Document

<<Interface>>
Attr

<<Interface>>
Entity

<<Interface>>
Notation

<<Interface>>
ProcessingInstruction

<<Interface>>
CDATASection

<<Interface>>
DocumentFragment

<<Interface>>
EntityReference

<<Interface>>
DocumentType

<<Interface>>
CharacterData

<<Interface>>
Node

<<Interface>>
Element

<<Interface>>
Comment

<<Interface>>
Text

CHAPTER 13 ■ USING XML 599

that represent whitespace, although, as you’ll see later in the chapter, it’s important at other
times to realize that they may be present.

Figure 13-6. An example of the heirachical nature of the elements with a DOM tree

Creating a representation of the document in this manner causes a DOM parser to use
more memory resources than a SAX parser uses, but DOM’s approach offers two advantages:

• While SAX allows you to examine the document’s contents in a sequential manner only
(from beginning to end), the DOM interfaces include methods that allow you to navi-
gate through the tree’s nodes in any direction. That’s possible because the nodes are
stored in memory and maintain references to one another, and you can move from
parent to child (and vice versa) and from one sibling to another.

• Since the collection of objects effectively represents a copy of the parsed document, it
allows you to make changes to the document’s contents and structure programmati-
cally. Once you’ve made changes or created a new document, you can save them by
converting the object structure back into an XML document.

Parsing an existing document using the JAXP implementation of DOM is extremely easy
to do; you can do this by obtaining an instance of DocumentBuilder using the following code:

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();

Once you’ve gotten a reference to a DocumentBuilder, you can parse an existing document
or create a new one easily. The DocumentBuilder class includes a number of parse() methods
that accept various types of input (a String, a File, or an InputStream) representing an XML
document. As the name and return type imply, parse() parses the document, creates a repre-
sentation of it in memory, and returns a reference to that representation to the caller in the
form of a Document object. You’ll examine the Document interface in more detail shortly, but for
now it’s sufficient to recognize that it’s a representation of an XML document that’s stored in
memory. In the meantime, the following is an example of how to use parse():

Element
“tocEntry”

Element
“tocEntry”

Element
“tocEntry”

Attr
“showPageNumbers”

“Yes”

Text
“Printing”

Text
“Cut And Paste”

Text
“Drop And Drag”

Element
“tableOfContents”

CHAPTER 13 ■ USING XML600

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();
java.io.File xmlFile = new java.io.File("C:/brett/temp/mytest.xml");
Document doc = builder.parse(xmlFile);

Creating a new (empty) document in memory is equally simple; you do this by calling the
newDocument() method instead of parse():

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();
Document doc = builder.newDocument();

As mentioned earlier, it’s sometimes necessary or desirable to validate a document while
it’s being parsed. Whether or not you plan to perform validation, you should keep in mind that
the DocumentBuilder can throw an exception when the parse() method is called and design
your code accordingly.

You’ll now examine the various interfaces used to support the JAXP implementation of
DOM, because it’s necessary to have some familiarity with these interfaces before you can
use DOM effectively.

Node
This interface is the superinterface of many of the other DOM interfaces that include the
Document interface mentioned earlier, and as you’d expect, Node defines methods that are
shared by many of the different types of objects that represent portions of an XML document.

getNodeType()

This method allows you to easily determine which type of XML document item is represented
by this node. It returns a short value corresponding to one of the constants defined in Node,
which are listed in Table 13-2.

Table 13-2. Node Type Constants

Node Constant Associated Interface Name

ATTRIBUTE_NODE Attr

CDATA_SECTION_NODE CDATASection

COMMENT_NODE Comment

DOCUMENT_FRAGMENT_NODE DocumentFragment

DOCUMENT_NODE Document

DOCUMENT_TYPE_NODE DocumentType

ELEMENT_NODE Element

ENTITY_NODE Entity

ENTITY_REFERENCE_NODE EntityReference

NOTATION_NODE Notation

PROCESSING_INSTRUCTION_NODE ProcessingInstruction

TEXT_NODE Text

CHAPTER 13 ■ USING XML 601

The following code segment illustrates how you can use this method to determine the
type of document item a given Node represents:

protected void displayTree(Node node) {
short nodeType = node.getNodeType();
switch (nodeType) {
case Node.DOCUMENT_NODE:
printDocument((Document)node);
break;

case Node.ELEMENT_NODE:
printElement((Element)node);
break;

case Node.TEXT_NODE:
printText((Text)node);
break;

default:
}

}

getNodeName()

This accessor method allows the caller to retrieve a reference to the node’s name property,
although the usage of that property varies from one Node subclass to another. For example, an
Element node uses the name property to contain the element or “tag” name (for example, book
for a <book> element), while an Attr node uses the name property to store the name of the
attribute. Table 13-3 summarizes the values of this property.

Table 13-3. getNodeName() Properties

Node Subinterface Value/Usage of nodeName Property

Document #document

Element Element/tag name

Attr Attribute name

Text #text

Comment #comment

CDATASection #cdata-section

ProcessingInstruction Instruction target

EntityReference Name of entity referenced

DocumentFragment #document-fragment

DocumentType Name of DTD as defined in <!DOCTYPE>

Entity Entity name

Notation Notation name

CHAPTER 13 ■ USING XML602

Note that there’s no corresponding setNodeName() method defined in Node, which is because
the node’s name is normally specified when the Node object is created and is immutable.

Some of the Node subinterfaces listed in Table 13-3 define an additional accessor
method that returns the same value as getNodeName(), which provides a more intuitive way
to access the value. For example, you can call getTarget() to retrieve the instruction target
of a ProcessingInstruction object instead of calling the more generic and less intuitive
getNodeName(). Table 13-4 lists these interfaces, along with the method that returns the value
stored in the node name property in each case.

Table 13-4. Convenience Methods for Node Names

Node Subinterface Convenience Method

Element getTagName()

Attr getName()

ProcessingInstruction getTarget()

DocumentType getName()

getNodeValue(), setNodeValue()

Like the nodeName property, nodeValue’s usage varies from one node type to the next, and in
many cases the getNodeValue() method returns null. Table 13-5 summarizes the use of this
property.

Table 13-5. Node Value Usage

Node Subinterface Value/Usage of nodeValue Property

Document Null

Element Null

Attr Attribute value

Text Text encapsulated by the node

Comment Comment text

CDATASection Text data stored in section

ProcessingInstruction Instruction data (all text after the target)

EntityReference Null

DocumentFragment Null

DocumentType Null

Entity Null

Notation Null

CHAPTER 13 ■ USING XML 603

Just as some of the interfaces define more intuitively named methods that allow you to
access the node name property, two of them also provide accessor/mutator pairs for the node
value property. For example, you can call setData() to update the data portion of a Processing➥

Instruction instead of calling setNodeValue(). Table 13-6 lists the interfaces that provide this
convenience and includes the names of the relevant methods.

Table 13-6. Attribute and Processing Instruction Convenience Methods

Node Subinterface Accessor Method Mutator Method

Attr getValue() setValue()

ProcessingInstruction getData() setData()

getAttributes()

Although the majority of the methods defined in the Node interface are used by most or all of its
subclasses, this one is meaningful only for objects used to represent elements in an XML docu-
ment (an Element). Since that’s the case, I’ll provide a detailed discussion of getAttributes in
the overview of the Element interface and its methods instead of here. It returns null for other
types of Node.

appendChild(), insertBefore(), removeChild(), replaceChild()

As their names imply, these methods add, replace, and remove child nodes from the node for
which the method is called. While appendChild() simply adds a new node to the end of the list
of children, insertBefore() allows you to insert a node into a specific location within the list.
You’ll use these methods when you want to modify the structure of a document that was
loaded by a DOM parser.

getChildNodes(), getFirstChild(), getLastChild()

You can use these methods to obtain either a complete list of the node’s children (getChild➥

Nodes()) or a reference to the first or last entry in the node’s list of children (getFirstChild()
and getLastChild(), respectively). The getChildNodes() method returns an object that
implements the NodeList interface; this object is similar to Java’s Vector class but is much less
sophisticated. In fact, NodeList defines just two methods: getLength(), which indicates how
many objects are in the collection, and item(), which returns a reference to one of the Node
items based on an index value. For example, the following code segment obtains a list of chil-
dren from a Node, uses the NodeList object to retrieve a reference to each one, and prints its
String representation:

org.w3c.dom.Node parentNode;
org.w3c.dom.NodeList nodeList;
// ...
nodeList = parentNode.getChildNodes();
int count = nodeList.getLength();
for (int i = 0; i < count; i++) {
node = nodeList.item(i);
System.out.println(node.toString());

}

CHAPTER 13 ■ USING XML604

getNextSibling(), getPreviousSibling()

It’s sometimes useful to be able to access the siblings of a given node, and these methods
allow you to do just that. When you call getNextSibling() for a node, the method returns
a reference to the sibling of the node that appears next in their parent’s list of children,
while getPreviousSibling() returns a reference to the previous sibling. A null value is
returned by getNextSibling() if this node is the last one in the parent’s list of children or
if getPreviousSibling() is called for the first child node in a list.

hasChildNodes()

If the node for which this method is called has any children, hasChildNodes() returns true;
false indicates it doesn’t currently have any children.

getOwnerDocument()

Each Node object is associated with a particular Document, and this method returns a reference
to that Document instance unless this Node is itself a Document, in which case it returns null.

cloneNode()

A copy of this node is returned by cloneNode(), and that copy will either be a deep copy or a
shallow copy depending upon the value of the boolean parameter that’s passed. If you specify
a value of true, a deep copy is returned, which means that the entire subtree defined by this
node is also copied and returned, while false indicates that only this node should be copied.
In other words, a shallow copy is a copy of this node only, and a deep copy is a copy of this
node and all of its descendents.

Document
As mentioned earlier, the Document interface is implemented by an object that represents an
entire XML document, and a Document is returned by the DOM parser’s parse() method. In
other words, the object returned by parse() is the starting point from which you can begin to
examine (or update) the document.

getDocumentElement()

A Document object maintains a reference to the Node that represents the XML document’s root
element, and you can use this method to obtain access to that node. In fact, the first thing
you’ll do after calling a DocumentBuilder’s parse() method often will be to invoke this method
on the Document object returned so you can begin to process the elements representing the
document’s content:

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
factory.setValidating(true);
DocumentBuilder builder = factory.newDocumentBuilder();
Document doc = builder.parse(uri);
Element rootElement = (doc.getDocumentElement());

CHAPTER 13 ■ USING XML 605

If you executed this code using the XML document defined at the beginning of this
chapter, for example, the getDocumentElement() method will return a reference to the object
representing the <book> element.

getDocType()

Just as a Document represents an XML document, a DocumentType represents a DTD. Each
Document can maintain a reference to a DocumentType object, and this method allows you to
access that object. If there’s no DTD associated with the object, getDocType() returns a null
value. Note that although the Level 1 DOM specification allows you to retrieve some of a docu-
ment’s DTD information, it doesn’t allow you to modify that data or create a new DTD.

createAttribute(), createCDATASection(), createComment(), createDocumentFraction(),
createElement(), createEntityReference(), createProcessingInstruction(), createTextNode()

These all represent factory methods that allow you to create instances of the various types of
nodes without coupling your code to the JAXP-specific classes used to represent those types.
In other words, by using only interfaces and factory methods, you can create application code
that’s not coupled to any particular DOM implementation.

getElementsByTagName()

You can use this method to obtain a NodeList that encapsulates all Element nodes in the docu-
ment with a particular name or a list of all Element nodes in the document regardless of their
names. To obtain a list of all elements, pass a String value of * to getElementsByTagName();
specifying any other value causes it to return only the elements that have a name equal to the
specified string. The following are examples of how you can use this method:

Document document;
NodeList list1, list2;
// ...
// Obtain a list of elements representing all of the elements in the
// document.
list1 = document.getElementsByTagName("*");
// Obtain a list of all elements with a tag/node name of "tocEntry".
list2 = document.getElementsByTagName("tocEntry");

getImplementation()

An object that implements the DOMImplementation interface is returned by getImplementation(),
and that interface defines a single hasFeature() method. That method accepts two String
parameter values: the name of a feature and a version number, and it returns true if the DOM
parser that created the Document supports the specified feature. This is intended to allow
applications to query a parser’s capabilities in an implementation-independent manner, but
version 1.0.1 of the JAXP DOM parser reports that it supports only version “1.0” of the “XML”
feature.

CHAPTER 13 ■ USING XML606

Element
As already mentioned, this interface is used by objects that represent elements within the
XML document. As you might expect, most of the methods defined in Element provide func-
tionality that allows you to create, update, remove, and retrieve attribute values.

setAttribute(), setAttributeNode()

These methods allow you to add an attribute value to the element or to replace the value asso-
ciated with an existing attribute.

The setAttribute() method requires two String parameters, the first of which represents
the attribute’s name and the second of which represents its value. If an attribute with the spec-
ified name already exists, its value is updated, but if it doesn’t already exist, a new Attr object
is created and added to this element’s list of attributes.

The setAttributeNode() method works the same way, but instead of passing two String
values, you must pass it a reference to an object that implements the Attr interface. As
described in a moment, that interface is used by objects that encapsulate the name and
value associated with element attributes.

getAttribute(), getAttributeNode()

Both of these methods are passed a String parameter that represents the name of an attrib-
ute, and both of them return the value associated with the specified attribute. However, while
getAttribute() returns only a String representing the attribute’s value, getAttributeNode()
returns the entire Attr object. getAttributeNode() returns a null value if no attribute with the
specified name exists, while getAttribute() returns an empty string if the attribute can’t be
found.

removeAttribute(), removeAttributeNode()

As their names imply, these methods allow you to remove an attribute from the element,
and they differ only in how they require you to identify the attribute to be removed. To
use removeAttribute(), you must pass a String representing the attribute’s name, while
removeAttributeNode() requires you to specify the Attr node object to be removed.

getTagName()

This method is provided as a convenience and is functionally identical to the getNodeName()
method inherited from the Node interface. In other words, both getTagName() and getNodeName()
return a String representing the name of the element.

normalize()

This method causes the parser to combine adjacent Text nodes that are descendents of this
element, which can make processing simpler and more efficient. In addition, some operations
may be sensitive to changes in the tree’s structure, and such changes can occur if a document

CHAPTER 13 ■ USING XML 607

is stored and reloaded without first being normalized. For example, suppose you create two
new Text nodes and add them to an element as follows:

Document document;
Text text1, text2;
Element element;
// ...
text1 = document.createTextNode("Matrix ");
text2 = document.createTextNode("Resources");
element.appendChild(text1);
element.appendChild(text2);

If you save and reload this document, it’s likely that the text that was stored in the two
separate (but adjacent) nodes just created will be stored in a single node that contains a value
of Matrix Resources; however, you can force the nodes to be merged immediately by calling
the normalize() method:

element.appendChild(text1);
element.appendChild(text2);
element.normalize();

getElementsByTagName()

This method performs the same task as the method of the same name in the Document inter-
face, but the difference is that only elements that are descendents of this one are included in
the search. In other words, instead of returning a list of all elements in the document with a
particular name (or all elements in the document when * is specified), this method returns
only matching elements that are descendents of this node.

Attr
Objects that are used to represent an attribute should implement this interface, which defines
methods for accessing and modifying the attribute’s value and for retrieving its name. Note
that Attr objects aren’t child nodes of the element they describe.

getName()

Like getTagName(), this method is provided as a convenience and is functionally equivalent to
getNodeName(). In other words, the implementations of getName() and getNodeName() in Attr
both return a reference to a String representing the attribute’s name.

getValue(), setValue()

This pair of accessor and mutator methods allows you to retrieve and update the value associ-
ated with an attribute.

getSpecified()

This method returns a boolean value that allows you to distinguish between attribute values
that were actually specified in the XML document and those that are default values specified

CHAPTER 13 ■ USING XML608

in the document’s DTD. A value of true is returned if the value was specified in the XML docu-
ment or if the value has been set/modified by a call to the Attr object’s setValue() method.
However, if the attribute’s value was derived from its definition in a DTD and its setValue()
hasn’t been called, getSpecified() returns false. Note that if setValue() is called, this method
will return true even if the value passed to the setValue() method is the same value that was
already assigned to the attribute.

CharacterData
CharacterData is a subclass of Node, and like Node, CharacterData defines methods that are
shared by other interfaces used to represent portions of an XML document. Specifically,
CharacterData is the superclass of the Text, Comment, and CDATASection interfaces that are
described in a moment. Each CharacterData subclass encapsulates text (“character data”)
information, and this interface defines methods for setting, retrieving, and modifying that
text. In fact, many of the methods described next are similar to methods defined in Java’s
StringBuffer class.

getLength()

This method returns an integer value that represents the number of characters in the text
string associated with this node.

setData()

You can use this method to set the text value associated with this node by passing a reference
to a String object representing the new value.

getData(), substringData()

These methods return all (in the case of getData()) or part (substringData()) of the text asso-
ciated with this node. Both return a String value, and substringData() requires two integer
parameters: one specifying the starting index of the portion of the text to return and another
representing the number of characters to be retrieved.

appendData()

You must pass a String parameter to this method, and the characters in that String are
appended to the text data maintained by this node.

replaceData()

You can use this method in place of setData() when you want to replace only a portion of
the character data encapsulated by the node. To do so, you must pass the following parame-
ter values:

• An integer representing an index into the existing text value

• An integer representing the number of characters to be replaced

• A String representing the data that’s to replace the specified portion of the target

CHAPTER 13 ■ USING XML 609

For example, the following code segment illustrates how to replace the word is with was
in an object that implements CharacterData:

CharacterData charData;
// ...
charData.setData("This is a test");
// The word "is" has an index of 5 (it's the sixth character in the string)
int start = 5;
// The word "is" has a length of 2 (it's two characters long)
int length = 2;
charData.replaceData(start, length, "was");
// The following line prints "This was a test");
System.out.println(charData.getData());

insertData()

The appendData() method allows you to append characters onto the end of the existing value,
but you’ll often need to insert characters at some arbitrary location other than the end. When
that’s the case, you can use this method, which requires you to pass an index value that
describes where the text should be added and a String representing the text to be inserted.
For example, the following code illustrates how to add text to the beginning of the existing
value instead of at the end:

CharacterData charData;
// ...
charData.insertData(0, "This text is being inserted at the beginning");

deleteData()

When you need to delete characters from the existing node value, you can call deleteData()
to do so. You must pass two integer values to this method: one representing the position of the
first character to delete and another representing the number of characters to be deleted.

Text
This interface is one of the subinterfaces of CharacterData and is used to represent text
within an XML document. Objects that implement this interface can be added as children to
an Element node to describe the data between the element’s start and end tags. For example,
suppose you create an XML document that contains the following elements:

<outer>Java and <keyword>XML</keyword> are good</outer>

When a DOM parser processes this portion of the document, the <outer> element will
contain three child nodes in the following order:

CHAPTER 13 ■ USING XML610

• An instance of Text containing the first portion of the text (Java and).

• An Element representing <keyword> that in turn contains one child—a Text object with a
value of XML.

• Another Text object containing the remainder of the text (are good.).

Figure 13-7 illustrates these nodes.

Figure 13-7. A representation of how the XML data is stored internally after it’s parsed

It’s important to realize that from a DOM parser’s perspective, there’s no difference
between text that represents meaningful information (for example, Java and) and text that
represents whitespace (linefeed and character return characters, tabs, and spaces). If you were
to create an <example> element such as the following one, it too would have three child nodes.
The second child would represent the empty <myInner> element, while the first and third chil-
dren would represent the whitespace that precedes and follows that element in the document
text, respectively.

<example>
<myInner/>

</example>

splitText()

This is the only method defined in the Text interface and is essentially the opposite of the
“normalization” operation described previously that’s available through the Element interface.
In other words, while Element’s normalize() method combines adjacent Text entries into a
single entry, this method causes the Text object to be split into two separate (but adjacent)
instances of Text.

Element
<outer>

Text
“Java and”

Element
<keyword>

Text
“ are good”

Text
“XML”

CHAPTER 13 ■ USING XML 611

The only parameter passed to this method is an integer that indicates the position at
which the Text object’s character data should be split. The characters up to and including
the character at the position you specify will remain in the existing node, and any characters
after that will be added to a new Text node. That new node will then be inserted into the
parent node’s list of children so it immediately follows the original Text node, as shown in
Figure 13-8.

Figure 13-8. As its name implies, splitText() splits a text element into two elements.

You’ll use this method when you want to insert new elements or other data between two
portions of text in an XML document. Once you’ve called splitText(), you can insert child
nodes between the original Text node and its newly created sibling.

Comment
No methods are defined in this interface, so an implementing class includes only those that
are inherited from CharacterData. As you might expect, an instance of Comment encapsulates
the text specified in a comment in an XML document. For example, the following entry results
in the creation of an object that implements Comment and that has a data value of This is a
comment:

<!-- This is a comment -->

CDATASection
Just as the Comment interface encapsulates the text stored in an XML document’s comment,
this interface (which is a subclass of Text) contains the text stored in a CDATA section. If the fol-
lowing entry were part of an XML document, it’d result in the creation of a CDATASection with a
value of This is some text data:

<![CDATA[This is some text data]]>

Element

Text
“Hello”

Text
“world”

Element

Text
“Hello world”

Before After

Effect of Calling splitText (5)

CHAPTER 13 ■ USING XML612

ProcessingInstruction
The intuitively named ProcessingInstruction interface is implemented by objects that repre-
sent processing instructions found in XML documents, and this interface defines the following
three methods.

getTarget()

As you may recall from the discussion of processing instructions and the SAX parser, the
instruction target is the text that immediately follows the first question mark (?) and precedes
the whitespace or the end of the instruction. For example, the target in the following example
is myTarget:

<?myTarget doSomething moreInfo?>

getData(), setData()

The instruction data is any text information inside a processing instruction that follows the tar-
get value, and these methods allow you to retrieve and set the instruction data associated with
this node. In the processing instruction shown previously, the instruction data is doSomething
moreInfo.

EntityReference
This represents an entity reference that’s embedded within an XML document. This may be an
entity that you’ve defined inside a DTD or one of the predefined entities described earlier that
are used to represent special characters such as the less-than (<) sign, greater-than (>) sign,
ampersand (&), and so on. For example, the following code contains a sequence (&) that
represents such a reference, and that sequence will be converted into an EntityReference
object when processed by a DOM parser:

<someText>I can't embed the ampersand character (&) directly</someText>

getNodeName()

This is the only method that allows you to retrieve the name of the referenced entity. For exam-
ple, the previous entry in an XML file results in the creation of an EntityReference object with a
node name of amp, so calling getNodeName() returns that String value.

DocumentFragment
No methods are defined in this interface, which doesn’t correspond to a specific portion of
an XML document, but DocumentFragment has a property that can be useful. Like all Node sub-
classes, it can contain child nodes, and it can be added as a child to other nodes. However,
when a DocumentFragment is added as a child of some other node, the DocumentFragment’s
children, rather than the DocumentFragment itself, will be added. Therefore, DocumentFragment

CHAPTER 13 ■ USING XML 613

provides a convenient container object for a collection of nodes that you want to make chil-
dren of some other node (for example, when rearranging a document or implementing
cut-and-paste functionality). Using DocumentFragment avoids the overhead of using a Document
to hold the nodes.

DocumentType
This interface provides a partial representation of the DTD associated with an XML document
and allows you to access (but not update) some of the information in the DTD.

getName()

Use this method to return the DTD’s name, which is the first value that appears after the
DOCTYPE keyword. For example, the name of the DTD referenced in the following code is book:

<?xml version="1.0" ?>
<!DOCTYPE book SYSTEM "./bookgram.dtd">

getEntities()

This method returns a collection of Entity objects encapsulated within a NamedNodeMap collec-
tion object; I’ll describe the Entity interface in a moment.

You should recall the earlier discussion of the NodeList interface that’s used by classes
that provide a simplistic Vector-like functionality, which allows you to access a node based
on its position within the collection/list. NamedNodeMap provides that same functionality, but it
also allows you to assign each entry in the collection a name or “key” value that can be used to
access the entry. In this case, the NamedNodeMap represents a collection of Entity objects, and
the name/key value for each one is its name. For example, the following <!ENTITY> definition
results in an Entity entry in the NamedNodeMap with a name/key of currentYear:

<!ENTITY currentYear "2000">

getNotations()

Just as the previous getEntities() method returns a NamedNodeMap that’s a collection of Entity
objects, this one returns a NamedNodeMap representing a collection of Notation instances. Like
with Entity, I’ll describe the Notation interface in a moment.

