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PREFACE

 

Many workers in the biological sciences—physiologists,
psychologists, sociologists—are interested in cybernetics and
would like to apply its methods and techniques to their own spe-
ciality. Many have, however, been prevented from taking up the
subject by an impression that its use must be preceded by a long
study of electronics and advanced pure mathematics; for they
have formed the impression that cybernetics and these subjects
are inseparable.

The author is convinced, however, that this impression is false.
The basic ideas of cybernetics can be treated without reference to
electronics, and they are fundamentally simple; so although
advanced techniques may be necessary for advanced applications,
a great deal can be done, especially in the biological sciences, by
the use of quite simple techniques, provided they are used with a
clear and deep understanding of the principles involved. It is the
author’s belief that if the subject is founded in the common-place
and well understood, and is then built up carefully, step by step,
there is no reason why the worker with only elementary mathe-
matical knowledge should not achieve a complete understanding
of its basic principles. With such an understanding he will then be
able to see exactly what further techniques he will have to learn if
he is to proceed further; and, what is particularly useful, he will be
able to see what techniques he can safely ignore as being irrele-
vant to his purpose.

The book is intended to provide such an introduction. It starts
from common-place and well-understood concepts, and proceeds,
step by step, to show how these concepts can be made exact, and
how they can be developed until they lead into such subjects as
feedback, stability, regulation, ultrastability, information, coding,
noise, and other cybernetic topics. Throughout the book no
knowledge of mathematics is required beyond elementary alge-
bra; in particular, the arguments nowhere depend on the calculus
(the few references to it can be ignored without harm, for they are
intended only to show how the calculus joins on to the subjects
discussed, if it should be used). The illustrations and examples are
mostly taken from the biological, rather than the physical, sci-
ences. Its overlap with 

 

Design for a Brain is 

 

small, so that the two
books are almost independent. They are, however, intimately
related, and are best treated as complementary; each will help to
illuminate the other.
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It is divided into three parts.
Part I deals with the principles of Mechanism, treating such

matters as its representation by a transformation, what is meant by
“stability”, what is meant by “feedback”, the various forms of
independence that can exist within a mechanism, and how mech-
anisms can be coupled. It introduces the principles that must be
followed when the system is so large and complex (e.g. brain or
society) that it can be treated only statistically. It introduces also
the case when the system is such that not all of it is accessible to
direct observation—the so-called Black Box theory.

Part II uses the methods developed in Part I to study what is
meant by “information”, and how it is coded when it passes
through a mechanism. It applies these methods to various prob-
lems in biology and tries to show something of the wealth of pos-
sible applications. It leads into Shannon’s theory; so after reading
this Part the reader will be able to proceed without difficulty to the
study of Shannon’s own work.

Part III deals with mechanism and information as they are used
in biological systems for regulation and control, both in the inborn
systems studied in physiology and in the acquired systems studied
in psychology. It shows how hierarchies of such regulators and
controllers can be built, and how an amplification of regulation is
thereby made possible. It gives a new and altogether simpler
account of the principle of ultrastability. It lays the foundation for
a general theory of complex regulating systems, developing fur-
ther the ideas of 

 

Design for a Brain. 

 

Thus, on the one hand it pro-
vides an explanation of the outstanding powers of regulation
possessed by the brain, and on the other hand it provides the prin-
ciples by which a designer may build machines of like power.

 

Though the book is intended to be an easy introduction, it is not
intended to be merely a chat about cybernetics—it is written for
those who want to work themselves into it, for those who want to
achieve an actual working mastery of the subject. It therefore con-
tains abundant easy exercises, carefully graded, with hints and
explanatory answers, so that the reader, as he progresses, can test his
grasp of what he has read, and can exercise his new intellectual mus-
cles. A few exercises that need a special technique have been marked
thus: *Ex. Their omission will not affect the reader’s progress.

For convenience of reference, the matter has been divided into
sections; all references are to the section, and as these numbers are
shown at the top of every page, finding a section is as simple and
direct as finding a page. The section is shown thus: S.9/14—indi-
cating the fourteenth section in Chapter 9. Figures, Tables, and
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Exercises have been numbered within their own sections; thus
Fig. 9/14/2 is the second figure in S.9/14. A simple reference, e.g.
Ex. 4, is used for reference within the same section. Whenever a
word is formally defined it is printed in 

 

bold-faced 

 

type.
I would like to express my indebtedness to Michael B. Sporn,

who checked all the Answers. I would also like to take this oppor-
tunity to express my deep gratitude to the Governors of Barnwood
House and to Dr. G. W. T. H. Fleming for the generous support that
made these researches possible. Though the book covers many top-
ics, these are but means; the end has been throughout to make clear
what principles must be followed when one attempts to restore nor-
mal function to a sick organism that is, as a human patient, of fear-
ful complexity. It is my faith that the new understanding may lead
to new and effective treatments, for the need is great.
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1

 

Chapter

 

1

 

WHAT IS NEW

 

1/1

 

. Cybernetics was defined by Wiener as “the science of control
and communication, in the animal and the machine”—in a word,
as the art of 

 

steermanship, 

 

and it is to this aspect that the book will
be addressed. Co-ordination, regulation and control will be its
themes, for these are of the greatest biological and practical inter-
est.

We must, therefore, make a study of mechanism; but some
introduction is advisable, for cybernetics treats the subject from a
new, and therefore unusual, angle. Without introduction, Chapter
2 might well seem to be seriously at fault. The new point of view
should be clearly understood, for any unconscious vacillation
between the old and the new is apt to lead to confusion.

 

1/2.

 

 The peculiarities of cybernetics. 

 

Many a book has borne the
title “Theory of Machines”, but it usually contains information
about 

 

mechanical 

 

things, about levers and cogs. Cybernetics, too,
is a “theory of machines”, but it treats, not things but 

 

ways of
behaving. 

 

It does not ask “what 

 

is 

 

this thing?” but “

 

what does it
do?” 

 

Thus it is very interested in such a statement as “this variable
is undergoing a simple harmonic oscillation”, and is much less
concerned with whether the variable is the position of a point on
a wheel, or a potential in an electric circuit. It is thus essentially
functional and behaviouristic.

Cybernetics started by being closely associated in many ways
with physics, but it depends in no essential way on the laws of
physics or on the properties of matter. Cybernetics deals with all
forms of behaviour in so far as they are regular, or determinate, or
reproducible. The materiality is irrelevant, and so is the holding or
not of the ordinary laws of physics. (The example given in S.4/15
will make this statement clear.) 

 

The truths of cybernetics are not
conditional on their being derived from some other branch of sci-
ence. 

 

Cybernetics has its own foundations. It is partly the aim of
this book to display them clearly.
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1/3.

 

 Cybernetics stands to the real machine—electronic, mechani-
cal, neural, or economic—much as geometry stands to a real object
in our terrestrial space. There was a time when “geometry” meant
such relationships as could be demonstrated on three-dimensional
objects or in two-dimensional diagrams. The forms provided by
the earth—animal, vegetable, and mineral—were larger in number
and richer in properties than could be provided by elementary
geometry. In those days a form which was suggested by geometry
but which could not be demonstrated in ordinary space was suspect

 

or inacceptable. Ordinary space 

 

dominated 

 

geometry.
Today the position is quite different. Geometry exists in its own

right, and by its own strength. It can now treat accurately and
coherently a range of forms and spaces that far exceeds anything
that terrestrial space can provide. Today it is geometry that con-
tains the terrestrial forms, and not vice versa, for the terrestrial
forms are merely special cases in an all-embracing geometry.

The gain achieved by geometry’s development hardly needs to
be pointed out. Geometry now acts as a framework on which all
terrestrial forms can find their natural place, with the relations
between the various forms readily appreciable. With this increased
understanding goes a correspondingly increased power of control.

Cybernetics is similar in its relation to the actual machine. It
takes as its subject-matter the domain of “all possible machines”,
and is only secondarily interested if informed that some of them
have not yet been made, either by Man or by Nature. What cyber-
netics offers is the framework on which all individual machines
may be ordered, related and understood.

 

1/4. 

 

Cybernetics, then, is indifferent to the criticism that some of
the machines it considers are not represented among the machines
found among us. In this it follows the path already followed with
obvious success by mathematical physics. This science has long
given prominence to the study of systems that are well known to
be non-existent—springs without mass, particles that have mass
but no volume, gases that behave perfectly, and so on. To say that
these entities do not exist is true; but their non-existence does not
mean that mathematical physics is mere fantasy; nor does it make
the physicist throw away his treatise on the Theory of the Mass-
less Spring, for this theory is invaluable to him in his practical
work. The fact is that the massless spring, though it has no physi-
cal representation, has certain properties that make it of the high-
est importance to him if he is to understand a system even as
simple as a watch.

3

 

WHAT IS NEW

 

The biologist knows and uses the same principle when he gives

 

to 

 

Amphioxus, 

 

or to some extinct form, a detailed study quite out Of
proportion to its present-day ecological or economic importance.

In the same way, cybernetics marks out certain types of mech-
anism (S.3/3) as being of particular importance in the general the-
ory; and it does this with no regard for whether terrestrial
machines happen to make this form common. Only after the study
has surveyed adequately the 

 

possible 

 

relations between machine
and machine does

 

 

 

it turn to consider the forms actually found in
some particular branch

 

 

 

of science.

 

1/5.

 

 In keeping with this method, which works primarily with the
comprehensive

 

 

 

and general, cybernetics typically treats any
given, particular

 

, 

 

machine by asking not “what individual act will
it produce here

 

 

 

and now?” but “what are 

 

all 

 

the possible behav-
iours that it can produce?”

It is in this way

 

 

 

that information theory comes to play an essen-
tial part in the subject; for information theory is characterised
essentially by its dealing always

 

 

 

with a 

 

set 

 

of possibilities; both its
primary data and its

 

 

 

final statements are almost always about the
set as such, and

 

 

 

not about some individual element in the set.
This new point of view leads to the consideration of new types

of problem.

 

 

 

The older point of view saw, say, an ovum grow into
a rabbit and

 

 

 

asked “why does it do this”—why does it not just stay
an ovum?” The attempts to answer this question led to the study
of energetics and

 

 

 

to the discovery of many reasons why the ovum
should change—it can oxidise its fat, and fat provides free energy;
it has phosphorylating enzymes, and can pass its metabolises
around a Krebs’ cycle; and so on. In these studies the concept of
energy was fundamental.

Quite different, though equally valid, is the point of view of
cybernetics. It takes for granted that the ovum has abundant free
energy, and that it is so delicately poised metabolically as to be, in
a sense, explosive. Growth of some form there will be; cybernetics
asks “why should the changes be to the rabbit-form, and not to a
dog-form, a fish-form, or even to a teratoma-form?” Cybernetics
envisages a set of possibilities much wider than the actual, and then
asks why the particular case should conform to its usual particular
restriction. In this discussion, questions of energy play almost no
part—the energy is simply taken for granted. Even whether the sys-
tem is closed to energy or open is often irrelevant; what 

 

is 

 

important
is the extent to which the system is subject to determining and con-
trolling factors. So no information or signal or determining factor
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may pass from part to part without its being recorded as a signifi-
cant event. Cybernetics might, in fact, be defined as 

 

the study of sys-
tems that are open to energy but closed to information and
control—

 

systems that are “information-tight” (S.9/19.).

 

1/6.

 

 The uses of cybernetics. 

 

After this bird’s-eye view of cyber-
netics we can turn to consider some of the ways in which it prom-
ises to be of assistance. I shall confine my attention to the
applications that promise most in the biological sciences. The
review can only be brief and very general. Many applications
have already been made and are too well known to need descrip-
tion here; more will doubtless be developed in the future. There
are, however, two peculiar scientific virtues of cybernetics that
are worth explicit mention.

One is that it offers a single vocabulary and a single set of con-
cepts suitable for representing the most diverse types of system.
Until recently, any attempt to relate the many facts known about,
say, servo-mechanisms to what was known about the cerebellum
was made unnecessarily difficult by the fact that the properties of
servo-mechanisms were described in words redolent of the auto-
matic pilot, or the radio set, or the hydraulic brake, while those of
the cerebellum were described in words redolent of the dissecting
room and the bedside—aspects that are irrelevant to the 

 

similari-
ties 

 

between a servo-mechanism and a cerebellar reflex. Cyber-
netics offers one set of concepts that, by having exact
correspondences with each branch of science, can thereby bring
them into exact relation with one other.

It has been found repeatedly in science that the discovery that
two branches are related leads to each branch helping in the devel-
opment of the other. (Compare S.6/8.) The result is often a mark-
edly accelerated growth of both. The infinitesimal calculus and
astronomy, the virus and the protein molecule, the chromosomes
and heredity are examples that come to mind. Neither, of course,
can give 

 

proofs 

 

about the laws of the other, but each can give sug-
gestions that may be of the greatest assistance and fruitfulness.
The subject is returned to in S.6/8. Here I need only mention the
fact that cybernetics is likely to reveal a great number of interest-
ing and suggestive parallelisms between machine and brain and
society. And it can provide the common language by which dis-
coveries in one branch can readily be made use of in the others.

 

1/7.

 

 

 

The complex system. 

 

The second peculiar virtue of cybernet-
ics is that it offers a method for the scientific treatment of the sys-
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tem in which complexity is outstanding and too important to be
ignored Such systems are, as we well know, only too common in
the biological world!

In the simpler systems, the methods of cybernetics sometimes
show no obvious advantage over those that have long been
known. It is chiefly when the systems become complex that the
new methods reveal their power.

Science stands today on something of a divide. For two centuries
it has been exploring systems that are either intrinsically simple or
that are capable of being analysed into simple components. The fact
that such a dogma as “vary the factors one at a time” could be
accepted for a century, shows that scientists were largely concerned
in investigating such systems as 

 

allowed 

 

this method; for this
method is often fundamentally impossible in the complex systems.
Not until Sir Donald Fisher’s work in the ’20s, with experiments
conducted on agricultural soils, did it become clearly recognised that
there are complex systems that just do not allow the varying of only
one factor at a time—they are so dynamic and interconnected that
the alteration of one factor immediately acts as cause to evoke alter-
ations in others, perhaps in a great many others. Until recently, sci-
ence tended to evade the study of such systems, focusing its attention
on those that were simple and, especially, reducible (S.4/14).

In the study of some systems, however, the complexity could
not be wholly evaded. The cerebral cortex of the free-living
organism, the ant-hill as a functioning society, and the human
economic system were outstanding both in their practical impor-
tance and in their intractability by the older methods. So today we
see psychoses untreated, societies declining, and economic sys-
tems faltering, the scientist being able to do little more than to
appreciate the full complexity of the subject he is studying. But
science today is also taking the first steps towards studying “com-
plexity” as a subject in its own right.

Prominent among the methods for dealing with complexity is
cybernetics. It rejects the vaguely intuitive ideas that we pick up
from handling such simple machines as the alarm clock and the
bicycle, and sets to work to build up a rigorous discipline of the sub-
ject. For a time (as the first few chapters of this book will show) it
seems rather to deal with truisms and platitudes, but this is merely
because the foundations are built to be broad and strong. They are
built so that cybernetics can be developed vigorously, without t e
primary vagueness that has infected most past attempts to grapple
with, in particular, the complexities of the brain in action.

Cybernetics offers the hope of providing effective methods for
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the study, and control, of systems that are intrinsically extremely
complex. It will do this by first marking out what is achievable
(for probably many of the investigations of the past attempted the
impossible), and then providing generalised strategies, of demon-
strable value, that can be used uniformly in a variety of special
cases. In this way it offers the hope of providing the essential
methods by which to attack the ills—psychological, social, eco-
nomic—which at present are defeating us by their intrinsic com-
plexity. Part III of this book does not pretend to offer such
methods perfected, but it attempts to offer a foundation on which
such methods can be constructed, and a start in the right direction.

 

PART ONE

 

MECHANISM

 

The properties commonly ascribed to any object
are, in last analysis, names for its behavior.

 

(Herrick)
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Chapter

 

2

 

CHANGE

 

2/1.

 

 The most fundamental concept in cybernetics is that of “dif-
ference”, either that two things are recognisably different or that
one thing has changed with time. Its range of application need not
be described now, for the subsequent chapters will illustrate the
range abundantly. All the changes that may occur with time are
naturally included, for when plants grow and planets age and
machines move some change from one state to another is implicit.
So our first task will be to develop this concept of “change”, not
only making it more precise but making it richer, converting it to
a form that experience has shown to be necessary if significant
developments are to be made.

Often a change occurs continuously, that is, by infinitesimal
steps, as when the earth moves through space, or a sunbather’s
skin darkens under exposure. The consideration of steps that are
infinitesimal, however, raises a number of purely mathematical
difficulties, so we shall avoid their consideration entirely. Instead,
we shall assume in all cases that the changes occur by finite steps
in time and that any difference is also finite. We shall assume that
the change occurs by a measurable jump, as the money in a bank
account changes by at least a penny. Though this supposition may
seem artificial in a world in which continuity is common, it has
great advantages in an Introduction and is not as artificial as it
seems. When the differences are finite, all the important ques-
tions, as we shall see later, can be decided by simple counting, so
that it is easy to be quite sure whether we are right or not. Were
we to consider continuous changes we would often have to com-
pare infinitesimal against infinitesimal, or to consider what we
would have after adding together an infinite number of infinitesi-
mals—questions by no means easy to answer.

As a simple trick, the discrete can often be carried over into the
continuous, in a way suitable for practical purposes, by making a
graph of the discrete, with the values shown as separate points. It



 

10

 

AN INTRODUCTION TO CYBERNETICS

 

is then easy to see the form that the changes will take if the points
were to become infinitely numerous and close together.

In fact, however, by keeping the discussion to the case of the
finite difference we lose nothing. For having established with cer-
tainty what happens when the differences have a particular size
we can consider the case when they are rather smaller. When this
case is known with certainty we can consider what happens when
they are smaller still. We can progress in this way, each step being
well established, until we perceive the trend; then we can say what
is the limit as the difference tends to zero. This, in fact, is the
method that the mathematician always does use if he wants to be
really sure of what happens when the changes are continuous.

Thus, consideration of the case in which all differences are
finite loses nothing, it gives a clear and simple foundation; and it
can always be converted to the continuous form if that is desired.

The subject is taken up again in S.3/3.

 

2/2.

 

 Next, a few words that will have to be used repeatedly. Con-
sider the simple example in which, under the influence of sun-
shine, pale skin changes to dark skin. Something, the pale skin, is
acted on by a factor, the sunshine, and is changed to dark skin.
That which is acted on, the pale skin, will be called the 

 

operand,

 

the factor will be called the 

 

operator

 

, and what the operand is
changed to will be called the 

 

transform. 

 

The change that occurs,
which we can represent unambiguously by

 

pale skin 

 

→

 

 dark skin

is the 

 

transition.

 

The transition is specified by the two states and the indication
of which changed to which.

TRANSFORMATION

 

2/3.

 

 The single transition is, however, too simple. Experience has
shown that if the concept of “change” is to be useful it must be
enlarged to the case in which the operator can act on more than
one operand, inducing a characteristic transition in each. Thus the
operator “exposure to sunshine” will induce a number of transi-
tions, among which are:

cold soil

 

→

 

warm soil 
unexposed photographic plate

 

→

 

exposed plate 
coloured pigment

 

→

 

bleached pigment

 

Such a set of transitions, on a set of operands, is a 

 

transformation.
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Another example of a transformation is given by the simple
coding that turns each letter of a message to the one that follows
it in the alphabet, 

 

Z

 

 being turned to 

 

A; so CAT 

 

would become

 

DBU. 

 

The transformation is defined by the table:

 

A

 

→

 

B
B

 

→

 

C

 

…

 

Y

 

→

 

Z
Z

 

→

 

A

 

Notice that the transformation is defined, not by any reference to
what it “really” is, nor by reference to any physical cause of the
change, but by the giving of a set of operands and a statement of
what each is changed to. The transformation is concerned with

 

what

 

 happens, not with 

 

why

 

 it happens. Similarly, though we may
sometimes know something of the operator as a thing in itself (as
we know something of sunlight), this knowledge is often not
essential; what we 

 

must

 

 know is how it acts on the operands; that
is, we must know the transformation that it effects.

For convenience of printing, such a transformation can also be
expressed thus:

We shall use this form as standard.

 

2/4.

 

 

 

Closure. 

 

When an operator acts on a set of operands it may
happen that the set of transforms obtained contains no element
that is not already present in the set of operands, i.e. the transfor-
mation creates no new element. Thus, in the transformation

every element in the lower line occurs also in the upper. When this
occurs, the set of operands is 

 

closed 

 

under the transformation. The
property of “closure”, is a relation between a transformation and
a particular set of operands; if either is altered the closure may
alter.

It will be noticed that the test for closure is made, not by refer-
ence to whatever may be the cause of the transformation but by
reference of the details of the transformation itself. It can there-
fore be applied even when we know nothing of the cause respon-
sible for the changes.  

 

↓

 

A   B

 

 … 

 

Y   Z
B   C

 

 … 

 

Z   A

 

↓

 

A   B

 

 …

 

 Y   Z
B   C

 

 …

 

 Z   A
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Ex.

 

1: If the operands are the positive integers 1, 2, 3, and 4, and the operator is
“add three to it”, the transformation is:

Is it closed ?

 

Ex.

 

2. The operands are those English letters that have Greek equivalents (i.e.
excluding 

 

j,

 

 

 

q, 

 

etc.), and the operator is “turn each English letter to its Greek
equivalent”. 

 

 

 

Is

 

 

 

the transformation closed ?

 

Ex.

 

3: Are the following transformations closed or not:

 

Ex.

 

4: Write down, in the form of Ex. 3, a transformation that has only one oper-
and and is closed.

 

Ex.

 

5: Mr. C, of the Eccentrics’ Chess Club, has a system of play that rigidly pre-
scribes, for every possible position, both for White and slack (except for
those positions in which the player is already mated) what is the player’s best
next move. The theory thus defines a transformation from position to posi-
tion. On being assured that the transformation was a closed one, and that C
always plays by this system, Mr. D. at once offered to play C for a large
stake. Was D wise?

 

2/5.

 

 

 

A transformation may have an infinite number of discrete
operands; such would be the transformation

where the dots simply mean that the list goes on similarly without
end. Infinite sets can lead to difficulties, but in this book we shall
consider only the simple and clear. Whether such a transformation
is closed or not is determined by whether one cannot, or can
(respectively) find some particular, namable, transform that does
not occur among the operands. In the example given above, each
particular transform, 142857 for instance, will obviously be found
among the operands. So that particular infinite transformation is
closed.

 

Ex.

 

1

 

: 

 

In 

 

A 

 

the operands are the even numbers from 2 onwards, and the trans-
forms are their squares:

 

Is A 

 

closed?

 

Ex.

 

2: In transformation 

 

B 

 

the operands are all the positive integers 1, 2, 3, …and

 

each one’s transform is its right-hand digit, so that, for instance, 127

 

 → 

 

7,
and 6493

 

 → 

 

3. Is 

 

B

 

  closed?

 

↓

 

1   2   3   4
4   5   6   7

 

A

 

:  

 

↓

 

a   b   c   d B

 

:  

 

↓

 

f   g   p   q
a   a   a   a g   f   q   p

 

C

 

:  

 

↓

 

f   g   p D

 

:  

 

↓

 

f   g
g   f   q g   f

 

↓

 

1   2   3   4   …
4   5   6   7   …

 

A

 

:   

 

↓

 

2 4 6 …
4 16 36 …
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2/6.

 

 Notation. 

 

Many transformations become inconveniently
lengthy if written out 

 

in extenso. 

 

Already, in S.2/3, we have been
forced to use dots ... to represent operands that were not given
individually. For merely practical reasons we shall have to
develop a more compact method for writing down our transforma-
tions though it is to be understood that, whatever abbreviation is
used, the transformation is basically specified as in S.2/3. Several
abbreviations will now be described. It is to be understood that
they are a mere shorthand, and that they imply nothing more than
has already been stated explicitly in the last few sections.

Often the specification of a transformation is made simple by
some simple relation that links all the operands to their respective
transforms. Thus the transformation of Ex. 2/4/1 can be replaced
by the single line

Operand

 

 → 

 

operand plus three.
The whole transformation can thus be specified by the general
rule, written more compactly,

 

Op.

 

 → 

 

Op. + 

 

3,
together with a statement that the operands are the numbers 1, 2 3
and 4. And commonly the representation can be made even
briefer, the two letters being reduced to one:

 

n

 

 → 

 

n + 

 

3  (

 

n

 

 = 1, 2, 3, 4)
The word “operand” above, or the letter 

 

n 

 

(which means 

 

exactly

 

the same thing), may seem somewhat ambiguous. If we are think-
ing of how, say, 2 is transformed, then “

 

n” 

 

means the number 2
and nothing else, and the expression tells us that it will change to
5. The same

 

 

 

expression, however, can also be used with 

 

n 

 

not
given any particular value. It then represents the whole transfor-
mation. It will be found that this ambiguity leads to no confusion
in practice, for the context will always indicate which meaning is
intended.

 

Ex.

 

 1: Condense into one line the transformation

 

Ex.

 

 2: Condense similarly the transformations:

 

A

 

:   

 

↓

 

1 2 3
11 12 13

 

a

 

: 

 

{

 

1 → 7
b: { 1 → 1

c: { 1 → 1
2 → 14 2 → 4 2 → 1/2
3 → 21 3 → 9 3 → 1/3

d: { 1 → 10
e: { 1 → 1

f: { 1 → 1
2 → 9 2 → 1 2 → 2
3 → 8 3 → 1 3 → 3
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We shall often require a symbol to represent the transform of
such a symbol as n. It can be obtained conveniently by adding a
prime to the operand, so that, whatever n may be, n → n'. Thus, if
the operands of Ex. 1 are n, then the transformation can be written
as n' = n + 10 (n = 1, 2, 3).

Ex. 3: Write out in full the transformation in which the operands are the three
numbers 5, 6 and 7, and in which n' = n – 3. Is it closed?

Ex. 4: Write out in full the transformations in which:

Ex. 5: If the operands are all the numbers (fractional included) between O and I,
and n' = 1/2 n, is the transformation closed? (Hint: try some representative
values for n: 1/2, 3/4, 1/4,  0.01, 0.99; try till you become sure of the answer.)

Ex. 6: (Continued) With the same operands, is the transformation closed if n' =
1/(n + 1)?

2/7. The transformations mentioned so far have all been charac-
terised by being “single-valued”. A transformation is single-val-
ued if it converts each operand to only one transform. (Other
types are also possible and important, as will be seen in S.9/2 and
12/8.) Thus the transformation

is single-valued; but the transformation

is not single-valued.

