
in 21 Days

Java™ 6
SamsTeachYourself

Rogers Cadenhead
Laura Lemay

800 East 96th Street, Indianapolis, Indiana 46240

Sams Teach Yourself Java™ 6 in 21 Days
Copyright © 2007 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmit-
ted by any means, electronic, mechanical, photocopying, recording, or otherwise, without written per-
mission from the publisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation of this book, the pub-
lisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.
International Standard Book Number-10: 0-672-32943-3
International Standard Book Number-13: 978-0-672-32943-2
Printed in the United States of America
First Printing: May 2007
10 09 08 07 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been appro-
priately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use of a term
in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no war-
ranty or fitness is implied. The information provided is on an “as is” basis. The author(s) and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any loss
or damages arising from the information contained in this book or from the use of the CD or pro-
grams accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact
International Sales
international@pearsoned.com

Library of Congress Cataloging-in-Publication Data

Cadenhead, Rogers.
Sams teach yourself Java 6 in 21 days / Rogers Cadenhead, Laura Lemay.

p. cm.
Includes index.
ISBN 978-0-672-32943-2 (pbk. w/cd)

1. Java (Computer program language) I. Lemay, Laura. II. Title.

QA76.73.J38C333 2007
005.13'3--dc22

2007014568

Acquisitions Editor
Mark Taber

Development Editor
Songlin Qiu

Managing Editor
Patrick Kanouse

Project Editor
Mandie Frank

Copy Editor
Karen Annett

Indexer
WordWise Publishing
Services, LLC

Proofreader
Language Logistics,
LLC

Technical Editor
Adam DeFields

Publishing
Coordinator
Vanessa Evans

Multimedia
Developer
Dan Scherf

Designer
Gary Adair

Page Layout
Bronkella Publishing,
LLC

Contents at a Glance
Introduction 1

WEEK I: The Java Language
1 Getting Started with Java 9

2 The ABCs of Programming 35

3 Working with Objects 63

4 Lists, Logic, and Loops 89

5 Creating Classes and Methods 115

6 Packages, Interfaces, and Other Class Features 145

7 Exceptions, Assertions, and Threads 183

WEEK II: The Java Class Library
8 Data Structures 219

9 Working with Swing 247

10 Building a Swing Interface 273

11 Arranging Components on a User Interface 303

12 Responding to User Input 333

13 Using Color, Fonts, and Graphics 357

14 Developing Swing Applications 381

WEEK III: Java Programming
15 Working with Input and Output 405

16 Serializing and Examining Objects 433

17 Communicating Across the Internet 453

18 Accessing Databases with JDBC 485

19 Reading and Writing RSS Feeds 511

20 XML Web Services 535

21 Writing Java Servlets and Java Server Pages 555

Appendixes
A Using the Java Development Kit 601

B Programming with the Java Development Kit 625

C This Book’s Web Site 649

Index 651

Bonus Material on the Companion CD-ROM
CD1 Choosing Java

CD2 Writing Java Applets

CD3 Regular Expressions

CD4 Where to Go from Here: Java Resources

Table of Contents

Introduction 1

How This Book Is Organized . 2

Who Should Read This Book . 4

Conventions Used in This Book . 5

WEEK I: The Java Language

DAY 1: Getting Started with Java 9

The Java Language . 10

History of the Language . 10

Introduction to Java . 11

Selecting a Development Tool . 11

Object-Oriented Programming. 12

Objects and Classes. 14

Attributes and Behavior . 17

Attributes of a Class of Objects . 17

Behavior of a Class of Objects . 18

Creating a Class. 19

Running the Program . 21

Organizing Classes and Class Behavior . 24

Inheritance . 24

Creating a Class Hierarchy . 26

Inheritance in Action . 28

Single and Multiple Inheritance . 29

Interfaces . 30

Packages . 30

Summary. 31

Q&A . 31

Quiz . 32

Questions . 32

Answers . 32

Certification Practice . 32

Exercises . 33

DAY 2: The ABCs of Programming 35

Statements and Expressions . 36

Variables and Data Types . 36

Creating Variables . 37

Naming Variables. 39

Variable Types . 39

Assigning Values to Variables. 41

Constants . 41

Comments . 43

Literals . 44

Number Literals. 45

Boolean Literals. 46

Character Literals. 46

String Literals . 47

Expressions and Operators . 48

Arithmetic . 49

More About Assignment . 51

Incrementing and Decrementing . 52

Comparisons . 53

Logical Operators . 54

Operator Precedence. 55

String Arithmetic . 57

Summary. 58

Q&A . 59

Quiz . 60

Questions . 60

Answers . 60

Certification Practice . 60

Exercises . 61

DAY 3: Working with Objects 63

Creating New Objects . 64

Using new . 64

What new Does . 66

A Note on Memory Management . 66

Accessing and Setting Class and Instance Variables. 67

Getting Values . 67

Changing Values . 68

Class Variables . 69

Calling Methods . 70

Nesting Method Calls . 72

Class Methods . 73

References to Objects . 74

Casting and Converting Objects and Primitive Types . 76

Casting Primitive Types. 77

Casting Objects . 78

Converting Primitive Types to Objects and Vice Versa . 80

Comparing Object Values and Classes . 82

Comparing Objects. 82

Determining the Class of an Object . 84

Summary. 84

Q&A . 85

Quiz . 86

Questions . 86

Answers . 86

Certification Practice . 86

Exercises . 87

DAY 4: Lists, Logic, and Loops 89

Arrays. 90

Declaring Array Variables . 90

Creating Array Objects . 91

Accessing Array Elements . 92

Changing Array Elements . 93

Multidimensional Arrays . 95

Block Statements . 96

if Conditionals . 97

switch Conditionals . 98

for Loops . 104

vi Sams Teach Yourself Java 6 in 21 Days

while and do Loops . 107

while Loops . 107

do-while Loops . 109

Breaking Out of Loops . 109

Labeled Loops . 110

The Conditional Operator . 110

Summary . 112

Q&A. 112

Quiz . 112

Questions . 112

Answers . 113

Certification Practice. 113

Exercises . 114

DAY 5: Creating Classes and Methods 115

Defining Classes . 116

Creating Instance and Class Variables . 116

Defining Instance Variables . 116

Class Variables. 117

Creating Methods . 117

Defining Methods. 118

The this Keyword . 120

Variable Scope and Method Definitions . 121

Passing Arguments to Methods . 122

Class Methods . 123

Creating Java Applications . 124

Helper Classes . 125

Java Applications and Command-line Arguments . 126

Passing Arguments to Java Applications . 126

Handling Arguments in Your Java Application. 127

Creating Methods with the Same Name, Different Arguments . 128

Constructor Methods . 132

Basic Constructor Methods . 133

Calling Another Constructor Method . 133

Overloading Constructor Methods . 134

Contents vii

Overriding Methods. 136

Creating Methods That Override Existing Methods. 136

Calling the Original Method . 137

Overriding Constructors. 138

Finalizer Methods . 140

Summary . 141

Q&A. 141

Quiz . 142

Questions . 142

Answers . 143

Certification Practice. 143

Exercises . 144

DAY 6: Packages, Interfaces, and Other Class Features 145

Modifiers . 146

Access Control for Methods and Variables . 146

Static Variables and Methods. 152

Final Classes, Methods, and Variables . 154

Variables. 155

Methods . 155

Classes . 156

Abstract Classes and Methods . 156

Packages . 157

Using Packages. 157

Full Package and Class Names . 158

The import Declaration . 159

Class Name Conflicts . 160

A Note About Classpath and Where Classes Are Located . 161

Creating Your Own Packages . 162

Picking a Package Name . 162

Creating the Folder Structure . 162

Adding a Class to a Package. 163

Packages and Class Access Control . 163

Interfaces . 164

The Problem of Single Inheritance. 164

Interfaces and Classes . 164

viii Sams Teach Yourself Java 6 in 21 Days

Implementing and Using Interfaces . 165

Implementing Multiple Interfaces . 165

Other Uses of Interfaces . 166

Creating and Extending Interfaces . 166

New Interfaces . 166

Methods Inside Interfaces . 167

Extending Interfaces . 168

Creating an Online Storefront . 169

Inner Classes . 175

Summary . 177

Q&A. 178

Quiz . 179

Questions . 179

Answers . 179

Certification Practice. 179

Exercises . 181

DAY 7: Exceptions, Assertions, and Threads 183

Exceptions . 184

Exception Classes. 186

Managing Exceptions. 187

Exception Consistency Checking. 188

Protecting Code and Catching Exceptions . 188

The finally Clause . 190

Declaring Methods That Might Throw Exceptions. 193

The throws Clause . 193

Which Exceptions Should You Throw?. 194

Passing On Exceptions . 195

throws and Inheritance . 196

Creating and Throwing Your Own Exceptions . 197

Throwing Exceptions . 197

Creating Your Own Exceptions . 198

Combining throws, try, and throw. 199

Contents ix

When and When Not to Use Exceptions . 200

When to Use Exceptions . 200

When Not to Use Exceptions . 200

Bad Style Using Exceptions . 201

Assertions . 202

Threads . 205

Writing a Threaded Program . 206

A Threaded Application . 207

Stopping a Thread . 211

Summary . 212

Q&A. 213

Quiz . 214

Questions . 214

Answers . 215

Certification Practice. 215

Exercises . 216

WEEK II: The Java Class Library

DAY 8: Data Structures 219

Moving Beyond Arrays . 220

Java Structures . 220

Iterator . 222

Bit Sets. 223

Vectors . 226

Looping Through Data Structures . 229

Stacks . 232

Map . 233

Hash Tables. 235

Generics . 240

Summary . 243

Q&A. 244

Quiz . 244

Questions . 244

Answers . 245

Certification Practice. 245

Exercises . 246

x Sams Teach Yourself Java 6 in 21 Days

DAY 9: Working with Swing 247

Creating an Application . 248

Creating an Interface. 249

Developing a Framework . 251

Displaying a Splash Page . 253

Creating a Component. 253

Adding Components to a Container . 254

Working with Components . 256

Image Icons. 257

Labels . 259

Text Fields . 259

Text Areas. 260

Scrolling Panes . 262

Check Boxes and Radio Buttons . 263

Combo Boxes . 266

Lists . 267

Summary . 269

Q&A. 270

Quiz . 270

Questions . 270

Answers . 271

Certification Practice. 271

Exercises . 272

DAY 10: Building a Swing Interface 273

Swing Features . 274

Setting the Look and Feel . 274

Standard Dialog Boxes . 277

Using Dialog Boxes . 282

Sliders . 285

Scroll Panes . 287

Toolbars . 288

Progress Bars. 291

Menus . 293

Tabbed Panes. 297

Contents xi

Summary . 298

Q&A. 299

Quiz . 299

Questions . 299

Answers . 300

Certification Practice. 300

Exercises . 301

DAY 11: Arranging Components on a User Interface 303

Basic Interface Layout . 304

Laying Out an Interface . 304

Flow Layout . 305

Box Layout . 307

Grid Layout. 309

Border Layout . 311

Mixing Layout Managers . 312

Card Layout . 313

Using Card Layout in an Application . 315

Grid Bag Layout . 321

Designing the Grid . 323

Creating the Grid . 324

Cell Padding and Insets . 329

Summary . 329

Q&A. 330

Quiz . 331

Questions . 331

Answers . 331

Certification Practice. 331

Exercises . 332

DAY 12: Responding to User Input 333

Event Listeners . 334

Setting Up Components . 335

Event-Handling Methods . 336

xii Sams Teach Yourself Java 6 in 21 Days

Working with Methods . 338

Action Events . 339

Focus Events . 340

Item Events . 342

Key Events . 344

Mouse Events . 345

Mouse Motion Events . 345

Window Events . 349

Using Adapter Classes. 350

Summary . 351

Q&A. 352

Quiz . 353

Questions . 353

Answers . 353

Certification Practice. 353

Exercises . 355

DAY 13: Using Color, Fonts, and Graphics 357

The Graphics2D Class . 358

The Graphics Coordinate System . 359

Drawing Text . 360

Improving Fonts and Graphics with Antialiasing . 362

Finding Information About a Font . 363

Color . 365

Using Color Objects. 366

Testing and Setting the Current Colors . 366

Drawing Lines and Polygons . 368

User and Device Coordinate Spaces . 368

Specifying the Rendering Attributes. 368

Creating Objects to Draw. 371

Drawing Objects . 375

Summary . 378

Q&A. 378

Contents xiii

Quiz . 379

Questions . 379

Answers . 379

Certification Practice. 379

Exercises . 380

DAY 14: Developing Swing Applications 381

Java Web Start . 382

Using Java Web Start . 385

Creating a JNLP File. 386

Supporting Web Start on a Server . 391

Additional JNLP Elements . 392

Improving Performance with SwingWorker . 394

Summary . 399

Q&A. 400

Quiz . 400

Questions . 400

Answers . 401

Certification Practice. 401

Exercises . 402

WEEK III: Java Programming

DAY 15: Working with Input and Output 405

Introduction to Streams . 406

Using a Stream . 406

Filtering a Stream. 407

Handling Exceptions . 408

Byte Streams . 408

File Streams . 408

Filtering a Stream . 413

Byte Filters . 413

Character Streams . 422

Reading Text Files . 422

Writing Text Files. 425

xiv Sams Teach Yourself Java 6 in 21 Days

Files and Filename Filters . 426

Summary . 429

Q&A. 430

Quiz . 431

Questions . 431

Answers . 431

Certification Practice. 432

Exercises . 432

DAY 16: Serializing and Examining Objects 433

Object Serialization . 434

Object Output Streams . 435

Object Input Streams. 438

Transient Variables . 441

Checking an Object’s Serialized Fields . 442

Inspecting Classes and Methods with Reflection . 443

Inspecting and Creating Classes . 443

Working with Each Part of a Class. 445

Inspecting a Class. 447

Summary . 449

Q&A. 449

Quiz . 450

Questions . 451

Answers . 450

Certification Practice. 451

Exercises . 452

DAY 17: Communicating Across the Internet 453

Networking in Java . 454

Opening a Stream over the Net . 454

Sockets. 459

Socket Servers . 463

Testing the Server. 466

The java.nio Package. 467

Buffers . 467

Channels. 471

Contents xv

Summary . 481

Q&A. 481

Quiz . 482

Questions . 482

Answers . 482

Certification Practice. 483

Exercises . 483

DAY 18: Accessing Databases with JDBC 485

Java Database Connectivity . 486

Database Drivers . 487

The JDBC-ODBC Bridge . 487

Connecting to an ODBC Data Source. 489

JDBC Drivers . 502

Summary . 507

Q&A. 508

Quiz . 508

Questions . 508

Answers . 509

Certification Practice. 509

Exercises . 510

DAY 19: Reading and Writing RSS Feeds 511

Using XML . 512

Designing an XML Dialect . 515

Processing XML with Java . 516

Processing XML with XOM . 516

Creating an XML Document . 518

Modifying an XML Document . 521

Formatting an XML Document . 525

Evaluating XOM . 528

Summary . 530

Q&A. 531

Quiz . 531

Questions . 531

Answers . 532

Certification Practice. 532

Exercises . 533

xvi Sams Teach Yourself Java 6 in 21 Days

DAY 20: XML Web Services 535

Introduction to XML-RPC . 536

Communicating with XML-RPC . 537

Sending a Request . 538

Responding to a Request . 539

Choosing an XML-RPC Implementation . 540

Using an XML-RPC Web Service . 542

Creating an XML-RPC Web Service . 546

Summary . 551

Q&A. 551

Quiz . 552

Questions . 552

Answers . 552

Certification Practice. 552

Exercises . 553

DAY 21: Writing Java Servlets and Java Server Pages 555

Using Servlets . 556

Developing Servlets . 559

Using Cookies . 565

Using Sessions. 568

JSP . 572

Writing a JSP Page . 574

Creating a Web Application . 581

JSP Standard Tag Library . 587

Summary . 594

Q&A. 595

Quiz . 596

Questions . 596

Answers . 596

Certification Practice. 597

Exercises . 597

Appendixes

APPENDIX A: Using the Java Development Kit 601

Choosing a Java Development Tool . 602

Installing the Java Development Kit . 603

Contents xvii

Configuring the Java Development Kit . 605

Using a Command-line Interface . 606

Opening Folders in MS-DOS . 607

Creating Folders in MS-DOS . 608

Running Programs in MS-DOS . 609

Correcting Configuration Errors . 611

Using a Text Editor . 615

Creating a Sample Program. 616

Compiling and Running the Program in Windows . 618

Setting Up the CLASSPATH Variable. 620

Setting the CLASSPATH on Windows 98 or Me . 620

Setting the Classpath on Windows NT, XP, 2000 or 2003 . 622

Troubleshooting Your Kit Installation. 624

APPENDIX B: Programming with the Java Development Kit 625

An Overview of the JDK . 626

The java Interpreter . 627

The javac Compiler . 629

The appletviewer Browser . 630

The javadoc Documentation Tool . 635

The jar Java File Archival Tool. 639

The jdb Debugger . 641

Debugging Applications . 641

Debugging Applets . 643

Advanced Debugging Commands . 644

Using System Properties . 645

APPENDIX C: This Book’s Website 649

Index 651

Bonus Material on the Companion CD-ROM

CD1 Choosing Java

CD2 Writing Java Applets

CD3 Regular Expressions

CD4 Where to Go from Here: Java Resources

xviii Sams Teach Yourself Java 6 in 21 Days

About the Authors

Rogers Cadenhead is a web application developer and author. He has written 22 books
on Internet-related topics, including Sams Teach Yourself Java in 24 Hours. He’s also a
web publisher whose sites receive more than 24 million visits per year. He maintains this
book’s official website at http://www.java21days.com and a personal weblog at
http://www.cadenhead.org.

Laura Lemay is a technical writer and author. After spending six years writing software
documentation for various computer companies in Silicon Valley, she decided that writ-
ing books would be much more fun. In her spare time, she collects computers, email
addresses, interesting hair colors, and nonrunning motorcycles. She is also the perpetra-
tor of Sams Teach Yourself Web Publishing with HTML in a Week and Sams Teach
Yourself Perl in 21 Days and a personal weblog at http://blog.lauralemay.com

Dedication
To my sons Max, Eli, and Sam Cadenhead. I am extremely proud to be your dad,

no matter what you tell your mother about my cooking.
—Rogers

To Eric, for all the usual reasons (moral support, stupid questions,
comfort in dark times, brewing big pots of coffee).

—LL

Acknowledgments

From Rogers Cadenhead:

A book of this scope (and heft!) requires the hard work and dedication of numerous peo-
ple. Most of them are at Sams Publishing in Indianapolis, and to them I owe considerable
thanks—in particular, to Karen Annett, Adam DeFields, Mandie Frank, Songlin Qiu,
Mark Taber, and former Sams editor, Scott Meyers. Thanks also to my agent at Studio B,
Laura Lewin. Most of all, thanks to my wife and sons.

I’d also like to thank readers who have sent helpful comments about corrections, typos,
and suggested improvements regarding this book and its prior editions. The list includes
the following people: Dave Barton, Patrick Benson, Ian Burton, Lawrence Chang, Jim
DeVries, Ryan Esposto, Kim Farr, Sam Fitzpatrick, Bruce Franz, Owen Gailar, Rich
Getz, Bob Griesemer, Jenny Guriel, Brenda Henry-Sewell, Ben Hensley, Jon Hereng,
Drew Huber, John R Jackson, Bleu Jaegel, Natalie Kehr, Mark Lehner, Stephen
Loscialpo, Brad Kaenel, Chris McGuire, Paul Niedenzu, E.J. O’Brien, Chip Pursell,
Pranay Rajgarhia, Peter Riedlberger, Darrell Roberts, Luke Shulenburger, Mike Tomsic,
John Walker, Joseph Walsh, Mark Weiss, P.C. Whidden, Chen Yan, Kyu Hwang Yeon,
and J-F. Zurcher.

From Laura Lemay:

To the folks on Sun’s Java team, for all their hard work on Java, the language, and on the
browser, and particularly to Jim Graham, who demonstrated Java and HotJava to me on
very short notice and planted the idea for this book. To everyone who bought my previ-
ous books and liked them: Buy this one, too.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.

E-mail: webdev@samspublishing.com

Mail: Mark Taber
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at www.samspublishing.com/register for conve-
nient access to any updates, downloads, or errata that might be available for this book.

Introduction

Some revolutions catch the world completely by surprise. The World Wide Web, the
Linux operating system, and social networking all rose to prominence unexpectedly.

The remarkable success of the Java programming language, on the other hand, caught no
one by surprise. Java has been the source of great expectations since its introduction a
decade ago. When Sun Microsystems launched Java by incorporating it into web
browsers, a torrent of publicity welcomed the arrival of the new language.

Sun cofounder Bill Joy didn’t hedge his bets at all when describing the company’s new
language. “This represents the end result of nearly 15 years of trying to come up with a
better programming language and environment for building simpler and more reliable
software,” he proclaimed.

In the ensuing years, Java lived up to a considerable amount of its hype. The language
has become as strong a part of software development as the beverage of the same name.
One kind of Java keeps programmers up nights. The other kind enables programmers to
rest easier after they have developed their software.

Java was originally offered as a technology for enhancing websites with programs that
run in web browsers. Today, it’s more likely to be found on servers, driving dynamic web
applications backed by relational databases on some of the Web’s largest sites.

Each new release of Java strengthens its capabilities as a general-purpose programming
language for environments other than a web browser. Today, Java is being put to use in
desktop applications, Internet servers, personal digital assistants, embedded devices, and
many other environments.

Now in its seventh major release—Java 6—the Java language has matured into a full-fea-
tured competitor to other general-purpose development languages, such as C++, Perl,
Python, Ruby, and Visual Basic.

You might be familiar with Java programming tools, such as Eclipse, Borland JBuilder,
and the NetBeans Integrated Development Environment. These programs make it possi-
ble to develop functional Java programs, and you also can use Sun’s Java Development
Kit. The kit, which is available for free on the Web at http://java.sun.com, is a set of
command-line tools for writing, compiling, and testing Java programs.

In Sams Teach Yourself Java 6 in 21 Days, you are introduced to all aspects of Java soft-
ware development using the most current version of the language and the best available
techniques.

By the time you’re finished, you’ll be well acquainted with the reasons Java has become
the most widely adopted programming language of the past decade.

How This Book Is Organized
Sams Teach Yourself Java 6 in 21 Days teaches you about the Java language and how to
use it to create applications for any computing environment and servlets that run on web
servers. By the time you have finished the book, you’ll have a well-rounded knowledge
of Java and the Java class libraries. Using your new skills, you will be able to develop
your own programs for tasks such as web services, database connectivity, XML process-
ing, and client/server programming.

You learn by doing in this book, creating several programs each day that demonstrate the
topics being introduced. The source code for all these programs is available on the
book’s official website at http://www.java21days.com, along with other supplemental
material such as answers to reader questions.

This book covers the Java language and its class libraries in 21 days, organized as three
separate weeks. Each week covers a broad area of developing Java applets and applica-
tions.

In the first week, you learn about the Java language itself:

n Day 1 covers the basics—what Java is, why to learn the language, and how to cre-
ate software using an innovative style of development called object-oriented pro-
gramming. You create your first Java application.

n On Day 2, you dive into the fundamental Java building blocks—data types, vari-
ables, and expressions.

n Day 3 goes into detail about how to deal with objects in Java—how to create them,
use their variables, call their methods, and compare them.

n On Day 4, you give Java programs cognitive skills using conditionals and work
with arrays and loops.

n Day 5 fully explores the creation of classes—the basic building blocks of any Java
program.

n On Day 6, you discover more about interfaces and packages, which are useful for
grouping classes and organizing a class hierarchy.

2 Sams Teach Yourself Java 6 in 21 Days

n Day 7 covers three powerful features of Java—exceptions, the ability to deal with
errors; threads, the ability to run parts of a program simultaneously; and assertions,
a technique for making programs more reliable.

Week 2 is dedicated to the most useful classes created by Sun for use in your own Java
programs:

n On Day 8, you are introduced to data structures that you can use as an alternative
to strings and arrays—vectors, stacks, maps, hash tables, and bit sets—and a spe-
cial for loop that makes them easier to use.

n Day 9 begins a 5-day exploration of visual programming. You learn how to create
a graphical user interface using Swing, an extensive set of classes for interfaces,
graphics, and user interactions.

n Day 10 covers more than a dozen interface components that you can use in a Java
program, including buttons, text fields, sliders, scrolling text areas, and icons.

n Day 11 explains how to make a user interface look good using layout managers, a
set of classes that determine how components on an interface are arranged.

n Day 12 concludes the coverage of Swing with event-handling classes, which
enable a program to respond to mouse clicks and other user interactions.

n On Day 13, you learn about drawing shapes and characters on a user interface
component such as an applet window.

n Day 14 demonstrates how to use Java Web Start, a technique that makes installa-
tion of a Java program as easy as clicking on a web page link, and SwingWorker, a
class that improves application performance by using threads.

Week 3 moves into advanced topics:

n Day 15 covers input and output using streams, a set of classes that enable file
access, network access, and other sophisticated data handling.

n Day 16 introduces object serialization, a way to make objects exist even when no
program is running. You learn to save them to a storage medium, such as a hard
disk, read them into a program, and then use them again as objects.

n On Day 17, you extend your knowledge of streams to write programs that commu-
nicate with the Internet, including socket programming, buffers, channels, and
URL handling.

n Day 18 shows how to connect to relational databases using Java Database
Connectivity (JDBC) and JDBC-ODBC. You learn how to exploit the capabilities
of Derby, the open source database that’s included for the first time in Java 6.

Introduction 3

n Day 19 covers how to read and write RSS documents using the XML Object
Model (XOM), an open source Java class library. RSS feeds, one of the most popu-
lar XML dialects in use today, enable millions of people to follow site updates and
other new web content.

n Day 20 explores how to write web services clients with the language and the
Apache XML-RPC class library.

n Day 21 covers two of the hottest areas in Java programming: servlets and Java
Server Pages, techniques for writing Java applications that are run by web servers.

Who Should Read This Book
This book teaches the Java language to three groups:

n Novices who are relatively new to programming

n People who have been introduced to earlier versions of Java such as Java version
1.5 or 1.4

n Experienced developers in other languages, such as Visual C++, Visual Basic, or
Python

When you’re finished with this book, you’ll be able to tackle any aspect of the Java lan-
guage and be comfortable enough to tackle your own ambitious programming projects—
both on and off the Web.

If you’re somewhat new to programming or have never written a program before, you
might wonder whether this is the right book for you. Because all the concepts in this
book are illustrated with working programs, you’ll be able to work your way through the
subject regardless of your experience level. If you understand what variables, loops, and
operators are, you’ll be able to benefit from this book. You are among those who might
want to read this book if any of the following rings true:

n You had some BASIC or Pascal in school, have a grasp of what programming is,
and you’ve heard Java is easy to learn, powerful, and cool.

n You’ve programmed in another language for a few years, keep hearing accolades
for Java, and want to see whether it lives up to its hype.

n You’ve heard that Java is great for web application and web services programming.

4 Sams Teach Yourself Java 6 in 21 Days

If you have never been introduced to object-oriented programming, which is the style of
programming embodied by Java, don’t be discouraged. This book assumes that you have
no background in object-oriented design—you get a chance to learn this development
methodology as you’re learning Java.

If you’re a complete beginner to programming, this book might move a little fast for you.
Java is a good language to start with, though, and if you take it slowly and work through
all the examples, you can still pick up Java and start creating your own programs.

Conventions Used in This Book

A Note presents interesting, sometimes technical, pieces of infor-
mation related to the surrounding discussion.

A Tip offers advice such as an easier way to do something.

A Caution advises you of potential problems and helps you to
steer clear of disaster.

Text that you type and text that should appear on your screen is presented in monospace
type:

It will look like this.

This font mimics the way text looks on your screen. Placeholders for variables and
expressions appear in monospace italic.

The end of each lesson offers several special features: answers to commonly asked ques-
tions about that day’s subject matter, a chapter-ending quiz to test your knowledge of the
material, two exercises that you can try on your own, and a practice question for readers
preparing for Java certification. Solutions to the exercises and the answer to the certifica-
tion question can be found on the book’s official website at http://www.java21days.com.

Introduction 5

NOTE

TIP

CAUTION

WEEK 1:
The Java Language

1 Getting Started with Java

2 The ABCs of Programming

3 Working with Objects

4 Lists, Logic, and Loops

5 Creating Classes and Methods

6 Packages, Interfaces, and Other Class
Features

7 Exceptions, Assertions, and Threads

DAY 1:
Getting Started with
Java

The thing that Java tries to do and is actually remarkably
successful at is spanning a lot of different domains, so you can do
app server work, you can do cell phone work, you can do scientific
programming, you can write software, do interplanetary navigation,
all kinds of stuff…

—Java language creator James Gosling, interviewed by
SearchWebServices.com

When Sun Microsystems first released the Java programming language in
1995, it was an inventive toy for the Web that had the potential to be
much more.

The word “potential” is a compliment that comes with an expiration date.
Sooner or later, potential must be realized or new words are used in its
place such as “letdown,” “waste,” and “major disappointment to your
mother and I.”

As you develop your skills during the 21 one-day tutorials in Sams Teach
Yourself Java 6 in 21 Days, Fifth Edition, you’ll be in a good position to
judge whether the language has lived up to a decade of hype.

You’ll also become a Java programmer with a lot of potential.

The Java Language
Now in its seventh major release, Java has lived up to the expectations that accompanied
its arrival. More than 3.5 million programmers have learned the language and are using it
in places such as NASA, IBM, Kaiser Permanente, and the Apache Project. It’s a stan-
dard part of the academic curriculum at many computer science departments around the
world. First used to create simple programs on web pages, Java can be found today in
each of the following places and many more:

n Web servers

n Relational databases

n Orbiting telescopes

n Personal digital assistants

n Cellular phones

Although Java remains useful for web developers trying to enliven sites and create web
applications, it extends far beyond the Web. Java is now a popular general-purpose pro-
gramming language.

History of the Language
The story of the Java language is well known by this point. James Gosling and other
developers at Sun were working on an interactive TV project in the mid-1990s when
Gosling became frustrated with the language being used—C++, an object-oriented pro-
gramming language developed by Bjarne Stroustrup at AT&T Bell Laboratories 10 years
earlier as an extension of the C language.

Gosling holed up in his office and created a new language that was suitable for his pro-
ject and addressed some of the things that frustrated him about C++.

Sun’s interactive TV effort failed, but its work on the language had unforeseen applica-
bility to a new medium that was becoming popular at the same time: the Web.

Java was released by Sun in fall 1995. Although most of the language’s features were
primitive compared with C++ (and Java today), Java programs called applets could be
run as part of web pages on the Netscape Navigator browser.

This functionality—the first interactive programming available on the Web—helped pub-
licize the new language and attract several hundred thousand developers in its first six
months.

10 DAY 1: Getting Started with Java

Even after the novelty of Java web programming wore off, the overall benefits of the lan-
guage became clear, and the programmers stuck around. There are more professional
Java programmers today than C++ programmers.

Introduction to Java
Java is an object-oriented, platform-neutral, secure language designed to be easier to
learn than C++ and harder to misuse than C and C++.

Object-oriented programming (OOP) is a software development methodology in which a
program is conceptualized as a group of objects that work together. Objects are created
using templates called classes, and they contain data and the statements required to use
that data. Java is completely object-oriented, as you’ll see later today when you create
your first class and use it to create objects.

Platform neutrality is the ability of a program to run without modification in different
computing environments. Java programs are compiled into a format called bytecode that
is run by any operating system, software, or device with a Java interpreter. You can cre-
ate a Java program on a Windows Vista machine that runs on a Linux web server, Apple
Mac using OS X, and Palm personal digital assistant. As long as a platform has a Java
interpreter, it can run the bytecode.

Though the ease of learning one language over another is always a point of contention
among programmers, Java was designed to be easier than C++ primarily in the following
ways:

n Java automatically takes care of memory allocation and deallocation, freeing pro-
grammers from this tedious and complex task.

n Java doesn’t include pointers, a powerful feature of use primarily to experienced
programmers that can be easily misused.

n Java includes only single inheritance in object-oriented programming.

The lack of pointers and the presence of automatic memory management are two key
elements to the security of Java. For a full discussion of Java’s history and the strong
points of the language, read the article “Choosing Java” included on this book’s CD.

Selecting a Development Tool
Now that you’ve been introduced to Java as a spectator, it’s time to put some of these
concepts into play and create your first Java program.

The Java Language 11

1

If you work your way through the 21 days of this book, you’ll become well versed in
Java’s capabilities, including graphics, file input and output, web application develop-
ment, Extensible Markup Language (XML) processing, and database connectivity. You
will write programs that run on web pages and others that run on your personal com-
puter, web servers, and other computing environments.

Before you can get started, you must have software on your computer that can be used to
edit, compile, and run Java programs that use the most up-to-date version of the lan-
guage: Java 6.

Several popular integrated development environments for Java support version 6, includ-
ing Borland JBuilder, IntelliJ IDEA, and Eclipse.

These are each recommended by Java developers, but if you are learning to use these
tools at the same time as you are learning Java, it can be a daunting task. Most integrated
development environments are aimed primarily at experienced programmers who want to
be more productive, not new people who are taking their first foray into a new language.

For this reason, unless you are comfortable with a development tool before picking up
this book, you should probably use the simplest tool for Java development: the Java
Development Kit, which is free and can be downloaded from Sun’s Java website at
http://java.sun.com.

Whenever Sun releases a new version of Java, it also makes a free development kit avail-
able over the Web to support that version. The current release is the Java Development
Kit Version 6.

For the sake of a few trees, in this book the language will usually be referred to simply
as Java and the kit as the JDK. You might see the kit referred to elsewhere as Java
Development Kit 6.

If you will be using the JDK to create the tutorial programs in this book, you can find
out how to get started with the software in Appendix A, “Using the Java Development
Kit.” The appendix covers how to download and install the kit and use it to create a sam-
ple Java program.

After you have a Java development tool on your computer that supports Java 6, you’re
ready to dive into the language.

Object-Oriented Programming
The biggest challenge for a new Java programmer is learning object-oriented program-
ming at the same time as the Java language.

12 DAY 1: Getting Started with Java

Although this might sound daunting if you are unfamiliar with this style of program-
ming, think of it as a two-for-one discount for your brain. You will learn object-oriented
programming by learning Java. There’s no other way to make use of the language.

Object-oriented programming is an approach to building computer programs that mimics
how objects are assembled in the physical world.

By using this style of development, you can create programs that are more reusable, reli-
able, and understandable.

To get to that point, you first must explore how Java embodies the principles of object-
oriented programming. The following topics are covered during the first week of this
book:

n Organizing programs into elements called classes

n Learning how these classes are used to create objects

n Defining a class by two aspects of its structure: how it should behave and what its
attributes are

n Connecting classes to each other in a way that one class inherits functionality from
another class

n Linking classes together through packages and interfaces

If you already are familiar with object-oriented programming, much of today’s material
will be a review for you. Even if you skim over the introductory material, you should
create the sample program to get some experience developing, compiling, and running
Java programs.

There are many different ways to conceptualize a computer program. One way is to think
of a program as a series of instructions carried out in sequence, and this is commonly
called procedural programming. Many programmers start by learning a procedural lan-
guage such as a version of BASIC.

Procedural languages mirror the way a computer carries out instructions, so the programs
you write are tailored to the computer’s manner of doing things. One of the first things a
procedural programmer must learn is how to break down a problem into a series of sim-
ple steps.

Object-oriented programming looks at a computer program from a different angle, focus-
ing on the task for which you are using the computer rather than the way a computer
handles tasks.

Object-Oriented Programming 13

1

In object-oriented programming, a computer program is conceptualized as a set of
objects that work together to accomplish a task. Each object is a separate part of the pro-
gram, interacting with the other parts in specific, highly controlled ways.

For a real-life example of object-oriented design, consider a stereo system. Most systems
are built by hooking together a bunch of different objects, which are more commonly
called components, such as the following:

n Speaker components play midrange and high-frequency sounds.

n Subwoofer components play low bass frequency sounds.

n Tuner components receive radio broadcast signals.

n CD player components read audio data from CDs.

These components are designed to interact with each other using standard input and out-
put connectors. Even if you bought the speakers, subwoofer, tuner, and CD player from
different companies, you can combine them to form a stereo system as long as they have
standard connectors.

Object-oriented programming works under the same principle: You put together a pro-
gram by combining newly created objects and existing objects in standard ways. Each
object serves a specific role in the overall program.

An object is a self-contained element of a computer program that represents a related
group of features and is designed to accomplish specific tasks.

Objects and Classes
Object-oriented programming is modeled on the observation that in the physical world,
objects are made up of many kinds of smaller objects.

However, the capability to combine objects is only one aspect of object-oriented pro-
gramming. Another important feature is the use of classes.

A class is a template used to create an object. Every object created from the same class
has similar features.

Classes embody all features of a particular set of objects. When you write a program in
an object-oriented language, you don’t define individual objects. Instead, you define
classes used to create those objects.

For example, you could create a Modem class that describes the features of all computer
modems. Most modems have the following common features:

14 DAY 1: Getting Started with Java

n They connect to a computer’s serial port.

n They send and receive information.

n They dial phone numbers.

The Modem class serves as an abstract model for the concept of a modem. To actually
have something concrete you can manipulate in a program, you must use the Modem class
to create a Modem object. The process of creating an object from a class is called instanti-
ation, which is why objects also are called instances.

A Modem class can be used to create many different Modem objects in a program, and each
of these objects could have different features, such as the following:

n Some are internal modems and others are external modems.

n Some use the COM1 port and others use the COM2 port.

n Some have error control, and others don’t.

Even with these differences, two Modem objects still have enough in common to be recog-
nizable as related objects. Figure 1.1 shows a Modem class and several objects created
from that template.

Objects and Classes 15

1

Modem Class
(Abstract)

Internal Modem
Uses COM1

Supports error-control
(Concrete)

External Modem
Uses COM1

Supports error-control
(Concrete)

External Modem
Uses COM2

No error-control
(Concrete)

FIGURE 1.1
The Modem class
and several Modem
objects.

Here’s another example: Using Java, you could create a class to represent all command
buttons—clickable boxes that appear on windows, dialog boxes, and other parts of a pro-
gram’s graphical user interface.

When the CommandButton class is developed, it could define these features:

n The text displayed on the button

n The size of the button

n Aspects of its appearance, such as whether it has a 3D shadow

The CommandButton class also could define how a button behaves, deciding the following
things:

n Whether the button requires a single click or a double-click

n Whether it should ignore mouse clicks entirely

n What it does when successfully clicked

After you define the CommandButton class, you can create instances of that button—in
other words, CommandButton objects. The objects all take on the basic features of a click-
able button as defined by the class, but each one could have a different appearance and
slightly different behavior depending on what you need that object to do.

By creating a CommandButton class, you don’t have to keep rewriting the code for each
command button that you want to use in your programs. In addition, you can reuse the
CommandButton class to create different kinds of buttons as you need them, both in this
program and in others.

16 DAY 1: Getting Started with Java

One of Java’s standard classes, javax.swing.JButton, encom-
passes all the functionality of this hypothetical CommandButton
example and more. You get a chance to work with it during Day 9,
“Working with Swing.”

NOTE

When you write a Java program, you design and construct a set of classes. When your
program runs, objects are instantiated from those classes and used as needed. Your task
as a Java programmer is to create the right set of classes to accomplish what your pro-
gram needs to accomplish.

Fortunately, you don’t have to start from scratch. The Java language includes thousands
of classes that implement most of the functionality you will need. These classes are
called the Java class library, and they are installed along with a development tool such as
the JDK.

When you’re talking about using the Java language, you’re actually talking about
using this class library and some standard keywords and operators recognized by Java
compilers.

The class library handles numerous tasks, such as mathematical functions, text handling,
graphics, user interaction, and networking. Working with these classes is no different
than working with Java classes you create.

For complicated Java programs, you might create a whole set of new classes that formed
their own class library for use in other programs.

Reuse is one of the fundamental benefits of object-oriented programming.

Attributes and Behavior
A Java class consists of two distinct types of information: attributes and behavior.

Both of these are present in VolcanoRobot, a project you will implement today as a
class. This project, a simple simulation of a volcanic exploration vehicle, is inspired by
the Dante II robot used by NASA’s Telerobotics Research program to do research inside
volcanic craters.

Attributes of a Class of Objects
Attributes are the data that differentiates one object from another. They can be used to
determine the appearance, state, and other qualities of objects that belong to that class.

A volcanic exploration vehicle could have the following attributes:

n Status—Exploring, moving, returning home

n Speed—Measured in miles per hour

n Temperature—Measured in Fahrenheit degrees

In a class, attributes are defined by variables—places to store information in a computer
program. Instance variables are attributes that have values that differ from one object to
another.

An instance variable defines an attribute of one particular object. The object’s class
defines what kind of attribute it is, and each instance stores its own value for that
attribute. Instance variables also are called object variables.

Each class attribute has a single corresponding variable. You change that attribute of the
object by changing the value of the variable.

Attributes and Behavior 17

1

For example, the VolcanoRobot class defines a speed instance variable. This must be an
instance variable because each robot travels at different speeds. The value of a robot’s
speed instance variable could be changed to make the robot move more quickly or
slowly.

Instance variables can be given a value when an object is created and then stay constant
throughout the life of the object. They also can be given different values as the object is
used in a running program.

For other variables, it makes more sense to have one value shared by all objects of that
class. These attributes are called class variables.

A class variable defines an attribute of an entire class. The variable applies to the class
itself and to all its instances, so only one value is stored no matter how many objects of
that class have been created.

An example of a class variable for the VolcanoRobot class would be a variable that holds
the current time. If an instance variable were created to hold the time, each object could
have a different value for this variable, which could cause problems if the robots are sup-
posed to perform tasks in conjunction with each other.

Using a class variable prevents this problem because all objects of that class share the
same value automatically. Each VolcanoRobot object would have access to that variable.

Behavior of a Class of Objects
Behavior refers to the things that a class of objects can do to themselves and other
objects. Behavior can be used to change the attributes of an object, receive information
from other objects, and send messages to other objects asking them to perform tasks.

A volcano robot could have the following behavior:

n Check current temperature

n Begin a survey

n Report its current location

Behavior for a class of objects is implemented using methods.

Methods are groups of related statements in a class that perform a specific task. They are
used to accomplish specific tasks on their own objects and on other objects and are com-
parable to functions and subroutines in other programming languages.

Objects communicate with each other using methods. A class or an object can call meth-
ods in another class or object for many reasons, including the following:

18 DAY 1: Getting Started with Java

n To report a change to another object

n To tell the other object to change something about itself

n To ask another object to do something

For example, two volcano robots could use methods to report their locations to each
other and avoid collisions, and one robot could tell another to stop so that it could
pass by.

Just as there are instance and class variables, there also are instance and class methods.
Instance methods, which are usually just called methods, are used when you are working
with an object of the class. If a method makes a change to an individual object, it must
be an instance method. Class methods apply to a class itself.

Creating a Class
To see classes, objects, attributes, and behavior in action, you will develop a
VolcanoRobot class, create objects from that class, and work with them in a running
program.

Attributes and Behavior 19

1

The main purpose of this project is to explore object-oriented pro-
gramming. You’ll learn more about Java programming syntax during
Day 2, “The ABCs of Programming.”

NOTE

To begin creating a class, open the text editor you’re using to create Java programs and
create a new file. Enter the text of Listing 1.1 and save the file as VolcanoRobot.java in
a folder you are using to work on programs from this book.

LISTING 1.1 The Full Text of VolcanoRobot.java

1: class VolcanoRobot {
2: String status;
3: int speed;
4: float temperature;
5:
6: void checkTemperature() {
7: if (temperature > 660) {
8: status = “returning home”;
9: speed = 5;
10: }
11: }
12:

LISTING 1.1 Continued

13: void showAttributes() {
14: System.out.println(“Status: “ + status);
15: System.out.println(“Speed: “ + speed);
16: System.out.println(“Temperature: “ + temperature);
17: }
18: }

The class statement in line 1 of Listing 1.1 defines and names the VolcanoRobot class.
Everything contained between the opening brace (“{“) on line 1 and the closing brace
(“}”) on line 18 is part of this class.

The VolcanoRobot class contains three instance variables and two instance methods.

The instance variables are defined in lines 2–4:

String status;
int speed;
float temperature;

The variables are named status, speed, and temperature. Each is used to store a differ-
ent type of information:

n status holds a String object, a group of letters, numbers, punctuation, and other
characters.

n speed holds an int, an integer value.

n temperature holds a float, a floating-point number.

String objects are created from the String class, which is part of the Java class library
and can be used in any Java program.

20 DAY 1: Getting Started with Java

As you might have noticed from the use of String in this program,
a class can use objects as instance variables.

TIP

The first instance method in the VolcanoRobot class is defined in lines 6–11, reprinted
here:

void checkTemperature() {
if (temperature > 660) {

status = “returning home”;
speed = 5;

}
}

Methods are defined in a manner similar to a class. They begin with a statement that
names the method, the kind of information the method produces, and other things.

The checkTemperature() method is contained within the braces on lines 6 and 11 of
Listing 1.1. This method can be called on a VolcanoRobot object to find out its tempera-
ture.

This method checks to see whether the object’s temperature instance variable has a
value greater than 660. If it does, two other instance variables are changed:

n The status is changed to the text “returning home,” indicating that the temperature
is too hot and the robot is heading back to its base.

n The speed is changed to 5. (Presumably, this is as fast as the robot can travel.)

The second instance method, showAttributes(), is defined in lines 13–17:

void showAttributes() {
System.out.println(“Status: “ + status);
System.out.println(“Speed: “ + speed);
System.out.println(“Temperature: “ + temperature);

}

This method calls System.out.println() to display the values of three instance vari-
ables along with some text explaining what each value represents.

Save the file when you’re done entering the source code. You don’t need to compile
it yet.

Running the Program
Even if you compiled the VolcanoRobot class successfully, you couldn’t do anything
with it. The class you have created defines what a VolcanoRobot object would be like if
one were used in a program, but it doesn’t create one of these objects.

There are two ways to put the VolcanoRobot class to use:

n Create a separate Java program that uses the class.

n Add a special class method called main() to the VolcanoRobot class so that it can
be run as an application and then use VolcanoRobot objects in that method.

The first option is chosen for this exercise. Listing 1.2 contains the source code for
VolcanoApplication, a Java class that creates a VolcanoRobot object, sets its instance
variables, and calls methods.

Attributes and Behavior 21

1

LISTING 1.2 The Full Text of VolcanoApplication.java

1: class VolcanoApplication {
2: public static void main(String[] arguments) {
3: VolcanoRobot dante = new VolcanoRobot();
4: dante.status = “exploring”;
5: dante.speed = 2;
6: dante.temperature = 510;
7:
8: dante.showAttributes();
9: System.out.println(“Increasing speed to 3.”);
10: dante.speed = 3;
11: dante.showAttributes();
12: System.out.println(“Changing temperature to 670.”);
13: dante.temperature = 670;
14: dante.showAttributes();
15: System.out.println(“Checking the temperature.”);
16: dante.checkTemperature();
17: dante.showAttributes();
18: }
19: }

Save the file as VolcanoApplication.java and compile the program.

If you are using the JDK, you can do the following to compile the program: Go to a
command line or open a command-line window, open the folder where
VolcanoApplication.java is saved, and then compile the program by typing the follow-
ing at the command line:

javac VolcanoApplication.java

The Java compiler creates VolcanoApplication.class, a file containing bytecode
that can be executed by a Java interpreter. The compiler does the same for the
VolcanoRobot.java class if necessary because that class is being used in this application.

22 DAY 1: Getting Started with Java

If you encounter problems compiling or running any program in
this book with the JDK, you can find a copy of the source file
and other related files on the book’s official website: http://www.
java21days.com.

TIP

After you have compiled the application, run the program.

Using the JDK, you can run the VolcanoApplication program by opening the folder contain-
ing the VolcanoRobot.class and VolcanoApplication.class files by using this command:

java VolcanoApplication

When you run the VolcanoApplication class, the output should be the following:

Status: exploring
Speed: 2
Temperature: 510.0
Increasing speed to 3.
Status: exploring
Speed: 3
Temperature: 510.0
Changing temperature to 670.
Status: exploring
Speed: 3
Temperature: 670.0
Checking the temperature.
Status: returning home
Speed: 5
Temperature: 670.0

Using Listing 1.2 as a guide, the following things are taking place in the main() class
method:

n Line 2—The main() method is created and named. All main() methods take this
format, as you’ll learn during Day 5, “Creating Classes and Methods.” For now, the
most important thing to note is the static keyword, which indicates that the
method is a class method shared by all VolcanoRobot objects.

n Line 3—A new VolcanoRobot object is created using the class as a template. The
object is given the name dante.

n Lines 4–6—Three instance variables of the dante object are given values: status
is set to the text “exploring”, speed is set to 2, and temperature is set to 510.

n Line 8—On this line and several that follow, the showAttributes() method of the
dante object is called. This method displays the current values of the instance vari-
ables status, speed, and temperature.

n Line 9—On this line and others that follow, a System.out.println() statement is
used to display the text within the parentheses.

n Line 10—The speed instance variable is set to the value 3.

n Line 13—The temperature instance variable is set to the value 670.

n Line 16—The checkTemperature() method of the dante object is called. This
method checks to see whether the temperature instance variable is greater than
660. If it is, status and speed are assigned new values.

Attributes and Behavior 23

1

Organizing Classes and Class Behavior
An introduction to object-oriented programming in Java isn’t complete without looking
at three more concepts: inheritance, interfaces, and packages.

These three concepts are mechanisms for organizing classes and class behavior.

Inheritance
Inheritance is one of the most crucial concepts in object-oriented programming, and it
has a direct effect on how you design and write your own Java classes.

Inheritance is a mechanism that enables one class to inherit all the behavior and attrib-
utes of another class.

Through inheritance, a class immediately picks up all the functionality of an existing
class. Because of this, you only must define how the new class is different from an exist-
ing class.

With inheritance, all classes—those you create and those from the Java class library and
other libraries—are arranged in a strict hierarchy.

A class that inherits from another class is called a subclass. The class that gives the
inheritance is called a superclass.

A class can have only one superclass, but each class can have an unlimited number of
subclasses. Subclasses inherit all the attributes and behavior of their superclasses.

In practical terms, this means that if the superclass has behavior and attributes that your
class needs, you don’t have to redefine it or copy that code to have the same behavior
and attributes. Your class automatically receives these things from its superclass, the
superclass gets them from its superclass, and so on, all the way up the hierarchy. Your
class becomes a combination of its own features and all the features of the classes above
it in the hierarchy.

The situation is comparable to the way you inherited traits from your parents, such as
your height, hair color, and love of peanut butter and banana sandwiches. They inherited
some of these things from their parents, who inherited from theirs, and backward through
time to the Garden of Eden, Big Bang, or [insert personal belief here].

Figure 1.2 shows the way a hierarchy of classes is arranged.

At the top of the Java class hierarchy is the class Object—all classes inherit from this
superclass. Object is the most general class in the hierarchy, and it defines behavior
inherited by all the classes in the Java class library.

24 DAY 1: Getting Started with Java

Each class farther down the hierarchy becomes more tailored to a specific purpose. A
class hierarchy defines abstract concepts at the top of the hierarchy. Those concepts
become more concrete farther down the line of subclasses.

Often when you create a new class in Java, you want all the functionality of an existing
class with some modifications of your own creation. For example, you might want a ver-
sion of CommandButton that makes a sound when clicked.

To receive all the CommandButton functionality without doing any work to re-create it,
you can define your class as a subclass of CommandButton. Your class then automatically
would inherit behavior and attributes defined in CommandButton as well as the behavior
and attributes defined in the superclasses of CommandButton. All you have to worry about
are the things that make your new class different from CommandButton itself. Subclassing
is the mechanism for defining new classes as the differences between those classes and
their superclass.

Subclassing is the creation of a new class that inherits from an existing class. The only
task in the subclass is to indicate the differences in behavior and attributes between itself
and its superclass.

If your class defines entirely new behavior and isn’t a subclass of another class, you can
inherit directly from the Object class. This allows it to fit into the Java class hierarchy. If
you create a class definition that doesn’t indicate a superclass, Java assumes that the new
class is inheriting directly from Object. The VolcanoRobot class you created earlier
today did not specify a superclass, so it’s a subclass of the Object class.

Organizing Classes and Class Behavior 25

1

• Class A is the superclass of B
• Class B is a subclass of A
• Class B is the superclass
 of C, D, and E
• Classes C, D, and E
 are subclasses of B

Class A

Class B

Class DClass C Class E

FIGURE 1.2
A class hierarchy.

Creating a Class Hierarchy
If you’re creating a large set of classes, it makes sense for your classes to inherit from
the existing class hierarchy and to make up a hierarchy themselves for these advantages:

n Functionality common to multiple classes can be put into a superclass, which
enables it to be used repeatedly in all classes below it in the hierarchy.

n Changes to a superclass automatically are reflected in all its subclasses, their sub-
classes, and so on. There is no need to change or recompile any of the lower
classes; they receive the new information through inheritance.

For example, imagine that you have created a Java class to implement all the features of
a volcanic exploratory robot. (This shouldn’t take much imagination.)

The VolcanoRobot class is completed and works successfully. Now you want to create a
Java class called MarsRobot.

These two kinds of robots have similar features—both are research robots that work in
hostile environments and conduct research. Your first impulse might be to open up the
VolcanoRobot.java source file and copy a lot of it into a new source file called
MarsRobot.java.

A better plan is to figure out the common functionality of MarsRobot and VolcanoRobot

and organize it into a more general class hierarchy. This might be a lot of work just for
the classes VolcanoRobot and MarsRobot, but what if you also want to add MoonRobot,
UnderseaRobot, and DesertRobot? Factoring common behavior into one or more
reusable superclasses significantly reduces the overall amount of work that must be done.

To design a class hierarchy that might serve this purpose, start at the top with the class
Object, the pinnacle of all Java classes. The most general class to which these robots
belong might be called Robot. A robot, generally, could be defined as a self-controlled
exploration device. In the Robot class, you define only the behavior that qualifies some-
thing to be a device, self-controlled, and designed for exploration.

There could be two classes below Robot: WalkingRobot and DrivingRobot. The obvious
thing that differentiates these classes is that one travels by foot and the other by wheel.
The behavior of walking robots might include bending over to pick up something, duck-
ing, running, and the like. Driving robots would behave differently. Figure 1.3 shows
what you have so far.

26 DAY 1: Getting Started with Java

Now, the hierarchy can become even more specific. With WalkingRobot, you might have
several classes: ScienceRobot, GuardRobot, SearchRobot, and so on. As an alternative,
you could factor out still more functionality and have intermediate classes for TwoLegged
and FourLegged robots, with different behaviors for each (see Figure 1.4).

Organizing Classes and Class Behavior 27

1

Walking Robot

Object

Robot

Driving Robot

FIGURE 1.3
The basic Robot
hierarchy.

Walking Robot

Two-Legged
Walking Robot

Four-Legged
Walking Robot

Guard Robot Science Robot Search Robot

FIGURE 1.4
Two-legged and
four-legged walking
robots.

Finally, the hierarchy is done, and you have a place for VolcanoRobot. It can be a sub-
class of ScienceRobot, which is a subclass of WalkingRobot, which is a subclass of
Robot, which is a subclass of Object.

Where do qualities such as status, temperature, or speed come in? At the place they fit
into the class hierarchy most naturally. Because all robots have a need to keep track of
the temperature of their environment, it makes sense to define temperature as an
instance variable in Robot. All subclasses would have that instance variable as well.
Remember that you need to define a behavior or attribute only once in the hierarchy, and
it automatically is inherited by each subclass.

28 DAY 1: Getting Started with Java

Designing an effective class hierarchy involves a lot of planning
and revision. As you attempt to put attributes and behavior into a
hierarchy, you’re likely to find reasons to move some classes to
different spots in the hierarchy. The goal is to reduce the number
of repetitive features that are needed.

NOTE

Inheritance in Action
Inheritance in Java works much more simply than it does in the real world. There are no
executors of a will or courts of any kind required in Java.

When you create a new object, Java keeps track of each variable defined for that object
and each variable defined for each superclass of the object. In this way, all the classes
combine to form a template for the current object, and each object fills in the information
appropriate to its situation.

Methods operate similarly: A new object has access to all method names of its class and
superclass. This is determined dynamically when a method is used in a running program.
If you call a method of a particular object, the Java interpreter first checks the object’s
class for that method. If the method isn’t found, the interpreter looks for it in the super-
class of that class, and so on, until the method definition is found. This is illustrated in
Figure 1.5.

Things get complicated when a subclass defines a method that matches a method defined
in a superclass in name and other aspects. In this case, the method definition found first
(starting at the bottom of the hierarchy and working upward) is the one that is used.

Because of this, you can create a method in a subclass that prevents a method in a super-
class from being used. To do this, you give the method with the same name, return type,
and arguments as the method in the superclass. This procedure is called overriding (see
Figure 1.6).

Single and Multiple Inheritance
Java’s form of inheritance is called single inheritance because each Java class can have
only one superclass (although any given superclass can have multiple subclasses).

Organizing Classes and Class Behavior 29

1

Class Class
Message sent to object and
passed up class hierarchy
until a definition is found

Method
definition

Class Class

Class

Object Object

FIGURE 1.5
How methods are
located in a class
hierarchy.

Class Class
Message sent to object and
passed up class hierarchy
until a definition is found

Method is overridden
by this definition

Initial method
definition Class

Class

Object Object

FIGURE 1.6
Overriding
methods.

In other object-oriented programming languages, such as C++, classes can have more
than one superclass, and they inherit combined variables and methods from all those
superclasses. This is called multiple inheritance, and it provides the means to create
classes that encompass just about any imaginable behavior. However, it significantly
complicates class definitions and the code needed to produce them. Java makes inheri-
tance simpler by allowing only single inheritance.

Interfaces
Single inheritance makes the relationship between classes and the functionality those
classes implement easier to understand and to design. However, it also can be restrictive,
especially when you have similar behavior that needs to be duplicated across different
branches of a class hierarchy. Java solves the problem of shared behavior by using inter-
faces.

An interface is a collection of methods that indicate a class has some behavior in addi-
tion to what it inherits from its superclasses. The methods included in an interface do not
define this behavior; that task is left for the classes that implement the interface.

For example, the Comparable interface contains a method that compares two objects of
the same class to see which one should appear first in a sorted list. Any class that imple-
ments this interface can determine the sorting order for objects of that class. This behav-
ior would not be available to the class without the interface.

You learn about interfaces during Day 6, “Packages, Interfaces, and Other Class
Features.”

Packages
Packages in Java are a way of grouping related classes and interfaces. Packages enable
groups of classes to be available only if they are needed and eliminate potential conflicts
among class names in different groups of classes.

By default, your Java classes have access only to the classes in the java.lang package,
which provide basic language features such as string handling. To use classes from any
other package, you must refer to them explicitly by package name or import them in
your source file.

To refer to a class within a package, you must normally use the full package name. For
example, because the Color class is contained in the java.awt package, you refer to it in
your programs with the notation java.awt.Color.

30 DAY 1: Getting Started with Java

Summary
If today was your first exposure to object-oriented programming, it probably seems theo-
retical and a bit overwhelming.

When your brain has just been stuffed with object-oriented programming concepts and
terminology for the first time, you might be worried that there’s no room left for the Java
lessons of the remaining 20 days.

At this point, you should have a basic understanding of classes, objects, attributes, and
behavior. You also should be familiar with instance variables and methods. You’ll be
using these right away tomorrow.

The other aspects of object-oriented programming, such as inheritance and packages,
will be covered in more detail on upcoming days. You’ll work with object-oriented pro-
gramming in every remaining day of the book. By the time you finish the first week,
you’ll have working experience with objects, classes, inheritance, and all the other
aspects of the methodology.

Q&A
Q In effect, methods are functions defined inside classes. If they look like func-

tions and act like functions, why aren’t they called functions?

A Some object-oriented programming languages do call them functions. (C++ calls
them member functions.) Other object-oriented languages differentiate between
functions inside and outside a body of a class or object because in those languages
the use of the separate terms is important to understanding how each function
works. Because the difference is relevant in other languages and because the term
method is now in common use in object-oriented terminology, Java uses the term
as well.

Q What’s the distinction between instance variables and methods and their
counterparts, class variables and methods?

A Almost everything you do in a Java program involves instances (also called
objects) rather than classes. However, some behavior and attributes make more
sense if stored in the class itself rather than in the object.

For example, the Math class in the java.lang package includes a class variable
called PI that holds the approximate value of pi. This value does not change, so
there’s no reason different objects of that class would need their own individual
copy of the PI variable. On the other hand, every String object contains a method
called length() that reveals the number of characters in that String. This value
can be different for each object of that class, so it must be an instance method.

Q&A 31

1

Quiz
Review today’s material by taking this three-question quiz.

Questions
1. What is another word for a class?

a. Object

b. Template

c. Instance

2. When you create a subclass, what must you define about that class?

a. It already is defined.

b. Things that are different from its superclass.

c. Everything about the class.

3. What does an instance method of a class represent?

a. The attributes of that class

b. The behavior of that class

c. The behavior of an object created from that class

Answers
1. b. A class is an abstract template used to create objects similar to each other.

2. b. You define how the subclass is different from its superclass. The things that are
similar are already defined for you because of inheritance. Answer a. is technically
correct, but if everything in the subclass is identical to the superclass, there’s no
reason to create the subclass at all.

3. c. Instance methods refer to a specific object’s behavior. Class methods refer to the
behavior of all objects belonging to that class.

Certification Practice
The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material.

32 DAY 1: Getting Started with Java

Which of the following statements is true?

a. All objects created from the same class must be identical.

b. All objects created from the same class can be different from each other.

c. An object inherits attributes and behavior from the class used to create it.

d. A class inherits attributes and behavior from its subclass.

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 1 page and click the Certification Practice link.

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. In the main() method of the VolcanoRobot class, create a second VolcanoRobot
robot named virgil, set up its instance variables, and display them.

2. Create an inheritance hierarchy for the pieces of a chess set. Decide where the
instance variables color, startingPosition, forwardMovement, and
sideMovement should be defined in the hierarchy.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java21days.com.

Exercises 33

1

DAY 2:
The ABCs of
Programming

A Java program is made up of classes and objects, which, in turn, are
made up of methods and variables. Methods are made up of statements
and expressions, which are made up of operators.

At this point, you might be afraid that Java is like Russian nesting
matryoshka dolls. Every one of those dolls seems to have a smaller doll
inside it, as intricate and detailed as its larger companion.

Today’s lesson clears away the big dolls to reveal the smallest elements
of Java programming. You’ll leave classes, objects, and methods alone for
a day and examine the basic things you can do in a single line of Java
code.

The following subjects are covered:

n Java statements and expressions

n Variables and primitive data types

n Constants

n Comments

n Literals

n Arithmetic

n Comparisons

n Logical operators

Statements and Expressions
All tasks that you want to accomplish in a Java program can be broken down into a
series of statements. In a programming language, a statement is a simple command that
causes something to happen.

Statements represent a single action taken in a Java program. All the following are sim-
ple Java statements:

int weight = 225;

System.out.println(“Free the bound periodicals!”);

song.duration = 230;

Some statements can convey a value, such as when you add two numbers together in a
program or evaluate whether two variables are equal to each other. This kind of state-
ment is called an expression.

An expression is a statement that produces a value. The value can be stored for later use
in the program, used immediately in another statement, or disregarded. The value pro-
duced by a statement is called its return value.

Some expressions produce a numerical return value, as when two numbers are added
together or multiplied. Others produce a Boolean value—true or false—or even can
produce a Java object. They are discussed later today.

Although many Java programs contain one statement per line, this is a formatting deci-
sion that does not determine where one statement ends and another one begins. Each
statement in Java is terminated with a semicolon character (;). A programmer can put
more than one statement on a line, and it will compile successfully, as in the following
example:

dante.speed = 2; dante.temperature = 510;

Statements in Java are grouped using the opening brace ({) and closing brace (}). A
group of statements organized between these characters is called a block or block state-
ment, and you learn more about them during Day 4, “Lists, Logic, and Loops.”

Variables and Data Types
In the VolcanoRobot application you created during Day 1, “Getting Started with Java,”
you used variables to keep track of information. A variable is a place where information
can be stored while a program is running. The value can be changed at any point in the
program—hence the name.

36 DAY 2: The ABCs of Programming

To create a variable, you must give it a name and identify what type of information it
will store. You also can give a variable an initial value at the same time you create it.

There are three kinds of variables in Java: instance variables, class variables, and local
variables.

Instance variables, as you learned yesterday, are used to define an object’s attributes.

Class variables define the attributes of an entire class of objects and apply to all
instances of it.

Local variables are used inside method definitions or even smaller blocks of statements
within a method. You can use them only while the method or block is being executed by
the Java interpreter. They cease to exist afterward.

Although all three kinds of variables are created in much the same way, class and
instance variables are used in a different manner than local variables. You will learn
about local variables today and explore instance and class variables during Day 3,
“Working with Objects.”

Variables and Data Types 37

2

Unlike other languages, Java does not have global variables, vari-
ables that can be used in all parts of a program. Instance and
class variables communicate information from one object to
another, so they replace the need for global variables.

NOTE

Creating Variables
Before you can use a variable in a Java program, you must create the variable by declar-
ing its name and the type of information it will store. The type of information is listed
first, followed by the name of the variable. The following are all examples of variable
declarations:

int loanLength;

String message;

boolean gameOver;

You learn about variable data types later today. In these examples,
the int type represents integers, String is an object that holds
text, and boolean is used for Boolean true/false values.

NOTE

Local variables can be declared at any place inside a method, just like any other Java
statement, but they must be declared before they can be used. The normal place for vari-
able declarations is immediately after the statement that names and identifies the method.

In the following example, three variables are declared at the top of a program’s main()
method:

public static void main(String[] arguments) {
int total;
String reportTitle;
boolean active;

}

If you are creating several variables of the same type, you can declare all of them in the
same statement by separating the variable names with commas. The following statement
creates three String variables named street, city, and state:

String street, city, state;

Variables can be assigned a value when they are created by using an equal sign (=) fol-
lowed by the value. The following statements create new variables and give them initial
values:

int zipCode = 90210;

int box = 350;

boolean pbs = true;

String name = “Zoom”, city = “Boston”, state = “MA”;

As the last statement indicates, you can assign values to multiple variables of the same
type by using commas to separate them.

You must give values to local variables before you use them in a program or the program
won’t compile successfully. For this reason, it is good practice to give initial values to all
local variables.

Instance and class variable definitions are given an initial value depending on the type of
information they hold, as in the following:

n Numeric variables: 0

n Characters: ‘\0’

n Booleans: false

n Objects: null

38 DAY 2: The ABCs of Programming

Naming Variables
Variable names in Java must start with a letter, an underscore character (“_”), or a dollar
sign (“$”). They cannot start with a number. After the first character, variable names can
include any combination of letters or numbers.

Variables and Data Types 39

2

In addition, the Java language uses the Unicode character set,
which includes thousands of character sets to represent interna-
tional alphabets. Accented characters and other symbols can be
used in variable names as long as they have a Unicode character
number.

NOTE

When naming a variable and using it in a program, it’s important to remember that Java
is case sensitive—the capitalization of letters must be consistent. Because of this, a pro-
gram can have a variable named X and another named x (and Rose is not a rose is not a
ROSE).

In programs in this book and elsewhere, Java variables are given meaningful names that
include several words joined together. To make it easier to spot the words, the following
rule of thumb is used:

n The first letter of the variable name is lowercase.

n Each successive word in the variable name begins with a capital letter.

n All other letters are lowercase.

The following variable declarations follow this rule of naming:

Button loadFile;

int localAreaCode;

boolean quitGame;

Variable Types
In addition to a name, a variable declaration must include the data type of information
being stored. The type can be any of the following:

n One of the primitive data types

n The name of a class or interface

n An array

You learn how to declare and use array variables on Day 4. Today’s lesson focuses on the
other variable types.

Data Types
There are eight basic data types for the storage of integers, floating-point numbers, char-
acters, and Boolean values. These often are called primitive types because they are built-
in parts of the Java language rather than objects, which makes them more efficient to use.
These data types have the same size and characteristics no matter what operating system
and platform you’re on, unlike some data types in other programming languages.

There are four data types you can use to store integers. Which one you use depends on
the size of the integer, as indicated in Table 2.1.

TABLE 2.1 Integer Types

Type Size Values That Can Be Stored

byte 8 bits 128 to 127

short 16 bits 32,768 to 32,767

int 32 bits 2,147,483,648 to 2,147,483,647

long 64 bits 9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

All these types are signed, which means that they can hold either positive or negative
numbers. The type used for a variable depends on the range of values it might need to
hold. None of these integer variables can reliably store a value that is too large or too
small for its designated variable type, so take care when designating the type.

Another type of number that can be stored is a floating-point number, which has the type
float or double. Floating-point numbers are numbers with a decimal point. The float
type should be sufficient for most uses because it can handle any number from 1.4E-45
to 3.4E+38. If not, the double type can be used for more precise numbers ranging from
4.9E-324 to 1.7E+308.

The char type is used for individual characters, such as letters, numbers, punctuation,
and other symbols.

The last of the eight primitive data types is boolean. As you have learned, this data type
holds either true or false in Java.

All these variable types are listed in lowercase, and you must use them as such in pro-
grams. There are classes with the same names as some of these data types but with dif-
ferent capitalization—for example, Boolean and Char. These have different functionality
in a Java program, so you can’t use them interchangeably. Tomorrow you will see how to
use these special classes.

40 DAY 2: The ABCs of Programming

Class Types
In addition to the primitive data types, a variable can have a class as its type, as in the
following examples:

String lastName = “Hopper”;

Color hair;

VolcanoRobot vr;

When a variable has a class as its type, the variable refers to an object of that class or
one of its subclasses.

The last statement in the preceding list—VolcanoRobot vr;—creates a variable named
vr that is reserved for a VolcanoRobot object. You’ll learn more tomorrow about how to
associate objects with variables.

Referring to a superclass as a variable type is useful when the variable might be one of
several different subclasses. For example, consider a class hierarchy with a
CommandButton superclass and three subclasses: RadioButton, CheckboxButton, and
ClickButton. If you create a CommandButton variable called widget, it could refer to a
RadioButton, CheckboxButton, or ClickButton object.

Declaring a variable of type Object means that it can be associated with any kind of
object.

Assigning Values to Variables
After a variable has been declared, a value can be assigned to it with the assignment
operator, which is an equal sign (“=”). The following are examples of assignment state-
ments:

idCode = 8675309;

accountOverdrawn = false;

Constants
Variables are useful when you need to store information that can be changed as a pro-
gram runs.

Variables and Data Types 41

2

There are actually nine primitive data types in Java if you count
void, which represents nothing. It’s used in a method to indicate
that it does not return a value.

NOTE

If the value should never change during a program’s runtime, you can use a type of vari-
able called a constant. A constant, which also is called a constant variable, is a variable
with a value that never changes. This might seem like an oxymoron, given the meaning
of the word “variable.”

Constants are useful in defining shared values for the use of all methods of an object. In
Java, you can create constants for all kinds of variables: instance, class, and local.

To declare a constant, use the final keyword before the variable declaration and include
an initial value for that variable, as in the following:

final float PI = 3.141592;

final boolean DEBUG = false;

final int PENALTY = 25;

In the preceding statements, the names of the constants are capitalized: PI, DEBUG, and
PENALTY. This is a convention adopted by many Java programmers that makes it clear
you’re using a constant instead of a variable.

Constants can be handy for naming various states of an object and then testing for those
states. Suppose you have a program that takes directional input from the numeric keypad
on the keyboard—push 8 to go up, 4 to go left, and so on. You can define those values as
constant integers:

final int LEFT = 4;
final int RIGHT = 6;
final int UP = 8;
final int DOWN = 2;

Constants often make a program easier to understand. To illustrate this point, consider
which of the following two statements is more informative as to its function:

guide.direction = 4;

guide.direction = LEFT;

Today’s first project is a Java application that creates several variables, assigns them ini-
tial values, and displays two of them as output. The full source code is in Listing 2.1.

LISTING 2.1 The Full Text of Variables.java

1: public class Variables {
2:
3: public static void main(String[] arguments) {
4: final char UP = ‘U’;

42 DAY 2: The ABCs of Programming

LISTING 2.1 Continued

5: byte initialLevel = 12;
6: short location = 13250;
7: int score = 3500100;
8: boolean newGame = true;
9:
10: System.out.println(“Level: “ + initialLevel);
11: System.out.println(“Up: “ + UP);
12: }
13: }

Compile this application and run the class file Variables.class. This program produces
the following output:

Level: 12
Up: U

This class uses four local variables and one constant, making use of System.out.
println() in lines 10–11 to produce output.

System.out.println() is a method called to display strings and other information to the
standard output device, which usually is the screen.

System.out.println() takes a single argument within its parentheses: a string. To pre-
sent more than one variable or literal as the argument to println(), you can use the “+”
operator to combine these elements into a single string, which will be described later
today.

There’s also a System.out.print() method, which displays a string without terminating
it with a newline character. You can call print() instead of println() to display several
strings on the same line.

Comments
One of the most important ways to improve the readability of your program is to use
comments. Comments are information included in a program strictly for the benefit of
humans trying to figure out what’s going on in the program. The Java compiler ignores
comments entirely when preparing a runnable version of a Java source file.

There are three different kinds of comments you can use in Java programs, and you can
use each of them at your discretion.

Comments 43

2

The first way to add a comment to a program is to precede it with two slash characters
(“//”). Everything from the slashes to the end of the line is considered a comment and is
disregarded by a Java compiler, as in the following statement:

int creditHours = 3; // set up credit hours for course

If you need to make a comment that takes up more than one line, you can begin it with
the text “/*” and end it with the text “*/”. Everything between these two delimiters is
considered a comment, as in the following:

/* This program occasionally deletes all files on
your hard drive and renders it completely unusable
when you press the Save button. */

The final type of comment is meant to be computer-readable as well as human-readable.
If you begin a comment with the text “/**” (instead of “/*”) and end it with “*/”, the
comment is interpreted to be official documentation on how the class and its methods
work.

This kind of comment then can be read by utilities such as the javadoc tool included
with the JDK. The javadoc program uses official comments to create a set of Hypertext
Markup Language (HTML) records that document the program, its class hierarchy, and
its methods. More information is available on javadoc in Appendix B, “Programming
with the Java Development Kit.”

44 DAY 2: The ABCs of Programming

All the official documentation on Java’s class library comes from
javadoc-style comments. You can view current Java documentation
on the Web at http://java.sun.com/javase/6/docs/api.

TIP

Literals
In addition to variables, you can work with values as literals in a Java statement. A lit-
eral is any number, text, or other information that directly represents a value.

The following assignment statement uses a literal:

int year = 2007;

The literal is 2007 because it directly represents the integer value 2007. Numbers, char-
acters, and strings all are examples of literals.

Although the meaning and usage of literals is intuitive most of the time, Java has some
special types of literals that represent different kinds of numbers, characters, strings, and
Boolean values.

Number Literals
Java has several integer literals. The number 4, for example, is an integer literal of the
int variable type. It also can be assigned to byte and short variables because the num-
ber is small enough to fit into those integer types. An integer literal larger than an int
can hold is automatically considered to be of the type long. You also can indicate that a
literal should be a long integer by adding the letter L (upper- or lowercase) to the num-
ber. For example, the following statement treats the value 4 as a long integer:

pennyTotal = pennyTotal + 4L;

To represent a negative number as a literal, prepend a minus sign (“-”) to the literal—for
example, -45.

Literals 45

2

Java also supports numeric literals that use octal and hexadeci-
mal numbering.

Octal numbers are a base-8 numbering system, which means that
they can represent only the values 0 through 7 as a single digit.
The eighth number in octal is 10 (or 010 as a Java literal).

Hexadecimal is a base-16 numbering system that can represent
each of 16 numbers as a single digit. The letters A through F rep-
resent the last six digits, so the first 16 numbers are 0, 1, 2, 3,
4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

The octal and hexadecimal systems are better suited for certain
tasks in programming than the normal decimal system. If you have
ever used HTML to set a web page’s background color, you might
have used hexadecimal numbers.

If you need to use a literal integer with octal numbering, prepend a
0 to the number. For example, the octal number 777 would be the
literal 0777. Hexadecimal integers are used as literals by
prepending the number with 0x, as in 0x12 or 0xFF.

NOTE

Floating-point literals use a period character (“.”) for the decimal point, as you would
expect. The following statement uses a literal to set up a double variable:

double myGPA = 2.25;

All floating-point literals are considered to be of the double variable type instead of
float. To specify a literal of float, add the letter F (upper- or lowercase) to the literal,
as in the following example:

float piValue = 3.1415927F;

You can use exponents in floating-point literals by using the letter e or E followed by the
exponent, which can be a negative number. The following statements use exponential
notation:

double x = 12e22;

double y = 19E-95;

Boolean Literals
The Boolean literals true and false are the only two values you can use when assigning
a value to a boolean variable type or using a Boolean in a statement.

The following statement sets a boolean variable:

boolean chosen = true;

If you have programmed in other languages, you might expect that a value of 1 is equiva-
lent to true and 0 is equivalent to false. This isn’t the case in Java; you must use the val-
ues true or false to represent Boolean values.

Note that the literal true does not have quotation marks around it. If it did, the Java
compiler would assume that it was a string.

Character Literals
Character literals are expressed by a single character surrounded by single quotation
marks, such as ‘a’, ‘#’, and ‘3’. You might be familiar with the ASCII character set,
which includes 128 characters, including letters, numerals, punctuation, and other char-
acters useful in computing. Java supports thousands of additional characters through the
16-bit Unicode standard.

Some character literals represent characters that are not readily printable or accessible
through a keyboard. Table 2.2 lists the special codes that can represent these special
characters as well as characters from the Unicode character set. In Table 2.2, the letter d
in the octal, hex, and Unicode escape codes represents a number or a hexadecimal digit
(a–f or A–F).

46 DAY 2: The ABCs of Programming

TABLE 2.2 Character Escape Codes

Escape Meaning

\n New line

\t Tab

\b Backspace

\r Carriage return

\f Formfeed

\\ Backslash

\’ Single quotation mark

\” Double quotation mark

\d Octal

\xd Hexadecimal

\ud Unicode character

String Literals
The final literal that you can use in a Java program represents strings of characters. A
string in Java is an object rather than a primitive data type. Strings are not stored in
arrays as they are in languages such as C.

Because string objects are real objects in Java, methods are available to combine strings,
modify strings, and determine whether two strings have the same value.

String literals consist of a series of characters inside double quotation marks, as in the
following statements:

String quitMsg = “Are you sure you want to quit?”;

String password = “swordfish”;

Strings can include the character escape codes listed previously in Table 2.2, as shown
here:

String example = “Socrates asked, \”Hemlock is poison?\””;

System.out.println(“Sincerely,\nMillard Fillmore\n”);

String title = “Sams Teach Yourself Ruby on Rails While You Sleep\u2122”

In the last of the preceding examples, the Unicode code sequence \u2122 produces a ™
symbol on systems that have been configured to support Unicode.

Literals 47

2

Although string literals are used in a manner similar to other literals in a program, they
are handled differently behind the scenes.

With a string literal, Java stores that value as a String object. You don’t have to explic-
itly create a new object, as you must when working with other objects, so they are as
easy to work with as primitive data types. Strings are unusual in this respect—none of
the basic types are stored as an object when used. You learn more about strings and the
String class later today and tomorrow.

Expressions and Operators
An expression is a statement that can convey a value. Some of the most common expres-
sions are mathematical, such as in the following example:

int x = 3;
int y = x;
int z = x * y;

All three of these statements can be considered expressions; they convey values that can
be assigned to variables. The first assigns the literal 3 to the variable x. The second
assigns the value of the variable x to the variable y. In the third expression, the multipli-
cation operator * is used to multiply the x and y integers, and the result is stored in the z
integer.

An expression can be any combination of variables, literals, and operators. They also can
be method calls because methods can send back a value to the object or class that called
the method.

The value conveyed by an expression is called a return value. This value can be assigned
to a variable and used in many other ways in your Java programs.

48 DAY 2: The ABCs of Programming

Although Java supports the transmission of Unicode characters,
the user’s system also must support it for the characters to be
displayed. Unicode support provides a way to encode its charac-
ters for systems that support the standard. Java supports the dis-
play of any Unicode character that can be represented by a host
font.

For more information about Unicode, visit the Unicode Consortium
website at http://www.unicode.org.

CAUTION

Most of the expressions in Java use operators such as “*”. Operators are special symbols
used for mathematical functions, some types of assignment statements, and logical com-
parisons.

Arithmetic
Five operators are used to accomplish basic arithmetic in Java, as shown in Table 2.3.

TABLE 2.3 Arithmetic Operators

Operator Meaning Example

+ Addition 3 + 4

- Subtraction 5 - 7

* Multiplication 5 * 5

/ Division 14 / 7

% Modulus 20 % 7

Each operator takes two operands, one on either side of the operator. The subtraction
operator also can be used to negate a single operand, which is equivalent to multiplying
that operand by 1.

One thing to be mindful of when performing division is the kind of numbers being used.
If you store a division operation into an integer, the result will be truncated to the next
lower whole number because the int data type can’t handle floating-point numbers. As
an example, the expression 31 / 9 results in 3 if stored as an integer.

Modulus division, which uses the % operator, produces the remainder of a division opera-
tion. The expression 31 % 9 results in 4 because 31 divided by 9, with the whole number
result of 3, leaves a remainder of 4.

Note that many arithmetic operations involving integers produce an int regardless of the
original type of the operands. If you’re working with other numbers, such as floating-
point numbers or long integers, you should make sure that the operands have the same
type you’re trying to end up with.

Listing 2.2 contains a class that demonstrates simple arithmetic in Java.

LISTING 2.2 The Full Text of Weather.java

1: public class Weather {
2: public static void main(String[] arguments) {
3: float fah = 86;
4: System.out.println(fah + “ degrees Fahrenheit is ...”);

Expressions and Operators 49

2

LISTING 2.2 Continued

5: // To convert Fahrenheit into Celsius
6: // Begin by subtracting 32
7: fah = fah - 32;
8: // Divide the answer by 9
9: fah = fah / 9;
10: // Multiply that answer by 5
11: fah = fah * 5;
12: System.out.println(fah + “ degrees Celsius\n”);
13:
14: float cel = 33;
15: System.out.println(cel + “ degrees Celsius is ...”);
16: // To convert Fahrenheit into Celsius
17: // Begin by subtracting 32
18: cel = cel * 9;
19: // Divide the answer by 9
20: cel = cel / 5;
21: // Multiply that answer by 5
22: cel = cel + 32;
23: System.out.println(cel + “ degrees Fahrenheit”);
24: }
25: }

When you compile and run this Java application, it produces the following output:

86.0 degrees Fahrenheit is ...
30.0 degrees Celsius

33.0 degrees Celsius is ...
91.4 degrees Fahrenheit

In lines 3–12 of this Java application, a temperature in Fahrenheit is converted to Celsius
using the arithmetic operators:

n Line 3—The floating-point variable fah is created with a value of 86.

n Line 4—The current value of fah is displayed.

n Line 5—The first of several comments explain what the program is doing. The
Java compiler ignores these comments.

n Line 7—fah is set to its current value minus 32.

n Line 9—fah is set to its current value divided by 9.

n Line 11—fah is set to its current value multiplied by 5.

n Line 12—Now that fah has been converted to a Celsius value, fah is displayed again.

A similar thing happens in lines 14–23 but in the reverse direction—a temperature in
Celsius is converted to Fahrenheit.

50 DAY 2: The ABCs of Programming

More About Assignment
Assigning a value to a variable is an expression because it produces a value. Because of
this feature, you can string assignment statements together the following way:

x = y = z = 7;

In this statement, all three variables end up with the value of 7.

The right side of an assignment expression always is calculated before the assignment takes
place. This makes it possible to use an expression statement as in the following code:

int x = 5;
x = x + 2;

In the expression x = x + 2, the first thing that happens is that x + 2 is calculated. The
result of this calculation, 7, is then assigned to x.

Using an expression to change a variable’s value is a common task in programming.
Several operators are used strictly in these cases.

Table 2.4 shows these assignment operators and the expressions they are functionally
equivalent to.

TABLE 2.4 Assignment Operators

Expression Meaning

x += y x = x + y

x -= y x = x - y

x *= y x = x * y

x /= y x = x / y

Expressions and Operators 51

2

These shorthand assignment operators are functionally equivalent
to the longer assignment statements for which they substitute. If
either side of your assignment statement is part of a complex
expression, however, there are cases where the operators are not
equivalent. For example, if x equals 20 and y equals 5, the follow-
ing two statements do not produce the same value:

x = x / y + 5;

x /= y + 5;

When in doubt, simplify an expression by using multiple assign-
ment statements and don’t use the shorthand operators.

CAUTION

Incrementing and Decrementing
Another common task required in programming is to add or subtract 1 from an integer
variable. There are special operators for these expressions, which are called increment
and decrement operations. Incrementing a variable means to add 1 to its value, and
decrementing a variable means to subtract 1 from its value.

The increment operator is ++, and the decrement operator is --. These operators are
placed immediately after or immediately before a variable name, as in the following code
example:

int x = 7;
x = x++;

In this example, the statement x = x++ increments the x variable from 7 to 8.

These increment and decrement operators can be placed before or after a variable name,
and this affects the value of expressions that involve these operators.

Increment and decrement operators are called prefix operators if listed before a variable
name and postfix operators if listed after a name.

In a simple expression such as standards--;, using a prefix or postfix operator produces
the same result, making the operators interchangeable. When increment and decrement
operations are part of a larger expression, however, the choice between prefix and postfix
operators is important.

Consider the following code:

int x, y, z;
x = 42;
y = x++;
z = ++x;

The three expressions in this code yield very different results because of the difference
between prefix and postfix operations.

When you use postfix operators, as in y = x++, y receives the value of x before it is
incremented by one. When using prefix operators, as in z = ++x, x is incremented by
one before the value is assigned to z. The end result of this example is that y equals 42, z
equals 44, and x equals 44.

If you’re still having some trouble figuring this out, here’s the example again with com-
ments describing each step:

52 DAY 2: The ABCs of Programming

int x, y, z; // x, y, and z are all declared
x = 42; // x is given the value of 42
y = x++; // y is given x’s value (42) before it is incremented

// and x is then incremented to 43
z = ++x; // x is incremented to 44, and z is given x’s value

Expressions and Operators 53

2

As with shorthand operators, increment and decrement operators
in extremely complex expressions can produce results you might
not have expected.

The concept of “assigning x to y before x is incremented” isn’t
precisely right because Java evaluates everything on the right side
of an expression before assigning its value to the left side.

Java stores some values before handling an expression to make
postfix work the way it has been described in this section.

When you’re not getting the results you expect from a complex
expression that includes prefix and postfix operators, try to break
the expression into multiple statements to simplify it.

CAUTION

Comparisons
Java has several operators for making comparisons among variables, variables and liter-
als, or other types of information in a program.

These operators are used in expressions that return Boolean values of true or false,
depending on whether the comparison being made is true or not. Table 2.5 shows the
comparison operators.

TABLE 2.5 Comparison Operators

Operator Meaning Example

== Equal x == 3

!= Not equal x != 3

< Less than x < 3

> Greater than x > 3

<= Less than or equal to x <= 3

>= Greater than or equal to x >= 3

The following example shows a comparison operator in use:

boolean hip;
int age = 36;
hip = age < 25;

The expression age < 25 produces a result of either true or false, depending on the
value of the integer age. Because age is 36 in this example (which is not less than 25),
hip is given the Boolean value false.

Logical Operators
Expressions that result in Boolean values, such as comparison operations, can be com-
bined to form more complex expressions. This is handled through logical operators,
which are used for the logical combinations AND, OR, XOR, and logical NOT.

For AND combinations, the & or && logical operators are used. When two Boolean expres-
sions are linked by the & or && operators, the combined expression returns a true value
only if both Boolean expressions are true.

Consider this example:

boolean extraLife = (score > 75000) & (playerLives < 10);

This expression combines two comparison expressions: score > 75000 and
playerLives < 10. If both of these expressions are true, the value true is assigned to
the variable extraLife. In any other circumstance, the value false is assigned to the
variable.

The difference between “&” and “&&” lies in how much work Java does on the com-
bined expression. If “&” is used, the expressions on either side of the “&” are evaluated
no matter what. If “&&” is used and the left side of the “&&” is false, the expression on
the right side of the “&&” never is evaluated.

For OR combinations, the “|” or “||” logical operators are used. These combined expres-
sions return a true value if either Boolean expression is true.

Consider this example:

boolean extralife = (score > 75000) || (playerLevel == 0);

This expression combines two comparison expressions: score > 75000 and
playerLevel = 0. If either of these expressions is true, the value true is assigned to the
variable extraLife. Only if both of these expressions are false will the value false be
assigned to extraLife.

54 DAY 2: The ABCs of Programming

Note the use of “||” instead of “|”. Because of this usage, if score > 75000 is true,
extraLife is set to true, and the second expression is never evaluated.

The XOR combination has one logical operator, “^”. This results in a true value only if
both Boolean expressions it combines have opposite values. If both are true or both are
false, the “^” operator produces a false value.

The NOT combination uses the “!” logical operator followed by a single expression. It
reverses the value of a Boolean expression the same way that a minus symbol reverses
the positive or negative sign on a number.

For example, if age < 30 returns a true value, !(age < 30) returns a false value.

The logical operators can seem completely illogical when encountered for the first time.
You get plenty of chances to work with them for the rest of this week, especially on Day
5, “Creating Classes and Methods.”

Operator Precedence
When more than one operator is used in an expression, Java has an established prece-
dence hierarchy to determine the order in which operators are evaluated. In many cases,
this precedence determines the overall value of the expression.

For example, consider the following expression:

y = 6 + 4 / 2;

The y variable receives the value 5 or the value 8, depending on which arithmetic opera-
tion is handled first. If the 6 + 4 expression comes first, y has the value of 5. Otherwise,
y equals 8.

In general, the order of evaluation from first to last is the following:

n Increment and decrement operations

n Arithmetic operations

n Comparisons

n Logical operations

n Assignment expressions

If two operations have the same precedence, the one on the left in the actual expression
is handled before the one on the right. Table 2.6 shows the specific precedence of the
various operators in Java. Operators farther up the table are evaluated first.

Expressions and Operators 55

2

TABLE 2.6 Operator Precedence

Operator Notes

. [] () Parentheses (“()”) are used to group expressions; a period (“.”) is
used for access to methods and variables within objects and
classes (discussed tomorrow); square brackets (“[]”) are used for
arrays. (This operator is discussed later in the week.)

++ — ! ~ instanceof The instanceof operator returns true or false based on whether
the object is an instance of the named class or any of that class’s
subclasses (discussed tomorrow).

new (type)expression The new operator is used for creating new instances of classes;
“()” in this case are for casting a value to another type. (You learn
about both of these tomorrow.)

* / % Multiplication, division, modulus.

+ - Addition, subtraction.

<< >> >>> Bitwise left and right shift.

< > <= >= Relational comparison tests.

== != Equality.

& AND

^ XOR

| OR

&& Logical AND

|| Logical OR

? : Shorthand for if-then-else (discussed on Day 5).

= += -= *= /= %= ^= Various assignments.

&= |= <<= >>= >>>= More assignments.

Returning to the expression y = 6 + 4 / 2, Table 2.6 shows that division is evaluated
before addition, so the value of y will be 8.

To change the order in which expressions are evaluated, place parentheses around the
expressions that should be evaluated first. You can nest one set of parentheses inside
another to make sure that expressions are evaluated in the desired order; the innermost
parenthetic expression is evaluated first.

The following expression results in a value of 5:

y = (6 + 4) / 2

The value of 5 is the result because 6 + 4 is calculated first, and then the result, 10, is
divided by 2.

56 DAY 2: The ABCs of Programming

Parentheses also can improve the readability of an expression. If the precedence of an
expression isn’t immediately clear to you, adding parentheses to impose the desired
precedence can make the statement easier to understand.

String Arithmetic
As stated earlier today, the + operator has a double life outside the world of mathematics.
It can concatenate two or more strings. Concatenate means to link two things together.
For reasons unknown, it is the verb of choice when describing the act of combining two
strings—winning out over paste, glue, affix, combine, link, and conjoin.

In several examples, you have seen statements that look something like this:

String firstName = “Raymond”;
System.out.println(“Everybody loves “ + firstName);

These two lines result in the display of the following text:

Everybody loves Raymond

The + operator combines strings, other objects, and variables to form a single string. In
the preceding example, the literal “Everybody loves” is concatenated to the value of the
String object firstName.

Working with the concatenation operator is easy in Java because of the way the operator
can handle any variable type and object value as if it were a string. If any part of a con-
catenation operation is a String or a string literal, all elements of the operation will be
treated as if they were strings:

System.out.println(4 + “ score and “ + 7 + “ years ago”);

This produces the output text 4 score and 7 years ago, as if the integer literals 4 and
7 were strings.

There is also a shorthand += operator to add something to the end of a string. For exam-
ple, consider the following expression:

myName += “ Jr.”;

This expression is equivalent to the following:

myName = myName + “ Jr.”;

In this example, it changes the value of myName, which might be something like “Efrem
Zimbalist”, by adding “Jr.” at the end to form the string “Efrem Zimbalist Jr.”

String Arithmetic 57

2

Summary
Anyone who pops open a set of matryoshka dolls has to be a bit disappointed to reach
the smallest doll in the group. Advances in microengineering enable Russian artisans to
create ever smaller and smaller dolls, until someone reaches the subatomic threshold and
is declared the winner.

You have reached Java’s smallest nesting doll today. Using statements and expressions
enables you to begin building effective methods, which make effective objects and
classes possible.

Today, you learned about creating variables and assigning values to them. You also used
literals to represent numeric, character, and string values and worked with operators.
Tomorrow, you put these skills to use developing classes.

To summarize today’s material, Table 2.7 lists the operators you learned about. Be a doll
and look them over carefully.

TABLE 2.7 Operator Summary

Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal

!= Not equal

&& Logical AND

|| Logical OR

! Logical NOT

& AND

| OR

^ XOR

= Assignment

++ Increment

58 DAY 2: The ABCs of Programming

TABLE 2.7 Continued

Operator Meaning

— Decrement

+= Add and assign

-= Subtract and assign

*= Multiply and assign

/= Divide and assign

%= Modulus and assign

Q&A
Q What happens if I assign an integer value to a variable that is too large for

that variable to hold?

A Logically, you might think that the variable is converted to the next larger type, but
this isn’t what happens. Instead, an overflow occurs—a situation in which the num-
ber wraps around from one size extreme to the other. An example of overflow
would be a byte variable that goes from 127 (acceptable value) to 128 (unaccept-
able). It would wrap around to the lowest acceptable value, which is 128, and start
counting upward from there. Overflow isn’t something you can readily deal with in
a program, so be sure to give your variables plenty of living space in their chosen
data type.

Q Why does Java have all these shorthand operators for arithmetic and assign-
ment? It’s really hard to read that way.

A Java’s syntax is based on C++, which is based on C (more Russian nesting doll
behavior). C is an expert language that values programming power over readability,
and the shorthand operators are one of the legacies of that design priority. Using
them in a program isn’t required because effective substitutes are available, so you
can avoid them in your own programming, if you prefer.

Q&A 59

2

Quiz
Review today’s material by taking this three-question quiz.

Questions
1. Which of the following is a valid value for a boolean variable?

a. “false”

b. false

c. 10

2. Which of these is not a convention for naming variables in Java?

a. After the first word in the variable name, each successive word begins with a
capital letter.

b. The first letter of the variable name is lowercase.

c. All letters are capitalized.

3. Which of these data types holds numbers from 32,768 to 32,767?

a. char

b. byte

c. short

Answers
1. b. In Java, a boolean can be only true or false. If you put quotation marks

around the value, it will be treated like a String rather than one of the two
boolean values.

2. c. Constant names are capitalized to make them stand out from other variables.

3. c.

Certification Practice
The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material.

Which of the following data types can hold the number 3,000,000,000 (three billion)?

a. short, int, long, float

b. int, long, float

c. long, float

d. byte

60 DAY 2: The ABCs of Programming

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 2 page and click the Certification Practice link.

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. Create a program that calculates how much a $14,000 investment would be worth
if it increased in value by 40% during the first year, lost $1,500 in value the second
year, and increased 12% in the third year.

2. Write a program that displays two numbers and uses the / and % operators to dis-
play the result and remainder after they are divided. Use the \t character escape
code to separate the result and remainder in your output.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java21days.com.

Exercises 61

2

DAY 3:
Working with Objects

Java is a heavily object-oriented programming language. When you do
work in Java, you use objects to get the job done. You create objects,
modify them, move them around, change their variables, call their meth-
ods, and combine them with other objects. You develop classes, create
objects out of those classes, and use them with other classes and
objects.

Today, you work extensively with objects. The following topics are covered:

n Creating objects (also called instances)

n Testing and modifying class and instance variables in those
objects

n Calling an object’s methods

n Converting objects and other types of data from one class to
another

Creating New Objects
When you write a Java program, you define a set of classes. As you learned during Day
1, “Getting Started with Java,” classes are templates used to create objects. These
objects, which are also called instances, are self-contained elements of a program with
related features and data. For the most part, you use the class merely to create instances
and then work with those instances. In this section, therefore, you learn how to create a
new object from any given class.

When using strings on Day 2, “The ABCs of Programming,” you learned that using a
string literal (a series of characters enclosed in double quotation marks) creates a new
instance of the class String with the value of that string.

The String class is unusual in that respect. Although it’s a class, the use of a string lit-
eral serves as a shortcut to create instances of that class. To create instances of other
classes, the new operator is used.

What about the literals for numbers and characters—don’t they
create objects, too? Actually, they don’t. The primitive data types
for numbers and characters create numbers and characters, but
for efficiency they actually aren’t objects. On Day 5, “Creating
Classes and Methods,” you’ll learn how to use objects to repre-
sent primitive values.

Using new
To create a new object, you use the new operator with the name of the class that should
be used as a template. The name of the class is followed by parentheses, as in these three
examples:

String name = new String();
URL address = new URL(“http://www.java21days.com”);
VolcanoRobot robbie = new VolcanoRobot();

The parentheses are important; don’t leave them off. The parentheses can be empty, in
which case the most simple, basic object is created, or the parentheses can contain argu-
ments that determine the values of instance variables or other initial qualities of that
object.

The following examples show objects being created with arguments:

Random seed = new Random(6068430714);

Point pt = new Point(0, 0);

64 DAY 3: Working with Objects

NOTE

The number and type of arguments you can use inside the parentheses with new are
defined by the class itself using a special method called a constructor. (You’ll learn more
about constructors later today.) If you try to create a new instance of a class with the
wrong number or type of arguments (or if you give it no arguments and it needs some),
you’ll receive an error when you try to compile your Java program.

Here’s an example of creating different types of objects with different numbers and types
of arguments: the StringTokenizer class, part of the java.util package, divides a
string into a series of shorter strings called tokens.

A string is divided into tokens by applying some kind of character or characters as a
delimiter. For example, the text “02/20/67” could be divided into three tokens—02, 20,
and 67—using the slash character (“/”) as a delimiter.

Listing 3.1 is a Java program that creates StringTokenizer objects by using new in two
different ways and then displays each token the objects contain.

LISTING 3.1 The Full Text of TokenTester.java

1: import java.util.StringTokenizer;
2:
3: class TokenTester {
4:
5: public static void main(String[] arguments) {
6: StringTokenizer st1, st2;
7:
8: String quote1 = “VIZY 3 -1/16”;
9: st1 = new StringTokenizer(quote1);
10: System.out.println(“Token 1: “ + st1.nextToken());
11: System.out.println(“Token 2: “ + st1.nextToken());
12: System.out.println(“Token 3: “ + st1.nextToken());
13:
14: String quote2 = “NPLI@9 27/32@3/32”;
15: st2 = new StringTokenizer(quote2, “@”);
16: System.out.println(“\nToken 1: “ + st2.nextToken());
17: System.out.println(“Token 2: “ + st2.nextToken());
18: System.out.println(“Token 3: “ + st2.nextToken());
19: }
20: }

When you compile and run the program, the output should resemble the following:

Token 1: VIZY
Token 2: 3
Token 3: -1/16

Token 1: NPLI
Token 2: 9 27/32
Token 3: 3/32

Creating New Objects 65

3

In this example, two different StringTokenizer objects are created using different argu-
ments to the constructor listed after new.

The first instance uses new StringTokenizer() with one argument, a String object
named quote1 (line 9). This creates a StringTokenizer object that uses the default delim-
iters: blank spaces, tab, newline, carriage return, or formfeed characters.

If any of these characters is contained in the string, it is used to divide the tokens. Because
the quote1 string contains spaces, these are used as delimiters dividing each token. Lines
10–12 display the values of all three tokens: VIZY, 3, and -1/16.

The second StringTokenizer object in this example has two arguments when it is con-
structed in line 14—a String object named quote2 and an at-sign character (“@”). This
second argument indicates that the “@” character should be used as the delimiter between
tokens. The StringTokenizer object created in line 15 contains three tokens: NPLI, 9
27/32, and 3/32.

You get a chance to work with live stock data from Yahoo Finance in the
QuoteData project during Day 18, “Accessing Databases with JDBC.”

The application uses StringTokenizer to split up stock quote
fields separated by commas.

What new Does
Several things happen when you use the new operator—the new instance of the given class
is created, memory is allocated for it, and a special method defined in the given class is
called. This special method is called a constructor.

A constructor is a special method for creating and initializing a new instance of a class. A
constructor initializes the new object and its variables, creates any other objects that the
object needs, and performs any other operations that the object needs to initialize itself.

Multiple constructor definitions in a class can each have a different number, or type, of
arguments. When you use new, you can specify different arguments in the argument list,
and the correct constructor for those arguments is called. Multiple constructor definitions
enabled the TokenTester class in the previous example to accomplish different things with
the different uses of the new operator. When you create your own classes, you can define
as many constructors as you need to implement the behavior of the class.

A Note on Memory Management
If you are familiar with other object-oriented programming languages, you might wonder
whether the new statement has an opposite that destroys an object when it is no longer needed.

66 DAY 3: Working with Objects

NOTE

Memory management in Java is dynamic and automatic. When you create a new object,
Java automatically allocates the correct amount of memory for that object. You don’t
have to allocate any memory for objects explicitly. Java does it for you.

Because Java memory management is automatic, you do not need to deallocate the mem-
ory an object uses when you’re finished using the object. Under most circumstances,
when you are finished with an object you have created, Java can determine that the
object no longer has any live references to it. (In other words, the object won’t be
assigned to any variables still in use or stored in any arrays.)

As a program runs, Java periodically looks for unused objects and reclaims the memory
that those objects are using. This process is called garbage collection and occurs without
requiring any programming on your part. You don’t have to explicitly free the memory
taken up by an object; you just have to make sure that you’re not still holding onto an
object you want to get rid of.

Accessing and Setting Class and
Instance Variables
At this point, you could create your own object with class and instance variables defined
in it, but how do you work with those variables? Easy! Class and instance variables are
used in largely the same manner as the local variables you learned about yesterday. You
can use them in expressions, assign values to them in statements, and so on. You just
refer to them slightly differently from how you refer to regular variables in your code.

Getting Values
To get to the value of an instance variable, you use dot notation, a form of addressing in
which an instance or class variable name has two parts: a reference to an object or class
on the left side of the dot and a variable on the right side of the dot.

Dot notation is a way to refer to an object’s instance variables and methods using a dot
(.) operator.

For example, if you have an object named myCustomer, and that object has a variable
called orderTotal, you refer to that variable’s value as myCustomer.orderTotal, as in
this statement:

float total = myCustomer.orderTotal;

This form of accessing variables is an expression (that is, it returns a value), and both
sides of the dot are also expressions. That means you can nest instance variable access. If

Accessing and Setting Class and Instance Variables 67

3

the orderTotal instance variable itself holds an object, and that object has its own
instance variable called layaway, you could refer to it as in this statement:

boolean onLayaway = myCustomer.orderTotal.layaway;

Dot expressions are evaluated from left to right, so you start with myCustomer’s variable
orderTotal, which points to another object with the variable layaway. You end up with
the value of that layaway variable.

Changing Values
Assigning a value to that variable is equally easy; just tack on an assignment operator to
the right side of the expression:

myCustomer.orderTotal.layaway = true;

This example sets the value of the layaway variable to true.

Listing 3.2 is an example of a program that tests and modifies the instance variables in a
Point object. Point, a class in the java.awt package, represents points in a coordinate
system with x and y values.

LISTING 3.2 The Full Text of PointSetter.java

1: import java.awt.Point;
2:
3: class PointSetter {
4:
5: public static void main(String[] arguments) {
6: Point location = new Point(4, 13);
7:
8: System.out.println(“Starting location:”);
9: System.out.println(“X equals “ + location.x);
10: System.out.println(“Y equals “ + location.y);
11:
12: System.out.println(“\nMoving to (7, 6)”);
13: location.x = 7;
14: location.y = 6;
15:
16: System.out.println(“\nEnding location:”);
17: System.out.println(“X equals “ + location.x);
18: System.out.println(“Y equals “ + location.y);
19: }
20: }

68 DAY 3: Working with Objects

When you run this application, the output should be the following:

Starting location:
X equals 4
Y equals 13

Moving to (7, 6)

Ending location:
X equals 7
Y equals 6

In this example, you first create an instance of Point where x equals 4, and y equals 13
(line 6). Lines 9 and 10 display these individual values using dot notation. Lines 13 and
14 change the values of x to 7 and y to 6, respectively. Finally, lines 17 and 18 display
the values of x and y again to show how they have changed.

Class Variables
Class variables, as you have learned, are variables defined and stored in the class itself.
Their values apply to the class and all its instances.

With instance variables, each new instance of the class gets a new copy of the instance
variables that the class defines. Each instance then can change the values of those
instance variables without affecting any other instances. With class variables, only one
copy of that variable exists. Changing the value of that variable changes it for all
instances of that class.

You define class variables by including the static keyword before the variable itself.
For example, consider the following partial class definition:

class FamilyMember {
static String surname = “Mendoza”;
String name;
int age;

}

Each instance of the class FamilyMember has its own values for name and age. The class
variable surname, however, has only one value for all family members: “Mendoza”.
Change the value of surname, and all instances of FamilyMember are affected.

Calling these static variables refers to one of the meanings of the
word static: fixed in one place. If a class has a static variable,
every object of that class has the same value for that variable.

Accessing and Setting Class and Instance Variables 69

3

NOTE

To access class variables, you use the same dot notation as with instance variables. To
retrieve or change the value of the class variable, you can use either the instance or the
name of the class on the left side of the dot. Both lines of output in this example display
the same value:

FamilyMember dad = new FamilyMember();
System.out.println(“Family’s surname is: “ + dad.surname);
System.out.println(“Family’s surname is: “ + FamilyMember.surname);

Because you can use an instance to change the value of a class variable, it’s easy to
become confused about class variables and where their values are coming from.
Remember that the value of a class variable affects all its instances. For this reason, it’s a
good idea to use the name of the class when you refer to a class variable. It makes your
code easier to read and makes strange results easier to debug.

Calling Methods
Calling a method in an object is similar to referring to its instance variables: Dot notation
is used. The object whose method you’re calling is on the left side of the dot, and the
name of the method and its arguments are on the right side of the dot:

myCustomer.addToOrder(itemNumber, price, quantity);

Note that all methods must have parentheses after them, even if the method takes no
arguments:

myCustomer.cancelAllOrders();

Listing 3.3 shows an example of calling some methods defined in the String class.
Strings include methods for string tests and modification, similar to what you would
expect in a string library in other languages.

LISTING 3.3 The Full Text of StringChecker.java

1: class StringChecker {
2:
3: public static void main(String[] arguments) {
4: String str = “Nobody ever went broke by buying IBM”;
5: System.out.println(“The string is: “ + str);
6: System.out.println(“Length of this string: “
7: + str.length());
8: System.out.println(“The character at position 5: “
9: + str.charAt(5));

10: System.out.println(“The substring from 26 to 32: “
11: + str.substring(26, 32));

70 DAY 3: Working with Objects

LISTING 3.3 Continued

12: System.out.println(“The index of the character v: “
13: + str.indexOf(‘v’));
14: System.out.println(“The index of the beginning of the “
15: + “substring \”IBM\”: “ + str.indexOf(“IBM”));
16: System.out.println(“The string in upper case: “
17: + str.toUpperCase());
18: }
19: }

The following is displayed on your system’s standard output device when you run the
program:

The string is: Nobody ever went broke by buying IBM
Length of this string: 36
The character at position 5: y
The substring from 26 to 32: buying
The index of the character v: 8
The index of the beginning of the substring “IBM”: 33
The string in upper case: NOBODY EVER WENT BROKE BY BUYING IBM

In line 4, you create a new instance of String by using a string literal. The remainder of
the program simply calls different string methods to do different operations on that
string:

n Line 5 prints the value of the string you created in line 4: “Nobody ever went
broke by buying IBM”.

n Line 7 calls the length() method in the new String object. This string has 36
characters.

n Line 9 calls the charAt() method, which returns the character at the given position
in the string. Note that string positions start at position 0 rather than 1, so the char-
acter at position 5 is y.

n Line 11 calls the substring() method, which takes two integers indicating a range
and returns the substring with those starting and ending points. The substring()
method also can be called with only one argument, which returns the substring
from that position to the end of the string.

n Line 13 calls the indexOf() method, which returns the position of the first instance
of the given character (here, ‘v’). Character literals are surrounded by single quo-
tation marks; if double quotation marks had surrounded the v in line 13, the literal
would be considered a String.

Calling Methods 71

3

n Line 15 shows a different use of the indexOf() method, which takes a string argu-
ment and returns the index of the beginning of that string.

n Line 17 uses the toUpperCase() method to return a copy of the string in all upper-
case.

If you are familiar with printf-style formatting from other programming languages, you
can employ the System.out.format() method to apply this formatting when displaying
strings.

The method takes two arguments: the output format and the string to display. Here’s an
example that adds a dollar sign and commas to the display of an integer:

int accountBalance = 5005;
System.out.format(“Balance: $%,d%n”, accountBalance);

This code produces the following output:

Balance: $5,005

The formatting string begins with a percent sign (“%”) followed by one or more flags.
The “%,d” code displays a decimal with commas dividing each three digits. The “%n”
code displays a newline character.

The next example displays the value of pi to 11 decimal places:

double pi = Math.PI;
System.out.format(“%.11f%n”, pi);

The output:

3.14159265359

Sun’s Java site includes an introductory tutorial for printf-style out-
put that describes some of the most useful formatting codes at
the following address:

http://java.sun.com/docs/books/tutorial/java/data/number

➥format.html

Nesting Method Calls
A method can return a reference to an object, a primitive data type, or no value at all. In
the StringChecker application, all the methods called on the String object str returned

72 DAY 3: Working with Objects

TIP

values that were displayed; for example, the charAt() method returned a character at a
specified position in the string.

The value returned by a method also can be stored in a variable:

String label = “From”;
String upper = label.toUpperCase();

In the preceding example, the String object upper contains the value returned by calling
label.toUpperCase()—the text “FROM”, an uppercase version of “From”.

If the method returns an object, you can call the methods of that object in the same state-
ment. This makes it possible for you to nest methods as you would variables.

Earlier today, you saw an example of a method called with no arguments:

myCustomer.cancelAllOrders();

If the cancelAllOrders() method returns an object, you can call methods of that object
in the same statement:

myCustomer.cancelAllOrders().talkToManager();

This statement calls the talkToManager() method, which is defined in the object
returned by the cancelAllOrders() method of the myCustomer object.

You can combine nested method calls and instance variable references, as well. In the
next example, the putOnLayaway() method is defined in the object stored by the
orderTotal instance variable, which itself is part of the myCustomer object:

myCustomer.orderTotal.putOnLayaway(itemNumber, price, quantity);

This manner of nesting variables and methods is demonstrated in System.out.

println(), the method you’ve been using in all program examples to display
information.

The System class, part of the java.lang package, describes behavior specific to the com-
puter system on which Java is running. System.out is a class variable that contains an
instance of the class PrintStream representing the standard output of the system, which
is normally the screen but can be redirected to a printer or file. PrintStream objects have
a println() method that sends a string to that output stream.

Class Methods
Class methods, like class variables, apply to the class as a whole and not to its instances.
Class methods are commonly used for general utility methods that might not operate
directly on an instance of that class but do fit with that class conceptually.

Calling Methods 73

3

For example, the String class contains a class method called valueOf(), which can take
one of many different types of arguments (integers, Booleans, objects, and so on). The
valueOf() method then returns a new instance of String containing the string value of
the argument. This method doesn’t operate directly on an existing instance of String,
but getting a string from another object or data type is behavior that makes sense to
define in the String class.

Class methods also can be useful for gathering general methods together in one place.
For example, the Math class, defined in the java.lang package, contains a large set of
mathematical operations as class methods; there are no instances of the class Math, but
you still can use its methods with numeric or Boolean arguments.

For example, the class method Math.max() takes two arguments and returns the larger of
the two. You don’t need to create a new instance of Math; it can be called anywhere you
need it, as in the following:

int higherPrice = Math.max(firstPrice, secondPrice);

Dot notation is used to call a class method. As with class variables, you can use either an
instance of the class or the class itself on the left side of the dot. For the same reasons
noted in the discussion on class variables, however, using the name of the class makes
your code easier to read. The last two lines in this example produce the same result—the
string “550”:

String s, s2;
s = “item”;
s2 = s.valueOf(550);
s2 = String.valueOf(550);

References to Objects
As you work with objects, it’s important to understand references.

A reference is an address that indicates where an object’s variables and methods are
stored.

You aren’t actually using objects when you assign an object to a variable or pass an
object to a method as an argument. You aren’t even using copies of the objects. Instead,
you’re using references to those objects.

To better illustrate the difference, Listing 3.4 shows how references work.

74 DAY 3: Working with Objects

LISTING 3.4 The Full Text of RefTester.java

1: import java.awt.Point;
2:
3: class RefTester {
4: public static void main(String[] arguments) {
5: Point pt1, pt2;
6: pt1 = new Point(100, 100);
7: pt2 = pt1;
8:
9: pt1.x = 200;
10: pt1.y = 200;
11: System.out.println(“Point1: “ + pt1.x + “, “ + pt1.y);
12: System.out.println(“Point2: “ + pt2.x + “, “ + pt2.y);
13: }
14: }

Here is this program’s output:

Point1: 200, 200
Point2: 200, 200

The following takes place in the first part of this program:

n Line 5—Two Point variables are created.

n Line 6—A new Point object is assigned to pt1.

n Line 7—The value of pt1 is assigned to pt2.

Lines 9–12 are the tricky part. The x and y variables of pt1 are both set to 200, and then
all variables of pt1 and pt2 are displayed onscreen.

You might expect pt1 and pt2 to have different values. However, the output shows this is
not the case. As you can see, the x and y variables of pt2 also were changed, even
though nothing in the program explicitly changes them. This happens because line 7
creates a reference from pt2 to pt1, instead of creating pt2 as a new object copied
from pt1.

pt2 is a reference to the same object as pt1; this is shown in Figure 3.1. Either variable
can be used to refer to the object or to change its variables.

References to Objects 75

3

Point object

x: 200
y: 200

pt1

pt2

FIGURE 3.1
References to
objects.

If you wanted pt1 and pt2 to refer to separate objects, separate new Point() statements
could be used on lines 6 and 7 to create separate objects, as shown in the following:

pt1 = new Point(100, 100);
pt2 = new Point(100, 100);

References in Java become particularly important when arguments are passed to meth-
ods. You learn more about this later today.

There are no explicit pointers or pointer arithmetic in Java, as
there are in C and C++. By using references and Java arrays, how-
ever, most pointer capabilities are duplicated without many of their
drawbacks.

Casting and Converting Objects and
Primitive Types
One thing you discover quickly about Java is how finicky it is about the information it
will handle. Like Morris, the perpetually hard-to-please cat in the old 9Lives cat food
commercials, Java methods and constructors require things to take a specific form and
won’t accept alternatives.

When you are sending arguments to methods or using variables in expressions, you must
use variables of the correct data types. If a method requires an int, the Java compiler
responds with an error if you try to send a float value to the method. Likewise, if you’re
setting up one variable with the value of another, they must be of the same type.

There is one area where Java’s compiler is decidedly flexible:
Strings. String handling in println() methods, assignment state-
ments, and method arguments is simplified by the concatenation
operator (+). If any variable in a group of concatenated variables is
a string, Java treats the whole thing as a String. This makes the
following possible:

float gpa = 2.25F;
System.out.println(“Honest, dad, my GPA is a “ + (gpa+1.5));

Using the concatenation operator, a single string can hold the text
representation of multiple objects and primitive data in Java.

76 DAY 3: Working with Objects

NOTE

NOTE

Sometimes you’ll have a value in your Java class that isn’t the right type for what you
need. It might be the wrong class or the wrong data type, such as a float when you need
an int.

You use casting to convert a value from one type to another.

Casting is the process of producing a new value that has a different type than its source.

Although the concept of casting is reasonably simple, the usage is complicated by the
fact that Java has both primitive types (such as int, float, and boolean) and object
types (String, Point, ZipFile, and the like). This section discusses three forms of casts
and conversions:

n Casting between primitive types, such as int to float or float to double

n Casting from an instance of a class to an instance of another class, such as Object
to String

n Casting primitive types to objects and then extracting primitive values from those
objects

When discussing casting, it can be easier to think in terms of sources and destinations.
The source is the variable being cast into another type. The destination is the result.

Casting Primitive Types
Casting between primitive types enables you to convert the value of one type to another
primitive type. It most commonly occurs with the numeric types, and there’s one primi-
tive type that can never be used in a cast. Boolean values must be either true or false
and cannot be used in a casting operation.

In many casts between primitive types, the destination can hold larger values than the
source, so the value is converted easily. An example would be casting a byte into an int.
Because a byte holds values from –128 to 127 and an int holds from 2,100,000 to
2,100,000, there’s more than enough room to cast a byte into an int.

You often can automatically use a byte or a char as an int; you can use an int as a
long, an int as a float, or anything as a double. In most cases, because the larger type
provides more precision than the smaller, no loss of information occurs as a result. The
exception is casting integers to floating-point values; casting an int or a long to a float,
or a long to a double, can cause some loss of precision.

Casting and Converting Objects and Primitive Types 77

3

A character can be used as an int because each character has a
corresponding numeric code that represents its position in the
character set. If the variable i has the value 65, the cast (char)i
produces the character value A. The numeric code associated with
a capital A is 65, according to the ASCII character set, and Java
adopted this as part of its character support.

You must use an explicit cast to convert a value in a large type to a smaller type, or else
converting that value might result in a loss of precision. Explicit casts take the following
form:

(typename)value

In the preceding example, typename is the name of the data type to which you’re con-
verting, such as short, int, or float. value is an expression that results in the value of
the source type. For example, in the following statement, the value of x is divided by the
value of y, and the result is cast into an int in the following expression:

int result = (int)(x / y);

Note that because the precedence of casting is higher than that of arithmetic, you have to
use parentheses here; otherwise, the value of x would be cast into an int first and then
divided by y, which could easily produce a different result.

Casting Objects
Instances of classes also can be cast into instances of other classes, with one restriction:
The source and destination classes must be related by inheritance; one class must be a
subclass of the other.

Some objects might not need to be cast explicitly. In particular, because a subclass con-
tains all the same information as its superclass, you can use an instance of a subclass
anywhere a superclass is expected.

For example, consider a method that takes two arguments, one of type Object and
another of type Component. You can pass an instance of any class for the Object argu-
ment because all Java classes are subclasses of Object. For the Component argument, you
can pass in its subclasses, such as Button, Container, and Label.

This is true anywhere in a program, not just inside method calls. If you had a variable
defined as class Component, you could assign objects of that class or any of its subclasses
to that variable without casting.

78 DAY 3: Working with Objects

NOTE

This is true in the reverse, so you can use a superclass when a subclass is expected.
There is a catch, however: Because subclasses contain more behavior than their super-
classes, there’s a loss in precision involved. Those superclass objects might not have all
the behavior needed to act in place of a subclass object. For example, if you have an
operation that calls methods in objects of the class Integer, using an object of class
Number won’t include many methods specified in Integer. Errors occur if you try to call
methods that the destination object doesn’t have.

To use superclass objects where subclass objects are expected, you must cast them
explicitly. You won’t lose any information in the cast, but you gain all the methods and
variables that the subclass defines. To cast an object to another class, you use the same
operation as for primitive types:

(classname)object

In this case, classname is the name of the destination class, and object is a reference to
the source object. Note that casting creates a reference to the old object of the type
classname; the old object continues to exist as it did before.

The following example casts an instance of the class VicePresident to an instance of
the class Employee; VicePresident is a subclass of Employee with more information:

Employee emp = new Employee();
VicePresident veep = new VicePresident();
emp = veep; // no cast needed for upward use
veep = (VicePresident)emp; // must cast explicitly

As you’ll see when you begin working with graphical user interfaces during Week 2,
“The Java Class Library,” casting one object is necessary whenever you use Java2D
graphics operations. You must cast a Graphics object to a Graphics2D object before you
can draw onscreen. The following example uses a Graphics object called screen to cre-
ate a new Graphics2D object called screen2D:

Graphics2D screen2D = (Graphics2D)screen;

Graphics2D is a subclass of Graphics, and both are in the java.awt package. You
explore the subject fully during Day 13, “Using Color, Fonts, and Graphics.”

In addition to casting objects to classes, you also can cast objects to interfaces, but only
if an object’s class or one of its superclasses actually implements the interface. Casting
an object to an interface means that you can call one of that interface’s methods even if
that object’s class does not actually implement that interface.

Casting and Converting Objects and Primitive Types 79

3

Converting Primitive Types to Objects and Vice
Versa
One thing you can’t do under any circumstance is cast from an object to a primitive data
type, or vice versa.

Primitive types and objects are very different things in Java, and you can’t automatically
cast between the two.

As an alternative, the java.lang package includes classes that correspond to each primi-
tive data type: Float, Boolean, Byte, and so on. Most of these classes have the same
names as the data types, except that the class names begin with a capital letter (Short
instead of short, Double instead of double, and the like). Also two classes have names
that differ from the corresponding data type: Character is used for char variables, and
Integer is used for int variables.

Using the classes that correspond to each primitive type, you can create an object that
holds the same value. The following statement creates an instance of the Integer class
with the integer value 7801:

Integer dataCount = new Integer(7801);

After you have an object created in this manner, you can use it as you would any object
(although you cannot change its value). When you want to use that value again as a
primitive value, there are methods for that, as well. For example, if you wanted to get an
int value from a dataCount object, the following statement would be apt:

int newCount = dataCount.intValue(); // returns 7801

A common translation you need in programs is converting a String to a numeric type,
such as an integer. When you need an int as the result, this can be done by using the
parseInt() class method of the Integer class. The String to convert is the only argu-
ment sent to the method, as in the following example:

String pennsylvania = “65000”;
int penn = Integer.parseInt(pennsylvania);

The following classes can be used to work with objects instead of primitive data types:
Boolean, Byte, Character, Double, Float, Integer, Long, Short, and Void. These
classes are commonly referred to as object wrappers because they provide an object rep-
resentation that contains a primitive value.

80 DAY 3: Working with Objects

If you try to use the preceding example in a program, your program
won’t compile. The parseInt() method is designed to fail with a
NumberFormatException error if the argument to the method is not
a valid numeric value. To deal with errors of this kind, you must
use special error-handling statements, which are introduced during
Day 7, “Exceptions, Assertions, and Threads.”

Working with primitive types and objects that represent the same values is made easier
through autoboxing and unboxing, an automatic conversion process.

Autoboxing automatically converts a primitive type to an object, and unboxing converts
in the other direction.

If you write a statement that uses an object where a primitive type is expected, or vice
versa, the value will be converted so that the statement executes successfully.

This is a marked departure from most earlier versions of the language.

As a demonstration, the following statements can’t be compiled in Java 2 version 1.4:

Float f1 = new Float(12.5F);
Float f2 = new Float(27.2F);
System.out.println(“Lower number: “ + Math.min(f1, f2));

When you attempt to compile a class containing these statements, the compiler stops
with an error message stating that the Math.min() method requires two float primitive
values as arguments, rather than Float objects.

The statements compile successfully in Java 6. The Float objects are unboxed into prim-
itive values automatically when the Math.min() method is called.

Unboxing an object works only if the object has a value. If no con-
structor has been called to set up the object, compilation fails
with a NullPointerException error.

Casting and Converting Objects and Primitive Types 81

3

CAUTION

CAUTION

Comparing Object Values and Classes
In addition to casting, you will often perform three other common tasks that involve
objects:

n Comparing objects

n Finding out the class of any given object

n Testing to see whether an object is an instance of a given class

Comparing Objects
Yesterday, you learned about operators for comparing values—equal, not equal, less than,
and so on. Most of these operators work only on primitive types, not on objects. If you
try to use other values as operands, the Java compiler produces errors.

The exceptions to this rule are the operators for equality—== (equal) and != (not equal).
When applied to objects, these operators don’t do what you might first expect. Instead of
checking whether one object has the same value as the other object, they determine
whether both sides of the operator refer to the same object.

To compare instances of a class and have meaningful results, you must implement spe-
cial methods in your class and call those methods.

