Rogers Cadenhead
Laura Lemay

SamsTeach Yourself

Java" 6

in 21 Days

SAMS ‘ 800 East 96th Street, Indianapolis, Indiana 46240

Sams Teach Yourself Java™ 6 in 21 Days
Copyright © 2007 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmit-
ted by any means, electronic, mechanical, photocopying, recording, or otherwise, without written per-
mission from the publisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation of this book, the pub-
lisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

International Standard Book Number-10: 0-672-32943-3

International Standard Book Number-13: 978-0-672-32943-2

Printed in the United States of America

First Printing: May 2007

10 09 08 07 4 3 21

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been appro-
priately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use of a term
in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no war-
ranty or fitness is implied. The information provided is on an “as is” basis. The author(s) and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any loss
or damages arising from the information contained in this book or from the use of the CD or pro-
grams accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales. For more information, please contact
U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com
For sales outside of the U.S., please contact
International Sales
international @pearsoned.com

Library of Congress Cataloging-in-Publication Data

Cadenhead, Rogers.
Sams teach yourself Java 6 in 21 days / Rogers Cadenhead, Laura Lemay.
p. cm.
Includes index.
ISBN 978-0-672-32943-2 (pbk. w/cd)
1. Java (Computer program language) I. Lemay, Laura. II. Title.

QA76.73.J38C333 2007
005.13'3--dc22
2007014568

Acquisitions Editor
Mark Taber

Development Editor
Songlin Qiu

Managing Editor
Patrick Kanouse

Project Editor
Mandie Frank

Copy Editor
Karen Annett

Indexer
WordWise Publishing
Services, LLC

Proofreader
Language Logistics,
LLC

Technical Editor
Adam DeFields

Publishing
Coordinator
Vanessa Evans

Multimedia
Developer
Dan Scherf

Designer
Gary Adair

Page Layout
Bronkella Publishing,
LLC

Contents at a Glance

Introduction

WEEK I: The Java Language

Getting Started with Java

The ABCs of Programming

Working with Objects

Lists, Logic, and Loops

Creating Classes and Methods

Packages, Interfaces, and Other Class Features

N 0O a0 R~ WON PR

Exceptions, Assertions, and Threads

WEEK II: The Java Class Library
8 Data Structures
9 Working with Swing
10 Building a Swing Interface
11 Arranging Components on a User Interface
12 Responding to User Input
13 Using Color, Fonts, and Graphics
14 Developing Swing Applications

WEEK lII: Java Programming
15 Working with Input and Output
16 Serializing and Examining Objects
17 Communicating Across the Internet
18 Accessing Databases with JDBC
19 Reading and Writing RSS Feeds
20 XML Web Services
21 Writing Java Servlets and Java Server Pages

Appendixes
A Using the Java Development Kit
B Programming with the Java Development Kit
C This Book’s Web Site
Index

Bonus Material on the Companion CD-ROM
CD1 Choosing Java
CD2 Writing Java Applets
CD3 Regular Expressions
CD4 Where to Go from Here: Java Resources

35
63
89
115
145
183

219
247
273
303
333
357
381

405
433
453
485
511
535
555

601
625
649
651

Table of Contents

Introduction
How This Book Is Organized
Who Should Read This Book

Conventions Used in This Book

WEEK I: The Java Language

DAY 1: Getting Started with Java
The Java Language
History of the Language
Introduction to Java
Selecting a Development Tool
Object-Oriented Programming
Objects and Classes
Attributes and Behavior
Attributes of a Class of Objects
Behavior of a Class of Objects
Creating a Class
Running the Program
Organizing Classes and Class Behavior
Inheritance
Creating a Class Hierarchy
Inheritance in Action
Single and Multiple Inheritance
Interfaces
Packages
Summary
Q&A
Quiz
Questions
Answers
Certification Practice

Exercises

[NS

10
10
11
11
12
14
17
17
18
19
21
24
24
26
28
29
30
30
31
31
32
32
32
32
33

DAY 2: The ABCs of Programming

Statements and Expressions
Variables and Data Types
Creating Variables
Naming Variables
Variable Types
Assigning Values to Variables
Constants
Comments
Literals
Number Literals
Boolean Literals
Character Literals
String Literals
Expressions and Operators
Arithmetic
More About Assignment
Incrementing and Decrementing
Comparisons
Logical Operators
Operator Precedence
String Arithmetic
Summary
Q&A
Quiz
Questions
Answers
Certification Practice

Exercises

DAY 3: Working with Objects

Creating New Objects
Using new
What new Does
A Note on Memory Management

35
36
36
37
39
39
41
41
43
44
45
46
46
47
48
49
51
52
53
54
55
57
58
59
60
60
60
60
61

63
64
64
66
66

Vi

Sams Teach Yourself Java 6 in 21 Days

Accessing and Setting Class and Instance Variables
Getting Values
Changing Values
Class Variables
Calling Methods
Nesting Method Calls
Class Methods
References to Objects
Casting and Converting Objects and Primitive Types
Casting Primitive Types
Casting Objects
Converting Primitive Types to Objects and Vice Versa
Comparing Object Values and Classes
Comparing Objects
Determining the Class of an Object
Summary
Q&A
Quiz
Questions
Answers
Certification Practice

Exercises

DAY 4: Lists, Logic, and Loops

Arrays
Declaring Array Variables
Creating Array Objects
Accessing Array Elements
Changing Array Elements
Multidimensional Arrays

Block Statements

if Conditionals

switch Conditionals

for Loops

67
67
68
69
70
72
73
74
76
77
78
80
82
82
84
84
85
86
86
86
86
87

89
90
90
91
92
93
95
96
97
98

104

while and do Loops
while Loops
do-while Loops
Breaking Out of Loops
Labeled Loops
The Conditional Operator
Summary
Q&A
Quiz
Questions
Answers
Certification Practice

Exercises

DAY 5: Creating Classes and Methods
Defining Classes
Creating Instance and Class Variables
Defining Instance Variables
Class Variables
Creating Methods
Defining Methods
The this Keyword
Variable Scope and Method Definitions
Passing Arguments to Methods
Class Methods
Creating Java Applications
Helper Classes
Java Applications and Command-line Arguments
Passing Arguments to Java Applications
Handling Arguments in Your Java Application
Creating Methods with the Same Name, Different Arguments
Constructor Methods
Basic Constructor Methods
Calling Another Constructor Method
Overloading Constructor Methods

Contents

107
107
109
109
110
110
112
112
112
112
113
113
114

115
116
116
116
117
117
118
120
121
122
123
124
125
126
126
127
128
132
133
133
134

vii

viii Sams Teach Yourself Java 6 in 21 Days

Overriding Methods
Creating Methods That Override Existing Methods
Calling the Original Method
Overriding Constructors
Finalizer Methods
Summary
Q&A
Quiz
Questions
Answers
Certification Practice

Exercises

DAY 6: Packages, Interfaces, and Other Class Features

Modifiers

Access Control for Methods and Variables
Static Variables and Methods
Final Classes, Methods, and Variables

Variables

Methods

Classes
Abstract Classes and Methods
Packages
Using Packages

Full Package and Class Names

The import Declaration

Class Name Conflicts

A Note About Classpath and Where Classes Are Located
Creating Your Own Packages

Picking a Package Name

Creating the Folder Structure

Adding a Class to a Package

Packages and Class Access Control
Interfaces

The Problem of Single Inheritance

Interfaces and Classes

136
136
137
138
140
141
141
142
142
143
143
144

145
146
146
152
154
155
155
156
156
157
157
158
159
160
161
162
162
162
163
163
164
164
164

Implementing and Using Interfaces
Implementing Multiple Interfaces
Other Uses of Interfaces
Creating and Extending Interfaces
New Interfaces
Methods Inside Interfaces
Extending Interfaces
Creating an Online Storefront
Inner Classes
Summary
Q&A
Quiz
Questions
Answers
Certification Practice

Exercises

DAY 7: Exceptions, Assertions, and Threads

Exceptions
Exception Classes

Managing Exceptions
Exception Consistency Checking
Protecting Code and Catching Exceptions
The finally Clause

Declaring Methods That Might Throw Exceptions
The throws Clause
Which Exceptions Should You Throw?
Passing On Exceptions
throws and Inheritance

Creating and Throwing Your Own Exceptions
Throwing Exceptions
Creating Your Own Exceptions

Combining throws, try, and throw

Contents

165
165
166
166
166
167
168
169
175
177
178
179
179
179
179
181

183
184
186
187
188
188
190
193
193
194
195
196
197
197
198
199

ix

Sams Teach Yourself Java 6 in 21 Days

When and When Not to Use Exceptions 200
When to Use Exceptions 200
When Not to Use Exceptions 200
Bad Style Using Exceptions 201

Assertions 202

Threads 205
Writing a Threaded Program 206
A Threaded Application 207
Stopping a Thread 211

Summary 212

Q&A 213

Quiz 214
Questions 214
Answers 215
Certification Practice 215

Exercises 216

WEEK II: The Java Class Library

DAY 8: Data Structures 219
Moving Beyond Arrays 220
Java Structures 220

Iterator 222
Bit Sets 223
Vectors 226
Looping Through Data Structures 229
Stacks 232
Map 233
Hash Tables 235
Generics 240
Summary 243
Q&A 244
Quiz 244
Questions 244
Answers 245
Certification Practice 245

Exercises 246

DAY 9: Working with Swing
Creating an Application
Creating an Interface
Developing a Framework
Displaying a Splash Page
Creating a Component
Adding Components to a Container
Working with Components
Image Icons
Labels
Text Fields
Text Areas
Scrolling Panes
Check Boxes and Radio Buttons
Combo Boxes
Lists
Summary
Q&A
Quiz
Questions
Answers
Certification Practice

Exercises

DAY 10: Building a Swing Interface

Swing Features
Setting the Look and Feel
Standard Dialog Boxes
Using Dialog Boxes
Sliders
Scroll Panes
Toolbars
Progress Bars
Menus
Tabbed Panes

Contents

247
248
249
251
253
253
254
256
257
259
259
260
262
263
266
267
269
270
270
270
271
271
272

273
274
274
271
282
285
287
288
291
293
297

Xi

Xii Sams Teach Yourself Java 6 in 21 Days

Summary 298
Q&A 299
Quiz 299
Questions 299
Answers 300
Certification Practice 300
Exercises 301
DAY 11: Arranging Components on a User Interface 303
Basic Interface Layout 304
Laying Out an Interface 304

Flow Layout 305

Box Layout 307

Grid Layout 309
Border Layout 311
Mixing Layout Managers 312
Card Layout 313
Using Card Layout in an Application 315

Grid Bag Layout 321
Designing the Grid 323
Creating the Grid 324

Cell Padding and Insets 329
Summary 329
Q&A 330
Quiz 331
Questions 331
Answers 331
Certification Practice 331
Exercises 332
DAY 12: Responding to User Input 333
Event Listeners 334
Setting Up Components 335

Event-Handling Methods 336

Working with Methods
Action Events
Focus Events
Item Events
Key Events
Mouse Events
Mouse Motion Events
Window Events
Using Adapter Classes
Summary
Q&A
Quiz
Questions
Answers
Certification Practice

Exercises

DAY 13: Using Color, Fonts, and Graphics
The Graphics2D Class
The Graphics Coordinate System
Drawing Text
Improving Fonts and Graphics with Antialiasing
Finding Information About a Font
Color
Using Color Objects
Testing and Setting the Current Colors
Drawing Lines and Polygons
User and Device Coordinate Spaces
Specitying the Rendering Attributes
Creating Objects to Draw
Drawing Objects
Summary
Q&A

Contents

338
339
340
342
344
345
345
349
350
351
352
353
353
353
353
355

357
358
359
360
362
363
365
366
366
368
368
368
371
375
378
378

Xiii

Xiv Sams Teach Yourself Java 6 in 21 Days

Quiz
Questions
Answers
Certification Practice

Exercises

DAY 14: Developing Swing Applications
Java Web Start
Using Java Web Start
Creating a JNLP File
Supporting Web Start on a Server
Additional JNLP Elements
Improving Performance with SwingWorker
Summary
Q&A
Quiz
Questions
Answers
Certification Practice

Exercises

WEEK IlIl: Java Programming

DAY 15: Working with Input and Output
Introduction to Streams
Using a Stream
Filtering a Stream
Handling Exceptions
Byte Streams
File Streams
Filtering a Stream
Byte Filters
Character Streams
Reading Text Files
Writing Text Files

379
379
379
379
380

381
382
385
386
391
392
394
399
400
400
400
401
401
402

405
406
406
407
408
408
408
413
413
422
422
425

Files and Filename Filters
Summary
Q&A
Quiz
Questions
Answers
Certification Practice

Exercises

DAY 16: Serializing and Examining Objects
Object Serialization
Object Output Streams
Object Input Streams
Transient Variables
Checking an Object’s Serialized Fields
Inspecting Classes and Methods with Reflection
Inspecting and Creating Classes
Working with Each Part of a Class
Inspecting a Class
Summary
Q&A
Quiz
Questions
Answers
Certification Practice

Exercises

DAY 17: Communicating Across the Internet
Networking in Java
Opening a Stream over the Net
Sockets
Socket Servers
Testing the Server
The java.nio Package
Buffers

Channels

Contents

426
429
430
431
431
431
432
432

433
434
435
438
441
442
443
443
445
447
449
449
450
451
450
451
452

453
454
454
459
463
466
467
467
471

XV

XVi Sams Teach Yourself Java 6 in 21 Days

Summary

Q&A

Quiz
Questions
Answers
Certification Practice

Exercises

DAY 18: Accessing Databases with JDBC
Java Database Connectivity
Database Drivers
The JDBC-ODBC Bridge
Connecting to an ODBC Data Source
JDBC Dirivers
Summary
Q&A
Quiz
Questions
Answers
Certification Practice

Exercises

DAY 19: Reading and Writing RSS Feeds
Using XML
Designing an XML Dialect
Processing XML with Java
Processing XML with XOM
Creating an XML Document
Modifying an XML Document
Formatting an XML Document
Evaluating XOM
Summary
Q&A
Quiz
Questions
Answers
Certification Practice

Exercises

481
481
482
482
482
483
483

485
486
487
487
489
502
507
508
508
508
509
509
510

511
512
515
516
516
518
521
525
528
530
531
531
531
532
532
533

DAY 20: XML Web Services

Introduction to XML-RPC
Communicating with XML-RPC
Sending a Request
Responding to a Request
Choosing an XML-RPC Implementation
Using an XML-RPC Web Service
Creating an XML-RPC Web Service
Summary
Q&A
Quiz
Questions
Answers
Certification Practice

Exercises

DAY 21: Writing Java Servlets and Java Server Pages

Using Servlets
Developing Servlets
Using Cookies
Using Sessions
JSP
Writing a JSP Page
Creating a Web Application
JSP Standard Tag Library
Summary
Q&A
Quiz
Questions
Answers
Certification Practice

Exercises

Appendixes

APPENDIX A: Using the Java Development Kit

Choosing a Java Development Tool

Installing the Java Development Kit

Contents

535
536
537
538
539
540
542
546
551
551
552
552
552
552
553

555
556
559
565
568
572
574
581
587
594
595
596
596
596
597
597

601
602
603

Xvii

Xviii Sams Teach Yourself Java 6 in 21 Days

Configuring the Java Development Kit
Using a Command-line Interface
Opening Folders in MS-DOS
Creating Folders in MS-DOS
Running Programs in MS-DOS
Correcting Configuration Errors
Using a Text Editor
Creating a Sample Program
Compiling and Running the Program in Windows
Setting Up the CLASSPATH Variable
Setting the CLASSPATH on Windows 98 or Me
Setting the Classpath on Windows NT, XP, 2000 or 2003

Troubleshooting Your Kit Installation

APPENDIX B: Programming with the Java Development Kit
An Overview of the JDK
The java Interpreter
The javac Compiler
The appletviewer Browser
The javadoc Documentation Tool
The jar Java File Archival Tool
The jdb Debugger
Debugging Applications
Debugging Applets
Advanced Debugging Commands
Using System Properties

APPENDIX C: This Book’s Website

Index

Bonus Material on the Companion CD-ROM
CD1 Choosing Java

CD2 Writing Java Applets

CD3 Regular Expressions

CD4 Where to Go from Here: Java Resources

605
606
607
608
609
611
615
616
618
620
620
622
624

625
626
627
629
630
635
639
641
641
643
644
645

649

651

About the Authors

Rogers Cadenhead is a web application developer and author. He has written 22 books
on Internet-related topics, including Sams Teach Yourself Java in 24 Hours. He’s also a
web publisher whose sites receive more than 24 million visits per year. He maintains this
book’s official website at http://www.java21days.com and a personal weblog at
http://www.cadenhead.org.

Laura Lemay is a technical writer and author. After spending six years writing software
documentation for various computer companies in Silicon Valley, she decided that writ-
ing books would be much more fun. In her spare time, she collects computers, email
addresses, interesting hair colors, and nonrunning motorcycles. She is also the perpetra-
tor of Sams Teach Yourself Web Publishing with HTML in a Week and Sams Teach
Yourself Perl in 21 Days and a personal weblog at http://blog.lauralemay.com

Dedication

To my sons Max, Eli, and Sam Cadenhead. I am extremely proud to be your dad,
no matter what you tell your mother about my cooking.
—Rogers

To Eric, for all the usual reasons (moral support, stupid questions,
comfort in dark times, brewing big pots of coffee).
—LL

Acknowledgments

From Rogers Cadenhead:

A book of this scope (and heft!) requires the hard work and dedication of numerous peo-
ple. Most of them are at Sams Publishing in Indianapolis, and to them I owe considerable
thanks—in particular, to Karen Annett, Adam DeFields, Mandie Frank, Songlin Qiu,
Mark Taber, and former Sams editor, Scott Meyers. Thanks also to my agent at Studio B,
Laura Lewin. Most of all, thanks to my wife and sons.

I’d also like to thank readers who have sent helpful comments about corrections, typos,
and suggested improvements regarding this book and its prior editions. The list includes
the following people: Dave Barton, Patrick Benson, Ian Burton, Lawrence Chang, Jim
DeVries, Ryan Esposto, Kim Farr, Sam Fitzpatrick, Bruce Franz, Owen Gailar, Rich
Getz, Bob Griesemer, Jenny Guriel, Brenda Henry-Sewell, Ben Hensley, Jon Hereng,
Drew Huber, John R Jackson, Bleu Jaegel, Natalie Kehr, Mark Lehner, Stephen
Loscialpo, Brad Kaenel, Chris McGuire, Paul Niedenzu, E.J. O’Brien, Chip Pursell,
Pranay Rajgarhia, Peter Riedlberger, Darrell Roberts, Luke Shulenburger, Mike Tomsic,
John Walker, Joseph Walsh, Mark Weiss, P.C. Whidden, Chen Yan, Kyu Hwang Yeon,
and J-F. Zurcher.

From Laura Lemay:

To the folks on Sun’s Java team, for all their hard work on Java, the language, and on the
browser, and particularly to Jim Graham, who demonstrated Java and HotJava to me on
very short notice and planted the idea for this book. To everyone who bought my previ-
ous books and liked them: Buy this one, too.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.

E-mail: webdev@samspublishing.com

Mail: Mark Taber
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at www.samspublishing.com/register for conve-
nient access to any updates, downloads, or errata that might be available for this book.

Introduction

Some revolutions catch the world completely by surprise. The World Wide Web, the
Linux operating system, and social networking all rose to prominence unexpectedly.

The remarkable success of the Java programming language, on the other hand, caught no
one by surprise. Java has been the source of great expectations since its introduction a
decade ago. When Sun Microsystems launched Java by incorporating it into web
browsers, a torrent of publicity welcomed the arrival of the new language.

Sun cofounder Bill Joy didn’t hedge his bets at all when describing the company’s new
language. “This represents the end result of nearly 15 years of trying to come up with a
better programming language and environment for building simpler and more reliable
software,” he proclaimed.

In the ensuing years, Java lived up to a considerable amount of its hype. The language
has become as strong a part of software development as the beverage of the same name.
One kind of Java keeps programmers up nights. The other kind enables programmers to
rest easier after they have developed their software.

Java was originally offered as a technology for enhancing websites with programs that
run in web browsers. Today, it’s more likely to be found on servers, driving dynamic web
applications backed by relational databases on some of the Web’s largest sites.

Each new release of Java strengthens its capabilities as a general-purpose programming
language for environments other than a web browser. Today, Java is being put to use in
desktop applications, Internet servers, personal digital assistants, embedded devices, and
many other environments.

Now in its seventh major release—Java 6—the Java language has matured into a full-fea-
tured competitor to other general-purpose development languages, such as C++, Perl,
Python, Ruby, and Visual Basic.

You might be familiar with Java programming tools, such as Eclipse, Borland JBuilder,
and the NetBeans Integrated Development Environment. These programs make it possi-
ble to develop functional Java programs, and you also can use Sun’s Java Development
Kit. The kit, which is available for free on the Web at http://java.sun.com, is a set of
command-line tools for writing, compiling, and testing Java programs.

Sams Teach Yourself Java 6 in 21 Days

In Sams Teach Yourself Java 6 in 21 Days, you are introduced to all aspects of Java soft-
ware development using the most current version of the language and the best available
techniques.

By the time you’re finished, you’ll be well acquainted with the reasons Java has become
the most widely adopted programming language of the past decade.

How This Book Is Organized

Sams Teach Yourself Java 6 in 21 Days teaches you about the Java language and how to
use it to create applications for any computing environment and servlets that run on web
servers. By the time you have finished the book, you’ll have a well-rounded knowledge
of Java and the Java class libraries. Using your new skills, you will be able to develop
your own programs for tasks such as web services, database connectivity, XML process-
ing, and client/server programming.

You learn by doing in this book, creating several programs each day that demonstrate the
topics being introduced. The source code for all these programs is available on the
book’s official website at http://www.java21days.com, along with other supplemental
material such as answers to reader questions.

This book covers the Java language and its class libraries in 21 days, organized as three
separate weeks. Each week covers a broad area of developing Java applets and applica-
tions.

In the first week, you learn about the Java language itself:

m Day 1 covers the basics—what Java is, why to learn the language, and how to cre-
ate software using an innovative style of development called object-oriented pro-
gramming. You create your first Java application.

® On Day 2, you dive into the fundamental Java building blocks—data types, vari-
ables, and expressions.

m Day 3 goes into detail about how to deal with objects in Java—how to create them,
use their variables, call their methods, and compare them.

® On Day 4, you give Java programs cognitive skills using conditionals and work
with arrays and loops.

m Day 5 fully explores the creation of classes—the basic building blocks of any Java
program.

® On Day 6, you discover more about interfaces and packages, which are useful for
grouping classes and organizing a class hierarchy.

Introduction

m Day 7 covers three powerful features of Java—exceptions, the ability to deal with
errors; threads, the ability to run parts of a program simultaneously; and assertions,
a technique for making programs more reliable.

Week 2 is dedicated to the most useful classes created by Sun for use in your own Java
programs:

® On Day 8§, you are introduced to data structures that you can use as an alternative
to strings and arrays—vectors, stacks, maps, hash tables, and bit sets—and a spe-
cial for loop that makes them easier to use.

m Day 9 begins a 5-day exploration of visual programming. You learn how to create
a graphical user interface using Swing, an extensive set of classes for interfaces,
graphics, and user interactions.

m Day 10 covers more than a dozen interface components that you can use in a Java
program, including buttons, text fields, sliders, scrolling text areas, and icons.

m Day 11 explains how to make a user interface look good using layout managers, a
set of classes that determine how components on an interface are arranged.

m Day 12 concludes the coverage of Swing with event-handling classes, which
enable a program to respond to mouse clicks and other user interactions.

® On Day 13, you learn about drawing shapes and characters on a user interface
component such as an applet window.

m Day 14 demonstrates how to use Java Web Start, a technique that makes installa-
tion of a Java program as easy as clicking on a web page link, and SwingWorker, a
class that improves application performance by using threads.

Week 3 moves into advanced topics:

m Day 15 covers input and output using streams, a set of classes that enable file
access, network access, and other sophisticated data handling.

m Day 16 introduces object serialization, a way to make objects exist even when no
program is running. You learn to save them to a storage medium, such as a hard
disk, read them into a program, and then use them again as objects.

® On Day 17, you extend your knowledge of streams to write programs that commu-
nicate with the Internet, including socket programming, buffers, channels, and
URL handling.

m Day 18 shows how to connect to relational databases using Java Database
Connectivity (JDBC) and JDBC-ODBC. You learn how to exploit the capabilities
of Derby, the open source database that’s included for the first time in Java 6.

Sams Teach Yourself Java 6 in 21 Days

® Day 19 covers how to read and write RSS documents using the XML Object
Model (XOM), an open source Java class library. RSS feeds, one of the most popu-
lar XML dialects in use today, enable millions of people to follow site updates and
other new web content.

m Day 20 explores how to write web services clients with the language and the
Apache XML-RPC class library.

m Day 21 covers two of the hottest areas in Java programming: servlets and Java
Server Pages, techniques for writing Java applications that are run by web servers.

Who Should Read This Book

This book teaches the Java language to three groups:

m Novices who are relatively new to programming

m People who have been introduced to earlier versions of Java such as Java version
1.50r 1.4

m Experienced developers in other languages, such as Visual C++, Visual Basic, or
Python

When you’re finished with this book, you’ll be able to tackle any aspect of the Java lan-
guage and be comfortable enough to tackle your own ambitious programming projects—
both on and off the Web.

If you’re somewhat new to programming or have never written a program before, you
might wonder whether this is the right book for you. Because all the concepts in this
book are illustrated with working programs, you’ll be able to work your way through the
subject regardless of your experience level. If you understand what variables, loops, and
operators are, you’ll be able to benefit from this book. You are among those who might
want to read this book if any of the following rings true:

® You had some BASIC or Pascal in school, have a grasp of what programming is,
and you’ve heard Java is easy to learn, powerful, and cool.

® You've programmed in another language for a few years, keep hearing accolades
for Java, and want to see whether it lives up to its hype.

® You’ve heard that Java is great for web application and web services programming.

Introduction

If you have never been introduced to object-oriented programming, which is the style of
programming embodied by Java, don’t be discouraged. This book assumes that you have
no background in object-oriented design—you get a chance to learn this development
methodology as you’re learning Java.

If you’re a complete beginner to programming, this book might move a little fast for you.
Java is a good language to start with, though, and if you take it slowly and work through
all the examples, you can still pick up Java and start creating your own programs.

Conventions Used in This Book

NOTE A Note presents interesting, sometimes technical, pieces of infor-
mation related to the surrounding discussion.

TIP A Tip offers advice such as an easier way to do something.

CAUTION A Caution advises you of potential problems and helps you to
steer clear of disaster.

Text that you type and text that should appear on your screen is presented in monospace
type:
It will look like this.

This font mimics the way text looks on your screen. Placeholders for variables and
expressions appear in monospace italic.

The end of each lesson offers several special features: answers to commonly asked ques-
tions about that day’s subject matter, a chapter-ending quiz to test your knowledge of the
material, two exercises that you can try on your own, and a practice question for readers
preparing for Java certification. Solutions to the exercises and the answer to the certifica-
tion question can be found on the book’s official website at http://www.java21days.com.

WEEK 1:
The Java Language

o o &~ 0N PR

Getting Started with Java

The ABCs of Programming
Working with Objects

Lists, Logic, and Loops
Creating Classes and Methods

Packages, Interfaces, and Other Class
Features

Exceptions, Assertions, and Threads

DAY 1:
Getting Started with
Java

The thing that Java tries to do and is actually remarkably
successful at is spanning a lot of different domains, so you can do
app server work, you can do cell phone work, you can do scientific
programming, you can write software, do interplanetary navigation,
all kinds of stuff...

—Java language creator James Gosling, interviewed by
SearchWebServices.com

When Sun Microsystems first released the Java programming language in
1995, it was an inventive toy for the Web that had the potential to be
much more.

The word “potential” is a compliment that comes with an expiration date.
Sooner or later, potential must be realized or new words are used in its
place such as “letdown,” “waste,” and “major disappointment to your
mother and I.”

As you develop your skills during the 21 one-day tutorials in Sams Teach
Yourself Java 6 in 21 Days, Fifth Edition, you'll be in a good position to
judge whether the language has lived up to a decade of hype.

You'll also become a Java programmer with a lot of potential.

10

DAY 1: Getting Started with Java

The Java Language

Now in its seventh major release, Java has lived up to the expectations that accompanied
its arrival. More than 3.5 million programmers have learned the language and are using it
in places such as NASA, IBM, Kaiser Permanente, and the Apache Project. It’s a stan-
dard part of the academic curriculum at many computer science departments around the
world. First used to create simple programs on web pages, Java can be found today in
each of the following places and many more:

m Web servers

m Relational databases

m Orbiting telescopes

m Personal digital assistants
]

Cellular phones

Although Java remains useful for web developers trying to enliven sites and create web
applications, it extends far beyond the Web. Java is now a popular general-purpose pro-
gramming language.

History of the Language

The story of the Java language is well known by this point. James Gosling and other
developers at Sun were working on an interactive TV project in the mid-1990s when
Gosling became frustrated with the language being used—C++, an object-oriented pro-
gramming language developed by Bjarne Stroustrup at AT&T Bell Laboratories 10 years
earlier as an extension of the C language.

Gosling holed up in his office and created a new language that was suitable for his pro-
ject and addressed some of the things that frustrated him about C++.

Sun’s interactive TV effort failed, but its work on the language had unforeseen applica-
bility to a new medium that was becoming popular at the same time: the Web.

Java was released by Sun in fall 1995. Although most of the language’s features were
primitive compared with C++ (and Java today), Java programs called applets could be
run as part of web pages on the Netscape Navigator browser.

This functionality—the first interactive programming available on the Web—helped pub-
licize the new language and attract several hundred thousand developers in its first six
months.

The Java Language

Even after the novelty of Java web programming wore off, the overall benefits of the lan-
guage became clear, and the programmers stuck around. There are more professional
Java programmers today than C++ programmers.

Introduction to Java

Java is an object-oriented, platform-neutral, secure language designed to be easier to
learn than C++ and harder to misuse than C and C++.

Object-oriented programming (OOP) is a software development methodology in which a
program is conceptualized as a group of objects that work together. Objects are created
using templates called classes, and they contain data and the statements required to use
that data. Java is completely object-oriented, as you’ll see later today when you create
your first class and use it to create objects.

Platform neutrality is the ability of a program to run without modification in different
computing environments. Java programs are compiled into a format called bytecode that
is run by any operating system, software, or device with a Java interpreter. You can cre-
ate a Java program on a Windows Vista machine that runs on a Linux web server, Apple
Mac using OS X, and Palm personal digital assistant. As long as a platform has a Java
interpreter, it can run the bytecode.

Though the ease of learning one language over another is always a point of contention
among programmers, Java was designed to be easier than C++ primarily in the following
ways:

m Java automatically takes care of memory allocation and deallocation, freeing pro-
grammers from this tedious and complex task.

m Java doesn’t include pointers, a powerful feature of use primarily to experienced
programmers that can be easily misused.

m Java includes only single inheritance in object-oriented programming.

The lack of pointers and the presence of automatic memory management are two key
elements to the security of Java. For a full discussion of Java’s history and the strong
points of the language, read the article “Choosing Java” included on this book’s CD.

Selecting a Development Tool

Now that you’ve been introduced to Java as a spectator, it’s time to put some of these
concepts into play and create your first Java program.

11

12

DAY 1: Getting Started with Java

If you work your way through the 21 days of this book, you’ll become well versed in
Java’s capabilities, including graphics, file input and output, web application develop-
ment, Extensible Markup Language (XML) processing, and database connectivity. You
will write programs that run on web pages and others that run on your personal com-
puter, web servers, and other computing environments.

Before you can get started, you must have software on your computer that can be used to
edit, compile, and run Java programs that use the most up-to-date version of the lan-
guage: Java 6.

Several popular integrated development environments for Java support version 6, includ-
ing Borland JBuilder, IntelliJ IDEA, and Eclipse.

These are each recommended by Java developers, but if you are learning to use these

tools at the same time as you are learning Java, it can be a daunting task. Most integrated
development environments are aimed primarily at experienced programmers who want to
be more productive, not new people who are taking their first foray into a new language.

For this reason, unless you are comfortable with a development tool before picking up
this book, you should probably use the simplest tool for Java development: the Java
Development Kit, which is free and can be downloaded from Sun’s Java website at
http://java.sun.com.

Whenever Sun releases a new version of Java, it also makes a free development kit avail-
able over the Web to support that version. The current release is the Java Development
Kit Version 6.

For the sake of a few trees, in this book the language will usually be referred to simply
as Java and the kit as the JDK. You might see the kit referred to elsewhere as Java
Development Kit 6.

If you will be using the JDK to create the tutorial programs in this book, you can find
out how to get started with the software in Appendix A, “Using the Java Development
Kit.” The appendix covers how to download and install the kit and use it to create a sam-
ple Java program.

After you have a Java development tool on your computer that supports Java 6, you’re
ready to dive into the language.

Object-Oriented Programming

The biggest challenge for a new Java programmer is learning object-oriented program-
ming at the same time as the Java language.

Object-Oriented Programming 13

Although this might sound daunting if you are unfamiliar with this style of program-
ming, think of it as a two-for-one discount for your brain. You will learn object-oriented
programming by learning Java. There’s no other way to make use of the language.

Object-oriented programming is an approach to building computer programs that mimics
how objects are assembled in the physical world.

By using this style of development, you can create programs that are more reusable, reli-
able, and understandable.

To get to that point, you first must explore how Java embodies the principles of object-
oriented programming. The following topics are covered during the first week of this
book:

m Organizing programs into elements called classes
m Learning how these classes are used to create objects

m Defining a class by two aspects of its structure: how it should behave and what its
attributes are

m Connecting classes to each other in a way that one class inherits functionality from
another class

m Linking classes together through packages and interfaces

If you already are familiar with object-oriented programming, much of today’s material
will be a review for you. Even if you skim over the introductory material, you should
create the sample program to get some experience developing, compiling, and running
Java programs.

There are many different ways to conceptualize a computer program. One way is to think
of a program as a series of instructions carried out in sequence, and this is commonly
called procedural programming. Many programmers start by learning a procedural lan-
guage such as a version of BASIC.

Procedural languages mirror the way a computer carries out instructions, so the programs
you write are tailored to the computer’s manner of doing things. One of the first things a
procedural programmer must learn is how to break down a problem into a series of sim-
ple steps.

Object-oriented programming looks at a computer program from a different angle, focus-
ing on the task for which you are using the computer rather than the way a computer
handles tasks.

14

DAY 1: Getting Started with Java

In object-oriented programming, a computer program is conceptualized as a set of
objects that work together to accomplish a task. Each object is a separate part of the pro-
gram, interacting with the other parts in specific, highly controlled ways.

For a real-life example of object-oriented design, consider a stereo system. Most systems
are built by hooking together a bunch of different objects, which are more commonly
called components, such as the following:

Speaker components play midrange and high-frequency sounds.

]
m Subwoofer components play low bass frequency sounds.
® Tuner components receive radio broadcast signals.

]

CD player components read audio data from CDs.

These components are designed to interact with each other using standard input and out-
put connectors. Even if you bought the speakers, subwoofer, tuner, and CD player from
different companies, you can combine them to form a stereo system as long as they have
standard connectors.

Object-oriented programming works under the same principle: You put together a pro-
gram by combining newly created objects and existing objects in standard ways. Each
object serves a specific role in the overall program.

An object is a self-contained element of a computer program that represents a related
group of features and is designed to accomplish specific tasks.

Objects and Classes

Object-oriented programming is modeled on the observation that in the physical world,
objects are made up of many kinds of smaller objects.

However, the capability to combine objects is only one aspect of object-oriented pro-
gramming. Another important feature is the use of classes.

A class is a template used to create an object. Every object created from the same class
has similar features.

Classes embody all features of a particular set of objects. When you write a program in
an object-oriented language, you don’t define individual objects. Instead, you define
classes used to create those objects.

For example, you could create a Modem class that describes the features of all computer
modems. Most modems have the following common features:

Objects and Classes

m They connect to a computer’s serial port.
m They send and receive information.

m They dial phone numbers.

The Modem class serves as an abstract model for the concept of a modem. To actually
have something concrete you can manipulate in a program, you must use the Modem class
to create a Modem object. The process of creating an object from a class is called instanti-
ation, which is why objects also are called instances.

A Modem class can be used to create many different Modem objects in a program, and each
of these objects could have different features, such as the following:

® Some are internal modems and others are external modems.

m Some use the COMI1 port and others use the COM2 port.

m Some have error control, and others don’t.

Even with these differences, two Modem objects still have enough in common to be recog-
nizable as related objects. Figure 1.1 shows a Modem class and several objects created
from that template.

FIGURE 1.1 —

The Modem class
and several Modem Internal Modem
objects Uses COM1
' Supports error-control
(Concrete)
AN

LN\
—
External Modem
Uses COM1
Supports error-control
(Concrete)

Modem Class
(Abstract)

External Modem
Uses COM2
No error-control
(Concrete)

Here’s another example: Using Java, you could create a class to represent all command
buttons—clickable boxes that appear on windows, dialog boxes, and other parts of a pro-
gram’s graphical user interface.

15

16

DAY 1: Getting Started with Java

When the CommandButton class is developed, it could define these features:

m The text displayed on the button
m The size of the button

m Aspects of its appearance, such as whether it has a 3D shadow

The CommandButton class also could define how a button behaves, deciding the following
things:

® Whether the button requires a single click or a double-click

® Whether it should ignore mouse clicks entirely

m What it does when successfully clicked

After you define the CommandButton class, you can create instances of that button—in
other words, CommandButton objects. The objects all take on the basic features of a click-
able button as defined by the class, but each one could have a different appearance and
slightly different behavior depending on what you need that object to do.

By creating a CommandButton class, you don’t have to keep rewriting the code for each
command button that you want to use in your programs. In addition, you can reuse the
CommandButton class to create different kinds of buttons as you need them, both in this
program and in others.

NOTE One of Java’s standard classes, javax.swing.JButton, encom-
passes all the functionality of this hypothetical CommandButton
example and more. You get a chance to work with it during Day 9,
“Working with Swing.”

When you write a Java program, you design and construct a set of classes. When your
program runs, objects are instantiated from those classes and used as needed. Your task
as a Java programmer is to create the right set of classes to accomplish what your pro-
gram needs to accomplish.

Fortunately, you don’t have to start from scratch. The Java language includes thousands
of classes that implement most of the functionality you will need. These classes are
called the Java class library, and they are installed along with a development tool such as
the JDK.

Attributes and Behavior 17

When you’re talking about using the Java language, you’re actually talking about
using this class library and some standard keywords and operators recognized by Java
compilers.

The class library handles numerous tasks, such as mathematical functions, text handling,
graphics, user interaction, and networking. Working with these classes is no different
than working with Java classes you create.

For complicated Java programs, you might create a whole set of new classes that formed
their own class library for use in other programs.

Reuse is one of the fundamental benefits of object-oriented programming.

Attributes and Behavior

A Java class consists of two distinct types of information: attributes and behavior.

Both of these are present in VolcanoRobot, a project you will implement today as a
class. This project, a simple simulation of a volcanic exploration vehicle, is inspired by
the Dante II robot used by NASA’s Telerobotics Research program to do research inside
volcanic craters.

Attributes of a Class of Objects

Attributes are the data that differentiates one object from another. They can be used to
determine the appearance, state, and other qualities of objects that belong to that class.

A volcanic exploration vehicle could have the following attributes:

m Status—Exploring, moving, returning home
m Speed—Measured in miles per hour

m Temperature—Measured in Fahrenheit degrees

In a class, attributes are defined by variables—places to store information in a computer
program. Instance variables are attributes that have values that differ from one object to
another.

An instance variable defines an attribute of one particular object. The object’s class
defines what kind of attribute it is, and each instance stores its own value for that
attribute. Instance variables also are called object variables.

Each class attribute has a single corresponding variable. You change that attribute of the
object by changing the value of the variable.

18

DAY 1: Getting Started with Java

For example, the VolcanoRobot class defines a speed instance variable. This must be an
instance variable because each robot travels at different speeds. The value of a robot’s
speed instance variable could be changed to make the robot move more quickly or
slowly.

Instance variables can be given a value when an object is created and then stay constant
throughout the life of the object. They also can be given different values as the object is
used in a running program.

For other variables, it makes more sense to have one value shared by all objects of that
class. These attributes are called class variables.

A class variable defines an attribute of an entire class. The variable applies to the class
itself and to all its instances, so only one value is stored no matter how many objects of
that class have been created.

An example of a class variable for the VolcanoRobot class would be a variable that holds
the current time. If an instance variable were created to hold the time, each object could
have a different value for this variable, which could cause problems if the robots are sup-
posed to perform tasks in conjunction with each other.

Using a class variable prevents this problem because all objects of that class share the
same value automatically. Each VolcanoRobot object would have access to that variable.

Behavior of a Class of Objects

Behavior refers to the things that a class of objects can do to themselves and other
objects. Behavior can be used to change the attributes of an object, receive information
from other objects, and send messages to other objects asking them to perform tasks.

A volcano robot could have the following behavior:

® Check current temperature
m Begin a survey

m Report its current location

Behavior for a class of objects is implemented using methods.

Methods are groups of related statements in a class that perform a specific task. They are
used to accomplish specific tasks on their own objects and on other objects and are com-
parable to functions and subroutines in other programming languages.

Objects communicate with each other using methods. A class or an object can call meth-
ods in another class or object for many reasons, including the following:

Attributes and Behavior 19

m To report a change to another object
m To tell the other object to change something about itself

m To ask another object to do something

For example, two volcano robots could use methods to report their locations to each
other and avoid collisions, and one robot could tell another to stop so that it could
pass by.

Just as there are instance and class variables, there also are instance and class methods.
Instance methods, which are usually just called methods, are used when you are working
with an object of the class. If a method makes a change to an individual object, it must
be an instance method. Class methods apply to a class itself.

Creating a Class

To see classes, objects, attributes, and behavior in action, you will develop a
VolcanoRobot class, create objects from that class, and work with them in a running
program.

NOTE The main purpose of this project is to explore object-oriented pro-
gramming. You'll learn more about Java programming syntax during
Day 2, “The ABCs of Programming.”

To begin creating a class, open the text editor you’re using to create Java programs and
create a new file. Enter the text of Listing 1.1 and save the file as VolcanoRobot. java in
a folder you are using to work on programs from this book.

LISTING 1.1 The Full Text of VolcanoRobot. java

class VolcanoRobot {
String status;
int speed;
float temperature;

void checkTemperature() {
if (temperature > 660) {
: status = "returning home";
9: speed = 5;
10: }
11: }
12:

1:
2
3
4:
5:
6.
7
8

20

DAY 1: Getting Started with Java

LISTING 1.1 Continued

13: void showAttributes() {

14: System.out.println("Status: " + status);

15: System.out.println("Speed: " + speed);

16: System.out.println("Temperature: " + temperature);
17: }

18: }

The class statement in line 1 of Listing 1.1 defines and names the VolcanoRobot class.
Everything contained between the opening brace (“{*) on line 1 and the closing brace
(“}”) on line 18 is part of this class.

The VolcanoRobot class contains three instance variables and two instance methods.

The instance variables are defined in lines 2—4:

String status;
int speed;
float temperature;

The variables are named status, speed, and temperature. Each is used to store a differ-
ent type of information:

W status holds a String object, a group of letters, numbers, punctuation, and other
characters.
m speed holds an int, an integer value.

m temperature holds a float, a floating-point number.

String objects are created from the String class, which is part of the Java class library
and can be used in any Java program.

TIP As you might have noticed from the use of string in this program,
a class can use objects as instance variables.

The first instance method in the VolcanoRobot class is defined in lines 611, reprinted
here:

void checkTemperature() {
if (temperature > 660) {
status = "returning home";
speed = 5;

Attributes and Behavior 21

Methods are defined in a manner similar to a class. They begin with a statement that
names the method, the kind of information the method produces, and other things.

The checkTemperature () method is contained within the braces on lines 6 and 11 of
Listing 1.1. This method can be called on a VolcanoRobot object to find out its tempera-
ture.

This method checks to see whether the object’s temperature instance variable has a
value greater than 660. If it does, two other instance variables are changed:

m The status is changed to the text “returning home,” indicating that the temperature
is too hot and the robot is heading back to its base.

m The speed is changed to 5. (Presumably, this is as fast as the robot can travel.)

The second instance method, showAttributes(), is defined in lines 13-17:

void showAttributes() {
System.out.println("Status: " + status);
System.out.println("Speed: " + speed);
System.out.println("Temperature: " + temperature);

This method calls System.out.println() to display the values of three instance vari-
ables along with some text explaining what each value represents.

Save the file when you’re done entering the source code. You don’t need to compile
it yet.

Running the Program

Even if you compiled the VolcanoRobot class successfully, you couldn’t do anything
with it. The class you have created defines what a VolcanoRobot object would be like if
one were used in a program, but it doesn’t create one of these objects.

There are two ways to put the VolcanoRobot class to use:

m Create a separate Java program that uses the class.

m Add a special class method called main() to the VolcanoRobot class so that it can
be run as an application and then use VolcanoRobot objects in that method.

The first option is chosen for this exercise. Listing 1.2 contains the source code for
VolcanoApplication, a Java class that creates a VolcanoRobot object, sets its instance
variables, and calls methods.

22 DAY 1: Getting Started with Java

LISTING 1.2 The Full Text of VolcanoApplication.java

1: class VolcanoApplication {

2 public static void main(String[] arguments) {
3 VolcanoRobot dante = new VolcanoRobot();
4: dante.status = "exploring";

5: dante.speed = 2;

6: dante.temperature = 510;

7
8

: dante.showAttributes();
9: System.out.println("Increasing speed to 3.");

10: dante.speed = 3;

11: dante.showAttributes();

12: System.out.println("Changing temperature to 670.");
13: dante.temperature = 670;

14: dante.showAttributes();

15: System.out.println("Checking the temperature.");
16: dante.checkTemperature();

17: dante.showAttributes();

18: }

19: }

Save the file as VolcanoApplication.java and compile the program.

If you are using the JDK, you can do the following to compile the program: Go to a
command line or open a command-line window, open the folder where
VolcanoApplication. java is saved, and then compile the program by typing the follow-
ing at the command line:

javac VolcanoApplication.java

The Java compiler creates VolcanoApplication.class, a file containing bytecode
that can be executed by a Java interpreter. The compiler does the same for the
VolcanoRobot. java class if necessary because that class is being used in this application.

TIP If you encounter problems compiling or running any program in
this book with the JDK, you can find a copy of the source file

and other related files on the book’s official website: http://www.
java2l1days.com.

After you have compiled the application, run the program.

Using the JDK, you can run the VolcanoApplication program by opening the folder contain-
ing the VolcanoRobot.class and VolcanoApplication.class files by using this command:

java VolcanoApplication

Attributes and Behavior 23

When you run the VolcanoApplication class, the output should be the following:

Status: exploring

Speed: 2

Temperature: 510.0
Increasing speed to 3.
Status: exploring

Speed: 3

Temperature: 510.0
Changing temperature to 670.
Status: exploring

Speed: 3

Temperature: 670.0
Checking the temperature.
Status: returning home
Speed: 5

Temperature: 670.0

Using Listing 1.2 as a guide, the following things are taking place in the main() class
method:

m Line 2—The main() method is created and named. All main () methods take this
format, as you’ll learn during Day 5, “Creating Classes and Methods.” For now, the
most important thing to note is the static keyword, which indicates that the
method is a class method shared by all VolcanoRobot objects.

m Line 3—A new VolcanoRobot object is created using the class as a template. The
object is given the name dante.

m Lines 4-6—Three instance variables of the dante object are given values: status
is set to the text “exploring”, speed is set to 2, and temperature is set to 510.

m Line 8—On this line and several that follow, the showAttributes() method of the
dante object is called. This method displays the current values of the instance vari-
ables status, speed, and temperature.

m Line 9—On this line and others that follow, a System.out.println() statement is
used to display the text within the parentheses.

m Line 10—The speed instance variable is set to the value 3.
m Line 13—The temperature instance variable is set to the value 670.

m Line 16—The checkTemperature () method of the dante object is called. This
method checks to see whether the temperature instance variable is greater than
660. If it is, status and speed are assigned new values.

24

DAY 1: Getting Started with Java

Organizing Classes and Class Behavior

An introduction to object-oriented programming in Java isn’t complete without looking
at three more concepts: inheritance, interfaces, and packages.

These three concepts are mechanisms for organizing classes and class behavior.

Inheritance

Inheritance is one of the most crucial concepts in object-oriented programming, and it
has a direct effect on how you design and write your own Java classes.

Inheritance is a mechanism that enables one class to inherit all the behavior and attrib-
utes of another class.

Through inheritance, a class immediately picks up all the functionality of an existing
class. Because of this, you only must define how the new class is different from an exist-
ing class.

With inheritance, all classes—those you create and those from the Java class library and
other libraries—are arranged in a strict hierarchy.

A class that inherits from another class is called a subclass. The class that gives the
inheritance is called a superclass.

A class can have only one superclass, but each class can have an unlimited number of
subclasses. Subclasses inherit all the attributes and behavior of their superclasses.

In practical terms, this means that if the superclass has behavior and attributes that your
class needs, you don’t have to redefine it or copy that code to have the same behavior
and attributes. Your class automatically receives these things from its superclass, the
superclass gets them from its superclass, and so on, all the way up the hierarchy. Your
class becomes a combination of its own features and all the features of the classes above
it in the hierarchy.

The situation is comparable to the way you inherited traits from your parents, such as
your height, hair color, and love of peanut butter and banana sandwiches. They inherited
some of these things from their parents, who inherited from theirs, and backward through
time to the Garden of Eden, Big Bang, or [insert personal belief here].

Figure 1.2 shows the way a hierarchy of classes is arranged.

At the top of the Java class hierarchy is the class Object—all classes inherit from this
superclass. Object is the most general class in the hierarchy, and it defines behavior
inherited by all the classes in the Java class library.

Organizing Classes and Class Behavior

FIGURE 1.2
A class hierarchy.
Class A « Class A is the superclass of B
« Class B is a subclass of A
« Class B is the superclass

of C,D, and E
« Classes C, D, and E

are subclasses of B

Class B

Class C Class D Class E

Each class farther down the hierarchy becomes more tailored to a specific purpose. A
class hierarchy defines abstract concepts at the top of the hierarchy. Those concepts
become more concrete farther down the line of subclasses.

Often when you create a new class in Java, you want all the functionality of an existing
class with some modifications of your own creation. For example, you might want a ver-
sion of CommandButton that makes a sound when clicked.

To receive all the CommandButton functionality without doing any work to re-create it,
you can define your class as a subclass of CommandButton. Your class then automatically
would inherit behavior and attributes defined in CommandButton as well as the behavior
and attributes defined in the superclasses of CommandButton. All you have to worry about
are the things that make your new class different from CommandButton itself. Subclassing
is the mechanism for defining new classes as the differences between those classes and
their superclass.

Subclassing is the creation of a new class that inherits from an existing class. The only
task in the subclass is to indicate the differences in behavior and attributes between itself
and its superclass.

If your class defines entirely new behavior and isn’t a subclass of another class, you can
inherit directly from the Object class. This allows it to fit into the Java class hierarchy. If
you create a class definition that doesn’t indicate a superclass, Java assumes that the new
class is inheriting directly from Object. The VolcanoRobot class you created earlier
today did not specify a superclass, so it’s a subclass of the Object class.

25

26

DAY 1: Getting Started with Java

Creating a Class Hierarchy

If you're creating a large set of classes, it makes sense for your classes to inherit from
the existing class hierarchy and to make up a hierarchy themselves for these advantages:

m Functionality common to multiple classes can be put into a superclass, which
enables it to be used repeatedly in all classes below it in the hierarchy.

m Changes to a superclass automatically are reflected in all its subclasses, their sub-
classes, and so on. There is no need to change or recompile any of the lower
classes; they receive the new information through inheritance.

For example, imagine that you have created a Java class to implement all the features of
a volcanic exploratory robot. (This shouldn’t take much imagination.)

The VolcanoRobot class is completed and works successfully. Now you want to create a
Java class called MarsRobot.

These two kinds of robots have similar features—both are research robots that work in
hostile environments and conduct research. Your first impulse might be to open up the
VolcanoRobot. java source file and copy a lot of it into a new source file called
MarsRobot. java.

A better plan is to figure out the common functionality of MarsRobot and VolcanoRobot
and organize it into a more general class hierarchy. This might be a lot of work just for
the classes VolcanoRobot and MarsRobot, but what if you also want to add MoonRobot,
UnderseaRobot, and DesertRobot? Factoring common behavior into one or more
reusable superclasses significantly reduces the overall amount of work that must be done.

To design a class hierarchy that might serve this purpose, start at the top with the class
Object, the pinnacle of all Java classes. The most general class to which these robots
belong might be called Robot. A robot, generally, could be defined as a self-controlled
exploration device. In the Robot class, you define only the behavior that qualifies some-
thing to be a device, self-controlled, and designed for exploration.

There could be two classes below Robot: WalkingRobot and DrivingRobot. The obvious
thing that differentiates these classes is that one travels by foot and the other by wheel.
The behavior of walking robots might include bending over to pick up something, duck-
ing, running, and the like. Driving robots would behave differently. Figure 1.3 shows
what you have so far.

Organizing Classes and Class Behavior 27

FIGURE 1.3
The basic Robot
hierarchy.
Object
Robot
[[
Walking Robot I Driving Robot I

Now, the hierarchy can become even more specific. With WalkingRobot, you might have
several classes: ScienceRobot, GuardRobot, SearchRobot, and so on. As an alternative,
you could factor out still more functionality and have intermediate classes for TwoLegged
and FourLegged robots, with different behaviors for each (see Figure 1.4).

FIGURE 1.4
Two-legged and
four-legged walking Walking Robot
robots.

Two-Legged Four-Legged
Walking Robot Walking Robot

|Guard RobotI |Science RobotI |Search Robot I

Finally, the hierarchy is done, and you have a place for VolcanoRobot. It can be a sub-
class of ScienceRobot, which is a subclass of WalkingRobot, which is a subclass of
Robot, which is a subclass of Object.

28

DAY 1: Getting Started with Java

Where do qualities such as status, temperature, or speed come in? At the place they fit
into the class hierarchy most naturally. Because all robots have a need to keep track of
the temperature of their environment, it makes sense to define temperature as an
instance variable in Robot. All subclasses would have that instance variable as well.
Remember that you need to define a behavior or attribute only once in the hierarchy, and
it automatically is inherited by each subclass.

NOTE Designing an effective class hierarchy involves a lot of planning
and revision. As you attempt to put attributes and behavior into a
hierarchy, you're likely to find reasons to move some classes to
different spots in the hierarchy. The goal is to reduce the number
of repetitive features that are needed.

Inheritance in Action

Inheritance in Java works much more simply than it does in the real world. There are no
executors of a will or courts of any kind required in Java.

When you create a new object, Java keeps track of each variable defined for that object
and each variable defined for each superclass of the object. In this way, all the classes
combine to form a template for the current object, and each object fills in the information
appropriate to its situation.

Methods operate similarly: A new object has access to all method names of its class and
superclass. This is determined dynamically when a method is used in a running program.
If you call a method of a particular object, the Java interpreter first checks the object’s
class for that method. If the method isn’t found, the interpreter looks for it in the super-
class of that class, and so on, until the method definition is found. This is illustrated in
Figure 1.5.

Things get complicated when a subclass defines a method that matches a method defined
in a superclass in name and other aspects. In this case, the method definition found first
(starting at the bottom of the hierarchy and working upward) is the one that is used.

Because of this, you can create a method in a subclass that prevents a method in a super-
class from being used. To do this, you give the method with the same name, return type,
and arguments as the method in the superclass. This procedure is called overriding (see
Figure 1.6).

Organizing Classes and Class Behavior

FIGURE 1.5 Method
How methods are definition
located in a class

hierarchy.
Class I

Message sent to object and
passed up class hierarchy
until a definition is found

FIGURE 1.6

Overriding

methods.

Method is overridden
by this definition

Initial method
definition

Message sent to object and
passed up class hierarchy
until a definition is found

Single and Multiple Inheritance

Java’s form of inheritance is called single inheritance because each Java class can have
only one superclass (although any given superclass can have multiple subclasses).

29

30

DAY 1: Getting Started with Java

In other object-oriented programming languages, such as C++, classes can have more
than one superclass, and they inherit combined variables and methods from all those
superclasses. This is called multiple inheritance, and it provides the means to create
classes that encompass just about any imaginable behavior. However, it significantly
complicates class definitions and the code needed to produce them. Java makes inheri-
tance simpler by allowing only single inheritance.

Interfaces

Single inheritance makes the relationship between classes and the functionality those
classes implement easier to understand and to design. However, it also can be restrictive,
especially when you have similar behavior that needs to be duplicated across different
branches of a class hierarchy. Java solves the problem of shared behavior by using inter-
faces.

An interface is a collection of methods that indicate a class has some behavior in addi-
tion to what it inherits from its superclasses. The methods included in an interface do not
define this behavior; that task is left for the classes that implement the interface.

For example, the Comparable interface contains a method that compares two objects of
the same class to see which one should appear first in a sorted list. Any class that imple-
ments this interface can determine the sorting order for objects of that class. This behav-
ior would not be available to the class without the interface.

You learn about interfaces during Day 6, “Packages, Interfaces, and Other Class
Features.”

Packages

Packages in Java are a way of grouping related classes and interfaces. Packages enable
groups of classes to be available only if they are needed and eliminate potential conflicts
among class names in different groups of classes.

By default, your Java classes have access only to the classes in the java.lang package,
which provide basic language features such as string handling. To use classes from any
other package, you must refer to them explicitly by package name or import them in
your source file.

To refer to a class within a package, you must normally use the full package name. For
example, because the Color class is contained in the java.awt package, you refer to it in
your programs with the notation java.awt.Color.

Q&A

Summary

If today was your first exposure to object-oriented programming, it probably seems theo-
retical and a bit overwhelming.

When your brain has just been stuffed with object-oriented programming concepts and
terminology for the first time, you might be worried that there’s no room left for the Java
lessons of the remaining 20 days.

At this point, you should have a basic understanding of classes, objects, attributes, and
behavior. You also should be familiar with instance variables and methods. You’ll be
using these right away tomorrow.

The other aspects of object-oriented programming, such as inheritance and packages,
will be covered in more detail on upcoming days. You’ll work with object-oriented pro-
gramming in every remaining day of the book. By the time you finish the first week,
you’ll have working experience with objects, classes, inheritance, and all the other
aspects of the methodology.

Q&A

Q In effect, methods are functions defined inside classes. If they look like func-
tions and act like functions, why aren’t they called functions?

A Some object-oriented programming languages do call them functions. (C++ calls
them member functions.) Other object-oriented languages differentiate between
functions inside and outside a body of a class or object because in those languages
the use of the separate terms is important to understanding how each function
works. Because the difference is relevant in other languages and because the term
method is now in common use in object-oriented terminology, Java uses the term
as well.

Q What’s the distinction between instance variables and methods and their
counterparts, class variables and methods?

A Almost everything you do in a Java program involves instances (also called
objects) rather than classes. However, some behavior and attributes make more
sense if stored in the class itself rather than in the object.

For example, the Math class in the java.lang package includes a class variable
called PI that holds the approximate value of pi. This value does not change, so
there’s no reason different objects of that class would need their own individual
copy of the PI variable. On the other hand, every String object contains a method
called 1length() that reveals the number of characters in that String. This value
can be different for each object of that class, so it must be an instance method.

31

32 DAY 1: Getting Started with Java

Quiz

Review today’s material by taking this three-question quiz.

Questions

1. What is another word for a class?
a. Object
b. Template
c. Instance

2. When you create a subclass, what must you define about that class?
a. It already is defined.
b. Things that are different from its superclass.
c. Everything about the class.

3. What does an instance method of a class represent?
a. The attributes of that class
b. The behavior of that class

c. The behavior of an object created from that class

Answers
1. b. A class is an abstract template used to create objects similar to each other.

2. b. You define how the subclass is different from its superclass. The things that are
similar are already defined for you because of inheritance. Answer a. is technically
correct, but if everything in the subclass is identical to the superclass, there’s no
reason to create the subclass at all.

3. c. Instance methods refer to a specific object’s behavior. Class methods refer to the
behavior of all objects belonging to that class.

Certification Practice

The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material.

Exercises 33

Which of the following statements is true?

a. All objects created from the same class must be identical.
b. All objects created from the same class can be different from each other.
c. An object inherits attributes and behavior from the class used to create it.

d. A class inherits attributes and behavior from its subclass.

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 1 page and click the Certification Practice link.

Exercises

To extend your knowledge of the subjects covered today, try the following exercises:

1. In the main() method of the VolcanoRobot class, create a second VolcanoRobot
robot named virgil, set up its instance variables, and display them.

2. Create an inheritance hierarchy for the pieces of a chess set. Decide where the
instance variables color, startingPosition, forwardMovement, and
sideMovement should be defined in the hierarchy.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java2ldays.com.

DAY 2:
The ABCs of
Programming

A Java program is made up of classes and objects, which, in turn, are
made up of methods and variables. Methods are made up of statements
and expressions, which are made up of operators.

At this point, you might be afraid that Java is like Russian nesting
matryoshka dolls. Every one of those dolls seems to have a smaller doll
inside it, as intricate and detailed as its larger companion.

Today’s lesson clears away the big dolls to reveal the smallest elements
of Java programming. You'll leave classes, objects, and methods alone for
a day and examine the basic things you can do in a single line of Java
code.

The following subjects are covered:
m Java statements and expressions
m Variables and primitive data types
m Constants
m Comments
m Literals
m Arithmetic
m Comparisons

m Logical operators

36

DAY 2: The ABCs of Programming

Statements and Expressions

All tasks that you want to accomplish in a Java program can be broken down into a
series of statements. In a programming language, a statement is a simple command that
causes something to happen.

Statements represent a single action taken in a Java program. All the following are sim-
ple Java statements:

int weight = 225;
System.out.println("Free the bound periodicals!");
song.duration = 230;

Some statements can convey a value, such as when you add two numbers together in a
program or evaluate whether two variables are equal to each other. This kind of state-
ment is called an expression.

An expression is a statement that produces a value. The value can be stored for later use
in the program, used immediately in another statement, or disregarded. The value pro-
duced by a statement is called its return value.

Some expressions produce a numerical return value, as when two numbers are added
together or multiplied. Others produce a Boolean value—true or false—or even can
produce a Java object. They are discussed later today.

Although many Java programs contain one statement per line, this is a formatting deci-
sion that does not determine where one statement ends and another one begins. Each
statement in Java is terminated with a semicolon character (;). A programmer can put
more than one statement on a line, and it will compile successfully, as in the following
example:

dante.speed = 2; dante.temperature = 510;

Statements in Java are grouped using the opening brace ({) and closing brace (}). A
group of statements organized between these characters is called a block or block state-
ment, and you learn more about them during Day 4, “Lists, Logic, and Loops.”