2/8. Of the single-valued transformations, a type of some impor-
tance in special cases is that which is one-one. In this case the
transforms are all different from one another. Thus not only does
each operand give a unique transform (from the single-valued-
ness) but each transform indicates (inversely) a unique operand.
Such a transformation is

This example is one-one but not closed. 
On the other hand, the transformation of Ex. 2/6/2(e) is not one-
one, for the transform “1” does not indicate a unique operand. A

(i)  n' = 5n (n = 5, 6, 7);
(ii)  n' = 2n2 (n = – 1, 0,1).

↓ A   B   C   D
B   A   A   D

↓ A B C D
B  or D A B  or C D

↓ A   B   C   D   E   F   G   H
F   H   K   L   G   J   E   M
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transformation that is single-valued but not one-one will be
referred to as many-one.

Ex. 1: The operands are the ten digits 0, 1, … 9; the transform is the third decimal
digit of log10 (n + 4). (For instance, if the operand is 3, we find in succession,
7, log107, 0.8451, and 5; so 3 → 5.) Is the transformation one-one or many-
one? (Hint: find the transforms of 0, 1, and so on in succession; use four-fig-
ure tables.)

2/9. The identity. An important transformation, apt to be dis-
missed by the beginner as a nullity, is the identical transforma-
tion, in which no change occurs, in which each transform is the
same as its operand. If the operands are all different it is necessar-
ily one-one. An example is f in Ex. 2/6/2. In condensed notation
n' = n.

Ex. 1: At the opening of a shop’s cash register, the transformation to be made on
its contained money is, in some machines, shown by a flag. What flag shows
at the identical transformation ?

Ex. 2: In cricket, the runs made during an over transform the side’s score from
one value to another. Each distinct number of runs defines a distinct trans-
formation: thus if eight runs are scored in the over, the transformation is
specified by n' = n + 8. What is the cricketer’s name for the identical trans-
formation ?

2/10. Representation by matrix. All these transformations can be
represented in a single schema, which shows clearly their mutual
relations. (The method will become particularly useful in Chapter
9 and subsequently.)

Write the operands in a horizontal row, and the possible trans-
forms in a column below and to the left, so that they form two
sides of a rectangle. Given a particular transformation, put a “+”
at the intersection of a row and column if the operand at the head
of the column is transformed to the element at the left-hand side;
otherwise insert a zero. Thus the transformation

would be shown as

The arrow at the top left corner serves to show the direction of the
transitions. Thus every transformation can be shown as a matrix.

↓ A   B   C
A   C   C

↓ A B C

A + 0 0
B 0 0 0
C 0 + +



16

AN INTRODUCTION TO CYBERNETICS

If the transformation is large, dots can be used in the matrix if
their meaning is unambiguous. Thus the matrix of the transforma-
tion in which n' = n + 2, and in which the operands are the positive
integers from 1 onwards, could be shown as

(The symbols in the main diagonal, from the top left-hand corner,
have been given in bold type to make clear the positional relations.)

Ex. 1: How are the +’s distributed in the matrix of an identical transformation? 
Ex. 2: Of the three transformations, which is (a) one-one, (b) single-valued but

not one-one, (c) not single-valued ?

Ex. 3: Can a closed transformation have a matrix with (a) a row entirely of zeros?
(b) a column of zeros ?

Ex. 4: Form the matrix of the transformation that has n' = 2n and the integers as
operands, making clear the distribution of the +’s. Do they he on a straight
line? Draw the graph of y = 2x; have the lines any resemblance?

Ex. 5: Take a pack of playing cards, shuffle them, and deal out sixteen cards face
upwards in a four-by-four square. Into a four-by-four matrix write + if the
card in the corresponding place is black and o if it is red. Try some examples
and identify the type of each, as in Ex. 2.

Ex. 6: When there are two operands and the transformation is closed, how many
different matrices are there?

Ex. 7: (Continued). How many are single-valued ?

REPEATED CHANGE

2/11. Power. The basic properties of the closed single-valued
transformation have now been examined in so far as its single
action is concerned, but such a transformation may be applied
more than once, generating a series of changes analogous to the
series of changes that a dynamic system goes through when active.

↓ 1 2 3 4 5 …

1 0 0 0 0 0 …
2 0 0 0 0 0 …
3 + 0 0 0 0 …
4 0 + 0 0 0 …
5 0 0 + 0 0 …
… … … … … … …

(i) (ii) (iii)
↓ A B C D ↓ A B C D ↓ A B C D

A + 0 0 + A 0 + 0 0 A 0 0 0 0
B 0 0 + 0 B 0 0 0 + B + 0 0 +
C + 0 0 0 C + 0 0 0 C 0 + 0 0
D 0 + 0 + D 0 0 + 0 D 0 0 + 0
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The generation and properties of such a series must now be con-
sidered.

Suppose the second transformation of S.2/3 (call it Alpha) has
been used to turn an English message into code. Suppose the
coded message to be again so encoded by Alpha—what effect will
this have ? The effect can be traced letter by letter. Thus at the first
coding A became B, which, at the second coding, becomes C; so
over the double procedure A has become C, or in the usual nota-
tion A → C. Similarly  B → D; and so on to Y → A and Z → B.
Thus the double application of Alpha causes changes that are
exactly the same as those produced by a single application of the
transformation

Thus, from each closed transformation we can obtain another
closed transformation whose effect, if applied once, is identical
with the first one’s effect if applied twice. The second is said to be
the “square” of the first, and to be one of its “powers” (S.2/14). If
the first one was represented by T, the second will be represented
by T2; which is to be regarded for the moment as simply a clear
and convenient label for the new transformation.

Ex. 2: Write down some identity transformation; what is its square? 
Ex. 3: (See Ex. 2/4/3.) What is A2?
Ex. 4: What transformation is obtained when the transformation n' = n+ 1 is

applied twice to the positive integers? Write the answer in abbreviated
form, as n' = . . . . (Hint: try writing the transformation out in full as in
S.2/4.)

Ex. 5: What transformation is obtained when the transformation n' = 7n is applied
twice to the positive integers?

Ex. 6: If K is the transformation

what is K2? Give the result in matrix form. (Hint: try re-writing K in some
other form and then convert back.)

Ex. 7: Try to apply the transformation W twice: 

↓ A   B   …   Y   Z
C   D   …   A   B

Ex. 1: If A:  ↓ a   b   c what is A2?c   c   a'

↓ A B C

A 0 + +
B 0 0 0
C + 0 0

W:  ↓ f   g   h
g   h   k
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2/12. The trial in the previous exercise will make clear the impor-
tance of closure. An unclosed transformation such as W cannot be
applied twice; for although it changes h to k, its effect on k  is
undefined, so it can go no farther. The unclosed transformation is
thus like a machine that takes one step and then jams.

2/13. Elimination. When a transformation is given in abbreviated
arm, such as n' = n + 1, the result of its double application must be
found, if only the methods described so far are used, by re-writing
he transformation to show every operand, performing the double
application, and then re-abbreviating. There is, however, a
quicker method. To demonstrate and explain it, let us write out In
full he transformation T: n' = n + 1, on the positive integers, show-
ing he results of its double application and, underneath, the gen-
eral symbol for what lies above:

n"  is used as a natural symbol for the transform of n', just as n' is
the transform of n.

Now we are given that n' = n + 1. As we apply the same trans-
formation again it follows that n" must be I more than n". Thus
n" = n' + 1.

To specify the single transformation T2 we want an equation
that will show directly what the transform n" is in terms of the
operand n. Finding the equation is simply a matter of algebraic
elimination: from the two equations n" = n' + 1 and n' = n + 1,
eliminate n'. Substituting for n' in the first equation we get (with
brackets to show the derivation) n" = (n + 1) + 1, i.e. n" = n + 2.

This equation gives correctly the relation between operand (n)
and transform (n") when T2 is applied, and in that way T2  is speci-
fied. For uniformity of notation the equation should now be re-writ-
ten as m' = m + 2. This is the transformation, in standard notation,
whose single application (hence the single prime on m) causes the
same change as the double application of T. (The change from n to
m is a mere change of name, made to avoid confusion.)

The rule is quite general. Thus, if the transformation is n' =
2n – 3, then a second application will give second transforms n"
that are related to the first by n" = 2n' – 3. Substitute for n', using
brackets freely:

T:  ↓ 1   2   3   …   n …
2   3   4   …   n' …

T:  ↓ 3   4   5   …   n" …

n" = 2(2n – 3) – 3
= 4n – 9.
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So the double application causes the same change as a single
application of the transformation m' = 4m – 9.

2/14. Higher powers. Higher powers are found simply by adding
symbols for higher transforms, n"', etc., and eliminating the sym-
bols for the intermediate transforms. Thus, find the transforma-
tion caused by three applications of n' = 2n – 3. Set up the
equations relating step to step:

Take the last equation and substitute for n", getting

Now substitute for n':

So the triple application causes the same changes as would be
caused by a single application of m' = 8m – 21. If the original was
T, this is T3.

Ex. 1: Eliminate n' from n" = 3n' and n' = 3n. Form the transformation corre-
sponding to the result and verify that two applications of n' = 3n gives the
same result.

Ex. 2: Eliminate a' from a" = a' + 8 and a' = a + 8.
Ex. 3: Eliminate a" and a' from a'" = 7a", a" = 7a', and a' = 7a.
Ex. 4: Eliminate k' from k" = –3k' + 2, k' = – 3k + 2. Verify as in Ex.1.
Ex. 5: Eliminate m' from m" = log m', m' = log m.
Ex. 6: Eliminate p' from p"=(p')2, p' =p2

Ex. 7: Find the transformations that are equivalent to double applications, on all
the positive numbers greater than 1, of:

Ex. 8: Find the transformation that is equivalent to a triple application of
n' = –3n – 1 to the positive and negative integers and zero. Verify as in
Ex. 1.

Ex.  9: Find the transformations equivalent to the second, third, and further
applications of the transformation n' = 1/(1 + n). (Note: the series discov-
ered by Fibonacci in the 12th century, 1, 1, 2, 3, 5, 8, 13,... is extended by
taking as next term the sum of the previous two; thus, 3 + 5 = 8, 5 + 8 = 13,
8 + 13 = ......, etc.)

n' = 2n – 3
n" = 2n' – 3
n"' = 2n" – 3

n"' = 2(2n' – 3) – 3
= 4n' – 9.

n"' = 4(2n – 3) – 9
= 8n – 21.

(i)  n' = 2n + 3;
(ii)  n' = n2 + n;
(iii)  n' = 1 + 2log n.
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Ex. 10: What is the result of applying the transformation n' = 1/n twice,
when the operands are all the positive rational numbers (i.e. all the
fractions) ?

Ex. 11: Here is a geometrical transformation. Draw a straight line on paper and
mark its ends A and B. This line, in its length and position, is the operand.
Obtain its transform, with ends A' and B', by the transformation-rule R: A' is
midway between A and B; B' is found by rotating the line A'B about A'
through a right angle anticlockwise. Draw such a line, apply R repeatedly,
and satisfy yourself about how the system behaves.

*Ex. 12: (Continued). If familiar with analytical geometry, let A start at (0,0) and
B at (0,1), and find the limiting position. (Hint: Build up A’s final x-co-ordi-
nate as a series, and sum; similarly for A’s y-co- ordinate.)

2/15. Notation. The notation that indicates the transform by the
addition of a prime (') is convenient if only one transformation is
under consideration; but if several transformations might act on n,
the symbol n' does not show which one has acted. For this reason,
another symbol is sometimes used: if n is the operand, and trans-
formation T is applied, the transform is represented by T(n). The
four pieces of type, two letters and two parentheses, represent one
quantity, a fact that is apt to be confusing until one is used to it.
T(n), really n' in disguise, can be transformed again, and would be
written T(T(n)) if the notation were consistent; actually the outer
brackets are usually eliminated and the T ’s combined, so that n"
is written as T2(n). The exercises are intended to make this nota-
tion familiar, for the change is only one of notation.

what is f(3)? f(1)? f2(3)?

Ex. 2: Write out in full the transformation g on the operands, 6, 7, 8, if g(6) = 8,
g(7) = 7, g(8) = 8.

Ex. 3: Write out in full the transformation h on the operands α, β, χ, δ, if h( α) =
χ, h2(α) = β,  h3( α) = δ , h4( α) = α.

Ex. 4: If A(n) is n + 2, what is A(15)?

Ex. 5: If f(n) is –n2 + 4, what is f(2)?

Ex. 6: If T(n) is 3n, what is T2(n) ? (Hint: if uncertain, write out T in extenso.) 

Ex. 7: If I is an identity transformation, and t  one of its operands, what is I(t)?

2/16. Product. We have just seen that after a transformation T has
been applied to an operand n, the transform T(n) can be treated as
an operand by T again, getting T(T(n)), which is written T2(n). In
exactly the same way T(n) may perhaps become operand to a

Ex. 1: If f:  ↓ 1   2   3
3   1   2
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transformation U, which will give a transform U(T(n)). Thus, if
they are

then T(b,) is d, and U(T(b)) is U(d), which is b. T and U applied in
that order, thus define a new transformation, V, which is easily
found to be

V is said to be the product or composition of T and U. It gives
simply the result of T and U being applied in succession, in that
order one step each.

If U is applied first, then U(b) is, in the example above, c, and
T(c) is a: so T(U(b)) is a, not the same as U(T(b)). The product,
when U and T are applied in the other order is

For convenience, V can be written as UT, and W as TU. It must
always be remembered that a change of the order in the product
may change the transformation.

(It will be noticed that V may be impossible, i.e. not exist, if
some of T ’s transforms are not operands for U.)

Ex. 1: Write out in full the transformation U2T.
Ex. 2: Write out in full: UTU.
*Ex. 3:  Represent T and U by matrices and then multiply these two matrices in

the usual way (rows into columns), letting the product and sum of +’s be +:
call the resulting matrix M1. Represent V by a matrix, call it M2. Compare
M1 and M2.

2/17. Kinematic graph. So far we have studied each transforma-
tion chiefly by observing its effect, in a single action on all its pos-
sible operands (e g. S.2/3). Another method (applicable only
when the transformation is closed) is to study its effect on a single
operand over many, repeated, applications. The method corre-
sponds, in the study of a dynamic system, to setting it at some ini-
tial state and then allowing it to go on, without further
interference, through such a series of changes as its inner nature
determines. Thus, in an automatic telephone system we might
observe all the changes that follow the dialling of a number, or in

T:  ↓ a   b   c   d
andU:  ↓ a   b   c   d

b   d   a   b d   c   d   b

V:  ↓ a   b   c   d
c   b   d   c

W:  ↓ a   b   c   d
b   a   b   d
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an ants’ colony we might observe all the changes that follow the
placing of a piece of meat near-by.

Suppose, for definiteness, we have the transformation

If U is applied to C, then to U(C), then to U2(C), then to U3(C) and
so on, there results the series: C, E, D, D, D,... and so on, with D
continuing for ever. If U is applied similarly to A there results the
series A, D, D, D, . . . with D continuing again.
These results can be shown graphically, thereby displaying to the
glance results that otherwise can be apprehended only after
detailed study. To form the kinematic graph of a transformation,
the set of operands is written down, each in any convenient place,
and the elements joined by arrows with the rule that an arrow goes
from A to B if and only if A is transformed in one step to B. Thus
U gives the kinematic graph

C → E → D ← A ← B

(Whether D has a re-entrant arrow attached to itself is optional if
no misunderstanding is likely to occur.)

If the graph consisted of buttons (the operands) tied together
with string (the transitions) it could, as a network, be pulled into
different shapes:

and so on. These different shapes are not regarded as different
graphs, provided the internal connexions are identical.

The elements that occur when C is transformed cumulatively by
U (the series C, E, D, D, …) and the states encountered by a point
in the kinematic graph that starts at C and moves over only one
arrow at a step, always moving in the direction of the arrow, are
obviously always in correspondence. Since we can often follow
the movement of a point along a line very much more easily than
we can compute U(C), U2(C), etc., especially if the transforma-
tion is complicated, the graph is often a most convenient represen-
tation of the transformation in pictorial form. The moving point
will be called the representative point.

U:  ↓ A   B   C   D   E
D   A   E   D   D

C → E B → A

D or:

B → A D ← E ← C
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When the transformation becomes more complex an important
feature begins to show. Thus suppose the transformation is

Its kinematic graph is:

By starting at any state and following the chain of arrows we can
verify that, under repeated transformation, the representative
point always moves either to some state at which it stops, or to
some cycle around which it circulates indefinitely. Such a graph
is like a map of a country’s water drainage, showing, if a drop of
water or a representative point starts at any place, to what region
it will come eventually. These separate regions are the graph’s
basins. These matters obviously have some relation to what is
meant by “stability”, to which we shall come in Chapter 5.

Ex. 1: Draw the kinematic graphs of the transformations of A and B in Ex. 2/4/3. 
Ex. 2: How can the graph of an identical transformation be recognised at a

glance?
Ex. 3: Draw the graphs of some simple closed one-one transformations. What is

their characteristic feature?
Ex. 4:  Draw the graph of the transformation V in which n, is the third decimal

digit of log10(n + 20) and the operands are the ten digits 0, 1, . . ., 9.
Ex. 5: (Continued) From the graph of V read off at once what is V(8), V2(4),

V4(6), V84(5).
Ex. 6: If the transformation is one-one, can two arrows come to a single point? 
Ex. 7: If the transformation is many-one, can two arrows come to a single point ?
Ex. 8: Form some closed single-valued transformations like T, draw their kine-

matic graphs, and notice their characteristic features.
Ex. 9: If the transformation is single-valued, can one basin contain two cycles?

T:  ↓ A  B  C  D E   F  G  H  I J   K  L  M  N  P  Q
D  H  D  I Q  G  Q  H  A E  E  N  B   A  N  E

P C M→ B →H

N → A → D K

IL E Q ←G ←F

J
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3/1. 

 

Having now established a clear set of ideas about transforma-
tions, we can turn to their first application: the establishment of an
exact parallelism between the properties of transformations, as
developed here, and the properties of machines and dynamic sys-
tems, as found in the real world.

About the best definition of “machine” there could of course be
much dispute. A 

 

determinate machine 

 

is defined as that which
behaves in the same way as does a closed single-valued transfor-
mation. The justification is simply that the definition works— that
it gives us what we want, and nowhere runs grossly counter to
what we feel intuitively to be reasonable. The real justification
does not consist of what is said in this section, but of what follows
in the remainder of the book, and, perhaps, in further develop-
ments.

It should be noticed that the definition refers to a way of behav-
ing, not to a material thing. We are concerned in this book with
those aspects of systems that are determinate—that follow regular
and reproducible courses. It is the determinateness that we shall
study, not the material substance. (The matter has been referred to
before in Chapter 1.)

Throughout Part I, we shall consider determinate machines, and
the transformations to be related to them will all be single-valued.
Not until S.9/2 shall we consider the more general type that is
determinate only in a statistical sense.

As a second restriction, this Chapter will deal only with the
machine in isolation—the machine to which nothing actively is
being done.

As a simple and typical example of a determinate machine, con-
sider a heavy iron frame that contains a number of heavy beads
joined to each other and to the frame by springs. If the circum-
stances are constant, and the beads are repeatedly forced to some
defined position and then released, the beads’ movements will on
each occasion be the same, i.e. follow the same path. The whole
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system, started at a given “state”, will thus repeatedly pass
through the same succession of states

By a 

 

state 

 

of a system is meant any well-defined condition or
property that can be recognised if it occurs again. Every system
will naturally have many possible states.

 

When the beads are released, their positions (

 

P

 

) undergo a

 

series of changes, 

 

P

 

0

 

, 

 

P

 

1

 

, 

 

P

 

2

 

 ...; this point of view at once relates
the system to a transformation

Clearly, the 

 

operands 

 

of the transformation correspond to the

 

states 

 

of the system.
The series of positions taken by the system in 

 

time 

 

clearly cor-
responds to the series of elements generated by the successive

 

powers 

 

of the transformation (S.2/14). Such a sequence of states
defines a 

 

trajectory

 

 or 

 

line of behaviour.

 

Next, the fact that a determinate machine, from one state, can-
not proceed to both of two different states corresponds, in the
transformation, to the restriction that each transform is sin-
gle-valued.

Let us now, merely to get started, take some further examples,
taking the complications as they come.

A bacteriological culture that has just been inoculated will
increase in “number of organisms present” from hour to hour. If
at first the numbers double in each hour, the number in the culture
will change in the same way hour by hour as n is changed in suc-
cessive powers of the transformation 

 

n

 

' = 2

 

n

 

.
If the organism is somewhat capricious in its growth, the sys-

tem’s behaviour, i.e. what state will follow a given state, becomes
somewhat indeterminate So “determinateness” in the real system
evidently corresponds’ in the transformation, to the transform of
a given operand being single-valued.

Next consider a clock, in good order and wound, whose hands,
pointing now to a certain place on the dial, will point to some
determinate place after the lapse of a given time. The positions of
its hands correspond to the transformation’s elements. A single
transformation corresponds to the progress over a unit interval of
time; it will obviously be of the form 

 

n

 

' = 

 

n

 

 + 

 

k

 

.

 

In this case, the “operator” at work is essentially undefinable for
it has no clear or natural bounds. It includes everything that makes
the clock go: the mainspring (or gravity), the stiffness of the brass

 

↓

 

P

 

0

 

   P

 

1

 

   P

 

2

 

   P

 

3

 

   

 

…

 

P

 

1

 

   P

 

2

 

   P

 

3

 

   P

 

4

 

   

 

…
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in the wheels, the oil on the pivots, the properties of steel, the inter-
actions between atoms of iron, and so on with no definite limit. As
we said in S.2/3, the “operator” is often poorly defined and some-

 

what arbitrary—a concept of little scientific use. The 

 

transforma-
tion, 

 

however, is perfectly well defined, for it refers only to the 

 

facts

 

of the changes, not to more or less hypothetical reasons for them.
A series of changes as regular as those of the clock are not

readily found in the biological world, but the regular courses of
some diseases show something of the same features. Thus in the
days before the sulphonamides, the lung in lobar pneumonia

 

passed typically through the series of states: Infection 

 

→

 

 consol-
idation 

 

→

 

 red hepatisation 

 

→

 

 grey hepatisation 

 

→

 

 resolution 

 

→

 

health. Such a series of states corresponds to a transformation that
is well defined, though not numerical.

Next consider an iron casting that has been heated so that its
various parts are at various but determinate temperatures. If its
circumstances are fixed, these temperatures will change in a
determinate way with time. The casting’s state at any one moment
will be a set of temperatures (a vector, S.3/5), and the passage
from state to state, 

 

S

 

0

 

 

 

→

 

 

 

S

 

1

 

 

 

→

 

 

 

S

 

2

 

 

 

→

 

…, will correspond to the
operation of a transformation, converting operand 

 

S

 

0

 

 successively

 

to 

 

T

 

(S

 

0

 

),

 

 T

 

2

 

(S

 

0

 

),

 

 T

 

3

 

(S

 

0

 

),…,

 

 

 

etc.

 

A more complex example, emphasising that transformations do
not have to be numerical to be well defined, is given by certain
forms of reflex animal behaviour. Thus the male and female
threespined stickleback form, with certain parts of their environ-

 

ment, a determinate dynamic system. Tinbergen (in his 

 

Study of
Instinct) 

 

describes the system’s successive states as follows: “Each
reaction of either male or female is released by the preceding reac-
tion of the partner. Each arrow (in the diagram below) represents a
causal relation that by means of dummy tests has actually been
proved to exist. The male’s first reaction, the zigzag dance, is
dependent on a visual stimulus from the female, in which the sign
stimuli “swollen abdomen” and the special movements play a part.
The female reacts to the red colour of the male and to his zigzag
dance by swimming right towards him. This movement induces
the male to turn round and to swim rapidly to the nest. This, in turn,
entices the female to follow him, thereby stimulating the male to
point its head into the entrance. His behaviour now releases the
female’s next reaction: she enters the nest.... This again releases
the quivering reaction in the male which induces spawning. The
presence of fresh eggs in the nest makes the male fertilise them.”
Tinbergen summarises the succession of states as follows:
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He thus describes a typical trajectory.
Further examples are hardly necessary, for the various branches

of science to which cybernetics is applied will provide an abun-
dance, and each reader should supply examples to suit his own
speciality.

By relating machine and transformation we enter the discipline
that relates the behaviours of real physical systems to the proper-
ties of symbolic expressions, written with pen on paper. The
whole subject of “mathematical physics” is a part of this disci-
pline. The methods used in this book are however somewhat
broader in scope for mathematical physics tends to treat chiefly
systems that are continuous and linear (S.3/7). The restriction
makes its methods hardly applicable to biological subjects, for in
biology the systems arc almost always non- linear, often
non-continuous, and in many cases not even metrical, i.e. express-
ible in number, The exercises below (S.3/4) are arranged as a
sequence, to show the gradation from the very general methods
used in this book to those commonly used in mathematical phys-
ics. The exercises are also important as illustrations of the corre-
spondences between transformations and real systems.

To summarise: Every machine or dynamic system has many
distinguishable states. If it is a determinate machine, fixing its cir-
cumstances and the state it is at will determine, i.e. make unique
the state it next moves to. These transitions of state correspond to
those of a transformation on operands, each state corresponding to
a particular operand. Each state that the machine next moves to
corresponds to that operand’s transform. The successive powers
of the transformation correspond, in the machine, to allowing
double, treble, etc., the unit time-interval to elapse before record-
ing the next state. And since a determinate machine cannot go to
two states at once, the corresponding transformation must be sin-
gle-valued.

 













 

Appears

 













 

Zigzag dance
Courts

Leads

Female Follows MaleShows nest entrance
Enters nest

Trembles
Spawns

Fertilises



 

28

 

AN INTRODUCTION TO CYBERNETICS

 

Ex.: Name two states that are related as operand and transform, with
time as the operator, taking the dynamic system from:

(a) Cooking, (b) Lighting a fire; (c) The petrol engine; (d) Embryo-
logical development; (e) Meteorology; (f) Endocrinology; (g) Econom-
ics; (h) Animal behaviour; (i) Cosmology. (Meticulous accuracy is not
required.)

 

3/2.

 

 Closure. 

 

Another reason for the importance of closure can
now be seen. The typical machine can always be allowed to go on
in time for a little longer, simply by the experimenter doing noth-
ing! This means that no particular limit exists to the power that the
transformation can be raised to. Only the closed transformations
allow, in general, this raising to 

 

any 

 

power. Thus the transforma-
tion 

 

T

 

is not closed. 

 

T

 

4

 

(

 

a

 

) is

 

 c 

 

and 

 

T

 

5

 

(

 

a

 

) is

 

 m. 