A good example of this is the String class. It is possible to have two different String
objects that represent the same text. If you were to employ the == operator to compare
these objects, however, they would be considered unequal. Although their contents
match, they are not the same object.

To see whether two String objects have matching values, a method of the class called
equals() is used. The method tests each character in the string and returns true if the
two strings have the same values. Listing 3.5 illustrates this.

LISTING 3.5 The Full Text of EqualsTester.java

1: class EqualsTester {
2: public static void main(String[] arguments) {
3: String str1, str2;
4: str1 = “Free the bound periodicals.”;
5: str2 = str1;
6:
7: System.out.println(“String1: “ + str1);
8: System.out.println(“String2: “ + str2);
9: System.out.println(“Same object? “ + (str1 == str2));
10:

82 DAY 3: Working with Objects

LISTING 3.5 Continued

11: str2 = new String(str1);
12:
13: System.out.println(“String1: “ + str1);
14: System.out.println(“String2: “ + str2);
15: System.out.println(“Same object? “ + (str1 == str2));
16: System.out.println(“Same value? “ + str1.equals(str2));
17: }
18: }

This program’s output is as follows:

String1: Free the bound periodicals.
String2: Free the bound periodicals.
Same object? true
String1: Free the bound periodicals.
String2: Free the bound periodicals.
Same object? false
Same value? true

The first part of this program declares two variables (str1 and str2), assigns the literal
“Free the bound periodicals.” to str1, and then assigns that value to str2 (lines 3–5). As
you learned earlier, str1 and str2 now point to the same object, and the equality test at
line 9 proves that.

In the second part of this program, you create a new String object with the same value
as str1 and assign str2 to that new String object. Now you have two different string
objects in str1 and str2, both with the same value. Testing them to see whether they’re
the same object by using the == operator (line 15) returns the expected answer: false—
they are not the same object in memory. Testing them using the equals() method in line
16 also returns the expected answer: true—they have the same values.

Why can’t you just use another literal when you change str2,
instead of using new? String literals are optimized in Java; if you
create a string using a literal and then use another literal with the
same characters, Java knows enough to give you the first String
object back. Both strings are the same objects; you have to go out
of your way to create two separate objects.

Comparing Object Values and Classes 83

3

NOTE

Determining the Class of an Object
Want to find out what an object’s class is? Here’s the way to do it for an object assigned
to the variable key:

String name = key.getClass().getName();

What does this do? The getClass() method is defined in the Object class and is, there-
fore, available for all objects. It returns a Class object that represents that object’s class.
That object’s getName() method returns a string holding the name of the class.

Another useful test is the instanceof operator, which has two operands: a reference to
an object on the left and a class name on the right. The expression produces a Boolean
value: true if the object is an instance of the named class or any of that class’s sub-
classes or false otherwise, as in these examples:

boolean check1 = “Texas” instanceof String // true

Point pt = new Point(10, 10);
boolean check2 = pt instanceof String // false

The instanceof operator also can be used for interfaces. If an object implements an
interface, the instanceof operator returns true when this is tested.

Summary
Now that you have spent three days exploring how object-oriented programming is
implemented in Java, you’re in a better position to decide how useful it can be in your
own programming.

If you are a “glass is half empty” person, object-oriented programming is a level of
abstraction that gets in the way of what you’re trying to use a programming language for.
You learn more about why OOP is thoroughly ingrained in Java in the coming days.

If you are a “glass is half full” person, object-oriented programming is worth using
because of the benefits it offers: improved reliability, reusability, and maintenance.

Today, you learned how to deal with objects: creating them, reading and changing their
values, and calling their methods. You also learned how to cast objects from one class to
another, cast to and from primitive data types and classes, and take advantage of auto-
matic conversions through autoboxing and unboxing.

84 DAY 3: Working with Objects

Q&A
Q I’m confused about the differences between objects and the primitive data

types, such as int and boolean.

A The primitive types (byte, short, int, long, float, double, boolean, and char)
are not objects, although in many ways they can be handled like objects: They can
be assigned to variables and passed in and out of methods.

Objects are instances of classes and, as such, are usually much more complex data
types than simple numbers and characters, often containing numbers and characters
as instance or class variables.

Q The length() and charAt() methods in Listing 3.3 don’t appear to make
sense. If length() says that a string is 36 characters long, shouldn’t the char-
acters be numbered from 1 to 36 when charAt() is used to display characters
in the string?

A The two methods look at strings a little differently. The length() method counts
the characters in the string, with the first character counting as 1, the second as 2,
and so on. The string “Charlie Brown” has 13 characters. The charAt() method
considers the first character in the string to be located at position number 0. This is
the same numbering system used with array elements in Java. The string Charlie
Brown has characters ranging from position 0 (the letter “C”) to position 12 (the let-
ter “n”).

Q If Java lacks pointers, how can I do something like linked lists, where there’s a
pointer from one node to another so that they can be traversed?

A It’s untrue to say that Java has no pointers at all; it just has no explicit pointers.
Object references are, effectively, pointers. To create something like a linked list,
you could create a class called Node, which would have an instance variable also of
type Node. To link together node objects, assign a node object to the instance vari-
able of the object immediately before it in the list. Because object references are
pointers, linked lists set up this way behave as you would expect them to. (You’ll
work with the Java class library’s version of linked lists on Day 8, “Data
Structures.”)

Q&A 85

3

Quiz
Review today’s material by taking this three-question quiz.

Questions
1. What operator do you use to call an object’s constructor method and create a new

object?

a. +

b. new

c. instanceof

2. What kinds of methods apply to all objects of a class rather than an individual
object?

a. Universal methods

b. Instance methods

c. Class methods

3. If you have a program with objects named obj1 and obj2, what happens when you
use the statement obj2 = obj1?

a. The instance variables in obj2 are given the same values as obj1.

b. obj2 and obj1 are considered to be the same object.

c. Neither (a) nor (b).

Answers
1. b.

2. c.

3. b. The = operator does not copy values from one object to another. Instead, it
makes both variables refer to the same object.

Certification Practice
The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

86 DAY 3: Working with Objects

Given:

public class AyeAye {
int i = 40;
int j;

public AyeAye() {
setValue(i++);

}

void setValue(int inputValue) {
int i = 20;
j = i + 1;
System.out.println(“j = “ + j);

}
}

What is the value of the j variable at the time it is displayed inside the setValue()
method?

a. 42

b. 40

c. 21

d. 20

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 3 page and click the Certification Practice link.

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. Create a program that turns a birthday in MM/DD/YYYY format (such as
12/04/2007) into three individual strings.

2. Create a class with instance variables for height, weight, and depth, making each
an integer. Create a Java application that uses your new class, sets each of these
values in an object, and displays the values.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java21days.com.

Exercises 87

3

DAY 4:
Lists, Logic, and Loops

Today, you learn about three of the most boring features in the Java lan-
guage:

n How to make part of a Java program repeat itself by using loops

n How to make a program decide whether to do something based on
logic

n How to organize groups of the same class or data type into lists
called arrays

If these features don’t sound boring to you, they shouldn’t. Most of the
significant work that you will accomplish with your Java software will use
all three.

These topics are boring for computers because they enable software to
do one of the things at which it excels: performing repetitive tasks over
and over.

Arrays
At this point, you have dealt with only a few variables in each Java program. In some
cases, it’s manageable to use individual variables to store information, but what if you
had 20 items of related information to track? You could create 20 different variables and
set up their initial values, but that approach becomes progressively more cumbersome as
you deal with larger amounts of information. What if there were 100 items, or even
1,000?

Arrays are a way to store a list of items that have the same primitive data type, the same
class, or a common parent class. Each item on the list goes into its own numbered slot so
that you can easily access the information.

Arrays can contain any type of information that is stored in a variable, but after the array
is created, you can use it for that information type only. For example, you can have an
array of integers, an array of String objects, or an array of arrays, but you can’t have an
array that contains both String objects and integers.

Java implements arrays differently than some other languages do—as objects treated like
other objects.

To create an array in Java, you must do the following:

1. Declare a variable to hold the array.

2. Create a new array object and assign it to the array variable.

3. Store information in that array.

Declaring Array Variables
The first step in array creation is to declare a variable that will hold the array. Array vari-
ables indicate the object or data type that the array will hold and the name of the array.
To differentiate from regular variable declarations, a pair of empty brackets ([]) is added
to the object or data type, or to the variable name.

The following statements are examples of array variable declarations:

String[] requests;

Point[] targets;

float[] donations;

You also can declare an array by putting the brackets after the variable name instead of
the information type, as in the following statements:

String requests[];

Point targets[];

float donations[];

90 DAY 4: Lists, Logic, and Loops

The choice of which style to use is a matter of personal prefer-
ence. The sample programs in this book place the brackets after
the information type rather than the variable name, which is the
more popular convention among Java programmers.

Creating Array Objects
After you declare the array variable, the next step is to create an array object and assign
it to that variable. To do this:

n Use the new operator.

n Initialize the contents of the array directly.

Because arrays are objects in Java, you can use the new operator to create a new instance
of an array, as in the following statement:

String[] players = new String[10];

This statement creates a new array of strings with 10 slots that can contain String
objects. When you create an array object by using new, you must indicate how many
slots the array will hold. This statement does not put actual String objects in the slots;
you must do that later.

Array objects can contain primitive types, such as integers or Booleans, just as they can
contain objects:

int[] temps = new int[99];

When you create an array object using new, all its slots automatically are given an initial
value (0 for numeric arrays, false for Booleans, ‘\0’ for character arrays, and null for
objects).

The Java keyword null refers to a null object (and can be used for
any object reference). It is not equivalent to zero or the ‘\0’ char-
acter as the NULL constant is in C.

Because each object in an array of objects has a null reference when created, you must
assign an object to each array element before using it.

The following example creates an array of three Integer objects and then assigns each
element an object:

Integer[] series = new Integer[3];
series[0] = new Integer(10);

Arrays 91

4

NOTE

NOTE

series[1] = new Integer(3);
series[2] = new Integer(5);

You can create and initialize an array at the same time by enclosing the elements of the
array inside braces, separated by commas:

Point[] markup = { new Point(1,5), new Point(3,3), new Point(2,3) };

Each of the elements inside the braces must be the same type as the variable that holds
the array. When you create an array with initial values in this manner, the array will be
the same size as the number of elements you include within the braces. The preceding
example creates an array of Point objects named markup that contains three elements.

Because String objects can be created and initialized without the new operator, you can
do the same when creating an array of strings:

String[] titles = { “Mr.”, “Mrs.”, “Ms.”, “Miss”, “Dr.” };

The preceding statement creates a five-element array of String objects named titles.

All arrays have an instance variable named length that contains the number of elements
in the array. Extending the preceding example, the variable titles.length contains the
value 4.

Accessing Array Elements
After you have an array with initial values, you can retrieve, change, and test the values
in each slot of that array. The value in a slot is accessed with the array name followed by
a subscript enclosed within square brackets. This name and subscript can be put into
expressions, as in the following:

testScore[40] = 920;

The first element of an array has a subscript of 0 rather than 1, so an array with 12 ele-
ments has array slots accessed by using subscripts 0 through 11.

The preceding statement sets the 41st element of the testScore array to a value of 920.
The testScore part of this expression is a variable holding an array object, although it
also can be an expression that results in an array. The subscript expression specifies the
slot to access within the array.

All array subscripts are checked to make sure that they are inside the array’s boundaries
as specified when the array was created. In Java, it is impossible to access or assign a
value to an array slot outside the array’s boundaries, avoiding problems that result from
overrunning the bounds of an array in C-type languages. Note the following two state-
ments:

float[] rating = new float[20];
rating[20] = 3.22F;

92 DAY 4: Lists, Logic, and Loops

A program with the preceding two lines of code produces a compilation error when rat-
ing[20] is used in a statement. The error occurs because the rating array does not have
a slot 20; it has 20 slots that begin at 0 and end at 19. The Java compiler would make
note of this by stopping with an ArrayIndexOutOfBoundsException error.

The Java interpreter also notes an error if the array subscript is calculated when the pro-
gram is running and the subscript is outside the array’s boundaries. You learn more about
errors, which are called exceptions, on Day 7, “Exceptions, Assertions, and Threads.”

One way to avoid accidentally overrunning the end of an array in your programs is to use
the length instance variable. The following statement displays the number of elements in
the rating object:

System.out.println(“Elements: “ + rating.length);

Changing Array Elements
As you saw in the previous examples, you can assign a value to a specific slot in an array
by putting an assignment statement after the array name and subscript, as in the follow-
ing:

temperature[4] = 85;

day[0] = “Sunday”;

manager[2] = manager[0];

An important thing to note is that an array of objects in Java is an array of references to
those objects. When you assign a value to a slot in that kind of array, you are creating a
reference to that object. When you move values around inside arrays, you are reassigning
the reference rather than copying a value from one slot to another. Arrays of a primitive
data type, such as int or float, do copy the values from one slot to another, as do ele-
ments of a String array, even though they are objects.

Arrays are reasonably simple to create and modify, and they provide an enormous
amount of functionality for Java. Listing 4.1 shows a simple program that creates, initial-
izes, and displays elements of three arrays.

LISTING 4.1 The Full Text of HalfDollars.java

1: class HalfDollars {
2: public static void main(String[] arguments) {
3: int[] denver = { 2500000, 2900000, 3500000 };
4: int[] philadelphia = new int[denver.length];
5: int[] total = new int[denver.length];
6: int average;
7:
8: philadelphia[0] = 2500000;
9: philadelphia[1] = 2900000;
10: philadelphia[2] = 3800000;

Arrays 93

4

LISTING 4.1 Continued

11:
12: total[0] = denver[0] + philadelphia[0];
13: total[1] = denver[1] + philadelphia[1];
14: total[2] = denver[2] + philadelphia[2];
15: average = (total[0] + total[1] + total[2]) / 3;
16:
17: System.out.print(“2003 production: “);
18: System.out.format(“%,d%n”, total[0]);
19: System.out.print(“2004 production: “);
20: System.out.format(“%,d%n”, total[1]);
21: System.out.print(“2005 production: “);
22: System.out.format(“%,d%n”, total[2]);
23: System.out.print(“Average production: “);
24: System.out.format(“%,d%n”, average);
25: }
26: }

The HalfDollars application uses three integer arrays to store production totals for U.S.
half-dollar coins produced at the Denver and Philadelphia mints. The output of the pro-
gram is as follows:

2003 production: 5,000,000
2004 production: 5,800,000
2005 production: 7,300,000
Average production: 6,033,333

The class created here, HalfDollars, has three instance variables that hold arrays of
integers.

The first, which is named denver, is declared and initialized on line 3 to contain three
integers: 2500000 in element 0, 2900000 in element 1, and 3500000 in element 2. These
figures are the total half-dollar production at the Denver mint for three years.

The second and third instance variables, philadelphia and total, are declared in lines
4–5. The philadelphia array contains the production totals for the Philadelphia mint,
and total is used to store the overall production totals.

No initial values are assigned to the slots of the philadelphia and total arrays in lines
4–5. For this reason, each element is given the default value for integers: 0.

The denver.length variable is used to give both of these arrays the same number of
slots as the denver array; every array contains a length variable that you can use to keep
track of the number of elements it contains.

The rest of the main() method of this application performs the following:

n Line 6 creates an integer variable called average.

n Lines 8–10 assign new values to the three elements of the philadelphia array.

94 DAY 4: Lists, Logic, and Loops

n Lines 12–14 assign new values to the elements of the total array. In line 12,
total element 0 is given the sum of denver element 0 and philadelphia element
0. Similar expressions are used in lines 13 and 14.

n Line 15 sets the value of the average variable to the average of the three total
elements. Because average and the three total elements are integers, the average
is expressed as an integer rather than a floating-point number.

n Lines 17–24 display the values stored in the total array and the average variable,
using the System.out.format() method to display the numeric values in a more
readable form using commas.

This application handles arrays in an inefficient way. The statements are almost identical,
except for the subscripts that indicate the array element to which you are referring. If the
HalfDollars application was being used to track 100 years of production totals instead
of 3 years, this approach would require a lot of redundant statements.

When dealing with arrays, you can use loops to cycle through an array’s elements instead
of dealing with each element individually. This makes the code a lot shorter and easier to
read. When you learn about loops later today, you see a rewrite of the current example.

Multidimensional Arrays
If you have used arrays in other languages, you might be expecting Java to support multi-
dimensional arrays, which are arrays that contain more than one subscript and can store
information in multiple dimensions.

A common use of a multidimensional array is to represent the data in an x,y grid of array
elements.

Java does not support multidimensional arrays, but you can achieve the same functional-
ity by declaring an array of arrays. Those arrays can also contain arrays, and so on, for as
many dimensions as needed.

For example, consider a program that needs to accomplish the following tasks:

n Record an integer value each day for a year

n Organize those values by week

One way to organize this data is to create a 52-element array in which each element con-
tains a 7-element array:

int[][] dayValue = new int[52][7];

This array of arrays contains a total of 365 integers, one for each day of the year. You
could set the value for the first day of the 10th week with the following statement:

dayValue[9][0] = 14200;

Arrays 95

4

You can use the length instance variable with these arrays as you would any other. The
following statement contains a three-dimensional array of integers and displays the num-
ber of elements in each dimension:

int[][][] century = new int[100][52][7];
System.out.println(“Elements in the first dimension: “ + century.length);
System.out.println(“Elements in the second dimension: “ + century[0].length);
System.out.println(“Elements in the third dimension: “ + century[0][0].length);

Block Statements
Statements in Java are grouped into blocks. The beginning and ending boundaries of a
block are noted with brace characters—an opening brace ({) for the beginning and a
closing brace (}) for the ending.

At this point, you have used blocks to hold the variables and methods in a class defini-
tion and define statements that belong in a method.

Blocks also are called block statements because an entire block can be used anywhere a
single statement could be used (they’re called compound statements in C and other lan-
guages). Each statement inside the block is then executed from top to bottom.

You can put blocks inside other blocks, just as you do when you put a method inside a
class definition.

An important thing to note about using a block is that it creates a scope for the local vari-
ables created inside the block.

Scope is the part of a program in which a variable exists and can be used. If you try to
use a variable outside its scope, an error occurs.

In Java, the scope of a variable is the block in which it was created. When you can
declare and use local variables inside a block, those variables cease to exist after the
block is finished executing. For example, the following testBlock() method contains a
block:

void testBlock() {
int x = 10;
{ // start of block

int y = 40;
y = y + x;

} // end of block
}

Two variables are defined in this method: x and y. The scope of the y variable is the
block it’s in, which is noted with the start of block and end of block comments.

96 DAY 4: Lists, Logic, and Loops

The variable can be used only within that block. An error would result if you tried to use
the y variable in another part of the testBlock() method.

The x variable was created inside the method but outside the inner block, so it can be
used anywhere in the method. You can modify the value of x anywhere within the
method.

Block statements usually are not used alone within a method definition, as they are in the
preceding example. You use them throughout class and method definitions, as well as in
the logic and looping structures you learn about next.

if Conditionals
A key aspect of any programming language is how it enables a program to make deci-
sions. This is handled through a special type of statement called a conditional.

A conditional is a programming statement executed only if a specific condition is met.

The most basic conditional in Java is the if keyword. The if conditional uses a Boolean
expression to decide whether a statement should be executed. If the expression produces
a true value, the statement is executed.

Here’s a simple example that displays the message “Not enough arguments” on only
one condition: If the value of the arguments.length instance variable is less than 3

if (arguments.length < 3)
System.out.println(“Not enough arguments”);

If you want something else to happen when an if expression produces a false value, an
optional else keyword can be used. The following example uses both if and else:

int duration;
if (arguments.length < 1)

“‘“server = “localhost”;
else

“”server = arguments[0];

The if conditional executes different statements based on the result of a single Boolean
test.

A difference between if conditionals in Java and those in other
languages is that Java conditionals only produce Boolean values
(true or false). In C and C++, the test can return an integer.

if Conditionals 97

4

NOTE

Using if, you can include only a single statement as the code to execute if the test
expression is true and another statement if the expression is false.

However, as you learned earlier today, a block can appear anywhere in Java that a single
statement can appear. If you want to do more than one thing as a result of an if state-
ment, you can enclose those statements inside a block. Note the following snippet of
code, which was used on Day 1, “Getting Started with Java”:

if (temperature > 660) {
status = “returning home”;
speed = 5;

}

The if statement in this example contains the test expression temperature > 660. If the
temperature variable contains a value higher than 660, the block statement is executed,
and two things occur:

n The status variable is given the value returning home.

n The speed variable is set to 5.

If the temperature variable is equal to or less than 660, the entire block is skipped, so
nothing happens.

All if and else statements use Boolean tests to determine whether statements are exe-
cuted. You can use a boolean variable itself for this test, as in the following:

if (outOfGas)
status = “inactive”;

The preceding example uses a boolean variable called outOfGas. It functions exactly like
the following:

if (outOfGas == true)
status = “inactive”;

switch Conditionals
A common programming practice is to test a variable against a value, and if it doesn’t
match, test it again against a different value, and so on.

This approach can become unwieldy if you’re using only if statements, depending on
how many different values you have to test. For example, you might end up with a set of
if statements something like the following:

if (operation == ‘+’)
add(object1, object2);

98 DAY 4: Lists, Logic, and Loops

else if (operation == ‘-’)
subtract(object1, object2);

else if (operation == ‘*’)
multiply(object1, object2);

else if (operation == ‘/’)
divide(object1, object2);

This use of if statements is called a nested if statement because each else statement
contains another if until all possible tests have been made.

In some languages, a shorthand mechanism that you can use for nested if statements is
to group tests and actions together in a single statement. In Java, you can group actions
together with the switch statement. The following example demonstrates switch usage:

switch (grade) {
case ‘A’:

System.out.println(“Great job!”);
break;

case ‘B’:
System.out.println(“Good job!”);
break;

case ‘C’:
System.out.println(“You can do better!”);
break;

default:
System.out.println(“Consider cheating!”);

}

A switch statement is built on a test variable; in the preceding example, the variable is
the value of the grade variable, which holds a char value.

The test variable, which can be the primitive types byte, char, short, or int, is com-
pared in turn with each of the case values. If a match is found, the statement or state-
ments after the test are executed.

If no match is found, the default statement or statements are executed. Providing a
default statement is optional—if it is omitted and there is no match for any of the case
statements, the switch statement might complete without executing anything.

The Java implementation of switch is limited—tests and values can be only simple
primitive types that can be cast to an int. You cannot use larger primitive types such as
long or float, strings, or other objects within a switch, nor can you test for any rela-
tionship other than equality. These restrictions limit switch to the simplest cases. In con-
trast, nested if statements can work for any kind of test on any possible type.

switch Conditionals 99

4

The following is a revision of the nested if example shown previously. It has been
rewritten as a switch statement:

switch (operation) {
case ‘+’:

add(object1, object2);
break;

case ‘-’:
subtract(object1, object2);
break;

case ‘*’:
multiply(object1, object2);
break;

case ‘/’:
divide(object1, object2);
break;

}

After each case, you can include a single result statement or as many as you need.
Unlike with if statements, multiple statements don’t require a block statement.

The break statement included with each case section determines when to stop executing
statements in response to a matching case. Without a break statement in a case section,
after a match is made, the statements for that match and all the statements further down
the switch are executed until a break or the end of the switch is found.

In some situations, this might be exactly what you want to do. Otherwise, you should
include break statements to ensure that only the right code is executed. The break state-
ment, which you use again later in the section “Breaking Out of Loops,” stops execution
at the current point and jumps to the statement after the closing brace that ends the
switch statement.

One handy use of falling through without a break occurs when multiple values need to
execute the same statements. To accomplish this task, you can use multiple case lines
with no result; the switch executes the first statement that it finds.

For example, in the following switch statement, the string x is an even number is
printed if x has the values of 2, 4, 6, or 8. All other values of x cause the string x is an
odd number to be printed.

switch (x) {
case 2:
case 4:
case 6:
case 8:

System.out.println(“x is an even number”);
break;

default: System.out.println(“x is an odd number”);
}

100 DAY 4: Lists, Logic, and Loops

In Listing 4.2, the DayCounter application takes two arguments, a month and a year, and
displays the number of days in that month. A switch statement, if statements, and else
statements are used.

LISTING 4.2 The Full Text of DayCounter.java

1: class DayCounter {
2: public static void main(String[] arguments) {
3: int yearIn = 2008;
4: int monthIn = 1;
5: if (arguments.length > 0)
6: monthIn = Integer.parseInt(arguments[0]);
7: if (arguments.length > 1)
8: yearIn = Integer.parseInt(arguments[1]);
9: System.out.println(monthIn + “/” + yearIn + “ has “
10: + countDays(monthIn, yearIn) + “ days.”);
11: }
12:
13: static int countDays(int month, int year) {
14: int count = -1;
15: switch (month) {
16: case 1:
17: case 3:
18: case 5:
19: case 7:
20: case 8:
21: case 10:
22: case 12:
23: count = 31;
24: break;
25: case 4:
26: case 6:
27: case 9:
28: case 11:
29: count = 30;
30: break;
31: case 2:
32: if (year % 4 == 0)
33: count = 29;
34: else
35: count = 28;
36: if ((year % 100 == 0) & (year % 400 != 0))
37: count = 28;
38: }
39: return count;
40: }
41: }

switch Conditionals 101

4

This application uses command-line arguments to specify the month and year to check.
The first argument is the month, which should be expressed as a number from 1 to 12.
The second argument is the year, which should be expressed as a full four-digit year.

After compiling the program, type the following at a command line to see the number of
days in April 2008:

java DayCounter 4 2008

The output is the following:

4/2008 has 30 days.

If you run it without arguments, the default month of January 2008 is used, and the out-
put is the following:

1/2008 has 31 days.

The DayCounter application uses a switch statement to count the days in a month. This
statement is part of the countDays() method in lines 13–40 of Listing 4.2.

The countDays() method has two int arguments: month and year. The number of days
is stored in the count variable, which is given an initial value of -1 that is replaced by
the correct count later.

The switch statement that begins on line 15 uses month as its conditional value.

The number of days in a month is easy to determine for 11 months of the year. January,
March, May, July, August, October, and December have 31 days. April, June, September,
and November have 30 days.

The count for these 11 months is handled in lines 16–30 of Listing 4.2. Months are num-
bered from 1 (January) to 12 (December), as you would expect. When one of the case
statements has the same value as month, every statement after that is executed until break
or the end of the switch statement is reached.

February is a little more complex and is handled in lines 31–37 of the program. Every
leap year has 29 days in February, whereas other years have 28. A leap year must meet
either of the following conditions:

n The year must be evenly divisible by 4 and not evenly divisible by 100.

n The year must be evenly divisible by 400.

As you learned on Day 2, “The ABCs of Programming,” the modulus operator % returns
the remainder of a division operation. This is used with several if-else statements to
determine how many days there are in February, depending on what year it is.

102 DAY 4: Lists, Logic, and Loops

The if-else statement in lines 32–35 sets count to 29 when the year is evenly divisible
by 4 and sets it to 28 otherwise.

The if statement in lines 36–37 uses the & operator to combine two conditional expres-
sions: year % 100 == 0 and year % 400 != 0. If both these conditions are true, count
is set to 28.

The countDays method ends by returning the value of count in line 39.

When you run the DayCounter application, the main() method in lines 2–11 is executed.

In all Java applications, command-line arguments are stored in an array of String
objects. This array is called arguments in DayCounter. The first command-line argument
is stored in argument[0], the second in argument[1], and upward until all arguments
have been stored. If the application is run with no arguments, the array is created with no
elements.

Lines 3–4 create yearIn and monthIn, two integer variables to store the year and month
that should be checked.

The if statement in line 5 uses arguments.length to make sure that the arguments
array has at least one element. If it does, line 6 is executed.

Line 6 calls parseInt(), a class method of the Integer class, with argument[0] as an
argument. This method takes a String object as an argument, and if the string could be a
valid integer, it returns that value as an int. This converted value is stored in monthIn. A
similar thing happens in line 7; parseInt() is called with argument[1], and this is used
to set yearIn.

The output of the program is displayed in lines 9–11. As part of the output, the
countDays() method is called with monthIn and yearIn, and the value returned by this
method is displayed.

At this point, you might want to know how to collect input from a
user in a program rather than using command-line arguments to
receive it. There isn’t a method comparable to System.out.
println() that receives input. Instead, you must learn a bit more
about Java’s input and output classes before you can receive input
in a program without a graphical user interface. This topic is cov-
ered during Day 15, “Working with Input and Output.”

switch Conditionals 103

4

NOTE

for Loops
A for loop is used to repeat a statement until a condition is met. Although for loops fre-
quently are used for simple iteration in which a statement is repeated a certain number of
times, for loops can be used for just about any kind of loop.

The for loop in Java looks roughly like the following:

for (initialization; test; increment) {
statement;

}

The start of the for loop has three parts:

n initialization is an expression that initializes the start of the loop. If you have a
loop index, this expression might declare and initialize it, such as int i = 0.
Variables that you declare in this part of the for loop are local to the loop itself;
they cease to exist after the loop is finished executing. You can initialize more than
one variable in this section by separating each expression with a comma. The state-
ment int i = 0, int j = 10 in this section would declare the variables i and j,
and both would be local to the loop.

n test is the test that occurs before each pass of the loop. The test must be a
Boolean expression or a function that returns a boolean value, such as i < 10. If
the test is true, the loop executes. When the test is false, the loop stops execut-
ing.

n increment is any expression or function call. Commonly, the increment is used to
change the value of the loop index to bring the state of the loop closer to returning
false and stopping the loop. The increment takes place after each pass of the loop.
Similar to the initialization section, you can put more than one expression in
this section by separating each expression with a comma.

The statement part of the for loop is the statement that is executed each time the loop
iterates. As with if, you can include either a single statement or a block statement. The
previous example used a block because that is more common. The following example is
a for loop that sets all slots of a String array to the value Mr.:

String[] salutation = new String[10];
int i; // the loop index variable

for (i = 0; i < salutation.length; i++)
salutation[i] = “Mr.”;

In this example, the variable i serves as a loop index; it counts the number of times the
loop has been executed. Before each trip through the loop, the index value is compared

104 DAY 4: Lists, Logic, and Loops

with salutation.length, the number of elements in the salutation array. When the
index is equal to or greater than salutation.length, the loop is exited.

The final element of the for statement is i++. This causes the loop index to increment by
1 each time the loop is executed. Without this statement, the loop would never stop.

The statement inside the loop sets an element of the salutation array equal to “Mr.”.
The loop index is used to determine which element is modified.

Any part of the for loop can be an empty statement; in other words, you can include a
semicolon with no expression or statement, and that part of the for loop is ignored. Note
that if you do use an empty statement in your for loop, you might have to initialize or
increment any loop variables or loop indexes yourself elsewhere in the program.

You also can have an empty statement as the body of your for loop if everything you
want to do is in the first line of that loop. For example, the following for loop finds the
first prime number higher than 4,000. (It employs a method called notPrime(), which
returns a Boolean value, presumably to indicate when i is not prime.)

for (i = 4001; notPrime(i); i += 2)
;

A common mistake in for loops is to accidentally put a semicolon at the end of the line
that includes the for statement:

for (i = 0; i < 10; i++);
x = x * i; // this line is not inside the loop!

In this example, the first semicolon ends the loop without executing x = x * i as part
of the loop. The x = x * i line is executed only once because it is outside the for loop
entirely. Be careful not to make this mistake in your Java programs.

The next project you undertake is a rewrite of the HalfDollar application that uses for
loops to remove redundant code.

The original application works only with an array that is three elements long. The
new version, shown in Listing 4.3, is shorter and more flexible (but it returns the same
output).

LISTING 4.3 The Full Text of HalfLooper.java

1: class HalfLooper {
2: public static void main(String[] arguments) {
3: int[] denver = { 2500000, 2900000, 3500000 };
4: int[] philadelphia = { 2500000, 2900000, 3800000 };
5: int[] total = new int[denver.length];
6: int sum = 0;

for Loops 105

4

LISTING 4.3 Continued

7:
8: for (int i = 0; i < denver.length; i++) {
9: total[i] = denver[i] + philadelphia[i];
10: System.out.format((i + 2003) + “ production: %,d%n”,
11: total[i]);
12: sum += total[i];
13: }
14:
15: System.out.format(“Average production: %,d%n”,
16: (sum / denver.length));
17: }
18: }

The output of the program is as follows:

2003 production: 5,000,000
2004 production: 5,800,000
2005 production: 7,300,000
Average production: 6,033,333

Instead of going through the elements of the three arrays one by one, this example uses a
for loop. The following things take place in the loop, which is contained in lines 8–13 of
Listing 4.3:

n Line 8—The loop is created with an int variable called i as the index. The index
increments by 1 for each pass through the loop and stops when i is equal to or
greater than denver.length, the total number of elements in the denver array.

n Lines 9–11—The value of one of the total elements is set using the loop index
and then displayed with some text identifying the year.

n Line 12—The value of a total element is added to the sum variable, which is used
to calculate the average yearly production.

Using a more general-purpose loop to iterate over an array enables you to use the pro-
gram with arrays of different sizes and still have it assign correct values to the elements
of the total array and display those values.

Java also includes a for loop that can be used to iterate through
all the elements of data structures such as vectors, linked lists,
hash sets, and other collections. It’s covered along with those
structures on Day 8, “Data Structures.”

106 DAY 4: Lists, Logic, and Loops

NOTE

while and do Loops
The remaining types of loops are while and do. As with for loops, while and do loops
enable a block of Java code to be executed repeatedly until a specific condition is met.
Whether you use a for, while, or do loop is mostly a matter of your programming style.

while Loops
The while loop repeats a statement for as long as a particular condition remains true.
Here’s an example:

while (i < 13) {
x = x * i++; // the body of the loop

}

The condition that accompanies the while keyword is a Boolean expression—i < 13 in
the preceding example. If the expression returns true, the while loop executes the body
of the loop and then tests the condition again. This process repeats until the condition is
false.

Although the preceding loop uses opening and closing braces to form a block statement,
the braces are not needed because the loop contains only one statement: x = x * i++.
Using the braces does not create any problems, though, and the braces will be required if
you add another statement inside the loop later.

The ArrayCopier application in Listing 4.4 uses a while loop to copy the elements of an
array of integers (in array1) to an array of float variables (in array2), casting each ele-
ment to a float as it goes. The one catch is that if any of the elements in the first array
is 1, the loop immediately exits at that point.

LISTING 4.4 The Full Text of ArrayCopier.java

1: class ArrayCopier {
2: public static void main(String[] arguments) {
3: int[] array1 = { 7, 4, 8, 1, 4, 1, 4 };
4: float[] array2 = new float[array1.length];
5:
6: System.out.print(“array1: [“);
7: for (int i = 0; i < array1.length; i++) {
8: System.out.print(array1[i] + “ “);
9: }
10: System.out.println(“]”);
11:
12: System.out.print(“array2: [“);
13: int count = 0;
14: while (count < array1.length && array1[count] != 1) {
15: array2[count] = (float) array1[count];

while and do Loops 107

4

LISTING 4.4 Continued

16: System.out.print(array2[count++] + “ “);
17: }
18: System.out.println(“]”);
19: }
20: }

The output of the program is as follows:

array1: [7 4 8 1 4 1 4]
array2: [7.0 4.0 8.0]

Here is what’s going on in the main() method:

n Lines 3–4 declare the arrays; array1 is an array of integers, which are initialized to
some suitable numbers. array2 is an array of floating-point numbers that is the
same length as array1 but doesn’t have any initial values.

n Lines 6–10 are for output purposes; they simply iterate through array1 using a for
loop to print out its values.

n Lines 13–17 are where the interesting stuff happens. This bunch of statements both
assigns the values of array2 (converting the numbers to floating-point numbers
along the array) and prints it out at the same time. You start with a count variable,
which keeps track of the array index elements. The test in the while loop keeps
track of the two conditions for exiting the loop, where those two conditions are
running out of elements in array1 or encountering a 1 in array1. (Remember, that
was part of the original description of what this program does.)

You can use the logical conditional && to keep track of the test; remember that &&
makes sure that both conditions are true before the entire expression is true. If
either one is false, the expression returns false and the loop exits.

The program’s output shows that the first four elements in array1 were copied to
array2, but there was a 1 in the middle that stopped the loop from going any further.
Without the 1, array2 should end up with all the same elements as array1.

If the while loop’s test initially is false the first time it is tested (for example, if the first
element in that first array is 1), the body of the while loop will never be executed. If you
need to execute the loop at least once, you can do one of two things:

n Duplicate the body of the loop outside the while loop.

n Use a do loop (which is described in the following section).

The do loop is considered the better solution of the two.

108 DAY 4: Lists, Logic, and Loops

do-while Loops
The do loop is just like a while loop with one major difference—the place in the loop
when the condition is tested.

A while loop tests the condition before looping, so if the condition is false the first
time it is tested, the body of the loop never executes.

A do loop executes the body of the loop at least once before testing the condition, so if
the condition is false the first time it is tested, the body of the loop already will have
executed once.

The following example uses a do loop to keep doubling the value of a long integer until
it is larger than 3 trillion:

long i = 1;
do {

i *= 2;
System.out.print(i + “ “);

} while (i < 3000000000000L);

The body of the loop is executed once before the test condition, i < 3000000000000L,
is evaluated; then, if the test evaluates as true, the loop runs again. If it is false, the
loop exits. Keep in mind that the body of the loop executes at least once with do loops.

Breaking Out of Loops
In all the loops, the loop ends when a tested condition is met. There might be times when
something occurs during execution of a loop and you want to exit the loop early. In that
case, you can use the break and continue keywords.

You already have seen break as part of the switch statement; break stops execution of
the switch statement, and the program continues. The break keyword, when used with a
loop, does the same thing—it immediately halts execution of the current loop. If you
have nested loops within loops, execution picks up with the next outer loop. Otherwise,
the program simply continues executing the next statement after the loop.

For example, recall the while loop that copied elements from an integer array into an
array of floating-point numbers until either the end of the array or a 1 was reached. You
can test for the latter case inside the body of the while loop and then use break to exit
the loop:

int count = 0;
while (count < array1.length) {

if (array1[count] == 1)
break;

array2[count] = (float) array2[count++];
}

Breaking Out of Loops 109

4

The continue keyword starts the loop over at the next iteration. For do and while loops,
this means that the execution of the block statement starts over again; with for loops, the
increment expression is evaluated, and then the block statement is executed.

The continue keyword is useful when you want to make a special case out of elements
within a loop. With the previous example of copying one array to another, you could test
for whether the current element is equal to 1 and use continue to restart the loop after
every 1 so that the resulting array never contains zero. Note that because you’re skipping
elements in the first array, you now have to keep track of two different array counters:

int count = 0;
int count2 = 0;
while (count++ <= array1.length) {

if (array1[count] == 1)
continue;

array2[count2++] = (float)array1[count];
} >

Labeled Loops
Both break and continue can have an optional label that tells Java where to resume exe-
cution of the program. Without a label, break jumps outside the nearest loop to an
enclosing loop or to the next statement outside the loop. The continue keyword restarts
the loop it is enclosed within. Using break and continue with a label enables you to use
break to go to a point outside a nested loop or to use continue to go to a loop outside
the current loop.

To use a labeled loop, add the label before the initial part of the loop, with a colon
between the label and the loop. Then, when you use break or continue, add the name of
the label after the keyword itself, as in the following:

out:
for (int i = 0; i <10; i++) {

while (x < 50) {
if (i * x++ > 400)

break out;
// inner loop here

}
// outer loop here

}

In this snippet of code, the label out labels the outer loop. Then, inside both the for and
while loops, when a particular condition is met, a break causes the execution to break
out of both loops. Without the label out, the break statement would exit the inner loop
and resume execution with the outer loop.

110 DAY 4: Lists, Logic, and Loops

The Conditional Operator
An alternative to using the if and else keywords in a conditional statement is to use the
conditional operator, sometimes called the ternary operator. The conditional operator is
called a ternary operator because it has three operands.

The conditional operator is an expression, meaning that it returns a value—unlike the
more general if, which can result in only a statement or block being executed. The con-
ditional operator is most useful for short or simple conditionals and looks like the follow-
ing line:

test ? trueresult : falseresult;

The test is an expression that returns true or false, just like the test in the if state-
ment. If the test is true, the conditional operator returns the value of trueresult. If the
test is false, the conditional operator returns the value of falseresult. For example,
the following conditional tests the values of myScore and yourScore, returns the larger of
the two as a value, and assigns that value to the variable ourBestScore:

int ourBestScore = myScore > yourScore ? myScore : yourScore;

This use of the conditional operator is equivalent to the following if-else code:

int ourBestScore;
if (myScore > yourScore)

ourBestScore = myScore;
else

ourBestScore = yourScore;

The conditional operator has a low precedence—usually it is evaluated only after all its
subexpressions are evaluated. The only operators lower in precedence are the assignment
operators. For a refresher on operator precedence, refer to Table 2.6 in Day 2, “The
ABCs of Programming.”

The ternary operator is of primary benefit to experienced program-
mers creating complex expressions. Its functionality is duplicated
in simpler use of if-else statements, so there’s no need to use
this operator while you’re beginning to learn the language. The
main reason it’s introduced in this book is because you’ll
encounter it in the source code of other Java programmers.

Breaking Out of Loops 111

4

CAUTION

Summary
Now that you have been introduced to lists, loops, and logic, you can make a computer
decide whether to repeatedly display the contents of an array.

You learned how to declare an array variable, assign an object to it, and access and
change elements of the array. With the if and switch conditional statements, you can
branch to different parts of a program based on a Boolean test. You learned about the
for, while, and do loops, and you learned that each enables a portion of a program to be
repeated until a given condition is met.

It bears repeating: You’ll use all three of these features frequently in your Java programs.

You’ll use all three of these features frequently in your Java programs.

Q&A
Q I declared a variable inside a block statement for an if. When the if was

done, the definition of that variable vanished. Where did it go?

A In technical terms, block statements form a new lexical scope. This means that if
you declare a variable inside a block, it’s visible and usable only inside that block.
When the block finishes executing, all the variables you declared go away.

It’s a good idea to declare most of your variables in the outermost block in which
they’ll be needed—usually at the top of a block statement. The exception might be
simple variables, such as index counters in for loops, where declaring them in the
first line of the for loop is an easy shortcut.

Q Why can’t I use switch with strings?

A Strings are objects in Java, and switch works only for the primitive types byte,
char, short, and int. To compare strings, you have to use nested if statements,
which enable more general expression tests, including string comparison.

Quiz
Review today’s material by taking this three-question quiz.

Questions
1. Which loop is used to execute the statements in the loop at least once before the

conditional expression is evaluated?

a. do-while

b. for

c. while

112 DAY 4: Lists, Logic, and Loops

2. Which operator returns the remainder of a division operation?

a. /

b. %

c. ?

3. Which instance variable of an array is used to find out how big it is?

a. size

b. length

c. MAX_VALUE

Answers
1. a. In a do-while loop, the while conditional statement appears at the end of the

loop. Even if it is initially false, the statements in the loop are executed once.

2. b. The modulus operator (“%”).

3. b.

Certification Practice
The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Given:

public class Cases {
public static void main(String[] arguments) {

float x = 9;
float y = 5;
int z = (int)(x / y);
switch (z) {

case 1:
x = x + 2;

case 2:
x = x + 3;

default:
x = x + 1;

}
System.out.println(“Value of x: “ + x);

}
}

Quiz 113

4

What will be the value of x when it is displayed?

a. 9.0

b. 11.0

c. 15.0

d. The program will not compile.

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 4 page and click the Certification Practice link.

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. Using the countDays() method from the DayCounter application, create an appli-
cation that displays every date in a given year in a single list from January 1 to
December 31.

2. Create a class that takes words for the first 10 numbers (“one” up to “ten”) and
converts them into a single long integer. Use a switch statement for the conversion
and command-line arguments for the words.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java21days.com.

114 DAY 4: Lists, Logic, and Loops

DAY 5:
Creating Classes and
Methods

If you’re coming to Java from another programming language, you might
be struggling with the meaning of the term class. It seems synonymous to
the term program, but you might be uncertain of the relationship between
the two.

In Java, a program is made up of a main class and any other classes
needed to support the main class. These support classes include any of
those you might need in the Java class library, such as String, Math, and
the like.

Today, the meaning of class is clarified as you create classes and meth-
ods, which define the behavior of an object or class. You undertake each
of the following:

n The definition of the parts of a class

n The creation and use of instance variables

n The creation and use of methods

n The use of the main() method in Java applications

n The creation of overloaded methods that share the same name
but have different signatures and definitions

n The creation of constructor methods that are called when an
object is created

Defining Classes
Because you have created classes during each of the previous days, you should be famil-
iar with the basics of their creation at this point. A class is defined via the class key-
word and the name of the class, as in the following example:

class Ticker {
// body of the class

}

By default, classes inherit from the Object class. It’s the superclass of all classes in the
Java class hierarchy.

The extends keyword is used to indicate the superclass of a class, as in this example,
which is defined as a subclass of Ticker:

class SportsTicker extends Ticker {
// body of the class

}

Creating Instance and Class Variables
Whenever you create a class, you define behavior that makes the new class different
from its superclass.

This behavior is defined by specifying the variables and methods of the new class. In this
section, you work with three kinds of variables: class variables, instance variables, and
local variables. The subsequent section covers methods.

Defining Instance Variables
On Day 2, “The ABCs of Programming,” you learned how to declare and initialize local
variables, which are variables inside method definitions.

Instance variables are declared and defined in almost the same manner as local variables.
The main difference is their location in the class definition.

Variables are considered instance variables if they are declared outside a method defini-
tion and are not modified by the static keyword.

By programming custom, most instance variables are defined right after the first line of
the class definition, but they could just as permissibly be defined at the end.

Listing 5.1 contains a simple class definition for the class VolcanoRobot, which inherits
from the superclass ScienceRobot.

116 DAY 5: Creating Classes and Methods

LISTING 5.1 The Full Text of VolcanoRobot.java

1: class VolcanoRobot extends ScienceRobot {
2:
3: String status;
4: int speed;
5: float temperature;
6: int power;
7: }

This class definition contains four variables. Because these variables are not defined
inside a method, they are instance variables. The variables are as follows:

n status—A string indicating the current activity of the robot (for example, “explor-
ing” or “returning home”)

n speed—An integer that indicates the robot’s current rate of travel

n temperature—A floating-point number that indicates the current temperature of
the robot’s environment

n power—An integer indicating the robot’s current battery power

Class Variables
As you learned in previous days, class variables apply to a class as a whole, rather than a
particular object of that class.

Class variables are good for sharing information between different objects of the same
class or for keeping track of classwide information among a set of objects.

The static keyword is used in the class declaration to declare a class variable, as in the
following example:

static int sum;
static final int maxObjects = 10;

Creating Methods
As you learned on Day 3, “Working with Objects,” methods define an object’s behav-
ior—that is, anything that happens when the object is created as well as the various tasks
the object can perform during its lifetime.

This section introduces method definition and how methods work. Tomorrow’s lesson
has more detail about more sophisticated things you can do with methods.

Creating Methods 117

5

Defining Methods
In Java, a method definition has four basic parts:

n The name of the method

n A list of parameters

n The type of object or primitive type returned by the method

n The body of the method

The first two parts of the method definition form the method’s signature.

118 DAY 5: Creating Classes and Methods

To keep things simpler today, two optional parts of the method
definition have been left out: a modifier, such as public or
private, and the throws keyword, which indicates the exceptions a
method can throw. You learn about these parts of method defini-
tion on Day 6, “Packages, Interfaces, and Other Class Features,”
and Day 7, “Exceptions, Assertions, and Threads.”

NOTE

In other languages, the name of the method (which might be called a function, subrou-
tine, or procedure) is enough to distinguish it from other methods in the program.

In Java, you can have several methods in the same class with the same name but different
signatures. This practice is called method overloading, and you learn more about it
tomorrow.

Here’s what a basic method definition looks like:

returnType methodName(type1 arg1, type2 arg2, type3 arg3 ...) {
// body of the method

}

The returnType is the primitive type or class of the value returned by the method. It can
be one of the primitive types, a class name, or void if the method does not return a value
at all.

The method’s parameter list is a set of variable declarations separated by commas and set
inside parentheses. These parameters become local variables in the body of the method,
receiving their values when the method is called.

Note that if this method returns an array object, the array brackets can go after either the
returnType or the closing parenthesis of the parameter list. Because the former way is

easier to read, it is used in this book’s examples as in the following, which declares a
method that returns an integer array:

int[] makeRange(int lower, int upper) {
// body of this method

}

You can have statements, expressions, method calls on other objects, conditionals, loops,
and so on inside the body of the method.

Unless a method has been declared with void as its return type, the method returns some
kind of value when it is completed. This value must be explicitly returned at some exit
point inside the method, using the return keyword.

Listing 5.2 shows RangeLister, a class that defines a makeRange() method. This method
takes two integers—a lower boundary and an upper boundary—and creates an array that
contains all the integers between those two boundaries. The boundaries themselves are
included in the array of integers.

LISTING 5.2 The Full Text of RangeLister.java

1: class RangeLister {
2: int[] makeRange(int lower, int upper) {
3: int[] range = new int[(upper-lower) + 1];
4:
5: for (int i = 0; i < range.length; i++) {
6: range[i] = lower++;
7: }
8: return range;
9: }
10:
11: public static void main(String[] arguments) {
12: int[] range;
13: RangeLister lister = new RangeLister();
14:
15: range = lister.makeRange(4, 13);
16: System.out.print(“The array: [“);
17: for (int i = 0; i < range.length; i++) {
18: System.out.print(range[i] + “ “);
19: }
20: System.out.println(“]”);
21: }
22:
23: }

Creating Methods 119

5

The output of the application is the following:

The array: [4 5 6 7 8 9 10 11 12 13]

The main() method in this class tests the makeRange() method by calling it with the
arguments of 4 and 13. The method creates an empty integer array and uses a for loop to
fill the new array with values from 4 through 13 in lines 5–7.

The this Keyword
In the body of a method definition, there are times you might need to refer to the object
to which the method belongs. This can be done to use that object’s instance variables and
to pass the current object as an argument to another method.

To refer to the object in these cases, use the this keyword where you normally would
refer to an object’s name.

The this keyword refers to the current object, and you can use it anywhere a reference
to an object might appear: in dot notation, as an argument to a method, as the return
value for the current method, and so on. The following are some examples of using this:

t = this.x; // the x instance variable for this object

this.resetData(this); // call the resetData method, defined in
// this class, and pass it the current
// object

return this; // return the current object

In many cases, you might not need to explicitly use the this keyword because it is
assumed. For instance, you can refer to both instance variables and method calls defined
in the current class simply by name because the this is implicit in those references.
Therefore, you could write the first two examples as the following:

t = x; // the x instance variable for this object

resetData(this); // call the resetData method, defined in this
// class

120 DAY 5: Creating Classes and Methods

The viability of omitting the this keyword for instance variables
depends on whether variables of the same name are declared in
the local scope. You see more on this subject in the next section.

NOTE

Because this is a reference to the current instance of a class, use it only inside the body
of an instance method definition. Class methods—which are declared with the static
keyword—cannot use this.

Variable Scope and Method Definitions
One thing you must know to use a variable is its scope.

Scope is the part of a program in which a variable or another type of information exists,
making it possible to use the variable in statements and expressions. When the part defin-
ing the scope has completed execution, the variable ceases to exist.

When you declare a variable in Java, that variable always has a limited scope. A variable
with local scope, for example, can be used only inside the block in which it was defined.
Instance variables have a scope that extends to the entire class, so they can be used by
any of the instance methods within that class.

When you refer to a variable, Java checks for its definition outward, starting with the
innermost scope.

The innermost scope could be a block statement, such as the contents of a while loop.
The next scope could be the method in which the block is contained.

If the variable hasn’t been found in the method, the class itself is checked.

Because of the way Java checks for the scope of a given variable, it is possible for you to
create a variable in a lower scope that hides (or replaces) the original value of that vari-
able and introduces subtle and confusing bugs into your code.

For example, consider the following Java application:

class ScopeTest {
int test = 10;

void printTest() {
int test = 20;
System.out.println(“Test: “ + test);

}

public static void main(String[] arguments) {
ScopeTest st = new ScopeTest();
st.printTest();

}
}

In this class, you have two variables with the same name, test. The first, an instance
variable, is initialized with the value 10. The second is a local variable with the value 20.

The local variable test within the printTest() method hides the instance variable test.
When the printTest() method is called from within the main() method, it displays that
test equals 20, even though there’s a test instance variable that equals 10. You can

Creating Methods 121

5

avoid this problem by using this.test to refer to the instance variable and simply using
test to refer to the local variable, but a better solution might be to avoid the duplication
of variable names and definitions.

A more insidious example occurs when you redefine a variable in a subclass that already
occurs in a superclass. This can create subtle bugs in your code; for example, you might
call methods that are intended to change the value of an instance variable, but the wrong
variable is changed. Another bug might occur when you cast an object from one class to
another; the value of your instance variable might mysteriously change because it was
getting that value from the superclass instead of your class.

The best way to avoid this behavior is to be aware of the variables defined in the super-
class of your class. This awareness prevents you from duplicating a variable used higher
in the class hierarchy.

Passing Arguments to Methods
When you call a method with an object as a parameter, the object is passed into the body
of the method by reference. Any change made to the object inside the method will persist
outside of the method.

Keep in mind that such objects include arrays and all objects contained in arrays. When
you pass an array into a method and modify its contents, the original array is affected.
Primitive types, on the other hand, are passed by value.

The Passer class in Listing 5.3 demonstrates how this works.

LISTING 5.3 The Full Text of Passer.java

1: class Passer {
2:
3: void toUpperCase(String[] text) {
4: for (int i = 0; i < text.length; i++) {
5: text[i] = text[i].toUpperCase();
6: }
7: }
8:
9: public static void main(String[] arguments) {
10: Passer passer = new Passer();
11: passer.toUpperCase(arguments);
12: for (int i = 0; i < arguments.length; i++) {
13: System.out.print(arguments[i] + “ “);
14: }
15: System.out.println();
16: }
17: }

122 DAY 5: Creating Classes and Methods

This application takes one or more command-line arguments and displays them in all
uppercase letters. Here’s an example of running the program and the resulting output:

java Passer Athos Aramis Porthos

ATHOS ARAMIS PORTHOS

The Passer application uses command-line arguments stored in the arguments array of
strings.

The application creates a Passer object and calls its toUpperCase() method with the
arguments array as an argument (lines 10–11).

Because a reference to the array object is passed to the method, changing the value of
each array element in line 5 changes the actual element (rather than a copy of it).
Displaying the array with lines 12–14 demonstrates this.

Class Methods
The relationship between class and instance variables is directly comparable to how class
and instance methods work.

Class methods are available to any instance of the class itself and can be made available
to other classes. In addition, unlike an instance method, a class does not require an
instance of the class for its methods to be called.

For example, the Java class library includes the System class, which defines a set of
methods that are useful when displaying text, retrieving configuration information, and
accomplishing other tasks. Here are two statements that use its class methods:

System.exit(0);

“”int now = System.currentTimeMillis();

The exit(int) method closes an application with a status code that indicates success (0)
or failure (any other value). The currentTimeMillis() method returns a long holding
the number of milliseconds since midnight on Jan. 1, 1970, the numeric representation of
the current date and time.

To define class methods, use the static keyword in front of the method definition as you
would in front of a class variable. For example, the class method currentTimeMillis()
in the preceding example might have the following signature:

static void exit(int arg1) {
// body of the method

}

Creating Methods 123

5

As you have learned, Java supplies wrapper classes such as Integer and Float for each
of the primitive types. By using class methods defined in those classes, you can convert
objects to primitive types and convert primitive types to objects.

For example, the parseInt() class method in the Integer class can be used with a string
argument, returning an int representation of that string.

The following statement shows how the parseInt() method can be used:

int count = Integer.parseInt(“42”);

In the preceding statement, the String value “42” is returned by parseInt() as an inte-
ger with a value of 42, and this is stored in the count variable.

The lack of a static keyword in front of a method name makes it an instance method.
Instance methods operate in a particular object, rather than a class of objects. On Day 1,
“Getting Started with Java,” you created an instance method called checkTemperature()
that checked the temperature in the robot’s environment.

124 DAY 5: Creating Classes and Methods

Most methods that affect a particular object should be defined as
instance methods. Methods that provide some general capability
but do not directly affect an instance of the class should be
declared as class methods.

TIP

Creating Java Applications
Now that you know how to create classes, objects, class and instance variables, and class
and instance methods, you can put it all together in a Java program.

To refresh your memory, applications are Java classes that can be run on their own.

Applications are different from applets, which are run by a Java-
enabled browser as part of a web page. You can find out how to
develop applets in “Writing Java Applets,” a bonus chapter
included on this book’s CD.

NOTE

A Java application consists of one or more classes and can be as large or as small as you
want it to be. Although all the applications you’ve created up to this point do nothing but
output some characters to the screen, you also can create Java applications that use win-
dows, graphics, and a graphical user interface.

The only thing you need to make a Java application run, however, is one class that serves
as the starting point.

The class needs only one thing: a main() method. When the application is run, the
main() method is the first thing called.

The signature for the main() method takes the following form:

public static void main(String[] arguments) {
// body of method

}

Here’s a rundown of the parts of the main() method:

n public means that this method is available to other classes and objects, which is a
form of access control. The main() method must be declared public. You learn
more about access methods during Day 6.

n static means that main() is a class method.

n void means that the main() method doesn’t return a value.

n main() takes one parameter, which is an array of strings. This argument holds
command-line arguments, which you learn more about in the next section.

The body of the main() method contains any code you need to start your application,
such as the initialization of variables or the creation of class instances.

When Java executes the main() method, keep in mind that main() is a class method. An
instance of the class that holds main() is not created automatically when your program
runs. If you want to treat that class as an object, you have to create an instance of it in
the main() method (as you did in the Passer and RangeLister applications).

Helper Classes
Your Java application may consist of a single class—the one with the main() method—
or several classes that use each other. (In reality, even a simple tutorial program is actu-
ally using numerous classes in the Java class library.) You can create as many classes as
you want for your program.

Creating Java Applications 125

5

If you’re using the JDK, the classes can be found if they are
accessible from a folder listed in your Classpath environment vari-
able.

NOTE

As long as Java can find the class, your program uses it when it runs. Note, however, that
only the starting-point class needs a main() method. After it is called, the methods inside
the various classes and objects used in your program take over. Although you can include
main() methods in helper classes, they are ignored when the program runs.

Java Applications and Command-line
Arguments
Because Java applications are standalone programs, it’s useful to pass arguments or
options to an application.

You can use arguments to determine how an application is going to run or to enable a
generic application to operate on different kinds of input. You can use program argu-
ments for many different purposes, such as to turn on debugging input or to indicate a
filename to load.

Passing Arguments to Java Applications
How you pass arguments to a Java application varies based on the computer and virtual
machine on which Java is being run.

To pass arguments to a Java program with the java interpreter included with the JDK,
the arguments should be appended to the command line when the program is run. For
example:

java EchoArgs April 450 -10

In the preceding example, three arguments were passed to a program: April, 450, and -
10. Note that a space separates each of the arguments.

To group arguments that include spaces, the arguments should be surrounded with quota-
tion marks. For example, note the following command line:

java EchoArgs Wilhelm Niekro Hough “Tim Wakefield” 49

Putting quotation marks around Tim Wakefield causes that text to be treated as a single
argument. The EchoArgs application would receive five arguments: Wilhelm, Niekro,
Hough, Tim Wakefield, and 49. The quotation marks prevent the spaces from being used
to separate one argument from another; they are not included as part of the argument
when it is sent to the program and received using the main() method.

126 DAY 5: Creating Classes and Methods

Handling Arguments in Your Java Application
When an application is run with arguments, Java stores the arguments as an array of
strings and passes the array to the application’s main() method. Take another look at the
signature for main():

public static void main(String[] arguments) {
// body of method

}

Here, arguments is the name of the array of strings that contains the list of arguments.
You can call this array anything you want.

Inside the main() method, you then can handle the arguments your program was given
by iterating over the array of arguments and handling them in some manner. For exam-
ple, Listing 5.4 is a simple Java program that takes any number of numeric arguments
and returns the sum and the average of those arguments.

LISTING 5.4 The Full Text of Averager.java

1: class Averager {
2: public static void main(String[] arguments) {
3: int sum = 0;
4:
5: if (arguments.length > 0) {
6: for (int i = 0; i < arguments.length; i++) {
7: sum += Integer.parseInt(arguments[i]);
8: }
9: System.out.println(“Sum is: “ + sum);
10: System.out.println(“Average is: “ +
11: (float)sum / arguments.length);
12: }
13: }
14: }

The Averager application makes sure that in line 5 at least one argument was passed to
the program. This is handled through length, the instance variable that contains the
number of elements in the arguments array.

Java Applications and Command-line Arguments 127

5

One thing the quotation marks are not used for is to identify
strings. Every argument passed to an application is stored in an
array of String objects, even if it has a numeric value (such as
450, -10, and 49 in the preceding examples).

CAUTION

You must always do things like this when dealing with command-line arguments.
Otherwise, your programs crash with ArrayIndexOutOfBoundsException errors when-
ever the user supplies fewer command-line arguments than you were expecting.

If at least one argument is passed, the for loop iterates through all the strings stored in
the arguments array (lines 6–8).

Because all command-line arguments are passed to a Java application as String objects,
you must convert them to numeric values before using them in any mathematical expres-
sions. The parseInt() class method of the Integer class takes a String object as input
and returns an int (line 7).

If you can run Java classes on your system with a command line, type the following:

java Averager 1 4 13

You should see the following output:

Sum is: 18
Average is: 6.0

Creating Methods with the Same Name,
Different Arguments
When you work with Java’s class library, you often encounter classes that have numerous
methods with the same name.

Two things differentiate methods with the same name:

n The number of arguments they take

n The data type or objects of each argument

These two things are part of a method’s signature. Using several methods with the same
name and different signatures is called overloading.

Method overloading can eliminate the need for entirely different methods that do essen-
tially the same thing. Overloading also makes it possible for methods to behave differ-
ently based on the arguments they receive.

When you call a method in an object, Java matches the method name and arguments to
choose which method definition to execute.

To create an overloaded method, you create different method definitions in a class, each
with the same name but different argument lists. The difference can be the number, the

128 DAY 5: Creating Classes and Methods

type of arguments, or both. Java allows method overloading as long as each argument list
is unique for the same method name.

Creating Methods with the Same Name, Different Arguments 129

5

Java does not consider the return type when differentiating among
overloaded methods. If you attempt to create two methods with
the same signature and different return types, the class won’t
compile. In addition, the variable names that you choose for each
argument to the method are irrelevant. The number and the type
of arguments are the two things that matter.

CAUTION

The next project creates an overloaded method. It begins with a simple class definition
for a class called Box, which defines a rectangular shape with four instance variables to
define the upper-left and lower-right corners of the rectangle, x1, y1, x2, and y2:

class Box {
int x1 = 0;
int y1 = 0;
int x2 = 0;
int y2 = 0;

}

When a new instance of the Box class is created, all its instance variables are initialized
to 0.

A buildBox() instance method sets the variables to their correct values:

Box buildBox(int x1, int y1, int x2, int y2) {
this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;
return this;

}

This method takes four integer arguments and returns a reference to the resulting Box
object. Because the arguments have the same names as the instance variables, the key-
word this is used inside the method when referring to the instance variables.

This method can be used to create rectangles, but what if you wanted to define a rectan-
gle’s dimensions in a different way? An alternative would be to use Point objects rather
than individual coordinates because Point objects contain both an x and y value as
instance variables.

You can overload buildBox() by creating a second version of the method with an argu-
ment list that takes two Point objects:

Box buildBox(Point topLeft, Point bottomRight) {
x1 = topLeft.x;
y1 = topLeft.y;
x2 = bottomRight.x;
y2 = bottomRight.y;
return this;

}

For the preceding method to work, the java.awt.Point class must be imported so that
the Java compiler can find it.

Another possible way to define the rectangle is to use a top corner, a height, and a width:

Box buildBox(Point topLeft, int w, int h) {
x1 = topLeft.x;
y1 = topLeft.y;
x2 = (x1 + w);
y2 = (y1 + h);
return this;

}

To finish this example, a printBox() is created to display the rectangle’s coordinates,
and a main() method tries everything out. Listing 5.5 shows the completed class defini-
tion.

LISTING 5.5 The Full Text of Box.java

1: import java.awt.Point;
2:
3: class Box {
4: int x1 = 0;
5: int y1 = 0;
6: int x2 = 0;
7: int y2 = 0;
8:
9: Box buildBox(int x1, int y1, int x2, int y2) {
10: this.x1 = x1;
11: this.y1 = y1;
12: this.x2 = x2;
13: this.y2 = y2;
14: return this;
15: }
16:
17: Box buildBox(Point topLeft, Point bottomRight) {
18: x1 = topLeft.x;

130 DAY 5: Creating Classes and Methods

LISTING 5.5 Continued

19: y1 = topLeft.y;
20: x2 = bottomRight.x;
21: y2 = bottomRight.y;
22: return this;
23: }
24:
25: Box buildBox(Point topLeft, int w, int h) {
26: x1 = topLeft.x;
27: y1 = topLeft.y;
28: x2 = (x1 + w);
29: y2 = (y1 + h);
30: return this;
31: }
32:
33: void printBox(){
34: System.out.print(“Box: <” + x1 + “, “ + y1);
35: System.out.println(“, “ + x2 + “, “ + y2 + “>”);
36: }
37:
38: public static void main(String[] arguments) {
39: Box rect = new Box();
40:
41: System.out.println(“Calling buildBox with coordinates “
42: + “(25,25) and (50,50):”);
43: rect.buildBox(25, 25, 50, 50);
44: rect.printBox();
45:
46: System.out.println(“\nCalling buildBox with points “
47: + “(10,10) and (20,20):”);
48: rect.buildBox(new Point(10, 10), new Point(20, 20));
49: rect.printBox();
50:
51: System.out.println(“\nCalling buildBox with 1 point “
52: + “(10,10), width 50 and height 50:”);
53:
54: rect.buildBox(new Point(10, 10), 50, 50);
55: rect.printBox();
56: }
57: }

The following is this program’s output:

Calling buildBox with coordinates (25,25) and (50,50):
Box: <25, 25, 50, 50>

Calling buildBox with points (10,10) and (20,20):
Box: <10, 10, 20, 20>

Creating Methods with the Same Name, Different Arguments 131

5

Calling buildBox with 1 point (10,10), width 50 and height 50:
Box: <10, 10, 60, 60>

You can define as many versions of a method as you need to implement the behavior
needed for that class.

When you have several methods that do similar things, using one method to call another
is a shortcut technique to consider. For example, the buildBox() method in lines 17–23
can be replaced with the following, much shorter method:

Box buildBox(Point topLeft, Point bottomRight) {
return buildBox(topLeft.x, topLeft.y,

bottomRight.x, bottomRight.y);
}

The return statement in this method calls the buildBox() method in lines 9–15 with
four integer arguments, producing the same result in fewer statements.

Constructor Methods
You also can define constructor methods in your class definition that are called automati-
cally when objects of that class are created.

A constructor method is a method called on an object when it is created—in other words,
when it is constructed.

Unlike other methods, a constructor cannot be called directly. Java does three things
when new is used to create an instance of a class:

n Allocates memory for the object

n Initializes that object’s instance variables, either to initial values or to a default (0
for numbers, null for objects, false for Booleans, or ‘\0’ for characters)

n Calls the constructor method of the class, which might be one of several methods

If a class doesn’t have any constructor methods defined, an object still is created when
the new operator is used in conjunction with the class. However, you might have to set its
instance variables or call other methods that the object needs to initialize itself.

By defining constructor methods in your own classes, you can set initial values of
instance variables, call methods based on those variables, call methods on other objects,
and set the initial properties of an object.

132 DAY 5: Creating Classes and Methods

You also can overload constructor methods, as you can do with regular methods, to cre-
ate an object that has specific properties based on the arguments you give to new.

Basic Constructor Methods
Constructors look a lot like regular methods, with three basic differences:

n They always have the same name as the class.

n They don’t have a return type.

n They cannot return a value in the method by using the return statement.

For example, the following class uses a constructor method to initialize its instance vari-
ables based on arguments for new:

class VolcanoRobot {
String status;
int speed;
int power;

VolcanoRobot(String in1, int in2, int in3) {
status = in1;
speed = in2;
power = in3;

}
}

You could create an object of this class with the following statement:

VolcanoRobot vic = new VolcanoRobot(“exploring”, 5, 200);

The status instance variable would be set to exploring, speed to 5, and power to 200.

Calling Another Constructor Method
If you have a constructor method that duplicates some of the behavior of an existing con-
structor method, you can call the first constructor from inside the body of the second
constructor. Java provides a special syntax for doing this. Use the following code to call
a constructor method defined in the current class:

this(arg1, arg2, arg3);

The use of this with a constructor method is similar to how this can be used to access a
current object’s variables. In the preceding statement, the arguments with this() are the
arguments for the constructor method.

Constructor Methods 133

5

For example, consider a simple class that defines a circle using the (x,y) coordinate of its
center and the length of its radius. The class, Circle, could have two constructors: one
where the radius is defined and one where the radius is set to a default value of 1:

class Circle {
int x, y, radius;

Circle(int xPoint, int yPoint, int radiusLength) {
this.x = xPoint;
this.y = yPoint;
this.radius = radiusLength;

}

Circle(int xPoint, int yPoint) {
this(xPoint, yPoint, 1);

}
}

The second constructor in Circle takes only the x and y coordinates of the circle’s cen-
ter. Because no radius is defined, the default value of 1 is used—the first constructor is
called with the arguments xPoint, yPoint, and the integer literal 1.

Overloading Constructor Methods
Like regular methods, constructor methods also can take varying numbers and types of
parameters. This capability enables you to create an object with exactly the properties
you want it to have or lets the object calculate properties from different kinds of input.

For example, the buildBox() methods that you defined in the Box class earlier today
would make excellent constructor methods because they are being used to initialize an
object’s instance variables to the appropriate values. So instead of the original
buildBox() method that you defined (which took four parameters for the coordinates of
the corners), you could create a constructor.

Listing 5.6 shows a new class, Box2, that has the same functionality of the original Box
class, except that it uses overloaded constructor methods instead of overloaded
buildBox() methods.

LISTING 5.6 The Full Text of Box2.java

1: import java.awt.Point;
2:
3: class Box2 {
4: int x1 = 0;
5: int y1 = 0;
6: int x2 = 0;

134 DAY 5: Creating Classes and Methods

LISTING 5.6 The Full Text of Box2.java

7: int y2 = 0;
8:
9: Box2(int x1, int y1, int x2, int y2) {
10: this.x1 = x1;
11: this.y1 = y1;
12: this.x2 = x2;
13: this.y2 = y2;
14: }
15:
16: Box2(Point topLeft, Point bottomRight) {
17: x1 = topLeft.x;
18: y1 = topLeft.y;
19: x2 = bottomRight.x;
20: y2 = bottomRight.y;
21: }
22:
23: Box2(Point topLeft, int w, int h) {
24: x1 = topLeft.x;
25: y1 = topLeft.y;
26: x2 = (x1 + w);
27: y2 = (y1 + h);
28: }
29:
30: void printBox() {
31: System.out.print(“Box: <” + x1 + “, “ + y1);
32: System.out.println(“, “ + x2 + “, “ + y2 + “>”);
33: }
34:
35: public static void main(String[] arguments) {
36: Box2 rect;
37:
38: System.out.println(“Calling Box2 with coordinates “
39: + “(25,25) and (50,50):”);
40: rect = new Box2(25, 25, 50, 50);
41: rect.printBox();
42:
43: System.out.println(“\nCalling Box2 with points “
44: + “(10,10) and (20,20):”);
45: rect= new Box2(new Point(10, 10), new Point(20, 20));
46: rect.printBox();
47:
48: System.out.println(“\nCalling Box2 with 1 point “
49: + “(10,10), width 50 and height 50:”);
50: rect = new Box2(new Point(10, 10), 50, 50);
51: rect.printBox();
52:
53: }
54: }

This application produces the same output as the Box application in Listing 5.5.

Constructor Methods 135

5

Overriding Methods
When you call an object’s method, Java looks for that method definition in the object’s
class. If it doesn’t find one, it passes the method call up the class hierarchy until a
method definition is found. Method inheritance enables you to define and use methods
repeatedly in subclasses without having to duplicate the code.

However, there might be times when you want an object to respond to the same methods
but have different behavior when that method is called. In that case, you can override the
method. To override a method, define a method in a subclass with the same signature as
a method in a superclass. Then, when the method is called, the subclass method is found
and executed instead of the one in the superclass.

Creating Methods That Override Existing Methods
To override a method, all you have to do is create a method in your subclass that has the
same signature (name and argument list) as a method defined by your class’s superclass.
Because Java executes the first method definition it finds that matches the signature, the
new signature hides the original method definition.

Here’s a simple example; Listing 5.7 contains two classes: Printer, which contains a
method called printMe() that displays information about objects of that class, and
SubPrinter, a subclass that adds a z instance variable to the class.

LISTING 5.7 The Full Text of Printer.java

1: class Printer {
2: int x = 0;
3: int y = 1;
4:
5: void printMe() {
6: System.out.println(“x is “ + x + “, y is “ + y);
7: System.out.println(“I am an instance of the class “ +
8: this.getClass().getName());
9: }
10: }
11:
12: class SubPrinter extends Printer {
13: int z = 3;
14:
15: public static void main(String[] arguments) {
16: SubPrinter obj = new SubPrinter();
17: obj.printMe();
18: }
19: }

136 DAY 5: Creating Classes and Methods

Compiling this file produces two class files rather than one, as you might expect from
previous projects. Because the source file defines the Printer and SubPrinter classes,
both are produced by the compiler. Run SubPrinter with the Java interpreter to see the
following output:

x is 0, y is 1
I am an instance of the class SubPrinter

Overriding Methods 137

5

Make sure that you run SubPrinter with the interpreter rather than
Printer. The Printer class does not have a main() method, so it
cannot be run as an application.

CAUTION

A SubPrinter object was created, and the printMe() method was called in the main()
method of SubPrinter. Because the SubPrinter does not define this method, Java looks
for it in the superclasses of SubPrinter, starting with Printer. Printer has a printMe()
method, so it is executed. Unfortunately, this method does not display the z instance vari-
able, as you can see from the preceding output.

To correct the problem, you could override the printMe() method of Printer in
SubPrinter, adding a statement to display the z instance variable:

void printMe() {
System.out.println(“x is “ + x + “, y is “ + y +

“, z is “ + z);
System.out.println(“I am an instance of the class “ +

this.getClass().getName());
}

Calling the Original Method
Usually, there are two reasons why you want to override a method that a superclass
already has implemented:

n To replace the definition of that original method completely

n To augment the original method with additional behavior

Overriding a method and giving the method a new definition hides the original method
definition. There are times, however, when behavior should be added to the original defi-
nition instead of replacing it completely, particularly when behavior is duplicated in both
the original method and the method that overrides it. By calling the original method in
the body of the overriding method, you can add only what you need.

Use the super keyword to call the original method from inside a method definition. This
keyword passes the method call up the hierarchy, as shown in the following:

void doMethod(String a, String b) {
// do stuff here
super.doMethod(a, b);
// do more stuff here

}

The super keyword, similar to the this keyword, is a placeholder for the class’s super-
class. You can use it anywhere that you use this, but super refers to the superclass
rather than the current object.

Overriding Constructors
Technically, constructor methods cannot be overridden. Because they always have the
same name as the current class, new constructor methods are created instead of being
inherited. This system is fine much of the time; when your class’s constructor method is
called, the constructor method with the same signature for all your superclasses also is
called. Therefore, initialization can happen for all parts of a class that you inherit.

However, when you are defining constructor methods for your own class, you might
want to change how your object is initialized, not only by initializing new variables
added by your class, but also by changing the contents of variables that are already there.
To do this, explicitly call the constructor methods of the superclass and subsequently
change whatever variables need to be changed.

To call a regular method in a superclass, you use super.methodname(arguments).
Because constructor methods don’t have a method name to call, the following form is
used:

super(arg1, arg2, ...);

Note that Java has a specific rule for the use of super(): It must be the first statement in
your constructor definition. If you don’t call super() explicitly in your constructor, Java
does it for you—automatically calling super() with no arguments before the first state-
ment in the constructor.

Because a call to a super() method must be the first statement, you can’t do something
like the following in your overriding constructor:

if (condition == true)
super(1,2,3); // call one superclass constructor

else
super(1,2); // call a different constructor

138 DAY 5: Creating Classes and Methods

Similar to using this() in a constructor method, super() calls the constructor method
for the immediate superclass (which might, in turn, call the constructor of its superclass,
and so on). Note that a constructor with that signature has to exist in the superclass for
the call to super() to work. The Java compiler checks this when you try to compile the
source file.

You don’t have to call the constructor in your superclass that has the same signature as
the constructor in your class; you have to call the constructor only for the values you
need initialized. In fact, you can create a class that has constructors with entirely differ-
ent signatures from any of the superclass’s constructors.

Listing 5.8 shows a class called NamedPoint, which extends the class Point from the
java.awt package. The Point class has only one constructor, which takes an x and a y
argument and returns a Point object. NamedPoint has an additional instance variable (a
string for the name) and defines a constructor to initialize x, y, and the name.

LISTING 5.8 The NamedPoint Class

1: import java.awt.Point;
2:
3: class NamedPoint extends Point {
4: String name;
5:
6: NamedPoint(int x, int y, String name) {
7: super(x,y);
8: this.name = name;
9: }
10:
11: public static void main(String[] arguments) {
12: NamedPoint np = new NamedPoint(5, 5, “SmallPoint”);
13: System.out.println(“x is “ + np.x);
14: System.out.println(“y is “ + np.y);
15: System.out.println(“Name is “ + np.name);
16: }
17: }

The output of the program is as follows:

x is 5
y is 5
Name is SmallPoint

The constructor method defined here for NamedPoint calls Point’s constructor method
to initialize the instance variables of Point (x and y). Although you can just as easily
initialize x and y yourself, you might not know what other things Point is doing to

Overriding Methods 139

5

initialize itself. Therefore, it is always a good idea to pass constructor methods up the
hierarchy to make sure that everything is set up correctly.

Finalizer Methods
Finalizer methods are almost the opposite of constructor methods. A constructor method
is used to initialize an object, and finalizer methods are called just before the object is
removed by the garbage collector, freeing up the memory for use.

The finalizer method is finalize(). The Object class defines a default finalizer method
that does nothing. To create a finalizer method for your own classes, override the final-
ize() method using this signature:

protected void finalize() throws Throwable {
super.finalize();

}

140 DAY 5: Creating Classes and Methods

The throws Throwable part of this method definition refers to the
errors that might occur when this method is called. Errors in Java
are called exceptions; you learn more about them on Day 7.

NOTE

Include any cleaning up that you want to do for that object inside the body of that
finalize() method. In the method, you always should call super.finalize() to enable
your class’s superclasses to finalize the object.

You can call the finalize() method yourself at any time; it’s a method just like any
other. However, calling finalize() does not trigger an object to be garbage collected.
Only removing all references to an object causes it to be marked for deletion.

When you’re optimizing a Java class, one of the ways to reduce its memory use is to
remove references to class and instance variables as soon as they are no longer needed.
To remove a reference, set it to null.

For example, if you have a class that uses a NamedPoint object in a variable called
mainPoint, you could free up that object for garbage collection with the following state-
ment:

mainPoint = null;

Finalizer methods are valuable for optimizing the removal of an object—for example, by
removing references to other objects. However, it’s important to note that the time a

garbage collector takes to call an object’s finalize() method is not standard in all
implementations of the Java interpreter. This could take place long after the last reference
to the object was removed. In most cases, you don’t need to use finalize() at all.

Summary
After finishing today’s lesson, you should have a pretty good idea of the relationship
among classes in Java and programs you create using the language.

Everything you create in Java involves the use of a main class that interacts with other
classes as needed. It’s a different programming mindset than you might be used to with
other languages.

Today, you put together everything you have learned about creating Java classes. Each of
the following topics was covered:

n Instance and class variables, which hold the attributes of a class and objects created
from it.

n Instance and class methods, which define the behavior of a class. You learned how
to define methods—including the parts of a method signature, how to return values
from a method, how arguments are passed to methods, and how to use the this
keyword to refer to the current object.

n The main() method of Java applications and how to pass arguments to it from the
command line.

n Overloaded methods, which reuse a method name by giving it different arguments.

n Constructor methods, which define the initial variables and other starting condi-
tions of an object.

Q&A
Q In my class, I have an instance variable called origin. I also have a local vari-

able called origin in a method, which, because of variable scope, gets hidden
by the local variable. Is there any way to access the instance variable’s value?

A The easiest way to avoid this problem is to give your local variables the same
names that your instance variables have. Otherwise, you can use this.origin to
refer to the instance variable and origin to refer to the local variable.

Q&A 141

5

Q I created two methods with the following signatures:
int total(int arg1, int arg2, int arg3) {...}
float total(int arg1, int arg2, int arg3) {...}

The Java compiler complains when I try to compile the class with these
method definitions, but their signatures are different. What have I done
wrong?

A Method overloading in Java works only if the parameter lists are different—either
in number or type of arguments. Return type is not part of a method signature, so
it’s not considered when methods have been overloaded. Looking at it from the
point at which a method is called, this makes sense: If two methods have exactly
the same parameter list, how would Java know which one to call?

Q I wrote a program to take four arguments, but when I give it too few argu-
ments, it crashes with a runtime error. Why?

A Testing for the number and type of arguments your program expects is up to you in
your Java program; Java won’t do it for you. If your program requires four argu-
ments, test that you have indeed been given four arguments by using the length
variable of an array and return an error message if you haven’t.

Quiz
Review today’s material by taking this three-question quiz.

Questions
1. If a local variable has the same name as an instance variable, how can you refer to

the instance variable in the scope of the local variable?

a. You can’t; you should rename one of the variables.

b. Use the keyword this before the instance variable name.

c. Use the keyword super before the name.

2. Where are instance variables declared in a class?

a. Anywhere in the class

b. Outside all methods in the class

c. After the class declaration and above the first method

3. How can you send an argument to a program that includes a space character?

a. Surround it with quotes.

b. Separate the arguments with commas.

c. Separate the arguments with period characters.

142 DAY 5: Creating Classes and Methods

Answers
1. b. Answer (a.) is a good idea, though variable name conflicts can be a source of

subtle errors in your Java programs.

2. b. Customarily, instance variables are declared right after the class declaration and
before any methods. It’s necessary only that they be outside all methods.

3. a. The quotation marks are not included in the argument when it is passed to the
program.

Certification Practice
The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Given:

public class BigValue {
float result;

public BigValue(int a, int b) {
result = calculateResult(a, b);

}

float calculateResult(int a, int b) {
return (a * 10) + (b * 2);

}

public static void main(String[] arguments) {
BiggerValue bgr = new BiggerValue(2, 3, 4);
System.out.println(“The result is “ + bgr.result);

}
}

class BiggerValue extends BigValue {

BiggerValue(int a, int b, int c) {
super(a, b);
result = calculateResult(a, b, c);

}

// answer goes here
return (c * 3) * result;

}
}

Quiz 143

5

What statement should replace // answer goes here so that the result variable equals
312.0?

a. float calculateResult(int c) {

b. float calculateResult(int a, int b) {

c. float calculateResult(int a, int b, int c) {

d. float calculateResult() {

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 5 page and click the Certification Practice link.

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. Modify the VolcanoRobot project from Day 1 so that it includes constructor meth-
ods.

2. Create a class for four-dimensional points called FourDPoint that is a subclass of
Point from the java.awt package.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java21days.com.

144 DAY 5: Creating Classes and Methods

DAY 6:
Packages, Interfaces,
and Other Class
Features

Classes, the templates used to create objects that can store data and
accomplish tasks, turn up in everything you do with the Java language.

Today, you extend your knowledge of classes by learning more about how
to create them, use them, organize them, and establish rules for how
other classes can use them.

The following subjects are covered:

n Controlling access to methods and variables from outside a class

n Finalizing classes, methods, and variables so that their values or
definitions cannot be subclasses or cannot be overridden

n Creating abstract classes and methods for factoring common
behavior into superclasses

n Grouping classes into packages

n Using interfaces to bridge gaps in a class hierarchy

Modifiers
During this week, you have learned how to define classes, methods, and variables in
Java. The techniques for programming that you learn today involve different ways of
thinking about how a class is organized. All these techniques use special modifier key-
words in the Java language.

Modifiers are keywords that you add to those definitions to change their meanings.

The Java language has a wide variety of modifiers, including the following:

n Modifiers for controlling access to a class, method, or variable: public,
protected, and private

n The static modifier for creating class methods and variables

n The final modifier for finalizing the implementations of classes, methods, and
variables

n The abstract modifier for creating abstract classes and methods

n The synchronized and volatile modifiers, which are used for threads

To use a modifier, you include its keyword in the definition of a class, method, or vari-
able. The modifier precedes the rest of the statement, as in the following examples:

public class Calc extends javax.swing.JApplet {
// ...

}

private boolean offline;

static final double weeks = 9.5;

protected static final int MEANING_OF_LIFE = 42;

public static void main(String[] arguments) {
// body of method

}

If you’re using more than one modifier in a statement, you can place them in any order,
as long as all modifiers precede the element they are modifying. Make sure to avoid
treating a method’s return type—such as void—as if it were one of the modifiers.

Modifiers are optional—as you might realize after using few of them in the preceding
five days. There are many good reasons to use them, though, as you see today.

Access Control for Methods and Variables
The modifiers that you will use the most often control access to methods and variables:
public, private, and protected. These modifiers determine which variables and meth-
ods of a class are visible to other classes.

146 DAY 6: Packages, Interfaces, and Other Class Features

By using access control, you can dictate how your class is used by other classes. Some
variables and methods in a class are of use only within the class itself and should be hid-
den from other classes. This process is called encapsulation: An object controls what the
outside world can know about it and how the outside world can interact with it.

Encapsulation is the process that prevents class variables from being read or modified by
other classes. The only way to use these variables is by calling methods of the class, if
they are available.

The Java language provides four levels of access control: public, private, protected,
and a default level specified by using none of these access control modifiers.

Default Access
Variables and methods can be declared without any modifiers, as in the following
examples:

String version = “0.7a”;

boolean processOrder() {
return true;

}

A variable or method declared without any access control modifier is available to any
other class in the same package. The Java class library is organized into packages such as
javax.swing, which are windowing classes for use primarily in graphical user interface
programming, and java.util, a useful group of utility classes.

Any variable declared without a modifier can be read or changed by any other class in
the same package. Any method declared the same way can be called by any other class
in the same package. No other classes can access these elements in any way.

This level of access control doesn’t control much access, so it’s less useful when you
begin thinking about how you want a class to be used by other classes.

The preceding discussion raises the question about what package
your own classes have been in up to this point. As you see later
today, you can make your class a member of a package by using
the package declaration. If you don’t use this approach, the class
is put into an unnamed package with all other classes that don’t
belong to any other packages.

Modifiers 147

6NOTE

Private Access
To completely hide a method or variable from being used by any other classes, use the
private modifier. The only place these methods or variables can be accessed is from
within their own class.

A private instance variable, for example, can be used by methods in its own class but not
by objects of any other class. Private methods can be called by other methods in their
own class but cannot be called by any others. This restriction also affects inheritance:
Neither private variables nor private methods are inherited by subclasses.

Private variables are useful in two circumstances:

n When other classes have no reason to use that variable

n When another class could wreak havoc by changing the variable in an inappropri-
ate way

For example, consider a Java class called CouponMachine that generates discounts for an
Internet shopping site. A variable in that class called salesRatio could control the size
of discounts based on product sales. As you can imagine, this variable has a big impact
on the bottom line at the site. If the variable were changed by other classes, the perfor-
mance of CouponMachine would change greatly. To guard against this scenario, you can
declare the salesRatio variable as private.

The following class uses private access control:

class Logger {
private String format;

public String getFormat() {
return this.format;

}

public void setFormat(String format) {
if ((format.equals(“common”)) ! (format.equals(“combined”))) {

this.format = format;
}

}
}

In this code example, the format variable of the Logger class is private, so there’s no
way for other classes to retrieve or set its value directly.

Instead, it’s available through two public methods: getFormat(), which returns the
value of format, and setFormat(String), which sets its value.

The latter method contains logic that only allows the variable to be set to “common” or
“combined.” This demonstrates the benefit of using public methods as the only means of

148 DAY 6: Packages, Interfaces, and Other Class Features

accessing instance variables of a class—the methods can give the class control over how
the variable is accessed and the values it can take.

Using the private modifier is the main way that an object encapsulates itself. You can’t
limit the ways in which a class is used without using private in many places to hide
variables and methods. Another class is free to change the variables inside a class and
call its methods in many possible ways if you don’t control access.

A big advantage of privacy is that it gives you a way to change the implementation of a
class without affecting the users of that class. If you come up with a better way to
accomplish something, you can rewrite the class as long as its public methods take the
same arguments and return the same kinds of values.

Public Access
In some cases, you might want a method or variable in a class to be completely available
to any other class that wants to use it. For example, the Color class in the java.awt
package has public variables for common colors such as black. This variable is used
when a graphical class wants to use the color black, so black should have no access con-
trol at all.

Class variables often are declared to be public. An example would be a set of variables
in a Football class that represent the number of points used in scoring. The TOUCHDOWN
variable could equal 6, the FIELD_GOAL variable could equal 3, and so on. If these vari-
ables are public, other classes could use them in statements such as the following:

if (yard < 0) {
System.out.println(“Touchdown!”);
score = score + Football.TOUCHDOWN;

}

The public modifier makes a method or variable completely available to all classes. You
have used it in every application you have written so far, with a statement such as the fol-
lowing:

public static void main(String[] arguments) {
// ...

}

The main() method of an application has to be public. Otherwise, it could not be called
by a Java interpreter (such as java) to run the class.

Because of class inheritance, all public methods and variables of a class are inherited by
its subclasses.

Modifiers 149

6

Protected Access
The third level of access control is to limit a method and variable to use by the following
two groups:

n Subclasses of a class

n Other classes in the same package

You do so by using the protected modifier, as in the following statement:

protected boolean outOfData = true;

You might be wondering how these two groups are different. After
all, aren’t subclasses part of the same package as their super-
class? Not always. An example is the JApplet class. It is a sub-
class of java.applet.Applet but is actually in the javax.swing
package. Protected access differs from default access this way;
protected variables are available to subclasses, even if they aren’t
in the same package.

This level of access control is useful if you want to make it easier for a subclass to
implement itself. Your class might use a method or variable to help the class do its job.
Because a subclass inherits much of the same behavior and attributes, it might have the
same job to do. Protected access gives the subclass a chance to use the helper method or
variable, while preventing a nonrelated class from trying to use it.

Consider the example of a class called AudioPlayer that plays a digital audio file.
AudioPlayer has a method called openSpeaker(), which is an internal method that inter-
acts with the hardware to prepare the speaker for playing. openSpeaker() isn’t important
to anyone outside the AudioPlayer class, so at first glance you might want to make it
private. A snippet of AudioPlayer might look something like this:

class AudioPlayer {

private boolean openSpeaker(Speaker sp) {
// implementation details

}
}

This code works fine if AudioPlayer isn’t going to be subclassed. But what if you were
going to create a class called StreamingAudioPlayer that is a subclass of AudioPlayer?
That class needs access to the openSpeaker() method to override it and provide support

150 DAY 6: Packages, Interfaces, and Other Class Features

NOTE

for streaming audio devices. You still don’t want the method generally available to ran-
dom objects (and so it shouldn’t be public), but you want the subclass to have access
to it.

Comparing Levels of Access Control
The differences among the various protection types can become confusing, particularly in
the case of protected methods and variables. Table 6.1, which summarizes exactly what
is allowed where, helps clarify the differences from the least restrictive (public) to the
most restrictive (private) forms of protection.

TABLE 6.1 The Different Levels of Access Control

Visibility public protected default private

From the same class yes yes yes yes

From any class in yes yes yes no
the same package

From any class yes no no no
outside the package

From a subclass in yes yes yes no
the same package

From a subclass yes yes no no
outside the same
package

Access Control and Inheritance
One last issue regarding access control for methods involves subclasses. When you cre-
ate a subclass and override a method, you must consider the access control in place on
the original method.

As a general rule, you cannot override a method in Java and make the new method more
restrictively controlled than the original. You can, however, make it more public. The fol-
lowing rules for inherited methods are enforced:

n Methods declared public in a superclass also must be public in all subclasses.

n Methods declared protected in a superclass must either be protected or public
in subclasses; they cannot be private.

n Methods declared without access control (no modifier was used) can be declared
more private in subclasses.

Methods declared private are not inherited at all, so the rules don’t apply.

Modifiers 151

6

Accessor Methods
In many cases, you may have an instance variable in a class that has strict rules for the
values it can contain. An example would be a zipCode variable. A ZIP Code in the
United States must be a number that is five digits long.

To prevent an external class from setting the zipCode variable incorrectly, you can
declare it private with a statement such as the following:

private int zipCode;

However, what if other classes must be able to set the zipCode variable for the class to
be useful? In that circumstance, you can give other classes access to a private variable by
using an accessor method inside the same class as zipCode.

An accessor method provides access to a variable that otherwise would be off-limits. By
using a method to provide access to a private variable, you can control how that variable
is used. In the ZIP Code example, the class could prevent anyone else from setting
zipCode to an incorrect value.

Often, separate accessor methods to read and write a variable are available. Reading
methods have a name beginning with get, and writing methods have a name beginning
with set, as in setZipCode(int) and getZipCode().

Using methods to access instance variables is a frequently used technique in object-ori-
ented programming. This approach makes classes more reusable because it guards
against a class being used improperly.

The Java class library makes extensive use of accessor methods
that follow the same format as the getZipCode() and
setZipCode(int) examples in this section. JavaBeans, a technol-
ogy for creating Java objects whose variables can be manipulated
in an integrated development environment, also employs them.

Static Variables and Methods
A modifier that you already have used in programs is static, which was introduced dur-
ing Day 5, “Creating Classes and Methods.” The static modifier is used to create class
methods and variables, as in the following example:

public class Circle {
public static float PI = 3.14159265F;

public float area(float r) {
return PI * r * r;

}
}

152 DAY 6: Packages, Interfaces, and Other Class Features

NOTE

Class variables and methods can be accessed using the class name followed by a dot and
the name of the variable or method, as in Color.black or Circle.PI. You also can use
the name of an object of the class, but for class variables and methods, using the class
name is better. This approach makes clearer what kind of variable or method you’re
working with; instance variables and methods can never be referred to by a class name.

The following statements use class variables and methods:

float circumference = 2 * Circle.PI * getRadius();
float randomNumber = Math.random();

For the same reason as instance variables, class variables can
benefit from being private and limiting their use to accessor meth-
ods only.

The first project you undertake today is a class called InstanceCounter that uses class
and instance variables to keep track of how many instances of that class have been cre-
ated. It’s shown in Listing 6.1.

LISTING 6.1 The Full Text of InstanceCounter.java

1: public class InstanceCounter {
2: private static int numInstances = 0;
3:
4: protected static int getCount() {
5: return numInstances;
6: }
7:
8: private static void addInstance() {
9: numInstances++;
10: }
11:
12: InstanceCounter() {
13: InstanceCounter.addInstance();
14: }
15:
16: public static void main(String[] arguments) {
17: System.out.println(“Starting with “ +
18: InstanceCounter.getCount() + “ instances”);
19: for (int i = 0; i < 500; ++i)
20: new InstanceCounter();
21: System.out.println(“Created “ +
22: InstanceCounter.getCount() + “ instances”);
23: }
24: }

Static Variables and Methods 153

6

TIP

The output of this program is as follows:

Started with 0 instances
Created 500 instances

This example demonstrates several features. In line 2, a private class variable is
declared to hold the number of instances. It is a class variable (declared static) because
the number of instances is relevant to the class as a whole, not to any particular instance,
and it’s private so that it can be retrieved only with an accessor method.

Note the initialization of numInstances. Just as an instance variable is initialized when
its instance is created, a class variable is initialized when its class is created. This class
initialization happens essentially before anything else can happen to that class, or its
instances, so that the class in the example will work as planned.

In lines 4–6, a get method is defined so that the private instance variable’s value can be
retrieved. This method also is declared as a class method because it applies directly to
the class variable. The getCount() method is declared protected, as opposed to public,
because only this class and perhaps its subclasses are interested in that value; other ran-
dom classes are, therefore, restricted from seeing it.

Note that there is no accessor method to set the value. The value of the variable should
be incremented only when a new instance is created; it should not be set to any random
value. Instead of creating an accessor method, a special private method called
addInstance() is defined in lines 8–10 that increments the value of numInstances by 1.

Lines 12–14 create the constructor method for this class. Constructors are called when a
new object is created, which makes this the most logical place to call addInstance() and
to increment the variable.

The main() method indicates that you can run this as a Java application and test all the
other methods. In the main() method, 10 instances of the InstanceCounter class are
created and then the value of the numInstances class variable is displayed.

Final Classes, Methods, and Variables
The final modifier is used with classes, methods, and variables to indicate that they
will not be changed. It has different meanings for each thing that can be made final, as
follows:

n A final class cannot be subclassed.

n A final method cannot be overridden by any subclasses.

n A final variable cannot change in value.

154 DAY 6: Packages, Interfaces, and Other Class Features

Variables
Final variables are often called constant variables (or just constants) because they do not
change in value at any time.

With variables, the final modifier often is used with static to make the constant a class
variable. If the value never changes, you don’t have much reason to give each object in
the same class its own copy of the value. They all can use the class variable with the
same functionality.

The following statements are examples of declaring constants:

public static final int TOUCHDOWN = 6;
static final String TITLE = “Captain”;

Methods
Final methods are those that can never be overridden by a subclass. You declare them
using the final modifier in the class declaration, as in the following example:

public final void getSignature() {
// body of method

}

The most common reason to declare a method final is to make the class run more effi-
ciently. Normally, when a Java runtime environment such as the java interpreter runs a
method, it checks the current class to find the method first, checks its superclass second,
and onward up the class hierarchy until the method is found. This process sacrifices
some speed in the name of flexibility and ease of development.

If a method is final, the Java compiler can put the executable bytecode of the method
directly into any program that calls the method. After all, the method won’t ever change
because of a subclass that overrides it.

When you are first developing a class, you won’t have much reason to use final.
However, if you need to make the class execute more quickly, you can change a few
methods into final methods to speed up the process. Doing so removes the possibility of
the method being overridden in a subclass later on, so consider this change carefully
before continuing.

The Java class library declares many of the commonly used methods final so that they
can be executed more quickly when utilized in programs that call them.

Private methods are final without being declared that way because
they can’t be overridden in a subclass under any circumstance.

Final Classes, Methods, and Variables 155

6

NOTE

Classes
You finalize classes by using the final modifier in the declaration for the class, as in the
following:

public final class ChatServer {
// body of method

}

A final class cannot be subclassed by another class. As with final methods, this
process introduces some speed benefits to the Java language at the expense of flexibility.

If you’re wondering what you’re losing by using final classes, you must not have tried to
subclass something in the Java class library yet. Many of the popular classes are final,
such as java.lang.String, java.lang.Math, and java.net.URL. If you want to create a
class that behaves like strings but with some new changes, you can’t subclass String and
define only the behavior that is different. You have to start from scratch.

All methods in a final class automatically are final themselves, so you don’t have to use a
modifier in their declarations.

Because classes that can provide behavior and attributes to subclasses are much more
useful, you should strongly consider whether the benefit of using final on one of your
classes is outweighed by the cost.

Abstract Classes and Methods
In a class hierarchy, the higher the class, the more abstract its definition. A class at the
top of a hierarchy of other classes can define only the behavior and attributes common to
all the classes. More specific behavior and attributes are going to fall somewhere lower
down the hierarchy.

When you are factoring out common behavior and attributes during the process of defin-
ing a hierarchy of classes, you might at times find yourself with a class that doesn’t ever
need to be instantiated directly. Instead, such a class serves as a place to hold common
behavior and attributes shared by their subclasses.

These classes are called abstract classes, and they are created using the abstract modi-
fier. The following is an example:

public abstract class Palette {
// ...

}

156 DAY 6: Packages, Interfaces, and Other Class Features

An example of an abstract class is java.awt.Component, the superclass of graphical user
interface components. Because numerous components inherit from this class, it contains
methods and variables useful to each of them. However, there’s no such thing as a
generic component that can be added to a user interface, so you would never need to cre-
ate a Component object in a program.

Abstract classes can contain anything a normal class can, including constructor methods,
because their subclasses might need to inherit the methods. Abstract classes also can
contain abstract methods, which are method signatures with no implementation. These
methods are implemented in subclasses of the abstract class. Abstract methods are
declared with the abstract modifier. You cannot declare an abstract method in a class
that isn’t itself abstract. If an abstract class has nothing but abstract methods, you’re bet-
ter off using an interface, as you see later today.

Packages
Using packages, as mentioned previously, is a way of organizing groups of classes. A
package contains any number of classes that are related in purpose, in scope, or by inher-
itance.

If your programs are small and use a limited number of classes, you might find that you
don’t need to explore packages at all. But as you begin creating more sophisticated pro-
jects with many classes related to each other by inheritance, you might discover the ben-
efit of organizing them into packages.

Packages are useful for several broad reasons:

n They enable you to organize your classes into units. Just as you have folders or
directories on your hard disk to organize your files and applications, packages
enable you to organize your classes into groups so that you use only what you need
for each program.

n They reduce problems with conflicts about names. As the number of Java classes
grows, so does the likelihood that you’ll use the same class name as another devel-
oper, opening up the possibility of naming clashes and error messages if you try to
integrate groups of classes into a single program. Packages provide a way to refer
specifically to the desired class, even if it shares a name with a class in another
package.

n They enable you to protect classes, variables, and methods in larger ways than on a
class-by-class basis, as you learned today. You learn more about protections with
packages later.

n Packages can be used to uniquely identify your work.

Packages 157

6

Using Packages
You’ve been using packages all along in this book. Every time you use the import com-
mand, and every time you refer to a class by its full package name
(java.util.StringTokenizer, for example), you are using packages.

To use a class contained in a package, you can use one of three techniques:

n If the class you want to use is in the package java.lang (for example, System or
Date), you can simply use the class name to refer to that class. The java.lang
classes are automatically available to you in all your programs.

n If the class you want to use is in some other package, you can refer to that class by
its full name, including any package names (for example, java.awt.Font).

n For classes that you use frequently from other packages, you can import individual
classes or a whole package of classes. After a class or a package has been
imported, you can refer to that class by its class name.

If you don’t declare that your class belongs to a package, it is put into an unnamed
default package. You can refer to that class and any other unpackaged class simply by its
class name from anywhere in other classes.

Full Package and Class Names
To refer to a class in another package, use its full name: the class name preceded by its
package. You do not have to import the class or the package to use it in this manner, as
in this example:

java.awt.Font text = new java.awt.Font()

For classes that you use only once or twice in your program, using the full name makes
sense. If you use a class multiple times, you can import the class to save yourself some
typing.

When you begin creating your own packages, you’ll place all files in a package in the
same folder. Each element of a package name corresponds to its own subfolder.

Consider the example of a BookShipper class that is part of the org.cadenhead.library
package.

The following line should be the first statement in the source code of the class, which
declares the name of the package to which it belongs:

package org.cadenhead.library;

After you compile the BookShipper class, you must store it in a folder that corresponds
with the package name. The JDK and other Java tools will look for the org.cadenhead.
library.BookShipper.class file in several different places:

158 DAY 6: Packages, Interfaces, and Other Class Features

n The org\cadenhead\library subfolder of the folder where the java command
was entered. (For example, if the command was made from the C:\J21work folder,
the BookShipper.class file could be run successfully if it was in the C:\J21work\
org\cadenhead\library folder.)

n The org\cadenhead\library subfolder of any folder in your Classpath setting.

n The org\cadenhead\library subfolder of a Java archive file (JAR) in your
Classpath.

One way to manage your own packages and any others you use is to add a folder to your
Classpath that serves as the root folder for any packages you create or adopt, such as
C:\javapackages or something similar. After creating subfolders that correspond to the
name of a package, place the package’s class files in the correct subfolder.

The import Declaration
To import classes from a package, use the import declaration as you have throughout the
examples in the first week. You can import an individual class, as in this statement:

import java.util.Vector;

You also can import an entire package of classes using an asterisk (*) in place of an indi-
vidual class name, like this:

import java.awt.*;

The asterisk can be used in place of a class name only in an import statement. It does
not make it possible to import multiple packages with similar names.

For example, the Java class library includes the java.util, java.util.jar, and
java.util.prefs packages. You could not import all three packages with the following
statement:

import java.util.*;

This merely imports the java.util package. To make all three available in a class, the
following statements are required:

import java.util.*;
import java.util.jar.*;
import java.util.prefs.*;

Also, you cannot indicate partial class names (for example, L* to import all the classes
that begin with L). Your only options when using an import declaration are to load all
the classes in a package or just a single class.

Using Packages 159

6

The import declarations in your class definition go at the top of the file before any class
definitions (but after the package declaration, as you see in the next section).

Using individual import declarations or importing packages is mostly a question of your
own coding style. Importing a group of classes does not slow down your program or
make it any larger; only the classes that you actually use in your code are loaded as they
are needed. Importing specific classes makes it easier for readers of your code to figure
out where your classes are coming from.

If you’re familiar with C or C++, you might expect the import decla-
ration to work like #include and possibly result in a large exe-
cutable program because it includes source code from another
file. This isn’t the case in Java: import indicates only where the
Java compiler can find a class. It doesn’t do anything to expand
the size of a compiled class.

The import statement also. can be used to refer to constants in a class by name.

Normally, class constants must be prefaced with the name of the class as in
Color.black, Math.PI, and File.separator.

An import static statement makes the constants in an identified class available in
shorter form. The keywords import static are followed by the name of an interface or
class and an asterisk. For example:

import static java.lang.Math.*;

This statement makes it possible to refer to the constants in the Math class, E and PI,
using only their names. Here’s a short example of a class that takes advantage of this fea-
ture:

import static java.lang.Math.*;

public class ShortConstants {
public static void main(String[] arguments) {

System.out.println(“PI: “ + PI);
System.out.println(“” + (PI * 3));

}
}

Class Name Conflicts
After you have imported a class or a package of classes, you usually can refer to a class
name simply by its name without the package identifier. There’s one situation where you

160 DAY 6: Packages, Interfaces, and Other Class Features

NOTE

must be more explicit: when you import two classes from different packages that have
the same class name.

One situation where a naming conflict might occur is during database programming,
which you undertake on Day 18, “Accessing Databases with JDBC.” This kind of pro-
gramming can involve the java.util and java.sql packages, which both contain a class
named Date.

If you’re working with both packages in a class that reads or writes data in a database,
you could import them with these statements:

import java.sql.*;
import java.util.*;

When both these packages are imported, a compiler error occurs when you refer to the
Date class without specifying a package name, as in this statement:

Date now = new Date();

The error occurs because the Java compiler has no way of knowing which Date class is
being referred to in the statement. The package must be included in the statement, like
this:

java.util.Date = new java.util.Date();

A Note About Classpath and Where Classes Are
Located
For Java to be able to use a class, it must be able to find that class on the file system.
Otherwise, you get an error message indicating that the class does not exist. Java uses
two elements to find classes: the package name itself and the directories listed in your
Classpath environmental variable (or in a Classpath specified when the class is com-
piled or run).

Package names map to folder names on a file system, so the class com.naviseek.
Mapplet is found in the naviseek directory, which, in turn, is inside the com directory (in
other words, com\naviseek\Mapplet.class).

Java looks for a folder inside the folders and JAR files in your Classpath variable, if one
is provided in your configuration. If you installed the JDK, you may have used it to indi-
cate where the Java class library, a file called tools.jar, can be found. If no Classpath
is provided, the JDK looks only in the current folder for classes.

When Java looks for a class that you’ve referenced in your program, it looks for the
package and class name in each of those folders and returns an error message if it can’t
find the class file. Most class not found error messages result because of misconfig-
ured Classpath variables.

Using Packages 161

6

For help setting your Classpath correctly with the JDK on a
Windows or Linux system, read Appendix A, “Using the Java
Development Kit.”

To specify the Classpath when compiling or running an application with the JDK, use
the -classpath flag followed by a space and a list of folders separated by semicolons
(on Windows) or colons (on Linux). For example:

javac -classpath /java/lib/tools.jar;/dev/java/root;. Editor.java

Creating Your Own Packages
Creating a package for some of your classes in Java is not much more complicated than
creating a class.

Picking a Package Name
The first step is to decide on a name. The name you choose for your package depends on
how you will use those classes. Perhaps you name your package after yourself or a part
of the Java system you’re working on (such as graphics or messaging). If you intend to
distribute your package as an open source or commercial product, use a package name
that uniquely identifies its authorship.

Sun Microsystems recommends that Java developers use an Internet domain name as the
basis for a unique package name.

To form the name, reverse the elements so that the last part of the domain becomes the
first part of the package name, followed by the second-to-last part. Following this con-
vention, because my personal domain name is cadenhead.org, all Java packages I create
begin with the name org.cadenhead (for instance, org.cadenhead.rss).

This convention ensures that no other Java developer will offer a package with the same
name, as long as they follow the same rule themselves (as most developers appear to be
doing).

By another convention, package names use no capital letters, which distinguishes them
from class names. For example, in the full name of the class java.lang.String, you can
easily distinguish the package name java.lang from the class name String.

Creating the Folder Structure
Step two in creating packages is to create a folder structure that matches the package
name, which requires a separate folder for each part of the name. The package

162 DAY 6: Packages, Interfaces, and Other Class Features

NOTE

org.cadenhead.rss requires an org folder, a cadenhead folder inside org, and an rss
folder inside cadenhead. The classes in the package then are stored in the rss folder.

Adding a Class to a Package
The final step to putting a class inside a package is to add a statement to the class file
above any import declarations that are being used. The package declaration is used
along with the name of the package, as in the following:

package org.cadenhead.rss;

The package declaration must be the first line of code in your source file, after any com-
ments or blank lines and before any import declarations.

Packages and Class Access Control
Earlier today, you learned about access control modifiers for methods and variables. You
also can control access to classes.

Classes have the default access control if no modifier is specified, which means that the
class is available to all other classes in the same package but is not visible or available
outside that package. It cannot be imported or referred to by name; classes with package
protection are hidden inside the package in which they are contained.

To allow a class to be visible and importable outside your package, you can give it public
protection by adding the public modifier to its definition:

public class Visible {
// ...

}

Classes declared as public can be accessed by other classes outside the package.

Note that when you use an import statement with an asterisk, you import only the public
classes inside that package. Private classes remain hidden and can be used only by the
other classes in that package.

Why would you want to hide a class inside a package? For the same reasons that you
want to hide variables and methods inside a class: so that you can have utility classes and
behavior that are useful only to your implementation or so that you can limit the inter-
face of your program to minimize the effect of larger changes. As you design your
classes, take the whole package into consideration and decide which classes you want to
declare public and which you want to be hidden.

Creating a good package consists of defining a small, clean set of public classes and
methods for other classes to use and then implementing them by using any number of
hidden support classes. You see another use for private classes later today.

Creating Your Own Packages 163

6

Interfaces
Interfaces, like abstract classes and methods, provide templates of behavior that other
classes are expected to implement. They also offer significant advantages in class and
object design that complements Java’s single inheritance approach to object-oriented pro-
gramming.

The Problem of Single Inheritance
As you begin turning a project into a hierarchy of classes related by inheritance, you
might discover that the simplicity of the class organization is restrictive, particularly
when you have some behavior that needs to be used by classes that do not share a com-
mon superclass.

Other object-oriented programming (OOP) languages include the concept of multiple
inheritance, which solves this problem by letting a class inherit from more than one
superclass, acquiring behavior and attributes from all its superclasses at once.

This concept makes a programming language more challenging to learn and to use.
Questions of method invocation and how the class hierarchy is organized become far
more complicated with multiple inheritance and more open to confusion and ambiguity.

Because one of the goals for Java was that it be simple, multiple inheritance was rejected
in favor of single inheritance.

A Java interface is a collection of abstract behavior that can be adopted by any class
without being inherited from a superclass.

An interface contains nothing but abstract method definitions and constants—there are
no instance variables or method implementations.

Interfaces are implemented and used throughout the Java class library when behavior is
expected to be implemented by a number of disparate classes. Later today, you’ll use one
of the interfaces in the Java class hierarchy, java.lang.Comparable.

Interfaces and Classes
Classes and interfaces, despite their different definitions, have a great deal in common.
Both are declared in source files and compiled into .class files. In most cases, an inter-
face can be used anywhere you can use a class (as a data type for a variable, as the result
of a cast, and so on).

You can substitute an interface name for a class name in almost every example in this
book. Java programmers often say “class” when they actually mean “class or interface.”
Interfaces complement and extend the power of classes, and the two can be treated
almost the same, but an interface cannot be instantiated: new only can create an instance
of a nonabstract class.

164 DAY 6: Packages, Interfaces, and Other Class Features

Implementing and Using Interfaces
You can do two things with interfaces: Use them in your own classes and define your
own. For now, start with using them in your own classes.

To use an interface, include the implements keyword as part of your class definition:

public class AnimatedSign extends javax.swing.JApplet
implements Runnable {
//...

}

In this example, javax.swing.JApplet is the superclass, but the Runnable interface
extends the behavior that it implements.

Because interfaces provide nothing but abstract method definitions, you then have to
implement those methods in your own classes using the same method signatures from the
interface.

To implement an interface, you must offer all the methods in that interface—you can’t
pick and choose the methods you need. By implementing an interface, you’re telling
users of your class that you support the entire interface.

After your class implements an interface, subclasses of your class inherit those new
methods and can override or overload them. If your class inherits from a superclass that
implements a given interface, you don’t have to include the implements keyword in your
own class definition.

Implementing Multiple Interfaces
Unlike with the singly inherited class hierarchy, you can include as many interfaces as
you need in your own classes. Your class will implement the combined behavior of all
the included interfaces. To include multiple interfaces in a class, just separate their names
with commas:

public class AnimatedSign extends javax.swing.JApplet
implements Runnable, Observable {

// ...
}

Note that complications might arise from implementing multiple interfaces. What hap-
pens if two different interfaces both define the same method? You can solve this problem
in three ways:

n If the methods in each of the interfaces have identical signatures, you implement
one method in your class, and that definition satisfies both interfaces.

Interfaces 165

6

n If the methods have different argument lists, it is a simple case of method over-
loading; you implement both method signatures, and each definition satisfies its
respective interface definition.

n If the methods have the same argument lists but differ in return type, you cannot
create a method that satisfies both. (Remember that method overloading is trig-
gered by parameter lists, not by return type.) In this case, trying to compile a class
that implements both interfaces produces a compiler error message. Running across
this problem suggests that your interfaces have some design flaws that you might
need to reexamine.

Other Uses of Interfaces
Remember that almost everywhere that you can use a class, you can use an interface
instead. For example, you can declare a variable to be of an interface type:

Iterator loop = new Iterator()

When a variable is declared to be of an interface type, it simply means that the object is
expected to have implemented that interface. In this case, because Iterator contains an
object of the type Iterator, the assumption is that you can call all three of the inter-
face’s methods on that object: hasNext(), next(), and remove().

The important point to realize here is that although Iterator is expected to have the
three methods, you could write this code long before any classes that qualify are actu-
ally implemented.

You also can cast objects to an interface, just as you can cast objects to other classes.

Creating and Extending Interfaces
After you use interfaces for a while, the next step is to define your own interfaces.
Interfaces look a lot like classes; they are declared in much the same way and can be
arranged into a hierarchy. However, you must follow certain rules for declaring inter-
faces.

New Interfaces
To create a new interface, you declare it like this:

interface Expandable {
// ...

}

166 DAY 6: Packages, Interfaces, and Other Class Features

This declaration is, effectively, the same as a class definition, with the word interface
replacing the word class. Inside the interface definition, you have methods and vari-
ables.

The method definitions inside the interface are public and abstract methods; you can
either declare them explicitly as such, or they will be turned into public and abstract

methods if you do not include those modifiers. You cannot declare a method inside an
interface to be either private or protected.

As an example, here’s an Expandable interface with one method explicitly declared pub-
lic and abstract (expand()) and one implicitly declared as (contract()):

public interface Expandable {
public abstract void expand(); // explicitly public and abstract
void contract(); // effectively public and abstract

}

Note that as with abstract methods in classes, methods inside interfaces do not have bod-
ies. An interface consists only of a method signature; no implementation is involved.

In addition to methods, interfaces also can have variables, but those variables must be
declared public, static, and final (making them constant). As with methods, you can
explicitly define a variable to be public, static, and final, or it is implicitly defined as
such if you don’t use those modifiers. Here’s that same Expandable definition with two
new variables:

public interface Expandable {
public static final int increment = 10;
long capacity = 15000; // becomes public static and final

public abstract void expand(); //explicitly public and abstract
void contract(); // effectively public and abstract

}

Interfaces must have either public or package protection, just like classes. Note, however,
that interfaces without the public modifier do not automatically convert their methods to
public and abstract nor their constants to public. A non-public interface also has
non-public methods and constants that can be used only by classes and other interfaces
in the same package.

Interfaces, like classes, can belong to a package. Interfaces also can import other inter-
faces and classes from other packages, just as classes can.

Methods Inside Interfaces
Here’s one trick to note about methods inside interfaces: Those methods are supposed to
be abstract and apply to any kind of class, but how can you define arguments to those

Creating and Extending Interfaces 167

6

methods? You don’t know what class will be using them! The answer lies in the fact that
you use an interface name anywhere a class name can be used, as you learned earlier. By
defining your method arguments to be interface types, you can create generic arguments
that apply to any class that might use this interface.

Consider the interface Trackable, which defines methods (with no arguments) for
track() and quitTracking(). You might also have a method for beginTracking(),
which has one argument: the trackable object itself.

What class should that argument be? It should be any object that implements the
Trackable interface rather than a particular class and its subclasses. The solution is to
declare the argument as simply Trackable in the interface:

public interface Trackable {
public abstract Trackable beginTracking(Trackable self);

}

Then, in an actual implementation for this method in a class, you can take the generic
Trackable argument and cast it to the appropriate object:

public class Monitor implements Trackable {

public Trackable beginTracking(Trackable self) {
Monitor mon = (Trackable) self;
// ...
}

}

Extending Interfaces
As you can do with classes, you can organize interfaces into a hierarchy. When one inter-
face inherits from another interface, that “subinterface” acquires all the method defini-
tions and constants that its “superinterface” declared.

To extend an interface, you use the extends keyword just as you do in a class definition:

interface PreciselyTrackable extends Trackable {
// ...

}

Note that unlike classes, the interface hierarchy has no equivalent of the Object class—
there is no root superinterface from which all interfaces descend. Interfaces can either
exist entirely on their own or inherit from another interface.

Note also that unlike the class hierarchy, the inheritance hierarchy can have multiple
inheritance. For example, a single interface can extend as many classes as it needs to

168 DAY 6: Packages, Interfaces, and Other Class Features

(separated by commas in the extends part of the definition), and the new interface con-
tains a combination of all its parent’s methods and constants.

In interfaces, the rules for managing method name conflicts are the same as for classes
that use multiple interfaces; methods that differ only in return type result in a compiler
error message.

Creating an Online Storefront
To explore all the topics covered up to this point today, the Storefront application uses
packages, access control, interfaces, and encapsulation. This application manages the
items in an online storefront, handling two main tasks:

n Calculating the sale price of each item depending on how much of it is presently in
stock

n Sorting items according to sale price

The Storefront application consists of two classes, Storefront and Item. These classes
will be organized as a new package called org.cadenhead.ecommerce, so the first task is
to define a folder structure on your system where this package’s classes will be stored.

The JDK and other Java development tools look for packages in the folders listed in the
system’s Classpath, taking the package name into account. To prepare for this project,
create a new folder that will be the root folder for all packages that you create. On my
Windows XP system, I’ve designated c:\dev\java for this purpose.

This folder should be added to your system’s Classpath setting. For instructions on how
to do this, read Appendix A.

When you create a new package, create the corresponding folder structure inside your
package folder. The structure for this project should be org\cadenhead\ecommerce.

On my system, I created c:\dev\java\org\cadenhead\ecommerce to hold its class files.

After you have created a folder for the package and added it to your Classpath, create
Item.java from Listing 6.2.

LISTING 6.2 The Full Text of Item.java

1: package org.cadenhead.ecommerce;
2:
3: import java.util.*;
4:
5: public class Item implements Comparable {
6: private String id;

Creating and Extending Interfaces 169

6

LISTING 6.2 Continued

7: private String name;
8: private double retail;
9: private int quantity;
10: private double price;
11:
12: Item(String idIn, String nameIn, String retailIn, String quanIn) {
13: id = idIn;
14: name = nameIn;
15: retail = Double.parseDouble(retailIn);
16: quantity = Integer.parseInt(quanIn);
17:
18: if (quantity > 400)
19: price = retail * .5D;
20: else if (quantity > 200)
21: price = retail * .6D;
22: else
23: price = retail * .7D;
24: price = Math.floor(price * 100 + .5) / 100;
25: }
26:
27: public int compareTo(Object obj) {
28: Item temp = (Item)obj;
29: if (this.price < temp.price)
30: return 1;
31: else if (this.price > temp.price)
32: return -1;
33: return 0;
34: }
35:
36: public String getId() {
37: return id;
38: }
39:
40: public String getName() {
41: return name;
42: }
43:
44: public double getRetail() {
45: return retail;
46: }
47:
48: public int getQuantity() {
49: return quantity;
50: }
51:
52: public double getPrice() {
53: return price;
54: }
55: }

170 DAY 6: Packages, Interfaces, and Other Class Features

Compile this class and then move the file Item.class to the org\cadenhead\ecommerce
package on your system.

The Item class is a support class that represents a product sold by an online store. There
are private instance variables for the product ID code, name, how many are in stock
(quantity), and the retail and sale prices.

Because all the instance variables of this class are private, no other class can set or
retrieve their values. Simple accessor methods are created in lines 36–54 of Listing 6.2 to
provide a way for other programs to retrieve these values. Each method begins with get
followed by the capitalized name of the variable, which is standard in the Java class
library. For example, getPrice() returns a double containing the value of price. No
methods are provided for setting any of these instance variables—that is handled in the
constructor method for this class.

Line 1 establishes that the Item class is part of the org.cadenhead.ecommerce package.

Cadenhead.org is the personal domain of this book’s coauthor, so
this project follows Sun’s package-naming convention by beginning
with a top-level domain (org), following it with the second-level
domain name (cadenhead), and then by a name that describes the
purpose of the package (ecommerce).

The Item class implements the Comparable interface (line 5), which makes it easy to sort
a class’s objects. This interface has only one method, compareTo(Object), which returns
an integer.

The compareTo() method compares two objects of a class: the current object and another
object passed as an argument to the method. The value returned by the method defines
the natural sorting order for objects of this class:

n If the current object should be sorted above the other object, return -1.

n If the current object should be sorted below the other object, return 1.

n If the two objects are equal, return 0.

You determine in the compareTo() method which of an object’s instance variables to
consider when sorting. Lines 27–34 override the compareTo() method for the Item class,
sorting on the basis of the price variable. Items are sorted by price from highest to
lowest.

After you have implemented the Comparable interface for an object, two class methods
can be called to sort an array, linked list, or other collection of those objects. You see this
when Storefront.class is created.

Creating and Extending Interfaces 171

6

NOTE

The Item() constructor in lines 12–25 takes four String objects as arguments and uses
them to set up the id, name, retail, and quantity instance variables. The last two must
be converted from strings to numeric values using the Double.parseDouble() and
Integer.parseInt() class methods, respectively.

The value of the price instance variable depends on how much of that item is presently
in stock:

n If more than 400 are in stock, price is 50% of retail (lines 18–19).

n If between 201 and 400 are in stock, price is 60% of retail (lines 20–21).

n For everything else, price is 70% of retail (lines 22–23).

Line 24 rounds off price so that it contains two or fewer decimal points, turning a price
such as $6.92999999999999 to $6.99. The Math.floor() method rounds off decimal
numbers to the next lowest mathematical integer, returning them as double values.

After you have compiled Item.class, you’re ready to create a class that represents a
storefront of these products. Create Storefront.java from Listing 6.3.

LISTING 6.3 The Full Text of Storefront.java

1: package org.cadenhead.ecommerce;
2:
3: import java.util.*;
4:
5: public class Storefront {
6: private LinkedList catalog = new LinkedList();
7:
8: public void addItem(String id, String name, String price,
9: String quant) {
10:
11: Item it = new Item(id, name, price, quant);
12: catalog.add(it);
13: }
14:
15: public Item getItem(int i) {
16: return (Item)catalog.get(i);
17: }
18:
19: public int getSize() {
20: return catalog.size();
21: }
22:
23: public void sort() {
24: Collections.sort(catalog);
25: }
26: }

172 DAY 6: Packages, Interfaces, and Other Class Features

To compile Storefront.java, the Item class must be stored in a folder that corresponds
to the org.cadenhead.ecommerce package name. After you have compiled Storefront.
class, move the file to the same folder as Item.class.

The Storefront.class is used to manage a collection of products in an online store.
Each product is an Item object, and they are stored together in a LinkedList instance
variable named catalog (line 6).