Entity
A DOM parser uses an implementation of this interface to represent entities that are defined
in a DTD. For the three methods described next, assume that the following NOTATION and
ENTITY definitions exist in the DTD:

<!NOTATION symbols "-//W3C//ENTITIES Symbols for XHTML//EN ">
<!ENTITY HTMLsymbols SYSTEM "xhtml-symbol.ent" NDATA symbols>

CHAPTER 13 ■ USING XML614

getPublicId()

This method returns the public identifier of the entity, which in this case is -//W3C//ENTITIES
Symbols for XHTML//EN; a null value indicates that no public identifier was specified for the
entity.

getSystemId()

This method returns the system identifier of the entity, which in this case is xhtml-symbol.ent;
a null value indicates that no system identifier is specified for the entity.

getNotationName()

When called for an unparsed entity, this method returns the name of the notation associated
with the entity, which in this case is symbols. A value of null is returned by this method when
called for a parsed entity.

getNodeName()

This method isn’t defined in the Entity interface but is inherited from Node and returns the
name of the entity (for example, HTMLSymbols).

Notation
This class represents a notation that’s defined in a DTD, and a collection of Notation instances
can be retrieved by calling the getNotations() method for a DocumentType object.

getPublicId()

As its name suggests, this method returns a String representing the notation’s public
identifier.

getSystemId()

As its name suggests, this method returns a String representing the notation’s system
identifier.

Traversing a Document with DOM
Now that you’ve examined the DOM interfaces, you’ll see how to use them to examine an XML
document and create a hierarchical collection of objects in memory. Each Element node can
contain its own child nodes that can be other Element nodes, and those children may have
their own child nodes, and so on, for a theoretically infinite number of levels, as shown in
Figure 13-9.

CHAPTER 13 ■ USING XML 615

Figure 13-9. The relationships that exist for the various interfaces used to represent a document
maintained internally by a DOM parser

As mentioned earlier, the DocumentBuilder class includes a parse() method that returns
a Document object representing an XML document that’s stored in memory. Once you have
access to the Document object, you can call getDocumentElement() to obtain a reference to the
XML document’s root element or getDocumentType() if you intend to examine the document’s
DTD. The following code segment illustrates how you can use the JAXP classes to create a
DOM parser, load and parse a document, and obtain access to its root element:

String uri;
// ...
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
factory.setValidating(true);
DocumentBuilder builder = factory.newDocumentBuilder();
Document doc = builder.parse(uri);
Element rootElement = doc.getDocumentElement();

As you’ve seen, the Node interface includes methods that allow you to access a node’s par-
ent, children, or siblings, and it’s easy to use them to navigate through a document structure.

<<Interface>>
Entity

<<Interface>>
Notation

<<Interface>>
ProcessingInstruction

<<Interface>>
CDATASection

<<Interface>>
Comment

<<Interface>>
EntityReference

<<Interface>>
Node

<<Interface>>
DocumentType

getEntities()
getNotations()

<<Interface>>
Element

getAttributes()
getChildNodes()

<<Interface>>
DocumentType

getDocumentElement()
getDoctype()

<<Interface>>
Attr

<<Interface>>
Text

CHAPTER 13 ■ USING XML616

For example, suppose you’re given an Element node and you want to display the subtree that it
represents as it appeared in the original XML document. In other words, you not only want to
examine the object structure but also want to actually reverse the parsing process and convert
the objects back into an XML document. You can do this quite easily by creating code that
traverses the tree, identifies which type of item each Node represents, and processes the node
accordingly. Listing 13-1 shows an outline of such an application.

Listing 13-1. Initial DOMTest Implementation

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class DOMTest {

public static void main(String[] args) throws Exception {
DOMTest dt = new DOMTest(args[0]);

}

public DOMTest(String uri) throws Exception {
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
factory.setValidating(true);
DocumentBuilder builder = factory.newDocumentBuilder();
Document doc = builder.parse(uri);
displayTree(doc.getDocumentElement());

}

protected void displayTree(Node node) {
short nodeType = node.getNodeType();
switch (nodeType) {
case Node.ELEMENT_NODE:
printElement((Element)node);
break;

case Node.TEXT_NODE:
printText((Text)node);
break;

case Node.COMMENT_NODE:
printComment((Comment)node);
break;

case Node.CDATA_SECTION_NODE:
printCDATA((CDATASection)node);
break;

case Node.ENTITY_REFERENCE_NODE:
printEntityReference((EntityReference)node);
break;

CHAPTER 13 ■ USING XML 617

case Node.PROCESSING_INSTRUCTION_NODE:
printProcessingInstruction(

(ProcessingInstruction)node);
break;

default:
}

}

protected void printElement(Element node) {
// ...

}

protected void printText(CharacterData node) {
// ...

}

protected void printComment(Comment node) {
// ...

}

protected void printCDATA(CDATASection node) {
// ...

}

protected void printEntityReference(EntityReference node) {
// ...

}

protected void printProcessingInstruction(ProcessingInstruction node) {
// ...

}

}

Except for Element instances, each type of Node subclass object can be converted into
an appropriate text representation easily. In fact, all the previous printXXX() methods except
printElement() can be completed with a single statement that wraps the node data in an
appropriate character string:

protected void printText(CharacterData node) {
System.out.print(node.getData());

}

protected void printComment(Comment node) {
System.out.print("<!--" + node.getData() + "-->");

}

CHAPTER 13 ■ USING XML618

protected void printCDATA(CDATASection node) {
System.out.print("<![CDATA[" + node.getData() + "]]>");

}

protected void printEntityReference(EntityReference node) {
System.out.print("&" + node.getNodeName() + ";");

}

protected void printProcessingInstruction(ProcessingInstruction node) {
System.out.print("<?" + node.getTarget() + " " + node.getData() + "?>");

}

Processing Element nodes is slightly more complex because they can have attributes and
child nodes that must be included in the output, but the start and end tags can easily be gen-
erated as shown in the following code:

protected void printElement(Element node) {
// ...
System.out.print("<" + node.getNodeName());
// ...
System.out.print(">");
// ...
System.out.print("</" + node.getNodeName() + ">");

}

To include an element’s attribute values inside its start tag, you must retrieve a reference
to its attribute list by calling the getAttributes() method. After that, iterate through the list
and generate output for each one, placing quotes around its value:

protected void printElement(Element node) {
Attr attr;
System.out.print("<" + node.getNodeName());
NamedNodeMap attrs = node.getAttributes();
int count = attrs.getLength();
for (int i = 0; i < count; i++) {
attr = (Attr)(attrs.item(i));
System.out.print(" " + attr.getName() + "=\"" + attr.getValue() +

"\"");
}
System.out.print(">");
// ...
System.out.print("</" + node.getNodeName() + ">");

}

You must also ensure that all of an element’s child nodes are included in the generated
output, but this is even easier to accomplish. Simply obtain a reference to the list of children
by calling getChildNodes() and then call the displayTree() method for each one. This causes
the entire tree structure to be processed using preorder traversal, a term that’s described in

CHAPTER 13 ■ USING XML 619

Chapter 7. Stated simply, however, it means that a node is processed/displayed before its chil-
dren instead of afterward.

protected void printElement(Element node) {
Node child;
Attr attr;
System.out.print("<" + node.getNodeName());
NamedNodeMap attrs = node.getAttributes();
int count = attrs.getLength();
for (int i = 0; i < count; i++) {
attr = (Attr)(attrs.item(i));
System.out.print(" " + attr.getName() + "=\"" + attr.getValue() +

"\"");
}
System.out.print(">");
NodeList children = node.getChildNodes();
count = children.getLength();
for (int i = 0; i < count; i++) {
child = children.item(i);
displayTree(child);

}
System.out.print("</" + node.getNodeName() + ">");

}

With the printElement() method in place, you can now use the DOMTest application to
print the contents of an XML document’s root element. To do this, simply compile the code
and execute it, passing a string that represents a URI to the main() method as shown in the
following code:

C:\brett\temp>java DOMTest file:/c:/brett/temp/booktest.xml
<book><title>Pro Java Programming</title><author>Brett Spell</autho
r><publisher>Apress</publisher><tableOfContents showPageNumbers="Yes"><t
ocEntry>Printing</tocEntry><tocEntry>Cut and Paste</tocEntry><tocEntry>Drag
and Drop</tocEntry></tableOfContents></book>

Although this application provided a reason for you to see how to traverse a DOM tree, it
really wasn’t necessary to implement this functionality at all. That’s because the DOM imple-
mentation supplied with the JAXP download contains toString() methods that do essentially
the same thing as the printXXX() methods. In fact, the following simplified version of DOMTest
will produce the same output as the code just created:

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class DOMTest2 {

public static void main(String[] args) throws Exception {
DOMTest2 dt = new DOMTest2s(args[0]);

}

CHAPTER 13 ■ USING XML620

public DOMTest2(String uri) throws Exception {
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
factory.setValidating(true);
DocumentBuilder builder = factory.newDocumentBuilder();
Document doc = builder.parse(uri);
System.out.println(doc.getDocumentElement());

}

}

It may be tempting to take advantage of this functionality if you’re using the JAXP parser,
but you should keep in mind that this behavior isn’t part of the DOM standard.

Editing Documents with DOM
You can use DOM to edit a document in essentially the same way as using it to scan the docu-
ment. In addition to the methods that allow you to access node values and navigate through an
object structure, DOM also provides methods that allow you to add, modify, and delete nodes
from the tree. For example, given the XML document shown in Listing 13-2, suppose you want
to assign a value of no to the showPageNumbers attribute value in the <tableOfContents> element.

Listing 13-2. An XML Document to Be Edited

<?xml version="1.0" ?>

<book>
<title>Pro Java Programming</title>
<author>Brett Spell</author>
<publisher>Apress</publisher>

<tableOfContents showPageNumbers="yes">
<tocEntry>Printing</tocEntry>
<tocEntry>Cut & Paste</tocEntry>
<tocEntry>Drag & Drop</tocEntry>

</tableOfContents>
</book>

Once the document has been loaded into memory, the root element can be accessed and
its children searched until the <tableOfContents> element is located. After that’s done, you can
use a call to setAttribute() to set the showPageNumbers value to no, as shown in Listing 13-3.

Listing 13-3. Locating a Node and Modifying Its Value

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class DOMTest3 {

CHAPTER 13 ■ USING XML 621

public static void main(String[] args) throws Exception {
DOMTest3 dt = new DOMTest3(args[0]);

}

public DOMTest3(String uri) throws Exception {
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
factory.setValidating(true);
DocumentBuilder builder = factory.newDocumentBuilder();

Document doc = builder.parse(uri);
Element rootElement = doc.getDocumentElement();
NodeList children = rootElement.getChildNodes();
Node current = null;
int count = children.getLength();
for (int i = 0; i < count; i++) {
current = children.item(i);
if (current.getNodeType() == Node.ELEMENT_NODE) {
Element element = (Element)current;
if (element.getTagName().equalsIgnoreCase("tableOfContents")) {
element.setAttribute("showPageNumbers", "no");

}
}

}

System.out.println(doc.getDocumentElement());
}

}

If, on the other hand, you want to delete the <tableOfContents> tag completely instead of
modifying its attribute, you can use the removeChild() method, as shown in Listing 13-4.

Listing 13-4. Removing a Node

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class DOMTest4 {

public static void main(String[] args) throws Exception {
DOMTest4 dt = new DOMTest4(args[0]);

}

public DOMTest4(String uri) throws Exception {
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();

CHAPTER 13 ■ USING XML622

factory.setValidating(true);
DocumentBuilder builder = factory.newDocumentBuilder();

Document doc = builder.parse(uri);
Element rootElement = doc.getDocumentElement();
NodeList children = rootElement.getChildNodes();
Node current = null;
for (int i = 0; i < children.getLength(); i++) {
current = children.item(i);
if (current.getNodeType() == Node.ELEMENT_NODE) {
Element element = (Element)current;
if (element.getTagName().equalsIgnoreCase("tableOfContents")) {
rootElement.removeChild(element);

}
}

}

System.out.println(doc.getDocumentElement());
}

}

When removing nodes like this, keep in mind that you’re removing not only the node you
specify on the call to removeChild() but all of its descendents as well. In this case, for example,
removing the <tableOfContents> element results in the removal of the three <tocEntry> ele-
ments that are its children, those three nodes’ children, and so on.

In other words, removeChild() effectively eliminates the entire subtree defined by the
node that you pass as a parameter value.

Creating and Adding New Nodes
Creating and adding new nodes is equally simple, since the Node interface includes methods
such as appendChild(), insertBefore(), and replaceChild(). Creating a new node is something
you haven’t done before, although you may remember that the Document interface includes fac-
tory methods that return instances of the different types of Node objects. In most cases, these
methods require a single parameter that represents the name of the node to be created, and the
following is an example of how you might create a new Element node:

Document doc = builder.parse(uri);
// ...
Element myNewElement = doc.createElement("tocEntry");

Once the new element is created, you can call its mutator methods to modify its state,
and once it’s properly initialized, you can add it to the object structure. The following code
creates a new Element representing a <tocEntry>, creates a new Text node containing Help,
makes the Text node a child of the new Element, and inserts that element before the second
child of the <tableOfContents> node, as shown in Listing 13-5.

CHAPTER 13 ■ USING XML 623

Listing 13-5. Adding a Node to the Tree

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class DOMTest5 {

public static void main(String[] args) throws Exception {
DOMTest5 dt = new DOMTest5(args[0]);

}

public DOMTest5(String uri) throws Exception {
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
factory.setValidating(true);
DocumentBuilder builder = factory.newDocumentBuilder();

Document doc = builder.parse(uri);
Element rootElement = doc.getDocumentElement();
NodeList children = rootElement.getChildNodes();
Node current = null;
int count = children.getLength();
for (int i = 0; i < count; i++) {
current = children.item(i);
if (current.getNodeType() == Node.ELEMENT_NODE) {
Element element = (Element)current;
if (element.getTagName().equalsIgnoreCase("tableOfContents")) {
// Get the list of <tocEntry> items
NodeList tocitems = element.getElementsByTagName("tocEntry");
// Obtain a reference to the second one
Node secondChild = tocitems.item(1);
// Create a new <tocEntry> element
Element newTOCItem = doc.createElement("tocEntry");
// Create a new "Help" text node
Text newText = doc.createTextNode("Help");
// Make it a child of the new <tocEntry> element
// <tocEntry>Help</tocEntry>
newTOCItem.appendChild(newText);
// Add the new <tocEntry> element to <tableOfContents>
element.insertBefore(newTOCItem, secondChild);

}
}

}

System.out.println(doc.getDocumentElement());
}

}

CHAPTER 13 ■ USING XML624

In effect, this is equivalent to making the following addition to the original XML document:

<tableOfContents showPageNumbers="Yes">
<tocEntry>Printing</tocEntry>
<tocEntry>Help</tocEntry><tocEntry>Cut & Paste</tocEntry>
<tocEntry>Drag & Drop</tocEntry>

</tableOfContents>

This illustrates an important point that may not be obvious. Although it may appear
that the original <tableOfContents> node had only three children, it has at least seven: four
Text nodes representing whitespace in addition to the three <tocEntry> Element nodes. If the
tree has been normalized (which it typically will be after it’s first constructed), there will be
exactly seven child nodes. However, it’s possible that one “section” of whitespace consists of
up to two sequential Text nodes (for example, a linefeed followed by a tab). In any case, when
adding data nodes to a tree as in this example, you may also want to add a Text node repre-
senting whitespace as well. Although whitespace has no impact upon a parser’s ability to
process the document or upon the logical organization of the document, you want to add it
for the sake of readability. In this case, you can add whitespace easily by inserting the bold
code in Listing 13-6.

Listing 13-6. Adding a Whitespace Node

// ...
for (int i = 0; i < count; i++) {

current = children.item(i);
if (current.getNodeType() == Node.ELEMENT_NODE) {
Element element = (Element)current;
if (element.getTagName().equalsIgnoreCase("tableOfContents")) {
// Get the list of <tocEntry> items
NodeList tocitems = element.getElementsByTagName("tocEntry");
// Obtain a reference to the second one
Node secondChild = tocitems.item(1);
// Create a new <tocEntry> element
Element newTOCItem = doc.createElement("tocEntry");
// Create a new "Help" text node
Text newText = doc.createTextNode("Help");
// Make it a child of the new <tocEntry> element
// <tocEntry>Help</tocEntry>
newTOCItem.appendChild(newText);
// Add the new <tocEntry> element to <tableOfContents>
element.insertBefore(newTOCItem, secondChild);
// Create another text node containing a linefeed and
// two tabs to use for whitespace
newText = doc.createTextNode("\n\t\t");
// Insert it before the new <tocEntry> we added
element.insertBefore(newText, secondChild);

}
}

}
// ...

CHAPTER 13 ■ USING XML 625

This inserts a linefeed and two tab characters after the newly inserted <tocEntry> element
(before the element that follows it) so that when converted into XML, the document’s contents
will appear as shown in the following code:

<tableOfContents showPageNumbers="Yes">
<tocEntry>Printing</tocEntry>
<tocEntry>Help</tocEntry>
<tocEntry>Cut & Paste</tocEntry>
<tocEntry>Drag & Drop</tocEntry>

</tableOfContents>

Creating a New Document
All of the Document instances you’ve used so far were created when the parse() method read
and processed an existing document, but you’ll sometimes want to create a new object col-
lection that’s not associated with an existing XML document. As you saw earlier, JAXP’s
DocumentBuilder class contains a newDocument() method that you can use to obtain a new
(and empty) Document object:

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class DOMTest6 {

public static void main(String[] args) throws Exception {
DOMTest6 dt = new DOMTest6();

}

public DOMTest6() throws Exception {
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
factory.setValidating(true);
DocumentBuilder builder = factory.newDocumentBuilder();
Document document = builder.newDocument();

// ...
}

}

Once you’ve created a new Document object, the first Element child you add to it will
become the document’s root element, and you can add other nodes as described previously:

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class DOMTest6 {

CHAPTER 13 ■ USING XML626

public static void main(String[] args) throws Exception {
DOMTest6 dt = new DOMTest6();

}

public DOMTest6() throws Exception {
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
factory.setValidating(true);
DocumentBuilder builder = factory.newDocumentBuilder();

Document document = builder.newDocument();
// Create a new Element object
Element rootElement = document.createElement("book");
// Make it the root element of this new document
document.appendChild(rootElement);

System.out.println(document.getDocumentElement());
}

}

Transforming XML Documents
I’ve already pointed out that using XML allows you to separate your data from instructions
that describe how the data is displayed. However, I haven’t mentioned how to convert an
XML document into some format that’s appropriate for display, such as an HTML document.
For example, you should recall that an HTML document and a similar XML document were
defined at the beginning of this chapter. Since the HTML version contains information that
describes how to format the data, it’s possible to view that document in a browser and have it
display the data appropriately. In contrast, the XML document doesn’t contain any such dis-
play guidelines.

One option for converting an XML document into some other format is to use DOM
to examine the document’s contents and write an appropriate representation, but this can
be a complex and difficult task depending upon the size and complexity of the document.
In addition, writing Java code to perform the formatting means you must change that code
when you want to change the structure of the output. Fortunately, an alternative approach
exists that makes it reasonably simple to define a set of rules that describes how an XML
document should be transformed. That alternative is XSL. XSL is a standard created by the
World Wide Web Consortium, and its purpose is to allow you to create stylesheets for XML
documents, where a stylesheet is simply a file that describes how information should be
transformed.

XSL allows you to do two things that are (technically, at least) distinct from one another:
rearrange the structure of your document’s nodes and describe what output should be gener-
ated for each node. In other words, you can convert a document from one XML grammar to
another or even from one XML format to some non-XML format such as HTML, RTF, PDF,
and so on.

CHAPTER 13 ■ USING XML 627

You’ll now see how to create an XSLT file that will transform the XML document at the
beginning of this chapter into the equivalent HTML document. First, you should create a file
called booktran.xsl that contains the following three lines. The first line is the XML declara-
tion you’ve already seen, and the next line is the stylesheet declaration, which identifies the
namespace that will be used to refer to XSLT instructions:

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
</xsl:stylesheet>

To specify how XML data is formatted, you must create templates, which are elements
containing transformation instructions and data. In this case, for example, when a <book> ele-
ment is encountered, you want an HTML document to be generated that contains the same
data found in <book> but with HTML tags that describe how to format the data. Therefore, you
can create a template like the following one that will generate the <HTML> and </HTML> tags
when <book> is encountered:

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="book">
<HTML>
</HTML>
</xsl:template>

</xsl:stylesheet>

To embed information from one of the elements, you can use the value-of instruction as
shown in the following code. This instruction generates output from the text found between
the start and end tags of the specified element. In this case, it’s used to extract the book’s title,
author, and publisher from the XML document:

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="book">
<HTML>
<CENTER><H1><xsl:value-of select="title"/></H1></CENTER>
<H4><xsl:value-of select="author"/></H4>
<H4><xsl:value-of select="publisher"/></H4>
</HTML>
</xsl:template>

</xsl:stylesheet>

For example, given the XML document at the beginning of this chapter, the previous
XSLT document will extract the contents of the <title>, <author>, and <publisher> elements,

CHAPTER 13 ■ USING XML628

enclosing the title within an <H1> tag and the author and publisher within <H4> tags. To actu-
ally perform this transformation, however, you need an XSL processor.

Performing an XSL Transformation
Like SAX and DOM, you must obtain an XSLT processor before you can use the technology,
but again, Java includes an implementation for your use. The first step in doing so is to obtain
an instance of the TransformerFactory class defined within the javax.xml.transform package:

TransformerFactory factory = TransformerFactory.newInstance();

As you might expect, a TransformerFactory returns instances of Transformer, and those
instances can be used to transform XML documents based on the instructions in a stylesheet.
However, since the Transformer relies upon the stylesheet to perform the transformation, you’re
required to identify the source of the stylesheet data when you create the Transformer. You
can do this using an implementation of the Source interface defined in javax.xml.transform;
fortunately, Java provides convenient implementations of that interface. One implementa-
tion is StreamSource, which represents a data source as a stream that corresponds to a File,
a Reader, or an InputStream. Let’s suppose the stylesheet defined previously is stored in
C:\brett\temp\styletest.xsl and you want to create a Transformer that uses it to process an
XML document. In that scenario, you could use code like that shown in the following code:

File file = new File("C:/brett/temp/styletest.xsl");
Source source = new StreamSource(file);

Now that you’ve seen how to define a Source, you can easily create a Transformer using
the following code:

TransformerFactory factory = TransformerFactory.newInstance();
File file = new File("C:/brett/temp/styletest.xsl");
Source source = new StreamSource(file);
Transformer transformer = factory.newTransformer(source);

Finally, to perform the transformation, you need to create another Source implementa-
tion that identifies the XML document to be transformed along with a Result implementation
that identifies where to send the transformed output. As was the case with Source, JAXP pro-
vides convenient implementations of the Result interface, including the StreamResult class
that allows output to be sent to a File, an OutputStream, or a Writer. For example, to create a
Result implementation that will send the transformed data to standard output, you could use
code like this:

Result result = new StreamResult(System.out);

Now that you’ve seen how to create Source and Result implementations, you can easily
transform an XML document stored in C:\brett\temp\mytest.xml using a stylesheet stored in
C:\brett\temp\styletest.xsl and send it to standard output using this code:

TransformerFactory factory = TransformerFactory.newInstance();
File file = new File("C:/brett/temp/styletest.xsl");
Source source = new StreamSource(file);

CHAPTER 13 ■ USING XML 629

Transformer transformer = factory.newTransformer(source);
file = new File("C:/brett/temp/mytest.xml");
source = new StreamSource(file);
Result result = new StreamResult(System.out);
transformer.transform(source, result);

Running this code with the stylesheet defined earlier and the XML document listed at the
beginning of this chapter produces the following output:

<HTML>
<CENTER>
<H1>Pro Java Programming</H1>
</CENTER>
<H4>Brett Spell</H4>
<H4>Apress</H4>
</HTML>

Although this example is a trivial one, XSLT provides a robust facility for performing
translations. A complete discussion of its capabilities is beyond the scope of this chapter, but
you can find more information at http://www.w3.org/TR/xslt/ or refer to XSLT 2.0 Program-
mer’s Reference, Third Edition, by Michael Kay (Wrox Press, 2004).