 

But 

 

T

 

(

 

m

 

) is not defined, so

 

T

 

6

 

(

 

a

 

) is not defined. With 

 

a 

 

as initial state, this transformation
does not define what happens after five steps. Thus 

 

the transfor-
mation that represents a machine must be closed. 

 

The full signif-
icance of this fact will appear in S.10/4.

 

3/3. 

 

The discrete machine. 

 

At this point it may be objected that
most machines, whether man-made or natural, are smooth-work-
ing, while the transformations that have been discussed so far
change by discrete jumps. These discrete transformations are,
however, the best introduction to the subject. Their great advan-
tage IS their absolute freedom from subtlety and vagueness, for
every one of their properties is unambiguously either present or
absent. This simplicity makes possible a security of deduction that
is essential if further developments are to be reliable. The subject
was touched on in S.2/1.

In any case the discrepancy is of no real importance. The discrete
change has only to become small enough in its jump to approximate
as closely as is desired to the continuous change. It must further be
remembered that in natural phenomena the observations are almost
invariably made at discrete intervals; the “continuity” ascribed to
natural events has often been put there by the observer’s imagina-
tion, not by actual observation at each of an infinite number of
points. Thus the real truth is that 

 

the natural system is observed at
discrete points, 

 

and our transformation represents it at discrete
points. There can, therefore, be no real incompatibility.

 

T

 

:

 

  

 

↓

 

a   b   

 

c

 

   d   e   f   g
e   b   m   f   g   

 

c

 

   f
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3/4.

 

 Machine and transformation. 

 

The parallelism between
machine and transformation is shown most obviously when we
compare the machine’s behaviour, as state succeeds state, with the
kinematic graph (S.2/17), as the arrows lead from element to ele-
ment. If a particular machine and a particular graph show full cor-
respondence it will be found that:

(1) Each possible state of the machine corresponds uniquely to
a particular element in the graph, and vice versa. The correspon-
dence is one-one.

(2) Each succession of states that the machine passes through
because of its inner dynamic nature corresponds to an unbroken
chain of arrows through the corresponding elements.

(3) If the machine goes to a state and remains there (a state of
equilibrium, S.5/3) the element that corresponds to the state will
have no arrow leaving it (or a re-entrant one, S.2/17).

(4) If the machine passes into a regularly recurring cycle of
states, the graph will show a circuit of arrows passing through the
corresponding elements.

(5) The stopping of a machine by the experimenter, and its
restarting from some new, arbitrarily selected, state corresponds,
in the graph, to a movement of the representative point from one
element to another when the movement is due to the arbitrary
action of the mathematician and not to an arrow.

When a real machine and a transformation are so related, the
transformation is the 

 

canonical representation 

 

of the machine,
and the machine is said to embody the transformation.

 

Ex.

 

 1: A culture medium is inoculated with a thousand bacteria, their number
doubles in each half-hour. Write down the corresponding transformation

 

Ex.

 

 2:  (Continued.) Find 

 

n

 

 after the 1st, 2nd, 3rd, . . ., 6th steps. 

 

Ex.

 

 3:  (Continued.) (i) Draw the ordinary graph, with two axes, showing the cul-
ture’s changes in number with time. (ii) Draw the kinematic graph of the sys-
tem’s changes of state.

 

Ex.

 

 4: A culture medium contains 10

 

9

 

 bacteria and a disinfectant that, in each
minute, kills 20 per cent of the survivors. Express the change in the number
of survivors as a transformation.

 

Ex.

 

 5: ( Continued.) (i) Find the numbers of survivors after 1, 2, 3, 4, 5 minutes.
(ii) To what limit does the number tend as time goes on indefinitely?

 

Ex.

 

 6: Draw the kinematic graph of the transformation in which 

 

n

 

' is, in a table
of four-figure logarithms, the rounded-off right-hand digit of log

 

10

 

 (

 

n

 

+70).
What would be the behaviour of a corresponding machine?

 

Ex.

 

 7: (Continued, but with 70 changed to 90).

 

Ex.

 

 8: (Continued, but with 70 changed to 10.) How many basins has this
graph?
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Ex.

 

 9: In each decade a country’s population diminishes by 10 per cent, but in
the same interval a million immigrants are added. Express the change from
decade to decade as a transformation, assuming that the changes occur in
finite steps.

 

Ex.

 

 10: (Continued.) If the country at one moment has twenty million inhabit-
ants, find what the population will be at the next three decades.

 

Ex. 

 

11: (Continued.) Find, in any way you can, at what number the population
will remain stationary. (Hint: when the population is

 

 

 

“stationary” what rela-
tion exists between the numbers at the beginning and at the end of the
decade?—what relation between operand and transform?)

 

Ex.

 

 12: A growing tadpole increases in length each day by 1.2 mm. Express this
as a transformation.

 

Ex. 

 

13:

 

 

 

Bacteria are growing in a culture by an assumed simple conversion of
food to bacterium; so if there was initially enough food for 10

 

8

 

 bacteria and
the bacteria now number 

 

n

 

, then the remaining food is proportional to 10

 

8

 

–

 

n

 

. If the law of mass action holds, the bacteria will increase in each interval
by a number proportional to the product: (number of bacteria) x (amount of
remaining food). In this particular culture the bacteria are increasing, in each
hour, by 10

 

–8

 

n

 

 (10

 

8

 

–

 

n

 

). Express the changes from hour to hour by a transfor-
mation.

 

Ex. 

 

14: (Continued.) If the culture now has 10,000,000 bacteria, find what the
number will be after 1, 2, . . ., 5 hours.

 

Ex.

 

 15: (Continued.) Draw an ordinary graph with two axes showing how the
number of bacteria will change with time.

 

VECTORS

 

3/5.

 

 In the previous sections a machine’s “state” has been
regarded as something that is known as a whole, not requiring
more detailed specification. States of this type are particularly
common in biological systems where, for instance, characteristic
postures or expressions or patterns can be recognised with confi-
dence though no analysis of their components has been made. The
states described by Tinbergen in S.3/1 are of this type. So are the
types of cloud recognised by the meteorologist. The earlier sec-
tions of this chapter will have made clear that a 

 

theory of such
unanalysed states can be rigorous.

 

Nevertheless, systems often have states whose specification
demands (for whatever reason) further analysis. Thus suppose a
news item over the radio were to give us the “state”, at a certain
hour, of a Marathon race now being run; it would proceed to give,
for each runner, his position on the road at that hour. These posi-
tions, as a set, specify the “state” of the race. So the “state” of the
race as a whole is given by the various states (positions) of the
various runners, taken simultaneously. Such “compound” states
are extremely common, and the rest of the book will be much con-
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cerned with them. It should be noticed that we are now beginning
to consider the relation, most important in machinery that exists
between the whole and the parts. Thus, it often happens that the
state of the whole is given by a list of the states taken, at that
moment, by each of the parts.

Such a quantity is a 

 

vector, 

 

which is defined as a compound
entity, having a definite number of 

 

components. 

 

It is conve-
niently written thus: (

 

a

 

1

 

, 

 

a

 

2

 

, . . ., 

 

a

 

n

 

), which means that the first
component has the particular value 

 

a

 

1

 

, the second the value 

 

a

 

2

 

,
and so on.

A vector is essentially a sort of variable, but more complex than
the ordinary numerical variable met with in elementary mathe-
matics. It is a natural generalisation of “variable”, and is of
extreme importance, especially in the subjects considered in this
book. The reader is advised to make himself as familiar as possi-
ble with it, applying it incessantly in his everyday life, until it has
become as ordinary and well understood as the idea of a variable.
It is not too much to say that his familiarity with vectors will
largely determine his success with the rest of the book.

Here are some well-known examples.

(1) A ship’s “position” at any moment cannot be described by a
simple number; two numbers are necessary: its latitude and its
longitude. “Position” is thus a vector with two components. One
ship s position might, for instance, be given by the vector (58°N,
17°W). In 24 hours, this position might undergo the transition
(58°N, 17°W) 

 

→

 

 (59°N, 20°W).
(2) “The weather at Kew” cannot be specified by a single num-

ber, but it can be specified to any desired completeness by our tak-
ing sufficient components. An approximation would be the
vector: height of barometer, temperature, cloudiness, humidity),
and a particular state might be (998 mbars, 56.2°F, 8, 72%). A
weather prophet is accurate if he can predict correctly what state
this present a state will change to.

(3) Most of the administrative “forms” that have to be filled in
are really intended to define some vector. Thus the form that the
motorist has to fill in:

is merely a vector written vertically.
Two vectors are considered 

 

equal

 

 only if each component of

 

Age of car: ......................
Horse-power: ..................
Colour: ............................
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the one is equal to the corresponding component of the other.
Thus if there is a vector (

 

w

 

,

 

x

 

,

 

y

 

,

 

z

 

), in which each component is
some number, and if two particular vectors are (4,3,8,2) and
(4,3,8,1), then these two particular vectors are unequal; for, in the
fourth component, 2 is not equal to 1. (If they have different com-
ponents, e.g. (4,3,8,2) and (

 

H

 

,

 

T

 

),

 

 

 

then they are simply not compa-
rable.)

When such a vector is transformed, the operation is in no way
different from any other transformation, provided we remember
that 

 

the 

 

operand is the vector as a whole, not the individual com-
ponents (though how they are to change is, of course, an essential
part of the transformation’s definition). Suppose, for instance, the
“system” consists of two coins, each of which may show either
Head or Tail. The system has four states, which are

(

 

H,H

 

)  (

 

H,T

 

)  (

 

T,H

 

) and (

 

T,T

 

).

Suppose now my small niece does not like seeing two heads up,
but always alters that to (

 

T

 

,

 

H

 

), and has various other preferences.
It might be found that she always acted as the transformation

As a transformation on four elements, N differs in no way from
those considered in the earlier sections.

There is no reason why a transformation on a set of vectors
should not be wholly arbitrary, but often in natural science the
transformation has some simplicity. Often the components
change in some way that is describable by a more or less simple
rule. Thus if 

 

M

 

 were:

it could be described by saying that the first component always
changes while the second always remains unchanged.

Finally, nothing said so far excludes the possibility that some or
all of the components may themselves be vectors! (E.g. S.6/3.)
But we shall avoid such complications if possible.

 

Ex. 

 

1:

 

 

 

Using 

 

ABC 

 

as first operand, find the transformation generated by repeated
application of the operator “move the left-hand letter to the right” (e.g. 

 

ABC

 

→

 

 BCA).
Ex. 

 

2: (Continued.) Express the transformation as a kinematic graph.

 

Ex. 

 

3: Using (1, –1) as first operand, find the other elements generated by
repeated application of the operator “interchange the two numbers and then
multiply the new left-hand number by minus one”.

 

N

 

:

 

  

 

↓

 

(

 

H,H

 

)   (

 

H,T

 

)   (

 

T,H

 

)   (

 

T,T

 

)
(

 

T,H

 

)   (

 

T,T

 

)   (

 

T,H

 

)   (

 

H,H

 

)

M:  ↓ (H,H)   (H,T)   (T,H)   (T,T)
(T,H)   (T,T)   (H,H)   (H,T)
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Ex. 4: (Continued.) Express the transformation as a kinematic graph.
Ex. 5: The first operand, x, is the vector (0,1,1); the operator F is defined thus: 

(i) the left-hand number of the transform is the same as the middle number
of the operand;
(ii) the middle number of the transform is the same as the right-hand number
of the operand;
(iii) the right-hand number of the transform is the sum of the operand’s mid-
dle and right-hand numbers.
Thus, F(x) is (1,1,2), and F2(x) is (1,2,3). Find F3(x), F4(x), F5(x). (Hint:
compare Ex. 2/14/9.)

3/6. Notation. The last exercise will have shown the clumsiness of
trying to persist in verbal descriptions. The transformation F is in
fact made up of three sub-transformations that are applied simul-
taneously, i.e. always in step. Thus one sub-transformation acts on
the left-hand number, changing it successively through 0 → 1 →
1 → 2 → 3 → 5, etc. If we call the three components a, b, and c,
then F, operating on the vector (a, b, c), is equivalent to the simul-
taneous action of the three sub-transformations, each acting on
one component only:

Thus, a' = b says that the new value of a, the left-hand number in
the transform, is the same as the middle number in the operand;
and so on. Let us try some illustrations of this new method; no
new idea is involved, only a new manipulation of symbols. (The
reader is advised to work through all the exercises, since many
important features appear, and they are not referred to elsewhere.)

Ex. 1: If the operands are of the form (a,b), and one of them is (1/2,2), find the
vectors produced by repeated application to it of the transformation T:

(Hint: find T(1/2,2), T2(l,2), etc.)
Ex. 2:  If the operands are vectors of the form (v,w,x,y,z) and U is

find U(a), where a = (2,1,0,2,2).
Ex. 3: (Continued.) Draw the kinematic graph of U if its only operands are a,

U(a), U2(a), etc.

F:
 a' = b
 b' = c
 c' = b + c

T:




a' = b
b' =– a

U:

 v' = w
 w' = v
 x' = x
 y' = z
 z' = y
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Ex. 4: (Continued.) How would the graph alter if further operands were
added ?

Ex. 5: Find the transform of (3, – 2,1) by A if the general form is (g,h,j) and the
transformation is

Ex. 6: Arthur and Bill agree to have a gamble. Each is to divide his money into
two equal parts, and at the umpire’s signal each is to pass one part over to the
other player. Each is then again to divide his new wealth into two equal parts
and at a signal to pass a half to the other; and so on. Arthur started with 8/-
and Bill with 4/-. Represent the initial operand by the vector (8,4). Find, in
any way you can, all its subsequent transforms.

Ex. 7: (Continued.) Express the transformation by equations as in Ex. 5
above.

Ex. 8: (Continued.) Charles and David decide to play a similar game except that
each will hand over a sum equal to a half of what the other possesses. If they
start with 30/- and 34/- respectively, what will happen to these quantities ?

Ex. 9: (Continued.) Express the transformation by equations as in Ex. 5.

Ex. 10: If, in Ex. 8, other sums of money had been started with, who in general
would be the winner?

Ex. 11 : In an aquarium two species of animalcule are prey and predator. In each
day, each predator destroys one prey, and also divides to become two pred-
ators. If today the aquarium has m prey and n predators, express their
changes as a transformation.

Ex. 12: (Continued.) What is the operand of this transformation?

Ex. 13: (Continued.) If the state was initially (150,10), find how it changed over
the first four days.

Ex. 14: A certain pendulum swings approximately in accordance with the trans-
formation x' = 1/2(x–y), y' = 1/2(x + y), where x is its angular deviation from
the vertical and y is its angular velocity; x' and y' are their values one second
later. It starts from the state (10,10); find how its angular deviation changes
from second to second over the first eight seconds. (Hint: find x', x", x"', etc.;
can they be found without calculating y', y", etc.?)

Ex. 15: (Continued.) Draw an ordinary graph (with axes for x and t) showing how
x’s value changed with time. Is the pendulum frictionless ?

Ex. 16: In a certain economic system a new law enacts that at each yearly read-
justment the wages shall be raised by as many shillings as the price index
exceeds 100 in points. The economic effect of wages on the price index is
such that at the end of any year the price index has become equal to the wage
rate at the beginning of the year. Express the changes of wage-level and
price-index over the year as a transformation.

Ex. 17: (Continued.) If this year starts with the wages at 110 and the price index
at 110, find what their values will be over the next ten years.

Ex. 18: (Continued.) Draw an ordinary graph to show how prices and wages will
change. Is the law satisfactory?

A:
 g' = 2g – h
 h' = h – j
 j' = g + h
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Ex. 19: (Continued.) The system is next changed so that its transformation
becomes x' = 1/2(x + y), y = 1/2(x–y) + 100. It starts with wages and prices
both at 110. Calculate what will happen over the next ten years.

Ex. 20: (Continued.) Draw an ordinary graph to show how prices and wages will
change.

Ex. 21: Compare the graphs of Exs. 18 and 20. How would the distinction be
described in the vocabulary of economics?

Ex. 22: If the system of Ex. 19 were suddenly disturbed so that wages fell to 80
and prices rose to 120, and then left undisturbed, what would happen over
the next ten years? (Hint: use (80,120) as operand.)

Ex. 23: (Continued.) Draw an ordinary graph to show how wages and prices
would change after the disturbance.

Ex. 24:   Is transformation T one-one between the vectors (x1, x2) and the vectors
(x1', x2') ?

(Hint: If (x1, x2) is given, is (x1', x2') uniquely determined ? And vice versa ?)
*Ex. 25: Draw the kinematic graph of the 9-state system whose components are

residues:

How many basins has it ?

3/7. (This section may be omitted.) The previous section is of fun-
damental importance, for it is an introduction to the methods of
mathematical physics, as they are applied to dynamic systems.
The reader is therefore strongly advised to work through all the
exercises, for only in this way can a real grasp of the principles be
obtained. If he has done this, he will be better equipped to appre-
ciate the meaning of this section, which summarises the method.

The physicist starts by naming his variables—x1, x2, … xn. The
basic equations of the transformation can then always be obtained
by the following fundamental method:—

(1) Take the first variable, x1, and consider what state it will
change to next. If it changes by finite steps the next state will be
x1' if continuously the next state will be x1+ dx1. (In the latter case
he may, equivalently, consider the value of dx1/dt.)

(2) Use what is known about the system, and the laws of phys-
ics, to express the value of x1', or dx1/dt (i.e. what x1 will be) in
terms of the values that x1, …, xn (and any other necessary factors)
have now. In this way some equation such as

x1' = 2αx1 – x3   or dx1/dt = 4k sin  x3

is obtained.

T:




x1' = 2x1 + x2
x2' = x1 + x2

x' = x + y 



(Mod 3)y' = y + 2
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(3) Repeat the process for each variable in turn until the whole
transformation is written down.

The set of equations so obtained—giving, for each variable in
the system, what it will be as a function of the present values of
the variables and of any other necessary factors—is the canonical
representation of the system. It is a standard form to which all
descriptions of a determinate dynamic system may be brought.

If the functions in the canonical representation are all linear, the
system is said to be linear.

Given an initial state, the trajectory or line of behaviour may
now be computed by finding the powers of the transformation, as
in S.3/9.

*Ex. 1: Convert the transformation (now in canonical form)
dx/dt = y 
dy/dt = z
dz/dt = z + 2xy–x2

to a differential equation of the third order in one variable, x. (Hint: Elimi-
nate y and z and their derivatives.)

*Ex. 2: The equation of the simple harmonic oscillator is often written

Convert this to canonical form in two independent variables. (Hint: Invert
the process used in Ex. 1.)

*Ex. 3: Convert the equation

to canonical form in two variables.

3/8. After this discussion of differential equations, the reader who
is used to them may feel that he has now arrived at the “proper”
way of representing the effects of time, the arbitrary and discrete
tabular form of S.2/3 looking somewhat improper at first sight. He
should notice, however, that the algebraic way is a restricted way,
applicable only when the phenomena show the special property of
continuity (S.7/20). The tabular form, on the other hand, can be
used always; for the tabular form includes the algebraic. This is of
some importance to the biologist, who often has to deal with phe-
nomena that will not fit naturally into the algebraic form. When
this happens, he should remember that the tabular form can always
provide the generality, and the rigour, that he needs. The rest of
this book will illustrate in many ways how naturally and easily the
tabular form can be used to represent biological systems.

d2x

dt2
-------- ax+ 0=

x
d2x

dt2
-------- 1 x

2
–( )dx

dt
------– 2

1 x2+
--------------+ 0=
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3/9. “Unsolvable” equations. The exercises to S.3/6 will have
shown beyond question that if a closed and single-valued transfor-
mation is given, and also an initial state, then the trajectory from
that state is both determined (i.e. single-valued) and can be found
by computation For if the initial state is x and the transformation
T, then the successive values (the trajectory) of x is the series

x, T(x), T2(x), T3(x), T4(x), and so on.

This process, of deducing a trajectory when given a transforma-
tion and an initial state, is, mathematically, called “integrating”
the transformation (The word is used especially when the trans-
formation is a set of differential equations, as in S.3/7; the process
is then also called “solving” the equations.)

If the reader has worked all through S.3/6, he is probably
already satisfied that, given a transformation and an initial state,
he can always obtain the trajectory. He will not therefore be dis-
couraged if he hears certain differential equations referred to as
“nonintegrable” or “unsolvable”. These words have a purely tech-
nical meaning, and mean only that the trajectory cannot be
obtained i f one is restricted to certain defined mathematical oper-
ations. Tustin’s Mechanism of Economic Systems shows clearly
how the economist may want to study systems and equations that
are of the type called “unsolvable”; and he shows how the econo-
mist can, in practice get what he wants.

3/10. Phase space. When the components of a vector are numerical
variables, the transformation can be shown in geometric form, and
this form sometimes shows certain properties far more clearly and
obviously than the algebraic forms that have been considered so far.

As example of the method, consider the transformation
x' = 1/2x + 1/2y
y' = 1/2x + 1/2y

of Ex. 3/6/7. If we take axes x and y, we can represent each partic-
ular vector, such as (8,4), by the point whose x-co-ordinate is 8
and whose y- co-ordinate is 4. The state of the system is thus rep-
resented initially by the point P in Fig. 3/10/l (I).

The transformation changes the vector to (6,6), and thus changes
the system’s state to P'. The movement is, of course, none other than
the change drawn in the kinematic graph of S.2/17, now drawn in a
plane with rectangular axes which contain numerical scales. This
two- dimensional space, in which the operands and transforms can
be represented by points, is called the phase-space of the system.
(The “button and string” freedom of S.2/17 is no longer possible.)
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In II of the same figure are shown enough arrows to specify
generally what happens when any point is transformed. Here the
arrows show the other changes that would have occurred had
other states been taken as the operands. It is easy to see, and to
prove geometrically, that all the arrows in this case are given by
one rule: with any given point as operand, run the arrow at 45° up
and to the left (or down and to the right) till it meets the diagonal
represented by the line y = x.

Fig. 3/10/1

The usefulness of the phase-space (II) can now be seen, for the
whole range of trajectories in the system can be seen at a glance, fro-
zen, as it were, into a single display. In this way it often happens that
some property may be displayed, or some thesis proved, with the
greatest ease, where the algebraic form would have been obscure.

Such a representation in a plane is possible only when the vec-
tor has two components. When it has three, a representation by a
three- dimensional model, or a perspective drawing, is often still
useful. When the number of components exceeds three, actual
representation is no longer possible, but the principle remains, and
a sketch representing such a higher-dimensional structure may
still be most useful, especially when what is significant are the
general topological, rather than the detailed, properties.

(The words “phase space” are sometimes used to refer to the
empty space before the arrows have been inserted, i.e. the space
into which any set of arrows may be inserted, or the diagram, such
as II above, containing the set of arrows appropriate to a particular
transformation. The context usually makes obvious which is
intended.)
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Ex.: Sketch the phase-spaces, with detail merely sufficient to show the main fea-
tures, of some of the systems in S.3/4 and 6.

3/11. What is a “system”? In S.3/1 it was stated that every real
determinate machine or dynamic system corresponds to a closed,
single-valued transformation; and the intervening sections have
illustrated the thesis with many examples. It does not, however,
follow that the correspondence is always obvious; on the contrary,
any attempt to apply the thesis generally will soon encounter cer-
tain difficulties, which must now be considered.

Suppose we have before us a particular real dynamic system—
a swinging pendulum, or a growing culture of bacteria, or an auto-
matic pilot, or a native village, or a heart-lung preparation—and
we want to discover the corresponding transformation, starting
,from the beginning and working from first principles. Suppose it
is actually a simple pendulum, 40 cm long. We provide a suitable
recorder, draw the pendulum through 30° to one side, let it go, and
record its position every quarter-second. We find the successive
deviations to be 30° (initially), 10°, and –24° (on the other side).
So our first estimate of the transformation, under the given condi-
tions, is

Next, as good scientists, we check that transition from 10°: we
draw the pendulum aside to 10°, let it go, and find that, a quar-
ter-second later, it is at +3°! Evidently the change from 10° is not
single-valued—the system is contradicting itself. What are we to
do now?

Our difficulty is typical in scientific investigation and is funda-
mental: we want the transformation to be single-valued but it will
not come so. We cannot give up the demand for singleness, for to
do so would be to give up the hope of making single-valued pre-
dictions. Fortunately, experience has long since shown what s to
be done: the system must be re-defined.

At this point we must be clear about how a “system” is to be
defined Our first impulse is to point at the pendulum and to “the
system is that thing there”. This method, however, has a funda-
mental disadvantage: every material object contains no less than
an infinity of variables and therefore of possible systems. The real
pendulum, for instance, has not only length and position; it has
also mass, temperature, electric conductivity, crystalline struc-
ture, chemical impurities, some radio-activity, velocity, reflecting
power, tensile strength, a surface film of moisture, bacterial con-

↓ 30° 10°
10° –24°
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tamination, an optical absorption, elasticity, shape, specific grav-
ity, and so on and on. Any suggestion that we should study “all”
the facts is unrealistic, and actually the attempt is never made.
What is try is that we should pick out and study the facts that are
relevant to some main interest that is already given.

The truth is that in the world around us only certain sets of facts
are capable of yielding transformations that are closed and single.
The discovery of these sets is sometimes easy, sometimes diffi-
cult. The history of science, and even of any single investigation,
abounds in examples. Usually the discovery involves the other
method for the defining of a system, that of listing the variables
that are to be taken into account. The system now means, not a
but a list of variables. This list can be varied, and the experi-
menter’s commonest task is that of varying the list (“taking other
variables into account”) until he finds a set of variables that he
required singleness. Thus we first considered the pendulum as if
it consisted solely of the variable “angular deviation from the ver-
tical”; we found that the system so defined did not give single-
ness. If we were to go on we would next try other definitions, for
instance the vector:

(angular deviation, mass of bob),

which would also be found to fail. Eventually we would try the

(angular deviation, angular velocity)

and then we would find that these states, defined in this way,
would give the desired singleness (cf. Ex. 3/6/14).

Some of these discoveries, of the missing variables, have been
of major scientific importance, as when Newton discovered the
importance of momentum, or when Gowland Hopkins discovered
the importance of vitamins (the behaviour of rats on diets was not
single-valued until they were identified). Sometimes the discovery
is scientifically trivial, as when single-valued results are obtained
only after an impurity has been removed from the water-supply, or
a loose screw tightened; but the singleness is always essential.

(Sometimes what is wanted is that certain probabilities shall be
single-valued. This more subtle aim is referred to in S.7/4 and 9/
2. It is not incompatible with what has just been said: it merely
means that it is the probability that is the important variable, not
the variable that is giving the probability. Thus, if I study a rou-
lette-wheel scientifically I may be interested in the variable
“probability of the next  throw being Red”, which is a variable
that has numerical values in the range between 0 and 1, rather than
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in the variable “colour of the next throw”, which is a variable that
has only two values: Red and Black. A system that includes the
latter variable is almost certainly not predictable, whereas one that
includes the former (the probability) may well be predictable, for
the probability has a constant value, of about a half.)