Variables and Data Types

In the volcanoRobot application you created during Day 1, “Getting Started with Java,”
you used variables to keep track of information. A variable is a place where information
can be stored while a program is running. The value can be changed at any point in the
program—hence the name.

Variables and Data Types 37

To create a variable, you must give it a name and identify what type of information it
will store. You also can give a variable an initial value at the same time you create it.

There are three kinds of variables in Java: instance variables, class variables, and local
variables.

Instance variables, as you learned yesterday, are used to define an object’s attributes.

Class variables define the attributes of an entire class of objects and apply to all
instances of it.

Local variables are used inside method definitions or even smaller blocks of statements
within a method. You can use them only while the method or block is being executed by
the Java interpreter. They cease to exist afterward.

Although all three kinds of variables are created in much the same way, class and
instance variables are used in a different manner than local variables. You will learn
about local variables today and explore instance and class variables during Day 3,
“Working with Objects.”

NOTE Unlike other languages, Java does not have global variables, vari-
ables that can be used in all parts of a program. Instance and
class variables communicate information from one object to
another, so they replace the need for global variables.

Creating Variables

Before you can use a variable in a Java program, you must create the variable by declar-
ing its name and the type of information it will store. The type of information is listed
first, followed by the name of the variable. The following are all examples of variable
declarations:

int loanLength;
String message;

boolean gameOver;

NOTE You learn about variable data types later today. In these examples,
the int type represents integers, String is an object that holds
text, and boolean is used for Boolean true/false values.

38

DAY 2: The ABCs of Programming

Local variables can be declared at any place inside a method, just like any other Java
statement, but they must be declared before they can be used. The normal place for vari-
able declarations is immediately after the statement that names and identifies the method.

In the following example, three variables are declared at the top of a program’s main ()
method:

public static void main(String[] arguments) {
int total;
String reportTitle;
boolean active;

If you are creating several variables of the same type, you can declare all of them in the
same statement by separating the variable names with commas. The following statement
creates three String variables named street, city, and state:

String street, city, state;

Variables can be assigned a value when they are created by using an equal sign (=) fol-
lowed by the value. The following statements create new variables and give them initial
values:

int zipCode = 90210;

int box = 350;

boolean pbs = true;

String name = "Zoom", city = "Boston", state = "MA";

As the last statement indicates, you can assign values to multiple variables of the same
type by using commas to separate them.

You must give values to local variables before you use them in a program or the program
won’t compile successfully. For this reason, it is good practice to give initial values to all
local variables.

Instance and class variable definitions are given an initial value depending on the type of
information they hold, as in the following:

m Numeric variables: 0

m Characters: '\0'

m Booleans: false

m Objects: null

Variables and Data Types 39

Naming Variables

Variable names in Java must start with a letter, an underscore character (“_"), or a dollar
sign (“$”). They cannot start with a number. After the first character, variable names can
include any combination of letters or numbers.

(TR L]

NOTE In addition, the Java language uses the Unicode character set,
which includes thousands of character sets to represent interna-
tional alphabets. Accented characters and other symbols can be
used in variable names as long as they have a Unicode character
number.

When naming a variable and using it in a program, it’s important to remember that Java
is case sensitive—the capitalization of letters must be consistent. Because of this, a pro-
gram can have a variable named X and another named x (and Rose is not a rose is not a
ROSE).

In programs in this book and elsewhere, Java variables are given meaningful names that
include several words joined together. To make it easier to spot the words, the following
rule of thumb is used:

m The first letter of the variable name is lowercase.
m Each successive word in the variable name begins with a capital letter.

m All other letters are lowercase.

The following variable declarations follow this rule of naming:
Button loadFile;
int localAreaCode;

boolean quitGame;

Variable Types
In addition to a name, a variable declaration must include the data type of information
being stored. The type can be any of the following:

® One of the primitive data types

® The name of a class or interface

B An array

40

DAY 2: The ABCs of Programming

You learn how to declare and use array variables on Day 4. Today’s lesson focuses on the
other variable types.

Data Types

There are eight basic data types for the storage of integers, floating-point numbers, char-

acters, and Boolean values. These often are called primitive types because they are built-

in parts of the Java language rather than objects, which makes them more efficient to use.
These data types have the same size and characteristics no matter what operating system

and platform you’re on, unlike some data types in other programming languages.

There are four data types you can use to store integers. Which one you use depends on
the size of the integer, as indicated in Table 2.1.

TABLE 2.1 Integer Types

Type Size Values That Can Be Stored

byte 8 bits 128 to 127

short 16 bits 32,768 to 32,767

int 32 bits 2,147,483,648 to 2,147,483,647

long 64 bits 9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

All these types are signed, which means that they can hold either positive or negative

numbers. The type used for a variable depends on the range of values it might need to
hold. None of these integer variables can reliably store a value that is too large or too

small for its designated variable type, so take care when designating the type.

Another type of number that can be stored is a floating-point number, which has the type
float or double. Floating-point numbers are numbers with a decimal point. The float
type should be sufficient for most uses because it can handle any number from 1.4E-45
to 3.4E+38. If not, the double type can be used for more precise numbers ranging from
4.9E-324 to 1.7E+308.

The char type is used for individual characters, such as letters, numbers, punctuation,
and other symbols.

The last of the eight primitive data types is boolean. As you have learned, this data type
holds either true or false in Java.

All these variable types are listed in lowercase, and you must use them as such in pro-
grams. There are classes with the same names as some of these data types but with dif-
ferent capitalization—for example, Boolean and Char. These have different functionality
in a Java program, so you can’t use them interchangeably. Tomorrow you will see how to
use these special classes.

Variables and Data Types 41

NOTE There are actually nine primitive data types in Java if you count
void, which represents nothing. It's used in a method to indicate
that it does not return a value.

Class Types

In addition to the primitive data types, a variable can have a class as its type, as in the
following examples:

String lastName = "Hopper";

Color hair;

VolcanoRobot vr;

When a variable has a class as its type, the variable refers to an object of that class or
one of its subclasses.

The last statement in the preceding list—VolcanoRobot vr;—creates a variable named
vr that is reserved for a VolcanoRobot object. You’ll learn more tomorrow about how to
associate objects with variables.

Referring to a superclass as a variable type is useful when the variable might be one of
several different subclasses. For example, consider a class hierarchy with a
CommandButton superclass and three subclasses: RadioButton, CheckboxButton, and
ClickButton. If you create a CommandButton variable called widget, it could refer to a
RadioButton, CheckboxButton, or ClickButton object.

Declaring a variable of type Object means that it can be associated with any kind of
object.

Assigning Values to Variables

After a variable has been declared, a value can be assigned to it with the assignment

_»

operator, which is an equal sign (“="). The following are examples of assignment state-
ments:

idCode = 8675309;

accountOverdrawn = false;

Constants

Variables are useful when you need to store information that can be changed as a pro-
gram runs.

42

DAY 2: The ABCs of Programming

If the value should never change during a program’s runtime, you can use a type of vari-
able called a constant. A constant, which also is called a constant variable, is a variable
with a value that never changes. This might seem like an oxymoron, given the meaning
of the word “variable.”

Constants are useful in defining shared values for the use of all methods of an object. In
Java, you can create constants for all kinds of variables: instance, class, and local.

To declare a constant, use the final keyword before the variable declaration and include
an initial value for that variable, as in the following:

final float PI = 3.141592;
final boolean DEBUG = false;
final int PENALTY = 25;

In the preceding statements, the names of the constants are capitalized: PI, DEBUG, and
PENALTY. This is a convention adopted by many Java programmers that makes it clear
you’re using a constant instead of a variable.

Constants can be handy for naming various states of an object and then testing for those
states. Suppose you have a program that takes directional input from the numeric keypad
on the keyboard—push 8 to go up, 4 to go left, and so on. You can define those values as
constant integers:

final int LEFT = 4;

final int RIGHT = 6;

final int UP = 8;

final int DOWN = 2;

Constants often make a program easier to understand. To illustrate this point, consider
which of the following two statements is more informative as to its function:

guide.direction = 4;
guide.direction = LEFT;

Today’s first project is a Java application that creates several variables, assigns them ini-
tial values, and displays two of them as output. The full source code is in Listing 2.1.

LISTING 2.1 The Full Text of Vvariables.java

public class Variables {

1:
2:
3: public static void main(String[] arguments) {
4: final char UP = 'U';

Comments 43

LISTING 2.1 Continued

5: byte initiallLevel = 12;

6: short location = 13250;

7: int score = 3500100;

8: boolean newGame = true;

9:

10: System.out.println("Level: " + initiallevel);
11: System.out.println("Up: " + UP);

12: }

13: }

Compile this application and run the class file Variables.class. This program produces
the following output:

Level: 12
Up: U

This class uses four local variables and one constant, making use of System.out.
println() in lines 10-11 to produce output.

System.out.println() is a method called to display strings and other information to the
standard output device, which usually is the screen.

System.out.println() takes a single argument within its parentheses: a string. To pre-
sent more than one variable or literal as the argument to println(), you can use the “+”
operator to combine these elements into a single string, which will be described later
today.

There’s also a System.out.print() method, which displays a string without terminating
it with a newline character. You can call print () instead of println() to display several
strings on the same line.

Comments

One of the most important ways to improve the readability of your program is to use
comments. Comments are information included in a program strictly for the benefit of
humans trying to figure out what’s going on in the program. The Java compiler ignores
comments entirely when preparing a runnable version of a Java source file.

There are three different kinds of comments you can use in Java programs, and you can
use each of them at your discretion.

44

DAY 2: The ABCs of Programming

The first way to add a comment to a program is to precede it with two slash characters
(““/7’). Everything from the slashes to the end of the line is considered a comment and is
disregarded by a Java compiler, as in the following statement:

int creditHours = 3; // set up credit hours for course

If you need to make a comment that takes up more than one line, you can begin it with
the text “/*” and end it with the text “*/”. Everything between these two delimiters is
considered a comment, as in the following:

/* This program occasionally deletes all files on

your hard drive and renders it completely unusable
when you press the Save button. */

The final type of comment is meant to be computer-readable as well as human-readable.
If you begin a comment with the text “/**” (instead of “/*””) and end it with “*/”, the
comment is interpreted to be official documentation on how the class and its methods
work.

This kind of comment then can be read by utilities such as the javadoc tool included
with the JDK. The javadoc program uses official comments to create a set of Hypertext
Markup Language (HTML) records that document the program, its class hierarchy, and
its methods. More information is available on javadoc in Appendix B, “Programming
with the Java Development Kit.”

TIP All the official documentation on Java’s class library comes from
javadoc-style comments. You can view current Java documentation
on the Web at http://java.sun.com/javase/6/docs/api.

Literals

In addition to variables, you can work with values as literals in a Java statement. A /it-
eral is any number, text, or other information that directly represents a value.

The following assignment statement uses a literal:
int year = 2007;

The literal is 2007 because it directly represents the integer value 2007. Numbers, char-
acters, and strings all are examples of literals.

Literals

Although the meaning and usage of literals is intuitive most of the time, Java has some
special types of literals that represent different kinds of numbers, characters, strings, and
Boolean values.

Number Literals

Java has several integer literals. The number 4, for example, is an integer literal of the
int variable type. It also can be assigned to byte and short variables because the num-
ber is small enough to fit into those integer types. An integer literal larger than an int
can hold is automatically considered to be of the type long. You also can indicate that a
literal should be a long integer by adding the letter L (upper- or lowercase) to the num-
ber. For example, the following statement treats the value 4 as a long integer:

pennyTotal = pennyTotal + 4L;

@ 9

To represent a negative number as a literal, prepend a minus sign (“-”) to the literal—for
example, -45.

NOTE Java also supports numeric literals that use octal and hexadeci-
mal numbering.

Octal numbers are a base-8 numbering system, which means that
they can represent only the values O through 7 as a single digit.
The eighth number in octal is 10 (or 010 as a Java literal).

Hexadecimal is a base-16 numbering system that can represent
each of 16 numbers as a single digit. The letters A through F rep-
resent the last six digits, so the first 16 numbers are O, 1, 2, 3,
4,5,6,7,8,9,A,B,C,D,E, F

The octal and hexadecimal systems are better suited for certain
tasks in programming than the normal decimal system. If you have
ever used HTML to set a web page’s background color, you might
have used hexadecimal numbers.

If you need to use a literal integer with octal numbering, prepend a
0 to the number. For example, the octal number 777 would be the
literal 0777. Hexadecimal integers are used as literals by
prepending the number with 0x, as in 0x12 or OxFF.

17XL)

Floating-point literals use a period character (“.”) for the decimal point, as you would
expect. The following statement uses a literal to set up a double variable:

double myGPA = 2.25;

45

46

DAY 2: The ABCs of Programming

All floating-point literals are considered to be of the double variable type instead of
float. To specify a literal of float, add the letter F (upper- or lowercase) to the literal,
as in the following example:

float piValue = 3.1415927F;

You can use exponents in floating-point literals by using the letter e or E followed by the
exponent, which can be a negative number. The following statements use exponential
notation:

double x = 12e22;

double y = 19E-95;

Boolean Literals

The Boolean literals true and false are the only two values you can use when assigning
a value to a boolean variable type or using a Boolean in a statement.

The following statement sets a boolean variable:
boolean chosen = true;

If you have programmed in other languages, you might expect that a value of 1 is equiva-
lent to true and @ is equivalent to false. This isn’t the case in Java; you must use the val-
ues true or false to represent Boolean values.

Note that the literal true does not have quotation marks around it. If it did, the Java
compiler would assume that it was a string.

Character Literals

Character literals are expressed by a single character surrounded by single quotation
marks, such as ‘a’, ‘#’, and ‘3’. You might be familiar with the ASCII character set,
which includes 128 characters, including letters, numerals, punctuation, and other char-
acters useful in computing. Java supports thousands of additional characters through the
16-bit Unicode standard.

Some character literals represent characters that are not readily printable or accessible
through a keyboard. Table 2.2 lists the special codes that can represent these special
characters as well as characters from the Unicode character set. In Table 2.2, the letter o
in the octal, hex, and Unicode escape codes represents a number or a hexadecimal digit
(a—f or A-F).

Literals

TABLE 2.2 Character Escape Codes

Escape Meaning

\n New line

\t Tab

\b Backspace

\r Carriage return

\f Formfeed

\\ Backslash

\! Single quotation mark
\" Double quotation mark
\d Octal

\xd Hexadecimal

\ud Unicode character

String Literals

The final literal that you can use in a Java program represents strings of characters. A
string in Java is an object rather than a primitive data type. Strings are not stored in
arrays as they are in languages such as C.

Because string objects are real objects in Java, methods are available to combine strings,
modify strings, and determine whether two strings have the same value.

String literals consist of a series of characters inside double quotation marks, as in the
following statements:

String quitMsg = "Are you sure you want to quit?";
String password = "swordfish";

Strings can include the character escape codes listed previously in Table 2.2, as shown
here:

String example = "Socrates asked, \"Hemlock is poison?\"";
System.out.println("Sincerely,\nMillard Fillmore\n");
String title = "Sams Teach Yourself Ruby on Rails While You Sleep\u2122"

In the last of the preceding examples, the Unicode code sequence \u2122 produces a ™
symbol on systems that have been configured to support Unicode.

47

48

DAY 2: The ABCs of Programming

CAUTION Although Java supports the transmission of Unicode characters,
the user’s system also must support it for the characters to be
displayed. Unicode support provides a way to encode its charac-
ters for systems that support the standard. Java supports the dis-
play of any Unicode character that can be represented by a host
font.

For more information about Unicode, visit the Unicode Consortium
website at http://www.unicode.org.

Although string literals are used in a manner similar to other literals in a program, they
are handled differently behind the scenes.

With a string literal, Java stores that value as a String object. You don’t have to explic-
itly create a new object, as you must when working with other objects, so they are as
easy to work with as primitive data types. Strings are unusual in this respect—none of
the basic types are stored as an object when used. You learn more about strings and the
String class later today and tomorrow.

Expressions and Operators

An expression is a statement that can convey a value. Some of the most common expres-
sions are mathematical, such as in the following example:

int x = 3;

int y = x;

int z = x *vy;

All three of these statements can be considered expressions; they convey values that can
be assigned to variables. The first assigns the literal 3 to the variable x. The second
assigns the value of the variable x to the variable y. In the third expression, the multipli-
cation operator * is used to multiply the x and y integers, and the result is stored in the z
integer.

An expression can be any combination of variables, literals, and operators. They also can
be method calls because methods can send back a value to the object or class that called
the method.

The value conveyed by an expression is called a return value. This value can be assigned
to a variable and used in many other ways in your Java programs.

Expressions and Operators 49

Most of the expressions in Java use operators such as “*”. Operators are special symbols
used for mathematical functions, some types of assignment statements, and logical com-
parisons.

Arithmetic

Five operators are used to accomplish basic arithmetic in Java, as shown in Table 2.3.

TABLE 2.3 Arithmetic Operators

Operator Meaning Example

+ Addition 3 + 4
Subtraction 5.7

* Multiplication 5 *5

/ Division 14 /7

% Modulus 20 % 7

Each operator takes two operands, one on either side of the operator. The subtraction
operator also can be used to negate a single operand, which is equivalent to multiplying
that operand by 1.

One thing to be mindful of when performing division is the kind of numbers being used.
If you store a division operation into an integer, the result will be truncated to the next
lower whole number because the int data type can’t handle floating-point numbers. As
an example, the expression 31 / 9 results in 3 if stored as an integer.

Modulus division, which uses the % operator, produces the remainder of a division opera-
tion. The expression 31 % 9 results in 4 because 31 divided by 9, with the whole number
result of 3, leaves a remainder of 4.

Note that many arithmetic operations involving integers produce an int regardless of the
original type of the operands. If you’re working with other numbers, such as floating-
point numbers or long integers, you should make sure that the operands have the same
type you’re trying to end up with.

Listing 2.2 contains a class that demonstrates simple arithmetic in Java.

LISTING 2.2 The Full Text of Weather.java

1: public class Weather {

2 public static void main(String[] arguments) {

3: float fah = 86;

4 System.out.println(fah + " degrees Fahrenheit is ...");

50 DAY 2: The ABCs of Programming

LISTING 2.2 Continued

5: // To convert Fahrenheit into Celsius

6: // Begin by subtracting 32

7: fah = fah - 32;

8: // Divide the answer by 9

9: fah = fah / 9;

10: // Multiply that answer by 5

11: fah = fah * 5;

12: System.out.println(fah + " degrees Celsius\n");
13:

14: float cel = 33;

15: System.out.println(cel + " degrees Celsius is ...");
16: // To convert Fahrenheit into Celsius

17: // Begin by subtracting 32

18: cel = cel * 9;

19: // Divide the answer by 9

20: cel = cel / 5;

21: // Multiply that answer by 5

22: cel = cel + 32;

23: System.out.println(cel + " degrees Fahrenheit");
24: }

25: }

When you compile and run this Java application, it produces the following output:

86.0 degrees Fahrenheit is ...
30.0 degrees Celsius

33.0 degrees Celsius is ...

91.4 degrees Fahrenheit

In lines 3—12 of this Java application, a temperature in Fahrenheit is converted to Celsius
using the arithmetic operators:

m Line 3—The floating-point variable fah is created with a value of 86.

®m Line 4—The current value of fah is displayed.

Line 5—The first of several comments explain what the program is doing. The
Java compiler ignores these comments.

Line 7—fah is set to its current value minus 32.
Line 9—*ah is set to its current value divided by 9.

Line 11—fah is set to its current value multiplied by 5.

Line 12—Now that fah has been converted to a Celsius value, fah is displayed again.

A similar thing happens in lines 14-23 but in the reverse direction—a temperature in
Celsius is converted to Fahrenheit.

Expressions and Operators

More About Assignment

Assigning a value to a variable is an expression because it produces a value. Because of
this feature, you can string assignment statements together the following way:

X=y=2z-= 7;
In this statement, all three variables end up with the value of 7.

The right side of an assignment expression always is calculated before the assignment takes
place. This makes it possible to use an expression statement as in the following code:

int x = 5;
X =X + 25

In the expression x = x + 2, the first thing that happens is that x + 2 is calculated. The
result of this calculation, 7, is then assigned to x.

Using an expression to change a variable’s value is a common task in programming.
Several operators are used strictly in these cases.

Table 2.4 shows these assignment operators and the expressions they are functionally
equivalent to.

TABLE 2.4 Assignment Operators

Expression Meaning

X +=y X=X+Yy

X -=y X=X-Yy

X *=y x=x*y

x /=y X=x/y

CAUTION These shorthand assignment operators are functionally equivalent

to the longer assignment statements for which they substitute. If
either side of your assignment statement is part of a complex
expression, however, there are cases where the operators are not
equivalent. For example, if x equals 20 and y equals 5, the follow-
ing two statements do not produce the same value:

X=Xx/y+5;
X /=y +5;

When in doubt, simplify an expression by using multiple assign-
ment statements and don’t use the shorthand operators.

51

52

DAY 2: The ABCs of Programming

Incrementing and Decrementing

Another common task required in programming is to add or subtract 1 from an integer
variable. There are special operators for these expressions, which are called increment
and decrement operations. Incrementing a variable means to add 1 to its value, and
decrementing a variable means to subtract 1 from its value.

The increment operator is ++, and the decrement operator is - -. These operators are
placed immediately after or immediately before a variable name, as in the following code
example:

int x = 7;
X = X++j

In this example, the statement x = x++ increments the x variable from 7 to 8.

These increment and decrement operators can be placed before or after a variable name,
and this affects the value of expressions that involve these operators.

Increment and decrement operators are called prefix operators if listed before a variable
name and postfix operators if listed after a name.

In a simple expression such as standards- - ;, using a prefix or postfix operator produces
the same result, making the operators interchangeable. When increment and decrement
operations are part of a larger expression, however, the choice between prefix and postfix
operators is important.

Consider the following code:

int x, y, z;

X = 42;
y = X+t
Z = ++X;

The three expressions in this code yield very different results because of the difference
between prefix and postfix operations.

When you use postfix operators, as in y = x++, y receives the value of x before it is
incremented by one. When using prefix operators, as in z = ++x, x is incremented by
one before the value is assigned to z. The end result of this example is that y equals 42, z
equals 44, and x equals 44.

If you’re still having some trouble figuring this out, here’s the example again with com-
ments describing each step:

Expressions and Operators 53

int x, y, z; // X, y, and z are all declared

X = 42; /1 x is given the value of 42

y = X++t; // y is given x's value (42) before it is incremented
// and x is then incremented to 43

++X; /1 x is incremented to 44, and z is given x's value

z

CAUTION As with shorthand operators, increment and decrement operators
in extremely complex expressions can produce results you might
not have expected.

The concept of “assigning x to y before x is incremented” isn’t
precisely right because Java evaluates everything on the right side
of an expression before assigning its value to the left side.

Java stores some values before handling an expression to make
postfix work the way it has been described in this section.

When you're not getting the results you expect from a complex
expression that includes prefix and postfix operators, try to break
the expression into multiple statements to simplify it.

Comparisons

Java has several operators for making comparisons among variables, variables and liter-
als, or other types of information in a program.

These operators are used in expressions that return Boolean values of true or false,
depending on whether the comparison being made is true or not. Table 2.5 shows the
comparison operators.

TABLE 2.5 Comparison Operators

Operator Meaning Example
== Equal X == 3
1= Not equal x =3
< Less than x <3
> Greater than x > 3
<= Less than or equal to X <= 3

>= Greater than or equal to x >= 3

54

DAY 2: The ABCs of Programming

The following example shows a comparison operator in use:

boolean hip;
int age = 36;
hip = age < 25;

The expression age < 25 produces a result of either true or false, depending on the
value of the integer age. Because age is 36 in this example (which is not less than 25),
hip is given the Boolean value false.

Logical Operators

Expressions that result in Boolean values, such as comparison operations, can be com-
bined to form more complex expressions. This is handled through logical operators,
which are used for the logical combinations AND, OR, XOR, and logical NOT.

For AND combinations, the & or & logical operators are used. When two Boolean expres-
sions are linked by the & or && operators, the combined expression returns a true value
only if both Boolean expressions are true.

Consider this example:
boolean extraLife = (score > 75000) & (playerLives < 10);

This expression combines two comparison expressions: score > 75000 and
playerLives < 10. If both of these expressions are true, the value true is assigned to
the variable extraLife. In any other circumstance, the value false is assigned to the
variable.

The difference between “&” and “&&” lies in how much work Java does on the com-
bined expression. If “&” is used, the expressions on either side of the “&” are evaluated
no matter what. If “&&” is used and the left side of the “&&” is false, the expression on
the right side of the “&&” never is evaluated.

For OR combinations, the “” or *||” logical operators are used. These combined expres-
sions return a true value if either Boolean expression is true.

Consider this example:
boolean extralife = (score > 75000) ,, (playerLevel == 0);

This expression combines two comparison expressions: score > 75000 and
playerLevel = 0. If either of these expressions is true, the value true is assigned to the
variable extraLife. Only if both of these expressions are false will the value false be
assigned to extraLife.

Expressions and Operators

Note the use of “||” instead of *|”. Because of this usage, if score > 75000 is true,
extraLife is set to true, and the second expression is never evaluated.

The XOR combination has one logical operator, “*”. This results in a true value only if
both Boolean expressions it combines have opposite values. If both are true or both are
false, the “” operator produces a false value.

oy

The NOT combination uses the
reverses the value of a Boolean expression the same way that a minus symbol reverses
the positive or negative sign on a number.

logical operator followed by a single expression. It

For example, if age < 30 returns a true value, ! (age < 30) returns a false value.

The logical operators can seem completely illogical when encountered for the first time.
You get plenty of chances to work with them for the rest of this week, especially on Day
5, “Creating Classes and Methods.”

Operator Precedence

When more than one operator is used in an expression, Java has an established prece-
dence hierarchy to determine the order in which operators are evaluated. In many cases,
this precedence determines the overall value of the expression.

For example, consider the following expression:
y=6+4/]2;

The y variable receives the value 5 or the value 8, depending on which arithmetic opera-
tion is handled first. If the 6 + 4 expression comes first, y has the value of 5. Otherwise,
y equals 8.

In general, the order of evaluation from first to last is the following:

® Increment and decrement operations

Arithmetic operations

]
m Comparisons
m Logical operations
]

Assignment expressions

If two operations have the same precedence, the one on the left in the actual expression
is handled before the one on the right. Table 2.6 shows the specific precedence of the
various operators in Java. Operators farther up the table are evaluated first.

55

56

DAY 2: The ABCs of Programming

TABLE 2.6 Operator Precedence

Operator Notes

“n

[1 0 Parentheses (“()”) are used to group expressions; a period (“.”) is
used for access to methods and variables within objects and
classes (discussed tomorrow); square brackets (“[]”) are used for
arrays. (This operator is discussed later in the week.)

++ — | ~ instanceof The instanceof operator returns true or false based on whether
the object is an instance of the named class or any of that class’s
subclasses (discussed tomorrow).

new (type)expression The new operator is used for creating new instances of classes;
“()” in this case are for casting a value to another type. (You learn
about both of these tomorrow.)

* | % Multiplication, division, modulus.
+ - Addition, subtraction.
<< >> >>> Bitwise left and right shift.
< > <= >= Relational comparison tests.
== |= Equality.
& AND
~ XOR
! OR
&& Logical AND
o Logical or
? Shorthand for if-then-else (discussed on Day 5).
= += -= *= [= %= ~= Various assignments.
= l= <<= >>= >>>= More assignments.

Returning to the expressiony = 6 + 4 / 2, Table 2.6 shows that division is evaluated
before addition, so the value of y will be 8.

To change the order in which expressions are evaluated, place parentheses around the
expressions that should be evaluated first. You can nest one set of parentheses inside
another to make sure that expressions are evaluated in the desired order; the innermost
parenthetic expression is evaluated first.

The following expression results in a value of 5:
y=1(6+4)/2

The value of 5 is the result because 6 + 4 is calculated first, and then the result, 10, is
divided by 2.

String Arithmetic 57

Parentheses also can improve the readability of an expression. If the precedence of an
expression isn’t immediately clear to you, adding parentheses to impose the desired
precedence can make the statement easier to understand.

String Arithmetic

As stated earlier today, the + operator has a double life outside the world of mathematics.
It can concatenate two or more strings. Concatenate means to link two things together.
For reasons unknown, it is the verb of choice when describing the act of combining two
strings—winning out over paste, glue, affix, combine, link, and conjoin.

In several examples, you have seen statements that look something like this:

String firstName = "Raymond";
System.out.println("Everybody loves " + firstName);

These two lines result in the display of the following text:

Everybody loves Raymond

The + operator combines strings, other objects, and variables to form a single string. In
the preceding example, the literal “Everybody loves” is concatenated to the value of the
String object firstName.

Working with the concatenation operator is easy in Java because of the way the operator
can handle any variable type and object value as if it were a string. If any part of a con-
catenation operation is a String or a string literal, all elements of the operation will be
treated as if they were strings:

System.out.println(4 + " score and " + 7 + " years ago");

This produces the output text 4 score and 7 years ago, as if the integer literals 4 and
7 were strings.

There is also a shorthand += operator to add something to the end of a string. For exam-
ple, consider the following expression:

myName += " Jr.";
This expression is equivalent to the following:
myName = myName + " Jr.";

In this example, it changes the value of myName, which might be something like “Efrem
Zimbalist”, by adding “Jr.” at the end to form the string “Efrem Zimbalist Jr.”

58

DAY 2: The ABCs of Programming

Summary

Anyone who pops open a set of matryoshka dolls has to be a bit disappointed to reach
the smallest doll in the group. Advances in microengineering enable Russian artisans to
create ever smaller and smaller dolls, until someone reaches the subatomic threshold and
is declared the winner.

You have reached Java’s smallest nesting doll today. Using statements and expressions
enables you to begin building effective methods, which make effective objects and
classes possible.

Today, you learned about creating variables and assigning values to them. You also used
literals to represent numeric, character, and string values and worked with operators.
Tomorrow, you put these skills to use developing classes.

To summarize today’s material, Table 2.7 lists the operators you learned about. Be a doll
and look them over carefully.

TABLE 2.7 Operator Summary

Operator Meaning
+ Addition
Subtraction
* Multiplication
/ Division
% Modulus
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal
1= Not equal
&& Logical AND
Y Logical or
! Logical NOT
& AND
! OR
» XOR
= Assignment

4 Increment

Q&A 59

TABLE 2.7 Continued

Operator Meaning

— Decrement

+= Add and assign

-= Subtract and assign
*= Multiply and assign
/= Divide and assign
%= Modulus and assign

Q&A

Q What happens if I assign an integer value to a variable that is too large for
that variable to hold?

A Logically, you might think that the variable is converted to the next larger type, but
this isn’t what happens. Instead, an overflow occurs—a situation in which the num-
ber wraps around from one size extreme to the other. An example of overflow
would be a byte variable that goes from 127 (acceptable value) to 128 (unaccept-
able). It would wrap around to the lowest acceptable value, which is 128, and start
counting upward from there. Overflow isn’t something you can readily deal with in
a program, so be sure to give your variables plenty of living space in their chosen
data type.

Q Why does Java have all these shorthand operators for arithmetic and assign-
ment? It’s really hard to read that way.

A Java’s syntax is based on C++, which is based on C (more Russian nesting doll
behavior). C is an expert language that values programming power over readability,
and the shorthand operators are one of the legacies of that design priority. Using
them in a program isn’t required because effective substitutes are available, so you
can avoid them in your own programming, if you prefer.

60 DAY 2: The ABCs of Programming

Quiz

Review today’s material by taking this three-question quiz.

Questions
1. Which of the following is a valid value for a boolean variable?
a. “false”
b. false
c. 10
2. Which of these is not a convention for naming variables in Java?

a. After the first word in the variable name, each successive word begins with a
capital letter.

b. The first letter of the variable name is lowercase.
c. All letters are capitalized.
3. Which of these data types holds numbers from 32,768 to 32,7677
a. char
b. byte

c. short

Answers

1. b. In Java, a boolean can be only true or false. If you put quotation marks
around the value, it will be treated like a String rather than one of the two
boolean values.

2. c. Constant names are capitalized to make them stand out from other variables.
3. ¢

Certification Practice

The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material.

Which of the following data types can hold the number 3,000,000,000 (three billion)?

a. short, int, long, float
b. int, long, float

o

long, float
d. byte

Exercises 61

The answer is available on the book’s website at http://www.java2ldays.com. Visit the
Day 2 page and click the Certification Practice link.

Exercises

To extend your knowledge of the subjects covered today, try the following exercises:

1. Create a program that calculates how much a $14,000 investment would be worth
if it increased in value by 40% during the first year, lost $1,500 in value the second
year, and increased 12% in the third year.

2. Write a program that displays two numbers and uses the / and % operators to dis-
play the result and remainder after they are divided. Use the \t character escape
code to separate the result and remainder in your output.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java2ldays.com.

DAY 3:
Working with Objects

Java is a heavily object-oriented programming language. When you do
work in Java, you use objects to get the job done. You create objects,
modify them, move them around, change their variables, call their meth-
ods, and combine them with other objects. You develop classes, create
objects out of those classes, and use them with other classes and
objects.

Today, you work extensively with objects. The following topics are covered:
m Creating objects (also called instances)

m Testing and modifying class and instance variables in those
objects

m Calling an object’s methods

m Converting objects and other types of data from one class to
another

64

DAY 3: Working with Objects

Creating New Objects

When you write a Java program, you define a set of classes. As you learned during Day
1, “Getting Started with Java,” classes are templates used to create objects. These
objects, which are also called instances, are self-contained elements of a program with
related features and data. For the most part, you use the class merely to create instances
and then work with those instances. In this section, therefore, you learn how to create a
new object from any given class.

When using strings on Day 2, “The ABCs of Programming,” you learned that using a
string literal (a series of characters enclosed in double quotation marks) creates a new
instance of the class String with the value of that string.

The String class is unusual in that respect. Although it’s a class, the use of a string lit-
eral serves as a shortcut to create instances of that class. To create instances of other
classes, the new operator is used.

NOTE What about the literals for numbers and characters—don’t they
create objects, too? Actually, they don’t. The primitive data types
for numbers and characters create numbers and characters, but
for efficiency they actually aren’t objects. On Day 5, “Creating
Classes and Methods,” you'll learn how to use objects to repre-
sent primitive values.

Using new

To create a new object, you use the new operator with the name of the class that should
be used as a template. The name of the class is followed by parentheses, as in these three
examples:

String name = new String();

URL address = new URL("http://www.java2idays.com");
VolcanoRobot robbie = new VolcanoRobot();

The parentheses are important; don’t leave them off. The parentheses can be empty, in
which case the most simple, basic object is created, or the parentheses can contain argu-
ments that determine the values of instance variables or other initial qualities of that
object.

The following examples show objects being created with arguments:
Random seed = new Random(6068430714);

Point pt = new Point(0, 0);

Creating New Objects 65

The number and type of arguments you can use inside the parentheses with new are
defined by the class itself using a special method called a constructor. (You’ll learn more
about constructors later today.) If you try to create a new instance of a class with the
wrong number or type of arguments (or if you give it no arguments and it needs some),
you’ll receive an error when you try to compile your Java program.

Here’s an example of creating different types of objects with different numbers and types
of arguments: the StringTokenizer class, part of the java.util package, divides a
string into a series of shorter strings called fokens.

A string is divided into tokens by applying some kind of character or characters as a
delimiter. For example, the text "02/20/67" could be divided into three tokens—02, 20,
and 67—using the slash character (“/””) as a delimiter.

Listing 3.1 is a Java program that creates StringTokenizer objects by using new in two
different ways and then displays each token the objects contain.

LISTING 3.1 The Full Text of TokenTester.java

1: import java.util.StringTokenizer;

2:

3: class TokenTester {

4:

5: public static void main(String[] arguments) {

6: StringTokenizer st1, st2;

7

8: String quoteil = "VIZY 3 -1/16";

9: st1 = new StringTokenizer(quotel);

10: System.out.println("Token 1: " + sti.nextToken());
11: System.out.println("Token 2: " + sti.nextToken());
12: System.out.println("Token 3: " + sti.nextToken());
13:

14: String quote2 = "NPLI@9 27/32@3/32";

15: st2 = new StringTokenizer(quote2, "@");

16: System.out.println("\nToken 1: " + st2.nextToken());
17: System.out.println("Token 2: " + st2.nextToken());
18: System.out.println("Token 3: " + st2.nextToken());
19: }
20: }

When you compile and run the program, the output should resemble the following:

Token 1: VIZY
Token 2: 3
Token 3: -1/16

Token 1: NPLI
Token 2: 9 27/32
Token 3: 3/32

66

DAY 3: Working with Objects

In this example, two different StringTokenizer objects are created using different argu-
ments to the constructor listed after new.

The first instance uses new StringTokenizer() with one argument, a String object
named quote1 (line 9). This creates a StringTokenizer object that uses the default delim-
iters: blank spaces, tab, newline, carriage return, or formfeed characters.

If any of these characters is contained in the string, it is used to divide the tokens. Because
the quote1 string contains spaces, these are used as delimiters dividing each token. Lines
10-12 display the values of all three tokens: VIZY, 3, and -1/16.

The second StringTokenizer object in this example has two arguments when it is con-
structed in line 14—a String object named quote2 and an at-sign character ("@"). This
second argument indicates that the "@" character should be used as the delimiter between
tokens. The StringTokenizer object created in line 15 contains three tokens: NPLI, 9
27/32, and 3/32.

NOTE You get a chance to work with live stock data from Yahoo Finance in the
QuoteData project during Day 18, “Accessing Databases with JDBC.”

The application uses StringTokenizer to split up stock quote
fields separated by commas.

What new Does

Several things happen when you use the new operator—the new instance of the given class
is created, memory is allocated for it, and a special method defined in the given class is
called. This special method is called a constructor.

A constructor is a special method for creating and initializing a new instance of a class. A
constructor initializes the new object and its variables, creates any other objects that the
object needs, and performs any other operations that the object needs to initialize itself.

Multiple constructor definitions in a class can each have a different number, or type, of
arguments. When you use new, you can specify different arguments in the argument list,
and the correct constructor for those arguments is called. Multiple constructor definitions
enabled the TokenTester class in the previous example to accomplish different things with
the different uses of the new operator. When you create your own classes, you can define
as many constructors as you need to implement the behavior of the class.

A Note on Memory Management

If you are familiar with other object-oriented programming languages, you might wonder
whether the new statement has an opposite that destroys an object when it is no longer needed.

Accessing and Setting Class and Instance Variables

Memory management in Java is dynamic and automatic. When you create a new object,
Java automatically allocates the correct amount of memory for that object. You don’t
have to allocate any memory for objects explicitly. Java does it for you.

Because Java memory management is automatic, you do not need to deallocate the mem-
ory an object uses when you’re finished using the object. Under most circumstances,
when you are finished with an object you have created, Java can determine that the
object no longer has any live references to it. (In other words, the object won’t be
assigned to any variables still in use or stored in any arrays.)

As a program runs, Java periodically looks for unused objects and reclaims the memory
that those objects are using. This process is called garbage collection and occurs without
requiring any programming on your part. You don’t have to explicitly free the memory
taken up by an object; you just have to make sure that you’re not still holding onto an
object you want to get rid of.

Accessing and Setting Class and
Instance Variables

At this point, you could create your own object with class and instance variables defined
in it, but how do you work with those variables? Easy! Class and instance variables are
used in largely the same manner as the local variables you learned about yesterday. You
can use them in expressions, assign values to them in statements, and so on. You just
refer to them slightly differently from how you refer to regular variables in your code.

Getting Values

To get to the value of an instance variable, you use dot notation, a form of addressing in
which an instance or class variable name has two parts: a reference to an object or class
on the left side of the dot and a variable on the right side of the dot.

Dot notation is a way to refer to an object’s instance variables and methods using a dot
(.) operator.

For example, if you have an object named myCustomer, and that object has a variable
called orderTotal, you refer to that variable’s value as myCustomer.orderTotal, as in
this statement:

float total = myCustomer.orderTotal;

This form of accessing variables is an expression (that is, it returns a value), and both
sides of the dot are also expressions. That means you can nest instance variable access. If

67

68

DAY 3: Working with Objects

the orderTotal instance variable itself holds an object, and that object has its own
instance variable called layaway, you could refer to it as in this statement:

boolean onLayaway = myCustomer.orderTotal.layaway;

Dot expressions are evaluated from left to right, so you start with myCustomer’s variable
orderTotal, which points to another object with the variable layaway. You end up with
the value of that layaway variable.

Changing Values

Assigning a value to that variable is equally easy; just tack on an assignment operator to
the right side of the expression:

myCustomer.orderTotal.layaway = true;
This example sets the value of the layaway variable to true.

Listing 3.2 is an example of a program that tests and modifies the instance variables in a
Point object. Point, a class in the java.awt package, represents points in a coordinate
system with x and y values.

LISTING 3.2 The Full Text of PointSetter.java

1: import java.awt.Point;

2:

3: class PointSetter {

4:

5: public static void main(String[] arguments) {

6: Point location = new Point(4, 13);

7

8: System.out.println("Starting location:");

9: System.out.println("X equals " + location.x);
10: System.out.println("Y equals " + location.y);
11:

12: System.out.println("\nMoving to (7, 6)");

13: location.x = 7;

14: location.y = 6;

15:

16: System.out.println("\nEnding location:");

17: System.out.println("X equals " + location.x);
18: System.out.println("Y equals " + location.y);
19: }

20: }

Accessing and Setting Class and Instance Variables 69

When you run this application, the output should be the following:

Starting location:
X equals 4
Y equals 13

Moving to (7, 6)

Ending location:
X equals 7
Y equals 6

In this example, you first create an instance of Point where x equals 4, and y equals 13
(line 6). Lines 9 and 10 display these individual values using dot notation. Lines 13 and
14 change the values of x to 7 and y to 6, respectively. Finally, lines 17 and 18 display
the values of x and y again to show how they have changed.

Class Variables

Class variables, as you have learned, are variables defined and stored in the class itself.
Their values apply to the class and all its instances.

With instance variables, each new instance of the class gets a new copy of the instance
variables that the class defines. Each instance then can change the values of those
instance variables without affecting any other instances. With class variables, only one
copy of that variable exists. Changing the value of that variable changes it for all
instances of that class.

You define class variables by including the static keyword before the variable itself.
For example, consider the following partial class definition:
class FamilyMember {

static String surname = "Mendoza";

String name;
int age;

Each instance of the class FamilyMember has its own values for name and age. The class
variable surname, however, has only one value for all family members: "Mendoza".
Change the value of surname, and all instances of FamilyMember are affected.

NOTE Calling these static variables refers to one of the meanings of the
word static: fixed in one place. If a class has a static variable,
every object of that class has the same value for that variable.

70

DAY 3: Working with Objects

To access class variables, you use the same dot notation as with instance variables. To
retrieve or change the value of the class variable, you can use either the instance or the
name of the class on the left side of the dot. Both lines of output in this example display
the same value:

FamilyMember dad = new FamilyMember();

System.out.println("Family's surname is: " + dad.surname);
System.out.println("Family's surname is: " + FamilyMember.surname);

Because you can use an instance to change the value of a class variable, it’s easy to
become confused about class variables and where their values are coming from.
Remember that the value of a class variable affects all its instances. For this reason, it’s a
good idea to use the name of the class when you refer to a class variable. It makes your
code easier to read and makes strange results easier to debug.

Calling Methods

Calling a method in an object is similar to referring to its instance variables: Dot notation
is used. The object whose method you’re calling is on the left side of the dot, and the
name of the method and its arguments are on the right side of the dot:

myCustomer.addToOrder (itemNumber, price, quantity);

Note that all methods must have parentheses after them, even if the method takes no
arguments:

myCustomer.cancelAllOrders();

Listing 3.3 shows an example of calling some methods defined in the String class.
Strings include methods for string tests and modification, similar to what you would
expect in a string library in other languages.

LISTING 3.3 The Full Text of StringChecker.java

1: class StringChecker {

public static void main(String[] arguments) {
String str = "Nobody ever went broke by buying IBM";
System.out.println("The string is: " + str);
System.out.println("Length of this string: "
+ str.length()
System.out.println("The character at position 5: "
+ str.charAt(5));
System.out.println("The substring from 26 to 32: "
+ str.substring(26, 32));

3

- 0 WO NOOA~WN
—_ o~ — —~

—_

Calling Methods 71

LISTING 3.3 Continued

12: System.out.println("The index of the character v: "

13: + str.indexOf('v'));

14: System.out.println("The index of the beginning of the "
15: + "substring \"IBM\": " + str.indexOf("IBM"));

16: System.out.println("The string in upper case: "

17: + str.toUpperCase());

18: }

19: }

The following is displayed on your system’s standard output device when you run the
program:

The string is: Nobody ever went broke by buying IBM

Length of this string: 36

The character at position 5: y

The substring from 26 to 32: buying

The index of the character v: 8

The index of the beginning of the substring "IBM": 33

The string in upper case: NOBODY EVER WENT BROKE BY BUYING IBM

In line 4, you create a new instance of String by using a string literal. The remainder of
the program simply calls different string methods to do different operations on that
string:

m Line 5 prints the value of the string you created in line 4: "Nobody ever went
broke by buying IBM".

m Line 7 calls the 1length() method in the new String object. This string has 36
characters.

m Line 9 calls the charAt () method, which returns the character at the given position
in the string. Note that string positions start at position @ rather than 1, so the char-
acter at position 5 is y.

®m Line 11 calls the substring() method, which takes two integers indicating a range
and returns the substring with those starting and ending points. The substring()
method also can be called with only one argument, which returns the substring
from that position to the end of the string.

m Line 13 calls the index0f () method, which returns the position of the first instance
of the given character (here, 'v'). Character literals are surrounded by single quo-
tation marks; if double quotation marks had surrounded the v in line 13, the literal
would be considered a String.

72

DAY 3: Working with Objects

m Line 15 shows a different use of the index0f () method, which takes a string argu-
ment and returns the index of the beginning of that string.

m Line 17 uses the toUppercCase () method to return a copy of the string in all upper-
case.

If you are familiar with printf-style formatting from other programming languages, you
can employ the System.out.format () method to apply this formatting when displaying
strings.

The method takes two arguments: the output format and the string to display. Here’s an
example that adds a dollar sign and commas to the display of an integer:

int accountBalance = 5005;
System.out.format("Balance: $%,d%n", accountBalance);

This code produces the following output:
Balance: $5,005

The formatting string begins with a percent sign (“%) followed by one or more flags.
The “%,d” code displays a decimal with commas dividing each three digits. The “%n”
code displays a newline character.

The next example displays the value of pi to 11 decimal places:

double pi = Math.PI;
System.out.format("%.11f%n", pi);

The output:

3.14159265359

TIP Sun’s Java site includes an introductory tutorial for printf-style out-
put that describes some of the most useful formatting codes at
the following address:

http://java.sun.com/docs/books/tutorial/java/data/number
wformat.html

Nesting Method Calls

A method can return a reference to an object, a primitive data type, or no value at all. In
the StringChecker application, all the methods called on the String object str returned

Calling Methods 73

values that were displayed; for example, the charAt () method returned a character at a
specified position in the string.
The value returned by a method also can be stored in a variable:

String label = "From";
String upper = label.toUpperCase();

In the preceding example, the String object upper contains the value returned by calling
label.toUppercCase ()—the text “FROM”, an uppercase version of “From”.

If the method returns an object, you can call the methods of that object in the same state-
ment. This makes it possible for you to nest methods as you would variables.

Earlier today, you saw an example of a method called with no arguments:
myCustomer.cancelAllOrders();

If the cancelAllorders() method returns an object, you can call methods of that object
in the same statement:

myCustomer.cancelAllOrders().talkToManager();

This statement calls the talkToManager () method, which is defined in the object
returned by the cancelAll0Orders() method of the myCustomer object.

You can combine nested method calls and instance variable references, as well. In the
next example, the putOnLayaway () method is defined in the object stored by the
orderTotal instance variable, which itself is part of the myCustomer object:

myCustomer.orderTotal.putOnLayaway (itemNumber, price, quantity);

This manner of nesting variables and methods is demonstrated in System.out.
println(), the method you’ve been using in all program examples to display
information.

The Systenm class, part of the java.lang package, describes behavior specific to the com-
puter system on which Java is running. System.out is a class variable that contains an
instance of the class PrintStream representing the standard output of the system, which
is normally the screen but can be redirected to a printer or file. PrintStream objects have
a println() method that sends a string to that output stream.

Class Methods

Class methods, like class variables, apply to the class as a whole and not to its instances.
Class methods are commonly used for general utility methods that might not operate
directly on an instance of that class but do fit with that class conceptually.

74

DAY 3: Working with Objects

For example, the String class contains a class method called valueOf (), which can take
one of many different types of arguments (integers, Booleans, objects, and so on). The
valueOf () method then returns a new instance of String containing the string value of
the argument. This method doesn’t operate directly on an existing instance of String,
but getting a string from another object or data type is behavior that makes sense to
define in the String class.

Class methods also can be useful for gathering general methods together in one place.
For example, the Math class, defined in the java.lang package, contains a large set of
mathematical operations as class methods; there are no instances of the class Math, but
you still can use its methods with numeric or Boolean arguments.

For example, the class method Math.max () takes two arguments and returns the larger of
the two. You don’t need to create a new instance of Math; it can be called anywhere you
need it, as in the following:

int higherPrice = Math.max(firstPrice, secondPrice);

Dot notation is used to call a class method. As with class variables, you can use either an
instance of the class or the class itself on the left side of the dot. For the same reasons
noted in the discussion on class variables, however, using the name of the class makes
your code easier to read. The last two lines in this example produce the same result—the
string “550”:

String s, s2;

s = "item";

s2 = s.valueOf(550);

s2 = String.valueOf(550);

References to Objects

As you work with objects, it’s important to understand references.

A reference is an address that indicates where an object’s variables and methods are
stored.

You aren’t actually using objects when you assign an object to a variable or pass an
object to a method as an argument. You aren’t even using copies of the objects. Instead,
you’re using references to those objects.

To better illustrate the difference, Listing 3.4 shows how references work.

References to Objects 75

LISTING 3.4 The Full Text of RefTester.java

1: import java.awt.Point;

2:

3: class RefTester {

4 public static void main(String[] arguments) {

5: Point pt1, pt2;

6: pt1 = new Point (100, 100);

7 pt2 = pt1;

8:

9: pti1.x = 200;
10: pt1.y = 200;
11: System.out.println("Point1: " + pt1i.x + ", " + ptl.y);
12: System.out.println("Point2: " + pt2.x + ", " + pt2.y);
13: }
14: }

Here is this program’s output:

Point1: 200, 200
Point2: 200, 200

The following takes place in the first part of this program:

m Line 5—Two Point variables are created.
m Line 6—A new Point object is assigned to pt1.

m Line 7—The value of pt1 is assigned to pt2.

Lines 9-12 are the tricky part. The x and y variables of pt1 are both set to 200, and then
all variables of pt1 and pt2 are displayed onscreen.

You might expect pt1 and pt2 to have different values. However, the output shows this is
not the case. As you can see, the x and y variables of pt2 also were changed, even
though nothing in the program explicitly changes them. This happens because line 7
creates a reference from pt2 to pt1, instead of creating pt2 as a new object copied

from pt1.

pt2 is a reference to the same object as pt1; this is shown in Figure 3.1. Either variable
can be used to refer to the object or to change its variables.

FIGURE 3.1 pt1 Point object
References to ~ 200
objects. pt2 —»| y:200

76 DAY 3: Working with Objects

If you wanted pt1 and pt2 to refer to separate objects, separate new Point() statements
could be used on lines 6 and 7 to create separate objects, as shown in the following:

pt1 = new Point (100, 100);
pt2 = new Point (100, 100);

References in Java become particularly important when arguments are passed to meth-
ods. You learn more about this later today.

NOTE There are no explicit pointers or pointer arithmetic in Java, as
there are in C and C++. By using references and Java arrays, how-
ever, most pointer capabilities are duplicated without many of their
drawbacks.

Casting and Converting Objects and
Primitive Types

One thing you discover quickly about Java is how finicky it is about the information it
will handle. Like Morris, the perpetually hard-to-please cat in the old 9Lives cat food

commercials, Java methods and constructors require things to take a specific form and
won’t accept alternatives.

When you are sending arguments to methods or using variables in expressions, you must
use variables of the correct data types. If a method requires an int, the Java compiler
responds with an error if you try to send a float value to the method. Likewise, if you’re
setting up one variable with the value of another, they must be of the same type.

NOTE There is one area where Java's compiler is decidedly flexible:
Strings. String handling in println() methods, assignment state-
ments, and method arguments is simplified by the concatenation
operator (+). If any variable in a group of concatenated variables is
a string, Java treats the whole thing as a string. This makes the
following possible:

float gpa = 2.25F;

System.out.println("Honest, dad, my GPA is a " + (gpat1.5));

Using the concatenation operator, a single string can hold the text
representation of multiple objects and primitive data in Java.

Casting and Converting Objects and Primitive Types 77

Sometimes you’ll have a value in your Java class that isn’t the right type for what you
need. It might be the wrong class or the wrong data type, such as a float when you need
an int.

You use casting to convert a value from one type to another.
Casting is the process of producing a new value that has a different type than its source.

Although the concept of casting is reasonably simple, the usage is complicated by the
fact that Java has both primitive types (such as int, float, and boolean) and object
types (String, Point, ZipFile, and the like). This section discusses three forms of casts
and conversions:

m Casting between primitive types, such as int to float or float to double

m Casting from an instance of a class to an instance of another class, such as Object
to String

m Casting primitive types to objects and then extracting primitive values from those
objects

When discussing casting, it can be easier to think in terms of sources and destinations.
The source is the variable being cast into another type. The destination is the result.

Casting Primitive Types

Casting between primitive types enables you to convert the value of one type to another
primitive type. It most commonly occurs with the numeric types, and there’s one primi-
tive type that can never be used in a cast. Boolean values must be either true or false
and cannot be used in a casting operation.

In many casts between primitive types, the destination can hold larger values than the
source, so the value is converted easily. An example would be casting a byte into an int.
Because a byte holds values from —128 to 127 and an int holds from 2,100,000 to
2,100,000, there’s more than enough room to cast a byte into an int.

You often can automatically use a byte or a char as an int; you can use an int as a
long, an int as a float, or anything as a double. In most cases, because the larger type
provides more precision than the smaller, no loss of information occurs as a result. The
exception is casting integers to floating-point values; casting an int or a long to a float,
or a long to a double, can cause some loss of precision.

78

DAY 3: Working with Objects

NOTE A character can be used as an int because each character has a
corresponding numeric code that represents its position in the
character set. If the variable i has the value 65, the cast (char)i
produces the character value A. The numeric code associated with
a capital A is 65, according to the ASCII character set, and Java
adopted this as part of its character support.

You must use an explicit cast to convert a value in a large type to a smaller type, or else
converting that value might result in a loss of precision. Explicit casts take the following
form:

(typename)value

In the preceding example, typename is the name of the data type to which you’re con-
verting, such as short, int, or float. value is an expression that results in the value of
the source type. For example, in the following statement, the value of x is divided by the
value of y, and the result is cast into an int in the following expression:

int result = (int)(x / y);

Note that because the precedence of casting is higher than that of arithmetic, you have to
use parentheses here; otherwise, the value of x would be cast into an int first and then
divided by y, which could easily produce a different result.

Casting Objects

Instances of classes also can be cast into instances of other classes, with one restriction:
The source and destination classes must be related by inheritance; one class must be a
subclass of the other.

Some objects might not need to be cast explicitly. In particular, because a subclass con-
tains all the same information as its superclass, you can use an instance of a subclass
anywhere a superclass is expected.

For example, consider a method that takes two arguments, one of type Object and
another of type Component. You can pass an instance of any class for the Object argu-
ment because all Java classes are subclasses of Object. For the Component argument, you
can pass in its subclasses, such as Button, Container, and Label.

This is true anywhere in a program, not just inside method calls. If you had a variable
defined as class Component, you could assign objects of that class or any of its subclasses
to that variable without casting.

Casting and Converting Objects and Primitive Types 79

This is true in the reverse, so you can use a superclass when a subclass is expected.
There is a catch, however: Because subclasses contain more behavior than their super-
classes, there’s a loss in precision involved. Those superclass objects might not have all
the behavior needed to act in place of a subclass object. For example, if you have an
operation that calls methods in objects of the class Integer, using an object of class
Number won’t include many methods specified in Integer. Errors occur if you try to call
methods that the destination object doesn’t have.

To use superclass objects where subclass objects are expected, you must cast them
explicitly. You won’t lose any information in the cast, but you gain all the methods and
variables that the subclass defines. To cast an object to another class, you use the same
operation as for primitive types:

(classname)object

In this case, classname is the name of the destination class, and object is a reference to
the source object. Note that casting creates a reference to the old object of the type
classname; the old object continues to exist as it did before.

The following example casts an instance of the class VicePresident to an instance of
the class Employee; VicePresident is a subclass of Employee with more information:
Employee emp = new Employee();

VicePresident veep = new VicePresident();

emp = veep; // no cast needed for upward use
veep = (VicePresident)emp; // must cast explicitly

As you’ll see when you begin working with graphical user interfaces during Week 2,
“The Java Class Library,” casting one object is necessary whenever you use Java2D
graphics operations. You must cast a Graphics object to a Graphics2D object before you
can draw onscreen. The following example uses a Graphics object called screen to cre-
ate a new Graphics2D object called screen2D:

Graphics2D screen2D = (Graphics2D)screen;

Graphics2D is a subclass of Graphics, and both are in the java.awt package. You
explore the subject fully during Day 13, “Using Color, Fonts, and Graphics.”

In addition to casting objects to classes, you also can cast objects to interfaces, but only
if an object’s class or one of its superclasses actually implements the interface. Casting
an object to an interface means that you can call one of that interface’s methods even if
that object’s class does not actually implement that interface.

80

DAY 3: Working with Objects

Converting Primitive Types to Objects and Vice
Versa

One thing you can’t do under any circumstance is cast from an object to a primitive data
type, or vice versa.

Primitive types and objects are very different things in Java, and you can’t automatically
cast between the two.

As an alternative, the java.lang package includes classes that correspond to each primi-
tive data type: Float, Boolean, Byte, and so on. Most of these classes have the same
names as the data types, except that the class names begin with a capital letter (Short
instead of short, Double instead of double, and the like). Also two classes have names
that differ from the corresponding data type: Character is used for char variables, and
Integer is used for int variables.

Using the classes that correspond to each primitive type, you can create an object that
holds the same value. The following statement creates an instance of the Integer class
with the integer value 7801:

Integer dataCount = new Integer(7801);

After you have an object created in this manner, you can use it as you would any object
(although you cannot change its value). When you want to use that value again as a
primitive value, there are methods for that, as well. For example, if you wanted to get an
int value from a dataCount object, the following statement would be apt:

int newCount = dataCount.intValue(); // returns 7801

A common translation you need in programs is converting a String to a numeric type,
such as an integer. When you need an int as the result, this can be done by using the
parseInt() class method of the Integer class. The String to convert is the only argu-
ment sent to the method, as in the following example:

String pennsylvania = "65000";
int penn = Integer.parselnt(pennsylvania);

The following classes can be used to work with objects instead of primitive data types:
Boolean, Byte, Character, Double, Float, Integer, Long, Short, and Void. These
classes are commonly referred to as object wrappers because they provide an object rep-
resentation that contains a primitive value.

Casting and Converting Objects and Primitive Types

CAUTION If you try to use the preceding example in a program, your program
won’t compile. The parseInt() method is designed to fail with a
NumberFormatException error if the argument to the method is not
a valid numeric value. To deal with errors of this kind, you must
use special error-handling statements, which are introduced during
Day 7, “Exceptions, Assertions, and Threads.”

Working with primitive types and objects that represent the same values is made easier
through autoboxing and unboxing, an automatic conversion process.

Autoboxing automatically converts a primitive type to an object, and unboxing converts
in the other direction.

If you write a statement that uses an object where a primitive type is expected, or vice
versa, the value will be converted so that the statement executes successfully.

This is a marked departure from most earlier versions of the language.

As a demonstration, the following statements can’t be compiled in Java 2 version 1.4:

Float f1 = new Float(12.5F);
Float f2 = new Float(27.2F);
System.out.println("Lower number: " + Math.min(f1, f2));

When you attempt to compile a class containing these statements, the compiler stops
with an error message stating that the Math.min () method requires two float primitive
values as arguments, rather than Float objects.

The statements compile successfully in Java 6. The Float objects are unboxed into prim-
itive values automatically when the Math.min () method is called.

CAUTION Unboxing an object works only if the object has a value. If no con-
structor has been called to set up the object, compilation fails
with a NullPointerException error.

81

82

DAY 3: Working with Objects

Comparing Object Values and Classes

In addition to casting, you will often perform three other common tasks that involve
objects:

m Comparing objects
®m Finding out the class of any given object

m Testing to see whether an object is an instance of a given class

Comparing Objects

Yesterday, you learned about operators for comparing values—equal, not equal, less than,
and so on. Most of these operators work only on primitive types, not on objects. If you
try to use other values as operands, the Java compiler produces errors.

The exceptions to this rule are the operators for equality—== (equal) and != (not equal).
When applied to objects, these operators don’t do what you might first expect. Instead of
checking whether one object has the same value as the other object, they determine
whether both sides of the operator refer to the same object.

To compare instances of a class and have meaningful results, you must implement spe-
cial methods in your class and call those methods.

A good example of this is the String class. It is possible to have two different String
objects that represent the same text. If you were to employ the == operator to compare
these objects, however, they would be considered unequal. Although their contents
match, they are not the same object.

To see whether two String objects have matching values, a method of the class called
equals() is used. The method tests each character in the string and returns true if the
two strings have the same values. Listing 3.5 illustrates this.

LISTING 3.5 The Full Text of EqualsTester.java

class EqualsTester {
public static void main(String[] arguments) {
String str1, str2;
str1 = "Free the bound periodicals.";
str2 = stri;

1:
2
3
4
5:
6:
7: System.out.println("Stringl: " + stri1);

8 System.out.println("String2: " + str2);

9 System.out.println("Same object? " + (str1 == str2));
0

1

Comparing Object Values and Classes 83

LISTING 3.5 Continued

11: str2 = new String(strit);

12:

13: System.out.println("Stringt1: " + stri1);

14: System.out.println("String2: " + str2);

15: System.out.println("Same object? " + (str1 == str2));
16: System.out.println("Same value? " + stri.equals(str2));
17: }

18: }

This program’s output is as follows:

String1: Free the bound periodicals.
String2: Free the bound periodicals.
Same object? true

String1: Free the bound periodicals.
String2: Free the bound periodicals.
Same object? false

Same value? true

The first part of this program declares two variables (str1 and str2), assigns the literal
“Free the bound periodicals.” to str1, and then assigns that value to str2 (lines 3-5). As
you learned earlier, str1 and str2 now point to the same object, and the equality test at
line 9 proves that.