Introducing XPath
Before continuing, it’s helpful to closely examine the values of the select attributes associated
with the value-of instructions you created. Although it may not be apparent, these are exam-
ples of XPath (XML Path Language) values. XPath is an expression language used to select
nodes in an XML document tree, specify conditions for different ways of processing a node,
and generate text from the tree. Here it simply provides a way to refer to specific nodes in the
XML document. XPath is a separate standard from XSL/XSLT, but as this example illustrates,
it’s used to identify document nodes referenced during transformations. Fortunately, XPath is
somewhat intuitive, since the notation used is similar to what you’re probably already accus-
tomed to using when referring to directories in a file system.

For example, suppose you issue the command dir . in a DOS/Windows environment.
The single period character (.) represents the current directory, so this command will list all
the files in the current directory and all its subdirectories. For example, if your current direc-
tory is C:\brett\temp, the previous command will list all files and subdirectories contained by
that directory. Similarly, issuing the command dir xslt from that same directory will list the
contents of the xslt subdirectory (C:\brett\temp\xslt).

Given these examples, you may already realize how this relates to XPath. In the template
that’s defined to handle <book> elements, the “current node” is the <book> element being
processed, and a path such as author or publisher refers to the element directly below the
current one. In other words, the value-of instruction simply includes the text found between
the start and end tags of the node identified by the XPath value. In this case, that means the
<title>, <author>, and <publisher> values.

CHAPTER 13 ■ USING XML630

At this point, you need to add two things: the table of contents information and the pub-
lisher’s logo image. You can easily reproduce the table of contents header using the techniques
already described:

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="book">
<HTML>
<CENTER><H1><xsl:value-of select="title"/></H1></CENTER>
<H4><xsl:value-of select="author"/></H4>

<H3>Table Of Contents</H3>

<H4><xsl:value-of select="publisher"/></H4>
</HTML>
</xsl:template>

On the other hand, including the <tocItem> entries in the output is slightly more complex
because there are several such entries and because they aren’t directly below the <book> ele-
ment being processed. That isn’t really a difficult problem to solve because XPath allows you
to refer to the <tocItem> entries from the <book> template. However, since you have multiple
such entries, you must use the for-each instruction to define a loop that will process each one
of them:

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="book">
<HTML>
<CENTER><H1><xsl:value-of select="title"/></H1></CENTER>
<H4><xsl:value-of select="author"/></H4>

<H3>Table Of Contents</H3>

<xsl:for-each select="tableOfContents/tocEntry">
</xsl:for-each>

<H4><xsl:value-of select="publisher"/></H4>
</HTML>
</xsl:template>

</xsl:stylesheet>

CHAPTER 13 ■ USING XML 631

With this loop in place, you can easily generate output for each <tocEntry> element. Note
the use of the single period (.) for the select value, which in the context of the loop refers to the
value between the start and end tags of the <tocEntry> element.

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="book">
<HTML>
<CENTER><H1><xsl:value-of select="title"/></H1></CENTER>
<H4><xsl:value-of select="author"/></H4>

<H3>Table Of Contents</H3>

<xsl:for-each select="tableOfContents/tocEntry">
<xsl:value-of select="."/>
</xsl:for-each>

<H4><xsl:value-of select="publisher"/></H4>
</HTML>
</xsl:template>

</xsl:stylesheet>

Finally, you can add the tag that will display the cover image, although you have at
least two ways to accomplish this. One approach is to explicitly embed the information in the
document, as follows:

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="book">
<HTML>
<CENTER><H1><xsl:value-of select="title"/></H1></CENTER>
<H4><xsl:value-of select="author"/></H4>

<H3>Table Of Contents</H3>
<xsl:for-each select="tableOfContents/tocEntry">
<xsl:value-of select="."/>
</xsl:for-each>

<H4><xsl:value-of select="publisher"/></H4>
<IMG SRC="http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif"

ALT="Cover Image" />
</HTML>
</xsl:template>

</xsl:stylesheet>

CHAPTER 13 ■ USING XML632

However, if you prefer to avoid explicitly identifying the file in your XSL document, you
can use entity references instead:

<?xml version="1.0"?>
<!DOCTYPE xsl:stylesheet SYSTEM "pubinfo.dtd">

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="book">
<HTML>
<CENTER><H1><xsl:value-of select="title"/></H1></CENTER>
<H4><xsl:value-of select="author"/></H4>

<H3>Table Of Contents</H3>
<xsl:for-each select="tableOfContents/tocEntry">
<xsl:value-of select="."/>
</xsl:for-each>

<H4><xsl:value-of select="publisher"/></H4>

</HTML>
</xsl:template>

</xsl:stylesheet>

This latter approach also requires that a pubinfo.dtd file be created with the following
contents:

<!-- pubinfo.dtd -->
<!ENTITY logoFile "http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif">
<!ENTITY logoText "Coverage Image">

The output produced by this stylesheet is as follows:

<HTML>
<CENTER>
<H1>Pro Java Programming</H1>
</CENTER>
<H4>Brett Spell</H4>

<H3>Table Of Contents</H3>
Printing
Cut and Paste
Drag and Drop

<H4>Apress</H4>
<IMG ALT="Cover Image"

SRC="http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif "></HTML>

CHAPTER 13 ■ USING XML 633

Creating and Using Additional Templates
Although the previous approach is acceptable for a relatively simple XML document, it has
one design flaw that can be significant. Specifically, all processing takes place inside a single
template, and if your document’s structure is complex, you’ll be forced to put a large amount
of code inside that template. This is roughly equivalent to creating a large, “monolithic”
method in Java or some other programming language, where that method performs many
different steps in a complex algorithm. Such a method becomes difficult to understand and
maintain, so it’s usually desirable to separate the functions by placing them in different meth-
ods (or templates in this case). A good candidate for such a change is the code that handles
the <tableOfContents> elements and its <tocItem> subelements, since that code accounts for
roughly half of the logic inside the existing template.

You can easily create a new template that handles only <tableOfContents> elements, as
shown in the following code; it contains essentially the same instructions that were present
in <book>. The only exception is that the <tocEntry> items are referenced from a location
relative to the <tableOfContents> entry instead of the <book> element. Therefore, you must
change the path used in the for-each instruction to reference each <tocEntry> from
tableOfContents/tocEntry to tocEntry.

<?xml version="1.0"?>
<!DOCTYPE xsl:stylesheet SYSTEM "pubinfo.dtd">

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="book">
<HTML>
<CENTER><H1><xsl:value-of select="title"/></H1></CENTER>
<H4><xsl:value-of select="author"/></H4>
<H4><xsl:value-of select="publisher"/></H4>

</HTML>
</xsl:template>

<xsl:template match="tableOfContents">

<H3>Table Of Contents</H3>
<xsl:for-each select="tocEntry">
<xsl:value-of select="."/>
</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

Although you might expect the template associated with the <tableOfContents> element
to be called automatically, that’s not the case. Only the template that handles the root element
will be called automatically, and to use any other templates, you must explicitly “call” them
using the apply-templates instruction. This instruction causes the XSLT processor to handle
the specified child element(s) of the current element and embed the results in the output being

CHAPTER 13 ■ USING XML634

created. For example, to include the <tableOfContents> element output between the text cre-
ated for the <author> and <publisher> elements, you need to make the following modification:

<!-- ... -->

<xsl:template match="book">
<HTML>
<CENTER><H1><xsl:value-of select="title"/></H1></CENTER>
<H4><xsl:value-of select="author"/></H4>
<xsl:apply-templates select="tableOfContents"/>
<H4><xsl:value-of select="publisher"/></H4>

</HTML>
</xsl:template>

<!-- ... -->

This command will again generate a file booktest.html containing the following content:

<HTML>
<CENTER>
<H1>Pro Java Programming</H1>
</CENTER>
<H4>Brett Spell</H4>

<H3>Table Of Contents</H3>
Printing
Cut and Paste
Drag and Drop

<H4>Apress</H4>
<IMG ALT="Cover Image"

SRC="http://www.apress.com/ApressCorporate/supplement/1/421/bcm.gif "></HTML>

Although the whitespace isn’t quite the same as that of the HTML document defined ear-
lier in the chapter, the two documents are functionally identical from a browser’s perspective.

Summary
In this chapter, you looked at the following:

• What XML is and how it differs from HTML

• How an XML document is formed

• How to parse XML documents using the DOM API

• How to transform XML documents using XSLT

• The role of XPath in transformations

CHAPTER 13 ■ USING XML 635

Adding Annotations

Java 5 included support for many features that weren’t present in earlier releases of Java,
and one of the most significant enhancements is Java 5’s support for annotations, which is
also sometimes referred to as metadata. To understand what benefits this feature provides,
it’s helpful to first realize that the definition of “metadata” is “data about data.” In other words,
metadata is information that describes other data. An example of where metadata has long
been used in Java is the java.sql package that contains DatabaseMetaData, ResultSetMetaData,
and the relatively new ParameterMetaData interfaces. As implied by the definition just men-
tioned and by their names, these classes encapsulate data that describes a database, a
ResultSet, and parameter information, respectively. For example, ResultSetMetaData allows
you to find out how many columns are represented within a ResultSet, the data types associ-
ated with those columns, and so on.

In contrast to the classes defined in java.sql, Java’s support for annotations allows you
to include in your source files information that describes the elements of your code such as
classes, methods, and parameters. To understand how this is useful, you’ll briefly examine
another way that releases prior to Java 5 supported metadata, specifically through the
@deprecated tag used by the javadoc tool. The @deprecated tag identifies a method that pro-
grammers are discouraged from using, typically because a preferred alternative exists that
should be used instead. To illustrate how this works, let’s assume you’ve created and com-
piled a class like the following one. Notice that a javadoc-style comment block has been
defined for the getText() method.

public class Server {

/**
* @deprecated Use the getText() method in the NewAndImprovedServer class
* instead.
*/
public String getText() {

return "Hello world!";
}

public String getMoreText() {
return "Hello galaxy!";

}

}
637

C H A P T E R 1 4

■ ■ ■

CHAPTER 14 ■ ADDING ANNOTATIONS638

As mentioned, the presence of the @deprecated tag means that programmers are discour-
aged from using this method, and as this example illustrates, the tag also should contain text
that tells what should be used in place of this deprecated method. Now let’s further assume
you create and compile a class like the following one that attempts to use the deprecated
method:

public class Client {

public static void main(String[] args) {
Server server = new Server();
System.out.println(server.getText());

}

}

Compiling this class without specifying any options will result in a warning being gener-
ated like the following:

Note: Client.java uses or overrides a deprecated API.
Note: Recompile with –deprecation for details

Recompiling with the –deprecation option as instructed generates output like the
following:

Client.java:5: warning: getText() in Server has been deprecated
System.out.println(server.getText());

An important point to realize is that you’ll receive these deprecation warnings even if the
source file isn’t present. That’s possible because the Java compiler actually includes in the
Server.class file a flag that indicates the getText() method has been deprecated. Later, when
the compiler attempts to compile Client.java, it scans the Server.class file, notes that the
method is deprecated, and generates a warning. It’s worth pointing out that @deprecated is
unique in this sense; most javadoc tags are intended to be used only when the javadoc tool
parses source code and no remnant of any other tag is included in a class file generated by a
Java compiler.

Just as it’s a good example of how metadata is useful, the @deprecated tag is also an exam-
ple of why Java needed a better way of allowing programmers to include metadata in their
source files. After all, the javadoc tags are embedded within comment blocks that could other-
wise be ignored by Java compilers, and since other tags are ignored, @deprecated amounts to a
nonstandard (or at least unusual) way of using a javadoc tag. In addition, even in the case of
@deprecated where a flag is stored in the compiled class file, there’s no trivial way for an appli-
cation to determine which tags were specified. Fortunately, the annotation facility that was
introduced in Java 5 provides an improved way of specifying metadata and for processing that
data programmatically.

Using Annotations
As you’ll see later, the annotation facility in Java allows you to define custom annotations, but
Java also includes some predefined annotations that are useful. For example, one of the prede-
fined annotations is a replacement for the @deprecated tag, and the replacement is named
(intuitively enough) Deprecated. To use an annotation, simply specify it on the element you
want to apply it to by putting an at (@) sign followed by the name of the annotation. For exam-
ple, to replace the @deprecated javadoc tag with the Deprecated annotation, make the following
bold changes to the Server class:

public class Server {

@Deprecated public String getText() {
return "Hello world!";

}

public String getMoreText() {
return "Hello galaxy!";

}

}

In addition to providing a simpler and “cleaner” way of marking a deprecated method,
annotations provide several advantages, one of which is that you can apply them to a wider
range of program elements. For example, you can apply javadoc only at a package, class, or
method level, but you can apply annotations to any of the following:

• Annotations: An annotation can itself have annotations.

• Constructors and methods: This is perhaps the most common usage.

• Fields: You can apply annotations to static or instance variables defined within a class.

• Local variables: You can apply annotations to variables defined and used inside
methods.

• Package: You can associate annotations with an entire package.

• Parameter: You can assign annotations to individual method parameters.

• Type: A class, interface, or enum definition can have annotations.

Another advantage of annotations over javadoc comments is that it’s easy to determine
programmatically which annotations are present for a given element. Before you see how to
do this, though, you should review the API documentation for the java.lang package, specifi-
cally the section called “Annotation Types Summary.” Annotations are defined in a way that’s
very much like creating a class or an interface, and they’re included in the API documentation
along with other components.

CHAPTER 14 ■ ADDING ANNOTATIONS 639

Now that you know that annotation definitions resemble those of classes and interfaces,
writing code that refers to an annotation becomes somewhat more intuitive. For example, let’s
suppose you want to write a code segment that examines the methods defined in the Server
class and displays the names of those that are deprecated. You can write most of that code
using the reflection capabilities that have long been a part of Java, as follows:

Class myClass = Server.class;
java.lang.reflect.Method[] methods = myClass.getMethods();
for (int i = 0; i < methods.length; i++) {

// Check for annotations here
}

To see if a given annotation is present, you can use the isAnnotationPresent() method
and simply refer to the annotation using its Class object as follows:

Class myClass = Server.class;
java.lang.reflect.Method[] methods = myClass.getMethods();
for (int i = 0; i < methods.length; i++) {

if (methods[i].isAnnotationPresent(Deprecated.class)) {
System.err.println("Method '" + methods[i].getName() + "' is deprecated");

}
}

As this simple example illustrates, applications can easily access annotation information
without having to scan a source file or a class file. The implication of this is that it’s easy for
development tools and user applications to take advantage of annotations in any way that’s
helpful. You’ll examine this point in more detail later in the chapter, but for now it’s sufficient to
realize that annotations provide a flexible mechanism for defining metadata that’s easy to use.

As you may have noticed when reviewing the API documentation, Deprecated isn’t the only
annotation defined in the java.lang package but is accompanied by the intuitively named
Override and SuppressWarnings annotation types. As its name implies, Override allows you to
mark a method that’s intended to override a superclass method, while SuppressWarnings lets
you indicate to a Java compiler that it shouldn’t generate warnings for specific elements.

Override
For an example of how to use Override, let’s assume you create a subclass of Server called
AdvancedServer and you override the getMoreText() method as follows:

public class AdvancedServer extends Server {

public String getMoreText() {
return "Hello universe!";

}

}

CHAPTER 14 ■ ADDING ANNOTATIONS640

If you’re wondering why it’s useful to mark a method as overriding a superclass method,
consider what would happen if you do one or more of the following:

• Forget to include extends Server in the class definition

• Specify an “incorrect” method name such as getAdditionalText() or later change the
superclass method name without also changing the overriding subclass method

• Change the superclass method signature by adding an argument without an equivalent
change in the subclass

For example, let’s suppose you make a change to the getMoreText() method defined in
Server but you forget to also modify the AdvancedServer subclass as mentioned:

public String getMoreText(String name) {
return "Hello " + name;

}

It’s still possible to compile AdvancedServer successfully, but the getMoreText() method
no longer overrides the superclass implementation. Instead, two methods with that name can
be called: one (defined in AdvancedServer) that accepts no arguments and another (defined in
Server) that accepts a single String parameter. Assuming that this is the result of an oversight
on the part of the programmer, using an instance of AdvancedServer can produce unexpected
results.

Fortunately, the Override annotation allows you to mark methods that are intended to
override a superclass implementation; you specify it on the getMoreText() method as follows:

public class AdvancedServer extends Server {

@Override public String getMoreText() {
return "Hello universe!";

}

}

Once you make this modification, attempting to compile AdvancedServer will result in
an error being generated because the getMoreText() method no longer overrides the Server
implementation.

AdvancedServer.java:3 getMoreText(java.lang.String) in AdvancedServer cannot
override getMoreText(java.lang.String) in Server; overridden method is final

In other words, the Override annotation ensures that a subclass can and does override a
superclass method. Note that using this annotation won’t have any effect on the error message
you receive if you try to compile code that overrides a final method. That’s because doing so
is already invalid since by definition a final method is one that can’t be overridden.

CHAPTER 14 ■ ADDING ANNOTATIONS 641

Although you’re not required to use this annotation, doing so can reduce the number
of programming errors that go undetected at compile time by identifying methods that you
expect override other methods. Without this type of error checking, your application might
wind up with code that incorrectly calls the older superclass implementation of a method
when you expect it to execute what you thought was an overriding implementation in the
subclass. This type of mistake can be difficult and time-consuming to find when testing and
debugging your code, which is why Override’s ability to bring these mistakes to your attention
at compile time is so helpful.

SuppressWarnings
As you might expect, the purpose of this annotation is to allow you to indicate that warnings
should be suppressed that would otherwise occur. For example, let’s suppose you want to be
able to compile the Client class without receiving a warning related to its use of the depre-
cated getText() method in Server and without suppressing any other deprecation warnings.
In that case, you could use the SuppressWarnings annotation as follows:

public class Client {

@SuppressWarnings(value="deprecation") public static void main(String[] args) {
Server server = new Server();
System.out.println(server.getText());

}

}

■Note If you attempt to use SuppressWarnings with Java 1.5.0, you may be disappointed with the results.
Although the SuppressWarnings annotation is defined within the java.lang package in that release, there’s
no support for it in the Java compiler that’s included. As a result, none of the examples illustrated in this chap-
ter will work with the Java 1.5.0 reference compiler supplied by Sun.

Elements
Notice that this annotation is very different from the previous two you looked at in that it
includes what appears to be a property assignment within a pair of parentheses. In fact, it’s a
property assignment, although in the context of annotations the properties are referred to as
elements. If you review the API documentation for SuppressWarnings, you’ll see it does indeed
contain an element called value that represents a String array; an array is used because it’s
possible to specify more than one type of warning you want to suppress. If you do want to
specify multiply warning types, you should put a list of strings within braces ({}) and separate
them with commas, just as you’d do when defining a String array:

CHAPTER 14 ■ ADDING ANNOTATIONS642

@SuppressWarnings(value={"deprecation", "fallthrough"})

However, because it’s so common for annotations to use a single element named value, a
simpler syntax is supported; the following shows an example of how you can use it:

@SuppressWarnings("deprecation")

In the case where an annotation supports multiple elements, you can specify a value for
each one by separating them with commas. For example, if you want to use an annotation
named Author that had firstName and lastName elements, you can specify something like the
following:

@Author(firstName="Brett", lastName="Spell")

Given that annotations support elements, it’s easy to guess that the element defined in
SuppressWarnings specifies which type(s) of warning should be suppressed, and in this case
you want to suppress deprecation warnings. However, it’s probably less clear how you could
have known what to specify for the element in this case. After all, the API documentation for
SuppressWarnings doesn’t mention deprecation or any other value that you can or should
assign to the element; it simply indicates that SuppressWarnings includes an element named
value that represents a String array.

You’ll see in a moment what meaningful values you can specify for SuppressWarnings,
but before I explain this, it’s worthwhile to make an important point related to annotations.
Specifically, you should realize that the tool that will use the annotation is responsible for dic-
tating which values are valid for the annotation’s elements. For example, the tool that will use
SuppressWarnings is your Java source code compiler, so it’s that compiler that will dictate
which element values are useful. Assuming that you’re using the Windows reference imple-
mentation of Java from Sun, you can issue the following command:

javac –X

The –X option displays information about the nonstandard options that the compiler
supports, and in this case one of the options is the lint option. That option is essentially the
compiler-level version of SuppressWarnings, and the option values displayed correspond to
the values you can specify for the annotation’s element. As a result, one of the lines of output
generated when you issue the previous command will look like the following code. Specifying
an option with a minus (-) sign in front of it means that the corresponding type of warning
should be disabled (turned off), while specifying the version without the minus sign means
that the warning type should be enabled.

-Xlint:{all,deprecation,unchecked,fallthrough,path,serial,finally,-deprecation,
-unchecked,-fallthrough,-path,-serial,-finally}Enable or disable specific warnings

CHAPTER 14 ■ ADDING ANNOTATIONS 643

Note that in the case of the lint option, you can enable or disable warnings, but in the
case of SuppressWarnings, you can only disable (suppress) them. As a result, the valid choices
for the annotation are as follows:

• all

• deprecation

• unchecked

• fallthrough

• path

• serial

• finally

You’ve already seen that deprecation refers to deprecation warnings and all will cause all
supported types of warnings to be suppressed, but it’s worthwhile to briefly examine the other
values listed.

unchecked

To understand what causes an unchecked warning, let’s consider the following class that com-
piles successfully in the versions of Java prior to 1.5 that supported the List collections:

import java.util.*;

public class NewTest {

public static void main(String[] args) throws Exception {
List list = new ArrayList();
list.add("Hello");

}

}

Unfortunately, when support for generics was added to Java 5, the compiler was changed
so that it would fail to compile the previous code. If you do attempt to compile the code, you’ll
see a message like this one:

Note: NewTest.java uses unchecked or unsafe operations.
Note: Recompile with –Xlint:unchecked for details

Recompiling as instructed with the –Xlint:unchecked option provides somewhat more
information, as follows. In particular, note the unchecked text that appears within the brackets
([]) in the warning message.

CHAPTER 14 ■ ADDING ANNOTATIONS644

NewTest.java:7: warning: [unchecked] unchecked call to add(E)
as a member of the raw type java.util.List

list.add("Hello");

This more detailed explanation at least makes it clear that the compiler failure happens
because you attempted to add a String to a List for which no type was specified. In other
words, the call to add() is “unchecked” because the compiler doesn’t know what type of object
you intended to store in the List and therefore can’t verify that adding a String is appropriate.
At this point, you have several options, one of which is to specify a type:

List<String> list = new ArrayList<String>();
list.add("Hello");

Alternatively, you could simply add a SuppressWarnings annotation to the method (or the
class), specifying unchecked for the element value:

@SuppressWarnings("unchecked") public static void main(String[] args) throws Exception {

In many cases, however, your best option is to simply suppress the warnings at the com-
piler level, which allows you to maintain your code in a state that allows it to be successfully
processed by compilers that support both Java 5 and earlier releases:

javac –Xlint:-unchecked NewTest.java

fallthrough

A fallthrough refers to a switch statement that contains a case for which no break or other
statement prevents execution from falling through to the following case, as in the following
code:

switch (myValue) {
case 1:

doWork(); // This is a fallthrough
case -1:

doMoreWork();
break;

default:
isZero = true;
break;

}

Although it’s sometimes useful to deliberately code a switch statement this way,
fallthroughs can also be the result of accidentally omitting a break statement, and the
SuppressWarnings annotation allows you to control whether a fallthrough results in a warning
being generated.