The “absolute” system described and used in Design for a Brain
is just such a set of variables.

It is now clear why it can be said that every determinate
dynamic system corresponds to a single-valued transformation (in
spite of the fact that we dare not dogmatise about what the real
world contains, for it is full of surprises). We can make the state-
ment simply because science refuses to study the other types, such
as the one-variable pendulum above, dismissing them as “cha-
otic” or “non-sensical”. It is we who decide, ultimately, what we
will accept as “machine-like” and what we will reject. (The sub-
ject is resumed in S.6/3.)
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Chapter 4

THE MACHINE WITH INPUT

4/1. In the previous chapter we studied the relation between trans-
formation and machine, regarding the latter simply as a unit. We
now proceed to find, in the world of transformations, what corre-
sponds to the fact that every ordinary machine can be acted on by
various conditions, and thereby made to change its behaviour, as
a crane can be controlled by a driver or a muscle controlled by a
nerve. For this study to be made, a proper understanding must be
had of what is meant by a “parameter”.

So far, each transformation has been considered by itself; we
must now extend our view so as to consider the relation between
one transformation and another. Experience has shown that just the
same methods (as S.2/3) applied again will suffice; for the change
from transformation A to transformation B is nothing but the transi-
tion A → B. (In S.2/3 it was implied that the elements of a transfor-
mation may be anything that can be clearly defined: there is
therefore no reason why the elements should not themselves be
transformations.) Thus, if T1, T2, and T3 are three transformations,
there is no reason why we should not define the transformation U:

All that is necessary for the avoidance of confusion is that the
changes induced by the transformation T1  should not be allowed
to become confused with those induced by U; by whatever
method is appropriate in the particular case the two sets of
changes must be kept conceptually distinct.

An actual example of a transformation such as U occurs when
boy has a toy-machine T1 built of interchangeable parts, and the
dismantles it to form a new toy-machine T2 . (In this case the
changes that occur when T1 goes from one of its states to the next
(i.e. when T1 “works”) are clearly distinguishable from the change
that occurs when T1 changes to T2.)

Changes from transformation to transformation may, in general
be wholly arbitrary. We shall, however, be more concerned with

U:  ↓ T1   T2   T3
T2   T2   T1
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the special case in which the several transformations act on the
same set of operands. Thus, if the four common operands are a, b,
c, and d, there might be three transformations, R1, R2, and R3:

These can be written more compactly as

which we shall use as the standard form. (In this chapter we shall
continue to discuss only transformations that are closed and sin-
gle-valued.)

 A transformation corresponds to a machine with a characteris-
tic way of behaving (S.3/1); so the set of three—R1, R2, and R3—
if embodied in the same physical body, would have to correspond
to a machine with three ways of behaving. Can a machine have
three ways of behaving?

It can, for the conditions under which it works can be altered.
Many a machine has a switch or lever on it that can be set at any
one of three positions, and the setting determines which of three
ways of behaving will occur. Thus, if a, etc., specify the machine’s
states, and R1 corresponds to the switch being in position 1, and R2
corresponds to the switch being in position 2, then the change of
R’s subscript from 1 to 2 corresponds precisely with the change of
the switch from position 1 to position 2; and it corresponds to the
machine’s change from one way of behaving to another.

It will be seen that the word “change” if applied to such a
machine can refer to two very different things. There is the change
from state to state, from a to b say, which is the machine’s behav-
iour, and which occurs under its own internal drive, and there is
the change from transformation to transformation, from R1  to R2
say, which is a change of  its way of behaving, and which occurs
at the whim of the experimenter or some other outside factor. The
distinction is fundamental and must on no account be slighted.

R’s subscript, or any similar symbol whose value determines
which transformation shall be applied to the basic states will be
called a parameter. If numerical, it must be carefully distin-
guished from any numbers that may be used to specify the oper-
ands as vectors.

R1:  ↓ a   b   c   d
R2:  ↓ a   b   c   d

R3:  ↓ a   b   c   d
c   d   d   b b   a   d   c d   c   d   b

↓ a b c d

R1 c d d b
R2 b a d c
R3 d c d b
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A real machine whose behaviour can be represented by such a
set of closed single-valued transformations will be called a trans-
ducer or a machine with input (according to the convenience of
the context). The set of transformations is its canonical represen-
tation. The parameter, as something that can vary, is its input.

how many other closed and single-valued transformations can be formed on
the same two operands?

Ex. 2: Draw the three kinematic graphs of the transformations R1, R2, and R3
above. Does change of parameter-value change the graph?

Ex. 3: With R (above) at R1,  the representative point is started at c and allowed
to move two steps (to R1

2(c)); then, with the representative point at this new
state, the transformation is changed to R2, and the point allowed to move two
more steps. Where is it now?

Ex. 4: Find a sequence of R’s that will take the representative point (i) from d to
a, (ii) from c to a.

Ex. 5: What change in the transformation corresponds to a machine having one
of its variables fixed? What transformation would be obtained if the system

x' = –x + 2y
y' = x – y

     were to have its variable x fixed at the value 4?
Ex. 6: Form a table of transformations affected by a parameter, to show that a

parameter, though present, may in fact have no actual effect.

4/2. We can now consider the algebraic way of representing a
transducer.

The three transformations

R1: n' = n + 1 R2: n' = n + 2 R3: n' = n + 3

can obviously be written more compactly as

Ra : n' = n + a,

and this shows us how to proceed. In this expression it must be
noticed that the relations of n and a to the transducer are quite dif-
ferent, and the distinction must on no account be lost sight of. n is
operand and is changed by the transformation; the fact that it is an
operand is shown by the occurrence of n'. a is parameter and
determines which transformation shall be applied to n. a must
therefore be specified in value before n’s change can be found.

When the expressions in the canonical representation become
more complex, the distinction between variable and parameter
can be made by remembering that the symbols representing the
operands will appear, in some form, on the left, as x' or dx/dt; for
the transformation must tell what they are to be changed to. So all

Ex. 1: If S is   ↓ a   b ,b   a
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quantities that appear on the right, but not on the left, must be
parameters. The examples below will clarify the facts.

Ex. 1: What are the three transformations obtained by giving parameter a the val-
ues –1, 0, or +1 in Ta :

Ex. 2: What are the two transformations given when the parameter a takes the
value 0 or 1 in S?:

Ex. 3: The transducer n' = n + a2, in which a and n can take only positive integral
values, is started at n = 10. (i) At what value should a be kept if, in spite of
repeated transformations, n is to remain at 10? (ii) At what value should a be
kept if n is to advance in steps of 4 at a time (i.e. 10, 14 18, …)? (iii) What
values of a, chosen anew at each step, will make n follow the series 10, 11,
15, 16, 20, 21, 25, 26, …, in which the differences are, alternately 1 and 4?
(iv) What values of a will make n advance by unit steps to 100 and then jump
directly to 200?

Ex.  4: If a transducer has n operands and also a parameter that can take n values,
the set shows a triunique correspondence between the values of operand,
transform, and parameter if (1) for given parameter value the transformation
is one-one, and (2) for given operand the correspondence between parame-
ter-value and transform is one-one. Such a set is

Show that the transforms must form a Latin square, i.e. one in which each
row (and each column) contains each transform once and once only.

Ex. 5: A certain system of one variable V behaves as

where P is a parameter. Set P at some value P1, e.g. 10, and find the limit
that V tends to as the transformation is repeated indefinitely often, call this
limit V1. Then set P at another value P2, e.g. 3, and find the corresponding
limit V2. After several such pairs of values (of P and limit-V) have been
found,  examine them to see if any law holds between them. Does V behave
like the volume of a gas when subjected to a pressure P?

Ex. 6: What transformation, with a parameter a will give the three series of val-
ues to n?:

(Hint: try some plausible expressions such as n' – n + a, n' = a2n, etc.)
Ex. 7: If n' = n + 3a, does the value given to a determine how large is n’s jump

at each step?

Ta :




g' = (1 – a)g + (a – 1)h
h' = 2g + 2ah

S:




h' = (1 – α)j + log (1 + α + sin αh)
j' = (1 + sin αj) e(α –1)h

↓ a b c d

R1 c d a b
R2 b a c d
R3 d c b a
R4 a b d c

a = 1:  0,→ 1, → 2, → 3, → 4, …
a = 2:  0,→ 4, → 8, → 12, → 16, …
a = 3:  0,→ 9, → 18, → 27, → 36, …

V'
1
10
------ V

90
P
------+ 

 =
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4/3. When the expression for a transducer contains more than one
meter, the number of distinct transformations may be as large e
number of combinations of values possible to the parameters each
combination may define a distinct transformation), but never
exceed it.

Ex. 1: Find all the transformations in the transducer Uab when a can take the val-
ues 0, 1, or 2, and b the values 0 or 1.

How many transformations does the set contain?
Ex. 2: (continued.) if the vector (a,b) could take only the values (0,1), (1n1), and

(2,0), how many transformations would the transducer contain?
Ex. 3: The transducer Tab,with variables p and q: f p = ap + bq

is started at (3,5). What values should be given to the parameters a and if
(p,q) is to move, at one step, to (4,6)? (Hint: the expression for Tab can be
regarded as a simultaneous equation.)

Ex. 4: (Continued.) Next find a value for (a,b) that will make the system move,
in one step, back from (4,6) to (3,5).

Ex. 5: The transducer n' = abn has parameters a and b, each of which can take
any of the values o, 1, and 2. How many distinct transformations are there?
(Such indistinguishable cases are said to be “degenerate”; the rule given at
the beginning of this section refers to the maximal number o transformations
that are possible; the maximal number need not always be achieved).

4/4.  Input and output. The word “transducer” is used by the phys-
icist, and especially by the electrical engineer, to describe any
determinate physical system that has certain defined places of
input, which the experimenter may enforce changes that affect its
behaviour, and certain defined places of output, at which he
observes changes of certain variables, either directly or through
suitable instruments. It will now be clear that the mathematical
system described in S.4/1 is the natural representation of such a
material system. It will also be clear that the machine’s “input”
corresponds he set of states provided by its parameters; for as the
parameters input are altered so is the machine’s or transducer’s
behaviour affected.

With an electrical system, the input is usually obvious and
restricted to a few terminals. In biological systems, however, the
number of parameters is commonly very large and the whole set of
them is by no means obvious. It is, in fact, co-extensive with the
set of “all variables whose change directly affects the organism”.

Uab :




s' = (1 – a)s + abt
t' = (1 + b)t + (b –1)a

Tab :




p' = ap + bq
q' = bp + aq

47

THE MACHINE WITH INPUT

The parameters thus include the conditions in which the organism
lives. In the chapters that follow, the reader must therefore be pre-
pared to interpret the word “input” to mean either the few parame-
ters appropriate to a simple mechanism or the many parameters
appropriate to the free-living organism in a complex environment.
(The increase in the number of parameters does not necessarily
imply any diminution in the rigour of the argument, for all the
quantities concerned can be measured with an accuracy that is
bounded only by the experimenter’s resources of time and money.)

Ex. 1: An electrical machine that receives potentials on its two input- terminals
is altered by having the two terminals joined permanently by a wire. To what
alteration in Tab would this correspond if the machine were represented as in
Ex. 4/3/3.

Ex. 2: “When an organism interacts with its environment, its muscles are the
environment’s input and Its sensory organs are the environment’s output.”
Do you agree ?

4/5. Transient. The electrical engineer and the biologist tend to test
their systems by rather different methods. The engineer often
investigates the nature of some unknown system by submitting it
to an incessant regular change at its input while observing its out-
put. Thus, in Fourier analysis, he submits it to prolonged stimula-
tion by a regular sinusoidal potential of a selected frequency, and
he observes certain characteristics in the output; then he repeats the
test with another frequency, and so on; eventually he deduces
something of the system’s properties from the relations between
the input-frequencies and the corresponding output-characteristics.
During this testing, the machine is being disturbed incessantly.

The biologist often uses a method that disturbs the system not at
all, after the initial establishment of the conditions. Thus he may cut
a piece of meat near an ants’ colony and then make no further
change whatever—keeping the conditions, the parameters, con-
stant—while watching the whole evolution of the complex patterns
of behaviour, individual and social, that develop subsequently.

Contrary to what is observed in living systems, the behaviour of
mechanical and electrical systems often settles to some uniformity
fairly quickly from the moment when incessant change at the input
stops. The response shown by the machine after some disturbance,
the input being subsequently held constant, is called a transient. It is
important to appreciate that, to the engineer, the complex sequence
of  events at the ants’ nest is a transient. It may be defined in more
general terms as the sequence of states produced by a transducer in
constant conditions before the sequence starts repeating itself.
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To talk about the transient, as distinct from the repetitive part
that follows, it is convenient to be able to mark, unambiguously,
its end. If the transformation is discrete, the following method
gives its length rigorously: Let the sequence of states go on till
repetition becomes evident, thus

A B C D C D C D C D C … or  H E F G G G G G G G … 

Then, coming in from the right, make the mark “1” as soon as the
sequence departs from the cycle, thus

A B1 C D C D C D C D C … or  H E F1 G G G G G G G …

Next add the mark “2”, to the right of 1, to include one complete
cycle, thus

A B1 C D2 C D C D C D C … or  H E F1 G2 G G G G G G G… 

Then the transient is defined as the sequence of states from the
initial state to the mark 2: A B C D, or H E F G.

Rigorous form can now be given to the intuitive impression that
complex systems can produce, in constant conditions, more com-
plex forms of behaviour than can the simple. By drawing an arbi-
trary kinematic graph on N states it is easy to satisfy oneself that
if a closed single-valued transformation with N operands is
applied repeatedly, then the length of transient cannot exceed N
states.

Ex. 1: What property must the graph have if the onset of a recurrence is to be
postponed as long as possible?

Ex. 2: What is the transient of the system of Ex. 3/6/6, started from the state
(8,5)?

COUPLING SYSTEMS

4/6. A fundamental property of machines is that they can be cou-
pled. Two or more whole machines can be coupled to form one
machine; and any one machine can be regarded as formed by the
coupling of its parts, which can themselves be thought of as small,
sub-, machines. The coupling is of profound importance in sci-
ence, for when the experimenter runs an experiment he is cou-
pling himself temporarily to the system that he is studying. To
what does this process, the joining of machine to machine or of
part to part, correspond in the symbolic form of transformations?
Of what does the operation of “coupling” consist?

Before proceeding to the answer we must notice that there is
more than one answer. One way is to force them roughly together,
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so that they become “coupled” as two automobiles may be locked
together after an accident. This form, however, is of little interest
to us, for the automobiles are too much changed by the process. U
flat we want is a way of coupling that does no violence to each
machine’s inner working, so that after the coupling each machine
is ,till the same machine that it was before.

For this or this to be so, the coupling must be arranged so that, in
principlen each machine affects the other only by affecting its con-
ditions, i. e. by, affecting its input. Thus, if the machines are to
retain their individual natures after being coupled to form a whole,
the coupling must be between the (given) inputs and outputs, other
parts being left alone no matter how readily accessible they may be.

4/7. Now trace the operation in detail. Suppose a machine (trans-
ducer) P is to be joined to another, R. For simplicity assume that
P is going to affect R, without R affecting P, as when a micro-
phone is joined to an amplifier, or a motor nerve grows down to
supply an embryonic muscle. We must couple P’s output to R’s
input. Evidently R’s behaviour, or more precisely the transforma-
tion that describes R’s changes of state, will depend on, and
change with, the state of P. It follows that R must have parame-
ters, for input, and the values of these parameters must be at each
moment some function of the state of P. Suppose for definiteness
that the machine or transducer R has the three transformations
shown in S 4/1, i.e.

and that  P has the transformation, on the three states i, j, k:

P and R are now to be joined by our specifying what value R’s
parameter, call it x, is to take when P has any one of its states.
Suppose we decide on the relation Z (a transformation, single-val-
ued but not closed):

(The relation between P and α has been made somewhat irregular
to emphasise that the details are quite arbitrary and are completely

↓ a b c d

R1 c d d b
R2 b a d c
R3 d c d b

P:  ↓ i   j   k
k   i   i

Z:




state of P: ↓ i    j    k
value of α: 2   3   2
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under the control of whoever arranges the coupling.) Let us fur-
ther suppose—this is essential to the orderliness of the coupling—
that the two machines P and R work on a common time-scale, so
that their changes keep in step.

It will now be found that the two machines form a new machine
of completely determined behaviour. Thus, suppose the whole is
started with R at a and P at i. Because P at i., the R- transformation
will be R2 (by Z). This will turn a to b; P’s i will turn to k; so the
states a and i have changed determinately to b and k. The argu-
ment can now be repeated. With P at k, the R-transformation will
again (by Z) be R2 ; so b will turn (under R2 ) to a, and k will turn
(under P) to i. This happens to bring the whole system back to the
initial state of (a,i), so the whole will evidently go on indefinitely
round this cycle.

The behaviour of the whole machine becomes more obvious if
we use the method of S.3/5 and recognise that the state of the
whole machine is simply a vector with two components (x,y),
where x is one of a, b, c, d and y is one of i, j, k. The whole
machine thus has twelve states, and it was shown above that the
state (a,i) undergoes the transitions

(a,i)  → (b,k) → (a,i) → etc.

Ex. 1: If Q is the transformation of the whole machine, of the twelve states (x,y),
complete Q.

Ex. 2: Draw Q’s kinematic graph. How many basins has it?
Ex. 3: Join P and R by using the transformation Y

What happens when this machine is started from (a,i) ?
Ex. 4: If two machines are joined to form a whole, does the behaviour of the

whole depend on the manner of coupling? (Hint: use the previous Ex.)
Ex. 5. If two machines of n1 and n2 states respectively are joined together, what

is the maximal length of transient that the whole can produce ?
Ex. 6: If machine M has a maximal length of transient of n states, what will be

the maximal length of transient if a machine is formed by joining three M’s
together ?

Ex. 7: Take many parts (A, B, C, . . .) each with transformation

Y:




state of P: ↓ i    j    k
value of α: 1   2   3

↓ 0 1 2
α 0 2 0
β 1 1 1
γ 2 2 2
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and join them into a single long chain

so that A affects B, B affects C, and so on, by Z:

If the input to A is kept at a, what happens to the states down the chain?
Ex. 8: (Continued. ) What happens if the input is now changed for one step to β

and then returned to α, where it is held?

4/8. Coupling with feedback. In the previous section, P was cou-
pled to R so that P’s changes affected, or determined in some way,
what R’s changes would be, but P’s changes did not depend on
what state R was at. Two machines can, however, be coupled so
that each affects the other.

For this to be possible, each must have an input, i.e. parameters.
P had no parameters, so this double coupling cannot be made
directly on the machines of the previous section. Suppose, then,
that  we are going to couple R (as before) to S, given below:

S could be coupled to affect R by Y(if R’s parameter is α):

and R to affect S by X (if S’s parameter is β):

To trace the changes that this new whole machine (call it T) will
undergo, suppose it starts at the vector state (a,e). By Y and X, the
transformations to be used at the first step are R3 and S3. They, act-
ing on a and e respectively, will give d and f; so the new state of
the whole machine is (d,f). The next two transformations will be
R1  and S2, and the next state therefore (b,f); and so on.

Ex. 1: Construct T’s kinematic graph.
Ex. 2: Couple S and R in some other way.
Ex. 3: Couple S and R so that S affects R but R does not affect S. (Hint: Consider

the effect in X of putting all the values of β the same.

input → Α → → C → etc.,

Z: ↓ 0    1   2
α   β   γ

↓ a b c d ↓ e f

R1 c d d b S1 f f
R2 b a d c S2 e f
R3 d c d b S3 f f

S4 f e

Y:




state of S: ↓ e    f
value of α: 3   1

X:




state of R: ↓ a   b   c   d
value of β: 3   1   1   2
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4/9. Algebraic coupling. The process of the previous sections, by
treating the changes that each state and parameter undergo indi-
vidually, shows the relations that are involved in “coupling” with
perfect clarity and generality. Various modifications can be devel-
oped without any loss of this clarity.

Thus suppose the machines are specified, as is common, in
terms of vectors with numerical components; then the rule for
coupling remains unaltered: each machine must have one or more
parameters, and the coupling is done by specifying what function
these parameters are to be of the other machine’s variables. Thus
the machines M and N

might be joined by the transformations U and V:

U is a shorthand way of writing a whole set of transitions from a
value of (c,d,e) to a value of (p,q), e.g.

Similarly for V, a transformation from (a,b) to (r,s,t,u), which
includes, e.g. (5,7) → (12, –2, –5, 49) (and compare P of S.6/9).

The result of the coupling is the five-variable system with rep-
resentation:

(Illustrations of the same process with differential equations have
been given in Design for a Brain, S.21/6.)

Ex. 1.: Which are the parameters in M? Which in N?
Ex. 2.: Join M and N by W and X, and find what state (1, 0, 0, 1, 0), a value of (a,

b, c, d, e), will change to:

M:




a' = a2 + pb
N:

 c' = rsc + ud2

b' = – qa  d' = 2tue
 e' = uce

V:




r = a + b

U:




p = 2c s = a – b
q = de2 t = – a

u = b2

U:  ↓ (0,0,0) (0,0,1) (1,3,5) (2,2,4)
(0,0) (0,0) (2,75) (4,32)

a' = a2 + 2bc
b' = – ade2

c' = (a2 – b2)c + b2d2

d' – 2ab2e
e' = b2ce

X:




r = a

W:




p = d s = ab
q = c t = a

u = a
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4/10. Ex. 4/7/4 has already shown that parts can, in general, be
coupled in different ways to form a whole. The defining of the
component parts does not determine the way of coupling.

From this follows an important corollary. That a whole machine
should be built of parts of given behaviour is not sufficient to
determine its behaviour as a whole: only when the details of cou-
pling are added does the whole’s behaviour become determinate.

FEEDBACK

4/11. In S.4/7, P and R were joined so that P affected R while R
had no effect on P. P is said to dominate R, and (to anticipate S.4/
12) we may represent the relation between the parts by

(The arrow cannot be confused with that used to represent a tran-
sition (S.2/2), for the latter always relates two states, whereas the
arrow above relates two parts. In the diagrams to come, parts will
always be shown boxed.)

Cybernetics is, however, specially interested in the case of S.4/8
where each affects the other, a relation that may be represented by

When this circularity of action exists between the parts of a
dynamic system, feedback may be said to be present.

The definition of feedback just given is that most in accord with
the spirit of this book, which is concerned essentially with princi-
ples.

Other definitions, however, are possible, and there has been
some dispute as to the best; so a few words in explanation may be
useful. There are two main points of view that have to be consid-
ered.

On the one side stand those who are following the path taken by
this book—those whose aim is to get an understanding of the prin-
ciples behind the multitudinous special mechanisms that exhibit
them To such workers, “feedback” exists between two parts when
each affects the other, as for instance, in

x' = 2xy
y' = x – y2

for y’s value affects how x will change and so does x’s value affect
y. By contrast, feedback would not be said to be present in

x' = 2x
y' = x – y2

P → R

P ←→ R
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for x’s change does not now depend on y’s value; x dominates y,
and the action is one way only.

On the other side stand the practical experimenters and con-
structors, who want to use the word to refer, when some forward
effect from P to R can be taken for granted, to the deliberate con-
duction of some effect back from R to P by some connexion that
i; physically or materially evident. They object to the mathemati-
cian’s definition, pointing out that this would force them to say
that feed back was present in the ordinary pendulum (see Ex. 3/6/
14) between its position and its momentum—a “feedback” that,
from the practical point of view, is somewhat mystical. To this the
mathematician retorts that if feedback is to be considered present
only when there is an actual wire or nerve to represent it, then the
theory becomes chaotic and riddled with irrelevancies.

In fact, there need be no dispute, for the exact definition of
“feedback” is nowhere important. The fact is that the concept of
“feedback”, so simple and natural in certain elementary cases,
becomes artificial and of little use when the interconnexions
between the parts become more complex. When there are only
two parts joined so that each affects the other, the properties of the
feedback give important and useful information about the proper-
ties of the whole. But when the parts rise to even as few as four,
if every one affects the other three, then twenty circuits can be
traced through them; and knowing the properties of all the twenty
circuits does not give complete information about the system.
Such complex systems cannot be treated as an interlaced set of
more or less independent feedback circuits, but only as a whole.

For understanding the general principles of dynamic systems,
therefore, the concept of feedback is inadequate in itself. What is
important is that complex systems, richly cross-connected inter-
nally, have complex behaviours, and that these behaviours can be
goal-seeking in complex patterns.

Ex. 1: Trace twenty circuits in the diagram of Fig. 4/11/1:

Fig. 4/11/1
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Ex. 2: A machine with input a, has the transformation

What machine (as transformation) results if its input α is coupled to its out-
put z, by α =–z?

Ex. 3: (Continued.) will this second machine behave differently from the first
one when the first has α held permanently at–1 ?

Ex. 4: A machine has, among its inputs, a photoelectric cell; among its outputs a
lamp of variable brightness. In Condition I there is no connexion from lamp
to cell, either electrical or optical. In Condition 2 a mirror is placed so that
variations in the lamp’s brightness cause variations in the cell’s potential (i.e.
so that the machine can “see itself”). Would you expect the behaviours in
Conditions 1 and 2 to differ? (Hint: compare with Ex. 3.)

INDEPENDENCE WITHIN A WHOLE

4/12. In the last few sections the concept of one machine or part
or variable “having an effect on” another machine or part or vari-
able has been used repeatedly. It must now be made precise, for it
is of profound importance. What does it mean in terms of actual
operations on a given machine? The process is as follows.

Suppose we are testing whether part or variable i has an imme-
diate effect on part or variable j. Roughly, we let the system show
its behaviour, and we notice whether the behaviour of part j is
changed when part i’s value is changed. If part j’s behaviour is
just the same, whatever i’s value, then we say, in general, that i
has no effect on j.

To be more precise, we pick on some one state S (of the whole
system) first. With i at some value we notice the transition that
occurs in part j (ignoring those of other variables). We compare
this transition with those that occur when states S1, S2, etc.—other
than S—are used, in which S1, S2, etc. differ from S only in the
value of the i-th component. If S1, S2, etc., give the same transition
in part j as S, then we say that i has no immediate effect on j, and
vice versa. (“Immediate” effect because we are considering j’s
values over only one step of time.)

Next consider what the concept means in a transformation. Sup-
pose its elements are vectors with four components (u,x,y,z), and
that the third line of the canonical equations reads

y' = 2uy – z.

This tells us that if y is at some value now, the particular value it
will be at the next step will depend on what values u and z have,

T:
 x' = y – αz
 y' = 2z
 z' = x + α
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but will not depend on what value x has. The variables u and z are
said to have an immediate effect on y.