In the second part of this program, you create a new String object with the same value
as str1 and assign str2 to that new String object. Now you have two different string
objects in str1 and str2, both with the same value. Testing them to see whether they’re
the same object by using the == operator (line 15) returns the expected answer: false—
they are not the same object in memory. Testing them using the equals () method in line
16 also returns the expected answer: true—they have the same values.

NOTE Why can’t you just use another literal when you change str2,
instead of using new? String literals are optimized in Java; if you
create a string using a literal and then use another literal with the
same characters, Java knows enough to give you the first String
object back. Both strings are the same objects; you have to go out
of your way to create two separate objects.

84

DAY 3: Working with Objects

Determining the Class of an Object

Want to find out what an object’s class is? Here’s the way to do it for an object assigned
to the variable key:

String name = key.getClass().getName();

What does this do? The getClass () method is defined in the Object class and is, there-
fore, available for all objects. It returns a Class object that represents that object’s class.
That object’s getName () method returns a string holding the name of the class.

Another useful test is the instanceof operator, which has two operands: a reference to
an object on the left and a class name on the right. The expression produces a Boolean
value: true if the object is an instance of the named class or any of that class’s sub-
classes or false otherwise, as in these examples:

boolean checkl = "Texas" instanceof String // true

Point pt = new Point(10, 10);
boolean check2 = pt instanceof String // false

The instanceof operator also can be used for interfaces. If an object implements an
interface, the instanceof operator returns true when this is tested.

Summary

Now that you have spent three days exploring how object-oriented programming is
implemented in Java, you’re in a better position to decide how useful it can be in your
own programming.

If you are a “glass is half empty” person, object-oriented programming is a level of
abstraction that gets in the way of what you’re trying to use a programming language for.
You learn more about why OOP is thoroughly ingrained in Java in the coming days.

If you are a “glass is half full” person, object-oriented programming is worth using
because of the benefits it offers: improved reliability, reusability, and maintenance.

Today, you learned how to deal with objects: creating them, reading and changing their
values, and calling their methods. You also learned how to cast objects from one class to
another, cast to and from primitive data types and classes, and take advantage of auto-
matic conversions through autoboxing and unboxing.

Q&A 85

Q&A

Q DI’m confused about the differences between objects and the primitive data
types, such as int and boolean.

A The primitive types (byte, short, int, long, float, double, boolean, and char)
are not objects, although in many ways they can be handled like objects: They can
be assigned to variables and passed in and out of methods.

Objects are instances of classes and, as such, are usually much more complex data
types than simple numbers and characters, often containing numbers and characters
as instance or class variables.

Q The length() and charAt() methods in Listing 3.3 don’t appear to make
sense. If 1ength () says that a string is 36 characters long, shouldn’t the char-
acters be numbered from 1 to 36 when charAt() is used to display characters
in the string?

A The two methods look at strings a little differently. The 1ength() method counts
the characters in the string, with the first character counting as 1, the second as 2,
and so on. The string "Charlie Brown" has 13 characters. The charAt () method
considers the first character in the string to be located at position number 0. This is
the same numbering system used with array elements in Java. The string Charlie
Brown has characters ranging from position O (the letter "C") to position 12 (the let-
ter "n").

Q If Java lacks pointers, how can I do something like linked lists, where there’s a
pointer from one node to another so that they can be traversed?

A 1It’s untrue to say that Java has no pointers at all; it just has no explicit pointers.
Object references are, effectively, pointers. To create something like a linked list,
you could create a class called Node, which would have an instance variable also of
type Node. To link together node objects, assign a node object to the instance vari-
able of the object immediately before it in the list. Because object references are
pointers, linked lists set up this way behave as you would expect them to. (You’ll
work with the Java class library’s version of linked lists on Day 8, “Data
Structures.”)

86 DAY 3: Working with Objects

Quiz

Review today’s material by taking this three-question quiz.

Questions

1. What operator do you use to call an object’s constructor method and create a new
object?

a. +
b. new
c. instanceof

2. What kinds of methods apply to all objects of a class rather than an individual
object?

a. Universal methods
b. Instance methods
c. Class methods

3. If you have a program with objects named obj1 and obj2, what happens when you
use the statement obj2 = obj1?

a. The instance variables in obj2 are given the same values as obj1.
b. obj2 and obj1 are considered to be the same object.

c. Neither (a) nor (b).

Answers
1. b.
2. c.

3. b. The = operator does not copy values from one object to another. Instead, it
makes both variables refer to the same object.

Certification Practice

The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Exercises 87

Given:
public class AyeAye {
int i = 40;
int j;
public AyeAye() {
setValue (i++);

}

void setValue(int inputValue) {
int i = 20;
j=i+1
System.out.println("j = " + j);

What is the value of the j variable at the time it is displayed inside the setValue()
method?
a. 42
b. 40
21
20

2 o

The answer is available on the book’s website at http://www.java2ldays.com. Visit the
Day 3 page and click the Certification Practice link.

Exercises

To extend your knowledge of the subjects covered today, try the following exercises:

1. Create a program that turns a birthday in MM/DD/YYY'Y format (such as
12/04/2007) into three individual strings.

2. Create a class with instance variables for height, weight, and depth, making each
an integer. Create a Java application that uses your new class, sets each of these
values in an object, and displays the values.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java2ldays.com.

DAY 4:
Lists, Logic, and Loops

Today, you learn about three of the most boring features in the Java lan-
guage:
m How to make part of a Java program repeat itself by using loops

m How to make a program decide whether to do something based on
logic

m How to organize groups of the same class or data type into lists
called arrays

If these features don’t sound boring to you, they shouldn’t. Most of the
significant work that you will accomplish with your Java software will use
all three.

These topics are boring for computers because they enable software to
do one of the things at which it excels: performing repetitive tasks over
and over.

90

DAY 4: Lists, Logic, and Loops

Arrays

At this point, you have dealt with only a few variables in each Java program. In some
cases, it’s manageable to use individual variables to store information, but what if you
had 20 items of related information to track? You could create 20 different variables and
set up their initial values, but that approach becomes progressively more cumbersome as
you deal with larger amounts of information. What if there were 100 items, or even
1,000?

Arrays are a way to store a list of items that have the same primitive data type, the same
class, or a common parent class. Each item on the list goes into its own numbered slot so
that you can easily access the information.

Arrays can contain any type of information that is stored in a variable, but after the array
is created, you can use it for that information type only. For example, you can have an
array of integers, an array of String objects, or an array of arrays, but you can’t have an
array that contains both String objects and integers.

Java implements arrays differently than some other languages do—as objects treated like
other objects.

To create an array in Java, you must do the following:

1. Declare a variable to hold the array.
2. Create a new array object and assign it to the array variable.

3. Store information in that array.

Declaring Array Variables

The first step in array creation is to declare a variable that will hold the array. Array vari-
ables indicate the object or data type that the array will hold and the name of the array.
To differentiate from regular variable declarations, a pair of empty brackets ([]) is added
to the object or data type, or to the variable name.

The following statements are examples of array variable declarations:
String[] requests;

Point[] targets;

float[] donations;

You also can declare an array by putting the brackets after the variable name instead of
the information type, as in the following statements:

String requests[];
Point targets[];

float donations[];

Arrays 91

NOTE The choice of which style to use is a matter of personal prefer-
ence. The sample programs in this book place the brackets after
the information type rather than the variable name, which is the
more popular convention among Java programmers.

Creating Array Objects
After you declare the array variable, the next step is to create an array object and assign
it to that variable. To do this:

m Use the new operator.

m Initialize the contents of the array directly.

Because arrays are objects in Java, you can use the new operator to create a new instance
of an array, as in the following statement:

String[] players = new String[10];

This statement creates a new array of strings with 10 slots that can contain String
objects. When you create an array object by using new, you must indicate how many
slots the array will hold. This statement does not put actual String objects in the slots;
you must do that later.

Array objects can contain primitive types, such as integers or Booleans, just as they can
contain objects:

int[] temps = new int[99];

When you create an array object using new, all its slots automatically are given an initial
value (0 for numeric arrays, false for Booleans, '\@"' for character arrays, and null for
objects).

NOTE The Java keyword null refers to a null object (and can be used for
any object reference). It is not equivalent to zero or the '\e' char-
acter as the NuLL constant is in C.

Because each object in an array of objects has a null reference when created, you must
assign an object to each array element before using it.

The following example creates an array of three Integer objects and then assigns each
element an object:

Integer[] series = new Integer[3];
series[@] = new Integer(10);

92

DAY 4: Lists, Logic, and Loops

series[1] = new Integer(3);
series[2] = new Integer(5);

You can create and initialize an array at the same time by enclosing the elements of the
array inside braces, separated by commas:

Point[] markup = { new Point(1,5), new Point(3,3), new Point(2,3) };

Each of the elements inside the braces must be the same type as the variable that holds
the array. When you create an array with initial values in this manner, the array will be
the same size as the number of elements you include within the braces. The preceding
example creates an array of Point objects named markup that contains three elements.

Because String objects can be created and initialized without the new operator, you can
do the same when creating an array of strings:

String[] titles = { "Mr.", "Mrs.", "Ms.", "Miss", "Dr." };
The preceding statement creates a five-element array of String objects named titles.

All arrays have an instance variable named length that contains the number of elements
in the array. Extending the preceding example, the variable titles.length contains the
value 4.

Accessing Array Elements

After you have an array with initial values, you can retrieve, change, and test the values
in each slot of that array. The value in a slot is accessed with the array name followed by
a subscript enclosed within square brackets. This name and subscript can be put into
expressions, as in the following:

testScore[40] = 920;

The first element of an array has a subscript of @ rather than 1, so an array with 12 ele-
ments has array slots accessed by using subscripts @ through 11.

The preceding statement sets the 41st element of the testScore array to a value of 920.
The testScore part of this expression is a variable holding an array object, although it
also can be an expression that results in an array. The subscript expression specifies the
slot to access within the array.

All array subscripts are checked to make sure that they are inside the array’s boundaries
as specified when the array was created. In Java, it is impossible to access or assign a
value to an array slot outside the array’s boundaries, avoiding problems that result from
overrunning the bounds of an array in C-type languages. Note the following two state-
ments:

float[] rating = new float[20];
rating[20] = 3.22F;

Arrays

A program with the preceding two lines of code produces a compilation error when rat-
ing[20] is used in a statement. The error occurs because the rating array does not have
a slot 20; it has 20 slots that begin at 0 and end at 19. The Java compiler would make
note of this by stopping with an ArrayIndexOutOfBoundsException error.

The Java interpreter also notes an error if the array subscript is calculated when the pro-
gram is running and the subscript is outside the array’s boundaries. You learn more about
errors, which are called exceptions, on Day 7, “Exceptions, Assertions, and Threads.”

One way to avoid accidentally overrunning the end of an array in your programs is to use
the length instance variable. The following statement displays the number of elements in
the rating object:

System.out.println("Elements: " + rating.length);

Changing Array Elements

As you saw in the previous examples, you can assign a value to a specific slot in an array
by putting an assignment statement after the array name and subscript, as in the follow-
ing:

temperature[4] = 85;
day[@] = "Sunday";
manager([2] = manager[0];

An important thing to note is that an array of objects in Java is an array of references to
those objects. When you assign a value to a slot in that kind of array, you are creating a
reference to that object. When you move values around inside arrays, you are reassigning
the reference rather than copying a value from one slot to another. Arrays of a primitive
data type, such as int or float, do copy the values from one slot to another, as do ele-
ments of a String array, even though they are objects.

Arrays are reasonably simple to create and modify, and they provide an enormous
amount of functionality for Java. Listing 4.1 shows a simple program that creates, initial-
izes, and displays elements of three arrays.

LISTING 4.1 The Full Text of HalfDollars.java

1: class HalfDollars {

2 public static void main(String[] arguments) {

3 int[] denver = { 2500000, 2900000, 3500000 };
4 int[] philadelphia = new int[denver.length];
5: int[] total = new int[denver.length];

6: int average;

7.

8 philadelphia[@] = 2500000;

9 philadelphia[1] = 2900000;

10 philadelphia[2] = 3800000;

93

94

DAY 4: Lists, Logic, and Loops

LISTING 4.1 Continued

11:

12: total[0] = denver[@] + philadelphia[Q];
13: total[1] = denver[1] + philadelphia[1];
14: total[2] = denver[2] + philadelphia[2];
15: average = (total[@] + total[1] + total[2]) / 3;
16:

17: System.out.print("2003 production: ");
18: System.out.format("%,d%sn", total[Q]);

19: System.out.print("2004 production: ");
20: System.out.format("%,d%n", total[1]);

21: System.out.print("2005 production: ");
22: System.out.format("%,d%n", total[2]);

23: System.out.print("Average production: ");
24: System.out.format("%,d%n", average);

25: }

26: }

The HalfDollars application uses three integer arrays to store production totals for U.S.
half-dollar coins produced at the Denver and Philadelphia mints. The output of the pro-
gram is as follows:

2003 production: 5,000,000

2004 production: 5,800,000

2005 production: 7,300,000
Average production: 6,033,333

The class created here, HalfDollars, has three instance variables that hold arrays of
integers.

The first, which is named denver, is declared and initialized on line 3 to contain three
integers: 2500000 in element 0, 2900000 in element 1, and 3500000 in element 2. These
figures are the total half-dollar production at the Denver mint for three years.

The second and third instance variables, philadelphia and total, are declared in lines
4-5. The philadelphia array contains the production totals for the Philadelphia mint,
and total is used to store the overall production totals.

No initial values are assigned to the slots of the philadelphia and total arrays in lines
4-5. For this reason, each element is given the default value for integers: 0.

The denver.length variable is used to give both of these arrays the same number of
slots as the denver array; every array contains a length variable that you can use to keep
track of the number of elements it contains.

The rest of the main () method of this application performs the following:

m Line 6 creates an integer variable called average.
m Lines 8-10 assign new values to the three elements of the philadelphia array.

Arrays

m Lines 12—-14 assign new values to the elements of the total array. In line 12,
total element O is given the sum of denver element 0 and philadelphia element
0. Similar expressions are used in lines 13 and 14.

m Line 15 sets the value of the average variable to the average of the three total
elements. Because average and the three total elements are integers, the average
is expressed as an integer rather than a floating-point number.

m Lines 17-24 display the values stored in the total array and the average variable,

using the System.out.format() method to display the numeric values in a more
readable form using commas.

This application handles arrays in an inefficient way. The statements are almost identical,
except for the subscripts that indicate the array element to which you are referring. If the
HalfDollars application was being used to track 100 years of production totals instead
of 3 years, this approach would require a lot of redundant statements.

When dealing with arrays, you can use loops to cycle through an array’s elements instead
of dealing with each element individually. This makes the code a lot shorter and easier to
read. When you learn about loops later today, you see a rewrite of the current example.

Multidimensional Arrays

If you have used arrays in other languages, you might be expecting Java to support multi-
dimensional arrays, which are arrays that contain more than one subscript and can store
information in multiple dimensions.

A common use of a multidimensional array is to represent the data in an x,y grid of array
elements.

Java does not support multidimensional arrays, but you can achieve the same functional-
ity by declaring an array of arrays. Those arrays can also contain arrays, and so on, for as
many dimensions as needed.

For example, consider a program that needs to accomplish the following tasks:

m Record an integer value each day for a year

m Organize those values by week

One way to organize this data is to create a 52-element array in which each element con-
tains a 7-element array:

int[][] dayvValue = new int[52][7];

This array of arrays contains a total of 365 integers, one for each day of the year. You
could set the value for the first day of the 10th week with the following statement:

dayValue[9][0] = 14200;

95

96

DAY 4: Lists, Logic, and Loops

You can use the 1ength instance variable with these arrays as you would any other. The
following statement contains a three-dimensional array of integers and displays the num-
ber of elements in each dimension:

int[][]1[] century
System.out.println("Elements in the first dimension: " + century.length);

(
System.out.println("Elements in the second dimension: " + century[@].length);
System.out.println("Elements in the third dimension: " + century[0][@].length);

new int[100][52][7];

Block Statements

Statements in Java are grouped into blocks. The beginning and ending boundaries of a
block are noted with brace characters—an opening brace ({) for the beginning and a
closing brace (}) for the ending.

At this point, you have used blocks to hold the variables and methods in a class defini-
tion and define statements that belong in a method.

Blocks also are called block statements because an entire block can be used anywhere a
single statement could be used (they’re called compound statements in C and other lan-
guages). Each statement inside the block is then executed from top to bottom.

You can put blocks inside other blocks, just as you do when you put a method inside a
class definition.

An important thing to note about using a block is that it creates a scope for the local vari-
ables created inside the block.

Scope is the part of a program in which a variable exists and can be used. If you try to
use a variable outside its scope, an error occurs.

In Java, the scope of a variable is the block in which it was created. When you can
declare and use local variables inside a block, those variables cease to exist after the
block is finished executing. For example, the following testBlock() method contains a
block:

void testBlock() {

int x = 10;

{ // start of block
int y = 40;
y=y+tx

} // end of block

Two variables are defined in this method: x and y. The scope of the y variable is the
block it’s in, which is noted with the start of block and end of block comments.

if Conditionals 97

The variable can be used only within that block. An error would result if you tried to use
the y variable in another part of the testBlock() method.

The x variable was created inside the method but outside the inner block, so it can be
used anywhere in the method. You can modify the value of x anywhere within the
method.

Block statements usually are not used alone within a method definition, as they are in the
preceding example. You use them throughout class and method definitions, as well as in
the logic and looping structures you learn about next.

if Conditionals

A key aspect of any programming language is how it enables a program to make deci-
sions. This is handled through a special type of statement called a conditional.

A conditional is a programming statement executed only if a specific condition is met.

The most basic conditional in Java is the if keyword. The if conditional uses a Boolean
expression to decide whether a statement should be executed. If the expression produces
a true value, the statement is executed.

Here’s a simple example that displays the message "Not enough arguments" on only
one condition: If the value of the arguments.length instance variable is less than 3

if (arguments.length < 3)
System.out.println("Not enough arguments");

If you want something else to happen when an if expression produces a false value, an
optional else keyword can be used. The following example uses both if and else:

int duration;
if (arguments.length < 1)
"'"server = "localhost";
else
""server = arguments[0];

The if conditional executes different statements based on the result of a single Boolean
test.

NOTE A difference between if conditionals in Java and those in other
languages is that Java conditionals only produce Boolean values
(true or false). In C and C++, the test can return an integer.

98

DAY 4: Lists, Logic, and Loops

Using if, you can include only a single statement as the code to execute if the test
expression is true and another statement if the expression is false.

However, as you learned earlier today, a block can appear anywhere in Java that a single
statement can appear. If you want to do more than one thing as a result of an if state-
ment, you can enclose those statements inside a block. Note the following snippet of
code, which was used on Day 1, “Getting Started with Java™:

if (temperature > 660) {
status = "returning home";
speed = 5;

The if statement in this example contains the test expression temperature > 660. If the
temperature variable contains a value higher than 660, the block statement is executed,
and two things occur:

m The status variable is given the value returning home.

m The speed variable is set to 5.

If the temperature variable is equal to or less than 660, the entire block is skipped, so
nothing happens.

All if and else statements use Boolean tests to determine whether statements are exe-
cuted. You can use a boolean variable itself for this test, as in the following:

if (outOfGas)
status = "inactive";

The preceding example uses a boolean variable called outOfGas. It functions exactly like
the following:

if (outOfGas == true)
status = "inactive";

switch Conditionals

A common programming practice is to test a variable against a value, and if it doesn’t
match, test it again against a different value, and so on.

This approach can become unwieldy if you’re using only if statements, depending on
how many different values you have to test. For example, you might end up with a set of
if statements something like the following:

if (operation == '+'")
add(object1, object2);

switch Conditionals 99

else if (operation == '-')
subtract(object1, object2);

else if (operation == '*')
multiply(object1, object2);
else if (operation == '/')

divide(object1, object2);

This use of if statements is called a nested if statement because each else statement
contains another if until all possible tests have been made.

In some languages, a shorthand mechanism that you can use for nested if statements is
to group tests and actions together in a single statement. In Java, you can group actions
together with the switch statement. The following example demonstrates switch usage:

switch (grade) {

case 'A':
System.out.println("Great job!");
break;

case 'B':
System.out.println("Good job!");
break;

case 'C':
System.out.println("You can do better!");
break;

default:
System.out.println("Consider cheating!");

A switch statement is built on a test variable; in the preceding example, the variable is
the value of the grade variable, which holds a char value.

The test variable, which can be the primitive types byte, char, short, or int, is com-
pared in turn with each of the case values. If a match is found, the statement or state-
ments after the test are executed.

If no match is found, the default statement or statements are executed. Providing a
default statement is optional—if it is omitted and there is no match for any of the case
statements, the switch statement might complete without executing anything.

The Java implementation of switch is limited—tests and values can be only simple
primitive types that can be cast to an int. You cannot use larger primitive types such as
long or float, strings, or other objects within a switch, nor can you test for any rela-
tionship other than equality. These restrictions limit switch to the simplest cases. In con-
trast, nested if statements can work for any kind of test on any possible type.

100

DAY 4: Lists, Logic, and Loops

The following is a revision of the nested if example shown previously. It has been
rewritten as a switch statement:

switch (operation) {

case '+':
add(object1, object2);
break;

case '-':
subtract(object1, object2);
break;

case '*':
multiply(object1, object2);
break;

case '/':
divide(object1l, object2);
break;

After each case, you can include a single result statement or as many as you need.
Unlike with if statements, multiple statements don’t require a block statement.

The break statement included with each case section determines when to stop executing
statements in response to a matching case. Without a break statement in a case section,
after a match is made, the statements for that match and all the statements further down
the switch are executed until a break or the end of the switch is found.

In some situations, this might be exactly what you want to do. Otherwise, you should
include break statements to ensure that only the right code is executed. The break state-
ment, which you use again later in the section “Breaking Out of Loops,” stops execution
at the current point and jumps to the statement after the closing brace that ends the
switch statement.

One handy use of falling through without a break occurs when multiple values need to
execute the same statements. To accomplish this task, you can use multiple case lines
with no result; the switch executes the first statement that it finds.

For example, in the following switch statement, the string x is an even number is
printed if x has the values of 2, 4, 6, or 8. All other values of x cause the string x is an
odd number to be printed.

switch (x) {

case 2:

case 4:

case 6:

case 8:
System.out.println("x is an even number");
break;

default: System.out.println("x is an odd number");

switch Conditionals 101

In Listing 4.2, the DayCounter application takes two arguments, a month and a year, and
displays the number of days in that month. A switch statement, if statements, and else
statements are used.

LISTING 4.2 The Full Text of DayCounter.java

1: class DayCounter {

2 public static void main(String[] arguments) {

3 int yearlIn = 2008;

4: int monthIn = 1;

5: if (arguments.length > 0)

6: monthIn = Integer.parselnt(arguments[Q]);

7 if (arguments.length > 1)

8: yearIn = Integer.parselnt(arguments[1]);

9: System.out.println(monthIn + "/" + yearIn + " has "

10: + countDays(monthIn, yearIn) + " days.");
11: }

12:

13: static int countDays(int month, int year) {
14: int count = -1;

15: switch (month) {

16: case 1:

17: case 3:

18: case 5:

19: case 7: 4
20: case 8:

21: case 10:

22: case 12:

23: count = 31;

24: break;

25: case 4:

26: case 6:

27: case 9:

28: case 11:

29: count = 30;

30: break;

31: case 2:

32: if (year % 4 == 0)

33: count = 29;

34: else

35: count = 28;

36: if ((year % 100 == 0) & (year % 400 != 0))
37: count = 28;

38: }

39: return count;

40: }

41: }

102

DAY 4: Lists, Logic, and Loops

This application uses command-line arguments to specify the month and year to check.
The first argument is the month, which should be expressed as a number from 1 to 12.
The second argument is the year, which should be expressed as a full four-digit year.

After compiling the program, type the following at a command line to see the number of
days in April 2008:

java DayCounter 4 2008
The output is the following:
4/2008 has 30 days.

If you run it without arguments, the default month of January 2008 is used, and the out-
put is the following:

1/2008 has 31 days.

The DayCounter application uses a switch statement to count the days in a month. This
statement is part of the countDays () method in lines 13—40 of Listing 4.2.

The countDays () method has two int arguments: month and year. The number of days
is stored in the count variable, which is given an initial value of -1 that is replaced by
the correct count later.

The switch statement that begins on line 15 uses month as its conditional value.

The number of days in a month is easy to determine for 11 months of the year. January,
March, May, July, August, October, and December have 31 days. April, June, September,
and November have 30 days.

The count for these 11 months is handled in lines 16-30 of Listing 4.2. Months are num-
bered from 1 (January) to 12 (December), as you would expect. When one of the case
statements has the same value as month, every statement after that is executed until break
or the end of the switch statement is reached.

February is a little more complex and is handled in lines 31-37 of the program. Every
leap year has 29 days in February, whereas other years have 28. A leap year must meet
either of the following conditions:

m The year must be evenly divisible by 4 and not evenly divisible by 100.
® The year must be evenly divisible by 400.

As you learned on Day 2, “The ABCs of Programming,” the modulus operator % returns
the remainder of a division operation. This is used with several if-else statements to
determine how many days there are in February, depending on what year it is.

switch Conditionals 103

The if-else statement in lines 32-35 sets count to 29 when the year is evenly divisible
by 4 and sets it to 28 otherwise.

The if statement in lines 36—37 uses the & operator to combine two conditional expres-
sions: year % 100 == 0 and year % 400 != 0. If both these conditions are true, count
is set to 28.

The countDays method ends by returning the value of count in line 39.
When you run the DayCounter application, the main() method in lines 2-11 is executed.

In all Java applications, command-line arguments are stored in an array of String
objects. This array is called arguments in DayCounter. The first command-line argument
is stored in argument[@], the second in argument[1], and upward until all arguments
have been stored. If the application is run with no arguments, the array is created with no
elements.

Lines 3—4 create yearIn and monthIn, two integer variables to store the year and month
that should be checked.

The if statement in line 5 uses arguments.length to make sure that the arguments
array has at least one element. If it does, line 6 is executed.

Line 6 calls parseInt(), a class method of the Integer class, with argument[@] as an
argument. This method takes a String object as an argument, and if the string could be a
valid integer, it returns that value as an int. This converted value is stored in monthIn. A
similar thing happens in line 7; parseInt() is called with argument[1], and this is used
to set yearIn.

The output of the program is displayed in lines 9—11. As part of the output, the
countDays () method is called with monthIn and yearIn, and the value returned by this
method is displayed.

NOTE At this point, you might want to know how to collect input from a
user in a program rather than using command-line arguments to
receive it. There isn't a method comparable to System.out.
println() that receives input. Instead, you must learn a bit more
about Java’s input and output classes before you can receive input
in a program without a graphical user interface. This topic is cov-
ered during Day 15, “Working with Input and Output.”

104

DAY 4: Lists, Logic, and Loops

for Loops

A for loop is used to repeat a statement until a condition is met. Although for loops fre-
quently are used for simple iteration in which a statement is repeated a certain number of
times, for loops can be used for just about any kind of loop.

The for loop in Java looks roughly like the following:

for (initialization; test; increment) {
statement;

}

The start of the for loop has three parts:

W initialization is an expression that initializes the start of the loop. If you have a
loop index, this expression might declare and initialize it, such as int i = 0.
Variables that you declare in this part of the for loop are local to the loop itself;
they cease to exist after the loop is finished executing. You can initialize more than
one variable in this section by separating each expression with a comma. The state-
ment int i = @, int j = 10 in this section would declare the variables i and j,
and both would be local to the loop.

B test is the test that occurs before each pass of the loop. The test must be a
Boolean expression or a function that returns a boolean value, such as i < 10. If
the test is true, the loop executes. When the test is false, the loop stops execut-
ing.

m increment is any expression or function call. Commonly, the increment is used to
change the value of the loop index to bring the state of the loop closer to returning
false and stopping the loop. The increment takes place after each pass of the loop.
Similar to the initialization section, you can put more than one expression in
this section by separating each expression with a comma.

The statement part of the for loop is the statement that is executed each time the loop
iterates. As with if, you can include either a single statement or a block statement. The
previous example used a block because that is more common. The following example is
a for loop that sets all slots of a String array to the value Mr.:

String[] salutation = new String[10];
int i; // the loop index variable

for (i = 0; i < salutation.length; i++)
salutation[i] = "Mr.";

In this example, the variable i serves as a loop index; it counts the number of times the
loop has been executed. Before each trip through the loop, the index value is compared

for Loops 105

with salutation.length, the number of elements in the salutation array. When the
index is equal to or greater than salutation.length, the loop is exited.

The final element of the for statement is i++. This causes the loop index to increment by
1 each time the loop is executed. Without this statement, the loop would never stop.

The statement inside the loop sets an element of the salutation array equal to "Mr.".
The loop index is used to determine which element is modified.

Any part of the for loop can be an empty statement; in other words, you can include a
semicolon with no expression or statement, and that part of the for loop is ignored. Note
that if you do use an empty statement in your for loop, you might have to initialize or
increment any loop variables or loop indexes yourself elsewhere in the program.

You also can have an empty statement as the body of your for loop if everything you
want to do is in the first line of that loop. For example, the following for loop finds the
first prime number higher than 4,000. (It employs a method called notPrime (), which
returns a Boolean value, presumably to indicate when i is not prime.)

for (i = 4001; notPrime(i); i += 2)

b

A common mistake in for loops is to accidentally put a semicolon at the end of the line
that includes the for statement:
for (i = 0; i < 10; i++);

X = x * i; // this line is not inside the loop!

In this example, the first semicolon ends the loop without executing x = x * i as part
of the loop. The x = x * i line is executed only once because it is outside the for loop
entirely. Be careful not to make this mistake in your Java programs.

The next project you undertake is a rewrite of the HalfDollar application that uses for
loops to remove redundant code.

The original application works only with an array that is three elements long. The
new version, shown in Listing 4.3, is shorter and more flexible (but it returns the same
output).

LISTING 4.3 The Full Text of HalfLooper.java

1: class HalfLooper {

2 public static void main(String[] arguments) {

3: int[] denver = { 2500000, 2900000, 3500000 };

4: int[] philadelphia = { 2500000, 2900000, 3800000 };
5: int[] total = new int[denver.length];

6 int sum = 0Q;

106

DAY 4: Lists, Logic, and Loops

LISTING 4.3 Continued

7:

8: for (int 1 = @; i < denver.length; i++) {

9: total[i] = denver[i] + philadelphia[i];
10: System.out.format((i + 2003) + " production: %,d%n",
11: total[i]);

12: sum += total[i];

13: }

14:

15: System.out.format("Average production: %,d%n",
16: (sum / denver.length));

17: }

18: }

The output of the program is as follows:

2003 production: 5,000,000
2004 production: 5,800,000
2005 production: 7,300,000
Average production: 6,033,333

Instead of going through the elements of the three arrays one by one, this example uses a
for loop. The following things take place in the loop, which is contained in lines 8—13 of
Listing 4.3:

m Line 8—The loop is created with an int variable called i as the index. The index
increments by 1 for each pass through the loop and stops when i is equal to or
greater than denver.length, the total number of elements in the denver array.

m Lines 9-11—The value of one of the total elements is set using the loop index
and then displayed with some text identifying the year.

m Line 12—The value of a total element is added to the sum variable, which is used
to calculate the average yearly production.

Using a more general-purpose loop to iterate over an array enables you to use the pro-
gram with arrays of different sizes and still have it assign correct values to the elements
of the total array and display those values.

NOTE Java also includes a for loop that can be used to iterate through
all the elements of data structures such as vectors, linked lists,
hash sets, and other collections. It's covered along with those
structures on Day 8, “Data Structures.”

while and do Loops 107

while and do Loops

The remaining types of loops are while and do. As with for loops, while and do loops
enable a block of Java code to be executed repeatedly until a specific condition is met.
Whether you use a for, while, or do loop is mostly a matter of your programming style.

while Loops

The while loop repeats a statement for as long as a particular condition remains true.
Here’s an example:
while (i < 13) {

X = X * i++; // the body of the loop
}

The condition that accompanies the while keyword is a Boolean expression—i < 13 in
the preceding example. If the expression returns true, the while loop executes the body
of the loop and then tests the condition again. This process repeats until the condition is
false.

Although the preceding loop uses opening and closing braces to form a block statement,
the braces are not needed because the loop contains only one statement: x = x * i++.
Using the braces does not create any problems, though, and the braces will be required if
you add another statement inside the loop later.

The ArrayCopier application in Listing 4.4 uses a while loop to copy the elements of an
array of integers (in array1) to an array of float variables (in array2), casting each ele-
ment to a float as it goes. The one catch is that if any of the elements in the first array
is 1, the loop immediately exits at that point.

LISTING 4.4 The Full Text of ArrayCopier.java

1: class ArrayCopier {

2 public static void main(String[] arguments) {
3 int[] arrayl = { 7, 4, 8, 1, 4, 1, 4 };

4: float[] array2 = new float[arrayi.length];
5:

6: System.out.print("arraytl: [");

7 for (int 1 = @0; i < arrayl.length; i++) {
8: System.out.print(arrayi[i] + " ");

9: }

10: System.out.println("1");

11:

12: System.out.print("array2: [");

13: int count = 0;

14: while (count < arrayil.length && arrayi[count] != 1) {

15: array2[count] = (float) arrayi[count];

108

DAY 4: Lists, Logic, and Loops

LISTING 4.4 Continued

16: System.out.print(array2[count++] + " ");
17: }

18: System.out.println("]1");

19: }

20: }

The output of the program is as follows:

arrayl: [748 1414]
array2: [7.0 4.0 8.0]

Here is what’s going on in the main () method:

®m Lines 3—4 declare the arrays; array1 is an array of integers, which are initialized to
some suitable numbers. array2 is an array of floating-point numbers that is the
same length as array1 but doesn’t have any initial values.

m Lines 610 are for output purposes; they simply iterate through array1 using a for
loop to print out its values.

m Lines 13-17 are where the interesting stuff happens. This bunch of statements both
assigns the values of array2 (converting the numbers to floating-point numbers
along the array) and prints it out at the same time. You start with a count variable,
which keeps track of the array index elements. The test in the while loop keeps
track of the two conditions for exiting the loop, where those two conditions are
running out of elements in array1 or encountering a 1 in array1. (Remember, that
was part of the original description of what this program does.)

You can use the logical conditional && to keep track of the test; remember that &&
makes sure that both conditions are true before the entire expression is true. If
either one is false, the expression returns false and the loop exits.

The program’s output shows that the first four elements in array1 were copied to
array2, but there was a 1 in the middle that stopped the loop from going any further.
Without the 1, array2 should end up with all the same elements as array1.

If the while loop’s test initially is false the first time it is tested (for example, if the first
element in that first array is 1), the body of the while loop will never be executed. If you
need to execute the loop at least once, you can do one of two things:

®m Duplicate the body of the loop outside the while loop.
m Use a do loop (which is described in the following section).

The do loop is considered the better solution of the two.

Breaking Out of Loops 109

do-while Loops

The do loop is just like a while loop with one major difference—the place in the loop
when the condition is tested.

A while loop tests the condition before looping, so if the condition is false the first
time it is tested, the body of the loop never executes.

A do loop executes the body of the loop at least once before testing the condition, so if
the condition is false the first time it is tested, the body of the loop already will have
executed once.

The following example uses a do loop to keep doubling the value of a long integer until
it is larger than 3 trillion:
long i = 1;
do {
i *= 2;
System.out.print(i + " ");
} while (i < 3000000000000L);

The body of the loop is executed once before the test condition, i < 3000000000000L,
is evaluated; then, if the test evaluates as true, the loop runs again. If it is false, the
loop exits. Keep in mind that the body of the loop executes at least once with do loops.

Breaking Out of Loops

In all the loops, the loop ends when a tested condition is met. There might be times when
something occurs during execution of a loop and you want to exit the loop early. In that
case, you can use the break and continue keywords.

You already have seen break as part of the switch statement; break stops execution of
the switch statement, and the program continues. The break keyword, when used with a
loop, does the same thing—it immediately halts execution of the current loop. If you
have nested loops within loops, execution picks up with the next outer loop. Otherwise,
the program simply continues executing the next statement after the loop.

For example, recall the while loop that copied elements from an integer array into an
array of floating-point numbers until either the end of the array or a 1 was reached. You
can test for the latter case inside the body of the while loop and then use break to exit
the loop:
int count = 0;
while (count < arrayi.length) {

if (arrayi[count] == 1)

break;
array2[count] = (float) array2[count++];

110

DAY 4: Lists, Logic, and Loops

The continue keyword starts the loop over at the next iteration. For do and while loops,
this means that the execution of the block statement starts over again; with for loops, the
increment expression is evaluated, and then the block statement is executed.

The continue keyword is useful when you want to make a special case out of elements
within a loop. With the previous example of copying one array to another, you could test
for whether the current element is equal to 1 and use continue to restart the loop after
every 1 so that the resulting array never contains zero. Note that because you’re skipping
elements in the first array, you now have to keep track of two different array counters:
int count = 0;

int count2 = 0;

while (count++ <= arrayl.length) {

if (arrayi[count] == 1)
continue;
array2[count2++] = (float)arrayi[count];

} >

Labeled Loops

Both break and continue can have an optional label that tells Java where to resume exe-
cution of the program. Without a label, break jumps outside the nearest loop to an
enclosing loop or to the next statement outside the loop. The continue keyword restarts
the loop it is enclosed within. Using break and continue with a label enables you to use
break to go to a point outside a nested loop or to use continue to go to a loop outside
the current loop.

To use a labeled loop, add the label before the initial part of the loop, with a colon
between the label and the loop. Then, when you use break or continue, add the name of
the label after the keyword itself, as in the following:

out:
for (int 1 = 0; 1 <10; i++) {
while (x < 50) {
if (i * x++ > 400)
break out;
// inner loop here

}
// outer loop here

In this snippet of code, the label out labels the outer loop. Then, inside both the for and
while loops, when a particular condition is met, a break causes the execution to break
out of both loops. Without the label out, the break statement would exit the inner loop
and resume execution with the outer loop.

Breaking Out of Loops 111

The Conditional Operator

An alternative to using the if and else keywords in a conditional statement is to use the
conditional operator, sometimes called the ternary operator. The conditional operator is
called a ternary operator because it has three operands.

The conditional operator is an expression, meaning that it returns a value—unlike the
more general if, which can result in only a statement or block being executed. The con-
ditional operator is most useful for short or simple conditionals and looks like the follow-
ing line:

test ? trueresult : falseresult;

The test is an expression that returns true or false, just like the test in the if state-
ment. If the test is true, the conditional operator returns the value of trueresult. If the
test is false, the conditional operator returns the value of falseresult. For example,
the following conditional tests the values of myScore and yourScore, returns the larger of
the two as a value, and assigns that value to the variable ourBestScore:

int ourBestScore = myScore > yourScore ? myScore : yourScore;

This use of the conditional operator is equivalent to the following if-else code:

int ourBestScore;
if (myScore > yourScore)

ourBestScore = myScore; 4
else

ourBestScore = yourScore;

The conditional operator has a low precedence—usually it is evaluated only after all its
subexpressions are evaluated. The only operators lower in precedence are the assignment
operators. For a refresher on operator precedence, refer to Table 2.6 in Day 2, “The
ABCs of Programming.”

CAUTION The ternary operator is of primary benefit to experienced program-
mers creating complex expressions. Its functionality is duplicated
in simpler use of if-else statements, so there’s no need to use
this operator while you're beginning to learn the language. The
main reason it’s introduced in this book is because you’ll
encounter it in the source code of other Java programmers.

112

DAY 4: Lists, Logic, and Loops

Summary

Now that you have been introduced to lists, loops, and logic, you can make a computer
decide whether to repeatedly display the contents of an array.

You learned how to declare an array variable, assign an object to it, and access and
change elements of the array. With the if and switch conditional statements, you can
branch to different parts of a program based on a Boolean test. You learned about the
for, while, and do loops, and you learned that each enables a portion of a program to be
repeated until a given condition is met.

It bears repeating: You’ll use all three of these features frequently in your Java programs.

You’ll use all three of these features frequently in your Java programs.

Q&A

Q

A

I declared a variable inside a block statement for an if. When the if was
done, the definition of that variable vanished. Where did it go?

In technical terms, block statements form a new lexical scope. This means that if
you declare a variable inside a block, it’s visible and usable only inside that block.
When the block finishes executing, all the variables you declared go away.

It’s a good idea to declare most of your variables in the outermost block in which
they’ll be needed—usually at the top of a block statement. The exception might be
simple variables, such as index counters in for loops, where declaring them in the
first line of the for loop is an easy shortcut.

Why can’t I use switch with strings?

Strings are objects in Java, and switch works only for the primitive types byte,
char, short, and int. To compare strings, you have to use nested if statements,
which enable more general expression tests, including string comparison.

Quiz

Review today’s material by taking this three-question quiz.

Questions

1.

Which loop is used to execute the statements in the loop at least once before the
conditional expression is evaluated?

a. do-while
b. for

c. while

Quiz

2. Which operator returns the remainder of a division operation?

3. Which instance variable of an array is used to find out how big it is?
a. size
b. length
c. MAX_VALUE

Answers

1. a.In a do-while loop, the while conditional statement appears at the end of the
loop. Even if it is initially false, the statements in the loop are executed once.

2. b. The modulus operator (“%”).
3. b

Certification Practice

The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Given:

public class Cases {
public static void main(String[] arguments) {
float x = 9;
float y = 5;
int z = (int)(x / vy);
switch (z) {
case 1:
X =X + 2;
case 2:
X = X + 3;
default:
X =X+ 1;

}
System.out.println("Value of x: " + X);

113

114

DAY 4: Lists, Logic, and Loops

What will be the value of x when it is displayed?

a. 9.0
b. 11.0
c. 150

d. The program will not compile.

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 4 page and click the Certification Practice link.

Exercises

To extend your knowledge of the subjects covered today, try the following exercises:

1. Using the countDays () method from the DayCounter application, create an appli-
cation that displays every date in a given year in a single list from January 1 to
December 31.

2. Create a class that takes words for the first 10 numbers (“one” up to “ten””) and
converts them into a single long integer. Use a switch statement for the conversion
and command-line arguments for the words.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java2ldays.com.

DAY 5:
Creating Classes and
Methods

If you're coming to Java from another programming language, you might
be struggling with the meaning of the term class. It seems synonymous to
the term program, but you might be uncertain of the relationship between
the two.

In Java, a program is made up of a main class and any other classes
needed to support the main class. These support classes include any of
those you might need in the Java class library, such as String, Math, and
the like.

Today, the meaning of class is clarified as you create classes and meth-
ods, which define the behavior of an object or class. You undertake each
of the following:

m The definition of the parts of a class

m The creation and use of instance variables

®m The creation and use of methods

® The use of the main() method in Java applications

m The creation of overloaded methods that share the same name
but have different signatures and definitions

m The creation of constructor methods that are called when an
object is created

116

DAY 5: Creating Classes and Methods

Defining Classes

Because you have created classes during each of the previous days, you should be famil-
iar with the basics of their creation at this point. A class is defined via the class key-
word and the name of the class, as in the following example:

class Ticker {
// body of the class

}

By default, classes inherit from the Object class. It’s the superclass of all classes in the
Java class hierarchy.

The extends keyword is used to indicate the superclass of a class, as in this example,
which is defined as a subclass of Ticker:

class SportsTicker extends Ticker {
// body of the class

}

Creating Instance and Class Variables

Whenever you create a class, you define behavior that makes the new class different
from its superclass.

This behavior is defined by specifying the variables and methods of the new class. In this
section, you work with three kinds of variables: class variables, instance variables, and
local variables. The subsequent section covers methods.

Defining Instance Variables

On Day 2, “The ABCs of Programming,” you learned how to declare and initialize local
variables, which are variables inside method definitions.

Instance variables are declared and defined in almost the same manner as local variables.
The main difference is their location in the class definition.

Variables are considered instance variables if they are declared outside a method defini-
tion and are not modified by the static keyword.

By programming custom, most instance variables are defined right after the first line of
the class definition, but they could just as permissibly be defined at the end.

Listing 5.1 contains a simple class definition for the class VolcanoRobot, which inherits
from the superclass ScienceRobot.

Creating Methods

LISTING 5.1 The Full Text of VolcanoRobot. java

1: class VolcanoRobot extends ScienceRobot {
2

3: String status;

4: int speed;

5: float temperature;

6: int power;

7}

This class definition contains four variables. Because these variables are not defined
inside a method, they are instance variables. The variables are as follows:

B status—A string indicating the current activity of the robot (for example, “explor-
ing” or “returning home”)
m speed—An integer that indicates the robot’s current rate of travel

m temperature—A floating-point number that indicates the current temperature of
the robot’s environment

® power—An integer indicating the robot’s current battery power

Class Variables
As you learned in previous days, class variables apply to a class as a whole, rather than a

particular object of that class.

Class variables are good for sharing information between different objects of the same
class or for keeping track of classwide information among a set of objects.

The static keyword is used in the class declaration to declare a class variable, as in the
following example:

static int sum;
static final int maxObjects = 10;

Creating Methods

As you learned on Day 3, “Working with Objects,” methods define an object’s behav-
ior—that is, anything that happens when the object is created as well as the various tasks
the object can perform during its lifetime.

This section introduces method definition and how methods work. Tomorrow’s lesson
has more detail about more sophisticated things you can do with methods.

117

118

DAY 5: Creating Classes and Methods

Defining Methods

In Java, a method definition has four basic parts:

® The name of the method

m A list of parameters

m The type of object or primitive type returned by the method
® The body of the method

The first two parts of the method definition form the method’s signature.

NOTE To keep things simpler today, two optional parts of the method
definition have been left out: a modifier, such as public or
private, and the throws keyword, which indicates the exceptions a
method can throw. You learn about these parts of method defini-
tion on Day 6, “Packages, Interfaces, and Other Class Features,”
and Day 7, “Exceptions, Assertions, and Threads.”

In other languages, the name of the method (which might be called a function, subrou-
tine, or procedure) is enough to distinguish it from other methods in the program.

In Java, you can have several methods in the same class with the same name but different
signatures. This practice is called method overloading, and you learn more about it
tomorrow.

Here’s what a basic method definition looks like:

returnType methodName(typel argl, type2 arg2, type3 arg3 ...) {
// body of the method

}

The returnType is the primitive type or class of the value returned by the method. It can
be one of the primitive types, a class name, or void if the method does not return a value
at all.

The method’s parameter list is a set of variable declarations separated by commas and set
inside parentheses. These parameters become local variables in the body of the method,
receiving their values when the method is called.

Note that if this method returns an array object, the array brackets can go after either the
returnType or the closing parenthesis of the parameter list. Because the former way is

Creating Methods 119

easier to read, it is used in this book’s examples as in the following, which declares a
method that returns an integer array:

int[] makeRange(int lower, int upper) {
// body of this method

}

You can have statements, expressions, method calls on other objects, conditionals, loops,
and so on inside the body of the method.

Unless a method has been declared with void as its return type, the method returns some
kind of value when it is completed. This value must be explicitly returned at some exit
point inside the method, using the return keyword.

Listing 5.2 shows RangelLister, a class that defines a makeRange () method. This method
takes two integers—a lower boundary and an upper boundary—and creates an array that
contains all the integers between those two boundaries. The boundaries themselves are
included in the array of integers.

LISTING 5.2 The Full Text of RangeLister.java

1: class RangelLister {

2 int[] makeRange(int lower, int upper) {

3 int[] range = new int[(upper-lower) + 1];
4:

5: for (int 1 = 0; i < range.length; i++) {
6: range[i] = lower++;

7 I3

8: return range;

9: } 5
10:

11: public static void main(String[] arguments) {
12: int[] range;

13: RangeLister lister = new RangelLister();
14:

15: range = lister.makeRange(4, 13);

16: System.out.print("The array: [");

17: for (int 1 = 0; i < range.length; i++) {
18: System.out.print(range[i] + " ");

19: }
20: System.out.println("1");
21: }
22

120

DAY 5: Creating Classes and Methods

The output of the application is the following:
The array: [456 7 89 10 11 12 13]

The main() method in this class tests the makeRange () method by calling it with the
arguments of 4 and 13. The method creates an empty integer array and uses a for loop to
fill the new array with values from 4 through 13 in lines 5-7.

The this Keyword

In the body of a method definition, there are times you might need to refer to the object
to which the method belongs. This can be done to use that object’s instance variables and
to pass the current object as an argument to another method.

To refer to the object in these cases, use the this keyword where you normally would
refer to an object’s name.

The this keyword refers to the current object, and you can use it anywhere a reference
to an object might appear: in dot notation, as an argument to a method, as the return
value for the current method, and so on. The following are some examples of using this:

t = this.x; // the x instance variable for this object

this.resetData(this); // call the resetData method, defined in
/] this class, and pass it the current
// object

return this; /] return the current object

In many cases, you might not need to explicitly use the this keyword because it is
assumed. For instance, you can refer to both instance variables and method calls defined
in the current class simply by name because the this is implicit in those references.
Therefore, you could write the first two examples as the following:

t = x; // the x instance variable for this object
resetData(this); // call the resetData method, defined in this

/] class
NOTE The viability of omitting the this keyword for instance variables

depends on whether variables of the same name are declared in
the local scope. You see more on this subject in the next section.

Because this is a reference to the current instance of a class, use it only inside the body
of an instance method definition. Class methods—which are declared with the static
keyword—cannot use this.

Creating Methods

Variable Scope and Method Definitions

One thing you must know to use a variable is its scope.

Scope is the part of a program in which a variable or another type of information exists,
making it possible to use the variable in statements and expressions. When the part defin-
ing the scope has completed execution, the variable ceases to exist.

When you declare a variable in Java, that variable always has a limited scope. A variable
with local scope, for example, can be used only inside the block in which it was defined.
Instance variables have a scope that extends to the entire class, so they can be used by
any of the instance methods within that class.

When you refer to a variable, Java checks for its definition outward, starting with the
innermost scope.

The innermost scope could be a block statement, such as the contents of a while loop.
The next scope could be the method in which the block is contained.

If the variable hasn’t been found in the method, the class itself is checked.

Because of the way Java checks for the scope of a given variable, it is possible for you to
create a variable in a lower scope that hides (or replaces) the original value of that vari-
able and introduces subtle and confusing bugs into your code.

For example, consider the following Java application:

class ScopeTest {
int test = 10;

void printTest() {
int test = 20;
System.out.println("Test: " + test);
}

public static void main(String[] arguments) {
ScopeTest st = new ScopeTest();
st.printTest();

In this class, you have two variables with the same name, test. The first, an instance
variable, is initialized with the value 10. The second is a local variable with the value 20.

The local variable test within the printTest () method hides the instance variable test.
When the printTest () method is called from within the main () method, it displays that
test equals 20, even though there’s a test instance variable that equals 10. You can

121

122

DAY 5: Creating Classes and Methods

avoid this problem by using this. test to refer to the instance variable and simply using
test to refer to the local variable, but a better solution might be to avoid the duplication
of variable names and definitions.

A more insidious example occurs when you redefine a variable in a subclass that already
occurs in a superclass. This can create subtle bugs in your code; for example, you might
call methods that are intended to change the value of an instance variable, but the wrong
variable is changed. Another bug might occur when you cast an object from one class to
another; the value of your instance variable might mysteriously change because it was
getting that value from the superclass instead of your class.

The best way to avoid this behavior is to be aware of the variables defined in the super-
class of your class. This awareness prevents you from duplicating a variable used higher
in the class hierarchy.

Passing Arguments to Methods

When you call a method with an object as a parameter, the object is passed into the body
of the method by reference. Any change made to the object inside the method will persist
outside of the method.

Keep in mind that such objects include arrays and all objects contained in arrays. When
you pass an array into a method and modify its contents, the original array is affected.
Primitive types, on the other hand, are passed by value.

The Passer class in Listing 5.3 demonstrates how this works.

LISTING 5.3 The Full Text of Passer.java

1: class Passer {

2.

3 void toUpperCase(String[] text) {

4: for (int 1 = 0; i < text.length; i++) {
5: text[i] = text[i].toUpperCase();

6: }

7 I3

8:

9: public static void main(String[] arguments) {
10: Passer passer = new Passer();

11: passer.toUpperCase(arguments);

12: for (int i = @; i < arguments.length; i++) {
13: System.out.print(arguments[i] + " ");
14: }

15: System.out.println();

16: }

17: }

Creating Methods 123

This application takes one or more command-line arguments and displays them in all
uppercase letters. Here’s an example of running the program and the resulting output:

java Passer Athos Aramis Porthos

ATHOS ARAMIS PORTHOS

The Passer application uses command-line arguments stored in the arguments array of
strings.

The application creates a Passer object and calls its toUpperCase () method with the
arguments array as an argument (lines 10-11).

Because a reference to the array object is passed to the method, changing the value of
each array element in line 5 changes the actual element (rather than a copy of it).
Displaying the array with lines 12-14 demonstrates this.

Class Methods

The relationship between class and instance variables is directly comparable to how class
and instance methods work.

Class methods are available to any instance of the class itself and can be made available
to other classes. In addition, unlike an instance method, a class does not require an
instance of the class for its methods to be called.

For example, the Java class library includes the System class, which defines a set of
methods that are useful when displaying text, retrieving configuration information, and
accomplishing other tasks. Here are two statements that use its class methods:

System.exit(0);

""int now = System.currentTimeMillis();

The exit (int) method closes an application with a status code that indicates success (0)
or failure (any other value). The currentTimeMillis () method returns a long holding
the number of milliseconds since midnight on Jan. 1, 1970, the numeric representation of
the current date and time.

To define class methods, use the static keyword in front of the method definition as you
would in front of a class variable. For example, the class method currentTimeMillis ()
in the preceding example might have the following signature:

static void exit(int argl) {

// body of the method
}

124

DAY 5: Creating Classes and Methods

As you have learned, Java supplies wrapper classes such as Integer and Float for each
of the primitive types. By using class methods defined in those classes, you can convert
objects to primitive types and convert primitive types to objects.

For example, the parseInt() class method in the Integer class can be used with a string
argument, returning an int representation of that string.

The following statement shows how the parseInt() method can be used:
int count = Integer.parselnt("42");

In the preceding statement, the String value "42" is returned by parseInt() as an inte-
ger with a value of 42, and this is stored in the count variable.

The lack of a static keyword in front of a method name makes it an instance method.
Instance methods operate in a particular object, rather than a class of objects. On Day 1,
“Getting Started with Java,” you created an instance method called checkTemperature()
that checked the temperature in the robot’s environment.

TIP Most methods that affect a particular object should be defined as
instance methods. Methods that provide some general capability
but do not directly affect an instance of the class should be
declared as class methods.

Creating Java Applications

Now that you know how to create classes, objects, class and instance variables, and class
and instance methods, you can put it all together in a Java program.

To refresh your memory, applications are Java classes that can be run on their own.

NOTE Applications are different from applets, which are run by a Java-
enabled browser as part of a web page. You can find out how to
develop applets in “Writing Java Applets,” a bonus chapter
included on this book’s CD.

A Java application consists of one or more classes and can be as large or as small as you
want it to be. Although all the applications you’ve created up to this point do nothing but
output some characters to the screen, you also can create Java applications that use win-

dows, graphics, and a graphical user interface.

Creating Java Applications 125

The only thing you need to make a Java application run, however, is one class that serves
as the starting point.

The class needs only one thing: a main () method. When the application is run, the
main () method is the first thing called.

The signature for the main () method takes the following form:

public static void main(String[] arguments) {
/| body of method
I3

Here’s a rundown of the parts of the main () method:

® public means that this method is available to other classes and objects, which is a
form of access control. The main() method must be declared public. You learn
more about access methods during Day 6.

B static means that main() is a class method.
B void means that the main() method doesn’t return a value.

® main() takes one parameter, which is an array of strings. This argument holds
command-line arguments, which you learn more about in the next section.

The body of the main () method contains any code you need to start your application,
such as the initialization of variables or the creation of class instances.

When Java executes the main () method, keep in mind that main() is a class method. An
instance of the class that holds main() is not created automatically when your program
runs. If you want to treat that class as an object, you have to create an instance of it in
the main () method (as you did in the Passer and RangeLister applications).

Helper Classes

Your Java application may consist of a single class—the one with the main () method—
or several classes that use each other. (In reality, even a simple tutorial program is actu-
ally using numerous classes in the Java class library.) You can create as many classes as
you want for your program.

NOTE If you're using the JDK, the classes can be found if they are
accessible from a folder listed in your classpath environment vari-
able.

126

DAY 5: Creating Classes and Methods

As long as Java can find the class, your program uses it when it runs. Note, however, that
only the starting-point class needs a main () method. After it is called, the methods inside
the various classes and objects used in your program take over. Although you can include
main () methods in helper classes, they are ignored when the program runs.

Java Applications and Command-line
Arguments

Because Java applications are standalone programs, it’s useful to pass arguments or
options to an application.

You can use arguments to determine how an application is going to run or to enable a
generic application to operate on different kinds of input. You can use program argu-
ments for many different purposes, such as to turn on debugging input or to indicate a
filename to load.

Passing Arguments to Java Applications

How you pass arguments to a Java application varies based on the computer and virtual
machine on which Java is being run.

To pass arguments to a Java program with the java interpreter included with the JDK,
the arguments should be appended to the command line when the program is run. For
example:

java EchoArgs April 450 -10

In the preceding example, three arguments were passed to a program: April, 450, and -
10. Note that a space separates each of the arguments.

To group arguments that include spaces, the arguments should be surrounded with quota-
tion marks. For example, note the following command line:

java EchoArgs Wilhelm Niekro Hough "Tim Wakefield" 49

Putting quotation marks around Tim Wakefield causes that text to be treated as a single
argument. The EchoArgs application would receive five arguments: Wilhelm, Niekro,
Hough, Tim Wakefield, and 49. The quotation marks prevent the spaces from being used
to separate one argument from another; they are not included as part of the argument
when it is sent to the program and received using the main () method.

Java Applications and Command-line Arguments

CAUTION One thing the quotation marks are not used for is to identify
strings. Every argument passed to an application is stored in an
array of string objects, even if it has a numeric value (such as
450, -10, and 49 in the preceding examples).

Handling Arguments in Your Java Application

When an application is run with arguments, Java stores the arguments as an array of
strings and passes the array to the application’s main() method. Take another look at the
signature for main():

public static void main(String[] arguments) {

/| body of method
}

Here, arguments is the name of the array of strings that contains the list of arguments.
You can call this array anything you want.

Inside the main () method, you then can handle the arguments your program was given
by iterating over the array of arguments and handling them in some manner. For exam-
ple, Listing 5.4 is a simple Java program that takes any number of numeric arguments
and returns the sum and the average of those arguments.

LISTING 5.4 The Full Text of Averager.java

1: class Averager {

2 public static void main(String[] arguments) {

3 int sum = 0;

4:

5: if (arguments.length > 0) {

6: for (int 1 = @; i < arguments.length; i++) {
7 sum += Integer.parselnt(arguments[i]);
8: }

9: System.out.println("Sum is: " + sum);

10: System.out.println("Average is: " +

11: (float)sum / arguments.length);

12: }

13: }

14: }

The Averager application makes sure that in line 5 at least one argument was passed to
the program. This is handled through length, the instance variable that contains the
number of elements in the arguments array.

127

128

DAY 5: Creating Classes and Methods

You must always do things like this when dealing with command-line arguments.
Otherwise, your programs crash with ArrayIndexOutOfBoundsException errors when-
ever the user supplies fewer command-line arguments than you were expecting.

If at least one argument is passed, the for loop iterates through all the strings stored in
the arguments array (lines 6-8).

Because all command-line arguments are passed to a Java application as String objects,
you must convert them to numeric values before using them in any mathematical expres-
sions. The parseInt() class method of the Integer class takes a String object as input
and returns an int (line 7).

If you can run Java classes on your system with a command line, type the following:
java Averager 1 4 13

You should see the following output:

Sum is: 18
Average is: 6.0

Creating Methods with the Same Name,
Different Arguments

When you work with Java’s class library, you often encounter classes that have numerous
methods with the same name.

Two things differentiate methods with the same name:

® The number of arguments they take

m The data type or objects of each argument

These two things are part of a method’s signature. Using several methods with the same
name and different signatures is called overloading.

Method overloading can eliminate the need for entirely different methods that do essen-
tially the same thing. Overloading also makes it possible for methods to behave differ-
ently based on the arguments they receive.

When you call a method in an object, Java matches the method name and arguments to
choose which method definition to execute.

To create an overloaded method, you create different method definitions in a class, each
with the same name but different argument lists. The difference can be the number, the

Creating Methods with the Same Name, Different Arguments 129

type of arguments, or both. Java allows method overloading as long as each argument list
is unique for the same method name.

CAUTION Java does not consider the return type when differentiating among
overloaded methods. If you attempt to create two methods with
the same signature and different return types, the class won’t
compile. In addition, the variable names that you choose for each
argument to the method are irrelevant. The number and the type
of arguments are the two things that matter.

The next project creates an overloaded method. It begins with a simple class definition
for a class called Box, which defines a rectangular shape with four instance variables to
define the upper-left and lower-right corners of the rectangle, x1, y1, x2, and y2:

class Box {
int x1 = 0;
int y1 = 0;
int x2 = 0;
int y2 = 0;
}

When a new instance of the Box class is created, all its instance variables are initialized
to 0.

A buildBox () instance method sets the variables to their correct values:

Box buildBox(int x1, int y1, int x2, int y2) { 5
this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;

return this;

This method takes four integer arguments and returns a reference to the resulting Box
object. Because the arguments have the same names as the instance variables, the key-
word this is used inside the method when referring to the instance variables.

This method can be used to create rectangles, but what if you wanted to define a rectan-
gle’s dimensions in a different way? An alternative would be to use Point objects rather
than individual coordinates because Point objects contain both an x and y value as
instance variables.

130

DAY 5: Creating Classes and Methods

You can overload buildBox () by creating a second version of the method with an argu-
ment list that takes two Point objects:

Box buildBox(Point topLeft, Point bottomRight) {
x1 = topLeft.x;
y1 = topLeft.y;
x2 = bottomRight.x;
y2 = bottomRight.y;
return this;

For the preceding method to work, the java.awt.Point class must be imported so that
the Java compiler can find it.

Another possible way to define the rectangle is to use a top corner, a height, and a width:

Box buildBox(Point topLeft, int w, int h) {
x1 = topLeft.x;
y1 = topLeft.y;
X2 (x1 + w);
y2 = (y1 + h);
return this;

To finish this example, a printBox () is created to display the rectangle’s coordinates,
and a main() method tries everything out. Listing 5.5 shows the completed class defini-
tion.