CHAPTER 14 ■ ADDING ANNOTATIONS 645

path

Specifying an incorrect path location when compiling or executing programs is a common
source of problems. For example, let’s say you intend to compile a class; you want to include
in the classpath a JAR file stored in the D:\java\jars directory, and you think the name of the
file is dbcp.jar. In that case, you might execute a command like this one:

javac –classpath D:\java\jars\dbcp.jar NewTest.java

Now let’s assume either that the JAR file isn’t really located in the D:\java\jars directory
or that you mistype the name on the command line. In most cases you’ll receive a compiler
error if your code references a class that’s found in the JAR file, but depending upon various
factors related to your code and your environment, it’s possible you might not receive an
error. In addition, even if you do receive an error stating that a class couldn’t be found, you
might not know that the missing class was supposed to be in the dbcp.jar file. Ideally, the
compiler should tell you when you’ve specified a path entry (classpath or sourcepath) that it
can’t find, and this option is intended to allow you to control whether it does so. If your class-
path or source path includes a file or directory that doesn’t exist but you want to avoid having
a warning generated, you can use the –Xlint:-path option to prevent a warning from being
issued.

serial

When you create a class that’s serializable, it’s often desirable to define a serialVersionUID
for the class to ensure appropriate compatibility across different versions of that class. The
specifics of how to do this and when it’s appropriate is outside the scope of this chapter, but
you should simply understand that this value allows you to suppress warnings related to a
missing serialVersionUID.

finally

Warnings of this type indicate that a finally block exists that can’t complete normally, such as
in the following code:

try {
doWork();

}
catch (Exception e) {

// Handle exception here
}
finally {

// Do something here
return;

}

If you want to suppress warnings related to this situation, you can specify a
SuppressWarnings annotation with finally, or you can specify the appropriate option
during compilation.

CHAPTER 14 ■ ADDING ANNOTATIONS646

Creating Custom Annotations
Java includes some useful predefined annotations, but what makes annotations potentially
even more powerful is that you can easily define your own. For example, let’s suppose you’re
creating server objects for use with Java’s Remote Method Invocation (RMI) and you want to
define an annotation that would allow you to mark a class as representing a remote object.
Before you see how easy it is to do this, define a simple remote interface for use with a server
object:

import java.rmi.*;

public interface Test extends Remote {

public String getText() throws RemoteException;

}

Next, you can create a simplistic implementation of the remote interface:

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

public class SimpleTest extends UnicastRemoteObject implements Test {

public SimpleTest() throws RemoteException {
}

public String getText() {
return "Hello world!";

}

}

Now you can begin to create the annotation. Assuming you don’t need to specify any
properties/elements for the annotation, you can easily create one as shown next. Note that
except for the inclusion of an at (@) sign, the code is identical to the code you’d use to define
an interface:

public @interface RemoteObject {
}

Once you’ve created and compiled this annotation definition, you can add the appropri-
ate annotation to the SimpleTest class:

@RemoteObject public class SimpleTest extends UnicastRemoteObject implements Test {

Up until now, you’ve marked only individual methods with annotations, but as this exam-
ple illustrates, the use of annotations isn’t limited to methods.

CHAPTER 14 ■ ADDING ANNOTATIONS 647

To continue with the example, let’s suppose you want to allow the programmer to specify
the name of the remote interface to use with the implementation class. You can easily accom-
plish this by adding a String element to the RemoteObject annotation:

public @interface RemoteObject {

public String value();

}

Once again, the most notable characteristic of the Annotation definition is how closely it
resembles an interface definition. An important difference, though, is that as mentioned ear-
lier, it’s possible to specify a default value for the elements. In this case, for example, you could
define a default value of RemoteInterface by making the following change to the code:

public @interface RemoteObject {

public String value() default "RemoteInterface";

}

At this point you’ve successfully defined a new Annotation type, but it’s worthwhile to
consider refining the type further. For example, you’ve defined this annotation for the purpose
of identifying classes that represent remote objects, but what would prevent you from anno-
tating (for example) a method or even a parameter with this new type? In fact, with the current
definition of RemoteObject, it’s entirely possible to assign this annotation to any program con-
struct (package, class, method, parameter, and so on) that supports annotation, and if you
modify the SimpleTest class as follows, it will compile successfully:

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

public class SimpleTest extends UnicastRemoteObject implements Test {

public SimpleTest() throws RemoteException {
}

@RemoteObject public String getText() {
return "Hello world!";

}

}

This obviously isn’t what you wanted for the new annotation type, because it’s only mean-
ingful to say that a particular object is a “remote object,” so ideally it shouldn’t be possible to
specify the annotation type for a single method. Fortunately, the annotation facility allows you
to control which program elements an annotation type can be successfully applied to, which
is done by annotating the annotation. To see how this is done, you should examine the API
documentation for the java.lang.annotation package, which contains (among other things)
an annotation type called Target. As the documentation indicates, Target specifies the “kinds

CHAPTER 14 ■ ADDING ANNOTATIONS648

of program element to which an annotation type is applicable.” In other words, if you want
your custom annotation to be used only at a class level, you can use Target to enforce that
behavior.

Target
Examining the documentation for Target reveals that its single element is an array of
ElementType instances, where ElementType is a type-safe enumeration that defines enumera-
tion constants for the supported program elements mentioned earlier that are supported by
annotations. Specifically, the supported types are those listed in Table 14-1.

Table 14-1. Enumeration Constants Defined Within ElementType

Type Description

ANNOTATION_TYPE Used to annotate other annotations (as with Target).

CONSTRUCTOR Can be used to annotate constructors.

FIELD Annotates fields (static or instance variables) within a class.

LOCAL_VARIABLE Annotation can be used with variables defined and used within
methods.

METHOD Allows the annotation to be used with methods.

PACKAGE The annotation can be associated with a package.

PARAMETER Indicates that the annotation can be used with method parameters.

TYPE Can be used to annotate a class, interface, enumeration, or annotation.

So how exactly do you annotate the annotation type (RemoteObject) to ensure it can’t be
used with methods or other inappropriate types? You can simply add the following code to the
annotation. Note that it’s necessary to import ElementType and Target for the file to compile
successfully, just as it would be if you were referencing them in a class or (nonannotation)
interface:

import java.lang.annotation.ElementType;
import java.lang.annotation.Target;

@Target(ElementType.TYPE) public @interface RemoteObject {

public String value() default "RemoteInterface";

}

After you’ve made this change and recompiled the RemoteObject annotation type,
attempting to compile the SimpleTest class with the annotated method shown earlier will
generate a compiler error like this one:

SimpleTest.java:9: annotation type not applicable to this kind of declaration
@RemoteObject public String getText() {

CHAPTER 14 ■ ADDING ANNOTATIONS 649

One final point is worth making: since Target defines an array of ElementType values, it’s
possible for you to specify more than one type when using the Target annotation. For exam-
ple, if you want to allow the RemoteObject annotation to be used at both a class and a package
level, you can change the definition to include both types:

@Target({ElementType.TYPE, ElementType.PACKAGE}) public @interface RemoteObject {

Retention
At this point, let’s suppose you’ve created and compiled the following implementation of the
SimpleTest class:

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

@RemoteObject public class SimpleTest extends UnicastRemoteObject implements Test {

public SimpleTest() throws RemoteException {
}

public String getText() {
return "Hello world!";

}

}

Now let’s assume you create code that attempts to examine the class in order to see what
annotations are associated with it. You did this earlier in the chapter when you wrote a code
segment to examine the Server class in order to see if it was tagged with the Deprecation
annotation, so you can use similar code to accomplish essentially the same thing here:

public class ScanTest {

public static void main(String[] args) throws Exception {
Class<SimpleTest> myClass = SimpleTest.class;
if (myClass.isAnnotationPresent(RemoteObject.class)) {

System.out.println("It is a RemoteObject");
}
else {

System.out.println("It doesn't appear to be a RemoteObject!");
}

}

}

Oddly enough, running the code results in a message being displayed that indicates that
SimpleTest isn’t annotated with the RemoteObject type, even though you’ve clearly defined it
as such. To understand this, let’s go back to the earlier discussion of the javadoc tags and how

CHAPTER 14 ■ ADDING ANNOTATIONS650

@deprecated is unique in that it’s the one tag for which information is stored in the class file as
part of compilation. The other tags are ignored by the Java compiler because it simply doesn’t
care about them; only the javadoc tool performs any processing on the other tags, and it uses
the Java source code (.java) file as input, not the class files created by the Java compiler. In
other words, the @deprecated tag represents information that needs to be included in the
compiled class file, while all other javadoc tags represent information that’s useful only within
the source code.

This difference between the context in which the tags are needed is a common theme,
which is why another feature of Java’s annotation facility is that it allows you to define a
retention policy for annotations. Like Target, the Retention annotation is used to annotate
other annotations, and it’s defined within the java.lang.annotation package. It allows you
to specify one of three retention policies, each of which corresponds to an instance of the
RetentionPolicy enumeration type. The three retention policies are as follows:

• SOURCE: The annotation information is stored only within the source file, and no rem-
nant of it should be stored in a class file generated from that source file.

• CLASS: The annotation information is stored within the class file when the source code
is compiled, but the information isn’t loaded into memory as part of the class defini-
tion. This is the default if you create a custom annotation but don’t specify a retention
policy.

• RUNTIME: The annotation data is stored within the class file and loaded into memory
when the class definition is loaded.

At this point it should be apparent why the ScanTest class was unable to detect the
SimpleTest annotation in the previous code example. Because you didn’t specify a retention
policy for the RemoteObject annotation, it defaulted to the CLASS policy, which means the
annotation information wasn’t included in the class information when the class definition was
loaded into memory. In other words, you can detect an annotation programmatically at run-
time only if the annotation has a retention policy of RUNTIME. Otherwise, the information will
be omitted at the point when the source is compiled (with a policy of SOURCE) or when the
class is loaded (with a policy of CLASS).

Now that you know how annotation information is maintained, you can update the
RemoteObject definition accordingly if you want to allow the information to be included in
the class and runtime definition:

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Target(ElementType.TYPE) @Retention(RetentionPolicy.RUNTIME)
public @interface RemoteObject {

public String value() default "RemoteInterface";

}

CHAPTER 14 ■ ADDING ANNOTATIONS 651

Once you’ve made this change, you should recompile the RemoteObject annotation and
the SimpleTest class. Once you’ve done so, you can rerun the ScanTest application, and it will
now correctly indicate that SimpleTest is annotated as a RemoteObject.

Documented
After making all of the changes described so far to the SimpleTest and related types, you’ll now
see what happens if you run the javadoc utility to generate documentation for SimpleTest.
Viewing the generated API documentation for SimpleTest doesn’t provide any indication that
SimpleTest is annotated as a RemoteObject even though you know it has been marked as such
and that information is available in all circumstances (in the source, in the class, and at run-
time), as shown in Figure 14-1.

Figure 14-1. With the current implementation of RemoteObject, no indication of its use is
provided in the API documentation created by javadoc.

This is because annotations are by default not identified in the documentation generated
by javadoc, but you can change this behavior by using the Documented annotation defined in
the java.lang.annotation package. Like Target and Retention, Documented annotates other
annotation types, and you can add it to the list of annotations specified for the RemoteObject
annotation type:

import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

CHAPTER 14 ■ ADDING ANNOTATIONS652

@Target(ElementType.TYPE) @Retention(RetentionPolicy.RUNTIME) @Documented
public @interface RemoteObject {

public String value() default "RemoteInterface";

}

Once you’ve made this change and recompiled RemoteObject, rerunning the javadoc
utility for the SimpleTest class causes the API documentation to include an indication that
SimpleTest is annotated as a RemoteObject, as shown in Figure 14-2.

Figure 14-2. Specifying the Documented annotation causes the javadoc tool to include in its
output an indication that the annotation was used.

Inherited
You’ve now seen how to define and apply a RemoteObject annotation to a class, but you might
be wondering what happens when you create a subclass of that class. In other words, does
annotating a given class mean that its subclasses are associated with the same annotation? To
find out, let’s suppose you create a ComplexTest class that extends the SimpleTest class created
earlier:

public class ComplexTest extends SimpleTest {

public ComplexTest() throws java.rmi.RemoteException {};

}

CHAPTER 14 ■ ADDING ANNOTATIONS 653

Now let’s assume you modify the ScanTest class defined earlier so that it examines the
ComplexTest class (instead of SimpleTest) for the presence of the RemoteObject annotation:

public class ScanTest {

public static void main(String[] args) throws Exception {
Class<ComplexTest> myClass = ComplexTest.class;
if (myClass.isAnnotationPresent(RemoteObject.class)) {

System.out.println("It is a RemoteObject");
}
else {

System.out.println("It doesn't appear to be a RemoteObject!");
}

}

}

If you recompile and execute this code, it will indicate that ComplexTest isn’t annotated
as a RemoteObject. As this example illustrates, an annotation by default will not be “inherited”
by the subclasses of an annotated class. In this case and many others, however, it’s entirely
appropriate for subclasses to inherit annotations, and fortunately the java.lang.annotation
package contains an annotation that can be used to address this. Specifically, the Inherited
annotation can indicate that an annotation should be inherited; the following shows an exam-
ple of how you can use it:

import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Inherited;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Target(ElementType.TYPE) @Retention(RetentionPolicy.RUNTIME) @Documented @Inherited
public @interface RemoteObject {

public String value() default "remoteName";

}

If you make this change and recompile the code, the ScanTest application will indicate
that ComplexTest is indeed a remote object.

Replacing External Metadata
In the discussions up to this point I’ve focused on using annotations to replace metadata
that’s internal to Java source code files, such as the @deprecated tag used by javadoc. In reality,
however, there are even more cases where metadata is stored outside of the source code, and

CHAPTER 14 ■ ADDING ANNOTATIONS654

those uses provide an even better opportunity for using metadata. In fact, you’ve already seen
an example of this type of “external” metadata in the case of the SimpleTest remote object and
its remote interface defined in Test. In that case you have an interface (Test) that effectively
represents metadata because its sole purpose is to identify which methods within the imple-
mentation class can be called remotely. It’d be convenient to simply have the Java compiler
create the remote interface dynamically upon compilation by assuming that each public
method within the implementation class can be called. As long as the user is required to
explicitly define and maintain the remote interface, that file largely represents a nuisance
because it requires the programmer to do extra work initially. In addition, because its method
signatures must match those of the implementation class for it to work correctly, any changes
to the implementation will need to be reflected in the remote interface. In other words, when
a programmer goes to add, change, or remove a remote method, the change must be made in
two places: the implementation class and the remote interface.

Another example that’s closely related and that illustrates work that’s even more tedious
is that of an Enterprise JavaBean (EJB). Creating even a simple EJB requires you to define at
least four separate files, with three of these largely or entirely made up of what amounts to
metadata:

• The implementation class itself

• A remote interface similar to one you’d create for an RMI server object

• A home interface that defines constructors you can use to create or retrieve an EJB
instance

• An XML-based deployment descriptor that identifies the other three classes and that
describes how the EJB will be used

To illustrate this point, let’s create a simple EJB that does nothing but return a Hello world
string. Begin by defining the remote interface:

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

public interface MessageGenerator extends EJBObject {

public String getMessage() throws RemoteException;

}

Assuming that you want to provide only a single no-argument constructor/lookup
method, the home interface is also reasonably simple to create. However, like the remote
interface, it essentially represents an unnecessarily tedious way of specifying metadata:

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface GeneratorHome extends EJBHome {

CHAPTER 14 ■ ADDING ANNOTATIONS 655

public MessageGenerator create() throws RemoteException, CreateException;

}

Next you can create the implementation itself:

import javax.ejb.*;

public class SimpleMessageGenerator implements SessionBean {

private SessionContext context;

public SimpleMessageGenerator() {
}

public void ejbCreate() throws CreateException {
}

public void setSessionContext(SessionContext theContext) {
context = theContext;

}

public void ejbActivate() {
}

public void ejbPassivate() {
}

public void ejbRemove() {
}

public String getMessage() {
return "Hello world!";

}

}

Finally, you must create the deployment descriptor:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ejb-jar PUBLIC
'-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN'
'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'>

<ejb-jar>
<display-name>testejb</display-name>
<enterprise-beans>

CHAPTER 14 ■ ADDING ANNOTATIONS656

<session>
<description>Message generator bean</description>
<display-name>Generator</display-name>
<ejb-name>Generator</ejb-name>
<home>GeneratorHome</home>
<remote>MessageGenerator</remote>
<ejb-class>SimpleMessageGenerator</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>

</session>
</enterprise-beans>
<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>Generator</ejb-name>
<method-intf>Remote</method-intf>
<method-name>*</method-name>

</method>
<trans-attribute>NotSupported</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>

This example is obviously a contrived one since you’re not likely to create an EJB just
to return a message, but it does reveal a weakness related to the creation of EJBs. Specifically,
there’s a significant amount of repetitive, tedious work involved in implementing even a sim-
ple bean. Some of that tedium is related to the implementation class, but a significant portion
of it is because several external files (the home and remote interfaces and the deployment
descriptor) are little more than external metadata files, sometimes called side files.

Fortunately, since the Standard Edition of Java introduced the new annotation facility,
changes to the Enterprise Edition have been proposed that could eliminate much of the
tedious work associated within defining an EJB. In fact, with the new EJB 3.0 specification,
you can replace the previous four files with a simplified version of the implementation class
that uses annotations:

import javax.ejb.*;

@Remote @Stateless public class SimpleMessageGenerator {

public SimpleMessageGenerator() {

public String getMessage() {
return "Hello world!";

}

}

CHAPTER 14 ■ ADDING ANNOTATIONS 657

As you can see, aside from the Remote and Stateless annotations, this file is virtually
identical to a so-called Plain Old Java Object (POJO) and lacks the complexity of the EJB
implementation class and support files you created earlier. Not all of the simplification is
because of metadata, however; other changes were made to the EJB specification that facili-
tated this simplified implementation.

■Note An in-depth discussion of the changes made to the EJB API in the 3.0 specification is beyond the
scope of this chapter. In addition, as of this writing, those changes haven’t been finalized. However, suffice it
to say that annotations will play an important role in simplifying EJB programming.

Using the Annotation Processing Tool
You’ve now seen how you can use annotations to create metadata and how to create custom
annotations, but at this point the usefulness of such custom annotations appears limited to
the ability to use Java’s reflection API to identify their presence. In reality, however, Java 5
introduced a utility program called the annotation processing tool (APT) that allows you to
take full advantage of annotations. What exactly is the APT? A simplistic explanation is that
it represents an extra “layer” of control between the processing of Java source code files and
the compilation of those files that allows you to add annotation processing. To compile Java
source code, you normally use a compiler such as the javac tool provided with the Java
Development Kit (JDK), but that approach gives you no control over any of the processing
that takes place. With the APT, you can have classes you’ve created handle custom annota-
tions and even add new classes that will be compiled. For example, let’s suppose you want to
take advantage of the RemoteObject annotation defined earlier by automatically generating
and compiling the remote interface for the implementation class.

AnnotationProcessorFactory
The starting point for writing code that will process your custom annotations is to
create an implementation of the AnnotationProcessoryFactory interface defined in the
com.sun.mirror.apt package. As its name implies, AnnotationProcessorFactory is responsi-
ble for returning an instance of AnnotationProcessor, which is another interface defined
within com.sun.mirror.apt. Before you examine AnnotationProcessorFactory, let’s take a
brief look at AnnotationProcessor.

■Note The packages mentioned in the remainder of this chapter aren’t part of the “official” Java API,
which means they’re at least technically not supported by Sun. However, you can find documentation on the
packages by going to the Java 5 documentation, clicking the Annotation Processing Tool link in the “Tool
Specifications” section, and then clicking the Mirror API link.

CHAPTER 14 ■ ADDING ANNOTATIONS658

If you examine the API documentation, you’ll see that AnnotationProcessor defines a sin-
gle method called process() that accepts no arguments and doesn’t return a value. Since this
method doesn’t take any input parameters and doesn’t return a value, the information that
describes what’s to be processed obviously must be specified somewhere other than on the call
to process(), and as you might guess, that’s done on a call to the AnnotationProcessorFactory.

Now that you know AnnotationProcessor doesn’t receive a reference to any data,
let’s examine the documentation for AnnotationProcessorFactory starting with the
supportedAnnotationTypes() method. That method doesn’t accept any input parameters
and returns a Collection of String values that indicate what types of annotation the factory
supports. In other words, your AnnotationProcessorFactory implementation must include
a method that identifies which annotations it’s able to process. Since it’s a collection, you
can obviously return multiple entries, so if your factory was intended to handle annotations
called RemoteObject and Untested, you might implement code like this:

public Collection<String> supportedAnnotationTypes() {
List<String> types = new ArrayList<String>(2);
types.add("RemoteObject");
types.add("Untested");
return types;

}

You can also use the asterisk (*) character for pattern matching, so if your factory was
intended to handle all annotation types defined in the com.acme.custom.annotation package,
you could return the following:

public Collection<String> supportedAnnotationTypes() {
List<String> types = new ArrayList<String>(1);
types.add("com.acme.custom.annotation.*");
return types;

}

However, in this case, assume that the factory is designed only to handle the RemoteObject
annotation and write the code accordingly:

import com.sun.mirror.apt.*;

import java.util.*;

public class CustomProcessorFactory implements AnnotationProcessorFactory {

public Collection<String> supportedAnnotationTypes() {
List<String> types = new ArrayList<String>(1);
types.add("RemoteObject");
return types;

}

}

CHAPTER 14 ■ ADDING ANNOTATIONS 659

Before you continue with the factory implementation, it’s helpful to examine why the
supportedAnnotationTypes() method is needed at all. To understand its purpose, you need to
be aware of how the APT operates. When the APT executes, it scans the appropriate Java source
files and creates a list of the annotation types that need to be processed. Then it attempts to
associate each annotation type with an implementation of AnnotationProcessorFactory by
calling the supportedAnnotationTypes() method for each factory it knows about. Assuming
that the factory supports at least one annotation type that needs to be processed, APT will then
retrieve an AnnotationProcessor from the factory by calling its getProcessorFor() method. For
example, in the case of the CustomProcessorFactory, the getProcessorFor() method will be
called if the APT tool detects any RemoteObject annotations.

The getProcessorFor() method returns an implementation of AnnotationProcessor,
which as you’ve seen is a simple interface, and perhaps the easiest way to begin creating an
implementation is to simply define an inner class within CustomProcessorFactory:

private class CustomProcessor implements AnnotationProcessor {

public void process() {
}

}

Again, notice that the process() method accepts no parameter values, which means
a reference to the data to be processed must be provided somewhere else, and that place
is the getProcessorFor() method. If you examine that method, you’ll find that it’s passed
two arguments: a Set containing AnnotationTypeDeclaration objects and a reference to an
AnnotationProcessorEnvironment implementation:

public AnnotationProcessor getProcessorFor(
Set<AnnotationTypeDeclaration> atds, AnnotationProcessorEnvironment env)

The first (Set) argument identifies the specific annotation types that the processor will
be expected to handle, while the AnnotationProcessorEnvironment contains a representation
of the source file data that’s to be processed. For example, if you use APT to process the
SimpleTest Java class file defined earlier, the Set would contain a single element corresponding
to the RemoteObject type, and the second (environment) variable passed to getProcessorFor()
would contain a representation of the SimpleTest class and its annotations. You’ll see shortly
how to go about actually processing the environment data, but for the time being you need
to simply save a reference to it since it won’t actually be processed until the process() method
in CustomProcessor is called. You’ll also need to return an instance of CustomProcessor from
getProcessorFor(), and you can accomplish this with the bold changes in the following listing:

import com.sun.mirror.apt.*;
import com.sun.mirror.declaration.*;

import java.util.*;

public class CustomProcessorFactory implements AnnotationProcessorFactory {

CHAPTER 14 ■ ADDING ANNOTATIONS660

public AnnotationProcessor getProcessorFor(Set<AnnotationTypeDeclaration> atds,
AnnotationProcessorEnvironment env) {

return new CustomProcessor(env);
}

public Collection<String> supportedAnnotationTypes() {
List<String> types = new ArrayList<String>(1);
types.add("RemoteObject");
return types;

}

private class CustomProcessor implements AnnotationProcessor {

private AnnotationProcessorEnvironment environment;

public CustomProcessor(AnnotationProcessorEnvironment env) {
environment = env;

}

public void process() {
}

}

}

Before you add the code to the process() method that will do the real work, you need to
define a method to complete the implementation of the AnnotationProcessorFactory. That
method is called supportedOptions(), and like supportedAnnotationTypes() it returns a
Collection of String instances. The purpose of this method is to allow a tool to ensure that
every option the user has specified is understood by at least one processor factory, but in this
case you won’t be using any options and can simply return an empty collection as follows:

public class CustomProcessorFactory implements AnnotationProcessorFactory {

public Collection<String> supportedOptions() {
Set<String> emptySet = Collections.emptySet();
return emptySet;

}

Now implement the code in AnnotationProcessor that will handle the RemoteObject
annotation.