The addItem() method in lines 8–13 creates a new Item object based on four arguments
sent to the method: the ID, name, price, and quantity in stock of the item. After the item
is created, it is added to the catalog linked list by calling its add() method with the
Item object as an argument.

The getItem() and getSize() methods provide an interface to the information stored in
the private catalog variable. The getSize() method in lines 19–21 calls the
catalog.size() method, which returns the number of objects contained in catalog.

Because objects in a linked list are numbered like arrays and other data structures, you
can retrieve them using an index number. The getItem() method in lines 15–17 calls
catalog.get() with an index number as an argument, returning the object stored at that
location in the linked list.

The sort() method in lines 23–25 is where you benefit from the implementation of the
Comparable interface in the Item class. The class method Collections.sort() sorts a
linked list and other data structures based on the natural sort order of the objects they
contain, calling the object’s compareTo() method to determine this order.

After you compile Storefront class, you’re ready to develop a program that actually
uses the org.cadenhead.ecommerce package. Open the folder on your system where
you’ve been creating the programs of this book (such as \J21work) and create
GiftShop.java from Listing 6.4.

Don’t save GiftShop.java in the same folder on your system where
the classes of the org.cadenhead.ecommerce package are stored.
It’s not part of the package (as you’ll note by the absence of a
package org.cadenhead.ecommerce statement). The Java compiler
exits with an error message because it wasn’t expecting to find
Storefront.class in the same folder as the GiftShop application.

Creating and Extending Interfaces 173

6

CAUTION

LISTING 6.4 The Full Text of GiftShop.java

1: import org.cadenhead.ecommerce.*;
2:
3: public class GiftShop {
4: public static void main(String[] arguments) {
5: Storefront store = new Storefront();
6: store.addItem(“C01”, “MUG”, “9.99”, “150”);
7: store.addItem(“C02”, “LG MUG”, “12.99”, “82”);
8: store.addItem(“C03”, “MOUSEPAD”, “10.49”, “800”);
9: store.addItem(“D01”, “T SHIRT”, “16.99”, “90”);
10: store.sort();
11:
12: for (int i = 0; i < store.getSize(); i++) {
13: Item show = (Item)store.getItem(i);
14: System.out.println(“\nItem ID: “ + show.getId() +
15: “\nName: “ + show.getName() +
16: “\nRetail Price: $” + show.getRetail() +
17: “\nPrice: $” + show.getPrice() +
18: “\nQuantity: “ + show.getQuantity());
19: }
20: }
21: }

This application uses the org.cadenhead.ecommerce package but does not belong to it.

The GiftShop class demonstrates each part of the public interface that the Storefront
and Item classes make available. You can do each of the following:

n Create an online store

n Add items to it

n Sort the items by sale price

n Loop through a list of items to display information about each one

If you have stored Item.class, Storefront.class, or their source
code files in the same folder as GiftShop.java, you might not be
able to compile the program because the Java compiler expects to
find those files in their package folder. Move those files to the
org\cadenhead\ecommerce folder and compile GiftShop.java in
another folder, such as \J21work.

174 DAY 6: Packages, Interfaces, and Other Class Features

CAUTION

The output of this program is the following:

Item ID: D01
Name: T SHIRT
Retail Price: $16.99
Price: $11.89
Quantity: 90

Item ID: C02
Name: LG MUG
Retail Price: $12.99
Price: $9.09
Quantity: 82

Item ID: C01
Name: MUG
Retail Price: $9.99
Price: $6.99
Quantity: 150

Item ID: C03
Name: MOUSEPAD
Retail Price: $10.49
Price: $5.25
Quantity: 800

Many implementation details of these classes are hidden from GiftShop and other
classes that would use the package.

For instance, the programmer who developed GiftShop doesn’t need to know that
Storefront uses a linked list to hold the entire store’s product data. If the developer of
Storefront decided later to use a different data structure, as long as getSize() and
getItem() returned the expected values, GiftShop would continue to work correctly.

Inner Classes
The classes you have worked with thus far are all members of a package either because
you specified a package name with the package declaration or because the default pack-
age was used. Classes that belong to a package are known as top-level classes. When
Java was introduced, they were the only classes supported by the language.

In the current version of Java, you can define a class inside a class as if it were a method
or a variable.

These types of classes are called inner classes. Listing 6.5 contains the SquareTool
application, which uses an inner class called Square to square a floating-point number
and store the result.

Inner Classes 175

6

LISTING 6.5 The Full Text of SquareTool.java

1: public class SquareTool {
2: public SquareTool(String input) {
3: try {
4: float in = Float.parseFloat(input);
5: Square sq = new Square(in);
6: float result = sq.value;
7: System.out.println(“The square of “ + input + “ is “ + result);
8: } catch (NumberFormatException nfe) {
9: System.out.println(input + “ is not a valid number.”);
10: }
11: }
12:
13: class Square {
14: float value;
15:
16: Square(float x) {
17: value = x * x;
18: }
19: }
20:
21: public static void main(String[] arguments) {
22: if (arguments.length < 1) {
23: System.out.println(“Usage: java SquareTool number”);
24: } else {
25: SquareTool dr = new SquareTool(arguments[0]);
26: }
27: }
28: }

After compiling this application, run it with a floating-point number as an argument. For
example, with the JDK you could enter the following at a command line:

java SquareTool 13

Here’s the output for that example:

The square of 13 is 169.0

If you run it without any arguments, the following text is displayed before the program
exits:

Usage: java SquareTool number

In this application, the Square class isn’t functionally different from a helper class
included in the same source file as a program’s main class file. The only difference is
that the helper is defined inside the class file, which has several advantages:

176 DAY 6: Packages, Interfaces, and Other Class Features

n Inner classes are invisible to all other classes, which means that you don’t have to
worry about name conflicts between it and other classes.

n Inner classes can have access to variables and methods within the scope of a top-
level class that they would not have as a separate class.

In many cases, an inner class is a short class file that exists only for a limited purpose. In
the SquareTool application, because the Square class doesn’t contain a lot of complex
behavior and attributes, it is well suited for implementation as an inner class.

The name of an inner class is associated with the name of the class in which it is con-
tained, and it is assigned automatically when the program is compiled. The Square class
is given the name SquareTool$Square.class by the Java compiler.

When using inner classes, you must be even more careful to
include all .class files when making a program available. Each
inner class has its own class file, and these class files must be
included along with any top-level classes.

Inner classes, although seemingly a minor enhancement, actually represent a significant
modification to the language.

Rules governing the scope of an inner class closely match those governing variables. An
inner class’s name is not visible outside its scope, except in a fully qualified name, which
helps in structuring classes within a package. The code for an inner class can use simple
names from enclosing scopes, including class and member variables of enclosing classes,
as well as local variables of enclosing blocks.

In addition, you can define a top-level class as a static member of another top-level class.
Unlike an inner class, a top-level class cannot directly use the instance variables of any
other class. The ability to nest classes in this way allows any top-level class to provide a
package-style organization for a logically related group of secondary top-level classes.

Summary
Today, you learned how to encapsulate an object by using access control modifiers for its
variables and methods. You also learned how to use other modifiers such as static,
final, and abstract in the development of Java classes and class hierarchies.

To further the effort of developing a set of classes and using them, you learned how to
group classes into packages. These groupings better organize your programs and enable
the sharing of classes with the many other Java programmers making their code publicly
available.

Summary 177

6

CAUTION

Finally, you learned how to implement interfaces and inner classes, two structures that
are helpful when designing a class hierarchy.

Q&A
Q Won’t using accessor methods everywhere slow down my Java code?

A Not always. As Java compilers improve and can create more optimizations, they
will be able to make accessor methods fast automatically, but if you’re concerned
about speed, you can always declare accessor methods to be final, and they’ll be
comparable in speed to direct instance variable accesses under most circumstances.

Q Based on what I’ve learned, private abstract methods and final abstract
methods or classes don’t seem to make sense. Are they legal?

A Nope, they’re compile-time error messages, as you have guessed. To be useful,
abstract methods must be overridden, and abstract classes must be subclassed,
but neither of those two operations would be legal if they were also private or
final.

Q I’ve been told that I should consider using Ant to manage my Java packages
and compile applications. What does Ant do?

A Apache Ant is an open source tool for compiling and packaging Java applications
and class libraries that is implemented with Java and Extensible Markup Language
(XML). With Ant, you create an XML file that indicates how your classes should
be compiled, archived, and organized. You can specify multiple targets for each
“build,” the term applied to the process, and easily produce multiple builds for each
stage of a project’s development.

Ant, which can be downloaded from the website http://ant.apache.org, was created
by programmers for Jakarta, the open source Java project administered by Apache
that has produced Struts, Velocity, Tomcat, and many other useful Java class
libraries and technologies.

Jakarta projects are extremely extensive, requiring the management of hundreds of
Java classes, JAR archives, and other files. Ant was so useful in the creation of the
Tomcat web server that it became an Apache development project in its own right.
It has subsequently become the most popular build tool for Java programmers.

178 DAY 6: Packages, Interfaces, and Other Class Features

Quiz
Review today’s material by taking this three-question quiz.

Questions
1. What packages are automatically imported into your Java classes?

a. None

b. The classes stored in the folders of your CLASSPATH

c. The classes in the java.lang package

2. According to the convention for naming packages, what should be the first part of
the name of a package you create?

a. Your name followed by a period

b. Your top-level Internet domain followed by a period

c. The text java followed by a period

3. If you create a subclass and override a public method, what access modifiers can
you use with that method?

a. public only

b. public or protected

c. public, protected, or default access

Answers
1. c. All other packages must be imported if you want to use short class names such

as LinkedList instead of full package and class names such as java.util.
LinkedList.

2. b. This convention assumes that all Java package developers will own an Internet
domain or have access to one so that the package can be made available for down-
load.

3. a. All public methods must remain public in subclasses.

Certification Practice
The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Quiz 179

6

Given:

package org.cadenhead.bureau;

public class Information {
public int duration = 12;
protected float rate = 3.15F;
float average = 0.5F;

}

And:

package org.cadenhead.bureau;

import org.cadenhead.bureau.*;

public class MoreInformation extends Information {
public int quantity = 8;

}

And:

package org.cadenhead.bureau.us;

import org.cadenhead.bureau.*;

public class EvenMoreInformation extends MoreInformation {
public int quantity = 9;

EvenMoreInformation() {
super();
int i1 = duration;
float i2 = rate;
float i3 = average;

}
}

Which instance variables are visible in the EvenMoreInformation class?

a. quantity, duration, rate, and average

b. quantity, duration, and rate

c. quantity, duration, and average

d. quantity, rate, and average

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 6 page and click the Certification Practice link.

180 DAY 6: Packages, Interfaces, and Other Class Features

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. Create a modified version of the Storefront project that includes a noDiscount
variable for each item. When this variable is true, sell the item at the retail price.

2. Create a ZipCode class that uses access control to ensure that its zipCode instance
variable always has a five- or nine-digit value.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java21days.com.

Exercises 181

6

DAY 7:
Exceptions,
Assertions, and
Threads

Today, you complete your weeklong journey through the Java language by
learning about three of its most useful elements: threads, exceptions,
and assertions.

Threads are objects that implement the Runnable interface, which indi-
cates that they can run simultaneously with other parts of a Java pro-
gram. Exceptions are objects that represent errors that may occur in a
Java program. Assertions are conditional statements and Boolean values
that indicate a program is running correctly, providing another means of
detecting errors.

Threads enable your programs to make more efficient use of resources
by isolating the computing-intensive parts of a program so that they don’t
slow down the rest of the program. Exceptions and assertions enable
your programs to recognize errors and respond to them. Exceptions even
assist your programs to correct the conditions if possible.

You start with exceptions because they’re one of the things that you use
when working with both assertions and threads.

Exceptions
Programmers in any language endeavor to write bug-free programs, programs that never
crash, programs that can handle any circumstance with grace and recover from unusual
situations without causing a user any undue stress. Good intentions aside, programs like
this don’t exist.

In real programs, errors occur because programmers didn’t anticipate possible problems,
didn’t test enough, or encountered situations out of their control—bad data from users,
corrupt files that don’t have the correct data in them, network connections that don’t con-
nect, hardware devices that don’t respond, sun spots, gremlins, and so on.

In Java, the strange events that might cause a program to fail are called exceptions. Java
defines a number of language features that deal with exceptions:

n How to handle exceptions in your code and recover gracefully from potential
problems

n How to tell Java and users of your classes that you’re expecting a potential
exception

n How to create an exception if you detect one

n How your code is limited, yet made more robust by exceptions

With most programming languages, handling error conditions requires much more work
than handling a program that is running properly. It can require a confusing structure of
conditional statements to deal with errors that might occur.

As an example, consider the following statements that could be used to load a file from
disk. File input and output can be problematic because of a number of different circum-
stances such as disk errors, file-not-found errors, and the like. If the program must have
the data from the file to operate properly, it must deal with all these circumstances before
continuing.

Here’s the structure of one possible solution:

int status = loadTextFile();
if (status != 1) {

// something unusual happened, describe it
switch (status) {

case 2:
System.out.println(“File not found”);
break;

case 3:
System.out.println(“Disk error”);
break;

184 DAY 7: Exceptions, Assertions, and Threads

case 4:
System.out.println(“File corrupted”);
break;

default:
System.out.println(“Error”);

}
} else {

// file loaded OK, continue with program
}

This code tries to load a file with a method call to loadTextFile(), which presumably
has been defined elsewhere in the class. The method returns an integer that indicates
whether the file loaded properly (a value of 1) or an error occurred (anything other
than 1).

Depending on the error that occurs, the program uses a switch statement to address it.
The end result is an elaborate block of code in which the most common circumstance—a
successful file load—can be lost amid the error-handling code. This is the result of han-
dling only one possible error. If other errors take place later in the program, you might
end up with more nested if-else and switch-case blocks.

As you can see, error management would become a major problem after you start creat-
ing larger programs. Different programmers designate special values for handling errors,
and they might not document them well if at all.

Code to manage these kinds of errors can often obscure the program’s original intent,
making the class difficult to read and maintain.

Finally, if you try to deal with errors in this manner, there’s no easy way for the compiler
to check for consistency the way it can check to make sure that you called a method with
the right arguments.

Although the previous example uses Java syntax, you don’t ever have to deal with errors
that way with the Java language. There’s a better technique to deal with exceptional cir-
cumstances in a program: the use of a group of classes called exceptions.

Exceptions include errors that could be fatal to your program as well as other unusual
situations. By managing exceptions, you can manage errors and possibly work around
them.

Errors and other conditions in Java programs can be much more easily managed through
a combination of special language features, consistency checking at compile time, and a
set of extensible exception classes.

Exceptions 185

7

With these features, you can add a whole new dimension to the behavior and design of
your classes, your class hierarchy, and your overall system. Your class and interface defi-
nitions describe how your program is supposed to behave given the best circumstances.
By integrating exception handling into your program design, you can consistently
describe how the program will behave when circumstances are not ideal and allow peo-
ple who use your classes to know what to expect in those cases.

Exception Classes
At this point, it’s likely that you’ve run into at least one Java exception—perhaps you
mistyped a method name or made a mistake in your code that caused a problem. Maybe
you tried to run a Java application without providing the command-line arguments that
were needed and saw an ArrayIndexOutOfBoundsException message.

Chances are, when an exception occurred, the application quit and spewed a bunch of
mysterious errors to the screen. Those errors are exceptions. When your program stops
without successfully finishing its work, an exception is thrown. Exceptions can be
thrown by the virtual machine, thrown by classes you use, or intentionally thrown in your
own programs.

The term “thrown” is fitting because exceptions also can be “caught.” Catching an excep-
tion involves dealing with the exceptional circumstance so that your program doesn’t
crash—you learn more about this later today.

The heart of the Java exception system is the exception itself. Exceptions in Java are
instances of classes that inherit from the Throwable class. An instance of a Throwable
class is created when an exception is thrown.

Throwable has two subclasses: Error and Exception. Instances of Error are internal
errors involving the Java virtual machine (the runtime environment). These errors are
rare and usually fatal to the program; there’s not much that you can do about them (either
to catch them or to throw them yourself).

The class Exception is more relevant to your own programming. Subclasses of
Exception fall into two general groups:

n Runtime exceptions (subclasses of the class RuntimeException) such as
ArrayIndexOutofBoundsException, SecurityException, and
NullPointerException

n Other exceptions such as EOFException and MalformedURLException

Runtime exceptions usually occur because of code that isn’t very robust. An
ArrayIndexOutofBounds exception, for example, should never be thrown if you’re

186 DAY 7: Exceptions, Assertions, and Threads

properly checking to make sure that your code stays within the bounds of an array.
NullPointerException exceptions happen when you try to use a variable that doesn’t
refer to an object yet.

If your program is causing runtime exceptions under any circum-
stances, you should fix those problems before you even begin
dealing with exception management.

The final group of exceptions indicates something strange and out of control is happen-
ing. An EOFException, for example, happens when you’re reading from a file and the file
ends before you expected it to end. A MalformedURLException happens when a URL
isn’t in the right format (perhaps a user typed it incorrectly). This group includes excep-
tions that you create to signal unusual cases that might occur in your own programs.

Exceptions are arranged in a hierarchy just as other classes are, where the Exception
superclasses are more general errors and the subclasses are more specific errors. This
organization becomes more important to you as you deal with exceptions in your own
code.

The primary exception classes are part of the java.lang package (including Throwable,
Exception, and RuntimeException). Many of the other packages define other excep-
tions, and those exceptions are used throughout the class library. For example, the
java.io package defines a general exception class called IOException, which is sub-
classed not only in the java.io package for input and output exceptions (EOFException
and FileNotFoundException) but also in the java.net classes for networking excep-
tions such as MalformedURLException.

Managing Exceptions
Now that you know what an exception is, how do you deal with one in your own code?
In many cases, the Java compiler enforces exception management when you try to use
methods that throw exceptions; you need to deal with those exceptions in your own code,
or it simply won’t compile. In this section, you learn about consistency checking and
how to use three new keywords—try, catch, and finally—to deal with exceptions that
might occur.

Managing Exceptions 187

7

CAUTION

Exception Consistency Checking
The more you work with the Java class libraries, the more likely you’ll run into a com-
piler error (an exception!) such as this one:

XMLParser.java:32: Exception java.lang.InterruptedException
must be caught or it must be declared in the throws clause
of this method.

In Java, a method can indicate the kinds of errors it might potentially throw. For exam-
ple, methods that read from files can throw IOException errors, so those methods are
declared with a special modifier that indicates potential errors. When you use those
methods in your own Java programs, you have to protect your code against those excep-
tions. This rule is enforced by the compiler itself, in the same way that it checks to make
sure that you’re using methods with the correct number of arguments and that all your
variable types match what you’re assigning to them.

Why is this check in place? It makes your programs less likely to crash with fatal errors
because you know up front the kind of exceptions that can be thrown by the methods a
program uses.

You no longer have to pore over the documentation or the code of an object you’re going
to use to ensure that you’ve dealt with all the potential problems—Java does the check-
ing for you. On the other side, if you define your methods so that they indicate the
exceptions they can throw, Java can tell your objects’ users to handle those errors.

Protecting Code and Catching Exceptions
Assume that you’ve been happily coding and the compiler screeches to a halt with an
exception as a class is compiled. According to the message, you have to either catch the
error or declare that your method throws it.

First, we’ll deal with catching potential exceptions, which requires two things:

n You protect the code that contains the method that might throw an exception inside
a try block.

n You deal with an exception inside a catch block.

What try and catch effectively mean is: “Try this bit of code that might cause an excep-
tion. If it executes okay, go on with the program. If the code doesn’t execute, catch the
exception and deal with it.”

188 DAY 7: Exceptions, Assertions, and Threads

You’ve seen try and catch before, when you first dealt with threads. On Day 6,
“Packages, Interfaces, and Other Class Features,” you used code when using a String
value to create an integer:

try {
float in = Float.parseFloat(input);

} catch (NumberFormatException nfe) {
System.out.println(input + “ is not a valid number.”);

}

Here’s what’s happening in these statements: The Float.parseFloat() class method
could potentially throw an exception of the class NumberFormatException, which signi-
fies that the thread has been interrupted for some reason.

To handle this exception, the call to parseFloat() is placed inside a try block, and an
associated catch block has been set up. This catch block receives any
NumberFormatException objects thrown within the try block.

The part of the catch clause inside the parentheses is similar to a method definition’s
argument list. It contains the class of exception to be caught and a variable name. You
can use the variable to refer to that exception object inside the catch block.

One common use for this object is to call its getMessage() method. This method is pre-
sent in all exceptions, and it displays a detailed error message describing what happened.

Another useful method is printStackTrace(), which displays the sequence of method
calls that led to the statement that generated the exception.

The following example is a revised version of the try-catch block used on Day 6:

try {
float in = Float.parseFloat(input);

} catch (NumberFormatException nfe) {
System.out.println(“Oops: “ + nfe.getMessage());

}

The examples you have seen thus far catch a specific type of exception. Because excep-
tion classes are organized into a hierarchy and you can use a subclass anywhere that
a superclass is expected, you can catch groups of exceptions within the same catch
statement.

As an example, when you start writing programs that handle input and output from files,
Internet servers, and other places, you deal with several different types of IOException

Managing Exceptions 189

7

exceptions (the IO stands for input/output). These exceptions include two of its sub-
classes, EOFException and FileNotFoundException. By catching IOException, you also
catch instances of any IOException subclass.

To catch several different exceptions that aren’t related by inheritance, you can use multi-
ple catch blocks for a single try, like this:

try {
// code that might generate exceptions

} catch (IOException ioe) {
System.out.println(“Input/output error”);
System.out.println(ioe.getMessage());

} catch (ClassNotFoundException cnfe) {
System.out.println(“Class not found”);
System.out.println(cnfe.getMessage());

} catch (InterruptedException ie) {
System.out.println(“Program interrupted”);
System.out.println(ie.getMessage());

}

In a multiple catch block, the first catch block that matches is executed and the rest is
ignored.

You can run into unexpected problems by using an Exception
superclass in a catch block followed by one or more of its sub-
classes in their own catch blocks. For example, the input/output
exception IOException is the superclass of the end-of-file excep-
tion EOFException. If you put an IOException block above an
EOFException block, the subclass never catches any exceptions.

The finally Clause
Suppose that there is some action in your code that you absolutely must do, no matter
what happens, regardless of whether an exception is thrown. This is usually to free some
external resource after acquiring it, to close a file after opening it, or something similar.

Although you could put that action both inside a catch block and outside it, that would
be duplicating the same code in two different places, which is a situation you should
avoid as much as possible in your programming.

Instead, put one copy of that code inside a special optional block of the try-catch state-
ment that uses the keyword finally:

190 DAY 7: Exceptions, Assertions, and Threads

CAUTION

try {
readTextFile();

} catch (IOException ioe) {
// deal with IO errors

} finally {
closeTextFile();

}

Today’s first project shows how a finally statement can be used inside a method.

The HexReader application in Listing 7.1 reads sequences of two-digit hexadecimal num-
bers and displays their decimal values. There are three sequences to read:

n 000A110D1D260219

n 78700F1318141E0C

n 6A197D45B0FFFFFF

As you learned on Day 2, “The ABCs of Programming,” hexadecimal is a base-16 num-
bering system where the single-digit numbers range from 00 (decimal 0) to 0F (decimal
15), and double-digit numbers range from 10 (decimal 16) to FF (decimal 255).

LISTING 7.1 The Full Text of HexReader.java

1: class HexReader {
2: String[] input = { “000A110D1D260219 “,
3: “78700F1318141E0C “,
4: “6A197D45B0FFFFFF “ };
5:
6: public static void main(String[] arguments) {
7: HexReader hex = new HexReader();
8: for (int i = 0; i < hex.input.length; i++)
9: hex.readLine(hex.input[i]);
10: }
11:
12: void readLine(String code) {
13: try {
14: for (int j = 0; j + 1 < code.length(); j += 2) {
15: String sub = code.substring(j, j+2);
16: int num = Integer.parseInt(sub, 16);
17: if (num == 255)
18: return;
19: System.out.print(num + “ “);
20: }
21: } finally {
22: System.out.println(“**”);
23: }

Managing Exceptions 191

7

LISTING 7.1 Continued

24: return;
25: }
26: }

The output of this program is as follows:

0 10 17 13 29 38 2 25 **
120 112 15 19 24 20 30 12 **
106 25 125 69 176 **

Line 15 of the program reads two characters from code, the string that was sent to the
readLine() method, by calling the string’s substring(int, int) method.

In the substring() method of the String class, you select a sub-
string in a somewhat counterintuitive way. The first argument spec-
ifies the index of the first character to include in the substring, but
the second argument does not specify the last character. Instead,
the second argument indicates the index of the last character plus
1. A call to substring(2, 5) for a string would return the charac-
ters from index position 2 to index position 4.

The two-character substring contains a hexadecimal number stored as a String. The
Integer class method parseInt can be used with a second argument to convert this
number into an integer. Use 16 as the argument for a hexadecimal (base 16) conversion,
8 for an octal (base 8) conversion, and so on.

In the HexReader application, the hexadecimal FF is used to fill out the end of a sequence
and should not be displayed as a decimal value. This is accomplished by using a try-
finally block in lines 13–23 of Listing 7.1.

The try-finally block causes an unusual thing to happen when the return statement is
encountered at line 18. You would expect return to cause the readLine() method to be
exited immediately.

Because it is within a try-finally block, the statement within the finally block is exe-
cuted no matter how the try block is exited. The text “**” is displayed at the end of a
line of decimal values.

192 DAY 7: Exceptions, Assertions, and Threads

NOTE

The finally statement is useful outside exceptions—it can exe-
cute cleanup code after a return, break, or continue statement
inside loops. For the latter cases, you use a try statement with a
finally but without a catch statement.

Declaring Methods That Might Throw
Exceptions
In previous examples, you learned how to deal with methods that might throw exceptions
by protecting code and catching any exceptions that occur. The Java compiler checks to
make sure that you’ve dealt with a method’s exceptions—but how did it know which
exceptions to tell you about in the first place?

The answer is that the original method indicated the exceptions that it might possibly
throw as part of its definition. You can use this mechanism in your own methods—in
fact, it’s good style to do so to make sure that users of your classes are alerted to the
errors your methods might experience.

To indicate that a method will possibly throw an exception, you use a special clause in
the method definition called throws.

The throws Clause
If some code in your method’s body might throw an exception, add the throws keyword
after the closing parenthesis of the method followed by the name or names of the excep-
tion that your method throws, as in this example:

public boolean getFormula(int x, int y) throws NumberFormatException {
// body of method

}

If your method might throw multiple kinds of exceptions, you can declare them all in the
throws clause separated by commas:

public boolean storeFormula(int x, int y)
throws NumberFormatException, EOFException {

// body of method
}

Declaring Methods That Might Throw Exceptions 193

7

NOTE

Note that as with catch, you can use a superclass of a group of exception to indicate that
your method might throw any subclass of that exception. For instance:

public void loadFormula() throws IOException {
// ...

}

Keep in mind that adding a throws clause to your method definition simply means that
the method might throw an exception if something goes wrong, not that it actually will.
The throws clause provides extra information to your method definition about potential
exceptions and allows Java to make sure that your method is being used correctly by
other people.

Think of a method’s overall description as a contract between the designer of that
method and the caller of the method. (You can be on either side of that contract, of
course.)

Usually the description indicates the types of a method’s arguments, what it returns, and
the particulars of what it normally does. By using throws, you are adding information
about the abnormal things the method can do. This new part of the contract helps sepa-
rate and make explicit all the places where exceptional conditions should be handled in
your program, and that makes large-scale design easier.

Which Exceptions Should You Throw?
After you decide to declare that your method might throw an exception, you must decide
which exceptions it might throw and actually throw them or call a method that will throw
them (you learn about throwing your own exceptions in the next section).

In many instances, this is apparent from the operation of the method itself. Perhaps
you’re already creating and throwing your own exceptions, in which case, you’ll know
exactly which exceptions to throw.

You don’t really have to list all the possible exceptions that your method could throw;
some exceptions are handled by the runtime itself and are so common that you don’t
have to deal with them.

In particular, exceptions of either the Error or RuntimeException class or any of their
subclasses do not have to be listed in your throws clause.

They get special treatment because they can occur anywhere within a Java program and
are usually conditions that you, as the programmer, did not directly cause.

194 DAY 7: Exceptions, Assertions, and Threads

One good example is OutOfMemoryError, which can happen anywhere, at any time, and
for any number of reasons. These two types of exceptions are called unchecked excep-
tions.

Unchecked exceptions are subclasses of the RuntimeException and Error classes and
are usually thrown by the Java runtime itself. You do not have to declare that your
method throws them, and you usually do not need to deal with them in any other way.

You can, of course, choose to list these errors and runtime excep-
tions in your throws clause if you want, but your method’s callers
will not be forced to handle them; only nonruntime exceptions
must be handled.

All other exceptions are called checked exceptions and are potential candidates for a
throws clause in your method.

Passing On Exceptions
There are times when it doesn’t make sense for your method to deal with an exception. It
might be better for the method that calls your method to deal with that exception. There’s
nothing wrong with this; it’s a fairly common occurrence that you pass an exception back
to the method that calls your method.

For example, consider the hypothetical example of WebRetriever, a class that loads a
web page using its web address and stores it in a file. As you learn on Day 17,
“Communicating Across the Internet,” you can’t work with web addresses without deal-
ing with MalformedURLException, the exception thrown when an address isn’t in the
right format.

To use WebRetriever, another class calls its constructor method with the address as an
argument. If the address specified by the other class isn’t in the right format, a
MalformedURLException is thrown. Instead of dealing with this, the constructor of the
WebRetriever class could have the following definition:

public WebRetriever() throws MalformedURLException {
// ...

}

This would force any class that works with WebRetriever objects to deal with
MalformedURLException errors (or pass the buck with their own throws clause, of
course).

Declaring Methods That Might Throw Exceptions 195

7

NOTE

One thing is true at all times: It’s better to pass on exceptions to calling methods than to
catch them and do nothing in response.

In addition to declaring methods that throw exceptions, there’s one other instance in
which your method definition may include a throws clause: Within that method, you
want to call a method that throws an exception, but you don’t want to catch or deal with
that exception.

Rather than using the try and catch clauses in your method’s body, you can declare
your method with a throws clause so that it, too, might possibly throw the appropriate
exception. It’s then the responsibility of the method that calls your method to deal with
that exception. This is the other case that tells the Java compiler that you have done
something with a given exception.

Using this technique, you could create a method that deals with number format excep-
tions without a try-catch block:

public void readFloat(String input) throws NumberFormatException {
float in = Float.parseFloat(input);

}

After you declare your method to throw an exception, you can use other methods that
also throw those exceptions inside the body of this method, without needing to protect
the code or catch the exception.

You can, of course, deal with other exceptions using try and catch

in the body of your method in addition to passing on the excep-
tions you listed in the throws clause. You also can both deal with
the exception in some way and then rethrow it so that your
method’s calling method has to deal with it anyhow. You learn how
to throw methods in the next section.

throws and Inheritance
If your method definition overrides a method in a superclass that includes a throws
clause, there are special rules for how your overridden method deals with throws. Unlike
other parts of the method signature that must mimic those of the method it is overriding,
your new method does not require the same set of exceptions listed in the throws clause.

Because there’s a possibility that your new method might deal better with exceptions
instead of just throwing them, your method can potentially throw fewer types of

196 DAY 7: Exceptions, Assertions, and Threads

NOTE

exceptions. It could even throw no exceptions at all. That means that you can have the
following two class definitions, and things will work just fine:

public class RadioPlayer {
public void startPlaying() throws SoundException {

// body of method
}

}

public class StereoPlayer extends RadioPlayer {
public void startPlaying() {

// body of method
}

}

The converse of this rule is not true: A subclass method cannot throw more exceptions
(either exceptions of different types or more general exception classes) than its super-
class method.

Creating and Throwing Your Own
Exceptions
There are two sides to every exception: the side that throws the exception and the side
that catches it. An exception can be tossed around a number of times to a number of
methods before it’s caught, but eventually it will be caught and dealt with.

Who does the actual throwing? Where do exceptions come from? Many exceptions are
thrown by the Java runtime or by methods inside the Java classes themselves. You also
can throw any of the standard exceptions that the Java class libraries define, or you can
create and throw your own exceptions.

Throwing Exceptions
Declaring that your method throws an exception is useful only to your method’s users
and to the Java compiler, which checks to make sure that all your exceptions are being
handled. The declaration itself doesn’t do anything to actually throw that exception
should it occur; you must do that yourself as needed in the body of the method.

You need to create a new instance of an exception class to throw an exception. After you
have that instance, use the throw statement to throw it.

Creating and Throwing Your Own Exceptions 197

7

Here’s an example using a hypothetical NotInServiceException class that is a subclass
of the Exception class:

NotInServiceException nise = new NotInServiceException();
throw nise;

You can throw only objects that implement the Throwable interface.

Depending on the exception class you’re using, the exception also may have arguments
to its constructor that you can use. The most common of these is a string argument,
which enables you to describe the problem in greater detail (which can be useful for
debugging purposes). Here’s an example:

NotInServiceException nise = new
NotInServiceException(“Exception: Database Not in Service”);

throw nise;

After an exception is thrown, the method exits immediately without executing any other
code, other than the code inside a finally block if one exists. The method won’t return
a value either. If the calling method does not have a try or catch surrounding the call to
your method, the program might exit based on the exception you threw.

Creating Your Own Exceptions
Although there are a fair number of exceptions in the Java class library that you can use
in your own methods, you might need to create your own exceptions to handle the differ-
ent kinds of errors that your programs run into. Creating new exceptions is easy.

Your new exception should inherit from some other exception in the Java hierarchy. All
user-created exceptions should be part of the Exception hierarchy rather than the Error
hierarchy, which is reserved for errors involving the Java virtual machine. Look for an
exception that’s close to the one you’re creating; for example, an exception for a bad file
format would logically be an IOException. If you can’t find a closely related exception
for your new exception, consider inheriting from Exception, which forms the “top” of
the exception hierarchy for checked exceptions (unchecked exceptions should inherit
from RuntimeException).

Exception classes typically have two constructors: The first takes no arguments, and the
second takes a single string as an argument.

Exception classes are like other classes. You can put them in their own source files and
compile them just as you would other classes:

public class SunSpotException extends Exception {
public SunSpotException() {}

198 DAY 7: Exceptions, Assertions, and Threads

public SunSpotException(String msg) {
super(msg);

}
}

Combining throws, try, and throw
What if you want to combine all the approaches shown so far? You want to handle
incoming exceptions yourself in your method, but also you want the option to pass the
exception on to your method’s caller. Simply using try and catch doesn’t pass on the
exception, and adding a throws clause doesn’t give you a chance to deal with the excep-
tion.

If you want to both manage the exception and pass it on to the caller, use all three mech-
anisms: the throws clause, the try statement, and a throw statement to explicitly rethrow
the exception.

Here’s a method that uses this technique:

public void readMessage() throws IOException {
MessageReader mr = new MessageReader();

try {
mr.loadHeader();

} catch (IOException e) {
// do something to handle the
// IO exception and then rethrow
// the exception ...
throw e;

}
}

This works because exception handlers can be nested. You handle the exception by doing
something responsible with it but decide that it is important enough to give the method’s
caller a chance to handle it as well.

Exceptions can float all the way up the chain of method callers this way (usually not
being handled by most of them) until, at last, the system itself handles any uncaught
exceptions by aborting your program and printing an error message.

If it’s possible for you to catch an exception and do something intelligent with it, you
should.

Creating and Throwing Your Own Exceptions 199

7

When and When Not to Use Exceptions
Because throwing, catching, and declaring exceptions are related concepts and can be
confusing, here’s a quick summary of when to do what.

When to Use Exceptions
You can do one of three things if your method calls another method that has a throws
clause:

n Deal with the exception by using try and catch statements.

n Pass the exception up the calling chain by adding your own throws clause to your
method definition.

n Perform both of the preceding methods by catching the exception using catch and
then explicitly rethrowing it using throw.

In cases where a method throws more than one exception, you can handle each of those
exceptions differently. For example, you might catch some of those exceptions while
allowing others to pass up the calling chain.

If your method throws its own exceptions, you should declare that it throws those meth-
ods using the throws statement. If your method overrides a superclass method that has a
throws statement, you can throw the same types of exceptions or subclasses of those
exceptions; you cannot throw any different types of exceptions.

Finally, if your method has been declared with a throws clause, don’t forget to actually
throw the exception in the body of your method using the throw statement.

When Not to Use Exceptions
Although they might seem appropriate at the time, there are several cases in which you
should not use exceptions.

First, you should not use exceptions for circumstances you expect and could avoid easily.
For example, although you can rely on an ArrayIndexOutofBounds exception to indicate
when you’ve gone past the end of an array, it’s easy to use the array’s length variable to
prevent you from going beyond the bounds.

In addition, if your users will enter data that must be an integer, testing to make sure that
the data is an integer is a much better idea than throwing an exception and dealing with it
somewhere else.

200 DAY 7: Exceptions, Assertions, and Threads

Exceptions take up a lot of processing time for your Java program. A simple test or
series of tests will run much faster than exception handling and make your program more
efficient. Exceptions should be used only for truly exceptional cases that are out of your
control.

It’s also easy to get carried away with exceptions and to try to make sure that all your
methods have been declared to throw all the possible exceptions that they can possibly
throw. This makes your code more complex; in addition, if other people will be using
your code, they’ll have to deal with handling all the exceptions that your methods might
throw.

You’re making more work for everyone involved when you get carried away with excep-
tions. Declaring a method to throw either few or many exceptions is a trade-off; the more
exceptions your method can throw, the more complex that method is to use. Declare only
the exceptions that have a reasonably fair chance of happening and that make sense for
the overall design of your classes.

Bad Style Using Exceptions
When you first start using exceptions, it might be appealing to work around the compiler
errors that result when you use a method that declares a throws statement. Although it is
legal to add an empty catch clause or to add a throws statement to your own method
(and there are appropriate reasons for doing so), intentionally dropping exceptions with-
out dealing with them subverts the checks that the Java compiler does for you.

The Java exception system was designed so that if an error can occur, you’re warned
about it. Ignoring those warnings and working around them makes it possible for fatal
errors to occur in your program—errors that you could have avoided with a few lines of
code. Even worse, adding throws clauses to your methods to avoid exceptions means
that the users of your methods (objects further up in the calling chain) will have to deal
with them. You’ve just made your methods more difficult to use.

Compiler errors regarding exceptions are there to remind you to reflect on these issues.
Take the time to deal with the exceptions that might affect your code. This extra care
richly rewards you as you reuse your classes in later projects and in larger and larger pro-
grams. Of course, the Java class library has been written with exactly this degree of care,
and that’s one of the reasons it’s robust enough to be used in constructing all your Java
projects.

When and When Not to Use Exceptions 201

7

Assertions
Exceptions are one way to improve the reliability of your Java programs. Another way is
to use assertions—expressions that represent a condition that a programmer believes to
be true at a specific place in a program. If an assertion isn’t true, an error results.

The assert keyword is followed by a conditional expression or Boolean value, as in this
example:

assert price > 0;

In this example, the assert statement claims that a variable named price has a value
greater than zero. Assertions are a way to assure yourself that a program is running cor-
rectly by putting it to the test, writing conditional expressions that identify correct behav-
ior.

The assert keyword must be followed by one of three things: an expression that is true
or false, a boolean variable, or a method that returns a boolean.

If the assertion that follows the assert keyword is not true, an AssertionError excep-
tion is thrown. To make the error message associated with an assertion more meaningful,
you can specify a string in an assert statement, as in the following example:

assert price > 0 : “Price less than 0.”;

In this example, if price is less than zero when the assert statement is executed, an
AssertionError exception is thrown with the error message “Price less than 0”.

You can catch these exceptions or leave them for the Java interpreter to deal with. Here’s
an example of how the JDK’s interpreter responds when an assert statement is false:

Exception in thread “main” java.lang.AssertionError
at AssertTest.main(AssertTest.java:14)

Here’s an example when an assert statement with a descriptive error message is false:

Exception in thread “main” java.lang.AssertionError: Price less than 0.
at AssertTest.main(AssertTest.java:14)

Although assertions are an official part of the Java language, they are not supported by
default by the tools included with the JDK, and the same may be true with other Java
development tools.

To enable assertions with the JDK, you must use command-line arguments when running
the interpreter.

202 DAY 7: Exceptions, Assertions, and Threads

A class that contains assert statements can be compiled normally, as long as you’re
using a current version of the JDK.

The compiler includes support for assertions in the class file (or files) that it produces,
but the feature must be turned on.

There are several ways to turn on assertions in the JDK’s Java interpreter.

To enable assertions in all classes except those in the Java class library, use the -ea argu-
ment, as in this example:

java -ea PriceChecker

To enable assertions only in one class, follow -ea with a colon (“:”) and the name of the
class, like this:

java -ea:PriceChecker PriceChecker

You also can enable assertions for a specific package by following -ea: with the name of
the package (or “...” for the default package).

There’s also an -esa flag that enables assertions in the Java class
library. There isn’t much reason for you to do this because you’re
probably not testing the reliability of that code.

When a class that contains assertions is run without an -ea or -esa flag, all assert state-
ments will be ignored.

Because Java has added the assert keyword, you must not use it as the name of a vari-
able in your programs, even if they are not compiled with support for assertions enabled.

The next project, CalorieCounter, is a calculator application that makes use of an asser-
tion. Listing 7.2 contains the source.

LISTING 7.2 The full source of CalorieCounter.java

1: public class CalorieCounter {
2: float count;
3:
4: public CalorieCounter(float calories, float fat, float fiber) {
5: if (fiber > 4) {
6: fiber = 4;
7: }
8: count = (calories / 50) + (fat / 12) - (fiber / 5);
9: assert count > 0 : “Adjusted calories < 0”;

Assertions 203

7

TIP

LISTING 7.2 Continued

10: }
11:
12: public static void main(String[] arguments) {
13: if (arguments.length < 2) {
14: System.out.println(“Usage: java CalorieCounter calories fat
fiber”);
15: System.exit(-1);
16: }
17: try {
18: int calories = Integer.parseInt(arguments[0]);
19: int fat = Integer.parseInt(arguments[1]);
20: int fiber = Integer.parseInt(arguments[2]);
21: CalorieCounter diet = new CalorieCounter(calories, fat, fiber);
22: System.out.println(“Adjusted calories: “ + diet.count);
23: } catch (NumberFormatException nfe) {
24: System.out.println(“All arguments must be numeric.”);
25: System.exit(-1);
26: }
27: }
28: }

The CalorieCounter application calculates an adjusted calories total for a food item
using its calories, fat grams, and fiber grams as input. Programs like this are common in
weight management programs, enabling dieters to monitor their daily food intake.

The application takes three command-line arguments: calories, fat, and fiber, which are
received as strings and converted to integer values in lines 18–20.

The CalorieCounter constructor takes the three values and plugs them into a formula in
line 8 to produce an adjusted calorie count.

One of the assumptions of the constructor is that the adjusted count always will be a pos-
itive value. This is challenged with the following assert statement:

assert count > 0 : “Adjusted calories < 0”;

The compiled class should be run with the -ea flag to employ assertions, as in this
example:

java -ea CalorieCounter 150 3 0

Those values produce an adjusted calorie count of 3.25. To see the assertion proven false,
use 30 calories, 0 grams of fat, and 6 fiber as input.

204 DAY 7: Exceptions, Assertions, and Threads

Assertions are an unusual feature of the Java language—under most circumstances they
cause absolutely nothing to happen. They’re a means of expressing in a class the condi-
tions under which it is running correctly (and the things you assume to be true as it runs).
If you make liberal use of them in a class, it will either be more reliable, or you’ll learn
that some of your assumptions are incorrect, which is useful knowledge in its own right.

Some Java programmers believe that because assertions can be
turned off at runtime, they’re an unreliable means of improving the
reliability of a class.

Threads
One thing to consider in Java programming is how system resources are being used.
Graphics, complex mathematical computations, and other intensive tasks can take up a
lot of processor time.

This is especially true of programs that have a graphical user interface, which is a style
of software that you’ll be learning about next week.

If you write a graphical Java program that is doing something that consumes a lot of the
computer’s time, you might find that the program’s graphical user interface responds
slowly—drop-down lists take a second or more to appear, button clicks are recognized
slowly, and so on.

To solve this problem, you can segregate the processor-hogging functions in a Java class
so that they run separately from the rest of the program.

This is possible through the use of a feature of the Java language called threads.

Threads are parts of a program set up to run on their own while the rest of the program
does something else. This also is called multitasking because the program can handle
more than one task simultaneously.

Threads are ideal for anything that takes up a lot of processing time and runs continu-
ously.

By putting the workload of the program into a thread, you are freeing up the rest of the
program to handle other things. You also make handling the program easier for the vir-
tual machine because all the intensive work is isolated into its own thread.

Threads 205

7

CAUTION

Writing a Threaded Program
Threads are implemented in Java with the Thread class in the java.lang package.

The simplest use of threads is to make a program pause in execution and stay idle during
that time. To do this, call the Thread class method sleep(long) with the number of mil-
liseconds to pause as the only argument.

This method throws an exception, InterruptedException, whenever the paused thread
has been interrupted for some reason. (One possible reason: The user closes the program
while it is sleeping.)

The following statements stop a program in its tracks for three seconds:

try {
Thread.sleep(3000);

catch (InterruptedException ie) {
// do nothing

}

The catch block does nothing, which is typical when you’re using sleep().

One way to use threads is to put all the time-consuming behavior into its own class.

A thread can be created in two ways: by subclassing the Thread class or implementing
the Runnable interface in another class. Both belong to the java.lang package, so no
import statement is necessary to refer to them.

Because the Thread class implements Runnable, both techniques result in objects that
start and stop threads in the same manner.

To implement the Runnable interface, add the keyword implements to the class declara-
tion followed by the name of the interface, as in the following example:

public class StockTicker implements Runnable {
public void run() {

// ...
}

}

When a class implements an interface, it must include all methods of that interface. The
Runnable interface contains only one method, run().

The first step in creating a thread is to create a reference to an object of the Thread class:

Thread runner;

This statement creates a reference to a thread, but no Thread object has been assigned to
it yet. Threads are created by calling the constructor Thread(Object) with the threaded

206 DAY 7: Exceptions, Assertions, and Threads

object as an argument. You could create a threaded StockTicker object with the follow-
ing statement:

StockTicker tix = new StockTicker();
Thread tickerThread = new Thread(tix);

Two good places to create threads are the constructor for an application and the construc-
tor for a component (such as a panel).

A thread is begun by calling its start() method, as in the following statement:

tickerThread.start();

The following statements can be used in a thread class to start the thread:

Thread runner;
if (runner == null) {

runner = new Thread(this);
runner.start();

}

The this keyword used in the Thread() constructor refers to the object in which these
statements are contained. The runner variable has a value of null before any object is
assigned to it, so the if statement is used to make sure that the thread is not started more
than once.

To run a thread, its start() method is called, as in this statement from the preceding
example:

runner.start();

Calling a thread’s start() method causes another method to be called—namely, the
run() method that must be present in all threaded objects.

The run() method is the engine of a threaded class. In the introduction to threads, they
were described as a means of segregating processor-intensive work so that it ran sepa-
rately from the rest of a class. This kind of behavior would be contained within a
thread’s run() method and the methods that it calls.

A Threaded Application
Threaded programming requires a lot of interaction among different objects, so it should
become clearer when you see it in action.

Listing 7.3 contains a class that finds a specific prime number in a sequence, such as the
10th prime, 100th prime, or 1,000th prime. This can take some time, especially for num-
bers beyond 100,000, so the search for the right prime takes place in its own thread.

Threads 207

7

Enter the text of Listing 7.3 in your Java editor and save it as PrimeFinder.java.

LISTING 7.3 The Full Text of PrimeFinder.java

1: public class PrimeFinder implements Runnable {
2: public long target;
3: public long prime;
4: public boolean finished = false;
5: private Thread runner;
6:
7: PrimeFinder(long inTarget) {
8: target = inTarget;
9: if (runner == null) {
10: runner = new Thread(this);
11: runner.start();
12: }
13: }
14:
15: public void run() {
16: long numPrimes = 0;
17: long candidate = 2;
18: while (numPrimes < target) {
19: if (isPrime(candidate)) {
20: numPrimes++;
21: prime = candidate;
22: }
23: candidate++;
24: }
25: finished = true;
26: }
27:
28: boolean isPrime(long checkNumber) {
29: double root = Math.sqrt(checkNumber);
30: for (int i = 2; i <= root; i++) {
31: if (checkNumber % i == 0)
32: return false;
33: }
34: return true;
35: }
36: }

Compile the PrimeFinder class when you’re finished. This class doesn’t have a main()
method, so you can’t run it as an application. You create a program that uses this class
next.

The PrimeFinder class implements the Runnable interface so it can be run as a thread.

208 DAY 7: Exceptions, Assertions, and Threads

There are three public instance variables:

n target—A long that indicates when the specified prime in the sequence has been
found. If you’re looking for the 5,000th prime, target equals 5000.

n prime—A long that holds the last prime number found by this class.

n finished—A Boolean that indicates when the target has been reached.

There is also a private instance variable called runner that holds the Thread object that
this class runs in. This object should be equal to null before the thread has been started.

The PrimeFinder constructor method in lines 7–13 sets the target instance variable and
starts the thread if it hasn’t already been started. When the thread’s start() method is
called, it in turn calls the run() method of the threaded class.

The run() method is in lines 15–26. This method does most of the work of the thread,
which is typical of threaded classes. You want to put the most computing-intensive tasks
in their own thread so that they don’t bog down the rest of the program.

This method uses two new variables: numPrimes, the number of primes that have been
found, and candidate, the number that might possibly be prime. The candidate variable
begins at the first possible prime number, which is 2.

The while loop in lines 18–24 continues until the right number of primes has been
found.

First, it checks whether the current candidate is prime by calling the isPrime(long)
method, which returns true if the number is prime and false otherwise.

If the candidate is prime, numPrimes increases by one, and the prime instance variable
is set to this prime number.

The candidate variable is then incremented by one, and the loop continues.

After the right number of primes has been found, the while loop ends, and the finished
instance variable is set to true. This indicates that the PrimeFinder object has found the
right prime number and is finished searching.

The end of the run() method is reached in line 26, and the thread is no longer doing any
work.

The isPrime() method is contained in lines 28–35. This method determines whether a
number is prime by using the % operator, which returns the remainder of a division oper-
ation. If a number is evenly divisible by 2 or any higher number (leaving a remainder of
0), it is not a prime number.

Threads 209

7

Listing 7.4 contains an application that uses the PrimeFinder class. Enter the text of
Listing 7.4 and save the file as PrimeThreads.java.

LISTING 7.4 The Full Text of PrimeThreads.java

1: public class PrimeThreads {
2: public static void main(String[] arguments) {
3: PrimeThreads pt = new PrimeThreads(arguments);
4: }
5:
6: public PrimeThreads(String[] arguments) {
7: PrimeFinder[] finder = new PrimeFinder[arguments.length];
8: for (int i = 0; i < arguments.length; i++) {
9: try {
10: long count = Long.parseLong(arguments[i]);
11: finder[i] = new PrimeFinder(count);
12: System.out.println(“Looking for prime “ + count);
13: } catch (NumberFormatException nfe) {
14: System.out.println(“Error: “ + nfe.getMessage());
15: }
16: }
17: boolean complete = false;
18: while (!complete) {
19: complete = true;
20: for (int j = 0; j < finder.length; j++) {
21: if (finder[j] == null) continue;
22: if (!finder[j].finished) {
23: complete = false;
24: } else {
25: displayResult(finder[j]);
26: finder[j] = null;
27: }
28: }
29: try {
30: Thread.sleep(1000);
31: } catch (InterruptedException ie) {
32: // do nothing
33: }
34: }
35: }
36:
37: private void displayResult(PrimeFinder finder) {
38: System.out.println(“Prime “ + finder.target
39: + “ is “ + finder.prime);
40: }
41: }

Save and compile the file when you’re finished.

210 DAY 7: Exceptions, Assertions, and Threads

The PrimeThreads application can be used to find one or more prime numbers in
sequence. Specify the prime numbers that you’re looking for as command-line arguments
and include as many as you want.

If you’re using the JDK, here’s an example of how you can run the application:

java PrimeThreads 1 10 100 1000

This produces the following output:

Looking for prime 1
Looking for prime 10
Looking for prime 100
Looking for prime 1000
Prime 1 is 2
Prime 10 is 29
Prime 100 is 541
Prime 1000 is 7919

The for loop in lines 8–16 of the PrimeThreads application creates one PrimeFinder
object for each command-line argument specified when the program is run.

Because arguments are Strings and the PrimeFinder constructor requires long values,
the Long.parseLong(String) class method is used to handle the conversion. All the
number-parsing methods throw NumberFormatException exceptions, so they are
enclosed in try-catch blocks to deal with arguments that are not numeric.

When a PrimeFinder object is created, the object starts running in its own thread (as
specified in the PrimeFinder constructor).

The while loop in lines 18–34 checks to see whether any PrimeFinder thread has com-
pleted, which is indicated by its finished instance variable equaling true. When a
thread has completed, the displayResult() method is called in line 25 to display the
prime number that was found. The thread then is set to null, freeing the object for
garbage collection (and preventing its result from being displayed more than once).

The call to Thread.sleep(1000) in line 30 causes the while loop to pause for 1 second
during each pass through the loop. A slowdown in loops helps keep the Java interpreter
from executing statements at such a furious pace that it becomes bogged down.

Stopping a Thread
Stopping a thread is a little more complicated than starting one. The Thread class
includes a stop() method that can be called to stop a thread, but it creates instabilities in
Java’s runtime environment and can introduce hard-to-detect errors into a program. For
this reason, the method has been deprecated, indicating that it should not be used in favor
of another technique.

Threads 211

7

A better way to stop a thread is to place a loop in the thread’s run() method that ends
when a variable changes in value, as in the following example:

public void run() {
while (okToRun == true) {

// ...
}

}

The okToRun variable could be an instance variable of the thread’s class. If it is changed
to false, the loop inside the run() method ends.

Another option you can use to stop a thread is to only loop in the run() method while
the currently running thread has a variable that references it.

In previous examples, a Thread object called runner has been used to hold the current
thread.

A class method, Thread.currentThread(), returns a reference to the current thread (in
other words, the thread in which the object is running).

The following run() method loops as long as runner and currentThread() refer to the
same object:

public void run() {
Thread thisThread = Thread.currentThread();
while (runner == thisThread) {

// ...
}

}

If you use a loop like this, you can stop the thread anywhere in the class with the follow-
ing statement:

runner = null;

Summary
Exceptions, assertions, and threads aid your program’s design and robustness.

Exceptions enable you to manage potential errors. By using try, catch, and finally,
you can protect code that might result in exceptions by handling those exceptions as they
occur.

Handling exceptions is only half the equation; the other half is generating and throwing
exceptions. A throws clause tells a method’s users that the method might throw an
exception. It also can be used to pass on an exception from a method call in the body of
your method.

212 DAY 7: Exceptions, Assertions, and Threads

You learned how to actually create and throw your own methods by defining new excep-
tion classes and by throwing instances of any exception classes using throw.

Assertions enable you to use conditional statements and Booleans to indicate that a pro-
gram is running correctly. When this isn’t the case, an assertion exception is thrown.

Threads enable you to run the most processor-intensive parts of a Java class separately
from the rest of the class. This is especially useful when the class is doing something
computing-intensive such as animation, complex mathematics, or looping through a large
amount of data quickly.

You also can use threads to do several things at once and to start and stop threads exter-
nally.

Threads implement the Runnable interface, which contains one method: run(). When
you start a thread by calling its start() method, the thread’s run() method is called
automatically.

Q&A
Q I’m still not sure I understand the differences between exceptions, errors, and

runtime exceptions. Is there another way of looking at them?

A Errors are caused by dynamic linking or virtual machine problems and are thus too
low-level for most programs to care about—or be able to handle even if they did
care about them.

Runtime exceptions are generated by the normal execution of Java code, and
although they occasionally reflect a condition you will want to handle explicitly,
more often they reflect a coding mistake made by the programmer and thus simply
need to print an error to help flag that mistake.

Exceptions that are nonruntime exceptions (IOException exceptions, for example)
are conditions that, because of their nature, should be explicitly handled by any
robust and well-thought-out code. The Java class library has been written using
only a few of these, but those few are important to using the system safely and cor-
rectly. The compiler helps you handle these exceptions properly via its throws
clause checks and restrictions.

Q How do assertions compare to unit testing for making Java programs more
reliable?

A Unit testing, like assertions, are a technique for assuring the reliability of software
by adding tests. JUnit, an open source library available from the website http://
www.junit.org, is the most popular unit-testing framework for Java programmers.

Q&A 213

7

With JUnit, you write a set of tests, called a suite, that create the Java objects
you’ve developed and call their methods. The values produced by these tests are
checked to see whether they’re what you expected. All tests must pass for your
software to pass.

Although unit testing’s only as good as the tests you create, the existence of a test
suite is extremely helpful when you make changes to your software. By running
the tests again after the changes, you can better assure yourself that it continues to
work correctly.

Most Java programmers prefer unit testing to assertions. Some even write tests
before they write any code.

Q Is there any way to get around the strict restrictions placed on methods by the
throws clause?

A Yes. Suppose that you have thought long and hard and have decided that you need
to circumvent this restriction. This is almost never the case because the right solu-
tion is to go back and redesign your methods to reflect the exceptions that you
need to throw. Imagine, however, that for some reason a system class has you in a
bind. Your first solution is to subclass RuntimeException to make up a new,
unchecked exception of your own. Now you can throw it to your heart’s content
because the throws clause that was annoying you does not need to include this new
exception. If you need a lot of such exceptions, an elegant approach is to mix in
some novel exception interfaces with your new Runtime classes. You’re free to
choose whatever subset of these new interfaces you want to catch (none of the
normal Runtime exceptions need to be caught), whereas any leftover Runtime
exceptions are allowed to go through that otherwise annoying standard method in
the library.

Quiz
Review today’s material by taking this three-question quiz.

Questions
1. What keyword is used to jump out of a try block and into a finally block?

a. catch

b. return

c. while

214 DAY 7: Exceptions, Assertions, and Threads

2. What class should be the superclass of any exceptions you create in Java?

a. Throwable

b. Error

c. Exception

3. If a class implements the Runnable interface, what methods must the class contain?

a. start(), stop(), and run()

b. actionPerformed()

c. run()

Answers
1. b.

2. c. Throwable and Error are of use primarily by Java. The kinds of errors you’ll
want to note in your programs belong in the Exception hierarchy.

3. c. The Runnable interface requires only the run() method.

Certification Practice
The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

The AverageValue application is supposed to take up to 10 floating-point numbers as
command-line arguments and display their average.

Given:

public class AverageValue {
public static void main(String[] arguments) {

float[] temps = new float[10];
float sum = 0;
int count = 0;
int i;
for (i = 0; i < arguments.length & i < 10; i++) {

try {
temps[i] = Float.parseFloat(arguments[i]);
count++;

} catch (NumberFormatException nfe) {
System.out.println(“Invalid input: “ + arguments[i]);

}

Quiz 215

7

sum += temps[i];
}
System.out.println(“Average: “ + (sum / i));

}
}

Which statement contains an error?

a. for (i = 0; i < arguments.length & i < 10; i++) {

b. sum += temps[i];

c. System.out.println(“Average: “ + (sum / i));

d. None; the program is correct.

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 7 page and click the Certification Practice link.

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. Modify the PrimeFinder class so that it throws a new exception,
NegativeNumberException, if a negative number is sent to the constructor.

2. Modify the PrimeThreads application so that it can handle the new
NegativeNumberException error.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java21days.com.

216 DAY 7: Exceptions, Assertions, and Threads

WEEK 2:
The Java Class
Library

8 Data Structures

9 Working with Swing

10 Building a Swing Interface

11 Arranging Components on a User
Interface

12 Responding to User Input

13 Using Color, Fonts, and Graphics

14 Developing Swing Applications

DAY 8:
Data Structures

During the first week, you learned about the core elements of the Java
language: objects; classes; interfaces; and the keywords, statements,
expressions, and operators that they contain.

For the second week, the focus shifts from the classes you create to the
ones that have been created for you: the Java class library, a set of stan-
dard packages from Sun Microsystems with more than 1,000 classes you
can use in your own Java programs.

Today, you start with classes that represent data.

Moving Beyond Arrays
The Java class library provides a set of data structures in the java.util package that
gives you more flexibility in organizing and manipulating data.

A solid understanding of data structures and when to employ them will be useful
throughout your Java programming efforts.

Many Java programs that you create rely on some means of storing and manipulating
data within a class. Up to this point, you have used three structures for storing and
retrieving data: variables, String objects, and arrays.

These are just a few of the data classes available in Java. If you don’t understand the full
range of data structures, you’ll find yourself trying to use arrays or strings when other
options would be more efficient or easier to implement.

Outside primitive data types and strings, arrays are the simplest data structure supported
by Java. An array is a series of data elements of the same primitive type or class. It’s
treated as a single object but contains multiple elements that can be accessed indepen-
dently. Arrays are useful whenever you need to store and access related information.

The glaring limitation of arrays is that they can’t adjust in size to accommodate greater
or fewer elements. You can’t add new elements to an array that’s already full. Two
objects you learn about today, linked lists and vectors, do not have this limitation.

Unlike the data structures provided by the java.util package,
arrays are considered such a core component of Java that they
are implemented in the language itself. Therefore, you can use
arrays in Java without importing any packages.

Java Structures
The data structures provided by the java.util package perform a wide range of func-
tions. These data structures consist of the Iterator interface, the Map interface, and
classes such as the following:

n BitSet

n Vector

n Stack

n Hashtable

220 DAY 8: Data Structures

NOTE

Each of these data structures provides a way to store and retrieve information in a well-
defined manner. The Iterator interface itself isn’t a data structure, but it defines a
means to retrieve successive elements from a data structure. For example, Iterator
defines a method called next() that gets the next element in a data structure that con-
tains multiple elements.

Iterator is an expanded and improved version of the Enumeration
interface from early versions of the language. Although
Enumeration is still supported, Iterator has simpler method
names and support for removing items.

The BitSet class implements a group of bits, or flags, that can be set and cleared indi-
vidually. This class is useful when you need to keep up with a set of Boolean values; you
simply assign a bit to each value and set or clear it as appropriate.

A flag is a Boolean value that represents one of a group of on/off type states in a
program.

The Vector class is similar to a traditional Java array, except that it can grow as neces-
sary to accommodate new elements and also shrink. Like an array, elements of a Vector
object can be accessed via an index value. The nice thing about using the Vector class is
that you don’t have to worry about setting it to a specific size upon creation; it shrinks
and grows automatically as needed.

The Stack class implements a last-in, first-out stack of elements. You can think of a
stack literally as a vertical stack of objects; when you add a new element, it’s stacked on
top of the others. When you pull an element off the stack, it comes off the top. That ele-
ment is removed from the stack completely, unlike a structure such as an array, where the
elements are always available.

The Hashtable class implements Dictionary, an abstract class that defines a data struc-
ture for mapping keys to values. This is useful when you want to access data through a
particular key rather than an integer index. Because the Dictionary class is abstract, it
provides only the framework for a key-mapped data structure rather than a specific
implementation.

A key is an identifier used to reference, or look up, a value in a data structure.

An implementation of a key-mapped data structure is provided by the Hashtable class,
which organizes data based on a user-defined key structure. For example, in a ZIP Code
list stored in a hash table, you could store and sort data using each code as a key. The

Java Structures 221

8

NOTE

specific meaning of keys in a hash table depends on how the table is used and the data it
contains.

The next section looks at these data structures in more detail to show how they work.

Iterator
The Iterator interface provides a standard means of iterating through a list of elements
in a defined sequence, which is a common task for many data structures.

Even though you can’t use the interface outside a particular data structure, understanding
how the Iterator interface works helps you understand other Java data structures.

With that in mind, take a look at the methods defined by the Iterator interface:

public boolean hasNext() {
// body of method

}

public Object next() {
// body of method

}

public void remove() {
// body of method

}

The hasNext() method determines whether the structure contains any more elements.
You can call this method to see whether you can continue iterating through a structure.

The next() method retrieves the next element in a structure. If there are no more ele-
ments, next() throws a NoSuchElementException exception. To avoid this, you can use
hasNext() in conjunction with next() to make sure that there is another element to
retrieve.

The following while loop uses these two methods to iterate through a data structure
called users that implements the Iterator interface:

while (users.hasNext()) {
Object ob = users.next();
System.out.println(ob);

}

This sample code displays the contents of each list item by using the hasNext() and
next() methods.

222 DAY 8: Data Structures

The next() method always returns an object of the class Object. You can cast this to
another class that the structure holds, as in this example for a data structure that holds
String objects:

while (users.hasNext()) {
String ob = (String) users.next();
System.out.println(ob);

}

Because Iterator is an interface, you’ll never use it directly as a
data structure. Instead, you’ll use the methods defined by
Iterator for structures that implement the interface. This architec-
ture provides a consistent interface for many of the standard data
structures, which makes them easier to learn and use.

Bit Sets
The BitSet class is useful when you need to represent a large amount of binary data, bit
values that can be equal only to 0 or 1. These also are called on-or-off values (with 1 rep-
resenting on and 0 representing off) or Boolean values (with 1 representing true and 0
representing false).

With the BitSet class, you can use individual bits to store Boolean values without
requiring bitwise operations to extract bit values. You simply refer to each bit using an
index. Another nice feature is that it automatically grows to represent the number of
bits required by a program. Figure 8.1 shows the logical organization of a bit set data
structure.

Java Structures 223

8

NOTE

Index

Value

0

Boolean0

1

Boolean1

2

Boolean2

3

Boolean3

FIGURE 8.1
The organization of
a bit set.

You can use a BitSet object to hold attributes that can easily be modeled by Boolean
values. Because the individual bits in a set are accessed via an index, you can define each
attribute as a constant index value, as in this class:

class ConnectionAttributes {
public static final int READABLE = 0;
public static final int WRITABLE = 1;
public static final int STREAMABLE = 2;
public static final int FLEXIBLE = 3;

}

In this class, the attributes are assigned increasing values beginning with 0. You can use
these values to get and set the appropriate bits in a set. First, you need to create a BitSet
object:

BitSet connex = new BitSet();

This constructor creates a set with no specified size. You also can create a set with a spe-
cific size:

BitSet connex = new BitSet(4);

This creates a set containing four Boolean bits. Regardless of the constructor used, all
bits in new sets are initially set to false. After you have a set, you can set and clear the
bits by using set(int) and clear(int) methods with the bit constants you defined:

connex.set(ChannelAttributes.WRITABLE);
connex.set(ChannelAttributes.STREAMABLE);
connex.set(ChannelAttributes.FLEXIBLE);

connex.clear(ChannelAttributes.WRITABLE);

In this code, the WRITABLE, STREAMABLE, and FLEXIBLE attributes are set and then the
WRITABLE bit is cleared. The class name is used for each attribute because the constants
are class variables in the ChannelAttributes class.

You can get the value of individual bits in a set by using the get() method:

boolean isWriteable = connex.get(ChannelAttributes.WRITABLE);

You can find out how many bits are being represented by a set with the size method:

int numBits = connex.size();

The BitSet class also provides other methods for performing comparisons and bitwise
operations on sets such as AND, OR, and XOR. All these methods take a BitSet object as
their only argument.

Today’s first project is HolidaySked, a Java class that uses a set to keep track of which
days in a year are holidays.

A set is employed because HolidaySked must be able to take any day of the year and
answer the same yes/no question: Are you a holiday?

Enter the text of Listing 8.1 into your editor and save the file as HolidaySked.java.

224 DAY 8: Data Structures

LISTING 8.1 The Full Text of HolidaySked.java

1: import java.util.*;
2:
3: public class HolidaySked {
4: BitSet sked;
5:
6: public HolidaySked() {
7: sked = new BitSet(365);
8: int[] holiday = { 1, 15, 50, 148, 185, 246,
9: 281, 316, 326, 359 };
10: for (int i = 0; i < holiday.length; i++) {
11: addHoliday(holiday[i]);
12: }
13: }
14:
15: public void addHoliday(int dayToAdd) {
16: sked.set(dayToAdd);
17: }
18:
19: public boolean isHoliday(int dayToCheck) {
20: boolean result = sked.get(dayToCheck);
21: return result;
22: }
23:
24: public static void main(String[] arguments) {
25: HolidaySked cal = new HolidaySked();
26: if (arguments.length > 0) {
27: try {
28: int whichDay = Integer.parseInt(arguments[0]);
29: if (cal.isHoliday(whichDay)) {
30: System.out.println(“Day number “ + whichDay +
31: “ is a holiday.”);
32: } else {
33: System.out.println(“Day number “ + whichDay +
34: “ is not a holiday.”);
35: }
36: } catch (NumberFormatException nfe) {
37: System.out.println(“Error: “ + nfe.getMessage());
38: }
39: }
40: }
41: }

The HolidaySked class contains only one instance variable: sked, a BitSet that holds
values for each day in a year.

The constructor of the class creates the sked bit set with 365 positions (lines 6–13). All
bit sets are filled with 0 values when they are created.

Java Structures 225

8

Next, an integer array called holiday is created. This array holds the number of each
work holiday in the year 2007, beginning with 1 (New Year’s Day) and ending with 359
(Christmas).

The holiday array is used to add each holiday to the sked bit set. A for loop iterates
through the holiday array and calls the method addHoliday(int) with each one (lines
10–12).

The addHoliday(int) method is defined in lines 15–17. The argument represents the
day that should be added. The bit set’s set(int) method is called to set the bit at the
specified position to 1. For example, if set(359) was called, the bit at position 359
would be given the value 1.

The HolidaySked class also has the ability to determine whether a specified day is a hol-
iday. This is handled by the isHoliday(int) method (lines 19–22). The method calls the
bit set’s get(int) method, which returns true if the specified position has the value 1
and false otherwise.

This class can be run as an application because of the main() method (lines 24–40). The
application takes a single command-line argument: a number from 1 to 365 that repre-
sents one of the days of the year. The application displays whether that day is a holiday
according to the schedule of the HolidaySked class. Test the program with values such as
15 (Martin Luther King Day) or 103 (my 40th birthday). The application should respond
that day 15 is a holiday but day 103, sadly, is not.

Vectors
Perhaps the most popular of the data structures described today, the Vector class imple-
ments a vector, an expandable and contractible array of objects. Because the Vector
class is responsible for changing size as necessary, it has to decide when and how much
to grow or shrink as elements are added and removed. You can easily control this aspect
of vectors upon creation.

Before getting into that, take a look at how to create a basic vector:

Vector v = new Vector();

This constructor creates a default vector containing no elements. All vectors are empty
upon creation. One of the attributes that determines how a vector sizes itself is its initial
capacity, or the number of elements it allocates memory for by default.

The size of a vector is the number of elements currently stored in it.

The capacity of a vector is the amount of memory allocated to hold elements, and it is
always greater than or equal to the size.

226 DAY 8: Data Structures

The following code shows how to create a vector with a specified capacity:

Vector v = new Vector(25);

This vector allocates enough memory to support 25 elements. After 25 elements have
been added, however, the vector must decide how to expand to accept more elements.
You can specify the value by which a vector grows using another Vector constructor:

Vector v = new Vector(25, 5);

This vector has an initial size of 25 elements and expands in increments of 5 elements
when more than 25 elements are added to it. That means that the vector jumps to 30 ele-
ments in size, and then 35, and so on. A smaller growth value results in greater memory
management efficiency, but at the cost of more execution overhead, because more mem-
ory allocations are taking place. A larger growth value results in fewer memory alloca-
tions, although memory might be wasted if you don’t use all the extra space created.

You can’t just use square brackets (“[]”) to access the elements in a vector, as you can in
an array. You must use methods defined in the Vector class.

Use the add() method to add an element to a vector, as in the following example:

v.add(“Pak”);
v.add(“Han”);
v.add(“Inkster”);

This code shows how to add some strings to a vector. To retrieve the last string added to
the vector, you can use the lastElement() method:

String s = (String)v.lastElement();

Notice that you have to cast the return value of lastElement() because the Vector class
is designed to work with the Object class.

The get() method enables you to retrieve a vector element using an index, as shown in
the following code:

String s1 = (String)v.get(0);
String s2 = (String)v.get(2);

Because vectors are zero-based, the first call to get() retrieves the “Pak” string, and the
second call retrieves the “Han” string. Just as you can retrieve an element at a particular
index, you also can add and remove elements at an index by using the add() and
remove() methods:

v.add(1, “Park”);
v.add(0, “Sorenstam”);
v.remove(3);

Java Structures 227

8

The first call to add() inserts an element at index 1, between the “Pak” and “Han”
strings. The “Han” and “Inkster” strings are moved up an element in the vector to
accommodate the inserted “Park” string. The second call to add() inserts an element at
index 0, which is the beginning of the vector. All existing elements are moved up one
space in the vector to accommodate the inserted “Sorenstam” string. At this point, the
contents of the vector look like this:

n “Sorenstam”

n “Pak”

n “Park”

n “Han”

n “Inkster”

The call to remove() removes the element at index 3, which is the “Han” string. The
resulting vector consists of the following strings:

n “Sorenstam”

n “Pak”

n “Park”

n “Inkster”

You can use the set() method to change a specific element:

v.set(1, “Kung”);

This method replaces the “Pak” string with the “Kung” string, resulting in the following
vector:

n “Sorenstam”

n “Kung”

n “Park”

n “Inkster”

If you want to clear out the vector completely, you can remove all the elements with the
clear() method:

v.clear();

The Vector class also provides some methods for working with elements without using
indexes. These methods search through the vector for a particular element. The first of

228 DAY 8: Data Structures

these methods is the contains() method, which simply checks whether an element is in
the vector:

boolean isThere = v.contains(“Webb”);

Another method that works in this manner is the indexOf() method, which finds the
index of an element based on the element itself:

int i = v.indexOf(“Inkster”);

The indexOf() method returns the index of the element in question if it is in the vector,
or -1 if not. The removeElement() method works similarly, removing an element based
on the element itself rather than on an index:

v.removeElement(“Kung”);

The Vector class offers a few methods for determining and manipulating a vector’s size.
First, the size method determines the number of elements in the vector:

int size = v.size();

If you want to explicitly set the size of the vector, you can use the setSize() method:

v.setSize(10);

The setSize() method expands or truncates the vector to the size specified. If the vector
is expanded, null elements are inserted as the newly added elements. If the vector is
truncated, any elements at indexes beyond the specified size are discarded.

Recall that vectors have two different attributes relating to size: size and capacity. The
size is the number of elements in the vector, and the capacity is the amount of memory
allocated to hold all the elements. The capacity is always greater than or equal to the
size. You can force the capacity to exactly match the size by using the trimToSize()
method:

v.trimToSize();

You also can check to see what the capacity is by using the capacity() method:

int capacity = v.capacity();

Looping Through Data Structures
If you’re interested in working sequentially with all the elements in a vector, you can use
the iterator() method, which returns a list of the elements you can iterate through:

Iterator it = v.iterator();

Java Structures 229

8

As you learned earlier today, you can use an iterator to step through elements sequen-
tially. In this example, you can work with the it list using the methods defined by the
Iterator interface.

The following for loop uses an iterator and its methods to traverse an entire vector:

for (Iterator i = v.iterator(); i.hasNext();) {
String name = (String) i.next();
System.out.println(name);

}

Today’s next project demonstrates the care and feeding of vectors. The CodeKeeper class
in Listing 8.2 holds a set of text codes, some provided by the class and others provided
by users. Because the space needed to hold the codes isn’t known until the program is
run, a vector will be used to store the data instead of an array.

LISTING 8.2 The full text of CodeKeeper.java

1: import java.util.*;
2:
3: public class CodeKeeper {
4: Vector list;
5: String[] codes = { “alpha”, “lambda”, “gamma”, “delta”, “zeta” };
6:
7: public CodeKeeper(String[] userCodes) {
8: list = new Vector();
9: // load built-in codes
10: for (int i = 0; i < codes.length; i++) {
11: addCode(codes[i]);
12: }
13: // load user codes
14: for (int j = 0; j < userCodes.length; j++) {
15: addCode(userCodes[j]);
16: }
17: // display all codes
18: for (Iterator ite = list.iterator(); ite.hasNext();) {
19: String output = (String) ite.next();
20: System.out.println(output);
21: }
22: }
23:
24: private void addCode(String code) {
25: if (!list.contains(code)) {
26: list.add(code);
27: }
28: }
29:
30: public static void main(String[] arguments) {

230 DAY 8: Data Structures

LISTING 8.2 Continued

31: CodeKeeper keeper = new CodeKeeper(arguments);
32: }
33: }

This class compiles successfully, but there’s an ominous warning that it uses “unchecked
or unsafe operations.” This isn’t as severe as it sounds—the code works properly as
written and is not unsafe.

The warning serves as a not-so-subtle hint that there’s a better way to work with vectors
and other data structures. You learn about this technique later today.

The CodeKeeper class uses a Vector instance variable named list to hold the text codes.

First, five built-in codes are read from a string array into the vector (lines 10–12).

Next, any codes provided by the user as command-line arguments are added (lines
14–16).

Codes are added by calling the addCode() method (lines 24–28), which only adds a new
text code if it isn’t already present, using the vector’s contains(Object) method to
make this determination.

After the codes have been added to the vector, its contents are displayed. Running the
class with the command-line arguments “gamma”, “beta”, and “delta” produces the fol-
lowing output:

alpha
lambda
gamma
delta
zeta
beta

A for loop can be employed to iterate through a data structure. The loop takes the form
for (variable : structure). The structure is a data structure that implements the
Iterator interface. The variable section declares an object that holds each element of
the structure as the loop progresses.

This new for loop uses an iterator and its methods to traverse an entire vector named
list:

for (Object name : list) {
System.out.println(name);

}

The new loop can be used with any data structure that works with Iterator.

Java Structures 231

8

Stacks
Stacks are a classic data structure used to model information accessed in a specific order.
The Stack class in Java is implemented as a last-in-first-out (LIFO) stack, which means
that the last item added to the stack is the first one to be removed. Figure 8.2 shows the
logical organization of a stack.

232 DAY 8: Data Structures

Position
from
top

Element3

Element2

Element1

Element0

0

1

2

3

Top

Bottom

FIGURE 8.2
The organization of
a stack.

You might wonder why the numbers of the elements don’t match their positions from the
top of the stack. Keep in mind that elements are added to the top, so Element0, which is
on the bottom, was the first element added to the stack. Likewise, Element3, which is on
top, was the last element added. Also because Element3 is at the top of the stack, it will
be the first to be removed.

The Stack class defines only one constructor, which is a default constructor that creates
an empty stack. You use this constructor to create a stack like this:

Stack s = new Stack();

Stacks in Java are subclasses of Vector, so you can work with them as you would any
vector. They also contain methods specific to stack manipulation.

You can add new elements to a stack by using the push() method, which pushes an ele-
ment onto the top of the stack:

s.push(“One”);
s.push(“Two”);
s.push(“Three”);
s.push(“Four”);
s.push(“Five”);
s.push(“Six”);

This code pushes six strings onto the stack, with the last string (“Six”) ending up on
top. You remove elements off the stack by using the pop() method, which pops them off
the top:

String s1 = (String)s.pop();
String s2 = (String)s.pop();

This code pops the last two strings off the stack, leaving the first four strings. This code
results in the s1 variable containing the “Six” string and the s2 variable containing the
“Five” string.

If you want to use the top element on the stack without actually popping it off the stack,
you can use the peek() method:

String s3 = (String)s.peek();

This call to peek() returns the “Four” string but leaves the string on the stack. You can
search for an element on the stack by using the search() method:

int i = s.search(“Two”);

The search() method returns the distance from the top of the stack of the element if it is
found, or -1 if not. In this case, the “Two” string is the third element from the top, so the
search() method returns 2 (zero-based).

As in all Java data structures that deal with indexes or lists, the
Stack class reports element positions in a zero-based fashion: The
top element in a stack has a location of 0, the fourth element
down has a location of 3, and so on.

The last method defined in the Stack class is empty, which determines whether a stack is
empty:

boolean isEmpty = s.empty();

The Stack class provides the functionality for a common data structure in software
development.

Map
The Map interface defines a framework for implementing a key-mapped data structure, a
place to store objects each referenced by a key. The key serves the same purpose as an

Java Structures 233

8

NOTE

element number in an array—it’s a unique value used to access the data stored at a posi-
tion in the data structure.

You can put the key-mapped approach to work by using the Hashtable class or one of
the other classes that implement the Map interface. You learn about the Hashtable class
in the next section.

The Map interface defines a means of storing and retrieving information based on a key.
This is similar in some ways to the Vector class, in which elements are accessed through
an index, which is a specific type of key. However, keys in the Map interface can be just
about anything. You can create your own classes to use as the keys for accessing and
manipulating data in a dictionary. Figure 8.3 shows how keys map to data in a dictionary.

234 DAY 8: Data Structures

Element0

Element1

Element2

Element3

Key0

Key1

Key2

Key3

FIGURE 8.3
The organization of
a key-mapped data
structure.

The Map interface declares a variety of methods for working with the data stored in a dic-
tionary. Implementing classes have to implement all those methods to be truly useful.
The put and get methods are used to put objects in the dictionary and get them back.

Assuming that look is a class that implements the Map interface, the following code
shows how to use the put method to add elements:

Rectangle r1 = new Rectangle(0, 0, 5, 5);
look.put(“small”, r1);
Rectangle r2 = new Rectangle(0, 0, 15, 15);
look.put(“medium”, r2);
Rectangle r3 = new Rectangle(0, 0, 25, 25);
look.put(“large”, r3);

This code adds three Rectangle objects to the dictionary, using strings as the keys. To
get an element, use the get method and specify the appropriate key:

Rectangle r = (Rectangle)look.get(“medium”);

You also can remove an element with a key by using the remove() method:

look.remove(“large”);

You can find out how many elements are in the structure by using the size() method,
much as you did with the Vector class:

int size = look.size();

You also can check whether the structure is empty by using the isEmpty() method:

boolean isEmpty = look.isEmpty();

Hash Tables
The Hashtable class, which is derived from Dictionary, implements the Map interface
and provides a complete implementation of a key-mapped data structure. Hash tables
enable you to store data based on some type of key and have an efficiency defined by the
load factor of the table. The load factor is a floating-point number between 0.0 and 1.0
that determines how and when the hash table allocates space for more elements.

Like vectors, hash tables have a capacity, or an amount of allocated memory. Hash tables
allocate memory by comparing the current size of the table with the product of the
capacity and the load factor. If the size of the hash table exceeds this product, the table
increases its capacity by rehashing itself.

Load factors closer to 1.0 result in a more efficient use of memory at the expense of a
longer lookup time for each element. Similarly, load factors closer to 0.0 result in more
efficient lookups but tend to be more wasteful with memory. Determining the load factor
for your own hash tables depends on how you use each hash table and whether your pri-
ority is performance or memory efficiency.

You can create hash tables in any one of three ways. The first constructor creates a
default hash table:

Hashtable hash = new Hashtable();

The second constructor creates a hash table with the specified initial capacity:

Hashtable hash = new Hashtable(20);

Finally, the third constructor creates a hash table with the specified initial capacity and
load factor:

Hashtable hash = new Hashtable(20, 0.75F);

All the abstract methods defined in Map are implemented in the Hashtable class. In addi-
tion, the Hashtable class implements a few others that perform functions specific to sup-
porting hash tables. One of these is the clear() method, which clears a hash table of all
its keys and elements:

hash.clear();

Java Structures 235

8

The contains() method checks whether an object is stored in the hash table. This
method searches for an object value in the hash table instead of searching for a key. The
following code shows how to use the contains() method:

boolean isThere = hash.contains(new Rectangle(0, 0, 5, 5));

Similar to contains(), the containsKey() method searches a hash table but is based on
a key rather than a value:

boolean isThere = hash.containsKey(“Small”);

As mentioned earlier, a hash table rehashes itself when it determines that it must increase
its capacity. You can force a rehash yourself by calling the rehash() method:

hash.rehash();

The practical use of a hash table comes from its capability to represent data that are too
time-consuming to search or reference by value. The data structure comes in handy when
you’re working with complex data and it’s more efficient to access the data by using a
key rather than comparing the data objects themselves.

Furthermore, hash tables typically compute a key for elements, which is called a hash
code. For example, a string can have an integer hash code computed for it that uniquely
represents the string. When a bunch of strings are stored in a hash table, the table can
access the strings by using integer hash codes as opposed to using the contents of the
strings themselves. This results in much more efficient searching and retrieving capabili-
ties.

A hash code is a computed key that uniquely identifies each element in a hash table.

This technique of computing and using hash codes for object storage and reference is
exploited heavily throughout the Java class library. The parent of all classes, Object,
defines a hashCode() method overridden in most standard Java classes. Any class that
defines a hashCode() method can be efficiently stored and accessed in a hash table. A
class that wants to be hashed also must implement the equals() method, which defines a
way of telling whether two objects are equal. The equals() method usually just per-
forms a straight comparison of all the member variables defined in a class.

The next project you undertake today uses tables for a shopping application.

The ComicBooks application prices collectible comic books according to their base value
and their condition. The condition is described as one of the following: mint, near mint,
very fine, fine, good, or poor.

236 DAY 8: Data Structures

Each condition has a specific effect on a comic’s value:

n “Mint” books are worth three times their base price.

n “Near mint” books are worth two times their base price.

n “Very fine” books are worth one and one-half times their base price.

n “Fine” books are worth their base price.

n “Good” books are worth one-half times their base price.

n “Poor” books are worth one-quarter times their base price.

To associate text such as “mint” or “very fine” with a numeric value, they are put into a
hash table. The keys to the hash table are the condition descriptions, and the values are
floating-point numbers such as 3.0, 1.5, and 0.25.

Enter the text of Listing 8.3 in your Java editor and save the class as ComicBooks.java.

LISTING 8.3 The Full Text of ComicBooks.java

1: import java.util.*;
2:
3: public class ComicBooks {
4:
5: public ComicBooks() {
6: }
7:
8: public static void main(String[] arguments) {
9: // set up hash table
10: Hashtable quality = new Hashtable();
11: float price1 = 3.00F;
12: quality.put(“mint”, price1);
13: float price2 = 2.00F;
14: quality.put(“near mint”, price2);
15: float price3 = 1.50F;
16: quality.put(“very fine”, price3);
17: float price4 = 1.00F;
18: quality.put(“fine”, price4);
19: float price5 = 0.50F;
20: quality.put(“good”, price5);
21: float price6 = 0.25F;
22: quality.put(“poor”, price6);
23: // set up collection
24: Comic[] comix = new Comic[3];
25: comix[0] = new Comic(“Amazing Spider-Man”, “1A”, “very fine”,
26: 9240.00F);
27: comix[0].setPrice((Float) quality.get(comix[0].condition));
28: comix[1] = new Comic(“Incredible Hulk”, “181”, “near mint”,

Java Structures 237

8

LISTING 8.3 Continued

29: 1325.00F);
30: comix[1].setPrice((Float) quality.get(comix[1].condition));
31: comix[2] = new Comic(“Cerebus”, “1A”, “good”, 45.00F);
32: comix[2].setPrice((Float) quality.get(comix[2].condition));
33: for (int i = 0; i < comix.length; i++) {
34: System.out.println(“Title: “ + comix[i].title);
35: System.out.println(“Issue: “ + comix[i].issueNumber);
36: System.out.println(“Condition: “ + comix[i].condition);
37: System.out.println(“Price: $” + comix[i].price + “\n”);
38: }
39: }
40: }
41:
42: class Comic {
43: String title;
44: String issueNumber;
45: String condition;
46: float basePrice;
47: float price;
48:
49: Comic(String inTitle, String inIssueNumber, String inCondition,
50: float inBasePrice) {
51:
52: title = inTitle;
53: issueNumber = inIssueNumber;
54: condition = inCondition;
55: basePrice = inBasePrice;
56: }
57:
58: void setPrice(float factor) {
59: price = basePrice * factor;
60: }
61: }

The ComicBooks application compiles with the same “unchecked or unsafe operations”
warning described earlier today. You learn how to address this in the next section.

When you run the ComicBooks application, it produces the following output:

Title: Amazing Spider-Man
Issue: 1A
Condition: very fine
Price: $13860.0

Title: Incredible Hulk
Issue: 181
Condition: near mint

238 DAY 8: Data Structures

Price: $2650.0

Title: Cerebus
Issue: 1A
Condition: good
Price: $22.5

The ComicBooks application is implemented as two classes: an application class called
ComicBooks and a helper class called Comic.

In the application, the hash table is created in lines 9–22.

First, the hash table is created in line 10.

Next, a float called price1 is created with the value 3.00. This value is added to the
hash table and associated with the key “mint”. (Remember that hash tables, like other
data structures, can only hold objects—the float value is automatically converted to a
Float object through autoboxing.)

The process is repeated for each of the other comic book conditions from “near mint” to
“poor.”

After the hash table is set up, an array of Comic objects called comix is created to hold
each comic book currently for sale.

The Comic constructor is called with four arguments: the book’s title, issue number, con-
dition, and base price. The first three are strings, and the last is a float.

After a Comic has been created, its setPrice(float) method is called to set the book’s
price based on its condition. Here’s an example, line 27:

comix[0].setPrice((Float)quality.get(comix[0].condition));

The hash table’s get(String) method is called with the condition of the book, a String
that is one of the keys in the table. An Object is returned that represents the value asso-
ciated with that key. (In line 27, because comix[0].condition is equal to “very fine,”
get() returns the floating-point value 3.00F.)

Because get() returns an Object, it must be cast as a Float. The Float argument is
unboxed as a float value automatically through unboxing.

This process is repeated for two more books.

In lines 33–38, information about each comic book in the comix array is displayed.

Java Structures 239

8

The Comic class is defined in lines 42–61. There are five instance variables—the String
object’s title, issueNumber, and condition, and the floating-point value’s basePrice
and price.

The constructor method of the class, located in lines 49–56, sets the value of four
instance variables to the arguments sent to the constructor.

The setPrice(Float) method in lines 58–60 sets the price of a comic book. The argu-
ment sent to the method is a float value. The price of a comic is calculated by multiply-
ing this float by the base price of the comic. Consequently, if a book is worth $1,000,
and its multiplier is 2.0, the book is priced at $2,000.

Hash tables are a powerful data structure for manipulating large amounts of data. The
fact that hash tables are so widely supported in the Java class library via the Object class
should give you a clue as to their importance in Java programming.

Generics
The data structures that you learned about today are arguably the most essential utility
classes in the Java class library.

Hash tables, vectors, stacks, and the other structures in the java.util package are useful
regardless of the kind of programs that you want to develop. Almost every software pro-
gram handles data in some manner.

These data structures are well suited for use in code that applies generically to a wide
range of different classes of objects. A method written to manipulate vectors could be
written to function equally well on strings, string buffers, character arrays, or other
objects that represent text. A method in an accounting program could take objects that
represent integers, floating-point numbers, and other math classes, using each to calcu-
late a balance.

This flexibility comes at a price: When a data structure works with any kind of object,
there hasn’t been a way for the Java compiler to warn you when the structure is being
misused.

For instance, the ComicBooks application uses a hash table named quality to associate
condition descriptions such as “mint” and “good” with price multipliers. Here’s the state-
ment for “near mint”:

quality.put(“near mint”, 1.50F);

240 DAY 8: Data Structures

By design, the quality table should only hold floating-point values (as Float objects).
However, the class compiles successfully regardless of the class of the value added to a
table. You might goof and unintentionally add a string to the table, as in this revised
statement:

quality.put(“near mint”, “1.50”);

The class compiles successfully, but when it is run, it stops with a ClassCastException
error in the following statement:

comix[1].setPrice((Float) quality.get(comix[1].condition));

The reason for the error is that the statement tries to cast the table’s “near mint” value to
a Float, which fails because it receives the string “1.50” instead.

For obvious reasons, runtime errors are much more troublesome for programmers than
compiler errors. A compiler error stops you in your tracks and must be fixed before you
can continue. A runtime error might creep its way into the code, unbeknownst to you,
and cause problems for users of your software.

The class or classes expected in a data structure can be specified using a feature of the
language called generics.

The expected class information is added to statements where the structure is assigned a
variable or created with a constructor. The class or classes are placed within “<” and “>”
characters and follow the name of the class, as in this statement:

Vector<Integer> zipCodes = new Vector<Integer>;

This statement creates a Vector that will be used to hold Integer objects. Because the
vector is declared in this manner, the following statements cause a compiler error:

zipCodes.add(“90210”);
zipCodes.add(“02134”);
zipCodes.add(“20500”);

The compiler recognizes that String objects do not belong in this vector. The proper
way to add elements to the vector is to use integer values:

zipCodes.add(90210);
zipCodes.add(02134);
zipCodes.add(20500);

Data structures that use multiple classes, such as hash tables, take these class names sep-
arated by commas within the “<” and “>” characters.

Generics 241

8

The dilemma with the ComicBook application can be remedied by changing line 10 to the
following:

Hashtable<String, Float> quality = new Hashtable<String, Float>();

This sets up a table to use String objects for keys and Float objects for values. With
this statement in place, a string can no longer be added as the value for a condition such
as “near mint.” A compiler error flags a problem of this kind.

Generics also make it simpler to retrieve an object from a data structure—you don’t have
to use casting to convert them to the desired class. For example, the quality table no
longer requires a cast to produce Float objects in statements like this one:

comix[1].setPrice(quality.get(comix[1].condition));

From a stylistic standpoint, the addition of generics in variable declarations and construc-
tor methods is likely to appear intimidating. However, after you become accustomed to
working with them (and using autoboxing, unboxing, and the new for loops), data struc-
tures are significantly easier to work with and less error-prone.

The CodeKeeper2 class in Listing 8.4 is rewritten to use both generics and the new for
loop that can iterate through data structures like vectors.

LISTING 8.4 The full text of CodeKeeper2.java

1: import java.util.*;
2:
3: public class CodeKeeper2 {
4: Vector<String> list;
5: String[] codes = { “alpha”, “lambda”, “gamma”, “delta”, “zeta” };
6:
7: public CodeKeeper2(String[] userCodes) {
8: list = new Vector<String>();
9: // load built-in codes
10: for (int i = 0; i < codes.length; i++) {
11: addCode(codes[i]);
12: }
13: // load user codes
14: for (int j = 0; j < userCodes.length; j++) {
15: addCode(userCodes[j]);
16: }
17: // display all codes
18: for (String code : list) {
19: System.out.println(code);
20: }
21: }
22:
23: private void addCode(String code) {

242 DAY 8: Data Structures

LISTING 8.4 Continued

24: if (!list.contains(code)) {
25: list.add(code);
26: }
27: }
28:
29: public static void main(String[] arguments) {
30: CodeKeeper2 keeper = new CodeKeeper2(arguments);
31: }
32: }

The only modifications to the class are in line 4, where the new generics declaration for a
vector of strings is made, and lines 18–19, the simpler for loop.

Generics can limit data structures to any kind of class, even ones
of your own design. For example, a checkbook application could
define a Check class for individual financial checks, holding each
in a Vector defined to hold only objects of that class.

Summary
Today, you learned about several data structures you can use in your Java programs:

n Bit sets—Large sets of Boolean on-or-off values

n Stacks—Structures in which the last item added is the first item removed

n Vectors—Arrays that can change in size dynamically and be shrunken or expanded
as needed

n Hash tables—Objects stored and retrieved using unique keys

These data structures are part of the java.util package, a collection of useful classes for
handling data, dates, strings, and other things. The addition of generics and new for
loops for iteration enhances their capabilities.

Learning about the ways you can organize data in Java has benefits in all aspects of soft-
ware development. Whether you’re learning the language to write servlets, console pro-
grams, consumer software with a graphical user interface, or something else entirely, you
will need to represent data in numerous ways.

Summary 243

8

NOTE

Q&A
Q The HolidaySked project from today could be implemented as an array of

Boolean values. Is one way preferable to the other?

A That depends. One thing you’ll find as you work with data structures is that there
are often many different ways to implement something. Bit sets are somewhat
preferable to a Boolean array when the size of your program matters because a bit
set is smaller. An array of a primitive type such as Boolean is preferable when the
speed of your program matters because arrays are somewhat faster. In the example
of the Holiday class, it’s so small that the difference is negligible, but as you
develop your own robust, real-world applications, these kinds of decisions can
make a difference.

Q The Java compiler’s warning for data structures that don’t use generics is
pretty ominous—it doesn’t sound like a very good idea to release a class that
has “unchecked or unsafe operations.” Is there any reason to stick with old
code or not use generics at all with data structures?

A The compiler’s new warning about safety is a bit overstated. Java programmers
have been using vectors, hash tables, and other structures for years in their classes,
creating software that runs reliably and safely. The lack of generics meant there
was more work necessary to ensure there weren’t runtime problems because of the
wrong classes placed in a structure.

It’s more accurate to state that data structures can be made more safe now through
the use of generics, rather than suggesting that previous versions of Java were
unsafe.

My personal rule of thumb: Use generics in new code and old code that’s being
reorganized or significantly rewritten, and leave old code that works correctly
alone.

Quiz
Review today’s material by taking this three-question quiz.

Questions
1. Which of the following kinds of data cannot be stored in a hash table?

a. String

b. int

c. Both can be stored in a table.

244 DAY 8: Data Structures

2. A vector is created, and three strings called Tinker, Evers, and Chance are added
to it. The method removeElement(“Evers”) is called. Which of the following
Vector methods retrieve the string “Chance”?

a. get(1);

b. get(2);

c. get(“Chance”);

3. Which of these classes implements the Map interface?

a. Stack

b. Hashtable

c. BitSet

Answers
1. c. In past versions of Java, to store primitive types such as int in a table, objects

must be used to represent their values (such as Integer for integers). This isn’t
true in Java 6: Primitive types are converted automatically to the corresponding
object class through a process called autoboxing.

2. a. The index numbers of each item in a vector can change as items are added or
removed. Because “Chance” becomes the second item in the vector after “Evers” is
removed, it is retrieved by calling get(1).

3. b.

Certification Practice
The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Given:

public class Recursion {
public int dex = -1;

public Recursion() {
dex = getValue(17);

}

public int getValue(int dexValue) {
if (dexValue > 100)

return dexValue;
else

Quiz 245

8

return getValue(dexValue * 2);
}

public static void main(String[] arguments) {
Recursion r = new Recursion();
System.out.println(r.dex);

}
}

What will be the output of this application?

a. -1

b. 17

c. 34

d. 136

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 8 page and click the Certification Practice link.

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. Add two more conditions to the ComicBooks application: “pristine mint” for books
that should sell at five times their base price and “coverless” for books that should
sell at one-tenth of their base price.

2. Create an application that uses a vector as a shopping cart that holds Fruit objects.
Each Fruit object should have a name, quantity, and price.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java21days.com.

246 DAY 8: Data Structures

DAY 9:
Working with Swing

The Java class library includes a set of packages called Swing that
enable Java programs to offer graphical user interfaces and collect user
input with the mouse, keyboard, and other input devices.

Today, you will use Swing to create applications that feature each of
these graphical user interface components:

n Frames—Windows that can include a title bar; menu bar; and
Maximize, Minimize, and Close buttons

n Containers—Interface elements that can hold other components

n Buttons—Clickable regions with text or graphics indicating their
purpose

n Labels—Text or graphics that provide information

n Text fields and text areas—Windows that accept keyboard input
and allow text to be edited

n Drop-down lists—Groups of related items that can be selected
from drop-down menus or scrolling windows

n Check boxes and radio buttons—Small squares or circles that
can be selected or deselected

Creating an Application
Swing enables you to create a Java program with an interface that uses the style of the
native operating system, such as Windows or Solaris, or two styles, Ocean and Metal,
that are unique to Java. Each of these styles is called a look and feel because it describes
both the appearance of the interface and how its components function when they are
used.

Swing components are part of the javax.swing package, a standard part of the Java class
library. To use a Swing class, you must make it available with an import statement or
use a catchall statement such as the following:

import javax.swing.*;

Two other packages used with graphical user interface programming are java.awt, the
Abstract Windowing Toolkit (AWT), and java.awt.event, event-handling classes that
handle user input.

When you use a Swing component, you work with objects of that component’s class.
You create the component by calling its constructor and then calling methods of the com-
ponent as needed for proper setup.

All Swing components are subclasses of the abstract class JComponent, which includes
methods to set the size of a component, change the background color, define the font
used for any displayed text, and set up ToolTips—explanatory text that appears when you
hover your mouse over the component for a few seconds.

Swing classes inherit from many of the same superclasses as the
Abstract Windowing Toolkit, so it is possible to use Swing and AWT
components together in the same interface. However, in some
cases the two types of components will not be rendered correctly
in a container. To avoid these problems, it’s best to always use
Swing components—there’s one for every AWT component.

Before components can be displayed in a user interface, they must be added to a con-
tainer, a component that can hold other components. Swing containers, which often can
be placed in other containers, are subclasses of java.awt.Container. This class includes
methods to add and remove components from a container, arrange components using an
object called a layout manager, and set up borders around the edges of a container.

248 DAY 9: Working with Swing

CAUTION

Creating an Interface
The first step in creating a Swing application is to create a class that represents the
graphical user interface. An object of this class serves as a container that holds all the
other components to be displayed.

In many projects, the main interface object is either a simple window (the JWindow class)
or a more specialized window called a frame (the JFrame class).

A window is a container that can be displayed on a user’s desktop. A simple window
does not have a title bar; Maximize, Minimize, or Close buttons; or other features you
see on most windows that open in a graphical operating system. In Swing, windows that
do have these features are called frames.

In a graphical environment such as Windows or Mac OS, users expect to have the ability
to move, resize, and close the windows of programs that they run. The main place a sim-
ple window, rather than a frame, turns up is when programs are loading—there is some-
times a title screen with the program’s name, logo, and other information.

One way to create a graphical Swing application is to make the interface a subclass of
JFrame, as in the following class declaration:

public class FeedReader extends JFrame {
// ...

}

The constructor of the class should handle the following tasks:

n Call a superclass constructor to give the frame a title and handle other setup proce-
dures.

n Set the size of the frame’s window, either by specifying the width and height in
pixels or by letting Swing choose the right size.

n Decide what to do if a user closes the window.

n Display the frame.

The JFrame class has two constructors: JFrame() and JFrame(String). One sets the
frame’s title bar to the specified text, and the other leaves the title bar empty. You also
can set the title by calling the frame’s setTitle(String) method.

The size of a frame can be established by calling the setSize(int, int) method with the
width and height as arguments. The size of a frame is indicated in pixels, so if you called
setSize(650, 550), the frame would take up most of a screen at 800×600 resolution.

Creating an Application 249

9

You also can call the method setSize(Dimension) to set up a
frame’s size. Dimension is a class in the java.awt package that
represents the width and height of a user interface component.
Calling the Dimension(int, int) constructor creates a Dimension
object representing the width and height specified as arguments.

Another way to set the size of a frame is to fill the frame with the components it will
contain and then call the frame’s pack() method. This resizes the frame based on the
size of the components inside it. If the size of the frame is bigger than it needs to be,
pack() shrinks it to the minimum size required to display the components. If the frame is
too small (or the size has not been set at all), pack() expands it to the required size.

Frames are invisible when they are created. You can make them visible by calling the
frame’s setVisible(boolean) method with the literal true as an argument.

If you want a frame to be displayed when it is created, call one of these methods in the
constructor. You also can leave the frame invisible, requiring any class that uses the
frame to make it visible by calling setVisible(true). (To hide a frame, call
setVisible(false).)

When a frame is displayed, the default behavior is for it to be positioned in the upper-left
corner of the computer’s desktop. You can specify a different location by calling the
setBounds(int, int, int, int) method. The first two arguments to this method are
the (x,y) position of the frame’s upper-left corner on the desktop. The last two arguments
set the width and height of the frame.

The following class represents a 300×100 frame with “Edit Payroll” in the title bar:

public class Payroll extends javax.swing.JFrame {
public Payroll() {

super(“Edit Payroll”);
setSize(300, 100);
setVisible(true);

}
}

Every frame has Maximize, Minimize, and Close buttons on the title bar at the user’s
control—the same controls present in the interface of other software running on your
system.

The normal behavior when a frame is closed is for the application to keep running. When
a frame serves as a program’s main graphical user interface, this leaves a user with no
way to stop the program.

250 DAY 9: Working with Swing

NOTE

To change this, you must call a frame’s setDefaultCloseOperation() method with one
of four static variables of the JFrame class as an argument:

n EXIT_ON_CLOSE—Exit the application when the frame is closed.

n DISPOSE_ON_CLOSE—Close the frame, remove the frame object from memory, and
keep running the application.

n DO_NOTHING_ON_CLOSE—Keep the frame open and continue running.

n HIDE_ON_CLOSE—Close the frame and continue running.

To prevent a user from closing a frame at all, add the following statement to the frame’s
constructor method:

setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

If you are creating a frame to serve as an application’s main user interface, the expected
behavior is probably EXIT_ON_CLOSE, which shuts down the application along with the
frame.

Developing a Framework
Listing 9.1 contains a simple application that displays a frame 300×100 pixels in size.
This class can serve as a framework—pun unavoidable—for any applications you create
that use a graphical user interface.

LISTING 9.1 The Full Text of SimpleFrame.java

1: import javax.swing.JFrame;
2:
3: public class SimpleFrame extends JFrame {
4: public SimpleFrame() {
5: super(“Frame Title”);
6: setSize(300, 100);
7: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
8: setVisible(true);
9: }
10:
11: public static void main(String[] arguments) {
12: SimpleFrame sf = new SimpleFrame();
13: }
14: }

When you compile and run the application, you should see the frame displayed in
Figure 9.1.

Creating an Application 251

9

The SimpleFrame application isn’t much to look at—the graphical user interface contains
no components, aside from the standard Minimize, Maximize, and Close (X) buttons on
the title bar shown in Figure 9.1. You will add components later today.

In the application, a SimpleFrame object is created in the main() method in lines 11–13.
If you had not displayed the frame when it was constructed, you could call
sf.setVisible(true) in the main() method to display the frame.

The work involved in creating the frame’s user interface takes place in the
SimpleFrame() constructor. Components could be created and added to the frame within
this constructor.

Creating a window using JWindow is similar to working with frames in Swing, but you
can’t provide a title or close a window.

Listing 9.2 contains an application that creates and opens a window, changing its size
from 0×0 to 400×400 before your eyes.

LISTING 9.2 The Full Text of SimpleWindow.java

1: import javax.swing.JWindow;
2:
3: public class SimpleWindow extends JWindow {
4: public SimpleWindow() {
5: super();
6: setBounds(400, 300, 10, 10);
7: setVisible(true);
8: }
9:
10: public static void main(String[] arguments) {
11: SimpleWindow sw = new SimpleWindow();
12: for (int i = 10; i < 400; i++) {
13: sw.setBounds(400 - (i/2), 300 - (i/2), i, i);
14: }
15: }
16: }

In the application, the call to setBounds(400, 300, 10, 10) in line 6 of Listing 9.2
sets the window to be 10×10 in size and displayed with its upper-left corner at the (x,y)
position 400, 300.

252 DAY 9: Working with Swing

FIGURE 9.1
Displaying a
frame.

The for loop in lines 12–14 changes the size of the window and moves its upper-left cor-
ner with each iteration. The window grows from 10×10 in size to 400×400 as the loop
progresses. You can close the window and application by pressing Ctrl+C on your key-
board.

Displaying a Splash Page
The lack of adornment on a JWindow component makes it suitable for use as a splash
page, a graphic or text that displays as an application loads.

Java 6 adds a better, faster way to do this by defining a graphic that functions as an
application’s splash. The graphic loads even before the Java interpreter and disappears
when the application begins running.

The graphic can be specified with the -splash attribute when the class is run at a com-
mand line. Here’s how to do it with the SimpleWindow class:

java -splash:lighthouse.jpg SimpleWindow

If you need a graphic to test this capability, download lighthouse.
jpg, a photograph of a Norwegian lighthouse taken by Steve
Cadman, from the Day 9 page of this book’s website at http://
www.java21days.com.

Another technique to define a splash graphic is covered on Day 14, “Developing Swing
Applications.”

Creating a Component
Creating a graphical user interface is a great way to get experience working with objects
in Java because each interface component is represented by its own class.

To use an interface component in Java, you create an object of that component’s class.
You already have worked with the container classes JFrame and JWindow.

One of the simplest components to employ is JButton, the class that represents clickable
buttons.

In most programs, buttons trigger an action—click Install to begin installing software,
click a smiley button to begin a new game of Minesweeper, click the Minimize button to
prevent your boss from seeing Minesweeper running, and so on.

A Swing button can feature a text label, a graphical icon, or a combination of both.

Creating an Application 253

9

NOTE

Constructors you can use for buttons include the following:

n JButton(String)—A button labeled with the specified text

n JButton(Icon)—A button that displays the specified graphical icon

n JButton(String, Icon)—A button with the specified text and graphical icon

The following statements create three buttons with text labels:

JButton play = new JButton(“Play”);
JButton stop = new JButton(“Stop”);
JButton rewind = new JButton(“Rewind”);

Graphical buttons are covered later today.

Adding Components to a Container
Before you can display a user interface component such as a button in a Java program,
you must add it to a container and display that container.

To add a component to a container, call the container’s add(Component) method with the
component as the argument (all user interface components in Swing inherit from
java.awt.Component).

The simplest Swing container is a panel (the JPanel class). The following example cre-
ates a button and adds it to a panel:

JButton quit = new JButton(“Quit”);
JPanel panel = new JPanel();
panel.add(quit);

Use the same technique to add components to frames and windows.

In previous versions of Java, components could not be added
directly to frames. Instead, they were placed in the container’s
content pane. Though this technique is no longer necessary,
you’re likely to encounter it in code.

Complex containers are divided into panes, a kind of container
within a container, and components are added to the container’s
content pane.

You can use a panel to represent a frame’s content pane, adding
components to it with the panel’s add(Component) method. After the
panel has been filled, call the frame’s setContentPane(Container)
method with the panel as the argument. This makes it the frame’s
content pane, which also can be done with windows.

254 DAY 9: Working with Swing

NOTE

The program in Listing 9.3 uses the application framework created earlier in this lesson.
A panel is created, three buttons are added to the panel, and then it is added to a frame.

LISTING 9.3 The Full Text of ButtonFrame.java

1: import javax.swing.*;
2:
3: public class ButtonFrame extends JFrame {
4: JButton load = new JButton(“Load”);
5: JButton save = new JButton(“Save”);
6: JButton unsubscribe = new JButton(“Unsubscribe”);
7:
8: public ButtonFrame() {
9: super(“Button Frame”);
10: setSize(140, 170);
11: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12: JPanel pane = new JPanel();
13: pane.add(load);
14: pane.add(save);
15: pane.add(unsubscribe);
16: add(pane);
17: setVisible(true);
18: }
19:
20: public static void main(String[] arguments) {
21: ButtonFrame bf = new ButtonFrame();
22: }
23: }

When you run the application, a small frame opens that contains the three buttons (see
Figure 9.2).

Creating an Application 255

9

FIGURE 9.2
The ButtonFrame
application.

The ButtonFrame class has three instance variables: the load, save, and unsubscribe
JButton objects.

In lines 12–15, a new JPanel object is created, and the three buttons are added to the
panel by calls to its add() method. When the panel contains all the buttons, the frame’s
add() method is called in line 16 with the panel as an argument, adding it to the frame.

If you click the buttons, absolutely nothing happens. Doing some-
thing in response to a button click is covered on Day 12,
“Responding to User Input.”

Working with Components
Swing offers more than two dozen different user interface components in addition to the
buttons and containers you have used so far. You will work with many of these compo-
nents for the rest of today and on Day 10, “Building a Swing Interface.”

All Swing components share a common superclass, javax.swing.JComponent, from
which they inherit several methods you will find useful in your own programs.

The setEnabled(boolean) method determines whether a component can receive user
input (an argument of true) or is inactive and cannot receive input (false). Components
are enabled by default. Many components change in appearance to indicate when they
are not presently usable—for instance, a disabled JButton has light gray borders and
gray text. If you want to check whether a component is enabled, you can call the
isEnabled() method, which returns a boolean value.

The setVisible(boolean) method works for all components the way it does for con-
tainers. Use true to display a component and false to hide it. There also is a boolean
isVisible() method.

The setSize(int, int) method resizes the component to the width and height specified
as arguments, and setSize(Dimension) uses a Dimension object to accomplish the same
thing. For most components, you don’t need to set a size—the default is usually accept-
able. To find out the size of a component, call its getSize() method, which returns a
Dimension object with the dimensions in height and width instance variables.

As you will see, similar Swing components also have other methods in common, such as
setText() and getText() for text components and setValue() and getValue() for
components that store a numeric value.

256 DAY 9: Working with Swing

NOTE

When you begin working with Swing components, a common
source of mistakes is to set up aspects of a component after it
has been added to a container. Make sure to set up all aspects of
a component before placing it in a panel or any other container.

Image Icons
Swing supports the use of graphical ImageIcon objects on buttons and other components
in which a label can be provided. An icon is a small graphic that can be placed on a but-
ton, label, or other user interface element to identify it—such as a garbage can or recy-
cling bin icon for deleting files, folder icons for opening and storing files, and the like.

An ImageIcon object can be created by specifying the filename of a graphic as the only
argument to the constructor. The following example loads an icon from the graphics file
subscribe.gif and creates a JButton with the icon as its label:

ImageIcon subscribe = new ImageIcon(“subscribe.gif”);
JButton button = new JButton(subscribe);
JPanel pane = new JPanel();
pane.add(button);
add(pane);
setVisible(true);

Listing 9.4 contains a Java application that creates four image icons with text labels, adds
them to a panel, and then adds the panel to a frame.

LISTING 9.4 The Full Text of IconFrame.java

1: import javax.swing.*;
2:
3: public class IconFrame extends JFrame {
4: JButton load, save, subscribe, unsubscribe;
5:
6: public IconFrame() {
7: super(“Icon Frame”);
8: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
9: JPanel panel = new JPanel();
10: // create icons
11: ImageIcon loadIcon = new ImageIcon(“load.gif”);
12: ImageIcon saveIcon = new ImageIcon(“save.gif”);
13: ImageIcon subscribeIcon = new ImageIcon(“subscribe.gif”);
14: ImageIcon unsubscribeIcon = new ImageIcon(“unsubscribe.gif”);
15: // create buttons
16: load = new JButton(“Load”, loadIcon);
17: save = new JButton(“Save”, saveIcon);

Working with Components 257

9

CAUTION

LISTING 9.4 Continued

18: subscribe = new JButton(“Subscribe”, subscribeIcon);
19: unsubscribe = new JButton(“Unsubscribe”, unsubscribeIcon);
20: // add buttons to panel
21: panel.add(load);
22: panel.add(save);
23: panel.add(subscribe);
24: panel.add(unsubscribe);
25: // add the panel to a frame
26: add(panel);
27: pack();
28: setVisible(true);
29: }
30:
31: public static void main(String[] arguments) {
32: IconFrame ike = new IconFrame();
33: }
34: }

Figure 9.3 shows the result.

258 DAY 9: Working with Swing

FIGURE 9.3
An interface con-
taining buttons
labeled with icons.

The icons’ graphics referred to in lines 11–14 can be found on this book’s official web-
site at http://www.java21days.com on the Day 9 page.

The IconFrame application does not set the size of the frame in pixels. Instead, the
pack() method is called in line 27 to expand the frame to the minimum size required to
present the four buttons next to each other.

If the frame were set to be tall rather than wide—for instance, by calling setSize(100,
400) in the constructor—the buttons would be stacked vertically.

Some of the project’s graphics are from Sun’s Java Look and Feel
Graphics Repository, a collection of icons suitable for use in your
own programs. If you’re looking for icons to experiment with in
Swing applications, you can find the icons at the following
address:

http://java.sun.com/developer/techDocs/hi/repository

NOTE

Labels
A label is a user component that holds text, an icon, or both. Labels, which are created
from the JLabel class, often are used to identify the purpose of other components on an
interface. They cannot be directly edited by a user.

To create a label, you can use the following constructors:

n JLabel(String)—A label with the specified text

n JLabel(String, int)—A label with the specified text and alignment

n JLabel(String, Icon, int)—A label with the specified text, icon, and
alignment

The alignment of a label determines how its text or icon is aligned in relation to the area
taken up by the window. Three static class variables of the SwingConstants interface are
used to specify alignment: LEFT, CENTER, and RIGHT.

The contents of a label can be set with setText(String) or setIcon(Icon) methods.
You also can retrieve these things with getText() and getIcon() methods.

The following statements create three labels with left, center, and right alignment,
respectively:

JLabel feedsLabel = new JLabel(“Feeds”, SwingConstants.LEFT);
JLabel urlLabel = new JLabel(“URL: “, SwingConstants.CENTER);
JLabel dateLabel = new JLabel(“Date: “, SwingConstants.RIGHT);

Text Fields
A text field is a location on an interface where a user can enter and modify text using the
keyboard. Text fields are represented by the JTextField class, and each can handle one
line of input. Later in this section, you will see a similar component called a text area
that can handle multiple lines.

Constructors for text fields include the following:

n JTextField()—An empty text field

n JTextField(int)—A text field with the specified width

n JTextField(String, int)—A text field with the specified text and width

A text field’s width attribute has relevance only if the interface is organized in a manner
that does not resize components. You will get more experience with this when you work
with layout managers on Day 11, “Arranging Components on a User Interface.”

Working with Components 259

9

The following statements create an empty text field that has enough space for roughly 60
characters and a text field of the same size with the starting text “Enter RSS feed URL
here”:

JTextField rssUrl = new JTextField(60);
JTextField rssUrl2 = new JTextField(

“Enter RSS feed URL here”, 60);

Text fields and text areas both inherit from the superclass JTextComponent and share
many common methods.

The setEditable(boolean) method determines whether a text component can be edited
(true) or not (false). There’s also an isEditable() method that returns a corresponding
boolean value.

The setText(String) method changes the text to the specified string, and the
getText() method returns the component’s current text as a string. Another method
retrieves only the text that a user has highlighted in the getSelectedText() component.

Password fields are text fields that hide the characters a user is typing into the field. They
are represented by the JPasswordField class, a subclass of JTextField. The
JPasswordField constructor methods take the same arguments as those of its parent
class.

After you have created a password field, call its setEchoChar(char) method to obscure
input by replacing each input character with the specified character.

The following statements create a password field and set its echo character to “#”:

JPasswordField codePhrase = new JPasswordField(20);
codePhrase.setEchoChar(‘#’);

Text Areas
Text areas, editable text fields that can handle more than one line of input, are imple-
mented with the JTextArea class.

JTextArea includes the following constructors:

n JTextArea(int, int)—A text area with the specified number of rows and
columns

n JTextArea(String, int, int)—A text area with the specified text, rows, and
columns

260 DAY 9: Working with Swing

You can use the getText(), getSelectedText(), and setText(String) methods with
text areas as you would text fields. Also, an append(String) method adds the specified
text at the end of the current text, and an insert(String, int) method inserts the spec-
ified text at the indicated position.

The setLineWrap(boolean) method determines whether text will wrap to the next line
when it reaches the right edge of the component. Call setLineWrap(true) to cause line
wrapping to occur.

The setWrapStyleWord(boolean) method determines what wraps to the next line—
either the current word (true) or the current character (false).

The next project you will create, the Authenticator application in Listing 9.5, uses sev-
eral Swing components to collect user input: a text field, a password field, and a text
area. Labels also are used to indicate the purpose of each text component.

LISTING 9.5 The Full Text of Authenticator.java

1: import javax.swing.*;
2:
3: public class Authenticator extends javax.swing.JFrame {
4: JTextField username = new JTextField(15);
5: JPasswordField password = new JPasswordField(15);
6: JTextArea comments = new JTextArea(4, 15);
7: JButton ok = new JButton(“OK”);
8: JButton cancel = new JButton(“Cancel”);
9:
10: public Authenticator() {
11: super(“Account Information”);
12: setSize(300, 220);
13: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
14:
15: JPanel pane = new JPanel();
16: JLabel usernameLabel = new JLabel(“Username: “);
17: JLabel passwordLabel = new JLabel(“Password: “);
18: JLabel commentsLabel = new JLabel(“Comments: “);
19: comments.setLineWrap(true);
20: comments.setWrapStyleWord(true);
21: pane.add(usernameLabel);
22: pane.add(username);
23: pane.add(passwordLabel);
24: pane.add(password);
25: pane.add(commentsLabel);
26: pane.add(comments);
27: pane.add(ok);
28: pane.add(cancel);
29: add(pane);
30: setVisible(true);

Working with Components 261

9

LISTING 9.5 Continued

31: }
32:
33: public static void main(String[] arguments) {
34: Authenticator auth = new Authenticator();
35: }
36: }

Figure 9.4 shows the application in use. The password is obscured with asterisk charac-
ters (“*”), which is the default when no other echo character is designated by calling the
field’s setEchoChar(char) method.

262 DAY 9: Working with Swing

FIGURE 9.4
The
Authenticator
application.

The text area in this application behaves in a manner that you might not expect. When
you reach the bottom of the field and continue entering text, the component grows to
make more room for input. The next section describes how to add scrollbars to prevent
the area from changing in. size.

Scrolling Panes
Text areas in Swing do not include horizontal or vertical scrollbars, and there’s no way to
add them using this component alone.

Swing supports scrollbars through a new container that can be used to hold any compo-
nent that can be scrolled: JScrollPane.

A scrolling pane is associated with a component in the pane’s constructor. You can use
either of the following constructors:

n JScrollPane(Component)—A scrolling pane that contains the specified
component

n JScrollPane(Component, int, int)—A scrolling pane with the specified com-
ponent, vertical scrollbar configuration, and horizontal scrollbar configuration

Scrollbars are configured using static class variables of the ScrollPaneConstants inter-
face. You can use each of the following for vertical scrollbars:

n VERTICAL_SCROLLBAR_ALWAYS

n VERTICAL_SCROLLBAR_AS_NEEDED

n VERTICAL_SCROLLBAR_NEVER

There also are three similarly named variables for horizontal scrollbars.

After you create a scrolling pane containing a component, the pane should be added to
containers in place of that component.

The following example creates a text area with a vertical scrollbar and no horizontal
scrollbar and then adds it to a content pane:

JPanel pane = new JPanel();
JTextArea comments = new JTextArea(4, 15);
JScrollPane scroll = new JScrollPane(comments,

ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);

pane.add(scroll);
setContentPane(pane);

A full application that makes use of this code, Authenticator2, can
be viewed on this book’s website. Visit http://www.java21days.
com and open the Day 9 page. Look for the link to Authenticator2.
java.

Check Boxes and Radio Buttons
The next two components you will learn about, check boxes and radio buttons, hold only
two possible values: selected or not selected.

Check boxes are used to make a simple choice in an interface, such as yes-no or on-off.
Radio buttons are grouped together so that only one button can be selected at any time.

Check boxes (the JCheckBox class) appear as labeled or unlabeled boxes that contain a
check mark when they are selected and nothing otherwise. Radio buttons (the
JRadioButton class) appear as circles that contain a dot when selected and are also
empty otherwise.

Working with Components 263

9

NOTE

Both the JCheckBox and JRadioButton classes have several useful methods inherited
from a common superclass:

n setSelected(boolean)—Select the component if the argument is true and dese-
lect it otherwise.

n isSelected()—Return a boolean indicating whether the component is currently
selected.

The following constructors are available for the JCheckBox class:

n JCheckBox(String)—A check box with the specified text label

n JCheckBox(String, boolean)—A check box with the specified text label that is
selected if the second argument is true

n JCheckBox(Icon)—A check box with the specified graphical icon

n JCheckBox(Icon, boolean)—A check box with the specified graphical icon that
is selected if the second argument is true

n JCheckBox(String, Icon)—A check box with the specified text label and graphi-
cal icon

n JCheckBox(String, Icon, boolean)—A check box with the specified text label
and graphical icon that is selected if the third argument is true

The JRadioButton class has constructors with the same arguments and functionality.

Check boxes and radio buttons by themselves are nonexclusive, meaning that if you have
five check boxes in a container, all five can be checked or unchecked at the same time.
To make them exclusive, as radio buttons should be, you must organize related compo-
nents into groups.

To organize several radio buttons into a group, allowing only one to be selected at a time,
create a ButtonGroup class object, as demonstrated in the following statement:

ButtonGroup choice = new ButtonGroup();

The ButtonGroup object keeps track of all radio buttons in its group. Call the group’s
add(Component) method to add the specified component to the group.

The following example creates a group and two radio buttons that belong to it:

ButtonGroup saveFormat = new ButtonGroup();
JRadioButton s1 = new JRadioButton(“OPML”, false);
saveFormat.add(s1);
JRadioButton s2 = new JRadioButton(“XML”, true);
saveFormat.add(s2);

264 DAY 9: Working with Swing

The saveFormat object is used to group together the s1 and s2 radio buttons. The s2
object, which has the label “XML”, is selected. Only one member of the group can be
selected at a time—if one component is selected, the ButtonGroup object makes sure that
all others in the group are deselected.

Listing 9.6 contains an application with four radio buttons in a group.