It should be noticed, if the rigour is to be maintained, that the
presence or absence of an immediate effect, of u on y say, can be
stated primarily only for two given states, which must have the
same values in their x, y, and z-components and must differ in
their u-components. For an immediate effect at one pair of states
does not, in general, restrict the possibilities at another pair of
states. Thus, the transformation mentioned above gives the transi-
tions:

(0,0,0,0) → ( , ,0, )
(1,0,0,0) → ( , ,0, )
(0,0,1,0) → ( , ,0, )
(1,0,1,0) → ( , ,2, )

(where irrelevant values have been omitted). The first two show
that in one region of space u does not have an immediate effect on
y, and the second two show that in another region it does. Strictly,
therefore, the question “what is the immediate effect of u on y?”
can be answered only for a given pair of states. Often, in simple
systems, the same answer is given over the whole phase space; if
this should happen we can then describe the immediate effect of
u on y unconditionally. Thus in the example above, u has an
immediate effect on y at all points but a particular few.

This test, for u’s immediate effect on y, simply does in symbols
what the experimenter does when he wishes to test whether one
variable has an immediate effect on another: he fixes all variables
except this pair, and compares how one behaves when the other
has a value u1 with how it behaves when the other has the value u2.

The same method is, in fact, used generally in everyday life.
Thus, if we go into a strange room and wish to turn on the light,
and find switches, our problem is to find which switches are and
which are not having an effect on the light’s behaviour. We
change one of the switches and observe whether this is followed
by a change in the light’s behaviour. In this way we discover on
which switch the light is dependent.

The test thus accords with common sense and has the advantage
of being applicable and interpretable even when we know nothing
of the real physical or other factors at work. It should be noticed
that the test requires no knowledge of extraneous factors: the
result is deduced directly from the system’s observed behaviour,
and depends only on what the system does, not on why it does it.

It was noticed above that a transducer may show any degree of
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arbitrariness in the distribution of the immediate effects over the
phase space. Often, however, the distribution shows continuity, so
that over some appreciable region, the variable u, say, has an
immediate effect on y while over the same region x has none.
When this occurs, a diagram can often usefully be drawn showing
these relations as they hold over the region (which may some-
times be the whole phase-space). An arrow is drawn from u to y
if and only if u has an immediate effect on y. Such a diagram will
be called the diagram of immediate effects.

Such diagrams are already of common occurrence. They are
often used in physiology to show how a related set of variables
(such as blood pressure, pulse rate, secretion of adrenaline, and
activity at the carotid sinus) act on one another. In the design of
computing machines and servomechanisms they are known as
“control-flow charts”. They are also used in some large busi-
nesses to show the relations of control and information existing
between the various departments.

The arrow used in such a diagram is, of course, profoundly dif-
ferent in meaning from the arrow used to show change in a tran-
sition (S.2/2). In the latter case it means simply that one state
changes to another; but the arrow in the diagram of immediate
effects has a much more complex meaning. In this case, an arrow
from A to B says that if, over a series of tests, A has a variety of
different values—B and all other conditions starting with the same
value throughout—then the values that B changes to over the
series will also be found to show variety. We shall see later (S.8/
11) that this is simply to say that a channel of communication goes
from A to B.

When a transducer is given, either in algebraic or real material
form, we can examine the immediate effects within the system
and thus deduce something of its internal organisation and struc-
ture. In this study we must distinguish carefully between “imme-
diate” and “ultimate” effects. In the test given above, the effect of
x on y was considered over a single step only, and this restriction
is necessary in the basic theory. x was found to have no immediate
effect on y; it may however happen that x has an immediate effect
on u and that u has an immediate effect on y, then x does have
some effect on y, shown after a delay of one extra step. Such an
effect, and those that work through even longer chains of vari-
ables and with longer delay, will be referred to as ultimate
effects. A diagram of ultimate effects can be constructed by
drawing an arrow from A to B if and only if A has an ultimate
effect on B. The two diagrams are simply related, for the diagram
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of immediate effects, if altered by the addition of another arrow
wherever there are two joined head to tail, turning

and continuing this process until no further additions are possible,
gives the diagram of ultimate effects.

If a variable or part has no ultimate effect on another, then the
second is said to be independent of the first.

Both the diagrams, as later examples will show, have features
corresponding to important and well-known features of the sys-
tem they represent.

Ex. 1: Draw the diagrams of immediate effects of the following absolute sys-
tems; and notice the peculiarity of each:

Ex. 2: If y' = 2uy – z, under what conditions does u have no immediate effect on
y?

Ex. 3: Find examples of real machines whose parts are related as in the diagrams
of immediate effects of Ex. 1.

Ex. 4: (Continued.) Similarly find examples in social and economic systems.
Ex. 5: Draw up a table to show all possible ways in which the kinematic graph

and the diagram of immediate effects are different.

4/13. In the discussion of the previous section, the system was
given by algebraic representation; when described in this form,
the deduction of the diagram of immediate effects is easy. It
should be noticed, however, that the diagram can also be deduced
directly from the transformation, even when this is given simply
as a set of transitions.

Suppose, for instance that a system has two variables, x and y,
each of which can take the values 0, 1 or 2, and that its (x,y)-states
behave as follows (parentheses being omitted for brevity):

u u

x y x → y

(i) x' = xy, y' = 2y.
(ii) x' = y, y' = z + 3, z' = x2.
(iii) u' = 2 + ux, v' = v – y, x' = u + x, y' = y + v2.
(iv) u' = 4u – 1, x' = ux, y' = xy + 1, z' = yz.
(v) u' = u + y, x' = 1 – y, y' = log y, z' = z + yz.
(vi) u' = sin 2u, x' = x2, y' = y + 1, z' = xy + u.

↓ 00 01 02 10 11 12 20 21 22
01 00 11 11 00 21 11 20 11
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What of y’s transitions? We can re-classify them, with x as
parameter, by representing, e.g. “00 → 01” as “when x = 0, y goes
from 0 to 1”. This gives the table

It shows at once that y’s transitions do not depend on the value
of x. So x has no immediate effect on y.

Now classify x’s transitions similarly. We get:

What x will do (i.e. x’s transition) does depend on y’s value, so y
has an immediate effect on x.

Thus, the diagram of immediate effects can be deduced from a
statement of the primary transitions. It is, in fact,

and y has been proved to dominate x.

Ex.: A system has three variables—x, y, z—each of which can take only the val-
ues 0 or 1. If the transformation is

what is the diagram of immediate effects ? (Hint: First find how z’s transi-
tions depend on the values of the others.)

4/14. Reducibility. In S.4/11 we noticed that a whole system may
consist of two parts each of which has an immediate effect on the
other:

We also saw that the action may be only one way, in which case
one part dominates the other:

y
↓ 0 1 2

x

0 1 0 1

1 1 0 1

2 1 0 1

y
↓ 0 1 2

x

0 1 1 1
1 0 0 2
2 1 2 1

y → x

↓ 000 001 010 011 100 101 110 111
110 111 100 101 110 011 100 001

P ←→ Q

P → Q
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In this case the whole is less richly connected internally, for one
of the actions, or channels, is now missing.

The lessening can continue. We may find that the diagram of
immediate effects is simply

so that the whole consists really of two parts that are functionally
independent. In this case the whole is said to be reducible. The
importance of this concept will be referred to later (S.13/21).

Ex.: Of the systems in Ex. 4/12/1, which are reducible?

4/15. Materiality. The reader may now like to test the methods of
this chapter as an aid to solving the problem set by the following
letter. It justifies the statement made in S.1/2 that cybernetics is not
bound to the properties found in terrestrial matter, nor does it draw
its laws from them. What is important in cybernetics is the extent
to which the observed behaviour is regular and reproducible.

“Graveside”
Wit’s End

Haunts.
Dear Friend,

Some time ago I bought this old house, but found it to be
haunted by two ghostly noises—a ribald Singing and a sar-
donic Laughter. As a result it is hardly habitable. There is
hope, however, for by actual testing I have found that their
behaviour is subject to certain laws, obscure but infallible,
and that they can be affected by my playing the organ or
burning incense.

In each minute, each noise is either sounding or silent—
they show no degrees. What each will do during the ensu-
ing minute depends, in the following exact way, on what
has been happening during the preceding minute:
The Singing, in the succeeding minute, will go on as it was
during the preceding minute (sounding or silent) unless there
was organ-playing with no Laughter, in which case it will
change to the opposite (sounding to silent, or vice versa).

As for the Laughter, if there was incense burning, then it
will sound or not according as the Singing was sounding or
not (so that the Laughter copies the Singing a minute later).
If however there was no incense burning, the Laughter will
do the opposite of what the Singing did.

P Q

61

THE MACHINE WITH INPUT

At this minute of writing, the Laughter and Singing are
troth sounding. Please tell me what manipulations of
incense and organ I should make to get the house quiet, and
to keep it so.

(Hint: Compare Ex. 4/1/4.)

Ex. 2: (Continued.) Does the Singing have an immediate effect on the Laughter ?
Ex. 3: (Continued.) Does the incense have an immediate effect on the Singing ?
Ex. 4: (Continued.) Deduce the diagram of immediate effects of this machine

with input (with two parameters and two variables).

THE VERY LARGE SYSTEM

4/16. Up till now, the systems considered have all seemed fairly
simple, and it has been assumed that at all times we have under-
stood them in all detail. Cybernetics, however, looks forward to
being able to handle systems of vastly greater complexity—com-
puting machines, nervous systems, societies. Let us, then, con-
sider how the methods developed so far are to be used or modified
when the system is very large.

4/17. What is meant by its “size” needs clarification, for we are
not here concerned with mere mass. The sun and the earth form
only a “small” system to us, for astronomically they have only
twelve degrees of freedom. Rather, we refer to the system’s com-
plexity. But what does that mean here ? If our dynamic system
were a native family of five persons, would we regard it as made
of 5 parts, and therefore simple, or as of 1025 atoms, and therefore
very complex ?

In the concepts of cybernetics, a system’s “largeness” must
refer to the number of distinctions made: either to the number of
states available or, if its states are defined by a vector, to the num-
ber of components in the vector (i.e. to the number of its variables
or of its degrees of freedom, S.7/13). The two measures are corre-
lated, for if other things are equal, the addition of extra variables
will make possible extra states. A system may also be made larger
from our functional point of view if, the number of variables
being fixed, each is measured more precisely, so as to make it
show more distinguishable states. We shall not, however, be
much interested in any exact measure of largeness on some par-
ticular definition; rather we shall refer to a relation between the
system and some definite, given, observer who is going to try to
study or control it. In this book I use the words “very large” to
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imply that some definite observer en, with definite resources and
techniques, and that the system some practical way, too large for
him; so that he cannot observe completely, or control it com-
pletely, or carry out the calculations for prediction completely. In
other words, he says the system “very large” if in some way it
beats him by its richness and complexity. 

Such systems are common enough. A classic case occurred
when the theoretical physicist of the nineteenth century tried to
use Newtonian mechanics to calculate how a gas would behave.
The number of particles in an ordinary volume of gas is so vast
that no practical observation could record the system’s state, and
no practical relation could predict its future. Such a system was
“very ” in relation to the nineteenth century physicist.

The stock-breeder faces a “very large” system in the genes he is
g to mould to a new pattern. Their number and the complexities
of their interactions makes a detailed control of them by impossi-
ble in practice.

Such systems, in relation to our present resources for observa-
tion control, are very common in the biological world, and in its
social and economic relatives. They are certainly common in the
brain, though for many years the essential complexity was given
only grudging recognition. It is now coming to be recognised,
however, that this complexity is something that can be ignored no
longer. “Even the simplest bit of behavior”, says Lashley,
“requires the integrated action of millions of neurons.... I have
come to believe almost every nerve cell in the cerebral cortex may
be excited in every activity.... The same neurons which maintain
the memory traces and participate in the revival of a memory are
also involved, in different combinations, in thousands of other
memories acts.” And von Neumann: “The number of neurons in
the central nervous system is somewhere of the order of 1010. We
have absolutely no past experience with systems of this degree of
complexity. All artificial automata made by man have numbers of
parts which by any comparably schematic count are of the order
103 to 106.” (Cerebral Mechanisms in Behavior.)

4/18. It should be noticed that largeness per se in no way invalidates
the principles, arguments, and theorems of the previous chapters.
Though the examples have been confined to systems with only a
states or a few variables, this restriction was solely for the author’s
and reader’s convenience: the arguments remain valid without any
restriction on the number of states or variables in the system. It is a
peculiar advantage of the method of arguing about states, rather
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than the more usual variables, that it requires no explicit mention of
the system’s number of parts; and theorems once proved true are
true for systems of all sizes (provided, of course, that the systems
conform to the suppositions made in the argument).

What remains valid is, of course, the truth of the mathematical
deductions about the mathematically defined things. What may
change, as the system becomes very large, is the applicability of
these theorems to some real material system. The applicability,
however, can be discussed only in relation to particular cases. For
the moment, therefore, we can notice that size by itself does not
invalidate the reasonings that have been used so far.

4/19. Random coupling. Suppose now that the observer faces a
system that, for him, is very large. How is he to proceed ? Many
questions arise, too many to be treated here in detail, so I shall
select only a few topics, letting them serve as pattern for the rest.
(See S.6/19 and Chapter 13.) First, how is the system to be speci-
fied ?

By definition, the observer can specify it only incompletely.
This is synonymous with saying that he must specify it “statisti-
cally”, for statistics is the art of saying things that refer only to
some aspect or portion of the whole, the whole truth being too
bulky for direct use. If it has too many parts for their specification
individually they must be specified by a manageable number of
rules, each of which applies to many parts. The parts specified by
one rule need not be identical; generality can be retained by
assuming that each rule specifies a set statistically. This means
that the rule specifies a distribution of parts and a way in which it
shall be sampled. The particular details of the individual outcome
are thus determined not by the observer but by the process of sam-
pling (as two people might leave a decision to the spin of a coin).

The same method must be used for specification of the cou-
pling. If the specification for coupling is not complete it must in
some way be supplemented, for ultimately some individual and
single coupling must actually occur between the parts. Thus the
coupling must contain a “random” element. What does this mean?

To make the discussion definite, suppose an experimenter has
before him a large number of identical boxes, electrical in nature,
each with three input and three output terminals. He wishes to form
an extensive network, coupled “at random”, to see what its proper-
ties will be. He takes up some connecting wires and then realises
that to say “couple them at random” is quite insufficient as a defi-
nition of the way of coupling; all sorts of “couplings at random”
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are possible. Thus he might, if there are n boxes, label 6n cards
with numbers from 1 to 6n, label the terminals similarly, shuffle
the cards and then draw two cards to nominate the two terminals
that shall be joined with the first wire. A second pair of cards will
name the terminals joined by the second wire; and so on. A deci-
sion would have to be made whether the first two drawn cards were
to be replaced or not before the next shuffling and drawing. The
decision is important, for replacement allows some terminals to
have no wire and others to have several, while non-replacement
forces every terminal to have one wire and one only. This distinc-
tion would probably be significant in the characteristics of the net-
work and would therefore require specification. Again, the method
just mentioned has the property of allowing output to be joined to
output. If this were undesirable a new method would have to be
defined; such might be: “Label the inputs 1 to 3n and also outputs
1 to 3n; label 3n cards with numbers 1 to 3n; join a wire to input 1
and draw a card to find which output to connect it to; go on simi-
larly through inputs 2, . . ., 3n”. Here again replacement of the card
means that one output may go to several inputs, or to none; non-
replacement would give one output to each input.

Enough has probably been said to show how essential an accu-
rate definition of the mode of sampling can be. Sometimes, as
when the experimenter takes a sample of oxygen to study the gas
laws in it, he need not specify how he obtained the sample, for
almost all samples will have similar properties (though even here
the possibility of exact definition may be important, as Rayleigh
and Ramsay found when some specimens of nitrogen gave persis-
tently different atomic weights from others).

This “statistical” method of specifying a system—by specifica-
tion of distributions with sampling methods—should not be
thought of as essentially different from other methods. It includes
the case of the system that is exactly specified, for the exact spec-
ification is simply one in which each distribution has shrunk till
its scatter is zero, and in which, therefore, “sampling” leads to one
inevitable result. What is new about the statistical system is that
the specification allows a number of machines, not identical, to
qualify for inclusion. The statistical “machine” should therefore
be thought of as a set of machines rather than as one machine. For
this chapter, however, this aspect will be ignored (it is taken up
fully in Chapter 7).

It will now be seen, therefore, that it is, in a sense, possible for
an observer to specify a system that is too large for him to specify!
The method is simple in principle: he must specify broadly, and
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must specify a general method by which the details shall be spec-
ified by some source other than himself. In the examples above, it
was a pack of cards that made the final decision. A final, unique
system can thus be arrived at provided his specification is supple-
mented. (The subject is developed more thoroughly in S.13/18.)

Ex. 1: Define a method (using dice, cards, random numbers, etc.) that will bring
the closed single-valued transformation T:

to some particular form, so that the final particular form is selected by the
method and not by the reader.

Ex. 2: (Continued.) Define a method so that the transformation shall be one-one,
but not otherwise restricted.

Ex. 3: (Continued.) Define a method so that no even-numbered state shall trans-
form to an odd-numbered state.

Ex. 4: (Continued.) Define a method so that any state shall transform only to a
state adjacent to it in number.

Ex. 5: Define a method to imitate the network that would be obtained if parts
were coupled by the following rule: In two dimensions, with the parts placed
m a regular pattern thus:

extending indefinitely in all directions in the plane, each part either has an
immediate effect on its neighbour directly above it or does not, with equal
probability; and similarly for its three neighbours to right and left and below.
Construct a sample network.

4/20. Richness of connexion. The simplest system of given large-
ness is one whose parts are all identical, mere replicates of one
another, and between whose parts the couplings are of zero degree
(e.g. Ex. 4/1/6). Such parts are in fact independent of each other
which makes the whole a “system” only in a nominal sense, for it
is totally reducible. Nevertheless this type of system must be con-
sidered seriously, for it provides an important basic form from
which modifications can be made in various ways. Approximate
examples of this type of system are the gas whose atoms collide
only rarely, the neurons in the deeply narcotised cortex (if they
can be assumed to be approximately similar to one another) and a
species of animals when the density of population is so low that
they hardly ever meet or compete. In most cases the properties of
this basic type of system are fairly easily deducible.

The first modification to be considered is obviously that by
which a small amount of coupling is allowed between the parts,

T: ↓ S1 S2 S3 S4 S5 S6
? ? ? ? ? ?

0 0 0
0 0 0
0 0 0
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so that some coherence is introduced into the whole. Suppose then
that into the system’s diagram of immediate effects some actions,
i.e. some arrows, are added, but only enough to give coherency to
the set of parts. The least possible number of arrows, if there are
n parts, is n–1; but this gives only a simple long chain. A small
amount of coupling would occur if the number of arrows were
rather more than this but not so many as n2–n (which would give
every part an immediate effect on every other part).

Smallness of the amount of interaction may thus be due to
smallness in the number of immediate effects. Another way,
important because of its commonness, occurs when one part or
variable affects another only under certain conditions, so that the
immediate effect is present for much of the time only in a nominal
sense. Such temporary and conditional couplings occur if the vari-
able, for any reason, spends an appreciable proportion of its time
not varying (the “part-function”). One common cause of this is the
existence of a threshold, so that the variable shows no change
except when the disturbance coming to it exceeds some definite
value. Such are the voltage below which an arc will not jump
across a given gap, and the damage that a citizen will sustain
before he thinks it worth while going to law. In the nervous sys-
tem the phenomenon of threshold is, of course, ubiquitous.

The existence of threshold induces a state of affairs that can be
regarded as a cutting of the whole into temporarily isolated sub-
systems; for a variable, so long as it stays constant, cannot, by S.4/
12, have an effect on another; neither can it be affected by another.
In the diagram of immediate effects it will lose both the arrows
that go from it and those that come to it. The action is shown dia-
grammatically in Fig. 4/20/1.

The left square shows a basic network, a diagram of immediate
effects, as it might have been produced by the method of Ex. 4/19/
5. The middle square shows what remains if thirty per cent of the
variables remain constant (by the disturbances that are coming to
them being below threshold). The right square shows what
remains if the proportion constant rises to fifty per cent. Such
changes, from left to right, might be induced by a rising threshold.
It will be seen that the reacting sub-systems tend to grow smaller
and smaller, the rising threshold having the effect, functionally, of
cutting the whole network into smaller and smaller parts.
   Thus there exist factors, such as “height of threshold” or “pro-
portion of variables constant”, which can vary a large system con-
tinuously along the whole range that has at one end the totally
joined form, in which every variable has an immediate effect on
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every other variable, and at the other end the totally-unjoined
form, in which every variable is independent of every other. Sys-
tems can thus show more or less of “wholeness”. Thus the degree
may be specifiable statistically even though the system is far too
large for the details to be specified individually.

Ex.: Can a disturbance a: A (Fig. 4/20/1) affect B in the left-hand system? In the
other two?

4/21. Local properties. Large systems with much repetition in the
parts, few immediate effects, and slight couplings, can commonly
show some property .n a localised form, so that it occurs in only
a few variables, and so :hat its occurrence (or not) in the few vari-
ables does not determine whether or not the same property can
occur in other sets of a few variables. Such localisable properties
are usually of great importance in such systems, and the remain-
der of this chapter will be given to their consideration. Here are
some examples.

In simple chemistry the reaction of silver nitrate in solution
with sodium chloride for instance—the component parts number
about 1022, thus constituting a very large system. The parts
(atoms, ions, etc.) are largely repetitive, for they consist of only
a dozen or so types. In addition, each part has an immediate effect
on only a minute fraction of the totality of parts. So the coupling
(or not) of one silver ion to a chloride ion has no effect on the
great majority of other pairs of ion; As a result, the property
“coupled to form AgCl” can exist over and over again in recogn-
isable form throughout the system. Contrast this possibility of
repetition with what happens in a well coupled system, in a ther-
mostat for instance. In the thermostat, such a localised property
can hardly exist, and can certainly not be repeated independently
elsewhere in the system; for the existence of any property at one
point is decisive in determining what shall happen at the other
points.

The change from the chemistry of the solution in a test tube to
that of protoplasm is probably of the same type, the protoplasm,
as a chemically dynamic system, being too richly interconnected
in its parts to allow much local independence in the occurrence of
some property.

Another example is given by the biological world itself,
regarded as a system of men’ parts This system, composed ulti-
mately of the atoms of the earth’s surface, is made of parts that are
largely repetitive, both at a low level in that all carbon atoms are
chemically alike, and at a high level in that all members of a spe-
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cies are more or less alike. In this system various properties, if
they exist  in one place, can also exist in other places. It follows
that the basic properties of the biological world will be of the
types to be described in the following sections.

4/22. Self-locking properties. It is a general property of these sys-
tems that their behaviour in time is much affected by whether
there can, or cannot, develop properties within them such that the
property, once developed, becomes inaccessible to the factors that
would “undevelop” it. Consider, for instance, a colony of oysters.
Each oyster can freely receive signals of danger and can shut
close; once shut, however, it cannot receive the signals of safety
that would re-open it. Were these the only factors at work we
could predict that in time the colony of oysters would pass entirely
into the shut condition—an important fact in the colony’s history!

In many other systems the same principle can be traced more
seriously, and in almost all it is important. Consider, for instance
a solution of reacting molecules that can form various compounds
some of which can react again but one of which is insoluble, so
that molecules in that form are unreactive. The property of “being
the insoluble compound” is now one which can be taken by part
after part but which, after the insolubility has taken the substance
out of solution, cannot be reversed. The existence of this property
is decisive in the history of the system, a fact well known in chem-
istry where it has innumerable applications.

Too little is known about the dynamics of the cerebral cortex for
us to be able to say much about what happens there. We can how-
ever see that if the nerve cells belong to only a few types, and if
the immediate effects between them are sparse, then if any such
“self-locking” property can exist among them it is almost certain
to be important—to play a major part in determining the cortex’s
behaviour, especially when this continues over a long time. Such
would occur, for instance, if the cells had some chance of getting
into closed circuits that reverberated too strongly for suppression
by inhibition. Other possibilities doubtless deserve consideration.
Here we can only glance at them.

The same principle would also apply in an economic system if
workers in some unpleasant industry became unemployed from
time to time, and during their absence discovered that more pleas-
ant forms of employment were available. The fact that they would
pass readily from the unpleasant to the pleasant industry, but
would refuse to go back, would clearly be a matter of high impor-
tance in the future of the industry.
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In general, therefore, changes that are self-locking are usually of
high importance in determining the eventual state of the system.

4/23. Properties that breed. It should be noticed that in the previ-
ous section we considered, in each example, two different sys-
tems. For though each example was based on only one material
entity, it was used to provide two sets of variables, and these sets
form, by S. 3/11, two systems. The first was the obvious set, very
large in number, provided by the parts; the second was the system
with one variable: “number of parts showing the property”. The
examples showed cases in which this variable could not diminish
with time. In other words it behaved according to the transforma-
tion (if the number is n):

n' ≥ n.

This transformation is one of the many that may be found when
the changes of the second system (number of parts showing the
property) is considered. It often happens that the existence of the
property at some place in the system affects the probability that it
will exist, one time-interval later, at another place. Thus, if the
basic system consists of a trail of gunpowder along a line 12
inches long, the existence of the property “being on fire” now at
the fourth inch makes it highly probable that, at an interval later,
the same property will hold at the third and fifth inches. Again, if
a car has an attractive appearance, its being sold to one house is
likely to increase its chance of being sold to adjacent houses. And
if a species is short of food, the existence of one member
decreases the chance of the continued, later existence of another
member.

Sometimes these effects are of great complexity; sometimes
however the change of the variable “number having the property”
can be expressed sufficiently well by the simple transformation
n' = kn, where k is positive and independent of n.

When this is so, the history of the system is often acutely depen-
dent on the value of k, particularly in its relation to + 1. The equa-
tion has as solution, if t measures the number of time- intervals
that have elapsed since t = 0, and if n0 was the initial value:

n = n0 e (k  - 1)t

Three cases are distinguishable.
(1) k < 1. In this case the number showing the property falls

steadily, and the density of parts having the property decreases. It
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is shown, for instance, in a piece of pitchblende, by the number of
atoms that are of radium. It is also shown by the number in a spe-
cies when the species is tending to extinction.

(2) k = 1. In this case the number tends to stay constant. An
example is given by the number of molecules dissociated when
the percentage dissociated is at the equilibrial value for the condi-
tions obtaining. (Since the slightest deviation of k from 1 will take
the system into one of the other two cases it is of little interest.)