Declaration
At this point you’ve defined a process() method that accepts no arguments and returns no
value but that has access to an implementation of AnnotationProcessorEnvironment. There-
fore, it should be obvious that the “environment” object contains all the information you

CHAPTER 14 ■ ADDING ANNOTATIONS 661

need about the data being processed. In other words, when processing the SimpleTest class,
the AnnotationProcessorEnvironment will contain a representation of that class, which
includes any annotations that are associated with it or its elements (fields, methods, and so
on). Each of these elements is represented by an object that implements the Declaration
interface defined in the com.sun.mirror.declaration package. More accurately, each one
implements a subinterface of Declaration, such as ClassDeclaration for the class itself,
ConstructorDeclaration for its constructor, and MethodDeclaration for the getText()
method. Figure 14-3 illustrates the relationships between Declaration and its various
subinterfaces.

Figure 14-3. The com.sun.mirror.declaration package contains a variety of interfaces used to
represent the various source code elements.

If you review the API documentation for some of these interfaces, you’ll find they define
methods that are appropriate for the type of program element they represent. For example, the
TypeDeclaration represents a class or interface, and it defines methods such as getPackage()
that returns the package in which the type is declared and getMethods() that returns the meth-
ods it defines. Similarly, ExecutableDeclaration allows you to retrieve information such as the
parameters (in the form of ParameterDeclaration instances) that are passed to a constructor or
method and the types of exception that can be thrown. In other words, the Declaration inter-
faces allow you to obtain a complete overview of the Java components (classes, interfaces, and
annotations) that are being processed.

<<interface>>
Declaration

<<interface>>
ParameterDeclaration

<<interface>>
TypeParameterDeclaration

<<interface>>
PackageDeclaration

<<interface>>
MemberDeclaration

<<interface>>
ConstructorDeclaration

<<interface>>
ExecutableDeclaration

<<interface>>
MethodDeclaration

<<interface>>
AnnotationTypeElementDeclaration

<<interface>>
TypeDeclaration

<<interface>>
InterfaceDeclaration

<<interface>>
AnnotationTypeDeclaration

<<interface>>
EnumConstantDeclaration

<<interface>>
FieldDeclaration

<<interface>>
ClassDeclaration

<<interface>>
EnumDeclaration

CHAPTER 14 ■ ADDING ANNOTATIONS662

Knowing that the information is stored in a structure of related Declaration implementa-
tion objects, how do you begin implementing the process() method? The first step is to identify
the type of annotation you want to handle, and the type is represented with an instance of
AnnotationTypeDeclaration. In this case you’re interested in the RemoteObject annotation, and
you can use the getTypeDeclaration() method of AnnotationProcessorEnvironment to obtain
a reference to the appropriate type declaration instance:

public void process() {
TypeDeclaration remoteType = environment.getTypeDeclaration("RemoteObject");

Remember, I mentioned earlier that TypeDeclaration represents a type (class, interface,
or annotation). If you review the documentation for TypeDeclaration, you’ll find that it has
two subinterfaces: ClassDeclaration and InterfaceDeclaration. The reason that there isn’t a
third subinterface defined for annotations is that they’re considered a form of interface decla-
ration, so the object returned in the previous code segment will actually be an instance of
InterfaceDeclaration.

Once you’ve obtained a reference to the annotation, the next step is to find the program
elements that have been marked with that annotation; you can do this by calling the
getDeclarationsAnnotedWith() method as follows. Note, however, that the method
requires you to specify an instance of AnnotationTypeDeclaration, not the more general
InterfaceDeclaration, so you’ll need to cast it appropriately.

TypeDeclaration remoteType = environment.getTypeDeclaration("RemoteObject");
AnnotationTypeDeclaration annotationType = (AnnotationTypeDeclaration)remoteType;
Collection<Declaration> declarations =

environment.getDeclarationsAnnotatedWith(annotationType);

At this point the collection will contain a list of the declarations for program elements
with which the RemoteObject annotation is specified, which as you’d expect will be a single
ClassDeclaration associated with the SimpleTest class. You’ll loop through the collection,
ensuring that each entry represents a class, and call a method to process each entry that’s
indeed a class.

public void process() {
TypeDeclaration remoteType = environment.getTypeDeclaration("RemoteObject");
AnnotationTypeDeclaration annotationType =

(AnnotationTypeDeclaration)remoteType;
Collection<Declaration> declarations =

environment.getDeclarationsAnnotatedWith(annotationType);
for (Declaration declaration : declarations) {

if (declaration instanceof ClassDeclaration) {
ClassDeclaration classDeclaration = (ClassDeclaration)declaration;
processAnnotatedClass(classDeclaration);

}
}

}

private void processAnnotatedClass(ClassDeclaration declaration) {
}

CHAPTER 14 ■ ADDING ANNOTATIONS 663

Generating Side Files
You’ve now defined a processAnnotatedClass() method that will be called for each class
that’s annotated with RemoteObject, but what do you want to do when you encounter such
an object? Since one of the primary purposes of Java’s annotation facility is to eliminate side
files, the APT library provides a simple mechanism for generating such files and having them
included in the compilation process. You can create a file through an object that implements
the Filer interface defined in the com.sun.mirror.apt package, and you can obtain a refer-
ence to a Filer by calling the getFiler() method defined in AnnotationProcessorEnvironment:

private void processAnnotatedClass(ClassDeclaration declaration) {
Filer filer = environment.getFiler();

}

Looking at the API documentation for Filer you’ll see that it defines methods for creat-
ing four types of file: binary, class, source, or text. In this case you’d like to automatically
generate the remote interface for a class that’s annotated with RemoteObject, so call the
createSourceFileMethod() that returns an instance of PrintStream. When you do, you need
to specify the name of the file to be created, which (according to Java coding conventions)
should correspond to the name of the class you want to create. In this case, you need the
name of the remote interface to correspond to the name of the interface specified in the
implementation class. You have a couple of different ways to synchronize those two names,
but perhaps the most obvious is to change the annotation in the implementation class so
that it explicitly specifies the name of the remote interface:

@RemoteObject("Test") public class SimpleTest
extends UnicastRemoteObject implements Test {

Now that you’ve specified the name of the remote interface in the annotation, you can
take advantage of that by retrieving it when processing the annotation and using it to generate
the remote interface:

private void processAnnotatedClass(ClassDeclaration declaration) {
Filer filer = environment.getFiler();
RemoteObject annotation =

(RemoteObject)(declaration.getAnnotation(RemoteObject.class));
String className = annotation.value();

}

Now that you’ve identified the name you want to use for the remote interface class, you
can call the createSourceFile() method and pass that name as a parameter, after which you’ll
call another method that’s responsible for generating the source code for the class:

private void processAnnotatedClass(ClassDeclaration declaration) {
Filer filer = environment.getFiler();
RemoteObject annotation =

(RemoteObject)(declaration.getAnnotation(RemoteObject.class));
String className = annotation.value();
try {

java.io.PrintWriter writer = filer.createSourceFile(className);

CHAPTER 14 ■ ADDING ANNOTATIONS664

generateRemoteInterface(declaration, className, writer);
writer.close();

}
catch (java.io.IOException ioe) {
}

}

private void generateRemoteInterface(ClassDeclaration declaration, String name,
java.io.PrintStream stream) throws java.io.IOException {

}

Finally, you can implement the generateRemoteInterface() method so that it writes out-
put to the PrintStream that corresponds to the source code you want to generate:

private void generateRemoteInterface(ClassDeclaration declaration, String name,
java.io.PrintWriter writer) throws java.io.IOException {

String returnType;
writer.println("import java.rmi.*;");
writer.println("public interface " + name + " extends Remote {");
Collection<MethodDeclaration> methods = declaration.getMethods();
for (MethodDeclaration method : methods) {

writer.print(" public " + method.getReturnType().toString());
writer.print(" " + method.getSimpleName());
writer.print("(");
// Insert code for parameters here
writer.print(")");
writer.print(" throws RemoteException");
// Insert code for additional exceptions here
writer.print(";");

}
writer.println("");
writer.println("}");

}

Note that this method isn’t complete but contains a couple of additional tasks that are left
unimplemented. For example, to work correctly with any remote object implementation, it
should include code that inserts the parameter information into the method signature that’s
generated within the remote method. Similarly, it should declare any exceptions that can be
thrown in addition to RemoteException, which isn’t done here. Still, this crude example illus-
trates how easily you can generate a new source class during annotation processing.

Once you’ve created and compiled all the relevant files, using APT is simple. Since you
want to process the SimpleTest remote object implementation, you can execute APT by enter-
ing the following command on the command line. Notice that you must also specify the name
of the custom annotation processor factory and include the tools.jar file in the CLASSPATH.
That JAR file is included with the JDK, which in this case is installed in the C:\jdk1.5 directory.

apt –classpath .;C:\jdk1.5\lib\tools.jar –factory
CustomProcessorFactory SimpleTest.java

CHAPTER 14 ■ ADDING ANNOTATIONS 665

Executing this command causes the Test interface to be rewritten each time the SimpleTest
class is compiled. In addition, creating a new file as you did here will cause the APT utility to
be executed recursively until no new files are created. In other words, APT will in this case
compile both the SimpleTest implementation class and the newly written Test interface that
was created by your custom processing.

Summary
You’ve now seen how to use annotations and the APT utility to generate side files dynami-
cally based on the presence of those annotations. You typically won’t need to write code to do
such processing yourself but will simply take advantage of behavior that’s implemented by a
vendor that provides you with development tools. However, as this example illustrates, sig-
nificant potential exists for simplifying and otherwise streamlining the development process
by automating the creation and synchronization of source implementations and their related
and dependent side files.

In this chapter, you examined the following topics:

• What metadata is and examples of how it has long been used within Java

• How to define metadata using both predefined and custom annotations

• How to locate metadata using Java’s reflection capabilities

• How annotations have greatly simplified the development of Enterprise JavaBean

• How to use the APT to examine program elements and to generate and synchronize
side files

CHAPTER 14 ■ ADDING ANNOTATIONS666

Special Characters
@deprecated tag, 263, 637–39, 651, 654
== operator, 182

■A
AbstractSet class, 179
AbstractTableModel class, 271–73, 286,

325–26
acceptDrag() method, 415
acceptDrop() method, 416
access_flags item, 14
ACTION_COPY constant, 410, 416, 425
ACTION_COPY_OR_MOVE constant, 410,

420
ACTION_LINK constant, 410, 416, 425, 431
ACTION_MOVE constant, 410, 416, 425,

431–32
ACTION_NONE constant, 432
ACTION_REFERENCE constant, 410, 416,

425
ActionEvent class, 364
ActionEvent message, 292
actionPerformed() method, Thread class, 90,

93, 124
activeCount() method, ThreadGroup class,

144
add() method

ArrayList class, 159, 168–69
AttributeSet interface, 453, 455
Collection Interface, 156, 160–61
Component class, 209, 216, 247, 256,

259–60
Container class, 193–94, 260, 263
DefaultMutableTreeNode interface,

343–44
HashDocAttributeSet class, 456
List class, 645
List interface, 161
Map interface, 180

addBatch(), Statement interface, 497–98
addCellEditorListener() method, CellEditor

class, 292
addColumnSelectionInterval() method, 302
addLayoutComponent (), LayoutManager

interface, 263
addLayoutComponent (), LayoutManager2

interface, 260–61, 263

addLayoutComponent(), LayoutManager
interface, 263

addLayoutComponent(), LayoutManager2
interface, 260–61

addLayoutComponent() method,
LayoutManager class, 194, 260

addPrintJobAttributeListener() method
DocPrintJob interface, 461
PrintJobAttributeListener interface, 461

addPrintJobListener() method, DocPrintJob
class, 460

addRowSelectionInterval() method, 301
addTableModelListener() method,

TableModel class, 325
addTreeExpansionListener() method, JTree

class, 380
addTreeModelListener() method,

TreeModel, 335
all annotation, 644
allowExcess flag, 55
AlreadyLoggedOnException class, 68
anchor constraint, 227
anewarray instruction, 11
Annotation definition, 648
Annotation Processing Tool (APT), 658, 660,

664–66
ANNOTATION_TYPE constant, 649
AnnotationProcessor interface, 658–61
AnnotationProcessorEnvironment class, 660,

663–64
AnnotationProcessorEnvironment interface,

661
AnnotationProcessorFactory, 658–61

annotations, 658-61
Documented annotation, 652–53
Inherited annotation, 653–54
overview, 647–49
Retention annotation, 650–52
Target annotation, 649–50

overview, 637–38
replacing external metadata, 654–58
using

overview, 639–40
SuppressWarnings annotation, 642–46

using annotation processing tool
AnnotationProcessorFactory, 658–61
Declaration interface, 661–63
generating side files, 664–66
overview, 658

Index

667

AnnotationTypeDeclaration class, 660, 663
API (Application Programming Interface),

1–2, 4, 14–15, 134, 139, 160, 171, 383,
386–87, 403, 405, 409, 439, 447,
462–64, 472, 474, 476, 484, 639–40,
642–43, 648, 652–53, 658–59, 662, 664

append() method, 475
appendChild() method, Node interface, 604,

623
appendData() method, CharacterData,

609–10
Application Programming Interface (API),

1–2, 4, 14–15, 134, 139, 160, 171, 383,
386–87, 403, 405, 409, 439, 447,
462–64, 472, 474, 476, 484, 639–40,
642–43, 648, 652–53, 658–59, 662, 664

apply-templates instruction, 634
APT (Annotation Processing Tool), 658, 660,

664–66
architecture of Java, 2–3
ArithmeticException class, 11
ARRAY data type, 503–4
Array size, 152–53
ArrayBlockingQueue class, 186, 189
ArrayIndexOutOfBoundsException class, 544
ArrayList class, 156, 158, 165–69, 181, 185,

189, 191
arrays, 151
ASCII, 440–41, 444, 562, 584
assert syntax, 82
AssertionError class, 82
AtomicBoolean class,

java.util.concurrent.atomic package,
150

AtomicInteger class,
java.util.concurrent.atomic package,
150

AtomicLong class,
java.util.concurrent.atomic package,
150

Attr interface, 602–4, 607–9
Attribute interface, 453–56
ATTRIBUTE_NODE constant, 601
AttributeSet interface, 448, 453–55, 456–57,

458
attributeUpdate() method

PrintJobAttributeListener interface, 461
PrintJobAttributeSet interface, 461–62

AUTO_RESIZE_ALL_COLUMNS constant,
278, 281

AUTO_RESIZE_LAST_COLUMN constant,
278, 281

AUTO_RESIZE_NEXT_COLUMN constant,
278, 280

AUTO_RESIZE_OFF constant, 278–79, 280

AUTO_RESIZE_SUBSEQUENT_COLUMNS
constant, 278, 280–81

AUTOSENSE inner class, 450
AWT, 90, 93, 95, 111, 119, 124, 128, 131–32,

144, 447, 462, 467
–b command, 18

■B
backgroundNonSelectionColor property,

DefaultTreeCellRender interface, 356
backgroundSelectionColor property,

DefaultTreeCellRender interface, 356
BasicTreeUI class, 362–63, 365, 369–70
BatchUpdateException class, 498
BIGINT data type, 503
BINARY data type, 503
Binary Large Object (BLOB), 503, 505
BIT data type, 503
bitwise AND operator, 11
bitwise NOT operator, 11
bitwise OR operator, 11
BLOB (Binary Large Object), 503, 505
Blob interface, 505
Blocking queue, 185
Book class, 464, 474
Boolean class, 45, 321–22
BOOLEAN data type, 503
boolean flag, 124, 128
–bootclasspath command, 18
bootstrap class loader, 9
BorderLayout

child component locations, 210
child component sizes, 209–10
constraints, 209
constructing, 209
container size, 211
overview, 207–9
resizing behavior, 210–11

BorderLayout class, 193, 195, 209–11, 253,
255, 261, 263

borderSelectionColor property,
DefaultTreeCellRender interface, 356

BOTH constant, 222
Box class, 195, 246, 250, 252
BoxLayout

alignment values, ascents, and descents,
242–46

child component locations, 249
child component sizes, 247–48
constraints, 247
constructing a BoxLayout, 246
container size, 249
overview, 241–42
resizing behavior, 249
Swing's box class, 249–53

■INDEX668

BoxLayout class, 195, 242–45, 247–53, 262
breadthFirstEnumeration(),

DefaultMutableTreeNode class,
348–49

break statement, 74, 645
BreakIterator class, 556–62, 585
buckets, and Set interface, 171–72
BufferedImage class, 403
Byte class, 554
BYTE_ARRAY inner class, 450–51
ByteArrayInputStream class, 444, 500
Bytecodes, 3
–c command, 18
–c switch, 12

■C
CachedRowSet interface, 516
calculator Servlet, deploying to Tomcat, 302
CallableStatement interface, 477, 500–502
cancel() method, CancelablePrintJob

interface, 462
CancelablePrintJob interface, 462
cancelCellEditing() method, CellEditor class,

292, 364
cancelRowUpdates() method, 512
CANONICAL_DECOMPOSITION constant,

565
CardLayout

child component locations, 197
child component sizes, 197
constructing, 196–97
container size, 197
overview, 196
resizing behavior, 197

CardLayout class, 195, 197, 263
case statement, 645
catch block, 73–75
CDATA (character data), 597, 612
CDATA_SECTION_NODE constant, 601
CDATASection interface, 602–3, 609, 612
CellEditor class, 291–92, 364
CellEditorListener interface, 292
cells, JTable

editing, 290–95
rendering

creating custom renderers, 282–88
default renderers, 288–89
overview, 282

CENTER constant, 198, 208–11, 227, 261
CF_DIB constant, 403
CF_HDROP constant, 403, 438
CF_TEXT constant, 403, 411
CHAR data type, 503
CHAR_ARRAY inner class, 450
character data (CDATA), 597, 612

character iteration, 557
Character Large Object (CLOB), 505
CharacterData interface, 609–10, 612
child thread, 109
children() method

MutableTreeNode interface, 343
TreeNode, 338

choice element format, 551
ChoiceFormat class, 551–52, 553–56, 585
Class class, 8–9, 103, 286–87, 322, 389, 640
class disassembler, Java, 17–18
class files, 5
CLASS retention policy, 651
ClassCastException class, 154, 157, 322, 455
ClassDeclaration interface, 663
classes, 155

design of
encapsulation, 42–45
immutable objects and fields, 45–46
loose coupling, 23–38
overriding object methods, 46–53
overview, 23
strong cohesion, 38–41

file format, 13–14
verification of, 9–10

ClassFile class, 9, 13–14
ClassLoader class, 9
–classpath command, 16, 18
CLASSPATH environment variable, 477, 480,

485, 665
clear() method, Collection interface, 156
clearBatch() method, 498
clearWarnings() method, 83, 530
–client option, 17
<clinit> method, 10
Clipboard class, 384–85, 387
ClipboardOwner interface, 385–88, 395
clipboards

Clipboard class, 384–85, 387
ClipboardOwner interface, 387–88
DataFlavor class, 388–90
overview, 384
storing and retrieving serialized Java

objects, 390–402
system clipboard, 384–85
Transferable interface, 385–87
transferring between Java and native

applications, 402–3
writing arbitrary binary data to, 403–8

CLOB (Character Large Object), 505
CLOB data type, 503
Clob interface, 505
clone() method, 189, 465, 467

GridBagConstraints class, 216
Object class, 47–49, 438, 465

■INDEX 669

Cloneable interface, 47, 465
cloneNode() method, Node interface, 605
close() method, ResultSet interface, 73–75,

524, 531
CLOSE_CURSORS_AT_COMMIT constant,

510
closedIcon property, DefaultTreeCellRender

interface, 356
code, minimizing duplication of, 58–60
collapsePath() method, JTree class, 379
collapseRow() method, JTree class, 379
Collator class, 562–64
collator strength, 563–64
Collection API, 178
Collection classes, 151, 154–55, 157, 168, 186,

188
Collection interface, 155–60, 162–63, 165–66,

169, 178–81, 190, 659, 661
collections

ArrayBlockingQueue class, 186
ArrayList class, 165–67
ConcurrentHashMap class, 184
ConcurrentLinkedQueue class, 187
constructors, 172
DelayQueue interface, 187–88
EnumMap class, 182
EnumSet class, 177–78
evolution of, 154–55
HashMap class, 181
HashSet class, 172
IdentityHashMap interface, 182–83
LinkedBlockingQueue class, 186–87
LinkedHashMap class, 182
LinkedHashSet class, 173
LinkedList class, 167
List interface, 160–61

removing elements from a list, 161–62
searching for objects, 162–63
using equals() method, 163–64

ListIterator interface, 165
Map interface, 178–81
PriorityBlockingQueue interface, 185–86
PriorityQueue interface, 185
Queue interface, 184–85
referencing an interface instead of an

implementation, 190–91
Set interface, 168–70

and buckets, 171–72
and hash codes, 170–71

shallow vs. deep copies of, 189
Stack class, 168
SynchronousQueue class, 187
TreeMap class, 182
TreeSet class, 173

using Comparable interface, 173–75,
177

using Comparator interface, 176–77
Vector class, 168
WeakHashMap interface, 183–84

Collections class, 563
ColorSupported attribute, 453, 455, 457
ColorSupported class, 455–56
columnAtPoint() method

JTable class, 309
JTableHeader class, 309

columns, JTable, resizing
AUTO_RESIZE_ALL_COLUMNS, 281
AUTO_RESIZE_LAST_COLUMN, 281
AUTO_RESIZE_NEXT_COLUMN, 280
AUTO_RESIZE_OFF, 280
AUTO_RESIZE_SUBSEQUENT_COLUMN

S, 280–81
overview, 279

com.acme.custom.annotation package, 659
Comment interface, 602–3, 609, 612
COMMENT_NODE constant, 601
commit() method

Connection class, 518, 520
ResultSet interface, 509

Comparable interface, 173–77, 563
Comparator interface, 176–77, 182, 185
compare() method, Comparator interface,

176, 562
compareTo() method, String class, 174–76,

562
compareToIgnoreCase() method, String

class, 562
compiler, Java, 15–16
Component class, 193–94, 209, 216, 241, 256,

265, 282, 355, 384, 413, 422, 424, 436
componentResized() method, 327
com.sun.mirror.apt package, 658, 664
com.sun.mirror.declaration package, 662
CONCUR_READ_ONLY constant, 509
CONCUR_UPDATABLE constant, 509
concurrency level parameter, 184
ConcurrentHashMap class, 184, 189
ConcurrentLinkedQueue class, 187, 189
ConcurrentModificationException class, 166
Connection class, 484–85, 509, 518, 522–23,

525, 529, 531
Connection interface, 83
connection pooling, JDBC, 524–26
constant_pool item, 14
constant_pool_count item, 13
CONSTRUCTOR constant, 649
constructors, 172
Container class, 193, 195, 246, 249, 256, 260,

264–65, 284, 436

■INDEX670

contains() method
Collection interface, 163
Set interface, 171

context switching, 96
CONTIGUOUS_TREE_SELECTION constant,

373
continue statement, 74
convertValueToText() method, JTree class,

356
cooperative multitasking, 97
COUNT() function, 512
COUNT(*) function, 512
–cp command, 17
CREATE TABLE statement, 496
CREATE VIEW statement, 496
createAttribute() method, Document

interface, 606
createCDATASection() method, Document

interface, 606
createComment() method, Document

interface, 606
createDocumentFraction() method,

Document interface, 606
createElement() method, Document

interface, 606
createEntityReference() method, Document

interface, 606
createHorizontalBox() method, Box class,

250
createHorizontalGlue() method, BoxLayout

class, 251
createHorizontalStrut() method, 252
createPrintJob() method

DocPrintJob class, 458
PrintService class, 458
PrintService interface, 447

createProcessingInstruction() method,
Document interface, 606

createRigidArea() method, Box class, 250
createSourceFile() method, PrintStream

class, 664
createSourceFileMethod() method,

PrintStream class, 664
createStatement() method, Connection

class, 496
createStatement() method, Statement

interface, 509
createTextNode() method, Document

interface, 606
createVerticalBox() method, Box class, 250
createVerticalGlue() method, BoxLayout

class, 251
createVerticalStrut() method, 252
CurrencyRenderer class, 286–87, 289
custom exception class, 65–68

CustomProcessorFactory interface, 660
cut-and-paste functionality. See clipboards
–d command, 16
–D option, 483

■D
Data Definition Language (DDL), 496
data locking, 522
Data Manipulation Language (DML), 496
data types, JDBC