LISTING 9.6 The Full Text of FormatFrame.java

1: import javax.swing.*;
2:
3: public class FormatFrame extends JFrame {
4: JRadioButton[] teams = new JRadioButton[4];
5:
6: public FormatFrame() {
7: super(“Choose an Output Format”);
8: setSize(320, 120);
9: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
10: teams[0] = new JRadioButton(“Atom”);
11: teams[1] = new JRadioButton(“RSS 0.92”);
12: teams[2] = new JRadioButton(“RSS 1.0”);
13: teams[3] = new JRadioButton(“RSS 2.0”, true);
14: JPanel panel = new JPanel();
15: JLabel chooseLabel = new JLabel(
16: “Choose an output format for syndicated news items.”);
17: panel.add(chooseLabel);
18: ButtonGroup group = new ButtonGroup();
19: for (int i = 0; i < teams.length; i++) {
20: group.add(teams[i]);
21: panel.add(teams[i]);
22: }
23: add(panel);
24: setVisible(true);
25: }
26:
27: public static void main(String[] arguments) {
28: FormatFrame ff = new FormatFrame();
29: }
30: }

Figure 9.5 shows the application running. The four JRadioButton objects are stored in
an array, and in the for loop in lines 19–22 each element is first added to a button group
and then added to a panel. After the loop ends, the panel is used for the application’s
content pane.

Working with Components 265

9

Choosing one of the radio buttons causes the existing choice to be deselected.

Combo Boxes
The Swing class JComboBox can be used to create combo boxes, components that present
a drop-down menu from which a single value can be selected. By hiding the menu when
the component is not being used, it takes up less space in a graphical user interface.

The following steps show how a combo box can be created:

1. The JComboBox() constructor is used with no arguments.

2. The combo box’s addItem(Object) method adds items to the list.

In a combo box, users will be able to select only one of the items in the drop-down
menu. If the component’s setEditable() method is called with true as an argument, it
also supports the entry of text. This feature gives combo boxes their name—a component
configured in this manner serves as both a drop-down menu and a text field.

The JComboBox class has several methods that can be used to control a drop-down list or
combo box:

n getItemAt(int)—Return the text of the list item at the index position specified by
the integer argument. As with arrays, the first item of a choice list is at index posi-
tion 0, the second at position 1, and so on.

n getItemCount()—Return the number of items in the list.

n getSelectedIndex()—Return the index position of the currently selected item in
the list.

n getSelectedItem()—Return the text of the currently selected item.

n setSelectedIndex(int)—Select the item at the indicated index position.

n setSelectedIndex(Object)—Select the specified object in the list.

The FormatFrame2 application in Listing 9.7 contains an application that rewrites the
preceding radio button example. The program uses an uneditable combo box to choose
one of four options.

266 DAY 9: Working with Swing

FIGURE 9.5
The FormatFrame
application.

LISTING 9.7 The Full Text of FormatFrame2.java

1: import javax.swing.*;
2:
3: public class FormatFrame2 extends JFrame {
4: String[] formats = { “Atom”, “RSS 0.92”, “RSS 1.0”, “RSS 2.0” };
5: JComboBox formatBox = new JComboBox();
6:
7: public FormatFrame2() {
8: super(“Choose a Format”);
9: setSize(220, 150);
10: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11: JPanel pane = new JPanel();
12: JLabel formatLabel = new JLabel(“Output formats:”);
13: pane.add(formatLabel);
14: for (int i = 0; i < formats.length; i++)
15: formatBox.addItem(formats[i]);
16: pane.add(formatBox);
17: add(pane);
18: setVisible(true);
19: }
20:
21: public static void main(String[] arguments) {
22: FormatFrame2 ff = new FormatFrame2();
23: }
24: }

Figure 9.6 shows the application as the combo box is expanded so that a value can be
selected.

Lists 267

9

FIGURE 9.6
The FormatFrame2
application.

Lists
The last Swing component to be introduced today is similar to combo boxes. Lists,
which are represented by the JList class, enable one or more values to be selected from
a list.

Lists can be created and filled with the contents of an array or a vector. The following
constructors are available:

n JList()—Create an empty list.

n JList(Object[])—Create a list that contains an array of the specified class (such
as String).

n JList(Vector)—Create a list that contains the specified java.util.Vector
object.

An empty list can be filled by calling its setListData() method with either an array or
vector as the only argument.

Unlike combo boxes, lists display more than one of their rows when they are presented
in a user interface. The default is to display eight items. To change this, call
setVisibleRowCount(int) with the number of items to display.

The getSelectedValues() method returns an array of objects containing all the items
selected in the list.

The Subscriptions application in Listing 9.8 displays eight items from an array of
strings.

LISTING 9.8 The Full Text of Subscriptions.java

1: import javax.swing.*;
2:
3: public class Subscriptions extends JFrame {
4: String[] subs = { “0xDECAFBAD”, “Cafe au Lait”,
5: “Hack the Planet”, “Ideoplex”, “Inessential”, “Intertwingly”,
6: “Markpasc”, “Postneo”, “RC3”, “Workbench” };
7: JList subList = new JList(subs);
8:
9: public Subscriptions() {
10: super(“Subscriptions”);
11: setSize(150, 300);
12: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13: JPanel panel = new JPanel();
14: JLabel subLabel = new JLabel(“RSS Subscriptions:”);
15: panel.add(subLabel);
16: subList.setVisibleRowCount(8);
17: JScrollPane scroller = new JScrollPane(subList);
18: panel.add(scroller);
19: add(panel);
20: setVisible(true);
21: }
22:

268 DAY 9: Working with Swing

LISTING 9.8 Continued

23: public static void main(String[] arguments) {
24: Subscriptions app = new Subscriptions();
25: }
26: }

The application is shown in Figure 9.7. The Subscriptions application has an interface
with a label atop a list displaying eight items. A scrollpane is used in lines 17–18 to
enable the list to be scrolled to see items 9 and 10.

Summary 269

9
FIGURE 9.7
The Subscriptions
application.

Summary
Today, you began working with Swing, the package of classes that enables you to offer a
graphical user interface in your Java programs.

You used more than a dozen classes today, creating interface components such as but-
tons, labels, and text fields. You put each of these into containers: components that
include panels, frames, and windows.

Programming of this kind can be complex, and Swing represents the largest package of
classes that a new Java programmer must deal with in learning the language.

However, as you have experienced with components such as text areas and text fields,
Swing components have many superclasses in common. This makes it easier to extend
your knowledge into new components and containers, as well as the other aspects of
Swing programming you will explore over the next three days.

Q&A
Q Is there a way to change the font of text that appears on a button and other

components?

A The JComponent class includes a setFont(Font) method that can be used to set the
font for text displayed on that component. You will work with Font objects, color,
and more graphics on Day 13, “Using Color, Fonts, and Graphics.”

Q How can I find out what components are available in Swing and how to use
them?

A This is the first of two days spent introducing user interface components, so you
will learn more about them tomorrow. If you have web access, you can find out
what classes are in the Swing package by visiting Sun’s online documentation for
Java at the web address http://java.sun.com/javase/6/docs/api.

Q The last version of Java used the Metal look and feel. How can I continue
using this instead of Ocean?

A You’ll learn how to do this in a Java class on Day 10. There’s also a system prop-
erty you can specify, swing.metalTheme, that will cause the interpreter to use the
Metal look and feel by default instead of Ocean. This property should have the
value “steel” to switch back to Metal, as in the following command:

java -Dswing.metalTheme=steel Authenticator

Running this command causes the Authenticator application to be displayed in the
Metal look and feel.

Quiz
Review today’s material by taking this three-question quiz.

Questions
1. Which of the following user interface components is not a container?

a. JScrollPane

b. JTextArea

c. JWindow

270 DAY 9: Working with Swing

2. Which container does not require the use of a content pane when adding compo-
nents to it?

a. JPanel

b. JWindow

c. JFrame

3. If you use setSize() on an application’s main frame or window, where will it
appear on your desktop?

a. At the center of the desktop

b. At the same spot the last application appeared

c. At the upper-left corner of the desktop

Answers
1. b. A JTextArea requires a container to support scrolling, but it is not a container

itself.

2. a. JPanel is one of the simple containers that is not subdivided into panes, so you
can call its add(Component) method to add components directly to the panel.

3. c. This is a trick question—calling setSize() has nothing to do with a window’s
position on the desktop. You must call setBounds() rather than setSize() to
choose where a frame will appear.

Certification Practice
The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Given:

import javax.swing.*;

public class Display extends JFrame {
public Display() {

super(“Display”);
// answer goes here
JLabel hello = new JLabel(“Hello”);
JPanel pane = new JPanel();
pane.add(hello);
setContentPane(pane);
pack();
setVisible(true);

Quiz 271

9

}

public static void main(String[] arguments) {
Display ds = new Display();

}
}

What statement needs to replace // answer goes here to make the application function
properly?

a. setSize(300, 200);

b. setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

c. Display ds = new Display();

d. No statement is needed.

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 9 page and click the Certification Practice link.

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. Create an application with a frame that includes several VCR controls as individual
components: play, stop/eject, rewind, fast forward, and pause. Choose a size for the
window that enables all the components to be displayed on a single row.

2. Create a frame that opens a smaller frame with fields asking for a username and
password.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java21days.com.

272 DAY 9: Working with Swing

DAY 10:
Building a Swing
Interface

Although computers can be operated in a command-line environment
such as MS-DOS or a Linux shell, most computer users expect software
to feature a graphical user interface and receive input with a mouse and
keyboard.

Windowing software can be one of the more challenging tasks for a
novice programmer, but as you learned yesterday, Java has simplified the
process with Swing, a set of classes for the creation and use of graphical
user interfaces.

Swing offers the following features:

n Common user interface components—Buttons, text fields, text
areas, labels, check boxes, radio buttons, scrollbars, lists, menu
items, sliders, and more

n Containers, interface components that can be used to hold other
components, including containers—Frames, panels, windows,
menus, menu bars, and tabbed panes

n Adjustable look and feel—The ability to change the style of an
entire interface to resemble Windows, Mac OS, or other distinctive
designs

Swing Features
Most of the components and containers you learned about yesterday were Swing ver-
sions of classes that were part of the Abstract Windowing Toolkit, the original Java pack-
age for graphical user interface programming.

Swing offers many additional features that are completely new, including a definable
look and feel, keyboard mnemonics, ToolTips, and standard dialog boxes.

Setting the Look and Feel
One of the more unusual features in Swing is the ability to define the look and feel of
components—the way that the buttons, labels, and other elements of a graphical user
interface are rendered onscreen.

Management of look and feel is handled by UIManager, a user interface manager class in
the javax.swing package. The choices for look and feel vary depending on the Java
development environment you’re using. The following are available with Java on a
Windows XP platform:

n A Windows look and feel

n A Windows Classic look and feel

n A Motif X Window system look and feel

n Swing’s cross-platform Java look and feel, Metal

Figures 10.1, 10.2, and 10.3 show the same graphical user interface under several differ-
ent look and feel designs: Metal, Windows Classic, and Motif.

274 DAY 10: Building a Swing Interface

FIGURE 10.1
An application
using the Java
look and feel
(Metal).

The graphical user interface shown in Figures 10.1 through 10.3
was created using techniques described this week (including some
that haven’t been covered yet). The source code for a class used
to create this interface can be viewed on the book’s website. Go
to http://www.java21days.com, open the Day 10 page, and then
look for the file NewMail.java.

Swing Features 275

10

FIGURE 10.2
An application
using the Windows
Classic look and
feel.

FIGURE 10.3
An application
using the Motif
look and feel.

NOTE

The UIManager class has a setLookAndFeel(LookAndFeel) method that is used to
choose a program’s look and feel. To get a LookAndFeel object that you can use with this
method, call one of the following class methods of UIManager:

n getCrossPlatformLookAndFeelClassName()—This method returns an object rep-
resenting Java’s cross-platform Ocean look and feel.

n getSystemLookAndFeelClassName()—This method returns an object representing
your system’s look and feel.

The setLookAndFeel() method throws an UnsupportedLookAndFeelException if it
can’t set the look and feel.

After you call this method, you must tell every component in an interface to update its
appearance with the new look and feel. Call the SwingUtilities class method
updateComponentTreeUI(Component) with the main interface component (such as a
JFrame object) as the argument.

Under most circumstances, you only should call setLookAndFeel() after every compo-
nent has been added to your graphical user interface (in other words, right before you
make the interface visible).

The following statements set up a component to employ the Java look and feel:

try {
UIManager.setLookAndFeel(

UIManager.getCrossPlatformLookAndFeelClassName());
SwingUtilities.updateComponentTreeUI(this);
} catch (Exception e) {

System.out.println(“Can’t set look and feel: “”
+ e.getMessage());

e.printStackTrace();
}

The this keyword refers to the class that contains these statements. If you used the pre-
ceding code at the end of the constructor method of a JFrame, every component on that
frame would be displayed with the Java look and feel.

To select your system’s look and feel, use getSystemLookAndFeelClassName(), which is
inside the call to setLookAndFeel() in the preceding example. This produces different
results on different operating systems. A Windows user would get that platform’s look
and feel by using getSystemLookAndFeelClassName(). A UNIX user would get the
Motif look and feel, and a Mac OS X user would get the Aqua look and feel.

276 DAY 10: Building a Swing Interface

If you’re not sure which look and feel designs are available on your operating system,
you can list them with the following statements:

UIManager.LookAndFeelInfo[] laf = UIManager.getInstalledLookAndFeels();
for (int i = 0; i < laf.length; i++) {

System.out.println(“Class name: “ + laf[i].getClassName());
System.out.println(“Name: “ + laf[i].getName() + “\n”);

}

On a Windows system, these statements produce the following output:

Name: Metal
Class name: javax.swing.plaf.metal.MetalLookAndFeel

Name: CDE/Motif
Class name: com.sun.java.swing.plaf.motif.MotifLookAndFeel

Name: Windows
Class name: com.sun.java.swing.plaf.windows.WindowsLookAndFeel

Name: Windows Classic
Class name: com.sun.java.swing.plaf.windows.WindowsClassicLookAndFeel).

For copyright reasons, neither the Windows nor Mac OS look and
feel designs will be present on computers that aren’t running
those particular operating systems. You won’t be able to use the
Mac look and feel on a Windows computer, or vice versa.

Standard Dialog Boxes
The JOptionPane class offers several methods that can be used to create standard dialog
boxes: small windows that ask a question, warn a user, or provide a brief, important mes-
sage. Figure 10.4 shows an example.

Swing Features 277

10

CAUTION

FIGURE 10.4
A standard dialog
box.

Figure 10.4 and the remaining examples today use the Metal look and feel, the cross-
platform design that is the default appearance of Java software.

You have doubtlessly seen dialog boxes like the one shown in Figure 10.4. When your
system crashes, a dialog box opens and breaks the bad news. When you delete files, a
dialog box might pop up to make sure that you really want to do that.

These windows are an effective way to communicate with a user without the overhead of
creating a new class to represent the window, adding components to it, and writing event-
handling methods to take input. All these things are handled automatically when one of
the standard dialog boxes offered by JOptionPane is used.

The four standard dialog boxes are as follows:

n ConfirmDialog—Asks a question, with buttons for Yes, No, and Cancel responses

n InputDialog—Prompts for text input

n MessageDialog—Displays a message

n OptionDialog—Comprises all three of the other dialog box types

Each of these dialog boxes has its own show method in the JOptionPane class.

If you are setting up a look and feel to use with any of these dialog boxes, it must be
established before you open the box.

Confirm Dialog Boxes
The easiest way to create a Yes/No/Cancel dialog box is by calling the
showConfirmDialog(Component, Object) method. The Component argument specifies
the container that should be considered to be the parent of the dialog box, and this infor-
mation is used to determine where the dialog window should be displayed. If null is
used instead of a container, or if the container is not a JFrame object, the dialog box will
be centered onscreen.

The second argument, Object, can be a string, a component, or an Icon object. If it’s a
string, that text will be displayed in the dialog box. If it’s a component or an Icon, that
object will be displayed in place of a text message.

This method returns one of three possible integer values, each a class constant of
JOptionPane: YES_OPTION, NO_OPTION, and CANCEL_OPTION.

The following example uses a confirm dialog box with a text message and stores the
response in the response variable:

int response = JOptionPane.showConfirmDialog(null,
“Should I delete all of your irreplaceable personal files?”);

Figure 10.5 shows this dialog box.

278 DAY 10: Building a Swing Interface

Another method offers more options for the dialog box: showConfirmDialog(Component,
Object, String, int, int). The first two arguments are the same as those in other
showConfirmDialog() methods. The last three arguments are the following:

n A string that will be displayed in the dialog box’s title bar.

n An integer that indicates which option buttons will be shown; it should be equal to
one of the class constants: YES_NO_CANCEL_OPTION or YES_NO_OPTION.

n An integer that describes the kind of dialog box it is, using the class constants
ERROR_MESSAGE, INFORMATION_MESSAGE, PLAIN_MESSAGE, QUESTION_MESSAGE, or
WARNING_MESSAGE. (This argument is used to determine which icon to draw in the
dialog box along with the message.)

For example:

int response = JOptionPane.showConfirmDialog(null,
“Error reading file. Want to try again?”,
“File Input Error”,
JOptionPane.YES_NO_OPTION,
JOptionPane.ERROR_MESSAGE);

Figure 10.6 shows the resulting dialog box.

Swing Features 279

10

FIGURE 10.5
A confirm dialog
box.

FIGURE 10.6
A confirm dialog
box with Yes and
No buttons.

Input Dialog Boxes
An input dialog box asks a question and uses a text field to store the response. Figure
10.7 shows an example.

The easiest way to create an input dialog box is with a call to the
showInputDialog(Component, Object) method. The arguments are the parent compo-
nent and the string, component, or icon to display in the box.

The input dialog box method call returns a string that represents the user’s response. The
following statement creates the input dialog box shown in Figure 10.7:

String response = JOptionPane.showInputDialog(null,
“Enter your name:”);

You also can create an input dialog box with the showInputDialog(Component,
Object, String, int) method. The first two arguments are the same as the shorter
method call, and the last two are the following:

n The title to display in the dialog box title bar

n One of five class constants describing the type of dialog box: ERROR_MESSAGE,
INFORMATION_MESSAGE, PLAIN_MESSAGE, QUESTION_MESSAGE, or WARNING_MESSAGE

The following statement uses this method to create an input dialog box:

String response = JOptionPane.showInputDialog(null,
“What is your ZIP code?”,
“Enter ZIP Code”,
JOptionPane.QUESTION_MESSAGE);

Message Dialog Boxes
A message dialog box is a simple window that displays information, as shown in Figure
10.8.

280 DAY 10: Building a Swing Interface

FIGURE 10.7
An input dialog
box.

FIGURE 10.8
A message dialog
box.

A message dialog box can be created with a call to the showMessageDialog(Component,
Object) method. As with other dialog boxes, the arguments are the parent component
and the string, component, or icon to display.

Unlike the other dialog boxes, message dialog boxes do not return any kind of response
value. The following statement creates the message dialog box shown in Figure 10.8:

JOptionPane.showMessageDialog(null,
“The program has been uninstalled.”);

You also can create a message input dialog box by calling the
showMessageDialog(Component, Object, String, int) method. The use is identical
to the showInputDialog() method, with the same arguments, except that
showMessageDialog() does not return a value.

The following statement creates a message dialog box using this method:

JOptionPane.showMessageDialog(null,
“An asteroid has destroyed the Earth.”,
“Asteroid Destruction Alert”,
JOptionPane.WARNING_MESSAGE);

Option Dialog Boxes
The most complex of the dialog boxes is the option dialog box, which combines the fea-
tures of all the other dialog boxes. It can be created with the
showOptionDialog(Component, Object, String, int, int, Icon, Object[],

Object) method.

The arguments to this method are as follows:

n The parent component of the dialog box

n The text, icon, or component to display

n A string to display in the title bar

n The type of box, using the class constants YES_NO_OPTION or YES_NO_CANCEL_
OPTION, or the literal 0 if other buttons will be used instead

n The icon to display, using the class constants ERROR_MESSAGE, INFORMATION_
MESSAGE, PLAIN_MESSAGE, QUESTION_MESSAGE, or WARNING_MESSAGE, or the literal 0
if none of these should be used

n An Icon object to display instead of one of the icons in the preceding argument

n An array of objects holding the objects that represent the choices in the dialog box,
if YES_NO_OPTION and YES_NO_CANCEL_OPTION are not being used

n The object representing the default selection if YES_NO_OPTION and YES_NO_CANCEL

option are not being used

Swing Features 281

10

The final two arguments offer a wide range of possibilities for the dialog box. You can
create an array of strings that holds the text of each button to display on the dialog box.
These components are displayed using the flow layout manager.

The following example creates an option dialog box that uses an array of String objects
for the options in the box and the gender[2] element as the default selection:

String[] gender = { “Male”, “Female”,
“None of Your Business” };

int response = JOptionPane.showOptionDialog(null,
“What is your gender?”,
“Gender”,
0,
JOptionPane.INFORMATION_MESSAGE,
null,
gender,
gender[2]);

Figure 10.9 shows the resulting dialog box.

282 DAY 10: Building a Swing Interface

FIGURE 10.9
An option dialog
box.

Using Dialog Boxes
The next project shows a series of dialog boxes in a working program. The FeedInfo
application uses dialog boxes to get information from the user; that information is then
placed into text fields in the application’s main window.

Enter Listing 10.1 and compile the result.

LISTING 10.1 The Full Text of FeedInfo.java

1: import java.awt.GridLayout;
2: import java.awt.event.*;
3: import javax.swing.*;
4:
5: public class FeedInfo extends JFrame {
6: private JLabel nameLabel = new JLabel(“Name: “,
7: SwingConstants.RIGHT);
8: private JTextField name;
9: private JLabel urlLabel = new JLabel(“URL: “,

LISTING 10.1 Continued

10: SwingConstants.RIGHT);
11: private JTextField url;
12: private JLabel typeLabel = new JLabel(“Type: “,
13: SwingConstants.RIGHT);
14: private JTextField type;
15:
16: public FeedInfo() {
17: super(“Feed Information”);
18: setSize(400, 105);
19: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
20: setLookAndFeel();
21: // Site name
22: String response1 = JOptionPane.showInputDialog(null,
23: “Enter the site name:”);
24: name = new JTextField(response1, 20);
25:
26: // Site address
27: String response2 = JOptionPane.showInputDialog(null,
28: “Enter the site address:”);
29: url = new JTextField(response2, 20);
30:
31: // Site type
32: String[] choices = { “Personal”, “Commercial”, “Unknown” };
33: int response3 = JOptionPane.showOptionDialog(null,
34: “What type of site is it?”,
35: “Site Type”,
36: 0,
37: JOptionPane.QUESTION_MESSAGE,
38: null,
39: choices,
40: choices[0]);
41: type = new JTextField(choices[response3], 20);
42:
43: setLayout(new GridLayout(3, 2));
44: add(nameLabel);
45: add(name);
46: add(urlLabel);
47: add(url);
48: add(typeLabel);
49: add(type);
50: setLookAndFeel();
51: setVisible(true);
52: }
53:
54: private void setLookAndFeel() {
55: try {
56: UIManager.setLookAndFeel(
57: UIManager.getSystemLookAndFeelClassName());
58: SwingUtilities.updateComponentTreeUI(this);

Swing Features 283

10

LISTING 10.1 Continued

59: } catch (Exception e) {
60: System.err.println(“Couldn’t use the system “
61: + “look and feel: “ + e);
62: }
63: }
64:
65: public static void main(String[] arguments) {
66: FeedInfo frame = new FeedInfo();
67: }
68: }

After you fill in the fields in each dialog box, you will see the application’s main win-
dow, which is displayed in Figure 10.10 with the Windows look and feel. Three text
fields have values supplied by dialog boxes.

284 DAY 10: Building a Swing Interface

FIGURE 10.10
The main window
of the FeedInfo
application.

Much of this application is boilerplate code that can be used with any Swing application.
The following lines relate to the dialog boxes:

n In lines 22–24, an input dialog box asks the user to enter a site name. This name is
used in the constructor for a JTextField object, placing it in the text field.

n In lines 27–29, a similar input dialog box asks for a site address, which is used in
the constructor for another JTextField object.

n In line 32, an array of String objects called choices is created, and three elements
are given values.

n In lines 33–40, an option dialog box asks for the site type. The choices array is
the seventh argument, which sets up three buttons on the dialog box labeled with
the strings in the array: “Personal”, “Commercial”, and “Unknown”. The last argu-
ment, choices[0], designates the first array element as the default selection in the
dialog box.

n In line 41, the response to the option dialog box, an integer identifying the array
element that was selected, is stored in a JTextField component called type.

The look and feel, which is established in the setLookAndFeel() method in lines 54–63,
is called at the beginning and end of the frame’s constructor method. Because you’re
opening several dialog boxes in the constructor, you must set up the look and feel before
opening them.

Sliders
Sliders, which are implemented in Swing with the JSlider class, enable the user to set a
number by sliding a control within the range of a minimum and maximum value. In
many cases, a slider can be used for numeric input instead of a text field, and it has the
advantage of restricting input to a range of acceptable values.

Figure 10.11 shows an example of a JSlider component.

Swing Features 285

10

FIGURE 10.11
A JSlider compo-
nent.

Sliders are horizontal by default. The orientation can be explicitly set using two class
constants of the SwingConstants interface: HORIZONTAL or VERTICAL.

You can use the following constructor methods:

n JSlider(int, int)—A slider with the specified minimum value and maximum
value

n JSlider(int, int, int)—A slider with the specified minimum value, maximum
value, and starting value

n JSlider(int, int, int, int)—A slider with the specified orientation, mini-
mum value, maximum value, and starting value

Slider components have an optional label that can be used to indicate the minimum
value, maximum value, and two different sets of tick marks ranging between the values.
The default values are a minimum of 0, maximum of 100, starting value of 50, and hori-
zontal orientation.

The elements of this label are established by calling several methods of JSlider:

n setMajorTickSpacing(int)—This method separates major tick marks by the
specified distance. The distance is not in pixels, but in values between the mini-
mum and maximum values represented by the slider.

n setMinorTickSpacing(int)—This method separates minor tick marks by the
specified distance. Minor ticks are displayed as half the height of major ticks.

n setPaintTicks(boolean)—This method determines whether the tick marks
should be displayed (a true argument) or not (a false argument).

n setPaintLabels(boolean)—This method determines whether the numeric label of
the slider should be displayed (true) or not (false).

These methods should be called on the slider before it is added to a container.

Listing 10.2 contains the Slider.java source code; the application was shown in Figure
10.11.

LISTING 10.2 The Full Text of Slider.java

1: import java.awt.event.*;
2: import javax.swing.*;
3:
4: public class Slider extends JFrame {
5:
6: public Slider() {
7: super(“Slider”);
8: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
9: JSlider pickNum = new JSlider(JSlider.HORIZONTAL, 0, 30, 5);
10: pickNum.setMajorTickSpacing(10);
11: pickNum.setMinorTickSpacing(1);
12: pickNum.setPaintTicks(true);
13: pickNum.setPaintLabels(true);
14: add(pickNum);
15: }
16:
17: public static void main(String[] args) {
18: Slider frame = new Slider();
19: frame.pack();
20: frame.setVisible(true);
21: }
22: }

Lines 9–14 contain the code that’s used to create a JSlider component, set up its tick
marks to be displayed, and add the component to a container. The rest of the program is
a basic framework for an application that consists of a main JFrame container with no
menus.

In lines 18–20, a new Slider object is created, a call to the object’s pack() method sets
its size to the preferred size of its components, and the object is made visible.

286 DAY 10: Building a Swing Interface

It might seem strange for the pack() and setVisible() methods to
be called outside the constructor method of the frame. Because
these methods are public, there’s no prohibition against calling
these (and other) methods inside or outside an interface compo-
nent’s class.

Scroll Panes
As you learned in yesterday’s lesson, in early versions of Java, some components (such
as text areas) had a built-in scrollbar. The bar could be used when the text in the compo-
nent took up more space than the component could display. Scrollbars could be used in
either the vertical or horizontal direction to scroll through the text.

One of the most common examples of scrolling is in a web browser, where a scrollbar
can be used on any page bigger than the browser’s display area.

Swing changes the rules for scrollbars to the following:

n For a component to be able to scroll, it must be added to a JScrollPane container.

n This JScrollPane container is added to a container in place of the scrollable com-
ponent.

Scroll panes can be created using the ScrollPane(Object) constructor, where Object
represents the component that can be scrolled.

The following example creates a text area in a scroll pane and adds the scroll pane,
scroller, to a container called mainPane:

textBox = new JTextArea(7, 30);
JScrollPane scroller = new JScrollPane(textBox);
mainPane.add(scroller);

As you’re working with scroll panes, it can often be useful to indicate the size you want
it to occupy on the interface. This is done by calling the setPreferredSize(Dimension)
method of the scroll pane before it is added to a container. The Dimension object repre-
sents the width and height of the preferred size, represented in pixels.

The following code builds on the previous example by setting the preferred size of
scroller:

Dimension pref = new Dimension(350, 100);
scroller.setPreferredSize(pref);

This should be handled before scroller is added to a container.

Swing Features 287

10

NOTE

This is one of many situations in Swing where you must do some-
thing in the proper order for it to work correctly. For most compo-
nents, the order is the following: Create the component, set up
the component fully, and then add the component to a container.

By default, a scroll pane does not display scrollbars unless they are needed. If the com-
ponent inside the pane is no larger than the pane itself, the bars won’t appear. In the case
of components such as text areas, where the component size might increase as the pro-
gram is used, the bars automatically appear when they’re needed and disappear when
they are not.

To override this behavior, you can set a policy for a JScrollBar component when you
create it. You set the policy by using one of several ScrollPaneConstants class con-
stants:

n HORIZONTAL_SCROLLBAR_ALWAYS

n HORIZONTAL_SCROLLBAR_AS_NEEDED

n HORIZONTAL_SCROLLBAR_NEVER

n VERTICAL_SCROLLBAR_ALWAYS

n VERTICAL_SCROLLBAR_AS_NEEDED

n VERTICAL_SCROLLBAR_NEVER

These class constants are used with the JScrollPane(Object, int, int) constructor,
which specifies the component in the pane, the vertical scrollbar policy, and the horizon-
tal scrollbar policy.

Any Swing component that requires scrolling can be placed within
a scroll pane. If you’re scrolling a text area and need to jump to
the bottom of the pane whenever new text is added, call the
text area component’s setCaretPosition(getDocument()
.getLength()) method. The argument to setCaretPosition()
indicates how much text the area currently holds.

Toolbars
A toolbar, created in Swing with the JToolBar class, is a container that groups several
components into a row or column. These components are most often buttons.

288 DAY 10: Building a Swing Interface

CAUTION

NOTE

Toolbars are rows or columns of components that group the most commonly used pro-
gram options together. Toolbars often contain buttons and lists and can be used as an
alternative to using pull-down menus or shortcut keys.

Toolbars are horizontal by default, but the orientation can be explicitly set with the
HORIZONTAL or VERTICAL class variables of the SwingConstants interface.

Constructor methods include the following:

n JToolBar()—Creates a new toolbar

n JToolBar(int)—Creates a new toolbar with the specified orientation

After you have created a toolbar, you can add components to it by using the toolbar’s
add(Object) method, where Object represents the component to place on the toolbar.

Many programs that use toolbars enable the user to move the bars. These are called dock-
able toolbars because you can dock them along an edge of the screen, similar to docking
a boat to a pier. Swing toolbars also can be docked into a new window, separate from the
original.

For best results, a dockable JToolBar component should be arranged in a container using
the BorderLayout manager. A border layout divides a container into five areas: north,
south, east, west, and center. Each of the directional components takes up whatever space
it needs, and the rest are allocated to the center.

The toolbar should be placed in one of the directional areas of the border layout. The
only other area of the layout that can be filled is the center. (You’ll learn more about lay-
out managers such as border layout during tomorrow’s lesson, Day 11, “Arranging
Components on a User Interface.”)

Figure 10.12 shows a dockable toolbar occupying the north area of a border layout. A
text area has been placed in the center.

Swing Features 289

10

FIGURE 10.12
A dockable toolbar
and a text area.

Listing 10.3 contains the source code used to produce this application.

LISTING 10.3 The Full Text of FeedBar.java

1: import java.awt.*;
2: import java.awt.event.*;
3: import javax.swing.*;
4:
5: public class FeedBar extends JFrame {
6:
7: public FeedBar() {
8: super(“FeedBar”);
9: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
10: // create icons
11: ImageIcon loadIcon = new ImageIcon(“load.gif”);
12: ImageIcon saveIcon = new ImageIcon(“save.gif”);
13: ImageIcon subscribeIcon = new ImageIcon(“subscribe.gif”);
14: ImageIcon unsubscribeIcon = new ImageIcon(“unsubscribe.gif”);
15: // create buttons
16: JButton load = new JButton(“Load”, loadIcon);
17: JButton save = new JButton(“Save”, saveIcon);
18: JButton subscribe = new JButton(“Subscribe”, subscribeIcon);
19: JButton unsubscribe = new JButton(“Unsubscribe”, unsubscribeIcon);
20: // add buttons to toolbar
21: JToolBar bar = new JToolBar();
22: bar.add(load);
23: bar.add(save);
24: bar.add(subscribe);
25: bar.add(unsubscribe);
26: // prepare user interface
27: JTextArea edit = new JTextArea(8, 40);
28: JScrollPane scroll = new JScrollPane(edit);
29: BorderLayout bord = new BorderLayout();
30: setLayout(bord);
31: add(“North”, bar);
32: add(“Center”, scroll);
33: pack();
34: setVisible(true);
35: }
36:
37: public static void main(String[] arguments) {
38: FeedBar frame = new FeedBar();
39: }
40: }

This application uses four images to represent the graphics on the buttons—the same
graphics used in the IconFrame project yesterday. If you haven’t downloaded them yet,
they are available on the book’s official website at http://www.java21days.com on the

290 DAY 10: Building a Swing Interface

Day 10 page. You also can use graphics from your own system, although they must be in
GIF format and reasonably small.

The toolbar in this application can be grabbed by its handle—the area immediately to the
left of the “Load” button in Figure 10.12. If you drag it within the window, you can dock
it along different edges of the application window. When you release the toolbar, the
application is rearranged using the border layout manager. You also can drag the toolbar
out of the application window entirely.

Although toolbars are most commonly used with graphical buttons, they can contain tex-
tual buttons, combo boxes, and other }components.

Progress Bars
Progress bars are components used to show how much time is left before a task is com-
plete.

Progress bars are implemented in Swing through the JProgressBar class. A sample Java
program that uses this component is shown in Figure 10.13.

Swing Features 291

10

FIGURE 10.13
A progress bar in
a frame.

Progress bars are used to track the progress of a task that can be represented numerically.
They are created by specifying a minimum and a maximum value that represent the
points at which the task is beginning and ending.

A software installation that consists of 335 different files is a good example of a task that
can be numerically quantified. The number of files transferred can be used to monitor the
progress of the task. The minimum value is 0, and the maximum value is 335.

Constructor methods include the following:

n JProgressBar()—Creates a new progress bar

n JProgressBar(int, int)—Creates a new progress bar with the specified mini-
mum value and maximum value

n JProgressBar(int, int, int)—Creates a new progress bar with the specified
orientation, minimum value, and maximum value

The orientation of a progress bar can be established with the SwingConstants.VERTICAL
and SwingConstants.HORIZONTAL class constants. Progress bars are horizontal by
default.

The minimum and maximum values also can be set up by calling the progress bar’s
setMinimum(int) and setMaximum(int) values with the indicated values.

To update a progress bar, you call its setValue(int) method with a value indicating how
far along the task is at that moment. This value should be somewhere between the mini-
mum and maximum values established for the bar. The following example tells the
install progress bar in the previous example of a software installation how many files
have been uploaded thus far:

int filesDone = getNumberOfFiles();
install.setValue(filesDone);

In this example, the getNumberOfFiles() method represents some code that would be
used to keep track of how many files have been copied so far during the installation.
When this value is passed to the progress bar by the setValue() method, the bar is
immediately updated to represent the percentage of the task that has been completed.

Progress bars often include a text label in addition to the graphic of an empty box filling
up. This label displays the percentage of the task that has become completed, and you
can set it up for a bar by calling the setStringPainted(boolean) method with a value
of true. A false argument turns off this label.

Listing 10.4 contains ProgressMonitor, the application shown at the beginning of this
section in Figure 10.13.

LISTING 10.4 The Full Text of ProgressMonitor.java

1: import java.awt.*;
2: import java.awt.event.*;
3: import javax.swing.*;
4:
5: public class ProgressMonitor extends JFrame {
6:
7: JProgressBar current;
8: JTextArea out;
9: JButton find;

10: Thread runner;
11: int num = 0;
12:
13: public ProgressMonitor() {
14: super(“Progress Monitor”);
15:
16: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
17: setSize(205, 68);
18: setLayout(new FlowLayout());
19: current = new JProgressBar(0, 2000);

292 DAY 10: Building a Swing Interface

LISTING 10.4 Continued

20: current.setValue(0);
21: current.setStringPainted(true);
22: add(current);
23: }
24:
25:
26: public void iterate() {
27: while (num < 2000) {
28: current.setValue(num);
29: try {
30: Thread.sleep(1000);
31: } catch (InterruptedException e) { }
32: num += 95;
33: }
34: }
35:
36: public static void main(String[] arguments) {
37: ProgressMonitor frame = new ProgressMonitor();
38: frame.setVisible(true);
39: frame.iterate();
40: }
41: } are

The ProgressMonitor application uses a are progress bar to track the value of the num
variable. The progress bar is created in line 18 with a minimum value of 0 and a maxi-
mum value of 2000.

The iterate() method in lines 26–34 loops while num is less than 2000 and increases
num by 95 each iteration. The progress bar’s setValue() method is called in line 27 of
the loop with num as an argument, causing the bar to use that value when charting
progress.

Using a progress bar is a way to make a program more user friendly when it is going to
be busy for more than a few seconds. Software users like progress bars because they
indicate an approximation of how much more time something’s going to take.

Progress bars also provide another essential piece of information: proof that the program
is still running and has not crashed.

Menus
One way you can enhance are the usability of a frame is to give it a menu bar—a series
of pull-down menus used to perform tasks. Menus often duplicate the same tasks you
could accomplish by using buttons and other user interface components, giving someone
using your program two ways to get work done.

Swing Features 293

10

Menus in Java are supported by three components that work in conjunction with each
other:

n JMenuItem—An item on a menu

n JMenu—A drop-down menu that contains one or more JMenuItem components,
other interface components, and separators, lines displayed between items

n JMenuBar—A container that holds one or more JMenu components and displays
their names

A JMenuItem component is like a button and can be set up using the same constructor
methods as a JButton component. Call it with JMenuItem(String) for a text item,
JMenuItem(Icon) for an item that displays a graphics file, or JMenuItem(String, Icon)
for both.

The following statements create seven menu items:

JMenuItem j1 = new JMenuItem(“Open”);
JMenuItem j2 = new JMenuItem(“Save”);
JMenuItem j3 = new JMenuItem(“Save as Template”);
JMenuItem j4 = new JMenuItem(“Page Setup”);
JMenuItem j5 = new JMenuItem(“Print”);
JMenuItem j6 = new JMenuItem(“Use as Default Message Style”);
JMenuItem j7 = new JMenuItem(“Close”);

A JMenu container holds all the menu items for a drop-down menu. To create it, call the
JMenu(String) constructor with the name of the menu as an argument. This name
appears on the menu bar.

After you have created a JMenu container, call its add(JMenuItem) to add a menu item to
it. New items are placed at the end of the menu.

The item you put on a menu doesn’t have to be a menu item. Call the add(Component)
method with a user interface component as the argument. One that often appears on a
menu is a check box (the JCheckBox class in Java).

To add a line separator to the end of the menu, call the addSeparator() method.
Separators are often used to visually group several related items on a menu.

You also can add text to a menu that serves as a label of some kind. Call the
add(String) method with the text as an argument.

Using the seven menu items from the preceding example, the following statements create
a menu and fill it with all those items and three separators:

294 DAY 10: Building a Swing Interface

JMenu m1 = new JMenu(“File”);
m1.add(j1);
m1.add(j2);
m1.add(j3);
m1.addSeparator();
m1.add(j4);
m1.add(j5);
m1.addSeparator();
m1.add(j6);
m1.addSeparator();
m1.add(j7);

A JMenuBar container holds one or more JMenu containers and displays each of their
names. The most common place to see a menu bar is directly below an application’s title
bar.

To create a menu bar, call the JMenuBar() constructor method with no arguments. Add
menus to the end of a bar by calling its add(JMenu) method.

After you have created all your items, added them to menus, and added the menus to a
bar, you’re ready to add them to a frame. Call the frame’s setJMenuBar(JMenuBar)
method.

The following statement finishes off the current example by creating a menu bar, adding
a menu to it, and then placing the bar on a frame called gui:

JMenuBar bar = new JMenuBar();
bar.add(m7);
gui.setJMenuBar(bar);

Figure 10.14 shows what this menu looks like on an otherwise empty menu bar.

Swing Features 295

10

FIGURE 10.14
A frame with a
menu bar.

Although you can open and close a menu and select items, nothing happens in response.
You’ll learn how to receive user input for this component and others during Day 12,
“Responding to User Input.”

Listing 10.5 contains an expanded version of the FeedBar project, adding a menu bar that
holds one menu and four individual items. This application is shown in Figure 10.14.

LISTING 10.5 The Full Text of FeedBar2.java

1: import java.awt.*;
2: import java.awt.event.*;
3: import javax.swing.*;
4:
5: public class FeedBar2 extends JFrame {
6:
7: public FeedBar2() {
8: super(“FeedBar 2”);
9: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
10: // create icons
11: ImageIcon loadIcon = new ImageIcon(“load.gif”);
12: ImageIcon saveIcon = new ImageIcon(“save.gif”);
13: ImageIcon subscribeIcon = new ImageIcon(“subscribe.gif”);
14: ImageIcon unsubscribeIcon = new ImageIcon(“unsubscribe.gif”);
15: // create buttons
16: JButton load = new JButton(“Load”, loadIcon);
17: JButton save = new JButton(“Save”, saveIcon);
18: JButton subscribe = new JButton(“Subscribe”, subscribeIcon);
19: JButton unsubscribe = new JButton(“Unsubscribe”, unsubscribeIcon);
20: // add buttons to toolbar
21: JToolBar bar = new JToolBar();
22: bar.add(load);
23: bar.add(save);
24: bar.add(subscribe);
25: bar.add(unsubscribe);
26: // create menu
27: JMenuItem j1 = new JMenuItem(“Load”);
28: JMenuItem j2 = new JMenuItem(“Save”);
29: JMenuItem j3 = new JMenuItem(“Subscribe”);
30: JMenuItem j4 = new JMenuItem(“Unsubscribe”);
31: JMenuBar menubar = new JMenuBar();
32: JMenu menu = new JMenu(“Feeds”);
33: menu.add(j1);
34: menu.add(j2);
35: menu.addSeparator();
36: menu.add(j3);
37: menu.add(j4);
38: menubar.add(menu);
39: // prepare user interface
40: JTextArea edit = new JTextArea(8, 40);
41: JScrollPane scroll = new JScrollPane(edit);
42: BorderLayout bord = new BorderLayout();
43: setLayout(bord);
44: add(“North”, bar);

296 DAY 10: Building a Swing Interface

LISTING 10.5 Continued

45: add(“Center”, scroll);
46: setJMenuBar(menubar);
47: pack();
48: setVisible(true);
49: }
50:
51: public static void main(String[] arguments) {
52: FeedBar2 frame = new FeedBar2();
53: }
54: }

Tabbed Panes
Tabbed panes, a group of stacked panels in which only one panel can be viewed at a
time, are implemented in Swing by the JTabbedPane class.

To view a panel, you click the tab that contains its name. Tabs can be arranged horizon-
tally across the top or bottom of the component or vertically along the left or right side.

Tabbed panes are created with the following three constructor methods:

n JTabbedPane()—Creates a vertical tabbed pane along the top that does not scroll

n JTabbedPane(int)—Creates a tabbed pane that does not scroll and has the speci-
fied placement

n JTabbedPane(int, int)—Creates a tabbed pane with the specified placement
(first argument) and scrolling policy (second argument)

The placement of a tabbed pane is the position where its tabs are displayed in relation to
the panels. Use one of four class variables as the argument to the constructor:
JTabbedPane.TOP, JTabbedPane.BOTTOM, JTabbedPane.LEFT, or JTabbedPane.RIGHT.

The scrolling policy determines how tabs will be displayed when there are more tabs
than the interface can hold. A tabbed pane that does not scroll displays extra tabs on their
own line, which can be set up using the JTabbedPane.WRAP_TAB_LAYOUT class variable.
A tabbed pane that scrolls displays scrolling arrows beside the tabs. This can be set up
with JTabbedPane.SCROLL_TAB_LAYOUT.

After you create a tabbed pane, you can add components to it by calling the pane’s
addTab(String, Component) method. The String argument will be used as the label of
the tab. The second argument is the component that will make up one of the tabs on the
pane. It’s common to use a JPanel object for this purpose, but not required.

Swing Features 297

10

The following statements create five empty panels and add them to a tabbed pane:

JPanel mainSettings = new JPanel();
JPanel advancedSettings = new JPanel();
JPanel privacySettings = new JPanel();
JPanel emailSettings = new JPanel();
JPanel securitySettings = new JPanel();
JTabbedPane tabs = new JTabbedPane();
tabs.addTab(“Main”, mainSettings);
tabs.addTab(“Advanced”, advancedSettings);
tabs.addTab(“Privacy”, privacySettings);
tabs.addTab(“E-mail”, emailSettings);
tabs.addTab(“Security”, securitySettings);

After adding all the panels and other components to a tabbed pane, the pane can be
added to another container. Figure 10.15 shows what the example looks like when added
to a frame.

298 DAY 10: Building a Swing Interface

FIGURE 10.15
A tabbed pane
with five tabs dis-
played along the
top edge.

Summary
You now know how to paint a user interface onto a Java application window using the
components of the Swing package.

Swing includes classes for many of the buttons, bars, lists, and fields you would expect
to see on a program, along with more advanced components, such as sliders, dialog
boxes, progress bars, and menu bars. Interface components are implemented by creating
an instance of their class and adding it to a container such as a frame using the con-
tainer’s add() method or a similar method specific to the container, such as the tabbed
pane’s addTab() method.

Today, you developed components and added them to an interface. During the next two
days, you will learn about two things required to make a graphical interface usable: how
to arrange components together to form a whole interface and how to receive input from
a user through these components.

Q&A
Q Can an application be created without Swing?

A Certainly. Swing is just an expansion on the Abstract Windowing Toolkit, and if
you are developing an applet for older versions of Java, you could use only AWT
classes to design your interface and receive input from a user. However, there’s no
comparison between Swing’s capabilities and those offered by the AWT. With
Swing, you can use many more components, control them in more sophisticated
ways, and count on better performance and more reliability.

Other user interface libraries also extend or compete with Swing. One of the most
popular is the Standard Widget Toolkit (SWT), an open source graphical user inter-
face library created by the Eclipse project. The SWT offers components that appear
and behave like the interface components offered by each operating system. For
more information, visit the website http://www.eclipse.org/swt.

Q In the Slider application, what does the pack() statement do?

A Every interface component has a preferred size, although this is often disregarded
by the layout manager used to arrange the component within a container. Calling a
frame or window’s pack() method causes it to be resized to fit the preferred size of
the components that it contains. Because the Slider application does not set a size
for the frame, calling pack() sets it to an adequate size before the frame is dis-
played.

Q When I try to create a tabbed pane, all that displays are the tabs—the panels
themselves are not visible. What can I do to correct this?

A Tabbed panes won’t work correctly until the contents of those panes have been
fully set up. If a tab’s panes are empty, nothing will be displayed below or beside
the tabs. Make sure that the panels you are putting into the tabs are displaying all
their components.

Quiz
Review today’s material by taking this three-question quiz.

Questions
1. What is the default look and feel in a Java application?

a. Motif

b. Windows

c. Metal

Quiz 299

10

2. Which user interface component is common in software installation programs?

a. Sliders

b. Progress bars

c. Dialog boxes

3. Which Java class library includes a class for clickable buttons?

a. Abstract Windowing Toolkit

b. Swing

c. Both

Answers
1. c. If you want to use a look and feel other than Metal, you must explicitly establish

that look and feel using a method of the javax.swing.UIManager class.

2. b. Progress bars are useful when used to display the progress of a file-copying or
file-extracting activity.

3. c. Swing duplicates all the simple user interface components included in the
Abstract Windowing Toolkit.

Certification Practice
The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Given:

import java.awt.*;
import javax.swing.*;

public class AskFrame extends JFrame {
public AskFrame() {

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JSlider value = new JSlider(0, 255, 100);
add(value);
setSize(450, 150);
setVisible(true);
super();

}

public static void main(String[] arguments) {
AskFrame af = new AskFrame();

}
}

300 DAY 10: Building a Swing Interface

What will happen when you attempt to compile and run this source code?

a. It compiles without error and runs correctly.

b. It compiles without error but does not display anything in the frame.

c. It does not compile because of the super() statement.

d. It does not compile because of the add() statement.

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 10 page and click the Certification Practice link.

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. Create an input dialog box that can be used to set the title of the frame that loaded
the dialog box.

2. Create a modified version of the Progress application that also displays the value
of the num variable in a text field.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java21days.com.

Exercises 301

10

DAY 11:
Arranging Components
on a User Interface

If designing a graphical user interface were comparable to painting, you
could currently produce only one kind of art: abstract expressionism. You
can put components onto an interface, but you don’t have control over
where they go.

To arrange the components of a user interface in Java, you must use a
set of classes called layout managers.

Today, you learn how to use layout managers to arrange components into
an interface. You take advantage of the flexibility of Swing, which was
designed to be presentable on the many different platforms that support
the language.

You also learn how to put several different layout managers to work on
the same interface, an approach for the many times when one layout
manager doesn’t suit everything you have in mind for a program.

Basic Interface Layout
As you learned yesterday, a graphical user interface designed with Swing is a fluid thing.
Resizing a window can wreak havoc on your interface, as components move to places on
a container that you might not have intended.

This fluidity is a necessary part of Java’s support for different platforms where there are
subtle differences in the way each platform displays things such as buttons, scrollbars,
and so on.

With programming languages such as Microsoft Visual Basic, a component’s location on
a window is precisely defined by its x,y coordinate. Some Java development tools allow
similar control over an interface through the use of their own windowing classes (and
there’s a way to do that in Java).

When using Swing, a programmer gains more control over the layout of an interface by
using layout managers.

Laying Out an Interface
A layout manager determines how components will be arranged when they are added to
a container.

The default layout manager for panels is the FlowLayout class. This class lets compo-
nents flow from left to right in the order that they are added to a container. When there’s
no more room, a new row of components begins immediately below the first, and the
left-to-right order continues.

Java includes a bunch of general-purpose layout managers: BorderLayout, BoxLayout,
CardLayout, FlowLayout, GridBagLayout, and GridLayout. To create a layout manager
for a container, first call its constructor to create an instance of the class, as in this
example:

FlowLayout flo = new FlowLayout();

After you create a layout manager, you make it the layout manager for a container by
using the container’s setLayout() method. The layout manager must be established
before any components are added to the container. If no layout manager is specified, its
default layout will be used—FlowLayout for panels and BorderLayout for frames and
windows.

The following statements represent the starting point for a frame that uses a layout man-
ager to control the arrangement of all the components that will be added to the frame:

304 DAY 11: Arranging Components on a User Interface

import java.awt.*;

public class Starter extends javax.swing.JFrame {

public Starter() {
FlowLayout lm = new FlowLayout();
setLayout(lm);
// add components here

}
}

After the layout manager is set, you can start adding components to the container that it
manages. For some of the layout managers, such as FlowLayout, the order in which com-
ponents are added is significant. You’ll see this as you work with each of the managers.

Flow Layout
The FlowLayout class in the java.awt package is the simplest layout manager. It lays
out components in rows in a manner similar to the way words are laid out on a page—
from left to right until there’s no more room at the right edge and then on to the leftmost
point on the next row.

By default, the components on each row will be centered when you use the FlowLayout
() constructor with no arguments. If you want the components to be aligned along the
left or right edge of the container, the FlowLayout.LEFT or FlowLayout.RIGHT class vari-
able can be used as the constructor’s only argument, as in the following statement:

FlowLayout righty = new FlowLayout(FlowLayout.RIGHT);

The FlowLayout.CENTER class variable is used to specify a centered alignment for com-
ponents.

If you need to align components for a non-English speaking audi-
ence where left-to-right order does not make sense, the
FlowLayout.LEADING and FlowLayout.TRAILING variables can be
used. They set justification to either the side of the first compo-
nent in a row or the last, respectively.

The application in Listing 11.1 displays six buttons arranged by the flow layout manager.
Because the FlowLayout.LEFT class variable was used in the FlowLayout() constructor,
the components are lined up along the left side of the application window.

Basic Interface Layout 305

11

NOTE

LISTING 11.1 The Full Text of Alphabet.java

1: import java.awt.*;
2: import java.awt.event.*;
3: import javax.swing.*;
4:
5: public class Alphabet extends JFrame {
6: JButton a = new JButton(“Alibi”);
7: JButton b = new JButton(“Burglar”);
8: JButton c = new JButton(“Corpse”);
9: JButton d = new JButton(“Deadbeat”);
10: JButton e = new JButton(“Evidence”);
11: JButton f = new JButton(“Fugitive”);
12:
13: public Alphabet() {
14: super(“Alphabet”);
15: setSize(360, 120);
16: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
17: FlowLayout lm = new FlowLayout(FlowLayout.LEFT);
18: setLayout(lm);
19: add(a);
20: add(b);
21: add(c);
22: add(d);
23: add(e);
24: add(f);
25: setVisible(true);
26: }
27:
28: public static void main(String[] arguments) {
29: Alphabet frame = new Alphabet();
30: }
31: }

Figure 11.1 shows the application running.

306 DAY 11: Arranging Components on a User Interface

FIGURE 11.1

Six buttons

arranged in flow

layout.

In the Alphabet application, the flow layout manager uses the default gap of five pixels
between each component on a row and a gap of five pixels between each row. You can
change the horizontal and vertical gap between components with some extra arguments
to the FlowLayout() constructor.

The FlowLayout(int, int, int) constructor takes the following three arguments, in
order:

n The alignment, which must be one of five class variables of FlowLayout: CENTER,
LEFT, RIGHT, LEADING, or TRAILING

n The horizontal gap between components, in pixels

n The vertical gap, in pixels

The following constructor creates a flow layout manager with centered components, a
horizontal gap of 30 pixels, and a vertical gap of 10:

FlowLayout flo = new FlowLayout(FlowLayout.CENTER, 30, 10);

Box Layout
The next layout manager can be used to stack components from top to bottom or from
left to right. Box layout, managed by the BoxLayout class in the javax.swing package,
improves on flow layout by making sure that components always line up vertically or
horizontally—regardless of how their container is resized.

A box layout manager must be created with two arguments to its constructor: the con-
tainer it will manage and a class variable that sets up vertical or horizontal alignment.

The alignment, specified with class variables of the BoxLayout class, can be X_AXIS for
left-to-right horizontal alignment and Y_AXIS for top-to-bottom vertical alignment.

The following code sets up a panel to use vertical box layout:

JPanel optionPane = new JPanel();
BoxLayout box = new BoxLayout(optionPane,

BoxLayout.Y_AXIS);

Components added to the container will line up on the specified axis and be displayed at
their preferred sizes. In horizontal alignment, the box layout manager attempts to give
each component the same height. In vertical alignment, it attempts to give each one the
same width.

The Stacker application in Listing 11.2 contains a panel of buttons arranged with box
layout.

Basic Interface Layout 307

11

LISTING 11.2 The Full Text of Stacker.java

1: import java.awt.*;
2: import javax.swing.*;
3:
4: public class Stacker extends JFrame {
5: public Stacker() {
6: super(“Stacker”);
7: setSize(430, 150);
8: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
9: // create top panel
10: JPanel commandPane = new JPanel();
11: BoxLayout horizontal = new BoxLayout(commandPane,
12: BoxLayout.X_AXIS);
13: commandPane.setLayout(horizontal);
14: JButton subscribe = new JButton(“Subscribe”);
15: JButton unsubscribe = new JButton(“Unsubscribe”);
16: JButton refresh = new JButton(“Refresh”);
17: JButton save = new JButton(“Save”);
18: commandPane.add(subscribe);
19: commandPane.add(unsubscribe);
20: commandPane.add(refresh);
21: commandPane.add(save);
22: // create bottom panel
23: JPanel textPane = new JPanel();
24: JTextArea text = new JTextArea(4, 70);
25: JScrollPane scrollPane = new JScrollPane(text);
26: // put them together
27: FlowLayout flow = new FlowLayout();
28: setLayout(flow);
29: add(commandPane);
30: add(scrollPane);
31: setVisible(true);
32: }
33:
34: public static void main(String[] arguments) {
35: Stacker st = new Stacker();
36: }
37: }

When the class is compiled and run, the output should resemble Figure 11.2.

308 DAY 11: Arranging Components on a User Interface

FIGURE 11.2
A user interface
with buttons
arranged with
the box layout
manager.

The panel of buttons along the top edge of the interface is stacked horizontally. If the
second argument to the constructor in lines 11–12 was BoxLayout.Y_AXIS, the buttons
would be arranged vertically instead.

Grid Layout
The grid layout manager arranges components into a grid of rows and columns.
Components are added first to the top row of the grid, beginning with the leftmost grid
cell and continuing to the right. When all the cells in the top row are full, the next com-
ponent is added to the leftmost cell in the second row of the grid—if there is a second
row—and so on.

Grid layout managers are created with the GridLayout class, which belongs to the
java.awt package. Two arguments are sent to the GridLayout constructor—the number
of rows in the grid and the number of columns. The following statement creates a grid
layout manager with 10 rows and 3 columns:

GridLayout gr = new GridLayout(10, 3);

As with flow layout, you can specify a vertical and a horizontal gap between components
with two extra arguments. The following statement creates a grid layout with 10 rows
and 3 columns, a horizontal gap of 5 pixels, and a vertical gap of 8 pixels:

GridLayout gr2 = new GridLayout(10, 3, 5, 8);

The default gap between components under a grid layout is 0 pixels in both vertical and
horizontal directions.

Listing 11.3 contains an application that creates a grid with three rows, three columns,
and a 10-pixel gap between components in both the vertical and horizontal directions.

LISTING 11.3 The Full Text of Bunch.java

1: import java.awt.*;
2: import java.awt.event.*;
3: import javax.swing.*;
4:
5: public class Bunch extends JFrame {
6: JButton marcia = new JButton(“Marcia”);
7: JButton carol = new JButton(“Carol”);
8: JButton greg = new JButton(“Greg”);
9: JButton jan = new JButton(“Jan”);
10: JButton alice = new JButton(“Alice”);
11: JButton peter = new JButton(“Peter”);
12: JButton cindy = new JButton(“Cindy”);
13: JButton mike = new JButton(“Mike”);
14: JButton bobby = new JButton(“Bobby”);
15:

Basic Interface Layout 309

11

LISTING 11.3 Continued

16: public Bunch() {
17: super(“Bunch”);
18: setSize(260, 260);
19: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
20: JPanel pane = new JPanel();
21: GridLayout family = new GridLayout(3, 3, 10, 10);
22: pane.setLayout(family);
23: pane.add(marcia);
24: pane.add(carol);
25: pane.add(greg);
26: pane.add(jan);
27: pane.add(alice);
28: pane.add(peter);
29: pane.add(cindy);
30: pane.add(mike);
31: pane.add(bobby);
32: add(pane);
33: setVisible(true);
34: }
35:
36: public static void main(String[] arguments) {
37: Bunch frame = new Bunch();
38: }
39: }

Figure 11.3 shows this application.

310 DAY 11: Arranging Components on a User Interface

FIGURE 11.3

Nine buttons

arranged in a 3×3

grid layout.

One thing to note about the buttons in Figure 11.3 is that they expanded to fill the space
available to them in each cell. This is an important difference between grid layout and
some of the other layout managers, which display components at a much smaller size.

Border Layout
Border layouts, which are created by using the BorderLayout class in java.awt, divide a
container into five sections: north, south, east, west, and center. The five areas of Figure
11.4 show how these sections are arranged.

Basic Interface Layout 311

11

FIGURE 11.4

Components

arranged under

border layout.

Under border layout, the components in the four compass points take up as much space
as they need—the center gets whatever space is left over. Ordinarily, this results in an
arrangement with a large central component and four thin components around it.

A border layout is created with either the BorderLayout () or BorderLayout(int,
int) constructors. The first constructor creates a border layout with no gap between any
of the components. The second constructor specifies the horizontal gap and vertical gap,
respectively.

After you create a border layout and set it up as a container’s layout manager, compo-
nents are added using a call to the add() method that’s different from what you have
seen previously:

add(Component, String)

The first argument is the component that should be added to the container.

The second argument is a BorderLayout class variable that indicates to which part of the
border layout to assign the component. The variables NORTH, SOUTH, EAST, WEST, and
CENTER can be used.

The second argument to this method is the component that should be added to the con-
tainer.

The following statement adds a button called quitButton to the north portion of a border
layout:

add(quitButton, BorderLayout.NORTH””);

Listing 11.4 contains the application used to produce Figure 11.4.

LISTING 11.4 The Full Text of Border.java

1: import java.awt.*;
2: import java.awt.event.*;
3: import javax.swing.*;
4:
5: public class Border extends JFrame {
6: JButton nButton = new JButton(“North”);
7: JButton sButton = new JButton(“South”);
8: JButton eButton = new JButton(“East”);
9: JButton wButton = new JButton(“West”);
10: JButton cButton = new JButton(“Center”);
11:
12: public Border() {
13: super(“Border”);
14: setSize(240, 280);
15: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
16: setLayout(new BorderLayout());
17: add(nButton, BorderLayout.NORTH);
18: add(sButton, BorderLayout.SOUTH);
19: add(eButton, BorderLayout.EAST);
20: add(wButton, BorderLayout.WEST);
21: add(cButton, BorderLayout.CENTER);
22: }
23:
24: public static void main(String[] arguments) {
25: Border frame = new Border();
26: frame.setVisible(true);
27: }
28: }

Mixing Layout Managers
At this point, you might be wondering how Java’s layout managers can be useful for the
graphical user interfaces you want to design. Choosing a layout manager is an experience
akin to Goldilocks checking out the home of the three bears—”This one is too square!
This one is too disorganized! This one is too strange!”

To find the layout that is just right, you often have to combine more than one manager on
the same interface.

312 DAY 11: Arranging Components on a User Interface

This is done by putting several containers inside a larger container (such as a frame) and
giving each smaller container its own layout manager.

The container to use for these smaller containers is the panel, which is created from the
JPanel class. Panels are containers used to group components together. There are two
things to keep in mind when working with panels:

n The panel is filled with components before it is put into a larger container.

n The panel has its own layout manager.

Panels are created with a simple call to the constructor of the JPanel class, as shown in
the following example:

JPanel pane = new JPanel();

The layout method is set for a panel by calling the setLayout() method on that panel.

The following statements create a layout manager and apply it to a JPanel object called
pane:

FlowLayout flo = new FlowLayout();
pane.setLayout(flo);

Components are added to a panel by calling the panel’s add() method, which works the
same for panels as it does for some other containers.

The following statements create a text field and add it to a JPanel object called pane:

JTextField nameField = new JTextField(80);
pane.add(nameField);

You’ll see several examples of panel use in the rest of today’s sample programs.

Card Layout
Card layouts differ from the other layouts because they hide some components from
view. A card layout is a group of containers or components displayed one at a time, in
the same way that a blackjack dealer reveals one card at a time from a deck. Each con-
tainer in the group is called a card.

If you have used a wizard in an installation program, you have worked with a program
that uses card layout.

The most common way to use a card layout is to use a panel for each card. Components
are added to the panels first, and then the panels are added to the container that is set to
use card layout.

Card Layout 313

11

A card layout is created from the CardLayout class (in the java.awt package) with a
simple constructor:

CardLayout cc = new CardLayout();

The setLayout() method is used to make this the layout manager for the container, as in
the following statement:

setLayout(cc);

After you set a container to use the card layout manager, you must use a slightly differ-
ent add() method call to add cards to the layout.

The method to use is add(Component, String). The first argument specifies the con-
tainer or component that serves as a card. If it is a container, all components must have
been added to it before the card is added.

The second argument to the add() method is a string that represents the name of the
card. This can be anything you want to call the card. You might want to number the cards
in some way and use the number in the name, as in “Card 1”, “Card 2”, “Card 3”, and
so on.

The following statement adds a panel object named options to a container and gives this
card the name “Options Card”:

add(options, “Options Card”);

When a container using card layout is displayed for the first time, the visible card will be
the first card added to the container.

Subsequent cards can be displayed by calling the show() method of the layout manager,
which takes two arguments:

n The container holding all the cards

n The name of the card

The following statement calls the show() method of a card layout manager called cc:

cc.show(this, “Fact Card”);

The this keyword would be used in a frame or window governed by card layout—it
refers to the object inside which the cc.show() statement appears. “Fact Card” is the
name of the card to reveal. When a card is shown, the previously displayed card will be
obscured. Only one card in a card layout can be viewed at a time

In a program that uses the card layout manager, a card change will usually be triggered
by a user’s action. For example, in a program that displays mailing addresses on different
cards, the user could select a card for display by selecting an item in a scrolling list.

314 DAY 11: Arranging Components on a User Interface

Using Card Layout in an Application
Today’s next project demonstrates. both card layout and the use of different layout man-
agers within the same graphical user interface.

The SurveyWizard class is a panel that implements a wizard interface: a series of simple
questions accompanied by a Next button that is used to see the next question. The last
question has a Finish button instead.

Figure 11.5 shows this panel.

Card Layout 315

11

FIGURE 11.5

Using a card lay-

out for a wizard-

style interface.

The easiest way to implement a card-based layout is to use panels. The project uses pan-
els heavily:

n The SurveyWizard class is a panel that holds all the cards.

n The SurveyPanel helper class is a panel that holds one card.

n Each SurveyPanel object contains three panels stacked on top of each other.

The SurveyWizard and SurveyPanel classes are both panels because that’s the easiest
component to use when working with card layout. Each card is created as a panel and
added to a containing panel that will be used to show them in sequence.

This takes place in the SurveyWizard constructor, using two instance variables, a card
layout manager, and an array of three SurveyPanel objects:

SurveyPanel[] ask = new SurveyPanel[3];
CardLayout cards = new CardLayout();

The constructor sets the class to use the layout manager, creates each SurveyPanel
object, and then adds it to the class:

setLayout(cards);
String question1 = “What is your gender?”;
String[] responses1 = { “female”, “male”, “not telling” };
ask[0] = new SurveyPanel(question1, responses1, 2);
add(ask[0], “Card 0”);

Each SurveyPanel object is created with. three arguments to the constructor: the text of
the question, an array of possible responses, and the element number of the default
answer.

In the preceding code, the question “What is your gender?” has the responses “female,”
“male,” or “not telling.” The response at position 2, “not telling,” is the default.

The SurveyPanel constructor uses a label component to hold the question and an array
of radio buttons to hold the responses:

SurveyPanel(String ques, String[] resp, int def) {
question = new JLabel(ques);
response = new JRadioButton[resp.length];
// more to come

}

The class uses grid layout to arrange its components into a grid with three vertical rows
and one horizontal column. Each component placed in the grid is a panel.

First, a panel is created to hold the question label:

JPanel sub1 = new JPanel();
JLabel quesLabel = new JLabel(ques);
sub1.add(quesLabel);

The default layout for panels, flow layout with centered alignment, determines the place-
ment of the label on the panel.

Next, a panel is created to hold the possible responses. A for loop iterates through the
string array that holds the text of each response. This text is used to create a radio button.
The second argument of the JRadioButton constructor determines whether it is selected.
This is implemented with the following code:

JPanel sub2 = new JPanel();
for (int i = 0; i < resp.length; i++) {

if (def == i) {
response[i] = new JRadioButton(resp[i], true);

} else {
response[i] = new JRadioButton(resp[i], false);

}
group.add(response[i]);
sub2.add(response[i]);

}

The last panel holds the Next and Finish buttons:

JPanel sub3 = new JPanel();
nextButton.setEnabled(true);
sub3.add(nextButton);
finalButton.setEnabled(false);
sub3.add(finalButton);

316 DAY 11: Arranging Components on a User Interface

Now that the three panels have been fully. set up, they are added to the SurveyPanel
interface, which completes the work of the constructor method:

GridLayout grid = new GridLayout(3, 1);
setLayout(grid);
add(sub1);
add(sub2);
add(sub3);

There’s one extra wrinkle in the SurveyPanel class—a method that enables the Finish
button and disables the Next button when the last question has been reached:

void setFinalQuestion(boolean finalQuestion) {
if (finalQuestion) {

nextButton.setEnabled(false);
finalButton.setEnabled(true);

}
}

In a user interface that uses card. layout, the display of each card usually takes place in
response to an action by the user.

These actions are called events, and they are covered on Day 12, “Responding to User
Input.”

A brief introduction demonstrates how the SurveyPanel class is equipped to handle but-
ton clicks.

The class implements ActionListener, an interface in the java.awt.event package:

public class SurveyWizard extends JPanel implements ActionListener {
// more to come

}

This interface indicates that the class can respond to action events, which represent but-
ton clicks, menu choices, and similar user input.

Next, each button’s addActionListener(Object) method is called:

ask[0].nextButton.addActionListener(this);
ask[0].finalButton.addActionListener(this);

Listeners are classes that monitor specific. kinds of user input. The argument to
addActionListener() is the class that’s looking for action events. Using this as the
argument indicates that the SurveyPanel class handles this job.

Card Layout 317

11

The ActionListener interface includes only one method:

public void actionPerformed(Action evt) {
// more to come

}

This method is called when a component being listened to generates an action event. In
the SurveyPanel class, this happens whenever a button is clicked.

In SurveyPanel, this method uses an instance variable that keeps track of which card to
display:

int currentCard = 0;

Every time a button is clicked and actionPerformed() is called, this variable is incre-
mented, and the card layout manager’s show(Container, String) method is called to
display a new card. If the last card has been displayed, the Finish button is disabled.

Here’s the complete method:

public void actionPerformed(ActionEvent evt) {
currentCard++;
if (currentCard >= ask.length) {

ask[2].finalButton.setEnabled(false);
}
cards.show(this, “Card “ + currentCard);

}

Listing 11.5 shows the full SurveyWizard class.

LISTING 11.5 The Full Text of SurveyWizard.java

1: import java.awt.*;
2: import java.awt.event.*;
3: import javax.swing.*;
4:
5: public class SurveyWizard extends JPanel implements ActionListener {
6: int currentCard = 0;
7: CardLayout cards = new CardLayout();
8: SurveyPanel[] ask = new SurveyPanel[3];
9:
10: public SurveyWizard() {
11: super();
12: setSize(240, 140);
13: setLayout(cards);
14: // set up survey
15: String question1 = “What is your gender?”;
16: String[] responses1 = { “female”, “male”, “not telling” };

318 DAY 11: Arranging Components on a User Interface

LISTING 11.5 Continued

17: ask[0] = new SurveyPanel(question1, responses1, 2);
18: String question2 = “What is your age?”;
19: String[] responses2 = { “Under 25”, “25-34”, “35-54”,
20: “Over 54” };
21: ask[1] = new SurveyPanel(question2, responses2, 1);
22: String question3 = “How often do you exercise each week?”;
23: String[] responses3 = { “Never”, “1-3 times”, “More than 3” };
24: ask[2] = new SurveyPanel(question3, responses3, 1);
25: ask[2].setFinalQuestion(true);
26: for (int i = 0; i < ask.length; i++) {
27: ask[i].nextButton.addActionListener(this);
28: ask[i].finalButton.addActionListener(this);
29: add(ask[i], “Card “ + i); .
30: }
31: }
32:
33: public void actionPerformed(ActionEvent evt) {
34: currentCard++;
35: if (currentCard >= ask.length) {
36: System.exit(0);
37: }
38: cards.show(this, “Card “ + currentCard);
39: }
40: }
41:
42: class SurveyPanel extends JPanel {
43: JLabel question;
44: JRadioButton[] response;
45: JButton nextButton = new JButton(“Next”);
46: JButton finalButton = new JButton(“Finish”);
47:
48: SurveyPanel(String ques, String[] resp, int def) {
49: super();
50: setSize(160, 110);
51: question = new JLabel(ques);
52: response = new JRadioButton[resp.length];
53: JPanel sub1 = new JPanel();
54: ButtonGroup group = new ButtonGroup();
55: JLabel quesLabel = new JLabel(ques);
56: sub1.add(quesLabel);
57: JPanel sub2 = new JPanel();
58: for (int i = 0; i < resp.length; i++) {
59: if (def == i) {
60: response[i] = new JRadioButton(resp[i], true);
61: } else {
62: response[i] = new JRadioButton(resp[i], false);
63: }
64: group.add(response[i]); .
65: sub2.add(response[i]);

Card Layout 319

11

LISTING 11.5 Continued

66: }
67: JPanel sub3 = new JPanel();
68: nextButton.setEnabled(true);
69: sub3.add(nextButton);
70: finalButton.setEnabled(false);
71: sub3.add(finalButton);
72: GridLayout grid = new GridLayout(3, 1);
73: setLayout(grid);
74: add(sub1);
75: add(sub2);
76: add(sub3);
77: }
78:
79: void setFinalQuestion(boolean finalQuestion) {
80: if (finalQuestion) {
81: nextButton.setEnabled(false);
82: finalButton.setEnabled(true);
83: }
84: }
85: }

After the SurveyWizard class has been compiled, it can be added to any Swing user
interface.

Listing 11.6 contains a simple frame . application that displays a survey panel.

LISTING 11.6 The Full Text of SurveyFrame.java

1: import java.awt.*;
2: import javax.swing.*;
3:
4: public class SurveyFrame extends JFrame {
5: public SurveyFrame() {
6: super(“Survey”);
7: setSize(290, 140);
8: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
9: SurveyWizard wiz = new SurveyWizard();
10: add(wiz);
11: setVisible(true);
12: }
13:
14: public static void main(String[] arguments) {
15: SurveyFrame surv = new SurveyFrame();
16: }
17: }

The running application was shown earlier in Figure 11.5.

320 DAY 11: Arranging Components on a User Interface

Grid Bag Layout
The last of the layout managers available through Java is grid bag layout, a complex
extension of the grid layout manager. A grid bag layout differs from grid layout in the
following ways:

n A component can take up more than one cell in the grid.

n The proportions between different rows and columns do not have to be equal.

n A component does not have to fill the entire cell (or cells) that it occupies.

n A component can be aligned along any edge of a cell.

A grid bag layout requires the GridBagLayout and GridBagConstraints classes, which
both are part of the java.awt package. GridBagLayout is the layout manager, and
GridBagConstraints defines the placement of components in the grid.

The constructor for the grid bag layout manager takes no arguments and can be applied
to a container like any other manager. The following statements could be used in a frame
or window’s constructor method to use grid bag layout in that container:

Container pane = getContentPane();
GridBagLayout bag = new GridBagLayout();
pane.setLayout(bag);

In a grid bag layout, each component uses a GridBagConstraints object to dictate the
cell or cells that it occupies in the grid, its size, and other aspects of its presentation.

A GridBagConstraints object has 11 instance variables that determine component
placement:

n gridx—The x position of the cell that holds the component (if it spans several
cells, the x position of the upper-left portion of the component)

n gridy—The y position of the cell or its upper-left portion

n gridwidth—The number of cells the component occupies in a horizontal direction

n gridheight—The number of cells the component occupies in a vertical direction

n weightx—A value that indicates the component’s size relative to other components
on the same row of the grid

n weighty—A value that indicates its size relative to components on the same grid
column

n anchor—A value that determines where the component is displayed within its cell
(if it doesn’t fill the entire cell)

n fill—A value that determines whether the component expands horizontally or
vertically to fill its cell

Grid Bag Layout 321

11

n insets—An Insets object that sets the whitespace around the component inside
its cell

n ipadx—The amount to expand the component’s width beyond its minimum size

n ipady—The amount to expand the component’s height

With the exception of insets, all these can hold integer values. The easiest way to use
this class is to create a constraints object with no arguments and set its variables individ-
ually. Variables not explicitly set use their default values.

The following code creates a grid bag layout and a constraints object used to place com-
ponents in the grid:

Container pane = getContentPane();
GridBagLayout gridbag = new GridBagLayout();
GridBagConstraints constraints = new GridBagConstraints();
pane.setLayout(gridbag);

The constraints object can be configured with a set of assignment statements:

constraints.gridx = 0;
constraints.gridy = 0;
constraints.gridwidth = 2;
constraints.gridheight = 1;
constraints.weightx = 100;
constraints.weighty = 100;
constraints.fill = GridBagConstraints.NONE;
constraints.anchor = GridBagConstraints.CENTER;

This code sets up a constraint that can be used to put a component at grid position (0,0)
that is two cells wide and one cell tall.

The component’s size within its cell and position are set with class variables of
GridBagConstraints. The component will be centered in its cell (an anchor value of
CENTER) and does not expand to fill the entire cell (a fill value of NONE).

The weightx and weighty values only make sense in relation to the same values for
other components, as described in detail later in this section.

A component is added to a grid bag layout in two steps:

1. The layout manager’s setConstraints(Component, GridBagConstraints)
method is called with the component and constraints objects as arguments.

2. The component is added to a container that uses that manager.

322 DAY 11: Arranging Components on a User Interface

The following statements continue the preceding example, adding a button to the layout:

JButton okButton = new JButton(“OK”);
gridbag.setConstraints(okButton, constraints);
pane.add(okButton);

A constraints object must be set before the placement of each component in the grid.

Designing the Grid
Because grid bag layout is complex, it helps to do some preparatory work before using
it—either by sketching out the desired user interface on graph paper or making notes in
some other form.

Figure 11.6 shows a sketch on graph paper for the layout of a panel in an email pro-
gram’s user interface.

Grid Bag Layout 323

11

FIGURE 11.6
Designing a user
interface on a grid.

The panel drawn in Figure 11.6 contains a group of labels and text fields that will be
filled out when sending a message.

A grid bag layout suits this interface because it contains components of different widths.
All the labels have the same width, but the To and Subject text fields are larger than the
CC and BCC fields. In grid bag layout, each component must have its own cell and can-
not share it with any other components. A component can take up more than one cell.

The sketch in Figure 11.6 does not indicate individual cells, but it does mark off values
from 0 to 100 to indicate the width of components. These are intended as percentage val-
ues rather than exact sizes, which is a convenient way to calculate weightx and weighty

values.

At this point, you might be wondering why there aren’t percentage
values from 0 to 100 running vertically alongside the sketch. The
email interface doesn’t need them—all the components will have
the same height (and, thus, the same weighty value).

NOTE

After the user interface has been sketched to show the relative sizes of components, the
cell position and size of each component can be determined.

The width of each component in the email interface was set to multiples of 10, making it
easy to use a grid with 10 columns.

Like grid layout, cells begin with (0,0) in the upper-left corner. The x coordinate is the
column, and the y coordinate is the row. They increase as you move to the left and down-
ward, respectively.

Figure 11.7 shows the (x,y) position and the width of each component, in cells.

324 DAY 11: Arranging Components on a User Interface

0,1 (1 wide)

1,0 (9 wide)

6,2 (4 wide)

5,2 (1 wide)

1,2 (4 wide)

0,2 (1 wide)

1,1 (9 wide)

0,0 (1 wide)

FIGURE 11.7
Choosing cells for
components in the
grid.

Creating the Grid
With a well-planned sketch on graph paper, you can write the code necessary to imple-
ment the user interface.

The following statements in the email panel’s constructor set it to use grid bag layout and
add a To label and text field to the panel:

public MessagePanel() {
GridBagLayout gridbag = new GridBagLayout();
setLayout(gridbag);
// add the label
JLabel toLabel = new JLabel(“To: “);
GridBagConstraints constraints = new GridBagConstraints();
constraints.gridx = 0;
constraints.gridy = 0;
constraints.gridwidth = 1;
constraints.gridheight = 1;
constraints.weightx = 10;
constraints.weighty = 100;
constraints.fill = GridBagConstraints.NONE;

constraints.anchor = GridBagConstraints.EAST;
gridbag.setConstraints(toLabel, constraints);
add(toLabel);
// add the text field
JTextField to = new JTextField();
constraints = new GridBagConstraints();
constraints.gridx = 1;
constraints.gridy = 0;
constraints.gridwidth = 9;
constraints.gridheight = 1;
constraints.weightx = 90;
constraints.weighty = 100;
constraints.fill = GridBagConstraints.HORIZONTAL;
constraints.anchor = GridBagConstraints.WEST;
gridbag.setConstraints(to, constraints);
add(to);

}

The label and text fields each use their own constraints object (reusing the constraints
variable). Their gridx and gridy values put the label at position (0,0) and the text field
at position (0,1). The gridwidth values make the label one cell wide and the text field
nine cells wide.

They use the fill value differently: The label has NONE, so it does not expand in either
direction, and the text field has HORIZONTAL, so it expands horizontally only. (The other
possible values are VERTICAL or BOTH.)

They also use anchor differently. The label is aligned along the right edge of the cell
through the EAST class variable. The text field aligns to the left edge through WEST.

Each of the compass directions and CENTER can be used: NORTH, NORTHEAST, EAST,
SOUTHEAST, SOUTH, SOUTHWEST, WEST, and NORTHWEST.

The most complex aspect of grid bag constraints are the weightx and weighty values.
These variables hold arbitrary integer (or double) values that indicate how big compo-
nents should be in relation to each other.

The To label has a weightx of 10, and the adjacent text field has a weightx of 90, using
the same scale as the sketch in Figure 11.5. These values make the text field nine times
as large as the label. The values are arbitrary: If the label were 3 and the text field were
27, the field would still be nine times as large.

When you don’t need to give components different weights, use the same value through-
out a row or column. For instance, the To label and field both have weighty values of
100, so they have the same height as any other components below them in the same
column.

Grid Bag Layout 325

11

Setting up grid bag constraints requires a lot of repetitive code. To save some typing, the
email panel’s class has a method to set a component’s constraints and add it to the panel:

private void addComponent(Component component, int gridx, int gridy,
int gridwidth, int gridheight, int weightx, int weighty, int fill,
int anchor) {

GridBagConstraints constraints = new GridBagConstraints();
constraints.gridx = gridx;
constraints.gridy = gridy;
constraints.gridwidth = gridwidth;
constraints.gridheight = gridheight;
constraints.weightx = weightx;
constraints.weighty = weighty;
constraints.fill = fill;
constraints.anchor = anchor;
gridbag.setConstraints(component, constraints);
add(component);

}

This method could be used in any panel class that uses a GridBagLayout manager stored
in an instance variable named gridbag. It doesn’t use the insets, ipadx, and ipady vari-
ables of the GridBagConstraints class, so they retain their default values.

The following statements call this addComponent() method to add a Subject label and
text field to the panel:

JLabel subjectLabel = new JLabel(“Subject: “);
addComponent(subjectLabel, 0, 1, 1, 1, 10, 100, GridBagConstraints.NONE,

GridBagConstraints.EAST);
JTextField subject = new JTextField();
addComponent(subject, 1, 1, 9, 1, 90, 100, GridBagConstraints.HORIZONTAL,

GridBagConstraints.WEST);

The panel is completed with statements to add CC and BCC labels and fields:

// add a CC label at (0,2) 1 cell wide
JLabel ccLabel = new JLabel(“CC: “);
addComponent(ccLabel, 0, 2, 1, 1, 10, 100, GridBagConstraints.NONE,

GridBagConstraints.EAST);
// add a CC text field at (1,2) 4 cells wide
JTextField cc = new JTextField();
addComponent(cc, 1, 2, 4, 1, 40, 100, GridBagConstraints.HORIZONTAL,

GridBagConstraints.WEST);
// add a BCC label at (5,2) 4 cells wide
JLabel bccLabel = new JLabel(“BCC: “);
addComponent(bccLabel, 5, 2, 1, 1, 10, 100, GridBagConstraints.NONE,

GridBagConstraints.EAST);
// add a BCC text field at (6,2) 4 cells wide

326 DAY 11: Arranging Components on a User Interface

JTextField bcc = new JTextField();
addComponent(bcc, 6, 2, 4, 1, 40, 100, GridBagConstraints.HORIZONTAL,

GridBagConstraints.WEST);

These four components share the same row, which makes their weightx values impor-
tant. The labels are set to 10 each, and the text fields are set to 40 each, as noted in the
initial sketch.

Listing 11.7 shows the full source code of the email panel class, MessagePanel.

LISTING 11.7 The Full Text of MessagePanel.java

1: import java.awt.*;
2: import javax.swing.*;
3:
4: public class MessagePanel extends JPanel {
5: GridBagLayout gridbag = new GridBagLayout();
6:
7: public MessagePanel() {
8: super();
9: GridBagConstraints constraints;
10: setLayout(gridbag);
11:
12: JLabel toLabel = new JLabel(“To: “);
13: JTextField to = new JTextField();
14: JLabel subjectLabel = new JLabel(“Subject: “);
15: JTextField subject = new JTextField();
16: JLabel ccLabel = new JLabel(“CC: “);
17: JTextField cc = new JTextField();
18: JLabel bccLabel = new JLabel(“BCC: “);
19: JTextField bcc = new JTextField();
20:
21: addComponent(toLabel, 0, 0, 1, 1, 10, 100,
22: GridBagConstraints.NONE, GridBagConstraints.EAST);
23: addComponent(to, 1, 0, 9, 1, 90, 100,
24: GridBagConstraints.HORIZONTAL, GridBagConstraints.WEST);
25: addComponent(subjectLabel, 0, 1, 1, 1, 10, 100,
26: GridBagConstraints.NONE, GridBagConstraints.EAST);
27: addComponent(subject, 1, 1, 9, 1, 90, 100,
28: GridBagConstraints.HORIZONTAL, GridBagConstraints.WEST);
29: addComponent(ccLabel, 0, 2, 1, 1, 10, 100,
30: GridBagConstraints.NONE, GridBagConstraints.EAST);
31: addComponent(cc, 1, 2, 4, 1, 40, 100,
32: GridBagConstraints.HORIZONTAL, GridBagConstraints.WEST);
33: addComponent(bccLabel, 5, 2, 1, 1, 10, 100,
34: GridBagConstraints.NONE, GridBagConstraints.EAST);
35: addComponent(bcc, 6, 2, 4, 1, 40, 100,
36: GridBagConstraints.HORIZONTAL, GridBagConstraints.WEST);

Grid Bag Layout 327

11

LISTING 11.7 Continued

37: }
38:
39: private void addComponent(Component component, int gridx, int gridy,
40: int gridwidth, int gridheight, int weightx, int weighty, int fill,
41: int anchor) {
42:
43: GridBagConstraints constraints = new GridBagConstraints();
44: constraints.gridx = gridx;
45: constraints.gridy = gridy;
46: constraints.gridwidth = gridwidth;
47: constraints.gridheight = gridheight;
48: constraints.weightx = weightx;
49: constraints.weighty = weighty;
50: constraints.fill = fill;
51: constraints.anchor = anchor;
52: gridbag.setConstraints(component, constraints);
53: add(component);
54: }
55: }

After the panel has been compiled, it can be used in any graphical user interface (pre-
sumably this panel would be incorporated into an email program’s interface for writing
messages).

Figure 11.8 shows how it looks when added to a simple frame 320 pixels wide by 120
pixels tall.

328 DAY 11: Arranging Components on a User Interface

FIGURE 11.8
Viewing the panel
in an application’s
user interface.

Because the panel does not stipulate its own size, the frame’s dimensions determine the
height and width of the panel. This fluidity demonstrates a strength of Swing’s grid and
grid bag layouts—they enable components to adapt to the space available to them in an
interface.

Cell Padding and Insets
The email panel example doesn’t use three GridBagConstraints variables: insets,
ipadx, and ipady. The ipadx and ipady constraints control padding, the extra space
around an individual component. By default, no components have extra space around
them (which is easiest to see in components that fill their cells). The ipadx variable adds
space to either side of the component, and ipady adds it above and below.

The horizontal and vertical gaps that appear when you create a new layout manager (or
use ipadx and ipady in grid bag layouts) are used to determine the amount of space
between components in a panel. Insets, however, are used to determine the amount of
space around the panel itself. The Insets class includes values for the top, bottom, left,
and right insets, which are then used when the panel itself is drawn.

Insets determine the amount of space between the edges of a panel and that panel’s com-
ponents.

The following statement creates an Insets object that specifies 20 pixels of insets above
and below and 13 pixels to the left and right:

Insets whitespace = new Insets(20, 13, 20, 13);

Insets can be established in any container by overriding its getInsets() method and
returning an Insets object, as in this example:

public Insets getInsets() {
return new Insets(10, 30, 10, 30);

}

Summary
Abstract expressionism goes only so far, as you have seen today. Layout managers
require some adjustment for people who are used to more precise control over the place
that components appear on an interface.

You now know how to use the five different layout managers and panels. As you work
with the Abstract Windowing Toolkit, you’ll find that it can approximate any kind of
interface through the use of nested containers and different layout managers.

After you master the development of a user interface in Java, your programs can offer
something that most other visual programming languages can’t: an interface that works
on multiple platforms without modification.

Summary 329

11

Q&A
Q I really dislike working with layout managers; they’re either too simplistic or

too complicated (the grid bag layout, for example). Even with a lot of tinker-
ing, I can never get my user interface to look like I want it to. All I want to do
is define the sizes of my components and put them at an x,y position on the
screen. Can I do this?

A It’s possible but problematic. Java was designed in such a way that a program’s
graphical user interface could run equally well on different platforms and with dif-
ferent screen resolutions, fonts, screen sizes, and the like. Relying on pixel coordi-
nates can cause a program that looks good on one platform to be unusable on
others, where layout disasters such as components overlapping each other or get-
ting cut off by the edge of a container may result. Layout managers, by dynami-
cally placing elements on the screen, get around these problems. Although there
might be some differences among the end results on different platforms, the differ-
ences are less likely to be catastrophic.

If none of that is persuasive, here’s how to ignore my advice: Set the content
pane’s layout manager with null as the argument, create a Rectangle object (from
the java.awt package) with the x,y position, width, and height of the component
as arguments, and then call the component’s setBounds(Rectangle) method with
that rectangle as the argument.

The following application displays a 300-by-300 pixel frame with a Click Me but-
ton at the (x,y) position 10, 10 that is 120 pixels wide by 30 pixels tall:
import java.awt.*;
import javax.swing.*;

public class Absolute extends JFrame {
public Absolute() {

super(“Example”);
setSize(300, 300);
Container pane = getContentPane();
pane.setLayout(null);
JButton myButton = new JButton(“Click Me”);
myButton.setBounds(new Rectangle(10, 10, 120, 30));
pane.add(myButton);
setContentPane(pane);
setVisible(true);

}

public static void main(String[] arguments) {
Absolute ex = new Absolute();

}
}

You can find out more about setBounds() in the Component class. The documenta-
tion for the Java class library can be found on the Web at http://java.sun.com/
javase/6/docs/api.

330 DAY 11: Arranging Components on a User Interface

Quiz
Review today’s material by taking this three-question quiz.

Questions
1. What is the default layout manager for a panel in Java?

a. None

b. BorderLayout

c. FlowLayout

2. Which layout manager uses a compass direction or a reference to the center when
adding a component to a container?

a. BorderLayout

b. MapLayout

c. FlowLayout

3. If you want a grid layout in which a component can take up more than one cell of
the grid, which layout should you use?

a. GridLayout

b. GridBagLayout

c. None; it isn’t possible to do that.

Answers
1. c.

2. a.

3. b.

Certification Practice
The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Given:

import java.awt.*;
import javax.swing.*;

public class ThreeButtons extends JFrame {
public ThreeButtons() {

super(“Program”);

Quiz 331

11

setSize(350, 225);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JButton alpha = new JButton(“Alpha”);
JButton beta = new JButton(“Beta”);
JButton gamma = new JButton(“Gamma”);
JPanel content = new JPanel();
// answer goes here
content.add(alpha);
content.add(beta);
content.add(gamma);
add(content);
pack();
setVisible(true);

}

public static void main(String[] arguments) {
ThreeButtons b3 = new ThreeButtons();

}
}

Which statement should replace // answer goes here to make the frame display all
three buttons side by side?

a. content.setLayout(null);

b. content.setLayout(new FlowLayout());

c. content.setLayout(new GridLayout(3,1));

d. content.setLayout(new BorderLayout());

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 11 page and click the Certification Practice link.

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. Create a user interface that displays a calendar for a single month, including head-
ings for the seven days of the week and a title of the month across the top.

2. Create an interface that incorporates more than one layout manager.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java21days.com.

332 DAY 11: Arranging Components on a User Interface

DAY 12:
Responding to User
Input

To make a graphical user interface completely functional in a Java pro-
gram, you must make the interface receptive to user events.

Swing handles events with a set of interfaces called event listeners. You
create a listener object and associate it with the user interface compo-
nent being monitored.

Today, you learn how to add listeners of all kinds to your Swing programs,
including those that handle action events, mouse events, and other inter-
action.

When you’re finished, you create a full Java application using the Swing
set of classes.

Event Listeners
If a class wants to respond to a user event under the Java event-handling system, it must
implement the interface that deals with the events. These interfaces are called event lis-
teners.

Each listener handles a specific kind of event.

The java.awt.event package contains all the basic event listeners, as well as the objects
that represent specific events. These listener interfaces are the most useful:

n ActionListener—Action events, which are generated by a user taking an action on
a component, such as a click on a button

n AdjustmentListener—Adjustment events, which are generated when a component
is adjusted, such as when a scrollbar is moved

n FocusListener—Keyboard focus events, which are generated when a component
such as a text field gains or loses the focus

n ItemListener—Item events, which are generated when an item such as a check
box is changed

n KeyListener—Keyboard events, which occur when a user enters text on the key-
board

n MouseListener—Mouse events, which are generated by mouse clicks, a mouse
entering a component’s area, and a mouse leaving a component’s area

n MouseMotionListener—Mouse movement events, which track all movement by a
mouse over a component

n WindowListener—Window events, which are generated by a window being maxi-
mized, minimized, moved, or closed

A class can implement as many listeners as needed. The following class is declared to
handle both action and text events:

public class Suspense extends JFrame implements ActionListener,
TextListener {

// ...
}

To use these classes in your programs, you can import them individually or use an
import statement with a wildcard to make the entire package available:

import java.awt.event.*;

334 DAY 12: Responding to User Input

Setting Up Components
When you make a class an event listener, you have set up a specific type of event to be
heard by that class. However, the event won’t actually be heard unless you follow up
with a second step: A matching listener must be added to the component. That listener
generates the events when the component is used.

After a component is created, you can call one of the following methods on the compo-
nent to associate a listener with it:

n addActionListener()—JButton, JCheckBox, JComboBox, JTextField,
JRadioButton, and JMenuItem components

n addFocusListener()—All Swing components

n addItemListener()—JButton, JCheckBox, JComboBox, and JRadioButton compo-
nents

n addKeyListener()—All Swing components

n addMouseListener()—All Swing components

n addMouseMotionListener()—All Swing components

n addTextListener()—JTextField and JTextArea components

n addWindowListener()—JWindow and JFrame components

Modifying a component after adding it to a container is an easy
mistake to make in a Java program. You must add listeners to a
component and handle any other configuration before the compo-
nent is added to any containers; otherwise, these settings are dis-
regarded when the program is run.

The following example creates a JButton object and associates an action event listener
with it:

JButton zap = new JButton(“Zap”);
zap.addActionListener(this);

All the listener adding methods take one argument: the object that is listening for events
of that kind. Using this indicates that the current class is the event listener. You could
specify a different object, as long as its class implements the right listener interface.

Event Listeners 335

12

CAUTION

Event-Handling Methods
When you associate an interface with a class, the class must handle all the methods con-
tained in the interface.

In the case of event listeners, each of the methods is called automatically by the window-
ing system when the corresponding user event takes place.

The ActionListener interface has only one method: actionPerformed(). All classes
that implement ActionListener must have a method with the following structure:

public void actionPerformed(ActionEvent event) {
// handle event here

}

If only one component in your program’s graphical user interface has a listener for action
events, you will know that this actionPerformed() method only is called in response to
an event generated by that component.

If more than one component has an action event listener, you must use the ActionEvent
object to figure out which component was used and act accordingly in your program.
This object can be used to discover details about the component that generated the event.

ActionEvent and all other event objects are part of the java.awt.event package and
subclasses of the EventObject class.

Every event-handling method is sent an event object of some kind. The object’s
getSource() method can be used to determine the component that sent the event, as in
the following example:

public void actionPerformed(ActionEvent event) {
Object source = evt.getSource();

}

The object returned by the getSource() method can be compared with components by
using the == operator. The following statements can be used within the body of an
actionPerformed() method to handle user clicks on buttons named quitButton and
sortRecords:

if (source == quitButton) {
quitProgram();

}
if (source == sortRecords) {

sortRecords();
}

336 DAY 12: Responding to User Input

The quitProgram() method is called if the quitButton object generated the event, and
the sortRecords() method is called if the sortRecords button generated the event.

Many event-handling methods call a different method for each kind of event or compo-
nent. This makes the event-handling method easier to read. In addition, if there is more
than one event-handling method in a class, each one can call the same methods to get
work done.

The instanceof operator can be used in an event-handling method to determine what
class of component generated the event. The following example can be used in a pro-
gram with one button and one text field, each of which generates an action event:

void actionPerformed(ActionEvent event) {
Object source = event.getSource();
if (source instanceof JTextField) {

calculateScore();
} else if (source instanceof JButton) {

quitProgram();
}

}

The program in Listing 12.1 is a frame with two JButton components, which are used to
change the text on the frame’s title bar.

LISTING 12.1 The Full Text of TitleChanger.java

1: import java.awt.event.*;
2: import javax.swing.*;
3: import java.awt.*;
4:
5: public class TitleChanger extends JFrame implements ActionListener {
6: JButton b1 = new JButton(“Rosencrantz”);
7: JButton b2 = new JButton(“Guildenstern”);
8:
9: public TitleChanger() {
10: super(“Title Bar”);
11: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12: b1.addActionListener(this);
13: b2.addActionListener(this);
14: FlowLayout flow = new FlowLayout();
15: setLayout(flow);
16: add(b1);
17: add(b2);
18: pack();
19: setVisible(true);
20: }
21:

Event Listeners 337

12

LISTING 12.1 Continued

22:
23: public void actionPerformed(ActionEvent evt) {
24: Object source = evt.getSource();
25: if (source == b1) {
26: setTitle(“Rosencrantz”);
27: } else if (source == b2) {
28: setTitle(“Guildenstern”);
29: }
30: repaint();
31: }
32:
33: public static void main(String[] arguments) {
34: TitleChanger frame = new TitleChanger();
35: }
36: }

After you run this application with the Java interpreter, the program’s interface should
resemble Figure 12.1.

338 DAY 12: Responding to User Input

FIGURE 12.1
The TitleChanger
application.

Only 12 lines were needed to respond to action events in this application:

n Line 1 imports the java.awt.event package.

n Line 5 implements the ActionListener interface.

n Lines 12 and 13 add action listeners to both JButton objects.

n Lines 23–31 respond to action events that occur from the two JButton objects. The
evt object’s getSource() method determines the source of the event. If it is equal
to the b1 button, the title of the frame is set to Rosencrantz; if it is equal to b2, the
title is set to Guildenstern. A call to repaint() is needed so that the frame is
redrawn after any title change that might have occurred in the method.

Working with Methods
The following sections detail the structure of each event-handling method and the meth-
ods that can be used within them.

In addition to the methods described, the getSource() method can be used on any event
object to determine which object generated the event.

Action Events
Action events occur when a user completes an action using components such as buttons,
check boxes, menu items, text fields, and radio buttons.

A class must implement the ActionListener interface to handle these events. In addi-
tion, the addActionListener() method must be called on each component that should
generate an action event—unless you want to ignore that component’s action events.

The actionPerformed(ActionEvent) method is the only method of the ActionListener
interface. It takes the following form:

public void actionPerformed(ActionEvent event) {
// ...

}

In addition to the getSource() method, you can use the getActionCommand() method on
the ActionEvent object to discover more information about the event’s source.

By default, the action command is the text associated with the component, such as the
label on a button. You also can set a different action command for a component by call-
ing its setActionCommand(String) method. The string argument should be the action
command’s desired text.

For example, the following statements create a button and menu item and give both of
them the action command “Sort Files”:

JButton sort = new JButton(“Sort”);
JMenuItem menuSort = new JMenuItem(“Sort”);
sort.setActionCommand(“Sort Files”);
menuSort.setActionCommand(“Sort Files”);

Action commands are useful in a program in which more than one
component should cause the same thing to happen. By giving
both components the same action command, you can handle
them with the same code in an event-handling method.

Working with Methods 339

12

NOTE

Focus Events
Focus events occur when any component gains or loses input focus on a graphical user
interface. Focus describes the component that is active for keyboard input. If one of the
fields has the focus (in a user interface with several editable text fields), a cursor blinks
in the field. Any text entered goes into this component.

Focus applies to all components that can receive input. In a JButton object, a dotted out-
line appears on the button that has the focus.

A component can be given the focus by calling its requestFocus() method with no
arguments, as in this example:

JButton ok = new JButton(“OK”);
ok.requestFocus();

To handle a focus event, a class must implement the FocusListener interface. Two
methods are in the interface: focusGained(FocusEvent) and focusLost(FocusEvent).
They take the following forms:

public void focusGained(FocusEvent event) {
// ...

}

public void focusLost(FocusEvent event) {
// ...

}

To determine which object gained or lost the focus, the getSource() method can be
called on the FocusEvent object sent as an argument to the focusGained() and
focusLost() methods.

Listing 12.2 contains a Java application that displays the sum of two numbers. Focus
events are used to determine when the sum needs to be recalculated.

LISTING 12.2 The Full Text of Calculator.java

1: import java.awt.event.*;
2: import javax.swing.*;
3: import java.awt.*;
4:
5: public class Calculator extends JFrame implements FocusListener {
6: JTextField value1 = new JTextField(“0”, 5);
7: JLabel plus = new JLabel(“+”);
8: JTextField value2 = new JTextField(“0”, 5);
9: JLabel equals = new JLabel(“=”);

340 DAY 12: Responding to User Input

LISTING 12.2 Continued

10: JTextField sum = new JTextField(“0”, 5);
11:
12: public Calculator() {
13: super(“Add Two Numbers”);
14: setSize(350, 90);
15: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
16: FlowLayout flow = new FlowLayout(FlowLayout.CENTER);
17: setLayout(flow);
18: // add listeners
19: value1.addFocusListener(this);
20: value2.addFocusListener(this);
21: // set up sum field
22: sum.setEditable(false);
23: // add components
24: add(value1);
25: add(plus);
26: add(value2);
27: add(equals);
28: add(sum);
29: setVisible(true);
30: }
31:
32: public void focusGained(FocusEvent event) {
33: try {
34: float total = Float.parseFloat(value1.getText()) +
35: Float.parseFloat(value2.getText());
36: sum.setText(“” + total);
37: } catch (NumberFormatException nfe) {
38: value1.setText(“0”);
39: value2.setText(“0”);
40: sum.setText(“0”);
41: }
42: }
43:
44: public void focusLost(FocusEvent event) {
45: focusGained(event);
46: }
47:
48: public static void main(String[] arguments) {
49: Calculator frame = new Calculator();
50: }
51: }

Figure 12.2 shows the application.

In the Calculator application, focus listeners are added to the first two text fields,
value1 and value2, and the class implements the FocusListener interface.

Working with Methods 341

12

The focusGained() method is called whenever either of these fields gains the input
focus (lines 32–42). In this method, the sum is calculated by adding the values in the
other two fields. If either field contains an invalid value—such as a string—a
NumberFormatException is thrown, and all three fields are reset to “0”.

The focusLost() method accomplishes the same behavior by calling focusGained()
with the focus event as an argument.

One thing to note about this application is that event-handling behavior is not required to
collect numeric input in a text field. This is taken care of automatically by any compo-
nent in which text input is received.

Item Events
Item events occur when an item is selected or deselected on components such as buttons,
check boxes, or radio buttons. A class must implement the ItemListener interface to
handle these events.

The itemStateChanged(ItemEvent) method is the only method in the ItemListener
interface. It takes the following form:

void itemStateChanged(ItemEvent event) {
// ...

}

To determine in which item the event occurred, the getItem() method can be called on
the ItemEvent object.

You also can determine whether the item was selected or deselected by using the
getStateChange() method. This method returns an integer that equals either the class
variable ItemEvent.DESELECTED or ItemEvent.SELECTED.

Listing 12.3 illustrates the use of item events. The FormatChooser application displays
information about a selected combo box item in a label.

342 DAY 12: Responding to User Input

FIGURE 12.2
The Calculator
application.

LISTING 12.3 The Full Text of FormatChooser.java

1: import java.awt.*;
2: import java.awt.event.*;
3: import javax.swing.*;
4:
5: public class FormatChooser extends JFrame implements ItemListener {
6: String[] formats = { “(choose format)”, “Atom”, “RSS 0.92”,
7: “RSS 1.0”, “RSS 2.0” };
8: String[] descriptions = {
9: “Atom weblog and syndication format”,
10: “RSS syndication format 0.92 (Netscape)”,
11: “RSS/RDF syndication format 1.0 (RSS/RDF)”,
12: “RSS syndication format 2.0 (UserLand)”
13: };
14: JComboBox formatBox = new JComboBox();
15: JLabel descriptionLabel = new JLabel(“”);
16:
17: public FormatChooser() {
18: super(“Syndication Format”);
19: setSize(420, 150);
20: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
21: setLayout(new BorderLayout());
22: for (int i = 0; i < formats.length; i++) {
23: formatBox.addItem(formats[i]);
24: }
25: formatBox.addItemListener(this);
26: add(BorderLayout.NORTH, formatBox);
27: add(BorderLayout.CENTER, descriptionLabel);
28: setVisible(true);
29: }
30:
31: public void itemStateChanged(ItemEvent event) {
32: int choice = formatBox.getSelectedIndex();
33: if (choice > 0) {
34: descriptionLabel.setText(descriptions[choice-1]);
35: }
36: }
37:
38: public Insets getInsets() {
39: return new Insets(50, 10, 10, 10);
40: }
41:
42: public static void main(String[] arguments) {
43: FormatChooser fc = new FormatChooser();
44: }
45: }

This application extends the combo box example from Day 9, “Working with Swing.”
Figure 12.3 shows this application.

Working with Methods 343

12

The application creates a combo box from an array of strings and adds an item listener to
the component (lines 22–25). Item events are received by the
itemStateChanged(ItemEvent) method (lines 31–36), which changes the text of a label
based on the index number of the selected item. Index 1 corresponds with “Atom”, 2
with “RSS 0.92”, 3 with “RSS 1.0”, and 4 with “RSS 2.0”.

Key Events
Key events occur when a key is pressed on the keyboard. Any component can generate
these events, and a class must implement the KeyListener interface to support them.

There are three methods in the KeyListener interface. They include
keyPressed(KeyEvent), keyReleased(KeyEvent), and keyTyped(KeyEvent). They take
the following forms:

public void keyPressed(KeyEvent event) {
// ...

}

public void keyReleased(KeyEvent event) {
// ...

}

public void keyTyped(KeyEvent event) {
// ...

}

KeyEvent’s getKeyChar() method returns the character of the key associated with the
event. If no Unicode character can be represented by the key, getKeyChar() returns a
character value equal to the class variable KeyEvent.CHAR_UNDEFINED.

For a component to generate key events, it must be capable of receiving the input focus.
Text fields, text areas, and other components that take keyboard input support this auto-
matically. For other components such as labels and panels, the setFocusable(boolean)
method should be called with an argument of true:

Container pane = getContentPane();
pane.setFocusable(true);

344 DAY 12: Responding to User Input

FIGURE 12.3
The output of the
FormatChooser
application.

Mouse Events
Mouse events are generated by the following types of user interaction:

n A mouse click

n A mouse entering a component’s area

n A mouse leaving a component’s area

Any component can generate these events, which are implemented by a class through the
MouseListener interface. This interface has five methods:

n mouseClicked(MouseEvent)

n mouseEntered(MouseEvent)

n mouseExited(MouseEvent)

n mousePressed(MouseEvent)

n mouseReleased(MouseEvent)

Each takes the same basic form as mouseReleased(MouseEvent):

public void mouseReleased(MouseEvent event) {
// ...

}

The following methods can be used on MouseEvent objects:

n getClickCount()—Returns the number of times the mouse was clicked as an
integer

n getPoint()—Returns the x,y coordinate within the component where the mouse
was clicked as a Point object

n getX()—Returns the x position

n getY()—Returns the y position

Mouse Motion Events
Mouse motion events occur when a mouse is moved over a component. As with other
mouse events, any component can generate mouse motion events. A class must imple-
ment the MouseMotionListener interface to support them.

There are two methods in the MouseMotionListener interface: mouseDragged(MouseEvent)
and mouseMoved(MouseEvent). They take the following forms:

Working with Methods 345

12

public void mouseDragged(MouseEvent event) {
// ...

}

public void mouseMoved(MouseEvent event) {
// ...

}

Unlike the other event-listener interfaces you have dealt with up to this point,
MouseMotionListener does not have its own event type. Instead, MouseEvent objects are
used.

Because of this, you can call the same methods you would for mouse events:
getClick(), getPoint(), getX(), and getY().

The next project demonstrates how to detect and respond to mouse events. Listing 12.4
contains the MousePrank and PrankPanel classes, which implement a popular user-
interface prank—a button that tries to avoid being clicked.

LISTING 12.4 The Full Text of MousePrank.java

1: import java.awt.*;
2: import java.awt.event.*;
3: import javax.swing.*;
4:
5: public class MousePrank extends JFrame implements ActionListener {
6: public MousePrank() {
7: super(“Message”);
8: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
9: setSize(420, 220);
10: BorderLayout border = new BorderLayout();
11: setLayout(border);
12: JLabel message = new JLabel(“Click OK to close this program.”);
13: add(BorderLayout.NORTH, message);
14: PrankPanel prank = new PrankPanel();
15: prank.ok.addActionListener(this);
16: add(BorderLayout.CENTER, prank);
17: setVisible(true);
18: }
19:
20: public void actionPerformed(ActionEvent event) {
21: System.exit(0);
22: }
23:
24: public Insets getInsets() {
25: return new Insets(40, 10, 10, 10);
26: }
27:

346 DAY 12: Responding to User Input

LISTING 12.4 Continued

28: public static void main(String[] arguments) {
29: new MousePrank();
30: }
31: }
32:
33: class PrankPanel extends JPanel implements MouseMotionListener {
34: JButton ok = new JButton(“OK”);
35: int buttonX, buttonY, mouseX, mouseY;
36: int width, height;
37:
38: PrankPanel() {
39: super();
40: setLayout(null);
41: addMouseMotionListener(this);
42: buttonX = 110;
43: buttonY = 110;
44: ok.setBounds(new Rectangle(buttonX, buttonY,
45: 70, 20));
46: add(ok);
47: }
48:
49: public void mouseMoved(MouseEvent event) {
50: mouseX = event.getX();
51: mouseY = event.getY();
52: width = (int)getSize().getWidth();
53: height = (int)getSize().getHeight();
54: if (Math.abs((mouseX + 35) - buttonX) < 50) {
55: buttonX = moveButton(mouseX, buttonX, width);
56: repaint();
57: }
58: if (Math.abs((mouseY + 10) - buttonY) < 50) {
59: buttonY = moveButton(mouseY, buttonY, height);
60: repaint();
61: }
62: }
63:
64: public void mouseDragged(MouseEvent event) {
65: // ignore this event
66: }
67:
68: private int moveButton(int mouseAt, int buttonAt, int border) {
69: if (buttonAt < mouseAt) {
70: buttonAt—;
71: } else {
72: buttonAt++;
73: }
74: if (buttonAt > (border - 20)) {
75: buttonAt = 10;
76: }

Working with Methods 347

12

LISTING 12.4 Continued

77: if (buttonAt < 0) {
78: buttonAt = border - 80;
79: }
80: return buttonAt;
81: }
82:
83: public void paintComponent(Graphics comp) {
84: super.paintComponent(comp);
85: ok.setBounds(buttonX, buttonY, 70, 20);
86: }
87: }

The MousePrank class is a frame that holds two components arranged with a border lay-
out—the label “Click OK to close this program.” and a panel with an OK button on it.
Figure 12.4 shows the user interface for this application.

348 DAY 12: Responding to User Input

FIGURE 12.4
The running
MousePrank
application.

Because the button does not behave normally, it is implemented with the PrankPanel
class, a subclass of JPanel. This panel includes a button that is drawn at a specific posi-
tion on the panel instead of being placed by a layout manager. This technique was
described at the end of Day 11, “Arranging Components on a User Interface.”

First, the panel’s layout manager is set to null, which causes it to stop using flow layout
by default:

setLayout(null);

Next, the button is placed on the panel using setBounds(Rectangle), the same method
that determines where a frame or window will appear on a desktop.

A Rectangle object is created with four arguments: its x position, y position, width, and
height. Here’s how PrankPanel draws the button:

JButton ok = new JButton(“OK”);
int buttonX = 110;
int buttonY = 110;
ok.setBounds(new Rectangle(buttonX, buttonY, 70, 20));

Creating the Rectangle object within the method call is more efficient because you don’t
need to use the object anywhere else in the class. The following statements accomplish
the same thing in two steps:

Rectangle box = new Rectangle(buttonX, buttonY, 70, 20);
ok.setBounds(box);

The class has instance variables that hold the x,y position of the button, buttonX and
buttonY. They start out at 110,110 and change whenever the mouse comes within 50
pixels of the center of the button.

Mouse movements are tracked by implementing the MouseListener interface and its two
methods, mouseMoved(MouseEvent) and mouseDragged(MouseEvent).

The panel uses mouseMoved() and ignores mouseDragged().

When the mouse moves, a mouse event object’s getX() and getY() methods return its
current x,y position, which is stored in the instance variables mouseX and mouseY.

The moveButton(int, int, int) method takes three arguments:

n The x or y position of the button

n The x or y position of the mouse

n The width or height of the panel

This method moves the button away from the mouse in either a vertical or horizontal
direction, depending on whether it is called with x coordinates and the panel height or y
coordinates and the width.

After the button’s position has moved, the repaint() method is called, which causes the
panel’s paintComponent(Graphics) method to be called (lines 83–86).

Every component has a paintComponent() method that can be overridden to draw the
component. The button’s setBounds() method displays it at the current x,y position
(line 85).

Window Events
Window events occur when a user opens or closes a window object, such as a JFrame or
a JWindow. Any component can generate these events, and a class must implement the
WindowListener interface to support them.

Working with Methods 349

12

There are seven methods in the WindowListener interface:

n windowActivated(WindowEvent)

n windowClosed(WindowEvent)

n windowClosing(WindowEvent)

n windowDeactivated(WindowEvent)

n windowDeiconified(WindowEvent)

n windowIconified(WindowEvent)

n windowOpened(WindowEvent)

They all take the same form as the windowOpened() method:

public void windowOpened(WindowEvent evt) {
// ...

}

The windowClosing() and windowClosed() methods are similar, but one is called as the
window is closing, and the other is called after it is closed. In fact, you can take action in
a windowClosing() method to stop the window from being closed.

Using Adapter Classes
A Java class that implements an interface must include all its methods, even if it doesn’t
plan to do anything in response to some of them.

This requirement can make it necessary to add a lot of empty methods when you’re
working with an event-handling interface such as WindowListener, which has seven
methods.

As a convenience, Java offers adapters, Java classes that contain empty do-nothing
implementations of specific interfaces. By subclassing an adapter class, you can imple-
ment only the event-handling methods you need by overriding those methods. The rest
will inherit those do-nothing methods.

The java.awt.event package includes FocusAdapter, KeyAdapter, MouseAdapter,
MouseMotionAdapter, and WindowAdapter. They correspond to the expected listeners for
focus, keyboard, mouse, mouse motion, and window events.

Listing 12.5 contains a Java application that displays the most recently pressed key, mon-
itoring keyboard events through a subclass of KeyAdapter.

350 DAY 12: Responding to User Input

LISTING 12.5 The Full Text of KeyChecker.java

1: import java.awt.*;
2: import java.awt.event.*;
3: import javax.swing.*;
4:
5: public class KeyChecker extends JFrame {
6: JLabel keyLabel = new JLabel(“Hit any key”);
7:
8: public KeyChecker() {
9: super(“Hit a Key”);
10: setSize(300, 200);
11: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12: setLayout(new FlowLayout(FlowLayout.CENTER));
13: KeyMonitor monitor = new KeyMonitor(this);
14: setFocusable(true);
15: addKeyListener(monitor);
16: add(keyLabel);
17: setVisible(true);
18: }
19:
20: public static void main(String[] arguments) {
21: new KeyChecker();
22: }
23: }
24:
25: class KeyMonitor extends KeyAdapter {
26: KeyChecker display;
27:
28: KeyMonitor(KeyChecker display) {
29: this.display = display;
30: }
31:
32: public void keyTyped(KeyEvent event) {
33: display.keyLabel.setText(“” + event.getKeyChar());
34: display.repaint();
35: }
36: }

Summary
The event-handling system used with Swing is added to a program through the same
steps:

n A listener interface is added to the class that will contain the event-handling
methods.

Summary 351

12

n A listener is added to each component that will generate the events to handle.

n The methods are added, each with an EventObject class as the only argument to
the method.

n Methods of that EventObject class, such as getSource(), are used to learn which
component generated the event and what kind of event it was.

When you know these steps, you can work with each of the different listener interfaces
and event classes. You also can learn about new listeners as they are added to Swing with
new components.

Q&A
Q Can a program’s event-handling behavior be put into its own class instead of

including it with the code that creates the interface?

A It can, and many programmers will tell you that this is a good way to design your
programs. Separating interface design from your event-handling code enables the
two to be developed separately. This makes it easier to maintain the project; related
behavior is grouped and isolated from unrelated behavior.

Q Is there a way of differentiating between the buttons on a mouseClicked()
event?

A You can, using a feature of mouse events that wasn’t covered today because right
and middle mouse buttons are platform-specific features that aren’t available on all
systems where Java programs run.

All mouse events send a MouseEvent object to their event-handling methods. Call
the getModifiers() method of the object to receive an integer value that indicates
which mouse button generated the event.

Check the value against three class variables. It equals MouseEvent.BUTTON1_MASK
if the left button was clicked, MouseEvent.BUTTON2_MASK if the middle button was
clicked, and MouseEvent.BUTTON3_MASK if the right button was clicked. See
MouseTest.java and MouseTest.class on the Day 12 page of the book’s website
at http://www.java21days.com for an example that implements this technique.

For more information, see the Java class library documentation for the MouseEvent
class: Visit the web page http://java.sun.com/javase/6/docs/api and click the
java.awt.event hyperlink to view the classes in that package.

352 DAY 12: Responding to User Input

Quiz
Review today’s material by taking this three-question quiz.

Questions
1. If you use this in a method call such as addActionListener(this), what object

is being registered as a listener?

a. An adapter class

b. The current class

c. No class

2. What is the benefit of subclassing an adapter class such as WindowAdapter (which
implements the WindowListener interface)?

a. You inherit all the behavior of that class.

b. The subclass automatically becomes a listener.

c. You don’t need to implement any WindowListener methods you won’t be
using.

3. What kind of event is generated when you press Tab to leave a text field?

a. FocusEvent

b. WindowEvent

c. ActionEvent

Answers
1. b. The current class must implement the correct listener interface and the required

methods.

2. c. Because most listener interfaces contain more methods than you will need, using
an adapter class as a superclass saves the hassle of implementing empty methods
just to implement the interface.

3. a. A user interface component loses focus when the user stops editing that compo-
nent and moves to a different part of the interface.

Certification Practice
The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Quiz 353

12

Given:

import java.awt.event.*;
import javax.swing.*;
import java.awt.*;

public class Interface extends JFrame implements ActionListener {
public boolean deleteFile;

public Interface() {
super(“Interface”);
JLabel commandLabel = new JLabel(“Do you want to delete the file?”);
JButton yes = new JButton(“Yes”);
JButton no = new JButton(“No”);
yes.addActionListener(this);
no.addActionListener(this);

setLayout(new BorderLayout());
JPanel bottom = new JPanel();
bottom.add(yes);
bottom.add(no);
add(“North”, commandLabel);
add(“South”, bottom);

pack();
setVisible(true);

}

public void actionPerformed(ActionEvent evt) {
JButton source = (JButton) evt.getSource();
// answer goes here

deleteFile = true;
else

deleteFile = false;
}

public static void main(String[] arguments) {
new Interface();

}
}

Which of the following statements should replace // answer goes here to make the
application function correctly?

a. if (source instanceof JButton)

b. if (source.getActionCommand().equals(“yes”))

c. if (source.getActionCommand().equals(“Yes”))

d. if source.getActionCommand() == “Yes”

354 DAY 12: Responding to User Input

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 12 page and click the Certification Practice link.

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. Create an application that uses FocusListener to make sure that a text field’s value
is multiplied by -1 and redisplayed any time a user changes it to a negative value.

2. Create a calculator that adds or subtracts the contents of two text fields whenever
the appropriate button is clicked, displaying the result as a label.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java21days.com.

Exercises 355

12

DAY 13:
Using Color, Fonts, and
Graphics

Today, you work with Java classes that add graphics to a graphical user
interface with Java2D, a set of classes that support high-quality, two-
dimensional images, color, and text.

Java2D, which includes classes in the java.awt and javax.swing pack-
ages, can be used to draw text and shapes such as circles and polygons;
use different fonts, colors, and line widths; and work with colors and
patterns.

The Graphics2D Class
Everything in Java2D begins with the Graphics2D class in the java.awt package, which
represents a graphics context, an environment in which something can be drawn. A
Graphics2D object can represent a component on a graphical user interface, printer, or
another display device.

Graphics2D is a subclass of the Graphics class that includes extended features required
by Java2D.

Early versions of Java included rudimentary support for graphics in
the Graphics class. These methods have been supplanted by more
sophisticated and efficient alternatives in Java2D.

Before you can start using the Graphics2D class, you need something on which to draw.

Several user interface components can act as a canvas for graphical operations such as
panels and windows.

After you have an interface component to use as a canvas, you can draw text, lines, ovals,
circles, arcs, rectangles, and other polygons on that object.

One component that’s suitable for this purpose is JPanel in the javax.swing package.
This class represents panels in a graphical user interface that can be empty or contain
other components.

The following example creates a frame and a panel and then adds the panel to the frame:

JFrame main = new JFrame(“Main Menu”);
JPanel pane = new JPanel();
Container content = main.getContentPane();
content.add(pane);

The frame’s getContentPane() method returns a Container object representing the por-
tion of the frame that can contain other components. The container’s add() method is
called to add the panel to the frame.

Like many other user interface components in Java, JPanel objects have a
paintComponent(Graphics) method that is called automatically whenever the compo-
nent needs to be redisplayed.

358 DAY 13: Using Color, Fonts, and Graphics

NOTE

Several things could cause paintComponent() to be called, including the following:

n The graphical user interface containing the component is displayed for the first
time.

n A window that was displayed on top of the component is closed.

n The graphical user interface containing the component is resized.

By creating a subclass of JPanel, you can override the panel’s paintComponent()
method and put all your graphical operations in this method.

As you might have noticed, a Graphics object is sent to an interface component’s
paintComponent() method rather than a Graphics2D object. To create a Graphics2D
object that represents the component’s drawing surface, you must use casting to convert
it, as in the following example:

public void paintComponent(Graphics comp) {
Graphics2D comp2D = (Graphics2D)comp;
// ...

}

The comp2D object in this example was produced through the use of casting.

The Graphics Coordinate System
Java2D classes use the same x,y coordinate system you have used when setting the size
of frames and other components.

Java’s coordinate system uses pixels as its unit of measure. The origin coordinate 0, 0 is
in the upper-left corner of a component.

The value of x coordinates increases to the right of 0, 0, and y coordinates increase
downward.

When you set the size of a frame by calling its setSize(int, int) method, the frame’s
upper-left corner is at 0, 0, and its lower-right corner is at the two arguments sent to
setSize().

For example, the following statement creates a frame 425 pixels wide by 130 pixels tall
with its lower-right corner at 425, 130:

setSize(425, 130);

This differs from other drawing systems in which the 0, 0 origin is
at the lower left and y values increase in an upward direction.

The Graphics2D Class 359

13

CAUTION

All pixel values are integers; you can’t use decimal numbers to display something at a
position between two integer values.

Figure 13.1 depicts Java’s graphical coordinate system visually, with the origin at 0, 0.
Two of the points of a rectangle are at 20, 20 and 60, 60.

360 DAY 13: Using Color, Fonts, and Graphics

0,0

20,20

60,60

+X

+Y

FIGURE 13.1
The Java graphics
coordinate system.

Drawing Text
Text is the easiest thing to draw on an interface component.

To draw text, call a Graphics2D object’s drawString() method with three arguments:

n The String to display

n The x coordinate where it should be displayed

n The y coordinate where it should be displayed

The x,y coordinate used in the drawString() method represent the pixel at the lower-left
corner of the string.

The following paintComponent() method draws the string “Free the bound periodicals”
at the coordinate 22, 100:

public void paintComponent(Graphics comp) {
Graphics2D comp2D = (Graphics2D)comp;
comp2D.drawString(“Free the bound periodicals”, 22, 100);

}

The preceding example uses a default font. To use a different font, you must create an
object of the Font class in the java.awt package.