(3) k > 1. This case is of great interest and profound importance.
The property is one whose presence increases the chance of its
further occurrence elsewhere. The property “breeds”, and the sys-
tem is, in this respect, potentially explosive, either dramatically,
as in an atom bomb, or insidiously, as in a growing epidemic. A
well known example is autocatalysis. Thus if ethyl acetate has
been mixed with water, the chance that a particular molecule of
ethyl acetate will turn, in the next interval, to water and acetic acid
depends on how many acetate molecules already have the prop-
erty of being in the acid form. Other examples are commonly
given by combustion, by the spread of a fashion, the growth of an
avalanche, and the breeding of rabbits.

It is at this point that the majestic development of life by Dar-
winian evolution shows its relation to the theory developed here
of dynamic systems. The biological world, as noticed in S.4/21, is
a system with something like the homogeneity and the fewness of
immediate effects considered in this chapter. In the early days of
the world there were various properties with various k’s. Some
had k less than 1—they disappeared steadily. Some had k equal to
1—they would have remained. And there were some with k
greater than I—they developed like an avalanche, came into con-
flict with one another, commenced the interaction we call “com-
petition”, and generated a process that dominated all other events
in the world and that still goes on.

Whether such properties, with k greater than I, exist or can exist
in the cerebral cortex is unknown. We can be sure, however, that
~f such do exist they will be of importance, imposing outstanding
characteristics on the cortex’s behaviour. It is important to notice
that this prediction can be made without any reference to the par-
ticular details of what happens in the mammalian brain, for it is
true of all systems of the type described.

4/24. The remarks made in the last few sections can only illus-
trate, in the briefest way, the main properties of the very large sys-
tem. Enough has been said, however, to show that the very large
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system is not wholly different from the systems considered in the
earlier chapters, and to show that the construction of a really ade-
quate theory of systems in general is more a question of time and
labour than of any profound or peculiar difficulty.

The subject of the very large system is taken up again in S.6/14.
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Chapter

 

5

 

STABILITY

 

5/1.

 

 The word “stability” is apt to occur frequently in discussions
of machines, but is not always used with precision. Bellman refers
to it as “. . . stability, that much overburdened word with an unsta-
bilised definition”. Since the ideas behind the word are of great
practical importance, we shall examine the subject with some care,
distinguishing the various types that occur.

 

Today’s terminology is unsatisfactory and confused; I shall not
attempt to establish a better. Rather I shall focus attention on the
actual facts to which the various words apply, so that the reader will
tend to think of the facts rather than the words. So far as the words
used are concerned, I shall try only to do no violence to established
usages, and to be consistent within the book. Each word used will
be carefully defined, and the defined meaning will be adhered to.

 

5/2.

 

 

 

Invariant. 

 

Through all the meanings runs the basic idea of an
“invariant”: that although the system is passing through a series of
changes, there is some aspect that is unchanging; so some state-
ment can be made that, in spite of the incessant changing, is true
unchangingly. Thus, if we take a cube that is resting on one face
and tilt it by 5 degrees and let it go, a whole series of changes of
position follow. A statement such as “its tilt is 1°” may be true at
one moment but it is false at the next. On the other hand, the state-
ment “its tilt does not exceed 6°” remains true permanently. This
truth is invariant for the system. Next consider a cone stood on its
point and released, like the cube, from a tilt of 5°. The statement
“its tilt does not exceed 6°” is soon falsified, and (if we exclude
reference to other subjects) so are the statements with wider lim-
its. This inability to put a bound to the system’s states along some
trajectory corresponds to “instability”.

These are the basic ideas. To make them incapable of ambiguity
we must go back to first principles.

 

5/3. 

 

State of equilibrium. 

 

The simplest case occurs when a state
and a transformation are so related that the transformation does
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not cause the state to change. Algebraically it occurs when 

 

T

 

(

 

x

 

) =

 

x

 

. Thus if T is

then since 

 

T(b) = b, 

 

the state 

 

b 

 

is a 

 

state of equilibrium 

 

under 

 

T

 

.
So also are 

 

e 

 

and 

 

f

 

.
If the states are defined by vectors, then, for a vector to be

unchanged, each component must be unchanged (by S.3/5). Thus
if the state is a vector (

 

x

 

, 

 

y

 

), and the transformation is

then, at a state of equilibrium (

 

x

 

', 

 

y

 

') must equal (

 

x

 

, 

 

y

 

), and values
for 

 

x

 

 and 

 

y

 

 must satisfy the equations

i.e.

So this system has only one state of equilibrium, at ( – 3, – 1). Had
the equations not been linear there might have been more.

Exactly the same state, of course, is obtained by using the fact
that at a state of equilibrium each component’s change must be
zero, giving 

 

x

 

' – 

 

x

 

 = 0, 

 

y

 

'– 

 

y

 

 = 0; which leads to the same equations
as before.

If the equations are in differential form, then the statement that

 

x

 

 is to be unchanged with time is equivalent to saying that 

 

dx/dt

 

must be zero. So in the system

 

dx/dt = 

 

2

 

x

 

 – 

 

y

 

2

 

 

 

dy/dt = xy –

 

 1/2

the state (1/2,1) is one of equilibrium, because when x and y have
these values all the derivatives become zero, i.e. the system stops
moving.

 

Ex. 

 

1: Verify that U transforms ( – 3, – 1) to ( – 3, – 1).

 

Ex.

 

 2: Has the system (of the last paragraph) any state of equilibrium other than
(1/2,1)?

 

Ex.

 

 3: Find all the states of equilibrium of the transformation:

 

x

 

'= e

 

–

 

y

 

 

 

sin 

 

x

 

,

 

y

 

' = 

 

x

 

2

 

.

 

T

 

:

 

  

 

↓

 

a   b   c   d   e   f   g   h
d   b   h   a   e   f   b   e

U

 

:

 





 

x

 

' = 2

 

x

 

 – 

 

y

 

 + 2

 

y

 

' =

 

x 

 

+

 

 y

 

 + 3

 





 

x

 

= 2

 

x

 

 – 

 

y

 

 + 2

 

y

 

=

 

x 

 

+

 

 y

 

 + 3

 





 

x

 

 – 

 

y

 

= – 2

 

x

 

=

 

–

 

 3
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Ex. 

 

4: Find all the states of equilibrium of the transformation:

 

dx/dt =

 

 e

 

-

 

 sin 

 

x

 

,     

 

dy/dt = x

 

2

 

.

 

Ex. 

 

5: If x' = 2x–y + j, y' = x + y + 

 

k, 

 

find values for j and 

 

k 

 

that will give a state
of equilibrium at (1,1). (Hint: First modify the equations to represent the
state of equilibrium.)

 

Ex. 

 

6:

 

 

 

If 

 

T(b) = b, 

 

must 

 

T

 

2

 

(b), T

 

3

 

(b), 

 

etc., all also equal 

 

b?

Ex. 

 

7: Can an absolute system have more states of equilibrium than it has basins ?

 

Ex. 

 

8: What is the characteristic appearance of the kinematic graph of a transfor-
mation whose states are all equilibrial ?

 

Ex.

 

 9:

 

 

 

(Continued.) What special name was such a transformation given in an
earlier chapter ?

 

Ex. 

 

10: If the transformation is changed (the set of operands remaining the same)
are the states of equilibrium changed?

 

Ex. 

 

11: If a machine’s input is changed, do its states of equilibrium change?
(Hint: See Ex.5

 

.)

 

S/4. 

 

Cycle. 

 

Related to the states of equilibrium 

 

is 

 

the 

 

cycle, 

 

a
sequence of states such that repeated application of the transforma-
tion takes the representative point repeatedly round the sequence.
Thus if 

 

T

 

 is

then, from 

 

a, T

 

 generates the trajectory

 

a c b h g c b h g c b

 

 ...

and the representative point repeatedly traverses the cycle

 

Ex. 

 

1: Write down a transformation that contains two distinct cycles and three
states of equilibrium.

 

Ex. 

 

2: (Continued.) Draw its kinematic graph.

 

Ex. 

 

3: Can a state of equilibrium occur in a cycle ?

 

Ex

 

. 4: Can an absolute system have more cycles than it has basins?

 

Ex. 

 

5: Can one basin contain two cycles ?

 

*Ex. 

 

6: Has the system 

 

dx/dt = y, dy/dt = –x 

 

a cycle?

 

*Ex. 

 

7: If the transformation has a finite number of states and is closed and sin-
gle-valued, can a trajectory end in any way other than at a state of equilib-
rium or in a cycle?

 

T

 

:

 

  

 

↓

 

a   b   c   d   e   f   g   h
c   h   b   h   a   c   c   g

c

 

→

 

b

 

↑ ↓

 

g

 

←

 

h
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5/5.

 

 Stable region. 

 

If 

 

a is 

 

a state of equilibrium, 

 

T(a) is, 

 

as we saw
in S.5/3, simply 

 

a. 

 

Thus the operation of T on 

 

a 

 

has generated no

 

new 

 

state.
The same phenomenon may occur with a 

 

set 

 

of states. Thus,
suppose T is the (unclosed) transformation

It has no state of equilibrium; but the set composed of 

 

b 

 

and 

 

g 

 

has
the peculiarity that it transforms thus

i. e. the operation of T on this set has generated no 

 

new 

 

state. Such
a t is 

 

stable 

 

with respect to T.

This relation between a set of states and a transformation is, of
course, identical with that described earlier (S.2/4) as “closure”.
(The words “stable set” could have been used from there onwards,
but they might have been confusing before the concept of stability
was made clear; and this could not be done until other matters had
been explained first.)

If the transformation is continuous, the set of states may lie in a
connected region. Thus in Fig. 5/5/1, the region within the bound-
ary A is stable; but that within B is not, for there are points within
the region, such as P, which are taken outside the region.

The concept of closure, of a stable set of states, is of fundamen-
tal importance in our studies. Some reasons were given in S.3/2,

 

T

 

:

 

  

 

↓

 

a   b   c   d   e   f   g   h 
p   g   b   f   a   a   b   m 

T

 

:

 

  

 

↓

 

b   g 
g   b

Fig. 5/5/1
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where it was pointed out that only when the set is stable can the
transformation proceed to all its higher powers unrestrictedly.

Another reason is discussed more fully in S.10/4, where it is
shown that such stability is intimately related to the idea of some
entity “surviving” some operation.

 

Ex. 

 

1: What other sets are stable with respect to T? 

 

Ex. 

 

2: Is

 

 

 

the set of states in a basin always stable? 

 

Ex. 

 

3: Is the set of states in a cycle always stable ? 

 

Ex.

 

 4:

 

 

 

If a set of states is stable under T, and also under U, is it necessarily stable
under UT?

 

DISTURBANCE

 

5/6.

 

 

 

In the cases considered so far, the equilibrium or stability has
been examined only at the particular state or states concerned.
Nothing has been said, or implied, about the behaviour at 

 

neigh-
bouring 

 

states.
The elementary examples of equilibrium—a cube resting on its

face, a billiard ball on a table, and a cone exactly balanced on its
point—all show a state that is one of equilibrium. Yet the cone is
obviously different, and in an important way, from the cube. The
difference is shown as soon as the two systems are 

 

displaced 

 

by
disturbance from their states of equilibrium to a neighbouring
state. How is this displacement, and its outcome, to be represented
generally ?

A “disturbance” is simply that which displaces, that which
moves a system from one state to another. So, if defined accu-
rately, it will be represented by a transformation having the sys-
tem’s states as operands. Suppose now that our dynamic system
has transformation T, that 

 

a is 

 

a state of equilibrium under T, and
that 

 

D is 

 

a given displacement-operator. In plain English we say:
“Displace the system from its state of equilibrium and then let the
system follow its own laws for some time and see whether the sys-
tem does or does not come back to the same state”. In algebraic
form, we start with a state of equilibrium 

 

a, 

 

displace the system to

 

state 

 

D(a), 

 

and then find 

 

TD(a), T

 

2

 

D(a), T

 

3

 

D(a), 

 

and so on; and we
notice whether this succession of states does or does not finish as

 

a, a, a, .... 

 

More compactly: the state of equilibrium 

 

a 

 

in the sys-
tem with transformation T is 

 

stable under displacement D 

 

if and
only if

Try this formulation with the three standard examples. With the
cube, 

 

a is 

 

the state with angle of tilt = 0°. 

 

D 

 

displaces this to, say,

T
n
D a( )

n ∞→
lim a=
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5°, and T eventually will bring this back to 0°. With the cone (hav-
ing transformation U, say) 

 

D 

 

can be the same displacement, but
the limit, whatever it is, of 

 

U

 

n

 

D(a) 

 

is certainly not a tilt of 0°, the
equilibrium is 

 

unstable. 

 

With the billiard ball, at position a, the
dynamic laws will not bring it back to 

 

a 

 

after displacement, so it
is not stable by the definition given here. It has the peculiarity,
however, that the limit is 

 

D(a); 

 

i.e. it retains the displacement,
annulling it nor exaggerating it. This is the case of 

 

neutral 

 

equi-
librium.

(It will be noticed that this study of what happens after the sys-
tem has been displaced from 

 

a is 

 

worth making only if 

 

a is 

 

a state
of equilibrium.)

 

Ex.

 

 1: Is the state of equilibrium c stable to 

 

T 

 

under the displacement 

 

D 

 

if T
given by:

 

Ex.

 

 2: (Continued.) What if the state of equilibrium 

 

is e? 
Ex.

 

 3: The region composed of the set of states 

 

b, c 

 

and 

 

d is 

 

stable under U: 

What is

 

 

 

the effect of displacement 

 

E, 

 

followed by repeated action of 

 

U

 

?
(Hint: Consider all three possibilities.)

 

5/7. When the dynamic system can vary continuously, small dis-
turbances are, in practice, usually acting on it incessantly. Elec-
tronic systems are disturbed by thermal agitation, mechanical
systems by vibration, and biological systems by a host of minor
disturbances. For this reason the only states of equilibrium that
can, in practice, persist are those that are stable in the sense of the
previous section. States of unstable equilibrium are of small prac-
tical importance in the continuous system (though they may be of
importance in the system that can change only by a discrete jump).

The concept of unstable equilibrium is, however, of some theo-
retical importance. For if we are working with the theory of some
mechanism, the algebraic manipulations (S.5/3) will give us all
the states of equilibrium—stable, neutral, and unstable—and a
good deal of elimination may be necessary if this set is to be
reduced to the set states that have a real chance of persistence.

Ex.:Make up a transformation with two states of equilibrium, a and b, and two
disturbances, D and E, so that a is stable to D but not to E, and b is stable to
E but not to D.

 ↓ a b c d e
T c d c a e
D b a d e d

 ↓ a b c d e f
U d c b b c a
E b e f f f d

79

STABILITY

5/8. In general, the results of repeated application of a transforma-
tion to a state depend on what that state is. The outcome of the test 
of finding what is

will thus depend in general on which state is x. Thus if there are
two disturbances available, D and E, and D takes a to b, while E
takes a to c (no order being implied between a, b and c) the limits
of TnD(a) and TnE(a) may be different.

Thus the result of a test for stability, carried out in the manner
of S.5/6, may give different results according to whether the dis-
placement is D or E. The distinction is by no means physically
unreasonable. Thus a pencil, balanced on its square-cut base, may
be stable to D, if D is a displacement of 1° from the vertical, but
may be unstable to E, if E is a displacement of 5°.

The representation given in S.5/6 thus accords with common
practice. A system can be said to be in stable equilibrium only if
some sufficiently definite set of displacements D is specified. If
the specification is explicit, then D is fully defined. Often D is not
given explicitly but is understood; thus if a radio circuit is said to
be “stable”, one understands that D means any of the commonly
occurring voltage fluctuations, but it would usually be understood
to exclude the stroke of lightning. Often the system is understood
to be stable provided the disturbance lies within a certain range
What is important here is that in unusual cases, in biological sys-
tems for instance, precise specification of the disturbances D, and
of the state of equilibrium under discussion a, may be necessary
if the discussion is to have exactness.

5/9. The continuous system. In the previous sections, the states 
considered were usually arbitrary. Real systems, however, often 
show some continuity, so that the states have the natural relation-
ship amongst themselves (quite apart from any transformation im-
posed by their belonging to a transducer) that two states can be 
“near” or “far from” one another.

With such systems, and a state of equilibrium a, D is usually
defined to be a displacement, from a, to one of the states “near” a.
If the states are defined by vectors with numerical components,
i.e. based on measurements, then D often has the effect of adding
small numerical quantities δ1, δ2, .., δn to the components, so that
the vector (x1, . . ., xn) becomes the vector (x1 +δ1, . . ., xn + δn).

In this form, more specialised tests for stability become possi-
ble. An introduction to the subject has been given in Design...

T
n

x( )
n ∞→
lim



80

AN INTRODUCTION TO CYBERNETICS

The subject soon becomes somewhat mathematical; here it is suf-
ficient to notice that these questions are always capable of being
answered, at least in principle, by the process of actually tracing
the changes through the states D(a), TD(a), T2D(a), etc. (Com-
pare S.3/9). The sole objection to this simple, fundamental and
reliable method is that it is apt to become exceedingly laborious
in the complicated cases. It is, however, capable of giving an
answer in cases to which the more specialised methods are inap-
plicable. In biological material, the methods described in this
chapter are likely to prove more useful than the more specialised;
for the latter often are applicable only when the system is contin-
uous and linear, whereas the methods of this chapter are applica-
ble always. 

A specially simple and well known case occurs when the sys-
tem consists of parts between which there is feedback, and when
this has the very simple form of a single loop. A simple test for
stability (from a state of equilibrium assumed) is to consider the
sequence of changes that follow a small displacement, as it travels
round the loop. If the displacement ultimately arrives back at its
place of origin with size and sign so that, when added algebra-
ically to the initial displacement, the initial displacement is dimin-
ished, i.e. is (commonly) stable. The feedback, in this case, is said
to be “negative” (for it causes an eventual subtraction from the
initial displacement).

The test is simple and convenient, and can often be carried out
mentally; but in the presence of any complications it is unreliable
if carried out in the simple form described above. The next section
gives an example of one way in which the rule may break down if
applied crudely.

Ex. 1: Identify a, D and Tin Ex. 3/6/17. Is this system stable to this displacement?

Ex. 2: (Continued.) Contrast Ex. 3/6/19.

Ex. 3: Identify a and Tin Ex. 2/14/11. Is it stable if D is any displacement from
a?

Ex. 4 Take a child’s train (one that runs on the floor, not on rails) and put the line
of carriages slightly out of straight. Let M be the set of states in whichthe
deviations from straightness nowhere exceed 5°. Let T be the operation of
drawing it along by the locomotive. Is M stable under T?

Ex. 5: (Continued.) Let U be the operation of pushing it backwards by the loco-
motive. Is M stable under U?

Ex. 6: Why do trains have their locomotives in front?
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Ex. 7: A bus service starts with its buses equally spaced along the route. If a bus
is delayed, extra passengers collect at the stopping points, so it has to take
up, and set down, more passengers than usual. The bus that follows has fewer
passengers to handle and is delayed less than usual. Are irregularities of
spacing self-correcting or self-aggravating?

Ex. 8: What would happen if an increase of carbon dioxide in the blood made the
respiratory centre less active?

Ex. 9: Is the system x'= 1/2y, y' = 1/2 x stable around (0,0)?

5/10. Positive feedback. The system described in the last exercise
deserves closer attention.

so an increase in y (from 10 to 12) leads to an increase in x (from
5 to 6). (Compare S.4/13.) Similarly,

so an increase in x (from 10 to 12) leads to an increase in y (from
5 to 6). Each variable is thus having a positive effect on the other
and if the system were discussed in plain words these facts might
be used to “prove” that it is unstable, for a vicious circle seems to
be acting.

The system’s behaviour, by converging back to (0,0), declares
indisputably that the system is stable around this state of equilib-
rium. It shows clearly that arguments based on some short cut, e.g.
by showing that the feedback is positive, may not be reliable. (It
shows also that feedback can be positive and yet leave the system
stable; yet another example of how unsuitable is the concept of
feedback outside its particular range of applicability.)

5/11. Undesirable stability. Stability is commonly thought of as
desirable, for its presence enables the system to combine of flex-
ibility and activity in performance with something of permanence.
Behaviour that is goal-seeking is an example of behaviour that is
stable around a state of equilibrium. Nevertheless, stability is not
always good, for a system may persist in returning to some state
that, for other reasons, is considered undesirable. Once petrol is lit
it stays in the lit state, returning to it after disturbance has changed
it to “half-lit”—a highly undesirable stability to a fireman.

Another example is given by the suggestion that as the more
intelligent members of the community are not reproducing their

From (10,10) it goes to (5,5)
,, (10,12) ,, ,, ,, (6,5);

from (10,10) it goes to (5,5)
,, (12,10) ,, ,, ,, (5,6)
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kind as freely as are the less intelligent, the Intelligence Quotient
of the community will fall. Clearly it cannot fall very low, because
the feebleminded can reproduce better than the idiot. So if these
were the only factors in the situation, the I.Q. would be stable at
about 90. Stability at this figure would be regarded by most peo-
ple as undesirable.

An interesting example of stability occurs in the condition
known as “causalgia”, in which severe pain, without visible
cause, occurs in a nerve which has previously been partly divided.
Granit has shown that it is almost certainly due to conduction, at
the site of injury, of impulses from the motor (outgoing) to the
sensory (incoming) nerves, allowing the formation of a regenera-
tive circuit via the reflex centres in the spinal cord. Such a circuit
has two states of equilibrium, each stable: conducting few
impulses or conducting the maximal number. It is like a top-heavy
see-saw, that will rest in either of two extreme conditions but will
not rest in between. The patient is well aware that “stability” can
be either good or bad, for of the two stable states one is comfort-
able and the other extremely painful.

EQUILIBRIUM IN PART AND WHOLE

5/12. We can now notice a relation between coupling and equilib-
rium that will be wanted later (S.12/14 and 13/19), for it has
important applications.

Suppose some whole system is composed of two parts A and B,
which have been coupled together:

and suppose the whole is at a state of equilibrium.
This means that the whole’s state is unchanging in time. But the

whole’s state is a vector with two components: that of A’s state
and that of B’s. It follows that A, regarded as a sub-system, is also
unchanging; and so is B.

Not only is A’s state unchanging but so is the value of A’s
input; for this value is determined by B’s state (S.4/7), which is
unchanging. Thus A is at a state of equilibrium in the conditions
provided by B. (Cf. Ex. 5/3/11.) The similar property holds for B.
Thus, if the whole is at a state of equilibrium, each part must be
in a state of equilibrium in the conditions provided by the other.

The argument can also be reversed. Suppose A and B are at
states of equilibrium, and that each state provides, for the other

A ←→ B
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system, an input-value that makes the other’s state to be one of
equilibrium. Then neither can change, and the whole cannot
change; and thus the whole must be at a state of equilibrium.

Thus each implies the other. Formally: the whole is at a state of
equilibrium if and only if each part is at a state of equilibrium in
the conditions provided by the other part. (If there are several
parts the last word is merely changed to “parts”.)

5/13. Power of veto. The same thesis can be stated more vividly
making it more useful conceptually. Suppose A and B are coupled
and suppose we are interested only in the occurrence of a state of
equilibrium (not of cycles). When the whole is started from some
initial state, and goes along some trajectory, A and B will pass
through various states. Suppose it happens that at some moment
B’s state provides conditions that make A’s present state one of
equilibrium. A will not change during the next step. If B is not
itself at a state of equilibrium in the conditions provided by A, it
will move to a new state. A’s conditions will thereby be changed,
its states of equilibrium will probably be changed, and the state it
is at will probably no longer be one of equilibrium. So A will start
moving again.

Picturesquely, we can say that A proposed a state of equilibrium
(for A was willing to stop), but B refused to accept the proposal,
or vetoed the state. We can thus regard each part as having, as it
were, a power of veto over the states of equilibrium of the whole.
No state (of the whole) can be a state of equilibrium unless it is
acceptable to every one of the component parts, each acting in the
conditions given by the others.

Ex.: Three one-variable systems, with Greek-letter parameters, are:
x' = – x + α, y' = 2βy + 3, z' =– γz + δ.

Can they be coupled so as to have a state of equilibrium at (0,0,0)? (Hint:
What value would β have to have ?)

5/14. The homeostat. This principle provides a simple way of
looking at the homeostat and of understanding its working. It can
be regarded as a part A coupled to a part B (Fig. 5/14/1).

Part A consists essentially of the four needles (with ancillary
coils, potentiometers, etc.) acting on one another to form a
four-variable system to which B’s values are input. A’s state is
specified by the positions of the four needles. Depending on the
conditions and input, A may have states of equilibrium with the
needles either central or at the extreme deviation.

Part B consists essentially of a relay, which can be energised or
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not, and four stepping-switches, each of which can be in any one
of 25 positions (not shown accurately in the Figure). Each posi-
tion carries a resistor of some value. So B has 2 × 25 × 25 × 25 ×
25, i.e. 781250, states. To this system A is input. B has been built
so that, with the relay energised, none of B’s states is equilibrial
(i.e. the switches keep moving), while, with the relay not ener-
gised, all are equilibrial (i.e. all switches stay where they are).

Finally, B has been coupled to A so that the relay is non-ener-
gised when and only when A is stable at the central positions.

When a problem is set (by a change of value at some input to A
not shown formally in the Figure), A has a variety of possible
states of equilibrium, some with the needles at the central posi-
tions, some with the needles fully diverged. The whole will go to
some state of equilibrium. An equilibrium of the whole implies
that B must be in equilibrium, by the principle of the previous sec-
tion. But B has been made so that this occurs only when the relay
is non-energised. And B has been coupled to A so that the relay is
non-energised only when A’s needles are at or near the centres.
Thus the attachment if B vetoes all of A’s equilibria except such
as have the needles at he centre.

It will now be seen that every graph shown in Design . . . could
have been summed up by one description: “trajectory of a system
tinning to a state of equilibrium”. The homeostat, in a sense, does
nothing more than run to a state of equilibrium. What Design . . .
showed was that this simple phrase may cover many intricate and
interesting ways of behaving, many of them of high interest in
physiology and psychology.

(The subject of “stability” recurs frequently, especially in S.9/
6, 0/4, 12/11; that of the homeostat is taken up again in S.12/15.)

Fig. 5/14/1
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5/15. The complex of ideas involved in “stability” can now be
summarised.

First there is the state of equilibrium—the state that is
unchanged by the transformation. Then the state may become
multiple, and we get the stable set of states, of which the cycle and
basin are examples.

Given such a state or set of states and some particular distur-
bance we can ask whether, after a disturbance, the system will
return to its initial region. And if the system is continuous, we can
ask whether it is stable against all disturbances within a certain
range of values.