ARRAY, 504
Binary Large Object (BLOB), 505
Character Large Object (CLOB), 505
DATALINK, 505
DATE, 505–6
DISTINCT, 506
JAVA_OBJECT, 507
OTHER, 507
REF, 507
STRUCT, 506–7
TIME, 505–6
TIMESTAMP, 505–6

Database Management System (DBMS), 477,
479–83, 487–88, 497–99, 501, 507,
515, 521–24, 526–27, 530

DatabaseMetaData interface, 487–96, 502,
507–9, 515, 522, 637

databaseName property, 487
DataFlavor class, 386–90, 396, 403, 411, 415,

422, 430, 433–35, 439–42, 444
DataInput interface, 13
DataInputStream interface, 13
DATALINK data type, 503, 505
DataOutput interface, 13
DataOutputStream interface, 13
DataSource interface, 477, 484–87, 496, 515,

524–25
Date class, 172–74, 286, 288, 321, 500, 534,

542–45, 547, 550, 552, 571
DATE data type, 503, 505–6
date element format, 551
DateFormat class, 542–44, 546–47, 551–53,

555
dates, formatting and parsing, 543–45
DB2, 477
DBMS (Database Management System), 477,

479–83, 487–88, 497–99, 501, 507,
515, 521–24, 526–27, 530

DDL (Data Definition Language), 496
deadlocks, 105–8
debugging JDBC, 530
DECIMAL data type, 503
Declaration interface, 661–63
decomposition mode, 564–65
deep copy, 605

■INDEX 671

DefaultCellEditor class, 295, 362, 365–66
DefaultCopyDrop constant, 411
DefaultCopyNoDrop constant, 411
DefaultLinkDrop constant, 411
DefaultLinkNoDrop constant, 411
DefaultListSelectionModel interface, 296
DefaultMoveDrop constant, 411
DefaultMoveNoDrop constant, 411
DefaultMutableTree interface, 336
DefaultMutableTreeNode

breadthFirstEnumeration(), 348–49
creating instances of, 343–44
depthFirstEnumeration(), 346, 348
getDepth(), 344
getLevel(), 344
getPath(), 345
getSharedAncestor(), 345
getUserObjectPath(), 345
obtaining list of nodes, 346
overview, 342–43
pathFromAncestorEnumeration(), 345–46
postorderEnumeration(), 346, 348

DefaultMutableTreeNode class, 367–68
DefaultMutableTreeNode interface, 345–46,

351, 353, 368
DefaultSelectionModel class, 375
DefaultTableCellRenderer class, 285, 287–89
DefaultTableColumnModel class, 278
DefaultTableModel class, 271, 273
DefaultTreeCellEditor and DefaultCellEditor,

364–65
behavior, 365–66
creating custom editor, 366–68

DefaultTreeCellEditor class, 362, 364, 366
DefaultTreeCellRender interface, 356
DefaultTreeCellRenderer class, 362, 364
DefaultTreeCellRenderer interface, 355, 357,

359, 372
DefaultTreeModel class, 336, 353–55, 368,

379
DefaultTreeModel interface, 337, 340, 355
DefaultTreeSelectionModel class, 373
defineClass() method, 9
Delayed interface, 187–88
DelayQueue class, 189
DelayQueue interface, 187–88
DELETE statement, 496–97
deleteData() method, CharacterData, 512,

610
delta value, 281
deprecation annotation, 639–40, 643–44, 650
–deprecation command, 16
–deprecation option, 638
depthFirstEnumeration() method

DefaultMutableTreeNode, 346, 348

Enumeration class, 348
description property, 487
Device Independent Bitmap (DIB), 438
DIB (Device Independent Bitmap), 438
dir DOT command, 630
dir xslt command, 630
–disableassertions command, 17
–disablesystemassertions command, 17
discarded exceptions, 75–77
DISCONTIGUOUS_TREE_SELECTION

constant, 373
DISTINCT data type, 503, 506
DividerLayout class, 260
DML (Data Manipulation Language), 496
DnDConstants class, 410, 432
do…while loop, 11
Doc class, 457
Doc interface, 448, 459
DocAttribute class, 456
DocAttribute interface, 455
DocAttributeSet class, 459
DocAttributeSet interface, 455
DocFlavor class, 448–53, 459
DocPrintJob class, 447, 458, 460–61
DocPrintJob interface, 447–48, 461–62, 470
DOCTYPE keyword, 614
Document interface, 600–606, 608, 614, 623
Document Object Model (DOM), 587, 598,

601, 606, 610–11, 613–14, 627, 629
Document Type Declaration (DTD), 596, 606,

609, 613–16
DOCUMENT_FRAGMENT_NODE constant,

601
DOCUMENT_NODE constant, 601
DOCUMENT_TYPE_NODE constant, 601
DocumentBuilder class, 600–601, 616, 626
Documented annotation, 652–53
DocumentFragment interface, 602–3, 613–14
DocumentType interface, 602–3, 606, 614–15
doLayout() method, Container class, 265
DOM (Document Object Model), 587, 598,

601, 606, 610–11, 613–14, 627, 629
DOMImplementation interface, 606
DOTclass extension, 5
DOTjava extension, 16
Dots Per Inch (DPI), 463
DOUBLE data type, 503
DownloadFiles class, 140–43
DPI (Dots Per Inch), 463
–Dproperty=value command, 17
drag sessions, 416–17
drag source, 410
drag-and-drop functionality

operation types, 410
overview, 409

■INDEX672

performing file selection drops from
native applications

adding drag support, 421–33
adding drop support, 411–21
overview, 411

performing link/reference operations,
437–38

performing local transfers
handling reference transfer, 435–37
local object data flavors, 433–35
overview, 433

transferring between Java and native
applications, 438–40

transferring text data
creating new transferable for text data,

443–44
between Java and native applications,

440–42
overview, 440

using predefined cursors, 410–11
dragDropEnd() method, 431

DragSourceDropEvent class, 432
DragSourceListener class, 432, 436
DropTargetListener class, 431, 436–37

dragEnter() method, 417, 430
DropTargetDragEvent class, 415

dragExit() method, 418, 431
DropTargetEvent class, 414

DragGestureEvent, 425
DragGestureListener, 424
dragGestureRecognized(), 424–25
dragOver() method, 418, 430–31

DropTargetDragEvent class, 415
DragSource class, 411, 416
DragSourceDragEvent class, 431–32
DragSourceEvent class, 431
DragSourceListener interface, 430
drawImage() method, Graphics class, 462,

469, 471
drawLine() method, Graphics class, 462
drawRect() method, Graphics class, 462
Driver class, 484
Driver interface, 479, 482–83
DriverManager interface, 477, 482, 484, 487,

496, 530
drivers, JDBC, 479–82
drop() method, DropTargetListener

interface, 416, 418–20, 432, 435–36
dropActionChanged() method,

DropTargetDragEvent class, 415,
420–21, 431

dropComplete() method,
DropTargetListener class, 416, 431

DropTarget class, 413
DropTargetDropEvent class, 415–16
DropTargetEvent, 414

DropTargetListener, 413–14
DTD (Document Type Declaration), 596, 606,

609, 613–16
–ea command-line option, 82

■E
EAST constant, 208–11, 227, 261
EDI (Electronic Document Interchange), 594
editable flag, 363
editingCanceled() method

CellEditor class, 292
CellEditorListener interface, 292

editingStopped() method
CellEditor class, 292
CellEditorListener interface, 292
JTable class, 292

EJB (Enterprise JavaBeans), 594, 655, 657–58,
666

Electronic Document Interchange (EDI), 594
element() method, Queue interface, 185
Element interface, 599, 602–4, 606–8, 610–11,

615, 617–19, 623, 625–26
ELEMENT_NODE constant, 601
ElementType class, 649–50
Empty tags, 597
–enableassertions command, 17
–enableassertions command-line option, 82
–enablesystemassertions command, 17
encapsulation, 42–45
encoding attribute, 596
–encoding command, 16
–encoding option, 585
ensureCapacity() method, ArrayList class,

166
Enterprise JavaBeans (EJB), 594, 655, 657–58,

666
ENTITY definition, 614
Entity interface, 602–3, 614–15
ENTITY_NODE constant, 601
ENTITY_REFERENCE_NODE constant, 601
EntityReference interface, 602–3, 613
enum keyword, 639
enumerate() method, ThreadGroup class,

144
Enumeration class, 338, 345–46
enumerations, 84–87
EnumMap class, 179, 182, 189
EnumSet class, 177–79, 189
equals() method, 50–52, 155, 163–64, 387

Comparator interface, 176
List interface, 170
Object class, 163, 170–72, 182

errors and warnings, JDBC, 526
SQLException class, 526–29
SQLWarning class, 529–30

Exception class, 66, 68, 70, 76, 526

■INDEX 673

exceptions
adding information to, 68–71
avoiding, 81
choosing exception type, 65
choosing superclass for custom exception

class, 65–68
discarded, 75–77
nested, 77–81
overview, 62
and Servlets, error pages, 309
using finally block, 72–75
when to catch, 71–72
when to throw, 62–64

ExecutableDeclaration class, 662
execute() method

ResultSet interface, 507
Statement interface, 497–98
Thread class, 149

executeBatch() method, Statement interface,
497–98

executeQuery() method, ResultSet interface,
73, 75, 497, 507

executeQuery(), Statement interface, 497
executeUpdate() method

ResultSet interface, 497–98
Statement interface, 496–97

exit() method, System class, 111
expandPath() method, JTree class, 379
expandRow()method, JTree class, 379
ExpandVetoException class, 381–82
–extdirs command, 18
eXtensible Stylesheet Language

Transformations (XSLT), 587, 628–30,
634

eXtensible Stylesheet Language (XSL), 594,
627, 629, 633

external metadata, replacing, 654–58

■F
fallthrough annotation, 644
FETCH_FORWARD constant, 510
FETCH_REVERSE constant, 510
FIELD constant, 649
field_info item, 14
fields_count item, 14
FIFO (First-In-First-Out), 185–87
File class, 412, 438, 600, 629
file format, classes, 13–14
FileInputStream class, 78
FileOutputStream class, 113
Filer interface, 664
FileReader class, 78
FileWriter class, 75
fill constraint, 220–23, 237, 239–40
final method, 641

finally annotation, 644
finally block, 72–75
finally keyword, 12
fireEditingStopped() method, 293
fireTable() method, AbstractTableModel

class, 326
fireTableDataChanged() method,

TableModel class, 325
first() method, CardLayout class, 196
First-In-First-Out (FIFO), 185–87
FlavorMap class, 439–41
fload instruction, 11
Float class, 45, 286–87, 289, 321, 554
FLOAT data type, 172, 503
floatValue() method, 386
FlowLayout

child component locations, 198–200
child component sizes, 198
constraints, 198
constructing, 198
container size, 201–2
overview, 198
resizing behavior, 200–201

FlowLayout class, 195, 198, 200–202, 255, 260
Font class, 29, 31, 35, 38
for loop, 160
for-each clause, 631, 634
format() method, 61–62

ChoiceFormat class, 554
DateFormat class, 543
MessageFormat class, 549–51
NumberFormat class, 547

Format class, 542, 553
FULL constant, 543
full element style, 551
FULL_DECOMPOSITION constant, 565
–g command, 16

■G
Garbage collection, 6, 183
garbage collector, Java Virtual Machine

(JVM), 7–8
gc() method, System class, 8, 184
–gCOLkeyword command, 16
–gCOLnone command, 16
generateRemoteInterface() method,

PrintStream class, 665
generics, 154, 158
get() method, Map interface, 42, 180
getAlignmentX() method, Component class,

242
getAlignmentY() method, Component class,

242
getAllowsChildren() method, TreeModel

interface, 339, 343

■INDEX674

getAllowsChildren(), TreeNode, 338
getArray() method, ResultSet interface, 504
getAttribute() method, Element interface,

607
getAttributeNode() method, Element

interface, 607
getAttributes() method, Node interface, 604,

619
getAttributes() method, PrintService

interface, 453
getAvailableLocales() method, Locale class,

535, 543
getBundle() method

Locale class, 537–38
ResourceBundle class, 540, 542

getBytes() method, 444, 511
getCellEditorValue() method, 293

CellEditor class, 292, 364, 367
DefaultMutableTreeNode interface, 368

getCellRect() method, 327
getCellSelectionEnabled() method, JTable

class, 296
getCharacterInstance() method,

BreakIterator class, 556
getChild() method, TreeModel interface,

335–37
getChildAt() method

MutableTreeNode interface, 343
TreeNode interface, 337–38

getChildCount() method
TreeModel interface, 335–37
TreeNode interface, 337, 340

getChildIndices() method, TreeModelEvent
interface, 353

getChildNodes() method, Node interface,
604, 619

getChildren() method, TreeModelEvent
interface, 352

getColumnClass() method, 287
AbstractTableModel class, 286
TableModel class, 286–88, 322
TableValues class, 286, 323

getColumnCount() method, TableModel
class, 273

getColumnHeader() method, JScrollPane
class, 306

getColumnName() method
JScrollPane class, 306
TableModel class, 275

getColumnSelectionAllowed() method,
JTable class, 296

getComponent() method, 425
getComponents() method, 260

Component class, 194
Container class, 194, 260

getConnection() method
Connection class, 485
DataSource interface, 484
DriverManager interface, 482–84
PooledConnection interface, 524

getContents() method, 385
Clipboard class, 385, 403
ListResourceBundle class, 538–39

getCurrentDataFlavors() method, 415
getCurrentDataFlavorsAsList() method, 415
getData() method

CharacterData, 609
ProcessingInstruction interface, 613

getDatabaseProductName() method,
DatabaseMetaData interface, 488

getDateInstance() method, DateFormat
class, 543, 546

getDeclarationsAnnotedWith() method, 663
getDecomposition() method, Collator class,

564
getDefault() method, Locale class, 535
getDefaultDragSource() method,

DragSource class, 423
getDelay() method

DefaultMutableTreeNode, 344
Delayed interface, 187

getDisplayName() method, Locale class, 535
getDocType() method, Document interface,

606
getDocumentElement() method

Document class, 616
Document interface, 605–6

getDragAction() method, 425
getDragOrigin() method, 425
getDragSourceContext() method,

DragSourceEvent class, 430
getDropAction() method, 416, 432
getDropSuccess() method, 432
getElementsByTagName() method

Document interface, 606
Element interface, 608

getEntities() method
DocumentType interface, 614
NamedNodeMap interface, 614

getFiler() method,
AnnotationProcessorEnvironment
class, 664

getFirstChild() method,
DefaultMutableTreeNode interface,
344

getFirstChild() method, Node interface, 604
getFloat() method, ResultSet interface, 508
getGeneratedKeys() method, Statement

interface, 515
getGestureModifiers() method, 432

■INDEX 675

getHeaderRenderer() method, TableColumn
class, 302

getHeight() method, 465, 467
getHorizontalBox() method, Box class, 246
getImageableHeight() method, 465, 467
getImageableWidth() method, 465, 467
getImageableX() method, 465, 467
getImageableY() method, 465, 467
getImplementation() method, Document

interface, 606
getIndex() method, TreeNode interface,

337–38
getIndexOfChild() method, TreeModel

interface, 336–38
getInstance() method, 562
getInt() method, ResultSet interface, 83, 511,

529
getLabelFromFile() method, 412
getLastChild() method

DefaultMutableTreeNode interface, 344
Node interface, 604

getLayoutAlignmentX() method, 243, 262
getLayoutAlignmentY() method,

LayoutManager2 interface, 262
getLayoutDimensions() method,

GridBagLayout class, 214
getLength() method

CharacterData, 609
NodeList interface, 604

getLevel() method,
DefaultMutableTreeNode, 344

getLineInstance() method, BreakIterator
class, 556

getLocation() method, 415
getMatrix() method, 467
getMaxConnections() method,

DatabaseMetaData interface, 488
getMaximumSize() method, 264–65

Component class, 194
Container class, 193, 195, 261
GridLayout class, 206

getMessage() method, 526
LoggingException class, 79, 81

getMethods() method, TypeDeclaration
class, 662

getMinimumSize() method, 265
BorderLayout class, 211
Component class, 194
Container class, 193, 195
GridLayout class, 206–7

getModel() method, JTree class, 353
getMoreResults() method, 497
getName() method

Attr interface, 608
Clipboard class, 385

DocumentType interface, 614
PrintServiceLookup class, 448

getNewInstance() method, 103
getNewLeadSelectionPath(),

TreeSelectionEvent, 377
getNextSibling() method, Node interface,

605
getNodeName() method

Entity interface, 615
EntityReference interface, 613
Node interface, 602–3, 607–8

getNodeType() method, Node interface, 601
getNodeValue() method, Node interface,

603–4
getNotationName() method, Entity

interface, 615
getNotations() method, DocumentType

interface, 614–15
getNumberInstance() method,

NumberFormat class, 534, 546
getNumberOfPages() method, 475
getObject() method, ResourceBundle class,

505, 511, 536
getOldLeadSelectionPath(),

TreeSelectionEvent class, 377
getOrientation() method, 466
getOwnerDocument() method, Node

interface, 605
getPackage() method, TypeDeclaration class,

662
getPageFormat() method, 475
getPaper() method, 466–67
getParent() method

MutableTreeNode interface, 343
TreeNode, 338

getPath() method
DefaultMutableTreeNode interface, 345,

351
TreeExpansionEvent class, 380–82
TreeModelEvent, 352
TreeNode interface, 345
TreePath class, 352
TreeSelectionEvent, 377

getPaths() method
TreePath class, 377
TreeSelectionEvent, 377

getPooledConnection() method,
PooledConnection interface, 524

getPreferredSize() method, 264–65
BorderLayout class, 211
Component class, 194
Container class, 193, 195
GridLayout class, 206–7

getPreviousSibling() method, Node
interface, 605

■INDEX676

getPrintable() method, 475
getProcessorFor() method,

AnnotationProcessor interface, 660
getPublicId() method

Entity interface, 615
Notation interface, 615

getReaderForText() method, DataFlavor
class, 441–42

getRef() method, ResultSet interface, 507
getResultSet() method

Array class, 504
ResultSet interface, 497

getRoot() method, TreeModel class, 335, 513
getRowCount() method, TableModel class,

273
getRowSelectionAllowed() method, JTable

class, 296
getSchemas() method, 488
getSelectedColumn() method, 302
getSelectedColumnCount() method, 301
getSelectedColumns() method, 301
getSelectedFont() method, 31
getSelectedRow() method, 301
getSelectedRowCount() method, 301
getSelectedRows() method, 301
getSelectionMode() method, JTable class,

298
getSelectionModel() method, JTree class, 373
getSelectionPaths() method, TreePath class,

377
getSelectionRows() method, TreeNode class,

377
getSentenceInstance() method,

BreakIterator class, 556
getSharedAncestor(),

DefaultMutableTreeNode, 345
getSourceActions() method, 415
getSpecified() method, Attr interface, 608–9
getstatic instruction, 12
getString() method

ResourceBundle class, 536
ResultSet interface, 73, 505–6, 508

getSystemId() method, Entity interface, 615
getSystemId() method, Notation interface,

615
getTableCellEditorComponent() method,

TableModel class, 291–92, 293
getTableCellRendererComponent() method,

TableCellRenderer interface, 282–83,
292

getTables() method, 488
getTagName() method

Element interface, 607
Node interface, 608

getTarget() method
Node interface, 603

ProcessingInstruction interface, 613
getTargetActions() method, 431
getText() method, 637–38, 662
getTimeInstance() method, DateFormat

class, 546
getToolkit() method, Component class, 384
getToolTipText() method

JTable class, 309
JTableHeader class, 307

getTransactionIsolationLevel() method,
Connection class, 523

getTransferable() method, 416
getTransferData() method, 387, 398, 434, 444

InputStream class, 403
StringSelection class, 440

getTransferDataFlavors() method, 396
DataFlavor class, 386

getTreeCellEditorComponent() method
CellEditor class, 363, 366, 368
DefaultMutableTreeNode class, 367–68
TreeCellEditor interface, 362

getTreeCellRendererComponent() method
CellRenderer class, 366
DefaultTreeCellRenderer interface, 359
TreeCellRenderer interface, 355

getTreePath() method
TreeModelEvent, 352
TreePath class, 352

getTypeDeclaration() method,
AnnotationProcessorEnvironment
class, 663

getUncaughtExceptionHandler() method,
Thread class, 147

getUpdateCount() method, ResultSet
interface, 497

getUpdateCounts() method,
BatchUpdateException class, 498

getURL() method, ResultSet interface, 505
getUserAction() method, 432
getUserObject() method, 343
getUserObjectPath(),

DefaultMutableTreeNode, 345
getValue() method, Attr interface, 608
getValueAt() method, TableModel class, 317
getVerticalBox() method, Box class, 246
getWarnings() method, 83, 529
getWidth() method, 465, 467
getWordInstance() method, BreakIterator

class, 556
GIF, 449–52, 459, 468
GIF inner class, 450
Graphical User Interface (GUI), 3, 22, 90
Graphics class, 284, 447, 462–63, 467–72
Graphics2D class, 472
GridBagCellPanel class, 238, 245

■INDEX 677

GridBagConstraints
distributing extra space, 231–33
fields defined in, 216

anchor, 227
calculating row heights and column

widths, 229–30
calculating sizes when components

span multiple cells, 230
fill, 220–22
gridheight, 226–27
gridwidth, 222–25
gridx, 216–17
gridy, 217
insets, 227–28
ipadx, 228–29
ipady, 229
relative positioning, 217–20
weight values, row heights, and column

widths, 231
weightx, 229
weighty, 229

general guidelines for setting weights,
233–34

GridBagTester, 234–38
overview, 215–16

GridBagConstraints class, 194, 212, 215–17,
222, 224, 228, 231, 260, 263

GridBagLayout. See also GridBagConstraints
child component locations, 240
child component sizes, 239–40
constructing, 215
container size, 241
overview, 211–15
resizing behavior, 241

GridBagLayout class, 194–95, 215–16, 220,
228, 230–34, 239–41, 259–60, 263

GridBagTester class, 234–37
GridHeight class, 227–28
gridheight constraint, 226–27
gridheight property, 230, 240
GridLayout

child component locations, 206
child component sizes, 205–6
constraints, 205
constructing, 203–5
container size, 207
overview, 202–3
resizing behavior, 206

GridLayout class, 195, 205–7, 212, 253, 255,
259–60

gridwidth constraint, 222–25
gridwidth property, 230–32, 237, 240
gridx constraint, 216–17
gridx property, 240
gridy constraint, 217
gridy property, 240

GUI (Graphical User Interface), 3, 22, 90
GUI construction, and layout managers,

193–95

■H
hasChildNodes() method, Node interface,

605
hasFeature() method, DOMImplementation

interface, 606
HashAttributeSet class, 454, 456–57
hashCode() method, Object class, 170–72
HashDocAttributeSet class, 455–56
HashMap class, 172, 179–82, 189
HashSet class, 169, 172–73, 179–81, 189–90
Hashtable class, 51, 154, 184, 260, 331, 334,

593
hasNext() method

Iterator interface, 157
ListIterator interface, 165

hasPrevious() method, ListIterator interface,
165

HDROP constant, 439
headers, JTable

creating row headers, 311–14, 316
drawing headers, 302–4
JTableHeader, 306–9, 311
overview, 302
tooltips and renderer reuse, 304–6

–help command, 16–18
HOLD_CURSORS_OVER_COMMIT

constant, 510
HORIZONTAL constant, 222, 237, 240
HTML (HyperText Markup Language), 449,

452, 587, 590–94, 596–97, 627–28
vs. XML

describing the data, 590
overview, 588–90
well-formed documents, 590–94

HyperText Markup Language (HTML), 449,
452, 587, 590–94, 596–97, 627–28

vs. XML
describing the data, 590
overview, 588–90
well-formed documents, 590–94

■I
IANA (Internet Assigned Numbers

Authority), 389
IDENTICAL constant, 563–64
IdentityHashMap class, 182–83, 189
IdentityHashMap interface, 182–83
IEEE, 11
if statement, 107
if/else block, 82
IllegalArgumentException class, 82, 346
IllegalMonitorStateException class, 128, 131

■INDEX678

iload instruction, 11
Image class, 439, 469
ImageIcon class, 391
ImageViewer class, 421
immutable objects and fields, 45–46
IN parameter, 501–2
indexOf() method

List interface, 163
String class, 81

Informix, 477
inherited annotation, 653–54
.ini file, 594
initialization process, JVM, 10–11
initialPoolSize property, 526
INOUT parameter, 501–2
INPUT_STREAM inner class, 450–51
InputEvent class, 425, 432
InputStream class, 134, 389–90, 403, 439–42,