Font objects represent the name, style, and point size of a font.

A Font object is created by sending three arguments to its constructor:

n The font’s name

n The font’s style

n The font’s point size

The name of the font can be the logical name of a font, such as Arial, Courier New,
Garamond, or Kaiser. If the font is present on the system on which the Java program is
running, it will be used. If the font is not present, the default font will be used.

The name also can be one of five generic fonts: Dialog, DialogInput, Monospaced,
SanSerif, or Serif. These fonts can be used to specify the kind of font to use without
requiring a specific font. This is often a better choice because some font families might
not be present on all implementations of Java.

Three Font styles can be selected by using static class variables: PLAIN, BOLD, and
ITALIC. These constants are integers, and you can add them to combine effects.

The following statement creates a 24-point Dialog font that is bold and italicized:

Font f = new Font(“Dialog”, Font.BOLD + Font.ITALIC, 24);

After you have created a font, you can use it by calling the setFont(Font) method of the
Graphics2D class with the font as the method argument.

The setFont() method sets the font used for subsequent calls to the drawString()
method on the same Graphics2D object. You can call it again later to change the font and
draw more text.

The following paintComponent() method creates a new Font object, sets the current font
to that object, and draws the string “I’m very font of you” at the coordinate 10, 100:

public void paintComponent(Graphics comp) {
Graphics2D comp2D = (Graphics2D)comp;
Font f = new Font(“Arial Narrow”, Font.PLAIN, 72);
comp2D.setFont(f);
comp2D.drawString(“I’m very font of you”, 10, 100);

}

Java programs can ensure that a font is available by including it with the program and
loading it from a file. This technique requires the Font class method createFont(int,
InputStream), which returns a Font object representing that font.

Drawing Text 361

13

Input streams, which are covered on Day 15, “Working with Input and Output,” are
objects that can load data from a source such as a disk file or web address. The following
statements load a font from a file named Verdana.ttf in the same folder as the class file
that uses it:

try {
File ttf = new File(“Verdana.ttf”);
FileInputStream fis = new FileInputStream(ttf);
Font font = Font.createFont(Font.TRUETYPE_FONT, fis);

} catch (IOException ioe) {
System.out.println(“Error: “ + ioe.getMessage());
ioe.printStackTrace();

}

The try-catch block handles input/output errors, which must be considered when data is
loaded from a file. The File, FileInputStream, and IOException classes are part of the
java.io package and are discussed in depth on Day 15.

When a font is loaded with createFont(), the Font object will be 1 point and plain
style. To change the size and style, call the font object’s deriveFont(int, int) method
with two arguments: the desired style and size.

Improving Fonts and Graphics with Antialiasing
If you displayed text using the skills introduced up to this point, the appearance of the
font would look crude compared to what you’ve come to expect from other software.
Characters would be rendered with jagged edges, especially on curves and diagonal lines.

Java2D can draw fonts and graphics much more attractively using its support for
antialiasing, a rendering technique that smooths out rough edges by altering the color of
surrounding pixels.

This functionality is off by default. To turn it on, call a Graphics2D object’s
setRenderingHint() method with two arguments:

n A RenderingHint.Key object that identifies the rendering hint being set

n A RenderingHint.Key object that sets the value of that hint

The following code enables antialiasing on a Graphics2D object named comp2D:

comp2D.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);

By calling this method in the paintComponent() method of a component, you can cause
all subsequent drawing operations to employ antialiasing.

362 DAY 13: Using Color, Fonts, and Graphics

Finding Information About a Font
To make text look good in a graphical user interface, you often must figure out how
much space the text is taking up on an interface component.

The FontMetrics class in the java.awt package provides methods to determine the size
of the characters being displayed with a specified font, which can be used for things such
as formatting and centering text.

The FontMetrics class can be used for detailed information about the current font, such
as the width or height of characters it can display.

To use this class’s methods, a FontMetrics object must be created using the
getFontMetrics() method. The method takes a single argument: a Font object.

Table 13.1 shows some of the information you can find using font metrics. All these
methods should be called on a FontMetrics object.

TABLE 13.1 Font Metrics Methods

Method Name Action

stringWidth(String) Given a string, returns the full width of that string in pixels

charWidth(char) Given a character, returns the width of that character

getHeight() Returns the total height of the font

Listing 13.1 shows how the Font and FontMetrics classes can be used. The TextFrame
application displays a string at the center of a frame, using font metrics to measure the
string’s width using the selected font.

LISTING 13.1 The Full Text of TextFrame.java

1: import java.awt.*;
2: import java.awt.event.*;
3: import javax.swing.*;
4:
5: public class TextFrame extends JFrame {
6: public TextFrame(String text, String fontName) {
7: super(“Show Font”);
8: setSize(425, 150);
9: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
10: TextFramePanel sf = new TextFramePanel(text, fontName);
11: add(sf);
12: setVisible(true);
13: }
14:

Drawing Text 363

13

LISTING 13.1 Continued

15: public static void main(String[] arguments) {
16: if (arguments.length < 1) {
17: System.out.println(“Usage: java TextFrame message font”);
18: System.exit(-1);
19: }
20: TextFrame frame = new TextFrame(arguments[0], arguments[1]);
21: }
22:
23: }
24:
25: class TextFramePanel extends JPanel {
26: String text;
27: String fontName;
28:
29: public TextFramePanel(String text, String fontName) {
30: super();
31: this.text = text;
32: this.fontName = fontName;
33: }
34:
35: public void paintComponent(Graphics comp) {
36: super.paintComponent(comp);
37: Graphics2D comp2D = (Graphics2D)comp;
38: comp2D.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
39: RenderingHints.VALUE_ANTIALIAS_ON);
40: Font font = new Font(fontName, Font.BOLD, 18);
41: FontMetrics metrics = getFontMetrics(font);
42: comp2D.setFont(font);
43: int x = (getSize().width - metrics.stringWidth(text)) / 2;
44: int y = getSize().height / 2;
45: comp2D.drawString(text, x, y);
46: }
47: }

The TextFrame application takes two command-line arguments: the text to display and
the name of the font to use. Here’s an example:

java TextFrame “Able was I ere I saw Elba” “Times New Roman”

Figure 13.2 shows how this looks on a system with the Times New Roman font installed.
When you run the application, resize the frame window to see how the text moves so that
it remains centered.

The TextFrame application consists of two classes: a frame and a panel subclass called
TextFramePanel. The text is drawn on the panel by overriding the paintComponent
(Graphics) method and calling drawing methods of the Graphics2D class inside the
method.

364 DAY 13: Using Color, Fonts, and Graphics

The getSize() method calls in lines 43 and 44 use the width and height of the panel to
determine where the text should be displayed. When the application is resized, the panel
also is resized, and paintComponent() is called automatically.

Color
The Color and ColorSpace classes of the java.awt package can be used to make a
graphical user interface more colorful. With these classes, you can set the color for use in
drawing operations, as well as the background color of an interface component and other
windows. You also can translate a color from one color-description system into another.

By default, Java uses colors according to the sRGB color-description system. In this sys-
tem, a color is described by the amounts of red, green, and blue it contains—that’s what
the R, G, and B stand for. Each of the three components can be represented as an integer
between 0 and 255. Black is 0, 0, 0—the complete absence of any red, green, or blue.
White is 255, 255, 255—the maximum amount of all three. You also can represent sRGB
values using three floating-point numbers ranging from 0 to 1.0. Java can represent mil-
lions of colors between the two extremes using sRGB.

A color-description system is called a color space, and sRGB is only one such space.
There also is CMYK, a system used by printers that describes colors by the amount of
cyan, magenta, yellow, and black they contain. Java supports the use of any color space
desired as long as a ColorSpace object is used that defines the description system. You
also can convert from any color space to sRGB, and vice versa.

Java’s internal representation of colors using sRGB is just one color space being used in
a program. An output device such as a monitor or printer also has its own color space.

When you display or print something of a designated color, the output device might not
support the designated color. In this circumstance, a different color is substituted or a
dithering pattern is used to approximate the unavailable color.

Color 365

13

FIGURE 13.2
Displaying cen-
tered text in a
graphical user
interface.

The practical reality of color management is that the color you designate with sRGB will
not be available on all output devices. If you need more precise control of the color, you
can use ColorSpace and other classes in the java.awt.color package.

For most uses, the built-in use of sRGB to define colors should be sufficient.

Using Color Objects
Colors are represented by Color objects, which can be created with a constructor or by
using one of the standard colors available from the Color class.

You can call the Color constructor to create a color in two ways:

n Use three integers that represent the sRGB value of the desired color.

n Use three floating-point numbers that represent the desired sRGB value.

You can specify a color’s sRGB value using either three int or three float values. The
following statements show examples of each:

Color c1 = new Color(0.807F, 1F, 0F);

Color c2 = new Color(255, 204, 102);

The c1 object describes a neon green color, and c2 is butterscotch.

It’s easy to confuse floating-point literals such as 0F and 1F with
hexadecimal numbers, which were discussed on Day 2, “The ABCs
of Programming.” Colors are often expressed in hexadecimal, such
as when a background color is set for a web page using the HTML
BODY tag. The Java classes and methods you work with don’t take
hexadecimal arguments, so when you see a literal such as 1F or
0F, you’re dealing with floating-point numbers.

Testing and Setting the Current Colors
The current color for drawing is designated by using the setColor() method of the
Graphics2D class. This method must be called on the Graphics2D object that represents
the area to which something is being drawn.

Several of the most common colors are available as class variables in the Color class.

These colors use the following Color variables (with sRGB values indicated within
parentheses):

366 DAY 13: Using Color, Fonts, and Graphics

NOTE

black (0, 0, 0) magenta (255, 0, 255)
blue (0, 0, 255) orange (255, 200, 0)
cyan (0, 255, 255) pink (255, 175, 175)
darkGray (64, 64, 64) red (255, 0, 0)
gray (128, 128, 128) white (255, 255, 255)
green (0, 255, 0) yellow (255, 255, 0)
lightGray (192, 192, 192)

The following statement sets the color for a Graphics2D object named comp2D by using
one of the standard class variables:

comp2D.setColor(Color.pink);

If you have created a Color object, it can be set in a similar fashion:

Color brush = new Color(255, 204, 102);
comp2D.setColor(brush);

After you set the current color, subsequent methods to draw strings and other things will
use that color.

You can set the background color for a component, such as a panel or frame, by calling
the component’s setBackground(Color) and setForeground(Color) methods.

The setBackground() method sets the component’s background color, as in this
example:

setBackground(Color.white);

The setForeground() method is called on user interface components, changing the color
of a component such as a button or a window.

You can use setForeground() in the init() method to set the color for drawing opera-
tions. This color is used until another color is chosen with either setForeground() or
setColor().

If you want to find out what the current color is, you can use the getColor() method on
a Graphics2D object, or the getForeground() or getBackground() methods on the com-
ponent.

The following statement sets the current color of comp2D—a Graphics2D object—to the
same color as a component’s background:

comp2D.setColor(getBackground());

Color 367

13

Drawing Lines and Polygons
All the basic drawing commands covered today are Graphics2D methods called within a
component’s paintComponent() method.

This is an ideal place for all drawing operations because paintComponent() is automati-
cally called any time the component needs to be redisplayed.

If another program’s window overlaps the component and it needs to be redrawn, putting
all the drawing operations in paintComponent() makes sure that no part of the drawing
is left out.

Java2D features include the following:

n The capability to draw empty polygons and polygons filled with a solid color

n Special fill patterns, such as gradients and patterns

n Strokes that define the width and style of a drawing stroke

n Antialiasing to smooth edges of drawn objects

User and Device Coordinate Spaces
One concept introduced with Java2D is the difference between an output device’s coordi-
nate space and the coordinate space you refer to when drawing an object.

Coordinate space is any 2D area that can be described using the x,y coordinate.

For all drawing operations prior to Java, the only coordinate space used was the device
coordinate space. You specified the x,y coordinate of an output surface, such as a panel,
and those coordinates were used to draw text and other elements.

Java2D requires a second coordinate space that you refer to when creating an object and
actually drawing it. This is called the user coordinate space.

Before any 2D drawing has occurred in a program, the device space and user space have
the 0, 0 coordinate in the same place—the upper-left corner of the drawing area.

The user space’s 0, 0 coordinate can move as a result of the 2D drawing operations being
conducted. The x- and y-axes can even shift because of a 2D rotation. You learn more
about the two coordinate systems as you work with Java2D.

Specifying the Rendering Attributes
The next step in 2D drawing is to specify how a drawn object is rendered. Drawings that
are not 2D can select only one attribute: color.

368 DAY 13: Using Color, Fonts, and Graphics

Java2D offers a wide range of attributes for designating color, including line width, fill
patterns, transparency, and many other features.

Fill Patterns
Fill patterns control how a drawn object will be filled in. With Java2D, you can use a
solid color, gradient fill, texture, or pattern of your own devising.

A fill pattern is defined by using the setPaint(Paint) method of Graphics2D with a
Paint object as its only argument. Any class that can be a fill pattern, including
GradientPaint, TexturePaint, and Color, can implement the Paint interface. Using a
Color object with setPaint() is the same thing as using a solid color as the pattern.

A gradient fill is a gradual shift from one color at one coordinate point to another color
at a different coordinate point. The shift can occur once between the points—which is
called an acyclic gradient—or it can happen repeatedly, which is a cyclic gradient.

Figure 13.3 shows examples of acyclic and cyclic gradients between white and a darker
color. The arrows indicate the points that the colors shift between.

Drawing Lines and Polygons 369

13

Acyclic Cyclic

FIGURE 13.3
Acyclic and cyclic
gradient shifts.

The coordinate points in a gradient do not refer directly to points on the Graphics2D
object being drawn onto. Instead, they refer to user space and can even be outside the
object being filled with a gradient.

Figure 13.4 illustrates this. Both rectangles are filled using the same GradientPaint
object as a guide. One way to think of a gradient pattern is as a piece of fabric that has
been spread over a flat surface. The shapes being filled with a gradient are the patterns
cut from the fabric, and more than one pattern can be cut from the same piece of cloth.

A call to the GradientPaint constructor method takes the following format:

GradientPaint gp = new GradientPaint(
x1, y1, color1, x2, y2, color2);

The point x1, y1 is where the color represented by color1 begins, and x2, y2 is where
the shift ends at color2.

If you want to use a cyclic gradient shift, an extra argument is added at the end:

GradientPaint gp = new GradientPaint(
x1, y1, color1, x2, y2, color2, true);

The last argument is a Boolean value that is true for a cyclic shift. A false argument
can be used for acyclic shifts, or you can omit this argument; acyclic shifts are the
default behavior.

After you have created a GradientPaint object, set it as the current paint attribute by
using the setPaint() method. The following statements create and select a gradient:

GradientPaint pat = new GradientPaint(0f,0f,Color.white,
100f,45f,Color.blue);

comp2D.setPaint(pat);

All subsequent drawing operations to the comp2D object use this fill pattern until another
one is chosen.

Setting a Drawing Stroke
Java2D offers the capability to vary the width of drawn lines by using the setStroke()
method with a BasicStroke.

A simple BasicStroke constructor takes three arguments:

n A float value representing the line width, with 1.0 as the norm

n An int value determining the style of cap decoration drawn at the end of a line

n An int value determining the style of juncture between two line segments

370 DAY 13: Using Color, Fonts, and Graphics

FIGURE 13.4
Two rectangles
using the same
GradientPaint.

The endcap- and juncture-style arguments use BasicStroke class variables. Endcap
styles apply to the ends of lines that do not connect to other lines. Juncture styles apply
to the ends of lines that join other lines.

Possible endcap styles are CAP_BUTT for no endpoints, CAP_ROUND for circles around each
endpoint, and CAP_SQUARE for squares. Figure 13.5 shows each endcap style. As you can
see, the only visible difference between the CAP_BUTT and CAP_SQUARE styles is that CAP_
SQUARE is longer because of the added square endcap.

Drawing Lines and Polygons 371

13

CAP_BUTT CAP_ROUND CAP_SQUARE

FIGURE 13.5
Endpoint cap
styles.

Possible juncture styles include JOIN_MITER, which joins segments by extending their
outer edges, JOIN_ROUND, which rounds off a corner between two segments, and JOIN_
BEVEL, which joins segments with a straight line. Figure 13.6 shows examples of each
juncture style.

JOIN_MITER JOIN_ROUND JOIN_BEVEL

FIGURE 13.6
Endpoint juncture
styles.

The following statements create a BasicStroke object and make it the current stroke:

BasicStroke pen = BasicStroke(2.0f,
BasicStroke.CAP_BUTT,
BasicStroke.JOIN_ROUND);

comp2D.setStroke(pen);

The stroke has a width of 2 pixels, plain endpoints, and rounded segment corners.

Creating Objects to Draw
After you have created a Graphics2D object and specified the rendering attributes, the
final two steps are to create the object and draw it.

A drawn object in Java2D is created by defining it as a geometric shape using a class in
the java.awt.geom package. You can draw lines, rectangles, ellipses, arcs, and polygons.

The Graphics2D class does not have different methods for each of the shapes you can
draw. Instead, you define the shape and use it as an argument to draw() or fill()
methods.

Lines
Lines are created using the Line2D.Float class. This class takes four arguments: the x,y
coordinate of one endpoint followed by the x,y coordinate of the other. Here’s an
example:

Line2D.Float ln = new Line2D.Float(60F,5F,13F,28F);

This statement creates a line between 60, 5 and 13, 28. Note that an F is used with the
literals sent as arguments. Otherwise, the Java compiler would assume that the values
were integers.

Rectangles
Rectangles are created by using the Rectangle2D.Float class or Rectangle2D.Double
class. The difference between the two is that one takes float arguments, and the other
takes double arguments.

Rectangle2D.Float takes four arguments: x coordinate, y coordinate, width, and height.
The following is an example:

Rectangle2D.Float rc = new Rectangle2D.Float(10F, 13F, 40F, 20F);

This creates a rectangle at 10, 13 that is 40 pixels wide by 20 pixels tall.

Ellipses
Ellipses, which were called ovals in early versions of Java, can be created with the
Ellipse2D.Float class. It takes four arguments: x coordinate, y coordinate, width, and
height.

The following statement creates an ellipse at 113, 25 with a width of 22 pixels and a
height of 40 pixels:

Ellipse2D.Float ee = new Ellipse2D.Float(113, 25, 22, 40);

Arcs
Of all the shapes you can draw in Java2D, arcs are the most complex to construct.

Arcs are created with the Arc2D.Float class, which takes seven arguments:

n The x,y coordinate of an invisible ellipse that would include the arc if it was drawn

n The width and height of the ellipse

n The starting degree of the arc

n The number of degrees it travels on the ellipse

n An integer describing how the arc is closed

372 DAY 13: Using Color, Fonts, and Graphics

The number of degrees traveled by the arc is specified in a counterclockwise direction by
using negative numbers.

Figure 13.7 shows where degree values are located when determining the starting degree
of an arc. The arc’s starting angle ranges from 0 to 359 degrees counterclockwise. On a
circular ellipse, 0 degrees is at the 3 o’clock position, 90 degrees is at 12 o’clock, 180
degrees is at 9 o’clock, and 270 degrees is at 6 o’clock.

Drawing Lines and Polygons 373

13

90°

180°

90°

0°180°

270°

FIGURE 13.7
Determining the
starting degree of
an arc.

The last argument to the Arc2D.Float constructor uses one of three class variables:
Arc2D.OPEN for an unclosed arc, Arc2D.CHORD to connect the arc’s endpoints with a
straight line, and Arc2D.PIE to connect the arc to the center of the ellipses like a pie
slice. Figure 13.8 shows each of these styles.

Arc2D.OPEN Arc2D.CHORD Arc2D.PIE

FIGURE 13.8
Arc closure styles.

The Arc2D.OPEN closure style does not apply to filled arcs. A filled
arc that has Arc2D.OPEN as its style will be closed using the same
style as Arc2D.CHORD.

The following statement creates an Arc2D.Float object:

Arc2D.Float arc = new Arc2D.Float(
27F, 22F, 42F, 30F, 33F, 90F, Arc2D.PIE);

NOTE

This creates an arc for an oval at 27, 22 that is 42 pixels wide by 30 pixels tall. The arc
begins at 33 degrees, extends 90 degrees clockwise, and is closed like a pie slice.

Polygons
Polygons are created in Java2D by defining each movement from one point on the poly-
gon to another. A polygon can be formed from straight lines, quadratic curves, or Bézier
curves.

The movements to create a polygon are defined as a GeneralPath object, which also is
part of the java.awt.geom package.

A GeneralPath object can be created without any arguments, as shown here:

GeneralPath polly = new GeneralPath();

The moveTo() method of GeneralPath is used to create the first point on the polygon.
The following statement would be used if you wanted to start polly at the coordinate
5, 0:

polly.moveTo(5f, 0f);

After creating the first point, the lineTo() method is used to create lines that end at a
new point. This method takes two arguments: the x,y coordinate of the new point.

The following statements add three lines to the polly object:

polly.lineTo(205f, 0f);
polly.lineTo(205f, 90f);
polly.lineTo(5f, 90f);

The lineTo() and moveTo() methods require float arguments to specify coordinate
points.

If you want to close a polygon, the closePath() method is used without any arguments,
as shown here:

polly.closePath();

This method closes a polygon by connecting the current point with the point specified by
the most recent moveTo() method. You can close a polygon without this method by using
a lineTo() method that connects to the original point.

After you have created an open or closed polygon, you can draw it like any other shape
using the draw() and fill() methods. The polly object is a rectangle with points at 5,
0; 205, 0; 205, 90; and 5, 90.

374 DAY 13: Using Color, Fonts, and Graphics

Drawing Objects
After you have defined the rendering attributes, such as color and line width, and have
created the object to be drawn, you’re ready to draw something in all its 2D glory.

All drawn objects use the same Graphics2D class’s methods: draw() for outlines and
fill() for filled objects. These take an object as the only argument.

Drawing a Map
The next project you will create is an application that draws a simple map using 2D
drawing techniques. Enter the text of Listing 13.2 using your editor and save the file as
Map.java.

LISTING 13.2 The Full Text of Map.java

1: import java.awt.*;
2: import java.awt.geom.*;
3: import javax.swing.*;
4:
5: public class Map extends JFrame {
6: public Map() {
7: super(“Map”);
8: setSize(350, 350);
9: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
10: MapPane map = new MapPane();
11: add(map);
12: setVisible(true);
13: }
14:
15: public static void main(String[] arguments) {
16: Map frame = new Map();
17: }
18:
19: }
20:
21: class MapPane extends JPanel {
22: public void paintComponent(Graphics comp) {
23: Graphics2D comp2D = (Graphics2D)comp;
24: comp2D.setColor(Color.blue);
25: comp2D.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
26: RenderingHints.VALUE_ANTIALIAS_ON);
27: Rectangle2D.Float background = new Rectangle2D.Float(
28: 0F, 0F, (float)getSize().width, (float)getSize().height);
29: comp2D.fill(background);
30: // Draw waves
31: comp2D.setColor(Color.white);
32: BasicStroke pen = new BasicStroke(2F,
33: BasicStroke.CAP_BUTT, BasicStroke.JOIN_ROUND);

Drawing Lines and Polygons 375

13

LISTING 13.2 Continued

34: comp2D.setStroke(pen);
35: for (int ax = 0; ax < 340; ax += 10)
36: for (int ay = 0; ay < 340 ; ay += 10) {
37: Arc2D.Float wave = new Arc2D.Float(ax, ay,
38: 10, 10, 0, -180, Arc2D.OPEN);
39: comp2D.draw(wave);
40: }
41: // Draw Florida
42: GradientPaint gp = new GradientPaint(0F, 0F, Color.green,
43: 350F,350F, Color.orange, true);
44: comp2D.setPaint(gp);
45: GeneralPath fl = new GeneralPath();
46: fl.moveTo(10F, 12F);
47: fl.lineTo(234F, 15F);
48: fl.lineTo(253F, 25F);
49: fl.lineTo(261F, 71F);
50: fl.lineTo(344F, 209F);
51: fl.lineTo(336F, 278F);
52: fl.lineTo(295F, 310F);
53: fl.lineTo(259F, 274F);
54: fl.lineTo(205F, 188F);
55: fl.lineTo(211F, 171F);
56: fl.lineTo(195F, 174F);
57: fl.lineTo(191F, 118F);
58: fl.lineTo(120F, 56F);
59: fl.lineTo(94F, 68F);
60: fl.lineTo(81F, 49F);
61: fl.lineTo(12F, 37F);
62: fl.closePath();
63: comp2D.fill(fl);
64: // Draw ovals
65: comp2D.setColor(Color.black);
66: BasicStroke pen2 = new BasicStroke();
67: comp2D.setStroke(pen2);
68: Ellipse2D.Float e1 = new Ellipse2D.Float(235, 140, 15, 15);
69: Ellipse2D.Float e2 = new Ellipse2D.Float(225, 130, 15, 15);
70: Ellipse2D.Float e3 = new Ellipse2D.Float(245, 130, 15, 15);
71: comp2D.fill(e1);
72: comp2D.fill(e2);
73: comp2D.fill(e3);
74: }
75: }

Some observations about the Map application include the following:

n Line 2 imports the classes in the java.awt.geom package. This statement is
required because import java.awt.*; in line 1 handles only classes, not pack-
ages, available under java.awt.

376 DAY 13: Using Color, Fonts, and Graphics

n Line 23 creates the comp2D object used for all 2D drawing operations. It’s a cast of
the Graphics object that represents the panel’s visible surface.

n Lines 32–34 create a BasicStroke object that represents a line width of 2 pixels
and then makes this the current stroke with the setStroke() method of
Graphics2D.

n Lines 35–40 use two nested for loops to create waves from individual arcs.

n Lines 42–43 create a gradient fill pattern from the color green at 0, 0 to orange at
50, 50. The last argument to the constructor, true, causes the fill pattern to repeat
itself as many times as needed to fill an object.

n Line 44 sets the current gradient fill pattern using the setPaint() method and the
gp object just created.

n Lines 45–63 create the polygon shaped like the state of Florida and draw it. This
polygon is filled with a green-to-orange gradient pattern.

n Line 63 sets the current color to black. This replaces the gradient fill pattern for the
next drawing operation because colors are also fill patterns.

n Line 65 creates a new BasicStroke() object with no arguments, which defaults to
a 1-pixel line width.

n Line 66 sets the current line width to the new BasicStroke object pen2.

n Lines 68–70 create three ellipses at 235, 140; 225, 130; and 245, 130. Each is 15
pixels wide by 15 pixels tall, making them circles.

Figure 13.9 shows the application running.

Drawing Lines and Polygons 377

13

FIGURE 13.9
The Map
application.

Summary
You now have some tools to improve the looks of a Java program. You can draw with
lines, rectangles, ellipses, polygons, fonts, colors, and patterns onto a frame, a panel, and
other user interface components using Java2D.

Java2D uses the same two methods for each drawing operation—draw() and fill().
Different objects are created using classes of the java.awt.geom package, and these are
used as arguments for the drawing methods of Graphics2D.

Tomorrow on Day 14, “Developing Swing Applications,” you’ll learn how to create
applications that are launched from a web page using Java Web Start technology.

Q&A
Q I am confused by what the uppercase “F” is referring to in source code today.

It is added to coordinates, as in the method polly.moveTo(5F, 0F). Why is the
“F” used for these coordinates and not others, and why is a lowercase “f” used
elsewhere?

A The F and f indicate that a number is a floating-point number rather than an inte-
ger, and uppercase and lowercase can be used interchangeably. If you don’t use one
of them, the Java compiler assumes that the number is an int value. Many methods
and constructors in Java require floating-point arguments but can handle integers
because an integer can be converted to floating-point without changing its value.
For this reason, constructors like Arc2D.Float() can use arguments such as 10 and
180 instead of 10F and 180F.

Q The antialiasing section of today’s chapter refers to a class called
RenderingHint.Key. Why does this class have two names separated by a
period? What does that signify?

A The use of two names to identify a class indicates that it is an inner class. The first
class name is the enclosing class, followed by a period and the name of the inner
class. In this case, the Key class is an inner class within the RenderingHint class.

378 DAY 13: Using Color, Fonts, and Graphics

Quiz
Review today’s material by taking this three-question quiz.

Questions
1. What object is required before you can draw something in Java using Swing?

a. Graphics2D

b. WindowListener

c. JFrame

2. Which of the following is not a valid Java statement to create a Color object?

a. Color c1 = new Color(0F, 0F, 0F);

b. Color c2 = new Color(0, 0, 0);

c. Both are valid.

3. What does getSize().width refer to?

a. The width of the interface component’s window

b. The width of the frame’s window

c. The width of any graphical user interface component in Java

Answers
1. a.

2. c. Both are valid ways to create the object. You also can use hexadecimal values to
create a Color, as in this example:

Color c3 = new Color(0xFF, 0xCC, 0x66);

3. c. You can call getSize().width and getSize().height on any component in
Java.

Certification Practice
The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Quiz 379

13

Given:

import java.awt.*;
import javax.swing.*;

public class Result extends JFrame {
public Result() {

super(“Result”);
JLabel width = new JLabel(“This frame is “ +

getSize().width + “ pixels wide.”);
add(“North”, width);
setSize(220, 120);

}

public static void main(String[] arguments) {
Result r = new Result();
r.setVisible(true);

}
}

What will be the reported width of the frame, in pixels, when the application runs?

a. 0 pixels

b. 120 pixels

c. 220 pixels

d. The width of the user’s monitor

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 13 page and click the Certification Practice link.

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. Create an application that draws a circle with its radius, x,y position, and color all
determined by parameters.

2. Create an application that draws a pie graph.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java21days.com.

380 DAY 13: Using Color, Fonts, and Graphics

DAY 14:
Developing Swing
Applications

The first exposure of many people to the Java programming language is in
the form of applets, small and secure Java programs that run as part of a
web page.

Java Web Start, a protocol for downloading and running Java programs,
makes it possible to run applications from a web browser as if they were
applets.

Today, you learn how to create these web-launched Java programs as you
explore the following topics:

n How to install and run Java applications in a web browser

n How to publish your application’s files and run it

n How Swing applications can run into performance slowdowns on
time-consuming tasks

n How to solve this problem by using SwingWorker, a class that per-
forms Swing work in its own thread

Java Web Start
One of the issues you must deal with as a Java programmer is how to make your soft-
ware available to your users.

Java applications require a Java interpreter, so one must either be included with the appli-
cation or previously installed on the computer. Lacking either of those, users must install
an interpreter themselves. The easiest solution (for you) is to require that users download
and install the Java Runtime Environment from Sun’s website at http://www.java.com.

Regardless of how you deal with the requirement for an interpreter, you distribute an
application like any other program, making it available on a CD, website, or some other
means. A user must run an installation program to set it up, if one is available, or copy
the files and folders manually.

Java applets are easier to make available because they can be run by web browsers.
However, if your program is a Java applet, users must be running browsers equipped
with the Java Plug-in. This too can be downloaded from Sun as part of the Java Runtime
Environment.

There are several drawbacks to offering applets instead of applications. The biggest is the
default security policy for applets, which makes it impossible for them to read and write
data on a user’s computer, among other restrictions.

Java eases the challenges of software deployment with Java Web Start, a means of run-
ning Java applications presented on a web page and stored on a web server. Here’s how it
works:

1. A programmer packages an application and all the files it needs into a JAR archive
along with a file that uses the Java Network Launching Protocol (JNLP), part of
Java Web Start.

2. The file is stored on a web server with a web page that links to that file.

3. A user loads the page with a browser and clicks the link.

4. If the user does not have the Java Runtime Environment, a dialog box opens asking
whether it should be downloaded and installed. The full installation is more than
65M in size and could take 30–45 minutes to download on a 56K Internet connec-
tion (or 3–5 minutes on a high-speed connection).

5. The Java Runtime Environment installs and runs the program, opening new frames
and other interface components like any other application. The program is saved in
a cache, so it can be run again later without requiring installation.

382 DAY 14: Developing Swing Applications

To see it in action, visit Sun’s Java Web Start site at http://java.sun.com/products
/javawebstart and click the Code Samples & Apps link, and then the “Demos” link. The
Web Start Demos page contains pictures of several Java applications, each with a Launch
button you can use to run the application, as shown in Figure 14.1.

Java Web Start 383

14

FIGURE 14.1
Presenting Web
Start applications
on a web page.

Click the Launch button of one of the applications. If you don’t have the Java Runtime
Environment yet, a dialog box opens asking whether you want to download and install it.

The runtime environment includes the Java Plug-in, a Java interpreter that adds support
for the current version of the language to browsers such as Microsoft Internet Explorer
and Mozilla. The environment also can be used to run applications, regardless of whether
they use Java Web Start.

When an application is run using Java Web Start, a title screen displays on your com-
puter briefly, and the application’s graphical user interface appears.

If you have installed the JDK, you are likely to have the Java
Runtime Environment on your computer already.

Figure 14.2 shows one of the demo applications offered by Sun, a military strategy game
in which three black dots attempt to keep a red dot from moving into their territory.

NOTE

As you can see in Figure 14.2, the application looks no different from any other applica-
tion. Unlike applets, which are presented in conjunction with a web page, applications
launched with Java Web Start run in their own windows, as if they were run from a com-
mand line.

One thing that’s different about a Java Web Start application is the security that can be
offered to users. When an application attempts to do something, such as read or write
files, the user can be asked for permission.

For example, another one of the demo programs is a text editor. When you try to save a
file for the first time with this application, the Security Advisory dialog box opens (see
Figure 14.3).

384 DAY 14: Developing Swing Applications

FIGURE 14.2
Running a Java
Web Start
application.

FIGURE 14.3
Choosing an appli-
cation’s security
privileges.

If the user does not permit something, the application cannot function fully. The kinds of
things that trigger a security dialog box are the same things not allowed by default in
applets: reading and writing files, loading network resources from servers other than the
one hosting the program, and the like.

After an application has been run by Java Web Start, it is stored on a user’s computer in
a cache, enabling it to be run again later without installation. The only exception is when
a new version of the application becomes available. In this case, the new version is
downloaded and installed automatically in place of the existing one.

A Java Web Start application viewer can be run directly to see the applications that have
been cached, run them, and change some of their settings. The application is called
javaws.exe and can be found in the same folder as java and the other command-line
programs in the JDK. There also should be a menu item for Java Web Start that was
added during installation.

Although you run a Java Web Start application for the first time
using a web browser, that’s not a requirement. To see this, run the
Java Web Start application viewer, select a program, and choose
Application, Install Shortcuts. A shortcut to run the application will
be added to your desktop. You can use it to run the program with-
out a browser.

The default security restrictions in place for a Java Web Start application can be overrid-
den if it is stored in a digitally signed Java archive. The user will be presented with the
signed security certificate, which documents the author of the program and the certificate
granting authority vouching for its identity, and asked whether to accept it or reject it.
The application won’t run unless the certificate has been accepted.

Using Java Web Start
Any Java application can be run using Java Web Start as long as the web server that
offers the application is configured to work with the technology and all the class files and
other files it needs have been packaged together.

To prepare an application to use Java Web Start, you must save the application’s files in a
Java archive file, create a special Java Web Start configuration file for the application,
and upload the files to the web server.

Using Java Web Start 385

14

NOTE

The configuration file that must be created uses Java Network Launching Protocol
(JNLP), an Extensible Markup Language (XML) file format that specifies the applica-
tion’s main class file, its JAR archive, and other things about the program.

XML is introduced during Day 20, “XML Web Services.” Because
the format of JNLP files is relatively self-explanatory, you don’t
need to know much about XML to create a JNLP file.

The next project you will undertake is to use Java Web Start to launch and run PageData,
an application that displays information about web pages. The application requires the
PageData.class file, which can be downloaded from the Day 14 page of the book’s
website at http://www.java21days.com. (You also might want PageData.java in case you
decide to make any changes to the application.)

To get ready, put a copy of that project’s class file in the folder you are using as a work-
space for your Java programming.

Creating a JNLP File
The first thing you must do is package all of an application’s class files into a Java
archive file along with any other files it needs. If you are using the JDK, you can create
the JAR file with the following command:

jar -cf PageData.jar PageData.class

A JAR file called PageData.jar is created that holds the class file.

Next, you should create an icon graphic for the application, which will be displayed
when it is loaded and used as its icon in menus and desktops. The icon can be in either
GIF or JPEG format and should be 64 pixels wide by 64 pixels tall.

For this project, if you don’t want to create a new icon, you can download
pagedataicon.gif from the book’s website. Go to http://www.java21days.com and open
the Day 14 page. Right-click the pagedataicon.gif link and save the file to the same
folder as your PageData.jar file.

The final thing you must do is create the JNLP file that describes the application. Listing
14.1 contains a JNLP file used to distribute the PageData application. Open your word
processor and enter the text of this listing; then save the file as PageData.jnlp.

386 DAY 14: Developing Swing Applications

NOTE

LISTING 14.1 The Full Text of PageData.jnlp

1: <?xml version=”1.0” encoding=”utf-8”?>
2: <!— JNLP File for the PageData Application —>
3: <jnlp
4: codebase=”http://www.cadenhead.org/book/java-21-days/java”
5: href=”PageData.jnlp”>
6: <information>
7: <title>PageData Application</title>
8: <vendor>Rogers Cadenhead</vendor>
9: <homepage href=”http://www.java21days.com”/>
10: <icon href=”pagedataicon.gif”/>
11: <offline-allowed/>
12: </information>
13: <resources>
14: <j2se version=”1.6”/>
15: <jar href=”PageData.jar”/>
16: </resources>
17: <security>
18: <all-permissions/>
19: </security>
20: <application-desc main-class=”PageData”/>
21: </jnlp>

The structure of a JNLP file is similar to the Hypertext Markup Language (HTML)
required to put a Java applet on a web page. Everything within the < and > marks is a
tag, and tags are placed around the information the tag describes. There’s an opening tag
before the information and a closing tag after it.

For example, line 7 of Listing 14.1 contains the following text:

<title>PageData Application</title>

In order from left to right, this line contains the opening tag <title>, the text PageData
Application, and the closing tag </title>. The text between the tags, “PageData
Application,” is the title of the application. This title will be displayed by Java Web Start
as the application is being loaded and used in menus and shortcuts.

The difference between opening tags and closing tags is that closing tags begin with a
slash (/) character, and opening tags do not. In line 8, <vendor> is the opening tag,
</vendor> is the closing tag, and these tags surround the name of the vendor who cre-
ated the application. I’ve used my name here. Delete it and replace it with your own
name, taking care not to alter the <vendor> or </vendor> tags around it.

Using Java Web Start 387

14

Some tags have an opening tag only, such as line 11:

<offline-allowed/>

The offline-allowed tag indicates that the application can be run even if the user is not
connected to the Internet. If it was omitted from the JNLP file, the opposite would be
true, and the user would be forced to go online before running this application.

In XML, all tags that do not have a closing tag end with /> instead of >.

Tags also can have attributes, which are another way to define information in an XML
file. An attribute is a name inside a tag that is followed by an equal sign and some text
within quotes.

For example, consider line 9 of Listing 14.1:

<homepage href=”http://www.java21days.com”/>

This is the homepage tag, and it has one attribute, href. The text between the quote
marks is used to set the value of this attribute to http://www.java21days.com. This
defines the home page of the application—the web page that users should visit if they
want to read more information about the program and how it works.

The PageData JNLP file defines a simple Java Web Start application that runs with no
security restrictions, as defined in lines 17–19:

<security>
<all-permissions/>

</security>

In addition to the tags that have already been described, Listing 14.1 defines other infor-
mation required by Java Web Start.

Line 1 designates that the file uses XML and the UTF-8 character set. This same line can
be used on any of the JNLP files you create for applications.

Line 2 is a comment. Like other comments in Java, it’s placed in the file solely for the
benefit of humans. Java Web Start ignores it.

The jnlp element, which begins on line 3 and ends on line 21, must surround all the
other tags that configure Web Start.

This tag has two attributes, codebase and href, which indicate where the JNLP file for
this application can be found. The codebase attribute is the uniform resource locator
(URL) of the folder that contains the JNLP file. The href attribute is the name of the file
or a relative URL that includes a folder and the name (such as “pub/PageData.jnlp”).

388 DAY 14: Developing Swing Applications

In Listing 14.1, the attributes indicate that the application’s JNLP file is at the following
web address:

http://www.cadenhead.org/book/java-21-days/java/PageData.jnlp

The information element (lines 6–12) defines information about the application.
Elements can contain other elements in XML, and in Listing 14.1, the information ele-
ment contains title, vendor, homepage, icon, and offline-allowed tags.

The title, vendor, homepage, and offline-allowed elements were described earlier.

The icon element (line 10) contains an href attribute that indicates the name (or folder
location and name) of the program’s icon. Like all file references in a JNLP file, this ele-
ment uses the codebase attribute to determine the full URL of the resource. In this exam-
ple, the icon element’s href attribute is pagedataicon.gif, and the codebase is http://
www.cadenhead.org/book/java21days/java, so the icon file is at the following web
address:

http://www.cadenhead.org/book/java21days/java/pagedataicon.gif

The resources element (lines 13–16) defines resources used by the application when it
runs.

The j2se element has a version attribute that indicates the version of the Java inter-
preter that should run the application. This attribute can specify a general version (such
as “1.5”, or “1.6”), a specific version (such as “1.6.1-beta”), or a reference to multiple
versions—follow a general version number with a plus sign. The tag <j2se ver-
sion=”1.4+”> sets up an application to be run by any Java interpreter from version 1.4
upward.

When you’re using the j2se element to specify multiple versions,
Java Web Start will not use a beta version to run an application.
The only way to run an application with a beta release is to indi-
cate that release specifically.

The jar element has an href attribute that specifies the application’s JAR file. This
attribute can be a filename or a reference to a folder and filename, and it uses codebase.
In the PageData example, the JAR file is in http://www.cadenhead.org/book/java21days/
java/PageData.jar.

The application-desc element indicates the application’s main class file and any argu-
ments that should be used when that class is executed.

Using Java Web Start 389

14

NOTE

The main-class attribute identifies the name of the class file, which is specified without
the .class file extension.

If the class should be run with one or more arguments, place argument elements within
an opening <application-desc> tag and a closing </application-desc> tag.

The following XML specifies that the PageData class should be run with two arguments:
http://java.sun.com and yes:

<application-desc main-class=”PageData”>
<argument>http://java.sun.com</argument>
<argument>yes</argument>

</application-desc>

After you have created the PageData.jnlp file, change line 5 of Listing 14.1 so that it
refers to the folder on a web server where your application’s JAR file, icon file, and
JNLP file will be stored.

Upload all three of the project’s files to this folder; then run your browser and load the
JNLP file using its full web address. If your web server is configured to support Java
Web Start, the application will be loaded and begin running, as in Figure 14.4.

390 DAY 14: Developing Swing Applications

FIGURE 14.4
Running PageData
using Java Web
Start.

For this application to be run without restriction, the PageData.jar file must be digitally
signed. For real-world applications, this requires the services of a certificate-granting
authority such as Thawte or VeriSign and can cost $1,000 or more per year.

For testing purposes, the keystore and jarsigner tools in the JDK can be used to create
a key and use it to digitally sign a JAR file.

The first step is to use keytool to create a key and assign it an alias and password:

keytool -genkey -alias examplekey -keypass swordfish

The -genkey argument generates a new key—which in this example is named exam-
plekey and has the password “swordfish”. If this is the first time keytool has been used,
you’ll be prompted for a password that protects access to the key database, which is
called a keystore.

After a key has been placed in the keystore, it can be used with the jarsigner tool to
sign an archive file. This tool requires the keystore and key passwords and the alias of
the key. Here’s how the PageData.jar archive could be signed with the examplekey key:

jarsigner -storepass secret -keypass swordfish PageData.jar examplekey

The keystore password in this example is “secret”. The security certificate used to sign
the archive will last 90 days and will be described as an “untrusted source” when the
Java Web Start application is run.

There’s no easy way to avoid being described as “untrusted.” The
only way to establish your trustworthiness is to go through one of
the professional certificate-granting companies.

Java developer Roedy Green offers a guide to Java security certifi-
cation that lists several companies and the prices that they
charge. Visit the web page http://mindprod.com/jgloss/
certificate.html.

Supporting Web Start on a Server
If your server does not support Java Web Start, which is more likely than not because it
is a relatively new technology, you might see the text of your JNLP file loaded in a page,
and the application will not open.

A web server must be configured to recognize that JNLP files are a new type of data that
should cause a Java application to run. This is usually accomplished by setting the
MIME type associated with files of the extension JNLP.

MIME, which is an acronym for Multipurpose Internet Mail Extensions, is a protocol for
defining Internet content such as email messages, attached files, and any file that can be
delivered by a web server.

Using Java Web Start 391

14

NOTE

On an Apache web server, the server administrator can support JNLP by adding the fol-
lowing line to the server’s mime.types (or .mime.types) file:

application/x-java-jnlp-file JNLP

If you can’t get Java Web Start working on your server, you can test this project on the
book’s official site. Load the web page http://www.cadenhead.org/book/java-21days/java/
PageData.jnlp, or visit the web address http://www.java21days.com and open the Day 14
page.

Java Web Start applications should look exactly like the applica-
tions do when run by other means. However, there appear to be a
few bugs in how much space is allocated to components on a
graphical user interface. On a Windows system, you might need to
add 50 pixels to the height of an application before employing it in
Java Web Start. Otherwise, the text fields are not tall enough to
display numbers.

Additional JNLP Elements
The JNLP format has other elements that can affect the performance of Java Web Start.

It can be used to change the title graphic that appears when the application is launched,
run signed applications that have different security privileges, run an application using
different versions of the Java interpreter, and other options.

Security
By default, all Java Web Start applications will not have access to some features of a
user’s computer unless the user has given permission. This is similar to how the function-
ality of applets is limited.

If your application’s JAR file has been digitally signed to verify its authenticity, it can be
run without these security restrictions by using the security element.

This element is placed inside the jnlp element, and it contains one element of its own:
all-permissions. To remove security restrictions for an application, add this to a JNLP
file:

<security>
<all-permissions/>

</security>

392 DAY 14: Developing Swing Applications

CAUTION

Descriptions
If you want to provide more information about your application for users of Java Web
Start, one or more description elements can be placed inside the information element.

Four kinds of descriptions can be provided using the kind attribute of the description
element:

n kind=”one-line”—A succinct one-line description, used in lists of Web Start
applications

n kind=”short”—A paragraph-long description, used when space is available

n kind=”tooltip”—A ToolTip description

n No kind attribute—A default description, used for any other descriptions not speci-
fied

All these are optional. Here’s an example that provides descriptions for the PageData
application:

<description>The PageData application.</description>
<description kind=”one-line”>An application to learn more about web
servers and pages.</description>
<description kind=”tooltip”>Learn about web servers and
pages.</description>
<description kind=”short”>PageData, a simple Java application that
takes a URL and displays information about the URL and the web
server that delivered it.</description>

Icons
The PageData JNLP file included a 64×64 icon, pagedataicon.gif, used in two differ-
ent ways:

n When the PageData application is being loaded by Java Web Start, the icon is dis-
played on a window next to the program’s name and author.

n If a PageData icon is added to a user’s desktop, the icon will be used at a different
size: 32×32.

When an application is loading, you can use a second icon element to specify a graphic
that will be displayed in place of the icon, title, and author. This graphic is called the
application’s splash screen, and it is specified with the kind=”splash” attribute, as in
this example:

<icon kind=”splash” href=”pagedatasplash.gif”/ width=”300” height=”200”>

Using Java Web Start 393

14

The width and height attributes, which also can be used with the other kind of icon
graphic, specify the image’s display size in pixels.

This second icon element should be placed inside the information element.

For more information on using the technology with your own appli-
cations, visit Sun’s Java Web Start site at the following address:

http://java.sun.com/products/javawebstart

Improving Performance with SwingWorker
The responsiveness of a Swing application depends largely on how well the software
handles time-consuming tasks in response to user input.

Applications ordinarily execute tasks in one thread, so if something takes a long time to
accomplish, such as loading a large file or parsing data from an XML document, the user
might notice a lag in performance while this is taking place.

Swing programs also require all user-interface components to be running within the same
thread.

The best way to take care of both requirements is to use SwingWorker, a new class in the
javax.swing package that’s designed to run time-consuming tasks in their own worker
thread and report the result.

SwingWorker is an abstract class that must be subclassed by applications that require a
worker:

public class DiceWorker extends SwingWorker {
// ...

}

The doInBackground() method should be overridden in the new class to perform the
task, as in this example that rolls six-sided dice a large number of times and tracks the
results:

doInBackground() {
for (int i = 0; i < timesToRoll; i++) {

int sum = 0;
for (int j = 0; j < 3; j++) {

sum += Math.floor(Math.random() * 6);
}

394 DAY 14: Developing Swing Applications

NOTE

}
result[sum] = result[sum] + 1;
return result;

}

Today’s next project is a Swing application that rolls three 6-sided dice a user-selected
number of times and tabulates the results. Sixteen text fields represent the possible val-
ues, which range from 3 to 18.

The application is developed as two classes: the DiceRoller frame that holds the graphi-
cal user interface and the DiceWorker Swing worker that handles the dice rolls.

Because the application allows the user to roll the dice thousands or even millions of
times, putting this task in a worker keeps the Swing interface responsive to user input.

Listing 14.2 contains the worker class, DiceWorker.

LISTING 14.2 The Full Text of DiceWorker.java

1: import javax.swing.*;
2:
3: public class DiceWorker extends SwingWorker {
4: int timesToRoll;
5:
6: // set up the Swing worker
7: public DiceWorker(int timesToRoll) {
8: super();
9: this.timesToRoll = timesToRoll;
10: }
11:
12: // define the task the worker performs
13: protected int[] doInBackground() {
14: int[] result = new int[16];
15: for (int i = 0; i < this.timesToRoll; i++) {
16: int sum = 0;
17: for (int j = 0; j < 3; j++) {
18: sum += Math.floor(Math.random() * 6);
19: }
20: result[sum] = result[sum] + 1;
21: }
22: // transmit the result
23: return result;
24: }
25: }

You can compile this class, but there’s no way to do anything with it until the next class,
DiceRoller, has been created.

Improving Performance with SwingWorker 395

14

A Swing worker only needs one method, doInBackground(), which performs the task in
the background. The method must use the protected level of access control and return a
value produced by the work. DiceWorker creates a 16-element integer array that contains
dice-roll results.

Another class can use this worker in three steps:

1. Call the worker’s DiceWorker(int) constructor with the number of rolls as the
argument.

2. Call the worker’s addPropertyChangeListener(Object) method to add a listener
that will be notified when the task is complete.

3. Call the worker’s execute() method to begin the work.

The execute() method causes the worker’s doInBackground() method to be called.

A property change listener is an event listener borrowed from java.beans, the JavaBeans
package that establishes ways in which components on a user interface can interact with
each other.

In this case, a Swing worker wants to announce that its work has been finished, which
could take place long after the worker began its work. Listeners are the best way to han-
dle notifications of this kind because they free a graphical user interface to handle other
things.

The property change listener interface has one method:

public void propertyChange(PropertyChangeEvent event) {
// ...

}

The DiceRoller class shown in Listing 14.3 presents a graphical user interface that can
display dice-roll results and begin a set of rolls.

LISTING 14.3 The Full Text of DiceRoller.java

1: import java.awt.*;
2: import java.awt.event.*;
3: import java.beans.*;
4: import javax.swing.*;
5:
6: public class DiceRoller extends JFrame implements ActionListener,
7: PropertyChangeListener {
8:
9: // the table for dice-roll results

396 DAY 14: Developing Swing Applications

LISTING 14.3 Continued

10: JTextField[] total = new JTextField[16];
11: // the “Roll” button
12: JButton roll;
13: // the number of times to roll
14: JTextField quantity;
15: // the Swing worker
16: DiceWorker worker;
17:
18: public DiceRoller() {
19: super(“Dice Roller”);
20: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
21: setSize(800, 125);
22:
23: // set up top row
24: JPanel topPane = new JPanel();
25: GridLayout paneGrid = new GridLayout(1, 16);
26: topPane.setLayout(paneGrid);
27: for (int i = 0; i < 16; i++) {
28: // create a textfield and label
29: total[i] = new JTextField(“0”, 4);
30: JLabel label = new JLabel((i + 3) + “: “);
31: // create this cell in the grid
32: JPanel cell = new JPanel();
33: cell.add(label);
34: cell.add(total[i]);
35: // add the cell to the top row
36: topPane.add(cell);
37: }
38:
39: // set up bottom row
40: JPanel bottomPane = new JPanel();
41: JLabel quantityLabel = new JLabel(“Times to Roll: “);
42: quantity = new JTextField(“0”, 5);
43: roll = new JButton(“Roll”);
44: roll.addActionListener(this);
45: bottomPane.add(quantityLabel);
46: bottomPane.add(quantity);
47: bottomPane.add(roll);
48:
49: // set up frame
50: GridLayout frameGrid = new GridLayout(2, 1);
51: setLayout(frameGrid);
52: add(topPane);
53: add(bottomPane);
54:
55: setVisible(true);
56: }
57:
58: // respond when the “Roll” button is clicked

Improving Performance with SwingWorker 397

14

LISTING 14.3 Continued

59: public void actionPerformed(ActionEvent event) {
60: int timesToRoll = 0;
61: try {
62: // turn off the button
63: timesToRoll = Integer.parseInt(quantity.getText());
64: roll.setEnabled(false);
65: // set up the worker that will roll the dice
66: worker = new DiceWorker(timesToRoll);
67: // add a listener that monitors the worker
68: worker.addPropertyChangeListener(this);
69: // start the worker
70: worker.execute();
71: } catch (Exception exc) {
72: System.out.println(exc.getMessage());
73: exc.printStackTrace();
74: }
75: }
76:
77: // respond when the worker’s task is complete
78: public void propertyChange(PropertyChangeEvent event) {
79: try {
80: // get the worker’s dice-roll results
81: int[] result = (int[]) worker.get();
82: // store the results in text fields
83: for (int i = 0; i < result.length; i++) {
84: total[i].setText(“” + result[i]);
85: }
86: } catch (Exception exc) {
87: System.out.println(exc.getMessage());
88: exc.printStackTrace();
89: }
90: }
91:
92: public static void main(String[] arguments) {
93: new DiceRoller();
94: }
95: }

Most of DiceRoller creates and lays out the user-interface components: 16 text fields, a
Times to Roll text field, and a Roll button.

The actionPerformed() method responds to a click of the Roll button by creating a
Swing worker that will roll the dice, adding a property change listener and starting work.

Calling worker.execute() in line 70 causes the worker’s doInBackground() method to
be called.

398 DAY 14: Developing Swing Applications

When the worker’s finished rolling dice, the propertyChange() method of DiceRoller
will receive a property change event.

This method receives the result of doInBackground() by calling the worker’s get()
method (line 81), which must be cast to an integer array:

int[] result = (int[] worker.get();

The application is shown in Figure 14.5.

Summary 399

14

FIGURE 14.5
Tabulating dice-roll
results prepared
by SwingWorker.

Summary
The topics covered today are two of many capabilities that make Java suitable for appli-
cation development: browser-based program deployment and Swing performance
improvements through the use of threads. Java Web Start blurs the distinction between
applications and applets.

With Web Start, users no longer need to run an installation program to set up a Java
application and the interpreter that executes the class. Web Start takes care of this auto-
matically, after the user’s browser has been equipped to use the Java Runtime
Environment.

Support for Web Start is offered through the Java Network Launching Protocol (JNLP),
an XML file format used to define and set up Java Web Start.

The SwingWorker class improves Swing application performance by putting a time-con-
suming task in its own thread. All of the work required to start and stop the thread is
handled by the class behind the scenes.

When you create a subclass of SwingWorker, you can focus on the task that must be per-
formed.

Q&A
Q I have written an applet that I want to make available using Java Web Start.

Should I convert it to an application or go ahead and run it as is?

A If you would be converting your program to an application simply to run it with
Web Start, that’s probably not necessary. The purpose of the applet-desc tag is to
make it possible to run applets without modification in Java Web Start. The only
reason to undertake the conversion is if there are other things you want to change
about your program, such as the switch from init() to a constructor method.

Q How can I make sure that a SwingWorker object has finished work?

A Call the worker’s isDone() method, which returns true when the task has finished
execution.

Take note that this method returns true no matter how the task completes, so if it
was canceled, interrupted, or failed in some other manner, it will return true.

The isCancelled() method can be used to check whether the task was canceled.

Quiz
Review today’s material by taking this three-question quiz.

Questions
1. What interface must be implemented to be notified when a SwingWorker has fin-

ished execution?

a. ActionListener

b. PropertyChangeListener

c. SwingListener

2. Which XML element is used to identify the name, author, and other details about a
Java Web Start–run application?

a. jnlp

b. information

c. resources

3. What security restrictions apply to a Java Web Start application?

a. The same restrictions in place for applets

b. The same restrictions in place for applications

c. The restrictions chosen by the user

400 DAY 14: Developing Swing Applications

Answers
1. b. The PropertyChangeListener in the java.beans package receives a

propertyChange() event when the worker finishes.

2. b. The application is described using elements contained within an opening
<information> tag and a closing <information> tag.

3. c. A Java Web Start application has few restrictions, compared to applets, but they
are limited in some important functionality such as saving files or opening Net
connections. These restrictions will be dropped if a user explicitly grants those
privileges as the application runs.

Certification Practice
The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Given the following,

import java.awt.*;
import javax.swing.*;

public class SliderFrame extends JFrame {
public SliderFrame() {

super();
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container pane = getContentPane();
JSlider value = new JSlider(0, 255, 100);
setContentPane(pane);
setSize(325, 150);
setVisible(true);

}

public static void main(String[] arguments) {
new SliderFrame();

}
}

What will happen when you attempt to compile and run this source code?

a. It compiles without error and runs correctly.

b. It compiles without error but does not display anything in the frame.

c. It does not compile because the content pane is empty.

d. It does not compile because of the new SliderFrame() statement.

Quiz 401

14

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 14 page and click the Certification Practice link.

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. Turn one of the applications created during the first two weeks into one that can be
launched with Java Web Start.

2. Create a new JNLP file that runs the PageData application using version 1.3 of the
Java interpreter and force users to be connected to the Internet when it is run.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java21days.com.

402 DAY 14: Developing Swing Applications

WEEK 3:
Java Programming

15 Working with Input and Output

16 Serializing and Examining Objects

17 Communicating Across the Internet

18 Accessing Databases with JDBC

19 Reading and Writing RSS Feeds

20 XML Web Services

21 Writing Java Servlets and Java Server
Pages

DAY 15:
Working with Input
and Output

Many of the programs you create with Java need to interact with some
kind of data source. Information can be stored on a computer in many
ways, including files on a hard drive or CD-ROM, pages on a website, and
even bytes in the computer’s memory.

You might expect to need a different technique to handle each different
storage device. Fortunately, that isn’t the case.

In Java, information can be stored and retrieved using a communications
system called streams, which are implemented in the java.io package.

Today, you learn how to create input streams to read information and out-
put streams to store information. You’ll work with each of the following:

n Byte streams, which are used to handle bytes, integers, and other
simple data types

n Character streams, which handle text files and other text sources

You can deal with all data the same way when you know how to work with
an input stream, whether the information is coming from a disk, the
Internet, or even another program. The same holds for using output
streams to transmit data.

Additional techniques for input and output programming are
offered in the java.nio package. Because this package is most
useful in network programming, it is discussed on Day 17,
“Communicating Across the Internet.”

Introduction to Streams
In Java, all data is written and read using streams. Streams, like the bodies of water that
share the same name, carry something from one place to another.

A stream is a path traveled by data in a program. An input stream sends data from a
source into a program, and an output stream sends data from a program to a destination.

You will deal with two types of streams today: byte streams and character streams. Byte
streams carry integers with values that range from 0 to 255. A diverse assortment of data
can be expressed in byte format, including numerical data, executable programs, Internet
communications, and bytecode—the class files run by a Java virtual machine.

In fact, every kind of data imaginable can be expressed using either individual bytes or a
series of bytes combined with each other.

Character streams are a specialized type of byte stream that handles only textual data.
They’re distinguished from byte streams because Java’s character set supports Unicode, a
standard that includes many more characters than could be expressed easily using bytes.

Any kind of data that involves text should use character streams, including text files, web
pages, and other common types of text.

Using a Stream
The procedure for using either a byte stream or a character stream in Java is largely the
same. Before you start working with the specifics of the java.io classes, it’s useful to
walk through the process of creating and using streams.

For an input stream, the first step is to create an object associated with the data source.
For example, if the source is a file on your hard drive, a FileInputStream object could
be associated with this file.

After you have a stream object, you can read information from that stream by using one
of the object’s methods. FileInputStream includes a read() method that returns a byte
read from the file.

406 DAY 15: Working with Input and Output

NOTE

When you’re finished reading information from the stream, you call the close() method
to indicate that you’re finished using the stream.

For an output stream, you begin by creating an object associated with the data’s destina-
tion. One such object can be created from the BufferedWriter class, which represents an
efficient way to create text files.

The write() method is the simplest way to send information to the output stream’s desti-
nation. For instance, a BufferedWriter write() method can send individual characters
to an output stream.

As with input streams, the close() method is called on an output stream when you have
no more information to send.

Filtering a Stream
The simplest way to use a stream is to create it and then call its methods to send or
receive data, depending on whether it’s an output stream or an input stream.

Many of the classes you will work with today achieve more sophisticated results when a
filter is associated with a stream before reading or writing any data.

A filter is a type of stream that modifies the way an existing stream is handled. Think of
a dam on a mountain stream. The dam regulates the flow of water from the points
upstream to the points downstream. The dam is a type of filter—remove it, and the water
would flow in a less-controlled fashion.

The procedure for using a filter on a stream is as follows:

1. Create a stream associated with a data source or a data destination.

2. Associate a filter with that stream.

3. Read or write data from the filter rather than the original stream.

The methods you call on a filter are the same as the methods you would call on a stream.
There are read() and write() methods, just as there would be on an unfiltered stream.

You can even associate a filter with another filter, so the following path for information
is possible: an input stream associated with a text file is filtered through a Spanish-to-
English translation filter, which is then filtered through a no-profanity filter, and is finally
sent to its destination—a human being who wants to read it.

If this is confusing in the abstract, you will have opportunities to see the process in prac-
tice in the following sections.

Introduction to Streams 407

15

Handling Exceptions
Several exceptions in the java.io package might occur when you are working with files
and streams.

A FileNotFound exception occurs when you try to create a stream or file object using a
file that couldn’t be located.

An EOFException indicates that the end of a file has been reached unexpectedly as data
was being read from the file through an input stream.

These exceptions are subclasses of IOException. One way to deal with all of them is to
enclose all input and output statements in a try-catch block that catches IOException
objects. Call the exception’s toString() or getMessage() methods in the catch block to
find out more about the problem.

Byte Streams
All byte streams are a subclass of either InputStream or OutputStream. These classes
are abstract, so you cannot create a stream by creating objects of these classes directly.
Instead, you create streams through one of their subclasses, such as the following:

n FileInputStream and FileOutputStream—Byte streams stored in files on disk,
CD-ROM, or other storage devices

n DataInputStream and DataOutputStream—A filtered byte stream from which data
such as integers and floating-point numbers can be read

InputStream is the superclass of all input streams.

File Streams
The byte streams you’ll work with most often are likely to be file streams, which are
used to exchange data with files on your disk drives, CD-ROMs, or other storage devices
you can refer to by using a folder path and filename.

You can send bytes to a file output stream and receive bytes from a file input stream.

File Input Streams
A file input stream can be created with the FileInputStream(String) constructor. The
String argument should be the name of the file. You can include a path reference with
the filename, which enables the file to be in a different folder from the class loading it.
The following statement creates a file input stream from the file scores.dat:

FileInputStream fis = new FileInputStream(“scores.dat”);

408 DAY 15: Working with Input and Output

Path references can be indicated in a manner specific to a platform, such as this example
to read a file on a Windows system:

FileInputStream f1 = new FileInputStream(“\\data\\calendar.txt”);

Because Java uses backslash characters in escape codes, the
code ‘\\’ must be used in place of ‘\’ in path references on
Windows.

Here’s a Linux example:

FileInputStream f2 = new FileInputStream(“/data/calendar.txt”);

A better way to refer to paths is to use the class variable separator in the File class,
which works on any operating system:

char sep = File.separator;
FileInputStream f2 = new FileInputStream(sep + “data”

+ sep + “calendar.txt”);

After you create a file input stream, you can read bytes from the stream by calling its
read() method. This method returns an integer containing the next byte in the stream. If
the method returns –1, which is not a possible byte value, this signifies that the end of
the file stream has been reached.

To read more than one byte of data from the stream, call its read(byte[], int, int)
method. The arguments to this method are as follows:

1. A byte array where the data will be stored

2. The element inside the array where the data’s first byte should be stored

3. The number of bytes to read

Unlike the other read() method, this does not return data from the stream. Instead, it
returns either an integer that represents the number of bytes read or –1 if no bytes were
read before the end of the stream was reached.

The following statements use a while loop to read the data in a FileInputStream object
called diskfile:

int newByte = 0;
while (newByte != -1) {

newByte = diskfile.read();
System.out.print(newByte + “ “);

}

Byte Streams 409

15

NOTE

This loop reads the entire file referenced by diskfile one byte at a time and displays
each byte, followed by a space character. It also displays –1 when the end of the file is
reached; you could guard against this easily with an if statement.

The ByteReader application in Listing 15.1 uses a similar technique to read a file input
stream. The input stream’s close() method is used to close the stream after the last byte
in the file is read. Always close streams when you no longer need them; it frees system
resources.

LISTING 15.1 The Full Text of ByteReader.java

1: import java.io.*;
2:
3: public class ByteReader {
4: public static void main(String[] arguments) {
5: try {
6: FileInputStream file = new
7: FileInputStream(“class.dat”);
8: boolean eof = false;
9: int count = 0;
10: while (!eof) {
11: int input = file.read();
12: System.out.print(input + “ “);
13: if (input == -1)
14: eof = true;
15: else
16: count++;
17: }
18: file.close();
19: System.out.println(“\nBytes read: “ + count);
20: } catch (IOException e) {
21: System.out.println(“Error — “ + e.toString());
22: }
23: }
24: }

If you run this program, you’ll get the following error message:

Error — java.io.FileNotFoundException: class.dat (The system
cannot find the file specified).

This error message looks like the kind of exception generated by the compiler, but it’s
actually coming from the catch block in lines 20–22 of the ByteReader application. The
exception is being thrown by lines 6–7 because the class.dat file cannot be found.

410 DAY 15: Working with Input and Output

You need a file of bytes in which to read. This can be any file, though files larger than a
few megabytes in size will take a while to finish running. A suitable choice is the pro-
gram’s class file, which contains the bytecode instructions executed by the Java virtual
machine. Create this file by making a copy of ByteReader.class and renaming the copy
class.dat. Don’t rename the ByteReader.class file or you won’t be able to run the
program.

Windows users can use MS-DOS in a command-line window to cre-
ate class.dat. Go to the folder that contains ByteReader.class and
use the following command:

copy ByteReader.class class.dat

Linux users can type the following at a command line:

cp ByteReader.class class.dat

When you run the program, each byte in class.dat is displayed, followed by a count of
the total number of bytes. If you used ByteReader.class to create class.dat, the last
several lines of output should resemble the following:

12 0 50 0 13 0 56 0 14 0 61 0 16 0 64 0 17 0 67 0 18 0 71 0 19 0
96 0 22 0 99 0 20 0 100 0 21 0 128 0 23 0 28 0 0 0 32 0 6 254 0
14 7 0 29 1 1 252 0 46 1 250 0 2 2 255 0 31 0 1 7 0 30 0 1 7 0 31
28 0 1 0 32 0 0 0 2 0 33 -1
Bytes read: 1047

The number of bytes displayed on each line of output depends on the column width that
text can occupy on your system. The bytes shown depend on the file used to create
class.dat.

File Output Streams
A file output stream can be created with the FileOutputStream(String) constructor.
The usage is the same as the FileInputStream(String) constructor, so you can specify
a path along with a filename.

You have to be careful when specifying the file associated with an output stream. If it’s
the same as an existing file, the original will be wiped out when you start writing data to
the stream.

You can create a file output stream that appends data after the end of an existing file with
the FileOutputStream(String, boolean) constructor. The string specifies the file, and
the Boolean argument should equal true to append data instead of overwriting existing
data.

Byte Streams 411

15

TIP

The file output stream’s write(int) method is used to write bytes to the stream. After
the last byte has been written to the file, the stream’s close() method closes the stream.

To write more than one byte, the write(byte[], int, int) method can be used. This
works in a manner similar to the read(byte[], int, int) method described previously.
The arguments to this method are the byte array containing the bytes to output, the start-
ing point in the array, and the number of bytes to write.

The ByteWriter application in Listing 15.2 writes an integer array to a file output
stream.

LISTING 15.2 The Full Text of ByteWriter.java

1: import java.io.*;
2:
3: public class ByteWriter {
4: public static void main(String[] arguments) {
5: int[] data = { 71, 73, 70, 56, 57, 97, 13, 0, 12, 0, 145, 0,
6: 0, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 44, 0,
7: 0, 0, 0, 13, 0, 12, 0, 0, 2, 38, 132, 45, 121, 11, 25,
8: 175, 150, 120, 20, 162, 132, 51, 110, 106, 239, 22, 8,
9: 160, 56, 137, 96, 72, 77, 33, 130, 86, 37, 219, 182, 230,
10: 137, 89, 82, 181, 50, 220, 103, 20, 0, 59 };
11: try {
12: FileOutputStream file = new
13: FileOutputStream(“pic.gif”);
14: for (int i = 0; i < data.length; i++)
15: file.write(data[i]);
16: file.close();
17: } catch (IOException e) {
18: System.out.println(“Error — “ + e.toString());
19: }
20: }
21: }

The following things are taking place in this program:

n Lines 5–10—Create an integer array called data with 66 elements

n Lines 12 and 13—Create a file output stream with the filename pic.gif in the
same folder as the ByteWriter.class file

n Lines 14 and 15—Use a for loop to cycle through the data array and write each
element to the file stream

n Line 16—Closes the file output stream

412 DAY 15: Working with Input and Output

After you run this program, you can display the pic.gif file in any web browser or
graphics-editing tool. It’s a small image file in the GIF format, as shown in Figure 15.1.

Filtering a Stream 413

15
FIGURE 15.1
The pic.gif file
(enlarged).

Filtering a Stream
Filtered streams are streams that modify the information sent through an existing stream.
They are created using the subclasses FilterInputStream and FilterOutputStream.

These classes do not handle any filtering operations themselves. Instead, they have sub-
classes, such as BufferInputStream and DataOutputStream, which handle specific
types of filtering.

Byte Filters
Information is delivered more quickly if it can be sent in large chunks, even if those
chunks are received faster than they can be handled.

As an example of this, consider which of the following book-reading techniques is faster:

n A friend lends you a book in its entirety and you read it.

n A friend lends you a book one page at a time and doesn’t give you a new page
until you have finished the previous one.

Obviously, the first technique is going to be faster and more efficient. The same benefits
are true of buffered streams in Java.

A buffer is a storage place where data can be kept before it is needed by a program that
reads or writes that data. By using a buffer, you can get data without always going back
to the original source of the data.

Buffered Streams
A buffered input stream fills a buffer with data that hasn’t been handled yet. When a pro-
gram needs this data, it looks to the buffer first before going to the original stream
source.

Buffered byte streams use the BufferedInputStream and BufferedOutputStream

classes.

A buffered input stream is created using one of the following two constructors:

n BufferedInputStream(InputStream)—Creates a buffered input stream for the
specified InputStream object

n BufferedInputStream(InputStream, int)—Creates the specified InputStream
buffered stream with a buffer of int size

The simplest way to read data from a buffered input stream is to call its read() method
with no arguments, which normally returns an integer from 0 to 255 representing the next
byte in the stream. If the end of the stream has been reached and no byte is available, -1
is returned.

You also can use the read(byte[], int, int) method available for other input streams,
which loads stream data into a byte array.

A buffered output stream is created using one of these two constructors:

n BufferedOutputStream(OutputStream)—Creates a buffered output stream for the
specified OutputStream object

n BufferedOutputStream(OutputStream, int)—Creates the specified
OutputStream buffered stream with a buffer of int size

The output stream’s write(int) method can be used to send a single byte to the stream,
and the write(byte[], int, int) method writes multiple bytes from the specified byte
array. The arguments to this method are the byte array, array starting point, and number
of bytes to write.

Although the write() method takes an integer as input, the value
should be from 0 to 255. If you specify a number higher than 255,
it will be stored as the remainder of the number divided by 256.
You can test this when running the project you will create later
today.

When data is directed to a buffered stream, it is not output to its destination until the
stream fills or the buffered stream’s flush() method is called.

414 DAY 15: Working with Input and Output

NOTE

The next project, the BufferDemo application, writes a series of bytes to a buffered output
stream associated with a text file. The first and last integers in the series are specified as
two arguments, as in the following JDK command:

java BufferDemo 7 64

After writing to the text file, BufferDemo creates a buffered input stream from the file
and reads the bytes back in. Listing 15.3 contains the source code.

LISTING 15.3 The Full Text of BufferDemo.java

1: import java.io.*;
2:
3: public class BufferDemo {
4: public static void main(String[] arguments) {
5: int start = 0;
6: int finish = 255;
7: if (arguments.length > 1) {
8: start = Integer.parseInt(arguments[0]);
9: finish = Integer.parseInt(arguments[1]);
10: } else if (arguments.length > 0)
11: start = Integer.parseInt(arguments[0]);
12: ArgStream as = new ArgStream(start, finish);
13: System.out.println(“\nWriting: “);
14: boolean success = as.writeStream();
15: System.out.println(“\nReading: “);
16: boolean readSuccess = as.readStream();
17: }
18: }
19:
20: class ArgStream {
21: int start = 0;
22: int finish = 255;
23:
24: ArgStream(int st, int fin) {
25: start = st;
26: finish = fin;
27: }
28:
29: boolean writeStream() {
30: try {
31: FileOutputStream file = new
32: FileOutputStream(“numbers.dat”);
33: BufferedOutputStream buff = new
34: BufferedOutputStream(file);
35: for (int out = start; out <= finish; out++) {
36: buff.write(out);
37: System.out.print(“ “ + out);
38: }

Filtering a Stream 415

15

LISTING 15.3 Continued

39: buff.close();
40: return true;
41: } catch (IOException e) {
42: System.out.println(“Exception: “ + e.getMessage());
43: return false;
44: }
45: }
46:
47: boolean readStream() {
48: try {
49: FileInputStream file = new
50: FileInputStream(“numbers.dat”);
51: BufferedInputStream buff = new
52: BufferedInputStream(file);
53: int in = 0;
54: do {
55: in = buff.read();
56: if (in != -1)
57: System.out.print(“ “ + in);
58: } while (in != -1);
59: buff.close();
60: return true;
61: } catch (IOException e) {
62: System.out.println(“Exception: “ + e.getMessage());
63: return false;
64: }
65: }
66: }

This program’s output depends on the two arguments specified when it was run. If you
use 4 and 13, the following output is shown:

Writing:
4 5 6 7 8 9 10 11 12 13

Reading:
4 5 6 7 8 9 10 11 12 13

This application consists of two classes: BufferDemo and a helper class called
ArgStream. BufferDemo gets the two arguments’ values, if they are provided, and uses
them in the ArgStream() constructor.

The writeStream() method of ArgStream is called in line 14 to write the series of bytes
to a buffered output stream, and the readStream() method is called in line 16 to read
those bytes back.

416 DAY 15: Working with Input and Output

Even though they are moving data in two directions, the writeStream() and
readStream() methods are substantially the same. They take the following format:

n The filename, numbers.dat, is used to create a file input or output stream.

n The file stream is used to create a buffered input or output stream.

n The buffered stream’s write() method is used to send data, or the read() method
is used to receive data.

n The buffered stream is closed.

Because file streams and buffered streams throw IOException objects if an error occurs,
all operations involving the streams are enclosed in a try-catch block for this exception.

The Boolean return values in writeStream() and readStream() indi-
cate whether the stream operation was completed successfully.
They aren’t used in this program, but it’s good practice to let
callers of these methods know if something goes wrong.

Console Input Streams One of the things many experienced programmers miss
when they begin learning Java is the ability to read textual or numeric input from the
console while running an application. There is no input method comparable to the output
methods System.out.print() and System.out.println().

Now that you can work with buffered input streams, you can put them to use receiving
console input.

The System class, part of the java.lang package, has a class variable called in that is an
InputStream object. This object receives input from the keyboard through the stream.

You can work with this stream as you would any other input stream. The following state-
ment creates a new buffered input stream associated with the System.in input stream:

BufferedInputStream command = new BufferedInputStream(System.in);

The next project, the ConsoleInput class, contains a class method you can use to receive
console input in any of your Java applications. Enter the text of Listing 15.4 in your edi-
tor and save the file as ConsoleInput.java.

Filtering a Stream 417

15

TIP

LISTING 15.4 The Full Text of ConsoleInput.java

1: import java.io.*;
2:
3: public class ConsoleInput {
4: public static String readLine() {
5: StringBuffer response = new StringBuffer();
6: try {
7: BufferedInputStream buff = new
8: BufferedInputStream(System.in);
9: int in = 0;
10: char inChar;
11: do {
12: in = buff.read();
13: inChar = (char) in;
14: if ((in != -1) & (in != ‘\n’) & (in != ‘\r’)) {
15: response.append(inChar);
16: }
17: } while ((in != -1) & (inChar != ‘\n’) & (in != ‘\r’));
18: buff.close();
19: return response.toString();
20: } catch (IOException e) {
21: System.out.println(“Exception: “ + e.getMessage());
22: return null;
23: }
24: }
25:
26: public static void main(String[] arguments) {
27: System.out.print(“\nWhat is your name? “);
28: String input = ConsoleInput.readLine();
29: System.out.println(“\nHello, “ + input);
30: }
31: }

The ConsoleInput class includes a main() method that demonstrates how it can be used.
When you compile and run it as an application, the output should resemble the follow-
ing:

What is your name? Amerigo Vespucci

Hello, Amerigo Vespucci

ConsoleInput reads user input through a buffered input stream using the stream’s
read() method, which returns -1 when the end of input has been reached. This occurs
when the user presses the Enter key, a carriage return (character ‘\r’), or a newline (char-
acter ‘\n’).

418 DAY 15: Working with Input and Output

Data Streams
If you need to work with data that isn’t represented as bytes or characters, you can use
data input and data output streams. These streams filter an existing byte stream so that
each of the following primitive types can be read or written directly from the stream:
boolean, byte, double, float, int, long, and short.

A data input stream is created with the DataInputStream(InputStream) constructor.
The argument should be an existing input stream such as a buffered input stream or a file
input stream.

A data output stream requires the DataOutputStream(OutputStream) constructor, which
indicates the associated output stream.

The following list indicates the read and write methods that apply to data input and out-
put streams, respectively:

n readBoolean(), writeBoolean(boolean)

n readByte(), writeByte(integer)

n readDouble(), writeDouble(double)

n readFloat(), writeFloat(float)

n readInt(), writeInt(int)

n readLong(), writeLong(long)

n readShort(), writeShort(int)

Each input method returns the primitive data type indicated by the name of the method.
For example, the readFloat() method returns a float value.

There also are readUnsignedByte() and readUnsignedShort() methods that read in
unsigned byte and short values. These are not data types supported by Java, so they are
returned as int values.

Unsigned bytes have values ranging from 0 to 255. This differs
from Java’s byte variable type, which ranges from –128 to 127.
Along the same line, an unsigned short value ranges from 0 to
65,535, instead of the –32,768 to 32,767 range supported by Java’s
short type.

A data input stream’s different read methods do not all return a value that can be used as
an indicator that the end of the stream has been reached.

Filtering a Stream 419

15

NOTE

As an alternative, you can wait for an EOFException (end-of-file exception) to be thrown
when a read method reaches the end of a stream. The loop that reads the data can be
enclosed in a try block, and the associated catch statement should handle only
EOFException objects. You can call close() on the stream and take care of other
cleanup tasks inside the catch block.

This is demonstrated in the next project. Listings 15.5 and 15.6 contain two programs
that use data streams. The PrimeWriter application writes the first 400 prime numbers as
integers to a file called 400primes.dat. The PrimeReader application reads the integers
from this file and displays them.

LISTING 15.5 The Full Text of PrimeWriter.java

1: import java.io.*;
2:
3: public class PrimeWriter {
4: public static void main(String[] arguments) {
5: int[] primes = new int[400];
6: int numPrimes = 0;
7: // candidate: the number that might be prime
8: int candidate = 2;
9: while (numPrimes < 400) {
10: if (isPrime(candidate)) {
11: primes[numPrimes] = candidate;
12: numPrimes++;
13: }
14: candidate++;
15: }
16:
17: try {
18: // Write output to disk
19: FileOutputStream file = new
20: FileOutputStream(“400primes.dat”);
21: BufferedOutputStream buff = new
22: BufferedOutputStream(file);
23: DataOutputStream data = new
24: DataOutputStream(buff);
25:
26: for (int i = 0; i < 400; i++)
27: data.writeInt(primes[i]);
28: data.close();
29: } catch (IOException e) {
30: System.out.println(“Error — “ + e.toString());
31: }
32: }
33:

420 DAY 15: Working with Input and Output

LISTING 15.5 Continued

34: public static boolean isPrime(int checkNumber) {
35: double root = Math.sqrt(checkNumber);
36: for (int i = 2; i <= root; i++) {
37: if (checkNumber % i == 0)
38: return false;
39: }
40: return true;
41: }
42: }

LISTING 15.6 The Full Text of PrimeReader.java

1: import java.io.*;
2:
3: public class PrimeReader {
4: public static void main(String[] arguments) {
5: try {
6: FileInputStream file = new
7: FileInputStream(“400primes.dat”);
8: BufferedInputStream buff = new
9: BufferedInputStream(file);
10: DataInputStream data = new
11: DataInputStream(buff);
12:
13: try {
14: while (true) {
15: int in = data.readInt();
16: System.out.print(in + “ “);
17: }
18: } catch (EOFException eof) {
19: buff.close();
20: }
21: } catch (IOException e) {
22: System.out.println(“Error — “ + e.toString());
23: }
24: }
25: }

Most of the PrimeWriter application is taken up with logic to find the first 400 prime
numbers. After you have an integer array containing the first 400 primes, it is written to a
data output stream in lines 17–31.

Filtering a Stream 421

15

This application is an example of using more than one filter on a stream. The stream is
developed in a three-step process:

1. A file output stream associated with a file called 400primes.dat is created.

2. A new buffered output stream is associated with the file stream.

3. A new data output stream is associated with the buffered stream.

The writeInt() method of the data stream is used to write the primes to the file.

The PrimeReader application is simpler because it doesn’t need to do anything regarding
prime numbers—it just reads integers from a file using a data input stream.

Lines 6–11 of PrimeReader are nearly identical to statements in the PrimeWriter appli-
cation, except that input classes are used instead of output classes.

The try-catch block that handles EOFException objects is in lines 13–20. The work of
loading the data takes place inside the try block.

The while(true) statement creates an endless loop. This isn’t a problem; an
EOFException automatically occurs when the end of the stream is encountered at some
point as the data stream is being read. The readInt() method in line 15 reads integers
from the stream.

The last several output lines of the PrimeReader application should resemble the
following:

2137 2141 2143 2153 2161 2179 2203 2207 2213 2221 2237 2239 2243 22
51 2267 2269 2273 2281 2287 2293 2297 2309 2311 2333 2339 2341 2347
2351 2357 2371 2377 2381 2383 2389 2393 2399 2411 2417 2423 2437 2

441 2447 2459 2467 2473 2477 2503 2521 2531 2539 2543 2549 2551 255
7 2579 2591 2593 2609 2617 2621 2633 2647 2657 2659 2663 2671 2677
2683 2687 2689 2693 2699 2707 2711 2713 2719 2729 2731 2741

Character Streams
After you know how to handle byte streams, you have most of the skills needed to han-
dle character streams as well. Character streams are used to work with any text repre-
sented by the ASCII character set or Unicode, an international character set that includes
ASCII.

Examples of files that you can work with through a character stream are plain text files,
Hypertext Markup Language (HTML) documents, and Java source files.

422 DAY 15: Working with Input and Output

The classes used to read and write these streams are all subclasses of Reader and Writer.
These should be used for all text input instead of dealing directly with byte streams.

Reading Text Files
FileReader is the main class used when reading character streams from a file. This class
inherits from InputStreamReader, which reads a byte stream and converts the bytes into
integer values that represent Unicode characters.

A character input stream is associated with a file using the FileReader(String) con-
structor. The string indicates the file, and it can contain path folder references in addition
to a filename.

The following statement creates a new FileReader called look and associates it with a
text file called index.txt:

FileReader look = new FileReader(“index.txt”);

After you have a file reader, you can call the following methods on it to read characters
from the file:

n read() returns the next character on the stream as an integer.

n read(char[], int, int) reads characters into the specified character array with
the indicated starting point and number of characters read.

The second method works like similar methods for the byte input stream classes. Instead
of returning the next character, it returns either the number of characters that were read
or –1 if no characters were read before the end of the stream was reached.

The following method loads a text file using the FileReader object text and displays its
characters:

FileReader text = new FileReader(“readme.txt”);
int inByte;
do {

inByte = text.read();
if (inByte != -1)

System.out.print((char)inByte);
} while (inByte != -1);
System.out.println(“”);
text.close();

Because a character stream’s read() method returns an integer, you must cast this to a
character before displaying it, storing it in an array, or using it to form a string. Every
character has a numeric code that represents its position in the Unicode character set.
The integer read off the stream is this numeric code.

Character Streams 423

15

If you want to read an entire line of text at a time instead of reading a file character by
character, you can use the BufferedReader class in conjunction with a FileReader.

The BufferedReader class reads a character input stream and buffers it for better effi-
ciency. You must have an existing Reader object of some kind to create a buffered ver-
sion. The following constructors can be used to create a BufferedReader:

n BufferedReader(Reader)—Creates a buffered character stream associated with
the specified Reader object, such as FileReader

n BufferedReader(Reader, int)—Creates a buffered character stream associated
with the specified Reader and with a buffer of int size

A buffered character stream can be read using the read() and read(char[], int, int)

methods described for FileReader. You can read a line of text using the readLine()
method.

The readLine() method returns a String object containing the next line of text on the
stream, not including the character or characters that represent the end of a line. If the
end of the stream is reached, the value of the string returned will be equal to null.

An end-of-line is indicated by any of the following:

n A newline character (‘\n’)

n A carriage return character (‘\r’)

n A carriage return followed by a newline (“\n\r”)

The project contained in Listing 15.7 is a Java application that reads its own source file
through a buffered character stream.

LISTING 15.7 The Full Text of SourceReader.java

1: import java.io.*;
2:
3: public class SourceReader {
4: public static void main(String[] arguments) {
5: try {
6: FileReader file = new
7: FileReader(“SourceReader.java”);
8: BufferedReader buff = new
9: BufferedReader(file);
10: boolean eof = false;
11: while (!eof) {
12: String line = buff.readLine();
13: if (line == null)

424 DAY 15: Working with Input and Output

LISTING 15.7 Continued

14: eof = true;
15: else
16: System.out.println(line);
17: }
18: buff.close();
19: } catch (IOException e) {
20: System.out.println(“Error — “ + e.toString());
21: }
22: }
23: }

Much of this program is comparable to projects created earlier today, as illustrated:

n Lines 6–7—An input source is created: the FileReader object associated with the
file SourceReader.java.

n Lines 8–9—A buffering filter is associated with that input source: the
BufferedReader object buff.

n Lines 11–17—A readLine() method is used inside a while loop to read the text
file one line at a time. The loop ends when the method returns the value null.

The SourceReader application’s output is the text file SourceReader.java.

Writing Text Files
The FileWriter class is used to write a character stream to a file. It’s a subclass of
OutputStreamWriter, which has behavior to convert Unicode character codes to bytes.

There are two FileWriter constructors: FileWriter(String) and FileWriter(String,

boolean). The string indicates the name of the file that the character stream will be
directed into, which can include a folder path. The optional Boolean argument should
equal true if the file is to be appended to an existing text file. As with other stream-writ-
ing classes, you must take care not to accidentally overwrite an existing file when you’re
appending data.

Three methods of FileWriter can be used to write data to a stream:

n write(int)—Writes a character

n write(char[], int, int)—Writes characters from the specified character array
with the indicated starting point and number of characters written

n write(String, int, int)—Writes characters from the specified string with the
indicated starting point and number of characters written

Character Streams 425

15

The following example writes a character stream to a file using the FileWriter class and
the write(int) method:

FileWriter letters = new FileWriter(“alphabet.txt”);
for (int i = 65; i < 91; i++)

letters.write((char)i);
letters.close();

The close() method is used to close the stream after all characters have been sent to the
destination file. The following is the alphabet.txt file produced by this code:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

The BufferedWriter class can be used to write a buffered character stream. This class’s
objects are created with the BufferedWriter(Writer) or BufferedWriter(Writer,
int) constructors. The Writer argument can be any of the character output stream
classes, such as FileWriter. The optional second argument is an integer indicating the
size of the buffer to use.

BufferedWriter has the same three output methods as FileWriter: write(int),
write(char[], int, int), and write(String, int, int).

Another useful output method is newLine(), which sends the preferred end-of-line char-
acter (or characters) for the platform being used to run the program.

The different end-of-line markers can create conversion hassles
when transferring files from one operating system to another, such
as when a Windows XP user uploads a file to a web server that’s
running the Linux operating system. Using newLine() instead of a
literal (such as ‘\n’) makes your program more user-friendly
across different platforms.

The close() method is called to close the buffered character stream and make sure that
all buffered data is sent to the stream’s destination.

Files and Filename Filters
In all the examples thus far, a string has been used to refer to the file that’s involved in a
stream operation. This often is sufficient for a program that uses files and streams, but if
you want to copy files, rename files, or handle other tasks, a File object can be used.

426 DAY 15: Working with Input and Output

TIP

File, which also is part of the java.io package, represents a file or folder reference. The
following File constructors can be used:

n File(String)—Creates a File object with the specified folder; no filename is
indicated, so this refers only to a file folder.

n File(String, String)—Creates a File object with the specified folder path and
the specified name.

n File(File, String)—Creates a File object with its path represented by the spec-
ified File and its name indicated by the specified String.

You can call several useful methods on a File object.

The exists() method returns a Boolean value indicating whether the file exists under
the name and folder path established when the File object was created. If the file exists,
you can use the length() method to return a long integer indicating the size of the file
in bytes.

The renameTo(File) method renames the file to the name specified by the File argu-
ment. A Boolean value is returned, indicating whether the operation was successful.

The delete() or deleteOnExit() method should be called to delete a file or a folder.
The delete() method attempts an immediate deletion (returning a Boolean value indi-
cating whether it worked). The deleteOnExit() method waits to attempt deletion until
the rest of the program has finished running. This method does not return a value—you
couldn’t do anything with the information—and the program must finish at some point
for it to work.

The getName() and getPath() methods return strings containing the name and path of
the file.

Several methods are useful when the File object represents a folder rather than a file.

The mkdir() method can be used to create the folder specified by the File object it is
called on. It returns a Boolean value indicating success or failure. There is no compara-
ble method to remove folders—delete() can be used on folders as well as files.

The isDirectory() method returns the Boolean value true when the File object is a
folder and false otherwise.

The listFiles() method returns an array of File objects representing the contents of
the folder—all its files and subfolders.

Files and Filename Filters 427

15

As with any file-handling operations, these methods must be handled with care to avoid
deleting the wrong files and folders or wiping out data. No method is available to
undelete a file or folder.

Each of the methods throws a SecurityException if the program does not have the
security to perform the file operation in question, so these exceptions need to be dealt
with through a try-catch block or a throws clause in a method declaration.

The program in Listing 15.8 converts all the text in a file to uppercase characters. The
file is pulled in using a buffered input stream, and one character is read at a time. After
the character is converted to uppercase, it is sent to a temporary file using a buffered out-
put stream. File objects are used instead of strings to indicate the files involved, which
makes it possible to rename and delete files as needed.

LISTING 15.8 The Full Text of AllCapsDemo.java

1: import java.io.*;
2:
3: public class AllCapsDemo {
4: public static void main(String[] arguments) {
5: AllCaps cap = new AllCaps(arguments[0]);
6: cap.convert();
7: }
8: }
9:
10: class AllCaps {
11: String sourceName;
12:
13: AllCaps(String sourceArg) {
14: sourceName = sourceArg;
15: }
16:
17: void convert() {
18: try {
19: // Create file objects
20: File source = new File(sourceName);
21: File temp = new File(“cap” + sourceName + “.tmp”);
22:
23: // Create input stream
24: FileReader fr = new
25: FileReader(source);
26: BufferedReader in = new
27: BufferedReader(fr);
28:
29: // Create output stream
30: FileWriter fw = new
31: FileWriter(temp);

428 DAY 15: Working with Input and Output

LISTING 15.8 Continued

32: BufferedWriter out = new
33: BufferedWriter(fw);
34:
35: boolean eof = false;
36: int inChar = 0;
37: do {
38: inChar = in.read();
39: if (inChar != -1) {
40: char outChar = Character.toUpperCase((char)inChar);
41: out.write(outChar);
42: } else
43: eof = true;
44: } while (!eof);
45: in.close();
46: out.close();
47:
48: boolean deleted = source.delete();
49: if (deleted)
50: temp.renameTo(source);
51: } catch (IOException e) {
52: System.out.println(“Error — “ + e.toString());
53: } catch (SecurityException se) {
54: System.out.println(“Error — “ + se.toString());
55: }
56: }
57: }

After you compile the program, you need a text file that can be converted to all capital
letters. One option is to make a copy of AllCapsDemo.java and give it a name like
TempFile.java.

The name of the file to convert is specified at the command line when running
AllCapsDemo, as in the following JDK example:

java AllCapsDemo TempFile.java

This program does not produce any output. Load the converted file into a text editor to
see the result of the application.

Summary
Today, you learned how to work with streams in two directions: pulling data into a pro-
gram over an input stream and sending data from a program using an output stream.

Summary 429

15

You used character streams to handle text and byte streams for any other kind of data.
Filters were associated with streams to alter the way information was delivered through a
stream or to alter the information itself.

In addition to these classes, java.io offers other types of streams you might want to
explore. Piped streams are useful when communicating data among different threads, and
byte array streams can connect programs to a computer’s memory.

Because the stream classes in Java are so closely coordinated, you already possess most
of the knowledge you need to use these other types of streams. The constructors, read
methods, and write methods are largely identical.

Streams are a powerful way to extend the functionality of your Java programs because
they offer a connection to any kind of data you might want to work with.

Tomorrow, you will use streams to read and write Java objects.

Q&A
Q A C program that I use creates a file of integers and other data. Can I read

this using a Java program?

A You can, but one thing you have to consider is whether your C program represents
integers in the same manner that a Java program represents them. As you might
recall, all data can be represented as an individual byte or a series of bytes. An
integer is represented in Java using four bytes arranged in what is called big-endian
order. You can determine the integer value by combining the bytes from left to
right. A C program implemented on an Intel PC is likely to represent integers in
little-endian order, which means that the bytes must be arranged from right to left
to determine the result. You might have to learn about advanced techniques, such
as bit shifting, to use a data file created with a programming language other than
Java.

Q Can relative paths be used when specifying the name of a file in Java?

A Relative paths are determined according to the current user folder, which is stored
in the system properties user.dir. You can find out the full path to this folder by
using the System class in the main java.lang package, which does not need to be
imported.

Call the System class getProperty(String) method with the name of the property
to retrieve, as in this example:

String userFolder = System.getProperty(“user.dir”);

The method returns the path as a string.

430 DAY 15: Working with Input and Output

Q The FileWriter class has a write(int) method that’s used to send a character
to a file. Shouldn’t this be write(char)?

A The char and int data types are interchangeable in many ways; you can use an
int in a method that expects a char, and vice versa. This is possible because each
character is represented by a numeric code that is an integer value. When you call
the write() method with an int, it outputs the character associated with that inte-
ger value. When calling the write() method, you can cast an int value to a char
to ensure that it’s being used as you intended.

Quiz
Review today’s material by taking this three-question quiz.

Questions
1. What happens when you create a FileOutputStream using a reference to an exist-

ing file?

a. An exception is thrown.

b. The data you write to the stream is appended to the existing file.

c. The existing file is replaced with the data you write to the stream.

2. What two primitive types are interchangeable when you’re working with streams?

a. byte and boolean

b. char and int

c. byte and char

3. In Java, what is the maximum value of a byte variable and the maximum value of
an unsigned byte in a stream?

a. Both are 255.

b. Both are 127.

c. 127 for a byte variable and 255 for an unsigned byte.

Answers
1. c. That’s one of the things to look out for when using output streams; you can eas-

ily wipe out existing files.

2. b. Because a char is represented internally by Java as an integer value, you can
often use the two interchangeably in method calls and other statements.

3. c. The byte primitive data type has values ranging from 128 to 127, whereas an
unsigned byte can range from 0 to 255.

Quiz 431

15

Certification Practice
The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Given:

import java.io.*;

public class Unknown {
public static void main(String[] arguments) {

String command = “”;
BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));
try {

command = br.readLine();
}
catch (IOException e) { }

}
}

Will this program successfully store a line of console input in the String object named
command?

a. Yes.

b. No, because a buffered input stream is required to read console input.

c. No, because it won’t compile successfully.

d. No, because it reads more than one line of console input.

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 15 page and click the Certification Practice link.

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. Write a modified version of the HexRead program from Day 7, “Exceptions,
Assertions, and Threads,” that reads two-digit hexadecimal sequences from a text
file and displays their decimal equivalents.

2. Write a program that reads a file to determine the number of bytes it contains and
then overwrites all those bytes with zeroes (0). (For obvious reasons, don’t test this
program on any file you intend to keep; the data in the file will be wiped out.)

Where applicable, exercise solutions are offered on the book’s website at http://www.
java21days.com.

432 DAY 15: Working with Input and Output

DAY 16:
Serializing and
Examining Objects

An essential concept of object-oriented programming is the representa-
tion of data. In an object-oriented language such as Java, an object repre-
sents two things:

n Behavior—The things an object can do

n Attributes—The data that differentiates the object from other
objects

Combining behavior and attributes is a departure from other programming
languages where a program is defined as a set of instructions that
manipulate data. The data is a separate thing, as in word processing
software. Most word processors are considered programs used to create
and edit text documents.

Object-oriented programming blurs the line between program and data. An
object in a language such as Java encapsulates both instructions (behav-
ior) and data (attributes).

Today, you discover two ways that a Java program can take advantage of
this representation:

n Object serialization—The capability to read and write an object
using streams

n Reflection—The capability of one object to learn details about
another object

Object Serialization
As you learned yesterday during Day 15, “Working with Input and Output,” Java handles
access to external data via the use of a class of objects called streams. A stream is an
object that carries data from one place to another. Some streams carry information from a
source into a Java program. Others go the opposite direction and take data from a pro-
gram to a destination.

A stream that reads a web page’s data into an array in a Java program is an example of
the former. A stream that writes a String array to a disk file is an example of the latter.

Two types of streams were introduced during Day 15:

n Byte streams, which read and write a series of integer values ranging from 0 to 255

n Character streams, which read and write textual data

These streams separate the data from the Java class that works with it. To use the data at
a later time, you must read it in through a stream and convert it into a form the class can
use, such as a series of primitive data types or objects.

A third type of stream, an object stream, makes it possible for data to be represented as
objects rather than some external form.

Object streams, like byte and character streams, are part of the java.io package.
Working with them requires many of the same techniques you used during Day 15.

For an object to be saved to a destination such as a disk file, it must be converted to ser-
ial form.

Serial data is sent one element at a time, like a line of cars on an
assembly line. You might be familiar with the serial port on a com-
puter, which is used to send information as a series of bits one
after the other. Another way to send data is in parallel, transferring
more than one element simultaneously.

An object indicates that it can be used with streams by implementing the Serializable
interface. This interface, which is part of the java.io package, differs from other inter-
faces with which you have worked; it does not contain any methods that must be
included in the classes that implement it. The sole purpose of the Serializable interface
is to indicate that objects of that class can be stored and retrieved in serial form.

434 DAY 16: Serializing and Examining Objects

NOTE

Objects can be serialized to disk on a single machine or can be serialized across a net-
work such as the Internet, even in a case in which different operating systems are
involved. You can create an object on a Windows machine, serialize it to a Linux
machine, and load it back into the original Windows machine without error. Java trans-
parently works with the different formats for saving data on these systems when objects
are serialized.

A programming concept involved in object serialization is persistence—the capability of
an object to exist and function outside the program that created it.

Normally, an object that is not serialized is not persistent. When the program that uses
the object stops running, the object ceases to exist.

Serialization enables object persistence because the stored object continues to serve a
purpose even when no Java program is running. The stored object contains information
that can be restored in a program so that it can resume functioning.

When an object is saved to a stream in serial form, all objects to which it contains refer-
ences also are saved. This makes it easier to work with serialization; you can create one
object stream that takes care of numerous objects at the same time.

When several objects contain references to the same object, Java automatically ensures
that only one copy of that object is serialized. Each object is assigned an internal serial
number; successive attempts to save that object store only that number.

You can exclude some of an object’s variables from serialization to save disk space or
prevent information that presents a security risk from being saved. As you will see later
today, this requires the use of the transient modifier.

Object Output Streams
An object is written to a stream via the ObjectOutputStream class.

An object output stream is created with the ObjectOutputStream(OutputStream) con-
structor. The argument to this constructor can be either of the following:

n An output stream representing the destination where the object should be stored in
serial form

n A filter associated with the output stream leading to the destination

As with other streams, you can chain more than one filter between the output stream and
the object output stream.

Object Serialization 435

16

The following code creates an output stream and an associated object output stream:

FileOutputStream disk = new FileOutputStream(
“SavedObject.dat”);

ObjectOutputStream disko = new ObjectOutputStream(disk);

The object output stream created in this example is called disko. Methods of the disko
class can be used to write serializable objects and other information to a file called
SavedObject.dat.

After you have created an object output stream, you can write an object to it by calling
the stream’s writeObject(Object) method.

The following statement calls this method on disko, the stream created in the previous
example:

disko.writeObject(userData);

This statement writes an object called userData to the disko object output stream. The
class represented by userData must be serializable for it to work.

An object output stream also can be used to write other types of information with the fol-
lowing methods:

n write(int)—Writes the specified integer to the stream, which should be a value
from 0 to 255.

n write(byte[])—Writes the specified byte array.

n write(byte[], int, int)—Writes a subset of the specified byte array. The
second argument specifies the first array element to write, and the last argument
represents the number of subsequent elements to write.

n writeBoolean(boolean)—Writes the specified boolean.

n writeByte(int)—Writes the specified integer as a byte value.

n writeBytes(String)—Writes the specified string as a series of bytes.

n writeChar(int)—Writes the specified character.

n writeChars(String)—Writes the specified string as a series of characters.

n writeDouble(double)—Writes the specified double.

n writeFloat(float)—Writes the specified float.

n writeInt(int)—Writes the specified int, which unlike the argument to
write(int) can be any int value.

n writeLong(long)—Writes the specified long.

n writeShort(short)—Writes the specified short.

436 DAY 16: Serializing and Examining Objects

The ObjectOutputStream constructor and all methods that write data to an object output
stream throw IOException objects. These must be accounted for using a try-catch
block or a throws clause.

Listing 16.1 contains a Java application that consists of two classes: ObjectWriter and
Message. The Message class represents an email message. This class has from and to

objects that store the names of the sender and recipient, a now object that holds a Date
value representing the time it was sent, and a text array of String objects that holds the
message. There also is an int called lineCount that keeps track of the number of lines
in the message.

When designing a program that transmits and receives email, it makes sense to use some
kind of stream to save these messages to disk. The information that constitutes the mes-
sage must be saved in some form as it is transmitted from one place to another; it also
might need to be saved until the recipient is able to read it.

Messages can be preserved by saving each message element separately to a byte or char-
acter stream. In the example of the Message class, the from and to objects could be writ-
ten to a stream as strings, and the text object could be written as an array of strings. The
now object is a little trickier because there isn’t a way to write a Date object to a charac-
ter stream. However, it could be converted into a series of integer values representing
each part of a date: hour, minute, second, and so on. Those could be written to the
stream.

Using an object output stream makes it possible to save Message objects without first
translating them into another form.

The ObjectWriter class in Listing 16.1 creates a Message object, sets up values for its
variables, and saves it to a file called Message.obj via an object output stream.

LISTING 16.1 The Full Text of ObjectWriter.java

1: import java.io.*;
2: import java.util.*;
3:
4: public class ObjectWriter {
5: public static void main(String[] arguments) {
6: Message mess = new Message();
7: String author = “Sam Wainwright, London”;
8: String recipient = “George Bailey, Bedford Falls”;
9: String[] letter = { “Mr. Gower cabled you need cash. Stop.”,
10: “My office instructed to advance you up to twenty-five”,
11: “thousand dollars. Stop. Hee-haw and Merry Christmas.” };
12: Date now = new Date();
13: mess.writeMessage(author, recipient, now, letter);

Object Serialization 437

16

LISTING 16.1 Continued

14: try {
15: FileOutputStream fo = new FileOutputStream(
16: “Message.obj”);
17: ObjectOutputStream oo = new ObjectOutputStream(fo);
18: oo.writeObject(mess);
19: oo.close();
20: System.out.println(“Object created successfully.”);
21: } catch (IOException e) {
22: System.out.println(“Error — “ + e.toString());
23: }
24: }
25: }
26:
27: class Message implements Serializable {
28: int lineCount;
29: String from, to;
30: Date when;
31: String[] text;
32:
33: void writeMessage(String inFrom,
34: String inTo,
35: Date inWhen,
36: String[] inText) {
37:
38: text = new String[inText.length];
39: for (int i = 0; i < inText.length; i++)
40: text[i] = inText[i];
41: lineCount = inText.length;
42: to = inTo;
43: from = inFrom;
44: when = inWhen;
45: }
46: }

You should see the following output after you compile and run the ObjectWriter appli-
cation:

Object created successfully.

Object Input Streams
An object is read from a stream using the ObjectInputStream class. As with other
streams, working with an object input stream is similar to working with an object output
stream. The primary difference is the change in the data’s direction.

438 DAY 16: Serializing and Examining Objects

An object input stream is created with the ObjectInputStream(InputStream)
constructor. Two exceptions are thrown by this constructor: IOException and
StreamCorruptionException. IOException, common to stream classes, occurs
whenever any kind of input/output error occurs during the data transfer.
StreamCorruptionException is specific to object streams, and it indicates that the data
in the stream is not a serialized object.

An object input stream can be constructed from an input stream or a filtered stream.

The following code creates an input stream and an object input stream to go along
with it:

try {
FileInputStream disk = new FileInputStream(

“SavedObject.dat”);
ObjectInputStream obj = new ObjectInputStream(disk);

} catch (IOException ie) {
System.out.println(“IO error –- “ + ie.toString());

} catch (StreamCorruptionException se) {
System.out.println(“Error – data not an object.”);

}

This object input stream is set up to read from an object stored in a file called SavedObject.
dat. If the file does not exist or cannot be read from disk for some reason, an IOException
is thrown. If the file isn’t a serialized object, a thrown StreamCorruptionException indi-
cates this problem.

An object can be read from an object input stream by using the readObject() method,
which returns an Object. This object can be immediately cast into the class to which it
belongs, as in the following example:

WorkData dd = (WorkData)disk.readObject();

This statement reads an object from the disk object stream and casts it into an
object of the class WorkData. In addition to IOException, this method throws
OptionalDataException and ClassNotFoundException errors.

OptionalDataException indicates that the stream contains data other than serialized
object data, which makes it impossible to read an object from the stream.

ClassNotFoundException occurs when the object retrieved from the stream belongs to a
class that could not be found. When objects are serialized, the class is not saved to the
stream. Instead, the name of the class is saved to the stream, and the class is loaded by
the Java interpreter when the object is loaded from a stream.

Object Serialization 439

16

Other types of information can be read from an object input stream with the following
methods:

n read()—Reads the next byte from the stream, which is returned as an int.

n read(byte[], int, int)—Reads bytes into the specified byte array. The second
argument specifies the first array element where a byte should be stored. The last
argument represents the number of subsequent elements to read and store in the
array.

n readBoolean()—Reads a boolean value from the stream.

n readByte()—Reads a byte value from the stream.

n readChar()—Reads a char value from the stream.

n readDouble()—Reads a double value from the stream.

n readFloat()—Reads a float value from the stream.

n readInt()—Reads an int value from the stream.

n readLine()—Reads a String from the stream.

n readLong()—Reads a long value from the stream.

n readShort()—Reads a short value from the stream.

n readUnsignedByte()—Reads an unsigned byte value and returns it as an int.

n readUnsignedShort()—Reads an unsigned short value and returns it as an int.

Each of these methods throws an IOException if an input/output error occurs as the
stream is being read.

When an object is created by reading an object stream, it is created entirely from the
variable and object information stored in that stream. No constructor method is called to
create variables and set them up with initial values. There’s no difference between this
object and the one originally serialized.

Listing 16.2 contains a Java application that reads an object from a stream and displays
its variables to standard output. The ObjectReader application loads the object serialized
to the file message.obj.

This class must be run from the same folder that contains the file message.obj and the
Message class.

440 DAY 16: Serializing and Examining Objects

LISTING 16.2 The Full Text of ObjectReader.java

1: import java.io.*;
2: import java.util.*;
3:
4: public class ObjectReader {
5: public static void main(String[] arguments) {
6: try {
7: FileInputStream fi = new FileInputStream(
8: “message.obj”);
9: ObjectInputStream oi = new ObjectInputStream(fi);
10: Message mess = (Message) oi.readObject();
11: System.out.println(“Message:\n”);
12: System.out.println(“From: “ + mess.from);
13: System.out.println(“To: “ + mess.to);
14: System.out.println(“Date: “ + mess.when + “\n”);
15: for (int i = 0; i < mess.lineCount; i++)
16: System.out.println(mess.text[i]);
17: oi.close();
18: } catch (Exception e) {
19: System.out.println(“Error — “ + e.toString());
20: }
21: }
22: }

The output of this program is as follows:

Message:

From: Sam Wainwright, London
To: George Bailey, Bedford Falls
Date: Sat Jan 13 20:53:40 EST 2007

Mr. Gower cabled you need cash. Stop.
My office instructed to advance you up to twenty-five
thousand dollars. Stop. Hee-haw and Merry Christmas.

Transient Variables
When creating an object that can be serialized, one design consideration is whether all
the object’s instance variables should be saved.

In some cases, an instance variable must be created from scratch each time the object is
restored. A good example is an object referring to a file or input stream. Such an object
must be created anew when it is part of a serialized object loaded from an object stream,
so it doesn’t make sense to save this information when serializing the object.

Object Serialization 441

16

It’s a good idea to exclude from serialization a variable that contains sensitive informa-
tion. If an object stores the password needed to gain access to a resource, that password
is more at risk if serialized into a file. The password also might be detected if it is part of
an object restored over a stream that exists on a network.

A third reason not to serialize a variable is to save space on the storage file that holds the
object. If its values can be established without serialization, you might want to omit the
variable from the process.

To prevent an instance variable from being included in serialization, the transient mod-
ifier is used.

This modifier is included in the statement that creates the variable, preceding the class or
data type of the variable. The following statement creates a transient variable called
limit:

public transient int limit = 55;

Checking an Object’s Serialized Fields
An important thing to consider when serializing objects is how easily a malicious pro-
grammer could tamper with an object in serial form. The file format for serialized
objects in Java is neither encrypted nor particularly complex.

When you create an object again from its serial form, you can’t rely on a constructor
method to ensure that its fields have permissible values.

Instead, to check that an object read from a stream contains acceptable values, the object
can include a readObject(ObjectInputStream) method.

This method throws IOException and ClassNotFoundException exceptions and takes
the following form:

private void readObject(ObjectInputStream ois) {
ois.defaultReadObject();

}

Note that it is private. In the method, the defaultReadObject() method of the object
stream reads serialized fields into the object, where they can be checked to ensure that
the values are acceptable.

If not, an IOException can be thrown to indicate that an error has occurred related to
serialization.

442 DAY 16: Serializing and Examining Objects

The following method could be added to the Message class to reject a serialized object
that has an empty from value:

private void readObject(ObjectInputStream ois)
throws IOException, ClassNotFoundException {

ois.defaultReadObject();
if (from.length() < 1) {

throw new IOException(“Null sender in message.”);
}

}

Inspecting Classes and Methods with
Reflection
On Day 3, “Working with Objects,” you learned how to create Class objects that repre-
sent the class to which an object belongs. Every object in Java inherits the getClass()
method, which identifies the class or interface of that object. The following statement
creates a Class object named keyclass from an object referred to by the variable key:

Class keyClass = key.getClass();

By calling the getName() method of a Class object, you can find out the name of the
class:

String keyName = keyClass.getName();

These features are part of Java’s support for reflection, a technique that enables one Java
class—such as a program you write—to learn details about any other class.

Through reflection, a Java program can load a class it knows nothing about; find the vari-
ables, methods, and constructors of that class; and work with them.

One use of reflection is to determine a serialized object’s class when it is read.

Inspecting and Creating Classes
The Class class, which is part of the java.lang package, is used to learn about and cre-
ate classes, interfaces, and even primitive types.

In addition to using getClass(), you can create Class objects by appending .class to
the name of a class, interface, array, or primitive type, as in the following examples:

Class keyClass = KeyClass.class;
Class thr = Throwable.class;
Class floater = float.class;
Class floatArray = float[].class;

Inspecting Classes and Methods with Reflection 443

16

You also can create Class objects by using the forName() class method with a single
argument: a string containing the name of an existing class. The following statement cre-
ates a Class object representing a JLabel, one of the classes of the javax.swing pack-
age:

Class lab = Class.forName(“javax.swing.JLabel”);

The forName() method throws a ClassNotFoundException if the specified class cannot
be found, so you must call forName() within a try-catch block or handle it in some
other manner.

To retrieve a string containing the name of a class represented by a Class object, call
getName() on that object. For classes and interfaces, this name includes the name of the
class and a reference to the package to which it belongs. For primitive types, the name
corresponds to the type’s name (such as int, float, or double).

Class objects that represent arrays are handled a little differently when getName() is
called on them. The name begins with one left bracket character (“[“) for each dimension
of the array; float[] would begin with “[“, int[][] with “[[“, KeyClass[][][] with
“[[[“, and so on.

If the array is of a primitive type, the next part of the name is a single character repre-
senting the type, as shown in Table 16.1.

TABLE 16.1 Type Identification for Primitive Types

Character Primitive Type

B byte

C char

D double

F float

I int

J long

S short

Z boolean

For arrays of objects, the brackets are followed by an L and the name of the class. For
example, if you called getName() on a String[][] array, the result would be
[[Ljava.lang.String.

444 DAY 16: Serializing and Examining Objects

You also can use the Class class to create new objects. Call the newInstance() method
on a Class object to create the object and cast it to the correct class.

For example, if you have a Class object named thr that represents the Throwable inter-
face, you can create a new object as follows:

Throwable thr2 = (Throwable)thr.newInstance();

The newInstance() method throws several kinds of exceptions:

n IllegalAccessException—You do not have access to the class either because it is
not public or because it belongs to a different package.

n InstantiationException—You cannot create a new object because the class is
abstract.

n SecurityViolation—You do not have permission to create an object of this class.

When newInstance() is called and no exceptions are thrown, the new object is created
by calling the constructor of the corresponding class with no arguments.

You cannot use this technique to create a new object that requires
arguments to its constructor method. Instead, you must use a
newInstance() method of the Constructor class, as you will see
later today.

Working with Each Part of a Class
Although Class is part of the java.lang package, the primary support for reflection is
the java.lang.reflect package, which includes the following classes:

n Field—Manages and finds information about class and instance variables

n Method—Manages class and instance methods

n Constructor—Manages constructors, the special methods for creating new
instances of classes

n Array—Manages arrays

n Modifier—Decodes modifier information about classes, variables, and methods
(which were described on Day 6, “Packages, Interfaces, and Other Class Features”)

Inspecting Classes and Methods with Reflection 445

16

NOTE

Each of these reflection classes has methods for working with an element of a class.

A Method object holds information about a single method in a class. To find out about
all methods contained in a class, create a Class object for that class and call
getDeclaredMethods() on that object. An array of Method[] objects is returned that rep-
resents all methods in the class not inherited from a superclass. If no methods meet that
description, the length of the array is 0.

The Method class has several useful instance methods:

n getParameterTypes()—This method returns an array of Class objects represent-
ing each argument contained in the method signature.

n getReturnType()—This method returns a Class object representing the return
type of the method, whether it’s a class or primitive type.

n getModifiers()—This method returns an int value that represents the modifiers
that apply to the method, such as whether it is public, private, and the like.

Because the getParameterTypes() and getReturnType() methods return Class objects,
you can use getName() on each object to find out more about it.

The easiest way to use the int returned by getModifiers() is to call the Modifier class
method toString() with that integer as an argument. For example, if you have a Method
object named current, you can display its modifiers with the following code:

int mods = current.getModifiers();
System.out.println(Modifier.toString(mods));

The Constructor class has some of the same methods as the Method class, including
getModifiers() and getName(). One method that’s missing, as you might expect, is
getReturnType(); constructors do not contain return types.

To retrieve all constructors associated with a Class object, call getConstructors() on
that object. An array of Constructor objects is returned.

To retrieve a specific constructor, first create an array of Class objects that represent
every argument sent to the constructor. When this is done, call getConstructors() with
that Class array as an argument.

For example, if there is a KeyClass(String, int) constructor, you can create a
Constructor object to represent this with the following statements:

Class kc = KeyClass.class;
Class[] cons = new Class[2];
cons[0] = String.class;

446 DAY 16: Serializing and Examining Objects

cons[1] = int.class;
Constructor c = kc.getConstructor(cons);

The getConstructor(Class[]) method throws a NoSuchMethodException if there isn’t
a constructor with arguments that match the Class[] array.

After you have a Constructor object, you can call its newInstance(Object[]) method
to create a new instance using that constructor.

Inspecting a Class
To bring all this material together, Listing 16.3 is a short Java application named
MethodInspector that uses reflection to inspect the methods in a class.

LISTING 16.3 The Full Text of MethodInspector.java

1: import java.lang.reflect.*;
2:
3: public class MethodInspector {
4: public static void main(String[] arguments) {
5: Class inspect;
6: try {
7: if (arguments.length > 0)
8: inspect = Class.forName(arguments[0]);
9: else
10: inspect = Class.forName(“MethodInspector”);
11: Method[] methods = inspect.getDeclaredMethods();
12: for (int i = 0; i < methods.length; i++) {
13: Method methVal = methods[i];
14: Class returnVal = methVal.getReturnType();
15: int mods = methVal.getModifiers();
16: String modVal = Modifier.toString(mods);
17: Class[] paramVal = methVal.getParameterTypes();
18: StringBuffer params = new StringBuffer();
19: for (int j = 0; j < paramVal.length; j++) {
20: if (j > 0)
21: params.append(“, “);
22: params.append(paramVal[j].getName());
23: }
24: System.out.println(“Method: “ + methVal.getName() + “()”);
25: System.out.println(“Modifiers: “ + modVal);
26: System.out.println(“Return Type: “ + returnVal.getName());
27: System.out.println(“Parameters: “ + params + “\n”);
28: }
29: } catch (ClassNotFoundException c) {
30: System.out.println(c.toString());
31: }
32: }
33: }

Inspecting Classes and Methods with Reflection 447

16

The MethodInspector application displays information about the public methods in the
class you specify at the command line (or MethodInspector itself, if you don’t specify a
class). To try the program, enter the following at a command line:

java MethodInspector java.util.Random

If you run the application on the java.util.Random class, the program’s output is the
following (with some methods omitted):

Method: writeObject()
Modifiers: private synchronized
Return Type: void
Parameters: java.io.ObjectOutputStream

Method: next()
Modifiers: protected
Return Type: int
Parameters: int

...

Method: setSeed()
Modifiers: public synchronized
Return Type: void
Parameters: long

By using reflection, the MethodInspector application can learn every method of a class.

A Class object is created in lines 7–10 of the application. If a class name is specified as
a command-line argument when MethodInspector is run, the Class.forName() method
is called with that argument. Otherwise, MethodInspector is used as the argument.

After the Class object is created, its getDeclaredMethods() method is used in line 11 to
find all the methods contained in the class (with the exception of methods inherited from
a superclass). These methods are stored as an array of Method objects.

The for loop in lines 12–28 cycles through each method in the class, storing its return
type, modifiers, and arguments and then displaying them.

Displaying the return type is straightforward: Each method’s getReturnType() method
is stored as a Class object in line 14, and that object’s name is displayed in line 26.

When a method’s getModifiers() method is called in line 15, an integer is returned that
represents all modifiers used with the method. The class method Modifier.toString()
takes this integer as an argument and returns the names of all modifiers associated
with it.

448 DAY 16: Serializing and Examining Objects

Lines 19–23 loop through the array of Class objects that represents the arguments asso-
ciated with a method. The name of each argument is added to a StringBuffer object
named params in line 22.

Reflection is most commonly used By using reflectionby tools such as class browsers
and debuggers as a way to learn more about the class of objects being browsed or
debugged.

Reflection also is needed with JavaBeans, a technique for creating
Java classes that can be manipulated in a programming environ-
ment. These classes, called beans, enable Java applications to be
created by loading beans into an interface, customizing them, and
controlling their interactions.

Summary
Although Java has always been a network-centric language, the topics covered today
show how the language has been extended in new directions.

Object serialization shows how objects created with Java have a life span beyond that of
a Java program. You can create objects in a program that are saved to a storage device
such as a hard drive and re-created later after the original program has ceased to run.

Object persistence is an effective way to save elements of a program for later use.

Q&A
Q Are object streams associated with the Writer and Reader classes that are used

to work with character streams?

A The ObjectInputStream and ObjectOutputStream classes are independent of the
byte stream and character stream superclasses in the java.io package, although
they contain many of the same methods as the byte classes.

There shouldn’t be a need to use Writer or Reader classes in conjunction with
object streams because you can accomplish the same things via the object stream
classes and their superclasses (InputStream and OutputStream).

Q&A 449

16NOTE

Q Are private variables and objects saved when they are part of an object that’s
being serialized?

A They are saved. As you might recall from today’s discussion, no constructor meth-
ods are called when an object is loaded into a program using serialization. Because
of this, all variables and objects not declared transient are saved to prevent the
object from losing something that might be necessary to its function.

Saving private variables and objects might present a security risk in some cases,
especially when the variable is being used to store a password or some other sensi-
tive data. Using transient prevents a variable or object from being serialized.

Quiz
Review today’s material by taking this three-question quiz.

Questions
1. What is returned when you call getName() on a Class object that represents a

String[] array?

a. java.lang.String

b. [Ljava.lang.String

c. [java.lang.String

2. What is persistence?

a. The capability of an object to exist after the program that created it has
stopped running

b. The ability of a class to support multiple threads

c. An error-handling technique

3. What Class method is used to create a new Class object using a string containing
the name of a class?

a. newInstance()

b. forName()

c. getName()

450 DAY 16: Serializing and Examining Objects

Answers
1. b. The bracket indicates the depth of the array, the L indicates that it is an array of

objects, and the class name that follows is self-explanatory.

2. a. Persistence saves objects to disk or another storage medium via serialization so
they can be recreated later.

3. b. If the class is not found, a ClassNotFoundException is thrown.

Certification Practice
The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Given:

public class ClassType {
public static void main(String[] arguments) {

Class c = String.class;
try {

Object o = c.newInstance();
if (o instanceof String)

System.out.println(“True”);
else

System.out.println(“False”);
} catch (Exception e) {

System.out.println(“Error”);
}

}
}

What will be the output of this application?

a. True

b. False

c. Error

d. The program will not compile.

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 16 page and click the Certification Practice link.

Quiz 451

16

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. Use reflection to write a Java program that takes a class name as a command-line
argument and checks whether it is an application; all applications have a main()
method with public and static as modifiers, void as a return type, and String[] as
the only argument.

2. Write a program that creates a new object using Class objects and the
newInstance() method that serializes the object to disk.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java21days.com.

452 DAY 16: Serializing and Examining Objects

DAY 17:
Communicating Across
the Internet

Java was developed initially as a language that would control a network of
interactive consumer devices. Connecting machines was one of the main
purposes of the language when it was designed, and that remains true
today.

The java.net package makes it possible to communicate over a net-
work, providing cross-platform abstractions to make connections, transfer
files using common web protocols, and create sockets.

Used in conjunction with input and output streams, reading and writing
files over the network becomes as easy as reading or writing files on
disk.

The java.nio package expands Java’s input and output classes.

Today, you write networking Java programs, creating applications that load
a document over the Web, mimic a popular Internet service, and serve
information to clients.

Networking in Java
Networking is the capability of different computers to make connections with each other
and to exchange information. In Java, basic networking is supported by classes in the
java.net package, including support for connecting and retrieving files by Hypertext
Transfer Protocol (HTTP) and File Transfer Protocol (FTP), as well as working at a
lower level with sockets.