LISTING 5.5 The Full Text of Box.java

1: import java.awt.Point;

2:

3: class Box {

4: int x1 = 0;

5: int y1 = 0;

6: int x2 = 0;

7 int y2 = 0;

8:

9: Box buildBox(int x1, int y1, int x2, int y2) {
10: this.x1 = x1;

11: this.y1 = yi;

12: this.x2 = x2;

13: this.y2 = y2;

14: return this;

15: }

16:

17: Box buildBox(Point topLeft, Point bottomRight) {

18: x1 = topLeft.x;

Creating Methods with the Same Name, Different Arguments 131

LISTING 5.5 Continued

19: y1 = topLeft.y;

20: X2 = bottomRight.x;

21: y2 = bottomRight.y;

22: return this;

23: }

24:

25: Box buildBox(Point topLeft, int w, int h) {

26: x1 = topLeft.x;

27: y1 = topLeft.y;

28: X2 = (x1 + w);

29: y2 = (y1 + h);

30: return this;

31: }

32:

33: void printBox(){

34: System.out.print("Box: <" + x1 + ", " + y1);

35: System.out.println(", " + x2 + ", " + y2 + ">");

36: }

37:

38: public static void main(String[] arguments) {

39: Box rect = new Box();

40:

41: System.out.println("Calling buildBox with coordinates "
42: + "(25,25) and (50,50):");

43: rect.buildBox (25, 25, 50, 50);

44: rect.printBox();

45:

46: System.out.println("\nCalling buildBox with points "
47: + "(10,10) and (20,20):");

48: rect.buildBox(new Point (10, 10), new Point (20, 20));
49: rect.printBox(); 5
50:

51: System.out.println("\nCalling buildBox with 1 point "
52: + "(10,10), width 50 and height 50:");

53:

54: rect.buildBox(new Point(10, 10), 50, 50);

55: rect.printBox();

56: }

57: }

The following is this program’s output:
Calling buildBox with coordinates (25,25) and (50,50):
Box: <25, 25, 50, 50>

Calling buildBox with points (10,10) and (20,20):
Box: <10, 10, 20, 20>

132

DAY 5: Creating Classes and Methods

Calling buildBox with 1 point (10,10), width 50 and height 50:
Box: <10, 10, 60, 60>

You can define as many versions of a method as you need to implement the behavior
needed for that class.

When you have several methods that do similar things, using one method to call another
is a shortcut technique to consider. For example, the buildBox () method in lines 17-23
can be replaced with the following, much shorter method:

Box buildBox(Point topLeft, Point bottomRight) {

return buildBox(topLeft.x, topLeft.y,
bottomRight.x, bottomRight.y);

The return statement in this method calls the buildBox () method in lines 9—-15 with
four integer arguments, producing the same result in fewer statements.

Constructor Methods

You also can define constructor methods in your class definition that are called automati-
cally when objects of that class are created.

A constructor method is a method called on an object when it is created—in other words,
when it is constructed.

Unlike other methods, a constructor cannot be called directly. Java does three things
when new is used to create an instance of a class:

m Allocates memory for the object

m Initializes that object’s instance variables, either to initial values or to a default (@
for numbers, null for objects, false for Booleans, or '\0@' for characters)

m Calls the constructor method of the class, which might be one of several methods

If a class doesn’t have any constructor methods defined, an object still is created when
the new operator is used in conjunction with the class. However, you might have to set its
instance variables or call other methods that the object needs to initialize itself.

By defining constructor methods in your own classes, you can set initial values of
instance variables, call methods based on those variables, call methods on other objects,
and set the initial properties of an object.

Constructor Methods 133

You also can overload constructor methods, as you can do with regular methods, to cre-
ate an object that has specific properties based on the arguments you give to new.

Basic Constructor Methods

Constructors look a lot like regular methods, with three basic differences:

m They always have the same name as the class.
m They don’t have a return type.

m They cannot return a value in the method by using the return statement.

For example, the following class uses a constructor method to initialize its instance vari-
ables based on arguments for new:
class VolcanoRobot {

String status;

int speed;

int power;

VolcanoRobot (String in1, int in2, int in3) {
status = ini;

speed = in2;
power = in3;

You could create an object of this class with the following statement:
VolcanoRobot vic = new VolcanoRobot("exploring", 5, 200);

The status instance variable would be set to exploring, speed to 5, and power to 200.

Calling Another Constructor Method

If you have a constructor method that duplicates some of the behavior of an existing con-
structor method, you can call the first constructor from inside the body of the second
constructor. Java provides a special syntax for doing this. Use the following code to call
a constructor method defined in the current class:

this(arg?, arg2, arg3);

The use of this with a constructor method is similar to how this can be used to access a
current object’s variables. In the preceding statement, the arguments with this() are the
arguments for the constructor method.

134

DAY 5: Creating Classes and Methods

For example, consider a simple class that defines a circle using the (x,y) coordinate of its
center and the length of its radius. The class, Circle, could have two constructors: one
where the radius is defined and one where the radius is set to a default value of 1:

class Circle {
int x, y, radius;

Circle(int xPoint, int yPoint, int radiusLength) {
this.x = xPoint;
this.y = yPoint;
this.radius = radiusLength;

}

Circle(int xPoint, int yPoint) ({
this(xPoint, yPoint, 1);
}

The second constructor in Circle takes only the x and y coordinates of the circle’s cen-
ter. Because no radius is defined, the default value of 1 is used—the first constructor is
called with the arguments xPoint, yPoint, and the integer literal 1.

Overloading Constructor Methods

Like regular methods, constructor methods also can take varying numbers and types of
parameters. This capability enables you to create an object with exactly the properties
you want it to have or lets the object calculate properties from different kinds of input.

For example, the buildBox () methods that you defined in the Box class earlier today
would make excellent constructor methods because they are being used to initialize an
object’s instance variables to the appropriate values. So instead of the original
buildBox () method that you defined (which took four parameters for the coordinates of
the corners), you could create a constructor.

Listing 5.6 shows a new class, Box2, that has the same functionality of the original Box
class, except that it uses overloaded constructor methods instead of overloaded
buildBox () methods.

LISTING 5.6 The Full Text of Box2. java

import java.awt.Point;

1:
2:
3: class Box2 {
4: int x1
5
6

= 0;
int y1 = 0;
int x2 = 0;

Constructor Methods 135

LISTING 5.6 The Full Text of Box2. java

7: int y2 = 0;

8:

9: Box2(int x1, int y1, int x2, int y2) {

10: this.x1 = x1;

11: this.y1 = y1;

12: this.x2 = x2;

13: this.y2 = y2;

14: }

15:

16: Box2(Point topLeft, Point bottomRight) {

17: x1 = topLeft.x;

18: y1 = topLeft.y;

19: X2 = bottomRight.x;

20: y2 = bottomRight.y;

21: }

22:

23: Box2(Point topLeft, int w, int h) {

24: x1 = topLeft.x;

25: y1 = topLeft.y;

26: X2 = (X1 + w);

27: y2 = (y1 + h);

28: }

29:

30: void printBox() {

31: System.out.print("Box: <" + x1 + ", " + y1);

32: System.out.println(", " + x2 + ", " + y2 + ">");
33: }

34:

35: public static void main(String[] arguments) {

36: Box2 rect;

37: 5
38: System.out.println("Calling Box2 with coordinates "
39: + "(25,25) and (50,50):");

40: rect = new Box2(25, 25, 50, 50);

41: rect.printBox();

42:

43: System.out.println("\nCalling Box2 with points "
44: + "(10,10) and (20,20):");

45: rect= new Box2(new Point (10, 10), new Point(20, 20));
46: rect.printBox();

47:

48: System.out.println("\nCalling Box2 with 1 point "
49: + "(10,10), width 50 and height 50:");

50: rect = new Box2(new Point(10, 10), 50, 50);

51: rect.printBox();

52:

53: }

54: }

This application produces the same output as the Box application in Listing 5.5.

136

DAY 5: Creating Classes and Methods

Overriding Methods

When you call an object’s method, Java looks for that method definition in the object’s
class. If it doesn’t find one, it passes the method call up the class hierarchy until a
method definition is found. Method inheritance enables you to define and use methods
repeatedly in subclasses without having to duplicate the code.

However, there might be times when you want an object to respond to the same methods
but have different behavior when that method is called. In that case, you can override the
method. To override a method, define a method in a subclass with the same signature as
a method in a superclass. Then, when the method is called, the subclass method is found
and executed instead of the one in the superclass.

Creating Methods That Override Existing Methods

To override a method, all you have to do is create a method in your subclass that has the
same signature (name and argument list) as a method defined by your class’s superclass.
Because Java executes the first method definition it finds that matches the signature, the
new signature hides the original method definition.

Here’s a simple example; Listing 5.7 contains two classes: Printer, which contains a
method called printMe() that displays information about objects of that class, and
SubPrinter, a subclass that adds a z instance variable to the class.

LISTING 5.7 The Full Text of Printer.java

1: class Printer {

2 int x = 0;

3 inty = 1;

4:

5: void printMe() {

6: System.out.println("x is " + x + ", y is " + y);
7: System.out.println("I am an instance of the class " +
8: this.getClass().getName());

9: }

10: }

11:

12: class SubPrinter extends Printer {

13: int z = 3;

14:

15: public static void main(String[] arguments) {

16: SubPrinter obj = new SubPrinter();

17: obj.printMe();

18: }

Overriding Methods

Compiling this file produces two class files rather than one, as you might expect from
previous projects. Because the source file defines the Printer and SubPrinter classes,
both are produced by the compiler. Run SubPrinter with the Java interpreter to see the
following output:

X is 0, y is 1
I am an instance of the class SubPrinter

CAUTION Make sure that you run subPrinter with the interpreter rather than
Printer. The Printer class does not have a main() method, so it
cannot be run as an application.

A SubPrinter object was created, and the printMe () method was called in the main ()
method of SubPrinter. Because the SubPrinter does not define this method, Java looks
for it in the superclasses of SubPrinter, starting with Printer. Printer has a printMe ()
method, so it is executed. Unfortunately, this method does not display the z instance vari-
able, as you can see from the preceding output.

To correct the problem, you could override the printMe () method of Printer in
SubPrinter, adding a statement to display the z instance variable:
void printMe() {
System.out.println("x is "+ x + ", y is " + y +
", z1is " + z);
System.out.println("I am an instance of the class " +
this.getClass().getName());

Calling the Original Method

Usually, there are two reasons why you want to override a method that a superclass
already has implemented:

m To replace the definition of that original method completely

® To augment the original method with additional behavior

Overriding a method and giving the method a new definition hides the original method
definition. There are times, however, when behavior should be added to the original defi-
nition instead of replacing it completely, particularly when behavior is duplicated in both
the original method and the method that overrides it. By calling the original method in
the body of the overriding method, you can add only what you need.

137

138

DAY 5: Creating Classes and Methods

Use the super keyword to call the original method from inside a method definition. This
keyword passes the method call up the hierarchy, as shown in the following:
void doMethod(String a, String b) {

/] do stuff here

super.doMethod(a, b);
/] do more stuff here

The super keyword, similar to the this keyword, is a placeholder for the class’s super-
class. You can use it anywhere that you use this, but super refers to the superclass
rather than the current object.

Overriding Constructors

Technically, constructor methods cannot be overridden. Because they always have the
same name as the current class, new constructor methods are created instead of being
inherited. This system is fine much of the time; when your class’s constructor method is
called, the constructor method with the same signature for all your superclasses also is
called. Therefore, initialization can happen for all parts of a class that you inherit.

However, when you are defining constructor methods for your own class, you might
want to change how your object is initialized, not only by initializing new variables
added by your class, but also by changing the contents of variables that are already there.
To do this, explicitly call the constructor methods of the superclass and subsequently
change whatever variables need to be changed.

To call a regular method in a superclass, you use super.methodname (arguments).
Because constructor methods don’t have a method name to call, the following form is
used:

super(argtl, arg2, ...);

Note that Java has a specific rule for the use of super(): It must be the first statement in
your constructor definition. If you don’t call super() explicitly in your constructor, Java
does it for you—automatically calling super () with no arguments before the first state-
ment in the constructor.

Because a call to a super() method must be the first statement, you can’t do something
like the following in your overriding constructor:
if (condition == true)

super(1,2,3); // call one superclass constructor

else
super(1,2); // call a different constructor

Overriding Methods 139

Similar to using this() in a constructor method, super () calls the constructor method
for the immediate superclass (which might, in turn, call the constructor of its superclass,
and so on). Note that a constructor with that signature has to exist in the superclass for
the call to super () to work. The Java compiler checks this when you try to compile the
source file.

You don’t have to call the constructor in your superclass that has the same signature as
the constructor in your class; you have to call the constructor only for the values you
need initialized. In fact, you can create a class that has constructors with entirely differ-
ent signatures from any of the superclass’s constructors.

Listing 5.8 shows a class called NamedPoint, which extends the class Point from the
java.awt package. The Point class has only one constructor, which takes an x and a y
argument and returns a Point object. NamedPoint has an additional instance variable (a
string for the name) and defines a constructor to initialize x, y, and the name.

LISTING 5.8 The NamedPoint Class

1: import java.awt.Point;

2:

3: class NamedPoint extends Point {

4 String name;

5:

6 NamedPoint(int x, int y, String name) {

7 super(x,y);

8: this.name = name;

9: }

10:

11: public static void main(String[] arguments) { 5
12: NamedPoint np = new NamedPoint(5, 5, "SmallPoint");
13: System.out.println("x is " + np.x);

14: System.out.println("y is " + np.y);

15: System.out.println("Name is " + np.name);

16: }

17: }

The output of the program is as follows:
X is 5

y is 5

Name is SmallPoint

The constructor method defined here for NamedPoint calls Point’s constructor method
to initialize the instance variables of Point (x and y). Although you can just as easily
initialize x and y yourself, you might not know what other things Point is doing to

140

DAY 5: Creating Classes and Methods

initialize itself. Therefore, it is always a good idea to pass constructor methods up the
hierarchy to make sure that everything is set up correctly.

Finalizer Methods

Finalizer methods are almost the opposite of constructor methods. A constructor method
is used to initialize an object, and finalizer methods are called just before the object is
removed by the garbage collector, freeing up the memory for use.

The finalizer method is finalize (). The Object class defines a default finalizer method
that does nothing. To create a finalizer method for your own classes, override the final-
ize() method using this signature:
protected void finalize() throws Throwable {

super.finalize();

}

NOTE The throws Throwable part of this method definition refers to the
errors that might occur when this method is called. Errors in Java
are called exceptions; you learn more about them on Day 7.

Include any cleaning up that you want to do for that object inside the body of that
finalize () method. In the method, you always should call super.finalize() to enable
your class’s superclasses to finalize the object.

You can call the finalize() method yourself at any time; it’s a method just like any
other. However, calling finalize() does not trigger an object to be garbage collected.
Only removing all references to an object causes it to be marked for deletion.

When you’re optimizing a Java class, one of the ways to reduce its memory use is to
remove references to class and instance variables as soon as they are no longer needed.
To remove a reference, set it to null.

For example, if you have a class that uses a NamedPoint object in a variable called
mainPoint, you could free up that object for garbage collection with the following state-
ment:

mainPoint = null;

Finalizer methods are valuable for optimizing the removal of an object—for example, by
removing references to other objects. However, it’s important to note that the time a

Q&A 141

garbage collector takes to call an object’s finalize () method is not standard in all
implementations of the Java interpreter. This could take place long after the last reference
to the object was removed. In most cases, you don’t need to use finalize() at all.

Summary

After finishing today’s lesson, you should have a pretty good idea of the relationship
among classes in Java and programs you create using the language.

Everything you create in Java involves the use of a main class that interacts with other
classes as needed. It’s a different programming mindset than you might be used to with
other languages.

Today, you put together everything you have learned about creating Java classes. Each of
the following topics was covered:

m Instance and class variables, which hold the attributes of a class and objects created
from it.

m Instance and class methods, which define the behavior of a class. You learned how
to define methods—including the parts of a method signature, how to return values
from a method, how arguments are passed to methods, and how to use the this
keyword to refer to the current object.

® The main() method of Java applications and how to pass arguments to it from the
command line.

® Overloaded methods, which reuse a method name by giving it different arguments.

m Constructor methods, which define the initial variables and other starting condi-
tions of an object.

Q&A

Q In my class, I have an instance variable called origin. I also have a local vari-
able called origin in a method, which, because of variable scope, gets hidden
by the local variable. Is there any way to access the instance variable’s value?

A The easiest way to avoid this problem is to give your local variables the same
names that your instance variables have. Otherwise, you can use this.origin to
refer to the instance variable and origin to refer to the local variable.

142 DAY 5: Creating Classes and Methods

Q I created two methods with the following signatures:

int total(int argi1, int arg2, int arg3) {...}
float total(int argl, int arg2, int arg3) {...}

The Java compiler complains when I try to compile the class with these
method definitions, but their signatures are different. What have I done
wrong?

A Method overloading in Java works only if the parameter lists are different—either
in number or type of arguments. Return type is not part of a method signature, so
it’s not considered when methods have been overloaded. Looking at it from the
point at which a method is called, this makes sense: If two methods have exactly
the same parameter list, how would Java know which one to call?

Q I wrote a program to take four arguments, but when I give it too few argu-
ments, it crashes with a runtime error. Why?

A Testing for the number and type of arguments your program expects is up to you in
your Java program; Java won’t do it for you. If your program requires four argu-
ments, test that you have indeed been given four arguments by using the length
variable of an array and return an error message if you haven’t.

Quiz

Review today’s material by taking this three-question quiz.

Questions

1. If a local variable has the same name as an instance variable, how can you refer to
the instance variable in the scope of the local variable?

a. You can’t; you should rename one of the variables.
b. Use the keyword this before the instance variable name.
c. Use the keyword super before the name.
2. Where are instance variables declared in a class?
a. Anywhere in the class
b. Outside all methods in the class
c. After the class declaration and above the first method
3. How can you send an argument to a program that includes a space character?
a. Surround it with quotes.
b. Separate the arguments with commas.

c. Separate the arguments with period characters.

Quiz

Answers

1. b. Answer (a.) is a good idea, though variable name conflicts can be a source of
subtle errors in your Java programs.

2. b. Customarily, instance variables are declared right after the class declaration and
before any methods. It’s necessary only that they be outside all methods.

3. a. The quotation marks are not included in the argument when it is passed to the
program.

Certification Practice

The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Given:

public class BigValue {
float result;

public BigValue(int a, int b) {
result = calculateResult(a, b);

}

float calculateResult(int a, int b) {
return (a * 10) + (b * 2);
}

public static void main(String[] arguments) {
BiggerValue bgr = new BiggerValue(2, 3, 4);
System.out.println("The result is " + bgr.result);

}
class BiggerValue extends BigValue {

BiggerValue(int a, int b, int c) {
super(a, b);
result = calculateResult(a, b, c);

}

// answer goes here
return (c * 3) * result;

}

143

144

DAY 5: Creating Classes and Methods

What statement should replace // answer goes here so that the result variable equals
312.0?

a. float calculateResult(int c) {
b. float calculateResult(int a, int b) {

o

float calculateResult(int a, int b, int c) {

d. float calculateResult() {

The answer is available on the book’s website at http://www.java2ldays.com. Visit the
Day 5 page and click the Certification Practice link.

Exercises

To extend your knowledge of the subjects covered today, try the following exercises:

1. Modify the VolcanoRobot project from Day 1 so that it includes constructor meth-
ods.

2. Create a class for four-dimensional points called FourDPoint that is a subclass of
Point from the java.awt package.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java2ldays.com.

DAY 6:

Packages, Interfaces,
and Other Class
Features

Classes, the templates used to create objects that can store data and
accomplish tasks, turn up in everything you do with the Java language.

Today, you extend your knowledge of classes by learning more about how
to create them, use them, organize them, and establish rules for how
other classes can use them.

The following subjects are covered:

Controlling access to methods and variables from outside a class

Finalizing classes, methods, and variables so that their values or
definitions cannot be subclasses or cannot be overridden

Creating abstract classes and methods for factoring common
behavior into superclasses

Grouping classes into packages

Using interfaces to bridge gaps in a class hierarchy

146

DAY 6: Packages, Interfaces, and Other Class Features

Modifiers

During this week, you have learned how to define classes, methods, and variables in
Java. The techniques for programming that you learn today involve different ways of
thinking about how a class is organized. All these techniques use special modifier key-
words in the Java language.

Modifiers are keywords that you add to those definitions to change their meanings.
The Java language has a wide variety of modifiers, including the following:
® Modifiers for controlling access to a class, method, or variable: public,
protected, and private
m The static modifier for creating class methods and variables

m The final modifier for finalizing the implementations of classes, methods, and
variables

® The abstract modifier for creating abstract classes and methods

m The synchronized and volatile modifiers, which are used for threads

To use a modifier, you include its keyword in the definition of a class, method, or vari-
able. The modifier precedes the rest of the statement, as in the following examples:

public class Calc extends javax.swing.JApplet {
...
}

private boolean offline;
static final double weeks = 9.5;
protected static final int MEANING_OF LIFE = 42;

public static void main(String[] arguments) {
/] body of method
}

If you’re using more than one modifier in a statement, you can place them in any order,
as long as all modifiers precede the element they are modifying. Make sure to avoid
treating a method’s return type—such as void—as if it were one of the modifiers.

Modifiers are optional—as you might realize after using few of them in the preceding
five days. There are many good reasons to use them, though, as you see today.

Access Control for Methods and Variables

The modifiers that you will use the most often control access to methods and variables:
public, private, and protected. These modifiers determine which variables and meth-
ods of a class are visible to other classes.

Modifiers 147

By using access control, you can dictate how your class is used by other classes. Some
variables and methods in a class are of use only within the class itself and should be hid-
den from other classes. This process is called encapsulation: An object controls what the
outside world can know about it and how the outside world can interact with it.

Encapsulation is the process that prevents class variables from being read or modified by
other classes. The only way to use these variables is by calling methods of the class, if
they are available.

The Java language provides four levels of access control: public, private, protected,
and a default level specified by using none of these access control modifiers.

Default Access

Variables and methods can be declared without any modifiers, as in the following
examples:

String version = "0.7a";

boolean processOrder() {
return true;

}

A variable or method declared without any access control modifier is available to any
other class in the same package. The Java class library is organized into packages such as
javax.swing, which are windowing classes for use primarily in graphical user interface
programming, and java.util, a useful group of utility classes.

Any variable declared without a modifier can be read or changed by any other class in
the same package. Any method declared the same way can be called by any other class
in the same package. No other classes can access these elements in any way.

This level of access control doesn’t control much access, so it’s less useful when you
begin thinking about how you want a class to be used by other classes.

NOTE The preceding discussion raises the question about what package 6
your own classes have been in up to this point. As you see later
today, you can make your class a member of a package by using
the package declaration. If you don’t use this approach, the class
is put into an unnamed package with all other classes that don’t
belong to any other packages.

148

DAY 6: Packages, Interfaces, and Other Class Features

Private Access

To completely hide a method or variable from being used by any other classes, use the
private modifier. The only place these methods or variables can be accessed is from
within their own class.

A private instance variable, for example, can be used by methods in its own class but not
by objects of any other class. Private methods can be called by other methods in their
own class but cannot be called by any others. This restriction also affects inheritance:
Neither private variables nor private methods are inherited by subclasses.

Private variables are useful in two circumstances:

® When other classes have no reason to use that variable

® When another class could wreak havoc by changing the variable in an inappropri-
ate way

For example, consider a Java class called CouponMachine that generates discounts for an
Internet shopping site. A variable in that class called salesRatio could control the size
of discounts based on product sales. As you can imagine, this variable has a big impact
on the bottom line at the site. If the variable were changed by other classes, the perfor-
mance of CouponMachine would change greatly. To guard against this scenario, you can
declare the salesRatio variable as private.

The following class uses private access control:

class Logger {
private String format;

public String getFormat() {
return this.format;

}

public void setFormat(String format) {
if ((format.equals("common")) ! (
this.format = format;

format.equals("combined"))) {

}

In this code example, the format variable of the Logger class is private, so there’s no
way for other classes to retrieve or set its value directly.

Instead, it’s available through two public methods: getFormat (), which returns the
value of format, and setFormat (String), which sets its value.

The latter method contains logic that only allows the variable to be set to “common” or
“combined.” This demonstrates the benefit of using public methods as the only means of

Modifiers 149

accessing instance variables of a class—the methods can give the class control over how
the variable is accessed and the values it can take.

Using the private modifier is the main way that an object encapsulates itself. You can’t
limit the ways in which a class is used without using private in many places to hide
variables and methods. Another class is free to change the variables inside a class and
call its methods in many possible ways if you don’t control access.

A big advantage of privacy is that it gives you a way to change the implementation of a
class without affecting the users of that class. If you come up with a better way to
accomplish something, you can rewrite the class as long as its public methods take the
same arguments and return the same kinds of values.

Public Access

In some cases, you might want a method or variable in a class to be completely available
to any other class that wants to use it. For example, the Color class in the java.awt
package has public variables for common colors such as black. This variable is used
when a graphical class wants to use the color black, so black should have no access con-
trol at all.

Class variables often are declared to be public. An example would be a set of variables
in a Football class that represent the number of points used in scoring. The TOUCHDOWN
variable could equal 6, the FIELD_GOAL variable could equal 3, and so on. If these vari-
ables are public, other classes could use them in statements such as the following:

if (yard < 0) {

System.out.println("Touchdown!");
score = score + Football.TOUCHDOWN;

The public modifier makes a method or variable completely available to all classes. You
have used it in every application you have written so far, with a statement such as the fol-
lowing:
public static void main(String[] arguments) {
... 6
}

The main () method of an application has to be public. Otherwise, it could not be called
by a Java interpreter (such as java) to run the class.

Because of class inheritance, all public methods and variables of a class are inherited by
its subclasses.

150

DAY 6: Packages, Interfaces, and Other Class Features

Protected Access

The third level of access control is to limit a method and variable to use by the following
two groups:

m Subclasses of a class

m Other classes in the same package

You do so by using the protected modifier, as in the following statement:

protected boolean outOfData = true;

NOTE You might be wondering how these two groups are different. After
all, aren’t subclasses part of the same package as their super-
class? Not always. An example is the JApplet class. It is a sub-
class of java.applet.Applet but is actually in the javax.swing
package. Protected access differs from default access this way;
protected variables are available to subclasses, even if they aren’t
in the same package.

This level of access control is useful if you want to make it easier for a subclass to
implement itself. Your class might use a method or variable to help the class do its job.
Because a subclass inherits much of the same behavior and attributes, it might have the
same job to do. Protected access gives the subclass a chance to use the helper method or
variable, while preventing a nonrelated class from trying to use it.

Consider the example of a class called AudioPlayer that plays a digital audio file.
AudioPlayer has a method called openSpeaker (), which is an internal method that inter-
acts with the hardware to prepare the speaker for playing. openSpeaker () isn’t important
to anyone outside the AudioPlayer class, so at first glance you might want to make it
private. A snippet of AudioPlayer might look something like this:

class AudioPlayer {

private boolean openSpeaker(Speaker sp) {
// implementation details

}

This code works fine if AudioPlayer isn’t going to be subclassed. But what if you were
going to create a class called StreamingAudioPlayer that is a subclass of AudioPlayer?
That class needs access to the openSpeaker () method to override it and provide support

Modifiers 151

for streaming audio devices. You still don’t want the method generally available to ran-
dom objects (and so it shouldn’t be public), but you want the subclass to have access
to it.

Comparing Levels of Access Control

The differences among the various protection types can become confusing, particularly in
the case of protected methods and variables. Table 6.1, which summarizes exactly what
is allowed where, helps clarify the differences from the least restrictive (public) to the
most restrictive (private) forms of protection.

TABLE 6.1 The Different Levels of Access Control

Visibility public protected default private
From the same class yes yes yes yes
From any class in yes yes yes no
the same package

From any class yes no no no
outside the package

From a subclass in yes yes yes no
the same package

From a subclass yes yes no no
outside the same

package

Access Control and Inheritance

One last issue regarding access control for methods involves subclasses. When you cre-
ate a subclass and override a method, you must consider the access control in place on
the original method.

As a general rule, you cannot override a method in Java and make the new method more
restrictively controlled than the original. You can, however, make it more public. The fol- 6
lowing rules for inherited methods are enforced:

m Methods declared public in a superclass also must be public in all subclasses.

m Methods declared protected in a superclass must either be protected or public
in subclasses; they cannot be private.

m Methods declared without access control (no modifier was used) can be declared
more private in subclasses.

Methods declared private are not inherited at all, so the rules don’t apply.

152

DAY 6: Packages, Interfaces, and Other Class Features

Accessor Methods

In many cases, you may have an instance variable in a class that has strict rules for the
values it can contain. An example would be a zipCode variable. A ZIP Code in the
United States must be a number that is five digits long.

To prevent an external class from setting the zipCode variable incorrectly, you can
declare it private with a statement such as the following:

private int zipCode;

However, what if other classes must be able to set the zipCode variable for the class to
be useful? In that circumstance, you can give other classes access to a private variable by
using an accessor method inside the same class as zipCode.

An accessor method provides access to a variable that otherwise would be off-limits. By
using a method to provide access to a private variable, you can control how that variable
is used. In the ZIP Code example, the class could prevent anyone else from setting
zipCode to an incorrect value.

Often, separate accessor methods to read and write a variable are available. Reading
methods have a name beginning with get, and writing methods have a name beginning
with set, as in setZipCode (int) and getZipCode ().

Using methods to access instance variables is a frequently used technique in object-ori-
ented programming. This approach makes classes more reusable because it guards
against a class being used improperly.

NOTE The Java class library makes extensive use of accessor methods
that follow the same format as the getZipCode () and
setZipCode (int) examples in this section. JavaBeans, a technol-
ogy for creating Java objects whose variables can be manipulated
in an integrated development environment, also employs them.

Static Variables and Methods

A modifier that you already have used in programs is static, which was introduced dur-
ing Day 5, “Creating Classes and Methods.” The static modifier is used to create class
methods and variables, as in the following example:

public class Circle {
public static float PI = 3.14159265F;

public float area(float r) {
return PI * r * r;

}

Static Variables and Methods 153

Class variables and methods can be accessed using the class name followed by a dot and
the name of the variable or method, as in Color.black or Circle.PI. You also can use
the name of an object of the class, but for class variables and methods, using the class
name is better. This approach makes clearer what kind of variable or method you’re
working with; instance variables and methods can never be referred to by a class name.

The following statements use class variables and methods:

float circumference = 2 * Circle.PI * getRadius();
float randomNumber = Math.random();

TIP For the same reason as instance variables, class variables can
benefit from being private and limiting their use to accessor meth-
ods only.

The first project you undertake today is a class called InstanceCounter that uses class
and instance variables to keep track of how many instances of that class have been cre-
ated. It’s shown in Listing 6.1.

LISTING 6.1 The Full Text of InstanceCounter.java

public class InstanceCounter {
: private static int numInstances = 0;

1:

2

3

4: protected static int getCount() {
5: return numInstances;
6

7

8

}

: private static void addInstance() {
9: numInstances++;

10: }

11:

12: InstanceCounter() { 6
13: InstanceCounter.addInstance();

14: }

15:

16: public static void main(String[] arguments) {

17: System.out.println("Starting with " +

18: InstanceCounter.getCount() + " instances");
19: for (int 1 = 0; 1 < 500; ++1)

20: new InstanceCounter();

21: System.out.println("Created " +

22: InstanceCounter.getCount() + " instances");
23: }

24: }

154

DAY 6: Packages, Interfaces, and Other Class Features

The output of this program is as follows:

Started with @ instances
Created 500 instances

This example demonstrates several features. In line 2, a private class variable is
declared to hold the number of instances. It is a class variable (declared static) because
the number of instances is relevant to the class as a whole, not to any particular instance,
and it’s private so that it can be retrieved only with an accessor method.

Note the initialization of numInstances. Just as an instance variable is initialized when
its instance is created, a class variable is initialized when its class is created. This class
initialization happens essentially before anything else can happen to that class, or its
instances, so that the class in the example will work as planned.

In lines 4-6, a get method is defined so that the private instance variable’s value can be
retrieved. This method also is declared as a class method because it applies directly to
the class variable. The getCount () method is declared protected, as opposed to public,
because only this class and perhaps its subclasses are interested in that value; other ran-
dom classes are, therefore, restricted from seeing it.

Note that there is no accessor method to set the value. The value of the variable should
be incremented only when a new instance is created; it should not be set to any random
value. Instead of creating an accessor method, a special private method called
addInstance() is defined in lines 8—10 that increments the value of numInstances by 1.

Lines 12—14 create the constructor method for this class. Constructors are called when a
new object is created, which makes this the most logical place to call addInstance() and
to increment the variable.

The main() method indicates that you can run this as a Java application and test all the
other methods. In the main () method, 10 instances of the InstanceCounter class are
created and then the value of the numInstances class variable is displayed.

Final Classes, Methods, and Variables

The final modifier is used with classes, methods, and variables to indicate that they
will not be changed. It has different meanings for each thing that can be made final, as
follows:

m A final class cannot be subclassed.

® A final method cannot be overridden by any subclasses.

m A final variable cannot change in value.

Final Classes, Methods, and Variables 155

Variables

Final variables are often called constant variables (or just constants) because they do not
change in value at any time.

With variables, the final modifier often is used with static to make the constant a class
variable. If the value never changes, you don’t have much reason to give each object in
the same class its own copy of the value. They all can use the class variable with the
same functionality.

The following statements are examples of declaring constants:

public static final int TOUCHDOWN = 6;
static final String TITLE = "Captain";

Methods

Final methods are those that can never be overridden by a subclass. You declare them
using the final modifier in the class declaration, as in the following example:
public final void getSignature() {

// body of method
}

The most common reason to declare a method final is to make the class run more effi-
ciently. Normally, when a Java runtime environment such as the java interpreter runs a
method, it checks the current class to find the method first, checks its superclass second,
and onward up the class hierarchy until the method is found. This process sacrifices
some speed in the name of flexibility and ease of development.

If a method is final, the Java compiler can put the executable bytecode of the method
directly into any program that calls the method. After all, the method won’t ever change
because of a subclass that overrides it.

When you are first developing a class, you won’t have much reason to use final.

However, if you need to make the class execute more quickly, you can change a few 6
methods into final methods to speed up the process. Doing so removes the possibility of

the method being overridden in a subclass later on, so consider this change carefully

before continuing.

The Java class library declares many of the commonly used methods final so that they
can be executed more quickly when utilized in programs that call them.

NOTE Private methods are final without being declared that way because
they can’t be overridden in a subclass under any circumstance.

156

DAY 6: Packages, Interfaces, and Other Class Features

Classes

You finalize classes by using the final modifier in the declaration for the class, as in the
following:
public final class ChatServer {

// body of method
}

A final class cannot be subclassed by another class. As with final methods, this
process introduces some speed benefits to the Java language at the expense of flexibility.

If you’re wondering what you’re losing by using final classes, you must not have tried to
subclass something in the Java class library yet. Many of the popular classes are final,
such as java.lang.String, java.lang.Math, and java.net.URL. If you want to create a
class that behaves like strings but with some new changes, you can’t subclass String and
define only the behavior that is different. You have to start from scratch.

All methods in a final class automatically are final themselves, so you don’t have to use a
modifier in their declarations.

Because classes that can provide behavior and attributes to subclasses are much more
useful, you should strongly consider whether the benefit of using final on one of your
classes is outweighed by the cost.

Abstract Classes and Methods

In a class hierarchy, the higher the class, the more abstract its definition. A class at the
top of a hierarchy of other classes can define only the behavior and attributes common to
all the classes. More specific behavior and attributes are going to fall somewhere lower
down the hierarchy.

When you are factoring out common behavior and attributes during the process of defin-
ing a hierarchy of classes, you might at times find yourself with a class that doesn’t ever
need to be instantiated directly. Instead, such a class serves as a place to hold common
behavior and attributes shared by their subclasses.

These classes are called abstract classes, and they are created using the abstract modi-
fier. The following is an example:

public abstract class Palette {
/...
}

Packages

An example of an abstract class is java.awt.Component, the superclass of graphical user
interface components. Because numerous components inherit from this class, it contains
methods and variables useful to each of them. However, there’s no such thing as a
generic component that can be added to a user interface, so you would never need to cre-
ate a Component object in a program.

Abstract classes can contain anything a normal class can, including constructor methods,
because their subclasses might need to inherit the methods. Abstract classes also can
contain abstract methods, which are method signatures with no implementation. These
methods are implemented in subclasses of the abstract class. Abstract methods are
declared with the abstract modifier. You cannot declare an abstract method in a class
that isn’t itself abstract. If an abstract class has nothing but abstract methods, you’re bet-
ter off using an interface, as you see later today.

Packages

Using packages, as mentioned previously, is a way of organizing groups of classes. A
package contains any number of classes that are related in purpose, in scope, or by inher-
itance.

If your programs are small and use a limited number of classes, you might find that you

don’t need to explore packages at all. But as you begin creating more sophisticated pro-

jects with many classes related to each other by inheritance, you might discover the ben-
efit of organizing them into packages.

Packages are useful for several broad reasons:

m They enable you to organize your classes into units. Just as you have folders or
directories on your hard disk to organize your files and applications, packages
enable you to organize your classes into groups so that you use only what you need
for each program.

m They reduce problems with conflicts about names. As the number of Java classes
grows, so does the likelihood that you’ll use the same class name as another devel-
oper, opening up the possibility of naming clashes and error messages if you try to
integrate groups of classes into a single program. Packages provide a way to refer
specifically to the desired class, even if it shares a name with a class in another
package.

m They enable you to protect classes, variables, and methods in larger ways than on a
class-by-class basis, as you learned today. You learn more about protections with
packages later.

m Packages can be used to uniquely identify your work.

157

158

DAY 6: Packages, Interfaces, and Other Class Features

Using Packages

You’ve been using packages all along in this book. Every time you use the import com-
mand, and every time you refer to a class by its full package name
(java.util.StringTokenizer, for example), you are using packages.

To use a class contained in a package, you can use one of three techniques:

m If the class you want to use is in the package java.lang (for example, System or
Date), you can simply use the class name to refer to that class. The java.lang
classes are automatically available to you in all your programs.

m [f the class you want to use is in some other package, you can refer to that class by
its full name, including any package names (for example, java.awt.Font).

m For classes that you use frequently from other packages, you can import individual
classes or a whole package of classes. After a class or a package has been
imported, you can refer to that class by its class name.

If you don’t declare that your class belongs to a package, it is put into an unnamed
default package. You can refer to that class and any other unpackaged class simply by its
class name from anywhere in other classes.

Full Package and Class Names

To refer to a class in another package, use its full name: the class name preceded by its
package. You do not have to import the class or the package to use it in this manner, as
in this example:

java.awt.Font text = new java.awt.Font()

For classes that you use only once or twice in your program, using the full name makes
sense. If you use a class multiple times, you can import the class to save yourself some

typing.
When you begin creating your own packages, you’ll place all files in a package in the
same folder. Each element of a package name corresponds to its own subfolder.

Consider the example of a BookShipper class that is part of the org.cadenhead.library
package.

The following line should be the first statement in the source code of the class, which
declares the name of the package to which it belongs:

package org.cadenhead.library;

After you compile the BookShipper class, you must store it in a folder that corresponds
with the package name. The JDK and other Java tools will look for the org.cadenhead.
library.BookShipper.class file in several different places:

Using Packages

B The org\cadenhead\library subfolder of the folder where the java command
was entered. (For example, if the command was made from the C:\J21work folder,
the BookShipper.class file could be run successfully if it was in the C:\J21work\
org\cadenhead\1library folder.)

m The org\cadenhead\library subfolder of any folder in your Classpath setting.

m The org\cadenhead\library subfolder of a Java archive file (JAR) in your
Classpath.

One way to manage your own packages and any others you use is to add a folder to your
Classpath that serves as the root folder for any packages you create or adopt, such as
C:\javapackages or something similar. After creating subfolders that correspond to the
name of a package, place the package’s class files in the correct subfolder.

The import Declaration
To import classes from a package, use the import declaration as you have throughout the
examples in the first week. You can import an individual class, as in this statement:

import java.util.Vector;

You also can import an entire package of classes using an asterisk (*) in place of an indi-
vidual class name, like this:

import java.awt.*;

The asterisk can be used in place of a class name only in an import statement. It does
not make it possible to import multiple packages with similar names.

For example, the Java class library includes the java.util, java.util.jar, and
java.util.prefs packages. You could not import all three packages with the following
Statement:

import java.util.*;

This merely imports the java.util package. To make all three available in a class, the
following statements are required:

import java.util.*;

import java.util.jar.*;

import java.util.prefs.*;

Also, you cannot indicate partial class names (for example, L* to import all the classes
that begin with L). Your only options when using an import declaration are to load all
the classes in a package or just a single class.

159

160

DAY 6: Packages, Interfaces, and Other Class Features

The import declarations in your class definition go at the top of the file before any class
definitions (but after the package declaration, as you see in the next section).

Using individual import declarations or importing packages is mostly a question of your
own coding style. Importing a group of classes does not slow down your program or
make it any larger; only the classes that you actually use in your code are loaded as they
are needed. Importing specific classes makes it easier for readers of your code to figure
out where your classes are coming from.

NOTE If you're familiar with C or C++, you might expect the import decla-
ration to work like #include and possibly result in a large exe-
cutable program because it includes source code from another
file. This isn’t the case in Java: import indicates only where the
Java compiler can find a class. It doesn’t do anything to expand
the size of a compiled class.

The import statement also. can be used to refer to constants in a class by name.

Normally, class constants must be prefaced with the name of the class as in
Color.black, Math.PI, and File.separator.

An import static statement makes the constants in an identified class available in
shorter form. The keywords import static are followed by the name of an interface or
class and an asterisk. For example:

import static java.lang.Math.*;

This statement makes it possible to refer to the constants in the Math class, E and P1I,
using only their names. Here’s a short example of a class that takes advantage of this fea-
ture:

import static java.lang.Math.*;
public class ShortConstants {
public static void main(String[] arguments) {

System.out.println("PI: " + PI);
System.out.println("" + (PI * 3));

Class Name Conflicts

After you have imported a class or a package of classes, you usually can refer to a class
name simply by its name without the package identifier. There’s one situation where you

Using Packages 161

must be more explicit: when you import two classes from different packages that have
the same class name.

One situation where a naming conflict might occur is during database programming,
which you undertake on Day 18, “Accessing Databases with JDBC.” This kind of pro-
gramming can involve the java.util and java.sql packages, which both contain a class
named Date.

If you’re working with both packages in a class that reads or writes data in a database,
you could import them with these statements:

import java.sql.*;
import java.util.*;

When both these packages are imported, a compiler error occurs when you refer to the
Date class without specifying a package name, as in this statement:

Date now = new Date();

The error occurs because the Java compiler has no way of knowing which Date class is
being referred to in the statement. The package must be included in the statement, like
this:

java.util.Date = new java.util.Date();

A Note About Classpath and Where Classes Are
Located

For Java to be able to use a class, it must be able to find that class on the file system.
Otherwise, you get an error message indicating that the class does not exist. Java uses
two elements to find classes: the package name itself and the directories listed in your
Classpath environmental variable (or in a Classpath specified when the class is com-
piled or run).

Package names map to folder names on a file system, so the class com.naviseek.
Mapplet is found in the naviseek directory, which, in turn, is inside the com directory (in o
other words, com\naviseek\Mapplet.class).

Java looks for a folder inside the folders and JAR files in your Classpath variable, if one
is provided in your configuration. If you installed the JDK, you may have used it to indi-
cate where the Java class library, a file called tools.jar, can be found. If no Classpath
is provided, the JDK looks only in the current folder for classes.

When Java looks for a class that you’ve referenced in your program, it looks for the
package and class name in each of those folders and returns an error message if it can’t
find the class file. Most class not found error messages result because of misconfig-
ured Classpath variables.

162 DAY 6: Packages, Interfaces, and Other Class Features

NOTE For help setting your classpath correctly with the JDK on a
Windows or Linux system, read Appendix A, “Using the Java
Development Kit.”

To specify the Classpath when compiling or running an application with the JDK, use
the -classpath flag followed by a space and a list of folders separated by semicolons
(on Windows) or colons (on Linux). For example:

javac -classpath /java/lib/tools.jar;/dev/java/root;. Editor.java

Creating Your Own Packages

Creating a package for some of your classes in Java is not much more complicated than
creating a class.

Picking a Package Name

The first step is to decide on a name. The name you choose for your package depends on
how you will use those classes. Perhaps you name your package after yourself or a part
of the Java system you’re working on (such as graphics or messaging). If you intend to
distribute your package as an open source or commercial product, use a package name
that uniquely identifies its authorship.

Sun Microsystems recommends that Java developers use an Internet domain name as the
basis for a unique package name.

To form the name, reverse the elements so that the last part of the domain becomes the
first part of the package name, followed by the second-to-last part. Following this con-
vention, because my personal domain name is cadenhead.org, all Java packages I create
begin with the name org.cadenhead (for instance, org.cadenhead.rss).

This convention ensures that no other Java developer will offer a package with the same
name, as long as they follow the same rule themselves (as most developers appear to be
doing).

By another convention, package names use no capital letters, which distinguishes them
from class names. For example, in the full name of the class java.lang.String, you can
easily distinguish the package name java.lang from the class name String.

Creating the Folder Structure

Step two in creating packages is to create a folder structure that matches the package
name, which requires a separate folder for each part of the name. The package

Creating Your Own Packages

org.cadenhead.rss requires an org folder, a cadenhead folder inside org, and an rss
folder inside cadenhead. The classes in the package then are stored in the rss folder.

Adding a Class to a Package

The final step to putting a class inside a package is to add a statement to the class file
above any import declarations that are being used. The package declaration is used
along with the name of the package, as in the following:

package org.cadenhead.rss;

The package declaration must be the first line of code in your source file, after any com-
ments or blank lines and before any import declarations.

Packages and Class Access Control

Earlier today, you learned about access control modifiers for methods and variables. You
also can control access to classes.

Classes have the default access control if no modifier is specified, which means that the
class is available to all other classes in the same package but is not visible or available
outside that package. It cannot be imported or referred to by name; classes with package
protection are hidden inside the package in which they are contained.

To allow a class to be visible and importable outside your package, you can give it public
protection by adding the public modifier to its definition:

public class Visible {
/...
}

Classes declared as public can be accessed by other classes outside the package.

Note that when you use an import statement with an asterisk, you import only the public
classes inside that package. Private classes remain hidden and can be used only by the
other classes in that package.

Why would you want to hide a class inside a package? For the same reasons that you
want to hide variables and methods inside a class: so that you can have utility classes and
behavior that are useful only to your implementation or so that you can limit the inter-
face of your program to minimize the effect of larger changes. As you design your
classes, take the whole package into consideration and decide which classes you want to
declare public and which you want to be hidden.

Creating a good package consists of defining a small, clean set of public classes and
methods for other classes to use and then implementing them by using any number of
hidden support classes. You see another use for private classes later today.

163

164

DAY 6: Packages, Interfaces, and Other Class Features

Interfaces

Interfaces, like abstract classes and methods, provide templates of behavior that other
classes are expected to implement. They also offer significant advantages in class and
object design that complements Java’s single inheritance approach to object-oriented pro-
gramming.

The Problem of Single Inheritance

As you begin turning a project into a hierarchy of classes related by inheritance, you
might discover that the simplicity of the class organization is restrictive, particularly
when you have some behavior that needs to be used by classes that do not share a com-
mon superclass.

Other object-oriented programming (OOP) languages include the concept of multiple
inheritance, which solves this problem by letting a class inherit from more than one
superclass, acquiring behavior and attributes from all its superclasses at once.

This concept makes a programming language more challenging to learn and to use.
Questions of method invocation and how the class hierarchy is organized become far
more complicated with multiple inheritance and more open to confusion and ambiguity.

Because one of the goals for Java was that it be simple, multiple inheritance was rejected
in favor of single inheritance.

A Java interface is a collection of abstract behavior that can be adopted by any class
without being inherited from a superclass.

An interface contains nothing but abstract method definitions and constants—there are
no instance variables or method implementations.

Interfaces are implemented and used throughout the Java class library when behavior is
expected to be implemented by a number of disparate classes. Later today, you’ll use one
of the interfaces in the Java class hierarchy, java.lang.Comparable.

Interfaces and Classes

Classes and interfaces, despite their different definitions, have a great deal in common.
Both are declared in source files and compiled into .class files. In most cases, an inter-
face can be used anywhere you can use a class (as a data type for a variable, as the result
of a cast, and so on).

You can substitute an interface name for a class name in almost every example in this
book. Java programmers often say “class” when they actually mean “class or interface.”
Interfaces complement and extend the power of classes, and the two can be treated
almost the same, but an interface cannot be instantiated: new only can create an instance
of a nonabstract class.

Interfaces 165

Implementing and Using Interfaces

You can do two things with interfaces: Use them in your own classes and define your
own. For now, start with using them in your own classes.

To use an interface, include the implements keyword as part of your class definition:

public class AnimatedSign extends javax.swing.JApplet
implements Runnable {
[l

In this example, javax.swing.JApplet is the superclass, but the Runnable interface
extends the behavior that it implements.

Because interfaces provide nothing but abstract method definitions, you then have to
implement those methods in your own classes using the same method signatures from the
interface.

To implement an interface, you must offer all the methods in that interface—you can’t
pick and choose the methods you need. By implementing an interface, you’re telling
users of your class that you support the entire interface.

After your class implements an interface, subclasses of your class inherit those new
methods and can override or overload them. If your class inherits from a superclass that
implements a given interface, you don’t have to include the implements keyword in your
own class definition.

Implementing Multiple Interfaces

Unlike with the singly inherited class hierarchy, you can include as many interfaces as
you need in your own classes. Your class will implement the combined behavior of all
the included interfaces. To include multiple interfaces in a class, just separate their names
with commas:

public class AnimatedSign extends javax.swing.JApplet
implements Runnable, Observable {

I

Note that complications might arise from implementing multiple interfaces. What hap-
pens if two different interfaces both define the same method? You can solve this problem
in three ways:

m If the methods in each of the interfaces have identical signatures, you implement
one method in your class, and that definition satisfies both interfaces.

166 DAY 6: Packages, Interfaces, and Other Class Features

m [f the methods have different argument lists, it is a simple case of method over-
loading; you implement both method signatures, and each definition satisfies its
respective interface definition.

m If the methods have the same argument lists but differ in return type, you cannot
create a method that satisfies both. (Remember that method overloading is trig-
gered by parameter lists, not by return type.) In this case, trying to compile a class
that implements both interfaces produces a compiler error message. Running across
this problem suggests that your interfaces have some design flaws that you might
need to reexamine.

Other Uses of Interfaces

Remember that almost everywhere that you can use a class, you can use an interface
instead. For example, you can declare a variable to be of an interface type:

Iterator loop = new Iterator()

When a variable is declared to be of an interface type, it simply means that the object is
expected to have implemented that interface. In this case, because Iterator contains an
object of the type Iterator, the assumption is that you can call all three of the inter-
face’s methods on that object: hasNext (), next(), and remove().

The important point to realize here is that although Iterator is expected to have the
three methods, you could write this code long before any classes that qualify are actu-
ally implemented.

You also can cast objects to an interface, just as you can cast objects to other classes.

Creating and Extending Interfaces

After you use interfaces for a while, the next step is to define your own interfaces.
Interfaces look a lot like classes; they are declared in much the same way and can be
arranged into a hierarchy. However, you must follow certain rules for declaring inter-
faces.

New Interfaces
To create a new interface, you declare it like this:

interface Expandable {
...
}

Creating and Extending Interfaces 167

This declaration is, effectively, the same as a class definition, with the word interface
replacing the word class. Inside the interface definition, you have methods and vari-
ables.

The method definitions inside the interface are public and abstract methods; you can
either declare them explicitly as such, or they will be turned into public and abstract
methods if you do not include those modifiers. You cannot declare a method inside an
interface to be either private or protected.

As an example, here’s an Expandable interface with one method explicitly declared pub -
lic and abstract (expand()) and one implicitly declared as (contract()):

public interface Expandable {
public abstract void expand(); // explicitly public and abstract
void contract(); // effectively public and abstract

Note that as with abstract methods in classes, methods inside interfaces do not have bod-
ies. An interface consists only of a method signature; no implementation is involved.

In addition to methods, interfaces also can have variables, but those variables must be
declared public, static, and final (making them constant). As with methods, you can
explicitly define a variable to be public, static, and final, or it is implicitly defined as
such if you don’t use those modifiers. Here’s that same Expandable definition with two
new variables:

public interface Expandable {
public static final int increment = 10;
long capacity = 15000; // becomes public static and final

public abstract void expand(); //explicitly public and abstract
void contract(); // effectively public and abstract

Interfaces must have either public or package protection, just like classes. Note, however,
that interfaces without the public modifier do not automatically convert their methods to
public and abstract nor their constants to public. A non-public interface also has
non-public methods and constants that can be used only by classes and other interfaces
in the same package.

Interfaces, like classes, can belong to a package. Interfaces also can import other inter-
faces and classes from other packages, just as classes can.

Methods Inside Interfaces

Here’s one trick to note about methods inside interfaces: Those methods are supposed to
be abstract and apply to any kind of class, but how can you define arguments to those

168

DAY 6: Packages, Interfaces, and Other Class Features

methods? You don’t know what class will be using them! The answer lies in the fact that
you use an interface name anywhere a class name can be used, as you learned earlier. By
defining your method arguments to be interface types, you can create generic arguments

that apply to any class that might use this interface.

Consider the interface Trackable, which defines methods (with no arguments) for
track() and quitTracking(). You might also have a method for beginTracking(),
which has one argument: the trackable object itself.

What class should that argument be? It should be any object that implements the
Trackable interface rather than a particular class and its subclasses. The solution is to
declare the argument as simply Trackable in the interface:

public interface Trackable {

public abstract Trackable beginTracking(Trackable self);
}

Then, in an actual implementation for this method in a class, you can take the generic
Trackable argument and cast it to the appropriate object:

public class Monitor implements Trackable {

public Trackable beginTracking(Trackable self) {
Monitor mon = (Trackable) self;
/...
}

Extending Interfaces
As you can do with classes, you can organize interfaces into a hierarchy. When one inter-

face inherits from another interface, that “subinterface” acquires all the method defini-
tions and constants that its “superinterface” declared.

To extend an interface, you use the extends keyword just as you do in a class definition:

interface PreciselyTrackable extends Trackable {
/...
}

Note that unlike classes, the interface hierarchy has no equivalent of the Object class—
there is no root superinterface from which all interfaces descend. Interfaces can either
exist entirely on their own or inherit from another interface.

Note also that unlike the class hierarchy, the inheritance hierarchy can have multiple
inheritance. For example, a single interface can extend as many classes as it needs to

Creating and Extending Interfaces

(separated by commas in the extends part of the definition), and the new interface con-
tains a combination of all its parent’s methods and constants.

In interfaces, the rules for managing method name conflicts are the same as for classes
that use multiple interfaces; methods that differ only in return type result in a compiler
error message.

Creating an Online Storefront

To explore all the topics covered up to this point today, the Storefront application uses
packages, access control, interfaces, and encapsulation. This application manages the
items in an online storefront, handling two main tasks:

m Calculating the sale price of each item depending on how much of it is presently in
stock

m Sorting items according to sale price

The Storefront application consists of two classes, Storefront and Item. These classes
will be organized as a new package called org.cadenhead.ecommerce, so the first task is
to define a folder structure on your system where this package’s classes will be stored.

The JDK and other Java development tools look for packages in the folders listed in the
system’s Classpath, taking the package name into account. To prepare for this project,
create a new folder that will be the root folder for all packages that you create. On my
Windows XP system, I’ve designated c:\dev\java for this purpose.

This folder should be added to your system’s Classpath setting. For instructions on how
to do this, read Appendix A.

When you create a new package, create the corresponding folder structure inside your
package folder. The structure for this project should be org\cadenhead\ecommerce.

On my system, I created c:\dev\java\org\cadenhead\ecommerce to hold its class files.

After you have created a folder for the package and added it to your Classpath, create
Item.java from Listing 6.2.

LISTING 6.2 The Full Text of Item.java

: package org.cadenhead.ecommerce;

1
2:
3: import java.util.*;

4:

5: public class Item implements Comparable {
6 private String id;

169

170 DAY 6: Packages, Interfaces, and Other Class Features

LISTING 6.2 Continued

7: private String name;

8: private double retail;

9: private int quantity;

10: private double price;

11:

12: Item(String idIn, String nameln, String retailln, String quanIn) {
13: id = idIn;

14: name = nameln;

15: retail = Double.parseDouble(retailln);
16: quantity = Integer.parselnt(quanIn);
17:

18: if (quantity > 400)

19: price = retail * .5D;

20: else if (quantity > 200)

21: price = retail * .6D;

22: else

23: price = retail * .7D;

24: price = Math.floor(price * 100 + .5) / 100;
25: }

26:

27: public int compareTo(Object obj) {
28: Item temp = (Item)obj;

29: if (this.price < temp.price)

30: return 1;

31: else if (this.price > temp.price)
32: return -1;

33: return 0;

34: }

35:

36: public String getId() {

37: return id;

38: }

39:

40: public String getName() {

41: return name;

42: }

43:

44: public double getRetail() {

45: return retail;

46: }

47:

48: public int getQuantity() {

49: return quantity;

50: }

51:

52: public double getPrice() {

53: return price;

54: }

55: }

Creating and Extending Interfaces 171

Compile this class and then move the file Item.class to the org\cadenhead\ecommerce
package on your system.

The Item class is a support class that represents a product sold by an online store. There
are private instance variables for the product ID code, name, how many are in stock
(quantity), and the retail and sale prices.

Because all the instance variables of this class are private, no other class can set or
retrieve their values. Simple accessor methods are created in lines 36-54 of Listing 6.2 to
provide a way for other programs to retrieve these values. Each method begins with get
followed by the capitalized name of the variable, which is standard in the Java class
library. For example, getPrice() returns a double containing the value of price. No
methods are provided for setting any of these instance variables—that is handled in the
constructor method for this class.

Line 1 establishes that the Item class is part of the org.cadenhead.ecommerce package.

NOTE Cadenhead.org is the personal domain of this book’s coauthor, so
this project follows Sun’s package-naming convention by beginning
with a top-level domain (org), following it with the second-level
domain name (cadenhead), and then by a name that describes the
purpose of the package (ecommerce).

The Item class implements the Comparable interface (line 5), which makes it easy to sort
a class’s objects. This interface has only one method, compareTo (0Object), which returns
an integer.

The compareTo () method compares two objects of a class: the current object and another
object passed as an argument to the method. The value returned by the method defines
the natural sorting order for objects of this class:
m If the current object should be sorted above the other object, return -1.
m [f the current object should be sorted below the other object, return 1. 6

m If the two objects are equal, return 0.

You determine in the compareTo () method which of an object’s instance variables to
consider when sorting. Lines 27-34 override the compareTo() method for the Item class,
sorting on the basis of the price variable. Items are sorted by price from highest to
lowest.

After you have implemented the Comparable interface for an object, two class methods
can be called to sort an array, linked list, or other collection of those objects. You see this
when Storefront.class is created.

172

DAY 6: Packages, Interfaces, and Other Class Features

The Item() constructor in lines 12-25 takes four String objects as arguments and uses
them to set up the id, name, retail, and quantity instance variables. The last two must
be converted from strings to numeric values using the Double.parseDouble() and
Integer.parselnt() class methods, respectively.

The value of the price instance variable depends on how much of that item is presently
in stock:

m If more than 400 are in stock, price is 50% of retail (lines 18-19).
m [f between 201 and 400 are in stock, price is 60% of retail (lines 20-21).
m For everything else, price is 70% of retail (lines 22-23).

Line 24 rounds off price so that it contains two or fewer decimal points, turning a price
such as $6.92999999999999 to $6.99. The Math.floor () method rounds off decimal
numbers to the next lowest mathematical integer, returning them as double values.

After you have compiled Item.class, you're ready to create a class that represents a
storefront of these products. Create Storefront.java from Listing 6.3.

LISTING 6.3 The Full Text of Storefront.java

package org.cadenhead.ecommerce;

: import java.util.*;

1:

2

3

4:

5: public class Storefront {

6 private LinkedList catalog = new LinkedList();
7
8

public void addItem(String id, String name, String price,

9: String quant) {

10:

11: Item it = new Item(id, name, price, quant);
12: catalog.add(it);

13: }

14:

15: public Item getItem(int i) {

16: return (Item)catalog.get(i);
17: }

18:

19: public int getSize() {

20: return catalog.size();

21: }

22:

23: public void sort() {

24: Collections.sort(catalog);
25: }

26: }

Creating and Extending Interfaces

To compile Storefront. java, the Item class must be stored in a folder that corresponds
to the org.cadenhead.ecommerce package name. After you have compiled Storefront.
class, move the file to the same folder as Item.class.

The Storefront.class is used to manage a collection of products in an online store.
Each product is an Item object, and they are stored together in a LinkedList instance
variable named catalog (line 6).

The addItem() method in lines 8—13 creates a new Item object based on four arguments
sent to the method: the ID, name, price, and quantity in stock of the item. After the item
is created, it is added to the catalog linked list by calling its add () method with the
Item object as an argument.

The getItem() and getSize () methods provide an interface to the information stored in
the private catalog variable. The getSize () method in lines 19-21 calls the
catalog.size() method, which returns the number of objects contained in catalog.

Because objects in a linked list are numbered like arrays and other data structures, you
can retrieve them using an index number. The getItem() method in lines 15-17 calls
catalog.get () with an index number as an argument, returning the object stored at that
location in the linked list.

The sort () method in lines 23-25 is where you benefit from the implementation of the
Comparable interface in the Item class. The class method Collections.sort() sorts a
linked list and other data structures based on the natural sort order of the objects they
contain, calling the object’s compareTo () method to determine this order.

After you compile Storefront class, you’re ready to develop a program that actually
uses the org.cadenhead.ecommerce package. Open the folder on your system where
you’ve been creating the programs of this book (such as \J21work) and create
GiftShop.java from Listing 6.4.

CAUTION Don’t save GiftShop.java in the same folder on your system where
the classes of the org.cadenhead.ecommerce package are stored.
It's not part of the package (as you’'ll note by the absence of a
package org.cadenhead.ecommerce Statement). The Java compiler
exits with an error message because it wasn’t expecting to find
Storefront.class in the same folder as the GiftShop application.

173

174 DAY 6: Packages, Interfaces, and Other Class Features

LISTING 6.4 The Full Text of GiftShop.java

1: import org.cadenhead.ecommerce.*;

2:

3: public class GiftShop {

4 public static void main(String[] arguments) {

5: Storefront store = new Storefront();

6: store.addItem("CO1", "MUG", "9.99", "150");

7 store.addItem("C02", "LG MUG", "12.99", "82");
8: store.addItem("C03", "MOUSEPAD", "10.49", "800");
9: store.addItem("DO1", "T SHIRT", "16.99", "90");
10: store.sort();

11:

12: for (int 1 = 0; i < store.getSize(); i++) {

13: Item show = (Item)store.getItem(i);

14: System.out.println("\nItem ID: " + show.getId() +
15: "“\nName: " + show.getName() +

16: "\nRetail Price: $" + show.getRetail() +
17: "\nPrice: $" + show.getPrice() +

18: "\nQuantity: " + show.getQuantity());
19: }

20: }

21: }

This application uses the org.cadenhead.ecommerce package but does not belong to it.