450, 600, 629
InputStreamReader class, 442, 585
InputValidationException class, 69
insert() method, MutableTreeNode

interface, 342–43
INSERT statement, 496–97
insertBefore() method, Node interface, 604,

623
insertData() method, CharacterData, 610
insertNodeInto() method, TreeModel

interface, 354–55
insertRow() method, 512
Insets class, 194, 216
insets constraint, 227–28
insets property, 240
Integer class, 45, 61, 197, 278, 289, 321, 386,

549, 554
INTEGER data type, 154, 157–59, 172–74,

180, 182, 503
InterfaceDeclaration interface, 663
interfaces, 155
interfaces_count parameter, 14
internationalization of applications

ChoiceFormat class, 553–56
locales, 534–36, 577–84
locale-sensitive formatting and parsing

formatting and parsing dates, 543–45
formatting and parsing numeric values,

546–48
formatting and parsing times, 546
overview, 542–43

MessageFormat class
overview, 548–51
specifying a format object, 552–53
specifying a locale, 551–52

native2ascii, 584–85
overview, 533–34

parsing text data
BreakIterator, 556–62
overview, 556

resource bundles
creating, 538–42
overview, 536–38

steps for, example, 565–76
text comparisons and sorting

collator strength, 563–64
decomposition mode, 564–65
overview, 562–63

Internet Assigned Numbers Authority
(IANA), 389

interpreted language, 4
interpreter, Java, 16–17
interrupt() method

Thread class, 134, 144
ThreadGroup class, 143–44

interrupted() method, 134
InterruptedException class, 65, 124, 134
intValue() method, 158, 386
invalidateLayout() method,

LayoutManager2 interface, 262
InvalidPasswordException class, 66–67
InvalidUseridException class, 66–67
invokeAndWait() method, SwingUtilities

class, 95, 119
invokeinterface instruction, 12
invokeLater() method, SwingUtilities class,

95, 119
invokespecial instruction, 12
invokestatic instruction, 12
invokevirtual instruction, 12
IOException class, 75–77, 79, 387
ipadx constraint, 228–29
ipadx property, 229, 239–40
ipady constraint, 229
ipady property, 229, 239–40
isActive() method, DropTarget class, 413
isAddedPath() method, TreeSelectionEvent,

377
isAnnotationPresent() method, 640
isCellEditable() method, 290

CellEditor class, 363
DefaultCellEditor class, 365
DefaultTreeCellEditor class, 365
TableModel class, 291

isCollapsed() method, JTree class, 382
isDataFlavorSupported() method, 386–87,

397, 415
isDocFlavorSupported() method,

PrintService class, 452
isDragImageSupported() method,

DragSource class, 426
isExpanded() method, JTree class, 382

■INDEX 679

isInterrupted() method, 134
isLeaf() method

TreeModel interface, 336–37, 339–40
TreeNode, 338

isLocalTransfer() method, 416
isNodeRelated() method, TreeNode

interface, 344
ISO, 440
ISO-8859-1, 444
isPathEditable() method, JTree class, 363,

368
isSleepScheduled() method, 128
isVisible() method

Component class, 256
Container class, 265

item() method, NodeList interface, 604
iterator() method, Collection interface,

156–57, 165
Iterator interface, 156–57, 159–60, 165

■J
J2SE, 15
JApplet component, 195
JAR (Java Archive), 17, 480, 646, 665
–jar command, 17
Java 2D printing API, 464
Java API for XML Processing (JAXP), 597–98,

616, 620–21, 626, 629
Java Archive (JAR), 17, 480, 646, 665
Java Database Connectivity. See JDBC
Java Development Kit (JDK), 658, 665
Java Naming and Directory Interface (JNDI),

484
Java Native Interface (JNI), 4
Java Pointer, 152
Java print service API, 447
Java programming language, 14
Java Runtime Environment (JRE), 2
Java Software Development Kit (JSDK), 4
Java Transaction API (JTA), 524
Java Transaction Service (JTS), 524
java utility, 16–17
Java Virtual Machine (JVM), 94, 96, 109–11,

123, 132, 140, 409, 416, 429–30, 433,
445, 483

bytecode execution, 11–12
garbage collector, 7–8
implementations, 4–5
initialization process, 10–11
linking process, 8–10
loading classes, 8–9
overview, 3–4
runtime data areas of, 6–7
as runtime execution environment, 5

tools related to
class disassembler, 17–18
compiler, 15–16
interpreter, 16–17
overview, 15

JAVA_OBJECT data type, 503, 507
java.awt package, 134, 193–94, 216, 241, 249,

260, 384, 415, 425–26, 436, 447, 469
java.awt.datatransfer package, 387, 409, 439
java.awt.dnd package, 409
java.awt.event package, 432
java.awt.image.renderable package, 463, 476
java.awt.print package, 447, 464
javac tool, 15, 658
javadoc tool, 263, 637–39, 650, 652–53
javaFileListFlavor, 416, 420, 429
java.io package, 12–13, 134, 387, 389, 411,

438, 441
javaJVMLocalObjectMimeType constant,

433–34
java.lang package, 45–46, 92, 101, 170, 173,

340, 388–89, 438, 547, 563, 639–40,
642

java.lang.annotation package, 648, 651–52,
654

java.lang.Boolean, 289
java.lang.Number, 289
java.net package, 450–51, 483
javap utility, 12, 17–18
java.print package, 463
java.sql package, 477, 479, 500, 505, 507, 526,

529, 637
java.text package, 61, 534, 542, 549, 562
java.util package, 22, 51, 156, 183–85, 288,

338, 411, 415, 438, 500, 506, 534, 536,
542–43, 550, 563

java.util.concurrent package, 149–50, 184,
186–87

java.util.concurrent.atomic package, 150
java.util.concurrent.locks package, 150
javax.print package, 447, 457, 459
javax.print.attribute package, 453–54
javax.print.attribute.standard package, 453
javax.print.event package, 460
javax.sql package, 479
javax.swing package, 22, 241, 269, 329, 335
javax.swing.border package, 22
javax.swing.plaf.basic package, 362
javax.swing.table package, 270, 278
javax.swing.tree package, 334–36, 342, 350,

353, 355, 362, 381
javax.xml package, 597
javax.xml.transform package, 629

■INDEX680

JAXP (Java API for XML Processing), 597–98,
616, 620–21, 626, 629

JButton class, 90, 571
JButton component, 203, 217–18, 247–48,

257, 306–7
JCheckBox component, 284, 289, 295,

358–59, 361, 365–66
JComboBox component, 282, 290–93, 295,

301, 365
JComponent class, 247, 249, 256, 304
JDBC, 479
JDBC (Java Database Connectivity), 15, 73,

270, 515–16, 518, 520–22, 529–31
connection pooling, 524–26
data types

ARRAY, 504
Binary Large Object (BLOB), 505
Character Large Object (CLOB), 505
DATALINK, 505
DATE, 505–6
DISTINCT, 506
JAVA_OBJECT, 507
OTHER, 507
overview, 503–4
REF, 507
STRUCT, 506–7
TIME, 505–6
TIMESTAMP, 505–6

debugging, 530
drivers, 479–82
errors and warnings, 526

SQLException class, 526–29
SQLWarning class, 529–30

obtaining database connection
DatabaseMetaData interface, 487–96
from DataSource (2.x optional

package), 484–87
JDBC URL formats, 483–84
overview, 482–83

overview, 477–78
releasing resources, 531
ResultSet

Concurrency mode, 508
cursor positioning methods, 510–11
data modification methods, 512
data retrieval methods, 511–12
determining the number of rows

returned, 512–13
holdability, 509
overview, 507–8
retrieving automatically generated keys,

513–15
scrollability type, 508
selecting properties, 509–10
update sensitivity, 508–9

ResultSetMetaData interface, 515
RowSet class, 515–16
Statement interface

addBatch(), 497–98
CallableStatement, 500–502
execute(), 497
executeBatch(), 497–98
executeQuery(), 497
executeUpdate(), 496–97
overview, 496
ParameterMetaData, 502
PreparedStatement, 498–500

transactions
overview, 517–18, 520
read-only, 521–24
savepoints, 520–21

versions of, and SQL standards, 479
jdbc.drivers property, 483
JDBC-ODBC bridge driver, 481, 483, 488
JDialog component, 194–95
JDK (Java Development Kit), 658, 665
–Jflag command, 18
JFrame class, 111
JFrame component, 193–95, 234, 390
JLabel class, 412, 418, 420–23, 425, 428–29,

432–34, 436–38, 583
JLabel component, 209, 213–14, 220, 239,

285, 289–90, 302–3, 355, 359, 362,
364–66, 391

JList class, 558
JList component, 259, 296
JNDI (Java Naming and Directory Interface),

484
JNI (Java Native Interface), 4
JobAttributes class, 447
JobMediaSheetsCompleted attribute, 462
JobName class, 456
join() method, Thread class, 144
JPanel class, 35, 120, 412
JPanel component, 193, 195, 213–14, 238,

253, 255, 303
JPEG, 405, 468
JPEG inner class, 450
JPopupMenu component, 377, 400
JProgressBar class, 114, 119
JRadioButtonMenuItem class, 577
JRE (Java Runtime Environment), 2
JScrollPane, using with JTable, 275–77
JScrollPane class, 313
JScrollPane component, 273, 280, 306, 311,

313, 316, 331
JSDK (Java Software Development Kit), 4
JTA (Java Transaction API), 524
JTabbedPane component, 196

■INDEX 681

JTable
adding and removing table rows, 323–26
cell rendering

creating custom renderers, 282–88
default renderers, 288–89
overview, 282

column resizing
AUTO_RESIZE_ALL_COLUMNS, 281
AUTO_RESIZE_LAST_COLUMN, 281
AUTO_RESIZE_NEXT_COLUMN, 280
AUTO_RESIZE_OFF, 280
AUTO_RESIZE_SUBSEQUENT_

COLUMNS, 280–81
overview, 279

column-oriented design, 278
data model, 270–75
displaying particular table row, 326–27
editing table cells, 290–95
overview, 269–70
sorting table rows

dynamic sort column selection, 318–19,
321

overview, 316–17
using comparable, 321–23

table headers
creating row headers, 311–14, 316
drawing headers, 302–4
JTableHeader, 306–9, 311
overview, 302
tooltips and renderer reuse, 304–6

table resizing, 278–79
table selection settings

combining row, column, and cell
selection modes, 296–97

list selection modes, 297–98
overview, 296
selection mode combinations, 298–301
setting selections programmatically,

301–2
using JScrollPane with, 275–77

JTable class, 413, 415, 425
JTable component, 15, 331, 362, 364
JTableHeader class, 313, 327
JTextArea class, 557
JTextBox component, 361
JTextField class, 119
JTextField component, 213–14, 237, 239–40,

247–48, 252, 290, 292, 295, 362,
364–66, 385–86

JTree
collapsing and expanding nodes

detecting collapses and expansions,
380–82

overview, 379–80

creating, overview, 331–34. See also JTree,
TreeModel

creating tree nodes
branch nodes, 338–40
DefaultMutableTreeNode, 342–46,

348–49
leaf nodes, 338–40
MutableTreeNode, 340–42
nodes without children, 338–40
overview, 336
TreeNode, 336–38

customizing branch node handles, 369–70
DefaultTreeModel, 353–55
editing tree nodes

DefaultTreeCellEditor and
DefaultCellEditor, 364–68

limiting edits to certain nodes, 368–69
overview, 362–64

line style with Java (or Metal) look and
feel, 371–72

node selection
overview, 372–73
selection methods, 377–79
selection modes, 373, 375–76
TreeSelectionEvent, 376–77
TreeSelectionListener, 376

overview, 329
rendering tree nodes

creating custom renderer, 357–60, 362
overview, 355–57

terminology, 330–31
TreeModel

addTreeModelListener(), 335
getChild(), 335
getChildCount(), 335
getIndexOfChild(), 336
getRoot(), 335
isLeaf(), 336
overview, 335
removeTreeModelListener(), 335
valueForPathChanged(), 336

TreeModelEvent
getChildIndices(), 353
getChildren(), 352
getPath(), 352
getTreePath(), 352
overview, 352

TreeModelListener
overview, 351
treeNodesChanged(), 351–52
treeNodesInserted(), 352
treeNodesRemoved(), 352
treeStructureChanged(), 352

TreePath, 349, 351
JTree class, 425

■INDEX682

JTree component, 15, 598
JTS (Java Transaction Service), 524
JViewport class, 326
JVM. See Java Virtual Machine
JVM interpreter, 11

■K
keySet() method, Set interface, 181
–l command, 18

■L
LABEL_FLAVOR constant, 429, 435
LANDSCAPE constant, 466–67
LANGUAGECODE column, 506
last() method, CardLayout class, 196, 513
Last-In-First-Out (LIFO), 168, 185
layout managers. See also GridBagLayout

absolute positioning without, 256
BoxLayout

alignment values, ascents, and
descents, 242–46

child component locations, 249
child component sizes, 247–48
constraints, 247
constructing a BoxLayout, 246
container size, 249
overview, 241–42
resizing behavior, 249
Swing's box class, 249–53

combining, 253–55
and GUI construction, 193–95
invisible components, 256
LayoutManager methods

addLayoutComponent (), 263
layoutContainer(), 265–66
overview, 263
preferredLayoutSize() and

minimumLayoutSize(), 264–65
removeLayoutComponent(), 264

LayoutManager2 methods
addLayoutComponent (), 260–61
getLayoutAlignmentX() and

getLayoutAlignmentY(), 262
invalidateLayout(), 262
maximumLayoutSize(), 261–62
overview, 260

overview, 193
specifying an index when adding a

component, 256–60
using custom layout manager, 267

layoutContainer() method
Component class, 256
LayoutManager class, 194
LayoutManager interface, 265–66
LayoutManager2 interface, 265–66

LayoutManager class, 260
LayoutManager2 interface, 260, 263
leaf nodes, 330, 338–40
leafIcon property, DefaultTreeCellRender

interface, 356
LEFT constant, 198
LIFO (Last-In-First-Out), 168, 185
lineStyle property, JTree class, 371
LinkedBlockingQueue class, 186–87, 189
LinkedHashMap class, 179, 182, 189
LinkedHashSet class, 173, 179, 189
LinkedList class, 167, 185, 189
linking process, JVM, 8–10
lint option, 643–44
List class, 438, 563
List interface, 180–81, 185, 188, 191, 644–45

removing elements from a list, 161–62
searching for objects, 162–63
using equals() method, 163–64

ListItem class, 593
listIterator() method, List interface, 165
ListIterator interface, 165
ListResourceBundle class, 538–42
ListSelectionModel interface, 296–98, 302
loadClass() method, 9
loading classes, JVM, 8–9
LOCAL_LABEL_FLAVOR constant, 434–35
LOCAL_VARIABLE constant, 649
Locale class, 506, 534–37, 539–40, 543,

546–47, 550, 552–53, 556–57, 562–63,
571, 583

Locale.CANADA_FRENCH constant, 537
Locale.ENGLISH constant, 535
Locale.FRENCH constant, 535
Locale.GERMAN constant, 535, 540
Locale.GERMANY constant, 540
Locale.JAPAN constant, 563
locales, 534–36, 577–84
locale-sensitive formatting and parsing

formatting and parsing dates, 543–45
formatting and parsing numeric values,

546–48
formatting and parsing times, 546
overview, 542–43

Locale.US constant, 535, 537, 551–52
localization, 533
LoggingException class, 78–79
login Servlet, 280
LogonFailedException class, 66–67
Long class, 289, 321
LONG constant, 543
long element style, 551
longValue() method, 386
LONGVARBINARY data type, 503
LONGVARCHAR data type, 503

■INDEX 683

lookupDefaultPrintService() method,
PrintServiceLookup class, 448

lookupMultiDocPrintServices() method,
PrintServiceLookup class, 448

lookupPrintServices() method,
PrintServiceLookup class, 448–49,
452–53, 456–57

lostOwnership() method, ClipboardOwner
class, 387–88, 395

■M
MailMessage class, 48–49
major_version item, 13
Map interface, 172, 178–84, 188, 191
markup-start characters, 590
MAX_PRIORITY constant, 109
MAX_VALUE constant, 197, 278
maxIdleTime property, 526
maximumLayoutSize() method, 264–65

CardLayout class, 197
LayoutManager2 interface, 261–62

maxPoolSize property, 526
maxStatements property, 526
MediaTracker class, 134
MEDIUM constant, 543
medium element style, 551
MessageFormat

overview, 548–51
specifying a format object, 552–53
specifying a locale, 551–52

MessageFormat class, 61, 549–53, 555, 585
metadata, 590, 637, 654–58
MetalTreeUI class, 369
METHOD constant, 649
method_info item, 14
methods, design of

assertions, 81–84
enumerations, 84–87
method naming, 57–58
minimizing duplication of code, 58–60
overview, 53–54
passing parameters, 54–56
using exceptions

adding information to exceptions,
68–71

avoiding exceptions, 81
choosing exception type, 65
choosing superclass for custom

exception class, 65–68
discarded exceptions, 75–77
nested exceptions, 77–81
overview, 62
using finally block, 72–75
when to catch exceptions, 71–72
when to throw exceptions, 62–64

variable arguments, 60–62

Microsoft SQL Server, 477
MIME, 411, 422, 430, 433–35, 439–42, 449–51
MIME (Multipurpose Internet Mail

Extensions), 388–90, 396, 402–3, 405
MIN_PRIORITY constant, 109
minimumLayoutSize() method, 265
minor_version item, 13
minPoolSize property, 526
MissingResourceException class, 536
modifiers, 410
MouseEvent class, 307
MouseListener interface, 377
multilinearray instruction, 11
MULTIPLE_INTERVAL_SELECTION

constant, 298
Multipurpose Internet Mail Extensions

(MIME), 388–90, 396, 402–3, 405
multitasking, 89
multithreading in Servlets, 302
MutableTreeNode interface, 336, 341–44

insert(), 342
overview, 340
remove(), 341
removeFromParent(), 342
setParent(), 341
setUserObject(), 340–41

–mx command-line option, 6

■N
NamedNodeMap interface, 614
naming methods, 57–58
NaN operator, 11
NATIVE type, 439
native2ascii utility, 584–85
nested exceptions, 77–81
new command, 11
newarray instruction, 11
newDocument() method, DocumentBuilder

class, 626
next() method

BreakIterator class, 556
CardLayout class, 196
Iterator interface, 157
ListIterator interface, 165
ResultSet interface, 73, 508, 510–11

nextIndex() method, ListIterator interface,
165

NO_DECOMPOSITION constant, 565
NO_SUCH_PAGE constant, 468
NoClassDefFounderror exception, 9
Node interface, 601–5, 607, 609, 613, 615–16,

618, 623
nodeChanged() method, TreePath class, 355
NodeList interface, 604, 606, 614
nodeName property, 603

■INDEX684

nodesChanged()method, TreeModel
interface, 354–55

nodeStructureChanged() method
DefaultTreeModel interface, 355
TreeModel interface, 354

nodesWereInserted()method, TreeModel
interface, 354–55

nodesWereRemoved()method, TreeModel
interface, 354

nodeValue property, 603
NONE constant, 222
NORM_PRIORITY constant, 109
normalize() method, Element interface,

607–8, 611
NORTH constant, 208–10, 227
NORTHEAST constant, 227
NORTHWEST constant, 227
NOTATION definition, 614
Notation interface, 602–3, 614–15
NOTATION_NODE constant, 601
notify() method, Thread class, 131–32
notifyAll() method, Thread class, 131–32
–nowarn command, 16
NULL data type, 503
NullPointerException class, 65–66, 74–75, 82,

146
Number class, 286–87, 547, 554
number element format, 551
NumberFormat class, 286, 542, 546–47,

551–53, 555
NUMERIC data type, 503
numeric values, formatting and parsing,

546–48
NumericTextField class, 235

■O
Object class, 10–11, 46–47, 50, 52, 87, 101–2,

128, 131, 154, 156–58, 162–63, 165,
167, 170–71, 173–74, 176, 194, 216,
263, 286–88, 323, 334, 336–37, 340,
343, 345, 352, 355, 438, 459, 467, 511,
550

object methods, overriding, 46–53
Object Oriented programming, 21
object-relational mapping, 479
obtaining list of nodes,

DefaultMutableTreeNode, 346
ODBC (Open Database Connectivity), 477,

480
of() method, EnumSet class, 178
offer() method, Queue interface, 185
open() method, FileInputStream class, 78
Open Database Connectivity (ODBC), 477,

480
openIcon property, DefaultTreeCellRender

interface, 356

Oracle, 477
OracleDriver class, 487
oraserve server, 483
org.w3c.dom package, 597–98
org.xml.sax package, 598
OrientationRequest class, 453, 455, 457
OrientationRequested class, 455–56
–oss command-line option, 7
OTHER data type, 507
out field, 12
OUT parameter, 501–2
OutOfMemoryError exception, 6
OutputStream class, 113, 629
OutputStreamWriter class, 585
Override annotation, 640–42
overriding object methods, 46–53
–package command, 18

■P
PACKAGE constant, 649
package design, 22
PAGE_EXISTS constant, 468
PAGEABLE constant, 462
Pageable interface, 463–64, 474–75
PageAttributes class, 447
PageFormat class, 464, 466–68, 475
PagesPerMinute attribute, 453, 455
paint() method, 467

Container class, 257
Graphics class, 284
JTree class, 355

paintComponent() method, GridBagLayout
class, 214

Paper class, 464–67
PARAMETER constant, 649
ParameterDeclaration class, 662
ParameterMetaData, Statement interface,

502
ParameterMetaData interface, 637
parameters, passing, 54–56
parent thread, 109
parse() method

DateFormat class, 544–45, 547
Document interface, 626
DocumentBuilder class, 600–601, 616
DocumentBuilder interface, 605
NumberFormat class, 547

ParseException class, 544–45
parseInt() method, 73
path annotation, 644
pathFromAncestorEnumeration(),

DefaultMutableTreeNode, 345–46
PCL inner class, 450
PDF (Portable Definition Format), 627
PDF inner class, 450
peek() method, Queue interface, 185

■INDEX 685

PeopleResources_de.native file, 584
PeopleResources_de.properties file, 584
performDatabaseQuery() method, 90
Plain Old Java Object (POJO), 658
plainTextFlavor constant, 403, 440–41, 443
PL/SQL, 500
PNG inner class, 450
Point class, 415, 425–26
POJO (Plain Old Java Object), 658
poll() method, Queue interface, 185
PooledConnection interface, 524
pop() method, Vector class, 168
Portable Definition Format (PDF), 627
portNumber property, 487
PORTRAIT constant, 466
POST requests, Servlet that responds to, 280
postorderEnumeration() method

DefaultMutableTreeNode, 346, 348
Enumeration class, 348

POSTSCRIPT inner class, 450
preemptive multitasking, 97
preferredLayoutSize() method and

minimumLayoutSize() method,
LayoutManager interface, 264–65

preorder traversal, 619
PreparedStatement interface, 477, 500–502,

505
previous() method

CardLayout class, 196
ListIterator interface, 165

previousIndex() method, ListIterator
interface, 165

PRIMARY constant, 563
print() method, 468–69, 472, 475

DocPrintJob class, 448, 458–59
Graphics class, 470
Printable class, 466–67

Printable class, 466, 468–69, 474–75
PRINTABLE constant, 462
Printable interface, 463–64
printDataTransferCompleted() method,

PrintJobListener interface, 460
printDialog() method

PrintService class, 458
ServiceUI class, 457

printElement() method, 618, 620
PrinterJob class, 447, 468
printing

canceling print job, 462
creating print job, 458
defining document to print, 459
initiating, 459
locating print services

Attribute interface, 453
attribute roles, 453–54
AttributeSet, 453, 456–57

choosing right printer, 452
DocFlavor class, 449
HashAttributeSet, 456–57
interfaces and implementations,

454–56
overview, 448–49
representation classes, 449–52

monitoring and controlling print job,
460–62

overview, 447–48
printer selection via user interface, 457–58
service-formatted

overview, 462–64
sample printing application, 469–72,

474
support classes, 464–68

PrintJob class, 447, 457
PrintJobAdapter interface, 460
PrintJobAttribute class, 456
PrintJobAttributeListener interface, 461
PrintJobAttributeSet class, 456
PrintJobAttributeSet interface, 461
printJobCanceled() method,