You can communicate with systems on the Net in three simple ways:

n Load a web page and any other resource with a uniform resource locator (URL)
from an applet.

n Use the socket classes, Socket and ServerSocket, which open standard socket
connections to hosts and read to and write from those connections.

n Call getInputStream(), a method that opens a connection to a URL and can
extract data from that connection.

Opening a Stream over the Net
As you learned during Day 15, “Working with Input and Output,” you can pull informa-
tion through a stream into your Java programs in several ways. The classes and methods
you choose depend on the format of the information and what you want to do with it.

One of the resources you can reach from your Java programs is a text document on the
web, whether it’s a Hypertext Markup Language (HTML) file, Extensible Markup
Language (XML) file, or some other kind of plain text document.

You can use a four-step process to load a text document off the Web and read it line
by line:

1. Create a URL object that represents the resource’s web address.

2. Create a HttpURLConnection object that can load the URL and make a connection
to the site hosting it.

3. Use the getContent() method of that HttpURLConnection object to create an
InputStreamReader that can read a stream of data from the URL.

4. Use that input stream reader to create a BufferedReader object that can efficiently
read characters from an input stream.

There’s a lot of interaction going on between the web document and your Java program.
The URL is used to set up a URL connection, which is used to set up an input stream
reader, which is used to set up a buffered input stream reader. The need to catch any
exceptions that occur along the way adds more complexity to the process.

454 DAY 17: Communicating Across the Internet

Before you can load anything, you must create a new instance of the class URL that repre-
sents the address of the resource you want to load. URL is an acronym for uniform
resource locator, and it refers to the unique address of any document or other resource
accessible on the Internet.

URL is part of the java.net package, so you must import the package or refer to the class
by its full name in your programs.

To create a new URL object, use one of four constructors:

n URL(String)—Creates a URL object from a full web address such as
http://www.java21days.com or ftp://ftp.netscape.com.

n URL(URL, String)—Creates a URL object with a base address provided by the
specified URL and a relative path provided by the String.

n URL(String, String, int, String)—Creates a new URL object from a protocol
(such as “http” or “ftp”), hostname (such as “www.cnn.com” or “web.archive.org”),
port number (80 for HTTP), and a filename or pathname.

n URL(String, String, String)—The same as the previous constructor minus the
port number.

When you use the URL(String) constructor, you must deal with MalformedURLException
objects, which are thrown if the String does not appear to be a valid URL. These objects
can be handled in a try-catch block:

try {
URL load = new URL(“http://www.samspublishing.com”);

} catch (MalformedURLException e) {
System.out.println(“Bad URL”);

}

The WebReader application in Listing 17.1 uses the four-step technique to open a connec-
tion to a website and read a text document from it. When the document is fully loaded, it
is displayed in a text area.

LISTING 17.1 The Full Text of WebReader.java

1: import javax.swing.*;
2: import java.awt.*;
3: import java.awt.event.*;
4: import java.net.*;
5: import java.io.*;
6:
7: public class WebReader extends JFrame {
8: JTextArea box = new JTextArea(“Getting data ...”);
9:

Networking in Java 455

17

LISTING 17.1 Continued

10: public WebReader() {
11: super(“Get File Application”);
12: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13: setSize(600, 300);
14: JScrollPane pane = new JScrollPane(box);
15: add(pane);
16: setVisible(true);
17: }
18:
19: void getData(String address) throws MalformedURLException {
20: setTitle(address);
21: URL page = new URL(address);
22: StringBuffer text = new StringBuffer();
23: try {
24: HttpURLConnection conn = (HttpURLConnection)
25: page.openConnection();
26: conn.connect();
27: InputStreamReader in = new InputStreamReader(
28: (InputStream) conn.getContent());
29: BufferedReader buff = new BufferedReader(in);
30: box.setText(“Getting data ...”);
31: String line;
32: do {
33: line = buff.readLine();
34: text.append(line + “\n”);
35: } while (line != null);
36: box.setText(text.toString());
37: } catch (IOException ioe) {
38: System.out.println(“IO Error:” + ioe.getMessage());
39: }
40: }
41:
42: public static void main(String[] arguments) {
43: if (arguments.length < 1) {
44: System.out.println(“Usage: java WebReader url”);
45: System.exit(1);
46: }
47: try {
48: WebReader app = new WebReader();
49: app.getData(arguments[0]);
50: } catch (MalformedURLException mue) {
51: System.out.println(“Bad URL: “ + arguments[0]);
52: }
53: }
54: }

456 DAY 17: Communicating Across the Internet

To run the WebReader application, specify a URL as the only command-line argument.
For example:

java WebReader http://www.rssboard.org/rss-feed

Any URL can be chosen; try http://tycho.usno.navy.mil/cgi-bin/timer.pl for the U.S.
Naval Observatory timekeeping site or http://random.yahoo.com/bin/ryl for a random
link from the Yahoo! directory. The preceding example loads a page from an RSS file, as
shown in Figure 17.1.

Networking in Java 457

17

FIGURE 17.1
Running the
WebReader appli-
cation.

Two thirds of the WebReader class is devoted to running the application, creating the user
interface, and creating a valid URL object. The web document is loaded over a stream and
displayed in a text area in the getData() method.

Four objects are used: URL, HttpURLConnection, InputStreamReader, and
BufferedReader objects. These objects work together to pull the data from the Internet
to the Java application. In addition, two objects are created to hold the data when it
arrives: a String and a StringBuffer.

Lines 24–26 open an HTTP URL connection, which is necessary to get an input stream
from that connection.

Lines 27–28 use the connection’s getContent() method to create a new input stream
reader. The method returns an input stream representing the connection to the URL.

Line 29 uses that input stream reader to create a new buffered input stream reader—a
BufferedReader object called buff.

After you have this buffered reader, you can use its readLine() method to read a line of
text from the input stream. The buffered reader puts characters in a buffer as they arrive
and pulls them out of the buffer when requested.

The do-while loop in lines 32–35 reads the web document line by line, appending each
line to the StringBuffer object created to hold the page’s text.

After all the data has been read, line 36 converts the string buffer into a string with the
toString() method and then puts that result in the program’s text area by calling the
component’s setText(String) method.

The HttpUrlConnection class includes several methods that affect the HTTP request or
provide more information:

n getHeaderField(int)—Returns a string containing an HTTP header such as
“Server” (the web server hosting the document) or “Last-Modified” (the date the
document was last changed)

Headers are numbered from 0 upward. When the end of the headers is reached, this
method returns null

n getHeaderFieldKey(int)—Returns a string containing the name of the numbered
header (such as “Server” or “Last-Modified”) or null

n getResponseCode()—Returns an integer containing the HTTP response code for
the request, such as 200 (for valid requests) or 404 (for documents that could not
be found)

n getResponseMessage()—Returns a string containing the HTTP response code and
an explanatory message (for example: “HTTP/1.0 200 OK”)

The HttpUrlConnection class contains integer class variables for each of the valid
response codes, including HTTP_OK, HTTP_NOT_FOUND, and HTTP_MOVED_PERM

n getContentType()—Returns a string containing the MIME type of the web docu-
ment; some possible types are text/html for web pages and text/xml for XML
files

n setFollowRedirects(boolean)—Determines whether URL redirection requests
should be followed (true) or ignored (false); when redirection is supported, a
URL request can be forwarded by a web server from an obsolete URL to its correct
address

The following code could be added to the getData() method of WebReader to display
headers along with the text of a document:

String key;
String header;
int i = 0;
do {

key = conn.getHeaderFieldKey(i);
header = conn.getHeaderField(i);

458 DAY 17: Communicating Across the Internet

if (key == null) {
key = “”;

} else {
key = key + “: “;

}
if (header != null) {

text.append(key + header + “\n”);
}
i++;

} while (header != null);
text.append(“\n”);

Sockets
For networking applications beyond what the URL and URLConnection classes offer (for
example, for other protocols or for more general networking applications), Java provides
the Socket and ServerSocket classes as an abstraction of standard Transmission Control
Protocol (TCP) socket programming techniques.

The Socket class provides a client-side socket interface similar to standard UNIX sock-
ets. Create a new instance of Socket to open a connection (where hostName is the host
to connect to and portNumber is the port number):

Socket connection = new Socket(hostName, portNumber);

After you create a socket, set its timeout value, which determines how long the applica-
tion waits for data to arrive. This is handled by calling the socket’s setSoTimeOut(int)
method with the number of milliseconds to wait as the only argument:

connection.setSoTimeOut(50000);

By using this method, any effort to read data from the socket represented by connection
waits for only 50,000 milliseconds (50 seconds). If the timeout is reached, an
InterruptedIOException is thrown, which gives you an opportunity in a try-catch
block to either close the socket or try to read from it again.

If you don’t set a timeout in a program that uses sockets, it might hang indefinitely wait-
ing for data.

This problem is usually avoided by putting network operations in
their own thread and running them separately from the rest of the
program, a technique used with animation on Day 7, “Exceptions,
Assertions, and Threads.”

Networking in Java 459

17

TIP

After the socket is open, you can use input and output streams to read and write from
that socket:

BufferedInputStream bis = new
BufferedInputStream(connection.getInputStream());

DataInputStream in = new DataInputStream(bis);

BufferedOutputStream bos = new
BufferedOutputStream(connection.getOutputStream());

DataOutputStream out= new DataOutputStream(bos);

You don’t need names for all these objects; they are used only to create a stream or
stream reader. For an efficient shortcut, combine several statements as in this example
using a Socket object named sock:

DataInputStream in = new DataInputStream(
new BufferedInputStream(

sock.getInputStream()));

In this statement, the call to sock.getInputStream() returns an input stream associated
with that socket. This stream is used to create a BufferedInputStream, and the buffered
input stream is used to create a DataInputStream.

The only variables you are left with are sock and in, the two objects needed as you
receive data from the connection and close it afterward. The intermediate objects—a
BufferedInputStream and an InputStream—are needed only once.

After you’re finished with a socket, don’t forget to close it by calling the close()
method. This also closes all the input and output streams you might have set up for that
socket. For example:

connection.close();

Socket programming can be used for many services delivered using TCP/IP networking,
including telnet, Simple Mail Transfer Protocol (SMTP) for incoming mail, Network
News Transfer Protocol (NNTP) for Usenet news, and finger.

The last of these, finger, is a protocol for asking a system about one of its users. By set-
ting up a finger server, a system administrator enables an Internet-connected machine to
answer requests for user information. Users can provide information about themselves by
creating .plan files, which are sent to anyone who uses finger to find out more about
them.

Although it has fallen into disuse in recent years because of security concerns, finger was
the most popular way that Internet users published facts about themselves and their activ-

460 DAY 17: Communicating Across the Internet

ities before weblogs were introduced. You could use finger on a friend’s account at
another college to see whether that person was online and read the person’s current
.plan file.

Today, you can still find some people writing personal diaries over
finger—the game-programming community. The Blues News web-
site has links to several of these throwbacks at http://www.
bluesnews.com/plans/476/.

As an exercise in socket programming, the Finger application is a rudimentary finger
client (see Listing 17.2).

LISTING 17.2 The Full Text of Finger.java

1: import java.io.*;
2: import java.net.*;
3: import java.util.*;
4:
5: public class Finger {
6: public static void main(String[] arguments) {
7: String user;
8: String host;
9: if ((arguments.length == 1) && (arguments[0].indexOf(“@”) > -1)) {
10: StringTokenizer split = new StringTokenizer(arguments[0],
11: “@”);
12: user = split.nextToken();
13: host = split.nextToken();
14: } else {
15: System.out.println(“Usage: java Finger user@host”);
16: return;
17: }
18: try {
19: Socket digit = new Socket(host, 79);
20: digit.setSoTimeout(20000);
21: PrintStream out = new PrintStream(digit.getOutputStream());
22: out.print(user + “\015\012”);
23: BufferedReader in = new BufferedReader(
24: new InputStreamReader(digit.getInputStream()));
25: boolean eof = false;
26: while (!eof) {
27: String line = in.readLine();
28: if (line != null)
29: System.out.println(line);
30: else
31: eof = true;

Networking in Java 461

17

NOTE

LISTING 17.2 Continued

32: }
33: digit.close();
34: } catch (IOException e) {
35: System.out.println(“IO Error:” + e.getMessage());
36: }
37: }
38: }

When making a finger request, specify a username followed by an at sign (“@”) and a
hostname, the same format as an email address. One famous real-life example is johnc@
idsoftware.com, the finger address of id Software founder John Carmack. You can
request his .plan file by running the Finger application as follows:

java Finger johnc@idsoftware.com

If johnc has an account on the idsoftware.com finger server, the output of this program
is his .plan file and perhaps other information (though it appears he’s no longer updat-
ing it). The server also lets you know whether a user can’t be found.

Blues News includes addresses for other game designers who provide .plan updates
such as id Software developer Timothee Besset (ttimo@idsoftware.com).

The Finger application uses the StringTokenizer class to convert an address in
user@host format into two String objects: user and host (lines 10–13).

The following socket activities are taking place:

n Lines 19–20—A new Socket is created using the hostname and port 79, the port
traditionally reserved for finger services, and a timeout of 20 seconds is set.

n Line 21—The socket is used to get an OutputStream, which feeds into a new
PrintStream object.

n Line 22—The finger protocol requires that the username be sent through the
socket, followed by a carriage return (‘\015’) and linefeed (‘\012’). This is handled
by calling the print() method of the new PrintStream.

n Lines 23–24—After the username has been sent, an input stream must be created
on the socket to receive input from the finger server. A BufferedReader stream,
in, is created by combining several stream-creation expressions together. This
stream is well suited for finger input because it can read a line of text at a time.

n Lines 26–32—The program loops as lines are read from the buffered reader. The
end of output from the server causes in.readLine() to return null, ending the
loop.

462 DAY 17: Communicating Across the Internet

The same techniques used to communicate with a finger server through a socket can be
used to connect to other popular Internet services. You could turn it into a telnet or web-
reading client with a port change in line 19 and little other modification.

Socket Servers
Server-side sockets work similarly to client sockets, with the exception of the accept()
method. A server socket listens on a TCP port for a connection from a client; when a
client connects to that port, the accept() method accepts a connection from that client.
By using both client and server sockets, you can create applications that communicate
with each other over the network.

To create a server socket and bind it to a port, create a new instance of ServerSocket
with a port number as an argument to the constructor, as in the following example:

ServerSocket servo = new ServerSocket(8888);

Use the accept() method to listen on that port (and to accept a connection from any
clients if one is made):

servo.accept();

After the socket connection is made, you can use input and output streams to read from
and write to the client.

To extend the behavior of the socket classes—for example, to allow network connections
to work across a firewall or a proxy—you can use the abstract class SocketImpl and the
interface SocketImplFactory to create a new transport-layer socket implementation.
This design fits with the original goal of Java’s socket classes: to allow those classes to
be portable to other systems with different transport mechanisms. The problem with this
mechanism is that although it works for simple cases, it prevents you from adding other
protocols on top of TCP (for example, to implement an encryption mechanism such as
Secure Sockets Layer [SSL]) and from having multiple socket implementations per Java
runtime.

For these reasons, sockets were extended after Java 1.0, so the Socket and ServerSocket

classes are not final and extendable. You can create subclasses of these classes that use
either the default socket implementation or your own implementation. This allows much
more flexible network capabilities.

Designing a Server Application
Here’s an example of a Java program that uses the Socket classes to implement a simple
network-based server application.

Networking in Java 463

17

The TimeServer application makes a connection to any client that connects to port 4415,
displays the current time, and then closes the connection.

For an application to act as a server, it must monitor at least one port on the host
machine for client connections. Port 4415 was chosen arbitrarily for this project, but it
could be any number from 1024 to 65,535.

The Internet Assigned Numbers Authority controls the usage of
ports 0 to 1023, but claims are staked to the higher ports on a
more informal basis. When choosing port numbers for your own
client/server applications, it’s a good idea to do research on what
ports are being used by others. Search the Web for references to
the port you want to use and plug the terms “Registered Port
Numbers” and “Well-Known Port Numbers” into search engines to
find lists of in-use ports. A good guide to port usage is available
on the Web at http://www.sockets.com/services.htm.

When a client is detected, the server creates a Date object that represents the current date
and time and then sends it to the client as a String.

In this exchange of information between the server and client, the server does almost all
the work. The client’s only responsibility is to establish a connection to the server and
display messages received from the server.

Although you could develop a simple client for a project like this, you also can use any
telnet application to act as the client, as long as it can connect to a port you designate.
Windows includes a command-line application called telnet that you can use for this pur-
pose.

Listing 17.3 contains the full source code for the server application.

LISTING 17.3 The Full Text of TimeServer.java

1: import java.io.*;
2: import java.net.*;
3: import java.util.*;
4:
5: public class TimeServer extends Thread {
6: private ServerSocket sock;
7:
8: public TimeServer() {
9: super();
10: try {

464 DAY 17: Communicating Across the Internet

NOTE

LISTING 17.3 Continued

11: sock = new ServerSocket(4415);
12: System.out.println(“TimeServer running ...”);
13: } catch (IOException e) {
14: System.out.println(“Error: couldn’t create socket.”);
15: System.exit(1);
16: }
17: }
18:
19: public void run() {
20: Socket client = null;
21:
22: while (true) {
23: if (sock == null)
24: return;
25: try {
26: client = sock.accept();
27: BufferedOutputStream bos = new BufferedOutputStream(
28: client.getOutputStream());
29: PrintWriter os = new PrintWriter(bos, false);
30: String outLine;
31:
32: Date now = new Date();
33: os.println(now);
34: os.flush();
35:
36: os.close();
37: client.close();
38: } catch (IOException e) {
39: System.out.println(“Error: couldn’t connect to client.”);
40: System.exit(1);
41: }
42: }
43: }
44:
45: public static void main(String[] arguments) {
46: TimeServer server = new TimeServer();
47: server.start();
48: }
49:
50: }

The TimeServer application creates a server socket on port 4415. When a client con-
nects, a PrintWriter object is constructed from buffered output stream so that a string
can be sent to the client—the current time.

After the string has been sent, the flush() and close() methods of the writer end the
data exchange and close the socket to await new connections.

Networking in Java 465

17

Testing the Server
The TimeServer application must be running for a client to be able to connect to it. To
get things started, you must first run the server:

java TimeServer

The server displays only one line of output if it is running successfully:

TimeServer running ...

With the server running, you can connect to it on port 4415 of your computer using a tel-
net program.

To run telnet on Windows:

n On Windows 95, 98, Me, NT, or 2000, click Start, Run to open the Run dialog box,
and then type telnet in the Open field and press Enter. A telnet window opens.

To make a telnet connection using this program, choose the menu command
Connect, Remote System. A Connect dialog box opens. Enter localhost in the
Host Name field, enter 4415 in the Port field, and leave the default value—vt100—
in the TermType field.

n On Windows XP or 2003, choose Start, Run to open the Run dialog box; then type
telnet to run that program, then type the command open localhost 4415

in the Open field and press Enter.

n The hostname localhost represents your own machine—the system running the
application. You can use it to test server applications before deploying them perma-
nently on the Internet.

Depending on how Internet connections have been configured on your system, you might
need to log on to the Internet before a successful socket connection can be made between
a telnet client and the TimeServer application.

If the server is on another computer connected to the Internet, you would specify that
computer’s hostname or IP address rather than localhost.

When you use telnet to make a connection with the TimeServer application, it displays
the server’s current time and closes the connection. The output of the telnet program
should be something like the following:

Thu Feb 15 22:13:58 EST 2007
Connection to host lost.
Press any key to continue...

466 DAY 17: Communicating Across the Internet

The java.nio Package
The java.nio package expands the networking capabilities of the language with classes
useful for reading and writing data; working with files, sockets, and memory; and han-
dling text.

Two related packages also are used often when you are working with the new input/
output features: java.nio.channels and java.nio.charset.

Buffers
The java.nio package includes support for buffers, objects that represent data streams
stored in memory.

Buffers are often used to improve the performance of programs that read input or write
output. They enable a program to put a lot of data in memory, where it can be read, writ-
ten, and modified more quickly.

A buffer corresponds with each of the primitive data types in Java:

n ByteBuffer

n CharBuffer

n DoubleBuffer

n FloatBuffer

n IntBuffer

n LongBuffer

n ShortBuffer

Each of these classes has a static method called wrap() that can be used to create a
buffer from an array of the corresponding data type. The only argument to the method
should be the array.

For example, the following statements create an array of integers and an IntBuffer that
holds the integers in memory as a buffer:

int[] temperatures = { 90, 85, 87, 78, 80, 75, 70, 79, 85, 92, 99 };
IntBuffer tempBuffer = IntBuffer.wrap(temperatures);

A buffer keeps track of how it is used, storing the position where the next item will be
read or written. After the buffer is created, its get() method reads the data at the current

The java.nio Package 467

17

position in the buffer. The following statements extend the previous example and display
everything in the integer buffer:

for (int i = 0; tempBuffer.remaining() > 0; i++)
System.out.println(tempBuffer.get());

Another way to create a buffer is to set up an empty buffer and then put data into it. To
create the buffer, call the static method allocate(int) of the desired buffer class with
the size of the buffer as an argument.

You can use five put() methods to store data in a buffer (or replace the data already
there). The arguments used with these methods depend on the kind of buffer you’re
working with. For an integer buffer:

n put(int)—Stores the integer at the current position in the buffer and then incre-
ments the position.

n put(int, int)—Stores an integer (the second argument) at a specific position in
the buffer (the first argument).

n put(int[])—Stores all the elements of the integer array in the buffer, beginning at
the first position of the buffer.

n put(int[], int, int)—Stores all or a portion of an integer array in the buffer.
The second argument specifies the position in the buffer where the first integer in
the array should be stored. The third argument specifies the number of elements
from the array to store in the buffer.

n put(IntBuffer)—Stores the contents of an integer buffer in another buffer, begin-
ning at the first position of the buffer.

As you put data in a buffer, you must often keep track of the current position so that you
know where the next data will be stored.

To find out the current position, call the buffer’s position() method. An integer is
returned that represents the position. If this value is 0, you’re at the start of the buffer.

Call the position(int) method to change the position to the argument specified as an
integer.

Another important position to track when using buffers is the limit—the last place in the
buffer that contains data.

It isn’t necessary to figure out the limit when the buffer is always full; in that case, you
know the last position of the buffer has something in it.

468 DAY 17: Communicating Across the Internet

However, if there’s a chance your buffer might contain less data than you have allocated,
you should call the buffer’s flip() method after reading data into the buffer. This sets
the current position to the start of the data you just read and sets the limit to the end.

Later today, you’ll use a byte buffer to store data loaded from a web page on the Internet.
This is a place where flip() becomes necessary because you don’t know how much
data the page contains when you request it.

If the buffer is 1,024 bytes in size and the page contains 1,500 bytes, the first attempt to
read data loads the buffer with 1,024 bytes, filling it.

The second attempt to read data loads the buffer with only 476 bytes, leaving the rest
empty. If you call flip() afterward, the current position is set to the beginning of the
buffer, and the limit is set to 476.

The following code creates an array of Fahrenheit temperatures, converts them to
Celsius, and then stores the Celsius values in a buffer:

int[] temps = { 90, 85, 87, 78, 80, 75, 70, 79, 85, 92, 99 };
IntBuffer tempBuffer = IntBuffer.allocate(temperatures.length);
for (int i = 0; i < temps.length; i++) {

float celsius = ((float)temps[i] - 32) / 9 * 5;
tempBuffer.put((int)celsius);

};
tempBuffer.position(0);
for (int i = 0; tempBuffer.remaining() > 0; i++)

System.out.println(tempBuffer.get());

After the buffer’s position is set back to the start, the contents of the buffer are displayed.

Byte Buffers
You can use the buffer methods introduced so far with byte buffers, but byte buffers also
offer additional useful methods.

For starters, byte buffers have methods to store and retrieve data that isn’t a byte:

n putChar(char)—Stores 2 bytes in the buffer that represent the specified char
value

n putDouble(double)—Stores 8 bytes in the buffer that represent a double value

n putFloat(float)—Stores 4 bytes in the buffer that represent a float value

n putInt(int)—Stores 4 bytes in the buffer that represent an int value

n putLong(long)—Stores 8 bytes in the buffer that represent a long value

n putShort(short)—Stores 2 bytes in the buffer that represent a short value

The java.nio Package 469

17

Each of these methods puts more than one byte in the buffer, moving the current position
forward the same number of bytes.

There also are methods to retrieve nonbytes from a byte buffer: getChar(),
getDouble(), getFloat(), getInt(), getLong(), and getShort().

Character Sets
Character sets, which are offered in the java.nio.charset package, are a set of classes
used to convert data between byte buffers and character buffers.

The three main classes are

n Charset—A Unicode character set with a different byte value for each different
character in the set

n Decoder—A class that transforms a series of bytes into a series of characters

n Encoder—A class that transforms a series of characters into a series of bytes

Before you can perform any transformations between byte and character buffers, you
must create a CharSet object that maps characters to their corresponding byte values.

To create a character set, call the forName(String) static method of the Charset class,
specifying the name of the set’s character encoding.

Java includes support for six character encodings:

n US-ASCII—The 128-character ASCII set that makes up the Basic Latin block of
Unicode (also called ISO646-US)

n ISO-8859-1—The 256-character ISO Latin Alphabet No. 1.a. character set (also
called ISO-LATIN-1)

n UTF-8—A character set that includes US-ASCII and the Universal Character Set
(also called Unicode), a set comprising thousands of characters used in the world’s
languages

n UTF-16BE—The Universal Character Set represented as 16-bit characters with
bytes stored in big-endian byte order

n UTF-16LE—The Universal Character Set represented as 16-bit characters with
bytes stored in little-endian byte order

n UTF-16—The Universal Character Set represented as 16-bit characters with the
order of bytes indicated by an optional byte-order mark

470 DAY 17: Communicating Across the Internet

The following statement creates a Charset object for the ISO-8859-1 character set:

Charset isoset = Charset.forName(“ISO-8859-1”);

After you have a character set object, you can use it to create encoders and decoders. Call
the object’s newDecoder() method to create a CharsetDecoder and the newEncoder()
method to create an CharsetEncoder.

To transform a byte buffer into a character buffer, call the decoder’s decode(ByteBuffer)
method, which returns a CharBuffer containing the bytes transformed into characters.

To transform a character buffer into a byte buffer, call the encoder’s encode(CharBuffer)
method. A ByteBuffer is returned containing the byte values of the characters.

The following statements convert a byte buffer called netBuffer into a character buffer
using the ISO-8859-1 character set:

Charset set = Charset.forName(“ISO-8859-1”);
CharsetDecoder decoder = set.newDecoder();
netBuffer.position(0);
CharBuffer netText = decoder.decode(netBuffer);

Before the decoder is used to create the character buffer, the call
to position(0) resets the current position of the netBuffer to the
start. When working with buffers for the first time, it’s easy to over-
look this, resulting in a buffer with much less data than you
expected.

Channels
A common use for a buffer is to associate it with an input or output stream. You can fill a
buffer with data from an input stream or write a buffer to an output stream.

To do this, you must use a channel, an object that connects a buffer to the stream.
Channels are part of the java.nio.channels package.

Channels can be associated with a stream by calling the getChannel() method available
in some of the stream classes in the java.io package.

The FileInputStream and FileOutputStream classes have getChannel() methods that
return a FileChannel object. This file channel can be used to read, write, and modify the
data in the file.

The java.nio Package 471

17

CAUTION

The following statements create a file input stream and a channel associated with that
file:

try {
String source = “prices.dat”;
FileInputStream inSource = new FileInputStream(source);
FileChannel inChannel = inSource.getChannel();

} catch (FileNotFoundException fne) {
System.out.println(fne.getMessage());

}

After you have created the file channel, you can find out how many bytes the file con-
tains by calling its size() method. This is necessary if you want to create a byte buffer
to hold the contents of the file.

Bytes are read from a channel into a ByteBuffer with the read(ByteBuffer, long)
method. The first argument is the buffer. The second argument is the current position in
the buffer, which determines where the file’s contents will begin to be stored.

The following statements extend the last example by reading a file into a byte buffer
using the inChannel file channel:

long inSize = inChannel.size();
ByteBuffer data = ByteBuffer.allocate((int)inSize);
inChannel.read(data, 0);
data.position(0);
for (int i = 0; data.remaining() > 0; i++)

System.out.print(data.get() + “ “);

The attempt to read from the channel generates an IOException error if a problem
occurs. Although the byte buffer is the same size as the file, this isn’t a requirement. If
you are reading the file into the buffer so that you can modify it, you can allocate a
larger buffer.

The next project you undertake incorporates the new input/output features you have
learned about so far: buffers, character sets, and channels.

The BufferConverter application reads a small file into a byte buffer, displays the con-
tents of the buffer, converts it to a character buffer, and then displays the characters.

Enter the text of Listing 17.4 and save it as BufferConverter.java.

472 DAY 17: Communicating Across the Internet

LISTING 17.4 The Full Text of BufferConverter.java

1: import java.nio.*;
2: import java.nio.channels.*;
3: import java.nio.charset.*;
4: import java.io.*;
5:
6: public class BufferConverter {
7: public static void main(String[] arguments) {
8: try {
9: // read byte data into a byte buffer
10: String data = “friends.dat”;
11: FileInputStream inData = new FileInputStream(data);
12: FileChannel inChannel = inData.getChannel();
13: long inSize = inChannel.size();
14: ByteBuffer source = ByteBuffer.allocate((int)inSize);
15: inChannel.read(source, 0);
16: source.position(0);
17: System.out.println(“Original byte data:”);
18: for (int i = 0; source.remaining() > 0; i++)
19: System.out.print(source.get() + “ “);
20:
21: // convert byte data into character data
22: source.position(0);
23: Charset ascii = Charset.forName(“US-ASCII”);
24: CharsetDecoder toAscii = ascii.newDecoder();
25: CharBuffer destination = toAscii.decode(source);
26: destination.position(0);
27: System.out.println(“\n\nNew character data:”);
28: for (int i = 0; destination.remaining() > 0; i++)
29: System.out.print(destination.get());
30: } catch (FileNotFoundException fne) {
31: System.out.println(fne.getMessage());
32: } catch (IOException ioe) {
33: System.out.println(ioe.getMessage());
34: }
35: }
36: }

After you compile the file, you need a copy of friends.dat, the small file of byte data
used in the application. To download it from the book’s website at http://www.
java21days.com, open the Day 17 page, click the friends.dat hyperlink, and save the
file in the same place as BufferConverter.class.

You also can create your own file. Open a text editor, type a sen-
tence or two in the document, and save it as friends.dat.

The java.nio Package 473

17

TIP

If you use the copy of friends.dat from the book’s website, the output of the
BufferConverter application is the following:

Original byte data:
70 114 105 101 110 100 115 44 32 82 111 109 97 110 115 44 32
99 111 117 110 116 114 121 109 101 110 44 32 108 101 110 100
32 109 101 32 121 111 117 114 32 101 97 114 115 46 13 10 13
10

New character data:
Friends, Romans, countrymen, lend me your ears.

The BufferConverter application uses the techniques introduced today to read data and
represent it as bytes and characters, but you could have accomplished the same thing
with the old input/output package, java.io.

For this reason, you might wonder why it’s worth learning the new package at all.

One reason is that buffers enable you to manipulate large amounts of data much more
quickly. You’ll find out another reason in the next section.

Network Channels
A popular feature of the java.nio package is its support for nonblocking input and out-
put over a networking connection.

In Java, blocking refers to a statement that must complete execution before anything else
happens in the program. All the socket programming you have done up to this point has
used blocking methods exclusively. For example, in the TimeServer application, when
the server socket’s accept() method is called, nothing else happens in the program until
a client makes a connection.

As you can imagine, it’s problematic for a networking program to wait until a particular
statement is executed because numerous things can go wrong. Connections can be bro-
ken. A server could go offline. A socket connection could appear to be stalled because a
blocked statement is waiting for something to happen.

For example, a client application that reads and buffers data over HTTP might be waiting
for a buffer to be filled even though no more data remains to be sent. The program will
appear to have halted because the blocked statement never finishes executing.

With the java.nio package, you can create networking connections and read and write
from them using nonblocking methods.

474 DAY 17: Communicating Across the Internet

Here’s how it works:

n Associate a socket channel with an input or output stream.

n Configure the channel to recognize the kind of networking events you want to
monitor, such as new connections, attempts to read data over the channel, and
attempts to write data.

n Call a method to open the channel.

n Because the method is nonblocking, the program continues execution so that you
can handle other tasks.

n If one of the networking events you are monitoring takes place, your program is
notified—a method associated with the event is called.

This is comparable to how user-interface components are programmed in Swing. An
interface component is associated with one or more event listeners and placed in a con-
tainer. If the interface component receives input being monitored by a listener, an event-
handling method is called. Until that happens, the program can handle other tasks.

To use nonblocking input and output, you must work with channels instead of streams.

Nonblocking Socket Clients and Servers The first step in the development of a
nonblocking client or server is the creation of an object that represents the Internet
address to which you are making a connection. This task is handled by the
InetSocketAddress class in the java.net package.

If the server is identified by a hostname, call InetSocketAddress(String, int) with
two arguments: the name of the server and its port number.

If the server is identified by its IP address, use the InetAddress class in java.net to
identify the host. Call the static method InetAddress.getByName(String) with the IP
address of the host as the argument. The method returns an InetAddress object repre-
senting the address, which you can use in calling InetSocketAddress(InetAddress,
int). The second argument is the server’s port number.

Nonblocking connections require a socket channel, another of the new classes in the
java.nio package. Call the open() static method of the SocketChannel class to create
the channel.

A socket channel can be configured for blocking or nonblocking communication. To set
up a nonblocking channel, call the channel’s configureBlocking(boolean) method with
an argument of false. Calling it with true makes it a blocking channel.

The java.nio Package 475

17

After the channel is configured, call its connect(InetSocketAddress) method to con-
nect the socket.

On a blocking channel, the connect() method attempts to establish a connection to the
server and waits until it is complete, returning a value of true to indicate success.

On a nonblocking channel, the connect() method returns immediately with a value of
false. To figure out what’s going on over the channel and respond to events, you must
use a channel-listening object called a Selector.

A Selector is an object that keeps track of things that happen to a socket channel (or
another channel in the package that is a subclass of SelectableChannel).

To create a Selector, call its open() method, as in the following statement:

Selector monitor = Selector.open();

When you use a Selector, you must indicate the events you are interested in monitoring.
This is handled by calling a channel’s register(Selector, int, Object) method.

The three arguments to register() are the following:

n The Selector object you have created to monitor the channel

n An int value that represents the events being monitored (also called selection
keys)

n An Object that can be delivered along with the key, or null otherwise

Instead of using an integer value as the second argument, it’s easier to use one or more
class variables from the SelectionKey class: SelectionKey.OP_CONNECT to monitor con-
nections, SelectionKey.OP_READ to monitor attempts to read data, and
SelectionKey.OP_WRITE to monitor attempts to write data.

The following statements create a Selector to monitor a socket channel called wire for
reading data:

Selector spy = Selector.open();
channel.register(spy, SelectionKey.OP_READ, null);

To monitor more than one kind of key, add the SelectionKey class variables together.
For example:

Selector spy = Selector.open();
channel.register(spy, SelectionKey.OP_READ + SelectionKey.OP_WRITE, null);

476 DAY 17: Communicating Across the Internet

After the channel and selector have been set up, you can wait for events by calling the
selector’s select() or select(long) methods.

The select() method is a blocking method that waits until something has happened on
the channel.

The select(long) method is a blocking method that waits until something has happened
or the specified number of milliseconds has passed, whichever comes first.

Both select() methods return the number of events that have taken place, or 0 if noth-
ing has happened. You can use a while loop with a call to the select() method as a way
to loop until something happens on the channel.

After an event has taken place, you can find out more about it by calling the selector’s
selectedKeys() method, which returns a Set object containing details on each of the
events.

Use this Set object as you would any other set, creating an Iterator to move through
the set by using its hasNext() and next() methods.

The call to the set’s next() method returns an object that should be cast to a
SelectionKey object. This object represents an event that took place on the channel.

Three methods in the SelectionKey class can be used to identify the key in a client pro-
gram: isReadable(), isWritable(), and isConnectible(). Each returns a boolean
value. (A fourth method is used when you’re writing a server: isAcceptable().)

After you retrieve a key from the set, call the key’s remove() method to indicate that you
are going to do something with it.

The last thing to find out about the event is the channel on which it took place. Call the
key’s channel() method, which returns the associated SocketChannel.

If one of the events identifies a connection, you must make sure that the connection has
been completed before using the channel. Call the key’s isConnectionPending()
method, which returns true if the connection is still in progress and false if it is
complete.

To deal with a connection that is still in progress, you can call the socket’s
finishConnect() method, which makes an attempt to complete the connection.

Using a nonblocking socket channel involves the interaction of numerous new classes
from the java.nio and java.net packages.

The java.nio Package 477

17

To give you a more complete picture of how these classes work together, the day’s final
project is NewFingerServer, a web application that uses a nonblocking socket channel to
handle finger requests.

Enter the text of Listing 17.5, save it as NewFingerServer.java, and compile the appli-
cation.

LISTING 17.5 The Full Text of NewFingerServer.java

1: import java.io.*;
2: import java.net.*;
3: import java.nio.*;
4: import java.nio.channels.*;
5: import java.util.*;
6:
7: public class NewFingerServer {
8:
9: public NewFingerServer() {

10: try {
11: // Create a nonblocking server socket channel
12: ServerSocketChannel sockChannel = ServerSocketChannel.open();
13: sockChannel.configureBlocking(false);
14:
15: // Set the host and port to monitor
16: InetSocketAddress server = new InetSocketAddress(
17: “localhost”, 79);
18: ServerSocket socket = sockChannel.socket();
19: socket.bind(server);
20:
21: // Create the selector and register it on the channel
22: Selector selector = Selector.open();
23: sockChannel.register (selector, SelectionKey.OP_ACCEPT);
24:
25: // Loop forever, looking for client connections
26: while (true) {
27: // Wait for a connection
28: selector.select();
29:
30: // Get list of selection keys with pending events
31: Set keys = selector.selectedKeys();
32: Iterator it = keys.iterator();
33:
34: // Handle each key
35: while (it.hasNext()) {
36:
37: // Get the key and remove it from the iteration
38: SelectionKey selKey = (SelectionKey) it.next();
39:
40: it.remove();

478 DAY 17: Communicating Across the Internet

LISTING 17.5 Continued

41: if (selKey.isAcceptable()) {
42:
43: // Create a socket connection with the client
44: ServerSocketChannel selChannel =
45: (ServerSocketChannel) selKey.channel();
46: ServerSocket selSocket = selChannel.socket();
47: Socket connection = selSocket.accept();
48:
49: // Handle the finger request
50: handleRequest(connection);
51: connection.close();
52: }
53: }
54: }
55: } catch (IOException ioe) {
56: System.out.println(ioe.getMessage());
57: }
58: }
59:
60: private void handleRequest(Socket connection) throws IOException {
61:
62: // Set up input and output
63: InputStreamReader isr = new InputStreamReader (
64: connection.getInputStream());
65: BufferedReader is = new BufferedReader(isr);
66: PrintWriter pw = new PrintWriter(new
67: BufferedOutputStream (connection.getOutputStream()),
68: false);
69:
70: // Output server greeting
71: pw.println(“Nio Finger Server”);
72: pw.flush();
73:
74: // Handle user input
75: String outLine = null;
76: String inLine = is.readLine();
77:
78: if (inLine.length() > 0) {
79: outLine = inLine;
80: }
81: readPlan(outLine, pw);
82:
83: // Clean up
84: pw.flush();
85: pw.close();
86: is.close();
87: }
88:
89: private void readPlan(String userName, PrintWriter pw) {

The java.nio Package 479

17

LISTING 17.5 Continued

90: try {
91: FileReader file = new FileReader (userName + “.plan”);
92: BufferedReader buff = new BufferedReader(file);
93: boolean eof = false;
94:
95: pw.println(“\nUser name: “ + userName + “\n”);
96:
97: while (!eof) {
98: String line = buff.readLine();
99:
100: if (line == null)
101: eof = true;
102: else
103: pw.println(line);
104: }
105:
106: buff.close();
107: } catch (IOException e) {
108: pw.println(“User “ + userName + “ not found.”);
109: }
110: }
111:
112: public static void main(String[] arguments) {
113: NewFingerServer nio = new NewFingerServer();
114: }
115: }

The finger server requires one or more user .plan files stored in text files. These files
should have names that take the form username.plan—for example, linus.plan,
lucy.plan, and franklin.plan. Before running the server, create one or more plan files
in the same folder as NewFingerServer.class.

When you’re done, run the finger server with no arguments:

java NewFingerServer

The application waits for incoming finger requests, creating a nonblocking server socket
channel and registering one kind of key for a selector to look for: connection events.

Inside a while loop that begins on line 25, the server calls the Selector object’s
select() method to see whether the selector has received any keys, which would occur
when a finger client makes a connection. When it has, select() returns the number of
keys, and the statements inside the loop are executed.

After the connection is made, a buffered reader is created to hold a request for a .plan
file. The syntax for the command is simply the username of the .plan file being
requested.

480 DAY 17: Communicating Across the Internet

Summary
Today, you learned how to use URLs, URL connections, and input streams in combina-
tion to pull data from the Web into your program.

Networking can be extremely useful. The WebReader project is a rudimentary web
browser—it can load a web page or RSS file into a Java program and display it, although
it doesn’t do anything to make sense of the markup tags, presenting the raw text deliv-
ered by a web server.

You created a socket application that implements the basics of the finger protocol, a
method for retrieving user information on the Internet.

You also learned how client and server programs are written in Java using the nonblock-
ing techniques in the java.nio package.

To use nonblocking techniques, you learned about the fundamental classes of Java’s new
networking package: buffers, character encoders and decoders, socket channels, and
selectors.

Q&A
Q How can I do POST form submissions?

A You can mimic what a browser does to send forms using POST. Create a URL object
for the form-submission address, such as http://www.example.com/cgi/mail2.cgi,
and then call this object’s openConnection() method to create a URLConnection
object. Call the connection’s setDoOutput() method to indicate that you will be
sending data to this URL and then send the connection a series of name-value pairs
that hold the data, separated by ampersand characters (“&”).

For instance, if the mail2.cgi form is a CGI program that sends mail with name,
subject, email, and comments fields, and you have created a PrintWriter
stream called pw connected to this CGI program, you can post information to it
using the following statement:

pw.print(“name=YourName&subject=Book&email=you@yourdomain.com&”
+ “comments= A+POST+example “””);

Q&A 481

17

Quiz
Review today’s material by taking this three-question quiz.

Questions
1. Which of the following is not an advantage of the new java.nio package and its

related packages?

a. Large amounts of data can be manipulated quickly with buffers.

b. Networking connections can be nonblocking for more reliable use in your
applications.

c. Streams are no longer necessary to read and write data over a network.

2. In the finger protocol, which program makes a request for information about a
user?

a. The client

b. The server

c. Both can make that request.

3. Which method is preferred for loading the data from a web page into your Java
application?

a. Creating a Socket and an input stream from that socket

b. Creating a URL and an HttpURLConnection from that object

c. Loading the page using the method toString()

Answers
1. c. The java.nio classes work in conjunction with streams. They don’t replace

them entirely.

2. a. The client requests information, and the server sends something back in
response. This is traditionally how client/server applications function, although
some programs can act as both client and server.

3. b. Sockets are good for low-level connections, such as when you are implementing
a new protocol. For existing protocols such as HTTP, there are classes better suited
to that protocol—URL and HttpURLConnection, in this case.

482 DAY 17: Communicating Across the Internet

Certification Practice
The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Given:

import java.nio.*;

public class ReadTemps {
public ReadTemps() {

int[] temperatures = { 78, 80, 75, 70, 79, 85, 92, 99, 90, 85, 87 };
IntBuffer tempBuffer = IntBuffer.wrap(temperatures);
int[] moreTemperatures = { 65, 44, 71 };
tempBuffer.put(moreTemperatures);
System.out.println(“First int: “ + tempBuffer.get());

}
}

What will be the output when this application is run?

a. First int: 78

b. First int: 71

c. First int: 70

d. None of the above

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 17 page and click the Certification Practice link.

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. Write an application that stores some of your favorite web pages on your computer
so that you can read them while you are not connected to the Internet.

2. Write a program that takes finger requests, looks for a .plan file matching the
username requested, and sends it if found. Send a “user not found” message other-
wise.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java21days.com.

Exercises 483

17

DAY 18:
Accessing Databases
with JDBC

Almost all Java programs deal with data in some way. You have used
primitive types, objects, arrays, linked lists, and other data structures up
to this point.

Today you work with data in a more sophisticated way by exploring Java
Database Connectivity (JDBC), a class library that connects Java pro-
grams to relational databases.

Java 6 includes Java DB, a small relational database that’s part of the
Java Development Kit, making it easier than ever to incorporate a data-
base into your applications.

Today you explore JDBC and Extensible Markup Language (XML) in the fol-
lowing ways:

n Using JDBC drivers to work with different relational databases

n Accessing a database with Structured Query Language (SQL)

n Reading records from a database using SQL and JDBC

n Adding records to a database using SQL and JDBC

n Creating a new Java DB database and reading its records

Java Database Connectivity
Java Database Connectivity (JDBC) is a set of classes that can be used to develop
client/server applications that work with databases developed by Microsoft, Sybase,
Oracle, Informix, and other sources.

With JDBC, you can use the same methods and classes in Java programs to read and
write records and perform other kinds of database access. A class called a driver acts as a
bridge to the database source—there are drivers for each of the popular databases.

Client/server software connects a user of information with a provider of that information,
and it’s one of the most commonplace forms of programming. You use it every time you
surf the Web: A web browser client requests pages, image files, and other documents
using a uniform resource locator, or URL. Web servers provide the requested informa-
tion, if it can be found, for the client.

One of the biggest obstacles faced by database programmers is the wide variety of data-
base formats in use, each with its own proprietary method of accessing data.

To simplify using relational database programs, a standard language called SQL
(Structured Query Language) has been introduced. This language supplants the need to
learn different database-querying languages for each database format. Java DB, the data-
base included in Java 6, supports SQL.

In database programming, a request for records in a database is called a query. Using
SQL, you can send complex queries to a database and get the records you’re looking for
in any order you specify.

Consider the example of a database programmer at a student loan company who has been
asked to prepare a report on the most delinquent loan recipients. The programmer could
use SQL to query a database for all records in which the last payment was more than 180
days ago and the amount due is more than $0.00. SQL also can be used to control the
order in which records are returned, so the programmer can get the records in the order
of Social Security number, recipient name, amount owed, or another field in the loan
database.

All this is possible with SQL—the programmer doesn’t need any of the proprietary lan-
guages associated with popular database formats.

SQL is strongly supported by many database formats, so, in the-
ory, you should be able to use the same SQL commands for each
database tool that supports the language. However, you will still
need to learn the idiosyncrasies of a specific database format
when accessing it through SQL.

486 DAY 18: Accessing Databases with JDBC

CAUTION

SQL is the industry-standard approach to accessing relational databases. JDBC supports
SQL, enabling developers to use a wide range of database formats without knowing the
specifics of the underlying database. JDBC also supports the use of database queries spe-
cific to a database format.

The JDBC class library’s approach to accessing databases with SQL is comparable to
existing database-development techniques, so interacting with an SQL database by using
JDBC isn’t much different than using traditional database tools. Java programmers who
already have some database experience can hit the ground running with JDBC.

The JDBC library includes classes for each of the tasks commonly associated with data-
base usage:

n Making a connection to a database

n Creating a statement using SQL

n Executing that SQL query in the database

n Viewing the resulting records

These JDBC classes are all part of the java.sql package.

Database Drivers
Java programs that use JDBC classes can follow the familiar programming model of
issuing SQL statements and processing the resulting data. The format of the database and
the platform it was prepared on don’t matter.

This platform- and database independence is made possible by a driver manager. The
classes of the JDBC class library are largely dependent on driver managers, which keep
track of the drivers required to access database records. You’ll need a different driver for
each database format that’s used in a program, and sometimes you might need several
drivers for versions of the same format. Java DB includes its own driver.

JDBC also includes a driver that bridges JDBC and another database-connectivity stan-
dard, ODBC.

The JDBC-ODBC Bridge
ODBC, Microsoft’s common interface for accessing SQL databases, is managed on a
Windows system by the ODBC Data Source Administrator.

This is run from Control Panel on a Windows system; to get there on most versions of
Windows, click Start, Settings, Control Panel, ODBC Data Sources. On Windows XP,
choose Start, Control Panel, Performance and Maintenance in Category View or Start,
Control Panel in Classic View and then choose Administrative Tools, Data Sources
(ODBC).

The JDBC-ODBC Bridge 487

18

The administrator adds ODBC drivers, configures drivers to work with specific database
files, and logs SQL use. Figure 18.1 shows the ODBC Data Source Administrator on a
Windows system.

488 DAY 18: Accessing Databases with JDBC

FIGURE 18.1
The ODBC Data
Source Admin-
istrator on a
Windows XP
system.

In Figure 18.1, the Drivers tab of the ODBC Data Source Administrator dialog box lists
all the ODBC drivers present on the system. Many of the drivers are specific to a data-
base company’s format, such as the Microsoft Access Driver.

The JDBC-ODBC bridge allows JDBC drivers to be used as ODBC drivers by convert-
ing JDBC method calls into ODBC function calls.

Using the JDBC-ODBC bridge requires three things:

n The JDBC-ODBC bridge driver included with Java: sun.jdbc.odbc.
JdbcOdbcDriver

n An ODBC driver

n An ODBC data source that has been associated with the driver using software such
as the ODBC Data Source Administrator

ODBC data sources can be set up from within some database programs. For example,
when a new database file is created in Lotus Approach, users have the option of associat-
ing it with an ODBC driver.

All ODBC data sources must be given short, descriptive names. The name is used inside
Java programs when a connection is made to the database that the source refers to.

On a Windows system, after an ODBC driver is selected and the database is created, they
show up in the ODBC Data Source Administrator. Figure 18.2 shows an example of this
for a data source named WorldEnergy.

The data source WorldEnergy is associated with a Microsoft Access driver, according to
Figure 18.2.

Most Windows database programs include one or more ODBC dri-
vers that correspond to the format. Microsoft Access includes
ODBC drivers that can be used to connect to an Access database
file.

Connecting to an ODBC Data Source
Your first project today is a Java application that uses a JDBC-ODBC bridge to connect
to an Access file.

The Access file for this project is world20.mdb, a database of world energy statistics
published by the U.S. Energy Information Administration. The Coal table in this data-
base includes three fields you will be using in the project:

n Country

n Year

n Anthracite Production

The database used in this project is included on this book’s official website at http://
www.java21days.com.

To use this database, you must have an ODBC driver on your system that supports
Access files. Using the ODBC Data Source Administrator (or a similar program if you’re
on a non-Windows system), you must create a new ODBC data source associated with
world20.mdb.

The JDBC-ODBC Bridge 489

18

FIGURE 18.2
A listing of data
sources in the
ODBC Data
Sources
Administrator.

NOTE

Other setup work might be needed depending on the ODBC drivers present on your sys-
tem, if any. Consult the documentation included with the ODBC driver.

After you have downloaded world20.mdb to your computer or found another database
that’s compatible with the ODBC drivers on your system, the final step in getting the file
ready for JDBC-ODBC is to create a data source associated with it. Unlike other input-
output classes in Java, JDBC doesn’t use a filename to identify a data file and use its
contents. Instead, a tool such as the ODBC Data Source Administrator is used to name
the ODBC source and indicate the file folder where it can be found.

In the ODBC Data Source Administrator, click the User DSN tab to see a list of data
sources that are available. To add a new one associated with world20.mdb (or your own
database), click the Add button, choose an ODBC driver, and then click the Finish
button.

A Setup window opens that you can use to provide a name, short description, and other
information about the database. Click the Select button to find and choose the database
file.

Figure 18.3 shows the Setup window used to set up world20.mdb as a data source in the
ODBC Data Source Administrator.

490 DAY 18: Accessing Databases with JDBC

FIGURE 18.3
The ODBC driver
Setup window.

After a database has been associated with an ODBC data source, working with it in a
Java program is relatively easy if you are conversant with SQL.

The first task in a JDBC program is to load the driver (or drivers) that will be used to
connect to a data source. A driver is loaded with the Class.forName(String) method.
Class, part of the java.lang package, can be used to load classes into the Java inter-
preter. The forName(String) method loads the class named by the specified string. A
ClassNotFoundException can be thrown by this method.

All programs that use an ODBC data source use sun.jdbc.odbc.JdbcOdbcDriver, the
JDBC-ODBC bridge driver included with Java. Loading this class into a Java interpreter
requires the following statement:

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

After the driver has been loaded, you can establish a connection to the data source by
using the DriverManager class in the java.sql package.

The getConnection(String, String, String) method of DriverManager can be used
to set up the connection. It returns a reference to a Connection object representing an
active data connection.

The three arguments of this method are as follows:

n A name identifying the data source and the type of database connectivity used to
reach it

n A username

n A password

The last two items are needed only if the data source is secured with a username and a
password. If not, these arguments can be null strings (“”).

The name of the data source is preceded by the text jdbc:odbc: when using the JDBC-
ODBC bridge, which indicates the type of database connectivity in use.

The following statement could be used to connect to a data source called Payroll with a
username of “Doc” and a password of “1rover1”:

Connection payday = DriverManager.getConnection(
“jdbc:odbc:Payroll”, “Doc”, “1rover1”);

After you have a connection, you can reuse it each time you want to retrieve or store
information from that connection’s data source.

The getConnection() method and all others called on a data source throw
SQLException errors if something goes wrong as the data source is being used. SQL has
its own error messages, and they are passed along as part of SQLException objects.

Retrieving Data from a Database Using SQL
An SQL statement is represented in Java by a Statement object. Statement is an inter-
face, so it can’t be instantiated directly. However, an object that implements the interface

The JDBC-ODBC Bridge 491

18

is returned by the createStatement() method of a Connection object, as in the follow-
ing example:

Statement lookSee = payday.CreateStatement();

After you have a Statement object, you can use it to conduct an SQL query by calling
the object’s executeQuery(String) method. The String argument should be an SQL
query that follows the syntax of that language.

It’s beyond the scope of today’s lesson to teach SQL, a rich, data-
retrieval and storage language that has its own book in this
series: Sams Teach Yourself SQL in 21 Days, 4th Edition by Ron
Plew and Ryan Stephens (ISBN: 0-672-32451-2). Although you
need to learn SQL to do any extensive work with it, much of the
language is easy to pick up from any examples you can find, such
as those you will work with today.

The following is an example of an SQL query that could be used on the Coal table of the
world20.mdb database:

SELECT Country, Year, ‘Anthracite Production’ FROM Coal
WHERE (Country Is Not Null) ORDER BY Year

This SQL query retrieves several fields for each record in the database for which the
Country field is not equal to null. The records returned are sorted according to their
Country field, so Afghanistan would precede Burkina Faso.

The following Java statement executes that query on a Statement object named looksee:

ResultSet set = looksee.executeQuery(
“SELECT Country, Year, ‘Anthracite Production’ FROM Coal “
+ “WHERE (Country Is Not Null) ORDER BY Year”);

If the SQL query has been phrased correctly, the executeQuery() method returns a
ResultSet object holding all the records that have been retrieved from the data source.

To add records to a database instead of retrieving them, the state-
ment’s executeUpdate() method should be called. You will work
with this later.

492 DAY 18: Accessing Databases with JDBC

CAUTION

NOTE

When a ResultSet is returned from executeQuery(), it is positioned at the first record
that has been retrieved. The following methods of ResultSet can be used to pull infor-
mation from the current record:

n getDate(String)—Returns the Date value stored in the specified field name
(using the Date class in the java.sql package, not java.util.Date)

n getDouble(String)—Returns the double value stored in the specified field name

n getFloat(String)—Returns the float value stored in the specified field name

n getInt(String)—Returns the int value stored in the specified field name

n getLong(String)—Returns the long value stored in the specified field name

n getString(String)—Returns the String stored in the specified field name

These are just the simplest methods available in the ResultSet interface. The methods
you should use depend on the form that the field data takes in the database, although
methods such as getString() and getInt() can be more flexible in the information they
retrieve from a record.

You also can use an integer as the argument to any of these methods, such as
getString(5), instead of a string. The integer indicates which field to retrieve (1 for the
first field, 2 for the second field, and so on).

An SQLException is thrown if a database error occurs as you try to retrieve information
from a resultset. You can call this exception’s getSQLState() and getErrorCode()

methods to learn more about the error.

After you have pulled the information you need from a record, you can move to the next
record by calling the next() method of the ResultSet object. This method returns a
false Boolean value when it tries to move past the end of a resultset.

Normally, you can move through a resultset once from start to finish, after which you
can’t retrieve its contents again.

When you’re finished using a connection to a data source, you can close it by calling the
connection’s close() method with no arguments.

Listing 18.1 contains the CoalReporter application, which uses the JDBC-ODBC bridge
and an SQL statement to retrieve some records from an energy database. Four fields are
retrieved from each record indicated by the SQL statement: FIPS, Country, Year, and
Anthracite Production. The resultset is sorted according to the Year field, and these
fields are displayed to standard output.

The JDBC-ODBC Bridge 493

18

LISTING 18.1 The Full Text of CoalReporter.java

1: import java.sql.*;
2:
3: public class CoalReporter {
4: public static void main(String[] arguments) {
5: String data = “jdbc:odbc:WorldEnergy”;
6: try {
7: Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
8: Connection conn = DriverManager.getConnection(
9: data, “”, “”);
10: Statement st = conn.createStatement();
11: ResultSet rec = st.executeQuery(
12: “SELECT * “ +
13: “FROM Coal “ +
14: “WHERE “ +
15: “(Country=’” + arguments[0] + “‘) “ +
16: “ORDER BY Year”);
17: System.out.println(“FIPS\tCOUNTRY\t\tYEAR\t” +
18: “ANTHRACITE PRODUCTION”);
19: while(rec.next()) {
20: System.out.println(rec.getString(1) + “\t”
21: + rec.getString(2) + “\t\t”
22: + rec.getString(3) + “\t”
23: + rec.getString(4));
24: }
25: st.close();
26: } catch (SQLException s) {
27: System.out.println(“SQL Error: “ + s.toString() + “ “
28: + s.getErrorCode() + “ “ + s.getSQLState());
29: } catch (Exception e) {
30: System.out.println(“Error: “ + e.toString()
31: + e.getMessage());
32: }
33: }
34: }

This program must be run with a single argument specifying the Country field in the
database from which to pull records, as in this example for the JDK:

java CoalReporter Poland

If the application were run with an argument of Poland, the output from the sample data-
base would be the following:

FIPS COUNTRY YEAR ANTHRACITE PRODUCTION
PL Poland 1990 0.0
PL Poland 1991 0.0
PL Poland 1992 0.0
PL Poland 1993 174.165194805424

494 DAY 18: Accessing Databases with JDBC

PL Poland 1994 242.50849909616
PL Poland 1995 304.237935229728
PL Poland 1996 308.64718066784
PL Poland 1997 319.67029426312
PL Poland 1998 319.67029426312

Try running the program with other countries that produce anthracite, such as France,
Swaziland, and New Zealand. For any country that has a space in the name, remember to
put quotation marks around the country name when running the program.

Writing Data to a Database Using SQL
In the CoalReporter application, you retrieved data from a database using an SQL state-
ment prepared as a string, like this:

SELECT * FROM Coal WHERE (Country=’Swaziland’) ORDER BY YEAR

This is a common way to use SQL. You could write a program that asks a user to enter
an SQL query and then displays the result (though this isn’t a good idea—SQL queries
can be used to delete records, tables, and even entire databases).

The java.sql package also supports another way to create an SQL statement: a prepared
statement.

A prepared statement, which is represented by the PreparedStatement class, is an SQL
statement that is compiled before it is executed. This enables the statement to return data
more quickly and is a better choice if you are executing an SQL statement repeatedly in
the same program.

Prepared statements also have another advantage on Windows
systems: They make it possible to write data to an Access data-
base using the JDBC-ODBC driver. I’ve had little luck writing data
from Java to Access using statements but can use prepared state-
ments without any trouble.

To create a prepared statement, call a connection’s prepareStatement(String) method
with a string that indicates the structure of the SQL statement.

To indicate the structure, you write an SQL statement in which parameters have been
replaced with question marks.

The JDBC-ODBC Bridge 495

18

TIP

Here’s an example for a connection object called cc:

PreparedStatement ps = cc.prepareStatement(
“SELECT * FROM Coal WHERE (Country=’?’) ORDER BY YEAR”);

Here’s another example with more than one question mark:

PreparedStatement ps = cc.prepareStatement(
“INSERT INTO BOOKDATA VALUES(?, ?, ?, ?, ?, ?, ?)”);

The question marks in these SQL statements are placeholders for data. Before you can
execute the statement, you must put data in each of these places using one of the meth-
ods of the PreparedStatement class.

To put data into a prepared statement, you must call a method with the position of the
placeholder followed by the data to insert.

For example, to put the string “Swaziland” in the first prepared statement, call the
setString(int, String) method:

ps.setString(1, “Swaziland”);

The first argument indicates the position of the placeholder, numbered from left to right.
The first question mark is 1, the second is 2, and so on.

The second argument is the data to put in the statement at that position.

The following methods are available:

n setAsciiStream(int, InputStream, int)—At the position indicated by the first
argument, inserts the specified InputStream, which represents a stream of ASCII
characters. The third argument indicates how many bytes from the input stream to
insert.

n setBinaryStream(int, InputStream, int)—At the position indicated by the
first argument, inserts the specified InputStream, which represents a stream of
bytes. The third argument indicates the number of bytes to insert from the stream.

n setCharacterStream(int, Reader, int)—At the position indicated by the first
argument, inserts the specified Reader, which represents a character stream. The
third argument indicates the number of characters to insert from the stream.

n setBoolean(int, boolean)—Inserts a boolean value at the position indicated by
the integer.

n setByte(int, byte)—Inserts a byte value at the indicated position.

n setBytes(int, byte[])—Inserts an array of bytes at the indicated position.

496 DAY 18: Accessing Databases with JDBC

n setDate(int, Date)—Inserts a Date object (from the java.sql package) at the
indicated position.

n setDouble(int, double)—Inserts a double value at the indicated position.

n setFloat(int, float)—Inserts a float value at the indicated position.

n setInt(int, int)—Inserts an int value at the indicated position.

n setLong(int, long)—Inserts a long value at the indicated position.

n setShort(int, short)—Inserts a short value at the indicated position.

n setString(int, String)—Inserts a String value at the indicated position.

There’s also a setNull(int, int) method that stores SQL’s version of a null (empty)
value at the position indicated by the first argument.

The second argument to setNull() should be a class variable from the Types class in
java.sql to indicate what kind of SQL value belongs in that position.

There are class variables for each of the SQL data types. This list, which is not complete,
includes some of the most commonly used variables: BIGINT, BIT, CHAR, DATE, DECIMAL,
DOUBLE, FLOAT, INTEGER, SMALLINT, TINYINT, and VARCHAR.

The following code puts a null CHAR value at the fifth position in a prepared statement
called ps:

ps.setNull(5, Types.CHAR);

The next project demonstrates the use of a prepared statement to add stock quote data to
a database. Quotes are collected from the Yahoo! website.

As a service to people who follow the stock market, Yahoo! offers a Download
Spreadsheet link on its main stock quote page for each ticker symbol.

To see this link, look up a stock quote on Yahoo! or go directly to a page such as
this one:

http://quote.yahoo.com/q?s=sunw&d=v1

Below the price chart, you can find a Download Data link. Here’s what the link looks
like for Sun Microsystems:

http://download.finance.yahoo.com/d/quotes.csv?s=SUNW&f=sl1d1t1c1ohgv&e=.csv

The JDBC-ODBC Bridge 497

18

You can click this link to open the file or save it to a folder on your system. The file,
which is only one line long, contains the stock’s price and volume data saved at the last
market close. Here’s an example of what Sun’s data looked like on Feb. 23, 2007:

“SUNW”,6.27,”2/23/2007”,”4:00pm”,0.00,6.30,6.31,6.22,50254356

The fields in this data, in order, are the ticker symbol, closing price, date, time, price
change since yesterday’s close, daily low, daily high, daily open, and volume.

The QuoteData application uses each of these fields except one—the time, which isn’t
particularly useful because it’s always the time the market closed.

The following takes place in the program:

n The ticker symbol of a stock is taken as a command-line argument.

n A QuoteData object is created with the ticker symbol as an instance variable called
ticker.

n The object’s retrieveQuote() method is called to download the stock data from
Yahoo! and return it as a String.

n The object’s storeQuote() method is called with that String as an argument. It
saves the stock data to a database using a JDBC-ODBC connection.

The last task requires a stock quote database, which can be reached through JDBC-
ODBC, set up to collect this data.

Windows users can download quotedata.mdb, an Access 2000 database created to hold
Yahoo!’s stock quote data, from the book’s website. Visit http://www.java21days.com
and open the Day 18 page. After you download the database (or create one of your own),
use the ODBC Data Source Administrator to create a new data source associated with the
database. This application assumes that the name of the source is QuoteData.

Enter the text of Listing 18.2 into your editor and save the file as QuoteData.java.

LISTING 18.2 The Full Text of QuoteData.java

1: import java.io.*;
2: import java.net.*;
3: import java.sql.*;
4: import java.util.*;
5:
6: public class QuoteData {
7: private String ticker;
8:
9: public QuoteData(String inTicker) {

498 DAY 18: Accessing Databases with JDBC

LISTING 18.2 Continued

10: ticker = inTicker;
11: }
12:
13: private String retrieveQuote() {
14: StringBuffer buf = new StringBuffer();
15: try {
16: URL page = new URL(“http://quote.yahoo.com/d/quotes.csv?s=” +
17: ticker + “&f=sl1d1t1c1ohgv&e=.csv”);
18: String line;
19: URLConnection conn = page.openConnection();
20: conn.connect();
21: InputStreamReader in= new InputStreamReader(
22: conn.getInputStream());
23: BufferedReader data = new BufferedReader(in);
24: while ((line = data.readLine()) != null) {
25: buf.append(line + “\n”);
26: }
27: } catch (MalformedURLException mue) {
28: System.out.println(“Bad URL: “ + mue.getMessage());
29: } catch (IOException ioe) {
30: System.out.println(“IO Error:” + ioe.getMessage());
31: }
32: return buf.toString();
33: }
34:
35: private void storeQuote(String data) {
36: StringTokenizer tokens = new StringTokenizer(data, “,”);
37: String[] fields = new String[9];
38: for (int i = 0; i < fields.length; i++) {
39: fields[i] = stripQuotes(tokens.nextToken());
40: }
41: String datasource = “jdbc:odbc:QuoteData”;
42: try {
43: Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
44: Connection conn = DriverManager.getConnection(
45: datasource, “”, “”);
46: PreparedStatement prep2 = conn.prepareStatement(
47: “INSERT INTO “ +
48: “Stocks(ticker, price, quoteDate, change, open, “ +
49: “high, low, volume) “ +
50: “VALUES(?, ?, ?, ?, ?, ?, ?, ?)”);
51: prep2.setString(1, fields[0]);
52: prep2.setString(2, fields[1]);
53: prep2.setString(3, fields[2]);
54: prep2.setString(4, fields[4]);
55: prep2.setString(5, fields[5]);
56: prep2.setString(6, fields[6]);
57: prep2.setString(7, fields[7]);
58: prep2.setString(8, fields[8]);

The JDBC-ODBC Bridge 499

18

LISTING 18.2 Continued

59: prep2.executeUpdate();
60: conn.close();
61: } catch (SQLException sqe) {
62: System.out.println(“SQL Error: “ + sqe.getMessage());
63: } catch (ClassNotFoundException cnfe) {
64: System.out.println(cnfe.getMessage());
65: }
66: }
67:
68: private String stripQuotes(String input) {
69: StringBuffer output = new StringBuffer();
70: for (int i = 0; i < input.length(); i++) {
71: if (input.charAt(i) != ‘\”’) {
72: output.append(input.charAt(i));
73: }
74: }
75: return output.toString();
76: }
77:
78: public static void main(String[] arguments) {
79: if (arguments.length < 1) {
80: System.out.println(“Usage: java QuoteData tickerSymbol”);
81: System.exit(0);
82: }
83: QuoteData qd = new QuoteData(arguments[0]);
84: String data = qd.retrieveQuote();
85: qd.storeQuote(data);
86: }
87: }

After you compile the QuoteData application, connect to the Internet and run the pro-
gram. Remember to specify a valid ticker symbol as a command-line argument. To load
the current quote for SUNW (Sun Microsystems):

java QuoteData SUNW

The retrieveQuote() method (lines 13–33) downloads the quote data from Yahoo! and
saves it as a string. The techniques used in this method were covered on Day 17,
“Communicating Across the Internet.”

The storeQuote() method (lines 35–66) uses the SQL techniques covered in this
section.

The method begins by splitting up the quote data into a set of string tokens, using the
comma character (“,”) as the delimiter between each token. The tokens are then stored in
a String array with nine elements.

500 DAY 18: Accessing Databases with JDBC

The array contains the same fields as the Yahoo! data in the same order: ticker symbol,
closing price, date, time, price change, low, high, open, and volume.

Next, a data connection to the QuoteData data source is created using the JDBC-ODBC
driver (lines 41–45).

This connection is then used to create a prepared statement (lines 46–50). This statement
uses the INSERT INTO SQL statement, which causes data to be stored in a database. In
this case, the database is quotedata.mdb, and the INSERT INTO statement refers to the
Stocks table in that database.

Eight placeholders are in the prepared statement. Only eight are needed, instead of nine,
because the application does not use the time field from the Yahoo! data.

A series of setString() methods puts the elements of the String array into the prepared
statement, in the same order that the fields exist in the database: ticker symbol, closing
price, date, price change, low, high, open, and volume (lines 51–58).

Some fields in the Yahoo! data are dates, floating-point numbers, and integers, so you
might think that it would be better to use setDate(), setFloat(), and setInt() for that
data.

Some versions of Access, including Access 2000, do not support some of these methods
when you are using SQL to work with the database, even though they exist in Java. If
you try to use an unsupported method, such as setFloat(), an SQLException error
occurs.

It’s easier to send Access strings and let the database program convert them automati-
cally into the correct format. This is likely to be true when you are working with other
databases; the level of SQL support varies based on the product and ODBC driver
involved.

After the prepared statement has been prepared and all the placeholders are filled, the
statement’s executeUpdate() method is called (line 59). This either adds the quote data
to the database or throws an SQL error. The private method stripQuotes() is used to
remove quotation marks from Yahoo!’s stock data. This method is called on line 39 to
take care of three fields that contain extraneous quotes: the ticker symbol, date, and time.

Moving Through Resultsets
The default behavior of resultsets permits one trip through the set using its next()
method to retrieve each record.

The JDBC-ODBC Bridge 501

18

By changing how statements and prepared statements are created, you can produce
resultsets that support these additional methods:

n afterLast()—Moves to a place immediately after the last record in the set

n beforeFirst()—Moves to a place immediately before the first record in the set

n first()—Moves to the first record in the set

n last()—Moves to the last record in the set

n previous()—Moves to the previous record in the set

These actions are possible when the resultset’s policies have been specified as arguments
to a database connection’s createStatement() and prepareStatement() methods.

Normally, createStatement() takes no arguments, as in this example:

Connection payday = DriverManager.getConnection(
“jdbc:odbc:Payroll”, “Doc”, “1rover1”);

Statement lookSee = payday.CreateStatement();

For a more flexible resultset, call createStatement() with three integer arguments that
set up how it can be used. Here’s a rewrite of the preceding statement:

Statement lookSee = payday.CreateStatement(
ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY,
ResultSet.CLOSE_CURSORS_AT_COMMIT);

The same three arguments can be used in the prepareStatement(String, int, int,
int) method after the text of the statement.

The ResultSet class includes other class variables that offer more options in how sets
can be read and modified.

JDBC Drivers
Creating a Java program that uses a JDBC driver is similar to creating one that uses the
JDBC-ODBC bridge.

Java 6 includes the Java DB relational database, which is built from the open source
Apache Derby database, and comes with its own driver. For more sophisticated data-
bases, more than a dozen companies, including Informix, Oracle, Symantec, IBM, and
Sybase, sell drivers or package them with commercial products. A database of available
JDBC drivers can be found on Sun’s JDBC site at http://developers.sun.com/product/
jdbc/drivers.

502 DAY 18: Accessing Databases with JDBC

The developers of the MySQL database offer Connector/J, a free
open source JDBC driver developed by Mark Matthews. Some of
these drivers are available to download for evaluation.

To download this driver or find out more about it, visit the web
page http://dev.mysql.com/downloads/connector/j/5.0.html.

Java DB can be found in a db subfolder of the JDK installation. To develop applications
that connect to the database, you must make its driver class library accessible. One way
to accomplish this is to edit your Classpath environment variable.

The driver library is found in derby.jar in the db/lib subfolder. If you installed the
JDK in C:\Program Files\jdk1.6.0, this library is in C:\Program Files\jdk1.6.0\
db\lib\derby.jar. Add the entire file reference, including the folder and filename, to
your Classpath.

The steps for setting up a data source for JDBC are similar to those employed with the
JDBC-ODBC bridge:

n Create the database.

n Associate the database with a JDBC driver.

n Establish a data source, which may include selecting a database format, database
server, username, and password.

Listing 18.3 is a Java application that can perform two tasks:

n Create a Java DB database named Presidents with a database table called con-
tacts that contains four records.

n Read the records from this database table.

This database is an Access file with contact information for U.S. presidents.

LISTING 18.3 The Full Text of Presidents.java

1: import java.io.*;
2: import java.sql.*;
3:
4: public class Presidents {
5: String home, system;
6:
7: public Presidents() {
8: // set the database’s directory
9: home = System.getProperty(“user.home”, “.”);

The JDBC-ODBC Bridge 503

18

NOTE

LISTING 18.3 Continued

10: system = home + File.separatorChar + “.database”;
11: System.setProperty(“derby.system.home”, system);
12: }
13:
14: public void createDatabase() {
15: // create the database
16: String data = “jdbc:derby:presidents;create=true”;
17: try {
18: // load the driver
19: Class.forName(“org.apache.derby.jdbc.EmbeddedDriver”);
20: // create the connection
21: Connection conn = DriverManager.getConnection(data);
22: Statement st = conn.createStatement();
23: // create the contacts table
24: int result = st.executeUpdate(
25: “CREATE TABLE contacts (“
26: + “dex INTEGER NOT NULL PRIMARY KEY “
27: + “GENERATED ALWAYS AS identity “
28: + “(START WITH 1, INCREMENT BY 1), “
29: + “name VARCHAR(40), “
30: + “address1 VARCHAR(40), “
31: + “address2 VARCHAR(40), “
32: + “phone VARCHAR(20), “
33: + “email VARCHAR(40))”);
34: // insert four records into the new table
35: result = st.executeUpdate(
36: “INSERT INTO contacts (name, address1, address2, “
37: + “phone, email) VALUES(“
38: + “‘Jimmy Carter’, “
39: + “‘Carter Presidential Center’, “
40: + “‘1 Copenhill, Atlanta, GA 30307’, “
41: + “‘(404) 727-7611’, “
42: + “‘carterweb@emory.edu’)”);
43: result = st.executeUpdate(
44: “INSERT INTO contacts (name, address1, address2, “
45: + “phone, email) VALUES(“
46: + “‘George Bush’, “
47: + “‘Box 79798’, “
48: + “‘Houston, TX 77279’, “
49: + “‘(409) 260-9552’, “
50: + “‘library@bush.nara.gov’)”);
51: result = st.executeUpdate(
52: “INSERT INTO contacts (name, address1, address2, “
53: + “phone, email) VALUES(“
54: + “‘Bill Clinton’, “
55: + “‘15 Old House Lane’, “
56: + “‘Chappaqua, NY 10514’, “
57: + “‘(501) 370-8000’, “
58: + “‘info@clintonpresidentialcenter.com’)”);

504 DAY 18: Accessing Databases with JDBC

LISTING 18.3 Continued

59: result = st.executeUpdate(
60: “INSERT INTO contacts (name, address1, address2, “
61: + “phone, email) VALUES(“
62: + “‘George W. Bush’, “
63: + “‘White House, 1600 Pennsylvania Ave.’, “
64: + “‘Washington, DC 20500’, “
65: + “‘(202) 456-1414’, “
66: + “‘president@whitehouse.gov’)”);
67: st.close();
68: System.out.println(“Database created in “ + system);
69: } catch (Exception e) {
70: System.out.println(“Error — “ + e.toString());
71: }
72: }
73:
74: public void readDatabase() {
75: String data = “jdbc:derby:presidents”;
76: try {
77: // load the driver and connect to the database
78: Class.forName(“org.apache.derby.jdbc.EmbeddedDriver”);
79: Connection conn = DriverManager.getConnection(
80: data, “”, “”);
81: // load all records from the contacts table
82: Statement st = conn.createStatement();
83: ResultSet rec = st.executeQuery(
84: “SELECT * FROM contacts ORDER BY name”);
85: // loop through each record and display its fields
86: while(rec.next()) {
87: System.out.println(rec.getString(“name”) + “\n”
88: + rec.getString(“address1”) + “\n”
89: + rec.getString(“address2”) + “\n”
90: + rec.getString(“phone”) + “\n”
91: + rec.getString(“email”) + “\n”);
92: }
93: st.close();
94: } catch (Exception e) {
95: System.out.println(“Error — “ + e.toString());
96: }
97: }
98:
99: public static void main(String[] arguments) {
100: Presidents prez = new Presidents();
101: if (arguments.length < 1) {
102: System.out.println(“Usage: java Presidents [create|read]”);
103: System.exit(-1);
104: }
105: if (arguments[0].equals(“create”)) {
106: prez.createDatabase();
107: }

The JDBC-ODBC Bridge 505

18

LISTING 18.3 Continued

108: if (arguments[0].equals(“read”)) {
109: prez.readDatabase();
110: }
111: }
112: }

Using this application with another database and driver would require changes to lines
16, 19, 75, and 77.

Java DB requires a system property, derby.system.home, to be set to the location of the
root folder where its databases are located. If this folder does not exist, Java DB will
create it.

The Java DB JDBC driver can be loaded with the following statement:

Class.forName(“org.apache.derby.jdbc.EmbeddedDriver”);

The Presidents application is split into the createDatabase() and readDatabase()

methods whose functions are self-explanatory.

Database creation employs the following database connection string for the
DriverManager.getConnection(String) method in line 21:

jdbc:derby:presidents;create=true

This string follows the form “jdbc:derby:” followed by the database name, a semicolon,
and the parameter “create=true”, which causes the database to be created if necessary.

This string can include user and password parameters for a database that requires logon:

jdbc:derby:presidents;user=dbuser;password=tortuga;create=true

Making a connection to read from the database in line 79 is simpler:

jdbc:derby:presidents

After you’ve made a successful connection to Java DB, reading and writing database
records over JDBC follows the same process employed earlier today with JDBC-ODBC.
SQL statements are written to create a database table, insert records into the table, and
read those records.

The SQL employed by Java DB has different record types than Access, MySQL, and
other databases.

Run the Presidents application the first time with “create” as the only argument to cre-
ate the new database:

java Presidents create

506 DAY 18: Accessing Databases with JDBC

If it is successful, the application outputs a message like the following:

Database created in C:\Documents and Settings\Rogers\.database

Run the application again with “read” as the argument to read and display the contents of
the database:

java Presidents read

The application produces the following output:

Bill Clinton
15 Old House Lane
Chappaqua, NY 10514
(501) 370-8000
info@clintonpresidentialcenter.com

George Bush
Box 79798
Houston, TX 77279
(409) 260-9552
library@bush.nara.gov

George W. Bush
White House, 1600 Pennsylvania Ave.
Washington, DC 20500
(202) 456-1414
president@whitehouse.gov

Jimmy Carter
Carter Presidential Center
1 Copenhill, Atlanta, GA 30307
(404) 727-7611
carterweb@emory.edu

The presence of Java DB is one of the most noteworthy improvements in Java 6. The
availability of a relational database on all Java-equipped computers gives programmers a
chance to take advantage of persistent data storage.

For more information on Java DB, visit the Sun Microsystems website at http://develop-
ers.sun. com/prodtech/javadb.

Summary
Today you learned about working with data stored in popular database formats such as
Microsoft Access and Java DB. Using either Java Database Connectivity (JDBC) or a
combination of JDBC and ODBC, you can incorporate existing data-storage solutions
into your Java programs.

Summary 507

18

You can connect to several different relational databases in your Java programs by using
JDBC or ODBC and Structured Query Language (SQL), a standard language for reading,
writing, and managing a database.

Q&A
Q Can the JDBC-ODBC bridge driver be used in an applet?

A The default security in place for applets does not allow the JDBC-ODBC bridge to
be used because the ODBC side of the bridge driver employs native code rather
than Java. Native code can’t be held to the security restrictions in place for Java, so
there’s no way to ensure that this code is secure.

JDBC drivers that are implemented entirely in Java can be used in applets, and
they have the advantage of requiring no configuration on the client computer.

Q What’s the difference between Java DB and more well-known databases such
as Access and MySQL? Which should I use?

A Java DB is intended for database applications that have simpler needs than Access
and comparable databases. The entire application takes up 2MB of space, making
it easy to bundle with Java applications that require database connectivity.

Sun employs Java DB in several parts of the Java Enterprise Edition, which
demonstrates that it’s capable of delivering strong, reliable performance on impor-
tant tasks.

Quiz
Review today’s material by taking this three-question quiz.

Questions
1. What does a Statement object represent in a database program?

a. A connection to a database

b. A database query written in Structured Query Language

c. A data source

2. Which Java class represents SQL statements that are compiled before they are exe-
cuted?

a. Statement

b. PreparedStatement

c. ResultSet

508 DAY 18: Accessing Databases with JDBC

3. What does the Class.forName(String) method accomplish?

a. It provides the name of a class.

b. It loads a database driver that can be used to access a database.

c. It deletes an object.

Answers
1. b. The class, part of the java.sql package, represents an SQL statement.

2. b. Because it is compiled, PreparedStatement is a better choice when you’re
going to execute the same SQL query numerous times.

3. b. This static method loads a database driver.

Certification Practice
The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Given:

public class ArrayClass {

public static ArrayClass newInstance() {
count++;
return new ArrayClass();

}

public static void main(String arguments[]) {
new ArrayClass();

}

int count = -1;
}

Which line in this program prevents it from compiling successfully?

a. count++;

b. return new ArrayClass();

c. public static void main(String arguments[]) {

d. int count = -1;

Quiz 509

18

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 18 page and click the Certification Practice link.

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. Modify the CoalReporter application to pull fields from the Country Oil Totals
table instead of the Coal table.

2. Write an application that stores Yahoo! stock quotes in a Java DB database.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java21days.com.

510 DAY 18: Accessing Databases with JDBC

DAY 19:
Reading and Writing
RSS Feeds

Today you work with Extensible Markup Language (XML), a formatting
standard that enables data to be completely portable.

You’ll explore XML in the following ways:

n Representing data as XML

n Discovering why XML is a useful way to store data

n Using XML to publish web content

n Reading and writing XML data

The XML format employed throughout the day is Really Simple
Syndication (RSS), a popular way to publish web content and share infor-
mation on site updates adopted by millions of sites.

Using XML
One of Java’s main selling points is that the language produces programs that can run on
different operating systems without modification. The portability of software is a big
convenience in today’s computing environment, where Windows, Linux, Mac OS, and a
half dozen other operating systems are in wide use and many people work with multiple
systems.

XML, which stands for Extensible Markup Language, is a format for storing and orga-
nizing data that is independent of any software program that works with the data.

Data that is compliant with XML is easier to reuse for several reasons.

First, the data is structured in a standard way, making it possible for software programs
to read and write the data as long as they support XML. If you create an XML file that
represents your company’s employee database, there are several dozen XML parsers that
can read the file and make sense of its contents.

This is true no matter what kind of information you collect about each employee. If your
database contains only the employee’s name, ID number, and current salary, XML
parsers can read it. If it contains 25 items, including birthday, blood type, and hair color,
parsers can read that, too.

Second, the data is self-documenting, making it easier for people to understand the pur-
pose of a file just by looking at it in a text editor. Anyone who opens your XML
employee database should be able to figure out the structure and content of each
employee record without any assistance from you.

This is evident in Listing 19.1, which contains an RSS file. Because RSS is an XML
dialect, it is structured under the rules of XML.

LISTING 19.1 The Full Text of workbench.rss

1: <?xml version=”1.0” encoding=”utf-8”?>
2: <rss version=”2.0”>
3: <channel>
4: <title>Workbench</title>
5: <link>http://www.cadenhead.org/workbench/</link>
6: <description>Programming, publishing, politics, and popes</description>
7: <docs>http://www.rssboard.org/rss-specification</docs>
8: <item>
9: <title>Toronto Star: Only 100 Blogs Make Money</title>
10: <link>http://www.cadenhead.org/workbench/news/3132</link>
11: <pubDate>Mon, 26 Feb 2007 11:30:57 -0500</pubDate>
12: <guid isPermaLink=”false”>tag:cadenhead.org,2007:weblog.3132</guid>
13: <enclosure length=”2498623” type=”audio/mpeg”

512 DAY 19: Reading and Writing RSS Feeds

LISTING 19.1 Continued

14: url=”http://mp3.cadenhead.org/3132.mp3” />
15: </item>
16: <item>
17: <title>Eliot Spitzer Files UDRP to Take EliotSpitzer.Com</title>
18: <link>http://www.cadenhead.org/workbench/news/3130</link>
19: <pubDate>Thu, 22 Feb 2007 18:02:53 -0500</pubDate>
20: <guid isPermaLink=”false”>tag:cadenhead.org,2007:weblog.3130</guid>
21: </item>
22: <item>
23: <title>Fuzzy Zoeller Sues Over Libelous Wikipedia Page</title>
24: <link>http://www.cadenhead.org/workbench/news/3129</link>
25: <pubDate>Thu, 22 Feb 2007 13:48:45 -0500</pubDate>
26: <guid isPermaLink=”false”>tag:cadenhead.org,2007:weblog.3129</guid>
27: </item>
28: </channel>
29: </rss>

Enter this text using a word processor or text editor and save it as plain text under the
name workbench.rss. (You can also download a copy of it from the book’s website at
http://www.java21days.com on the Day 19 page.)

Can you tell what the data represents? Although the ?xml tag at the top might be indeci-
pherable, the rest is clearly a website database of some kind.

The ?xml tag in the first line of the file has a version attribute with a value of 1.0 and
an encoding attribute of “utf-8”. This establishes that the file follows the rules of XML
1.0 and is encoded with the UTF-8 character set.

Data in XML is surrounded by tag elements that describe the data. Opening tags begin
with a “<” character followed by the name of the tag and a “>” character. Closing tags
begin with the “</” characters followed by a name and a “>” character. In Listing 19.1,
for example, <item> on line 8 is an opening tag, and </item> on line 15 is a closing tag.
Everything within those tags is considered to be the value of that element.

Elements can be nested within other elements, creating a hierarchy of XML data that
establishes relationships within that data. In Listing 19.1, everything in lines 9–14 is
related; each element defines something about the same website item.

Elements also can include attributes, which are made up of data that supplements the rest
of the data associated with the element. Attributes are defined within an opening tag ele-
ment. The name of an attribute is followed by an equal sign and text within quotation
marks.

Using XML 513

19

In line 12 of Listing 19.1, the guid element includes an isPermaLink attribute with a
value of “false”. This indicates that the element’s value,
“tag:cadenhead.org,2007:weblog.3132”, is not a permalink, the URL at which the
item can be loaded in a browser.

XML also supports elements defined by a single tag rather than a pair of tags. The tag
begins with a “<” character followed by the name of the tag and ends with the “/>” char-
acters. The RSS file includes an enclosure element in lines 13–14 that describes an
MP3 audio file associated with the item.

XML encourages the creation of data that’s understandable and usable even if the user
doesn’t have the program that created it and cannot find any documentation that
describes it.

The purpose of the RSS file in Listing 19.1 can be understood, for the most part, simply
by looking at it. Each item represents a web page that has been updated recently.

Publishing new site content over RSS and a similar format, Atom,
has become one of the best ways to build readership on the Web.
Thousands of people subscribe to RSS files, which are called
feeds, using reader software such as Google Reader, Bloglines,
and My Yahoo.

Rogers Cadenhead, the lead author of this book, is the current
chairman of the RSS Advisory Board, the group that publishes the
RSS 2.0 specification. For more information on the format, visit
the board’s site at http://www.rssboard.org or subscribe to its
RSS feed at http://www.rssboard.org/rss-feed.

Data that follows XML’s formatting rules is said to be well-formed. Any software that
can work with XML reads and writes well-formed XML data.

By insisting on well-formed markup, XML simplifies the task of
writing programs that work with the data. RSS makes website
updates available in a form that’s easily processed by software.
The RSS feed for Workbench at http://www.cadenhead.org/work-
bench/rss, published by one of this book’s authors, has two dis-
tinct audiences: humans reading the blog through their preferred
RSS reader and computers that do something with this data, such
as Technorati, which offers a searchable database of site updates,
links between different blogs, and categorization. To see how
Technorati uses that RSS feed, visit http://technorati.com/
blogs/cadenhead.org/workbench.

514 DAY 19: Reading and Writing RSS Feeds

TIP

NOTE

Designing an XML Dialect
Although XML is described as a language and is compared with Hypertext Markup
Language (HTML), it’s actually much larger in scope than that. XML is a markup lan-
guage that defines how to define a markup language.

That’s an odd distinction to make, and it sounds like the kind of thing you’d encounter in
a philosophy textbook. This concept is important to understand, though, because it
explains how XML can be used to define data as varied as health-care claims, genealogi-
cal records, newspaper articles, and molecules.

The “X” in XML stands for Extensible, and it refers to organizing data for your own pur-
poses. Data that’s organized using the rules of XML can represent anything you want:

n A programmer at a telemarketing company can use XML to store data on each out-
going call, saving the time of the call, the number, the operator who made the call,
and the result.

n A lobbyist can use XML to keep track of the annoying telemarketing calls she
receives, noting the time of the call, the company, and the product being peddled.

n A programmer at a government agency can use XML to track complaints about
telemarketers, saving the name of the marketing firm and the number of com-
plaints.

Each of these examples uses XML to define a new language that suits a specific purpose.
Although you could call them XML languages, they’re more commonly described as
XML dialects or XML document types.

An XML dialect can be designed using a Document Type Definition (DTD) that indi-
cates the potential elements and attributes that it covers.

A special !DOCTYPE declaration can be placed in XML data, right after the initial ?xml
tag, to identify its DTD. Here’s an example:

<!DOCTYPE Library SYSTEM “librml.dtd”>

The !DOCTYPE declaration is used to identify the DTD that applies to the data. When a
DTD is present, many XML tools can read XML created for that DTD and determine
whether the data follows all the rules correctly. If it doesn’t, it is rejected with a refer-
ence to the line that caused the error. This process is called validating the XML.

One thing you’ll run into as you work with XML is data that has been structured as
XML but wasn’t defined using a DTD. Most versions of RSS files do not require a DTD.
This data can be parsed (presuming it’s well-formed), so you can read it into a program

Designing an XML Dialect 515

19

and do something with it, but you can’t check its validity to make sure that it’s organized
correctly according to the rules of its dialect.

To get an idea of what kind of XML dialects have been created,
Cover Pages offers a list at http://xml.coverpages.org/
xmlApplications.html.

Processing XML with Java
Java supports XML through the Java API for XML Processing, a set of packages for
reading, writing, and manipulating XML data.

The javax.xml.parsers package is the entry point to the other packages. These classes
can be used to parse and validate XML data using two techniques: the Simple API for
XML (SAX) and the Document Object Model (DOM). However, they can be difficult to
implement, which has inspired other groups to offer their own class libraries to work
with XML.

You’ll spend the remainder of the day working with one of these alternatives: the XML
Object Model (XOM) library, an open source Java class library that makes it extremely
easy to read, write, and transform XML data.

To find out more about the Java API for XML Processing, visit the
company’s Java website at http://java.sun.com/xml.

Processing XML with XOM
One of the most important skills you can develop as a Java programmer is the ability to
find suitable packages and classes that can be employed in your own projects. For obvi-
ous reasons, making use of a well-designed class library is much easier than developing
one on your own.

Although Sun’s Java class library contains thousands of well-designed classes that cover
a comprehensive range of development needs, the company isn’t the only supplier of
packages that may prove useful to your efforts.

516 DAY 19: Reading and Writing RSS Feeds

TIP

NOTE

Dozens of Java packages are offered by other companies, groups, and individuals under a
variety of commercial and open source licenses. Some of the most notable come from
Apache Jakarta, a Java development project of the Apache Software Foundation that has
produced the web application framework Struts, the Log4J logging class library, and
many other popular libraries.

Another terrific open source Java class library is the XOM library, a tree-based package
for XML processing that strives to be simple to learn, simple to use, and uncompromis-
ing in its adherence to well-formed XML.

The library was developed by the programmer and author Elliotte Rusty Harold based on
his experience with Sun’s XML processing packages and other efforts to handle XML in
Java.

The project was originally envisioned as a fork of JDOM, a popular tree-based model for
representing an XML document. Harold has contributed code to that open source project
and participated in its development.

Instead of forking the JDOM code, Harold decided to start from scratch and adopt some
of its core design principles in XOM.

The library embodies the following principles:

n XML documents are modeled as a tree with Java classes representing nodes on the
tree such as elements, comments, processing instructions, and document type defi-
nitions. A programmer can add and remove nodes to manipulate the document in
memory, a simple approach that can be implemented gracefully in Java.

n All XML data produced by XOM is well-formed and has a well-formed name-
space.

n Each element of an XML document is represented as a class with constructor
methods.

n Object serialization is not supported. Instead, programmers are encouraged to use
XML as the format for serialized data, enabling it to be readily exchanged with any
software that reads XML regardless of the programming language in which it was
developed.

n The library relies on another XML parser to read XML documents and fill trees
instead of doing this low-level work directly. XOM uses a SAX parser that must be
downloaded and installed separately. Right now, the preferred parser is Apache
Xerces 2.7.1.

Processing XML with XOM 517

19

XOM is available for download from the web address http://www.cafeconleche.org/
XOM. The most current version at this writing is 1.1, which includes Xerces 2.7.1 in its
distribution.

XOM is released according to the terms of the open source GNU
Lesser General Public License (LGPL). The license grants permis-
sion to distribute the library without modification with Java pro-
grams that use it.

You also can make changes to the XOM class library as long as
you offer them under the LGPL. The full license is published online
at http://www.cafeconleche.org/XOM/license.xhtml.

After you have downloaded XOM and added its packages to your system’s Classpath,
you’re ready to begin using XOM.

The full installation instructions are available from the XOM and Xerces websites. The
classes are distributed as JAR archive files—xom-1.1.jar, xercesImpl.jar, and xml-
apis.jar. These files should be added to your system’s Classpath environment variable
so that your Java programs can use XOM classes.

Creating an XML Document
The first application you will create, RssWriter, creates an XML document that contains
the start of an RSS feed. The document is shown in Listing 19.2.

LISTING 19.2 The Full Text of feed.rss

1: <?xml version=”1.0”?>
2: <rss version=”2.0”>
3: <channel>
4: <title>Workbench</title>
5: <link>http://www.cadenhead.org/workbench/</link>
6: </channel>
7: </rss>

The base nu.xom package contains classes for a complete XML document (Document)
and the nodes a document can contain (Attribute, Comment, DocType, Element,
ProcessingInstruction, and Text).

The RssStarter application uses several of these classes. First, an Element object is cre-
ated by specifying the element’s name as an argument:

Element rss = new Element(“rss”);

518 DAY 19: Reading and Writing RSS Feeds

CAUTION

This statement creates an object for the root element of the document, rss. Element’s
one-argument constructor can be used because the document does not employ a feature
of XML called namespaces; if it did, a second argument would be necessary: the name-
space uniform resource identifier (URI) of the element. The other classes in the XOM
library support namespaces in a similar manner.

In the XML document in Listing 19.2, the rss element includes an attribute named ver-
sion with the value “2.0”. An attribute can be created by specifying its name and value
in consecutive arguments:

Attribute version = new Attribute(“version”, “2.0”);

Attributes are added to an element by calling its addAttribute() method with the
attribute as the only argument:

rss.addAttribute(version);

The text contained within an element is represented by the Text class, which is con-
structed by specifying the text as a String argument:

Text titleText = new Text(“Workbench”);

When composing an XML document, all of its elements end up inside a root element
that is used to create a Document object—a Document constructor is called with the root
element as an argument. In the RssStarter application, this element is called rss. Any
Element object can be the root of a document:

Document doc = new Document(rss);

In XOM’s tree structure, the classes representing an XML document and its constituent
parts are organized into a hierarchy below the generic superclass nu.xom.Node. This
class has three subclasses in the same package: Attribute, LeafNode, and ParentNode.

To add a child to a parent node, call the parent’s appendChild() method with the node to
add as the only argument. The following code creates three elements—a parent called
domain and two of its children, name and dns:

Element channel = new Element(“channel”);
Element link = new Element(“link”);
Text linkText = new Text(“http://www.cadenhead.org/workbench/”);
link.appendChild(linkText);
channel.appendChild(link);

Processing XML with XOM 519

19

The appendChild() method appends a new child below all other children of that parent.
The preceding statements produce this XML fragment:

<channel>
<link>http://www.cadenhead.org/workbench/</link>

</channel>

The appendChild() method also can be called with a String argument instead of a
node. A Text object representing the string is created and added to the element:

link.appendChild(“http://www.cadenhead.org/workbench/”);

After a tree has been created and filled with nodes, it can be displayed by calling the
Document method toXML(), which returns the complete and well-formed XML document
as a String.

Listing 19.3 shows the complete application.

LISTING 19.3 The Full text of RssStarter.java

1: import nu.xom.*;
2:
3: public class RssStarter {
4: public static void main(String[] arguments) {
5: // create an <rss> element to serve as the document’s root
6: Element rss = new Element(“rss”);
7:
8: // add a version attribute to the element
9: Attribute version = new Attribute(“version”, “2.0”);
10: rss.addAttribute(version);
11: // create a <channel> element and make it a child of <rss>
12: Element channel = new Element(“channel”);
13: rss.appendChild(channel);
14: // create the channel’s <title>
15: Element title = new Element(“title”);
16: Text titleText = new Text(“Workbench”);
17: title.appendChild(titleText);
18: channel.appendChild(title);
19: // create the channel’s <link>
20: Element link = new Element(“link”);
21: Text linkText = new Text(“http://www.cadenhead.org/workbench/”);
22: link.appendChild(linkText);
23: channel.appendChild(link);
24:
25: // create a new document with <rss> as the root element
26: Document doc = new Document(rss);
27:
28: // Display the XML document

520 DAY 19: Reading and Writing RSS Feeds

LISTING 19.3 Continued

29: System.out.println(doc.toXML());
30: }
31: }

The RssStarter application displays the XML document it creates on standard output.
The following command runs the application and redirects its output to a file called
feed.rss:

java RssStarter > feed.rss

XOM automatically precedes a document with an XML declaration.

The XML produced by this application contains no indentation; elements are stacked on
the same line.

XOM only preserves significant whitespace when representing XML data—the spaces
between elements in the RSS feed contained in Listing 19.2 are strictly for presentation
purposes and are not produced automatically when XOM creates an XML document. A
subsequent example demonstrates how to control indentation.

Modifying an XML Document
The next project, the DomainEditor application, makes several changes to the XML doc-
ument that was just produced by the RssStarter application, feed.rss. The text
enclosed by the link element is changed to “http://www.cadenhead.org/”, and a new
item element is added:

<item>
<title>Fuzzy Zoeller Sues Over Libelous Wikipedia Page</title>

</item>

Using the nu.xom package, XML documents can be loaded into a tree from several
sources: a File, InputStream, Reader, or a URL (which is specified as a String instead
of a java.net.URL object).

The Builder class represents a SAX parser that can load an XML document into a
Document object. Constructor methods can be used to specify a particular parser or let
XOM use the first available parser from this list: Xerces 2, Crimson, Piccolo, GNU
Aelfred, Oracle, XP, Saxon Aelfred, or Dom4J Aelfred. If none of these is found, the
parser specified by the system property org.xml.sax.driver is used. Constructors also
determine whether the parser is validating or nonvalidating.

Processing XML with XOM 521

19

The Builder() and Builder(true) constructors both use the default parser—most likely
a version of Xerces. The presence of the Boolean argument true in the second construc-
tor configures the parser to be validating. It would be nonvalidating otherwise. A validat-
ing parser throws a nu.xom.ValidityException if the XML document doesn’t validate
according to the rules of its document type definition.

The Builder object’s build() method loads an XML document from a source and
returns a Document object:

Builder builder = new Builder();
File xmlFile = new File(“feed.rss”);
Document doc = builder.build(xmlFile);

These statements load an XML document from the file feed.rss barring one of two
problems: A nu.xom.ParseException is thrown if the file does not contain well-formed
XML, and a java.io.IOException is thrown if the input operation fails.

Elements are retrieved from the tree by calling a method of their parent node.

A Document object’s getRootElement() method returns the root element of the docu-
ment:

Element root = doc.getRootElement();

In the XML document feed.rss, the root element is domains.

Elements with names can be retrieved by calling their parent node’s
getFirstChildElement() method with the name as a String argument:

Element channel = root.getFirstChildElement(“channel”);

This statement retrieves the channel element contained in the rss element (or null if
that element could not be found). Like other examples, this is simplified by the lack of a
namespace in the document; there are also methods where a name and namespace are
arguments.

When several elements within a parent have the same name, the parent node’s
getChildElements() method can be used instead:

Elements children = channel.getChildElements()

The getChildElements() method returns an Elements object containing each of the ele-
ments. This object is a read-only list and does not change automatically if the parent
node’s contents change after getChildElements() is called.

Elements has a size() method containing an integer count of the elements it holds. This
can be used in a loop to cycle through each element in turn beginning with the one at

522 DAY 19: Reading and Writing RSS Feeds

position 0. There’s a get() method to retrieve each element; call it with the integer posi-
tion of the element to be retrieved:

for (int i = 0; i < children.size(); i++) { Element link = children.get(i);
}

This for loop cycles through each child element of the channel element.

Elements without names can be retrieved by calling their parent node’s getChild()
method with one argument: an integer indicating the element’s position within the parent
node:

Text linkText = (Text) link.getChild(0);

This statement creates the Text object for the text “http://www.cadenhead.org/work-
bench/” found within the link element. Text elements always will be at position 0
within their enclosing parent.

To work with this text as a string, call the Text object’s getValue() method, as in this
statement:

if (linkText.getValue().equals(“http://www.cadenhead.org/workbench/”))
// ...

}

The DomainEditor application only modifies a link element enclosing the text
“http://www.cadenhead.org/workbench/”. The application makes the following changes:
The text of the link element is deleted, the new text “http://www.cadenhead.org/” is
added in its place, and then a new item element is added.

A parent node has two removeChild() methods to delete a child node from the docu-
ment. Calling the method with an integer deletes the child at that position:

Element channel = domain.getFirstChildElement(“channel”);
Element link = dns.getFirstChildElement(“link”);
link.removeChild(0);

These statements would delete the Text object contained within the channel’s first link
element.

Calling the removeChild() method with a node as an argument deletes that particular
node. Extending the previous example, the link element could be deleted with this
statement:

channel.removeChild(link);

Processing XML with XOM 523

19

Listing 19.4 shows the source code of the DomainEditor application.

LISTING 19.4 The Full Text of DomainEditor.java

1: import java.io.*;
2: import nu.xom.*;
3:
4: public class DomainEditor {
5: public static void main(String[] arguments) throws IOException {
6: try {
7: // create a tree from the XML document feed.rss
8: Builder builder = new Builder();
9: File xmlFile = new File(“feed.rss”);
10: Document doc = builder.build(xmlFile);
11:
12: // get the root element <rss>
13: Element root = doc.getRootElement();
14:
15: // get its <channel> element
16: Element channel = root.getFirstChildElement(“channel”);
17:
18: // get its <link> elements
19: Elements children = channel.getChildElements();
20: for (int i = 0; i < children.size(); i++) {
21:
22: // get a <link> element
23: Element link = children.get(i);
24:
25: // get its text
26: Text linkText = (Text) link.getChild(0);
27:
28: // update any link matching a URL
29: if (linkText.getValue().equals(
30: “http://www.cadenhead.org/workbench/”)) {
31:
32: // update the link’s text
33: link.removeChild(0);
34: link.appendChild(“http://www.cadenhead.org/”);
35: }
36: }
37:
38: // create new elements and attributes to add
39: Element item = new Element(“item”);
40: Element itemTitle = new Element(“title”);
41:
42: // add them to the <channel> element
43: itemTitle.appendChild(
44: “Fuzzy Zoeller Sues Over Libelous Wikipedia Page”
45:);
46: item.appendChild(itemTitle);

524 DAY 19: Reading and Writing RSS Feeds

LISTING 19.4 Continued

47: channel.appendChild(item);
48:
49: // display the XML document
50: System.out.println(doc.toXML());
51: } catch (ParsingException pe) {
52: System.out.println(“Error parsing document: “ + pe.getMessage());
53: pe.printStackTrace();
54: System.exit(-1);
55: }
56: }
57: }

The DomainEditor application displays the modified XML document to standard output,
so it can be run with the following command to produce a file named feeds2.rss:

java DomainEditor > feed2.rss

Formatting an XML Document
As described earlier, XOM does not retain insignificant whitespace when representing
XML documents. This is in keeping with one of XOM’s design goals—to disregard any-
thing that has no syntactic significance in XML. (Another example of this is how text is
treated identically whether created using character entities, CDATA sections, or regular
characters.)

Today’s next project is the DomainWriter application, which adds a comment to the
beginning of the XML document feeds2.rss and serializes it with indented lines, pro-
ducing the version shown in Listing 19.5.

LISTING 19.5 The Full Text of feeds2.rss

1: <?xml version=”1.0”?>
2: <rss version=”2.0”>
3: <channel>
4: <title>Workbench</title>
5: <link>http://www.cadenhead.org/</link>
6: <item>
7: <title>Fuzzy Zoeller Sues Over Libelous Wikipedia Page</title>
8: </item>
9: </channel>
10: </rss>

Processing XML with XOM 525

19

The Serializer class in nu.xom offers control over how an XML document is formatted
when it is displayed or stored serially. Indentation, character encoding, line breaks, and
other formatting are established by objects of this class.

A Serializer object can be created by specifying an output stream and character encod-
ing as arguments to the constructor:

File inFile = new File(arguments[0]);
FileOutputStream fos = new FileOutputStream(“new_” +

inFile.getName());
Serializer output = new Serializer(fos, “ISO-8859-1”);

These statements serialize a file using the ISO-8859-1 character encoding. The file is
given a name based on a command-line argument.

Serializer supports 20 encodings, including ISO-10646-UCS-2, ISO-8859-1 through
ISO-8859-10, ISO-8859-13 through ISO-8859-16, UTF-8, and UTF-16. There’s also a
Serializer() constructor that takes only an output stream as an argument; this uses the
UTF-8 encoding by default.

Indentation is set by calling the serializer’s setIndentation() method with an integer
argument specifying the number of spaces:

output.setIndentation(2);

An entire XML document is written to the serializer destination by calling the serializer’s
write() method with the document as an argument:

output.write(doc);

The DomainWriter application inserts a comment atop the XML document instead of
appending it at the end of a parent node’s children. This requires another method of the
parent node, insertChild(), which is called with two arguments—the element to add
and the integer position of the insertion:

Builder builder = new Builder();
Document doc = builder.build(arguments[0]);
Comment timestamp = new Comment(“File created “ +

new java.util.Date());
doc.insertChild(timestamp, 0);

The comment is placed at position 0 atop the document, moving the domains tag down
one line but remaining below the XML declaration.

Listing 19.6 contains the source code of the application.

526 DAY 19: Reading and Writing RSS Feeds

LISTING 19.6 The Full Text of DomainWriter.java

1: import java.io.*;
2: import nu.xom.*;
3:
4: public class DomainWriter {
5: public static void main(String[] arguments) throws IOException {
6: try {
7: // Create a tree from an XML document
8: // specified as a command-line argument
9: Builder builder = new Builder();
10: Document doc = builder.build(arguments[0]);
11:
12: // Create a comment with the current time and date
13: Comment timestamp = new Comment(“File created “
14: + new java.util.Date());
15:
16: // Add the comment above everything else in the
17: // document
18: doc.insertChild(timestamp, 0);
19:
20: // Create a file output stream to a new file
21: File inFile = new File(arguments[0]);
22: FileOutputStream fos = new FileOutputStream(“new_” +
inFile.getName());
23:
24: // Using a serializer with indention set to 2 spaces,
25: // write the XML document to the file
26: Serializer output = new Serializer(fos, “ISO-8859-1”);
27: output.setIndent(2);
28: output.write(doc);
29: } catch (ParsingException pe) {
30: System.out.println(“Error parsing document: “ + pe.getMessage());
31: pe.printStackTrace();
32: System.exit(-1);
33: }
34: }
35: }

The DomainWriter application takes an XML filename as a command-line argument
when run:

java DomainWriter feeds2.rss

This command produces a file called new_feeds2.rss that contains an indented copy of
the XML document with a time stamp inserted as a comment.

Processing XML with XOM 527

19

Evaluating XOM
These three sample applications cover the core features of the main XOM package and
are representative of its straightforward approach to XML processing.

There also are smaller nu.xom.canonical, nu.xom.converters, nu.xom.xinclude, and
nu.xom.xslt packages to support XInclude, XSLT, canonical XML serialization, and
conversions between the XOM model for XML and the one used by DOM and SAX.

Listing 19.7 contains an application that works with XML from a dynamic source: RSS
feeds of recently updated web content from the producer of the feed. The RssFilter
application searches the feed for specified text in headlines, producing a new XML docu-
ment that contains only the matching items and shorter indentation. It also modifies the
feed’s title and adds an RSS 0.91 document type declaration if one is needed in an RSS
0.91 format feed.

LISTING 19.7 The Full Text of RssFilter.java

1: import nu.xom.*;
2:
3: public class RssFilter {
4: public static void main(String[] arguments) {
5:
6: if (arguments.length < 2) {
7: System.out.println(“Usage: java RssFilter rssFile searchTerm”);
8: System.exit(-1);
9: }
10:
11: // Save the RSS location and search term
12: String rssFile = arguments[0];
13: String searchTerm = arguments[1];
14:
15: try {
16: // Fill a tree with an RSS file’s XML data
17: // The file can be local or something on the
18: // Web accessible via a URL.
19: Builder bob = new Builder();
20: Document doc = bob.build(rssFile);
21:
22: // Get the file’s root element (<rss>)
23: Element rss = doc.getRootElement();
24:
25: // Get the element’s version attribute
26: Attribute rssVersion = rss.getAttribute(“version”);
27: String version = rssVersion.getValue();
28:
29: // Add the DTD for RSS 0.91 feeds, if needed
30: if ((version.equals(“0.91”)) & (doc.getDocType() == null)) {

528 DAY 19: Reading and Writing RSS Feeds

LISTING 19.7 Continued

31: DocType rssDtd = new DocType(“rss”,
32: “http://my.netscape.com/publish/formats/rss-0.91.dtd”);
33: doc.insertChild(rssDtd, 0);
34: }
35:
36: // Get the first (and only) <channel> element
37: Element channel = rss.getFirstChildElement(“channel”);
38:
39: // Get its <title> element
40: Element title = channel.getFirstChildElement(“title”);
41: Text titleText = (Text)title.getChild(0);
42:
43: // Change the title to reflect the search term
44: titleText.setValue(titleText.getValue() + “: Search for “ +
45: searchTerm + “ articles”);
46:
47: // Get all of the <item> elements and loop through them
48: Elements items = channel.getChildElements(“item”);
49: for (int i = 0; i < items.size(); i++) {
50: // Get an <item> element
51: Element item = items.get(i);
52:
53: // Look for a <title> element inside it
54: Element itemTitle = item.getFirstChildElement(“title”);
55:
56: // If found, look for its contents
57: if (itemTitle != null) {
58: Text itemTitleText = (Text) itemTitle.getChild(0);
59:
60: // If the search text is not found in the item,
61: // delete it from the tree
62: if (itemTitleText.toString().indexOf(searchTerm) == -1)
63: channel.removeChild(item);
64: }
65: }
66:
67: // Display the results with a serializer
68: Serializer output = new Serializer(System.out);
69: output.setIndent(2);
70: output.write(doc);
71: } catch (Exception exc) {
72: System.out.println(“Error: “ + exc.getMessage());
73: exc.printStackTrace();
74: }
75: }
76: }

Evaluating XOM 529

19

One feed that can be used to test the application is the one from the Toronto Star news-
paper. The following command searches it for items with titles that mention the word
“snow”:

java RssFilter http://www.thestar.com/rss/000-082-672?searchMode=Lineup snow

Comments in the application’s source code describe its functionality.

XOM’s design is strongly informed by one overriding principle: enforced simplicity.

On the website for the class library, Harold states that XOM “should help inexperienced
developers do the right thing and keep them from doing the wrong thing. The learning
curve needs to be really shallow, and that includes not relying on best practices that are
known in the community but are not obvious at first glance.”

The new class library is useful for Java programmers whose Java programs require a
steady diet of XML.

Summary
Today, you learned the basics of another popular format for data representation,
Extensible Markup Language (XML), by exploring one of the most popular uses of
XML—RSS feeds.

In many ways, Extensible Markup Language is the data equivalent of the Java language.
It liberates data from the software used to create it and the operating system the software
ran on, just as Java can liberate software from a particular operating system.

By using a class library such as the open source XML Object Model (XOM) library, you
can easily create and retrieve data from an XML file.

A big advantage to representing data using XML is that you will always be able to get
that data back. If you decide to move the data into a relational database or some other
form, you can easily retrieve the information. The data being produced as RSS feeds can
be mined by software in countless ways, today and in the future.

You also can transform XML into other forms such as HTML through a variety of tech-
nology, both in Java and through tools developed in other languages.

530 DAY 19: Reading and Writing RSS Feeds

Q&A
Q What’s the difference between RSS 1.0, RSS 2.0, and Atom?

A RSS 1.0 is a syndication format that employs the Resource Description Framework
(RDF) to describe items in the feed. RSS 2.0 shares a common origin with RSS 1.0
but does not make use of RDF. Atom is another syndication format that was cre-
ated after the preceding two formats and has been adopted as an Internet standard
by the IETF.

All three formats are suitable for offering web content in XML that can be read
with a reader such as Bloglines or My Yahoo or read by software and stored,
manipulated, or transformed.

Q Why is Extensible Markup Language called XML instead of EML?

A None of the founders of the language appears to have documented the reason for
choosing XML as the acronym. The general consensus in the XML community is
that it was chosen because it “sounds cooler” than EML. Before anyone snickers at
that distinction, Sun Microsystems chose the name Java for its programming lan-
guage using the same criteria, turning down more technical-sounding alternatives
such as DNA and WRL.

There is a possibility that the founders of XML were trying to avoid confusion
with a programming language called EML (Extended Machine Language), which
predates Extensible Markup Language.

Quiz
Review today’s material by taking this three-question quiz.

Questions
1. What does RSS stand for?

a. Really Simple Syndication

b. RDF Site Summary

c. Both

2. What method cannot be used to add text to an XML element using XOM?

a. addAttribute(String, String)

b. appendChild(Text)

c. appendChild(String)

Quiz 531

19

3. When all the opening element tags, closing element tags, and other markup are
applied consistently in a document, what adjective describes the document?

a. Validating

b. Parsable

c. Well-formed

Answers
1. c. One version, RSS 2.0, claims Really Simple Syndication as its name. The other,

RSS 1.0, claims RDF Site Summary.

2. a. Answers b. and c. both work successfully. One adds the contents of a Text ele-
ment as the element’s character data. The other adds the string.

3. c. For data to be considered XML, it must be well-formed.

Certification Practice
The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Given:

public class NameDirectory {
String[] names;
int nameCount;

public NameDirectory() {
names = new String[20];
nameCount = 0;

}

public void addName(String newName) {
if (nameCount < 20)

// answer goes here
}

}

532 DAY 19: Reading and Writing RSS Feeds

The NameDirectory class must be able to hold 20 different names. What statement
should replace // answer goes here for the class to function correctly?

a. names[nameCount] = newName;

b. names[nameCount] == newName;

c. names[nameCount++] = newName;

d. names[++nameCount] = newName;

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 19 page and click the Certification Practice link.

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. Create a simple XML format to represent a book collection with three books and a
Java application that searches for books with Joseph Heller as the author, display-
ing any that it finds.

2. Create two applications: one that retrieves records from a database and produces an
XML file that contains the same information and a second application that reads
data from that XML file and displays it.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java21days.com.

Exercises 533

19

DAY 20:
XML Web Services

Over the years, there have been numerous attempts to create a standard
protocol for remote procedure calls (RPC), a way for one computer pro-
gram to call a procedure in another program over a network such as the
Internet.

Often these protocols are completely language agnostic, enabling a client
program written in a language such as C++ to call a remote database
server written in Java or something else without either side knowing or
caring about the implementation language of its partner.

RPC efforts are being driven at breakneck speed by web services, net-
working programs that use the Web to offer data in a form easily
digested by other software. Web services are being employed to share
password authentication information between sites, facilitate e-commerce
transactions between stores, provide business-to-business information
exchange, and other innovative offerings.

One of the most popular technologies in this area is XML-RPC, a protocol
for using Hypertext Transfer Protocol (HTTP) and Extensible Markup
Language (XML) for remote procedure calls. Today, you’ll learn how to
implement it in Java as the following topics are covered:

n How XML-RPC was developed

n How to communicate with another computer using XML-RPC

n How to structure an XML-RPC request and an XML-RPC response

n How to use XML-RPC in Java programs

n How to send an XML-RPC request

n How to receive an XML-RPC response

Introduction to XML-RPC
Java supports one well-established technique for remote procedure calling: remote
method invocation (RMI).

RMI shares a trait in common with RPC efforts such as the Common Object Request
Broker Architecture (CORBA) and the Open Network Computing RPC from Sun: com-
plexity. All three are designed to be robust solutions to a large variety of remote comput-
ing tasks.

This sophistication has been one of the hindrances to the adoption of existing RPC
efforts. The complexity required to implement some of these solutions can be more than
a programmer wants to take on simply to exchange information over a network.

A simpler alternative, XML-RPC, has become widely adopted for web services.

Client/server implementations of XML-RPC are available for most platforms and pro-
gramming languages in widespread use. UserLand Software offers a directory of imple-
mentations at http://www.xmlrpc.com.

XML-RPC exchanges information using a combination of HTTP, the protocol of the
World Wide Web, and XML, a format for organizing data independent of the software
used to read and write it.

The following data types are supported by XML-RPC:

n array—A data structure that holds multiple elements of any of the other data
types, including arrays

n base64—Binary data in Base 64 format

n boolean—True-false values that are either 1 (true) or 0 (false)

n dateTime.iso8601—A string containing the date and time in ISO8601 format
(such as 20070915T19:20:15 for 7:20 p.m. (and 15 seconds) on Sept. 15, 2007)

n double—Eight-byte signed floating-point numbers

n int (also called i4)—Signed integers ranging in value from –2,147,483,648 to
2,147,483,647, the same size as int values in Java

n string—Text

n struct—Name-value pairs of associated data where the name is a string and the
value can be any of the other data types (comparable to the HashMap class in Java)

XML-RPC also supports the array data type, which is used to hold arrays of any other
kind of data, including arrays.

536 DAY 20: XML Web Services

One thing noticeably absent from XML-RPC is a way to represent data as an object. The
protocol wasn’t designed with object-oriented programming in mind, but you can repre-
sent reasonably complex objects with the array and struct types.

By design, XML-RPC is a simple remote procedure call protocol that is well suited to
programming across a network. The protocol has become one of the key elements of web
services implemented by many developers of software on Windows, Macintosh, Linux,
and UNIX systems.

The full XML-RPC specification is available on XML-RPC.Com at
http://www.xmlrpc.com/spec.

More than 75 implementations of XML-RPC are available today for a variety of lan-
guages and platforms.

After the release of XML-RPC, the specification was extended to create another RPC
protocol called SOAP, the Simple Object Access Protocol.

SOAP shares some of the design goals of XML-RPC but has been expanded to better
support objects, user-defined data types, and other advanced features, resulting in a sig-
nificantly more complex protocol. SOAP has also become widely popular for web ser-
vices and other decentralized network programming.

Because SOAP is an extension of XML-RPC, it raises the question
of why the latter protocol is still in use.

When SOAP came out and was considerably more complex than
XML-RPC, there was enough difference between the related proto-
cols that an argument could be made for using either one,
depending on the needs of a particular project.

To find out more about SOAP and public servers that can be used
with SOAP clients, visit the website http://www.xmethods.com.

Communicating with XML-RPC
XML-RPC is a protocol transmitted via HTTP, the standard for data exchange between
web servers and web browsers. The information that it transmits is not web content.
Instead, it is XML data encoded in a specific way.

Communicating with XML-RPC 537

20

NOTE

NOTE

Two kinds of data exchanges are conducted using XML-RPC: client requests and server
responses.

Sending a Request
An XML-RPC request is XML data sent to a web server as part of an HTTP post
request.

A post request normally is used to transmit data from a web browser to a web server—
Java servlets, common gateway interface programs, and other software collect the data
from a post request and send Hypertext Markup Language (HTML) back in response.
When you submit an email from a web page or vote in an online poll, you’re either using
post or a similar HTTP request called get.

XML-RPC, on the other hand, is simply using HTTP as a convenient protocol for com-
municating with a server and receiving a response back.

The request consists of two parts: the HTTP headers required by the post transmission
and the XML-RPC request, which is expressed as XML.

Listing 20.1 contains an example of an XML-RPC request.

LISTING 20.1 An XML-RPC Request

1: POST /XMLRPC HTTP/1.0
2: Host: www.advogato.org
3: Connection: Close
4: Content-Type: text/xml
5: Content-Length: 151
6: User-Agent: OSE/XML-RPC
7:
8: <?xml version=”1.0”?>
9: <methodCall>
10: <methodName>test.square</methodName>
11: <params>
12: <param>
13: <value>
14: <int>13</int>
15: </value>
16: </param>
17: </params>
18: </methodCall>

In Listing 20.1, lines 1–6 are the HTTP headers, and lines 8–18 are the XML-RPC
request. This listing tells you the following:

538 DAY 20: XML Web Services

n The XML-RPC server is at http://www.advogato.org/XMLRPC (lines 1–2).

n The remote method being called is test.square (line 10).

n The method is being called with one argument, an integer with a value of 13 (lines
12–16).

Unlike their counterparts in Java, method names in an XML-RPC request do not include
parentheses. They consist of the name of an object followed by a period and the name of
the method or simply the name of the method, depending on the XML-RPC server.

XML-RPC, which has been implemented in numerous computer-pro-
gramming languages, has a few differences in terminology than
Java: Methods are called procedures, and method arguments are
called parameters. The Java terms are used often during today’s
lesson when Java programming techniques are discussed.

Responding to a Request
An XML-RPC response is XML data that is sent back from a web server like any other
HTTP response. Again, XML-RPC piggybacks on top of an established process—a web
server sending data via HTTP to a web browser—and uses it in a new way.

The response also consists of HTTP headers and an XML-RPC response in XML format.

Listing 20.2 contains an example of an XML-RPC response.

LISTING 20.2 An XML-RPC Response

1: HTTP/1.0 200 OK
2: Date: Sun, 03 Mar 2007 19:17:11 GMT
3: Server: Apache/1.3.26 (Unix) mod_virgule/1.41 PHP/4.1.2 mod_perl/1.26
4: ETag: “PbT9cMgXsXnw52OqREFNAA==”
5: Content-MD5: PbT9cMgXsXnw52OqREFNAA==
6: Content-Length: 157
7: Connection: close
8: Content-Type: text/xml
9:
10: <?xml version=”1.0”?>
11: <methodResponse>
12: <params>
13: <param>
14: <value>
15: <int>169</int>

Communicating with XML-RPC 539

20

CAUTION

LISTING 20.2 Continued

16: </value>
17: </param>
18: </params>
19: </methodResponse>

In Listing 20.2, lines 1–8 are the HTTP headers, and lines 10–19 are the XML-RPC
response. You can learn the following things from this listing:

n The response is 157 bytes in size and in XML format (lines 6 and 8).

n The value returned by the remote method is an integer that equals 169 (line 15).

An XML-RPC response contains only one argument, contrary to what you might expect
from the params tag in line 12. If the remote method does not return a value—for exam-
ple, it might be a Java method that returns void—an XML-RPC server still returns some-
thing.

This return value can be primitive data, strings, arrays of varying dimensions, and more
sophisticated data structures such as key-value pairs (the kind of thing you would imple-
ment in Java using HashMap or one of its subclasses).

The XML-RPC request and response examples were generated by
a server run by the Advogato open source advocacy site. You can
find out more about its XML-RPC server at the web address
http://www.advogato.org/xmlrpc.html.

Several XML-RPC debuggers on the web can be used to call
remote methods and see the full XML-RPC request and response,
which makes it much easier to determine if a client or server is
working correctly. One’s available at the web page http://gggeek.
raprap.it/debugger.

Choosing an XML-RPC Implementation
Although you can work with XML-RPC by creating your own classes to read and write
XML and exchange data over the Internet, an easier route is to use a preexisting Java
class library that supports XML-RPC.