The GiftShop class demonstrates each part of the public interface that the Storefront
and Item classes make available. You can do each of the following:

Create an online store
Add items to it
Sort the items by sale price

Loop through a list of items to display information about each one

CAUTION If you have stored Item.class, Storefront.class, Or their source

code files in the same folder as GiftShop.java, you might not be
able to compile the program because the Java compiler expects to
find those files in their package folder. Move those files to the
org\cadenhead\ecommerce folder and compile GiftShop.java in
another folder, such as \J21work.

Inner Classes 175

The output of this program is the following:

Item ID: DO1
Name: T SHIRT
Retail Price: $16.99
Price: $11.89
Quantity: 90

Item ID: CO2
Name: LG MUG
Retail Price: $12.99
Price: $9.09
Quantity: 82

Item ID: CO1

Name: MUG

Retail Price: $9.99
Price: $6.99
Quantity: 150

Item ID: CO3

Name: MOUSEPAD
Retail Price: $10.49
Price: $5.25
Quantity: 800

Many implementation details of these classes are hidden from GiftShop and other
classes that would use the package.

For instance, the programmer who developed GiftShop doesn’t need to know that
Storefront uses a linked list to hold the entire store’s product data. If the developer of
Storefront decided later to use a different data structure, as long as getSize() and
getItem() returned the expected values, GiftShop would continue to work correctly.

Inner Classes

The classes you have worked with thus far are all members of a package either because 6
you specified a package name with the package declaration or because the default pack-

age was used. Classes that belong to a package are known as fop-level classes. When

Java was introduced, they were the only classes supported by the language.

In the current version of Java, you can define a class inside a class as if it were a method
or a variable.

These types of classes are called inner classes. Listing 6.5 contains the SquareTool
application, which uses an inner class called Square to square a floating-point number
and store the result.

176 DAY 6: Packages, Interfaces, and Other Class Features

LISTING 6.5 The Full Text of SquareTool. java

1: public class SquareTool {

2 public SquareTool(String input) {

3 try {

4: float in = Float.parseFloat(input);

5: Square sq = new Square(in);

6: float result = sqg.value;

7 System.out.println("The square of " + input + " is " + result);
8: } catch (NumberFormatException nfe) {

9: System.out.println(input + " is not a valid number.");
10: }

11: }

12:

13: class Square {

14: float value;

15:

16: Square(float x) {

17: value = x * x;

18: }

19: }
20:
21: public static void main(String[] arguments) {
22: if (arguments.length < 1) {
23: System.out.println("Usage: java SquareTool number");
24: } else {
25: SquareTool dr = new SquareTool(arguments[Q]);
26: }
27: }
28: }

After compiling this application, run it with a floating-point number as an argument. For
example, with the JDK you could enter the following at a command line:

java SquareTool 13
Here’s the output for that example:
The square of 13 is 169.0

If you run it without any arguments, the following text is displayed before the program
exits:

Usage: java SquareTool number

In this application, the Square class isn’t functionally different from a helper class
included in the same source file as a program’s main class file. The only difference is
that the helper is defined inside the class file, which has several advantages:

Summary 177

m Inner classes are invisible to all other classes, which means that you don’t have to
worry about name conflicts between it and other classes.

m Inner classes can have access to variables and methods within the scope of a top-
level class that they would not have as a separate class.

In many cases, an inner class is a short class file that exists only for a limited purpose. In
the SquareTool application, because the Square class doesn’t contain a lot of complex
behavior and attributes, it is well suited for implementation as an inner class.

The name of an inner class is associated with the name of the class in which it is con-
tained, and it is assigned automatically when the program is compiled. The Square class
is given the name SquareTool$Square.class by the Java compiler.

CAUTION When using inner classes, you must be even more careful to
include all .class files when making a program available. Each
inner class has its own class file, and these class files must be
included along with any top-level classes.

Inner classes, although seemingly a minor enhancement, actually represent a significant
modification to the language.

Rules governing the scope of an inner class closely match those governing variables. An
inner class’s name is not visible outside its scope, except in a fully qualified name, which
helps in structuring classes within a package. The code for an inner class can use simple
names from enclosing scopes, including class and member variables of enclosing classes,
as well as local variables of enclosing blocks.

In addition, you can define a top-level class as a static member of another top-level class.
Unlike an inner class, a top-level class cannot directly use the instance variables of any
other class. The ability to nest classes in this way allows any top-level class to provide a
package-style organization for a logically related group of secondary top-level classes.

Summary

Today, you learned how to encapsulate an object by using access control modifiers for its
variables and methods. You also learned how to use other modifiers such as static,
final, and abstract in the development of Java classes and class hierarchies.

To further the effort of developing a set of classes and using them, you learned how to
group classes into packages. These groupings better organize your programs and enable
the sharing of classes with the many other Java programmers making their code publicly
available.

178 DAY 6: Packages, Interfaces, and Other Class Features

Finally, you learned how to implement interfaces and inner classes, two structures that
are helpful when designing a class hierarchy.

Q&A

Q Won’t using accessor methods everywhere slow down my Java code?

A Not always. As Java compilers improve and can create more optimizations, they
will be able to make accessor methods fast automatically, but if you’re concerned
about speed, you can always declare accessor methods to be final, and they’ll be
comparable in speed to direct instance variable accesses under most circumstances.

Q Based on what I’ve learned, private abstract methods and final abstract
methods or classes don’t seem to make sense. Are they legal?

A Nope, they’re compile-time error messages, as you have guessed. To be useful,
abstract methods must be overridden, and abstract classes must be subclassed,
but neither of those two operations would be legal if they were also private or
final.

Q D’ve been told that I should consider using Ant to manage my Java packages
and compile applications. What does Ant do?

A Apache Ant is an open source tool for compiling and packaging Java applications
and class libraries that is implemented with Java and Extensible Markup Language
(XML). With Ant, you create an XML file that indicates how your classes should
be compiled, archived, and organized. You can specify multiple targets for each
“build,” the term applied to the process, and easily produce multiple builds for each
stage of a project’s development.

Ant, which can be downloaded from the website http://ant.apache.org, was created
by programmers for Jakarta, the open source Java project administered by Apache
that has produced Struts, Velocity, Tomcat, and many other useful Java class
libraries and technologies.

Jakarta projects are extremely extensive, requiring the management of hundreds of
Java classes, JAR archives, and other files. Ant was so useful in the creation of the
Tomcat web server that it became an Apache development project in its own right.
It has subsequently become the most popular build tool for Java programmers.

Quiz

Quiz

Review today’s material by taking this three-question quiz.

Questions
1. What packages are automatically imported into your Java classes?
a. None
b. The classes stored in the folders of your CLASSPATH
c. The classes in the java.lang package

2. According to the convention for naming packages, what should be the first part of
the name of a package you create?

a. Your name followed by a period
b. Your top-level Internet domain followed by a period
c. The text java followed by a period

3. If you create a subclass and override a public method, what access modifiers can
you use with that method?

a. public only
b. public or protected

c. public, protected, or default access

Answers

1. c. All other packages must be imported if you want to use short class names such
as LinkedList instead of full package and class names such as java.util.
LinkedList.

2. b. This convention assumes that all Java package developers will own an Internet
domain or have access to one so that the package can be made available for down-
load.

3. a. All public methods must remain public in subclasses.

Certification Practice

The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

179

180 DAY 6: Packages, Interfaces, and Other Class Features

Given:

package org.cadenhead.bureau;

public class Information {
public int duration = 12;
protected float rate = 3.15F;
float average = 0.5F;

And:

package org.cadenhead.bureau;
import org.cadenhead.bureau.*;

public class MoreInformation extends Information {
public int quantity = 8;
}

And:

package org.cadenhead.bureau.us;
import org.cadenhead.bureau.*;

public class EvenMoreInformation extends MoreInformation {
public int quantity = 9;

EvenMoreInformation() {
super();
int i1 = duration;
float i2 = rate;
float i3 = average;

Which instance variables are visible in the EvenMoreInformation class?

. quantity, duration, rate, and average

a
b. quantity, duration, and rate

o

quantity, duration, and average

d. quantity, rate, and average

The answer is available on the book’s website at http://www.java2ldays.com. Visit the
Day 6 page and click the Certification Practice link.

Exercises

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:
1. Create a modified version of the Storefront project that includes a nobiscount
variable for each item. When this variable is true, sell the item at the retail price.

2. Create a ZipCode class that uses access control to ensure that its zipCode instance
variable always has a five- or nine-digit value.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java2ldays.com.

181

DAY 7:
Exceptions,
Assertions, and
Threads

Today, you complete your weeklong journey through the Java language by
learning about three of its most useful elements: threads, exceptions,
and assertions.

Threads are objects that implement the Runnable interface, which indi-
cates that they can run simultaneously with other parts of a Java pro-
gram. Exceptions are objects that represent errors that may occur in a
Java program. Assertions are conditional statements and Boolean values
that indicate a program is running correctly, providing another means of
detecting errors.

Threads enable your programs to make more efficient use of resources
by isolating the computing-intensive parts of a program so that they don’t
slow down the rest of the program. Exceptions and assertions enable
your programs to recognize errors and respond to them. Exceptions even
assist your programs to correct the conditions if possible.

You start with exceptions because they’re one of the things that you use
when working with both assertions and threads.

184

DAY 7: Exceptions, Assertions, and Threads

Exceptions

Programmers in any language endeavor to write bug-free programs, programs that never
crash, programs that can handle any circumstance with grace and recover from unusual
situations without causing a user any undue stress. Good intentions aside, programs like
this don’t exist.

In real programs, errors occur because programmers didn’t anticipate possible problems,
didn’t test enough, or encountered situations out of their control—bad data from users,
corrupt files that don’t have the correct data in them, network connections that don’t con-
nect, hardware devices that don’t respond, sun spots, gremlins, and so on.

In Java, the strange events that might cause a program to fail are called exceptions. Java
defines a number of language features that deal with exceptions:

® How to handle exceptions in your code and recover gracefully from potential
problems

m How to tell Java and users of your classes that you’re expecting a potential
exception

® How to create an exception if you detect one

® How your code is limited, yet made more robust by exceptions

With most programming languages, handling error conditions requires much more work
than handling a program that is running properly. It can require a confusing structure of
conditional statements to deal with errors that might occur.

As an example, consider the following statements that could be used to load a file from
disk. File input and output can be problematic because of a number of different circum-
stances such as disk errors, file-not-found errors, and the like. If the program must have
the data from the file to operate properly, it must deal with all these circumstances before
continuing.

Here’s the structure of one possible solution:

int status = loadTextFile();
if (status != 1) {
// something unusual happened, describe it
switch (status) {
case 2:
System.out.println("File not found");
break;
case 3:
System.out.println("Disk error");
break;

Exceptions 185

case 4:
System.out.println("File corrupted");
break;
default:
System.out.println("Error");
}
} else {

/] file loaded OK, continue with program
}

This code tries to load a file with a method call to LoadTextFile(), which presumably
has been defined elsewhere in the class. The method returns an integer that indicates
whether the file loaded properly (a value of 1) or an error occurred (anything other
than 1).

Depending on the error that occurs, the program uses a switch statement to address it.
The end result is an elaborate block of code in which the most common circumstance—a
successful file load—can be lost amid the error-handling code. This is the result of han-
dling only one possible error. If other errors take place later in the program, you might
end up with more nested if-else and switch-case blocks.

As you can see, error management would become a major problem after you start creat-
ing larger programs. Different programmers designate special values for handling errors,
and they might not document them well if at all.

Code to manage these kinds of errors can often obscure the program’s original intent,
making the class difficult to read and maintain.

Finally, if you try to deal with errors in this manner, there’s no easy way for the compiler
to check for consistency the way it can check to make sure that you called a method with
the right arguments.

Although the previous example uses Java syntax, you don’t ever have to deal with errors
that way with the Java language. There’s a better technique to deal with exceptional cir-
cumstances in a program: the use of a group of classes called exceptions.

Exceptions include errors that could be fatal to your program as well as other unusual
situations. By managing exceptions, you can manage errors and possibly work around
them.

Errors and other conditions in Java programs can be much more easily managed through
a combination of special language features, consistency checking at compile time, and a
set of extensible exception classes.

186

DAY 7: Exceptions, Assertions, and Threads

With these features, you can add a whole new dimension to the behavior and design of
your classes, your class hierarchy, and your overall system. Your class and interface defi-
nitions describe how your program is supposed to behave given the best circumstances.
By integrating exception handling into your program design, you can consistently
describe how the program will behave when circumstances are not ideal and allow peo-
ple who use your classes to know what to expect in those cases.

Exception Classes

At this point, it’s likely that you’ve run into at least one Java exception—perhaps you
mistyped a method name or made a mistake in your code that caused a problem. Maybe
you tried to run a Java application without providing the command-line arguments that
were needed and saw an ArrayIndexOutOfBoundsException message.

Chances are, when an exception occurred, the application quit and spewed a bunch of
mysterious errors to the screen. Those errors are exceptions. When your program stops
without successfully finishing its work, an exception is thrown. Exceptions can be
thrown by the virtual machine, thrown by classes you use, or intentionally thrown in your
own programs.

The term “thrown” is fitting because exceptions also can be “caught.” Catching an excep-
tion involves dealing with the exceptional circumstance so that your program doesn’t
crash—you learn more about this later today.

The heart of the Java exception system is the exception itself. Exceptions in Java are
instances of classes that inherit from the Throwable class. An instance of a Throwable
class is created when an exception is thrown.

Throwable has two subclasses: Error and Exception. Instances of Error are internal
errors involving the Java virtual machine (the runtime environment). These errors are
rare and usually fatal to the program; there’s not much that you can do about them (either
to catch them or to throw them yourself).

The class Exception is more relevant to your own programming. Subclasses of
Exception fall into two general groups:

® Runtime exceptions (subclasses of the class RuntimeException) such as
ArrayIndexOutofBoundsException, SecurityException, and
NullPointerException

m Other exceptions such as EOFException and MalformedURLException

Runtime exceptions usually occur because of code that isn’t very robust. An
ArrayIndexOutofBounds exception, for example, should never be thrown if you're

Managing Exceptions 187

properly checking to make sure that your code stays within the bounds of an array.
NullPointerException exceptions happen when you try to use a variable that doesn’t
refer to an object yet.

CAUTION If your program is causing runtime exceptions under any circum-
stances, you should fix those problems before you even begin
dealing with exception management.

The final group of exceptions indicates something strange and out of control is happen-
ing. An EOFException, for example, happens when you’re reading from a file and the file
ends before you expected it to end. A MalformedURLException happens when a URL
isn’t in the right format (perhaps a user typed it incorrectly). This group includes excep-
tions that you create to signal unusual cases that might occur in your own programs.

Exceptions are arranged in a hierarchy just as other classes are, where the Exception

superclasses are more general errors and the subclasses are more specific errors. This

organization becomes more important to you as you deal with exceptions in your own
code.

The primary exception classes are part of the java.lang package (including Throwable,
Exception, and RuntimeException). Many of the other packages define other excep-
tions, and those exceptions are used throughout the class library. For example, the
java.io package defines a general exception class called I0Exception, which is sub-
classed not only in the java.io package for input and output exceptions (EOFException
and FileNotFoundException) but also in the java.net classes for networking excep-
tions such as MalformedURLException.

Managing Exceptions

Now that you know what an exception is, how do you deal with one in your own code?
In many cases, the Java compiler enforces exception management when you try to use
methods that throw exceptions; you need to deal with those exceptions in your own code,
or it simply won’t compile. In this section, you learn about consistency checking and
how to use three new keywords—try, catch, and finally—to deal with exceptions that
might occur.

188

DAY 7: Exceptions, Assertions, and Threads

Exception Consistency Checking

The more you work with the Java class libraries, the more likely you’ll run into a com-
piler error (an exception!) such as this one:
XMLParser.java:32: Exception java.lang.InterruptedException

must be caught or it must be declared in the throws clause
of this method.

In Java, a method can indicate the kinds of errors it might potentially throw. For exam-
ple, methods that read from files can throw IOException errors, so those methods are
declared with a special modifier that indicates potential errors. When you use those
methods in your own Java programs, you have to protect your code against those excep-
tions. This rule is enforced by the compiler itself, in the same way that it checks to make
sure that you’re using methods with the correct number of arguments and that all your
variable types match what you’re assigning to them.

Why is this check in place? It makes your programs less likely to crash with fatal errors
because you know up front the kind of exceptions that can be thrown by the methods a
program uses.

You no longer have to pore over the documentation or the code of an object you’re going
to use to ensure that you’ve dealt with all the potential problems—1Java does the check-
ing for you. On the other side, if you define your methods so that they indicate the
exceptions they can throw, Java can tell your objects’ users to handle those errors.

Protecting Code and Catching Exceptions

Assume that you’ve been happily coding and the compiler screeches to a halt with an
exception as a class is compiled. According to the message, you have to either catch the
error or declare that your method throws it.

First, we’ll deal with catching potential exceptions, which requires two things:

® You protect the code that contains the method that might throw an exception inside
a try block.

® You deal with an exception inside a catch block.

What try and catch effectively mean is: “Try this bit of code that might cause an excep-
tion. If it executes okay, go on with the program. If the code doesn’t execute, catch the
exception and deal with it.”

Managing Exceptions 189

You've seen try and catch before, when you first dealt with threads. On Day 6,
“Packages, Interfaces, and Other Class Features,” you used code when using a String
value to create an integer:
try {

float in = Float.parseFloat(input);
} catch (NumberFormatException nfe) {

System.out.println(input + " is not a valid number.");
I3

Here’s what’s happening in these statements: The Float.parseFloat() class method
could potentially throw an exception of the class NumberFormatException, which signi-
fies that the thread has been interrupted for some reason.

To handle this exception, the call to parseFloat () is placed inside a try block, and an
associated catch block has been set up. This catch block receives any
NumberFormatException objects thrown within the try block.

The part of the catch clause inside the parentheses is similar to a method definition’s
argument list. It contains the class of exception to be caught and a variable name. You
can use the variable to refer to that exception object inside the catch block.

One common use for this object is to call its getMessage () method. This method is pre-
sent in all exceptions, and it displays a detailed error message describing what happened.

Another useful method is printStackTrace (), which displays the sequence of method
calls that led to the statement that generated the exception.

The following example is a revised version of the try-catch block used on Day 6:

try {
float in = Float.parseFloat(input);

} catch (NumberFormatException nfe) {
System.out.println("Oops: " + nfe.getMessage());

}

The examples you have seen thus far catch a specific type of exception. Because excep-
tion classes are organized into a hierarchy and you can use a subclass anywhere that

a superclass is expected, you can catch groups of exceptions within the same catch
statement.

As an example, when you start writing programs that handle input and output from files,
Internet servers, and other places, you deal with several different types of I0Exception

190

DAY 7: Exceptions, Assertions, and Threads

exceptions (the IO stands for input/output). These exceptions include two of its sub-
classes, EOFException and FileNotFoundException. By catching IOException, you also
catch instances of any IOException subclass.

To catch several different exceptions that aren’t related by inheritance, you can use multi-
ple catch blocks for a single try, like this:

try {

/] code that might generate exceptions

} catch (IOException ioe) {
System.out.println("Input/output error");
System.out.println(ioe.getMessage());

} catch (ClassNotFoundException cnfe) {
System.out.println("Class not found");
System.out.println(cnfe.getMessage());

} catch (InterruptedException ie) {
System.out.println("Program interrupted");
System.out.println(ie.getMessage());

In a multiple catch block, the first catch block that matches is executed and the rest is
ignored.

CAUTION You can run into unexpected problems by using an Exception
superclass in a catch block followed by one or more of its sub-
classes in their own catch blocks. For example, the input/output
exception 10Exception is the superclass of the end-of-file excep-
tion EOFException. If you put an 10Exception block above an
EOFException block, the subclass never catches any exceptions.

The finally Clause

Suppose that there is some action in your code that you absolutely must do, no matter
what happens, regardless of whether an exception is thrown. This is usually to free some
external resource after acquiring it, to close a file after opening it, or something similar.

Although you could put that action both inside a catch block and outside it, that would
be duplicating the same code in two different places, which is a situation you should
avoid as much as possible in your programming.

Instead, put one copy of that code inside a special optional block of the try-catch state-
ment that uses the keyword finally:

Managing Exceptions

try {
readTextFile();

} catch (IOException ioe) {
// deal with IO errors

} finally {
closeTextFile();

}

Today’s first project shows how a finally statement can be used inside a method.

The HexReader application in Listing 7.1 reads sequences of two-digit hexadecimal num-
bers and displays their decimal values. There are three sequences to read:

H 000A110D1D260219

B 78700F1318141E0QC

B 6A197D45BOFFFFFF

As you learned on Day 2, “The ABCs of Programming,” hexadecimal is a base-16 num-
bering system where the single-digit numbers range from 00 (decimal 0) to 0F (decimal
15), and double-digit numbers range from 10 (decimal 16) to FF (decimal 255).

LISTING 7.1 The Full Text of HexReader. java

1: class HexReader {

2 String[] input = { "000A110D1D260219 ",

3 "78700F1318141EQC ",

4: "6A197D45BOFFFFFF " };

5:

6: public static void main(String[] arguments) {

7 HexReader hex = new HexReader();

8: for (int i = 0; i < hex.input.length; i++)
9: hex.readLine(hex.input[i]);

10: }

11:

12: void readLine(String code) {

13: try {

14: for (int j = 0; j + 1 < code.length(); j += 2) {
15: String sub = code.substring(j, j+2);
16: int num = Integer.parselnt(sub, 16);
17: if (num == 255)

18: return;

19: System.out.print(num + " ");
20: }
21: } finally {
22: System.out.println("**");

23: }

191

192 DAY 7: Exceptions, Assertions, and Threads

LISTING 7.1 Continued

24: return;
25: }
26: }

The output of this program is as follows:

0 10 17 13 29 38 2 25 **
120 112 15 19 24 20 30 12 **
106 25 125 69 176 **

Line 15 of the program reads two characters from code, the string that was sent to the
readLine () method, by calling the string’s substring(int, int) method.

NOTE In the substring() method of the string class, you select a sub-
string in a somewhat counterintuitive way. The first argument spec-
ifies the index of the first character to include in the substring, but
the second argument does not specify the last character. Instead,
the second argument indicates the index of the last character plus
1. A call to substring(2, 5) for a string would return the charac-
ters from index position 2 to index position 4.

The two-character substring contains a hexadecimal number stored as a String. The
Integer class method parseInt can be used with a second argument to convert this
number into an integer. Use 16 as the argument for a hexadecimal (base 16) conversion,
8 for an octal (base 8) conversion, and so on.

In the HexReader application, the hexadecimal FF is used to fill out the end of a sequence
and should not be displayed as a decimal value. This is accomplished by using a try-
finally block in lines 13-23 of Listing 7.1.

The try-finally block causes an unusual thing to happen when the return statement is
encountered at line 18. You would expect return to cause the readLine () method to be
exited immediately.

Because it is within a try-finally block, the statement within the finally block is exe-
cuted no matter how the try block is exited. The text "**" is displayed at the end of a
line of decimal values.

Declaring Methods That Might Throw Exceptions 193

NOTE The finally statement is useful outside exceptions—it can exe-
cute cleanup code after a return, break, or continue statement
inside loops. For the latter cases, you use a try statement with a
finally but without a catch statement.

Declaring Methods That Might Throw
Exceptions

In previous examples, you learned how to deal with methods that might throw exceptions
by protecting code and catching any exceptions that occur. The Java compiler checks to
make sure that you’ve dealt with a method’s exceptions—but how did it know which
exceptions to tell you about in the first place?

The answer is that the original method indicated the exceptions that it might possibly
throw as part of its definition. You can use this mechanism in your own methods—in
fact, it’s good style to do so to make sure that users of your classes are alerted to the
errors your methods might experience.

To indicate that a method will possibly throw an exception, you use a special clause in
the method definition called throws.

The throws Clause

If some code in your method’s body might throw an exception, add the throws keyword
after the closing parenthesis of the method followed by the name or names of the excep-
tion that your method throws, as in this example:

public boolean getFormula(int x, int y) throws NumberFormatException {
// body of method

}

If your method might throw multiple kinds of exceptions, you can declare them all in the
throws clause separated by commas:
public boolean storeFormula(int x, int vy)

throws NumberFormatException, EOFException {
// body of method 7

194

DAY 7: Exceptions, Assertions, and Threads

Note that as with catch, you can use a superclass of a group of exception to indicate that
your method might throw any subclass of that exception. For instance:
public void loadFormula() throws IOException {

/...
}

Keep in mind that adding a throws clause to your method definition simply means that
the method might throw an exception if something goes wrong, not that it actually will.
The throws clause provides extra information to your method definition about potential
exceptions and allows Java to make sure that your method is being used correctly by
other people.

Think of a method’s overall description as a contract between the designer of that
method and the caller of the method. (You can be on either side of that contract, of
course.)

Usually the description indicates the types of a method’s arguments, what it returns, and
the particulars of what it normally does. By using throws, you are adding information
about the abnormal things the method can do. This new part of the contract helps sepa-
rate and make explicit all the places where exceptional conditions should be handled in
your program, and that makes large-scale design easier.

Which Exceptions Should You Throw?

After you decide to declare that your method might throw an exception, you must decide
which exceptions it might throw and actually throw them or call a method that will throw
them (you learn about throwing your own exceptions in the next section).

In many instances, this is apparent from the operation of the method itself. Perhaps
you’re already creating and throwing your own exceptions, in which case, you’ll know
exactly which exceptions to throw.

You don’t really have to list all the possible exceptions that your method could throw;
some exceptions are handled by the runtime itself and are so common that you don’t
have to deal with them.

In particular, exceptions of either the Error or RuntimeException class or any of their
subclasses do not have to be listed in your throws clause.

They get special treatment because they can occur anywhere within a Java program and
are usually conditions that you, as the programmer, did not directly cause.

Declaring Methods That Might Throw Exceptions 195

One good example is OutOfMemoryError, which can happen anywhere, at any time, and
for any number of reasons. These two types of exceptions are called unchecked excep-
tions.

Unchecked exceptions are subclasses of the RuntimeException and Error classes and
are usually thrown by the Java runtime itself. You do not have to declare that your
method throws them, and you usually do not need to deal with them in any other way.

NOTE You can, of course, choose to list these errors and runtime excep-
tions in your throws clause if you want, but your method’s callers
will not be forced to handle them; only nonruntime exceptions
must be handled.

All other exceptions are called checked exceptions and are potential candidates for a
throws clause in your method.

Passing On Exceptions

There are times when it doesn’t make sense for your method to deal with an exception. It
might be better for the method that calls your method to deal with that exception. There’s
nothing wrong with this; it’s a fairly common occurrence that you pass an exception back
to the method that calls your method.

For example, consider the hypothetical example of WebRetriever, a class that loads a
web page using its web address and stores it in a file. As you learn on Day 17,
“Communicating Across the Internet,” you can’t work with web addresses without deal-
ing with MalformedURLException, the exception thrown when an address isn’t in the
right format.

To use WebRetriever, another class calls its constructor method with the address as an
argument. If the address specified by the other class isn’t in the right format, a
MalformedURLException is thrown. Instead of dealing with this, the constructor of the
WebRetriever class could have the following definition:

public WebRetriever() throws MalformedURLException {

/...
}

This would force any class that works with WebRetriever objects to deal with
MalformedURLException errors (or pass the buck with their own throws clause, of
course).

196

DAY 7: Exceptions, Assertions, and Threads

One thing is true at all times: It’s better to pass on exceptions to calling methods than to
catch them and do nothing in response.

In addition to declaring methods that throw exceptions, there’s one other instance in
which your method definition may include a throws clause: Within that method, you
want to call a method that throws an exception, but you don’t want to catch or deal with
that exception.

Rather than using the try and catch clauses in your method’s body, you can declare
your method with a throws clause so that it, too, might possibly throw the appropriate
exception. It’s then the responsibility of the method that calls your method to deal with
that exception. This is the other case that tells the Java compiler that you have done
something with a given exception.

Using this technique, you could create a method that deals with number format excep-
tions without a try-catch block:

public void readFloat(String input) throws NumberFormatException {
float in = Float.parseFloat(input);

}

After you declare your method to throw an exception, you can use other methods that
also throw those exceptions inside the body of this method, without needing to protect
the code or catch the exception.

NOTE You can, of course, deal with other exceptions using try and catch
in the body of your method in addition to passing on the excep-
tions you listed in the throws clause. You also can both deal with
the exception in some way and then rethrow it so that your
method’s calling method has to deal with it anyhow. You learn how
to throw methods in the next section.

throws and Inheritance

If your method definition overrides a method in a superclass that includes a throws
clause, there are special rules for how your overridden method deals with throws. Unlike
other parts of the method signature that must mimic those of the method it is overriding,
your new method does not require the same set of exceptions listed in the throws clause.

Because there’s a possibility that your new method might deal better with exceptions
instead of just throwing them, your method can potentially throw fewer types of

Creating and Throwing Your Own Exceptions 197

exceptions. It could even throw no exceptions at all. That means that you can have the
following two class definitions, and things will work just fine:
public class RadioPlayer {

public void startPlaying() throws SoundException {
// body of method

}

public class StereoPlayer extends RadioPlayer {
public void startPlaying() {
// body of method
}

The converse of this rule is not true: A subclass method cannot throw more exceptions
(either exceptions of different types or more general exception classes) than its super-
class method.

Creating and Throwing Your Own
Exceptions

There are two sides to every exception: the side that throws the exception and the side
that catches it. An exception can be tossed around a number of times to a number of
methods before it’s caught, but eventually it will be caught and dealt with.

Who does the actual throwing? Where do exceptions come from? Many exceptions are
thrown by the Java runtime or by methods inside the Java classes themselves. You also
can throw any of the standard exceptions that the Java class libraries define, or you can
create and throw your own exceptions.

Throwing Exceptions

Declaring that your method throws an exception is useful only to your method’s users
and to the Java compiler, which checks to make sure that all your exceptions are being
handled. The declaration itself doesn’t do anything to actually throw that exception
should it occur; you must do that yourself as needed in the body of the method.

You need to create a new instance of an exception class to throw an exception. After you
have that instance, use the throw statement to throw it.

198

DAY 7: Exceptions, Assertions, and Threads

Here’s an example using a hypothetical NotInServiceException class that is a subclass
of the Exception class:

NotInServiceException nise = new NotInServiceException();
throw nise;

You can throw only objects that implement the Throwable interface.

Depending on the exception class you’re using, the exception also may have arguments
to its constructor that you can use. The most common of these is a string argument,
which enables you to describe the problem in greater detail (which can be useful for
debugging purposes). Here’s an example:

NotInServiceException nise = new

NotInServiceException("Exception: Database Not in Service");
throw nise;

After an exception is thrown, the method exits immediately without executing any other
code, other than the code inside a finally block if one exists. The method won’t return
a value either. If the calling method does not have a try or catch surrounding the call to
your method, the program might exit based on the exception you threw.

Creating Your Own Exceptions

Although there are a fair number of exceptions in the Java class library that you can use
in your own methods, you might need to create your own exceptions to handle the differ-
ent kinds of errors that your programs run into. Creating new exceptions is easy.

Your new exception should inherit from some other exception in the Java hierarchy. All
user-created exceptions should be part of the Exception hierarchy rather than the Error
hierarchy, which is reserved for errors involving the Java virtual machine. Look for an
exception that’s close to the one you’re creating; for example, an exception for a bad file
format would logically be an I0Exception. If you can’t find a closely related exception
for your new exception, consider inheriting from Exception, which forms the “top” of
the exception hierarchy for checked exceptions (unchecked exceptions should inherit
from RuntimeException).

Exception classes typically have two constructors: The first takes no arguments, and the
second takes a single string as an argument.

Exception classes are like other classes. You can put them in their own source files and
compile them just as you would other classes:

public class SunSpotException extends Exception {
public SunSpotException() {}

Creating and Throwing Your Own Exceptions 199

public SunSpotException(String msg) {
super(msg) ;
}

Combining throws, try, and throw

What if you want to combine all the approaches shown so far? You want to handle
incoming exceptions yourself in your method, but also you want the option to pass the
exception on to your method’s caller. Simply using try and catch doesn’t pass on the
exception, and adding a throws clause doesn’t give you a chance to deal with the excep-
tion.

If you want to both manage the exception and pass it on to the caller, use all three mech-
anisms: the throws clause, the try statement, and a throw statement to explicitly rethrow
the exception.

Here’s a method that uses this technique:

public void readMessage() throws IOException {
MessageReader mr = new MessageReader();

try {
mr.loadHeader () ;
} catch (IOException e) {
// do something to handle the
/] 10 exception and then rethrow
/] the exception ...
throw e;

This works because exception handlers can be nested. You handle the exception by doing
something responsible with it but decide that it is important enough to give the method’s
caller a chance to handle it as well.

Exceptions can float all the way up the chain of method callers this way (usually not
being handled by most of them) until, at last, the system itself handles any uncaught
exceptions by aborting your program and printing an error message.

If it’s possible for you to catch an exception and do something intelligent with it, you 7
should.

200

DAY 7: Exceptions, Assertions, and Threads

When and When Not to Use Exceptions

Because throwing, catching, and declaring exceptions are related concepts and can be
confusing, here’s a quick summary of when to do what.

When to Use Exceptions

You can do one of three things if your method calls another method that has a throws
clause:

m Deal with the exception by using try and catch statements.

m Pass the exception up the calling chain by adding your own throws clause to your
method definition.

m Perform both of the preceding methods by catching the exception using catch and
then explicitly rethrowing it using throw.

In cases where a method throws more than one exception, you can handle each of those
exceptions differently. For example, you might catch some of those exceptions while
allowing others to pass up the calling chain.

If your method throws its own exceptions, you should declare that it throws those meth-
ods using the throws statement. If your method overrides a superclass method that has a
throws statement, you can throw the same types of exceptions or subclasses of those
exceptions; you cannot throw any different types of exceptions.

Finally, if your method has been declared with a throws clause, don’t forget to actually
throw the exception in the body of your method using the throw statement.

When Not to Use Exceptions

Although they might seem appropriate at the time, there are several cases in which you
should not use exceptions.

First, you should not use exceptions for circumstances you expect and could avoid easily.
For example, although you can rely on an ArrayIndexOutofBounds exception to indicate
when you’ve gone past the end of an array, it’s easy to use the array’s length variable to
prevent you from going beyond the bounds.

In addition, if your users will enter data that must be an integer, testing to make sure that
the data is an integer is a much better idea than throwing an exception and dealing with it
somewhere else.

When and When Not to Use Exceptions 201

Exceptions take up a lot of processing time for your Java program. A simple test or
series of tests will run much faster than exception handling and make your program more
efficient. Exceptions should be used only for truly exceptional cases that are out of your
control.

It’s also easy to get carried away with exceptions and to try to make sure that all your
methods have been declared to throw all the possible exceptions that they can possibly
throw. This makes your code more complex; in addition, if other people will be using
your code, they’ll have to deal with handling all the exceptions that your methods might
throw.

You’re making more work for everyone involved when you get carried away with excep-
tions. Declaring a method to throw either few or many exceptions is a trade-off; the more
exceptions your method can throw, the more complex that method is to use. Declare only
the exceptions that have a reasonably fair chance of happening and that make sense for
the overall design of your classes.

Bad Style Using Exceptions

When you first start using exceptions, it might be appealing to work around the compiler
errors that result when you use a method that declares a throws statement. Although it is
legal to add an empty catch clause or to add a throws statement to your own method
(and there are appropriate reasons for doing so), intentionally dropping exceptions with-
out dealing with them subverts the checks that the Java compiler does for you.

The Java exception system was designed so that if an error can occur, you’re warned
about it. Ignoring those warnings and working around them makes it possible for fatal
errors to occur in your program—errors that you could have avoided with a few lines of
code. Even worse, adding throws clauses to your methods to avoid exceptions means
that the users of your methods (objects further up in the calling chain) will have to deal
with them. You’ve just made your methods more difficult to use.

Compiler errors regarding exceptions are there to remind you to reflect on these issues.
Take the time to deal with the exceptions that might affect your code. This extra care
richly rewards you as you reuse your classes in later projects and in larger and larger pro-
grams. Of course, the Java class library has been written with exactly this degree of care,
and that’s one of the reasons it’s robust enough to be used in constructing all your Java
projects.

202

DAY 7: Exceptions, Assertions, and Threads

Assertions

Exceptions are one way to improve the reliability of your Java programs. Another way is
to use assertions—expressions that represent a condition that a programmer believes to
be true at a specific place in a program. If an assertion isn’t true, an error results.

The assert keyword is followed by a conditional expression or Boolean value, as in this
example:

assert price > 0;

In this example, the assert statement claims that a variable named price has a value
greater than zero. Assertions are a way to assure yourself that a program is running cor-
rectly by putting it to the test, writing conditional expressions that identify correct behav-
ior.

The assert keyword must be followed by one of three things: an expression that is true
or false, a boolean variable, or a method that returns a boolean.

If the assertion that follows the assert keyword is not true, an AssertionError excep-
tion is thrown. To make the error message associated with an assertion more meaningful,
you can specify a string in an assert statement, as in the following example:

assert price > @ : "Price less than 0.";

In this example, if price is less than zero when the assert statement is executed, an
AssertionError exception is thrown with the error message “Price less than 0”.

You can catch these exceptions or leave them for the Java interpreter to deal with. Here’s
an example of how the JDK’s interpreter responds when an assert statement is false:

Exception in thread "main" java.lang.AssertionError
at AssertTest.main(AssertTest.java:14)

Here’s an example when an assert statement with a descriptive error message is false:

Exception in thread "main" java.lang.AssertionError: Price less than 0.
at AssertTest.main(AssertTest.java:14)

Although assertions are an official part of the Java language, they are not supported by
default by the tools included with the JDK, and the same may be true with other Java
development tools.

To enable assertions with the JDK, you must use command-line arguments when running
the interpreter.

Assertions

A class that contains assert statements can be compiled normally, as long as you’re
using a current version of the JDK.

The compiler includes support for assertions in the class file (or files) that it produces,
but the feature must be turned on.

There are several ways to turn on assertions in the JDK’s Java interpreter.

To enable assertions in all classes except those in the Java class library, use the -ea argu-
ment, as in this example:

java -ea PriceChecker

To enable assertions only in one class, follow -ea with a colon (“:”’) and the name of the
class, like this:

java -ea:PriceChecker PriceChecker

You also can enable assertions for a specific package by following -ea: with the name of
the package (or “...” for the default package).

TIP There's also an -esa flag that enables assertions in the Java class
library. There isn’t much reason for you to do this because you're
probably not testing the reliability of that code.

When a class that contains assertions is run without an -ea or -esa flag, all assert state-
ments will be ignored.

Because Java has added the assert keyword, you must not use it as the name of a vari-
able in your programs, even if they are not compiled with support for assertions enabled.

The next project, CalorieCounter, is a calculator application that makes use of an asser-
tion. Listing 7.2 contains the source.

LISTING 7.2 The full source of CalorieCounter.java

1: public class CalorieCounter {

2 float count;

3

4 public CalorieCounter(float calories, float fat, float fiber) {
5: if (fiber > 4) {

6: fiber = 4;

7 }

8 count = (calories / 50) + (fat / 12) - (fiber / 5);

9 assert count > @ : "Adjusted calories < 0";

203

204

DAY 7: Exceptions, Assertions, and Threads

LISTING 7.2 Continued

10: }

11:

12: public static void main(String[] arguments) {

13: if (arguments.length < 2) {

14: System.out.println("Usage: java CalorieCounter calories fat
fiber");

15: System.exit(-1);

16: }

17: try {

18: int calories = Integer.parselnt(arguments[0]);

19: int fat = Integer.parselnt(arguments[1]);

20: int fiber = Integer.parseInt(arguments[2]);

21: CalorieCounter diet = new CalorieCounter(calories, fat, fiber);
22: System.out.println("Adjusted calories: " + diet.count);

23: } catch (NumberFormatException nfe) {

24: System.out.println("All arguments must be numeric.");

25: System.exit(-1);

26: }

27: }

28: }

The CalorieCounter application calculates an adjusted calories total for a food item
using its calories, fat grams, and fiber grams as input. Programs like this are common in
weight management programs, enabling dieters to monitor their daily food intake.

The application takes three command-line arguments: calories, fat, and fiber, which are
received as strings and converted to integer values in lines 18-20.

The CalorieCounter constructor takes the three values and plugs them into a formula in
line 8 to produce an adjusted calorie count.

One of the assumptions of the constructor is that the adjusted count always will be a pos-
itive value. This is challenged with the following assert statement:

assert count > @ : "Adjusted calories < 0";

The compiled class should be run with the -ea flag to employ assertions, as in this
example:

java -ea CalorieCounter 150 3 0

Those values produce an adjusted calorie count of 3.25. To see the assertion proven false,
use 30 calories, O grams of fat, and 6 fiber as input.

Threads 205

Assertions are an unusual feature of the Java language—under most circumstances they
cause absolutely nothing to happen. They’re a means of expressing in a class the condi-
tions under which it is running correctly (and the things you assume to be true as it runs).
If you make liberal use of them in a class, it will either be more reliable, or you’ll learn
that some of your assumptions are incorrect, which is useful knowledge in its own right.

CAUTION Some Java programmers believe that because assertions can be
turned off at runtime, they’re an unreliable means of improving the
reliability of a class.

Threads

One thing to consider in Java programming is how system resources are being used.
Graphics, complex mathematical computations, and other intensive tasks can take up a
lot of processor time.

This is especially true of programs that have a graphical user interface, which is a style
of software that you’ll be learning about next week.

If you write a graphical Java program that is doing something that consumes a lot of the
computer’s time, you might find that the program’s graphical user interface responds
slowly—drop-down lists take a second or more to appear, button clicks are recognized
slowly, and so on.

To solve this problem, you can segregate the processor-hogging functions in a Java class
so that they run separately from the rest of the program.

This is possible through the use of a feature of the Java language called threads.

Threads are parts of a program set up to run on their own while the rest of the program
does something else. This also is called multitasking because the program can handle
more than one task simultaneously.

Threads are ideal for anything that takes up a lot of processing time and runs continu-
ously.

By putting the workload of the program into a thread, you are freeing up the rest of the
program to handle other things. You also make handling the program easier for the vir-
tual machine because all the intensive work is isolated into its own thread.

206

DAY 7: Exceptions, Assertions, and Threads

Writing a Threaded Program

Threads are implemented in Java with the Thread class in the java.lang package.

The simplest use of threads is to make a program pause in execution and stay idle during
that time. To do this, call the Thread class method sleep(long) with the number of mil-
liseconds to pause as the only argument.

This method throws an exception, InterruptedException, whenever the paused thread
has been interrupted for some reason. (One possible reason: The user closes the program
while it is sleeping.)

The following statements stop a program in its tracks for three seconds:

try {
Thread.sleep(3000);

catch (InterruptedException ie) {
// do nothing

}

The catch block does nothing, which is typical when you’re using sleep().
One way to use threads is to put all the time-consuming behavior into its own class.

A thread can be created in two ways: by subclassing the Thread class or implementing
the Runnable interface in another class. Both belong to the java.lang package, so no
import statement is necessary to refer to them.

Because the Thread class implements Runnable, both techniques result in objects that
start and stop threads in the same manner.

To implement the Runnable interface, add the keyword implements to the class declara-
tion followed by the name of the interface, as in the following example:

public class StockTicker implements Runnable {
public void run() {
/...
}

When a class implements an interface, it must include all methods of that interface. The
Runnable interface contains only one method, run().

The first step in creating a thread is to create a reference to an object of the Thread class:
Thread runner;

This statement creates a reference to a thread, but no Thread object has been assigned to
it yet. Threads are created by calling the constructor Thread(Object) with the threaded

Threads 207

object as an argument. You could create a threaded StockTicker object with the follow-
ing statement:

StockTicker tix = new StockTicker();
Thread tickerThread = new Thread(tix);

Two good places to create threads are the constructor for an application and the construc-
tor for a component (such as a panel).

A thread is begun by calling its start () method, as in the following statement:
tickerThread.start();

The following statements can be used in a thread class to start the thread:
Thread runner;
if (runner == null) {

runner = new Thread(this);

runner.start();

The this keyword used in the Thread () constructor refers to the object in which these
statements are contained. The runner variable has a value of null before any object is
assigned to it, so the if statement is used to make sure that the thread is not started more
than once.

To run a thread, its start () method is called, as in this statement from the preceding
example:

runner.start();

Calling a thread’s start () method causes another method to be called—namely, the
run() method that must be present in all threaded objects.

The run() method is the engine of a threaded class. In the introduction to threads, they
were described as a means of segregating processor-intensive work so that it ran sepa-
rately from the rest of a class. This kind of behavior would be contained within a
thread’s run() method and the methods that it calls.

A Threaded Application

Threaded programming requires a lot of interaction among different objects, so it should
become clearer when you see it in action.

Listing 7.3 contains a class that finds a specific prime number in a sequence, such as the
10th prime, 100th prime, or 1,000th prime. This can take some time, especially for num-
bers beyond 100,000, so the search for the right prime takes place in its own thread.

208 DAY 7: Exceptions, Assertions, and Threads

Enter the text of Listing 7.3 in your Java editor and save it as PrimeFinder. java.

LISTING 7.3 The Full Text of PrimeFinder.java

1: public class PrimeFinder implements Runnable {
2: public long target;

3 public long prime;

4: public boolean finished = false;

5: private Thread runner;

6 .

7 PrimeFinder(long inTarget) {

8: target = inTarget;

9: if (runner == null) {

10: runner = new Thread(this);
11: runner.start();

12: }

13: }

14:

15: public void run() {

16: long numPrimes = 0;

17: long candidate = 2;

18: while (numPrimes < target) {
19: if (isPrime(candidate)) {
20: numPrimes++;
21: prime = candidate;
22: }
23: candidate++;
24: }
25: finished = true;
26: }
27:

28: boolean isPrime(long checkNumber) {
29: double root = Math.sqrt(checkNumber);
30: for (int 1 = 2; 1 <= root; i++) {
31: if (checkNumber % i == 0)
32: return false;

33: }

34: return true;

35: }

36: }

Compile the PrimeFinder class when you’re finished. This class doesn’t have a main()
method, so you can’t run it as an application. You create a program that uses this class
next.

The PrimeFinder class implements the Runnable interface so it can be run as a thread.

Threads 209

There are three public instance variables:

B target—A long that indicates when the specified prime in the sequence has been
found. If you’re looking for the 5,000th prime, target equals 5000.

® prime—A long that holds the last prime number found by this class.

m finished—A Boolean that indicates when the target has been reached.

There is also a private instance variable called runner that holds the Thread object that
this class runs in. This object should be equal to null before the thread has been started.

The PrimeFinder constructor method in lines 7—13 sets the target instance variable and
starts the thread if it hasn’t already been started. When the thread’s start () method is
called, it in turn calls the run() method of the threaded class.

The run() method is in lines 15-26. This method does most of the work of the thread,
which is typical of threaded classes. You want to put the most computing-intensive tasks
in their own thread so that they don’t bog down the rest of the program.

This method uses two new variables: numPrimes, the number of primes that have been
found, and candidate, the number that might possibly be prime. The candidate variable
begins at the first possible prime number, which is 2.

The while loop in lines 18-24 continues until the right number of primes has been
found.

First, it checks whether the current candidate is prime by calling the isPrime (I1ong)
method, which returns true if the number is prime and false otherwise.

If the candidate is prime, numPrimes increases by one, and the prime instance variable
is set to this prime number.

The candidate variable is then incremented by one, and the loop continues.

After the right number of primes has been found, the while loop ends, and the finished
instance variable is set to true. This indicates that the PrimeFinder object has found the
right prime number and is finished searching.

The end of the run() method is reached in line 26, and the thread is no longer doing any
work.

The isPrime () method is contained in lines 28—35. This method determines whether a
number is prime by using the % operator, which returns the remainder of a division oper-
ation. If a number is evenly divisible by 2 or any higher number (leaving a remainder of
0), it is not a prime number.

210 DAY 7: Exceptions, Assertions, and Threads

Listing 7.4 contains an application that uses the PrimeFinder class. Enter the text of
Listing 7.4 and save the file as PrimeThreads. java.

LISTING 7.4 The Full Text of PrimeThreads. java

1: public class PrimeThreads {

2 public static void main(String[] arguments) {

3 PrimeThreads pt = new PrimeThreads(arguments);
4: }

5:

6 public PrimeThreads(String[] arguments) {

7 PrimeFinder[] finder = new PrimeFinder[arguments.length];
8: for (int i = @; i < arguments.length; i++) {
9: try {

10: long count = Long.parseLong(arguments[i])
11: finder[i] = new PrimeFinder(count);
12: System.out.println("Looking for prime " + count);
13: } catch (NumberFormatException nfe) {

14: System.out.println("Error: " + nfe.getMessage());
15: }

16: }

17: boolean complete = false;

18: while (!complete) {

19: complete = true;
20: for (int j = 0; j < finder.length; j++) {
21: if (finder[j] == null) continue;
22: if (!finder[j].finished) {
23: complete = false;
24: } else {
25: displayResult(finder[j]);
26: finder[j] = null;
27: }
28: }
29: try {
30: Thread.sleep(1000);
31: } catch (InterruptedException ie) {
32: // do nothing
33: }
34: }
35: }
36:
37: private void displayResult(PrimeFinder finder) {
38: System.out.println("Prime " + finder.target
39: + " is " + finder.prime);
40: }
41: }

Save and compile the file when you’re finished.

Threads 211

The PrimeThreads application can be used to find one or more prime numbers in
sequence. Specify the prime numbers that you’re looking for as command-line arguments
and include as many as you want.

If you’re using the JDK, here’s an example of how you can run the application:
java PrimeThreads 1 10 100 1000

This produces the following output:

Looking for prime 1
Looking for prime 10
Looking for prime 100
Looking for prime 1000
Prime 1 is 2

Prime 10 is 29

Prime 100 is 541

Prime 1000 is 7919

The for loop in lines 8—16 of the PrimeThreads application creates one PrimeFinder
object for each command-line argument specified when the program is run.

Because arguments are Strings and the PrimeFinder constructor requires long values,
the Long.parseLong(String) class method is used to handle the conversion. All the
number-parsing methods throw NumberFormatException exceptions, so they are
enclosed in try-catch blocks to deal with arguments that are not numeric.

When a PrimeFinder object is created, the object starts running in its own thread (as
specified in the PrimeFinder constructor).

The while loop in lines 18-34 checks to see whether any PrimeFinder thread has com-
pleted, which is indicated by its finished instance variable equaling true. When a
thread has completed, the displayResult () method is called in line 25 to display the
prime number that was found. The thread then is set to null, freeing the object for
garbage collection (and preventing its result from being displayed more than once).

The call to Thread.sleep(1000) in line 30 causes the while loop to pause for 1 second
during each pass through the loop. A slowdown in loops helps keep the Java interpreter
from executing statements at such a furious pace that it becomes bogged down.

Stopping a Thread

Stopping a thread is a little more complicated than starting one. The Thread class
includes a stop () method that can be called to stop a thread, but it creates instabilities in
Java’s runtime environment and can introduce hard-to-detect errors into a program. For
this reason, the method has been deprecated, indicating that it should not be used in favor
of another technique.

212

DAY 7: Exceptions, Assertions, and Threads

A better way to stop a thread is to place a loop in the thread’s run() method that ends
when a variable changes in value, as in the following example:
public void run() {
while (okToRun == true) {
/...
}

The okToRun variable could be an instance variable of the thread’s class. If it is changed
to false, the loop inside the run() method ends.

Another option you can use to stop a thread is to only loop in the run() method while
the currently running thread has a variable that references it.

In previous examples, a Thread object called runner has been used to hold the current
thread.

A class method, Thread.currentThread(), returns a reference to the current thread (in
other words, the thread in which the object is running).

The following run() method loops as long as runner and currentThread() refer to the
same object:
public void run() {
Thread thisThread = Thread.currentThread();
while (runner == thisThread) {
/...
}

If you use a loop like this, you can stop the thread anywhere in the class with the follow-
ing statement:

runner = null;

Summary

Exceptions, assertions, and threads aid your program’s design and robustness.

Exceptions enable you to manage potential errors. By using try, catch, and finally,
you can protect code that might result in exceptions by handling those exceptions as they
occur.

Handling exceptions is only half the equation; the other half is generating and throwing
exceptions. A throws clause tells a method’s users that the method might throw an
exception. It also can be used to pass on an exception from a method call in the body of
your method.

Q&A 213

You learned how to actually create and throw your own methods by defining new excep-
tion classes and by throwing instances of any exception classes using throw.

Assertions enable you to use conditional statements and Booleans to indicate that a pro-
gram is running correctly. When this isn’t the case, an assertion exception is thrown.

Threads enable you to run the most processor-intensive parts of a Java class separately
from the rest of the class. This is especially useful when the class is doing something
computing-intensive such as animation, complex mathematics, or looping through a large
amount of data quickly.

You also can use threads to do several things at once and to start and stop threads exter-
nally.

Threads implement the Runnable interface, which contains one method: run(). When
you start a thread by calling its start () method, the thread’s run() method is called
automatically.

Q&A

Q DI’m still not sure I understand the differences between exceptions, errors, and
runtime exceptions. Is there another way of looking at them?

A Errors are caused by dynamic linking or virtual machine problems and are thus too
low-level for most programs to care about—or be able to handle even if they did
care about them.

Runtime exceptions are generated by the normal execution of Java code, and
although they occasionally reflect a condition you will want to handle explicitly,
more often they reflect a coding mistake made by the programmer and thus simply
need to print an error to help flag that mistake.

Exceptions that are nonruntime exceptions (I0Exception exceptions, for example)
are conditions that, because of their nature, should be explicitly handled by any
robust and well-thought-out code. The Java class library has been written using
only a few of these, but those few are important to using the system safely and cor-
rectly. The compiler helps you handle these exceptions properly via its throws
clause checks and restrictions.

Q How do assertions compare to unit testing for making Java programs more
reliable?

A Unit testing, like assertions, are a technique for assuring the reliability of software
by adding tests. JUnit, an open source library available from the website http://
www.junit.org, is the most popular unit-testing framework for Java programmers.

214 DAY 7: Exceptions, Assertions, and Threads

With JUnit, you write a set of tests, called a suite, that create the Java objects
you’ve developed and call their methods. The values produced by these tests are
checked to see whether they’re what you expected. All tests must pass for your
software to pass.

Although unit testing’s only as good as the tests you create, the existence of a test
suite is extremely helpful when you make changes to your software. By running
the tests again after the changes, you can better assure yourself that it continues to
work correctly.

Most Java programmers prefer unit testing to assertions. Some even write tests
before they write any code.

Q Is there any way to get around the strict restrictions placed on methods by the
throws clause?

A Yes. Suppose that you have thought long and hard and have decided that you need
to circumvent this restriction. This is almost never the case because the right solu-
tion is to go back and redesign your methods to reflect the exceptions that you
need to throw. Imagine, however, that for some reason a system class has you in a
bind. Your first solution is to subclass RuntimeException to make up a new,
unchecked exception of your own. Now you can throw it to your heart’s content
because the throws clause that was annoying you does not need to include this new
exception. If you need a lot of such exceptions, an elegant approach is to mix in
some novel exception interfaces with your new Runtime classes. You're free to
choose whatever subset of these new interfaces you want to catch (none of the
normal Runtime exceptions need to be caught), whereas any leftover Runtime
exceptions are allowed to go through that otherwise annoying standard method in
the library.

Quiz

Review today’s material by taking this three-question quiz.

Questions
1. What keyword is used to jump out of a try block and into a finally block?
a. catch
b. return

c. while

Quiz 215

2. What class should be the superclass of any exceptions you create in Java?
a. Throwable
b. Error
c. Exception
3. If a class implements the Runnable interface, what methods must the class contain?
a. start(), stop(), and run()
b. actionPerformed()

Cc. run()

Answers
1. b.

2. c. Throwable and Error are of use primarily by Java. The kinds of errors you’ll
want to note in your programs belong in the Exception hierarchy.

3. c. The Runnable interface requires only the run() method.

Certification Practice

The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

The AverageValue application is supposed to take up to 10 floating-point numbers as
command-line arguments and display their average.

Given:

public class AverageValue {
public static void main(String[] arguments) {
float[] temps = new float[10];
float sum = 0;
int count = 0;

int 1i;
for (i = 0; 1 < arguments.length & 1 < 10; i++) {
try {
temps[i] = Float.parseFloat(arguments[i]);
count++; 7

} catch (NumberFormatException nfe) {
System.out.println("Invalid input: " + arguments[i]);
}

216 DAY 7: Exceptions, Assertions, and Threads

sum += temps[i];
I3

System.out.println("Average: " + (sum / 1i));

Which statement contains an error?

for (1 = @; 1 < arguments.length & i < 10; i++) {

a.
b. sum += temps[i];

o

System.out.println("Average: " + (sum / 1i));

d. None; the program is correct.

The answer is available on the book’s website at http://www.java2ldays.com. Visit the
Day 7 page and click the Certification Practice link.

Exercises

To extend your knowledge of the subjects covered today, try the following exercises:
1. Modify the PrimeFinder class so that it throws a new exception,
NegativeNumberException, if a negative number is sent to the constructor.

2. Modify the PrimeThreads application so that it can handle the new
NegativeNumberException error.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java2ldays.com.

WEEK 2:
The Java Class
Library

10
11

12
13
14

Data Structures
Working with Swing
Building a Swing Interface

Arranging Components on a User
Interface

Responding to User Input
Using Color, Fonts, and Graphics

Developing Swing Applications

DAY 8:
Data Structures

During the first week, you learned about the core elements of the Java
language: objects; classes; interfaces; and the keywords, statements,
expressions, and operators that they contain.

For the second week, the focus shifts from the classes you create to the

ones that have been created for you: the Java class library, a set of stan-
dard packages from Sun Microsystems with more than 1,000 classes you
can use in your own Java programs.

Today, you start with classes that represent data.

220 DAY 8: Data Structures

Moving Beyond Arrays

The Java class library provides a set of data structures in the java.util package that
gives you more flexibility in organizing and manipulating data.

A solid understanding of data structures and when to employ them will be useful
throughout your Java programming efforts.

Many Java programs that you create rely on some means of storing and manipulating
data within a class. Up to this point, you have used three structures for storing and
retrieving data: variables, String objects, and arrays.

These are just a few of the data classes available in Java. If you don’t understand the full
range of data structures, you’ll find yourself trying to use arrays or strings when other
options would be more efficient or easier to implement.

Outside primitive data types and strings, arrays are the simplest data structure supported
by Java. An array is a series of data elements of the same primitive type or class. It’s
treated as a single object but contains multiple elements that can be accessed indepen-
dently. Arrays are useful whenever you need to store and access related information.

The glaring limitation of arrays is that they can’t adjust in size to accommodate greater
or fewer elements. You can’t add new elements to an array that’s already full. Two
objects you learn about today, linked lists and vectors, do not have this limitation.

NOTE Unlike the data structures provided by the java.util package,
arrays are considered such a core component of Java that they
are implemented in the language itself. Therefore, you can use
arrays in Java without importing any packages.

Java Structures

The data structures provided by the java.util package perform a wide range of func-
tions. These data structures consist of the Iterator interface, the Map interface, and
classes such as the following:

B BitSet

B Vector

B Stack

B Hashtable

Java Structures 221

Each of these data structures provides a way to store and retrieve information in a well-

defined manner. The Iterator interface itself isn’t a data structure, but it defines a

means to retrieve successive elements from a data structure. For example, Iterator

defines a method called next () that gets the next element in a data structure that con-

tains multiple elements. 8

NOTE Iterator is an expanded and improved version of the Enumeration
interface from early versions of the language. Although
Enumeration is still supported, Iterator has simpler method
names and support for removing items.

The BitSet class implements a group of bits, or flags, that can be set and cleared indi-
vidually. This class is useful when you need to keep up with a set of Boolean values; you
simply assign a bit to each value and set or clear it as appropriate.

A flag is a Boolean value that represents one of a group of on/off type states in a
program.

The Vector class is similar to a traditional Java array, except that it can grow as neces-
sary to accommodate new elements and also shrink. Like an array, elements of a Vector
object can be accessed via an index value. The nice thing about using the Vector class is
that you don’t have to worry about setting it to a specific size upon creation; it shrinks
and grows automatically as needed.

The Stack class implements a last-in, first-out stack of elements. You can think of a
stack literally as a vertical stack of objects; when you add a new element, it’s stacked on
top of the others. When you pull an element off the stack, it comes off the top. That ele-
ment is removed from the stack completely, unlike a structure such as an array, where the
elements are always available.

The Hashtable class implements Dictionary, an abstract class that defines a data struc-
ture for mapping keys to values. This is useful when you want to access data through a
particular key rather than an integer index. Because the Dictionary class is abstract, it
provides only the framework for a key-mapped data structure rather than a specific
implementation.

A key is an identifier used to reference, or look up, a value in a data structure.

An implementation of a key-mapped data structure is provided by the Hashtable class,
which organizes data based on a user-defined key structure. For example, in a ZIP Code
list stored in a hash table, you could store and sort data using each code as a key. The

222

DAY 8: Data Structures

specific meaning of keys in a hash table depends on how the table is used and the data it
contains.

The next section looks at these data structures in more detail to show how they work.

Iterator

The Iterator interface provides a standard means of iterating through a list of elements
in a defined sequence, which is a common task for many data structures.

Even though you can’t use the interface outside a particular data structure, understanding
how the Iterator interface works helps you understand other Java data structures.

With that in mind, take a look at the methods defined by the Iterator interface:

public boolean hasNext() {
// body of method

}

public Object next() {
/] body of method

}

public void remove() {
// body of method
}

The hasNext () method determines whether the structure contains any more elements.
You can call this method to see whether you can continue iterating through a structure.

The next () method retrieves the next element in a structure. If there are no more ele-
ments, next () throws a NoSuchElementException exception. To avoid this, you can use
hasNext () in conjunction with next () to make sure that there is another element to
retrieve.

The following while loop uses these two methods to iterate through a data structure
called users that implements the Iterator interface:
while (users.hasNext()) {

Object ob = users.next();
System.out.println(ob);

This sample code displays the contents of each list item by using the hasNext () and
next () methods.

Java Structures

The next () method always returns an object of the class Object. You can cast this to
another class that the structure holds, as in this example for a data structure that holds
String objects:

while (users.hasNext()) {

String ob = (String) users.next();
System.out.println(ob);

}

NOTE Because Iterator is an interface, you'll never use it directly as a
data structure. Instead, you’ll use the methods defined by
Iterator for structures that implement the interface. This architec-
ture provides a consistent interface for many of the standard data
structures, which makes them easier to learn and use.