PrintJobListener interface, 460
printJobCompleted() method,

PrintJobListener interface, 460
printJobFailed() method, PrintJobListener

interface, 460
PrintJobListener class, 459
PrintJobListener interface, 460–61
printJobNoMoreEvents() method,

PrintJobListener interface, 460
printJobRequiresAttention() method,

PrintJobListener interface, 460
println() method, 12
PrintRequest class, 457
PrintRequestAttribute class, 456
PrintRequestAttributeSet class, 448, 456–59
PrintService class, 448, 452–53, 457–58
PrintService interface, 447, 453
PrintServiceAttribute attribute, 457
PrintServiceAttribute class, 456
PrintServiceAttributeSet class, 456
PrintServiceLookup class, 448
printStackTrace() method, 78, 81
PrintStream class, 12, 78, 530, 664–65
PrintWriter class, 78, 530
PriorityBlockingQueue class, 189
PriorityBlockingQueue interface, 185–86
PriorityQueue interface, 185, 189
–private command, 18
private keyword, 44–45
Processing Instruction (PI), 596
PROCESSING_INSTRUCTION_NODE

constant, 601
ProcessingInstruction interface, 602–4, 613

■INDEX686

projava driver, 477, 483–84
prolog, 596
propertyCycle property, 526
PropertyResourceBundle, 541–42
PropertyResourceBundle class, 538, 549, 571,

584
–protected command, 18
protected keyword, 44–45
–public command, 18
public keyword, 44–45
pure abstractions, 23
push() method, Vector class, 168
put() method

Map interface, 180
UIManager class, 369

putClientProperty() method, JTree class, 371

■Q
Queue interface, 184–86

■R
race condition, 98
RDBMS (Relational Database Management

System), 477
read() method, InputStream class, 134
Reader class, 441, 450, 629
READER inner class, 450
REAL data type, 503
ReentrantReadWriteLock class, 150
REF data type, 503, 507
refreshRow() method, 512
registerDriver() method, DriverManager

interface, 482
registerOutParameter() method,

CallableStatement interface, 501
rejectDrag() method, 415–16
rejectDrop() method, 416
Relational Database Management System

(RDBMS), 477
RELATIVE constant, 217–19, 225–26
reload() method, DefaultTreeModel

interface, 355
REMAINDER constant, 224–26, 237
Remote annotation, 658
Remote Method Invocation (RMI), 15, 437,

647, 655
RemoteException class, 665
RemoteObject annotation, 648
remove() method

Collection interface, 156, 162–64, 168
Iterator interface, 157
List interface, 161
MutableTreeNode, 341
Queue interface, 185

removeAttribute() method, Element
interface, 607

removeAttributeNode() method, Element
interface, 607

removeCellEditorListener() method,
CellEditor class, 292

removeChild() method, Node interface, 604,
622–23

removeFromParent() method,
MutableTreeNode interface, 342

removeLayoutComponent() method, 260
LayoutManager interface, 264
LayoutManager2 interface, 264

removeNodeFromParent()method,
TreeModel interface, 354

removeTreeExpansionListener() method,
JTree class, 380

removeTreeModelListener() method,
TreeModel interface, 335

RENDERABLE_IMAGE constant, 462
RenderableImage class, 463
RenderableImage interface, 476
replaceChild() method, Node interface, 604,

623
replaceData() method, CharacterData,

609–10
representation classes, 449–52
request object, accessing request headers,

289
resource bundles

creating, 538–42
overview, 536–38

ResourceBundle class, 536–37, 539–42,
548–50, 555, 571, 577

response object, 290
Result interface, 629
ResultSet

Concurrency mode, 508
cursor positioning methods, 510–11
data modification methods, 512
data retrieval methods, 511–12
determining the number of rows returned,

512–13
holdability, 509
overview, 507–8
retrieving automatically generated keys,

513–15
scrollability type, 508
selecting properties, 509–10
update sensitivity, 508–9

ResultSet interface, 73–75, 83, 488, 497,
504–6, 508–13, 515–16, 529, 531, 637

resultSetConcurrency value, 509
ResultSetMetaData interface, 515, 637
resultSetType parameter, 509
resume() method

Thread class, 139
ThreadGroup class, 143

■INDEX 687

retention annotation, 650–52
RetentionPolicy enumeration type, 651
return statement, 74
revalidate() method, Component class, 256
–reverse option, 584
REVERSE_LANDSCAPE constant, 466–67
Rich Text Format (RTF), 389, 627
RIGHT constant, 198, 289
RMI (Remote Method Invocation), 15, 437,

647, 655
rollback() method, Connection class, 518,

520
rowAtPoint() method, JTable class, 309
rows, JTable

adding and removing table rows, 323–26
creating row headers, 311–14, 316
displaying particular table row, 326–27
sorting table rows

dynamic sort column selection, 318–19,
321

overview, 316–17
using comparable, 321–23

RowSet class, 515–16
RTF (Rich Text Format), 389, 627
run() method, Runnable interface, 92, 95–96,

106, 119–20, 124, 132, 146, 148–49
runnable thread, 109
runtime constant pool, 7
runtime data areas, JVM, 6–7
RUNTIME retention policy, 651
RuntimeException class, 65
–s command, 18

■S
SAX (Simple API for XML), 598, 600, 613, 629
scaling, 472, 474
ScheduledThreadPoolExecutor class, 149
SECONDARY constant, 563
select statement, 83, 316, 497, 507, 512, 516,

521
SelectorPanel class, 267
selectPathForEvent() method, BasicTreeUI

class, 363
sentence iteration, 557
serial annotation, 644
Serializable interface, 395, 422
serialized Java objects, storing and retrieving,

390–402
–server option, 17
serverName property, 487
SERVICE_FORMATTED inner class, 449–51
service-formatted printing

overview, 462–64
sample printing application, 469–72, 474
support classes, 464–68

ServiceUI class, 457

Servlet model and HttpServlets
deployment descriptors, 291
multithreading in Servlets, 302
request object, 289
response object, 290
Servlet lifecycle, 296
Servlet that responds to POST requests,

280
Servlets

exception handling, 309
and filters, 321
session management, 313

session management, session tracking with
URL rewriting, 313

set() method, Collection interface, 161
Set interface, 168–73, 177–81, 188, 190–91

and buckets, 171–72
and hash codes, 170–71

set method, 42
setActive() method, DropTarget class, 413
setAlignmentX() method, JComponent class,

247
setAlignmentY() method, JComponent class,

247
setAllowsChildren() method, 343
setAttribute() method, Element interface,

607, 621
setAttributeNode() method, Element

interface, 607
setAutoCommit() method, Connection class,

518
setBinaryStream() method,

ByteArrayInputStream class, 500
setBounds() method, Component class, 194,

256, 265
setCellEditor() method, TableColumn class,

291
setCellSelectionEnabled() method, JTable

class, 296
setCollapsedIcon() method, BasicTreeUI

class, 369
setColumnHeader() method, JScrollPane

class, 306
setColumnHeaderView() method,

JScrollPane class, 307
setColumnModel() method, TableColumn

class, 313
setColumns() method, GridLayout class, 203
setColumnSelectionAllowed() method,

JTable class, 296
setColumnSelectionInterval() method,

JTable class, 302
setConstraints() method, GridBagLayout

class, 216, 263
setContents() method, Clipboard class, 385,

387–88, 399, 403

■INDEX688

setCorner() method, JScrollPane class, 313
setCursor() method, DragSourceContext

class, 430
setDaemon() method, Thread class, 110
setData() method, 604

CharacterData, 609
ProcessingInstruction interface, 613

setDecomposition() method, Collator class,
564

setDefault() method, Locale class, 535
setDefaultEditor() method, JTable class, 291
setDefaultRenderer() method,

CurrencyRenderer class, 286
setEditable() method, JTree class, 361, 363
setExpandedIcon() method, BasicTreeUI

class, 369
setFetchDirection() method, ResultSet

interface, 510
setFetchSize() method, Statement interface,

510
setFormat() method, MessageFormat class,

552–53
setFormats() method, MessageFormat class,

553
setHgap() method, GridLayout class, 203
setHumanPresentableName() method, 389
setImageableArea(), 465
setLayout() method

Component class, 256
Container class, 193

setLenient() method, 545
setLocale() method, Locale class, 552
setLocation() method, Component class,

194, 256, 265
setLogStream() method, DriverManager

interface, 530
setLogWriter() method, 530
setMaxWidth() method, 278
setMinWidth() method, 278
setModel() method, JTree class, 353
setNodeName() method, Node interface, 603
setNodeValue() method, Node interface,

603–4
setOpaque() method, GridBagLayout class,

214
setOrientation() method, 466
setPage() method, 475–76
setPaper() method, 466
setParent() method, MutableTreeNode

interface, 341–42
setPreferredWidth() method, 278
setPriority() method, Thread class, 109
setRoot() method

DefaultTreeModel interface, 355
TreeModel interface, 354

setRootVisible() method, JTree class, 332

setRows() method, GridLayout class, 203
setRowSelectionAllowed() method, JTable

class, 296
setRowSelectionInterval() method, JTable

class, 301
setSelectionInterval() method, TreeNode

class, 377
setSelectionMode() method

ListSelectionModel interface, 298
TreeSelectionModel class, 373

setSelectionModel() method, JTree class, 373
setSelectionPaths() method, TreePath class,

377
setShowsRootHandles() method, JTree class,

370
setSize() method, Component class, 194,

256, 265, 465
setSleepScheduled() method, 128
setText() method

JLabel class, 285
String class, 556

setToolTipText() method, JComponent class,
304

setTransactionIsolation() method,
Connection class, 523

setUncaughtExceptionHandler() method,
Thread class, 147

setURL() method, PreparedStatement
interface, 505

setUserObject() method, MutableTreeNode
interface, 340–41, 343

setValue() method
Attr interface, 608–9
DefaultTableCellRenderer class, 285

setValueAt() method
TableModel class, 292–93, 317
TableValues class, 295

setVgap() method, GridLayout class, 203
setVisible() method, Component class, 256
setWidth() method, 278
SGML (Standard Generalized Markup

Language), 587
shallow copy, 605
SHORT constant, 543–44
short element style, 551
shouldPaintExpandControlMethod()

method, BasicTreeUI class, 370
shouldSelectCell() method, CellEditor class,

292
show() method, CardLayout class, 196
–showversion command, 17
Simple API for XML (SAX), 598, 600, 613, 629
SimpleDoc class, 459
SINGLE_INTERVAL_SELECTION constant,

298
SINGLE_SELECTION constant, 298

■INDEX 689

SINGLE_TREE_SELECTION class, 377
SINGLE_TREE_SELECTION constant, 373
size() method, Collection interface, 156
sleep() method, Thread class, 90, 124, 128,

131, 134, 144, 147, 149
sleepScheduled flag, 128
SMALLINT data type, 503
SocketException class, 65
sort() method, Collections class, 563
sort model, 316
sortRows() method, 316
–source command, 16, 84, 158
Source interface, 629
source model, 316
SOURCE retention policy, 651
–sourcepath command, 16
SOUTH constant, 208–10, 227
SOUTHEAST constant, 227
SOUTHWEST constant, 227
splitText() method, Text interface, 611–12
SQL (Structured Query Language), 477–79,

481, 496–501, 503, 505–7, 521, 527–31
SQL standards, and versions of JDBC, 479
SQL*Plus, 481
SQL2 standard, 479
SQL3 standard, 479, 505–6
SQLException class, 72–73, 75–77, 520,

526–29
SQLState value, 526–27
SQLWarning, 529–30
–ss command-line option, 7
Stack class, 154, 168, 185, 189
StackOverflowError exception, 7
StackTrace class, 78
standalone attribute, 596
Standard Generalized Markup Language

(SGML), 587
start() method, Thread class, 92, 123
startDrag() method, DragGestureEvent class,

425–30
startEditing() method, BasicTreeUI class,

362–63
Stateless annotation, 658
Statement interface, 83, 477, 496–99, 509,

515, 529, 531
addBatch(), 497–98
CallableStatement, 500–502
execute(), 497
executeBatch(), 497–98
executeQuery(), 497
executeUpdate(), 496–97
ParameterMetaData, 502
PreparedStatement, 498–500

stop() method
Thread class, 139
ThreadGroup class, 143

stopCellEditing() method, CellEditor class,
292, 364

StreamResult class, 629
StreamSource interface, 629
StringBuffer class, 46, 48–49, 609
stringFlavor constant, 403, 440
StringReader class, 444
StringSelection class, 387, 403, 411, 440–41,

443–44
strong cohesion, 38–41
STRUCT data type, 503, 506–7
Structured Query Language (SQL), 477–79,

481, 496–501, 503, 505–7, 521, 527–31
StyledDocument class, 386
substringData() method, CharacterData

class, 609
Sun Microsystems, 1, 3–4
super_class item, 14
superclass, choosing for custom exception

class, 65–68
supportedAnnotationTypes() method,

AnnotationProcessorFactory
interface, 659–61

supportedOptions() method,
AnnotationProcessorFactory
interface, 661

supportsOuterJoins() method,
DatabaseMetaData interface, 488

supportsResultSetConcurrency() method,
DatabaseMetaData interface, 508

supportsResultSetType() method,
DatabaseMetaData interface, 508

supportsTransactionIsolationLevel()
method, DatabaseMetaData
interface, 522

SuppressWarnings annotation, 640, 642–46
suspend() method

Thread class, 139
ThreadGroup class, 143

Swing. See JTable; JTree
SwingUtilities class, 95, 119
switch statement, 645
Sybase, 477, 524
SychronousQueue class, 189
synchronization, 154
synchronized keyword, 101–2, 104
SynchronousQueue class, 187
System class, 8, 75, 111, 184, 530
system clipboard, 384–85
SystemFlavorMap class, 439

■T
TableCellEditor class, 364
TableCellEditor interface, 291, 362
TableCellRenderer interface, 282, 285, 291–92
tableChanged() method, TableModelEvent

class, 325

■INDEX690

TableColumn class, 278, 286, 291, 302, 304,
313

TableColumnModel interface, 278, 296, 302,
313

TableModel class, 270–71, 273–75, 278,
286–87, 291–93, 295, 313, 316,
322–23, 325, 327

TableModelEvent class, 325–26
tables. See JTable
TableValues class, 274, 286, 292, 295, 303,

316, 321, 323
tags, 589
Target annotation, 648–52
Target class, 649–50
TERTIARY constant, 563–64
Test interface, 666
text comparisons and sorting

collator strength, 563–64
decomposition mode, 564–65
overview, 562–63

text data, parsing
BreakIterator, 556–62
overview, 556

Text interface, 602–3, 607, 609–12, 623, 625
TEXT_HTML inner class, 451
TEXT_HTML_HOST inner class, 450
TEXT_HTML_US_ASCII inner class, 451
TEXT_HTML_UTF_8 inner class, 451
TEXT_HTML_UTF_16 inner class, 451
TEXT_HTML_UTF_16BE inner class, 451
TEXT_HTML_UTF_16LE inner class, 451
TEXT_NODE constant, 601
TEXT_PLAIN inner class, 451
TEXT_PLAIN_HOST inner class, 451
TEXT_PLAIN_US_ASCII inner class, 451
TEXT_PLAIN_UTF_8 inner class, 451
TEXT_PLAIN_UTF_16 inner class, 451
TEXT_PLAIN_UTF_16BE inner class, 451
TEXT_PLAIN_UTF_16LE inner class, 451
textNonSelectionColor property,

DefaultTreeCellRender interface, 356
textSelectionColor property,

DefaultTreeCellRender interface, 356
this keyword, 337
this_class parameter, 14
Thread class, 90, 92–93, 109, 123–24, 134, 139,

143–44, 146–47, 150
Thread safety, 95
ThreadGroup class, 93, 143–47
threading, 14
threads

adding to applications, 111–20
concurrency utilities, 149–50
context switching, 96
controlling, 120–23

interrupting threads, 134–36

making thread stop executing, 124–28
resuming threads, 131–32
starting a thread, 123–24
stopping threads, 132–34
suspending threads, 128–31

cooperative multitasking, 97
creating, 92–93
daemon threads, 110–11
deprecated methods in, 139–40
disadvantages of using, 94–96
overview, 89–91
preemptive multitasking, 97
priorities, 109–10
race condition, 98
synchronizing use of shared resources,

101–8
deadlocks, 105–8
nested calls to synchronized methods

and code blocks, 104
synchronized blocks vs. methods, 104–5

ThreadGroup class, 143–46
uncaught exceptions, 146–47
voluntarily relinquishing the processor,

147–49
Throwable class, 146
TIME data type, 503, 505–6
time element format, 551
Timer class, 22
times, formatting and parsing, 546
TIMESTAMP data type, 503, 505–6
TINYINT data type, 503
toBinaryString() method, 386
toHexString() method, 386
Tomcat, deploying calculator Servlet to, 302
Toolkit class, 384, 387
tools.jar file, 665
toString() method, 52–53, 620

Object class, 333–34, 356, 359
String class, 285, 289, 386

toUpperCase() method, 74
TRANSACTION_READ_COMMITTED

constant, 523
TRANSACTION_READ_UNCOMMITTED

constant, 523
TRANSACTION_REPEATABLE_READ

constant, 523
TRANSACTION_SERIALIZABLE constant,

523
transactions, JDBC

overview, 517–18, 520
read-only, 521–24
savepoints, 520–21

Transferable interface, 385–88, 395–96,
399–400, 402–3, 409, 416, 420, 426,
428, 435, 438–41, 443

■INDEX 691

Transformer interface, javax.xml.transform
package, 629

TransformerFactory class,
javax.xml.transform package, 629

translate() method, 471
tree nodes. See JTree
TreeCellEditor class, 364, 366
TreeCellEditor interface, 362, 364
TreeCellRenderer class, 364
TreeCellRenderer interface, 355, 357, 359, 365
treeCollapsed() method,

TreeExpansionListener interface, 381
treeExpanded() method,

TreeExpansionListener interface, 381
TreeExpansionEvent class, 380–82
TreeExpansionListener

overview, 380
treeCollapsed(), 381
treeExpanded(), 381

TreeExpansionListener interface, 381
TreeMap class, 179–80, 182, 185, 189
TreeModel

addTreeModelListener(), 335
getChild(), 335
getChildCount(), 335
getIndexOfChild(), 336
getRoot(), 335
isLeaf(), 336
overview, 335
removeTreeModelListener(), 335
valueForPathChanged(), 336

TreeModel interface, 334–40, 351, 353, 364,
367

TreeModelEvent
getChildIndices(), 353
getChildren(), 352
getTreePath(), getPath(), 352
overview, 352

TreeModelEvent class, 353–54
TreeModelListener

overview, 351
treeNodesChanged(), 351–52
treeNodesInserted(), 352
treeNodesRemoved(), 352
treeStructureChanged(), 352

TreeModelListener interface, 335, 352, 354
TreeNode

children(), 338
getAllowsChildren(), 338
getChildAt(), 337
getChildCount(), 337
getIndex(), 338
getParent(), 338
isLeaf(), 338
overview, 336–37

TreeNode class, 353, 377

TreeNode interface, 336–40, 342, 344–45, 355
treeNodesChanged() method,

TreeModelListener interface, 351–52,
353

treeNodesInserted() method,
TreeModelListener interface, 352–53

treeNodesRemoved() method,
TreeModelListener interface, 352–53

TreePath class, 349, 351–52, 355, 377, 379–82
TreePath interface, 336, 350
TreeSelectionEvent

getNewLeadSelectionPath(), 377
getOldLeadSelectionPath(), 377
getPath(), 377
getPaths(), 377
isAddedPath(), 377
overview, 376

TreeSelectionEvent class, 377
TreeSelectionListener interface, 376
TreeSelectionModel class, 373
TreeSet class, 57, 179–80, 182, 185, 189–90

using Comparable interface, 173–75, 177
using Comparator interface, 176–77

treeStructureChanged() method,
TreeModelListener interface, 352

treeWillCollapse() method,
TreeWillExpandListener interface,
382

treeWillExpand() method,
TreeWillExpandListener interface,
382

TreeWillExpandListener
overview, 381–82
treeWillCollapse(), 382
treeWillExpand(), 382

try block, 72–75
try/catch block, 71–74, 76
TYPE constant, 649
TYPE_FORWARD_ONLY constant, 509
TYPE_SCROLL_INSENSITIVE constant, 509
TYPE_SCROLL_SENSITIVE constant, 509
type-1 JDBC driver, 481
type-2 JDBC driver, 481
TypeDeclaration class, 662–63
Types class, 501, 503

■U
u1 syntax, 13
u2 syntax, 13
u4 syntax, 13
UDT (User-Defined Type), 506
UIManager class, 369
unboxing, 154, 158, 160
uncaughtException() method

ThreadGroup class, 146–47
UncaughtExceptionHandler interface, 147

■INDEX692

UncaughtExceptionHandler interface, 147
unchecked annotation, 644
Unicode, 441–44, 533, 564, 585
Uniform Resource Locator (URL), 313,

451–52, 483–84, 515, 589
Unix, 3
UNKNOWN_NUMBER_OF_PAGES constant,

475
UnsupportedFlavorException class, 387
UnsupportedOperationException exception,

155
UPDATE statement, 496–97, 517
updateRow() method, 512
URI, 620
URL (Uniform Resource Locator), 313,

451–52, 483–84, 515, 589
URL class, 450–51, 483
URL inner class, 450
User-Defined Type (UDT), 506
UTF-8 character set, 596

■V
value element, 642–43
valueChanged() method,

TreeSelectionListener interface, 376
valueForPathChanged() method

DefaultMutableTreeNode class, 368
TreeModel interface, 336, 354–55, 364

value-of instruction, 628, 630
values() method, Collection interface, 181
VARBINARY data type, 503
VARCHAR data type, 503
variable arguments, 60–62
Vector class, 55, 57, 102, 154, 168, 189, 331,

334–35, 349, 563, 593, 604, 614
–verbose command, 16–18
–verboseCOLgc command, 17
–verboseCOLjni commnd, 17
version attribute, 596
–version command, 17
VERTICAL constant, 222

■W
W3C (World Wide Web Consortium), 598, 627
wait() method, Thread class, 128–29, 131–32,

134, 144
waitForAll() method, MediaTracker class,

134
Weak reference, 183
WeakHashMap interface, 183–84, 189
weightx constraint, 229
weightx property, 231–34, 240
weighty constraint, 229
weighty property, 231, 233
WEST constant, 208–11, 227, 261

What-You-See-Is-What-You-Get (WYSIWYG),
462

WHERE clause, 507
Windows Explorer, 409
WORA (Write Once, Run Anywhere), 1
word iteration, 557
World Wide Web Consortium (W3C), 598, 627
Write Once, Run Anywhere (WORA), 1
Writer class, 629
WYSIWYG (What-You-See-Is-What-You-Get),

462
–X command, 16–17
–X option, 643

■X
X_AXIS constant, BoxLayout class, 246
X12 standard, 594
–XlintCOL-path option, 646
–XlintCOLunchecked option, 644
XML, 655

creating XML document
document components, 596–97
overview, 595–96
root elements, 596

editing documents with DOM
creating and adding new nodes, 623–26
creating new document, 626–27
overview, 621–23

vs. HTML
describing the data, 590
overview, 588–90
well-formed documents, 590–94

overview, 587–88
parsing and validation overview, 597–98
parsing with DOM implementation in

JAXP
Attr interface, 608–9
CDATASection interface, 612
CharacterData, 609–10
Comment interface, 612
Document interface, 605–6
DocumentFragment interface, 613–14
DocumentType interface, 614
Element interface, 607–8
Entity interface, 614–15
EntityReference interface, 613
Node interface, 601–5
Notation interface, 615
overview, 598–601
ProcessingInstruction interface, 613
Text interface, 610–12

transforming XML documents, 627–35
traversing a document with DOM, 615–21
when and why to use, 594

X/OPEN SQL, 526

■INDEX 693

XPath, 630–33
XSL (eXtensible Stylesheet Language), 594,

627, 629, 633
XSLT (eXtensible Stylesheet Language

Transformations), 587, 628–30, 634
xslt subdirectory, 630

■Y
Y_AXIS constant, BoxLayout class, 246
yield() method, Thread class, 147, 149

■Z
Z-order, 257, 259, 267

■INDEX694

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