540 DAY 20: XML Web Services

NOTE

One of the most popular is Apache XML-RPC, an open source project managed by the
developers of the Apache web server, Tomcat Java servlet engine, Ant build tool, and
other popular open source software.

The Apache XML-RPC project, which consists of the org.apache.xmlrpc package and
three related packages, contains classes that can be used to implement an XML-RPC
client and server with a short amount of your own code.

The project has a home page at the web address http://xml.apache.org/xmlrpc. Today’s
projects employ release 2.0.

To use this project, you must download and install an archive file that contains a pair of
JAR files: xmlrpc-2.0.jar and xmlrpc-2.0-applet.jar.

The installation archive is offered as a free ZIP download (suitable for Windows users)
and combined TAR/GZ format download (for Linux, UNIX, and Mac OS X users).

Download and unpack the archive files matching your operating system. The main folder
contains two JAR archives containing the Apache XML-RPC class libraries:
xmlrpc-2.0.jar and xmlrpc- 2.0-applet.jar (the version number might be different
at the time you install it).

After you have unpacked the files, references to the three JAR files can be added to your
system’s Classpath environment variable so that Apache XML-RPC’s packages will be
found by your Java interpreter and compiler.

The full folder location and name of each file should be included somewhere in the
Classpath. For example, on Windows, if the files were in C:\jdk\xmlrpc\
xmlrpc-2.0.jar and C:\jdk\xmlrpc\xmlrpc-2.0-applet.jar, the following text
should be appended to the end of the Classpath:

;C:\jdk\xmlrpc\xmlrpc-2.0.jar;C:\jdk\xmlrpc\xmlrpc-2.0-applet.jar

Semicolons separate each reference to a file or folder in the Classpath. The text is simi-
lar on a Linux or UNIX system, but you must use colons between files instead of semi-
colons:

:C:\jdk\xmlrpc\xmlrpc-2.0.jar:C:\jdk\xmlrpc\xmlrpc-2.0-applet.jar

Take care not to wipe out anything that’s already in the Classpath. More information on
how to set up this environmental variable can be found in Appendix A, “Using the Java
Development Kit.”

Choosing an XML-RPC Implementation 541

20

After Classpath has been configured, you can begin using Apache XML-RPC classes in
your Java programs. The easiest way to refer to these classes is to use an import state-
ment to make a package available, as in the following statement:

import org.apache.xmlrpc.*;

This makes it possible to refer to the classes in the main package, org.apache.xmlrpc,
without using the full package name. You’ll work with this package in the next two
sections.

If Apache XML-RPC doesn’t suit your needs, you can choose from
more than two dozen other implementations. XML-RPC.Com
includes a directory of XML-RPC implementations in Java, C++,
PHP, and other languages. To see the list, visit the website
http://www.xmlrpc.com and choose the Implementations hyper-
link.

Using an XML-RPC Web Service
An XML-RPC client is a program that connects to a server, calls a method on a program
on that server, and stores the result.

Using Apache XML-RPC, the process is comparable to calling any other method in
Java—you don’t have to create an XML request, parse an XML response, or connect to
the server using one of Java’s networking classes.

In the org.apache.xmlrpc package, the XmlRpcClient class represents a client. An
XmlRpcClient object can be created in three ways, each of which requires the URL of
the server:

n XmlRpcClient(String)—Create a client connecting to an address specified by the
String, which must be a valid web address (such as http://www.example.com) or
web address and port number (such as http://www.example.com:2274)

n XmlRpcClient(URL)—Create a client connecting to the specified URL object

n XmlRpcClient(String, int)—Create a client connecting to the specified host-
name (String) and port number (int)

The two constructors that require a String argument throw java.net.
MalformedURLException exceptions if the argument is not a valid web URL.

542 DAY 20: XML Web Services

NOTE

The following statement creates a client to an XML-RPC client on the host cadenhead.
org at the port 4413:

XmlRpcClient client = new XmlRpcClient(“http://cadenhead.org:4413”);

If you are calling a remote method with any arguments, they should be stored in a
Vector object, a data structure that holds objects of different classes.

Vectors were covered during Day 8, “Data Structures.” They are
part of the java.util package.

To work with vectors, call the Vector() constructor with no arguments and call its
addElement(Object) method with each object that should be added to the vector.
Objects can be of any class and must be added to the vector in the order that they are
called in the remote method.

The following data types can be arguments to a remote method:

n byte[] arrays for base64 data

n Boolean objects for boolean values

n Date objects for dateTime.iso8601 values

n Double objects for double values

n Integer objects for int values

n String objects for string values

n Hashtable objects for struct values

n Vector objects for arrays

The Date, Hashtable, and Vector classes are in the java.util package.

For example, if an XML-RPC server has a method that takes String and double argu-
ments, the following code creates a vector that holds each of the arguments:

String code = “conical”;
Double xValue = new Double(175);
Vector parameters = new Vector();
parameters.addElement(code);
parameters.addElement(xValue);

Using an XML-RPC Web Service 543

20

NOTE

To call the remote method on the XML-RPC server, call the XmlRpcClient object’s exe-
cute(String, Vector) object with two arguments:

n The name of the method

n The vector that holds the method’s arguments

The name of the method should be specified without any parentheses or arguments. An
XML-RPC server usually documents the methods that it makes available to the public—
for example, there really is a cadenhead.org XML-RPC server that operates on port
4413 (it’s my own test server). It offers dmoz.getRandomSite(), a method that returns an
Object containing information about a random website. This method has no arguments.

The following statements create an XML-RPC client and call this method:

XmlRpcClient client = new XmlRpcClient(“http://cadenhead.org:4413”);
Vector params = new Vector();
Object result = client.execute(“dmoz.getRandomSite”, params);

The execute() method returns an Object that contains the response. This object should
be cast to one of the data types sent to a method as arguments: Boolean, byte[], Date,
Double, Integer, String, Hashtable, or Vector.

Like other networking methods in Java, execute() throws a java.net.IOException
exception if an input/output error occurs during the connection between client and server.
There’s also an XmlRpcException exception that is thrown if the server reports an XML-
RPC error.

Objects returned by the execute() method have the following data types: Boolean for
boolean XML-RPC values, byte[] for base64 data, Date for dateTime.iso8601 data,
Double for double values, Integer for int (or i4) values, String for strings,
Hashtable for struct values, and Vector for arrays.

To see all this in a working program, enter the text of Listing 20.3 into your text editor
and save the file as SiteClient.java.

LISTING 20.3 The Full Text of SiteClient.java

1: import java.io.*;
2: import java.util.*;
3: import java.net.*;
4: import org.apache.xmlrpc.*;
5:
6: public class SiteClient {
7: String url;

544 DAY 20: XML Web Services

LISTING 20.3 Continued

8: String title;
9: String description;
10:
11: public static void main(String arguments[]) {
12: SiteClient client = new SiteClient();
13: try {
14: Vector response = client.getRandomSite();
15: // Report the results
16: if (response.size() > 0) {
17: client.url = response.get(1).toString();
18: client.title = response.get(2).toString();
19: client.description = response.get(3).toString();
20: System.out.println(“URL: “ + client.url
21: + “\nTitle: “ + client.title
22: + “\nDescription: “ + client.description);
23: }
24: } catch (IOException ioe) {
25: System.out.println(“IO Exception: “ + ioe.getMessage());
26: ioe.printStackTrace();
27: } catch (XmlRpcException xre) {
28: System.out.println(“XML-RPC Exception: “ + xre.getMessage());
29: }
30: }
31:
32: public Vector getRandomSite()
33: throws IOException, XmlRpcException {
34:
35: // Create the client
36: XmlRpcClient client = new XmlRpcClient(
37: “http://localhost:4413/”);
38: // Create the parameters for the request
39: Vector params = new Vector();
40: // Send the request and get the response
41: Vector result = (Vector) client.execute(“dmoz.getRandomSite”,
42: params);
43: return result;
44: }
45: }

The SiteClient application makes a connection to the XML-RPC server and calls the
dmoz.getRandomSite() method on the server with no arguments. This method returns a
Vector that contains four strings: “ok” (to show that the request was fulfilled) and the
site’s URL, title, and description.

Using an XML-RPC Web Service 545

20

The output for the SiteClient application should resemble the following:

URL: http://www.rdb.com/
Title: rdb
Description: Makers of a very simple quasi-relational database based on Unix
shell commands

These random sites are culled from the database of the Open
Directory Project, a directory of more than six million sites at
http://www.dmoz.org. The project’s data is available for redistribu-
tion by others at no cost under the terms of the Open Directory
License. For more information, search the directory for the text
“Use of ODP Data.”

Creating an XML-RPC Web Service
An XML-RPC server is a program that receives a request from a client, calls a method in
response to that request, and returns the result. The server maintains a list of methods
that it allows clients to call on; these are different Java classes called handlers.

Apache XML-RPC handles all the XML and networking itself, enabling you to focus on
the task you want a remote method to accomplish.

There are several ways to serve methods remotely with the classes in the org.apache.
xmlrpc package. The simplest is to use the WebServer class, which represents a simple
HTTP web server that only responds to XML-RPC requests.

This class has two constructors:

n WebServer(int)—Create a web server listening on the specified port number.

n WebServer(int, InetAddress)—Create a web server at the specified port and IP
address. The second argument is an object of the java.net.InetAddress class.

Both constructors throw IOException exceptions if there’s an input/output problem cre-
ating and starting the server.

The following statements create an XML-RPC web server on port 4413:

int port = Integer.parseInt(“4413”);
WebServer server = new WebServer(port);

546 DAY 20: XML Web Services

NOTE

The web server does not contain the remote methods that clients call via XML-RPC.
These reside in other Java classes, which are called handlers.

To add a handler, call the server’s addHandler(String, Object) method with the speci-
fied handler name and handler object.

The first argument to addHandler() is a name to give the handler, which can be any-
thing—it’s comparable to naming a variable. Clients will use this name when calling
remote methods.

The SiteClient application created earlier today called the remote method
dmoz.getRandomSite(). The first part of this call—the text preceding the period—refers
to a handler named dmoz.

The second argument to addHandler() is an object of the class that has public methods,
which can be called remotely.

The following statements create a handler for a WebServer object named server:

DmozHandler odp = new DmozHandler();
server.addHandler(“dmoz”, odp);

The handler in this example is a DmozHandler object, which contains a getRandomSite()
method that returns information about a random site in the Open Directory Project.
You’ll be creating this class later.

A class that handles remote method calls can be any Java class that contains public
methods that return a value, as long as the methods take arguments that correspond with
data types supported by Apache XML-RPC: boolean, byte[], Date, double, Hashtable,
int, String, and Vector.

You can easily put existing Java classes to use as XML-RPC handlers without modifica-
tion as long as they do not contain public methods that should not be called and each
public method returns a suitable value.

The suitability of return values relates to the Apache XML-RPC
implementation rather than XML-RPC itself. Other implementations
of the protocol are likely to have some differences in the data
types of the arguments they take in remote method calls and the
values they return.

Creating an XML-RPC Web Service 547

20

CAUTION

Using Apache XML-RPC, the web server allows any public method in the handler to be
called, so you should use access control to keep prying clients out of methods that should
remain off limits.

As the first step toward the creation of an XML-RPC service, the following code creates
a simple web server that takes XML-RPC requests. Enter the text of Listing 20.4 and
save the file as DmozServer.java.

LISTING 20.4 The Full Text of DmozServer.java

1: import java.io.IOException;
2: import org.apache.xmlrpc.WebServer;
3: import org.apache.xmlrpc.XmlRpc;
4:
5: public class DmozServer {
6: public static void main(String[] arguments) {
7: if (arguments.length < 1) {
8: System.out.println(“Usage: java DmozServer [port]”);
9: System.exit(0);
10: }
11: try {
12: startServer(arguments[0]);
13: } catch (IOException ioe) {
14: System.out.println(“Server error: “ +
15: ioe.getMessage());
16: }
17: }
18:
19: public static void startServer(String portString) throws IOException {
20: // Start the server
21: int port = Integer.parseInt(portString);
22: System.out.println(“Starting Dmoz server ...”);
23: WebServer server = new WebServer(port);
24:
25: // Register the handler
26: DmozHandler odp = new DmozHandler();
27: server.addHandler(“dmoz”, odp);
28: server.start();
29: System.out.println(“Accepting requests ...”);
30: }
31: }

This class can’t be compiled successfully until you have created the handler class
DmozHandler.

The DmozServer application takes a port number as a command-line argument and calls
the startServer() method with this argument.

548 DAY 20: XML Web Services

The startServer() method creates a WebServer object that monitors that port number
for incoming XML-RPC requests. One handler is added to the server: a DmozHandler
object given the name “dmoz”; then the server’s start() method is called to begin lis-
tening for requests.

That’s all the code required to implement a functional XML-RPC server. Most of the
work is in the remote methods you want a client to call, which don’t require any special
techniques as long as they are public and they return a suitable value.

To give you a complete example you can test and modify to suit your own needs, the
DmozHandler class is provided. The techniques employed in this class were covered dur-
ing Day 18, “Accessing Databases with JDBC,” and are a good review of how to use
JDBC to retrieve records from a database—in this example a MySQL database called
db1.

Enter the text of Listing 20.5 and save the file as DmozHandler.java; then compile the
classes DmozServer.java and DmozHandler.java.

LISTING 20.5 The Full Text of DmozHandler.java

1: import java.sql.*;
2: import java.util.*;
3:
4: public class DmozHandler {
5: public Vector getRandomSite() {
6: Connection conn = getMySqlConnection();
7: Vector<String> response = new Vector<String>();
8: try {
9: Statement st = conn.createStatement();
10: ResultSet rec = st.executeQuery(
11: “SELECT * FROM cooldata ORDER BY RAND() LIMIT 1”);
12: if (rec.next()) {
13: response.addElement(“ok”);
14: response.addElement(rec.getString(“url”));
15: response.addElement(rec.getString(“title”));
16: response.addElement(rec.getString(“description”));
17: } else {
18: response.addElement(“database error: no records found”);
19: }
20: } catch (SQLException sqe) {
21: response.addElement(“database error: “ + sqe.getMessage());
22: }
23: return response;
24: }
25:
26: private Connection getMySqlConnection() {
27: Connection conn = null;

Creating an XML-RPC Web Service 549

20

LISTING 20.5 Continued

28: String data = “jdbc:mysql://localhost/cool”;
29: try {
30: Class.forName(“com.mysql.jdbc.Driver”);
31: conn = DriverManager.getConnection(
32: data, “username”, “password”);
33: } catch (SQLException s) {
34: System.out.println(“SQL Error: “ + s.toString() + “ “
35: + s.getErrorCode() + “ “ + s.getSQLState());
36: } catch (Exception e) {
37: System.out.println(“Error: “ + e.toString()
38: + e.getMessage());
39: }
40: return conn;
41: }
42: }

Lines 28–32 of the DmozHandler application should be changed to reflect your own data-
base drive, username, and password. You also might need to change the rest of the string
used to connect to the database, depending on your driver.

The server is run by specifying the port number at a command line, as in this example:

java DmozServer 4413

After the server is up and running, you can modify the SiteClient application to con-
nect to a different XML-RPC server. Change lines 36–37 of Listing 20.3 to replace
localhost:4413 with a reference to the server’s computer followed by a colon and port
number, as in the following:

XmlRpcClient client = new XmlRpcClient(
“http://cadenhead.org:4413/”);

Running this particular XML-RPC server also requires a database.
To download a Microsoft Access database containing information
on 1,000 websites from the Open Directory Project, visit this
book’s website at http://www.java21days.com and open the Day
20 page. The database is in a file named dmozdata.mdb.

550 DAY 20: XML Web Services

NOTE

Summary
XML-RPC has been described as the “lowest common denominator” of remote proce-
dure call protocols, but this isn’t considered an insult by its originators. Most attempts to
facilitate software communication over a network have been extremely sophisticated,
scaring off developers who have more simple needs.

The XML-RPC protocol can be used to exchange information with any software that
supports HTTP, the lingua franca of the Web, and XML, a highly popular, structured for-
mat for data.

By looking at XML-RPC requests and responses, you should be able to figure out how to
use the protocol even without reading the protocol specification.

However, as implementations such as Apache XML-RPC become more extensive, you
can begin using it quickly without ever looking at the protocol at all.

Q&A
Q When I try to return a HashMap object from a remote method, Apache XML-

RPC responds with an XmlRpcException that states the object is not sup-
ported. Which objects does it support?

A Apache XML-RPC returns the following data types: Boolean for boolean XML-
RPC values, byte[] for base64 data, Date for dateTime.iso8601 data, Double for
double values, Integer for int (or i4) values, String for strings, Hashtable for
struct values, or Vector for arrays.

Q I’m writing an XML-RPC client to call a method that returns binary data
(base64, in other words). The execute() method of XmlRpcClient returns an
object instead of an array of bytes. How do I convert this?

A Arrays are objects in Java, so casting can be used to convert the object returned by
execute() to an array of bytes (assuming the object really is an array). The follow-
ing statement accomplishes this on an object named fromServer that contains a
byte array:

byte[] data = (byte[]) fromServer;

Q&A 551

20

Quiz
Review today’s material by taking this three-question quiz.

Questions
1. Which popular Internet protocol is not required by XML-RPC?

a. HTML

b. HTTP

c. XML

2. Which XML-RPC data type would be best suited to hold the number 8.67?

a. boolean

b. double

c. int

3. Which XML tag indicates that the data is an XML-RPC request?

a. methodCall

b. methodResponse

c. params

Answers
1. a. XML-RPC uses HTTP (Hypertext Transfer Protocol) to transport data that is

formatted as XML (Extensible Markup Language). HTML (Hypertext Markup
Language) is not used.

2. b. All floating-point numbers such as 8.67 are represented by the double type in
XML-RPC. There are not two different floating-point types, as there are in Java
(float and double).

3. a. The methodCall tag is used only in requests, methodResponse is used only in
responses, and params is used in both.

Certification Practice
The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

552 DAY 20: XML Web Services

Given:

public class Operation {
public static void main(String[] arguments) {

int x = 1;
int y = 3;
if ((x != 1) && (y++ == 3))

y = y + 2;
}

}

What is the final value of y?

a. 3

b. 4

c. 5

d. 6

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 20 page and click the Certification Practice link.

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. The programming site Advogato offers an XML-RPC interface to read member
diaries at http://www.advogato.org/xmlrpc.html. Write an application that reads a
member’s last 10 diary entries.

2. The XML-RPC interface for the weblog update service Weblogs.Com is at
http://www.weblogs.com/api.html. Write a client and server that can send and
receive the weblogUpdates.ping method.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java21days.com.

Exercises 553

20

DAY 21:
Writing Java Servlets
and Java Server Pages

The last subject to be explored is one of the most exciting and dynamic
areas in Java: the use of a web server as a platform for application devel-
opment.

The Java language has moved beyond applications that run on your com-
puter and applets that run on a web page. Servlets, web applications run
by a server over the Internet and presented by a web browser, employ
Java with all the features of the language.

Using servlets, you can collect input from users through web page forms,
present records from a database or another source, and create web
pages dynamically.

This approach can be enhanced by Java Server Pages (JSP), a way to cre-
ate web pages that mix static Hypertext Markup Language (HTML) with
the output of servlets and Java expressions.

JSP enables nonprogrammers to work on websites developed with Java.
Today you learn about each of the following topics:

n How servlets differ from applications and applets

n How to run servlets as part of the Apache web server and other
servers

n How to receive data from a web page form

n How to store and retrieve cookies

n How to use servlets to dynamically generate web content

n How to develop web applications using JSP

n How to use Java variables, expressions, and statements on a
page

Using Servlets
Servlets are Java classes run by a web server that has an interpreter that supports the Java
Servlet specification. This interpreter, which is called a servlet engine, is optimized to
run servlets with a minimum of the server’s resources.

Java servlets often serve the same purpose as programs implemented using the common
gateway interface (CGI), a protocol for writing software that sends and receives informa-
tion through a web server. CGI programming has been supported on the web for most of
its existence. Most CGI programs, which also are called CGI scripts, have been written
using languages such as Perl, Python, and PHP.

CGI programs are used often for these purposes:

n Collecting user input from a form on a web page

n Receiving information from arguments specified as part of a uniform resource
locator (URL)

n Running programs on the computer that runs the web server

n Storing and retrieving cookies, files that store a user’s preferences and other infor-
mation on his computer

n Sending data back to a user in the form of an HTML document, GIF graphic, or
another format

Java servlets can do all these things along with some behavior that’s difficult to imple-
ment using most CGI scripting languages.

Servlets offer full support for sessions, a way to keep track of a particular user over time
as a website’s pages are being viewed. They also can communicate directly with a web
server using a standard interface. As long as the server supports Java servlets, it can
exchange information with those programs.

Java servlets have the same portability advantages as the language itself. Although Sun’s
official implementation of servlets was created with the Apache Software Foundation—
the open source developers who created the Apache web server—many other companies
and groups have introduced tools to support Java servlets such as IBM WebSphere, BEA
WebLogic, and the Jetty server.

Servlets also run efficiently in memory. If 10 people are simultaneously using the same
CGI script, a web server will have 10 copies of that script loaded into memory. If 10
people are using a Java servlet, only one copy of the servlet will be loaded, spawning
threads to handle each user.

556 DAY 21: Writing Java Servlets and Java Server Pages

Servlets can be created using the javax.servlet and javax.servlet.http packages,
which are a standard part of the Java’s enterprise edition, an expanded version of the Java
class library that supports large-scale development projects.

These classes implement the Java Servlet and JSP specifications. At this time, the current
versions are Java Servlet 2.5 and JSP 2.1.

For users of the standard Java edition, which has been covered throughout this book, the
servlet packages can be downloaded from Sun’s Java servlet site at
http://java.sun.com/products/servlet. Click the Downloads link and under the
Specifications heading, choose the Download Class Files link for the Java Servlet specifi-
cation version 2.3 (class files for newer versions also might be available).

After installing the class files, to make them available, add the root folder of the installa-
tion to your computer’s Classpath environmental variable (for example, if the javax
folder was saved in c:\java\servlet-2.3, add the c:\java\servlet-2.3 folder to the
Classpath).

Another way to get these files is to use the Java servlet class library that ships with the
server you’ll be using to deploy these applications.

Running servlets and JSP requires a server that supports the technologies.

Servlets are supported by several web servers, each of which has its own installation,
security, and administration procedures.

The most popular choice for new servlet developers is Tomcat, an open source server
developed by the Apache Software Foundation in cooperation with Sun Microsystems.
Version 5.5 of Tomcat supports Java Servlet 2.4 and JSP 2.0.

Tomcat can run in conjunction with another web server (such as Apache’s web server) or
as a standalone server. Your current web server or web application server might already
include support for servlets.

The software is available as a free download from Apache’s website at the address
http://jakarta.apache.org/tomcat. Several versions are available: Download version 5.5.

Full installation instructions for Tomcat are available from the website. If you want to
run it as a standalone server for testing purposes, in most cases, the following procedure
works:

1. View the downloads page for Tomcat and other Apache projects: Visit
http://jakarta.apache.org/tomcat, and in the Downloads section of the site menu,
click the Binaries link.

A page opens with links to Apache software you can download, which are called
builds.

Using Servlets 557

21

2. In the Release Builds section, scroll to the Tomcat 5.5 heading.

The software can be downloaded as a ZIP archive, an archive compressed with TAR
and GZ, or a Windows installer.

3. Click the link of the version you want to download.

4. Install the software, making note of the folder where it is installed.

5. Create an environmental variable called JAVA_HOME that contains the folder where
Java is installed on your computer.

6. Create an environmental variable called CATALINA_HOME that contains the folder
where Tomcat was installed.

7. In the bin folder of the Tomcat installation, use either catalina.sh or
catalina.bat to run the server with one of these commands:

catalina.sh start

catalina.bat start

Tomcat begins running at port 8080 of your computer. (There’s also a stop com-
mand to shut it down.)

8. To verify that it’s running, open the address http://localhost:8080 with a web
browser. If you’re testing Tomcat from another computer, replace localhost with
the domain name or IP address of the server where Tomcat has been installed.

9. Add to your Classpath a reference to the Java servlet class library, servlet-
api.jar, that ships with Tomcat. In version 5.5, it’s in the common\lib subfolder.

If you don’t have a server but you want to begin developing servlets, several companies
offer commercial web hosting with Java servlet support. These companies have already
installed Tomcat and configured it to work with their servers, leaving you to focus on
writing servlets using the classes of the javax.servlet and javax.servlet.http pack-
ages.

For previous editions of the book, I tested servlets using
Motivational Marketing Associates (MMA) to host servlets and JSP.
MMA offers Java servlet hosting on an Apache web server running
Linux. You can find out more about its commercial hosting ser-
vices by visiting http://www.mmaweb.com.

558 DAY 21: Writing Java Servlets and Java Server Pages

NOTE

Developing Servlets
Java servlets are created and compiled just like any other Java class. After you install the
servlet packages and add them to your computer’s Classpath, you can compile servlets
with the JDK’s Java compiler or any other current compiler.

Every servlet is a subclass of the HttpServlet class, which is part of the javax.servlet
package. This class includes methods that represent the life cycle of a servlet and collect
information from the web server running the servlet.

A servlet’s life cycle methods function similarly to the life cycle methods of applets.

The init(ServletConfig) method is called automatically when a web server first brings
a servlet online to handle a user’s request. As mentioned earlier, one Java servlet can han-
dle multiple requests from different web users. The init() method is called only once,
when a servlet comes online. If a servlet is already online when another request to use the
servlet is received, the init() method won’t be called again.

The init() method has one argument—ServletConfig, an interface in the
javax.servlet package that contains methods to find out more about the environment in
which a servlet is running.

The destroy() method is called when a web server takes a servlet offline. Like the
init() method, this is called only once, when all users have finished receiving informa-
tion from the servlet. If this doesn’t take place in a specified amount of time, destroy()
is called automatically, preventing a servlet from being hung up while it waits for infor-
mation to be exchanged with a user.

One of the main tasks of a servlet is to collect information from a web user and present
something back in response. You can collect information from a user by using a form, which
is a group of text boxes, radio buttons, text areas, and other input fields on a web page.

Figure 21.1 shows a web form on a page loaded with the Mozilla web browser.

The form displayed in Figure 21.1 contains two fields: a text area and a clickable
Translate button. The HTML tags used to display this page are the following:

<html>
<body>
<head><title>ROT-13 Translator</title></head>
<h1>ROT-13 Translator</h1>
<p>Text to translate:
<form action=”Rot13” method=”post”>
<textarea name=”text” rows=”8” cols=”55”>
</textarea>
<p><input type=”submit” value=”translate”>
</form>
</body>
</html>

Developing Servlets 559

21

The form is contained within the <form> and </form> HTML tags. Each field on the
form is represented by its own tags: textarea for the text area and input for the
Translate button. The text area is given a name, “text”.

Servlets require you to have a basic familiarity with HTML because
the only user interface for a servlet is a web page running in a
browser. Two books that are good for learning HTML are Sams
Teach Yourself HTML and CSS in 24 Hours, Seventh Edition, by Dick
Oliver and Michael Morrison (ISBN 0-67232-841-0) and Sams
Teach Yourself Web Publishing with HTML and CSS in One Hour a
Day, Fifth Edition, by Laura Lemay and Rafe Colburn (ISBN 0-
67232-886-0).

Each field on a form stores information that can be transmitted to a web server and then
sent to a Java servlet. Web browsers communicate with servers by using Hypertext
Transfer Protocol (HTTP). Form data can be sent to a server using two kinds of HTTP
requests: get and post.

When a web page calls a server using get or post, the name of the program that handles
the request must be specified as a web address, also called a uniform resource locator
(URL).

A get request affixes all data on a form to the end of a URL, as in this example:

http://www.java21days.com/servlets/beep?number=5551220&repeat=no

560 DAY 21: Writing Java Servlets and Java Server Pages

FIGURE 21.1
Collecting informa-
tion with a web
form.

TIP

A post request includes form data as a header sent separately from the URL. This is
generally preferred, and it’s required when confidential information is being collected on
the form. Also, some web servers and browsers do not support URLs longer than 255
characters, which limits the amount of information that can be sent in a get request.

Java servlets handle both of these requests through methods inherited from the
HttpServlet class: doGet(HttpServletRequest, HttpServletResponse) and
doPost(HttpServletRequest, HttpServletResponse). These methods throw two kinds
of exceptions: ServletException, which is part of the javax.servlet package, and
IOException, an exception in the standard java.io package that involves input and out-
put streams.

The doGet() and doPost() methods have two arguments: an HttpServletRequest
object and an HttpServletResponse object. One is called when a get request is used to
execute the servlet, and the other is called with post. A common technique in Java
servlet programming is to use one method to call the other, as in the following example:

public void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

doPost(request, response);
}

The request and response objects belong to classes in the javax.servlet.http package.
A servlet receives information about how it was run by calling methods of the
HttpServletRequest class. For example, when a web form is submitted to a servlet,
each field on the form is stored as a string by the HttpServletRequest class.

You can retrieve these fields in a servlet by calling the getParameter(String) method
with the name of the field as an argument. This method returns null if no field of that
name exists.

A servlet communicates with the user by sending back an HTML document, a graphics
file, or another type of information supported by a web browser. It sends this information
by calling the methods of the HttpServletResponse class.

The first thing you must do when preparing a response is to define the kind of content
the servlet is sending to a browser. Call the setContentType(String) method with the
content type as an argument.

The most common form for a response is HTML, which is set by calling
setContentType(“text/html”). You also can send a response as text (“text/plain”),
graphics files (“image/gif”, “image/jpeg”), and application-specific formats such as
“application/msword”.

Developing Servlets 561

21

To send data to a browser, you create a servlet output stream associated with the browser
and then call the println(String) method on that stream. Servlet output streams are
represented by the ServletOutputStream class, which is part of the javax.servlet
package. You can get one of these streams by calling the response object’s
getOutputStream() method.

The following example creates a servlet output stream from an HttpServletResponse
object called response and then sends a short web page to that stream:

ServletOutputStream out = response.getOutputStream();
out.println(“<html>”);
out.println(“<body>”);
out.println(“<h1>Hello World!</h1>”);
out.println(“</body>”);
out.println(“</html>”);

Listing 21.1 contains a Java servlet that receives data from the form displayed in Figure
21.1.

LISTING 21.1 The Full Text of Rot13.java

1: import java.io.*;
2:
3: import javax.servlet.*;
4: import javax.servlet.http.*;
5:
6: public class Rot13 extends HttpServlet {
7:
8: public void doPost(HttpServletRequest req, HttpServletResponse res)
9: throws ServletException, IOException {
10:
11: String text = req.getParameter(“text”);
12: String translation = translate(text);
13: res.setContentType(“text/html”);
14: ServletOutputStream out = res.getOutputStream();
15: out.println(“<html>”);
16: out.println(“<body>”);
17: out.println(“<head><title>ROT-13 Translator</title></head>”);
18: out.println(“<h1>ROT-13 Translator</h1>”);
19: out.println(“<p>Text to translate:”);
20: out.println(“<form action=\”Rot13\” method=\”post\”>”);
21: out.println(“<textarea name=\”text\” ROWS=8 COLS=55>”);
22: out.println(translation);
23: out.println(“</textarea>”);
24: out.println(“<p><input type=\”submit\” value=\”translate\”>”);
25: out.println(“</form>”);
26: out.println(“</body>”);
27: out.println(“</html>”);

562 DAY 21: Writing Java Servlets and Java Server Pages

LISTING 21.1 Continued

28: }
29:
30: public void doGet(HttpServletRequest req, HttpServletResponse res)
31: throws ServletException, IOException {
32:
33: doPost(req, res);
34: }
35:
36: String translate(String input) {
37: StringBuffer output = new StringBuffer();
38: if (input != null) {
39: for (int i = 0; i < input.length(); i++) {
40: char inChar = input.charAt(i);
41: if ((inChar >= ‘A’) & (inChar <= ‘Z’)) {
42: inChar += 13;
43: if (inChar > ‘Z’)
44: inChar -= 26;
45: }
46: if ((inChar >= ‘a’) & (inChar <= ‘z’)) {
47: inChar += 13;
48: if (inChar > ‘z’)
49: inChar -= 26;
50: }
51: output.append(inChar);
52: }
53: }
54: return output.toString();
55: }
56: }

After saving the servlet, compile it with the Java compiler.

The Rot13 servlet receives text from a web form, translates it using ROT-13, and then
displays the result in a new web form. ROT-13 is a trivial method of encrypting text
through letter substitution. Each letter of the alphabet is replaced with the letter that’s 13
places away: A becomes N, N becomes A, B becomes O, O becomes B, C becomes P, P
becomes C, and so on.

Because the ROT-13 encryption scheme is easy to decode, it isn’t used when information
must remain secret. Instead, it’s used casually on Internet discussion forums such as
Usenet newsgroups. For example, if someone on a movie newsgroup wants to share a
spoiler that reveals a plot detail about an upcoming movie, she can encode it in ROT-13
to prevent people from reading it accidentally.

Developing Servlets 563

21

Want to know the big secret from the 1973 film Soylent Green?
Decode this ROT-13 text: Fbba gurl’yy or oerrqvat hf yvxr pnggyr!
Lbh’ir tbg gb jnea rirelbar naq gryy gurz! Fblyrag terra vf znqr bs
crbcyr! Lbh’ir tbg gb gryy gurz! Fblyrag terra vf crbcyr!

To make the ROT-13 servlet available, you must publish its class files in a folder on your
web server that has been designated for Java servlets.

Tomcat is organized so that servlets, other classes, and JSP pages are placed in subfold-
ers of the software’s webapps folder. One way to deploy a servlet’s class file is to store it
in a WEB-INF\classes subfolder somewhere in the webapps hierarchy of folders.

If you chose to install them during installation, Tomcat 5.5 includes several sample
servlets in the servlets-examples and jsp-examples folders inside webapps. You can
deploy the ROT-13 servlet in the servlet-examples folder by storing Rot13.class in
webapps\servlet-examples\WEB-INF\classes (Windows) or webapps/servlet-
examples/WEB-INF/classes (Linux).

If you place the Rot13.class file in this folder, edit the web.xml file in its parent folder
and add the following lines:

<servlet>
<servlet-name>Rot13</servlet-name>
<servlet-class>Rot13</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>Rot13</servlet-name>
<url-pattern>/servlet/Rot13</url-pattern>

</servlet-mapping>

The web.xml file configures a web application such as the group of servlet examples
stored in wepapps\servlet-examples.

These lines must be placed somewhere after the opening <web-app> tag and before the
closing </web-app> tag.

After adding the class file and editing web.xml, restart Tomcat and run the servlet by
loading its address with a web browser.

The address of the servlet depends on where it was stored in the webapps folder. If you
used the preceding configuration, it’s in /servlets-examples/servlet/Rot13, as in
http://localhost:8080 /servlets-examples/servlet/Rot13.

564 DAY 21: Writing Java Servlets and Java Server Pages

NOTE

Using Cookies
Many websites can be customized to keep track of information about you and the fea-
tures you want the site to display. This customization is possible because of a web
browser feature called cookies, small files containing information that a website wants to
remember about a user, such as a username, the number of visits, and the like. The files
are stored on the user’s computer, and a website can read only the cookies on the user’s
system that the site has created.

Because of privacy considerations, most web browsers can be configured to reject all
cookies or ask permission before allowing a site to create a cookie. The default behavior
for most browsers is to accept all cookies.

With servlets, you can easily create and retrieve cookies as a user runs your application.
Cookies are supported by the Cookie class in the javax.servlet.http package.

To create a cookie, call the Cookie(String, String) constructor. The first argument is
the name you want to give the cookie, and the second is the cookie’s value.

One use for cookies is to count the number of times someone has loaded a servlet. The
following statement creates a cookie named visits and gives it the initial value of 1:

Cookie visitCookie = new Cookie(“visits”, “1”);

When you create a cookie, you must decide how long it should remain valid on a user’s
computer. Cookies can be valid for an hour, a day, a year, or any time in between. When
a cookie is no longer valid, the web browser deletes it automatically.

Call a cookie’s setMaxAge(int) method to set the amount of time the cookie remains
valid, in seconds. If you use a negative value as an argument, the cookie remains valid
only while the user’s web browser is open. If you use 0 as a value, the cookie is not
stored on a user’s computer.

The purpose of creating a cookie with a maximum age of 0 is to
tell the web browser to delete the cookie if it already has one.

Cookies are sent to a user’s computer along with the data displayed by the web browser.
To send a cookie, call the addCookie(Cookie) method of an HttpServletResponse
object.

You can add more than one cookie to a response. When cookies are stored on a user’s
computer, they’re associated with the URL of the web page or program that created the
cookie. You can associate several cookies with the same URL.

Developing Servlets 565

21

NOTE

When a web browser requests a URL, the browser checks to see whether any cookies are
associated with that URL. If there are, the cookies are sent along with the request.

In a servlet, call the getCookies() method of an HttpServletRequest object to receive
an array of Cookie objects. You can call each cookie’s getName() and getValue() meth-
ods to find out about that cookie and do something with the data.

Listing 21.2 contains ColorServlet, an extended version of the ROT-13 servlet that
enables a user to select the background color of the page. The color is stored as a cookie
called color, and the servlet requests the cookie from a web browser every time the
servlet is loaded.

LISTING 21.2 The Full Text of ColorServlet.java

1: import java.io.*;
2:
3: import javax.servlet.*;
4: import javax.servlet.http.*;
5:
6: public class ColorServlet extends HttpServlet {
7:
8: public void doPost(HttpServletRequest req, HttpServletResponse res)
9: throws ServletException, IOException {
10:
11: String pageColor;
12: String colorParameter = req.getParameter(“color”);
13: if (colorParameter != null) {
14: Cookie colorCookie = new Cookie(“color”, colorParameter);
15: colorCookie.setMaxAge(31536000);
16: res.addCookie(colorCookie);
17: pageColor = colorParameter;
18: } else {
19: pageColor = retrieveColor(req.getCookies());
20: }
21: String text = req.getParameter(“text”);
22: String translation = translate(text);
23: res.setContentType(“text/html”);
24: ServletOutputStream out = res.getOutputStream();
25: out.println(“<html>”);
26: out.println(“<body bgcolor=\”” + pageColor + “\”>”);
27: out.println(“<head><title>ROT-13 Translator</title></head>”);
28: out.println(“<h1>ROT-13 Translator</h1>”);
29: out.println(“<p>Text to translate:”);
30: out.println(“<form action=\”ColorServlet\” method=\”post\”>”);
31: out.println(“<textarea name=\”text\” ROWS=8 COLS=55>”);
32: out.println(translation);
33: out.println(“</textarea>”);
34: out.println(“<p>Background color of page:”);

566 DAY 21: Writing Java Servlets and Java Server Pages

LISTING 21.2 Continued

35: out.println(“<p><input type=\”text\” name=\”color\” value=\”” +
36: pageColor + “\” SIZE=40>”);
37: out.println(“<p><input type=\”submit\” value=\”submit\”>”);
38: out.println(“</form>”);
39: out.println(“</body>”);
40: out.println(“</html>”);
41: }
42:
43: public void doGet(HttpServletRequest req, HttpServletResponse res)
44: throws ServletException, IOException {
45:
46: doPost(req, res);
47: }
48:
49: String translate(String input) {
50: StringBuffer output = new StringBuffer();
51: if (input != null) {
52: for (int i = 0; i < input.length(); i++) {
53: char inChar = input.charAt(i);
54: if ((inChar >= ‘A’) & (inChar <= ‘Z’)) {
55: inChar += 13;
56: if (inChar > ‘Z’)
57: inChar -= 26;
58: }
59: if ((inChar >= ‘a’) & (inChar <= ‘z’)) {
60: inChar += 13;
61: if (inChar > ‘z’)
62: inChar -= 26;
63: }
64: output.append(inChar);
65: }
66: }
67: return output.toString();
68: }
69:
70: String retrieveColor(Cookie[] cookies) {
71: String inColor = “#FFFFFF”;
72: for (int i = 0; i < cookies.length; i++) {
73: String cookieName = cookies[i].getName();
74: if (cookieName.equals(“color”)) {
75: inColor = cookies[i].getValue();
76: }
77: }
78: return inColor;
79: }
80: }

Developing Servlets 567

21

Figure 21.2 shows the servlet running in a web browser.

568 DAY 21: Writing Java Servlets and Java Server Pages

FIGURE 21.2
A web page gener-
ated by the
ColorServlet
servlet.

To change the page’s color, type a new value into the “Background color of page” text
field and click the Submit button.

Colors are expressed as a # sign followed by three 2-digit hexadecimal numbers (in
Figure 21.2, the numbers are FF, CC, and 99). These numbers represent the amount of
red, green, and blue the color contains, ranging from a minimum of 00 to a maximum of
FF. If you aren’t familiar with hexadecimal colors, you can try these out while testing the
servlet:

n #FF0000—Bright red

n #00FF00—Bright green

n #0000FF—Bright blue

n #FFAAAA—Light red

n #AAFFAA—Light green

n #AAAAFF—Light blue

n #FFCC99—Butterscotch

Using Sessions
One of the most powerful features offered in servlets is support for sessions, a means of
monitoring a user over time as a servlet is being used.

Normally, the Web is a stateless protocol, which means that there’s no easy way to fol-
low a user around from page to page. A client web browser requests a URL from a
server, receives the file associated with that URL, and then is completely forgotten by the
server. Nothing is done to track what a specific user does over a period of time on a web-
site.

This information isn’t important if you’re just offering a collection of static pages, but
it’s essential for many web applications. This is especially true in e-commerce: An online
store needs to know which items you’ve added to your shopping cart when it’s time to
calculate your bill, the final total needs to be remembered when a charge must be applied
to your credit card, and so on.

Servlets can retain the state of a user through the use of HttpSession, a class that repre-
sents sessions. There can be one session object for each user running your servlet.

Sessions are created, deleted, and maintained behind the scenes by the server running the
servlet.

A user’s session can be created or retrieved by calling the getSession(Boolean) method
of the servlet’s request object. Use an argument of true if a session should be created
when one doesn’t already exist for the user, as in this example for an HttpRequest object
named req:

HttpSession state = req.getSession(true);

A session object must be accessed in this manner before any servlet output has been
composed by calling a response object’s methods.

You can find out whether the session is newly created by calling its isNew() method,
which returns true under that circumstance.

If you need to keep track of something as a user employs your servlet, it can be stored in
the session object.

The session object can hold objects in a manner comparable to a Vector, one of the data
structures described on Day 8, “Data Structures.”

Objects held by a session are called its attributes. Call the session’s
setAttribute(String, Object) method with two arguments: a name to give the
attribute and the object.

To retrieve an attribute, call the getAttribute(String) method with its name as the
only argument. It returns the object, which must be cast from Object to the desired class,
or null if no attribute of that name exists.

Developing Servlets 569

21

To remove an attribute when it’s no longer needed, call removeAttribute(String) with
its name as the argument. This method does not return null if the attribute does not
exist; instead, it simply does nothing.

All three methods throw IllegalStateException exceptions if the session is no longer
valid. This can occur if the session was deleted by the server before the request was
made, some kind of error prevented sessions from being maintained, or similar reasons.

Today’s next project uses sessions to track whether a user has provided login information
to the servlet yet, as shown in Figure 21.3.

570 DAY 21: Writing Java Servlets and Java Server Pages

FIGURE 21.3
Using servlets to
log in users.

A servlet that’s used to log in a user, authenticating that the person has a valid username
and password, can be loaded under three different circumstances:

n The servlet is run before the user logs in. A form must be provided so that the user
can provide a username and password.

n The servlet is run to log in. The username and password provided by the user must
be authenticated in some manner, presumably by checking a database.

n The servlet is run after a user logs in.

To know what has happened before, which is necessary in all these circumstances, ses-
sions are used.

The LoginServlet program handles user logins with three session attributes: username,
password, and loggedIn, a Boolean object that is true when the user has logged in and
false otherwise. The source code is shown in Listing 21.3.

LISTING 21.3 The Full Text of LoginServlet.java

1: import java.io.*;
2: import java.util.Date;
3: import javax.servlet.*;
4: import javax.servlet.http.*;
5:
6: public class LoginServlet extends HttpServlet {
7:
8: public void doPost(HttpServletRequest req, HttpServletResponse res)
9: throws ServletException, IOException {
10:
11: HttpSession session = req.getSession();
12: Boolean loggedIn = (Boolean) session.getAttribute(“loggedIn”);
13: if (loggedIn == null) {
14: loggedIn = new Boolean(false);
15: }
16: String username = req.getParameter(“username”);
17: String password = req.getParameter(“password”);
18: Date lastVisit;
19: res.setContentType(“text/html”);
20: ServletOutputStream out = res.getOutputStream();
21: out.println(“<html>”);
22: out.println(“<body>”);
23: out.println(“<head><title>Login Page</title></head>”);
24: if (loggedIn.booleanValue() == true) {
25: // user is already logged in
26: username = (String) session.getAttribute(“username”);
27: password = (String) session.getAttribute(“password”);
28: lastVisit = (Date) session.getAttribute(“lastVisit”);
29: out.println(“<p>Welcome back, “ + username);
30: out.println(“<p>You last visited on “ + lastVisit);
31: lastVisit = new Date();
32: session.setAttribute(“lastVisit”, lastVisit);
33: } else {
34: if (username == null) {
35: // user has not submitted the form required to log in
36: out.println(“<h1>Log In</h1>”);
37: out.println(“<form action=\”LoginServlet\” “ +
38: “method=\”post\”>”);
39: out.println(“<p>Username:”);
40: out.println(“<input type=\”text\” name=\”username\” “ +
41: “value=\”\” SIZE=30>”);
42: out.println(“<p>Password:”);
43: out.println(“<input type=\”password\” name=\”password\” “ +
44: “value=\”\” SIZE=30>”);
45: out.println(“<p><input type=\”submit\” value=\”log in\”>”);
46: out.println(“</form>”);
47: } else {

Developing Servlets 571

21

LISTING 21.3 Continued

48: // user has submitted the login form
49: out.println(“Logging in “ + username);
50: session.setAttribute(“username”, username);
51: session.setAttribute(“password”, password);
52: session.setAttribute(“loggedIn”, new Boolean(true));
53: session.setAttribute(“lastVisit”, new Date());
54: out.println(“Reload Page”);
55: }
56: out.println(“</body>”);
57: out.println(“</html>”);
58: }
59: }
60:
61: public void doGet(HttpServletRequest req, HttpServletResponse res)
62: throws ServletException, IOException {
63:
64: doPost(req, res);
65: }
66: }

When the servlet is loaded for the first time in a web browser, it presents a form as
shown earlier in Figure 21.3.

Filling out the form and clicking the Submit button displays a page that has the text
“Logging in” and a Reload Page hyperlink.

Clicking the hyperlink loads a page with a greeting such as the following:

Welcome back, rcade

You last visited on Sat Feb 29 18:04:45 EST 2007

The servlet does not contain any code to check whether the provided username and pass-
word are valid. It simply stores them in a session so that they’re available when the
servlet is run again subsequently.

JSP
Java servlets make it easy to generate HTML text dynamically, producing pages that
change in response to user input and data.

However, servlets make it difficult to generate HTML text that never changes because it
is cumbersome and tedious to use Java statements to output HTML.

572 DAY 21: Writing Java Servlets and Java Server Pages

Servlets also require the services of a Java programmer any time the HTML needs to be
changed. The servlet must be edited, recompiled, and deployed on the Web, and few
organizations would be comfortable handing that task to a nonprogrammer.

JSP is a complement to servlets rather than a replacement. They make it easy to separate
two kinds of web content:

n Static content, the portions of a web page that don’t change, such as an online
store’s description of each product

n Dynamic content, the portions of a web page generated by a servlet, such as the
store’s pricing and availability data for each product, which can change as items
sell out

When you use only servlets on a project, it becomes difficult to make minor changes,
such as correcting a typo in text, rewording a paragraph, or altering some HTML tags to
change how the page is presented. Any kind of change requires the servlet to be edited,
compiled, tested, and redeployed on the web server.

With JSP, you can put the static content of a web page in an HTML document and call
servlets from within that content. You also can use other parts of the Java language on a
page, such as expressions, if-then blocks, and variables. A web server that supports the
Tomcat specification knows how to read these pages and execute the Java code they con-
tain, generating an HTML document as if you wrote a servlet to handle the whole task.
In actuality, JSP uses servlets for everything.

You create a JSP page as you would create an HTML document—in a text editor or web
publishing program such as Macromedia Dreamweaver. When you save the page, use the
.jsp file extension to indicate that the file is a JSP page instead of an HTML document.
Then, the page can be published on a web server like an HTML document, as long as the
server supports servlets and JSP.

When a user requests the page for the first time, the web server compiles a new servlet
that presents the page. This servlet combines everything that has been put into the page:

n Text marked up with HTML

n Calls to Java servlets

n Java expressions and statements

n Special JSP variables

JSP 573

21

Writing a JSP Page
A JSP page consists of three kinds of elements, each with its own special markup tag
that’s similar to HTML:

n Scriptlets—Java statements executed when the page is loaded. Each of these state-
ments is surrounded by <% and %> tags.

n Expressions—Java expressions that are evaluated, producing output displayed on
the page. These are surrounded by <%= and %> tags.

n Declarations—Statements to create instance variables and handle other setup tasks
required in the presentation of the page. These are surrounded by <%! and %> tags.

Using Expressions
Listing 21.4 contains a JSP page that includes one expression, a call to the
java.util.Date() constructor. This constructor produces a string containing the current
time and date. Enter this file with any text editor that can save files as plain text. (The
editor you’ve been using to create Java source code will work for this purpose as well.)

LISTING 21.4 The Full Text of time.jsp

1: <html>
2: <head>
3: <title>Clock</title>
4: </head>
5: <body>
6: <h1 align=”Center”>
7: <%= new java.util.Date() %>
8: </h1>
9: </body>
10: </html>

After saving the file, upload it to your web server in a folder where other web pages are
stored. Unlike Java servlets, which must be in a folder that has been designated for
servlets, a JSP page can be placed in any folder that’s accessible on the Web.

In Tomcat 5.5, you can place the page in any folder inside the webapps folder. If you
stored the page in webapps\jsp-examples, it would be available at /jsp-examples/
time.jsp, as in http://localhost:8080/jsp-examples/time.jsp.

When you load the page’s URL for the first time with a web browser, the web server
compiles the page into a servlet automatically. This causes the page to load slowly for
the first time, but subsequent requests run much more quickly.

574 DAY 21: Writing Java Servlets and Java Server Pages

Figure 21.4 shows the output of time.jsp.

JSP 575

21

FIGURE 21.4
Using an expres-
sion in a JSP
page.

When a page includes an expression, it’s evaluated to produce a value and displayed on
the page. If the expression produces different values each time the page is displayed, as
time.jsp does in line 7 of Listing 21.4, this is reflected in the page when loaded in a
web browser.

There are several servlet objects you can refer to in expressions and other elements of a
JSP page using the following variable names:

n out—The servlet output stream

n request—The HTTP servlet request

n response—The HTTP servlet responses

n session—The current HTTP session

n application—The servlet context used to communicate with the web server

n config—The servlet configuration object used to see how the servlet was initial-
ized

Using these variables, you can call the same methods from within a page that are avail-
able in a servlet.

Listing 21.5 contains the text of the next page you’ll create, environment.jsp,
which shows how the request variable can be used on a page. This variable
represents an object of the HttpServletRequest class, and you can call the object’s
getHeader(String) method to retrieve HTTP headers that describe the request in more
detail.

LISTING 21.5 The Full Text of environment.jsp

1: <html>
2: <head>
3: <title>Environment Variables</title>
4: </head>

LISTING 21.5 Continued

5: <body>
6:
7: Accept: <%= request.getHeader(“Accept”) %>
8: Accept-Encoding: <%= request.getHeader(“Accept-Encoding”) %>
9: Connection: <%= request.getHeader(“Connection”) %>
10: Content-Length: <%= request.getHeader(“Content-Length”) %>
11: Content-Type: <%= request.getHeader(“Content-Type”) %>
12: Cookie: <%= request.getHeader(“Cookie”) %>
13: Host: <%= request.getHeader(“Host”) %>
14: Referer: <%= request.getHeader(“Referer”) %>
15: User-Agent: <%= request.getHeader(“User-Agent”) %>
16: </u1>
17: </body>
18: </html>

In lines 7–15 of the environment.jsp page, each line contains a call to getHeader()
that retrieves a different HTTP request header. Figure 21.5 shows an example of the out-
put. The values reported for each header depend on your web server and the web browser
you’re using, so you won’t see the same values for User-Agent, Referer, and other
headers.

576 DAY 21: Writing Java Servlets and Java Server Pages

FIGURE 21.5
Using servlet
variables on a JSP
page.

Using Scriptlets
You also can use Java statements in JSP—calling methods, assigning values to variables,
creating conditional statements, and so on. These statements begin with the <% tag and
end with the %> tag. More than one statement can be enclosed within these tags.

Statements that appear inside a page are called scriptlets. You can use any of the servlet
variables that were available for expressions.

Listing 21.6 contains the code for shop-for-books.jsp, a web page that displays a list
of books, with hyperlinks to each book’s page at an online bookstore.

LISTING 21.6 The Full Text of shop-for-books.jsp

1: <html>
2: <head>
3: <title>Shop for Books</title>
4: </head>
5: <body>
6: <h2 align=”Left”>Favorite Books</h2>
7: <%
8: String[] bookTitle = { “Catch-22”, “Something Happened”,
9: “Good as Gold” };
10: String[] isbn = { “0684833395”, “0684841215”, “0684839741” };
11: String amazonLink = “http://www.amazon.com/exec/obidos/ASIN/”;
12: String bnLink = “http://search.barnesandnoble.com/booksearch/”
13: + “isbnInquiry.asp?isbn=”;
14:
15: String store = request.getParameter(“store”);
16: if (store == null) {
17: store = “Amazon”;
18: }
19: for (int i = 0; i < bookTitle.length; i++) {
20: if (store.equals(“Amazon”))
21: out.println(“” +
22: bookTitle[i] + “”);
23: else
24: out.println(“” +
25: bookTitle[i] + “”);
26: }
27: %>
28: <p>Preferred Bookstore:
29: <form action=”shop-for-books.jsp” method=”POST”>
30: <p><input type=”radio” value=”Amazon”
31: <%= (store.equals(“Amazon”) ? “ checked” : “”) %>
32: name=”store”> Amazon.Com
33: <p><input type=”radio” value=”BN”
34: <%= (store.equals(“BN”) ? “ checked” : “”) %>
35: name=”store”> Barnes & Noble
36: <p><input type=”submit” value=”Change Store”>
37: </form>
38: </body>
39: </html>

This page includes a form at the bottom of the page that lets users choose which book-
store they like to use for online shopping.

JSP 577

21

In line 29, the form is being submitted to the URL of the page. Because pages are actu-
ally servlets, they can also receive form data that’s sent by post or get.

This page uses the store field to hold “Amazon” if Amazon.com is the preferred store
and “BN” if Barnes & Noble is the preferred store.

One thing to note as you test the page is how the radio buttons on the form always match
the store you’ve chosen. This occurs because of expressions that appear on lines 29 and
31. Here’s one of those expressions:

<%= (store.equals(“Amazon”) ? “ checked” : “”) %>

This expression uses the ternary operator with the conditional store.equals(“Amazon”).
If this condition is true, the word “checked” is the value of the expression. Otherwise, an
empty string (“”) is the value.

The value of expressions is displayed as part of the JSP page. Figure 21.6 shows what
this page looks like in a web browser.

578 DAY 21: Writing Java Servlets and Java Server Pages

FIGURE 21.6
Displaying dynamic
content using
scriptlets.

Using Declarations
Another element you can insert into a JSP page is a declaration, which is a statement
that sets up a variable or method that will be defined in the page when it’s compiled into
a servlet. This feature is primarily used in conjunction with expressions and servlets.

Declarations are surrounded by <%! and %> tags, as in the following example:

<!% boolean noCookie = true %>
<!% String userName = “New user” %>

These declarations create two instance variables: noCookie and userName. When the JSP
page is compiled into a servlet, these variables will be part of the definition of that class.

Listing 21.7 contains a page that uses a declaration to present a counter.

LISTING 21.7 The Full Text of counter.jsp

1: <%@ page import=”counter.*” %>
2: <html>
3: <head>
4: <title>Counter Example</title>
5: </head>
6: <body>
7: <h1>JSP Stats</h1>
8: <%! Counter visits; %>
9: <%! int count; %>
10:
11: <%
12: visits = new Counter(application.getRealPath(“counter.dat”));
13: count = visits.getCount() + 1;
14: %>
15:
16: <p>This page has been loaded <%= count %> times.
17:
18: <% visits.setCount(count); %>
19: </body>
20: </html>

Before you can try this page, you need to create a helper class that’s called by statements
in lines 8, 12, 13, and 18 of the page.

The Counter class in Listing 21.8 represents a web counter that tallies each hit to a page.

LISTING 21.8 The Full Text of Counter.java

1: package counter;
2:
3: import java.io.*;
4: import java.util.*;
5:
6: public class Counter {
7: private int count;
8: private String filepath;
9:
10: public Counter(String inFilepath) {
11: count = 0;
12: filepath = inFilepath;

JSP 579

21

LISTING 21.8 Continued

13: }
14:
15: public int getCount() {
16: try {
17: File countFile = new File(filepath);
18: FileReader file = new FileReader(countFile);
19: BufferedReader buff = new BufferedReader(file);
20: String current = buff.readLine();
21: count = Integer.parseInt(current);
22: buff.close();
23: } catch (IOException e) {
24: // do nothing
25: } catch (NumberFormatException nfe) {
26: // do nothing
27: }
28: return count;
29: }
30:
31: public void setCount(int newCount) {
32: count = newCount;
33: try {
34: File countFile = new File(filepath);
35: FileWriter file = new FileWriter(countFile);
36: BufferedWriter buff = new BufferedWriter(file);
37: String output = “” + newCount;
38: buff.write(output, 0, output.length());
39: buff.close();
40: } catch (IOException e) {
41: // do nothing
42: }
43: }
44: }

After you compile this class successfully, it should be stored in a WEB-INF\classes\
counter subfolder in the same part of the webapps hierarchy as counter.jsp. For exam-
ple, if the JSP page is in webapps\examples\jsp, the class file should be saved in
webapps\examples\WEB-INF\classes\counter.

The Counter class loads an integer value from a file called counter.dat that is stored on
the web server. The getCount() method retrieves the current value of the counter, and
the setCount(int) method sets the current value. After the value is set, it’s saved to the
file so that the counter continues to incrementally increase.

Figure 21.7 shows counter.jsp loaded in a web browser.

580 DAY 21: Writing Java Servlets and Java Server Pages

Creating a Web Application
By combining Java classes, servlets, and JSP, you can create interactive web applica-
tions—sites that dynamically generate content in response to user input in a sophisti-
cated, cohesive way.

Every time you shop on an e-commerce site such as Amazon.com or use an online refer-
ence such as the Internet Movie Database (IMDB), you are running a web application.

To see how several aspects of Java technology can work together on the Web, you create
Guestbook, a web application that enables visitors to leave a message for the creator of a
site.

The Guestbook project is made up of three things:

n guestbook.jsp—A JSP page that displays guestbook entries from a text file on a
web server and provides a form where a visitor can add an entry

n guestbook-post.jsp—A page that saves a new guestbook entry to the text file

n Guestbook.java—A class used to filter out some characters before they are saved
in the guestbook

The JSP page in this project makes heavy use of scriptlets and expressions. Listing 21.9
contains the source code for guestbook.jsp.

LISTING 21.9 The Full Text of guestbook.jsp

1: <%@ page import=”java.util.*,java.io.*” %>
2: <html>
3: <head>
4: <title>Visitors Who Signed our Guestbook</title>
5: </head>
6: <body>

JSP 581

21

FIGURE 21.7
Using JSP and
Java objects to
count visits to a
web page.

LISTING 21.9 Continued

7: <h3>Visitors Who Signed our Guestbook</h3>
8: <%
9: String id = request.getParameter(“id”);
10: boolean noSignatures = true;
11: try {
12: String filename = application.getRealPath(id + “.gbf”);
13: FileReader file = new FileReader(filename);
14: BufferedReader buff = new BufferedReader(file);
15: boolean eof = false;
16: while (!eof) {
17: String entry = buff.readLine();
18: if (entry == null)
19: eof = true;
20: else {
21: StringTokenizer entryData = new StringTokenizer(entry, “^”);
22: String name = (String) entryData.nextElement();
23: String email = (String) entryData.nextElement();
24: String url = (String) entryData.nextElement();
25: String entryDate = (String) entryData.nextElement();
26: String ip = (String) entryData.nextElement();
27: String comments = (String) entryData.nextElement();
28: out.print(“<p>From: “ + name);
29: if (!email.equals(“None”))
30: out.println(“ <” + email + “>
”);
31: else
32: out.println(“
”);
33: if (!url.equals(“None”))
34: out.println(“Home Page: ” +
35: url + “
”);
36: out.println(“Date: “ + entryDate + “
”);
37: out.println(“IP: “ + ip);
38: out.println(“<blockquote>”);
39: out.println(“<p>” + comments);
40: out.println(“</blockquote>”);
41: noSignatures = false;
42: }
43: }
44: buff.close();
45: } catch (IOException e) {
46: out.println(“<p>This guestbook could not be read because of an error.”);
47: log(“Guestbook Error: “ + e.toString());
48: }
49: if (noSignatures)
50: out.println(“<p>No one has signed our guestbook yet.”);
51: %>
52: <h3>Sign Our Guestbook</h3>
53: <form method=”post” action=”guestbook-post.jsp”>
54: <table border=”0” cellpadding=”5” cellspacing=”0” width=”100%”>
55: <tr>

582 DAY 21: Writing Java Servlets and Java Server Pages

LISTING 21.9 Continued

56: <td width=”15%” valign=”top” align=”right”>Your Name:</td>
57: <td width=”50%”><input type=”text” name=”name” size=”40”></td>
58: </tr>
59: <tr>
60: <td width=”15%” valign=”top” align=”right”>Your E-mail Address:</td>
61: <td width=”50%”><input type=”text” name=”email” size=”40”></td>
62: </tr>
63: <tr>
64: <td width=”15%” valign=”top” align=”right”>Your Home Page:</td>
65: <td width=”50%”><input type=”text” name=”url” size=”40”></td>
66: </tr>
67: <tr>
68: <td width=”15%” valign=”top” align=”right”>Your Comments:</td>
69: <td width=”50%”>
70: <textarea rows=”6” name=”comments” cols=”40”></textarea>
71: </td>
72: </tr>
73: </table>
74: <p align=”center”><input type=”submit” value=”Submit” name=”B1”>
75: <input type=”reset” value=”Reset” name=”Reset”></p>
76: <input type=”hidden” name=”id” value=”<%= id %>”>
77: </form>
78: </body>
79: </html>

After you save this page, store it in any folder on your server where JSP pages can be
stored. You can test this even before anything else in the project is done, as long as you
have an empty guestbook file.

To create this file, save an empty text file on your system and give it the name
cinema.gbf. Store it on the Web in the webapps folder relative to where the guestbook
page has been stored. For instance, if the page is in webapps\jspexamples\guestbook.
jsp, the text file should be saved in \webapps\jspexamples.

When you load this JSP page, you must include a parameter that specifies the ID of the
guestbook to load, as in this URL:

http://localhost:8080/jsp-examples/guestbook.jsp?id=cinema

The server name and folder depend on where you have published guestbook.jsp.

Figure 21.8 shows what your guestbook looks like when your page compiles successfully
and tries to display the contents of the cinema.gbf file.

JSP 583

21

The guestbook file stores each guestbook entry on its own line, with a caret (‘^’) separat-
ing each field in the entry. Visitors can provide their name, email address, home page
address, and a comment. Two other things are saved for each entry: the date and time it
was written and the IP address of the visitor.

The following text is an example of a guestbook file that contains one entry:

Puddin N. Tane^puddin@example.com^None^Sat Feb 24 18:29:17 EST

2007^127.0.0.1^Ask me again and I’ll tell you the same.

The next JSP page to create is guestbook-post.jsp, the page that updates the guestbook
with new entries submitted by visitors. Listing 21.10 contains the source code for this
page.

LISTING 21.10 The Full Text of guestbook-post.jsp

1: <%@ page import=”java.util.*,java.io.*,example.*” %>
2: <html>
3: <head>
4: <title>Thank You For Signing Our Guestbook</title>
5: </head>
6: <body>
7: <h3>Thank You For Signing Our Guestbook</h3>
8: <%
9: String id = request.getParameter(“id”);

584 DAY 21: Writing Java Servlets and Java Server Pages

FIGURE 21.8
Testing the guest-
book.jsp page.

LISTING 21.10 Continued

10: String[] entryFields = { “name”, “email”, “url”, “comments” };
11: String[] entry = new String[4];
12: for (int i = 0; i < entryFields.length; i++) {
13: entry[i] = Guestbook.filterString(request.getParameter(entryFields[i]));
14: }
15: Date now = new Date();
16: String entryDate = now.toString();
17: String ip = request.getRemoteAddr();
18: %>
19:
20: <p>Your entry looks like this:
21: <p>From: <%= entry[0] %>
22: <%= (!entry[1].equals(“None”) ? “<”+entry[1]+”>” : “”) %>

23: <% if (!entry[2].equals(“None”)) { %>
24: Home Page: <a href=”<%= entry[2] %>”><%= entry[2] %>

25: <% } %>
26: Date: <%= entryDate %>

27: IP: <%= ip %>
28: <blockquote>
29: <p><%= entry[3] %>
30: </blockquote>
31:
32: <%
33: try {
34: boolean append = true;
35: String filename = application.getRealPath(id + “.gbf”);
36: FileWriter fw = new FileWriter(filename, append);
37: BufferedWriter fileOut = new BufferedWriter(fw);
38: String newEntry = entry[0] + “^” + entry[1] + “^” + entry[2] + “^”
39: + entryDate + “^” + ip + “^” + entry[3];
40: fileOut.write(newEntry, 0, newEntry.length());
41: fileOut.newLine();
42: fileOut.close();
43: } catch (IOException e) {
44: out.println(“<p>This guestbook could not be updated.”);
45: log(“Guestbook Error: “ + e.toString());
46: }
47: %>
48:
49: <p><a href=”guestbook.jsp?id=<%= id %>”>View the Guestbook
50: </body>
51:
52: </html>51: </html>

The guestbook-post.jsp page collects data from a web form, removes characters from
the data that can’t be put in the guestbook, and stores the result in a text file.

JSP 585

21

Each guestbook has its own file with a name that begins with the ID parameter of the
book and ends with the .gbf file extension. If the guestbook has the ID of cinema, the
filename is cinema.gbf.

Like the other JSP pages included in this web application, guestbook-post.jsp can be
stored in any folder on your server where JSP pages are kept. For this project, store the
page in the same folder as guestbook.jsp and cinema.gbf.

Before you can try the Guestbook application, you must create a Java class that is used to
filter some unwanted text from guestbook entries before they are posted.

Three characters cannot be included in the guestbook because of the way entries are
stored in a file:

n Caret characters (“^”)

n Return characters, which have the integer value of 13 in Java

n Linefeed characters, which have the integer value of 10

To remove these characters before they are saved in a guestbook, a helper class called
Guestbook is created. This class has a static method called filterString(String) that
removes those three characters from a string.

Listing 21.11 contains the source code for this class.

LISTING 21.11 The Full Text of Guestbook.java

1: package example;
2:
3: public class Guestbook {
4: public static String filterString(String input) {
5: input = replaceText(input, ‘^’, ‘ ‘);
6: input = replaceText(input, (char)13, ‘ ‘);
7: input = replaceText(input, (char)10, ‘ ‘);
8: return input;
9: }
10:
11: private static String replaceText(String inString, char oldChar,
12: char newChar) {
13:
14: while (inString.indexOf(oldChar) != -1) {
15: int oldPosition = inString.indexOf(oldChar);
16: StringBuffer data = new StringBuffer(inString);
17: data.setCharAt(oldPosition, newChar);
18: inString = data.toString();
19: }
20: return inString;
21: }
22: }

586 DAY 21: Writing Java Servlets and Java Server Pages

The replaceText() method in lines 11–21 of Listing 21.11 does most of the work in the
class. It takes three arguments:

n A string that might contain unwanted characters

n A character that should be removed

n A character that should be added in its place

When you compile the Guestbook class, it should be stored in a WEB-INF\classes\
example subfolder in the same part of the webapps hierarchy as the project’s JSP page.
For example, if the pages are in webapps\jspexamples\jsp, the class file should be
saved in webapps\jspexamples\WEB-INF\classes\example.

To test the guestbook-post.jsp page, open the page that displays guestbook entries
using an ID parameter of cinema again, as in this example:

http://localhost:8080/java/guestbook.jsp?id=cinema

Add a few guestbook entries to see how they are displayed in the guestbook.

JSP Standard Tag Library
For Java programmers eager to apply their skills on the Web, the development of the lan-
guage for server-side programming has been one of those “walk before you can crawl”
situations.

When servlets were introduced, they made it possible to use Java to create programs sim-
ilar to CGI scripts that collect input from web forms and URL parameters, producing
HTML output in response. This works great for writing programs to process mail and
handle other simple tasks, but as larger web applications require multiple pages, it
becomes clear that producing HTML output using Java statements can be cumbersome.
Revisions become more difficult, especially for any nonprogrammers involved in the
work.

Two years later, Sun took another step in the right direction with JSP, which make it easy
to combine static HTML output with dynamic output created by Java statements. Using
JSP, Java code can be placed on web pages among HTML markup and edited like any
other page. Programmers also can create their own custom JSP markup tags to interact
with Java objects. The pages compile into servlets automatically.

Unfortunately, the ease with which Java code could be placed on a JSP page proved to be
a misstep because it encourages the bad habit of placing a lot of mission-critical applica-
tion code in a place where it’s hard to maintain, is not secure, and is easily bungled by

JSP Standard Tag Library 587

21

anyone editing the HTML around the code. For example, statements to create, open, and
query a database connection, complete with usernames and passwords to gain access to
the data, can be put on a JSP page.

A giant step has been taken with the release of the JSP Standard Tag Library (JSTL), a
set of custom JSP tags and a data-access language that enable JSP-based web applica-
tions to handle presentation without ever resorting to Java code.

Tag libraries, which also are called taglibs, consist of tags that are placed on a JSP page
in a format similar to HTML tags. JSTL’s tag library offers functionality common to
most web applications. There are tags for loops and conditionals, tags to read Extensible
Markup Language (XML) documents and database results using Structured Query
Language (SQL), tags for accessing JavaBeans, and support for other tag libraries.

JSTL consists of two complementary components:

n A set of five custom JSP tag libraries that provide the core functionality required in
web applications

n The JSTL Expression Language, which makes it possible to access data at runtime
without using JSP expressions or Java statements

There’s also a separate version of each JSTL library that works with Java expressions
using existing JSP syntax.

Listing 21.12 contains a demonstration of JSTL and the Expression Language:
hello.jsp, a JSP page that uses a parameter called name as part of a greeting.

LISTING 21.12 The full text of hello.jsp

1: <html>
2: <head>
3: <title>Hello Example</title>
4: </head>
5:
6: <body>
7: <%@ taglib uri=’http://java.sun.com/jsp/jstl/core’ prefix=’c’ %>
8:
9: <c:choose>
10: <c:when test=’${!empty param.name}’>
11: <h2>Hello, <c:out value=’${param.name}’/></h2>
12: </c:when>
13: <c:otherwise>
14: <h2>Hello, stranger</h2>
15: </c:otherwise>
16: </c:choose>

588 DAY 21: Writing Java Servlets and Java Server Pages

LISTING 21.12 Continued

17:
18: </body>
19: </html>

The hello.jsp page looks for a parameter called name specified in the address (URL) of
the page. For example, the URL http://example.com/hello.jsp?name=Sailor gives name
the value Sailor and causes the page to display the response “Hello, Sailor.” When the
name parameter is omitted, “Hello, Stranger” displays instead.

The first JSP code in the page is the following directive:

<%@ taglib uri=’http://java.sun.com/jsp/jstl/core ‘ prefix=’c’ %>

Like other tag libraries, each JSTL library must be made available using a directive on
the page before any of its tags can be employed. The preceding directive makes the core
library available on the page. All tags from this library will be prefaced with the text “c:”
followed by the tag’s name, as in this example:

<c:out value=’${param.name}’/>

JSTL tags are called actions, in recognition of the fact that they generate dynamic web
content. Like XML elements, actions can stand alone (<tagname/>) or be paired (<tag-
name>…</tagname>).

The c:out action displays the contents of the local or instance variable indicated by its
value attribute.

The variable is specified using JSTL’s Expression Language, a simple data-access syntax
that borrows from ECMAScript (JavaScript) and XPath. Statements that use the language
are contained within “${“ and “}” characters.

In the preceding example, the variable param is one of several standard Expression
Language variables that contain information about the page, web application, and servlet
container. The param variable is a collection that holds all of the page parameters, each
represented as a string.

The rest of the page contains three core actions used to create a conditional block:

<c:choose>
<c:when test=’${!empty param.name}’>

<h2>Hello, <c:out value=’${param.name}’/></h2>
</c:when>
<c:otherwise>

<h2>Hello, stranger</h2>
</c:otherwise>

</c:choose>

JSP Standard Tag Library 589

21

The c:choose-c:when-c:otherwise block mirrors the functionality of a switch-case-
default Java statement, displaying enclosed HTML output only for the first c:when
action that has a test attribute with the value true. If none of the actions is true, the
c:otherwise contents are displayed.

JSTL is composed of five tag libraries:

n The core library (prefix c, default URI http://java.sun.com/jsp/jstl/core) contains
general features: output, conditional display of content, looping, variable creation
in several scopes, JavaBeans access, exception handling, URL imports, and URL
redirection.

n The SQL library (prefix sql, default URI http://java.sun.com/jsp/jstl/sql) covers
database access: data source selection, queries, updates, transactions, and looping
through results.

n The internationalization and formatting library (prefix fmt, default URI
http://java.sun.com/jsp/jstl/fmt) offers these actions: locale and resource bundle
use, text localization, and number and date formatting.

n The XML processing library (prefix x, default URI http://java.sun.com/jsp/jstl/xml)
supports XML: parsing, XPath access, XSLT transformation, looping through
nodes, and conditional processing.

n The function library (prefix fn, default URI http://java.sun.com/jsp/jstl/functions)
contains useful functions to manipulate strings and collections.

The Expression Language has operators to retrieve information from instance variables
(${object.varName}), data structures (${object[“name”]}), and indexed arrays or lists
(${object[1]}).

There also are operators for arithmetic (“+”, “-”, “*”, “/”, and “%”), comparisons (“==”,
“!=”, “<”, “<=”, “>”, and “>=”), logic (“&&”, “||”, and “!”), and empty, which detects
null objects and empty strings or collections. Parentheses can be used to group subex-
pressions.

The language offers automatic type conversion and five kinds of literals: strings, which
are enclosed within single or double quotes, integers, floating-point numbers, boolean
values (true or false), and null.

There are seven special variables available in any expression:

n cookie, a collection of all request cookies, each as an instance of the Cookie class
from the javax.servlet.http package

n header, a collection of all request headers, each as a string

590 DAY 21: Writing Java Servlets and Java Server Pages

n headerValues, a collection of all request headers, each as a string array

n initParam, a collection of all application initialization parameters, each as a string

n pageContext, an instance of jspPageContext from the javax.servlet package

n param, a collection of all request parameters, each as a string

n paramValues, a collection of all request parameters, each as a string array

When using one of these collections or other data structures, the c:foreach action makes
it easy to loop through each element. The following example displays all of the header
variables sent with a JSP page:

<c:forEach items=’${header}’ var=’head’>

Name: <c:out value=’${head.key}’/>
Value: <c:out value=’${head.value}’/>

</c:forEach>

Four variables can be used to make explicit references to variable scope:

n applicationScope, a collection of all application scope objects

n pageScope, a collection of all page scope objects

n requestScope, a collection of all request scope objects

n sessionScope, a collection of all session scope objects

For example, the expression ${sessionScope.price} retrieves an object named price in
session scope. If no other scope has an object named price, the expression ${price}
also works.

Today’s final project shows some of the power and flexibility of JSTL. This page makes
use of XML actions to present data from an RSS newsfeed, an XML format for offering
web content in machine-readable form.

JSTL can import and parse XML, HTML, or any other data available at a URL, even if it
isn’t on the same server as the page making use of it.

RSS, which stands for Really Simple Syndication, enables websites to share headlines,
links, and other content with each other (and with readers using software called an RSS
aggregator). Listing 21.13 contains an example: a simplified version of the RSS feed for
the SportsFilter website.

JSP Standard Tag Library 591

21

LISTING 21.13 The full text of sportsfilter.rss

1: <rss version=”2.0”>
2: <channel>
3: <title>SportsFilter</title>
4: <link>http://www.sportsfilter.com/</link>
5: <docs>http://www.rssboard.org/rss-specification</docs>
6: <item>
7: <title>Babe Ruth used steriods?</</title>
8: <link>http://sports.espn.go.com/mlb/news/story?id=1745899</link>
9: <description>Houston Astros second baseman Jeff Kent said the
10: steroids controversy is an embarrassment to baseball and that the
11: public needs to rethink whether sports heroes of yore abstained
12: from illegal performance-enhancing drugs.</description>
13: </item>
14: <item>
15: <title>Phoenix sports fans shell out the bucks</title>
16: <link>http://washpost.com/wp-dyn/articles/A10394-2007Feb26.html</link>
17: <description>Phoenix-area taxpayers have invested $700 million
18: in new stadiums for their pro baseball, basketball, football, and
19: hockey franchises, a world record for governmental sports support,
20: as described in today’s Washington Post.</description>
21: </item>
22: <item>
23: <title>Just buy it</title>
24: <link>http://www.nike.com/nikebiz/news/pressrelease.jhtml</link>
25: <description>Marion Jones competing in floor gymnastics, Randy
26: Johnson bowling, Lance Armstrong in the boxing ring, Andre Agassi
27: fielding 2B for the Red Sox. Nike rolls out their spring campaign
28: asking in some rather creatively edited commercial spots starting
29: tonight.</description>
30: </item>
31: </channel>
32: </rss>

SportsFilter, a popular sports community weblog at http://www.sportsfilter.com, shares
the latest news in an RSS 2.0 feed. The XML data from the feed can be read into a vari-
able using the c:import action from the core library and parsed with the x:parse action
from the XML library.

The parsed data can be examined, filtered, transformed, and displayed. Listing 21.14
contains a JSP application that uses simple XPath statements to extract and display parts
of the XML data.

592 DAY 21: Writing Java Servlets and Java Server Pages

LISTING 21.14 The full text of rss.jsp

1: <!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>
2: <html>
3: <head>
4: <!-- Declare the two tag libraries used on this page -->
5: <%@ taglib uri=’http://java.sun.com/jsp/jstl/core’ prefix=’c’ %>
6: <%@ taglib uri=’http://java.sun.com/jsp/jstl/xml’ prefix=’x’ %>
7:
8: <!-- Import the RSS feed at the URL specified by feed -->
9: <!-- For example -->
10: <!-- http://sportsfilter.com/rss.cfm -->
11: <c:import url=’${param.feed}’ var=’feedData’/>
12:
13: <!-- Parse the RSS feed -->
14: <x:parse xml=’${feedData}’ var=’feed’/>
15:
16: <!-- Retrieve the channel element -->
17: <x:set select=’$feed//rss//channel’ var=’channel’/>
18:
19: <!-- Display the channel element’s title -->
20: <title><x:out select=’$channel//title’/></title>
21: </head>
22:
23: <body>
24:
25: <!-- Display the channel element’s link and title -->
26: <p>Headlines from <a href=”<x:out select=’$channel//link’/>”>
27: <x:out select=’$channel//title’/>
28:
29: <!-- Loop through the item elements -->
30: <p>
31: <x:forEach select=’$feed//rss//channel//item’>
32: <!-- Display each element’s link, title, description -->
33: <!-- Descriptions may contain HTML. -->
34: <a href=”<x:out select=’link’/>”><x:out select=’title’/>:
35: <x:out select=’description’ escapeXml=’false’/>
36:

37: </x:forEach>
38:
39:
40: </body>
41: </html>

Comments on the page describe the JSTL actions that it contains.

The most challenging part of JSTL is the Expression Language, which can be avoided by
using versions of the tag libraries that use JSP syntax for Java statements and expres-
sions.

JSP Standard Tag Library 593

21

JSTL’s Expression Language is distinguished from the other JSP syntax by the limits on
what it can do. There are no assignment operators or conditional logic, which forces
developers to use external Java classes and JSTL actions for these tasks.

Though some Java programmers might blanch at the thought of learning another lan-
guage simply for web applications, the Expression Language is simple enough to be
picked up quickly, especially by those who are comfortable with JavaScript.

By keeping Java code out of JSP pages, the Expression Language offers reusability and
reliability. In conjunction with JSTL, it brings JSP much closer to the promise of separat-
ing the presentation of a web application from the code required to make it happen.

JSTL serves as a nice complementary offering to Struts, an open source web application
framework that’s also the work of the Apache Jakarta project.

Programmers who have embraced the model-view-controller philos-
ophy embodied by Struts might question JSTL’s inclusion of data-
base actions that don’t belong in an application’s presentation
layer.

For anything but trivial web applications, programmers should con-
sider putting database access behavior in classes accessed from
JSP rather than using JSTL’s SQL actions.

Summary
At this point, you now have three different ways to use the Java language on the web:
applets, servlets, and JSP.

The main purpose of the classes in the javax.servlet and javax.servlet.http pack-
ages is to exchange information with a web server. Java servlets are an alternative to the
CGI, the most popular way that programming languages are used to retrieve and present
data on the Web.

Because servlets can use all features of the Java language with the exception of a graphi-
cal user interface, you can use them to create sophisticated web applications.

JSP pages are an effective way to separate static content on web pages from the dynamic
content generated by servlets for those pages. By using expressions, statements, and dec-
larations, you can write Java programs on pages without ever needing to compile a pro-
gram, lay it out on a web page, design an interface, or publish class files.

594 DAY 21: Writing Java Servlets and Java Server Pages

CAUTION

The JSP Standard Tag Library (JSTL) and its Expression Language take the separation of
content and code a step further, offering a way for web applications to use Java within the
same tag-based context used in HTML and XML.

For the last three weeks, you’ve had a chance to work with the syntax and the core
classes that make up the Java language and the Java class library. You’ve ventured out
into some of the excellent class libraries offered by other companies and developers such
as XOM, the XML Object Model library, and JSTL.

You are now ready to tackle the biggest challenge yet: Turning an empty source code file
into a robust and reliable program implemented as a set of Java classes.

This book has an official website at http://www.java21days.com with answers to fre-
quently asked questions, source code for the entire book, error corrections, and supple-
mentary material. There’s also a weblog, Workbench, for people who are teaching
themselves Java 365 days a year.

Happy compiling!

Q&A
Q Is there a way to make a Java applet communicate with a servlet?

A If you want the applet to continue running after it contacts the servlet, the servlet
must be on the same machine as the web page that contains the applet. For security
reasons, applets cannot make a network connection to any machine other than the
one that hosts the applet.

If you want an applet to load a servlet in the web browser, you can call the applet’s
getAppletContext() method to get an AppletContext object and then call that
object’s showDocument(URL) method with the servlet’s URL as the argument.

Q Why do servlets and JSP require the getRealPath() method to determine
where a file is located on the web server? Can’t I store the file in the same
folder as a servlet and use the filename without referring to a path?

A Tomcat doesn’t support relative filenames inside servlets or JSP. You must know
the exact location of a file on the web server to read or write data in the file.
Because this information isn’t always available to you in a live web-hosting envi-
ronment, the ServletContext interface includes the getRealPath() method. This
method asks the web server for the full pathname of a file. One of the biggest
advantages of using Tomcat rather than CGI scripts is that you can communicate
directly with the server.

Q&A 595

21

In the counter.jsp example earlier today, the counter.dat file was created in the
same folder where counter.jsp is stored. Tomcat doesn’t store files in the same
folder as servlets.

Quiz
Review today’s material by taking this three-question quiz.

Questions
1. If a servlet is run at the same time by five web users, how many times is the

servlet’s init() method called?

a. 5

b. 1

c. 0–1

2. If you see a request variable on a JSP page, what class in javax.servlets.http is
it referring to?

a. HttpServletResponse

b. HttpServletRequest

c. ServletContext

3. Which of the JSP elements uses the <%= and %> tags?

a. Declarations

b. Expressions

c. Statements

Answers
1. c. The init() method is called when the web server first loads the servlet. This

might have taken place before all five of these users requested the servlet, so it
could call init() one time or not at all.

2. b. HttpServletRequest

3. b. The expression inside the tags will be evaluated, and its value will be displayed
on the page at the expression’s location.

596 DAY 21: Writing Java Servlets and Java Server Pages

Certification Practice
The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Given:

public class CharCase {
public static void main(String[] arguments) {

float x = 9;
float y = 5;
char c = ‘1’;
switch (c) {

case 1:
x = x + 2;

case 2:
x = x + 3;

default:
x = x + 1;

}
System.out.println(“Value of x: “ + x);

}
}

What will be the value of x when it is displayed?

a. 9.0

b. 10.0

c. 11.0

d. The program will not compile.

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 21 page and click the Certification Practice link.

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. Create a servlet that stores the data entered in a form in a file.

2. Write a JSP page that displays one greeting for Microsoft Internet Explorer users
and another greeting for everyone else.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java21days.com.

Exercises 597

21

APPENDIXES

A Using the Java Development Kit

B Programming with the Java Development
Kit

C This Book’s Website

APPENDIX A:
Using the Java
Development Kit

To spur development, Sun Microsystems offers the Java Development Kit
(JDK), a free tool to write programs with the language.

The JDK is a set of command-line programs that are used to create, com-
pile, and run Java programs. Every new release of Java is accompanied
by a new release of the development kit: The current version is JDK ver-
sion 6.

Although more sophisticated Java programming tools such as Borland
JBuilder, IntelliJ IDEA, and Eclipse are available, many programmers con-
tinue to use the Java Development Kit. I’ve been using it as my primary
Java programming tool for years.

This appendix covers how to download and install the Java Development
Kit, set it up on your computer, and use it to create, compile, and run a
simple Java program.

It also describes how to correct the most common cause of problems for
a beginning Java programmer—a misconfigured Java Development Kit.

Choosing a Java Development Tool
If you’re using a Microsoft Windows or Apple Mac OS system, you probably have a
Java interpreter installed that can run Java programs.

To develop Java programs, you need more than an interpreter. You also need a compiler
and other tools that are used to create, run, and test programs.

The Java Development Kit includes a compiler, interpreter, debugger, file archiving pro-
gram, and several other programs.

The kit is simpler than other development tools. It does not offer a graphical user inter-
face, text editor, or other features that many programmers rely on.

To use the kit, you type commands at a text prompt. MS-DOS, Linux, and UNIX users
will be familiar with this prompt, which is also called a command line.

Here’s an example of a command you might type while using the Java Development Kit:

javac RetrieveMail.java

This command tells the javac program—the Java compiler included with the kit—to
read a source code file called RetrieveMail.java and create one or more class files.
These files contain compiled bytecode that can be executed by a Java interpreter.

When RetrieveMail.java is compiled, one of the files will be named
RetrieveMail.class. If the class file was set up to function as an application, a Java
interpreter can run it.

People who are comfortable with command-line environments will be at home using the
Java Development Kit. Everyone else must become accustomed to the lack of a graphical
point-and-click environment as they develop programs.

If you have another Java development tool and you’re certain it is completely compatible
with Java 6, you don’t need to use the Java Development Kit. Many different develop-
ment tools can be used to create the tutorial programs in this book.

If you have any doubts regarding compatibility, or this book is your
first experience with the Java language, you should probably use
JDK 6.

Another free alternative is NetBeans, which can be downloaded
from Sun as a bundle with the kit and offers a graphical user
interface for programming that functions on top of the kit.

602 APPENDIX A: Using the Java Development Kit

CAUTION

Installing the Java Development Kit
You can download the Java Development Kit from Sun’s Java website at http://java.
sun.com.

The website’s Downloads section offers links to several different versions of the Java
Development Kit, and it also offers the NetBeans development environment and other
products related to the language. The product you should download is called the Java
Software Development Kit version 6. If you can’t find it in the Downloads section of the
site, look for an Early Access section that offers beta releases.

The kit is available for the following platforms:

n Windows 98, Me, NT, 2000, XP, Server 2003, and Vista

n Solaris SPARC and Intel

n Linux

The kit requires a computer with a Pentium processor that is 166MHz or faster, 32MB of
memory, and 400MB of free disk space.

The Macintosh version of the kit is available directly from Apple.
To find out more about Apple’s kit and download the tool, visit the
website http://developer.apple.com/java/download.

When you’re looking for this product, you might find that the Java Development Kit’s
version number has a second number after 6, such as “JDK 6.1.” To fix bugs and address
security problems, Sun periodically issues new releases of the kit and numbers them with
an extra period and digit after the main version number. Choose the most current version
of JDK 6 that’s offered, whether it’s numbered 6.0, 6.1, 6.2, or higher.

Take care not to download two similarly named products from Sun
by mistake: the Java Runtime Environment (JRE) 6.0 or the Java
Standard Edition 6.0 Source Release.

To go directly to the kit’s download page, the current address is http://jdk6.dev.java.net.

To set up the kit, you must download and run an installation program (or install it from a
CD). On Sun’s website, after you choose the version of the kit that’s designed for your
operating system, you can download it as a single file.

Choosing a Java Development Tool 603

A

TIP

CAUTION

After you have downloaded the file, you’ll be ready to set up the kit.

Windows Installation
Before installing the kit, make sure that no other Java development tools are installed on
your system (assuming, of course, that you don’t need any other tool at the moment).
Having more than one Java programming tool installed on your computer can often
cause configuration problems with the kit.

To set up the program on a Windows system, double-click the installation file or click
Start, Run from the Windows taskbar to find and run the file.

The installation wizard guides you through the process of installing the software. If you
accept Sun’s terms and conditions for using the kit, you’ll be asked where to install the
program, as shown in Figure A.1.

604 APPENDIX A: Using the Java Development Kit

FIGURE A.1
Installing the JDK.

The wizard suggests a folder where the kit should be installed. In Figure A.1, the wizard
is suggesting the folder C:\Program Files\Java\jdk1.6.0. When you install the kit,
the suggested name might be different.

To choose a different folder, click the Change button, then either select or create a new
folder and click OK. The wizard returns to the Custom Setup options.

Before continuing, write down the name of the folder you have
chosen. You’ll need it later to configure the kit and fix any configu-
ration problems that may occur.

TIP

You also are asked what parts of the kit to install. By default, the wizard will install all
components of the JDK:

n Development tools—The executable programs needed to create Java software

n Demos and samples—Java programs you can run and the source code files used to
create them, which you can examine to learn about the language

n Source code—The source code for the thousands of classes that make up the Java
class library

n Public Java Runtime Environment (JRE)—A Java interpreter you can distribute
with the programs you create

If you accept the default installation, you need around 350MB of free hard disk space.
You can save space by omitting everything but the program files. However, the demo
programs and Java runtime environment are extremely useful, so if you have the room,
it’s a good idea to install them.

The source files are not needed for any of the material in this book; they are primarily of
interest to experienced Java programmers.

To prevent a component from being installed, click the hard drive icon next to its name
and then choose the Don’t Install This Feature Now option.

After you choose the components to install, click the Next button to continue. You may
be asked whether to set up the Java Plug-in to work with the web browsers on your
system.

The Java Plug-in is an interpreter that runs Java programs incorporated into web pages.
These programs, which are called applets, can work with different interpreters, but most
browsers do not include an interpreter that supports the current version of the Java lan-
guage. Sun offers the plug-in to provide full language support to Microsoft Internet
Explorer, Mozilla Firefox, Opera, and other browsers.

After you complete the configuration, the wizard installs the kit on your system.

Configuring the Java Development Kit
After the wizard installs the kit, you must edit your computer’s environment variables to
include references to the kit.

Experienced MS-DOS users can finish setting up the kit by adjusting two variables and
then rebooting the computer:

Configuring the Java Development Kit 605

A

n Edit the computer’s PATH variable and add a reference to the kit’s bin folder (which
is C:\Program Files\Java\jdk1.6.0\bin if you installed the kit into the
C:\Program Files\Java\jdk1.6.0 folder).

n Edit or create a CLASSPATH variable so that it contains a reference to the current
folder—a period character and semicolon (“.;” without the quotation marks)—
followed by a reference to the tools.jar file in the kit’s lib folder (which is
C:\Program Files\Java\jdk1.6.0\lib\tools.jar if the kit was installed into
C:\Program Files\Java\jdk1.6.0).

For inexperienced MS-DOS users, the following section covers in detail how to set the
PATH and CLASSPATH variables on a Windows system.

Users of other operating systems should follow the instructions provided by Sun on its
Java Development Kit download page.

Using a Command-line Interface
The kit requires the use of a command line to compile Java programs, run them, and han-
dle other tasks.

A command line is a way to operate a computer entirely by typing commands at your
keyboard, rather than by using a mouse. Very few programs designed for Windows users
require the command line today.

To get to a command line in Windows, do the following:

n On Windows 98 or Me, choose Start, Programs, and then
choose MS-DOS Prompt.

n On Windows NT or 2000, choose Start, Programs,
Accessories, and then choose Command Prompt.

n On Windows XP or Windows Server 2003, choose Start, All
Programs, Accessories, and then choose Command Prompt.

When you open a command line in Windows, a new window opens in which you can
type commands.

The command line in Windows uses commands adopted from MS-DOS, the Microsoft
operating system that preceded Windows. MS-DOS supports the same functions as
Windows—copying, moving, and deleting files and folders; running programs; scanning
and repairing a hard drive; formatting a floppy disk; and so on. Figure A.2 shows a
command-line window.

606 APPENDIX A: Using the Java Development Kit

NOTE

In the window, a cursor blinks on the command line whenever you can type in a new
command. In Figure A.2, C:\Documents and Settings\Rogers> is the command line.

Because MS-DOS can be used to delete files and even format your hard drive, you
should learn something about the operating system before experimenting with its com-
mands.

If you’d like to learn a lot about MS-DOS, a good book is Special
Edition Using MS-DOS 6.22, Third Edition, published by Que
(emphasis on the words “a lot”—the book is 1,056 pages long).

However, you only need to know a few things about MS-DOS to use the kit: how to cre-
ate a folder, how to open a folder, and how to run a program.

Opening Folders in MS-DOS
When you are using MS-DOS on a Windows system, you have access to all the folders
you normally use in Windows. For example, if you have a Windows folder on your C:
hard drive, the same folder is accessible as C:\Windows from a command line.

To open a folder in MS-DOS, type the command CD, followed by the name of the folder,
and press Enter. Here’s an example:

CD C:\TEMP

When you enter this command, the TEMP folder on your system’s C: drive will be opened,
if it exists. After you open a folder, your command line will be updated with the name of
that folder, as shown in Figure A.3.

Configuring the Java Development Kit 607

A

Command line

FIGURE A.2
Using a newly
opened command-
line window.

NOTE

You also can use the CD command in other ways:

n Type CD \ to open the root folder on the current hard drive.

n Type CD foldername to open a subfolder matching the name you’ve used in place
of foldername, if that subfolder exists.

n Type CD .. to open the folder that contains the current folder. For example, if you
are in C:\Windows\Fonts and you use the CD .. command, C:\Windows will be
opened.

One of the book’s suggestions is to create a folder called J21work where you can create
the tutorial programs described in the book. If you already have done this, you can
switch to that folder by using the following commands:

1. CD \

2. CD J21work

If you haven’t created that folder yet, you can accomplish the task using an MS-DOS
command.

Creating Folders in MS-DOS
To create a folder from a command line, type the command MD, followed by the name of
the folder, and press Enter, as in the following example:

MD C:\STUFF

608 APPENDIX A: Using the Java Development Kit

Command line

FIGURE A.3
Opening a folder in
a command-line
window.

The STUFF folder will be created in the root folder of the system’s C: drive. To open a
newly created folder, use the CD command, followed by that folder’s name, as shown in
Figure A.4.

Configuring the Java Development Kit 609

A
Creating a folder

Opening the new folder

FIGURE A.4
Creating a new
folder in a com-
mand-line window.

If you haven’t already created a J21work folder, you can do it from a command line:

1. Change to the root folder (using the CD \ command).

2. Type the command MD J21work and press Enter.

After J21work has been created, you can go to it at any time from a command line by
using this command:

CD \J21work

The last thing you need to learn about MS-DOS to use the Java Development Kit is how
to run programs.

Running Programs in MS-DOS
The simplest way to run a program at the command line is to type its name and press
Enter. For example, type DIR and press Enter to see a list of files and subfolders in the
current folder.

You also can run a program by typing its name followed by a space and some options
that control how the program runs. These options are called arguments.

To see an example of this, change to the root folder (using CD \) and type DIR J21work.
You’ll see a list of files and subfolders contained in the J21work folder, if it contains any.

After you have installed the kit, run the Java interpreter to see that it works. Type the fol-
lowing command at a command line:

java -version

In the preceding example, java is the name of the Java interpreter program and -version
is an argument that tells the interpreter to display its version number.

You can see an example of this in Figure A.5, but your version number might be a little
different depending on what version of the kit you have installed.

610 APPENDIX A: Using the Java Development Kit

Running a program

FIGURE A.5
Running the Java
interpreter in a
command-line win-
dow.

If java -version works and you see a version number, it should begin with 1.6. Sun
sometimes tacks on a third number, but as long as it begins with 1.6 you are using the
correct version of the Java Development Kit.

If you see an incorrect version number or a Bad command or filename error after running
java -version, you need to make some changes to how the Java Development Kit is
configured on your system.

Sun Microsystems has a history of confusing name and version
changes related to Java. Though the language is called Java 6 and
the JDK is designated JDK 6.0, the internal version number of the
kit is 1.6.0. This internal number shows up in the -version com-
mand as well as the choice of installation folder for the kit.

When all else fails, run the java -version command to make sure
the right development tool has been installed on your system. If it
begins with 1.6, you’ve got the right tool to develop programs for
Java 6.

CAUTION

Correcting Configuration Errors
When you are writing Java programs for the first time, the most likely source for prob-
lems is not typos, syntax errors, or other programming mistakes. Most errors result from
a misconfigured kit.

If you type java -version at a command line and your system can’t find the folder that
contains java.exe, you will see one of the following error messages or something simi-
lar (depending on your operating system):

n Bad command or file name

n ‘java’ is not recognized as an internal or external command, opera-

ble program, or batch file

To correct this, you must configure your system’s PATH variable.

Setting the PATH on Windows 98 or Me
On a Windows 98 or Me system, you configure the PATH variable by editing the
AUTOEXEC.BAT file in the root folder of your main hard drive. This file is used by MS-
DOS to set environment variables and configure how some command-line programs
function.

AUTOEXEC.BAT is a text file you can edit with Windows Notepad. Start Notepad by choos-
ing Start, Programs, Accessories, Notepad from the Windows taskbar.

The Notepad text editor opens. Choose File, Open from Notepad’s menu bar, go to the
root folder on your main hard drive, and then open the file AUTOEXEC.BAT.

When you open the file, you’ll see a series of MS-DOS commands, each on its own line,
as shown in Figure A.6.

Configuring the Java Development Kit 611

A

PATH command

FIGURE A.6
Editing the
AUTOEXEC.BAT file
with Notepad.

The only commands you need to look for are any that begin with PATH.

The PATH command is followed by a space and a series of folder names separated by
semicolons. It sets up the PATH variable, a list of folders that contain command-line pro-
grams you use.

PATH is used to help MS-DOS find programs when you run them at a command line. In
the preceding example, the PATH command in Figure A.6 includes two folders:

n C:\PROGRA~1\MSBOB

n C:\jdk1.6.0\bin

You can see what PATH has been set to by typing the following command at a command
line:

PATH

To set up the kit correctly, the folder that contains the Java interpreter must be included
in the PATH command in AUTOEXEC.BAT.

The interpreter has the filename java.exe. If you installed JDK 1.6 in the C:\Program
Files\Java\jdk1.6.0 folder on your system, java.exe is in C:\Program
Files\Java\jdk1.6.0\bin.

If you can’t remember where you installed the kit, you can look for java.exe: Choose
Start, Find, Files or Folders. You might find several copies in different folders. To see
which one is correct, open a command-line window and do the following for each copy
you have found:

1. Use the CD command to open a folder that contains java.exe.

2. Run the command java -version in that folder.

When you know the correct folder, create a blank line at the bottom of the AUTOEXEC.BAT
file and add the following:

PATH rightfoldername;%PATH%

For example, if c:\Program Files\Java\jdk1.6.0\bin is the correct folder, the follow-
ing line should be added at the bottom of AUTOEXEC.BAT:

PATH c:\”Program Files”\Java\jdk1.6.0\bin;%PATH%

The %PATH% text keeps you from wiping out any other PATH commands in AUTOEXEC.BAT.
In this command, quotation marks have been added around the folder name Program
Files. Some versions of Windows require this to handle folder names that contain
spaces.

612 APPENDIX A: Using the Java Development Kit

After making changes to AUTOEXEC.BAT, save the file and reboot your computer. When
this is done, try the java -version command

If it displays the correct version of the kit, your system is probably configured correctly.
You’ll find out for sure when you try to create a sample program later in this appendix.

Setting the Path on Windows NT, 2000, or XP
On a Windows NT, XP, 2000, or 2003 system, you configure the Path variable using the
Environment Variables dialog box, one of the features of the system’s Control Panel.

To open this dialog box:

1. Right-click the My Computer icon on your desktop or choose Start, Properties. The
System Properties dialog box opens.

2. Click the Advanced tab to bring it to the front.

3. Click the Environment Variables button. The Environment Variables dialog box
opens (Figure A.7).

Configuring the Java Development Kit 613

A

Path system variable

FIGURE A.7
Setting environ-
ment variables in
Windows NT, XP,
2000, or 2003.

You can edit two kinds of environment variables: system variables, which apply to all
users on your computer, and user variables, which only apply to you.

Path is a system variable that helps MS-DOS find programs when you run them at a
command line. It contains a list of folders separated by semicolons.

To set up the kit correctly, the folder that contains the Java interpreter must be included
in the Path. The interpreter has the filename java.exe. If you installed the kit in the
C:\Program Files\Java\jdk1.6.0 folder on your system, java.exe is in C:\Program
Files\Java\jdk1.6.0\bin.

If you can’t remember where you installed the kit, you can look for java.exe: Choose
Start, Search. You might find several copies in different folders. To see which one is cor-
rect, open a command-line window and do the following for each copy you have found:

1. Use the CD command to open a folder that contains java.exe.

2. Run the command java -version in that folder.

When you know the correct folder, return to the Environment Variables dialog box, select
Path in the System Variables list, and then click Edit. The Edit System Variable dialog
box opens with Path in the Variable Name field and a list of folders in the Variable Value
field (Figure A.8).

614 APPENDIX A: Using the Java Development Kit

FIGURE A.8
Changing your sys-
tem’s Path vari-
able.

To add a folder to the Path, click the Variable Value field and move your cursor to the
end without changing anything. At the end, add a semicolon followed by the name of the
folder that contains the Java interpreter

For example, if c:\Program Files\Java\jdk1.6.0\bin is the correct folder, the follow-
ing text should be added to the end of the Path variable:

c:\Program Files\Java\jdk1.6.0\bin

After making the change, click OK twice: once to close the Edit System Variable dialog
box and another time to close the Environment Variables dialog box.

Try it: Open a command-line window and type the command java version.

If it displays the correct version of the Java Development Kit, your system is probably
configured correctly, though you won’t know for sure until you try to use the kit later in
this appendix

Using a Text Editor
Unlike more sophisticated Java development tools, the Java Development Kit does not
include a text editor to use when you create source files.

For an editor or word processor to work with the kit, it must be able to save text files
with no formatting.

This feature has different names in different editors. Look for a format option such as
one of the following when you save a document or set the properties for a document:

n Plain text

n ASCII text

n DOS text

n Text-only

If you’re using Windows, there are several editors included with the operating system.

Windows Notepad is a no-frills text editor that only works with plain-text files. It can
handle only one document at a time. Choose Start, All Programs, Accessories, Notepad
to run it on Windows XP or choose Start, Programs, Accessories, Notepad on other
Windows systems.

Windows WordPad is a step above Notepad. It can handle more than one document at a
time and can handle both plain-text and Microsoft Word formats. It also remembers the
last several documents it has worked on and makes them available from the File menu.
It’s also on the Accessories menu along with Notepad.

Windows users also can use Microsoft Word, but must save files as text rather than in
Word’s proprietary format. (UNIX and Linux users can author programs with emacs,
pico, and vi; Macintosh users have SimpleText or any of the previously mentioned UNIX
tools available for Java source file creation.)

One disadvantage of using simple text editors such as Notepad or WordPad is that they
do not display line numbers as you edit.

Seeing the line number helps in Java programming because many compilers indicate the
line number where an error occurred. Take a look at the following error generated by the
JDK compiler:

Palindrome.java:2: Class Font not found in type declaration.

Using a Text Editor 615

A

The number 2 after the name of the Java source file indicates the line that triggered the
compiler error. With a text editor that supports numbering, you can go directly to that line
and start looking for the error.

Usually there are better ways to debug a program with a commercial Java programming
package, but kit users must search for compiler-generated errors using the line number
indicated by the javac tool. This is one of the best reasons to move on to an advanced
Java development program after learning the language with the kit.

Another alternative is to use the kit with a programmer’s text editor
that offers line numbering and other features. One of the most
popular for Java is jEdit, a free editor available for Windows, Linux,
and other systems at the website http://www.jedit.org.

I can personally recommend UltraEdit, an excellent programmer
and web designer’s editor that sells for $39.95 at the time of this
writing. To find out more and download a trial version, visit the
website http://www.ultraedit.com.

Creating a Sample Program
Now that you have installed and set up the Java Development Kit, you’re ready to create
a sample Java program to make sure that it works.

Java programs begin as source code—a series of statements created using a text editor
and saved as a text file. You can use any program you like to create these files, as long as
it can save the file as plain, unformatted text.

The kit does not include a text editor, but most other Java development tools include a
built-in editor for creating source code files.

Run your editor of choice and enter the Java program in Listing A.1. Make sure all the
parentheses, braces, and quotation marks in the listing are entered correctly and capitalize
everything in the program exactly as shown. If your editor requires a filename before you
start entering anything, call it HelloUser.java.

LISTING A.1 Source Code of HelloUser.java

1: public class HelloUser {
2: public static void main(String[] arguments) {
3: String username = System.getProperty(“user.name”);
4: System.out.println(“Hello “ + username);
5: }
6: }

616 APPENDIX A: Using the Java Development Kit

TIP

The line numbers and colons along the left side of Listing A.1 are not part of the pro-
gram—they’re included so that I can refer to specific lines by number in each program.
If you’re ever unsure about the source code of a program in this book, you can compare
it to a copy on the book’s official website at the following address:

http://www.java21days.com

After you finish typing in the program, save the file somewhere on your hard drive with
the name HelloUser.java. Java source files must be saved with the extension .java.

If you have created a folder called J21work, save HelloUser.java
and all other Java source files from this book in that folder. This
makes it easier to find them while using a command-line window.

If you’re using Windows, a text editor such as Notepad might add an extra .txt file
extension to the filename of any Java source files you save. For example, HelloUser.
java is saved as HelloUser.java.txt. As a workaround to avoid this problem, place
quotation marks around the filename when saving a source file. Figure A.9 shows this
technique being used to save the source file HelloUser.java from Windows Notepad.

Creating a Sample Program 617

A

TIP

FIGURE A.9
Saving a source
file from Windows
Notepad.

A better solution is to permanently associate .java files with the
text editor you’ll be using: In Windows, open the folder that con-
tains HelloUser.java and double-click the file. If you have never
opened a file with the .java extension, you’ll be asked what pro-
gram to use when opening files of this type. Choose your pre-
ferred editor and select the option to make your choice
permanent. From this point on, you can open a source file for edit-
ing by double-clicking the file.

The purpose of this project is to test the Java Development Kit—none of the Java
programming concepts used in the six-line HelloUser program are described in this
appendix.

You’ll learn the basics of the language .during the first several days of Week 1, “The Java
Language.” If you have figured out anything about Java simply by typing in the source
code of Listing A.1, it’s entirely your own fault.

Compiling and Running the Program in Windows
Now you’re ready to compile the source file with the kit’s Java compiler, a program
called javac. The compiler reads a .java source file and creates one or more .class
files that can be run by a Java interpreter.

Open a command-line window and then open the folder where you saved
HelloUser.java.

If you saved the file in the J21work folder inside the root folder on your main hard drive,
the following MS-DOS command opens the folder:

cd \J21work

When you are in the correct folder, you can compile HelloUser.java by entering the
following at a command prompt:

javac HelloUser.java

Figure A.10 shows the MS-DOS commands used to switch to the \J21work folder and
compile HelloUser.java.

The kit’s compiler does not display any message if the program compiles successfully. If
there are problems, the compiler enables you to know by displaying each error along
with a line that triggered the error.

618 APPENDIX A: Using the Java Development Kit

TIP

If the program compiled without any errors, a file called HelloUser.class is created in
the same folder that contains HelloUser.java.

The class file contains the Java bytecode that will be executed by a Java interpreter. If
you get any errors, go back to your original source file and make sure that you typed it
exactly as it appears in Listing A.1.

After you have a class file, you can run that file using a Java interpreter. The kit’s inter-
preter is called java, and it also is run from the command line.

Run the HelloUser program by switching to the folder containing HelloUser.class and
entering the following:

java HelloUser

You will see the text “Hello” followed by a space and your username.

When running a Java class with the kit’s Java interpreter, don’t
specify the .class file extension after the name of the class. If
you do, you’ll see an error such as the following:

Exception in thread “main” java.lang.

➥NoClassDefFoundError: HelloUser/class

Figure A.11 shows the successful output of the HelloUser application along with the
commands used to get to that point.

If you can compile the program and run it successfully, your kit is working and you are
ready to start Day 1 of this book.

Creating a Sample Program 619

A

FIGURE A.10
Compiling a Java
program in a com-
mand-line window.

NOTE

If you cannot get the program to compile successfully even though you have typed it
exactly at it appears in the book, there may be one last problem with how the kit is
configured on your system: The CLASSPATH environment variable might need to be
configured.

Setting Up the CLASSPATH Variable
All the Java programs that you write rely on two kinds of class files: the classes you cre-
ate and the Java class library, a set of hundreds of classes that represent the functionality
of the Java language.

The kit needs to know where to find Java class files on your system. In many cases, the
kit can figure this out on its own by looking in the folder where it was installed.

You also can set it up yourself by creating or modifying another environment variable:
CLASSPATH.

Setting the CLASSPATH on Windows 98 or Me
If you have compiled and run the HelloUser program successfully, the kit has been con-
figured successfully. You don’t need to make any more changes to your system.

On the other hand, if you see a Class not found error or NoClassDefFound error when-
ever you try to run a program, you need to make sure your CLASSPATH variable is set up
correctly.

To do this, run Windows Notepad, choose File, Open and go to the root folder on your
system, and then open the file AUTOEXEC.BAT. A file containing several different MS-
DOS commands is opened in the editor, as shown in Figure A.12.

620 APPENDIX A: Using the Java Development Kit

FIGURE A.11
Running a Java
application.

Look for a line in the file that contains the text SET CLASSPATH= command followed by a
series of folder and filenames separated by semicolons.

CLASSPATH is used to help the Java compiler find the class files that it needs. The SET
CLASSPATH= command in Figure A.12 included two things with a semicolon between
them:

n .

n c:\jdk1.6.0\lib\tools.jar

A CLASSPATH can contain folders or files. It also can contain a period character (“.”),
which is another way to refer to the current folder in MS-DOS.

You can see your system’s CLASSPATH variable by typing the following command at a
command line:

ECHO %CLASSPATH%

If your CLASSPATH includes folders or files that you know are no longer on your com-
puter, you should remove the references to them on the SET CLASSPATH= line in
AUTOEXEC.BAT. Make sure to remove any extra semicolons also.

To set up the kit correctly, the file containing the Java class library must be included in
the SET CLASSPATH= command. This file has the filename tools.jar. If you installed the
kit in the C:\Program Files\Java\jdk1.6.0 folder on your system, tools.jar is prob-
ably in the folder C:\Program Files\Java\jdk1.6.0\lib.

If you can’t remember where you installed the kit, you can look for tools.jar by click-
ing Start, Find, Files or Folders from the Windows taskbar. If you find several copies,
you should be able to find the correct one using this method:

Setting Up the CLASSPATH Variable 621

A

FIGURE A.12
Editing your sys-
tem’s environment
variables.

1. Use CD to open the folder that contains the Java interpreter (java.exe).

2. Enter the command CD ...

3. Enter the command CD lib.

The lib folder normally contains the right copy of tools.jar.

When you know the correct location, create a blank line at the bottom of the
AUTOEXEC.BAT file and add the following:

SET CLASSPATH=%CLASSPATH%;.;rightlocation

For example, if tools.jar file is in the c:\Program Files\Java\jdk1.6.0\lib folder,
the following line should be added at the bottom of AUTOEXEC.BAT:

SET CLASSPATH=%CLASSPATH%;.;c:\”Program Files”\Java\jdk1.6.0\lib\tools.jar

After making changes to AUTOEXEC.BAT, save the file and reboot your computer. After
this is done, try to compile and run the HelloUser sample program again. You should be
able to accomplish this after the CLASSPATH variable has been set up correctly

Setting the Classpath on Windows NT, XP, 2000 or
2003
On a Windows NT, XP, 2000, or 2003 system, you also configure the Classpath variable
using the Environment Variables dialog box.

To open it

1. Right-click the My Computer icon on your desktop or Start menu and choose
Properties. The System Properties dialog box opens.

2. Click the Advanced tab to bring it to the front.

3. Click the Environment Variables button. The Environment Variables dialog box
opens (Figure A.13).

If your system has a Classpath variable, it will probably be one of the system variables.
Your system may not a Classpath variable set—the kit can normally find class files
without the variable.

However, if your system has a Classpath, it must be set up with at least two things: a
reference to the current folder (a period) and a reference to a file that contains the Java
class library, tools.jar.

622 APPENDIX A: Using the Java Development Kit

If you installed the kit in the C:\Program Files\Java\jdk1.6.0 folder, tools.jar is in
the folder C:\Program Files\Java\jdk1.6.0\lib.

If you can’t remember where you installed the kit, you can look for tools.jar by click-
ing Start, Search from the Windows taskbar. If you find several copies, you should be
able to find the correct one using this method

1. Use CD to open the folder that contains the Java interpreter (java.exe).

2. Enter the command CD ...

3. Enter the command CD lib.

The lib folder normally contains the right copy of tools.jar.

When you know the correct folder, return to the Environment Variables dialog box
shown in Figure A.13.

If your system does not have a Classpath, click the New button under the System
Variables list. The New System Variable dialog box opens.

If your system has a Classpath, choose it and click the Edit button. The Edit System
Variable dialog box opens.

Both boxes contain the same thing: a Variable Name field and a Variable Value field.

Setting Up the CLASSPATH Variable 623

A

ClassPath system variable

Create new variable

FIGURE A.13
Setting environ-
ment variables in
Windows NT, XP,
2000, or 2003.

Enter Classpath in the Variable Name field and the correct value for your Classpath in
the Variable Value field.

For example, if you installed the kit in c:\Program Files\Java\jdk1.6.0, your
Classpath should contain the following:

.;C:\”Program Files”\Java\jdk1.6.0\lib\tools.jar

Figure A.14 shows how I set up Classpath for my system, which has the kit installed in
C:\jdk1.6.0

624 APPENDIX A: Using the Java Development Kit

FIGURE A.14
Setting up a
Classpath in
Windows XP.

After setting up your Classpath, click OK twice: once to close the Edit or New System
Variable dialog box and another time to close the Environment Variables dialog box.

Unlike Windows 98 and Me users, you don’t have to reboot the system before you can
try it out. Open a new command-line window and type the command java -version.

If it displays the correct version of the kit, your system might be configured correctly
and require no more adjustments. Try creating the sample HelloUser program again—it
should work after the CLASSPATH variable has been set up correctly

Troubleshooting Your Kit Installation
This book has a website where you can find solutions to problems, corrections, answers
to reader questions, and other useful material; go to http://www.java21days.com.

If you are still having problems with the Java Development Kit, an online version of this
appendix is available on the site.

APPENDIX B:
Programming with the
Java Development Kit

The Java Development Kit (JDK) can be used throughout this book to cre-
ate, compile, and run Java programs.

The tools that make up the kit contain numerous features that many pro-
grammers don’t explore at all, and some of the tools themselves might
be new to you.

This appendix covers features of the kit that you can use to create more
reliable, better-tested, and faster-running Java programs.

The following topics are covered:

n Running Java applications with the interpreter

n Compiling programs with the compiler

n Running Java applets with the applet viewer

n Creating documentation with the documentation tool

n Finding bugs in your program and learning more about its perfor-
mance with the debugger

n Setting system properties with the interpreter and applet viewer

An Overview of the JDK
Although there are several dozen development environments you can use to create Java
programs, the most widely used is the Java Development Kit (JDK) from Sun
Microsystems, the set of command-line tools that are used to develop software with the
Java language.

There are two main reasons for the popularity of the kit:

n It’s free. You can download a copy at no cost from Sun’s official Java website at
http://java.sun.com.

n It’s first. Whenever Sun releases a new version of the language, the first tools that
support the new version are in the kit.

The kit uses the command line—also called the MS-DOS prompt, command prompt, or
console under Windows and the shell prompt under UNIX. Commands are entered using
the keyboard, as in the following example:

javac VideoBook.java

This command compiles a Java program called VideoBook.java using the kit’s compiler.
There are two elements to the command: the name of the compiler, javac, followed by
the name of the program to compile, VideoBook.java. A space character separates the
two elements.

Each kit command follows the same format: the name of the tool to use followed by one
or more elements indicating what the tool should do. These elements are called argu-
ments.

The following illustrates the use of command-line arguments:

java VideoBook add VHS “Invasion of the Bee Girls”

This command tells the Java interpreter to run a class file called VideoBook with three
command-line arguments: the strings add, VHS, and Invasion of the Bee Girls.

You might think there are more than three command-line argu-
ments because of the spaces in the string Invasion of the Bee
Girls. The quotation marks around that string cause it to be con-
sidered one command-line argument, which makes it possible to
include spaces in an argument.

626 APPENDIX B: Programming with the Java Development Kit

NOTE

Some arguments used with the kit modify how a tool functions. These arguments are pre-
ceded by a hyphen character and are called options.

The following command shows the use of an option:

java -version

This command tells the Java interpreter to display its version number rather than trying
to run a class file. It’s a good way to find out whether the kit is correctly configured to
run Java programs on your system. Here’s an example of the output run on a system
equipped with JDK 6:

java version “1.6.0”
Java(TM) 2 Runtime Environment, Standard Edition (build1.6.0)
Java HotSpot(TM) Client VM (build 1.6.0, mixed mode)

The version reflects Sun’s internal number for JDK 6, which is 1.6.

In some instances, you can combine options with other arguments. For example, if you
compile a Java class that uses deprecated methods, you can see more information on
these methods by compiling the class with a -deprecation option, as in the following:

javac -deprecation OldVideoBook.java

The java Interpreter
java, the Java interpreter, is used to run Java applications from the command line. It
takes as an argument the name of a class file to run, as in the following example:

java BidMonitor

Although Java class files end with the .class extension, this extension will not be speci-
fied when using the interpreter.

The class loaded by the Java interpreter must contain a class method called main() that
takes the following form:

public static void main(String[] arguments) {
// Method here

}

Some simple Java programs might consist of only one class—the one containing the
main() method. In more complex programs that make use of other classes, the interpreter
automatically loads any other classes that are needed.

The java Interpreter 627

B

The Java interpreter runs bytecode—the compiled instructions that are executed by a
Java virtual machine. After a Java program is saved in bytecode as a .class file, it can
be run by different interpreters without modification. If you have compiled a Java pro-
gram, it will be compatible with any interpreter that fully supports Java.

Interestingly enough, Java is not the only language that you can
use to create Java bytecode. NetRexx, JPython, JRuby, JudoScript,
and several dozen other languages will compile into .class files of
executable bytecode through the use of compilers specific to
those languages. Robert Tolksdorf maintains a comprehensive list
of these languages that is currently available from the web page
at http://www.robert-tolksdorf.de/vmlanguages.

You can specify the class file that will be run by the Java interpreter in two different
ways. If the class is not part of any package, you can run it by specifying the name of the
class, as in the preceding java BidMonitor example. If the class is part of a package,
you must specify the class by using its full package and class name.

For example, consider a SellItem class that is part of the org.cadenhead.auction pack-
age. To run this application, the following command would be used:

java org.cadenhead.auction.SellItem

Each element of the package name corresponds to its own subfolder The Java interpreter
will look for the SellItem.class file in several different places:

n The org\cadenhead\auction subfolder of the folder where the java command
was entered (if the command was made from the C:\J21work folder, for example,
the SellItem.class file can be run successfully if it was in the C:\J21work\org\
cadenhead\auction folder)

n The org\cadenhead\auction subfolder of any folder in your Classpath setting

If you’re creating your own packages, an easy way to manage them is to add a folder to
your Classpath that’s the root folder for any packages you create, such as C:\javapack-
ages or something similar. After creating subfolders that correspond to the name of a
package, place the package’s class files in the correct subfolder.

Java supports assertions, a debugging feature that only works when requested as a com-
mand-line option. To run a program using the Java interpreter and make use of any asser-
tions that it contains, use the command line -ea, as in the following example:

java -ea Outline

628 APPENDIX B: Programming with the Java Development Kit

NOTE

The Java interpreter executes all assert statements in the application’s class and all other
class files that it uses, with the exception of classes from the Java class library.

To remove that exception and make use of all assertions, run a class with the -esa
option.

If you don’t specify one of the options that turns on the assertions feature, all assert
statements will be ignored by the interpreter.

The javac Compiler
The Java compiler, javac, converts Java source code into one or more class files of byte-
code that can be run by a Java interpreter.

Java source code is stored in a file with the .java file extension. This file can be created
with any text editor or word processor that can save a document without any special for-
matting codes. The terminology varies depending on the text-editing software being
used, but these files are often called plain text, ASCII text, DOS text, or something
similar.

A Java source code file can contain more than one class, but only one of the classes can
be declared to be public. A class can contain no public classes at all if desired, although
this isn’t possible with applets because of the rules of inheritance.

If a source code file contains a class that has been declared to be public, the name of the
file must match the name of that class. For example, the source code for a public class
called BuyItem must be stored in a file called BuyItem.java.

To compile a file, the javac tool is run with the name of the source code file as an argu-
ment, as in the following:

javac BuyItem.java

You can compile more than one source file by including each separate filename as a
command-line argument, such as this command:

javac BuyItem.java SellItem.java

You also can use wildcard characters such as * and ?. Use the following command to
compile all .java files in a folder:

javac *.java

When you compile one or more Java source code files, a separate .class file will be cre-
ated for each Java class that compiles successfully.

The javac Compiler 629

B

If you are compiling a program that makes use of assertions, you must use the -source
1.6 option, as in this command:

javac -source 1.6 Outline.java

If the source option is not used and you try to compile a program that contains asser-
tions, javac displays an error message and won’t compile the file.

Another useful option when running the compiler is -deprecation, which causes the
compiler to describe any deprecated methods that are being employed in a Java program.

A deprecated method is one that Sun Microsystems has replaced with a better alternative,
either in the same class or in a different class entirely. Although the deprecated method
works, at some point Sun may decide to remove it from the class—the deprecation warn-
ing is a strong suggestion to stop using that method as soon as you can.

Normally, the compiler will issue a single warning if it finds any deprecated methods in a
program. The -deprecation option causes the compiler to list each method that has been
deprecated, as in the following command:

javac -deprecation SellItem.java

If you’re more concerned with the speed of a Java program than the size of its class files,
you can compile its source code with the -O option. This creates class files that have
been optimized for faster performance. Methods that are static, final, or private might be
compiled inline, a technique that makes the class file larger but causes the methods to be
executed more quickly.

If you are going to use a debugger to look for bugs in a Java class, compile the source
with the -g option to put all debugging information in the class file, including references
to line numbers, local variables, and source code. (To keep all this out of a class, compile
with the -g:none option.)

Normally, the Java compiler doesn’t provide a lot of information as it creates class files.
In fact, if the source code compiles successfully and no deprecated methods are
employed, you won’t see any output from the compiler at all. No news is good news in
this case.

If you want to see more information on what the javac tool is doing as it compiles
source code, use the -verbose option. The more verbose compiler will describe the time
it takes to complete different functions, the classes that are being loaded, and the overall
time required.

630 APPENDIX B: Programming with the Java Development Kit

The appletviewer Browser
The appletviewer tool runs Java programs that require a web browser and are presented
as part of a Hypertext Markup Language (HTML) document. It takes an HTML docu-
ment as a command-line argument, as in the following example:

appletviewer NewAuctions.html

If the argument is a web address instead of a reference to a file, appletviewer will load
the HTML document at that address. For example:

appletviewer http://www.javaonthebrain.com

Figure B.1 displays an applet loaded from this page, a site developed by cartoonist and
Java game programmer Karl Hörnell.