Clearly, the concept of stability is essentially a compound one.
Only when every aspect of it has been specified can it be applied
unambiguously to a particular case. Then if its use calls for so
much care, why should it be used at all ? Its advantage is that, in
the suitable case, it can sum up various more or less intricate pos-
sibilities briefly. As shorthand, when the phenomena are suitably
simple, words such as equilibrium and stability are of great value
and convenience. Nevertheless, it should be always borne in mind
that they are mere shorthand, and that the phenomena will not
always have the simplicity that these words presuppose. At all
times the user should be prepared to delete them and to substitute
the actual facts, in terms of states and transformations and trajec-
tories, to which they refer.

It is of interest to notice, to anticipate S.6/19, that the attempt to
say what is significant about a system by a reference to its stability
is an example of the “topological” method for describing a large
system. The question “what will this system do?”, applied to, say,
an economic system, may require a full description of every detail
of its future behaviour, but it may be adequately answered by the
much simpler statement “It will return to its usual state” (or per-
haps “it will show ever increasing divergence”). Thus our treat-
ment in this chapter has been of the type required when dealing
with the very large system.
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THE BLACK BOX

6/1. The methods developed in the previous chapters now enable
us to undertake a study of the Problem of the Black Box; and the
study will provide an excellent example of the use of the methods.

The Problem of the Black Box arose in electrical engineering.
The engineer is given a sealed box that has terminals for input, to
which he may bring any voltages, shocks, or other disturbances he
pleases, and terminals for output, from which he may observe
what he can. He is to deduce what he can of its contents.

Sometimes the problem arose literally, when a secret and sealed
bomb-sight became defective and a decision had to be made,
without opening the box, whether it was worth returning for repair
or whether it should be scrapped. Sometimes the problem arose
practically, as when a telephone engineer considered a compli-
cated set of relations between tests applied and results observed,
in the middle of a mass of functioning machinery that was not to
be dismantled for insufficient reason.

Though the problem arose in purely electrical form, its range of
application is far wider. The clinician studying a patient with
brain damage and aphasia may be trying, by means of tests given
and speech observed, to deduce something of the mechanisms that
are involved. And the psychologist who is studying a rat in a maze
may act on the rat with various stimuli and may observe the rat’s
various behaviours; and by putting the facts together he may try
to deduce something about the neuronic mechanism that he can-
not observe. I need not give further examples as they are to be
found everywhere (S.6/17).

Black Box theory is, however, even wider in application than
these professional studies. The child who tries to open a door has
to manipulate the handle (the input) so as to produce the desired
movement at the latch (the output); and he has to learn how to
control the one by the other without being able to see the internal
mechanism that links them. In our daily lives we are confronted at
every turn with systems whose internal mechanisms are not fully
open to inspection, and which must be treated by the methods
appropriate to the Black Box.
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The experimenter who is not interested in Black Box theory
usually regards any casing as merely a nuisance, for it delays his
answering the question “what is in this Box?” We, however, shall
be considering such larger questions as

“How should an experimenter proceed when faced with a Black 
Box ?”

“What properties of the Box’s contents are discoverable and 
what are fundamentally not discoverable ?”

“What methods should be used if the Box is to be investigated 
efficiently ?”

Proper attention can be given to these questions only by our
accepting the existence, at least temporarily, of a casing, and pro-
ceeding accordingly. Then, and only then, can we develop a sci-
entific epistemology.

6/2. To start with, let us make no assumptions at all about the
nature of the Box and its contents, which might be something, say,
that has just fallen from a Flying Saucer. We assume, though, that
the experimenter has certain given resources for acting on it (e.g.
prodding it, shining a light on it) and certain given resources for
observing its behaviour (e.g. photographing it, recording its
temperature). By thus acting on the Box, and by allowing the Box
to affect him and his recording apparatus, the experimenter is cou-
pling himself to the Box, so that the two together form a system
with feedback:

For the coupling to be made in some defined and reproducible
way, the Box’s “input” must be specified, if only arbitrarily and
provisionally. Every real system has an indefinitely large number
of possible inputs—of possible means by which the experimenter
may exert some action on the Box. Equally, it has an indefinitely
large number of possible outputs—of ways by which it may affect
the experimenter, perhaps through recording instruments. If the
investigation is to be orderly, the set of inputs to be used and of
outputs to be observed must be decided on, at least provisionally.
Let us assume, then, that this has been done.

The situation that we (author and reader) are considering can be
made clearer by the introduction of two harmless conventions. Let
it be assumed that the inputs, whatever their real nature, are
replaced by, or represented by, a set of levers or pointers—like the
controls to a domestic cooking oven. We can then be quite clear

Box ←→ Experimenter
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as to what is meant by the input “being in a certain state”—it is
the state that would be shown on a snapshot of the controls. Also
let us assume that the output consists of a set of dials, attached to
the Box and affected by the mechanism inside, so that the pointers
on the dials show, by their positions at any particular moment, the
state of the output.

We now see the experimenter much like the engineer in a ship,
who sits before a set of levers and telegraphs by which he may act
on the engines, and who can observe the results on a row of dials.
The representation, though it may seem unnatural, is in fact, of
course, capable of representing the great majority of natural sys-
tems, even if biological or economic.

6/3. The Investigation. A man cannot step twice into the same
water; neither can he twice conduct the same experiment. What he
can do is to perform another experiment which differs from the
first only in some way that is agreed to be negligible.

The same fact applies to an examination of the Black Box. The
sic data will always be of the form:

in which, at each of a sequence of times, the states of the Box’s
various parts, input and output, are recorded. Thus, the Box that
fell from the Flying Saucer might lead to the protocol:

(The word protocol will be reserved for such a form and
sequence.) 

Thus every system, fundamentally, is investigated by the col-
lection of a long protocol, drawn out in time, showing the
sequence of input and output states. Thus if one system had pos-

Time
States of input and 

output

↓ … …      …
… …      …

Time State

11.18 a.m. I did nothing—the Box emitted a steady hum at 240 c/s.

11.19 I pushed over the switch marked K: the note rose to 480 c/s and 
remained steady.

11.20 Accidentally I pushed the button marked “!”—the Box increased 
in temperature by 20°C.

… Etc.
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sible input states α and β, and possible output states f, g, h and j,
a typical protocol might read (and be yet another transformation!):

This form, though it may seem artificial and unnatural, is in fact
typical and general. It will represent anything from the investiga-
tion of an electrical network by putting in a sinusoidal voltage and
observing the output, to a psychiatric interview at which questions
α, β were put and answers g, f, h, j elicited.

Thus, the primary data of any investigation of a Black Box con-
sists of a sequence of values of the vector with two components:

(input state, output state).
(The possibility is not excluded that each component may itself

be a vector (S.3/5).)
From this there follows the fundamental deduction that all

knowledge obtainable from a Black Box (of given input and out-
put) is such as can be obtained by re-coding the protocol; all that,
and nothing more.

Ex.: Tabulate the transitions observed in the system that started at αγ. Find some
regularities in them.

6/4. It will be noticed that nothing has been said about the skill of
the experimenter in manipulating the input. The omission was
deliberate, for no skill is called for! We are assuming, remember,
that nothing is known about the Box, and when this is so the
method of making merely random variations (e.g. guided by
throws of a die) on the input-switches is as defensible as any other
method, for no facts yet exist that could be appealed to as justifi-
cation for preferring any particular method. With terrestrial
machinery—industrial, biological, neuronic—the experimenter
has often had previous experiences with Boxes of the same class.
When this is so he may be able to use a method that explores what
he does not know about the present Box more efficiently than
some other method. (These matters, of exploring a partly known
system, lead into questions of altogether more advanced type, and
their consideration must be postponed; a little is said on the sub-
ject in S.13/5 and onwards.)

6/5. Absoluteness. When a generous length of record has been
obtained, the experimenter will look for regularities, for repeti-
tiveness in the behaviour (S.7/19). He may notice, for instance, in

Time: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
State: αg αj αf αf αf βf βh βh αh αj βf αh βj βf αh βj αf
(Parentheses have been omitted for brevity.)
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Ex. 6/3/1, that  α j is always followed by either  αf or βf—that
although the  α’s transition is not single-valued, that of the j is.

So he examines the record. Usually his first concern is to see
whether the Box is absolute if the input state is given. He does this
by collecting:

What he tries, in other words, is to fill in a set of transformations
like those of S.4/1, and he examines what he gets to see if they are
single- valued.

Thus, if the given protocol is tested, and if every one of the 16
transforms is recorded, there results:

(No transition was observed from g with input at β.) Within each
cell the letters are all equal, so the table can be simplified to:

with a statement that throughout the protocol this closed single-
valued transformation was observed.

Thus by direct re-coding of the protocol the experimenter can
demonstrate that the behaviour is machine-like, and he can
deduce its canonical representation.

It should be noticed that he has deduced it from direct observa-
tion of the Box’s actual behaviour. He has relied on no “bor-
rowed” knowledge. Whatever he may have expected, and
regardless of the confidence of his expectation, the final deduc-
tion depends only on what actually happened. Thus, in any con-
flict between what he, or others, expected and what was found,
these empirical results are final as a statement of the Box’s nature.

Should the system not be determinate, i.e. the transformation
not single-valued, he can proceed in either of two ways.

(i) all the transitions that followed the input state α, sorting 
them into what g went to, what h went to, and so on through 
all the output states;

(ii) the same for input β;
(iii) and so on through all the observed input states.

↓ f g h j

α fff j jjj ff
β hhh . hh ff

↓ f g h j

α f j j f
β h . h f
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One way is to alter the set of inputs and outputs—to take more
variables into account—and then to see if the new system (equiv-
alent to a new Box, S.3/11) is determinate. Thus a chemist may
find that a system’s behaviour is at first not determinate, but that
when the presence of traces of chloride is taken into account it
becomes determinate. A great deal of research consists of such
searches for a suitable set of variables.

A second way is to abandon the attempt to find strict determi-
nacy and to look for statistical determinacy, i.e. determinacy in
averages etc. The experimenter, with extensive records available,
then studies them in long sections, to see whether, if the details are
not predictable from step to step, the averages (or similar statis-
tics) are predictable from section to section. He may find that the
records show the statistical determinateness of the Markov chain;
(but discussion of this will be left to Chapter 9, for until then we
shall be concerned only with machines that are determinate from
step to step).

To summarise: once the protocol has been obtained, the sys-
tem’s determinateness can be tested, and (if found determinate) its
canonical representation can be deduced.

Ex. 1: Deduce the kinematic graph for input at α directly from the protocol of the
system of S.6/3.

Ex. 2: (Continued.) and for input at f.

Ex. 3: A system with only one input state gave the following sequence of states
as output:

D   G   A   H   C   L   H   C   L   H   C   F   C …
Is it absolute?

Ex. 4: A system has two variables, x and y, each of which can take the values 0,
1 or 2. The input can take two values, α or β. The protocol gave:

Is it a machine with input ?
Ex. 5: (Continued.) What is its transformation if the input is held at α?
Ex. 6: If a machine has m input-states and n output-states, what is the least

number of steps of observation sufficient for its complete study?

Time: 1 2 3 4 5 6 7 8 9 10 11 12 13
Input: α α α α α β α α α α α α α
x: 1 0 0 0 0 0 1 2 2 1 0 0 0
y: 1 0 1 0 1 0 2 1 0 1 0 1 0

Time: 14 15 16 17 18 19 20 21 22 23 24 25
Input: β α α β β β α β β β α β
x: 0 0 1 0 1 1 1 1 1 2 2 1
y: 1 2 1 0 2 1 0 1 0 0 2 1
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Ex. 7: Two Black Boxes are of identical external appearance, and each has a sin-
gle input  α and a single output x, each a numerical variable. They were
labelled I and II, and their canonical representations were found to be

Unfortunately the labels “I” and “II” have since become detached and it is
now not known which is which. Suggest a simple test that will re- identify
them.

6/6. Inaccessible states. Examination of the transformations

shows that the state g, once past in the protocol, cannot be made
to re-appear by any manipulations of the input. The transitions
from g thus cannot be explored further or tested repeatedly. This
fact, that certain states of the Box cannot be returned to at will, is
very common in practice. Such states will be called inaccessible.

In its most dramatic form it occurs when the investigation of a
new type of enemy mine leads to an explosion—which can be
described more abstractly by saying that the system has passed
from a state to which no manipulation at the input can make the
system return. Essentially the same phenomenon occurs when
experiments are conducted on an organism that learns; for as time
goes on it leaves its “unsophisticated” initial state, and no simple
manipulation can get it back to this state. In such experiments,
however, the psychologist is usually investigating not the partic-
ular individual but the particular species, so he can restore the ini-
tial state by the simple operation of taking a new individual.

Thus the experimenter, if the system is determinate, must either
restrict himself to the investigation of a set of states that is both
closed and freely accessible, such as f, h, j in the example, or he
must add more states to his input so that more transformations
become available and thus, perhaps, give a transition to g.

6/7. Deducing connexions. It is now clear that something of the
connexions within a Black Box can be obtained by deduction. For
direct manipulation and observation gives the protocol, this (if the
system is determinate) gives the canonical representation, and this
gives the diagram of immediate effects (one for each input state)
(S.4/13). But we must go cautiously.

It must be noticed that in a real system the “diagram of internal

I: x' = x + 1— α
II: x' = (1 + α)x —2 + α.

↓ f g h j

α f j j f
β h f h f
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connexions” is not unique. The radio set, for instance, has one dia-
gram of connexions if considered electrically and another if con-
sidered mechanically. An insulator, in fact, is just such a
component as will give firm mechanical connexion while giving
no electrical connexion. Which pattern of connexions will be
found depends on which set of inputs and outputs is used.

Even if the diagram of immediate effects is unique, it does not
indicate a unique pattern of connexions within the Box. Thus sup-
pose a Black Box has an output of two dials, x and y; and suppose
it has been found that x dominates y. The diagram of immediate
effects is thus

(in which the two boxes are parts of the whole Box). This relation-
ship can be given by an infinity of possible internal mechanisms.
A particular example occurs in the case in which relays open or
close switches in order to give a particular network of connexions.
It has been shown by Shannon that any given behaviour can be
produced by an indefinitely large number of possible networks.
Thus let x represent a contact that will be closed when the relay X
is energised, and let x represent one that will be opened. Suppose
similarly that another relay Y has similar contacts y and y. Sup-
pose that the network is to conduct from p to q when and only
when both X and Y are energised. 

The network A of Fig. 6/7/1, in which x and y are connected in
series, will show the required behaviour. So also will B, and C,
and an indefinitely large number of other networks.

The behaviour does not specify the connexions uniquely.

Ex.: (Ex. 6/5/4 continued.) Deduce the diagram of immediate effects when the
input is fixed at α. (Hint: S.4/13.)

x → y

Fig. 6/7/1
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ISOMORPHIC MACHINES

6/8. Study of a Black Box can thus give the experimenter infor-
mation up to a certain amount; and, if the inputs and outputs are
given, cannot possibly be made to give more. How much informa-
tion will be discussed in S. 13/15 (especially its last Ex.). Here it
is sufficient if we notice that the canonical representation speci-
fies or identifies the mechanism “up to an isomorphism”.

“Isomorphic” means, roughly, “similar in pattern”. It is a con-
cept of the widest range and of the utmost importance to all who
would treat accurately of matters in which “pattern” plays a part.
Let us consider first a few examples merely to illustrate the basic
ideas. 

A photographic negative and the print from it are, so far as the
pattern of the picture is concerned, isomorphic. Squares in the
negative appear as squares in the print; circles appear as circles;
parallel lines in the one stay as parallel lines in the other. Thus cer-
tain relations between the parts within the negative appear as the
same relations in the print, though the appearances so far as
brightness is concerned are different, exactly opposite in fact.
Thus the operation of changing from negative to print leaves these
relations unaltered (compare S.5/2).

A map and the countryside that it represents are isomorphic (if
the map is accurate!). Relationships in the country, such as that
towns A, B and C form an equilateral triangle, occur unchanged
on the map, where the representative dots for A, B and C also
form an equilateral triangle.

The patterns need not be visual. If a stone is thrown vertically
upwards with an initial velocity of 50 ft. per second, there is an
isomorphism between the set of points in the air such that at time
t the stone was h feet up and the set of those points on a graph that
satisfy the equation

y = 50x – 16x2.

The lines along which air flows (at sub-sonic speeds) past an
aerofoil form a pattern that is identical with the lines along which
electric current flows in a conducting liquid past a non- conductor
of the same shape as the aerofoil. The two patterns are the same,
though the physical bases are different.

Another isomorphism is worth consideration in more detail.
Fig. 6/8/1 shows two dynamic systems, each with an input and an
output. In the upper one, the left-hand axle I is the input; it can be
rotated to any position, shown on the dial u. It is connected
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through a spring S to a heavy wheel M, which is rigidly connected
to the output shaft O. O’s degree of rotation is shown on the dial
v, which is its output. The wheel dips into a trough with liquid F
which applies a frictional force to the wheel, proportional to the
wheel’s velocity. If now, starting from given conditions, the input
u is taken through some sequence of values, so will the output v
pass through some determinate sequence of values, the particular
sequence depending on v’s initial value, on v’s rate of change at
that moment, and on the sequence used for the input at u.

The lower system is electrical. Its input is a potentiometer, or
other device, J, that emits the voltage shown on the scale x. In
series are an inductance L, a resistance R, and a capacitance C. P
is a current meter (such as is used in domestic supplies) recording
the sum of the currents that have passed through it. The sum is
shown on the scale y, which is its output.

If now the values of L, R and C are adjusted to match the stiff-
ness of the spring, inertia of the wheel, and friction at F (though
not respectively), then the two systems can show a remarkable
functional identity. Let them both start from rest. Apply any
input-sequence of values at u, however long and arbitrary, and get
an output sequence at v, of equal length: if the same sequence of
values is given at x, the output at y will be identical, along its
whole length with that at v. Try another input sequence to u and
record what appears at v: the same input given to x will result in

Fig. 6/8/1
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an output at y that copies that at v. Cover the central parts of the
mechanism and the two machines are indistinguishable through-
out an infinite number of tests applied. Machines can thus show
the profoundest similarities in behaviour while being, from other
points of view, utterly dissimilar.

Nor is this all. Well known to mathematicians are equations of
the type

by which, if a graph is given showing how w varied with time (t),
the changes induced in z can be found. Thus w can be regarded as
an “input” to the equation and z an “output”. If now a, b, and c are
given values suitably related to L, R, S, etc., the relation between
w and z becomes identical with those between u and v, and
between x and y. All three systems are isomorphic.

The great practical value of isomorphisms is now becoming
apparent. Suppose the problem has arisen how the mechanical
system will behave under certain conditions. Given the input u,
the behaviour v is required. The real mechanical system may be
awkward for direct testing: it may be too massive, or not readily
accessible, or even not yet made! If, however, a mathematician is
available, the answer can be found quickly and easily by finding
the output z of the differential equation under input w. It would be
said, in the usual terms, that a problem in mathematical physics
had been solved. What should be noticed, however, is that the
process is essentially that of using a map—of using a convenient
isomorphic representation rather than the inconvenient reality.

It may happen that no mathematician is available but that an
electrician is. In that case, the same principle can be used again.
The electrical system is assembled, the input given to x, and the
answer read off at y. This is more commonly described as “build-
ing an electrical model”.

Clearly no one of the three systems has priority; any can substi-
tute for the others. Thus if an engineer wants to solve the differ-
ential equation, he may find the answer more quickly by building
the electrical system and reading the solutions at y. He is then usu-
ally said to have “built an analogue computer”. The mechanical
system might, in other circumstances, be found a more convenient
form for the computer. The big general-purpose digital computer
is remarkable precisely because it can be programmed to become
isomorphic with any dynamic system whatever.

The use of isomorphic systems is thus common and important.

a
d

2
z

dt
2

-------- b
dz
dt
----- cz+ + w=
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It is important because most systems have both difficult and easy
patches in their properties. When an experimenter comes to a dif-
ficult patch in the particular system he is investigating he may if
an isomorphic form exists, find that the corresponding patch in the
other form is much easier to understand or control or investigate.
And experience has shown that the ability to change to an isomor-
phic form, though it does not give absolutely trustworthy evi-
dence (for an isomorphism may hold only over a certain range), is
nevertheless a most useful and practical help to the experimenter.
In science it is used ubiquitously.

6/9. It must now be shown that this concept of isomorphism, vast
though its range of applicability, is capable of exact and objective

definition. The most fundamental definition has been given by
Bourbaki; here we need only the form suitable for dynamic sys-
tems It applies quite straightforwardly once two machines have
been reduced to their canonical representations.

Consider, for instance, the two simple machines M and N, with
canonical representations

They show no obvious relation. If, however, their kinematic
graphs are drawn, they are found to be as in Fig. 6/9/1. Inspection
shows that there is a deep resemblance. In fact, by merely rear-
ranging the points in N without disrupting any arrow (S.2/17) we
can get the form shown in Fig. 6/9/2. 
These graphs are identical with M’s graphs, apart from the label-
ling.

More precisely: the canonical representations of two machines
are isomorphic if a one-one transformation of the states (input and

↓ a b c d ↓ g h j k

Μ:
α a c d c

Ν:
δ k j h g

β b a d c ε k h g g

Fig. 6/9/1
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output) of the one machine into those of the other can convert the
one representation to the other.

Thus, in the example given, apply the one-one transformation P

to N’s table, applying it to the borders as well as to the body. The
result is

This is essentially the same as M. Thus, c and β in the border give

d in both. The isomorphism thus corresponds to the definition.
(The isomorphism can be seen more clearly if first the rows are
interchanged, to

and then the columns interchanged, to

but this re-arrangement is merely for visual convenience.)
When the states are defined by vectors the process is essentially

unchanged. Suppose R and S are two absolute systems:

P:  ↓ δ ε g h j k 
β α c a b d

↓ c a b d

β d b a c
α d a c c

↓ c a b d

α d a c c
β d b a c

↓ a b c d

α a c d c
β b a d c

R:




x' = x + y S:




u' = – u – v
y' = x – y v' = – u + v

Fig. 6/9/2
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The transformation P:

is a shorthand way of describing the one-one transformation that
pairs off states in S and R thus:

(Compare U of S.4/9.) Apply P to all the description of S; the
result is

which is algebraically identical with R. So R and S are isomorphic.

Ex. 1: What one-one transformation will show these absolute systems to be iso-
morphic?

(Hint: Try to identify some characteristic feature, such as a state of equilib-
rium.)

Ex. 2: How many one-one transformations are there that will show these absolute
systems to be isomorphic?

*Ex. 3: Write the canonical equations of the two systems of Fig. 6/8/1 and show
that they are isomorphic. (Hint: How many variables are necessary if the sys-
tem is to be a machine with input ?)

Ex. 4: Find a re-labelling of variables that will show the absolute systems A and
B to be isomorphic.

(Hint: On the right side of A one variable is mentioned only once; the same
is true of B. Also, in A, only one of the variables depends on itself quadrat-
ically, i.e. if of the form a' = + a2 . . . ; the same is true of B.)

6/10. The previous section showed that two machines are isomor-
phic if one can be made identical to the other by simple relabel-
ling. The “re-labelling”, however, can have various degrees of
complexity, as we will now see.

P:  ↓ u v
y – x

in S, (2,3) against (–3,2) in R
,, ,, (1,0) ,, (0,1) ,, ,,
,, ,, (4,5) ,, (–5,4) ,, ,,
,, ,, (–3,0) ,, (0,–3) ,, ,,

i.e. ,, ,, (u,v) ,, (–v,u) ,, ,,





y' = – y + x
–x' = – y – x

Y: ↓ a b c d e Z: ↓ p q r s t
c c d d b r q q p r

A: ↓ a b c B: ↓ p q r
b c a r p q

A:
 x' = – x2 + y

B:
 u' = w2 + u

 y' = – x2 – y  v' = – v2 + w
 z' = y2 + z  w' = – v2 – w
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The system that is specified only by states, as in the previous
section, contains no direct reference either to parts or to variables.
In such a case, “re-labelling” can mean only “re-labelling the
states”. A system with parts or variables, however, can also be
re-labelled at its variables—by no means the same thing. Relabel-
ling the variables, in effect, re-labels the states but in a way sub-
ject to considerable constraint (S.7/8), whereas the re-labelling of
states can be as arbitrary as we please. So a re-labelling of the
states is more general than a re-labelling of the variables.

Thus suppose a system has nine states; an arbitrary re-labelling
of eight of the states does not restrict what label shall be given to
the ninth. Now suppose that the system has two variables, x and
y, and that each can take three values: x1, x2, x3 and y1, y2, y3. Nine
states are possible, of which two are (x2,y3) and (x3,y1). Suppose
this system is re-labelled in its variables, thus

If now (x2,y3) is transformed to some state (α,β), and (x3,y1) is
transformed to (γ,δ), then, for consistency, the state (x2,y1) must
transform to (α,δ). (Draw the phase spaces and identify the values
on the ξ and η axes.) Thus the nine states now cannot be trans-
formed arbitrarily and independently. A re-labelling of the varia-
bles offers less scope for change than a re-labelling of states. 

As a result, certain features that are destroyed by a re-labelling
of states are preserved by a re-labelling of variables. Among them
is the diagram of immediate effects.

The system described by its states has, of course, no such dia-
gram, for it has in effect only one variable. A system with varia-
bles, however, has a diagram of immediate effects. The
phase-space now has axes; and it is easily seen, after a few trials,
that a one-one transformation that re- labels the variables, changes
the diagram of immediate effects only to the extent of a “button
and string” change; turning, say, A into B:

↓ x y
ξ η

A B j
p
↓ h ←→ l

r → q ←→ s
k

101

THE BLACK BOX

Ex. 1: (Ex. 6/9/4 continued.) Compare the diagram of immediate effects of A and
B.

Ex. 2: Mark the following properties of an absolute system as changed or
unchanged by a re-labelling of its states: (i) The number of basins in its
phase-space; (ii) whether it is reducible; (iii) its number of states of equilib-
rium; (iv) whether feedback is present; (v) the number of cycles in its
phase-space.

Ex. 3: (Continued.) How would they be affected by a re-labelling of variables?

6/11. The subject of isomorphism is extensive, and only an intro-
duction to the subject can be given here. Before we leave it, how-
ever, we should notice that transformations more complex than a
simple re-labelling of variables can change the diagram of imme-
diate effects. Thus the systems

are isomorphic under the one-one transformation

Yet A’s diagram is

while B’s diagram is

i.e. two unconnected variables.
The “method of normal co-ordinates”, widely used in mathe-

matical physics, consists in applying just such a transformation as
will treat the system not in its obvious form but in an isomorphic
form that has all its variables independent. In this transformation
the diagram of immediate effects is altered grossly; what is
retained is the set of normal modes, i.e. its characteristic way of
behaving.