Bit Sets

The BitSet class is useful when you need to represent a large amount of binary data, bit
values that can be equal only to O or 1. These also are called on-or-off values (with 1 rep-
resenting on and O representing off) or Boolean values (with 1 representing true and 0
representing false).

With the BitSet class, you can use individual bits to store Boolean values without
requiring bitwise operations to extract bit values. You simply refer to each bit using an
index. Another nice feature is that it automatically grows to represent the number of
bits required by a program. Figure 8.1 shows the logical organization of a bit set data
structure.

FIGURE 8.1 Index 0 1 2 3
The organization of
a bit set. Value Boolean@ Booleant Boolean2 Boolean3

You can use a BitSet object to hold attributes that can easily be modeled by Boolean
values. Because the individual bits in a set are accessed via an index, you can define each
attribute as a constant index value, as in this class:

class ConnectionAttributes {
public static final int READABLE =
public static final int WRITABLE
public static final int STREAMABL
public static final int FLEXIBLE

0;
E
= 2,
3;

Inm

223

224

DAY 8: Data Structures

In this class, the attributes are assigned increasing values beginning with @. You can use
these values to get and set the appropriate bits in a set. First, you need to create a BitSet
object:

BitSet connex = new BitSet();

This constructor creates a set with no specified size. You also can create a set with a spe-
cific size:

BitSet connex = new BitSet(4);

This creates a set containing four Boolean bits. Regardless of the constructor used, all
bits in new sets are initially set to false. After you have a set, you can set and clear the
bits by using set (int) and clear(int) methods with the bit constants you defined:

connex.set(ChannelAttributes.WRITABLE);
connex.set(ChannelAttributes.STREAMABLE) ;
connex.set(ChannelAttributes.FLEXIBLE);

connex.clear(ChannelAttributes.WRITABLE);

In this code, the WRITABLE, STREAMABLE, and FLEXIBLE attributes are set and then the
WRITABLE bit is cleared. The class name is used for each attribute because the constants
are class variables in the ChannelAttributes class.

You can get the value of individual bits in a set by using the get () method:

boolean isWriteable = connex.get(ChannelAttributes.WRITABLE);

You can find out how many bits are being represented by a set with the size method:
int numBits = connex.size();

The BitSet class also provides other methods for performing comparisons and bitwise
operations on sets such as AND, OR, and XOR. All these methods take a BitSet object as
their only argument.

Today’s first project is HolidaySked, a Java class that uses a set to keep track of which
days in a year are holidays.

A set is employed because HolidaySked must be able to take any day of the year and
answer the same yes/no question: Are you a holiday?

Enter the text of Listing 8.1 into your editor and save the file as HolidaySked. java.

Java Structures 225

LISTING 8.1 The Full Text of HolidaySked. java

1: import java.util.*;

2:

3: public class HolidaySked {

4 BitSet sked; 8
5:

6 public HolidaySked() {

7 sked = new BitSet(365);

8: int[] holiday = { 1, 15, 50, 148, 185, 246,

9: 281, 316, 326, 359 };

10: for (int i = 0; i < holiday.length; i++) {

11: addHoliday(holiday[i])

12: }

13: }

14:

15: public void addHoliday(int dayToAdd) {

16: sked.set(dayToAdd);

17: }

18:

19: public boolean isHoliday(int dayToCheck) {
20: boolean result = sked.get(dayToCheck);
21: return result;
22: }
23:
24: public static void main(String[] arguments) {
25: HolidaySked cal = new HolidaySked();
26: if (arguments.length > 0) {
27: try {
28: int whichDay = Integer.parselnt(arguments[0]);
29: if (cal.isHoliday(whichDay)) {
30: System.out.println("Day number " + whichDay +
31: " is a holiday.");

32: } else {

33: System.out.println("Day number " + whichDay +
34: " is not a holiday.");

35:

36: } catch (NumberFormatException nfe) {

37: System.out.println("Error: " + nfe.getMessage());
38: }

39: }

40: }

41: }

The HolidaySked class contains only one instance variable: sked, a BitSet that holds
values for each day in a year.

The constructor of the class creates the sked bit set with 365 positions (lines 6-13). All
bit sets are filled with @ values when they are created.

226

DAY 8: Data Structures

Next, an integer array called holiday is created. This array holds the number of each
work holiday in the year 2007, beginning with 1 (New Year’s Day) and ending with 359
(Christmas).

The holiday array is used to add each holiday to the sked bit set. A for loop iterates
through the holiday array and calls the method addHoliday (int) with each one (lines
10-12).

The addHoliday (int) method is defined in lines 15—17. The argument represents the
day that should be added. The bit set’s set (int) method is called to set the bit at the
specified position to 1. For example, if set(359) was called, the bit at position 359
would be given the value 1.

The HolidaySked class also has the ability to determine whether a specified day is a hol-
iday. This is handled by the isHoliday (int) method (lines 19-22). The method calls the
bit set’s get (int) method, which returns true if the specified position has the value 1
and false otherwise.

This class can be run as an application because of the main () method (lines 24-40). The
application takes a single command-line argument: a number from 1 to 365 that repre-
sents one of the days of the year. The application displays whether that day is a holiday
according to the schedule of the HolidaySked class. Test the program with values such as
15 (Martin Luther King Day) or 103 (my 40th birthday). The application should respond
that day 15 is a holiday but day 103, sadly, is not.

Vectors

Perhaps the most popular of the data structures described today, the Vector class imple-
ments a vector, an expandable and contractible array of objects. Because the Vector
class is responsible for changing size as necessary, it has to decide when and how much
to grow or shrink as elements are added and removed. You can easily control this aspect
of vectors upon creation.

Before getting into that, take a look at how to create a basic vector:
Vector v = new Vector();

This constructor creates a default vector containing no elements. All vectors are empty
upon creation. One of the attributes that determines how a vector sizes itself is its initial
capacity, or the number of elements it allocates memory for by default.

The size of a vector is the number of elements currently stored in it.

The capacity of a vector is the amount of memory allocated to hold elements, and it is
always greater than or equal to the size.

Java Structures 227

The following code shows how to create a vector with a specified capacity:
Vector v = new Vector(25);

This vector allocates enough memory to support 25 elements. After 25 elements have
been added, however, the vector must decide how to expand to accept more elements. 8
You can specify the value by which a vector grows using another Vector constructor:

Vector v = new Vector(25, 5);

This vector has an initial size of 25 elements and expands in increments of 5 elements
when more than 25 elements are added to it. That means that the vector jumps to 30 ele-
ments in size, and then 35, and so on. A smaller growth value results in greater memory
management efficiency, but at the cost of more execution overhead, because more mem-
ory allocations are taking place. A larger growth value results in fewer memory alloca-
tions, although memory might be wasted if you don’t use all the extra space created.

You can’t just use square brackets (“[]”) to access the elements in a vector, as you can in
an array. You must use methods defined in the Vector class.

Use the add () method to add an element to a vector, as in the following example:

v.add("Pak");
v.add("Han");
v.add("Inkster");

This code shows how to add some strings to a vector. To retrieve the last string added to
the vector, you can use the lastElement () method:

String s = (String)v.lastElement();

Notice that you have to cast the return value of lastElement () because the Vector class
is designed to work with the Object class.

The get () method enables you to retrieve a vector element using an index, as shown in
the following code:

String s1 = (String)v.get(0);
String s2 = (String)v.get(2);

Because vectors are zero-based, the first call to get () retrieves the “Pak” string, and the
second call retrieves the “Han” string. Just as you can retrieve an element at a particular
index, you also can add and remove elements at an index by using the add() and
remove () methods:

v.add(1, "Park");

v.add(@, "Sorenstam");
v.remove(3);

228

DAY 8: Data Structures

The first call to add () inserts an element at index 1, between the “Pak” and “Han”
strings. The “Han” and “Inkster” strings are moved up an element in the vector to
accommodate the inserted “Park” string. The second call to add() inserts an element at
index 0, which is the beginning of the vector. All existing elements are moved up one
space in the vector to accommodate the inserted “Sorenstam” string. At this point, the
contents of the vector look like this:

m “Sorenstam”
m “Pak”

. 4‘Park77

m “Han”

[]

“Inkster”

The call to remove () removes the element at index 3, which is the “Han” string. The
resulting vector consists of the following strings:

m “Sorenstam”

m “Pak”

m “Park”

m “Inkster”

You can use the set () method to change a specific element:

v.set(1, "Kung");

This method replaces the “Pak” string with the “Kung” string, resulting in the following
vector:

“Sorenstam”

“Park”

[
m “Kung”
[
m “Inkster”

If you want to clear out the vector completely, you can remove all the elements with the
clear () method:

v.clear();

The Vector class also provides some methods for working with elements without using
indexes. These methods search through the vector for a particular element. The first of

Java Structures 229

these methods is the contains () method, which simply checks whether an element is in
the vector:

boolean isThere = v.contains("Webb");

Another method that works in this manner is the index0f () method, which finds the 8
index of an element based on the element itself:

int i = v.indexOf("Inkster");

The index0f () method returns the index of the element in question if it is in the vector,
or -1 if not. The removeElement () method works similarly, removing an element based
on the element itself rather than on an index:

v.removeElement ("Kung");

The vector class offers a few methods for determining and manipulating a vector’s size.
First, the size method determines the number of elements in the vector:

int size = v.size();
If you want to explicitly set the size of the vector, you can use the setSize () method:
v.setSize(10);

The setSize() method expands or truncates the vector to the size specified. If the vector
is expanded, null elements are inserted as the newly added elements. If the vector is
truncated, any elements at indexes beyond the specified size are discarded.

Recall that vectors have two different attributes relating to size: size and capacity. The
size is the number of elements in the vector, and the capacity is the amount of memory
allocated to hold all the elements. The capacity is always greater than or equal to the
size. You can force the capacity to exactly match the size by using the trimToSize()
method:

v.trimToSize();
You also can check to see what the capacity is by using the capacity() method:

int capacity = v.capacity();

Looping Through Data Structures

If you’re interested in working sequentially with all the elements in a vector, you can use
the iterator () method, which returns a list of the elements you can iterate through:

Iterator it = v.iterator();

230

DAY 8: Data Structures

As you learned earlier today, you can use an iterator to step through elements sequen-
tially. In this example, you can work with the it list using the methods defined by the
Iterator interface.

The following for loop uses an iterator and its methods to traverse an entire vector:

for (Iterator i = v.iterator(); i.hasNext();) {
String name = (String) i.next();
System.out.println(name);

Today’s next project demonstrates the care and feeding of vectors. The CodeKeeper class
in Listing 8.2 holds a set of text codes, some provided by the class and others provided
by users. Because the space needed to hold the codes isn’t known until the program is
run, a vector will be used to store the data instead of an array.

LISTING 8.2 The full text of CodeKeeper.java

1: import java.util.*;

2:

3: public class CodeKeeper {

4 Vector list;

5: String[] codes = { "alpha", "lambda", "gamma", "delta", "zeta" };
6:

7 public CodeKeeper(String[] userCodes) {

8: list = new Vector();

9: // load built-in codes

10: for (int 1 = 0; i < codes.length; i++) {

11: addCode(codes[i]);

12: }

13: // load user codes

14: for (int j = 0; j < userCodes.length; j++) {
15: addCode (userCodes[j]);

16: }

17: /] display all codes

18: for (Iterator ite = list.iterator(); ite.hasNext();) {
19: String output = (String) ite.next();
20: System.out.println(output);
21: }
22: }
23:
24: private void addCode(String code) {
25: if (!list.contains(code)) {
26: list.add(code);
27: }
28: }
29:

30: public static void main(String[] arguments) {

Java Structures 231

LISTING 8.2 Continued

31: CodeKeeper keeper = new CodeKeeper(arguments);
32: }
33: }

This class compiles successfully, but there’s an ominous warning that it uses “unchecked
or unsafe operations." This isn’t as severe as it sounds—the code works properly as
written and is not unsafe.

The warning serves as a not-so-subtle hint that there’s a better way to work with vectors
and other data structures. You learn about this technique later today.

The CodeKeeper class uses a Vector instance variable named 1ist to hold the text codes.
First, five built-in codes are read from a string array into the vector (lines 10-12).

Next, any codes provided by the user as command-line arguments are added (lines
14-16).

Codes are added by calling the addCode () method (lines 24-28), which only adds a new
text code if it isn’t already present, using the vector’s contains (Object) method to
make this determination.

After the codes have been added to the vector, its contents are displayed. Running the
class with the command-line arguments “gamma”, “beta”, and “delta” produces the fol-
lowing output:

alpha

lambda

gamma

delta

zeta
beta

A for loop can be employed to iterate through a data structure. The loop takes the form
for (variable : structure). The structure is a data structure that implements the
Iterator interface. The variable section declares an object that holds each element of
the structure as the loop progresses.

This new for loop uses an iterator and its methods to traverse an entire vector named
list:

for (Object name : list) {
System.out.println(name);

}

The new loop can be used with any data structure that works with Iterator.

232

DAY 8: Data Structures

Stacks

Stacks are a classic data structure used to model information accessed in a specific order.
The Stack class in Java is implemented as a last-in-first-out (LIFO) stack, which means
that the last item added to the stack is the first one to be removed. Figure 8.2 shows the
logical organization of a stack.

FIGURE 8.2 Position
izati from
'arh;;gsénlzatlon of top Top
0
Element3
1
Element2
2
Element1
3
Element0 Bottom

You might wonder why the numbers of the elements don’t match their positions from the
top of the stack. Keep in mind that elements are added to the top, so Element®, which is
on the bottom, was the first element added to the stack. Likewise, Element3, which is on
top, was the last element added. Also because Element3 is at the top of the stack, it will
be the first to be removed.

The Stack class defines only one constructor, which is a default constructor that creates
an empty stack. You use this constructor to create a stack like this:

Stack s = new Stack();

Stacks in Java are subclasses of Vector, so you can work with them as you would any
vector. They also contain methods specific to stack manipulation.

You can add new elements to a stack by using the push () method, which pushes an ele-
ment onto the top of the stack:

.push("One");
.push("Two");
.push("Three");
.push("Four");
.push("Five");
.push("Six");

nw nuo nuo no non

Java Structures 233

This code pushes six strings onto the stack, with the last string ("Six") ending up on
top. You remove elements off the stack by using the pop () method, which pops them off
the top:

String s1
String s2

(String)s.pop();
(String)s.pop(); 8

This code pops the last two strings off the stack, leaving the first four strings. This code
results in the s1 variable containing the "Six" string and the s2 variable containing the
"Five" string.

If you want to use the top element on the stack without actually popping it off the stack,
you can use the peek () method:

String s3 = (String)s.peek();

This call to peek() returns the "Four" string but leaves the string on the stack. You can
search for an element on the stack by using the search() method:

int i = s.search("Two");

The search () method returns the distance from the top of the stack of the element if it is
found, or -1 if not. In this case, the "Two" string is the third element from the top, so the
search () method returns 2 (zero-based).

NOTE As in all Java data structures that deal with indexes or lists, the
Stack class reports element positions in a zero-based fashion: The
top element in a stack has a location of O, the fourth element
down has a location of 3, and so on.

The last method defined in the Stack class is empty, which determines whether a stack is
empty:

boolean isEmpty = s.empty();

The Stack class provides the functionality for a common data structure in software
development.

Map

The Map interface defines a framework for implementing a key-mapped data structure, a
place to store objects each referenced by a key. The key serves the same purpose as an

234

DAY 8: Data Structures

element number in an array—it’s a unique value used to access the data stored at a posi-
tion in the data structure.

You can put the key-mapped approach to work by using the Hashtable class or one of
the other classes that implement the Map interface. You learn about the Hashtable class
in the next section.

The Map interface defines a means of storing and retrieving information based on a key.
This is similar in some ways to the Vector class, in which elements are accessed through
an index, which is a specific type of key. However, keys in the Map interface can be just
about anything. You can create your own classes to use as the keys for accessing and
manipulating data in a dictionary. Figure 8.3 shows how keys map to data in a dictionary.

FIGURE 8.3

The organization of Key@ > Element@

a key-mapped data

structure. Key1 > Elementi
Key2 > Element2
Key3 > Element3

The Map interface declares a variety of methods for working with the data stored in a dic-
tionary. Implementing classes have to implement all those methods to be truly useful.
The put and get methods are used to put objects in the dictionary and get them back.

Assuming that look is a class that implements the Map interface, the following code
shows how to use the put method to add elements:

Rectangle r1 = new Rectangle(0, 0, 5, 5);

look.put("small", ri);

Rectangle r2 = new Rectangle(0, 0, 15, 15);

look.put("medium", r2);

Rectangle r3 = new Rectangle(0, 0, 25, 25);

look.put("large", r3);

This code adds three Rectangle objects to the dictionary, using strings as the keys. To
get an element, use the get method and specify the appropriate key:

Rectangle r = (Rectangle)look.get("medium");
You also can remove an element with a key by using the remove () method:

look.remove("large");

Java Structures

You can find out how many elements are in the structure by using the size () method,
much as you did with the Vector class:

int size = look.size();
You also can check whether the structure is empty by using the isEmpty () method:

boolean isEmpty = look.isEmpty();

Hash Tables

The Hashtable class, which is derived from Dictionary, implements the Map interface
and provides a complete implementation of a key-mapped data structure. Hash tables
enable you to store data based on some type of key and have an efficiency defined by the
load factor of the table. The load factor is a floating-point number between 0.0 and 1.0
that determines how and when the hash table allocates space for more elements.

Like vectors, hash tables have a capacity, or an amount of allocated memory. Hash tables
allocate memory by comparing the current size of the table with the product of the
capacity and the load factor. If the size of the hash table exceeds this product, the table
increases its capacity by rehashing itself.

Load factors closer to 1.0 result in a more efficient use of memory at the expense of a
longer lookup time for each element. Similarly, load factors closer to 0.0 result in more
efficient lookups but tend to be more wasteful with memory. Determining the load factor
for your own hash tables depends on how you use each hash table and whether your pri-
ority is performance or memory efficiency.

You can create hash tables in any one of three ways. The first constructor creates a
default hash table:

Hashtable hash = new Hashtable();
The second constructor creates a hash table with the specified initial capacity:
Hashtable hash = new Hashtable(20);

Finally, the third constructor creates a hash table with the specified initial capacity and
load factor:

Hashtable hash = new Hashtable(20, 0.75F);

All the abstract methods defined in Map are implemented in the Hashtable class. In addi-
tion, the Hashtable class implements a few others that perform functions specific to sup-
porting hash tables. One of these is the clear () method, which clears a hash table of all
its keys and elements:

hash.clear();

235

236

DAY 8: Data Structures

The contains () method checks whether an object is stored in the hash table. This
method searches for an object value in the hash table instead of searching for a key. The
following code shows how to use the contains () method:

boolean isThere = hash.contains(new Rectangle(@, 0, 5, 5));

Similar to contains (), the containsKey () method searches a hash table but is based on
a key rather than a value:

boolean isThere = hash.containsKey("Small");

As mentioned earlier, a hash table rehashes itself when it determines that it must increase
its capacity. You can force a rehash yourself by calling the rehash () method:

hash.rehash();

The practical use of a hash table comes from its capability to represent data that are too
time-consuming to search or reference by value. The data structure comes in handy when
you’re working with complex data and it’s more efficient to access the data by using a
key rather than comparing the data objects themselves.

Furthermore, hash tables typically compute a key for elements, which is called a hash
code. For example, a string can have an integer hash code computed for it that uniquely
represents the string. When a bunch of strings are stored in a hash table, the table can
access the strings by using integer hash codes as opposed to using the contents of the
strings themselves. This results in much more efficient searching and retrieving capabili-
ties.

A hash code is a computed key that uniquely identifies each element in a hash table.

This technique of computing and using hash codes for object storage and reference is
exploited heavily throughout the Java class library. The parent of all classes, Object,
defines a hashCode () method overridden in most standard Java classes. Any class that
defines a hashCode () method can be efficiently stored and accessed in a hash table. A
class that wants to be hashed also must implement the equals() method, which defines a
way of telling whether two objects are equal. The equals() method usually just per-
forms a straight comparison of all the member variables defined in a class.

The next project you undertake today uses tables for a shopping application.

The ComicBooks application prices collectible comic books according to their base value
and their condition. The condition is described as one of the following: mint, near mint,
very fine, fine, good, or poor.

Java Structures 237

Each condition has a specific effect on a comic’s value:

“Mint” books are worth three times their base price.
“Near mint” books are worth two times their base price.
“Very fine” books are worth one and one-half times their base price. 8

“Fine” books are worth their base price.

“Good” books are worth one-half times their base price.

“Poor” books are worth one-quarter times their base price.

To associate text such as “mint” or “very fine” with a numeric value, they are put into a
hash table. The keys to the hash table are the condition descriptions, and the values are
floating-point numbers such as 3.0, 1.5, and 0.25.

Enter the text of Listing 8.3 in your Java editor and save the class as ComicBooks. java.

LISTING 8.3 The Full Text of ComicBooks.java

1: import java.util.?*;

2:

3: public class ComicBooks {

4:

5: public ComicBooks() {

6: }

7

8 public static void main(String[] arguments) {
9: // set up hash table

10: Hashtable quality = new Hashtable();

11: float pricel = 3.00F;

12: quality.put("mint", pricel);

13: float price2 = 2.00F;

14: quality.put("near mint", price2);

15: float price3 = 1.50F;

16: quality.put("very fine", price3);

17: float price4 = 1.00F;

18: quality.put("fine", price4);

19: float price5 = 0.50F;
20: quality.put("good", price5);
21: float price6 = 0.25F;
22: quality.put("poor", price6);
23: // set up collection
24: Comic[] comix = new Comic[3];
25: comix[@] = new Comic("Amazing Spider-Man", "1A", "very fine",
26: 9240.00F) ;
27: comix[@].setPrice((Float) quality.get(comix[@].condition));

28: comix[1] = new Comic("Incredible Hulk", "181", "near mint",

238 DAY 8: Data Structures

LISTING 8.3 Continued

29: 1325.00F) ;

30: comix[1].setPrice((Float) quality.get(comix[1].condition));
31: comix[2] = new Comic("Cerebus", "1A", "good", 45.00F);

32: comix[2].setPrice((Float) quality.get(comix[2].condition));
33: for (int 1 = 0; i < comix.length; i++) {

34: System.out.println("Title: " + comix[i].title);

35: System.out.println("Issue: " + comix[i].issueNumber);
36: System.out.println("Condition: " + comix[i].condition);
37: System.out.println("Price: $" + comix[i].price + "\n");
38: }

39: }

40: }

41:

42: class Comic {

43: String title;

44: String issueNumber;

45: String condition;

46: float basePrice;

47: float price;

48:

49: Comic(String inTitle, String inIssueNumber, String inCondition,
50: float inBasePrice) {

51:

52: title = inTitle;

53: issueNumber = inIssueNumber;

54: condition = inCondition;

55: basePrice = inBasePrice;

56: }

57:

58: void setPrice(float factor) {

59: price = basePrice * factor;

60: }

61: }

The ComicBooks application compiles with the same “unchecked or unsafe operations”
warning described earlier today. You learn how to address this in the next section.

When you run the ComicBooks application, it produces the following output:

Title: Amazing Spider-Man
Issue: 1A

Condition: very fine
Price: $13860.0

Title: Incredible Hulk
Issue: 181
Condition: near mint

Java Structures

Price: $2650.0

Title: Cerebus
Issue: 1A
Condition: good
Price: $22.5

The ComicBooks application is implemented as two classes: an application class called
ComicBooks and a helper class called Comic.

In the application, the hash table is created in lines 9-22.
First, the hash table is created in line 10.

Next, a float called price1 is created with the value 3.00. This value is added to the
hash table and associated with the key "mint". (Remember that hash tables, like other
data structures, can only hold objects—the float value is automatically converted to a
Float object through autoboxing.)

The process is repeated for each of the other comic book conditions from “near mint” to
66p00r.79

After the hash table is set up, an array of Comic objects called comix is created to hold
each comic book currently for sale.

The Comic constructor is called with four arguments: the book’s title, issue number, con-
dition, and base price. The first three are strings, and the last is a float.

After a Comic has been created, its setPrice(float) method is called to set the book’s
price based on its condition. Here’s an example, line 27:

comix[@].setPrice((Float)quality.get(comix[@].condition));

The hash table’s get (String) method is called with the condition of the book, a String
that is one of the keys in the table. An Object is returned that represents the value asso-
ciated with that key. (In line 27, because comix[@].condition is equal to “very fine,”
get () returns the floating-point value 3.00F.)

Because get () returns an Object, it must be cast as a Float. The Float argument is
unboxed as a float value automatically through unboxing.

This process is repeated for two more books.

In lines 33-38, information about each comic book in the comix array is displayed.

239

240

DAY 8: Data Structures

The Comic class is defined in lines 42-61. There are five instance variables—the String
object’s title, issueNumber, and condition, and the floating-point value’s basePrice
and price.

The constructor method of the class, located in lines 49-56, sets the value of four
instance variables to the arguments sent to the constructor.

The setPrice(Float) method in lines 58-60 sets the price of a comic book. The argu-
ment sent to the method is a float value. The price of a comic is calculated by multiply-
ing this float by the base price of the comic. Consequently, if a book is worth $1,000,
and its multiplier is 2.0, the book is priced at $2,000.

Hash tables are a powerful data structure for manipulating large amounts of data. The
fact that hash tables are so widely supported in the Java class library via the Object class
should give you a clue as to their importance in Java programming.

Generics

The data structures that you learned about today are arguably the most essential utility
classes in the Java class library.

Hash tables, vectors, stacks, and the other structures in the java.util package are useful
regardless of the kind of programs that you want to develop. Almost every software pro-
gram handles data in some manner.

These data structures are well suited for use in code that applies generically to a wide
range of different classes of objects. A method written to manipulate vectors could be
written to function equally well on strings, string buffers, character arrays, or other
objects that represent text. A method in an accounting program could take objects that
represent integers, floating-point numbers, and other math classes, using each to calcu-
late a balance.

This flexibility comes at a price: When a data structure works with any kind of object,
there hasn’t been a way for the Java compiler to warn you when the structure is being
misused.

For instance, the ComicBooks application uses a hash table named quality to associate
condition descriptions such as “mint” and “good” with price multipliers. Here’s the state-
ment for “near mint”:

quality.put("near mint", 1.50F);

Generics 241

By design, the quality table should only hold floating-point values (as Float objects).
However, the class compiles successfully regardless of the class of the value added to a
table. You might goof and unintentionally add a string to the table, as in this revised
statement:

quality.put("near mint", "1.50");

The class compiles successfully, but when it is run, it stops with a ClassCastException
error in the following statement:

comix[1].setPrice((Float) quality.get(comix[1].condition));

The reason for the error is that the statement tries to cast the table’s “near mint” value to
a Float, which fails because it receives the string “1.50” instead.

For obvious reasons, runtime errors are much more troublesome for programmers than
compiler errors. A compiler error stops you in your tracks and must be fixed before you
can continue. A runtime error might creep its way into the code, unbeknownst to you,
and cause problems for users of your software.

The class or classes expected in a data structure can be specified using a feature of the
language called generics.

The expected class information is added to statements where the structure is assigned a
variable or created with a constructor. The class or classes are placed within “<” and “>”
characters and follow the name of the class, as in this statement:

Vector<Integer> zipCodes = new Vector<Integer>;

This statement creates a Vector that will be used to hold Integer objects. Because the
vector is declared in this manner, the following statements cause a compiler error:
zipCodes.add("90210");

zipCodes.add("02134");
zipCodes.add("20500");

The compiler recognizes that String objects do not belong in this vector. The proper
way to add elements to the vector is to use integer values:
zipCodes.add(90210);

zipCodes.add(02134);
zipCodes.add(20500) ;

Data structures that use multiple classes, such as hash tables, take these class names sep-
arated by commas within the “<” and “>” characters.

242

DAY 8: Data Structures

The dilemma with the ComicBook application can be remedied by changing line 10 to the
following:

Hashtable<String, Float> quality = new Hashtable<String, Float>();

This sets up a table to use String objects for keys and Float objects for values. With
this statement in place, a string can no longer be added as the value for a condition such
as “near mint.” A compiler error flags a problem of this kind.

Generics also make it simpler to retrieve an object from a data structure—you don’t have
to use casting to convert them to the desired class. For example, the quality table no
longer requires a cast to produce Float objects in statements like this one:

comix[1].setPrice(quality.get(comix[1].condition));

From a stylistic standpoint, the addition of generics in variable declarations and construc-
tor methods is likely to appear intimidating. However, after you become accustomed to
working with them (and using autoboxing, unboxing, and the new for loops), data struc-
tures are significantly easier to work with and less error-prone.

The CodeKeeper2 class in Listing 8.4 is rewritten to use both generics and the new for
loop that can iterate through data structures like vectors.

LISTING 8.4 The full text of CodeKeeper2.java

1: import java.util.*;

2:

3: public class CodeKeeper2 {

4 Vector<String> list;

5: String[] codes = { "alpha", "lambda", "gamma", "delta", "zeta" };
6:

7 public CodeKeeper2(String[] userCodes) {

8: list = new Vector<String>();

9: // load built-in codes

10: for (int 1 = @; i < codes.length; i++) {
11: addCode (codes[i]);

12: }

13: // load user codes

14: for (int j = 0; j < userCodes.length; j++) {
15: addCode (userCodes[j]);

16: }

17: /] display all codes

18: for (String code : list) {

19: System.out.println(code);
20: }
21: }
22:

23: private void addCode(String code) {

Summary 243

LISTING 8.4 Continued

24: if (!list.contains(code)) {

25: list.add(code);

26: }

27: } 8
28:

29: public static void main(String[] arguments) {

30: CodeKeeper2 keeper = new CodeKeeper2(arguments);

31: }

32: }

The only modifications to the class are in line 4, where the new generics declaration for a
vector of strings is made, and lines 1819, the simpler for loop.

NOTE Generics can limit data structures to any kind of class, even ones
of your own design. For example, a checkbook application could
define a Check class for individual financial checks, holding each
in a Vector defined to hold only objects of that class.

Summary

Today, you learned about several data structures you can use in your Java programs:

m Bit sets—Large sets of Boolean on-or-off values
m Stacks—Structures in which the last item added is the first item removed

m Vectors—Arrays that can change in size dynamically and be shrunken or expanded
as needed

m Hash tables—Objects stored and retrieved using unique keys

These data structures are part of the java.util package, a collection of useful classes for
handling data, dates, strings, and other things. The addition of generics and new for
loops for iteration enhances their capabilities.

Learning about the ways you can organize data in Java has benefits in all aspects of soft-
ware development. Whether you’re learning the language to write servlets, console pro-
grams, consumer software with a graphical user interface, or something else entirely, you
will need to represent data in numerous ways.

244

DAY 8: Data Structures

Q&A

Q

A

The HolidaySked project from today could be implemented as an array of
Boolean values. Is one way preferable to the other?

That depends. One thing you’ll find as you work with data structures is that there
are often many different ways to implement something. Bit sets are somewhat
preferable to a Boolean array when the size of your program matters because a bit
set is smaller. An array of a primitive type such as Boolean is preferable when the
speed of your program matters because arrays are somewhat faster. In the example
of the Holiday class, it’s so small that the difference is negligible, but as you
develop your own robust, real-world applications, these kinds of decisions can
make a difference.

The Java compiler’s warning for data structures that don’t use generics is
pretty ominous—it doesn’t sound like a very good idea to release a class that
has “unchecked or unsafe operations.” Is there any reason to stick with old
code or not use generics at all with data structures?

The compiler’s new warning about safety is a bit overstated. Java programmers
have been using vectors, hash tables, and other structures for years in their classes,
creating software that runs reliably and safely. The lack of generics meant there
was more work necessary to ensure there weren’t runtime problems because of the
wrong classes placed in a structure.

It’s more accurate to state that data structures can be made more safe now through
the use of generics, rather than suggesting that previous versions of Java were
unsafe.

My personal rule of thumb: Use generics in new code and old code that’s being
reorganized or significantly rewritten, and leave old code that works correctly
alone.

Quiz

Review today’s material by taking this three-question quiz.

Questions

1.

Which of the following kinds of data cannot be stored in a hash table?
a. String
b. int

c. Both can be stored in a table.

Quiz 245

2. A vector is created, and three strings called Tinker, Evers, and Chance are added
to it. The method removeElement ("Evers") is called. Which of the following
Vector methods retrieve the string "Chance"?

a. get(1);
b. get(2);

c. get("Chance");
3. Which of these classes implements the Map interface?
a. Stack
b. Hashtable
Cc. BitSet

Answers

1. c. In past versions of Java, to store primitive types such as int in a table, objects
must be used to represent their values (such as Integer for integers). This isn’t
true in Java 6: Primitive types are converted automatically to the corresponding
object class through a process called autoboxing.

2. a. The index numbers of each item in a vector can change as items are added or
removed. Because “Chance” becomes the second item in the vector after “Evers” is
removed, it is retrieved by calling get(1).

3. b.

Certification Practice

The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Given:

public class Recursion {
public int dex = -1;

public Recursion() {
dex = getValue(17);
}

public int getValue(int dexValue) {
if (dexValue > 100)
return dexValue;
else

246

DAY 8: Data Structures

return getValue(dexValue * 2);

}

public static void main(String[] arguments) {
Recursion r = new Recursion();
System.out.println(r.dex);

What will be the output of this application?
a. -1
b. 17

34

136

2 o

The answer is available on the book’s website at http://www.java2ldays.com. Visit the
Day 8 page and click the Certification Practice link.

Exercises

To extend your knowledge of the subjects covered today, try the following exercises:

1. Add two more conditions to the ComicBooks application: “pristine mint” for books
that should sell at five times their base price and “coverless” for books that should
sell at one-tenth of their base price.

2. Create an application that uses a vector as a shopping cart that holds Fruit objects.
Each Fruit object should have a name, quantity, and price.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java2ldays.com.

DAY 9:
Working with Swing

The Java class library includes a set of packages called Swing that
enable Java programs to offer graphical user interfaces and collect user
input with the mouse, keyboard, and other input devices.

Today, you will use Swing to create applications that feature each of
these graphical user interface components:

®m Frames—Windows that can include a title bar; menu bar; and
Maximize, Minimize, and Close buttons

m Containers—Interface elements that can hold other components

m Buttons—Clickable regions with text or graphics indicating their
purpose

m Labels—Text or graphics that provide information

m Text fields and text areas—Windows that accept keyboard input
and allow text to be edited

m Drop-down lists—Groups of related items that can be selected
from drop-down menus or scrolling windows

m Check boxes and radio buttons—Small squares or circles that
can be selected or deselected

248

DAY 9: Working with Swing

Creating an Application

Swing enables you to create a Java program with an interface that uses the style of the
native operating system, such as Windows or Solaris, or two styles, Ocean and Metal,
that are unique to Java. Each of these styles is called a look and feel because it describes
both the appearance of the interface and how its components function when they are
used.

Swing components are part of the javax.swing package, a standard part of the Java class
library. To use a Swing class, you must make it available with an import statement or
use a catchall statement such as the following:

import javax.swing.*;

Two other packages used with graphical user interface programming are java.awt, the
Abstract Windowing Toolkit (AWT), and java.awt.event, event-handling classes that
handle user input.

When you use a Swing component, you work with objects of that component’s class.
You create the component by calling its constructor and then calling methods of the com-
ponent as needed for proper setup.

All Swing components are subclasses of the abstract class JComponent, which includes
methods to set the size of a component, change the background color, define the font
used for any displayed text, and set up ToolTips—explanatory text that appears when you
hover your mouse over the component for a few seconds.

CAUTION Swing classes inherit from many of the same superclasses as the
Abstract Windowing Toolkit, so it is possible to use Swing and AWT
components together in the same interface. However, in some
cases the two types of components will not be rendered correctly
in a container. To avoid these problems, it's best to always use
Swing components—there’s one for every AWT component.

Before components can be displayed in a user interface, they must be added to a con-
tainer, a component that can hold other components. Swing containers, which often can
be placed in other containers, are subclasses of java.awt.Container. This class includes
methods to add and remove components from a container, arrange components using an
object called a layout manager, and set up borders around the edges of a container.

Creating an Application

Creating an Interface

The first step in creating a Swing application is to create a class that represents the
graphical user interface. An object of this class serves as a container that holds all the
other components to be displayed.

In many projects, the main interface object is either a simple window (the JWindow class)
or a more specialized window called a frame (the JFrame class).

A window is a container that can be displayed on a user’s desktop. A simple window
does not have a title bar; Maximize, Minimize, or Close buttons; or other features you
see on most windows that open in a graphical operating system. In Swing, windows that
do have these features are called frames.

In a graphical environment such as Windows or Mac OS, users expect to have the ability
to move, resize, and close the windows of programs that they run. The main place a sim-
ple window, rather than a frame, turns up is when programs are loading—there is some-
times a title screen with the program’s name, logo, and other information.

One way to create a graphical Swing application is to make the interface a subclass of
JFrame, as in the following class declaration:

public class FeedReader extends JFrame {
/...
}

The constructor of the class should handle the following tasks:
m Call a superclass constructor to give the frame a title and handle other setup proce-
dures.
m Set the size of the frame’s window, either by specifying the width and height in
pixels or by letting Swing choose the right size.
m Decide what to do if a user closes the window.

m Display the frame.

The JFrame class has two constructors: JFrame () and JFrame (String). One sets the
frame’s title bar to the specified text, and the other leaves the title bar empty. You also
can set the title by calling the frame’s setTitle (String) method.

The size of a frame can be established by calling the setSize(int, int) method with the
width and height as arguments. The size of a frame is indicated in pixels, so if you called
setSize (650, 550), the frame would take up most of a screen at 800x600 resolution.

249

250

DAY 9: Working with Swing

NOTE You also can call the method setSize(Dimension) to set up a
frame’s size. Dimension is a class in the java.awt package that
represents the width and height of a user interface component.
Calling the pimension(int, int) constructor creates a Dimension
object representing the width and height specified as arguments.

Another way to set the size of a frame is to fill the frame with the components it will
contain and then call the frame’s pack () method. This resizes the frame based on the
size of the components inside it. If the size of the frame is bigger than it needs to be,
pack () shrinks it to the minimum size required to display the components. If the frame is
too small (or the size has not been set at all), pack () expands it to the required size.

Frames are invisible when they are created. You can make them visible by calling the
frame’s setVisible (boolean) method with the literal true as an argument.

If you want a frame to be displayed when it is created, call one of these methods in the
constructor. You also can leave the frame invisible, requiring any class that uses the
frame to make it visible by calling setVisible(true). (To hide a frame, call
setVisible(false).)

When a frame is displayed, the default behavior is for it to be positioned in the upper-left
corner of the computer’s desktop. You can specify a different location by calling the
setBounds (int, int, int, int) method. The first two arguments to this method are
the (x,y) position of the frame’s upper-left corner on the desktop. The last two arguments
set the width and height of the frame.

The following class represents a 300x100 frame with “Edit Payroll” in the title bar:

public class Payroll extends javax.swing.JFrame {
public Payroll() {
super("Edit Payroll");
setSize (300, 100);
setVisible(true);

Every frame has Maximize, Minimize, and Close buttons on the title bar at the user’s
control—the same controls present in the interface of other software running on your
system.

The normal behavior when a frame is closed is for the application to keep running. When
a frame serves as a program’s main graphical user interface, this leaves a user with no
way to stop the program.

Creating an Application

To change this, you must call a frame’s setDefaultCloseOperation() method with one
of four static variables of the JFrame class as an argument:
W EXIT_ON_CLOSE—EXxit the application when the frame is closed.

m DISPOSE_ON_CLOSE—Close the frame, remove the frame object from memory, and
keep running the application.

® DO_NOTHING_ON_CLOSE—Keep the frame open and continue running.

m HIDE_ON_CLOSE—Close the frame and continue running.

To prevent a user from closing a frame at all, add the following statement to the frame’s
constructor method:

setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

If you are creating a frame to serve as an application’s main user interface, the expected
behavior is probably EXIT_ON_CLOSE, which shuts down the application along with the
frame.

Developing a Framework

Listing 9.1 contains a simple application that displays a frame 300x100 pixels in size.
This class can serve as a framework—pun unavoidable—for any applications you create
that use a graphical user interface.

LISTING 9.1 The Full Text of SimpleFrame.java

import javax.swing.JFrame;

1:

2:

3: public class SimpleFrame extends JFrame {

4 public SimpleFrame() {

5: super("Frame Title");

6: setSize (300, 100);

7 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
8

: setVisible(true);
9: }
10:
11: public static void main(String[] arguments) {
12: SimpleFrame sf = new SimpleFrame();
13: }
14: }

When you compile and run the application, you should see the frame displayed in
Figure 9.1.

251

252

DAY 9: Working with Swing

FIGURE 9.1
Displaying a
frame.

The SimpleFrame application isn’t much to look at—the graphical user interface contains
no components, aside from the standard Minimize, Maximize, and Close (X) buttons on
the title bar shown in Figure 9.1. You will add components later today.

In the application, a SimpleFrame object is created in the main() method in lines 11-13.
If you had not displayed the frame when it was constructed, you could call
sf.setVisible(true) in the main() method to display the frame.

The work involved in creating the frame’s user interface takes place in the
SimpleFrame () constructor. Components could be created and added to the frame within
this constructor.

Creating a window using JWindow is similar to working with frames in Swing, but you
can’t provide a title or close a window.

Listing 9.2 contains an application that creates and opens a window, changing its size
from 0x0 to 400x400 before your eyes.

LISTING 9.2 The Full Text of SimpleWindow. java

import javax.swing.JWindow;

1:

2:

3: public class SimpleWindow extends JWindow {
4 public SimpleWindow() {

5: super();

6: setBounds (400, 300, 10, 10);

7 setVisible(true);

8

: }
9:
10: public static void main(String[] arguments) {
11: SimpleWindow sw = new SimpleWindow();
12: for (int 1 = 10; i < 400; i++) {
13: sw.setBounds (400 - (i/2), 300 - (i/2), i, 1i);
14: }
15: }
16: }

In the application, the call to setBounds (400, 300, 10, 10) in line 6 of Listing 9.2
sets the window to be 10x10 in size and displayed with its upper-left corner at the (x,y)
position 400, 300.

Creating an Application

The for loop in lines 12—-14 changes the size of the window and moves its upper-left cor-
ner with each iteration. The window grows from 10x10 in size to 400x400 as the loop
progresses. You can close the window and application by pressing Ctrl+C on your key-
board.

Displaying a Splash Page
The lack of adornment on a JWindow component makes it suitable for use as a splash
page, a graphic or text that displays as an application loads.

Java 6 adds a better, faster way to do this by defining a graphic that functions as an
application’s splash. The graphic loads even before the Java interpreter and disappears
when the application begins running.

The graphic can be specified with the -splash attribute when the class is run at a com-
mand line. Here’s how to do it with the SimpleWindow class:

java -splash:lighthouse.jpg SimpleWindow

NOTE If you need a graphic to test this capability, download lighthouse.
jpg, @ photograph of a Norwegian lighthouse taken by Steve
Cadman, from the Day 9 page of this book’s website at http://
www.java2ldays.com.

Another technique to define a splash graphic is covered on Day 14, “Developing Swing
Applications.”

Creating a Component

Creating a graphical user interface is a great way to get experience working with objects
in Java because each interface component is represented by its own class.

To use an interface component in Java, you create an object of that component’s class.
You already have worked with the container classes JFrame and JWindow.

One of the simplest components to employ is JButton, the class that represents clickable
buttons.

In most programs, buttons trigger an action—click Install to begin installing software,
click a smiley button to begin a new game of Minesweeper, click the Minimize button to
prevent your boss from seeing Minesweeper running, and so on.

A Swing button can feature a text label, a graphical icon, or a combination of both.

253

254 DAY 9: Working with Swing

Constructors you can use for buttons include the following:

m JButton(String)—A button labeled with the specified text
®m JButton(Icon)—A button that displays the specified graphical icon
W JButton(String, Icon)—A button with the specified text and graphical icon

The following statements create three buttons with text labels:

JButton play = new JButton("Play");
JButton stop = new JButton("Stop");
JButton rewind = new JButton("Rewind");

Graphical buttons are covered later today.

Adding Components to a Container

Before you can display a user interface component such as a button in a Java program,
you must add it to a container and display that container.

To add a component to a container, call the container’s add (Component) method with the
component as the argument (all user interface components in Swing inherit from
java.awt.Component).

The simplest Swing container is a panel (the JPanel class). The following example cre-
ates a button and adds it to a panel:

JButton quit = new JButton("Quit");
JPanel panel = new JPanel();
panel.add(quit);

Use the same technique to add components to frames and windows.

NOTE In previous versions of Java, components could not be added
directly to frames. Instead, they were placed in the container’s
content pane. Though this technique is no longer necessary,
you're likely to encounter it in code.

Complex containers are divided into panes, a kind of container
within a container, and components are added to the container’s
content pane.

You can use a panel to represent a frame’s content pane, adding
components to it with the panel’s add(Component) method. After the
panel has been filled, call the frame’s setContentPane(Container)
method with the panel as the argument. This makes it the frame’s
content pane, which also can be done with windows.

Creating an Application 255

The program in Listing 9.3 uses the application framework created earlier in this lesson.
A panel is created, three buttons are added to the panel, and then it is added to a frame.

LISTING 9.3 The Full Text of ButtonFrame. java

1: import javax.swing.*;

2:

3: public class ButtonFrame extends JFrame {

4: JButton load = new JButton("Load");

5: JButton save = new JButton("Save");

6: JButton unsubscribe = new JButton("Unsubscribe"); 9
7

8: public ButtonFrame() {

9: super("Button Frame");

10: setSize (140, 170);

11: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12: JPanel pane = new JPanel();

13: pane.add(load);

14: pane.add(save);

15: pane.add(unsubscribe);

16: add(pane);

17: setVisible(true);

18: }

19:
20: public static void main(String[] arguments) {
21: ButtonFrame bf = new ButtonFrame();
22: }
23: }

When you run the application, a small frame opens that contains the three buttons (see
Figure 9.2).

FIGURE 9.2
The ButtonFrame
application.

The ButtonFrame class has three instance variables: the load, save, and unsubscribe
JButton objects.

256

DAY 9: Working with Swing

In lines 12—15, a new JPanel object is created, and the three buttons are added to the
panel by calls to its add () method. When the panel contains all the buttons, the frame’s
add () method is called in line 16 with the panel as an argument, adding it to the frame.

NOTE If you click the buttons, absolutely nothing happens. Doing some-
thing in response to a button click is covered on Day 12,
“Responding to User Input.”

Working with Components

Swing offers more than two dozen different user interface components in addition to the
buttons and containers you have used so far. You will work with many of these compo-
nents for the rest of today and on Day 10, “Building a Swing Interface.”

All Swing components share a common superclass, javax.swing.JComponent, from
which they inherit several methods you will find useful in your own programs.

The setEnabled(boolean) method determines whether a component can receive user
input (an argument of true) or is inactive and cannot receive input (false). Components
are enabled by default. Many components change in appearance to indicate when they
are not presently usable—for instance, a disabled JButton has light gray borders and
gray text. If you want to check whether a component is enabled, you can call the
isEnabled() method, which returns a boolean value.

The setVisible(boolean) method works for all components the way it does for con-
tainers. Use true to display a component and false to hide it. There also is a boolean
isVisible() method.

The setSize(int, int) method resizes the component to the width and height specified
as arguments, and setSize (Dimension) uses a Dimension object to accomplish the same
thing. For most components, you don’t need to set a size—the default is usually accept-
able. To find out the size of a component, call its getSize () method, which returns a
Dimension object with the dimensions in height and width instance variables.

As you will see, similar Swing components also have other methods in common, such as
setText() and getText () for text components and setvalue() and getvValue() for
components that store a numeric value.

Working with Components

CAUTION When you begin working with Swing components, a common
source of mistakes is to set up aspects of a component after it
has been added to a container. Make sure to set up all aspects of
a component before placing it in a panel or any other container.

Image Icons

Swing supports the use of graphical ImageIcon objects on buttons and other components
in which a label can be provided. An icon is a small graphic that can be placed on a but-
ton, label, or other user interface element to identify it—such as a garbage can or recy-
cling bin icon for deleting files, folder icons for opening and storing files, and the like.

An ImageIcon object can be created by specifying the filename of a graphic as the only
argument to the constructor. The following example loads an icon from the graphics file
subscribe.gif and creates a JButton with the icon as its label:

ImageIcon subscribe = new ImageIcon("subscribe.gif");

JButton button = new JButton(subscribe);

JPanel pane = new JPanel();

pane.add(button);

add(pane);
setVisible(true);

Listing 9.4 contains a Java application that creates four image icons with text labels, adds
them to a panel, and then adds the panel to a frame.

LISTING 9.4 The Full Text of IconFrame.java

1: import javax.swing.*;

2:

3: public class IconFrame extends JFrame {

4 JButton load, save, subscribe, unsubscribe;

5:

6 public IconFrame() {

7 super("Icon Frame");

8: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

9: JPanel panel = new JPanel();

10: /| create icons

11: ImageIcon loadIcon = new ImageIcon("load.gif");

12: ImageIcon saveIcon = new ImagelIcon("save.gif");

13: ImageIcon subscribelIcon = new ImageIcon("subscribe.gif");
14: ImageIcon unsubscribeIcon = new ImageIcon("unsubscribe.gif");
15: /| create buttons

16: load = new JButton("Load", loadIcon);

17: save = new JButton("Save", savelcon);

257

258

DAY 9: Working with Swing

LISTING 9.4 Continued

18: subscribe = new JButton("Subscribe", subscribelIcon);
19: unsubscribe = new JButton("Unsubscribe", unsubscribelcon);
20: // add buttons to panel

21: panel.add(load);

22: panel.add(save);

23: panel.add(subscribe);

24: panel.add(unsubscribe);

25: // add the panel to a frame

26: add(panel);

27: pack();

28: setVisible(true);

29: }

30:

31: public static void main(String[] arguments) {

32: IconFrame ike = new IconFrame();

33: }

34: }

Figure 9.3 shows the result.

FIGURE 9.3

An interface con-
taining buttons
labeled with icons.

The icons’ graphics referred to in lines 11-14 can be found on this book’s official web-
site at http://www.java21days.com on the Day 9 page.

The IconFrame application does not set the size of the frame in pixels. Instead, the
pack () method is called in line 27 to expand the frame to the minimum size required to
present the four buttons next to each other.

If the frame were set to be tall rather than wide—for instance, by calling setSize (100,
400) in the constructor—the buttons would be stacked vertically.

NOTE Some of the project’s graphics are from Sun’s Java Look and Feel
Graphics Repository, a collection of icons suitable for use in your
own programs. If you're looking for icons to experiment with in
Swing applications, you can find the icons at the following
address:

http://java.sun.com/developer/techDocs/hi/repository

Working with Components 259

Labels

A label is a user component that holds text, an icon, or both. Labels, which are created
from the JLabel class, often are used to identify the purpose of other components on an
interface. They cannot be directly edited by a user.

To create a label, you can use the following constructors:
W Jlabel(String)—A label with the specified text

W JlLabel(String, int)—A label with the specified text and alignment

W Jlabel(String, Icon, int)—A label with the specified text, icon, and 9
alignment

The alignment of a label determines how its text or icon is aligned in relation to the area
taken up by the window. Three static class variables of the SwingConstants interface are
used to specify alignment: LEFT, CENTER, and RIGHT.

The contents of a label can be set with setText (String) or setIcon(Icon) methods.
You also can retrieve these things with getText () and getIcon() methods.

The following statements create three labels with left, center, and right alignment,
respectively:

JLabel feedsLabel = new JLabel("Feeds", SwingConstants.LEFT);
JLabel urllLabel = new JLabel("URL: ", SwingConstants.CENTER);
JLabel datelLabel = new JLabel("Date: ", SwingConstants.RIGHT);

Text Fields

A text field is a location on an interface where a user can enter and modify text using the
keyboard. Text fields are represented by the JTextField class, and each can handle one
line of input. Later in this section, you will see a similar component called a text area
that can handle multiple lines.

Constructors for text fields include the following:

B JTextField()—An empty text field
W JTextField(int)—A text field with the specified width
B JTextField(String, int)—A text field with the specified text and width

A text field’s width attribute has relevance only if the interface is organized in a manner
that does not resize components. You will get more experience with this when you work
with layout managers on Day 11, “Arranging Components on a User Interface.”

260

DAY 9: Working with Swing

The following statements create an empty text field that has enough space for roughly 60
characters and a text field of the same size with the starting text “Enter RSS feed URL
here”:

JTextField rssUrl = new JTextField(60);
JTextField rssUrl2 = new JTextField(
"Enter RSS feed URL here", 60);

Text fields and text areas both inherit from the superclass JTextComponent and share
many common methods.

The setEditable (boolean) method determines whether a text component can be edited
(true) or not (false). There’s also an isEditable () method that returns a corresponding
boolean value.

The setText (String) method changes the text to the specified string, and the
getText () method returns the component’s current text as a string. Another method
retrieves only the text that a user has highlighted in the getSelectedText() component.

Password fields are text fields that hide the characters a user is typing into the field. They
are represented by the JPasswordField class, a subclass of JTextField. The
JPasswordField constructor methods take the same arguments as those of its parent
class.

After you have created a password field, call its setEchoChar (char) method to obscure
input by replacing each input character with the specified character.
The following statements create a password field and set its echo character to “#”:

JPasswordField codePhrase = new JPasswordField(20);
codePhrase.setEchoChar('#');

Text Areas
Text areas, editable text fields that can handle more than one line of input, are imple-
mented with the JTextArea class.
JTextArea includes the following constructors:
W JTextArea(int, int)—A text area with the specified number of rows and
columns

B JTextArea(String, int, int)— A text area with the specified text, rows, and
columns

Working with Components

You can use the getText(), getSelectedText(), and setText(String) methods with
text areas as you would text fields. Also, an append(String) method adds the specified
text at the end of the current text, and an insert(String, int) method inserts the spec-
ified text at the indicated position.

The setLineWrap (boolean) method determines whether text will wrap to the next line
when it reaches the right edge of the component. Call setLineWrap(true) to cause line
wrapping to occur.

The setWrapStyleWord(boolean) method determines what wraps to the next line—
either the current word (true) or the current character (false).

The next project you will create, the Authenticator application in Listing 9.5, uses sev-
eral Swing components to collect user input: a text field, a password field, and a text
area. Labels also are used to indicate the purpose of each text component.

LISTING 9.5 The Full Text of Authenticator.java

: import javax.swing.*;

1
2:
3: public class Authenticator extends javax.swing.JFrame {
4: JTextField username = new JTextField(15);

5: JPasswordField password = new JPasswordField(15);
6: JTextArea comments = new JTextArea(4, 15);

7 JButton ok = new JButton("OK");

8: JButton cancel = new JButton("Cancel");

9:

10: public Authenticator() {

11: super("Account Information");

12: setSize (300, 220);

13: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
14:

15: JPanel pane = new JPanel();

16: JLabel usernameLabel = new JLabel("Username: ");
17: JLabel passwordLabel = new JLabel("Password: ");
18: JLabel commentsLabel = new JLabel("Comments: ");
19: comments.setLineWrap(true);

20: comments.setWrapStyleWord(true);

21: pane.add(usernamelLabel);

22: pane.add(username);

23: pane.add(passwordLabel);

24: pane.add(password) ;

25: pane.add(commentsLabel);

26: pane.add(comments);

27: pane.add(ok);

28: pane.add(cancel);

29: add(pane);

30: setVisible(true);

261

262

DAY 9: Working with Swing

LISTING 9.5 Continued

31: }

32:

33: public static void main(String[] arguments) {
34: Authenticator auth = new Authenticator();
35: }

36: }

Figure 9.4 shows the application in use. The password is obscured with asterisk charac-
ters (“*”), which is the default when no other echo character is designated by calling the
field’s setEchoChar (char) method.

FIGURE 9.4
The
Authenticator
application.

The text area in this application behaves in a manner that you might not expect. When
you reach the bottom of the field and continue entering text, the component grows to
make more room for input. The next section describes how to add scrollbars to prevent
the area from changing in. size.

Scrolling Panes
Text areas in Swing do not include horizontal or vertical scrollbars, and there’s no way to

add them using this component alone.

Swing supports scrollbars through a new container that can be used to hold any compo-
nent that can be scrolled: JScrollPane.

A scrolling pane is associated with a component in the pane’s constructor. You can use
either of the following constructors:

B JScrollPane(Component)—A scrolling pane that contains the specified
component

B JScrollPane(Component, int, int)—A scrolling pane with the specified com-
ponent, vertical scrollbar configuration, and horizontal scrollbar configuration

Working with Components

Scrollbars are configured using static class variables of the ScrollPaneConstants inter-
face. You can use each of the following for vertical scrollbars:

B VERTICAL_SCROLLBAR_ALWAYS

VERTICAL_SCROLLBAR_AS_NEEDED

VERTICAL_SCROLLBAR_NEVER

There also are three similarly named variables for horizontal scrollbars.

After you create a scrolling pane containing a component, the pane should be added to
containers in place of that component.

The following example creates a text area with a vertical scrollbar and no horizontal
scrollbar and then adds it to a content pane:

JPanel pane = new JPanel();

JTextArea comments = new JTextArea(4, 15);

JScrollPane scroll = new JScrollPane(comments,
ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);

pane.add(scroll);

setContentPane(pane);

NOTE A full application that makes use of this code, Authenticator2, can
be viewed on this book’s website. Visit http://www.java21days.
com and open the Day 9 page. Look for the link to Authenticator2.
java.

Check Boxes and Radio Buttons

The next two components you will learn about, check boxes and radio buttons, hold only
two possible values: selected or not selected.

Check boxes are used to make a simple choice in an interface, such as yes-no or on-off.
Radio buttons are grouped together so that only one button can be selected at any time.

Check boxes (the JCheckBox class) appear as labeled or unlabeled boxes that contain a
check mark when they are selected and nothing otherwise. Radio buttons (the
JRadioButton class) appear as circles that contain a dot when selected and are also
empty otherwise.

263

264 DAY 9: Working with Swing

Both the JCheckBox and JRadioButton classes have several useful methods inherited
from a common superclass:

B setSelected(boolean)—Select the component if the argument is true and dese-
lect it otherwise.

B isSelected()—Return a boolean indicating whether the component is currently
selected.

The following constructors are available for the JCheckBox class:

B JCheckBox(String)—A check box with the specified text label

®m JCheckBox (String, boolean)—A check box with the specified text label that is
selected if the second argument is true

®m JCheckBox (Icon)—A check box with the specified graphical icon

W JCheckBox (Icon, boolean)—A check box with the specified graphical icon that
is selected if the second argument is true

B JCheckBox(String, Icon)—A check box with the specified text label and graphi-
cal icon

B JCheckBox(String, Icon, boolean)—A check box with the specified text label
and graphical icon that is selected if the third argument is true

The JRadioButton class has constructors with the same arguments and functionality.

Check boxes and radio buttons by themselves are nonexclusive, meaning that if you have
five check boxes in a container, all five can be checked or unchecked at the same time.
To make them exclusive, as radio buttons should be, you must organize related compo-
nents into groups.

To organize several radio buttons into a group, allowing only one to be selected at a time,
create a ButtonGroup class object, as demonstrated in the following statement:

ButtonGroup choice = new ButtonGroup();

The ButtonGroup object keeps track of all radio buttons in its group. Call the group’s
add (Component) method to add the specified component to the group.

The following example creates a group and two radio buttons that belong to it:

ButtonGroup saveFormat = new ButtonGroup();
JRadioButton s1 = new JRadioButton("OPML", false);
saveFormat.add(s1);

JRadioButton s2 = new JRadioButton("XML", true);
saveFormat.add(s2);

Working with Components 265

The saveFormat object is used to group together the s1 and s2 radio buttons. The s2
object, which has the label "XML", is selected. Only one member of the group can be
selected at a time—if one component is selected, the ButtonGroup object makes sure that
all others in the group are deselected.

Listing 9.6 contains an application with four radio buttons in a group.

LISTING 9.6 The Full Text of FormatFrame. java

1: import javax.swing.*;

2: 9
3: public class FormatFrame extends JFrame {

4 JRadioButton[] teams = new JRadioButton[4];

5:

6 public FormatFrame() {

7 super("Choose an Output Format");

8: setSize (320, 120);

9: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
10: teams[0] = new JRadioButton("Atom");

11: teams[1] = new JRadioButton("RSS 0.92");

12: teams[2] = new JRadioButton("RSS 1.0");

13: teams[3] = new JRadioButton("RSS 2.0", true);
14: JPanel panel = new JPanel();

15: JLabel chooselLabel = new JLabel(

16: "Choose an output format for syndicated news items.");
17: panel.add(chooselLabel);

18: ButtonGroup group = new ButtonGroup();

19: for (int i = 0; i < teams.length; i++) {

20: group.add(teams[i]);

21: panel.add(teams[i]);

22: }

23: add(panel);

24: setVisible(true);

25: }

26:

27: public static void main(String[] arguments) {

28: FormatFrame ff = new FormatFrame();

29: }

30: }

Figure 9.5 shows the application running. The four JRadioButton objects are stored in
an array, and in the for loop in lines 19-22 each element is first added to a button group
and then added to a panel. After the loop ends, the panel is used for the application’s
content pane.

266

DAY 9: Working with Swing

FIGURE 9.5
The FormatFrame
application.

Choosing one of the radio buttons causes the existing choice to be deselected.

Combo Boxes

The Swing class JComboBox can be used to create combo boxes, components that present
a drop-down menu from which a single value can be selected. By hiding the menu when
the component is not being used, it takes up less space in a graphical user interface.

The following steps show how a combo box can be created:

1. The JComboBox () constructor is used with no arguments.

2. The combo box’s addItem(0Object) method adds items to the list.

In a combo box, users will be able to select only one of the items in the drop-down
menu. If the component’s setEditable () method is called with true as an argument, it
also supports the entry of text. This feature gives combo boxes their name—a component
configured in this manner serves as both a drop-down menu and a text field.

The JComboBox class has several methods that can be used to control a drop-down list or
combo box:

W getItemAt(int)—Return the text of the list item at the index position specified by
the integer argument. As with arrays, the first item of a choice list is at index posi-
tion 0, the second at position 1, and so on.

B getItemCount()—Return the number of items in the list.

W getSelectedIndex()—Return the index position of the currently selected item in
the list.

m getSelectedItem()—Return the text of the currently selected item.
W setSelectedIndex(int)—Select the item at the indicated index position.

m setSelectedIndex(Object)—Select the specified object in the list.

The FormatFrame2 application in Listing 9.7 contains an application that rewrites the
preceding radio button example. The program uses an uneditable combo box to choose
one of four options.

Lists

LISTING 9.7 The Full Text of FormatFrame2. java

1: import javax.swing.*;

2:

3: public class FormatFrame2 extends JFrame {

4 String[] formats = { "Atom", "RSS 0.92", "RSS 1.0", "RSS 2.0" };
5: JComboBox formatBox = new JComboBox();

6.