The appletviewer Browser 631

B

FIGURE B.1
Viewing Java web
applets outside of
a browser.

When an HTML document is loaded by appletviewer, every applet on that document
will begin running in its own window. The size of these windows depends on the height
and width attributes that were set in the applet’s html tag.

Unlike a web browser, appletviewer cannot be used to view the HTML document itself.
If you want to see how the applet is laid out in relation to the other contents of the docu-
ment, you must use a Java-capable web browser.

Mozilla Firefox and Microsoft Internet Explorer don’t offer built-in
support for Java applets. Support for the language is available as
a browser plug-in from Sun Microsystems. The Java Plug-in from
Sun can be used to run a Java applet in a browser in place of the
browser’s Java interpreter. The Plug-in is included in the Java
Runtime Environment, an interpreter for running Java programs
that is installed along with the Java Development Kit. If it isn’t
already present on your system, you can download it from Sun’s
website at http://www.java.com.

CAUTION

Using appletviewer is reasonably straightforward, but you might not be familiar with
some of the menu options that are available as the viewer runs an applet.

The following menu options are available:

n The Restart and Reload options are used to restart the execution of the applet. The
difference between these two options is that Restart does not unload the applet
before restarting it, whereas Reload does. The Reload option is equivalent to clos-
ing the applet viewer and opening it up again on the same web page.

n The Start and Stop options are used to call the start() and stop() methods of the
applet directly.

n The Clone option creates a second copy of the same applet running in its own win-
dow.

n The Tag option displays the program’s applet or object tag, along with the
HTML for any param tags that configure the applet.

Another option on the Applet pull-down menu is Info, which calls the getAppletInfo()
and getParameterInfo() methods of the applet. A programmer can implement these
methods to provide more information about the applet and the parameters that it can han-
dle.

The getAppletInfo() method will return a string that describes the applet. The
getParameterInfo() method will return an array of string arrays that specify the name,
type, and description of each parameter.

Listing B.1 contains a Java applet that demonstrates the use of these methods.

LISTING B.1 The Full Text of AppInfo.java

1: import java.awt.*;
2:
3: public class AppInfo extends javax.swing.JApplet {
4: String name, date;
5: int version;
6:
7: public String getAppletInfo() {
8: String response = “This applet demonstrates the “
9: + “use of the Applet’s Info feature.”;
10: return response;
11: }
12:
13: public String[][] getParameterInfo() {
14: String[] p1 = { “Name”, “String”, “Programmer’s name” };
15: String[] p2 = { “Date”, “String”, “Today’s date” };

632 APPENDIX B: Programming with the Java Development Kit

LISTING B.1 Continued

16: String[] p3 = { “Version”, “int”, “Version number” };
17: String[][] response = { p1, p2, p3 };
18: return response;
19: }
20:
21: public void init() {
22: name = getParameter(“Name”);
23: date = getParameter(“Date”);
24: String versText = getParameter(“Version”);
25: if (versText != null) {
26: version = Integer.parseInt(versText);
27: }
28: }
29:
30: public void paint(Graphics screen) {
31: Graphics2D screen2D = (Graphics2D) screen;
32: screen2D.drawString(“Name: “ + name, 5, 50);
33: screen2D.drawString(“Date: “ + date, 5, 100);
34: screen2D.drawString(“Version: “ + version, 5, 150);
35: }
36: }

The main function of this applet is to display the value of three parameters: Name, Date,
and Version. The getAppletInfo() method returns the following string:

This applet demonstrates the use of the Applet’s Info feature.

The getParameterInfo() method is a bit more complicated if you haven’t worked with
multidimensional arrays. The following things are taking place:

n Line 13 defines the return type of the method as a two-dimensional array of String
objects.

n Line 14 creates an array of String objects with three elements: “Name”, “String”,
and “Programmer’s Name”. These elements describe one of the parameters that
can be defined for the AppInfo applet. They describe the name of the parameter
(Name in this case), the type of data that the parameter will hold (a string), and a
description of the parameter (“Programmer’s Name”). The three-element array is
stored in the p1 object.

n Lines 15–16 define two more String arrays for the Date and Version parameters.

n Line 17 uses the response object to store an array that contains three string arrays:
p1, p2, and p3.

n Line 18 uses the response object as the method’s return value.

The appletviewer Browser 633

B

Listing B.2 contains a web page that can be used to load the AppInfo applet.

LISTING B.2 The Full Text of AppInfo.html

1: <applet code=”AppInfo.class” height=”200” width=”170”>
2: <param name=”Name” value=”Rogers Cadenhead”>
3: <param name=”Date” value=”12/07/06”>
4: <param name=”Version” value=”5”>
5: </applet>

Figure B.2 shows the applet running with appletviewer, and Figure B.3 is a screen cap-
ture of the dialog box that opens when the viewer’s Info menu option is selected.

634 APPENDIX B: Programming with the Java Development Kit

FIGURE B.2
The AppInfo
applet running in
appletviewer.

FIGURE B.3
The Info dialog box
of the AppInfo
applet.

These features require a browser that makes this information available to users. The kit’s
appletviewer handles this through the Info menu option, but browsers such as Internet
Explorer do not .offer anything like it at this time.

The javadoc Documentation Tool
The Java documentation creator, javadoc, takes a .java source code file or package
name as input and generates detailed documentation in HTML format.

For javadoc to create full documentation for a program, a special type of comment state-
ment must be used in the program’s source code. Tutorial programs in this book use //,
/*, and */ in source code to create comments—information for people who are trying to
make sense of the program.

Java also has a more structured type of comment that can be read by the javadoc tool.
This comment is used to describe program elements such as classes, variables, objects,
and methods. It takes the following format:

/** A descriptive sentence or paragraph.
* @tag1 Description of this tag.
* @tag2 Description of this tag.

*/

A Java documentation comment should be placed immediately above the program ele-
ment it is documenting and should succinctly explain what the program element is. For
example, if the comment precedes a class statement, it will describe the purpose of the
class.

In addition to the descriptive text, different items can be used to document the program
element further. These items, called tags, are preceded by an @ sign and are followed by
a space and a descriptive sentence or paragraph.

Listing B.3 contains a thoroughly documented version of the AppInfo applet called
AppInfo2. The following tags are used in this program:

n @author—The program’s author. This tag can be used only when documenting a
class, and it will be ignored unless the –author option is used when javadoc is
run.

n @version text—The program’s version number. This also is restricted to class
documentation, and it requires the –version option when you’re running javadoc,
or the tag will be ignored.

n @return text—The variable or object returned by the method being documented.

n @serial text—A description of the data type and possible values for a variable or
object that can be serialized, saved to disk along with the values of its variables
and retrieved later.

The javadoc Documentation Tool 635

B

LISTING B.3 The Full Text of AppInfo2.java

1: import java.awt.*;
2:
3: /** This class displays the values of three parameters:
4: * Name, Date and Version.
5: * @author Rogers Cadenhead
6: * @version 5.0
7: */
8: public class AppInfo2 extends javax.swing.JApplet {
9: /**
10: * @serial The programmer’s name.
11: */
12: String name;
13: /**
14: * @serial The current date.
15: */
16: String date;
17: /**
18: * @serial The program’s version number.
19: */
20: int version;
21:
22: /**
23: * This method describes the applet for any browsing tool that
24: * requests information from the program.
25: * @return A String describing the applet.
26: */
27: public String getAppletInfo() {
28: String response = “This applet demonstrates the “
29: + “use of the Applet’s Info feature.”;
30: return response;
31: }
32:
33: /**
34: * This method describes the parameters that the applet can take
35: * for any browsing tool that requests this information.
36: * @return An array of String[] objects for each parameter.
37: */
38: public String[][] getParameterInfo() {
39: String[] p1 = { “Name”, “String”, “Programmer’s name” };
40: String[] p2 = { “Date”, “String”, “Today’s date” };
41: String[] p3 = { “Version”, “int”, “Version number” };
42: String[][] response = { p1, p2, p3 };
43: return response;
44: }
45:
46: /**
47: * This method is called when the applet is first initialized.
48: */
49: public void init() {

636 APPENDIX B: Programming with the Java Development Kit

LISTING B.3 Continued

50: name = getParameter(“Name”);
51: date = getParameter(“Date”);
52: String versText = getParameter(“Version”);
53: if (versText != null) {
54: version = Integer.parseInt(versText);
55: }
56: }
57:
58: /**
59: * This method is called when the applet’s display window is
60: * being repainted.
61: */
62: public void paint(Graphics screen) {
63: Graphics2D screen2D = (Graphics2D)screen;
64: screen.drawString(“Name: “ + name, 5, 50);
65: screen.drawString(“Date: “ + date, 5, 100);
66: screen.drawString(“Version: “ + version, 5, 150);
67: }
68: }

The following command will create HTML documentation from the source code file
AppInfo2.java:

javadoc -author -version AppInfo2.java

The Java documentation tool will create several different web pages in the same folder as
AppInfo2.java. These pages will document the program in the same manner as Sun’s
official documentation for the Java class library.

To see the official documentation for Java 6 and the Java class
library, visit http://java.sun.com/javase/6/docs/api.

To see the documentation that javadoc has created for AppInfo2, load the newly created
web page index.html on your web browser. Figure B.4 shows this page loaded with
Mozilla Firefox.

The javadoc tool produces extensively hyperlinked web pages. Navigate through the
pages to see where the information in your documentation comments and tags shows up.

If you’re familiar with HTML markup, you can use HTML tags such as A, TT, and B
within your documentation comments. Line 5 of the AppInfo2 program uses an A tag to
turn the text “Rogers Cadenhead” into a hyperlink to this book’s website.

The javadoc Documentation Tool 637

B

TIP

The javadoc tool also can be used to document an entire package by specifying the
package name as a command-line argument. HTML files will be created for each .java
file in the package, along with an HTML file indexing the package.

If you would like the Java documentation to be produced in a different folder than the
default, use the -d option followed by a space and the folder name.

The following command creates Java documentation for AppInfo2 in a folder called
C:\JavaDocs\:

javadoc -author -version -d C:\JavaDocs\ AppInfo2.java

The following list details the other tags you can use in Java documentation comments:

n @deprecated text—This tag provides a note that indicates the class, method,
object, or variable has been deprecated. This causes the javac compiler to issue a
deprecation warning when the feature is used in a program that’s being compiled.

n @exception class description—Used with methods that throw exceptions, this
tag documents the exception’s class name and its description.

n @param name description—Used with methods, this tag documents the name of
an argument and a description of the values the argument can hold.

n @see class—This tag indicates the name of another class, which will be turned
into a hyperlink to the Java documentation of that class. This can be used without
restriction in comments.

638 APPENDIX B: Programming with the Java Development Kit

FIGURE B.4
Java documenta-
tion for the
AppInfo2 pro-
gram.

n @see class#method—This tag indicates the name of a method of another class,
which will be used for a hyperlink directly to the documentation of that method.
This is usable without restriction.

n @since text—This tag indicates a note describing when a method or feature was
added to its class library.

The jar Java File Archival Tool
When you deploy a Java program, keeping track of all the class files and other files
required by the program can be cumbersome.

To make this easier, the kit includes a tool called jar that can pack all a program’s files
into a Java archive—also called a JAR file. The jar tool also can be used to unpack the
files in one of these archives.

JAR files can be compressed using the Zip format or packed without using compression.

To use the tool, type the command jar followed by command-line options and a series of
filenames, folder names, or wildcards.

The following command packs all a folder’s class and GIF image files into a single Java
archive called Animate.jar:

jar cf Animate.jar *.class *.gif

The argument cf specifies two command-line options that can be used when running the
jar program. The c option indicates that a Java archive file should be created, and f indi-
cates that the name of the archive file will follow as one of the next arguments.

You also can add specific files to a Java archive with a command such as the following:

jar cf MusicLoop.jar MusicLoop.class muskratLove.mp3 shopAround.mp3

This creates a MusicLoop.jar archive containing three files: MusicLoop.class,
muskratLove.mp3, and shopAround.mp3.

Run jar without any arguments to see a list of options that can be used with the tool.

One use for jar is to put all files necessary to run a Java applet in a single JAR file. This
makes it much easier to deploy the applet on the web.

The standard way of placing a Java applet on a web page is to use an applet or object
tag to indicate the primary class file of the applet. A Java-enabled browser then down-
loads and runs the applet. Any other classes and any other files needed by the applet are
downloaded from the web server.

The jar Java File Archival Tool 639

B

The problem with running applets in this way is that every single file an applet
requires—helper classes, images, audio files, text files, or anything else—requires a sep-
arate connection from a web browser to the server containing the file. This can signifi-
cantly increase the amount of time it takes to download an applet and everything it needs
to run.

If you can reduce the number of files the browser has to load from the server by putting
many files into one Java archive, your applet can be downloaded and run by a web
browser more quickly. If the files in a Java archive are compressed, it loads even more
quickly.

After you create a Java archive, the archive attribute is used with the applet tag to show
where the archive can be found. You can use Java archives with an applet with tags such
as the following:

<applet code=”MusicLoop.class” archive=”MusicLoop.jar” width=”45” height=”42”>
</applet>

This tag specifies that an archive called MusicLoop.jar contains files used by the applet.
Browsers and browsing tools that support JAR files will look inside the archive for files
that are needed as the applet runs.

Although a Java archive can contain class files, the archive
attribute does not remove the need for the code attribute. A
browser still needs to know the name of the applet’s main class
file to load it.

When using an object tag to display an applet that uses a JAR file, the applet’s archive
file is specified as a parameter using the param tag. The tag should have the name
attribute “archive” and a value attribute with the name of the archive file.

The following example is a rewrite of the preceding example to use object instead of
applet:

<object code=”MusicLoop.class” width=”45” height=”42”>
<param name=”archive” value=”MusicLoop.jar”>

</object>

640 APPENDIX B: Programming with the Java Development Kit

CAUTION

The jdb Debugger
jdb, the Java debugger, is a sophisticated tool that helps you find and fix bugs in Java
programs. You can also use it to understand better what is taking place behind the scenes
in the Java interpreter as a program is running. It has a large number of features, includ-
ing some that might be beyond the expertise of a Java programmer who is new to the
language.

You don’t need to use the debugger to debug Java programs. This is fairly obvious, espe-
cially if you’ve been creating your own Java programs as you read this book. After the
Java compiler generates an error, the most common response is to load the source code
into an editor, find the line cited in the error message, and try to spot the problem. This
dreaded compile-curse-find-fix cycle is repeated until the program compiles without
complaint.

After using this debugging method for a while, you might think that the debugger isn’t
necessary to the programming process because it’s such a complicated tool to master.
This reasoning makes sense when you’re fixing problems that cause compiler errors.
Many of these problems are simple things such as a misplaced semicolon, unmatched {
and } braces, or the use of the wrong type of data as a method argument. However, when
you start looking for logic errors—more subtle bugs that don’t stop the program from
compiling and running—a debugger is an invaluable tool.

The Java debugger has two features that are useful when you’re searching for a bug that
can’t be found by other means: single-step execution and breakpoints. Single-step execu-
tion pauses a Java program after every line of code is executed. Breakpoints are points
where execution of the program will pause. Using the Java debugger, these breakpoints
can be triggered by specific lines of code, method calls, or caught exceptions.

The Java debugger works by running a program using a version of the Java interpreter
over which it has complete control.

Before you use the Java debugger with a program, you will compile the program with the
-g option, which causes extra information to be included in the class file. This informa-
tion greatly aids in debugging. Also you shouldn’t use the -O option because its opti-
mization techniques might produce a class file that does not directly correspond with the
program’s source code.

Debugging Applications
If you’re debugging an application, the jdb tool can be run with a Java class as an argu-
ment. This is shown in the following:

jdb WriteBytes

The jdb Debugger 641

B

This example runs the debugger with WriteBytes.class, an application that’s available
from the book’s website at http://www.java21days.com. Visit the site, select the
Appendix B page, and then save the files WriteBytes.class and WriteBytes.java in
the same folder that you run the debugger from.

The WriteBytes application writes a series of bytes to disk to produce the file pic.gif.

The debugger loads this program but does not begin running it, displaying the following
output:

Initializing jdb...
>

The debugger is controlled by typing commands at the > prompt.

To set a breakpoint in a program, the stop in or stop at commands are used. The stop
in command sets a breakpoint at the first line of a specific method in a class. You spec-
ify the class and method name as an argument to the command, as in the following hypo-
thetical example:

stop in SellItem.SetPrice

This command sets a breakpoint at the first line of the SetPrice method. Note that no
arguments or parentheses are needed after the method name.

The stop at command sets a breakpoint at a specific line number within a class. You
specify the class and number as an argument to the command, as in the following exam-
ple:

stop at WriteBytes:14

If you’re trying this with the WriteBytes class, you’ll see the following output after
entering this command:

Deferring breakpoint WriteBytes:14
It will be set after the class is loaded.

You can set as many breakpoints as desired within a class. To see the breakpoints that are
currently set, use the clear command without any arguments. The clear command lists
all current breakpoints by line number rather than method name, even if they were set
using the stop in command.

By using clear with a class name and line number as an argument, you can remove a
breakpoint. If the hypothetical SellItem.SetPrice method was located at line 215 of
SellItem, you can clear this breakpoint with the following command:

clear SellItem:215

642 APPENDIX B: Programming with the Java Development Kit

Within the debugger, you can begin executing a program with the run command. The
following output shows what the debugger displays after you begin running the
WriteBytes class:

run WriteBytes
VM Started: Set deferred breakpoint WriteBytes:14

Breakpoint hit: “thread=main”, WriteBytes.main(), line=14 bci=413
14 for (int i = 0; i < data.length; i++)

After you have reached a breakpoint in the WriteBytes class, experiment with the fol-
lowing commands:

n list—At the point where execution stopped, this command displays the source
code of the line and several lines around it. This requires access to the .java file of
the class where the breakpoint has been hit so that you must have
WriteBytes.java in either the current folder or one of the folders in your
Classpath.

n locals—This command lists the values for local variables that are currently in use
or will soon be defined.

n print text—This command displays the value of the variable, object, or array
element specified by text.

n step—This command executes the next line and stops again.

n cont—This command continues running the program at the point it was halted.

n !!—This command repeats the previous debugger command.

After trying out these commands within the application, you can resume running the pro-
gram by clearing the breakpoint and using the cont command. Use the exit command to
end the debugging session.

The WriteBytes application creates a file called pic.gif. You can verify that this file
ran successfully by loading it with a web browser or image-editing software. You’ll see a
small letter J in black and white.

After you have finished debugging a program and you’re satisfied that it works correctly,
recompile it without the -g option.

Debugging Applets
You can’t debug an applet by loading it using the jdb tool. Instead, use the -debug
option of the appletviewer, as in the following example:

appletviewer -debug AppInfo.html

The jdb Debugger 643

B

This will load the Java debugger, and when you use a command such as run, the
appletviewer will begin running also. Try out this example to see how these tools inter-
act with each other.

Before you use the run command to execute the applet, set a breakpoint in the program
at the first line of the getAppletInfo method. Use the following command:

stop in AppInfo.getAppletInfo

After you begin running the applet, the breakpoint won’t be hit until you cause the
getAppletInfo() method to be called. This is accomplished by selecting Applet, Info
from the appletviewer’s menu.

Advanced Debugging Commands
With the features you have learned about so far, you can use the debugger to stop execu-
tion of a program and learn more about what’s taking place. This might be sufficient for
many of your debugging tasks, but the debugger also offers many other commands.
These include the following:

n up—Moves up the stack frame so you can use locals and print to examine the
program at the point before the current method was called.

n down—Moves down the stack frame to examine the program after the method call.

In a Java program, often there are places where a chain of methods is called. One method
calls another method, which calls another method, and so on. At each point where a
method is being called, Java keeps track of all the objects and variables within that scope
by grouping them together. This grouping is called a stack, as if you were stacking these
objects such as a deck of cards. The various stacks in existence as a program runs are
called the stack frame.

By using up and down along with commands such as locals, you can better understand
how the code that calls a method interacts with that method.

You can also use the following commands within a debugging session:

n classes—Lists the classes currently loaded into memory.

n methods—Lists the methods of a class.

n memory—Shows the total amount of memory and the amount that isn’t currently
in use.

n threads—Lists the threads that are executing.

644 APPENDIX B: Programming with the Java Development Kit

The threads command numbers all the threads, which enables you to use the suspend

command followed by that number to pause the thread, as in suspend 1. You can resume
a thread by using the resume command followed by its number.

Another convenient way to set a breakpoint in a Java program is to use the catch text
command, which pauses execution when the Exception class named by text is caught.

You can also cause an exception to be ignored by using the ignore text command with
the Exception class named by text.

Using System Properties
One obscure feature of the kit is that the command-line option -D can modify the perfor-
mance of the Java class library.

If you have used other programming languages prior to learning Java, you might be
familiar with environment variables, which provide information about the operating sys-
tem in which a program is running. An example is the Classpath setting, which indi-
cates the folders in which the Java interpreter should look for a class file.

Because different operating systems have different names for their environment vari-
ables, they cannot be read directly by a Java program. Instead, Java includes a number of
different system properties that are available on any platform with a Java implementa-
tion.

Some properties are used only to get information. The following system properties are
among those that should be available on any Java implementation:

n java.version—The version number of the Java interpreter

n java.vendor—A string identifying the vendor associated with the Java interpreter

n os.name—The operating system in use

n os.version—The version number of that operating system

Other properties can affect how the Java class library performs when being used inside a
Java program. An example of this is the java.io.tmpdir property, which defines the
folder that Java’s input and output classes use as a temporary workspace.

A property can be set at the command line by using the –D option followed by the prop-
erty name, an equals sign (“=”), and the new value of the property, as in this command:

java -Duser.timezone=Asia/Jakarta Auctioneer

Using System Properties 645

B

The use of the system property in this example sets the default time zone to “Asia/
Jakarta” before running the Auctioneer class. This affects any Date objects in a Java
program that do not set their own zone.

These property changes are not permanent; they only apply to that particular execution of
the class and any classes that it uses.

In the java.util package, the TimeZone class includes a class
method called getProperties() that returns a string array contain-
ing all the time zone identifiers that Java supports.

The following code displays these identifiers:

String[] ids = java.util.TimeZone.
➥getAvailableIDs();

for (int i = 0; i < ids.length; i++) {
System.out.println(ids[i]);

}

You also can create your own properties and read them using the getProperty() method
of the System class, which is part of the java.lang package.

Listing B.4 contains the source code of a simple program that displays the value of a
user-created property.

LISTING B.4 The Full Text of ItemProp.java

1: class ItemProp {
2: public static void main(String[] arguments) {
3: String n = System.getProperty(“item.name”);
4: System.out.println(“The item is named “ + n);
5: }
6: }

If this program is run without setting the item.name property on the command line, the
output is the following:

The item is named null

The item.name property can be set using the –D option, as in this command:

java -Ditem.name=”Microsoft Bob” ItemProp

646 APPENDIX B: Programming with the Java Development Kit

TIP

The output is the following:

The item is named Microsoft Bob

The –D option is used with the Java interpreter. To use it with the appletviewer as well,
all you have to do differently is precede the –D with -J. The following command shows
how this can be done:

appletviewer -J-Dtimezone=Asia/Jakarta AuctionSite.html

This example causes appletviewer to use the default time zone “Asia/Jakarta” with all
applets on the web page AuctionSite.html.

Using System Properties 647

B

APPENDIX C:
This Book’s Website

As much as the authors would like to think otherwise, there are undoubtedly
some things you’re not clear about after completing the 21 days of this book.
Programming is a specialized technical field that throws strange concepts
and jargon—such as “instantiation,” “ternary operators,” and “big- and little-
endian byte order”—at new learners.

If you’re unclear about any topic covered in the book, or if we were unclear
about a topic (sigh), visit the book’s website at http://www.java21days.com
for assistance.

The book’s website offers each of the following:

n Error corrections and clarifications—When errors are brought to our
attention, they will be described on the site with the corrected text and
any other material that will help.

n Answers to reader questions—If readers have questions that aren’t
covered in this book’s Q&A sections, many will be presented on the site.

n Example files—The source code and class files for all programs you
create during the book are available on the site.

n Sample Java programs—Working versions of some programs fea-
tured in this book are available on the site.

n End-of-chapter features—Solutions, including source code, for activ-
ities suggested at the end of each day and the answers to each day’s
certification practice question are available on the site.

n Updated links to the sites mentioned in this book—If sites men-
tioned in the book have changed addresses and we know about the new
URL, we’ll offer it here.

You can also send email to us by visiting the book’s site. Click the Feedback
link, and you are taken to a page where you can send email to the authors
directly from the website.

Feel free to voice all opinions, positive, negative, indifferent, or undecided.

— Rogers Cadenhead

NUMERICS

2D graphics
arcs, 372-374
coordinate spaces, 368
coordinate system, 359-360
lines, 372
Map2D applet, 375-377
polygons, 374
rectangles, 372
rendering attributes, 368-371

SYMBOLS

[] (braces), 96
{} (curly braces), 36
< (greater than), 53

! (exclamation point), 55
!! command (jdb), 643
!= (inequality operator), 82
!= (not equal), 53
!DOCTYPE declaration, 515
& (ampersand), 54
; (semicolon), 36
+ (plus sign)

concatenation operator (+), 57
increment operator (++), 52-53

- (hyphen), 52-53
- (minus signs), 45
–O option (javac), 630
. (period), 67-68
.class extensions, 627

/*...*/ comment notation, 44
/**...*/ comment notation, 44
// comment notation, 44
= (equal sign)

assignment operator, 38, 41
equality operator (= =), 53, 8

@author tag (javadoc), 635
@deprecated tag (javadoc), 638
@exception tag (javadoc), 638
@param tag (javadoc), 638
@return tag (javadoc), 635
@see tag (javadoc), 638
@serial tag (javadoc), 635
@since tag (javadoc), 639
@version tag (javadoc), 635

A

abstract classes, 156-157
abstract methods, 156-157
abstract modifiers, 156
accept() method, 463
access

access control, 146-147, 151
accessor methods, 152
default access, 147
inheritance, 151
packages, 163
private access, 148-149
protected access, 150-151
public access, 149

array elements, 92-93
class variables, 70

Index

databases, 487
elements, 234
instance variables, 67-68
methods, 153
MS-DOS, 606
Notepad, 611
variables, 153
vector elements, 227

accessor methods, 152, 178
action commands, 339
action events, 339
ActionListener interface, 334-336
actionPerformed() method, 336, 398
actions, JSP tags, 589
acyclic gradients, 369
adapter classes, 350-351
add() method, 227, 254
addActionListener() method, 335, 339
addAttribute() method, 519
addCookie() method, 565
addFocusListener() method, 335
addHandler() method, 547
adding

classes to packages, 163
components, 298

to containers, 248, 254-256
to panels, 313
to toolbars, 289

elements, 227
line separators, 294
listeners, 335
panels to tabbed panes, 298
text to menus, 294

addItem() method, 266
addItemListener() method, 335
addition (+) operator, 49
addKeyListener() method, 335
addMouseListener() method, 335
addMouseMotionListener() method, 335
addTextListener() method, 335
addWindowListener() method, 335
AdjustmentListener event listener, 334
afterLast() method, 502

aligning
components

card layouts, 313-314
grid bag layouts, 321-323, 329
grid layouts, 309
insets, 329
interfaces, 304-305
panels, 313

labels, 259
AllCapsDemo.java application, 428-429
allocating memory to objects, 67
Alphabet.java application, 306
ampersand (&), 54
anchor instance variable, 321
AND operators, 54
animation, controlling with threads, 205
antialiasing, 362
Apache Jakarta, 517
appendChild() method, 520
AppInfo application, 632

AppInfo.html, 634
AppInfo.java, 632-633

AppInfo2 application, 636-638
Applet menu commands

Clone, 632
Info, 632
Reload, 632
Restart, 632
Start, 632
Stop, 632
Tag, 632

APPLET tag, 640
applets, 10

background colors, 367
debugging, 643-644
Java Web Start, 382-385

applying, 385
JNLP elements, 392-394
JNLP files, 386-391
serve support, 391-392

linking, 455
Map2D, 375, 377
security policies, 241
viewing, 631

652 access

appletviewer browser, 631
AppInfo sample application, 632

AppInfo.html, 634
AppInfo.java, 632-633

Applet menu commands, 632
applications, 124-126

AllCapsDemo.java, 428-429
Alphabet.java, 306
AppInfo.java, 632-634
AppInfo2.java, 636-638
arguments

handling, 127-128
passing to, 126

ArrayCopier.java, 107-108
Authenticator.java, 261-262
Averager.java, 127
Border.java, 312
BufferConverter.java, 473
BufferDemo.java, 415-416
Bunch.java, 309-310
ButtonFrame.java, 255
Buttons.java, 255-256
ByteWriter.java, 412
Calculator.java, 340-342
CalorieCounter.java, 203-205
card layouts, 315-320
CGI, 556
ChangeTitle.java, 337-338
CoalReporter.java, 494
CodeKeeper.java, 230-231
CodeKeeper2.java, 242-243
ColorServlet.java, 566-568
ComicBooks.java, 237-240
consoles, 417-418
CopyArrayWhile.java

main() method, 108
output, 108

Counter.java, 579-580
creating, 248
DayCounter.java, 101-103
debugging, 641-643
DiceRoller.java, 396-398
DiceWorker.java, 395
DmozHandler.java, 549-550
DmozServer.java, 548-549

DomainEditor.java, 524-525
DomainWriter.java, 527
EqualsTester.java, 82-83
Feedbar.java, 290
FeedBar2.java, 296-297
Finger.java, 461-463
FormatChooser.java, 343-344
FormatFrame.java, 265-266
FormatFrame2.java, 267
Giftshop.java, 174
Guestbook.java, 586
HalfDollars.java

main() method, 94-95
source code, 93

HalfLooper.java, 105-106
HelloUser.java, 616-617
helper classes, 125-126
HexReader.java, 191-192
HolidaySked.java, 225-226
IconFrame.java, 257-258
Icons.java, 258
Info (dialog box), 282, 284-285
InstanceCounter.java, 153
Item.java, 169-171
ItemProp, 646
KeyChecker.java, 351
LoginServlet.java, 571-572
main() method, 125
Map.java, 375-377
MessagePanel.java, 327-328
MethodInspector.java, 447
MousePrank.java, 348
multitasking, 205
NewFingerServer.java, 478-480
ObjectReader.java, 441
ObjectWriter.java, 437-438
PointSetter.java, 68-69
Presidents.java, 503-506
PrimeFinder.java, 208-209
PrimeReader.java, 421-422
PrimeThreads.java, 210-211
ProgressMonitor.java, 292-293
QuoteData.java, 498-500
RangeLister.java, 119
ReadBytes.java, 410

How can we make this index more useful? Email us at indexes@samspublishing.com

applications 653

RefTest.java, 75
Rot13.java, 562-563
RssFilter.java, 528-529
RssStarter.java, 520-521
running, 627
security policies, 241
SeeMethod.java, 447
servers, 463-465
SimpleFrame.java, 251
SimpleWindow.java, 252
SiteClient.java, 544-545
Slider.java, 286
SourceReader.java, 424-425
SquareTool.java, 176
Stacker.java, 308
Storefront.java, 169, 172
StringChecker.java, 70-71
Subscriptions.java, 268-269
SumAverage.java, 127
SurveyFrame.java, 320
SurveyWizard.java, 318-320
Swing

applying JNLP elements, 392-394
creating, 248-253
graphical, 249
Java Web Start, 382-385, 391-392
JNLP files, 386-391
SwingWorker, 394-399

SwingColorTest.java, 350
TextFrame.java, 363-364
threaded

clock, 207
writing, 206-207

TimeServer.java, 464-465
TitleChanger.java, 337-338
TokenTester.java, 65
TriviaServer.java

designing, 464
running, 466

Variables.java, 42-43
VolcanoApplication.java, 22-23
VolcanoRobot.java, 117
Weather.java, 49-50
web, 581-587
WebReader.java, 455-457

WordPad, 615
XML

applying, 512-514
creating dialects, 515

applying
BorderLayout constructor, 311-312
BoxLayout constructor, 307-309
card layouts in applications, 315-320
channels, 471-480
cookies, 565-568
declarations, 578-581
expressions, 574-576
FlowLayout constructor, 305-307
GridLayout constructor, 309-310
Java, 10-11

history of, 10-11
selecting development tools, 11-12

Java Web Start, 385
applying JNLP elements, 392-394
creating JNLP files, 386-391

JDK, 601-602
JNLP elements, 392-394
scriptlets, 576-578
servlets, 556, 558
sessions, 568-572
XML, 512-515
XML-RPC, 542-545

Arc2D.Float class, 372-373
ARCHIVE attribute, 640
archiving files, 639-640
arcs, drawing, 372-374
ArgStream() method, 416
arguments

applications, 126-128
command line, 626
commands, 626
grouping, 126
objects, 64
passing to methods, 122-123
quotation marks (“) in, 126-127
register() method, 476

arithmetic
string, 57
operator example, 49-50

654 applications

ArrayCopier.java application, 107-108
ArrayIndexOutOfBounds exception, 128, 186
arrays, 90, 220

boundaries, 92
creating, 93
elements

accessing, 92-93
changing, 93, 95
data types, 92
grids, 95

HalfDollars.java application, 93-94
implementing, 90
limitations, 220
modifying, 93
multidimensional, 95-96
objects, 91-92
primitive types, 444
references, 93
sample program

main() method, 94-95
source code, 93

subscripts, 92
troubleshooting, 93
variables, 90-91

ASCII text, 616
assertions, 202-205
assigning values to variables, 38, 41, 59
assignment operators, 38, 51
associating

channels, 471
components with event listeners, 335
filters, 407

AT&T Bell Laboratories, 10
attributes, 569

ARCHIVE, 640
classes, 17-18
objects, 17
tags, 388
XML, 513

Authenticator.java application, 261-262
autoboxing, 81
AUTOEXEC.BAT, 611
Averager.java application, 127
avoiding exceptions, 200

B

background colors, setting, 367
base-8 numbering system, 45
base-16 numbering system, 45
beans, 449
beforeFirst() method, 502
behavior

classes, 18-19
objects, 18
organizing, 24-30
shared, 30

benefits of Java, 11
bits, 221-226
BitSet class, 221-226
blocking, 474
blocks, 96-97

statements, 36
try...catch, 188-190

boolean data types, 40
Boolean literals, 46
Boolean values, 40
border layout manager, 311-312
Border.java application, 312
BorderLayout constructor, 311-312
boundaries, arrays, 92
BoxLayout constructor, 307, 309
braces ({ }), 96
brackets ([]), 90
break keyword, 109
breaking loops, 109
breakpoints, 641

deleting, 642-643
setting, 642

bridges, 487-489
browser (appletviewer), 631, 633. See also

interfaces
AppInfo sample application, 632

AppInfo.html, 634
AppInfo.java, 632-633

Applet menu commands, 632
BufferConverter.java application, 473
BufferDemo.java application, 415-416

How can we make this index more useful? Email us at indexes@samspublishing.com

BufferDemo.java application 655

buffered streams, 413
creating, 414
reading, 414
writing to, 414-418

BufferedInputStream() method, 414
BufferedOutputStream() method, 414
BufferedReader() method, 424
BufferedWriter() method, 426
buffers, 413, 467-471
buildRect() method

declaring, 129-130
overloading, 130

built-in fonts, 361
Bunch.java application, 309-310
ButtonFrame.java application, 255
ButtonGroup object, 264
buttons

event handling
action events, 339
item events, 342-343

managing, 264
Swing, 253

Buttons.java application, 255-256
bytecode, 11, 628
bytes

buffer, 469
data types, 40
filters, 413
multiple, 412
streams, 406-408, 434

file input streams, 408-411
file output streams, 411-413

ByteWriter.java application, 412

C

c option (jar command), 639
Calculator.java application, 340-342
calling

constructors
from another constructor, 133-134
methods, 132

methods, 18, 70-71
class methods, 74
constructors, 139

finalize(), 140
nesting, 72-73
of objects, 73
start(), 632
stop(), 632
in superclasses, 138

CalorieCounter.java application, 203-205
capacity

checking, 229
vectors, 226

capacity() method, 229
card layout manager, 313

cards
adding, 314
applying, 315-320
displaying, 314

creating, 314
CardLayout() method, 314
caret (^), 55
carriage return (character ‘\r’), 418
case-sensitivity, 39
casting, 77. See also converting

boolean values, 77
data types, 77-78
definition of, 77
destinations, 77
explicit, 78
objects, 76-77

to classes, 78-79
to interfaces, 79, 166

primitive types, 76-78
sources, 77
superclasses, 79
variables, 77-78

catch blocks, Exception classes in, 190
catch clauses, empty, 201
catching

exceptions, 186
finally statement, 190-191
try…catch blocks, 188-190

CD command, 608-608, 618
cells, padding, 329
CGI (common gateway interface), 556
ChangeTitle.java application, 337-338

656 buffered streams

changing array elements, 93, 95
channels, 471-475, 477-480
char data type, 40
characters

encoding, 470
literals, 46-47, 64
streams, 434

reading text files, 423-425
writing text files, 425-426

sets, 470-471
Unicode, 39
escape codes, 46

charAt() method, 71
Charset class, 470
charWidth() method, 363
check boxes, 263-265

event handling
action events, 339
item events, 342-343

nonexclusive, 264
checkTemperature() method, 23
class not found errors, 161, 620
class.dat file, creating, 411
classes, 14, 115, 463

abstract, 156-157
adapter, 350-351
adding to packages, 163
Arc2D.Float, 372-373
attributes, 17-18
behavior, 18-19, 24-30
BitSet, 221-226
Charset, 470
CLASSPATH variable, 161-162
Color, 365-366
ColorSpace, 365
CommandButton, 16, 25
commands, 644
ConsoleInput, 417-418
constants, 41-42
Constructor, 445
CountInstances, 154
creating, 19-21, 443-445
Decoder, 470
defining, 14-15, 116
Dictionary, 221

Dimension, 250
efficiency, 155
Ellipse2D.Float, 372
Encoder, 470
Error, 186, 194
Exception, 186-189

catch blocks, 190
constructors, 198

Field, 445
FilterInputStream, 413
FilterOutputStream, 413
files, 628
final, 154-156
FlowLayout, 304-305
FontMetrics, 363
functionality, 24
Graphics2D, 358-359
grouping, 30
Hashtable, 221, 235-236, 240
helper classes, 125-126
hierarchies, 24-25

creating, 26-28
designing, 26-28

HttpServlet, 559
HttpSession, 569
identifying, 157
importing, 159
inheritance, 28

multiple, 30, 164
overview, 25
single, 29

inner classes, 175
advantages, 176-177
naming, 177
scope, 177

InputStream, 408
inspecting, 443-449
instances of, 16
IOException, 187
Java 2 Class Library, 16
javax.swing.JButton, 16
javax.swing.JComponent, 256
JCheckBox, 263
JComboBox, 266
JList, 267

How can we make this index more useful? Email us at indexes@samspublishing.com

classes 657

JOptionPane, 277-278
confirm dialog boxes, 278-279
input dialog boxes, 279-280
message dialog boxes, 280-281
option dialog boxes, 281-282

JProgressBar
constructors, 291
methods, 291-292

JRadioButton, 263
JScrollPane, 262, 287-288
JSlider, 285

constructors, 285
methods, 285-286
Slider.java sample application, 286

JTabbedPane, 297-298
JTextArea, 260
JToolBar, 288-291
keywords, 116
Line2D.Float, 372
Method, 445
methods, 18-19, 73-74, 123-124

accessing, 153
availability, 123
calling, 74
defining, 123
main(), 21-22

Modifier, 445
modifying, 206
MousePrank, 346-348
MyRect, 129

buildRect() method, 129-130
definition, 130-131

MyRect2, 134-135
name conflicts, 160-161
NamedPoint, 139
Object, 24
object-oriented programming, 15, 24-25
ObjectInputStream, 438-440
ObjectOutputStream, 435-437
objects

casting, 78-79
determining, 84

organizing, 24-30, 146, 157
packages, 30, 163, 628
Passer, 122-123

PreparedStatement, 495
Printer, 136
protecting, 157
Random(), 66
Rectangle.Float, 372
reflection, 443, 447-449
RuntimeException, 194
ScrollPaneConstants, 263
SelectionKey, 476
Serializer, 526
Socket, 459
SocketImpl, 463
Stack, 221, 232-233
StringTokenizer, 65
subclasses, 24-25
superclasses, 24

indicating, 116
modifying, 26

Swing
Constants, 259, 285
inheritance, 248

Thread, 206
Throwable, 186
top-level, 175-177
types, 41
UIManager, 276
variables, 18, 37, 67, 117

accessing, 153
defining, 38, 69
instance variables, 69, 116-117
troubleshooting, 70

values, 38, 70
Vector, 221, 226-231
versus interfaces, 164
VolcanoRobot.java, 19-20
WebServer, 546
wrapper classes, 124
XmlRpcClient, 542

ClassNotFoundException, 439
CLASSPATH variable, 161-162

Windows 98/Me, 620-622
Windows NT/2000/XP, 622-624

clauses, empty catch, 201
cleanup code, executing, 193
clear command (jdb), 642

658 classes

clear() method, 235
client-side sockets

closing, 460
instantiating, 459
opening, 459

clients
nonblocking, 475
TriviaServer application, 466
XML-RPC, 536-537

applying, 542-545
creating, 546-550
data exchanges, 537-540
implementing, 540-542

clocks, 207
Clone command (Applet menu), 632
close() method, 407, 426
closePath() method, 374
closing

ODBC data source connections, 493
socket connections, 460

CMYK color system, 365
CoalReporter.java application, 494
code

cleanup, 193
complexity, 201
listings. See listings

CodeKeeper.java application, 230-231
CodeKeeper2.java application, 242-243
collection, garbage, 67
Color class, 365-366
colors

background colors, 367
CMYK color system, 365
dithering, 365
drawing colors, 366-367
finding current color, 367
spaces, 365
sRGB color system, 365

ColorServlet.java application, 566-568
ColorSpace class, 365
com.sun.java.swing package, 274
combining

layout managers, 312-313
methods, 73
statements, 199

combo boxes, 266-267
action events, 339
item events, 342-343

ComicBooks.java application, 237-240
command line, 626

arguments, 626
interfaces, 606-607
javac, 618
options, 627

CommandButton class, 16, 25
commands

action, 339
Applet menu

Clone, 632
Info, 632
Reload, 632
Restart, 632
Start, 632
Stop, 632
Tag, 632

arguments, 626
CD, 608
jar, 639-640
java, 22
jdb (debugger)

!!, 643
classes, 644
clear, 642
cont, 643
down, 644
exit, 643
ignore, 645
list, 643
locals, 643
memory, 644
methods, 644
print text, 643
run, 643
step, 643
stop at, 642
stop in, 642
suspend, 645
threads, 644
up, 644

JDK format, 626

How can we make this index more useful? Email us at indexes@samspublishing.com

commands 659

MS-DOS
CD, 607-608, 618
CLASSPATH variable, 620-624
MD, 608
PATH variable, 611-614
SET CLASSPATH=, 621

PATH, 612
Start menu

Find, 612
Run, 604
Settings, Control Panel, ODBC Data Sources,

487
comments, 43

notation
/*...*/, 44
/**...*/, 44
//, 44

source code, 635
common gateway interface. See CGI
Common Object Request Broker Architecture.

See CORBA
comparing

instances, 82
objects, 82-83

comparison operators, 53-54
compilers, 602, 629-630
compiling

errors, 93
files, 629-630
Java in Windows, 618-619
programs, 606
troubleshooting, 620

complexity, code (Java), 201
complications, multiple interfaces, 165-166
components, 256

adding, 298
aligning

card layouts, 313-314
grid bag layouts, 321-323, 329
grid layouts, 309
insets, 329
panels, 313

associating with event listeners, 335
check boxes, 263-265
combo boxes, 266-267
containers, 248, 254-256

creating, 253-254
dialog boxes, 277-278

confirm dialog boxes, 278-279
Info sample application, 282-285
input dialog boxes, 279-280
message dialog boxes, 280-281
option dialog boxes, 281-282

disabled, 256
displaying, 256
drop-down lists, 266-267
graphics

antialiasing, 362
drawing text, 360-362
sizing text, 363-365

hiding, 256
icons, 257-258
interfaces

aligning, 304-305
BorderLayout constructor, 311-312
BoxLayout constructor, 307-309
FlowLayout constructor, 305-307
GridLayout constructor, 309-310

JDK, 605
JSP standard tag library, 588
labels, 259
lists, 267-269
menus, 293-297
methods, 211
modifying, 335
mouse

events, 345
motion events, 345-349

paintComponent() method, 359
panels, 313
progress bars, 291-293

labels, 292
orientation, 291
updating, 292

radio buttons, 263-265
resizing, 256, 359
scroll panes, 262, 287

creating, 287
scrollbars, 288
sizing, 287

scrollbars, 263

660 commands

sliders, 285
advantages, 285
labels, 285-286
orientation, 285
Slider.java sample application, 286

Swing, 248
tabbed panes, 297-298
text

areas, 260-262
fields, 259-260

toolbars, 288-289
dockable toolbars, 289-291
orientation, 289

user-interface manager, 274-277
windows, 249

compound statements. See blocks
concatenation

operators (+), 57, 76
strings, 57

conditional operators, 97-98, 111
if, 97

else keyword, 97
examples, 98

switch, 99-100
configuring

JDBC drivers, 503-507
JDK, 605-606

CLASSPATH variable, 620-624
command-line interface, 606-607
configuration errors, 611
MS-DOS folders, 607-608
PATH variable, 611-614
troubleshooting, 604

scrollbars, 263
XML-RPC, 540-550

confirm dialog boxes, 278-279
ConfirmDialog dialog boxes, 278
conflicts, reducing names, 157
connect() method, 476
connections. See also networking

nonblocking, 475
telnet, 466

consistency checking (exceptions), 188
ConsoleInput class, 417-418
consoles, input streams, 417-418

constant variables. See final variables
constants, 41-42
Constructor class, 445
constructors

BorderLayout, 311-312
BoxLayout, 307-309
classes, 249
definition of, 66
Dimension(), 250
exception classes, 198
FlowLayout, 305, 307
GradientPaint, 369
GridLayout, 309-310
JCheckBox(), 264
JComboBox(), 266
JFrame(), 249
methods, 65

calling, 132-139
naming, 133
overloading, 134
overriding, 138-140
isSelected(), 264
setSelected(), 264
SimpleFrame(), 252

URL(), 455
cont command (jdb), 643
containers

components, 248, 254-256
content panes, 254
panels, 254
windows, 249

contains() method, 229, 236
containsKey() method, 236
contents

labels, 259
panes, 254

continue keyword, 110
controlling

access. See access
animation with threads, 205

conventions, naming, 162
converting

objects, 76-77, 80-81
primitive types, 76-77

How can we make this index more useful? Email us at indexes@samspublishing.com

converting 661

source code, 629
text to uppercase, 428-429

cookies, applying, 565-568
coordinate spaces (graphics), 368
coordinate systems (graphics), 359-360
CopyArrayWhile.java application, 108
CORBA (Common Object Request Broker

Architecture), 536
Counter.java application, 579-580
counter.jsp file, 579
CountInstances class, 154
createFont() method, 362
createStatement() method, 492
creating

applications, 248-253
arrays, 91-93
class.dat files, 411
classes, 19-21, 443-445, 628
components, 248, 253-254
documents, 518-521
drawing surfaces, 358-360
exceptions, 198
folders in MS-DOS, 608-609
instances of classes, 16
interfaces, 166-167, 249-251
Java applications, 124-126
JNLP files, 386-391
labels, 259
layouts, 321-323
methods

finalizer, 140
overloaded, 128-129

objects, 64-65
arguments, 64
Font, 361
ImageIcon, 257
String, 20
StringTokenizer, 65-66
URL, 455
with new operator, 64-66

output streams, 436
source files, 616-619
storefronts, 169-175
streams, 406-407
threads, 206-207
variables, 37

vectors, 226-227
windows, 252

curly braces ({ }), 36
current objects, referring to, 120
custom packages

access control, 163
classes, 163
folder structure, 162
naming, 162

cyclic gradients, 369

D

data sources
connections

closing, 493
opening, 489-502

ODBC, 488
data storage, 413
data streams, 419

creating, 419
PrimeReader, 421-422
reading, 419
sample applications, WritePrimes, 420

data structures, 220, 485
arrays, 220
bits, 221-226
dictionaries, 221, 233
Enumeration interface, 221
generics, 240-243
hash tables, 221, 235-236, 240

clearing, 235
creating, 235
hash codes, 236
load factor, 235
searching, 236

Iterator interface, 221-223
Java, 220
key-mapped, 233-234
stacks, 221, 232-233

adding elements, 232
logical organization, 232
popping off elements, 233
searching, 233

662 converting

vectors, 221, 226-231
accessing, 227
adding elements, 227
capacity, 226, 229
changing elements, 228
creating, 226-227
removing elements, 228-229
size, 226, 229

data types, 85
boolean, 40
casting, 77-78
char, 40
double, 40
float, 40
integers, 40
primitive, 40

databases
JDBC, 486

accessing, 487
drivers, 487, 502-507
JDBC-ODBC bridge, 487-489
ODBC data source connections, 489-502

queries, 486
records, 493, 502
SQL, 495-501

DataInputStream() method, 419
DataOutputStream() method, 419
DayCounter.java application, 101-103
deallocating memory, 67
debugger (jdb)

application debugging, 641-643
breakpoints, 641

deleting, 642-643
setting, 642

commands
!!, 643
classes, 644
clear, 642
cont, 643
down, 644
exit, 643
ignore, 645
list, 643
locals, 643
memory, 644

methods, 644
print text, 643
run, 643
step, 643
stop at, 642
stop in, 642
suspend, 645
threads, 644
up, 644

single-step execution, 641
debugging. See also debugger (jdb)

applets, 643-644
applications, 641-643
breakpoints, 641

deleting, 642-643
setting, 642

programs, 616, 641
single-step execution, 641

declarations, 574
arrays

of arrays, 95-96
variables, 90-91

applying, 578-581
constants, 42
import, 159-160
interfaces, 164-167
methods, 129-130
packages, 147, 163
variables, 37-38

Decoder class, 470
decrement operator (—), 52-53
default access, 147
defaultReadObject() method, 442
defining

attributes
classes, 18
objects, 17

classes, 14-15, 116
as subclasses, 25
top-level, 177
variables, 38

constructors, 66
hierarchies, 156
methods

classes, 123
multiple, 128

How can we make this index more useful? Email us at indexes@samspublishing.com

defining 663

parameter lists, 118
this keyword, 120

MyRect class, 130-131
values, 42
variables

classes, 69
instance variables, 116-117

delete() method, 427
deleteOnExit() method, 427
deleting

breakpoints, 642-643
exceptions, 629
files

delete() method, 427
deleteOnExit() method, 427

vector elements, 228-229
Demos component (JDK), 605
deprecation option (javac), 630
description elements, Java Web Start, 393
design

grids, 323
hierarchies, 26-28
server applications, 463-465
socket client/server application, 464
XML dialects, 515

destinations (casting), 77
destroy() method, 559
determining classes of objects, 84
development

frameworks, 251-252
programs, 602
Java Web Start, 382-385

applying, 385-391
JNLP elements, 392-394
server support, 391-392

servlets, 559-564
cookies, 565-568
sessions, 568-572

SwingWorker, 394-399
tools, 11-12, 602

dialects, XML, 515
dialog boxes, 277

ConfirmDialog, 278
Info sample application, 282-285
input dialog boxes, 279-280

InputDialog, 278
message dialog boxes, 280-281
MessageDialog, 278
option dialog boxes, 281-282
OptionDialog, 278

DiceRoller.java application, 396-398
DiceWorker.java application, 395
Dictionary class, 221
Dimension class, 250
Dimension() constructor, 250
disabled components, 256
displaying

components, 256
errors, 618
frames, 250

dithering, 365
division operators, 49
DmozHandler.java application, 549-550
DmozServer.java application, 548-549
do-while loops, 109
dockable toolbars, 289-291
Document Object Model. See DOM
Document Type Definition (DTD), 515
documentation tools, 635, 637-638

AppInfo2 sample application, 636-638
javadoc

AppInfo2 sample application, 636-638
tags, 635, 638-639

tags, 635, 638-639
documents

HTML, 631
XML

creating, 518-521
evaluating XOM, 528-530
formatting, 525-527
modifying, 521-525

doGet() method, 561
doInBackground() method, 394
DOM (Document Object Model), 516
DomainEditor.java application, 524-525
DomainWriter.java application, 527
doPost() method, 561
DOS text, 616
dot notation, 67-68, 70

664 defining

double data types, 40
down command (jdb), 644
downloading JDK, 626
drawing

arcs, 372-374
colors, 366
coordinate spaces, 368
coordinate systems, 359-360
lines, 368, 372
maps, 375-377
objects, 371-374
polygons, 368, 374
rectangles, 372
rendering attributes, 368

drawing strokes, 371
fill patterns, 369-370

surfaces, 358-360
text, 360-362

antialiasing, 362
sizing, 363-365

drawString() method, 360
drivers (JDBC), 487, 502

configuring, 503-507
sample applications, 503

drop-down lists, 266-267
DTD (Document Type Definition), 515
duplicating variables, 122

E

editing
AUTOEXEC.BAT, 611
system properties, 645
vector elements, 228

efficiency, increasing, 155
elements

arrays, 92
accessing, 93
changing, 93-95
data types, 92

JNLP, 392-394
Map interfaces, 234

stacks
adding, 232
popping off, 233
searching, 233

vectors
accessing, 227
adding, 227
changing, 228
removing, 228-229

XML, 513
Ellipse2D.Float class, 372
else keyword, 97
empty catch clauses, 201
empty statements for loops, 105
enabling classes, Random() method, 66
encapsulation, 147-149
Encoder class, 470
encoding characters, 470
end-of-file exception (EOFException), 420
end-of-line characters, 424, 426
endcap styles (drawing strokes), 371
enumerating linked lists, 169
Enumeration interface, 221
environment variables, 645
environment.jsp file, 575-576
EOFException, 187, 190, 408, 420
equal sign (=), 53

assignment operator, 38, 41
equality operator (= =), 82

equals() method, 82, 236
EqualsTests.java application, 82-83
Error class, 186, 194
errors, 213. See also exceptions

class not found, 161, 620
compilation, 93
compiler, 201
displaying, 618
Error class, 186
error-handling, 184-186
Exception class, 186
fatal, 188
managing, 185
methods, 193
NoClassDef, 620

How can we make this index more useful? Email us at indexes@samspublishing.com

errors 665

escape codes, 46-47
evaluating

dot notation, 68
XOM, 528-530

events
handling, 333

action events, 339
adapter classes, 350-351
ChangeTitle.java application, 337-338
focus events, 340, 342
item events, 342-344
key events, 343-344
methods, 336-337
mouse events, 344-345
SwingColorTest sample application, 350
TitleChanger.java application, 337-338
window events, 349-350

listeners, 334
ActionListener, 334
adapter classes, 350-351
AdjustmentListener, 334
associating components with, 335
FocusListener, 334, 340
importing, 334
ItemListener, 334, 342
KeyListener, 334, 344
MouseListener, 334, 344-345
MouseMotionListener, 334, 345
WindowListener, 334, 349

mouse, 345-349
Exception class, 186-187, 190
exceptions, 184, 187. See also troubleshooting

ArrayIndexOutOfBoundsException, 128, 186
avoiding, 200
catching, 186

finally statement, 190-191
try...catch blocks, 188-190

classes, 186, 189
ClassNotFoundException, 439
compiler errors, 201
consistency checking, 188
constructors, 198
creating, 198
deleting, 629
EOFException, 187, 408, 420

Error class, 186
Exception class, 186-187
FileNotFound, 408
floating, 199
handling, 199
hierarchy, 199
IllegalAccessException, 445
IllegalStateException, 570
inheritance, 198
InstantiationException, 445
IOException, 187, 408, 439
java.net.MalformedURLException, 542
limitations, 200-201
MalformedURLException, 187
managing, 187
methods, 193
multiple, 200
NullPointerException, 187
OptionalDataException, 439
overview, 213
passing, 195-196
runtime, 186
SecurityException, 428
SecurityViolation, 445
SQLException, 493
StreamCorruptionException, 439
Throwable class, 186
throwing, 186, 193, 198

explicit exceptions, 195
implicit exceptions, 194-195
inheritance issues, 196-197
throws keyword, 193-194

when to use, 200
exclamation point (!), 55
exclusive radio buttons, 264
execute() method, 544
executeQuery() method, 492-493
executing

cleanup code, 193
Java Web Start, 384, 391-392

exists() method, 427
exit command (jdb), 643
exiting

frames, 250-251
loops, 109

666 escape codes

explicit casts, 78
explicit exceptions, 195
exponential notation, literals, 46
expressions, 36, 48, 574

applying, 574-576
definition of, 36
dot notation, 68
grouping, 56
readability, 57
return values, 36, 48

extending interfaces, 168-169
extends keyword, 116, 168
Extensible Markup Language. See XML
extensions, .class, 627

F

f option (jar command), 639
false value (Boolean), 46
fatal errors, 188
feed.rss file, 518
Feedbar.java application, 290
FeedBar2.java application, 296-297
FeedInfo.java application, 282-284
feeds2.rss file, 525
Field class, 445
fields

objects, 442-443
passwords, 260

File() method, 427
FileInputStream() method, 408
FileNotFoundException, 190, 408
FileOutputStream() method, 411
FileReader() method, 423
files

archiving, 639-640
class.dat, 411
compiling, 629-630
deleting

delete() method, 427
deleteOnExit() method, 427

File objects, 426-427
formats, 639-640
input streams, 408-411
installation (JDK), 603

jar, 639-640
JNLP

applying elements, 392-394
creating, 386-391

multiple, 629
objects, 426-427
output streams, 411-413
renaming, 427
returning size of, 427
RSS, 512
source, 617
streams, 408-413
unformatted, 615
web.xml, 564

FileWriter() method, 425
fill instance variable, 321
fills, Java2D, 369-370
FilterInputStream class, 413
FilterOutputStream class, 413
filters

associating, 407
byte filters, 413

final classes, 154-156
final keyword, 42
final methods, 154-155
final modifier, 154
final variables, 154-155
finalize() method, 140-141
finally statement, 190-191
Find command (Start menu), 612
Finger.java application, 461-463
first() method, 502
flags, 221-226
float data type, 40
floating exceptions, 199
floating-point numbers, 40

exponents, 46
representing as literals, 45

flow layout manager, 305-307
FlowLayout class, 304-305
FlowLayout constructor, 305, 307
focus

Calculator.java application, 340-342
event handling, 340-342
object-oriented programming, 13

How can we make this index more useful? Email us at indexes@samspublishing.com

focus 667

focusGained() method, 340-342
FocusListener event listener, 334, 340
focusLost() method, 340, 342
folders, 162. See also files

command-line windows
creating in, 609
opening in, 608

creating, 427
deleting

delete() method, 427
deleteOnExit() method, 427

MS-DOS
creating, 608-609
opening, 607-608

FontMetrics class, 363
fonts. See also text

antialiasing, 362
built-in, 361
creating, 361
returning information about, 363-364
selecting, 361
sizing, 363-365

for loops, 104-105
FormatChooser.java application, 343-344
FormatFrame.java application, 265
FormatFrame2.java application, 267
formatting. See also configuring; design

commands, 626
cookies, 565-568
folders in command-line widows, 609
JNLP files, 386-387
JSP, 574-581

standard tag libraries, 587-594
web applications, 581-587

sessions, 568-572
XML, 514

creating documents, 518-521
documents, 525-527
evaluating XOM, 528-530
modifying documents, 521-522, 524-525

forms
submitting, 481
web, 560

forName() method, 444
forward slash (/), 44

frames, 249
displaying, 250
exiting, 250-251
hiding, 250
locations, 250
menu bars, 295
progress bars, 291
sizing, 249
stack, 644
user interfaces, 252
viewing, 252
visible, 250

frameworks, 251-252
functionality, 10, 24
functions, 627. See also commands; methods

G

g option (debugger), 641
garbage collection, 67
general utility methods, 73
GeneralPath objects, 374
generics, 240-243
get requests, 560
get() method, 227
getActionCommand() method, 339
getAppletInfo() method, 632-633, 644
getAttribute() method, 569
getChildElements() method, 522
getClass() method, 84
getClickCount() method, 345
getColor() method, 367
getConnection() method, 491
getConstructors() method, 446
getContentType() method, 458
getCookies() method, 566
getCrossPlatformLookAndFeelClassName()

method, 276
getDate() method, 493
getDeclaredMethods() method, 448
getDouble() method, 493
getErrorCode() method, 493
GetFile sample application, 455-457
getFloat() method, 493
getFontMetrics() method, 363

668 focusGained() method

getHeaderField() method, 458
getHeaderFieldKey() method, 458
getHeight() method, 363
getInputStream() method, 454
getInt() method, 493
getItemAt() method, 266
getItemCount() method, 266
getKeyChar() method, 344
getLong() method, 493
getMessage() method, 189
getModifiers() method, 446, 448
getName() method, 427, 444
getNumberOfFiles() method, 292
getParameterInfo() method, 632-633
getparameterTypes() method, 446
getPath() method, 427
getPoint() method, 345
getResponseCode() method, 458
getResponseMessage() method, 458
getReturnType() method, 446, 448
getSelectedItem() method, 266
getSelectedText() method, 260
getSelectedValues() method, 268
getSelecteIndex() method, 266
getSession() method, 569
getSize() method, 256
getSource() method, 336, 339
getSQLState() method, 493
getStateChange() method, 342
getString() method, 493
getSystemLookAndFeelClassName() method, 276
getX() method, 345
getY() method, 345
Giftshop.java application, 174
global variables, 37
gosling, James, 9-10
gradient fills, 369
GradientPaint constructor, 369
graphical user interfaces. See GUIs
graphics

arcs, 372-374
coordinate spaces, 368
coordinate systems, 359-360
lines, 372
Map2D example, 375-377

polygons, 374
Java 2D, 79
rectangles, 372
rendering attributes, 368

drawing strokes, 371
fill patterns, 369-370

text
antialiasing, 362
drawing, 360-362
sizing, 363-365
sizing text, 363-365

Swing applications, 249
Graphics2D class, 358-359
greater than or equal to symbol (=), 53
greater than symbol (>), 53
Green, Roedy, 391
GridBagConstraints object, 321
gridheight instance variable, 321
GridLayout constructor, 309-310
grids

bag layout manager
creating, 309, 321-323
grids, 324-328
overview, 321

creating, 324-328
designing, 323-324
element arrays, 95

gridwidth instance variable, 321
gridx instance variable, 321
gridy instance variable, 321
grouping

arguments, 126
classes, 30
expressions, 56
interfaces, 30
methods, 74

Grunge Web site, 628
guestbook-post.jsp file, 584-585
Guestbook.java application, 586
guestbook.jsp file, 581-583
GUIs (graphical user interfaces)

components, 359
dialog boxes, 277-278

confirm dialog boxes, 278-279
Info sample application, 282-285

How can we make this index more useful? Email us at indexes@samspublishing.com

GUIs 669

input dialog boxes, 279-280
message dialog boxes, 280-281
option dialog boxes, 281-282

event handling
action events, 339
adapter classes, 350-351
ChangeTitle sample application, 337-338
component setup, 335
event listeners, 334
focus events, 340-342
item events, 342-344
key events, 343-344
methods, 336-337
mouse events, 344-345
SwingColorTest sample application, 350
window events, 349-350

layout managers, 304
border layout, 311-312
card layout, 313-320
combining, 312-313
flow layout, 305-307
grid layout, 309-310, 321-329
insets, 329
specifying, 304-305

mouse, 345-349
progress bars, 291-293
scroll panes, 287

creating, 287
scrollbars, 288
sizing, 287
toolbars, 288-291

sliders, 285
advantages, 285
labels, 285-286
orientation, 285
Slider.java sample application, 286

text
antialiasing, 362
drawing, 360-362
sizing, 363-365

user-interface manager, 274-277
windows, 304

H

HalfDollars.java application
arrays, 93-94
main() method, 94-95
source code, 93

HalfLooper.java application, 105-106
handlers, 199, 546
handling

arguments in applications, 127-128
errors. See errors
exceptions. See exceptions
strings, 76

Harold, Elliotte Rusty, 517
hash tables, 221, 235-236, 240

clearing, 235
creating, 235
hash codes, 236
load factor, 235
searching, 236

hashCode() method, 236
Hashtable class, 221, 235-236, 240
hasNext() method, 222-223, 477
hello.jsp file, 588-589
HelloUser.java application, 616-617
helper classes, 125-126
hexadecimal numbers, 45
HexReader.java application, 191-192
hiding

components, 256
frames, 250

hierarchies
classes, 24-28
defining, 156
designing, 26-28
exceptions, 199
interface, 168
methods, 28-29

history of Java, 10-11
HolidaySked.java application, 225-226
Hörnell, Karl, 631

670 GUIs

HTML (Hypertext Markup Language)
forms, 481
JSP, 572-573

creating, 574-581
formatting web applications, 581-587
standard tag libraries, 587-594

viewing, 631
HTTP (Hypertext Transfer Protocol), 535
HttpServlet class, 559
HttpSession class, 569
Hypertext Markup Language. See HTML
Hypertext Transfer Protocol. See HTTP
hyphen (-), 52-53

I

I/O (input/output)
streams, 405

buffered, 413-418
byte streams, 406, 408

file input streams, 408-411
file output streams, 411-413

character streams, 406, 422-426
creating, 406-407
data streams, 419-422
filtering, 407, 413
reading, 406
writing to, 407

IconFrame.java application, 257-258
icons, 257-258, 393-394
Icons.java application, 258
identifying classes, 157
if keyword, 97
if statements, 97

else keyword, 97
examples, 98
nested, 99

ignore command (jdb), 645
IllegalAccessException, 445
IllegalStateException, 570
ImageIcon objects, 257

implementing. See also development
arrays, 90
interfaces, 164-165

example, 169
multiple, 165-166

XML-RPC, 540-542
implements keyword, 165, 206
implicit exceptions, 194-195
import declaration, 159-160
import statement, 163, 248
importing

classes, 159
event listeners, 334
packages, 159-160

improving readability, 43, 57
increasing efficiency in classes, 155
increment operator (++), 52-53
increments, loops, 104
indexOf() method, 71, 229
inequality operator (!=), 82
Info application (dialog box example), 282,

284-285
Info command (Applet menu), 632
inheritance, 24

access control, 151
classes, 28

creating, 26-28
object-oriented programming, 24-25

exceptions, 196-198
multiple, 30, 164
object-oriented programming, 25
overview, 25
single, 29
Swing classes, 248

init() method, 559
initialization

loops, 104
objects, 66

inner classes, 175. See also classes
advantages, 176-177
naming, 177
scope, 177

input dialog boxes, 279-280

How can we make this index more useful? Email us at indexes@samspublishing.com

input dialog boxes 671

input streams, 438
creating, 439
reading, 439-441
transient variables, 441-442

input/output. See I/O
InputDialog dialog boxes, 278
InputStream class, 408
insets, 322, 329
inspecting classes, 443-449
installing

JDK, 603
troubleshooting, 604, 624
Windows, 604-605

Tomcat, 557
InstanceCounter.java application, 153
instanceof keyword, 337
instanceof operator, 56, 84
instances

comparing, 82
classes, 16
methods, 124. See also methods
passing, 78
variables, 17, 37, 67

defining, 116-117
length, 93
modifying, 68
testing, 68
values, 38, 67-69
versus class variables, 69

InstantiationException, 445
int data type, 40
integers, 45-46

data types, 40
floating-point numbers, 45
negative numbers, 45
octal numbers, 45

interfaces, 30
ActionListener, 336
BoxLayout constructor, 307-309
casting objects to, 166
CGI, 556
classes, 164
command-line, 606-607
components, 304-305
creating, 166-167, 249-251

declaring, 164-167
Enumeration, 221
event listeners, 334
extending, 168-169
FlowLayout constructor, 305-307
grids, 324
grouping, 30
GUIs. See GUIs
hierarchies, 168
implementing, 164-165, 169
Iterator, 221-223
Map, 233-234
methods, 167-168
multiple

complications, 165-166
implementing, 165-166

objects to, 79
overview, 30, 164
protection, 167
ResultSet, 493
Runnable, 206
Serializable, 434
variables, 166-167
viewing, 304

Internet, 454. See also networking
interpreters

Java, 159, 627-629
JDK, 619
running, 610

InterruptedException, 189
INTERSOLV driver, 489
introspection. See reflection
invoking. See calling
IOException, 187, 190, 408, 439
ipadx instance variable, 322
ipady instance variable, 322
isDirectory() method, 427
isEditable() method, 260
isEmpty() method, 235
isNew() method, 569
ISO-8859-1, 470
isSelected() method, 264
item events, 342
Item.java application, 169-171
ItemListener event listener, 334

672 input streams

ItemProp application, 646
itemStateChanged() method, 342
Iterator interfaces, 221-223

J

jar utility, 639-640
Java

applications
creating, 124-126
running, 627

case-sensitivity, 39
code

complexity, 201
listings. See listings

compilers, 602
data structures, 220
development tools, 11-12, 602
exceptions. See exceptions
fonts, 361
frames, 250-251
history of, 10-11
JOptionPane, 277-278

confirm dialog boxes, 278-279
input dialog boxes, 279-280
message dialog boxes, 280-281
option dialog boxes, 281-282

JProgressBar
constructors, 291
methods, 291-292

JScrollPane, 287-288
JSlider

constructors, 285
methods, 285-286
Slider.java sample application, 286

JToolBar, 288-289
constructors, 289
dockable toolbars, 289-291

overview of, 10-11
plug-ins. 631
programs

Compiling in Windows, 618-619
developing, 602
running in Windows, 618-619
speed, 630

Web sites, 626
Web Start

applying, 385
JNLP files, 386-394
security, 392
server support, 391-392

XML
creating documents, 518-521
evaluating XOM, 528-530
formatting documents, 525-527
modifying documents, 521-522, 524-525
processing, 516
XOM, 516-518

Java 2 Class Library, 16
Java 2D

arcs, 372-374
coordinate spaces, 368
graphics operations, 79
lines, 372
polygons, 374
rectangles, 372
rendering attributes, 368

drawing strokes, 371
fill patterns, 369-370

sample applet, 375-377
java command, 22
Java Database Connectivity. See JDBC
Java Development Kit. See JDK
java interpreters, 159, 627-629
Java Runtime Environment (JRE), 605
Java Server Pages. See JSP
java.awt package, 147
java.awt.event package, 334
java.io package, 405, 408
java.io.tmpdir property, 645
java.lang package, 80
java.lang.reflect package, 445-447
java.net package, 454. See also networking
java.net.MalformedURLException, 542
java.nio package, 467

buffers, 467-471
channels, 471-475, 477-480

java.sql package, 487
java.util package, 220
java.util.Date() constructor, 574

How can we make this index more useful? Email us at indexes@samspublishing.com

java.util.Date() constructor 673

java.vendor system property, 645
java.version system property, 645
JavaBeans, 449
javac

command-line tools, 618
compilers, 629-630
options

-depreciation, 630
-O, 630
-verbose, 630

running, 618
javadoc

AppInfo2 sample application, 636-638
tags, 638-639

@author, 635
@deprecated, 638
@exception, 638
@param, 638
@return, 635
@see, 638
@serial, 635
@since, 639
@version, 635

javax.servlet package, 559
javax.swing.JButton class, 16
javax.swing.JComponent class, 256
javax.xml.parsers package, 516
JCheckBox class, 263
JCheckBox() constructor, 264
JComboBox class, 266
JComboBox() constructor, 266
jdb debugger, 641-642, 645

applet debugging, 643-644
application debugging, 641-643
breakpoints, 641

deleting, 642-643
setting, 642

commands
!!, 643
classes, 644
clear, 642
cont, 643
down, 644
exit, 643
ignore, 645

list, 643
locals, 643
memory, 644
methods, 644
print text, 643
run, 643
step, 643
stop at, 642
stop in, 642
suspend, 645
threads, 644
up, 644

single-step execution, 641
JDBC (Java Database Connectivity), 486-487

database access, 487
drivers, 487, 502

configuring, 503-507
sample application, 503

JDBC-ODBC bridge, 487-489
ODBC data source connections, 487-489

closing, 493
opening, 489-502

JDK (Java Development Kit), 625-626
applying, 601
assertions, 203-205
command line arguments, 626
commands, 626
components, 605
configuring, 605-606

CLASSPATH variable, 620-624
command-line interface, 606-607
configuration errors, 611
MS-DOS folders, 607-608
PATH variable, 611-614
troubleshooting, 604

downloading, 626
installing, 603-605

installation files, 603
troubleshooting, 604, 624
Windows, 604-605

interpreter, 619
system properties, 645

java.vendor, 645
java.version, 645
os.name, 645

674 java.vendor system property

os.version, 645
setting, 645-646

utilities
appletviewer browser, 631-634
command line, 626
jar, 639-640
java interpreters, 627-629
javac compilers, 629-630
javadoc documentation tools, 635-639
jdb debuggers, 641-645
options, 627
Setup Wizard, 604

JFrame() constructor, 249
JLabel() methods, 259
JList class, 267
JMenu, 294
JMenuBar, 294
JMenuItem, 294
JNLP files

creating, 386-391
elements, 392-394

JOptionPane class, 277-278
confirm dialog boxes, 278-279
input dialog boxes, 279-280
message dialog boxes, 280-281
option dialog boxes, 281-282

JProgressBar class
constructors, 291
methods, 291-292

JPython language, 628
JRadioButton class, 263
JRE (Java Runtime Environment), 605
JRuby language, 628
JScrollPane class, 262, 287-288
JScrollPane() method, 262
JSlider class, 285

constructors, 285
methods, 285-286
Slider.java sample application, 286

JSP (Java Server Pages), 555, 572-573
creating, 574-581
standard tag libraries, 587-594
web applications, 581-587

JTabbedPane class, 297-298
JTextArea class, 260

JTextArea() method, 260
JTextField() method, 259
JToolBar class, 288-289

constructors, 289
dockable toolbars, 289-291

JudoScript language, 628
juncture styles (drawing strokes), 371

K

key-mapped data structures
Dictionary class, 221
Hashtable class, 221, 235-236, 240
Map interface, 233-234

keyboards, events, 344
KeyChecker.java application, 351
KeyListener, 344
KeyListener event listener, 334
keyPressed() method, 344
keyReleased() method, 344
keys, 221
keyTyped() method, 344
keywords

abstract, 156
assert, 202
break, 109
class, 116
continue, 110
else, 97
extends, 116, 168
final, 42, 154
if, 97
implements, 165, 206
instanceof, 337
modifiers, 146
null, 91
private, 148-149
protected, 150
public, 149
return, 119
static, 69, 116-117, 123, 152
super, 138
this, 120, 133
throws, 193-196

How can we make this index more useful? Email us at indexes@samspublishing.com

keywords 675

L

labels, 259
aligning, 259
loops, 110
progress bars, 292
sliders, 285-286

languages
Java

history of, 10-11
overview of, 10-11
selecting development tools, 11-12

JPython, 628
JRuby, 628
JudoScript, 628
NetRexx, 628
SQL, 486-487

last() method, 502
lastElement() method, 227
layout managers, 304

border layout, 311-312
card layout, 313

adding cards, 314
applying, 315-320
creating, 314
displaying cards, 314

combining, 312-313
flow layout, 305-307
grids

bag layout, 321-328
layout, 309-310

insets, 329
specifying, 304-305

length instance variable, 93
length() method, 71
less than or equal to symbol (<=), 53
less than symbol (<), 53
levels of access control, 151
lexical scope, 112
libraries, JSP standard tag, 587-594
Line2D.Float class, 372
lines

drawing, 368
Line2D.Float class, 372
separators, 294

lineTo() method, 374
linked lists, enumerating, 169
linking

applets, 455
node objects, 85

list command (jdb), 643
listeners, 334

ActionListener, 334
adapter classes, 350-351
adding, 335
AdjustmentListener, 334
associating components with, 335
FocusListener, 334, 340
importing, 334
ItemListener, 334, 342
KeyListener, 334, 344
MouseListener, 334, 345
MouseMotionListener, 334, 345
WindowListener, 334, 349

listFiles() method, 427
listings

AllCapsDemo.java application, 428-429
Alphabet.java application, 306
ArrayCopier.java application, 107-108
arrays, 93-94
Authenticator.java application, 261-262
Border.java application, 312
BufferConverter.java application, 473
Bunch.java application, 309-310
ButtonFrame.java application, 255
Buttons.java application, 255
Calculator.java application, 340-342
CalorieCounter.java application, 203-205
CoalReporter.java application, 494
CodeKeeper.java application, 230-231
CodeKeeper2.java application, 242-243
ColorServlet.java application, 566-568
ComicBooks.java application, 237-240
Counter.java application, 579-580
counter.jsp file, 579
DayCounter.java application, 101-103
defining instance variables, 117
defining methods, 119
DiceRoller.java application, 396-398
DiceWorker.java application, 395

676 labels

DmozHandler.java application, 549-550
DmozServer.java application, 548-549
DomainEditor.java application, 524-525
DomainWriter.java application, 527
environment.jsp file, 575-576
EqualsTester.java application, 82-83
event handling

SelectItem application, 342
TitleChanger.java application, 337-338

feed.rss file, 518
FeedBar.java application, 290
FeedBar2.java application, 296-297
FeedInfo.java application, 282-284
feeds2.rss file, 525
Finger.java application, 461-463
FormatChooser.java application, 343-344
FormatFrame.java application, 265
FormatFrame2.java application, 267
Giftshop.java application, 174
guestbook-post.jsp file, 584-585
Guestbook.java application, 586
guestbook.jsp file, 581-583
halfLooper.java application, 105-106
hello.jsp file, 588-589
HelloUser.java application, 616-617
HexReader.java application, 191-192
HolidaySked.java application, 225-226
IconFrame.java application, 257-258
Icons.java application, 258
InstanceCounter.java application, 153
Item.java application, 169-171
KeyChecker.java application, 351
LoginServlet.java application, 571-572
Map.java application, 375-377
MessagePanel.java application, 327-328
MethodInspector.java application, 447
MousePrank class, 346-348
MyRect class definition, 130-131
MyRect2 class, 134-135
NamedPoint class, 139
NewFingerServer.java application, 478-480
ObjectReader.java application, 441
objects, 65
ObjectWriter.java application, 437-438
PageData.jnlp file, 387

Passer class, 122-123
PointSetter.java application, 68-69
Presidents.java application, 503-506
PrimeFinder.java application, 208-209
PrimeThreads.java application, 210-211
Printer class, 136
ProgressMonitor.java, 292-293
QuoteData.java application, 498-500
RefTest.java application, 75
Rot13.java application, 562-563
rss.jsp file, 593
RssFilter.java application, 528-529
RssStarter.java application, 520-521
shop-for-books.jsp file, 577
SimpleFrame.java application, 251
SimpleWindow.java application, 252
SiteClient.java application, 544-545
Slider.java application, 286
sportsfilter.rss file, 592
SquareTool.java application, 176
Stacker.java application, 308
Storefront.java application, 172
streams

BufferDemo.java application, 415-416
ByteWriter application, 412
PrimeReader application, 421-422
PrimeWriter application, 420-421
ReadBytes.java application, 410
SourceReader application, 424-425

StringChecker.java application, 70-71
Subscriptions.java application, 268-269
SumAverage.java application, 127
SurveyFrame.java application, 320
SurveyWizard.java application, 318-320
TextFrame.java application, 363-364
time.jsp file, 574
TimeServer.java application, 464-465
Tokentester.java application, 65
Variables.java application, 42-43
VolcanoApplication.java application, 22-23
VolcanoRobot class example, 20
VolcanoRobot.java application, 19-20
Weather.java application, 49-50
WebReader.java application, 455-457
workbench.rss file, 512-513

How can we make this index more useful? Email us at indexes@samspublishing.com

listings 677

XML-RPC requests, 538
XML-RPC responses, 539-540

lists, 267-269
literals, 44-45, 64

Boolean, 46
characters, 46-47
integers, 45-46

floating-point numbers, 45
negative numbers, 45
octal numbers, 45

strings, 47-48
load factor (hash tables), 235
local variables, 37-38
locals command (jdb), 643
locations, frames, 250
logical operators, 54-55
login, servlets, 570
LoginServlet.java application, 571-572
long data type, 40
look and feel, setting, 276
loops

breaking, 109
do-while, 109
for, 104

empty statements, 105
example, 105
troubleshooting, 105

increments, 104
index values, 104
initialization, 104
labeling, 110
restarting, 110
run() methods, 212
tests, 104
while, 107-108

lowercase, 428-429

M

main() method, 21-23, 125, 149, 627
makeRange() method, 119-120
MalformedURLException exception, 187
management

buttons, 264
errors. See errors

exceptions. See exceptions
memory, 66-67

Map interface, 233-234
Map.java application, 375-377
Map2D applet, 375, 377
maps, drawing, 375-377
math operators, 49-50
MD command (MS-DOS), 608
member functions, 31. See also methods
memory, 66-67
memory command (jdb), 644
menus, 293-297
message dialog boxes, 280-281
MessageDialog dialog boxes, 278
MessagePanel.java application, 327-328
Method class, 445
MethodInspector.java application, 447
methods, 72-73, 118

abstract methods, 156-157
accept(), 463
access control, 146-151

default access, 147
inheritance, 151
private access, 148-149
protected access, 150-151
public access, 149

accessor methods, 152
actionPerformed(), 336, 398
add(), 227, 254
addActionListener(), 335, 339
addAttribute(), 519
addCookie(), 565
addFocusListener(), 335
addHandler(), 547
addItem(), 266
addItemListener(), 335
addKeyListener(), 335
addMouseListener(), 335
addMouseMotionListener(), 335
addTextListener(), 335
addWindowListener(), 335
afterLast(), 502
appendChild(), 520
ArgStream(), 416
arguments, 122-123

678 listings

beforeFirst(), 502
BufferedInputStream(), 414
BufferedOutputStream(), 414
BufferedReader(), 424
BufferedWriter(), 426
buildRect(), 129-130
calling, 18, 70-71
capacity(), 229
CardLayout(), 314
charAt(), 71
charWidth(), 363
checkTemperature(), 23
classes, 18, 73-74, 123-124

accessing, 153
availability, 123
calling, 74
defining, 123
main(), 21-22

clear(), 235
close(), 407, 426
closePath(), 374
connect(), 476
constructors, 65, 132-133

calling, 132-134, 139
definition of, 66
naming, 133
overloading, 134
overriding, 138-140

contains(), 229, 236
containsKey(), 236
createFont(), 362
createStatement(), 492
DataInputStream(), 419
DataOutputStream(), 419
defaultReadObject(), 442
defining, 118

multiple, 128
parameter lists, 118
this keyword, 120

delete(), 427
deleteOnExit(), 427
destroy(), 559
doGet(), 561
doInBackground(), 394
doPost(), 561

drawString(), 360
equals(), 82, 236
event handling, 336
exceptions, 193
execute(), 544
executeQuery(), 492-493
exists(), 427
File(), 427
FileInputStream(), 408
FileOutputStream(), 411
FileReader(), 423
FileWriter(), 425
final, 154-155
finalize(), 140-141
finalizers, 140-141
first(), 502
focusGained(), 340-342
focusLost(), 340-342
forName(), 444
general utility, 73
get(), 227
getActionCommand(), 339
getAppletInfo(), 632-633, 644
getAttribute(), 569
getChildElements(), 522
getClass(), 84
getClickCount(), 345
getColor(), 367
getConnection(), 491
getConstructors(), 446
getContentType(), 458
getCookies(), 566
getCrossPlatformLookAndFeelClassName(), 276
getDate(), 493
getDeclaredMethods(), 448
getDouble(), 493
getErrorCode(), 493
getFloat(), 493
getFontMetrics(), 363
getHeaderField(), 458
getHeaderFieldKey(), 458
getHeight(), 363
getInputStream(), 454
getInt(), 493
getItemAt(), 266

How can we make this index more useful? Email us at indexes@samspublishing.com

methods 679

getItemCount(), 266
getKeyChar(), 344
getLong(), 493
getMessage(), 189
getModifiers(), 446, 448
getName(), 427, 444
getNumberOfFiles(), 292
getParameterInfo(), 632-633
getParameterTypes(), 446
getPath(), 427
getPoint(), 345
getResponseCode(), 458
getResponseMessage(), 458
getReturnType(), 446, 448
getSelectedIndex(), 266
getSelectedItem(), 266
getSelectedText(), 260
getSelectedValues(), 268
getSession(), 569
getSize(), 256
getSource(), 336, 339
getSQLState(), 493
getStateChange(), 342
getString(), 493
getSystemLookAndFeelClassName(), 276
getX(), 345
getY(), 345
grouping, 74
hashCode(), 236
hasNext(), 222-223, 477
hierarchies, 28-29
indexOf(), 71, 229
init(), 559
instance methods, 124
interfaces, 30, 167-168
isDirectory(), 427
isEditable(), 260
isEmpty(), 235
isNew(), 569
isSelected(), 264
itemStateChanged(), 342
JLabel(), 259
JScrollPane(), 262
JTextArea(), 260
JTextField(), 259

keyPressed(), 344
keyReleased(), 344
keyTyped(), 344
last(), 502
lastElement(), 227
length(), 71
lineTo(), 374
listFiles(), 427
main(), 23, 125, 149, 627
makeRange(), 119-120
mkdir(), 427
mouseClicked(), 345
mouseDragged(), 345, 349
mouseEntered(), 345
mouseExited(), 345
mouseMoved(), 345, 349
mousePressed(), 345
mouseReleased(), 345
moveTo(), 374
nested, 73
newDecoder(), 471
newEncoder(), 471
newInstance(), 445
newLine(), 426
next(), 222-223, 477
objects, 73
open(), 476
overloading

advantages, 128
creating, 128-130, 132
definition of, 128
troubleshooting, 129

overriding, 28, 136-137
advantages, 137
super keyword, 138

pack(), 287
paintComponent(), 359
parseInt(), 124, 128
peek(), 233
pop(), 233
POST, 481
previous(), 502
println(), 43
printMe(), 136
printTest(), 121

680 methods

protecting, 157
push(), 232
put(), 468
putChar(), 469
putDouble(), 469
putFloat(), 469
putInt(), 469
putLong(), 469
putShort(), 469
quitProgram(), 337
read(), 406-407, 423, 440
readBoolean(), 440
readByte(), 440
readChar(), 440
readDouble(), 440
readFloat(), 419, 440
readInt(), 440
readLine(), 424, 440, 457
readLong(), 440
readObject(), 439
readShort(), 440
readStream(), 417
readUnsignedByte(), 419, 440
readUnsignedShort(), 419, 440
register(), 476
rehash(), 236
remove(), 227, 234
removeAllElements(), 228
removeChild(), 523
renameTo(), 427
repaint(), 349
retrieveQuote(), 500
return types, 118-119
run(), 207, 212
search(), 233
select(), 477
set(), 228
setActionCommand(), 339
setAsciiStream(), 496
setBackground(), 367
setBinaryStream(), 496
setBoolean(), 496
setBounds(), 250
setByte(), 496
setBytes(), 496

setCharacterStream(), 496
setColor(), 366
setContentPane(), 254
setDate(), 497
setDefaultCloseOperation(), 251
setDouble(), 497
setEchoChar(), 260
setEditable(), 260
setEnabled(), 256
setFloat(), 497
setFollowRedirects(), 458
setFont(), 361
setForeground(), 367
setInt(), 497
setLayout(), 313-314
setLineWrap(), 261
setListData(), 268
setLong(), 497
setLookAndFeel(), 276
setMajorTickSpacing(), 285
setMaxAge(), 565
setMaximum(), 292
setMaximumRowCount(), 266
setMinimum(), 292
setMinorTickSpacing(), 286
setNull(), 497
setPaint(), 369-370
setPaintLabels(), 286
setPaintTicks(), 286
setSelected(), 264
setSelectedIndex(), 266
setShort(), 497
setSize(), 229, 249, 256, 359
setSoTimeOut(), 459
setString(), 497
setStringPainted(), 292
setStroke(), 370
setText(), 260
setValue(), 292
setVisible(), 250, 256, 287
setWrapStyleWord(), 261
show(), 314
showAttributes(), 21, 23
showConfirmDialog(), 278-279
showInputDialog(), 279-280

How can we make this index more useful? Email us at indexes@samspublishing.com

methods 681

showMessageDialog(), 280
showOptionDialog(), 281
signatures, 118, 128
SimpleFrame(), 252
size(), 235, 472
start(), 632
static, 152-154
stop(), 211, 632
stringWidth(), 363
substring(), 71
superclasses, 138
System.out.println(), 23, 43
testBlock(), 96
testing, 120
toUpperCase(), 72, 123
toXML(), 520
trimToSize(), 229
URL(), 455
valueOf(), 74
windowActivated(), 350
windowClosed(), 350
windowClosing(), 350
windowDeactivated(), 350
windowDeiconified(), 350
windowIconified, 350
windowOpened(), 350
write(), 407, 414, 425, 436
writeBoolean(), 436
writeByte(), 436
writeBytes(), 436
writeChar(), 436
writeChars(), 436
writeDouble(), 436
writeFloat(), 436
writeInt(), 422, 436
writeLong(), 436
writeObject(), 436
writeShort(), 436
writeStream(), 416

minus sign (-), 45
mkdir() method, 427
MMA (Motivational Marketing Associates), 558
Modifier class, 445
modifiers, 146

abstract, 156
access control, 147-151

final, 154
multiple, 146
private, 148-149
protected, 150
public, 149
static, 152

modifying. See also configuring
arrays, 93
classes, 70, 206
components, 335
documents (XML), 521-525
functions, 627
instance variables, 68-69
operator precedence, 56
superclasses, 26

modulus (%) operators, 49
motion events, mouse, 345-349
mouse

event handling, 344-345
motion, 345-349

mouseClicked() method, 345
mouseDragged() method, 345, 349
mouseEntered() method, 345
mouseExited() method, 345
MouseListener, 334, 345
MouseMotionListener, 334
mouseMoved() method, 345, 349
MousePrank class, 346-348
mousePressed() method, 345
mouseReleased() method, 345
moveTo() method, 374
MS-DOS

accessing, 606
CLASSPATH variable

Windows 98/Me, 620-622
Windows NT/2000/XP, 622-624

commands
CD, 607-608, 618
MD, 608
SET CLASSPATH=, 621

folders
creating, 608-609
opening, 607-608

PATH variables
Windows 98/Me, 611-613
Windows NT/2000/XP, 613-614

682 methods

programs, 609-610
prompts, 607, 626

multidimensional arrays, 95-96
multiple bytes, 412
multiple constructor definitions, 66
multiple exceptions, 200
multiple files, 629
multiple inheritance, 30, 164
multiple interfaces

complications, 165-166
implementing, 165-166

multiple methods, 128
multiple modifiers, 146
multiple variables, 38
multiplication operator, 49
multitasking, 205
MyRect class, 129-131
MyRect2 class, 134-135

N

NamedPoint class, 139
naming

classes, 177
conflicts, 157-161
conventions, 162
data sources, 488
methods, 133
packages, 162
variables, 39

Native Interface Header Files component (JDK),
605

navigating records, 493, 502
Naviseek Web site, 22
negative numbers as literals, 45
nesting

combining methods, 73
exception handlers, 199
if statements, 99
method calls, 72-73

NetRexx language, 628
Network News Transfer Protocol (NNTP), 460

networking, 454
java.nio package, 467

buffers, 467-471
channels, 471-480

sockets, 459, 463
client-side, 459-460
server-side, 463
transport-layer implementation, 463

streams, 454-459
BufferedReader objects, 454
GetFile sample application, 455
getInputStream() method, 454
URLConnection objects, 454

TriviaServer application
designing, 464
running, 466

new operator, 56
instantiating arrays, 91
objects, 64-66

newDecoder() method, 471
newEncoder() method, 471
NewFingerServer.java application, 478-480
newInstance() method, 445
newline (character ‘\n’), 418
newLine() method, 426
next() method, 222-223, 477
NNTP (Network News Transfer Protocol), 460
NoClassDef error, 620
node objects, linking, 85
nonblocking clients/servers, 475
nonexclusive check boxes, 264
not equal symbol (>=), 53
NOT operator, 55
notation, dot, 67-70
Notepad

accessing, 611
AUTOEXEC.BAT, 611
source files, 617

null keyword, 91
NullPointerException, 187
numbers

base-8, 45
console input streams, 417-418
floating-point, 40, 45-46
literals, 64
octal, 45

How can we make this index more useful? Email us at indexes@samspublishing.com

numbers 683

O

Object class, 24
object-oriented programming. See OOP
ObjectInputStream class, 438-440
ObjectOutputStream class, 435-437
ObjectReader.java application, 441
objects, 13-14. See also instances

arrays, 91-92
attributes, 17
ButtonGroup, 264
casting, 76-77, 166
classes

attributes, 17-18
behavior, 18-19
determining, 84

Color, 366
comparing, 82-83
converting, 76-77
creating, 64-65

arguments, 64
constructors, 66
drawing, 371-374
with new operator, 64-66

current, 120
encapsulating, 149
File, 426-427
Font, 361
GeneralPath, 374
GridBagConstraints, 321
ImageIcon, 257
initializing, 66
memory, 67
methods, 73
nodes, 85
primitive types, 80-81
references, 74-76, 82
reusing, 15-17
Selector, 476
serialization, 434-435

advantages, 435
input streams, 438-441
output streams, 435-438
persistence, 435
testing fields, 442-443
transient variables, 441-442

streams, 434
strings, 20, 47
StringTokenizer, 65-66
URL, 455

ObjectWriter.java application, 437-438
obscuring password fields, 260
octal numbers, 45
ODBC (Open Database Connectivity)

data source connections
closing, 493
opening, 489-502

naming, 488
JDBC-ODBC bridge, 487-489

ODBC Data Source Administrator (Windows XP),
488

Old Native Interface Header Files component
(JDK), 605

online storefronts, creating, 169-175
OOP (object-oriented programming), 11-12

classes, 14-15
inheritance, 25
objects, 14

Open Directory Project, 550
open() method, 476
opening

folders
in command-line windows, 608
MS-DOS, 607-608

socket connections, 459
streams over Internet, 454-459

BufferedReader objects, 454
GetFile sample application, 455
getInputStream() method, 454
URLConnection objects, 454

operations, increment/decrement, 52
operators, 49

addition (+), 49
arithmetic, 49
assignment, 38, 51
comparison, 53-54
concatenation (+), 57, 76
conditional, 111
decrement (—), 52-53
division, 49
equality (= =), 82
increment (++), 52-53

684 Object class

inequality (!=), 82
instanceof, 56, 84
logical, 54-55
modulus (%), 49
multiplication, 49
new, 56

creating objects with, 64-66
instantiating arrays, 91

OR, 54
postfix, 52
precedence, 55-57
prefix, 52
subtraction (-), 49

option dialog boxes, 281-282
OptionalDataException, 439
OptionDialog dialog boxes, 278
options, command line, 627
order of precedence, operators, 55-57
org.apache.xmlrpc package, 542
organizing

behavior, 24-30
classes, 24-30, 146, 157
stacks, 232

os.name system property, 645
os.version system property, 645
OutOfMemoryError, 195
output streams, 435. See also streams

creating, 436
ObjectToDisk, 438
writing to, 436

overflow (variable assignment), 59
overloading methods, 118

advantages, 128
buildRect(), 130
constructors, 134
creating, 128-132
definition of, 128
troubleshooting, 129

overriding
methods, 28, 136-137

advantages, 137
constructors, 138-140
super keyword, 138

scrollbars, 288

P

pack() method, 287
packages, 30, 157

access control, 163
advantages, 157
classes, 628
creating

classes, 163
folder structure, 162
names, 162

declaring, 147, 163
importing, 159-160
java.awt, 147
java.lang, 80
java.nio, 467

buffers, 467-471
channels, 471-480

javax.servlet, 559
javax.xml.parsers, 516
org.apache.xmlrpc, 542
overview, 30
referencing, 158

class names, 158
package names, 158-159

padding cells, 329
PageData.jnlp file, 387
paintComponent() method, 359
panels, 254, 313

components, 313
creating, 313
insets, 329
panes, 254
tabbed panes, 297-298
viewing, 297

panes
panels, 254
scrolling, 262

parameters, 539
Pardon My Icons Web site, 258
parseInt() method, 124, 128
Passer class, 122-123
passing

arguments
to applications, 126
to methods, 122-123

How can we make this index more useful? Email us at indexes@samspublishing.com

passing 685

exceptions, 195-196
instances, 78

passwords, 260
PATH command, 612
PATH variable (MS-DOS)

Windows 98/Me, 611-613
Windows NT/2000/XP, 613-614

peek() method, 233
period (.), dot notation, 67-68
persistence, 435
pipe character (|), 54
platform neutrality, 11
pluggable look and feel, setting, 276
plus sign (+)

concatenation operator (+), 57
increment operator (++), 52-53

pointers (C/C++), 76, 85
PointSetter.java application, 68-69
policies, scrolling, 297
polygons

drawing, 368
Java2D, 374

pop() method, 233
POST method, 481
post requests, 560
postfix operators, 52
power variable, 117
precedence, operators, 55-57
prefix operators, 52
PreparedStatement class, 495
Presidents.java application, 503-506
previous() method, 502
PrimeFinder.java application, 208-209
PrimeReader application, 421-422
PrimeThreads.java application, 210-211
PrimeWriter application, 420-421
primitive types, 85

arrays, 444
casting, 76-78
converting, 76-77
data, 40
objects, 80-81

print text command (jdb), 643
Printer class, 136
println() method, 43

printMe() method, 136
printTest() method, 121
private access, 148-149
private modifiers, 148-149
procedural programming, 13
procedures, 539
processing XML, 516

creating documents, 518-521
evaluating XOM, 528-530
formatting documents, 525-527
modifying documents, 521-525
XOM, 516-518

programming
OOP, 11-14
procedural, 13

programs. See also applications
compiling, 606
debugging, 616, 641
developing, 602
Java. See Java
MS-DOS, 609-610
readability, 43
running, 21-23, 606

progress bars, 291-293
ProgressMonitor.java application, 292-293
properties

java.io.tmpdir, 645
system properties, 645

java.vendor, 645
java.version, 645
os.name, 645
os.version, 645
setting, 645-646

protection
access, 150-151
classes, 157
interfaces, 167
methods, 157
modifiers, 150
variables, 157

public access, 149
Public Java Runtime Environment (JRE), 605
public modifiers, 149
push() method, 232
put() methods, 468

686 passing

putChar() method, 469
putDouble() method, 469
putFloat() method, 469
putInt() method, 469
putLong() method, 469
putShort() method, 469

Q

queries, 486
quitProgram() method, 337
quotation marks (“) in arguments, 126-127
QuoteData.java application, 498-500

R

radio buttons, 263-265
event handling

action events, 339
item events, 342-343

exclusive, 264
managing, 264

Random() class, 66
RangeLister.java application, 119
read() method, 406-407, 423, 440
readability

expressions, 57
programs, 43

readBoolean() method, 440
readByte() method, 440
ReadBytes.java application, 410
readChar() method, 440
readDouble() method, 440
readFloat() method, 419, 440
reading

input streams, 439-441
streams, 406

buffered streams, 414
character streams, 423-425
data streams, 419
file input streams, 408-411

readInt() method, 440
readLine() method, 424, 440, 457
readLong() method, 440
readObject() method, 439

readShort() method, 440
readStream() method, 417
readUnsignedByte() method, 419, 440
readUnsignedShort() method, 419, 440
Really Simple Syndication. See RSS
reclaiming memory, 67
records, navigating, 493, 502
Rectangle2D.Float class, 372
rectangles, drawing, 372
reducing name conflicts, 157
references

arrays, 93
example, 75-76
objects, 74, 82
packages, 158

class names, 158
package names, 158-159

passing by, 122
referring to objects, 120
reflection, 443, 445-449
RefTest.java application, 75
register() method, 476
rehash() method, 236
Reload command (Applet menu), 632
remote method invocation. See RMI
remote procedure calls. See RPCs
remove() method, 227, 234
removeAllElements() method, 228
removeChild() method, 523
removing vector elements, 228
renameTo() method, 427
renaming files, 427
rendering attributes (Java2D), 368

drawing strokes, 371
fill patterns, 369-370

repaint() method, 349
replaceText() method, 587
requests

get, 560
post, 560
XML-RPC

responding, 539-540
sending, 538

reserved words, 146. See also modifiers

How can we make this index more useful? Email us at indexes@samspublishing.com

reserved words 687

resizing
components, 256, 359
windows, 304

responses, 539-540
Restart command (Applet menu), 632
restarting loops, 110
ResultSet interface, 493
resultsets, 501-502
retrieveQuote() method, 500
return keyword, 119
return types, 118, 119
return values, 36, 48
reusing objects, 15-17
RMI (remote method invocation), 536
Rot13.java application, 562-563
RPCs (remote procedure calls), 535-537

applying, 542-545
creating, 546-550
data exchanges, 537-540
implementing, 540-542

RSS (Really Simple Syndication), 511
applying, 512-514
creating XML dialects, 515
documents, 518-527
processing, 516
XOM, 516-518, 528-530

rss.jsp file, 593
RssFilter.java application, 528-529
RssStarter.java application, 520-521
run command (jdb), 643
Run command (Start menu), 604
run() method, 207, 212
Runnable interface, 206
running. See also executing

applications, 627
bytecode, 628
console input streams, 417-418
interpreter, 610
Java programs in Windows, 618-619
Java Web Start, 384, 391-392
programs, 21-23, 606-610
threads, 207

runtime exceptions, 186, 213
RuntimeException class, 194

S

saving
files, 615
source code, 617-618
source files, 617

SAX (Simple API for XML), 516
scope

inner classes, 177
lexical scope, 112
variables, 96, 121-122

scriptlets, 574-578
scripts, CGI, 556
scroll panes, 287

creating, 287
scrollbars, 288
sizing, 287

scrollbars
configuring, 263
overriding, 288

scrolling
panes, 262
policies, 297

ScrollPaneConstants class, 263
search() method, 233
searching

hash tables, 236
stack, 233

SearchWebServices.com, 9
security

Java Web Start, 384, 392
policies, 241

SecurityException, 428
SecurityViolation exception, 445
SeeMethod application, 447
select() method, 477
selecting

development tools, 11-12, 602
Font styles, 361

SelectionKey class, 476
Selector object, 476
semicolon (;), 36
sending requests, XML-RPC, 538
separators, adding, 294
Serializable interface, 434

688 resizing

serialization, 434-435
advantages, 435
input streams, 438

creating, 439
reading, 439-441

objects, 442-443
output streams, 435

creating, 436
ObjectToDisk, 438
writing to, 436

persistence, 435
transient variables, 441-442

Serializer class, 526
server-side sockets, 463
servers

applications, 463-465
Java Web Start, 391-392
nonblocking, 475
TriviaServer application

running, 466
source code listing, 464

XML-RPC, 536-537
applying, 542-545
creating, 546-550
data exchanges, 537-540
implementing, 540-542

ServerSocket class, 463
servlets

applying, 556, 558
cookies, 565-568
developing, 559-564
JSP, 572-573

creating, 574-581
formatting web applications, 581-587
standard tag libraries, 587-594

sessions, 568-572
sessions, 556, 568-572
SET CLASSPATH= command (MS-DOS), 621
set() method, 228
setActionCommand() method, 339
setAsciiStream() method, 496
setBackground() method, 367
setBinaryStream() method, 496
setBoolean() method, 496
setBounds() method, 250

setByte() method, 496
setBytes() method, 496
setCharacterStream() method, 496
setColor() method, 366
setContentPane() method, 254
setDate() method, 497
setDefaultCloseOperation() method, 251
setDouble() method, 497
setEchoChar() method, 260
setEditable() method, 260
setEnabled() method, 256
setFloat() method, 497
setFollowRedirects() method, 458
setFont() method, 361
setForeground() method, 367
setInt() method, 497
setLayout() method, 313-314
setLineWrap() method, 261
setListData() method, 268
setLong() method, 497
setLookAndFeel() method, 276
setMajorTickSpacing() method, 285
setMaxAge() method, 565
setMaximum() method, 292
setMaximunRowCount() method, 266
setMinimum() method, 292
setMinorTickSpacing() method, 286
setNull() method, 497
setPaint() method, 369-370
setPaintLabels() method, 286
setPaintTicks() method, 286
sets, characters, 470-471
setSelected() method, 264
setSelecteIndex() method, 266
setShort() method, 497
setSize() method, 229, 249, 256, 359
setSoTimeOut() method, 459
setString() method, 497
setStringPainted() method, 292
setStroke() method, 370
setText() method, 260
setting. See also configuring

breakpoints, 642
Control Panel, 487
drawing colors, 366

How can we make this index more useful? Email us at indexes@samspublishing.com

setting 689

setValue() method, 292
setVisible() method, 250, 256, 287
setWrapStyleWord() method, 261
shapes, coordinate systems, 359-360
shared behavior, 30
shared values, 42
shop-for-books.jsp file, 577
short data type, 40
show() method, 314
showAttributes() method, 21, 23
showConfirmDialog() method, 278-279
showInputDialog() method, 279-280
showMessageDialog() method, 280
showOptionDialog() method, 281
signatures (methods), 118, 128
Simple API for XML. See SAX
Simple Mail Transfer Protocol (SMTP), 460
Simple Object Access Protocol (SOAP), 537
SimpleFrame() method, 252
SimpleFrame.java application, 251
SimpleWindow.java application, 252
single inheritance, 29
single-step execution, 641
SiteClient.java application, 544-545
size() method, 235, 472
sizing

components, 256
fonts, 363-365
frames, 249
scroll panes, 287
vectors, 226

sliders, 285
advantages, 285
labels, 285-286
orientation, 285
Slider.java sample application, 286

SMTP (Simple Mail Transfer Protocol), 460
SOAP (Simple Object Access Protocol), 537
Socket class, 459
SocketImpl class, 463
sockets, 459, 463

client-side
closing, 460
instantiating, 459
opening, 459

server-side, 463
timeout values, 459
transport-layer implementation, 463
TriviaServer application

designing, 464
running, 466

Sockets Web site, 464
source code

casting, 77
comments, 635
converting, 629
JDK, 605
listings. See listings
saving, 617-618

source files
creating, 616-619
saving, 617

SourceReader application, 424-425
specifying

class files, 628
layout managers, 304

speed
Java programs, 630
variables, 117

splash pages, viewing, 253
splash screens, Java Web Start, 393-394
sportsfilter.rss file, 592
SQL (Structured Query Language), 486-487,

495-501
SQLException, 493
SquareTool.java application, 176
sRGB color system, 365
Stack class, 221, 232-233
Stacker.java application, 308
stacks, 221, 232-233, 644

elements
adding, 232
popping off, 233

frames, 644
logical organization, 232
searching, 233

Start menu commands, 632
Find, 612
Run, 604
Settings, 487

690 setValue() method

start() method, 632
statements, 36. See also modifiers

assert, 202
blocks, 36, 96-97, 189-190, 474
combining, 199
compound, 96
conditionals, 97, 111

if, 97-98
switch, 98-100

empty for loops, 105
expressions, 36, 48

definition of, 36
return values, 36, 48

finally, 190-191
if, 99
import, 159-160, 163, 248
loops

breaking, 109
do-while, 109
for, 104-105
index values, 104
labeling, 110
restarting, 110
while, 107-108

prepared, 495
switch, 99
termination character, 36

static keywords, 69, 116-117, 123
static methods, 152-154
static modifiers, 152
static variables, 69, 117, 152-154
step command (jdb), 643
stop at command (jdb), 642
Stop command (Applet menu), 632
stop in command (jdb), 642
stop() method, 211, 632
Storefront.java application, 169-172
storefronts, creating, 169-175
storing data, 413
StreamCorruptionException, 439
streams, 405-406, 434

buffered, 413
creating, 414
reading, 414
writing to, 414-418

byte streams, 406, 408
file input streams, 408-411
file output streams, 411-413

character streams, 406, 422-423
reading text files, 423-425
writing text files, 425-426

closing, 426
creating, 406-407
data streams, 419-422

creating, 419
reading, 419
sample applications, 420

filtering, 407, 413
input streams, 438

creating, 439
reading, 439-441
transient variables, 441-442

opening over Internet, 454-459
BufferedReader objects, 454
GetFile sample application, 455
getInputStream() method, 454
URL connection objects, 454

output streams, 435
creating, 436
ObjectToDisk, 438
writing to, 436

reading, 406
writing to, 407

strings, 47
arithmetic, 57
concatenating, 57
handling, 76
literals, 47-48
objects, 20

StringTokenizer class, 65-66
stringWidth() method, 363
Stroustrup, Bjarne, 10
Structured Query Language (SQL), 486-487
structures. See data structures
styles, selecting Font, 361
subclasses, 24

defining, 25
final classes, 156

submitting forms, POST method, 481
Subscriptions.java application, 268-269

How can we make this index more useful? Email us at indexes@samspublishing.com

Subscriptions.java application 691

subscripts (arrays), 92
substring() method, 71
subtraction (-) operator, 49
SumAverage.java application, 127
Sun Microsystems, 626
super keyword, 138
super:() method, 138
superclasses, 24

casting, 79
indicating, 116
methods in, 138
modifying, 26

support
buffers, 467-471
servers, 391-392

surfaces, drawing, 358-360
SurveyFrame.java application, 320
SurveyWizard.java application, 318-320
suspend command (jdb), 645
Swing

applications
applying Java Web Start, 385
creating, 248
JNLP elements, 392-394
JNLP files, 386-391
graphical, 249
Java Web Start, 382-385, 391-392
Slider.java, 286
SwingWorker, 394-399

buttons, 253
class inheritance, 248
components, 248, 256

check boxes, 263-265
combo boxes, 266-267
creating, 248, 253-254
disabled, 256
displaying, 256
drop-down lists, 266-267
hiding, 256
icons, 257-258
labels, 259
lists, 267-269
radio buttons, 263-265
resizing, 256
scrolling panes, 262

text areas, 260-262
text fields, 259-260

containers, 254
dialog boxes

confirm dialog boxes, 278-279
creating, 277-278
input dialog boxes, 279-280
message dialog boxes, 280-281
option dialog boxes, 281-282
sample application, 282-285

event-handling, 333
action events, 339
adapter classes, 350-351
ChangeTitle.java application, 337-338
component setup, 335
event listeners, 334
focus events, 340, 342
instanceof keyword, 337
item events, 342
key events, 343-344
methods, 336
mouse events, 344-345
mouse-movement events, 345
SwingColorTest sample application, 350
window events, 349-350

FeedBar.java application, 290
FeedInfo application, 282-284
layout managers, 304

border layout, 311-312
card layout, 313-320
combining, 312-313
flow layout, 305-307
grid bag layout, 321-323, 329
grid layout, 309-310
insets, 329
specifying, 304-305

look and feel, 276
menus, 293-297
progress bars, 291-293

labels, 292
orientation, 291
updating, 292

scroll panes, 287
creating, 287
scrollbars, 288
sizing, 287

692 subscripts (arrays)

sliders, 285
advantages, 285
labels, 285-286
orientation, 285
Slider.java sample application, 286

splash pages, 253
tabbed panes, 297-298
toolbars, 288

dockable toolbars, 289-291
orientation, 289

user-interface manager, 274-277
windows, 304

SwingColorTest.java application, 350
SwingConstants class, 259, 285
SwingWorker.java application, 394-399
switch statements, 98-100
system properties, 645

java.vendor, 645
java.version, 645
os.name, 645
os.version, 645
setting, 645-646

System.out.println() method, 23, 43

T

tabbed panes, 297-298
tables, 221, 235-236, 240

clearing, 235
creating, 235
hash codes, 236
load factor, 235
searching, 236

Tag command (Applet menu), 632
tags

ARCHIVE attribute, 640
attributes, 388
HTML, 574-583, 585-594
javadoc, 635, 638-639

@author, 635
@deprecated, 638
@exception, 638
@param, 638
@return, 635
@see, 638

@serial, 635
@since, 639
@version, 635

XML, 513. See also XML
tasks, statements, 36
TCP (Transmission Control Protocol), 459, 463

client-side
closing, 460
instantiating, 459
opening, 459

server-side, 463
transport-layer implementation, 463
TriviaServer.java application

designing, 464
running, 466

telnet connections, 466
temperature variable, 117
terminating threads, 211-212
ternary operators, 111
testBlock() method, 96
testing

instance variables, 68
loops, 104
methods, 120
objects, 442-443
servers, 466

text
areas, 260-262
ASCII, 616
console input streams, 417-418
converting to uppercase, 428-429
documents. See documents
DOS, 616
drawing, 360-362

antialiasing, 362
sizing, 363-365

editors, 615
fields, 259-260, 339-343
menus, 294
unformatted, 616

TextFrame application, 363-364
this keyword, 120, 133
Thread class, 206
threads, 205

animation, 205
applications, 206-207

How can we make this index more useful? Email us at indexes@samspublishing.com

threads 693

creating, 206-207
methods, 207
run() methods, 212
running, 207
terminating, 211-212

threads command (jdb), 644
Throwable class, 186
throwing exceptions, 186, 193, 197-198

explicit, 195
implicit, 194-195
inheritance issues, 196-197
throws keyword, 193-194

throws keyword, 193-194, 196
time.jsp file, 574
timeout values, sockets, 459
Times New Roman fonts, 364
TimeServer.java application, 464-465
TitleChanger.java application, 337-338
TokenTester.java application, 65
Tolksdorf, Robert, 628
Tomcat, installing, 557
toolbars, 288

components, 289
dockable toolbars, 289-291
orientation, 289

tools
development, 11-12, 602
functions, 627

top-level classes, 175-177
toUpperCase() method, 72, 123
toXML() method, 520
tracking sessions, 570-572
transient variables, 441-442
Transmission Control Protocol. See TCP
transport-layer socket implementation, 463
trimToSize() method, 229
TriviaServer.java application

client, 466
designing, 464
server

running, 466
source code listing, 464

troubleshooting. See also debugging
arrays, 93
compiling, 620

errors, 188
for loops, 105
JDK

configuring, 604
installing, 604, 624

methods, 129
variables

class, 70
scope, 121

true value (Boolean), 46
try...catch blocks

example, 189-190
finally clause, 190-191

types
primitive, 444. See also primitive types
variables, 39

U

UIManager class, 274, 276
unboxing, 81
unformatted files, saving, 615
unformatted text, 616
Unicode character sets, 39, 46-48, 406
uniform resource identifiers. See URIs
uniform resource locators. See URLs
up command (jdb), 644
updating progress bars, 292
uppercase, 428-429
URIs (uniform resource identifiers), 519
URLs (uniform resource locators), 455, 560
URL() method, 455
US-ASCII, 470
user coordinate space, 368
user interfaces, 252. See also interfaces
using Motivational Marketing Associates (MMA),

558
UTF-8, 470
UTF-16, 470
UTF-16BE, 470
UTF-16LE, 470
utilities. See also tools

appletviewer, 631
AppInfo sample application, 632-634
Applet menu commands, 632

694 threads

command line, 626-627
jar files, 639-640
java interpreter, 627-629
javac compiler, 629-630
javadoc, 635

AppInfo2 sample application, 636-638
tags, 635, 638-639

jdb debugger, 641
applet debugging, 643-644
application debugging, 641-643
breakpoints, 641-643
commands, 642-645
single-step execution, 641

V

validating XML, 515
valueOf() method, 74
values

Boolean, 40, 77
class variables, 70
instance variables, 68-69
shared, 42
variables, 41

variables, 36
access control, 146-147, 151

default access, 147
private access, 148-149
protected access, 150-151
public access, 149

array variables, 90-91
assigning values to, 38
casting, 77-78
class, 18, 37, 67

accessing, 153
defining, 38, 69
instance, 69
modifying values, 70
troubleshooting, 70
types, 41
variables, 117

CLASSPATH, 161-162
Windows 98/Me, 620-622
Windows NT/2000/XP, 622-624

constant variables, 41-42
creating, 37
data types, 40, 80-81
declaring, 37
decrementing, 52-53
duplicating, 122
encapsulation, 147
environment, 645
final, 154-155
global, 37
incrementing, 52-53
instance, 17, 37, 67

accessing values, 67-68
length, 93
modifying, 68-69
testing, 68

instance variables, 116-117
interfaces, 166-167
local, 37-38
multiple, 38
naming, 39
overflow, 59
PATH

Windows 98/Me, 611-613
Windows NT/2000/XP, 613-614

protecting, 157
scope, 96, 121-122

lexical scope, 112
troubleshooting, 121

servlets, 576
static, 69, 152-154
transient, 441-442
types, 39
values, 41

Variables.java application, 42-43
Vector class, 221, 226-231
Vector() constructor, 543
vectors, 221, 226-231

capacity, 226, 229
creating, 226-227
elements

accessing, 227
adding, 227
changing, 228
removing, 228-229

size, 226, 229

How can we make this index more useful? Email us at indexes@samspublishing.com

vectors 695

verbose option (javac), 630
vertical scrollbars, 263
viewing

applets, 631
documents, 631
frames, 252
interfaces, 304

aligning components, 304-305
BoxLayout constructor, 307-309
FlowLayout constructor, 305-307

Java Web Start, 385
panels, 297
splash pages, 253

visible frames, 250
void return type (methods), 119
VolcanoApplication.java application, 22-23
VolcanoRobot.java application, 19-20, 117

W

Weather.java application, 49-50
web applications, creating, 581-587
web forms, 560
web services (XML)

applying XML-RPC, 542-545
creating XML-RPC, 546-550
data exchanges (XML-RPC), 537-540
implementing XML-RPC, 540-542
XML-RPC, 536-537

web sites
Grunge, 628
Java, 626
Java Plug-in, 631
Naviseek, 22
Pardon My Icons, 258
Sockets, 464
Unicode Consortium, 48

web.xml file, 564
webapps folder, 574
WebReader.java application, 455-457
WebServer class, 546
weightx instance variables, 321
weighty instance variables, 321
while loops, 107-108
wildcards, 629

windowActivated()method, 350
windowClosed() method, 350
windowClosing() method, 350
windowDeactivated() method, 350
WindowListener, 334, 349
windowOpened() method, 350
windows, 249

creating, 252
event handling, 349-351
frames, 249

displaying, 250
exiting, 250-251
hiding, 250
locations, 250
sizing, 249
user interfaces, 252
visible, 250

graphics, 359
GUI, 304
MS-DOS Prompt, 607
Swing, 304

Windows 98/Me
CLASSPATH variable, 620-622
PATH variable, 611-613

Windows NT/2000/XP
CLASSPATH variable, 622-624
PATH variable, 613-614

Windows operating systems
Java programs, 618-619
JDK, 604-605

wizards, JDK Setup, 604
word processors, 615. See also text
WordPad, 615
workbench.rss file, 512-513
world20.mdb database, 489-490
wrapper classes, 124
write() method, 407, 414, 425, 436
writeBoolean() method, 436
writeByte() method, 436
writeBytes() method, 436
writeChar() method, 436
writeChars() method, 436
writeDouble() method, 436
writeFloat() method, 436
writeInt() method, 422, 436
writeLong() method, 436

696 verbose option

writeObject() method, 436
writeShort() method, 436
writeStream() method, 416
writing

applications, 206-207
bytes, 412
to streams, 407

buffered streams, 414-418
character streams, 425-426
file output streams, 412-413, 436

text files, 425-426

X-Z

x,y coordinate system, 359
XML (Extensible Markup Language)

applying, 512-514
dialects, 515
formatting, 514
processing, 516

creating documents, 518-521
evaluating XOM, 528-530
formatting documents, 525-527
modifying documents, 521-525
XOM, 516-518

validating, 515
web services

applying XML-RPC, 542-545
creating XML-RPC, 546-550
data exchanges (XML-RPC), 537-540
implementing XML-RPC, 540-542
XML-RPC, 536-537

XML Object Model. See XOM
XmlRpcClient class, 542
XOM (XML Object Model), 516

evaluating, 528-530
processing, 516-518

XOR operator, 55

How can we make this index more useful? Email us at indexes@samspublishing.com

XOR operator 697

	SAMS Teach YourSelf Java 6 in 21 Days
	Table of Contents
	Introduction
	How This Book Is Organized
	Who Should Read This Book
	Conventions Used in This Book

	WEEK I: The Java Language
	DAY 1: Getting Started with Java
	The Java Language
	Object-Oriented Programming
	Objects and Classes
	Attributes and Behavior
	Organizing Classes and Class Behavior
	Summary
	Q&A
	Quiz
	Exercises

	DAY 2: The ABCs of Programming
	Statements and Expressions
	Variables and Data Types
	Comments
	Literals
	Expressions and Operators
	String Arithmetic
	Summary
	Q&A
	Quiz
	Exercises

	DAY 3: Working with Objects
	Creating New Objects
	Accessing and Setting Class and Instance Variables
	Calling Methods
	References to Objects
	Casting and Converting Objects and Primitive Types
	Comparing Object Values and Classes
	Summary
	Q&A
	Quiz
	Exercises

	DAY 4: Lists, Logic, and Loops
	Arrays
	Block Statements
	if Conditionals
	switch Conditionals
	for Loops
	while and do Loops
	Breaking Out of Loops
	Summary
	Q&A
	Quiz
	Exercises

	DAY 5: Creating Classes and Methods
	Defining Classes
	Creating Instance and Class Variables
	Creating Methods
	Creating Java Applications
	Java Applications and Command-line Arguments
	Creating Methods with the Same Name, Different Arguments
	Constructor Methods
	Overriding Methods
	Finalizer Methods
	Summary
	Q&A
	Quiz
	Exercises

	DAY 6: Packages, Interfaces, and Other Class Features
	Modifiers
	Static Variables and Methods
	Final Classes, Methods, and Variables
	Abstract Classes and Methods
	Packages
	Using Packages
	Creating Your Own Packages
	Interfaces
	Creating and Extending Interfaces
	Inner Classes
	Summary
	Q&A
	Quiz
	Exercises

	DAY 7: Exceptions, Assertions, and Threads
	Exceptions
	Managing Exceptions
	Declaring Methods That Might Throw Exceptions
	Creating and Throwing Your Own Exceptions
	When and When Not to Use Exceptions
	Assertions
	Threads
	Summary
	Q&A
	Quiz
	Exercises

	WEEK II: The Java Class Library
	DAY 8: Data Structures
	Moving Beyond Arrays
	Java Structures
	Generics
	Summary
	Q&A
	Quiz
	Exercises

	DAY 9: Working with Swing
	Creating an Application
	Working with Components
	Lists
	Summary
	Q&A
	Quiz
	Exercises

	DAY 10: Building a Swing Interface
	Swing Features
	Summary
	Q&A
	Quiz
	Exercises

	DAY 11: Arranging Components on a User Interface
	Basic Interface Layout
	Mixing Layout Managers
	Card Layout
	Grid Bag Layout
	Summary
	Q&A
	Quiz
	Exercises

	DAY 12: Responding to User Input
	Event Listeners
	Working with Methods
	Summary
	Q&A
	Quiz
	Exercises

	DAY 13: Using Color, Fonts, and Graphics
	The Graphics2D Class
	Drawing Text
	Color
	Drawing Lines and Polygons
	Summary
	Q&A
	Quiz
	Exercises

	DAY 14: Developing Swing Applications
	Java Web Start
	Using Java Web Start
	Improving Performance with SwingWorker
	Summary
	Q&A
	Quiz
	Exercises

	WEEK III: Java Programming
	DAY 15: Working with Input and Output
	Introduction to Streams
	Byte Streams
	Filtering a Stream
	Character Streams
	Files and Filename Filters
	Summary
	Q&A
	Quiz
	Exercises

	DAY 16: Serializing and Examining Objects
	Object Serialization
	Inspecting Classes and Methods with Reflection
	Summary
	Q&A
	Quiz
	Exercises

	DAY 17: Communicating Across the Internet
	Networking in Java
	The java.nio Package
	Summary
	Q&A
	Quiz
	Exercises

	DAY 18: Accessing Databases with JDBC
	Java Database Connectivity
	The JDBC-ODBC Bridge
	Summary
	Q&A
	Quiz
	Exercises

	DAY 19: Reading and Writing RSS Feeds
	Using XML
	Designing an XML Dialect
	Processing XML with Java
	Processing XML with XOM
	Summary
	Q&A
	Quiz
	Exercises

	DAY 20: XML Web Services
	Introduction to XML-RPC
	Communicating with XML-RPC
	Choosing an XML-RPC Implementation
	Using an XML-RPC Web Service
	Creating an XML-RPC Web Service
	Summary
	Q&A
	Quiz
	Exercises

	DAY 21: Writing Java Servlets and Java Server Pages
	Using Servlets
	Developing Servlets
	JSP
	JSP Standard Tag Library
	Summary
	Q&A
	Quiz
	Exercises

	Appendixes
	APPENDIX A: Using the Java Development Kit
	Choosing a Java Development Tool
	Configuring the Java Development Kit
	Using a Text Editor
	Creating a Sample Program.
	Setting Up the CLASSPATH Variable

	APPENDIX B: Programming with the Java Development Kit
	An Overview of the JDK
	The java Interpreter
	The javac Compiler
	The appletviewer Browser
	The javadoc Documentation Tool
	The jar Java File Archival Tool
	The jdb Debugger
	Using System Properties

	APPENDIX C: This Book’s Website

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Z