7 public FormatFrame2() {

8: super("Choose a Format");

9: setSize (220, 150);

10: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11: JPanel pane = new JPanel();

12: JLabel formatLabel = new JLabel("Output formats:");
13: pane.add(formatLabel);

14: for (int 1 = 0; i < formats.length; i++)

15: formatBox.addItem(formats[i]);

16: pane.add(formatBox);

17: add(pane);

18: setVisible(true);

19: }
20:
21: public static void main(String[] arguments) {
22: FormatFrame2 ff = new FormatFrame2();
23: }
24: }

Figure 9.6 shows the application as the combo box is expanded so that a value can be
selected.

FIGURE 9.6
The FormatFrame2
application.

Lists

The last Swing component to be introduced today is similar to combo boxes. Lists,
which are represented by the JList class, enable one or more values to be selected from
a list.

267

268 DAY 9: Working with Swing

Lists can be created and filled with the contents of an array or a vector. The following
constructors are available:
m JList()—Create an empty list.

B JList(Object[])—Create a list that contains an array of the specified class (such
as String).

m JList(Vector)—Create a list that contains the specified java.util.Vector
object.

An empty list can be filled by calling its setListData() method with either an array or
vector as the only argument.

Unlike combo boxes, lists display more than one of their rows when they are presented
in a user interface. The default is to display eight items. To change this, call
setVisibleRowCount (int) with the number of items to display.

The getSelectedvalues() method returns an array of objects containing all the items
selected in the list.

The Subscriptions application in Listing 9.8 displays eight items from an array of
strings.

LISTING 9.8 The Full Text of Subscriptions.java

import javax.swing.*;

1:
2:
3: public class Subscriptions extends JFrame {

4 String[] subs = { "OxDECAFBAD", "Cafe au Lait",

5: "Hack the Planet", "Ideoplex", "Inessential", "Intertwingly",
6: "Markpasc", "Postneo", "RC3", "Workbench" };

7 JList subList = new JList(subs);

8

9: public Subscriptions() {

10: super("Subscriptions");

11: setSize (150, 300);

12: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13: JPanel panel = new JPanel();

14: JLabel subLabel = new JLabel("RSS Subscriptions:");
15: panel.add(subLabel);

16: subList.setVisibleRowCount(8);

17: JScrollPane scroller = new JScrollPane(subList);
18: panel.add(scroller);

19: add(panel);

20: setVisible(true);

21: }

22:

Summary 269

LISTING 9.8 Continued

23: public static void main(String[] arguments) {
24: Subscriptions app = new Subscriptions();
25: }

26: }

The application is shown in Figure 9.7. The Subscriptions application has an interface
with a label atop a list displaying eight items. A scrollpane is used in lines 17-18 to
enable the list to be scrolled to see items 9 and 10.

FIGURE 9.7
The Subscriptions
application.

Summary

Today, you began working with Swing, the package of classes that enables you to offer a
graphical user interface in your Java programs.

You used more than a dozen classes today, creating interface components such as but-
tons, labels, and text fields. You put each of these into containers: components that
include panels, frames, and windows.

Programming of this kind can be complex, and Swing represents the largest package of
classes that a new Java programmer must deal with in learning the language.

However, as you have experienced with components such as text areas and text fields,
Swing components have many superclasses in common. This makes it easier to extend
your knowledge into new components and containers, as well as the other aspects of
Swing programming you will explore over the next three days.

270 DAY 9: Working with Swing

Q&A

Q Is there a way to change the font of text that appears on a button and other
components?

A The JComponent class includes a setFont (Font) method that can be used to set the
font for text displayed on that component. You will work with Font objects, color,
and more graphics on Day 13, “Using Color, Fonts, and Graphics.”

Q How can I find out what components are available in Swing and how to use
them?

A This is the first of two days spent introducing user interface components, so you
will learn more about them tomorrow. If you have web access, you can find out
what classes are in the Swing package by visiting Sun’s online documentation for
Java at the web address http://java.sun.com/javase/6/docs/api.

Q The last version of Java used the Metal look and feel. How can I continue
using this instead of Ocean?

A You’ll learn how to do this in a Java class on Day 10. There’s also a system prop-
erty you can specify, swing.metalTheme, that will cause the interpreter to use the
Metal look and feel by default instead of Ocean. This property should have the
value “steel” to switch back to Metal, as in the following command:

java -Dswing.metalTheme=steel Authenticator

Running this command causes the Authenticator application to be displayed in the
Metal look and feel.

Quiz

Review today’s material by taking this three-question quiz.

Questions
1. Which of the following user interface components is not a container?
a. JScrollPane
b. JTextArea

c. JWindow

Quiz 271

2. Which container does not require the use of a content pane when adding compo-
nents to it?

a. JPanel
b. JWindow
c. JFrame

3. If you use setSize() on an application’s main frame or window, where will it
appear on your desktop?

a. At the center of the desktop
b. At the same spot the last application appeared
c. At the upper-left corner of the desktop

Answers

1. b. A JTextArea requires a container to support scrolling, but it is not a container
itself.

2. a. JPanel is one of the simple containers that is not subdivided into panes, so you
can call its add (Component) method to add components directly to the panel.

3. c. This is a trick question—calling setSize () has nothing to do with a window’s
position on the desktop. You must call setBounds () rather than setSize() to
choose where a frame will appear.

Certification Practice

The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Given:

import javax.swing.*;

public class Display extends JFrame {
public Display() {

super("Display");
/] answer goes here
JLabel hello = new JLabel("Hello");
JPanel pane = new JPanel();
pane.add(hello);
setContentPane(pane);
pack();
setVisible(true);

272 DAY 9: Working with Swing

}

public static void main(String[] arguments) {
Display ds = new Display();
}

What statement needs to replace // answer goes here to make the application function
properly?

a. setSize (300, 200);

b. setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

o

Display ds = new Display();

d. No statement is needed.

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 9 page and click the Certification Practice link.

Exercises

To extend your knowledge of the subjects covered today, try the following exercises:

1. Create an application with a frame that includes several VCR controls as individual
components: play, stop/eject, rewind, fast forward, and pause. Choose a size for the
window that enables all the components to be displayed on a single row.

2. Create a frame that opens a smaller frame with fields asking for a username and
password.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java2ldays.com.

DAY 10:
Building a Swing
Interface

Although computers can be operated in a command-line environment
such as MS-DOS or a Linux shell, most computer users expect software
to feature a graphical user interface and receive input with a mouse and
keyboard.

Windowing software can be one of the more challenging tasks for a
novice programmer, but as you learned yesterday, Java has simplified the
process with Swing, a set of classes for the creation and use of graphical
user interfaces.

Swing offers the following features:

m Common user interface components—Buttons, text fields, text
areas, labels, check boxes, radio buttons, scrollbars, lists, menu
items, sliders, and more

m Containers, interface components that can be used to hold other
components, including containers—Frames, panels, windows,
menus, menu bars, and tabbed panes

m Adjustable look and feel—The ability to change the style of an
entire interface to resemble Windows, Mac OS, or other distinctive
designs

274

DAY 10: Building a Swing Interface

Swing Features

Most of the components and containers you learned about yesterday were Swing ver-
sions of classes that were part of the Abstract Windowing Toolkit, the original Java pack-
age for graphical user interface programming.

Swing offers many additional features that are completely new, including a definable
look and feel, keyboard mnemonics, ToolTips, and standard dialog boxes.

Setting the Look and Feel

One of the more unusual features in Swing is the ability to define the look and feel of
components—the way that the buttons, labels, and other elements of a graphical user
interface are rendered onscreen.

Management of look and feel is handled by UIManager, a user interface manager class in
the javax.swing package. The choices for look and feel vary depending on the Java
development environment you’re using. The following are available with Java on a
Windows XP platform:

m A Windows look and feel
m A Windows Classic look and feel
m A Motif X Window system look and feel

m Swing’s cross-platform Java look and feel, Metal

Figures 10.1, 10.2, and 10.3 show the same graphical user interface under several differ-
ent look and feel designs: Metal, Windows Classic, and Motif.

FIGURE 10.1
An application
using the Java
look and feel
(Metal).

FIGURE 10.2

An application
using the Windows
Classic look and
feel.

FIGURE 10.3
An application
using the Motif
look and feel.

Swing Features

The graphical user interface shown in Figures 10.1 through 10.3
was created using techniques described this week (including some
that haven’t been covered yet). The source code for a class used
to create this interface can be viewed on the book’s website. Go
to http://www.java21ldays.com, open the Day 10 page, and then
look for the file NewMail.java.

275

10

276

DAY 10: Building a Swing Interface

The UIManager class has a setLookAndFeel (LookAndFeel) method that is used to
choose a program’s look and feel. To get a LookAndFeel object that you can use with this
method, call one of the following class methods of UIManager:

W getCrossPlatformLookAndFeelClassName ()—This method returns an object rep-
resenting Java’s cross-platform Ocean look and feel.

B getSystemLookAndFeelClassName ()—This method returns an object representing
your system’s look and feel.

The setLookAndFeel () method throws an UnsupportedLookAndFeelException if it
can’t set the look and feel.

After you call this method, you must tell every component in an interface to update its
appearance with the new look and feel. Call the SwingUtilities class method
updateComponentTreeUI (Component) with the main interface component (such as a
JFrame object) as the argument.

Under most circumstances, you only should call setLookAndFeel() after every compo-
nent has been added to your graphical user interface (in other words, right before you
make the interface visible).

The following statements set up a component to employ the Java look and feel:

try {
UIManager.setLookAndFeel (
UIManager.getCrossPlatformLookAndFeelClassName());
SwingUtilities.updateComponentTreeUI(this);
} catch (Exception e) {
System.out.println("Can't set look and feel: ""
+ e.getMessage());
e.printStackTrace();

The this keyword refers to the class that contains these statements. If you used the pre-
ceding code at the end of the constructor method of a JFrame, every component on that
frame would be displayed with the Java look and feel.

To select your system’s look and feel, use getSystemLookAndFeelClassName (), which is
inside the call to setLookAndFeel() in the preceding example. This produces different
results on different operating systems. A Windows user would get that platform’s look
and feel by using getSystemLookAndFeelClassName (). A UNIX user would get the
Motif look and feel, and a Mac OS X user would get the Aqua look and feel.

Swing Features 277

If you’re not sure which look and feel designs are available on your operating system,
you can list them with the following statements:
UIManager.LookAndFeelInfo[] laf = UIManager.getInstalledLookAndFeels();
for (int 1 = 0; i < laf.length; i++) {
System.out.println("Class name: " + laf[i].getClassName());
System.out.println("Name: " + laf[i].getName() + "\n");

On a Windows system, these statements produce the following output:

Name: Metal
Class name: javax.swing.plaf.metal.MetallLookAndFeel

Name: CDE/Motif
Class name: com.sun.java.swing.plaf.motif.MotifLookAndFeel

Name: Windows
Class name: com.sun.java.swing.plaf.windows.WindowsLookAndFeel 10

Name: Windows Classic
Class name: com.sun.java.swing.plaf.windows.WindowsClassicLookAndFeel).

CAUTION For copyright reasons, neither the Windows nor Mac OS look and
feel designs will be present on computers that aren’t running
those particular operating systems. You won’t be able to use the
Mac look and feel on a Windows computer, or vice versa.

Standard Dialog Boxes

The JoptionPane class offers several methods that can be used to create standard dialog
boxes: small windows that ask a question, warn a user, or provide a brief, important mes-
sage. Figure 10.4 shows an example.

FIGURE 10.4
A standard dialog
box.

Figure 10.4 and the remaining examples today use the Metal look and feel, the cross-
platform design that is the default appearance of Java software.

278

DAY 10: Building a Swing Interface

You have doubtlessly seen dialog boxes like the one shown in Figure 10.4. When your
system crashes, a dialog box opens and breaks the bad news. When you delete files, a
dialog box might pop up to make sure that you really want to do that.

These windows are an effective way to communicate with a user without the overhead of
creating a new class to represent the window, adding components to it, and writing event-
handling methods to take input. All these things are handled automatically when one of
the standard dialog boxes offered by JOptionPane is used.

The four standard dialog boxes are as follows:

m ConfirmDialog—Asks a question, with buttons for Yes, No, and Cancel responses
® InputDialog—Prompts for text input
W MessageDialog—Displays a message

m OptionDialog—Comprises all three of the other dialog box types

Each of these dialog boxes has its own show method in the JOptionPane class.

If you are setting up a look and feel to use with any of these dialog boxes, it must be
established before you open the box.

Confirm Dialog Boxes

The easiest way to create a Yes/No/Cancel dialog box is by calling the
showConfirmDialog(Component, Object) method. The Component argument specifies
the container that should be considered to be the parent of the dialog box, and this infor-
mation is used to determine where the dialog window should be displayed. If null is
used instead of a container, or if the container is not a JFrame object, the dialog box will
be centered onscreen.

The second argument, Object, can be a string, a component, or an Icon object. If it’s a
string, that text will be displayed in the dialog box. If it’s a component or an Icon, that
object will be displayed in place of a text message.

This method returns one of three possible integer values, each a class constant of
JOptionPane: YES_OPTION, NO_OPTION, and CANCEL_OPTION.

The following example uses a confirm dialog box with a text message and stores the
response in the response variable:

int response = JOptionPane.showConfirmDialog(null,
"Should I delete all of your irreplaceable personal files?");

Figure 10.5 shows this dialog box.

Swing Features 279

FIGURE 10.5
A confirm dialog
box.

Another method offers more options for the dialog box: showConfirmbDialog (Component,
Object, String, int, int). The first two arguments are the same as those in other
showConfirmDialog () methods. The last three arguments are the following:

m A string that will be displayed in the dialog box’s title bar.

® An integer that indicates which option buttons will be shown; it should be equal to
one of the class constants: YES_NO_CANCEL_OPTION or YES_NO_OPTION.

B An integer that describes the kind of dialog box it is, using the class constants
ERROR_MESSAGE, INFORMATION_MESSAGE, PLAIN_MESSAGE, QUESTION_MESSAGE, or
WARNING_MESSAGE. (This argument is used to determine which icon to draw in the
dialog box along with the message.)

For example:

int response = JOptionPane.showConfirmDialog(null,
"Error reading file. Want to try again?",
"File Input Error",
JOptionPane.YES_NO_OPTION,
JOptionPane.ERROR_MESSAGE) ;

Figure 10.6 shows the resulting dialog box.

FIGURE 10.6

A confirm dialog
box with Yes and
No buttons.

Input Dialog Boxes

An input dialog box asks a question and uses a text field to store the response. Figure
10.7 shows an example.

The easiest way to create an input dialog box is with a call to the
showInputDialog(Component, Object) method. The arguments are the parent compo-
nent and the string, component, or icon to display in the box.

280

DAY 10: Building a Swing Interface

FIGURE 10.7
An input dialog
box.

The input dialog box method call returns a string that represents the user’s response. The
following statement creates the input dialog box shown in Figure 10.7:

String response = JOptionPane.showInputDialog(null,
"Enter your name:");

You also can create an input dialog box with the showInputDialog(Component,
Object, String, int) method. The first two arguments are the same as the shorter
method call, and the last two are the following:

m The title to display in the dialog box title bar

m One of five class constants describing the type of dialog box: ERROR_MESSAGE,
INFORMATION_MESSAGE, PLAIN_MESSAGE, QUESTION_MESSAGE, or WARNING_MESSAGE

The following statement uses this method to create an input dialog box:

String response = JOptionPane.showInputDialog(null,
"What is your ZIP code?",
"Enter ZIP Code",
JOptionPane.QUESTION_MESSAGE);

Message Dialog Boxes

A message dialog box is a simple window that displays information, as shown in Figure
10.8.

FIGURE 10.8

A message dialog
box.

A message dialog box can be created with a call to the showMessageDialog (Component,
Object) method. As with other dialog boxes, the arguments are the parent component
and the string, component, or icon to display.

Swing Features

Unlike the other dialog boxes, message dialog boxes do not return any kind of response
value. The following statement creates the message dialog box shown in Figure 10.8:

JOptionPane.showMessageDialog(null,
"The program has been uninstalled.");

You also can create a message input dialog box by calling the
showMessageDialog(Component, Object, String, int) method. The use is identical
to the showInputDialog () method, with the same arguments, except that
showMessageDialog () does not return a value.

The following statement creates a message dialog box using this method:

JOptionPane.showMessageDialog(null,
"An asteroid has destroyed the Earth.",
"Asteroid Destruction Alert",
JOptionPane.WARNING_MESSAGE) ;

Option Dialog Boxes

The most complex of the dialog boxes is the option dialog box, which combines the fea-
tures of all the other dialog boxes. It can be created with the
showOptionDialog(Component, Object, String, int, int, Icon, Object[],
Object) method.

The arguments to this method are as follows:

The parent component of the dialog box
The text, icon, or component to display

A string to display in the title bar

The type of box, using the class constants YES_NO_OPTION or YES_NO_CANCEL_
OPTION, or the literal @ if other buttons will be used instead

m The icon to display, using the class constants ERROR_MESSAGE, INFORMATION_
MESSAGE, PLAIN_MESSAGE, QUESTION_MESSAGE, or WARNING MESSAGE, or the literal @
if none of these should be used

B An Icon object to display instead of one of the icons in the preceding argument

® An array of objects holding the objects that represent the choices in the dialog box,
if YES_NO_OPTION and YES_NO_CANCEL_OPTION are not being used

m The object representing the default selection if YES_NO_OPTION and YES_NO_CANCEL
option are not being used

281

282

DAY 10: Building a Swing Interface

The final two arguments offer a wide range of possibilities for the dialog box. You can
create an array of strings that holds the text of each button to display on the dialog box.
These components are displayed using the flow layout manager.

The following example creates an option dialog box that uses an array of String objects
for the options in the box and the gender[2] element as the default selection:
String[] gender = { "Male", "Female",

"None of Your Business" };
int response = JOptionPane.showOptionDialog(null,

"What is your gender?",

"Gender",

o,

JOptionPane.INFORMATION_MESSAGE,

null,

gender,

gender[2]);

Figure 10.9 shows the resulting dialog box.

FIGURE 10.9

An option dialog
box.

Using Dialog Boxes

The next project shows a series of dialog boxes in a working program. The FeedInfo
application uses dialog boxes to get information from the user; that information is then
placed into text fields in the application’s main window.

Enter Listing 10.1 and compile the result.

LISTING 10.1 The Full Text of FeedInfo.java

: import java.awt.GridlLayout;
: import java.awt.event.*;
: import javax.swing.*;

private JLabel nameLabel = new JLabel("Name: ",
SwingConstants.RIGHT);
private JTextField name;

1
2

3

4:

5: public class FeedInfo extends JFrame {

6

7

8

9 private JLabel urlLabel = new JLabel("URL: ",

Swing Features 283

LISTING 10.1 Continued

10: SwingConstants.RIGHT);

11: private JTextField url;

12: private JLabel typelLabel = new JLabel("Type: ",

13: SwingConstants.RIGHT);

14: private JTextField type;

15:

16: public FeedInfo() {

17: super("Feed Information");

18: setSize (400, 105);

19: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

20: setLookAndFeel();

21: // Site name

22: String responsei = JOptionPane.showInputDialog(null,
23: "Enter the site name:");

24: name = new JTextField(responsei, 20);

25:

26: // Site address 10
27: String response2 = JOptionPane.showInputDialog(null,
28: "Enter the site address:");

29: url = new JTextField(response2, 20);

30:

31: /] Site type

32: String[] choices = { "Personal", "Commercial", "Unknown" };
33: int response3 = JOptionPane.showOptionDialog(null,
34: "What type of site is it?",

35: "Site Type",

36: 0,

37: JOptionPane.QUESTION MESSAGE,

38: null,

39: choices,

40: choices[0]);

41: type = new JTextField(choices[response3], 20);

42:

43: setlLayout(new GridLayout(3, 2));

44: add(namelLabel);

45: add (name) ;

46: add(urlLabel);

47: add(url);

48: add(typelLabel);

49: add(type);

50: setLookAndFeel();

51: setVisible(true);

52: }

53:

54: private void setLookAndFeel() {

55: try {

56: UIManager.setLookAndFeel(

57: UIManager.getSystemLookAndFeelClassName());

58: SwingUtilities.updateComponentTreeUI(this);

284

DAY 10: Building a Swing Interface

LISTING 10.1 Continued

59:
60:
61:
62:
63:
64:
65:
66:
67:
68: }

} catch (Exception e) {
System.err.println("Couldn't use the system
+ "look and feel: " + e);

}

public static void main(String[] arguments) {
FeedInfo frame = new FeedInfo();

}

After you fill in the fields in each dialog box, you will see the application’s main win-
dow, which is displayed in Figure 10.10 with the Windows look and feel. Three text
fields have values supplied by dialog boxes.

FIGURE 10.10
The main window
of the FeedInfo

application.

Much of this application is boilerplate code that can be used with any Swing application.
The following lines relate to the dialog boxes:

In lines 22-24, an input dialog box asks the user to enter a site name. This name is
used in the constructor for a JTextField object, placing it in the text field.

In lines 27-29, a similar input dialog box asks for a site address, which is used in
the constructor for another JTextField object.

In line 32, an array of String objects called choices is created, and three elements
are given values.

In lines 33—40, an option dialog box asks for the site type. The choices array is
the seventh argument, which sets up three buttons on the dialog box labeled with
the strings in the array: "Personal”, "Commercial", and "Unknown". The last argu-
ment, choices[@], designates the first array element as the default selection in the
dialog box.

In line 41, the response to the option dialog box, an integer identifying the array
element that was selected, is stored in a JTextField component called type.

Swing Features 285

The look and feel, which is established in the setLookAndFeel() method in lines 54—63,
is called at the beginning and end of the frame’s constructor method. Because you’re
opening several dialog boxes in the constructor, you must set up the look and feel before
opening them.

Sliders

Sliders, which are implemented in Swing with the JSlider class, enable the user to set a
number by sliding a control within the range of a minimum and maximum value. In
many cases, a slider can be used for numeric input instead of a text field, and it has the
advantage of restricting input to a range of acceptable values.

Figure 10.11 shows an example of a JS1lider component.

FIGURE 10.11
A JSlider compo-

nent. 10

Sliders are horizontal by default. The orientation can be explicitly set using two class
constants of the SwingConstants interface: HORIZONTAL or VERTICAL.

You can use the following constructor methods:

W JSlider(int, int)—A slider with the specified minimum value and maximum
value

m JSlider(int, int, int)—A slider with the specified minimum value, maximum
value, and starting value

W JSlider(int, int, int, int)—A slider with the specified orientation, mini-
mum value, maximum value, and starting value

Slider components have an optional label that can be used to indicate the minimum
value, maximum value, and two different sets of tick marks ranging between the values.
The default values are a minimum of 0, maximum of 100, starting value of 50, and hori-
zontal orientation.

The elements of this label are established by calling several methods of JSlider:

B setMajorTickSpacing(int)—This method separates major tick marks by the
specified distance. The distance is not in pixels, but in values between the mini-
mum and maximum values represented by the slider.

286

DAY 10: Building a Swing Interface

setMinorTickSpacing(int)—This method separates minor tick marks by the
specified distance. Minor ticks are displayed as half the height of major ticks.

setPaintTicks (boolean)—This method determines whether the tick marks
should be displayed (a true argument) or not (a false argument).

setPaintLabels (boolean)—This method determines whether the numeric label of
the slider should be displayed (true) or not (false).

These methods should be called on the slider before it is added to a container.

Listing 10.2 contains the Slider. java source code; the application was shown in Figure
10.11.

LISTING 10.2 The Full Text of Slider.java

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

: import java.awt.event.*;
: import javax.swing.*;

1
2
3:
4: public class Slider extends JFrame {
5:
6
7
8

public Slider() {
super("Slider");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JSlider pickNum = new JSlider(JSlider.HORIZONTAL, 0, 30, 5);
pickNum.setMajorTickSpacing(10);
pickNum.setMinorTickSpacing(1);
pickNum.setPaintTicks(true);
pickNum.setPaintLabels(true);
add(pickNum);

}

public static void main(String[] args) {
Slider frame = new Slider();
frame.pack();
frame.setVisible(true);

Lines 9-14 contain the code that’s used to create a JSlider component, set up its tick
marks to be displayed, and add the component to a container. The rest of the program is
a basic framework for an application that consists of a main JFrame container with no

menus.

In lines 18-20, a new Slider object is created, a call to the object’s pack () method sets
its size to the preferred size of its components, and the object is made visible.

Swing Features 287

NOTE It might seem strange for the pack() and setvisible() methods to
be called outside the constructor method of the frame. Because
these methods are public, there’s no prohibition against calling
these (and other) methods inside or outside an interface compo-
nent’s class.

Scroll Panes

As you learned in yesterday’s lesson, in early versions of Java, some components (such
as text areas) had a built-in scrollbar. The bar could be used when the text in the compo-
nent took up more space than the component could display. Scrollbars could be used in
either the vertical or horizontal direction to scroll through the text.

One of the most common examples of scrolling is in a web browser, where a scrollbar
can be used on any page bigger than the browser’s display area.

Swing changes the rules for scrollbars to the following:

m For a component to be able to scroll, it must be added to a JScrollPane container.

m This JScrollPane container is added to a container in place of the scrollable com-
ponent.

Scroll panes can be created using the ScrollPane (Object) constructor, where Object
represents the component that can be scrolled.

The following example creates a text area in a scroll pane and adds the scroll pane,
scroller, to a container called mainPane:
textBox = new JTextArea(7, 30);

JScrollPane scroller = new JScrollPane(textBox);
mainPane.add(scroller);

As you’re working with scroll panes, it can often be useful to indicate the size you want
it to occupy on the interface. This is done by calling the setPreferredSize (Dimension)
method of the scroll pane before it is added to a container. The Dimension object repre-

sents the width and height of the preferred size, represented in pixels.

The following code builds on the previous example by setting the preferred size of
scroller:

Dimension pref = new Dimension(350, 100);
scroller.setPreferredSize(pref);

This should be handled before scroller is added to a container.

288

DAY 10: Building a Swing Interface

CAUTION This is one of many situations in Swing where you must do some-
thing in the proper order for it to work correctly. For most compo-
nents, the order is the following: Create the component, set up
the component fully, and then add the component to a container.

By default, a scroll pane does not display scrollbars unless they are needed. If the com-
ponent inside the pane is no larger than the pane itself, the bars won’t appear. In the case
of components such as text areas, where the component size might increase as the pro-
gram is used, the bars automatically appear when they’re needed and disappear when
they are not.

To override this behavior, you can set a policy for a JScrollBar component when you
create it. You set the policy by using one of several ScrollPaneConstants class con-
stants:

HORIZONTAL_SCROLLBAR_ALWAYS

HORIZONTAL_SCROLLBAR_AS_NEEDED

HORIZONTAL_SCROLLBAR_NEVER

VERTICAL_SCROLLBAR_ALWAYS

VERTICAL_SCROLLBAR_AS_NEEDED

VERTICAL_SCROLLBAR_NEVER

These class constants are used with the JScrollPane(Object, int, int) constructor,
which specifies the component in the pane, the vertical scrollbar policy, and the horizon-
tal scrollbar policy.

NOTE Any Swing component that requires scrolling can be placed within
a scroll pane. If you're scrolling a text area and need to jump to
the bottom of the pane whenever new text is added, call the

text area component’s setCaretPosition(getDocument()
.getLength()) method. The argument to setCaretPosition()
indicates how much text the area currently holds.

Toolbars

A toolbar, created in Swing with the JToolBar class, is a container that groups several
components into a row or column. These components are most often buttons.

Swing Features 289

Toolbars are rows or columns of components that group the most commonly used pro-
gram options together. Toolbars often contain buttons and lists and can be used as an
alternative to using pull-down menus or shortcut keys.

Toolbars are horizontal by default, but the orientation can be explicitly set with the
HORIZONTAL or VERTICAL class variables of the SwingConstants interface.

Constructor methods include the following:

B JToolBar()—Creates a new toolbar

m JToolBar(int)—Creates a new toolbar with the specified orientation

After you have created a toolbar, you can add components to it by using the toolbar’s
add (Object) method, where Object represents the component to place on the toolbar.

Many programs that use toolbars enable the user to move the bars. These are called dock-
able toolbars because you can dock them along an edge of the screen, similar to docking
a boat to a pier. Swing toolbars also can be docked into a new window, separate from the
original.

For best results, a dockable JToolBar component should be arranged in a container using
the BorderLayout manager. A border layout divides a container into five areas: north,
south, east, west, and center. Each of the directional components takes up whatever space
it needs, and the rest are allocated to the center.

The toolbar should be placed in one of the directional areas of the border layout. The
only other area of the layout that can be filled is the center. (You’ll learn more about lay-
out managers such as border layout during tomorrow’s lesson, Day 11, “Arranging
Components on a User Interface.”)

Figure 10.12 shows a dockable toolbar occupying the north area of a border layout. A
text area has been placed in the center.

FIGURE 10.12
A dockable toolbar
and a text area.

290 DAY 10: Building a Swing Interface

Listing 10.3 contains the source code used to produce this application.

LISTING 10.3 The Full Text of FeedBar. java

ONOOORAWN =

©

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class FeedBar extends JFrame {

public FeedBar() {

}

super("FeedBar");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

/| create icons

ImageIcon loadIcon = new ImagelIcon("load.gif");

ImageIcon saveIcon = new Imagelcon("save.gif");

ImageIcon subscribeIcon = new ImageIcon("subscribe.gif");
ImageIcon unsubscribeIcon = new ImageIcon("unsubscribe.gif");
/| create buttons

JButton load = new JButton("Load", loadIcon);

JButton save = new JButton("Save", savelcon);

JButton subscribe = new JButton("Subscribe", subscribelcon);
JButton unsubscribe = new JButton("Unsubscribe", unsubscribelIcon);
// add buttons to toolbar

JToolBar bar = new JToolBar();

bar.add(load);

bar.add(save);

bar.add(subscribe);

bar.add(unsubscribe);

// prepare user interface

JTextArea edit = new JTextArea(8, 40);

JScrollPane scroll = new JScrollPane(edit);

BorderLayout bord = new BorderLayout();

setLayout (bord);

add("North", bar);

add("Center", scroll);

pack();

setVisible(true);

public static void main(String[] arguments) {

}
}

FeedBar frame = new FeedBar();

This application uses four images to represent the graphics on the buttons—the same
graphics used in the IconFrame project yesterday. If you haven’t downloaded them yet,
they are available on the book’s official website at http://www.java21days.com on the

Swing Features

Day 10 page. You also can use graphics from your own system, although they must be in
GIF format and reasonably small.

The toolbar in this application can be grabbed by its handle—the area immediately to the
left of the “Load” button in Figure 10.12. If you drag it within the window, you can dock
it along different edges of the application window. When you release the toolbar, the
application is rearranged using the border layout manager. You also can drag the toolbar
out of the application window entirely.

Although toolbars are most commonly used with graphical buttons, they can contain tex-
tual buttons, combo boxes, and other }components.

Progress Bars

Progress bars are components used to show how much time is left before a task is com-
plete.

Progress bars are implemented in Swing through the JProgressBar class. A sample Java
program that uses this component is shown in Figure 10.13.

FIGURE 10.13
A progress bar in
a frame.

Progress bars are used to track the progress of a task that can be represented numerically.
They are created by specifying a minimum and a maximum value that represent the
points at which the task is beginning and ending.

A software installation that consists of 335 different files is a good example of a task that
can be numerically quantified. The number of files transferred can be used to monitor the
progress of the task. The minimum value is 0, and the maximum value is 335.

Constructor methods include the following:

B JProgressBar()—Creates a new progress bar

W JProgressBar(int, int)—Creates a new progress bar with the specified mini-
mum value and maximum value

W JProgressBar(int, int, int)—Creates a new progress bar with the specified
orientation, minimum value, and maximum value

The orientation of a progress bar can be established with the SwingConstants.VERTICAL
and SwingConstants.HORIZONTAL class constants. Progress bars are horizontal by
default.

291

292

DAY 10: Building a Swing Interface

The minimum and maximum values also can be set up by calling the progress bar’s
setMinimum(int) and setMaximum(int) values with the indicated values.

To update a progress bar, you call its setValue (int) method with a value indicating how
far along the task is at that moment. This value should be somewhere between the mini-
mum and maximum values established for the bar. The following example tells the
install progress bar in the previous example of a software installation how many files
have been uploaded thus far:

int filesDone = getNumberOfFiles();
install.setValue(filesDone);

In this example, the getNumberOfFiles () method represents some code that would be
used to keep track of how many files have been copied so far during the installation.
When this value is passed to the progress bar by the setValue () method, the bar is
immediately updated to represent the percentage of the task that has been completed.

Progress bars often include a text label in addition to the graphic of an empty box filling
up. This label displays the percentage of the task that has become completed, and you
can set it up for a bar by calling the setStringPainted(boolean) method with a value
of true. A false argument turns off this label.

Listing 10.4 contains ProgressMonitor, the application shown at the beginning of this
section in Figure 10.13.

LISTING 10.4 The Full Text of ProgressMonitor.java

1: import java.awt.*;
2: import java.awt.event.*;
3: import javax.swing.*;

4:

5: public class ProgressMonitor extends JFrame {
6:

7: JProgressBar current;

8: JTextArea out;

9: JButton find;

10: Thread runner;

11: int num = 0;

12:

13: public ProgressMonitor() {

14: super("Progress Monitor");

15:

16: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
17: setSize (205, 68);

18: setLayout(new FlowLayout());

19: current = new JProgressBar(0, 2000);

Swing Features 293

LISTING 10.4 Continued

20: current.setValue(0);

21: current.setStringPainted(true);

22: add(current);

23: }

24:

25:

26: public void iterate() {

27: while (num < 2000) {

28: current.setValue(num);

29: try {

30: Thread.sleep(1000);

31: } catch (InterruptedException e) { }
32: num += 95;

33: }

34: }

35:

36: public static void main(String[] arguments) { 10
37: ProgressMonitor frame = new ProgressMonitor();
38: frame.setVisible(true);

39: frame.iterate();

40: }

41: } are

The ProgressMonitor application uses a are progress bar to track the value of the num
variable. The progress bar is created in line 18 with a minimum value of @ and a maxi-
mum value of 2000.

The iterate() method in lines 26—34 loops while num is less than 2000 and increases
num by 95 each iteration. The progress bar’s setValue () method is called in line 27 of
the loop with num as an argument, causing the bar to use that value when charting
progress.

Using a progress bar is a way to make a program more user friendly when it is going to
be busy for more than a few seconds. Software users like progress bars because they
indicate an approximation of how much more time something’s going to take.

Progress bars also provide another essential piece of information: proof that the program
is still running and has not crashed.

Menus

One way you can enhance are the usability of a frame is to give it a menu bar—a series
of pull-down menus used to perform tasks. Menus often duplicate the same tasks you
could accomplish by using buttons and other user interface components, giving someone
using your program two ways to get work done.

294 DAY 10: Building a Swing Interface

Menus in Java are supported by three components that work in conjunction with each
other:

B JMenultem—An item on a menu

® JMenu—A drop-down menu that contains one or more JMenuItem components,
other interface components, and separators, lines displayed between items

® JMenuBar—A container that holds one or more JMenu components and displays
their names

A JMenuItem component is like a button and can be set up using the same constructor
methods as a JButton component. Call it with JMenuItem(String) for a text item,
JMenuItem(Icon) for an item that displays a graphics file, or JMenuItem(String, Icon)
for both.

The following statements create seven menu items:

JMenuItem j1 = new JMenuItem("Open");

JMenuItem j2 = new JMenuItem("Save");

JMenuItem j3 = new JMenultem("Save as Template");

JMenuItem j4 = new JMenuItem("Page Setup");

JMenuItem j5 = new JMenuItem("Print");

JMenuItem j6 = new JMenuItem("Use as Default Message Style");
JMenuItem j7 = new JMenuItem("Close");

A JMenu container holds all the menu items for a drop-down menu. To create it, call the
JMenu (String) constructor with the name of the menu as an argument. This name
appears on the menu bar.

After you have created a JMenu container, call its add (JMenuItem) to add a menu item to
it. New items are placed at the end of the menu.

The item you put on a menu doesn’t have to be a menu item. Call the add (Component)
method with a user interface component as the argument. One that often appears on a
menu is a check box (the JCheckBox class in Java).

To add a line separator to the end of the menu, call the addSeparator() method.
Separators are often used to visually group several related items on a menu.

You also can add text to a menu that serves as a label of some kind. Call the
add (String) method with the text as an argument.

Using the seven menu items from the preceding example, the following statements create
a menu and fill it with all those items and three separators:

Swing Features 295

JMenu m1 = new JMenu("File");
m1.add(j1);
mi.add(j2);
mi.add(j3);
m1.addSeparator();
m1.add(j4);
mi.add(j5);
m1.addSeparator();
m1.add(j6);
m1.addSeparator();
m1.add(j7);

A JMenuBar container holds one or more JMenu containers and displays each of their
names. The most common place to see a menu bar is directly below an application’s title
bar.

To create a menu bar, call the JMenuBar () constructor method with no arguments. Add
menus to the end of a bar by calling its add (UMenu) method.

After you have created all your items, added them to menus, and added the menus to a
bar, you’re ready to add them to a frame. Call the frame’s setJMenuBar (JMenuBar)
method.

The following statement finishes off the current example by creating a menu bar, adding
a menu to it, and then placing the bar on a frame called gui:
JMenuBar bar = new JMenuBar();

bar.add(m7);
gui.setdMenuBar(bar);

Figure 10.14 shows what this menu looks like on an otherwise empty menu bar.

FIGURE 10.14
A frame with a
menu bar.

Although you can open and close a menu and select items, nothing happens in response.
You’ll learn how to receive user input for this component and others during Day 12,
“Responding to User Input.”

296 DAY 10: Building a Swing Interface

Listing 10.5 contains an expanded version of the FeedBar project, adding a menu bar that
holds one menu and four individual items. This application is shown in Figure 10.14.

LISTING 10.5 The Full Text of FeedBar2. java

1: import java.awt.*;

2: import java.awt.event.*;

3: import javax.swing.*;

4:

5: public class FeedBar2 extends JFrame {

6:

7: public FeedBar2() {

8: super("FeedBar 2");

9: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
10: /| create icons

11: ImageIcon loadIcon = new ImageIcon("load.gif");
12: ImageIcon saveIcon = new ImageIcon("save.gif");
13: ImageIcon subscribelIcon = new ImageIcon("subscribe.gif");
14: ImageIcon unsubscribeIcon = new ImageIcon("unsubscribe.gif");
15: // create buttons

16: JButton load = new JButton("Load", loadIcon);
17: JButton save = new JButton("Save", savelcon);
18: JButton subscribe = new JButton("Subscribe", subscribelcon);
19: JButton unsubscribe = new JButton("Unsubscribe", unsubscribelIcon);
20: // add buttons to toolbar
21: JToolBar bar = new JToolBar();
22: bar.add(load);
23: bar.add(save);
24: bar.add(subscribe);
25: bar.add(unsubscribe);
26: /| create menu
27: JMenuItem j1 = new JMenuItem("Load");
28: JMenuItem j2 = new JMenuItem("Save");
29: JMenuItem j3 = new JMenuItem("Subscribe");
30: JMenuItem j4 = new JMenuItem("Unsubscribe");
31: JMenuBar menubar = new JMenuBar();
32: JMenu menu = new JMenu("Feeds");
33: menu.add(j1);
34: menu.add(j2);
35: menu.addSeparator();
36: menu.add(j3);
37: menu.add(j4);
38: menubar.add(menu) ;
39: // prepare user interface
40: JTextArea edit = new JTextArea(8, 40);
41: JScrollPane scroll = new JScrollPane(edit);
42: BorderLayout bord = new BorderLayout();
43: setLayout(bord);

44: add("North", bar);

Swing Features 297

LISTING 10.5 Continued

45: add("Center", scroll);

46: setdMenuBar (menubar) ;

47: pack();

48: setVisible(true);

49: }

50:

51: public static void main(String[] arguments) {
52: FeedBar2 frame = new FeedBar2();

53: }

54: }

Tabbed Panes

Tabbed panes, a group of stacked panels in which only one panel can be viewed at a
time, are implemented in Swing by the JTabbedPane class.

To view a panel, you click the tab that contains its name. Tabs can be arranged horizon-
tally across the top or bottom of the component or vertically along the left or right side.

Tabbed panes are created with the following three constructor methods:

B JTabbedPane ()—Creates a vertical tabbed pane along the top that does not scroll

B JTabbedPane (int)—Creates a tabbed pane that does not scroll and has the speci-
fied placement

W JTabbedPane(int, int)—Creates a tabbed pane with the specified placement
(first argument) and scrolling policy (second argument)

The placement of a tabbed pane is the position where its tabs are displayed in relation to
the panels. Use one of four class variables as the argument to the constructor:
JTabbedPane.TOP, JTabbedPane.BOTTOM, JTabbedPane.LEFT, or JTabbedPane.RIGHT.

The scrolling policy determines how tabs will be displayed when there are more tabs
than the interface can hold. A tabbed pane that does not scroll displays extra tabs on their
own line, which can be set up using the JTabbedPane .WRAP_TAB_LAYOUT class variable.
A tabbed pane that scrolls displays scrolling arrows beside the tabs. This can be set up
with JTabbedPane.SCROLL_TAB_LAYOUT.

After you create a tabbed pane, you can add components to it by calling the pane’s
addTab(String, Component) method. The String argument will be used as the label of
the tab. The second argument is the component that will make up one of the tabs on the
pane. It’s common to use a JPanel object for this purpose, but not required.

298

DAY 10: Building a Swing Interface

The following statements create five empty panels and add them to a tabbed pane:

JPanel mainSettings = new JPanel();

JPanel advancedSettings = new JPanel();
JPanel privacySettings = new JPanel();
JPanel emailSettings = new JPanel();
JPanel securitySettings = new JPanel();
JTabbedPane tabs = new JTabbedPane();
tabs.addTab("Main", mainSettings);
tabs.addTab("Advanced", advancedSettings);
tabs.addTab("Privacy", privacySettings);
tabs.addTab("E-mail", emailSettings);
tabs.addTab("Security", securitySettings);

After adding all the panels and other components to a tabbed pane, the pane can be
added to another container. Figure 10.15 shows what the example looks like when added
to a frame.

FIGURE 10.15
A tabbed pane
with five tabs dis-
played along the
top edge.

Summary

You now know how to paint a user interface onto a Java application window using the
components of the Swing package.

Swing includes classes for many of the buttons, bars, lists, and fields you would expect
to see on a program, along with more advanced components, such as sliders, dialog
boxes, progress bars, and menu bars. Interface components are implemented by creating
an instance of their class and adding it to a container such as a frame using the con-
tainer’s add () method or a similar method specific to the container, such as the tabbed
pane’s addTab () method.

Today, you developed components and added them to an interface. During the next two
days, you will learn about two things required to make a graphical interface usable: how
to arrange components together to form a whole interface and how to receive input from
a user through these components.

Quiz 299

Q&A

Q Can an application be created without Swing?

A Certainly. Swing is just an expansion on the Abstract Windowing Toolkit, and if
you are developing an applet for older versions of Java, you could use only AWT
classes to design your interface and receive input from a user. However, there’s no
comparison between Swing’s capabilities and those offered by the AWT. With
Swing, you can use many more components, control them in more sophisticated
ways, and count on better performance and more reliability.

Other user interface libraries also extend or compete with Swing. One of the most
popular is the Standard Widget Toolkit (SWT), an open source graphical user inter-
face library created by the Eclipse project. The SWT offers components that appear
and behave like the interface components offered by each operating system. For
more information, visit the website http://www.eclipse.org/swt.

Q In the Slider application, what does the pack() statement do?

A Every interface component has a preferred size, although this is often disregarded
by the layout manager used to arrange the component within a container. Calling a
frame or window’s pack () method causes it to be resized to fit the preferred size of
the components that it contains. Because the Slider application does not set a size
for the frame, calling pack () sets it to an adequate size before the frame is dis-
played.

Q When I try to create a tabbed pane, all that displays are the tabs—the panels
themselves are not visible. What can I do to correct this?

A Tabbed panes won’t work correctly until the contents of those panes have been
fully set up. If a tab’s panes are empty, nothing will be displayed below or beside
the tabs. Make sure that the panels you are putting into the tabs are displaying all
their components.

Quiz

Review today’s material by taking this three-question quiz.

Questions
1. What is the default look and feel in a Java application?
a. Motif
b. Windows
c. Metal

300 DAY 10: Building a Swing Interface

2. Which user interface component is common in software installation programs?
a. Sliders
b. Progress bars
c. Dialog boxes
3. Which Java class library includes a class for clickable buttons?
a. Abstract Windowing Toolkit
b. Swing
c. Both

Answers
1. c. If you want to use a look and feel other than Metal, you must explicitly establish
that look and feel using a method of the javax.swing.UIManager class.
2. b. Progress bars are useful when used to display the progress of a file-copying or

file-extracting activity.

3. c. Swing duplicates all the simple user interface components included in the
Abstract Windowing Toolkit.

Certification Practice

The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Given:

import java.awt.*;
import javax.swing.*;

public class AskFrame extends JFrame {
public AskFrame() {
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JSlider value = new JSlider(0, 255, 100);

add(value);
setSize (450, 150);
setVisible(true);
super();

}

public static void main(String[] arguments) {
AskFrame af = new AskFrame();
}

Exercises 301

What will happen when you attempt to compile and run this source code?

It compiles without error and runs correctly.

a.
b. It compiles without error but does not display anything in the frame.

(3

It does not compile because of the super () statement.

e

It does not compile because of the add () statement.

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 10 page and click the Certification Practice link.

Exercises

To extend your knowledge of the subjects covered today, try the following exercises:

1. Create an input dialog box that can be used to set the title of the frame that loaded
the dialog box.

2. Create a modified version of the Progress application that also displays the value
of the num variable in a text field.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java2ldays.com.

DAY 11:
Arranging Components
on a User Interface

If designing a graphical user interface were comparable to painting, you
could currently produce only one kind of art: abstract expressionism. You
can put components onto an interface, but you don’t have control over
where they go.

To arrange the components of a user interface in Java, you must use a
set of classes called layout managers.

Today, you learn how to use layout managers to arrange components into
an interface. You take advantage of the flexibility of Swing, which was
designed to be presentable on the many different platforms that support
the language.

You also learn how to put several different layout managers to work on
the same interface, an approach for the many times when one layout
manager doesn’t suit everything you have in mind for a program.

304

DAY 11: Arranging Components on a User Interface

Basic Interface Layout

As you learned yesterday, a graphical user interface designed with Swing is a fluid thing.
Resizing a window can wreak havoc on your interface, as components move to places on
a container that you might not have intended.

This fluidity is a necessary part of Java’s support for different platforms where there are
subtle differences in the way each platform displays things such as buttons, scrollbars,
and so on.

With programming languages such as Microsoft Visual Basic, a component’s location on
a window 1is precisely defined by its x,y coordinate. Some Java development tools allow
similar control over an interface through the use of their own windowing classes (and
there’s a way to do that in Java).

When using Swing, a programmer gains more control over the layout of an interface by
using layout managers.

Laying Out an Interface

A layout manager determines how components will be arranged when they are added to
a container.

The default layout manager for panels is the FlowLayout class. This class lets compo-
nents flow from left to right in the order that they are added to a container. When there’s
no more room, a new row of components begins immediately below the first, and the
left-to-right order continues.

Java includes a bunch of general-purpose layout managers: BorderlLayout, BoxLayout,
CardLayout, FlowLayout, GridBagLayout, and GridLayout. To create a layout manager
for a container, first call its constructor to create an instance of the class, as in this
example:

FlowLayout flo = new FlowLayout();

After you create a layout manager, you make it the layout manager for a container by
using the container’s setLayout () method. The layout manager must be established
before any components are added to the container. If no layout manager is specified, its
default layout will be used—F1lowLayout for panels and BorderLayout for frames and
windows.

The following statements represent the starting point for a frame that uses a layout man-
ager to control the arrangement of all the components that will be added to the frame:

Basic Interface Layout

import java.awt.*;
public class Starter extends javax.swing.JFrame {

public Starter() {
FlowLayout 1m = new FlowLayout();
setLayout(1lm);
// add components here

After the layout manager is set, you can start adding components to the container that it
manages. For some of the layout managers, such as FlowLayout, the order in which com-
ponents are added is significant. You’ll see this as you work with each of the managers.

Flow Layout

The FlowLayout class in the java.awt package is the simplest layout manager. It lays
out components in rows in a manner similar to the way words are laid out on a page—
from left to right until there’s no more room at the right edge and then on to the leftmost
point on the next row.

By default, the components on each row will be centered when you use the FlowLayout
() constructor with no arguments. If you want the components to be aligned along the
left or right edge of the container, the FlowLayout.LEFT or FlowLayout.RIGHT class vari-
able can be used as the constructor’s only argument, as in the following statement:

FlowLayout righty = new FlowLayout(FlowLayout.RIGHT);

The FlowLayout.CENTER class variable is used to specify a centered alignment for com-
ponents.

NOTE If you need to align components for a non-English speaking audi-
ence where left-to-right order does not make sense, the
FlowLayout.LEADING and FlowLayout.TRAILING variables can be
used. They set justification to either the side of the first compo-
nent in a row or the last, respectively.

The application in Listing 11.1 displays six buttons arranged by the flow layout manager.
Because the FlowLayout.LEFT class variable was used in the FlowLayout () constructor,
the components are lined up along the left side of the application window.

305

306 DAY 11: Arranging Components on a User Interface

LISTING 11.1 The Full Text of Alphabet.java

1: import java.awt.*;
2: import java.awt.event.*;
3: import javax.swing.*;

4.

5: public class Alphabet extends JFrame {
6: JButton a = new JButton("Alibi");
7-
8

JButton b = new JButton("Burglar");
: JButton ¢ = new JButton("Corpse");
9: JButton d = new JButton("Deadbeat");
10: JButton e = new JButton("Evidence");
11: JButton f = new JButton("Fugitive");
12:
13: public Alphabet() {
14: super("Alphabet");
15: setSize (360, 120);
16: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
17: FlowLayout 1m = new FlowLayout(FlowLayout.LEFT);
18: setLayout(1lm);
19 add(a);
20 add(b);
21 add(c);
22 add(d);
23 add(e);
24 add(f);
25: setVisible(true);
26: }
27:
28: public static void main(String[] arguments) {
29: Alphabet frame = new Alphabet();
30: }
31: }

Figure 11.1 shows the application running.

FIGURE 11.1
Six buttons
arranged in flow
layout.

In the Alphabet application, the flow layout manager uses the default gap of five pixels
between each component on a row and a gap of five pixels between each row. You can
change the horizontal and vertical gap between components with some extra arguments
to the FlowLayout () constructor.

Basic Interface Layout 307

The FlowLayout(int, int, int) constructor takes the following three arguments, in
order:

® The alignment, which must be one of five class variables of FlowLayout: CENTER,
LEFT, RIGHT, LEADING, or TRAILING
m The horizontal gap between components, in pixels

m The vertical gap, in pixels

The following constructor creates a flow layout manager with centered components, a
horizontal gap of 30 pixels, and a vertical gap of 10:

FlowLayout flo = new FlowLayout(FlowLayout.CENTER, 30, 10);

Box Layout

The next layout manager can be used to stack components from top to bottom or from
left to right. Box layout, managed by the BoxLayout class in the javax.swing package,
improves on flow layout by making sure that components always line up vertically or
horizontally—regardless of how their container is resized.

A box layout manager must be created with two arguments to its constructor: the con-
tainer it will manage and a class variable that sets up vertical or horizontal alignment.

The alignment, specified with class variables of the BoxLayout class, can be X_AXIS for
left-to-right horizontal alignment and Y_AXIS for top-to-bottom vertical alignment.

The following code sets up a panel to use vertical box layout:

JPanel optionPane = new JPanel();
BoxLayout box = new BoxLayout(optionPane,
BoxLayout.Y_AXIS);

Components added to the container will line up on the specified axis and be displayed at
their preferred sizes. In horizontal alignment, the box layout manager attempts to give
each component the same height. In vertical alignment, it attempts to give each one the
same width.

The Stacker application in Listing 11.2 contains a panel of buttons arranged with box
layout.

308 DAY 11: Arranging Components on a User Interface

LISTING 11.2 The Full Text of Stacker.java

import java.awt.*;
import javax.swing.*;

1:

2:

3:

4: public class Stacker extends JFrame {

5: public Stacker() {

6: super("Stacker");

7 setSize (430, 150);

8: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
9: // create top panel

10: JPanel commandPane = new JPanel();

11: BoxLayout horizontal = new BoxLayout(commandPane,
12: BoxLayout.X_AXIS);

13: commandPane.setlLayout (horizontal);

14: JButton subscribe = new JButton("Subscribe");
15: JButton unsubscribe = new JButton("Unsubscribe");
16: JButton refresh = new JButton("Refresh");

17: JButton save = new JButton("Save");

18: commandPane.add (subscribe);

19: commandPane.add(unsubscribe);

20: commandPane.add (refresh);

21: commandPane.add(save);

22: // create bottom panel

23: JPanel textPane = new JPanel();

24: JTextArea text = new JTextArea(4, 70);

25: JScrollPane scrollPane = new JScrollPane(text);
26: // put them together

27: FlowLayout flow = new FlowLayout();

28: setLayout(flow);

29: add (commandPane) ;

30: add(scrollPane);

31: setVisible(true);

32: }

33:

34: public static void main(String[] arguments) {

35: Stacker st = new Stacker();

36: }

37: }

When the class is compiled and run, the output should resemble Figure 11.2.

FIGURE 11.2
A user interface
with buttons
arranged with
the box layout
manager.

Basic Interface Layout 309

The panel of buttons along the top edge of the interface is stacked horizontally. If the
second argument to the constructor in lines 11-12 was BoxLayout.Y_AXIS, the buttons
would be arranged vertically instead.

Grid Layout

The grid layout manager arranges components into a grid of rows and columns.
Components are added first to the top row of the grid, beginning with the leftmost grid
cell and continuing to the right. When all the cells in the top row are full, the next com-
ponent is added to the leftmost cell in the second row of the grid—if there is a second
row—and so on.

Grid layout managers are created with the GridLayout class, which belongs to the
java.awt package. Two arguments are sent to the GridLayout constructor—the number
of rows in the grid and the number of columns. The following statement creates a grid
layout manager with 10 rows and 3 columns:

GridLayout gr = new GridLayout (10, 3);

As with flow layout, you can specify a vertical and a horizontal gap between components
with two extra arguments. The following statement creates a grid layout with 10 rows
and 3 columns, a horizontal gap of 5 pixels, and a vertical gap of 8 pixels:

GridLayout gr2 = new GridLayout(10, 3, 5, 8);

The default gap between components under a grid layout is O pixels in both vertical and
horizontal directions.

Listing 11.3 contains an application that creates a grid with three rows, three columns,
and a 10-pixel gap between components in both the vertical and horizontal directions.

LISTING 11.3 The Full Text of Bunch.java

1: import java.awt.*;
2: import java.awt.event.*;
3: import javax.swing.*;
4:
5: public class Bunch extends JFrame {
6: JButton marcia = new JButton("Marcia");
7: JButton carol = new JButton("Carol");
8: JButton greg = new JButton("Greg");
9: JButton jan = new JButton("Jan");
10: JButton alice = new JButton("Alice");
11: JButton peter = new JButton("Peter");
12: JButton cindy = new JButton("Cindy");
13: JButton mike = new JButton("Mike");
14: JButton bobby = new JButton("Bobby");

310

DAY 11: Arranging Components on a User Interface

LISTING 11.3 Continued

16: public Bunch() {

17: super("Bunch");

18: setSize (260, 260);

19: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
20: JPanel pane = new JPanel();

21: GridLayout family = new GridLayout(3, 3, 10, 10);
22: pane.setlLayout(family);

23: pane.add(marcia);

24: pane.add(carol);

25: pane.add(greg);

26: pane.add(jan);

27: pane.add(alice);

28: pane.add(peter);

29: pane.add(cindy);

30: pane.add(mike);

31: pane.add(bobby);

32: add(pane);

33: setVisible(true);

34: }

35:

36: public static void main(String[] arguments) {
37: Bunch frame = new Bunch();

38: }

39: }

Figure 11.3 shows this application.

FIGURE 11.3
Nine buttons
arranged in a 3x3
grid layout.

One thing to note about the buttons in Figure 11.3 is that they expanded to fill the space
available to them in each cell. This is an important difference between grid layout and
some of the other layout managers, which display components at a much smaller size.

Basic Interface Layout 311

Border Layout

Border layouts, which are created by using the BorderLayout class in java.awt, divide a
container into five sections: north, south, east, west, and center. The five areas of Figure
11.4 show how these sections are arranged.

FIGURE 11.4
Components
arranged under
border layout.

Under border layout, the components in the four compass points take up as much space
as they need—the center gets whatever space is left over. Ordinarily, this results in an
arrangement with a large central component and four thin components around it.

A border layout is created with either the BorderLayout () or BorderLayout(int,
int) constructors. The first constructor creates a border layout with no gap between any
of the components. The second constructor specifies the horizontal gap and vertical gap,
respectively.

After you create a border layout and set it up as a container’s layout manager, compo-
nents are added using a call to the add () method that’s different from what you have
seen previously:

add(Component, String)
The first argument is the component that should be added to the container.

The second argument is a BorderLayout class variable that indicates to which part of the
border layout to assign the component. The variables NORTH, SOUTH, EAST, WEST, and
CENTER can be used.

The second argument to this method is the component that should be added to the con-
tainer.

312

DAY 11: Arranging Components on a User Interface

The following statement adds a button called quitButton to the north portion of a border
layout:

add (quitButton, BorderLayout.NORTH"");

Listing 11.4 contains the application used to produce Figure 11.4.

LISTING 11.4 The Full Text of Border. java

1: import java.awt.*;

2: import java.awt.event.*;

3: import javax.swing.*;

4:

5: public class Border extends JFrame {

6: JButton nButton = new JButton("North");
7: JButton sButton = new JButton("South");
8: JButton eButton = new JButton("East");
9: JButton wButton = new JButton("West");
10: JButton cButton = new JButton("Center");
11:

12: public Border() {

13: super("Border");

14: setSize (240, 280);

15: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
16: setLayout(new BorderLayout());

17: add(nButton, BorderLayout.NORTH);
18: add(sButton, BorderLayout.SOUTH);
19: add(eButton, BorderLayout.EAST);
20: add(wButton, BorderLayout.WEST);
21: add(cButton, BorderLayout.CENTER);
22: }
23:
24: public static void main(String[] arguments) {
25: Border frame = new Border();
26: frame.setVisible(true);
27: }
28: }

Mixing Layout Managers

At this point, you might be wondering how Java’s layout managers can be useful for the
graphical user interfaces you want to design. Choosing a layout manager is an experience
akin to Goldilocks checking out the home of the three bears—"This one is too square!
This one is too disorganized! This one is too strange!”

To find the layout that is just right, you often have to combine more than one manager on
the same interface.

Card Layout 313

This is done by putting several containers inside a larger container (such as a frame) and
giving each smaller container its own layout manager.

The container to use for these smaller containers is the panel, which is created from the
JPanel class. Panels are containers used to group components together. There are two
things to keep in mind when working with panels:

m The panel is filled with components before it is put into a larger container.

m The panel has its own layout manager.

Panels are created with a simple call to the constructor of the JPanel class, as shown in
the following example:

JPanel pane = new JPanel();
The layout method is set for a panel by calling the setLayout () method on that panel.

The following statements create a layout manager and apply it to a JPanel object called
pane:

FlowLayout flo = new FlowLayout();
pane.setlLayout(flo);

Components are added to a panel by calling the panel’s add () method, which works the
same for panels as it does for some other containers.

The following statements create a text field and add it to a JPanel object called pane:

JTextField nameField = new JTextField(80);
pane.add(nameField);

You’ll see several examples of panel use in the rest of today’s sample programs.

Card Layout

Card layouts differ from the other layouts because they hide some components from
view. A card layout is a group of containers or components displayed one at a time, in
the same way that a blackjack dealer reveals one card at a time from a deck. Each con-
tainer in the group is called a card.

If you have used a wizard in an installation program, you have worked with a program
that uses card layout.

The most common way to use a card layout is to use a panel for each card. Components
are added to the panels first, and then the panels are added to the container that is set to
use card layout.

314

DAY 11: Arranging Components on a User Interface

A card layout is created from the CardLayout class (in the java.awt package) with a
simple constructor:

CardLayout cc = new CardLayout();

The setLayout () method is used to make this the layout manager for the container, as in
the following statement:

setLayout(cc);

After you set a container to use the card layout manager, you must use a slightly differ-
ent add () method call to add cards to the layout.

The method to use is add (Component, String). The first argument specifies the con-
tainer or component that serves as a card. If it is a container, all components must have
been added to it before the card is added.

The second argument to the add () method is a string that represents the name of the
card. This can be anything you want to call the card. You might want to number the cards
in some way and use the number in the name, as in "Card 1", "Card 2", "Card 3", and
SO on.

The following statement adds a panel object named options to a container and gives this
card the name "Options Card":

add(options, "Options Card");

When a container using card layout is displayed for the first time, the visible card will be
the first card added to the container.

Subsequent cards can be displayed by calling the show() method of the layout manager,
which takes two arguments:

m The container holding all the cards

® The name of the card

The following statement calls the show() method of a card layout manager called cc:
cc.show(this, "Fact Card");

The this keyword would be used in a frame or window governed by card layout—it
refers to the object inside which the cc.show() statement appears. "Fact Card" is the
name of the card to reveal. When a card is shown, the previously displayed card will be
obscured. Only one card in a card layout can be viewed at a time

In a program that uses the card layout manager, a card change will usually be triggered
by a user’s action. For example, in a program that displays mailing addresses on different
cards, the user could select a card for display by selecting an item in a scrolling list.

Card Layout 315

Using Card Layout in an Application

Today’s next project demonstrates. both card layout and the use of different layout man-
agers within the same graphical user interface.

The SurveyWizard class is a panel that implements a wizard interface: a series of simple
questions accompanied by a Next button that is used to see the next question. The last
question has a Finish button instead.

Figure 11.5 shows this panel.

FIGURE 11.5
Using a card lay-
out for a wizard-
style interface.

The easiest way to implement a card-based layout is to use panels. The project uses pan-
els heavily:

m The SurveyWizard class is a panel that holds all the cards.
m The SurveyPanel helper class is a panel that holds one card. 11

m Each SurveyPanel object contains three panels stacked on top of each other.

The SurveyWizard and SurveyPanel classes are both panels because that’s the easiest
component to use when working with card layout. Each card is created as a panel and
added to a containing panel that will be used to show them in sequence.

This takes place in the SurveyWizard constructor, using two instance variables, a card
layout manager, and an array of three SurveyPanel objects:

SurveyPanel[] ask = new SurveyPanel[3];
CardLayout cards = new CardLayout();

The constructor sets the class to use the layout manager, creates each SurveyPanel
object, and then adds it to the class:

setlLayout(cards);

String questioni = "What is your gender?";

String[] responsesi = { "female", "male", "not telling" };
ask[@] = new SurveyPanel(questioni, responsesi, 2);
add(ask[0Q], "Card 0");

Each SurveyPanel object is created with. three arguments to the constructor: the text of
the question, an array of possible responses, and the element number of the default
answer.

316

DAY 11: Arranging Components on a User Interface

In the preceding code, the question “What is your gender?” has the responses “female,”
“male,” or “not telling.” The response at position 2, “not telling,” is the default.

The SurveyPanel constructor uses a label component to hold the question and an array
of radio buttons to hold the responses:

SurveyPanel(String ques, String[] resp, int def) {
question = new JLabel(ques);
response = new JRadioButton[resp.length];
// more to come

The class uses grid layout to arrange its components into a grid with three vertical rows
and one horizontal column. Each component placed in the grid is a panel.

First, a panel is created to hold the question label:

JPanel sub1 = new JPanel();
JLabel quesLabel = new JLabel(ques);
subi1.add(quesLabel);

The default layout for panels, flow layout with centered alignment, determines the place-
ment of the label on the panel.

Next, a panel is created to hold the possible responses. A for loop iterates through the
string array that holds the text of each response. This text is used to create a radio button.
The second argument of the JRadioButton constructor determines whether it is selected.
This is implemented with the following code:

JPanel sub2 = new JPanel();
for (int 1 = 0; i < resp.length; i++) {
if (def == 1i) {
response[i] = new JRadioButton(resp[i], true);
} else {
response[i] = new JRadioButton(resp[i], false);
}
group.add(response[i]);
sub2.add(response[i]);

The last panel holds the Next and Finish buttons:

JPanel sub3 = new JPanel();
nextButton.setEnabled(true);
sub3.add(nextButton);
finalButton.setEnabled(false);
sub3.add(finalButton);

Card Layout 317

Now that the three panels have been fully. set up, they are added to the SurveyPanel
interface, which completes the work of the constructor method:

GridLayout grid = new GridLayout(3, 1);

setLayout(grid);

add(sub1);

add(sub2);
add(sub3);

There’s one extra wrinkle in the SurveyPanel class—a method that enables the Finish
button and disables the Next button when the last question has been reached:
void setFinalQuestion(boolean finalQuestion) {

if (finalQuestion) {

nextButton.setEnabled(false);
finalButton.setEnabled(true);

In a user interface that uses card. layout, the display of each card usually takes place in
response to an action by the user.

These actions are called events, and they are covered on Day 12, “Responding to User
Input.”

A brief introduction demonstrates how the SurveyPanel class is equipped to handle but-
ton clicks.

The class implements ActionListener, an interface in the java.awt.event package:

public class SurveyWizard extends JPanel implements ActionListener {
// more to come

}

This interface indicates that the class can respond to action events, which represent but-
ton clicks, menu choices, and similar user input.

Next, each button’s addActionListener (Object) method is called:

ask[0].nextButton.addActionListener(this);
ask[@].finalButton.addActionListener(this);

Listeners are classes that monitor specific. kinds of user input. The argument to
addActionListener() is the class that’s looking for action events. Using this as the
argument indicates that the SurveyPanel class handles this job.

318

DAY 11: Arranging Components on a User Interface

The ActionListener interface includes only one method:

public void actionPerformed(Action evt) {
// more to come

}

This method is called when a component being listened to generates an action event. In
the SurveyPanel class, this happens whenever a button is clicked.

In SurveyPanel, this method uses an instance variable that keeps track of which card to
display:

int currentCard = 0;

Every time a button is clicked and actionPerformed() is called, this variable is incre-
mented, and the card layout manager’s show(Container, String) method is called to
display a new card. If the last card has been displayed, the Finish button is disabled.

Here’s the complete method:

public void actionPerformed(ActionEvent evt) {
currentCard++;
if (currentCard >= ask.length) {
ask[2].finalButton.setEnabled(false);
}

cards.show(this, "Card " + currentCard);

Listing 11.5 shows the full SurveyWizard class.

LISTING 11.5 The Full Text of SurveyWizard. java

1: import java.awt.*;

2: import java.awt.event.*;

3: import javax.swing.*;

4:

5: public class SurveyWizard extends JPanel implements ActionListener {
6: int currentCard = 0;

7: CardLayout cards = new CardLayout();

8: SurveyPanel[] ask = new SurveyPanel[3];

9:

10: public SurveyWizard() {

11: super();

12: setSize (240, 140);

13: setLayout(cards);

14: /] set up survey

15: String questioni = "What is your gender?";

16: String[] responsesi = { "female", "male", "not telling" };

Card Layout

LISTING 11.5 Continued

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:

}

ask[@] = new SurveyPanel(questioni, responsesi, 2);

String question2 = "What is your age?";

String[] responses2 = { "Under 25", "25-34", "35-54",
"Over 54" };

ask[1] = new SurveyPanel(question2, responses2, 1);

String question3 = "How often do you exercise each week?";

String[] responses3 = { "Never", "1-3 times", "More than 3" };

ask[2] = new SurveyPanel(question3, responses3, 1);

ask[2].setFinalQuestion(true);

for (int i = 0; i < ask.length; i++) {
ask[i].nextButton.addActionListener(this);
ask[i].finalButton.addActionListener(this);
add(ask[i], "Card " + 1i);

}

public void actionPerformed(ActionEvent evt) {
currentCard++;
if (currentCard >= ask.length) {
System.exit(0);
I3

cards.show(this, "Card " + currentCard);

class SurveyPanel extends JPanel {

JLabel question;

JRadioButton[] response;

JButton nextButton = new JButton("Next");
JButton finalButton = new JButton("Finish");

SurveyPanel(String ques, String[] resp, int def) {
super();
setSize (160, 110);
question = new JLabel(ques);
response = new JRadioButton[resp.length];
JPanel sub1 = new JPanel();
ButtonGroup group = new ButtonGroup();
JLabel quesLabel = new JLabel(ques);
subi.add(quesLabel);
JPanel sub2 = new JPanel();
for (int 1 = 0; i < resp.length; i++) {
if (def == 1i) {
response[i] = new JRadioButton(resp[i], true);
} else {
response[i]

new JRadioButton(resp[i], false);
}

group.add(response[i]);

sub2.add(response[i]);

319

11

320

DAY 11: Arranging Components on a User Interface

LISTING 11.5 Continued

66: }

67: JPanel sub3 = new JPanel();

68: nextButton.setEnabled(true);

69: sub3.add(nextButton);

70: finalButton.setEnabled(false);

71: sub3.add(finalButton);

72: GridLayout grid = new GridLayout(3, 1);
73: setLayout(grid);

74: add(sub1);

75: add(sub2);

76: add(sub3);

77: }

78:

79: void setFinalQuestion(boolean finalQuestion) {
80: if (finalQuestion) {

81: nextButton.setEnabled(false);

82: finalButton.setEnabled(true);

83: }

84: }

85: }

After the SurveyWizard class has been compiled, it can be added to any Swing user
interface.

Listing 11.6 contains a simple frame . application that displays a survey panel.

LISTING 11.6 The Full Text of SurveyFrame. java

: import java.awt.*;
: import javax.swing.*;

1
2

3:

4: public class SurveyFrame extends JFrame {

5: public SurveyFrame() {

6: super("Survey");

7 setSize (290, 140);

8: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
9: SurveyWizard wiz = new SurveyWizard();

10: add(wiz);

11: setVisible(true);

12: }

13:

14: public static void main(String[] arguments) {
15: SurveyFrame surv = new SurveyFrame();

16: }

17: }

The running application was shown earlier in Figure 11.5.

Grid Bag Layout 321

Grid Bag Layout

The last of the layout managers available through Java is grid bag layout, a complex
extension of the grid layout manager. A grid bag layout differs from grid layout in the
following ways:

A component can take up more than one cell in the grid.

The proportions between different rows and columns do not have to be equal.

A component does not have to fill the entire cell (or cells) that it occupies.

A component can be aligned along any edge of a cell.

A grid bag layout requires the GridBagLayout and GridBagConstraints classes, which
both are part of the java.awt package. GridBaglLayout is the layout manager, and
GridBagConstraints defines the placement of components in the grid.

The constructor for the grid bag layout manager takes no arguments and can be applied
to a container like any other manager. The following statements could be used in a frame
or window’s constructor method to use grid bag layout in that container:

Container pane = getContentPane();
GridBagLayout bag = new GridBaglLayout();
pane.setlLayout(bag);

In a grid bag layout, each component uses a GridBagConstraints object to dictate the
cell or cells that it occupies in the grid, its size, and other aspects of its presentation.

A GridBagConstraints object has 11 instance variables that determine component
placement:

m gridx—The x position of the cell that holds the component (if it spans several
cells, the x position of the upper-left portion of the component)

gridy—The y position of the cell or its upper-left portion

gridwidth—The number of cells the component occupies in a horizontal direction

gridheight—The number of cells the component occupies in a vertical direction

weightx—A value that indicates the component’s size relative to other components
on the same row of the grid

m weighty—A value that indicates its size relative to components on the same grid
column

® anchor—A value that determines where the component is displayed within its cell
(if it doesn’t fill the entire cell)

m fill—A value that determines whether the component expands horizontally or
vertically to fill its cell

322

DAY 11: Arranging Components on a User Interface

m insets—An Insets object that sets the whitespace around the component inside
its cell

®m ipadx—The amount to expand the component’s width beyond its minimum size

m ipady—The amount to expand the component’s height

With the exception of insets, all these can hold integer values. The easiest way to use
this class is to create a constraints object with no arguments and set its variables individ-
ually. Variables not explicitly set use their default values.

The following code creates a grid bag layout and a constraints object used to place com-
ponents in the grid:

Container pane = getContentPane();

GridBagLayout gridbag = new GridBaglLayout();
GridBagConstraints constraints = new GridBagConstraints();
pane.setLayout(gridbag);

The constraints object can be configured with a set of assignment statements:
constraints.gridx = 0;

constraints.gridy = 0;

constraints.gridwidth = 2;

constraints.gridheight = 1;

constraints.weightx = 100;

constraints.weighty = 100;

constraints.fill = GridBagConstraints.NONE;

constraints.anchor = GridBagConstraints.CENTER;

This code sets up a constraint that can be used to put a component at grid position (0,0)
that is two cells wide and one cell tall.

The component’s size within its cell and position are set with class variables of
GridBagConstraints. The component will be centered in its cell (an anchor value of
CENTER) and does not expand to fill the entire cell (a i1l value of NONE).

The weightx and weighty values only make sense in relation to the same values for
other components, as described in detail later in this section.

A component is added to a grid bag layout in two steps:

1. The layout manager’s setConstraints(Component, GridBagConstraints)
method is called with the component and constraints objects as arguments.

2. The component is added to a container that uses that manager.

Grid Bag Layout 323

The following statements continue the preceding example, adding a button to the layout:

JButton okButton = new JButton("OK");
gridbag.setConstraints(okButton, constraints);
pane.add(okButton);

A constraints object must be set before the placement of each component in the grid.

Designing the Grid

Because grid bag layout is complex, it helps to do some preparatory work before using
it—either by sketching out the desired user interface on graph paper or making notes in
some other form.

Figure 11.6 shows a sketch on graph paper for the layout of a panel in an email pro-

gram’s user interface.

FIGURE 11.6
Designing a user
interface on a grid.

11

The panel drawn in Figure 11.6 contains a group of labels and text fields that will be
filled out when sending a message.

A grid bag layout suits this interface because it contains components of different widths.
All the labels have the same width, but the To and Subject text fields are larger than the
CC and BCC fields. In grid bag layout, each component must have its own cell and can-
not share it with any other components. A component can take up more than one cell.

The sketch in Figure 11.6 does not indicate individual cells, but it does mark off values
from 0 to 100 to indicate the width of components. These are intended as percentage val-
ues rather than exact sizes, which is a convenient way to calculate weightx and weighty
values.

NOTE At this point, you might be wondering why there aren’t percentage
values from @ to 100 running vertically alongside the sketch. The
email interface doesn’t need them—all the components will have
the same height (and, thus, the same weighty value).

324

DAY 11: Arranging Components on a User Interface

After the user interface has been sketched to show the relative sizes of components, the
cell position and size of each component can be determined.

The width of each component in the email interface was set to multiples of 10, making it
easy to use a grid with 10 columns.

Like grid layout, cells begin with (0,0) in the upper-left corner. The x coordinate is the
column, and the y coordinate is the row. They increase as you move to the left and down-
ward, respectively.

Figure 11.7 shows the (x,y) position and the width of each component, in cells.

0,1 (1 wide) 1,1 (9 wide)
0,0 (1 wide) 1,0 (9 wide)

FIGURE 11.7

Choosing cells for
components in the
grid.

0,2 (1 wide) 5,2 (1 wide)
1,2 (4 wide) 6,2 (4 wide)

Creating the Grid

With a well-planned sketch on graph paper, you can write the code necessary to imple-
ment the user interface.

The following statements in the email panel’s constructor set it to use grid bag layout and
add a To label and text field to the panel:

public MessagePanel() {
GridBagLayout gridbag = new GridBaglLayout();
setLayout(gridbag);
// add the label
JLabel toLabel = new JLabel("To: ");
GridBagConstraints constraints = new GridBagConstraints();
constraints.gridx = 0;
constraints.gridy = 0;
constraints.gridwidth = 1;
constraints.gridheight = 1;
constraints.weightx = 10;
constraints.weighty = 100;
constraints.fill = GridBagConstraints.NONE;

Grid Bag Layout 325

constraints.anchor = GridBagConstraints.EAST;
gridbag.setConstraints(toLabel, constraints);
add(toLabel);

// add the text field

JTextField to = new JTextField();

constraints = new GridBagConstraints();
constraints.gridx = 1;

constraints.gridy = 0;

constraints.gridwidth = 9;
constraints.gridheight = 1;
constraints.weightx = 90;

constraints.weighty = 100;

constraints.fill = GridBagConstraints.HORIZONTAL;
constraints.anchor = GridBagConstraints.WEST;
gridbag.setConstraints(to, constraints);
add(to);

The label and text fields each use their own constraints object (reusing the constraints
variable). Their gridx and gridy values put the label at position (0,0) and the text field
at position (0,1). The gridwidth values make the label one cell wide and the text field
nine cells wide.

They use the fill value differently: The label has NONE, so it does not expand in either
direction, and the text field has HORIZONTAL, so it expands horizontally only. (The other
possible values are VERTICAL or BOTH.)

They also use anchor differently. The label is aligned along the right edge of the cell
through the EAST class variable. The text field aligns to the left edge through WEST.

Each of the compass directions and CENTER can be used: NORTH, NORTHEAST, EAST,
SOUTHEAST, SOUTH, SOUTHWEST, WEST, and NORTHWEST.

The most complex aspect of grid bag constraints are the weightx and weighty values.
These variables hold arbitrary integer (or double) values that indicate how big compo-
nents should be in relation to each other.

The To label has a weightx of 10, and the adjacent text field has a weightx of 90, using
the same scale as the sketch in Figure 11.5. These values make the text field nine times
as large as the label. The values are arbitrary: If the label were 3 and the text field were
27, the field would still be nine times as large.

When you don’t need to give components different weights, use the same value through-
out a row or column. For instance, the To label and field both have weighty values of
100, so they have the same height as any other components below them in the same
column.

326 DAY 11: Arranging Components on a User Interface

Setting up grid bag constraints requires a lot of repetitive code. To save some typing, the
email panel’s class has a method to set a component’s constraints and add it to the panel:

private void addComponent(Component component, int gridx, int gridy,
int gridwidth, int gridheight, int weightx, int weighty, int fill,
int anchor) {

GridBagConstraints constraints = new GridBagConstraints();
constraints.gridx = gridx;

constraints.gridy = gridy;
constraints.gridwidth = gridwidth;
constraints.gridheight = gridheight;
constraints.weightx = weightx;
constraints.weighty = weighty;

constraints.fill = fill;

constraints.anchor = anchor;
gridbag.setConstraints(component, constraints);
add(component) ;

This method could be used in any panel class that uses a GridBaglLayout manager stored
in an instance variable named gridbag. It doesn’t use the insets, ipadx, and ipady vari-
ables of the GridBagConstraints class, so they retain their default values.

The following statements call this addComponent () method to add a Subject label and
text field to the panel:

JLabel subjectlLabel = new JLabel("Subject: ");

addComponent(subjectLabel, 0, 1, 1, 1, 10, 100, GridBagConstraints.NONE,
GridBagConstraints.EAST);

JTextField subject = new JTextField();

addComponent(subject, 1, 1, 9, 1, 90, 100, GridBagConstraints.HORIZONTAL,
GridBagConstraints.WEST);

The panel is completed with statements to add CC and BCC labels and fields:

// add a CC label at (0,2) 1 cell wide

JLabel ccLabel = new JLabel("CC: ");

addComponent(ccLabel, 0, 2, 1, 1, 10, 100, GridBagConstraints.NONE,
GridBagConstraints.EAST);

// add a CC text field at (1,2) 4 cells wide

JTextField cc = new JTextField();

addComponent(cc, 1, 2, 4, 1, 40, 100, GridBagConstraints.HORIZONTAL,
GridBagConstraints.WEST);

// add a BCC label at (5,2) 4 cells wide

JLabel bccLabel = new JLabel("BCC: ");

addComponent (bccLabel, 5, 2, 1, 1, 10, 100, GridBagConstraints.NONE,
GridBagConstraints.EAST);

// add a BCC text field at (6,2) 4 cells wide

Grid Bag Layout

JTextField bcc = new JTextField();
addComponent(bcc, 6, 2, 4, 1, 40, 100, GridBagConstraints.HORIZONTAL,
GridBagConstraints.WEST);

These four components share the same row, which makes their weightx values impor-
tant. The labels are set to 10 each, and the text fields are set to 40 each, as noted in the
initial sketch.

Listing 11.7 shows the full source code of the email panel class, MessagePanel.

LISTING 11.7 The Full Text of MessagePanel. java

1: import java.awt.*;

2: import javax.swing.*;

3:

4: public class MessagePanel extends JPanel {

5: GridBagLayout gridbag = new GridBaglLayout();

6:

7 public MessagePanel() {

8: super();

9: GridBagConstraints constraints;

10: setLayout(gridbag);

11:

12: JLabel toLabel = new JLabel("To: ");

13: JTextField to = new JTextField();

14: JLabel subjectLabel = new JLabel("Subject: ");

15: JTextField subject = new JTextField();

16: JLabel ccLabel = new JLabel("CC: ");

17: JTextField cc = new JTextField();

18: JLabel bccLabel = new JLabel("BCC: ");

19: JTextField bcc = new JTextField();
20:
21: addComponent(toLabel, 0, 0, 1, 1, 10, 100,
22: GridBagConstraints.NONE, GridBagConstraints.EAST);
23: addComponent(to, 1, 0, 9, 1, 90, 100,
24: GridBagConstraints.HORIZONTAL, GridBagConstraints.WEST);
25: addComponent (subjectLabel, 0, 1, 1, 1, 10, 100,
26: GridBagConstraints.NONE, GridBagConstraints.EAST);
27: addComponent (subject, 1, 1, 9, 1, 90, 100,
28: GridBagConstraints.HORIZONTAL, GridBagConstraints.WEST);
29: addComponent(ccLabel, 0, 2, 1, 1, 10, 100,
30: GridBagConstraints.NONE, GridBagConstraints.EAST);
31: addComponent(cc, 1, 2, 4, 1, 40, 100,
32: GridBagConstraints.HORIZONTAL, GridBagConstraints.WEST);
33: addComponent (bccLabel, 5, 2, 1, 1, 10, 100,
34: GridBagConstraints.NONE, GridBagConstraints.EAST);
35: addComponent (bcc, 6, 2, 4, 1, 40, 100,

36: GridBagConstraints.HORIZONTAL, GridBagConstraints.WEST);

327

11

328

DAY 11: Arranging Components on a User Interface

LISTING 11.7 Continued

37: }

38:

39: private void addComponent(Component component, int gridx, int gridy,
40: int gridwidth, int gridheight, int weightx, int weighty, int fill,
41: int anchor) {

42:

43: GridBagConstraints constraints = new GridBagConstraints();

44: constraints.gridx = gridx;

45: constraints.gridy = gridy;

46: constraints.gridwidth = gridwidth;

47: constraints.gridheight = gridheight;

48: constraints.weightx = weightx;

49: constraints.weighty = weighty;

50: constraints.fill = fill,;

51: constraints.anchor = anchor;

52: gridbag.setConstraints(component, constraints);

53: add(component) ;

54: }

55: }

After the panel has been compiled, it can be used in any graphical user interface (pre-
sumably this panel would be incorporated into an email program’s interface for writing
messages).

Figure 11.8 shows how it looks when added to a simple frame 320 pixels wide by 120
pixels tall.

FIGURE 11.8
Viewing the panel
in an application’s
user interface.

Because the panel does not stipulate its own size, the frame’s dimensions determine the
height and width of the panel. This fluidity demonstrates a strength of Swing’s grid and
grid bag layouts—they enable components to adapt to the space available to them in an
interface.

Summary

Cell Padding and Insets

The email panel example doesn’t use three GridBagConstraints variables: insets,
ipadx, and ipady. The ipadx and ipady constraints control padding, the extra space
around an individual component. By default, no components have extra space around
them (which is easiest to see in components that fill their cells). The ipadx variable adds
space to either side of the component, and ipady adds it above and below.

The horizontal and vertical gaps that appear when you create a new layout manager (or
use ipadx and ipady in grid bag layouts) are used to determine the amount of space
between components in a panel. Insets, however, are used to determine the amount of
space around the panel itself. The Insets class includes values for the top, bottom, left,
and right insets, which are then used when the panel itself is drawn.

Insets determine the amount of space between the edges of a panel and that panel’s com-
ponents.

The following statement creates an Insets object that specifies 20 pixels of insets above
and below and 13 pixels to the left and right:

Insets whitespace = new Insets(20, 13, 20, 13);

Insets can be established in any container by overriding its getInsets() method and
returning an Insets object, as in this example:

public Insets getInsets() {
return new Insets(10, 30, 10, 30);
}

Summary

Abstract expressionism goes only so far, as you have seen today. Layout managers
require some adjustment for people who are used to more precise control over the place
that components appear on an interface.

You now know how to use the five different layout managers and panels. As you work
with the Abstract Windowing Toolkit, you’ll find that it can approximate any kind of
interface through the use of nested containers and different layout managers.

After you master the development of a user interface in Java, your programs can offer
something that most other visual programming languages can’t: an interface that works
on multiple platforms without modification.

329

330 DAY 11: Arranging Components on a User Interface

Q&A

Q I really dislike working with layout managers; they’re either too simplistic or
too complicated (the grid bag layout, for example). Even with a lot of tinker-
ing, I can never get my user interface to look like I want it to. All I want to do
is define the sizes of my components and put them at an x,y position on the
screen. Can I do this?

A It’s possible but problematic. Java was designed in such a way that a program’s
graphical user interface could run equally well on different platforms and with dif-
ferent screen resolutions, fonts, screen sizes, and the like. Relying on pixel coordi-
nates can cause a program that looks good on one platform to be unusable on
others, where layout disasters such as components overlapping each other or get-
ting cut off by the edge of a container may result. Layout managers, by dynami-
cally placing elements on the screen, get around these problems. Although there
might be some differences among the end results on different platforms, the differ-
ences are less likely to be catastrophic.

If none of that is persuasive, here’s how to ignore my advice: Set the content
pane’s layout manager with null as the argument, create a Rectangle object (from
the java.awt package) with the x,y position, width, and height of the component
as arguments, and then call the component’s setBounds (Rectangle) method with
that rectangle as the argument.

The following application displays a 300-by-300 pixel frame with a Click Me but-
ton at the (x,y) position 10, 10 that is 120 pixels wide by 30 pixels tall:

import java.awt.*;
import javax.swing.*;

public class Absolute extends JFrame {

public Absolute() {
super("Example");
setSize (300, 300);
Container pane = getContentPane();
pane.setLayout(null);
JButton myButton = new JButton("Click Me");
myButton.setBounds(new Rectangle(10, 10, 120, 30));
pane.add(myButton);
setContentPane(pane);
setVisible(true);

}

public static void main(String[] arguments) {
Absolute ex = new Absolute();

}
}

You can find out more about setBounds () in the Component class. The documenta-
tion for the Java class library can be found on the Web at http://java.sun.com/
javase/6/docs/api.

Quiz 331

Quiz

Review today’s material by taking this three-question quiz.

Questions
1. What is the default layout manager for a panel in Java?
a. None
b. BorderLayout
c. FlowLayout

2. Which layout manager uses a compass direction or a reference to the center when
adding a component to a container?

a. BorderLayout
b. MapLayout
c. FlowLayout

3. If you want a grid layout in which a component can take up more than one cell of
the grid, which layout should you use?

a. GridLayout
b. GridBaglLayout 11

c. None; it isn’t possible to do that.

Answers
1. c.
2. a.
3. b

Certification Practice

The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Given:
import java.awt.*;

import javax.swing.*;

public class ThreeButtons extends JFrame {
public ThreeButtons() {
super("Program");

332 DAY 11: Arranging Components on a User Interface

Which statement should replace // answer goes here to make the frame display all

}

public static void main(String[] arguments) {

}

setSize (350, 225);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JButton alpha = new JButton("Alpha");
JButton beta = new JButton("Beta");
JButton gamma = new JButton("Gamma");
JPanel content = new JPanel();

// answer goes here
content.add(alpha);
content.add(beta);
content.add(gamma);

add(content);

pack();

setVisible(true);

ThreeButtons b3 = new ThreeButtons();

three buttons side by side?

(3

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 11 page and click the Certification Practice link.

content.

content.

. content.setlLayout(null);

a
b. content.setLayout(new FlowLayout());

setLayout (new BorderLayout());

Exercises

To extend your knowledge of the subjects covered today, try the following exercises:

1. Create a user interface that displays a calendar for a single month, including head-
ings for the seven days of the week and a title of the month across the top.

2. Create an interface that incorporates more than one layout manager.

Where applicable, exercise solutions are offered on the book’s website at http://www.

java2ldays.com.

setLayout (new GridLayout(3,1));

DAY 12:
Responding to User
Input

To make a graphical user interface completely functional in a Java pro-
gram, you must make the interface receptive to user events.

Swing handles events with a set of interfaces called event listeners. You
create a listener object and associate it with the user interface compo-
nent being monitored.

Today, you learn how to add listeners of all kinds to your Swing programs,
including those that handle action events, mouse events, and other inter-
action.

When you're finished, you create a full Java application using the Swing
set of classes.

334 DAY 12: Responding to User Input

Event Listeners

If a class wants to respond to a user event under the Java event-handling system, it must
implement the interface that deals with the events. These interfaces are called event lis-
teners.

Each listener handles a specific kind of event.

The java.awt.event package contains all the basic event listeners, as well as the objects
that represent specific events. These listener interfaces are the most useful:

W ActionListener—Action events, which are generated by a user taking an action on
a component, such as a click on a button

W AdjustmentListener—Adjustment events, which are generated when a component
is adjusted, such as when a scrollbar is moved

B FocusListener—Keyboard focus events, which are generated when a component
such as a text field gains or loses the focus

B ItemListener—Ifem events, which are generated when an item such as a check
box is changed

m KeyListener—Keyboard events, which occur when a user enters text on the key-
board

m MouselListener—Mouse events, which are generated by mouse clicks, a mouse
entering a component’s area, and a mouse leaving a component’s area

W MouseMotionListener—~Mouse movement events, which track all movement by a
mouse over a component

® WindowListener—Window events, which are generated by a window being maxi-
mized, minimized, moved, or closed

A class can implement as many listeners as needed. The following class is declared to
handle both action and text events:

public class Suspense extends JFrame implements ActionListener,
TextListener {
/...

To use these classes in your programs, you can import them individually or use an
import statement with a wildcard to make the entire package available:

import java.awt.event.*;

Event Listeners 335

Setting Up Components

When you make a class an event listener, you have set up a specific type of event to be
heard by that class. However, the event won’t actually be heard unless you follow up
with a second step: A matching listener must be added to the component. That listener
generates the events when the component is used.

After a component is created, you can call one of the following methods on the compo-
nent to associate a listener with it:

B addActionListener()—dJButton, JCheckBox, JComboBox, JTextField,
JRadioButton, and JMenuItem components
m addFocusListener()—All Swing components

B addItemListener()—dJButton, JCheckBox, JComboBox, and JRadioButton compo-
nents

addkeyListener()—All Swing components
addMouseListener ()—All Swing components
addMouseMotionListener ()—All Swing components

addTextListener()—JTextField and JTextArea components

addwindowListener ()—JWindow and JFrame components

CAUTION Modifying a component after adding it to a container is an easy
mistake to make in a Java program. You must add listeners to a
component and handle any other configuration before the compo-
nent is added to any containers; otherwise, these settings are dis-
regarded when the program is run.

The following example creates a JButton object and associates an action event listener
with it:

JButton zap = new JButton("Zap");

zap.addActionListener(this);

All the listener adding methods take one argument: the object that is listening for events
of that kind. Using this indicates that the current class is the event listener. You could
specify a different object, as long as its class implements the right listener interface.

336

DAY 12: Responding to User Input

Event-Handling Methods

When you associate an interface with a class, the class must handle all the methods con-
tained in the interface.

In the case of event listeners, each of the methods is called automatically by the window-
ing system when the corresponding user event takes place.

The ActionListener interface has only one method: actionPerformed (). All classes
that implement ActionListener must have a method with the following structure:

public void actionPerformed(ActionEvent event) {
// handle event here

}

If only one component in your program’s graphical user interface has a listener for action
events, you will know that this actionPerformed() method only is called in response to
an event generated by that component.

If more than one component has an action event listener, you must use the ActionEvent
object to figure out which component was used and act accordingly in your program.
This object can be used to discover details about the component that generated the event.

ActionEvent and all other event objects are part of the java.awt.event package and
subclasses of the EventObject class.

Every event-handling method is sent an event object of some kind. The object’s
getSource () method can be used to determine the component that sent the event, as in
the following example:
public void actionPerformed(ActionEvent event) {

Object source = evt.getSource();

}

The object returned by the getSource () method can be compared with components by
using the == operator. The following statements can be used within the body of an
actionPerformed() method to handle user clicks on buttons named quitButton and
sortRecords:

if (source == quitButton) {

quitProgram();

}

if (source == sortRecords) {
sortRecords();

}

Event Listeners 337

The quitProgram() method is called if the quitButton object generated the event, and
the sortRecords () method is called if the sortRecords button generated the event.

Many event-handling methods call a different method for each kind of event or compo-
nent. This makes the event-handling method easier to read. In addition, if there is more
than one event-handling method in a class, each one can call the same methods to get
work done.

The instanceof operator can be used in an event-handling method to determine what
class of component generated the event. The following example can be used in a pro-
gram with one button and one text field, each of which generates an action event:
void actionPerformed(ActionEvent event) {
Object source = event.getSource();
if (source instanceof JTextField) {
calculateScore();

} else if (source instanceof JButton) {
quitProgram();

}

The program in Listing 12.1 is a frame with two JButton components, which are used to
change the text on the frame’s title bar.

LISTING 12.1 The Full Text of TitleChanger.java

1: import java.awt.event.*;

2: import javax.swing.*;

3: import java.awt.*; 12
4:

5: public class TitleChanger extends JFrame implements ActionListener {
6: JButton b1 = new JButton("Rosencrantz");

7: JButton b2 = new JButton("Guildenstern");

8:

9: public TitleChanger() {

10: super("Title Bar");

11: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

12: b1.addActionListener(this);

13: b2.addActionListener(this);

14: FlowLayout flow = new FlowLayout();

15: setLayout(flow);

16: add(b1);

17: add(b2);

18: pack();

19: setVisible(true);

338

DAY 12: Responding to User Input

LISTING 12.1 Continued

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36: }

public void actionPerformed(ActionEvent evt) {

Object source = evt.getSource();

if (source == b1) {
setTitle("Rosencrantz");

} else if (source == b2) {
setTitle("Guildenstern");

}

repaint();

}

public static void main(String[] arguments) {
TitleChanger frame = new TitleChanger();

}

After you run this application with the Java interpreter, the program’s interface should
resemble Figure 12.1.

FIGURE 12.1
The TitleChanger
application.

Only 12 lines were needed to respond to action events in this application:

Line 1 imports the java.awt.event package.
Line 5 implements the ActionListener interface.
Lines 12 and 13 add action listeners to both JButton objects.

Lines 23-31 respond to action events that occur from the two JButton objects. The
evt object’s getSource () method determines the source of the event. If it is equal
to the b1 button, the title of the frame is set to Rosencrantz; if it is equal to b2, the
title is set to Guildenstern. A call to repaint() is needed so that the frame is
redrawn after any title change that might have occurred in the method.

Working with Methods

The following sections detail the structure of each event-handling method and the meth-
ods that can be used within them.

Working with Methods 339

In addition to the methods described, the getSource () method can be used on any event
object to determine which object generated the event.

Action Events

Action events occur when a user completes an action using components such as buttons,
check boxes, menu items, text fields, and radio buttons.

A class must implement the ActionListener interface to handle these events. In addi-
tion, the addActionListener () method must be called on each component that should
generate an action event—unless you want to ignore that component’s action events.

The actionPerformed(ActionEvent) method is the only method of the ActionListener
interface. It takes the following form:
public void actionPerformed(ActionEvent event) {

/1
}

In addition to the getSource () method, you can use the getActionCommand () method on
the ActionEvent object to discover more information about the event’s source.

By default, the action command is the text associated with the component, such as the
label on a button. You also can set a different action command for a component by call-
ing its setActionCommand (String) method. The string argument should be the action
command’s desired text.

For example, the following statements create a button and menu item and give both of
them the action command "Sort Files':

JButton sort = new JButton("Sort");
JMenuItem menuSort = new JMenultem("Sort");
sort.setActionCommand("Sort Files");
menuSort.setActionCommand("Sort Files");

NOTE Action commands are useful in a program in which more than one
component should cause the same thing to happen. By giving
both components the same action command, you can handle
them with the same code in an event-handling method.

340 DAY 12: Responding to User Input

Focus Events

Focus events occur when any component gains or loses input focus on a graphical user
interface. Focus describes the component that is active for keyboard input. If one of the
fields has the focus (in a user interface with several editable text fields), a cursor blinks
in the field. Any text entered goes into this component.

Focus applies to all components that can receive input. In a JButton object, a dotted out-
line appears on the button that has the focus.

A component can be given the focus by calling its requestFocus () method with no
arguments, as in this example:

JButton ok = new JButton("OK");
ok.requestFocus();

To handle a focus event, a class must implement the FocusListener interface. Two
methods are in the interface: focusGained (FocusEvent) and focusLost (FocusEvent).
They take the following forms:

public void focusGained(FocusEvent event) {

11
}

public void focusLost(FocusEvent event) {
/1
}

To determine which object gained or lost the focus, the getSource () method can be
called on the FocusEvent object sent as an argument to the focusGained() and
focusLost () methods.

Listing 12.2 contains a Java application that displays the sum of two numbers. Focus
events are used to determine when the sum needs to be recalculated.

LISTING 12.2 The Full Text of Calculator.java

1: import java.awt.event.*;
2: import javax.swing.*;
3: import java.awt.*;

public class Calculator extends JFrame implements FocusListener {
JTextField valuel = new JTextField("0", 5);
JLabel plus = new JLabel("+");
JTextField value2 = new JTextField("0", 5);
JLabel equals = new JLabel("=");

© oo ~NO OB

Working with Methods 341

LISTING 12.2 Continued

10: JTextField sum = new JTextField("Q0", 5);

11:

12: public Calculator() {

13: super("Add Two Numbers");

14: setSize (350, 90);

15: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
16: FlowLayout flow = new FlowLayout(FlowLayout.CENTER);
17: setlLayout(flow);

18: // add listeners

19: valuel.addFocusListener(this);

20: value2.addFocusListener(this);

21: // set up sum field

22: sum.setEditable(false);

23: // add components

24: add(valuel);

25: add(plus);

26: add(value2);

27: add(equals);

28: add(sum);

29: setVisible(true);

30: }

31:

32: public void focusGained(FocusEvent event) {

33: try {

34: float total = Float.parseFloat(valuel.getText()) +
35: Float.parseFloat(value2.getText());
36: sum.setText("" + total);

37: } catch (NumberFormatException nfe) {

38: valuel.setText("0");

39: value2.setText("0"); 12
40: sum.setText("0");

41: }

42: }

43:

44: public void focusLost(FocusEvent event) {

45: focusGained(event);

46: }

47:

48: public static void main(String[] arguments) {
49: Calculator frame = new Calculator();

50: }

51: }

Figure 12.2 shows the application.

In the Calculator application, focus listeners are added to the first two text fields,
valuei and value2, and the class implements the FocusListener interface.

342

DAY 12: Responding to User Input

FIGURE 12.2
The Calculator
application.

The focusGained() method is called whenever either of these fields gains the input
focus (lines 32—42). In this method, the sum is calculated by adding the values in the
other two fields. If either field contains an invalid value—such as a string—a
NumberFormatException is thrown, and all three fields are reset to “0”.

The focusLost () method accomplishes the same behavior by calling focusGained()
with the focus event as an argument.

One thing to note about this application is that event-handling behavior is not required to
collect numeric input in a text field. This is taken care of automatically by any compo-
nent in which text input is received.

Item Events

Item events occur when an item is selected or deselected on components such as buttons,
check boxes, or radio buttons. A class must implement the ItemListener interface to
handle these events.

The itemStateChanged(ItemEvent) method is the only method in the ItemListener
interface. It takes the following form:
void itemStateChanged(ItemEvent event) {

/...
}

To determine in which item the event occurred, the getItem() method can be called on
the ItemEvent object.

You also can determine whether the item was selected or deselected by using the
getStateChange () method. This method returns an integer that equals either the class
variable ItemEvent.DESELECTED or ItemEvent.SELECTED.

Listing 12.3 illustrates the use of item events. The FormatChooser application displays
information about a selected combo box item in a label.

Working with Methods 343

LISTING 12.3 The Full Text of FormatChooser. java

1: import java.awt.*;
2: import java.awt.event.*;
3: import javax.swing.*;

4:
5: public class FormatChooser extends JFrame implements ItemListener {
6: String[] formats = { "(choose format)", "Atom", "RSS 0.92",

7: "RSS 1.0", "RSS 2.0" };
8 String[] descriptions = {

9: "Atom weblog and syndication format",

10: "RSS syndication format 0.92 (Netscape)",
11: "RSS/RDF syndication format 1.0 (RSS/RDF)",
12: "RSS syndication format 2.0 (UserLand)"

13: };

14: JComboBox formatBox = new JComboBox();

15: JLabel descriptionLabel = new JLabel("");

16:

17: public FormatChooser() {

18: super("Syndication Format");

19: setSize (420, 150);

20: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
21: setLayout(new BorderLayout());

22: for (int i = 0; i < formats.length; i++) {
23: formatBox.addItem(formats[i]);

24: }

25: formatBox.addItemListener(this);

26: add (BorderLayout.NORTH, formatBox);

27: add(BorderLayout.CENTER, descriptionLabel);
28: setVisible(true);

29: }

30: 19
31: public void itemStateChanged(ItemEvent event) {
32: int choice = formatBox.getSelectedIndex();
33: if (choice > 0) {

34: descriptionLabel.setText(descriptions[choice-1]);
35: }

36: }

37:

38: public Insets getInsets() {

39: return new Insets(50, 10, 10, 10);

40: }

41:

42: public static void main(String[] arguments) {
43: FormatChooser fc = new FormatChooser();

44: }

45: }

This application extends the combo box example from Day 9, “Working with Swing.”
Figure 12.3 shows this application.

344

DAY 12: Responding to User Input

FIGURE 12.3

The output of the
FormatChooser
application.

The application creates a combo box from an array of strings and adds an item listener to
the component (lines 22-25). Item events are received by the

itemStateChanged (ItemEvent) method (lines 31-36), which changes the text of a label
based on the index number of the selected item. Index 1 corresponds with “Atom”, 2
with “RSS 0.92”, 3 with “RSS 1.0, and 4 with “RSS 2.0”.

Key Events

Key events occur when a key is pressed on the keyboard. Any component can generate
these events, and a class must implement the KeyListener interface to support them.

There are three methods in the KeyListener interface. They include
keyPressed(KeyEvent), keyReleased (KeyEvent), and keyTyped (KeyEvent). They take
the following forms:

public void keyPressed(KeyEvent event) {

/...
}

public void keyReleased(KeyEvent event) {
/1.,
}

public void keyTyped(KeyEvent event) {
/...
}

KeyEvent’s getKeyChar () method returns the character of the key associated with the
event. If no Unicode character can be represented by the key, getKeyChar() returns a
character value equal to the class variable KeyEvent.CHAR_UNDEFINED.

For a component to generate key events, it must be capable of receiving the input focus.
Text fields, text areas, and other components that take keyboard input support this auto-
matically. For other components such as labels and panels, the setFocusable (boolean)
method should be called with an argument of true:

Container pane = getContentPane();
pane.setFocusable(true);

Working with Methods 345

Mouse Events

Mouse events are generated by the following types of user interaction:

® A mouse click
® A mouse entering a component’s area

® A mouse leaving a component’s area

Any component can generate these events, which are implemented by a class through the
MouseListener interface. This interface has five methods:

mouseClicked (MouseEvent)

mouseEntered (MouseEvent)

[|

|

B mouseExited(MouseEvent)
B mousePressed(MouseEvent)
|

mouseReleased (MouseEvent)

Each takes the same basic form as mouseReleased (MouseEvent):

public void mouseReleased(MouseEvent event) {
/...
}

The following methods can be used on MouseEvent objects:
B getClickCount()—Returns the number of times the mouse was clicked as an
integer
W getPoint()—Returns the X,y coordinate within the component where the mouse
was clicked as a Point object

m getX()—Returns the x position

B getY()—Returns the y position

Mouse Motion Events

Mouse motion events occur when a mouse is moved over a component. As with other
mouse events, any component can generate mouse motion events. A class must imple-
ment the MouseMotionListener interface to support them.

There are two methods in the MouseMotionListener interface: mouseDragged (MouseEvent)
and mouseMoved (MouseEvent). They take the following forms:

346

DAY 12: Responding to User Input

public void mouseDragged(MouseEvent event) {
/...
}

public void mouseMoved(MouseEvent event) {
/...
}

Unlike the other event-listener interfaces you have dealt with up to this point,
MouseMotionListener does not have its own event type. Instead, MouseEvent objects are
used.

Because of this, you can call the same methods you would for mouse events:
getClick(), getPoint(), getX(), and getY().

The next project demonstrates how to detect and respond to mouse events. Listing 12.4
contains the MousePrank and PrankPanel classes, which implement a popular user-
interface prank—a button that tries to avoid being clicked.

LISTING 12.4 The Full Text of MousePrank. java

1: import java.awt.*;
2: import java.awt.event.*;

3: import javax.swing.*;

4:

5: public class MousePrank extends JFrame implements ActionListener {
6: public MousePrank() {

7: super("Message");

8: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
9: setSize (420, 220);

10: BorderLayout border = new BorderLayout();

11: setLayout(border);

12: JLabel message = new JLabel("Click OK to close this program.");
13: add(BorderLayout.NORTH, message);

14: PrankPanel prank = new PrankPanel();

15: prank.ok.addActionListener(this);

16: add (BorderLayout.CENTER, prank);

17: setVisible(true);

18: }

19:

20: public void actionPerformed(ActionEvent event) {
21: System.exit(0);

22: }

23:

24: public Insets getInsets() {

25: return new Insets(40, 10, 10, 10);

26: }

Working with Methods 347

LISTING 12.4 Continued

28: public static void main(String[] arguments) {

29: new MousePrank();

30: }

31: }

32:

33: class PrankPanel extends JPanel implements MouseMotionListener {
34: JButton ok = new JButton("OK");

35: int buttonX, buttonY, mouseX, mouseY;

36: int width, height;

37:

38: PrankPanel() {

39: super();

40: setLayout(null);

41: addMouseMotionListener(this);

42: buttonX = 110;

43: buttonY = 110;

44: ok.setBounds(new Rectangle(buttonX, buttonY,

45: 70, 20));

46: add(ok) ;

47: }

48:

49: public void mouseMoved(MouseEvent event) {

50: mouseX = event.getX();

51: mouseY = event.getY();

52: width = (int)getSize().getWidth();

53: height = (int)getSize().getHeight();

54: if (Math.abs((mouseX + 35) - buttonX) < 50) {

55: buttonX = moveButton(mouseX, buttonX, width);
56: repaint();

57: }

58: if (Math.abs((mouseY + 10) - buttonY) < 50) { 12
59: buttonY = moveButton(mouseY, buttonY, height);
60: repaint();

61: }

62: }

63:

64: public void mouseDragged(MouseEvent event) {

65: // ignore this event

66: }

67:

68: private int moveButton(int mouseAt, int buttonAt, int border) {
69: if (buttonAt < mouseAt) {

70: buttonAt—;

71: } else {

72: buttonAt++;

73: }

74: if (buttonAt > (border - 20)) {

75: buttonAt = 10;

76: }

348

DAY 12: Responding to User Input

LISTING 12.4 Continued

77: if (buttonAt < 0) {

78: buttonAt = border - 80;

79: }

80: return buttonAt;

81: }

82:

83: public void paintComponent(Graphics comp) {
84: super.paintComponent(comp);

85: ok.setBounds (buttonX, buttonY, 70, 20);
86: }

87: }

The MousePrank class is a frame that holds two components arranged with a border lay-
out—the label “Click OK to close this program.” and a panel with an OK button on it.
Figure 12.4 shows the user interface for this application.

FIGURE 12.4

The running
MousePrank
application.

Because the button does not behave normally, it is implemented with the PrankPanel
class, a subclass of JPanel. This panel includes a button that is drawn at a specific posi-
tion on the panel instead of being placed by a layout manager. This technique was
described at the end of Day 11, “Arranging Components on a User Interface.”

First, the panel’s layout manager is set to null, which causes it to stop using flow layout
by default:

setLayout(null);

Next, the button is placed on the panel using setBounds (Rectangle), the same method
that determines where a frame or window will appear on a desktop.

A Rectangle object is created with four arguments: its x position, y position, width, and
height. Here’s how PrankPanel draws the button:

JButton ok = new JButton("OK");

int buttonX = 110;

int buttonY = 110;

ok.setBounds(new Rectangle(buttonX, buttonY, 70, 20));

Working with Methods 349

Creating the Rectangle object within the method call is more efficient because you don’t
need to use the object anywhere else in the class. The following statements accomplish
the same thing in two steps:

Rectangle box = new Rectangle(buttonX, buttonY, 70, 20);
ok.setBounds (box) ;

The class has instance variables that hold the X,y position of the button, buttonX and
buttonyY. They start out at 110,110 and change whenever the mouse comes within 50
pixels of the center of the button.

Mouse movements are tracked by implementing the MouseListener interface and its two
methods, mouseMoved (MouseEvent) and mouseDragged (MouseEvent).

The panel uses mouseMoved () and ignores mouseDragged ().

When the mouse moves, a mouse event object’s getX() and getY() methods return its
current X,y position, which is stored in the instance variables mouseX and mousey.

The moveButton(int, int, int) method takes three arguments:

m The x or y position of the button
® The x or y position of the mouse

® The width or height of the panel

This method moves the button away from the mouse in either a vertical or horizontal
direction, depending on whether it is called with x coordinates and the panel height or y
coordinates and the width.

After the button’s position has moved, the repaint () method is called, which causes the
panel’s paintComponent (Graphics) method to be called (lines 83—86).

Every component has a paintComponent () method that can be overridden to draw the
component. The button’s setBounds () method displays it at the current X,y position
(line 85).

Window Events

Window events occur when a user opens or closes a window object, such as a JFrame or
a Jwindow. Any component can generate these events, and a class must implement the
WindowListener interface to support them.

350 DAY 12: Responding to User Input

There are seven methods in the WindowListener interface:

windowActivated (WindowEvent)
windowClosed (WindowEvent)
windowClosing (WindowEvent)
windowDeactivated (WindowEvent)
windowDeiconified (WindowEvent)

windowIconified(WindowEvent)

windowOpened (WindowEvent)

They all take the same form as the windowOpened () method:

public void windowOpened(WindowEvent evt) {
/...
}

The windowClosing () and windowClosed () methods are similar, but one is called as the
window is closing, and the other is called after it is closed. In fact, you can take action in
a windowClosing () method to stop the window from being closed.

Using Adapter Classes

A Java class that implements an interface must include all its methods, even if it doesn’t
plan to do anything in response to some of them.

This requirement can make it necessary to add a lot of empty methods when you’re
working with an event-handling interface such as WindowListener, which has seven
methods.

As a convenience, Java offers adapters, Java classes that contain empty do-nothing
implementations of specific interfaces. By subclassing an adapter class, you can imple-
ment only the event-handling methods you need by overriding those methods. The rest
will inherit those do-nothing methods.

The java.awt.event package includes FocusAdapter, KeyAdapter, MouseAdapter,
MouseMotionAdapter, and WindowAdapter. They correspond to the expected listeners for
focus, keyboard, mouse, mouse motion, and window events.

Listing 12.5 contains a Java application that displays the most recently pressed key, mon-
itoring keyboard events through a subclass of KeyAdapter.

Summary 351

LISTING 12.5 The Full Text of KeyChecker.java

1: import java.awt.*;

2: import java.awt.event.*;

3: import javax.swing.*;

4:

5: public class KeyChecker extends JFrame {

6: JLabel keyLabel = new JLabel("Hit any key");

7:

8: public KeyChecker() {

9: super("Hit a Key");

10: setSize (300, 200);

11: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12: setLayout(new FlowLayout(FlowLayout.CENTER));
13: KeyMonitor monitor = new KeyMonitor(this);
14: setFocusable(true);

15: addKeyListener(monitor);

16: add (keyLabel);

17: setVisible(true);

18: }

19:
20: public static void main(String[] arguments) {
21: new KeyChecker();
22: }
23: }
24:
25: class KeyMonitor extends KeyAdapter {
26: KeyChecker display;
27:
28: KeyMonitor(KeyChecker display) {
29: this.display = display;
30: }
31: 12
32: public void keyTyped(KeyEvent event) {
33: display.keylLabel.setText("" + event.getKeyChar());
34: display.repaint();
35: }
36: }
Summary

The event-handling system used with Swing is added to a program through the same
steps:

m A listener interface is added to the class that will contain the event-handling
methods.

352

DAY 12: Responding to User Input

A listener is added to each component that will generate the events to handle.

The methods are added, each with an EventObject class as the only argument to
the method.

Methods of that EventObject class, such as getSource(), are used to learn which
component generated the event and what kind of event it was.

When you know these steps, you can work with each of the different listener interfaces
and event classes. You also can learn about new listeners as they are added to Swing with
new components.

Q&A

Q

A

Can a program’s event-handling behavior be put into its own class instead of
including it with the code that creates the interface?

It can, and many programmers will tell you that this is a good way to design your
programs. Separating interface design from your event-handling code enables the
two to be developed separately. This makes it easier to maintain the project; related
behavior is grouped and isolated from unrelated behavior.

Is there a way of differentiating between the buttons on a mouseClicked()
event?

You can, using a feature of mouse events that wasn’t covered today because right
and middle mouse buttons are platform-specific features that aren’t available on all
systems where Java programs run.

All mouse events send a MouseEvent object to their event-handling methods. Call
the getModifiers() method of the object to receive an integer value that indicates
which mouse button generated the event.

Check the value against three class variables. It equals MouseEvent.BUTTON1_MASK
if the left button was clicked, MouseEvent.BUTTON2_MASK if the middle button was
clicked, and MouseEvent.BUTTON3_MASK if the right button was clicked. See
MouseTest.java and MouseTest.class on the Day 12 page of the book’s website
at http://www.java21days.com for an example that implements this technique.

For more information, see the Java class library documentation for the MouseEvent
class: Visit the web page http://java.sun.com/javase/6/docs/api and click the
java.awt.event hyperlink to view the classes in that package.

Quiz 353

Quiz

Review today’s material by taking this three-question quiz.

Questions

1. If you use this in a method call such as addActionListener(this), what object
is being registered as a listener?

a. An adapter class
b. The current class
c. No class

2. What is the benefit of subclassing an adapter class such as WindowAdapter (which
implements the WindowListener interface)?

a. You inherit all the behavior of that class.
b. The subclass automatically becomes a listener.
c. You don’t need to implement any WindowListener methods you won’t be
using.
3. What kind of event is generated when you press Tab to leave a text field?
a. FocusEvent
b. WindowEvent

c. ActionEvent

Answers

1. b. The current class must implement the correct listener interface and the required
methods.

2. c. Because most listener interfaces contain more methods than you will need, using
an adapter class as a superclass saves the hassle of implementing empty methods
just to implement the interface.

3. a. A user interface component loses focus when the user stops editing that compo-
nent and moves to a different part of the interface.

Certification Practice

The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

354 DAY 12: Responding to User Input

Given:

import java.awt.event.*;
import javax.swing.*;
import java.awt.*;

public class Interface extends JFrame implements ActionListener {
public boolean deleteFile;

public Interface() {

super("Interface");
JLabel commandLabel = new JLabel("Do you want to delete the file?");
JButton yes = new JButton("Yes");
JButton no = new JButton("No");
yes.addActionListener(this);
no.addActionListener(this);

setLayout(new BorderLayout());
JPanel bottom = new JPanel();
bottom.add(yes);
bottom.add(no);
add("North", commandLabel);
add("South", bottom);

pack();
setVisible(true);

}

public void actionPerformed(ActionEvent evt) {
JButton source = (JButton) evt.getSource();
// answer goes here
deleteFile = true;
else
deleteFile = false;
}

public static void main(String[] arguments) {
new Interface();

}

Which of the following statements should replace // answer goes here to make the
application function correctly?

a. if (source instanceof JButton)

b. if (source.getActionCommand().equals("yes"))

c. if (source.getActionCommand().equals("Yes"))

d. if source.getActionCommand() == "Yes"

Exercises 355

The answer is available on the book’s website at http://www.java2ldays.com. Visit the
Day 12 page and click the Certification Practice link.

Exercises

To extend your knowledge of the subjects covered today, try the following exercises:

1. Create an application that uses FocusListener to make sure that a text field’s value
is multiplied by -1 and redisplayed any time a user changes it to a negative value.

2. Create a calculator that adds or subtracts the contents of two text fields whenever
the appropriate button is clicked, displaying the result as a label.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java2ldays.com.

12

DAY 13:
Using Color, Fonts, and
Graphics

Today, you work with Java classes that add graphics to a graphical user
interface with Java2D, a set of classes that support high-quality, two-
dimensional images, color, and text.

Java2D, which includes classes in the java.awt and javax.swing pack-
ages, can be used to draw text and shapes such as circles and polygons;
use different fonts, colors, and line widths; and work with colors and
patterns.

358

DAY 13: Using Color, Fonts, and Graphics

The Graphics2D Class

Everything in Java2D begins with the Graphics2D class in the java.awt package, which
represents a graphics context, an environment in which something can be drawn. A
Graphics2D object can represent a component on a graphical user interface, printer, or
another display device.

Graphics2D is a subclass of the Graphics class that includes extended features required
by Java2D.

NOTE Early versions of Java included rudimentary support for graphics in
the Graphics class. These methods have been supplanted by more
sophisticated and efficient alternatives in Java2D.

Before you can start using the Graphics2D class, you need something on which to draw.

Several user interface components can act as a canvas for graphical operations such as
panels and windows.

After you have an interface component to use as a canvas, you can draw text, lines, ovals,
circles, arcs, rectangles, and other polygons on that object.

One component that’s suitable for this purpose is JPanel in the javax.swing package.
This class represents panels in a graphical user interface that can be empty or contain
other components.

The following example creates a frame and a panel and then adds the panel to the frame:

JFrame main = new JFrame("Main Menu");
JPanel pane = new JPanel();

Container content = main.getContentPane();
content.add(pane);

The frame’s getContentPane () method returns a Container object representing the por-
tion of the frame that can contain other components. The container’s add () method is
called to add the panel to the frame.

Like many other user interface components in Java, JPanel objects have a
paintComponent (Graphics) method that is called automatically whenever the compo-
nent needs to be redisplayed.

The Graphics2D Class 359

Several things could cause paintComponent () to be called, including the following:
m The graphical user interface containing the component is displayed for the first
time.
m A window that was displayed on top of the component is closed.

m The graphical user interface containing the component is resized.

By creating a subclass of JPanel, you can override the panel’s paintComponent ()
method and put all your graphical operations in this method.

As you might have noticed, a Graphics object is sent to an interface component’s
paintComponent () method rather than a Graphics2D object. To create a Graphics2D
object that represents the component’s drawing surface, you must use casting to convert
it, as in the following example:

public void paintComponent(Graphics comp) {

Graphics2D comp2D = (Graphics2D)comp;
/...

The comp2D object in this example was produced through the use of casting.

The Graphics Coordinate System

Java2D classes use the same X,y coordinate system you have used when setting the size
of frames and other components.

Java’s coordinate system uses pixels as its unit of measure. The origin coordinate 0, 0 is
in the upper-left corner of a component.

The value of x coordinates increases to the right of 0, 0, and y coordinates increase
downward.

When you set the size of a frame by calling its setSize(int, int) method, the frame’s 13
upper-left corner is at 0, 0, and its lower-right corner is at the two arguments sent to
setSize().

For example, the following statement creates a frame 425 pixels wide by 130 pixels tall
with its lower-right corner at 425, 130:

setSize (425, 130);

CAUTION This differs from other drawing systems in which the O, O origin is
at the lower left and y values increase in an upward direction.

360 DAY 13: Using Color, Fonts, and Graphics

All pixel values are integers; you can’t use decimal numbers to display something at a
position between two integer values.

Figure 13.1 depicts Java’s graphical coordinate system visually, with the origin at 0, 0.
Two of the points of a rectangle are at 20, 20 and 60, 60.

FIGURE 13.1 0,0 >» +X
The Java graphics
coordinate system.

60,60

+Y

Drawing Text

Text is the easiest thing to draw on an interface component.
To draw text, call a Graphics2D object’s drawString () method with three arguments:

®m The String to display
®m The x coordinate where it should be displayed

m The y coordinate where it should be displayed

The x,y coordinate used in the drawString () method represent the pixel at the lower-left
corner of the string.

The following paintComponent () method draws the string “Free the bound periodicals”
at the coordinate 22, 100:
public void paintComponent(Graphics comp) {

Graphics2D comp2D = (Graphics2D)comp;
comp2D.drawString("Free the bound periodicals", 22, 100);

The preceding example uses a default font. To use a different font, you must create an
object of the Font class in the java.awt package.

Drawing Text 361

Font objects represent the name, style, and point size of a font.
A Font object is created by sending three arguments to its constructor:

m The font’s name
m The font’s style

m The font’s point size

The name of the font can be the logical name of a font, such as Arial, Courier New,
Garamond, or Kaiser. If the font is present on the system on which the Java program is
running, it will be used. If the font is not present, the default font will be used.

The name also can be one of five generic fonts: Dialog, DialogInput, Monospaced,
SanSerif, or Serif. These fonts can be used to specify the kind of font to use without
requiring a specific font. This is often a better choice because some font families might
not be present on all implementations of Java.

Three Font styles can be selected by using static class variables: PLAIN, BOLD, and
ITALIC. These constants are integers, and you can add them to combine effects.

The following statement creates a 24-point Dialog font that is bold and italicized:
Font f = new Font("Dialog", Font.BOLD + Font.ITALIC, 24);

After you have created a font, you can use it by calling the setFont (Font) method of the
Graphics2D class with the font as the method argument.

The setFont () method sets the font used for subsequent calls to the drawString()
method on the same Graphics2D object. You can call it again later to change the font and
draw more text.

The following paintComponent () method creates a new Font object, sets the current font
to that object, and draws the string “I’m very font of you” at the coordinate 10, 100:

public void paintComponent(Graphics comp) { 13
Graphics2D comp2D = (Graphics2D)comp;
Font f = new Font("Arial Narrow", Font.PLAIN, 72);
comp2D.setFont(f);
comp2D.drawString("I'm very font of you", 10, 100);

Java programs can ensure that a font is available by including it with the program and
loading it from a file. This technique requires the Font class method createFont (int,
InputStream), which returns a Font object representing that font.

362

DAY 13: Using Color, Fonts, and Graphics

Input streams, which are covered on Day 15, “Working with Input and Output,” are
objects that can load data from a source such as a disk file or web address. The following
statements load a font from a file named Verdana.ttf in the same folder as the class file
that uses it:
try {

File ttf = new File("Verdana.ttf");

FileInputStream fis = new FileInputStream(ttf);

Font font = Font.createFont(Font.TRUETYPE_FONT, fis);
} catch (IOException ioe) {

System.out.println("Error: " + ioe.getMessage());
ioe.printStackTrace();

The try-catch block handles input/output errors, which must be considered when data is
loaded from a file. The File, FileInputStream, and IOException classes are part of the
java.io package and are discussed in depth on Day 15.

When a font is loaded with createFont(), the Font object will be 1 point and plain
style. To change the size and style, call the font object’s deriveFont (int, int) method
with two arguments: the desired style and size.

Improving Fonts and Graphics with Antialiasing

If you displayed text using the skills introduced up to this point, the appearance of the
font would look crude compared to what you’ve come to expect from other software.
Characters would be rendered with jagged edges, especially on curves and diagonal lines.

Java2D can draw fonts and graphics much more attractively using its support for
antialiasing, a rendering technique that smooths out rough edges by altering the color of
surrounding pixels.

This functionality is off by default. To turn it on, call a Graphics2D object’s
setRenderingHint () method with two arguments:
® A RenderingHint.Key object that identifies the rendering hint being set
® A RenderingHint.Key object that sets the value of that hint

The following code enables antialiasing on a Graphics2D object named comp2D:

comp2D.setRenderingHint (RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS ON);

By calling this method in the paintComponent () method of a component, you can cause
all subsequent drawing operations to employ antialiasing.

Drawing Text 363

Finding Information About a Font

To make text look good in a graphical user interface, you often must figure out how
much space the text is taking up on an interface component.

The FontMetrics class in the java.awt package provides methods to determine the size
of the characters being displayed with a specified font, which can be used for things such
as formatting and centering text.

The FontMetrics class can be used for detailed information about the current font, such
as the width or height of characters it can display.

To use this class’s methods, a FontMetrics object must be created using the
getFontMetrics() method. The method takes a single argument: a Font object.

Table 13.1 shows some of the information you can find using font metrics. All these
methods should be called on a FontMetrics object.

TABLE 13.1 Font Metrics Methods

Method Name Action

stringWidth(String) Given a string, returns the full width of that string in pixels
charWidth(char) Given a character, returns the width of that character
getHeight() Returns the total height of the font

Listing 13.1 shows how the Font and FontMetrics classes can be used. The TextFrame
application displays a string at the center o