Such a transformation (as P above), that forms some function
of the variables (i.e. x—y) represents, to the experimenter, more
than a mere re-labelling of the x-, y-output dials. It means that the
Box’s output of x and y must be put through some physical appa-
ratus that will take x and y as input and will emit x—y and x + y
as new outputs. This combining corresponds to a more complex
operation than was considered in S.6/10.

Ex.: Show that A and B are isomorphic. (Hint: (x—y)' = x'—y': why?)

A:




x' = 1/2(x2 + y2) + xy + y B:




u' = – u
y' = 1/2(x2 + y2) + xy + x v' = v + v2

P:




u = x – y
v = x + y

x ←→ y

u v
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HOMOMORPHIC MACHINES

6/12. The definition given for isomorphism defines “equality” in
the strictest sense—it allows that two machines (or two Black
Boxes) are “equal” only when they are so alike that an accidental
interchange of them would be subsequently indetectable, at least
by any test applied to their behaviours.

There are, however, lesser degrees of resemblance. Thus two
pendulums, one beating seconds and the other half-seconds, are
obviously similar, yet they are not isomorphic in the strict sense.
There is, however, some similarity, which is shown by the fact
that they become isomorphic if they are measured on separate
timescales, the one having half the values of the other.

Two machines may also be related by a “homomorphism.” This
occurs when a many-one transformation, applied to the more
complex, can reduce it to a form that is isomorphic with the sim-
pler. Thus the two machines M and N

may seem at first sight to have little resemblance. There is, how-
ever, a deep similarity. (The reader will gain much if he reads no
further until he has discovered, if only vaguely, where the similar-
ity lies; notice the peculiarity of N’s table, with three elements
alike and one different—can anything like that be seen in the table
of M7.—if cut into quadrants?)

Transform M by the many-one transformation T:

(which is single-valued but not one-one as in S.6/9) and we get

↓ a b c d e ↓ g h

Μ:

i b a b c a
Ν:

α g h
j a b c b c β h h

k a b b e d
l b c a e e

T:  ↓ a b c d e i j k l
h h h g g β β α α

↓ h h h g g

β h h h h h
β h h h h h

α h h h g g
α h h h g g
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It will be found that the repetitions do not contradict one another,
and that the table can equally well be given as

which is isomorphic with N.
Examination of M shows now where the resemblance to N lies.

Within M the transitions occur in blocks; thus a, b and c always
go to some one of a, b or c. And the blocks in M undergo transi-
tions in the same way as the states in N. N is thus equivalent to a
simplified version of M.

The relation can be displayed in another way. Suppose first the
two machines are viewed by some one who can distinguish all the
five states of M; he will report simply that M is different from N
(i.e. not isomorphic) and more complex. Suppose next that they
are viewed by some observer with less power of discrimination,
one who cannot discriminate between a, b, and c, but lumps them
all together as, say, A; and who also lumps d and e together as B,
i and j as I', and k and l as d. This new observer, seeing this sim-
plified version of M, will report that it is isomorphic with N. Thus
two machines are homomorphic when they become alike if one is
merely simplified, i.e. observed with less than full discrimination.

Formally, if two machines are so related that a many-one trans-
formation can be found that, applied to one of the machines, gives
a machine that is isomorphic with the other, then the other (the
simpler of the two) is a homomorphism of the first.

Ex.: Is isomorphism simply an extreme case of homomorphism?
Problem: What other types of homomorphism are there between machine
and machine?

6/13. If the methods of this book are to be applied to biological
systems, not only must the methods become sufficiently complex
to match the systems but the systems must be considerably sim-
plified if their study is ever to be practical. No biological system
has yet been studied in its full complexity, nor is likely to be for a
very long time. In practice the biologist always imposes a tremen-
dous simplification before he starts work: if he watches a bird
building its nest he does not see all the intricate pattern of detailed
neuronic activities in the bird’s brain; if he studies how a lizard
escapes from its enemies he does not observe the particular
molecular and ionic changes in its muscles; if he studies a tribe at

↓ h g

β h h
α h g
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its council meeting he does not observe all the many detailed
processes going on in the individual members. The biologist thus
usually studies only a small fraction of the system that faces him.
Any statement he makes is only a half-truth, a simplification. To
what extent can systems justifiably be simplified? Can a scientist
work properly with half-truths?

The practical man, of course, has never doubted it. Let us see
whether we can make the position clear and exact.

Knowledge can certainly be partial and yet complete in itself.
Perhaps the most clear-cut example occurs in connexion with
ordinary multiplication. The complete truth about multiplication
is, of course, very extensive, for it includes the facts about all pos-
sible pairs, including such items as that

14792 × 4,183584 = 61883,574528.

There is, however, a much smaller portion of the whole which
consists simply in the facts that

What is important here is that though this knowledge is only an
infinitesimal fraction of the whole it is complete within itself. (It
was, in fact, the first homomorphism considered in mathematics.)
Contrast this completeness, in respect of Even and Odd, with the
incompleteness shown by

which leaves unmentioned what is 4 × 8, etc. Thus it is perfectly
possible for some knowledge, though partial in respect of some
larger system, to be complete within itself, complete so far as it
goes.

Homomorphisms may, as we have seen, exist between two dif-
ferent machines. They may also exist within one machine:
between the various possible simplifications of it that still retain
the characteristic property of being machine-like (S.3/1). Sup-
pose, for instance, that the machine were A:

Even × Even = Even
Even × 0dd = Even
0dd × Even = Even
0dd × 0dd = 0dd

2 × 2 = 4
2 × 4 = 8
4 × 2 = 8
4 × 4 = 16

A:  ↓ a b c d e
e b a b e
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This is the machine as seen by the first observer (call him One).
Suppose now that another observer (call him Two) was unable to
distinguish states a and d, and also unable to distinguish b and e.
Let us give the states new names for clarity:

The second observer, seeing states K, L or M would find the
machine’s behaviour determinate. Thus when at K (really a or d)
it would always go to M (either b or e), and so on. He would say
that it behaved according to the closed transformation

and that this was single-valued, and thus determinate.
The new system has been formed simply by grouping together

certain states that were previously distinct, but it does not follow
that any arbitrary grouping will give a homomorphism. Thus sup-
pose yet another observer Three could distinguish only two states:

He would find that P changed sometimes to Q (when P was really
at a) and sometimes to P (when P was really at b or c). The change
from P is thus not single-valued, and Three would say that the
machine (with states P and Q) was not determinate. He would be
dissatisfied with the measurements that led to the distinction
between P and Q and would try to become more discriminating,
so as to remove the unpredictability.

A machine can thus be simplified to a new form when its states
are compounded suitably. Scientific treatment of a complex sys-
tem does not demand that every possible distinction be made.

Ex. 1: What homomorphism combines Odd and Even by the operation of addi-
tion ?

Ex. 2: Find all possible simplifications of the four-state system

which leaves the result still a determinate machine. 
Ex. 3: What simplification is possible in

if the result is still to be a determinate machine ?

↓
a d c b e
123 123
K L M

↓ K L M
M K M

↓
a b c d e

14243 123
P Q

↓ a b c d
b b d c





x' = – y
y' = x2 + y,
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6/14. The deliberate refusal to attempt all possible distinctions,
and the deliberate restriction of the study of a dynamic system to
some homomorphism of the whole, become justified, and in fact
almost unavoidable, when the experimenter is confronted with the
system of biological origin.

We usually assumed, in the earlier chapters, that the observer
knew, at each moment, just what state the system was in. It was
assumed, in other words, that at every moment his information
about the system was complete. There comes a stage, however, as
the system becomes larger and larger, when the reception of all
the information is impossible by reason of its sheer bulk. Either
the recording channels cannot carry all the information, or the
observer, presented with it all, is overwhelmed. When this occurs,
what is he to do? The answer is clear: he must give up any ambi-
tion to know the whole system. His aim must be to achieve a par-
tial knowledge that, though partial over the whole, is none the less
complete within itself, and is sufficient for his ultimate practical
purpose.

These facts emphasise an important matter of principle in the
study of the very large system. Faced with such a system, the
observer must be cautious in referring to “the system”, for the
term will probably be ambiguous, perhaps highly so. “The sys-
tem” may refer to the whole system quite apart from any observer
to study it— the thing as it is in itself; or it may refer to the set of
variables (or states) with which some given observer is con-
cerned. Though the former sounds more imposing philosophi-
cally, the practical worker inevitably finds the second more
important. Then the second meaning can itself be ambiguous if
the particular observer is not specified, for the system may be any
one of the many sub-machines provided by homomorphism. Why
all these meanings should be distinguished is because different
sub-machines can have different properties; so that although both
sub-machines may be abstracted from the same real “thing”, a
statement that is true of one may be false of another.

It follows that there can be no such thing as the (unique) behav-
iour of a very large system, apart from a given observer. For there
can legitimately be as many sub-machines as observers, and
therefore as many behaviours, which may actually be so different
as to be incompatible if they occurred in one system. Thus the
5-state system with kinematic graph

has two basins, and always ends in a cycle. The homomorphic

h ←→ k m → l ←→ j
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sub-machine (with states r and s) given by the transformation

has graph s → r, with one basin and no cycle. Both statements are
equally true, and are compatible because they refer to different
systems (as defined in S.3/11).

The point of view taken here is that science (as represented by
the observer’s discoveries) is not immediately concerned with
discovering what the system “really” is, but with co-ordinating
the various observers’ discoveries, each of which is only a por-
tion, or an aspect, of the whole truth.

Were the engineer to treat bridgebuilding by a consideration of
every atom he would find the task impossible by its very size. He
therefore ignores the fact that his girders and blocks are really
composite, made of atoms, and treats them as his units. As it hap-
pens, the nature of girders permits this simplification, and the
engineer’s work becomes a practical possibility. It will be seen
therefore that the method of studying very large systems by stud-
ying only carefully selected aspects of them is simply what is
always done in practice. Here we intend to follow the process
more rigorously and consciously.

6/15. The lattice. The various simplifications of a machine have
exact relations to one another Thus, the six forms of the system of
Ex. 6/13/2 are:

(1) a, b, c, d
(2) a + b, c, d
(3) a, b, c + d
(4) a + b, c + d
(5) a, b + c + d
(6) a + b + c + d

where, e.g. “a + b” means that a and b are no longer distinguished.
Now (4) can be obtained from (3) by a merging of a and b. But (5)
cannot be obtained from (4) by a simple merging; for (5) uses a
distinction between a and b that has been lost in (4). Thus it is
soon verified that simplification can give:

↓
h b j k l

r s

from (1): all the other five,
,, (2): (4) and (6),
,, (3): (4), (5) and (6),
,, (4): (6),
,, (5): (6),
,, (6): none.
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The various simplifications are thus related as in the diagram, in
which a descending line connects the simpler form (below) with
the form from which it can be directly obtained (above):

This diagram is of a type known as a lattice—a structure much
studied in modern mathematics. What is of interest in this Intro-
duction is that this ordering makes precise many ideas about sys-
tems, ideas that have hitherto been considered only intuitively.

Every lattice has a single element at the top (like 1) and a single
element at the bottom (like 6). When the lattice represents the pos-
sible simplifications of a machine, the element at the top corre-
sponds to the machine with every state distinguished; it
corresponds to the knowledge of the experimenter who takes note
of every distinction available in its states. The element at the bot-
tom corresponds to a machine with every state merged; if this
state is called Z the machine has as transformation only

This transformation is closed, so something persists (S.10/4), and
the observer who sees only at this level of discrimination can say
of the machine: “it persists”, and can say no more. This persist-
ence is, of course, the most rudimentary property of a machine,
distinguishing it from the merely evanescent. (The importance of
“closure”, emphasised in the early chapters, can now be appreci-
ated —it corresponds to the intuitive idea that, to be a machine, an
entity must at least persist.)

Between these extremes lie the various simplifications, in their
natural and exact order. Near the top lie those that differ from the
full truth only in some trifling matter. Those that lie near the bot-
tom are the simplifications of the grossest type. Near the bottom
lies such a simplification as would reduce a whole economic sys-

1

2 3

4 5

6

↓ Z 
Z
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tem with a vast number of interacting parts, going through a trade
cycle, to the simple form of two states:

Thus, the various simplifications of a dynamic system can
ordered and related.

6/16. Models. We can now see much more clearly what is meant
by a “model”. The subject was touched on in S.6/8, where three
systems were found to be isomorphic and therefore capable of
being used as representations of each other. The subject is some
of importance to those who work with biological systems, for in
many cases the use of a model is helpful, either to help the worker
think about the subject or to act as a form of analogue computer.

The model will seldom be isomorphic with the biological sys-
tem: usually it will be a homomorphism of it. But the model is
itself seldom regarded in all its practical detail: usually it is only
some aspect of the model that is related to the biological system;
thus the tin mouse may be a satisfactory model of a living
mouse—provided one ignores the tinniness of the one and the
proteinness of the other. Thus what usually happens is that the two
systems, biological and model, are so related that a homomor-
phism of the one is isomorphic with a homomorphism of the
other. (This relation is symmetric, so either may justifiably be said
to be a “model” of the other.) The higher the homomorphisms are
on their lattices, the better or more realistic will be the model.

At this point this Introduction must leave the subject of Homo-
morphisms. Enough has been said to show the foundations of the
subject and to indicate the main lines for its development. But
these developments belong to the future.

Ex. 1: What would be the case when it was the two top-most elements of the two
lattices that were isomorphic?

Ex. 2: To what degree is the Rock of Gibraltar a model of the brain? 
Ex. 3: To what extent can the machine

provide models for the system of Ex. 6/13/2?

THE VERY LARGE BOX

6/17. The previous sections have shown how the properties that are
usually ascribed to machines can also be ascribed to Black Boxes.

Boom Slump

↓ p q r
q r r
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We do in fact work, in our daily lives, much more with Black
Boxes than we are apt to think. At first we are apt to think, for
instance, that a bicycle is not a Black Box, for we can see every
connecting link. We delude ourselves, however. The ultimate links
between pedal and wheel are those interatomic forces that hold the
particles of metal together; of these we see nothing, and the child
who learns to ride can become competent merely with the knowl-
edge that pressure on the pedals makes the wheels go round.

To emphasise that the theory of Black Boxes is practically
coextensive with that of everyday life, let us notice that if a set of
Black Boxes has been studied by an observer, he is in a position
to couple them together to form designed machinery. The method
is straightforward: as the examination of each Box has given its
canonical representation (S.6/5), so can they be coupled, inputs to
outputs, to form new systems exactly as described in S.4/8.

What is being suggested now is not that Black Boxes behave
somewhat like real objects but that the real objects are in fact all
Black Boxes, and that we have in fact been operating with Black
Boxes all our lives. The theory of the Black Box is merely the the-
ory of real objects or systems, when close attention is given to the
question, relating object and observer, about what information
comes from the object, and how it is obtained. Thus the theory of
the Black Box is simply the study of the relations between the
experimenter and his environment, when special attention is given
to the flow of information. “A study of the real world thus
becomes a study of transducers.” (Goldman, Information theory.)

6/18. Before we go further, the question of “emergent” properties
should be clarified.

First let one fact be established. If a number of Black Boxes are
given, and each is studied in isolation until its canonical represen-
tation is established, and if they are coupled in a known pattern by
known linkages, then it follows (S.4/8) that the behaviour of the
whole is determinate, and can be predicted. Thus an assembly of
Black Boxes, in these conditions, will show no “emergent” prop-
erties; i.e. no properties that could not have been predicted from
knowledge of the parts and their couplings.

   The concept of “emergence” has never been defined with pre-
cision, but the following examples will probably suffice as a basis
for discussion:

   (1) Ammonia is a gas, and so is hydrogen chloride. When the 
two gases are mixed, the result is a solid—a property not pos-
sessed by either reactant.
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   (2) Carbon, hydrogen and oxygen are all practically tasteless, yet 
the particular compound “sugar” has a characteristic taste pos-
sessed by none of them.
   (3) The twenty (or so) amino-acids in a bacterium have none of 
them the property of being “self-reproducing”, yet the whole, with 
some other substances, has this property.

If these examples are compared in detail with the processes of
study and coupling of Black Boxes, it is soon seen that the exam-
ples postulate much less knowledge of their parts than is postu-
lated of the Black Boxes. Thus the prediction in regard to
ammonia and hydrogen chloride is based on no more knowledge
of each substance than that it is a gas. Similarly, of the twenty
amino-acids all that is asked is “is it self- reproducing?” Were
each amino-acid treated as a Black Box the examination would be
far more searching. The input to a molecule is the set of electrical
and mechanical forces, in all distributions and combinations, that
can affect it; and its output is the set of all states, electrical and
mechanical, that it can be in. Were this complete knowledge
available, then the method of S.4/8 shows how the behaviour of
many coupled amino-acids could be predicted; and among the
predicted behaviours would be that of self-reproduction of the
whole.

It will be seen that prediction of the whole’s behaviour can be
based on complete or on incomplete knowledge of the parts. If the
knowledge is complete, then the case is that of the Black Box
whose canonical representation is known, the inputs or circum-
stances being all those that may be given by the other Boxes to
which it is to be coupled. When the knowledge of the parts is so
complete, the prediction can also be complete, and no extra prop-
erties can emerge.

Often, however, the knowledge is not, for whatever reason,
complete. Then the prediction has to be undertaken on incomplete
knowledge, and may prove mistaken. Sometimes all that is known
of the parts is that every one has a certain characteristic. There
may be no better way of predicting than to use simple extrapola-
tion —to predict that the whole will have it. Sometimes this
proves justified; thus, if a whole is of three parts, each of pure cop-
per, then we shall be correct if we predict that the whole is of pure
copper. But often the method fails, and a new property can, if we
please, be said to “emerge”.

It does in fact very commonly happen that when the system
becomes large, so that the range of size from part to whole is very
large, the properties of the whole are very different from those of
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the parts. Biological systems are thus particularly likely to show
the difference. We must therefore be on guard against expecting
the properties of the whole to reproduce the properties of the parts,
and vice versa.

The examples of ammonium chloride and sugar mentioned
above are simple examples, but more complex cases occur. Con-
sider, for instance, the concept of “localisation” of some function
in a system. It may well happen that the view taken when the mat-
ter is examined in the small is quite different from that taken in the
large. Thus suppose it is asked whether the brewing industry in
England is localised. The Exciseman, knowing of every building
in his district whether it is or is not part of the brewing trade, will
say that brewing is undoubtedly “localised”. On the other hand,
the map-maker of England, being unable to mark any particular
county as being the seat of brewing, will say that it is not local-
ised. Each, of course, is correct. What allows the contradiction is
that when the range of size is great, what is true at one end of the
scale may be false at the other.

Another example showing how contradictory may be the proper-
ties in the small and the large is given by an ordinary piece of elas-
tic. For years physical chemists searched for what made the
molecule contractile. They have since discovered that they were
making exactly the mistake that this section is attempting to pre-
vent. It is now known that the rubber molecule has no inherent con-
tractility: stretch one out and let it go, and nothing happens! Why
then does rubber contract ? The point is that “stretching rubber” is
not “stretching one…”; the molecules, when there are more than
one, jostle each other and thereby force the majority to take lengths
less than their maxima. The result is that a shortening occurs, just as
if, on a crowded beach, a rope fifty feet long is drawn out straight:
after a few minutes the ends will be less than fifty feet apart!

Further examples are hardly necessary, for the point to be made
is the merely negative one that in a large system there is no a priori
necessity for the properties of the whole to be a simple copy of
those of the parts. (S.7/3 adds some further examples.)

6/19. As the system becomes larger, so does the fundamental
method of study (S.6/3) become more laborious in application.
Eventually the amount of labour necessary becomes prohibitive.
What then is the observer to do? The question is of great impor-
tance in the biological sciences, whether zoological or sociologi-
cal, for the size and complexity of the systems is great indeed.

The same difficulty has occurred in other sciences. Thus
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although the Newtonian theory has, in principle, solved all gravi-
tational problems, yet its application to three bodies is most com-
plex, and its application to half a dozen is prohibitively laborious.
Yet astrophysicists want to ask questions about the behaviour of
star clusters with 20,000 members! What is to be done?

Experience has shown that in such cases the scientist must be
very careful about what questions he asks. He must ask for what
he really wants to know, and not for what he thinks he wants. Thus
the beginner will say simply that he wants to know what the clus-
ter will do, i.e. he wants the trajectories of the components. If this
knowledge, however, could be given to him, it would take the
form of many volumes filled with numerical tables, and he would
then realise that he did not really want all that. In fact, it usually
happens that the significant question is something simple, such as
“will the cluster contract to a ball, or will it spread out into a disc?”

The physicists, led originally by Poincare, have now a well
developed method for dealing with such matters—that of topol-
ogy. By its means, unambiguous answers can be given to simple
questions, so that the intricacies that would overwhelm the
observer are never encountered.

A similar method, applied to complicated differential equa-
tions, enables the main important features of the solutions to be
deduced in cases where the full solutions would be unmanageably
complicated. This is the so-called “stability” theory of these equa-
tions.

What is important for us here is that these methods exist. They
suggest that if a Black Box (such as a brain) has far too many var-
iables for a study in every detail to be practical then it should be
possible for the cybernetically-minded psychologist to devise a
“topological” approach that shall enable him to get what informa-
tion he really wants (not what he thinks he wants!) without his
being overwhelmed with useless detail. Lewin attempted such a
psychology; but in the '30s topology was not yet developed to be
a useful tool. In the '50s, however, it is much better developed,
especially in the form published under the pseudonym of Nicholas
Bourbaki, by the French School. At last we have before us the
possibility of a psychology that shall be at once rigorous and prac-
tical.

THE INCOMPLETELY OBSERVABLE BOX

6/20. So far, in this chapter, we have assumed that the observer of
the Black Box has the necessary means for observing all that per-
tains to the Box’s state, so that he is like a Ship’s Engineer (S.6/2)
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who faces a complete set of dials. Often, however, this is not so—
some of the dials are hidden, or missing—and an important part of
Black Box theory is concerned with making clear what peculiari-
ties appear when the observer can observe only certain compo-
nents of the whole state.

The theoretical developments are large, and little explored.
They will almost certainly be of importance in psychology; for, to
the psychologist, the individual subject, whether a neurotic person
or a rat in a maze, is largely a system that is not wholly observa-
ble; for the events in the subject’s brain are not directly observable
at the clinical or experimental session.

It should be noticed that as soon as some of a system’s variables
become unobservable, the “system” represented by the remainder
may develop remarkable, even miraculous, properties. A com-
monplace illustration is given by conjuring, which achieves
(apparently) the miraculous, simply because not all the significant
variables are observable. It is possible that some of the brain’s
“miraculous” properties—of showing “foresight”, “intelligence”,
etc.—are miraculous only because we have not so far been able to
observe the events in all the significant variables.

6/21. As an example of the profound change that may occur in the
observer’s opinion about a mechanism if part of it becomes inac-
cessible to direct observation, consider the following example.

The observer is assumed to be studying a Black Box which con-
sists of two interacting parts, A and Z. Both are affected by the
common input I. (Notice that A’s inputs are I and Z.)

Suppose the important question is whether the part A does or does
not show some characteristic behaviour B (i.e. follow trajectory
B). Suppose this is shown (followed) only on the simultaneous
occurrence of

Suppose that Z is at state y only after I has had the special value µ.
We (author and reader) are omniscient, for we know everything

about the system. Let us, using full knowledge, see how two
observers (One and Two) could come to different opinions if they
had different powers of observation.  

A
I ↓↑

Z

(1) I at state α
and (2) Z at state y.
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Observer One can see, like us, the values of both A and Z. He
studies the various combinations that may lead to the appearance
of B, and he reports that B appears whenever the whole shows a
state with Z at y and the input at a. Thus, given that the input is at
a, he relates the occurrence of B to whether Z is at y now.

Observer Two is handicapped—he can see only I and A, not Z.
He will find that knowledge of A’s state and of I’s state is not suf-
ficient to enable him to predict reliably whether B will be shown;
(for sometimes Z will be at y and sometimes at some other state).
If however Two turns his attention to earlier events at I he finds
he can predict B’s appearance accurately. For if I has in succes-
sion the values µ, α then behaviour B will appear, and not other-
wise. Thus, given that the input is at α, he relates the occurrence
of B to whether I did have the value µ earlier.

Thus Two, being unable to observe Z directly, can none the less
make the whole predictable by taking into account earlier values
of what he can observe. The reason is, the existence of the corre-
spondence:

As this correspondence is one-one, information about I’s state a step
earlier and information about Z’s state now are equivalent, and each
can substitute for the other; for to know one is to know the other.

If One and Two are quarrelsome, they can now fall into a dis-
pute. One can maintain that the system shows no “memory”, i.e.
its behaviour requires no reference to the past, because the appear-
ance of behaviour B can be fully accounted for by the system’s
present state (at I, A and Z). Two can deny this, and can point out
that the system of I and A can be shown as determinate only when
past values of I are taken into account, i.e. when some form of
“memory” is appealed to.

Clearly, we need not take sides. One and Two are talking of dif-
ferent systems (of I + A + Z or of I + A), so it is not surprising that
they can make differing statements. What we must notice here is
that Two is using the appeal to “memory” as a substitute for his
inability to observe Z.

Thus we obtain the general rule: If a determinate system is only
partly observable, and thereby becomes ( for that observer) not
predictable, the observer may be able to restore predictability by
taking the system’s past history into account, i.e. by assuming the
existence within it of some form of “memory”.

The argument is clearly general, and can be applied equally

I at µ earlier↔ Z at y now
I not at µ earlier↔ Z not at y now.
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well if the special, earlier, event (µ) occurred not one step earlier,
but many. Thus in general, if earlier events E1, E2, . . ., Ek leave
traces T1, T2, . . ., Tk respectively, which persist; and if later the
remainder of the system produces behaviours B1, B2, . . ., Bk cor-
responding to the value of T, then the various behaviours may be
related to, or explained by, either

   (1) the present value of T, in which case there is no need for the 
invocation of any “memory”, or
   (2) the past value of E, in which case the observer is compelled 
to postulate some form of “memory” in the system.

Thus the possession of “memory” is not a wholly objective prop-
erty of a system—it is a relation between a system and an observer;
and the property will alter with variations in the channel of com-
munication between them.

Thus to invoke “memory” in a system as an explanation of its
behaviour is equivalent to declaring that one cannot observe the
system completely. The properties of “memory” are not those of
the simple “thing” but the more subtle “coding”.

*Ex. 1: Prove the statement (Design. . S.19/22) that in an absolute system we can
avoid direct reference to some of the variables provided we use derivatives
of the remaining variables to replace them.

*Ex. 2: Prove the same statement about equations in finite differences.
*Ex. 3: Show that if the system has n degrees of freedom we must, in general,

always have at least n observations, each of the type “at time t1 variable xi
had value Xi” if the subsequent behaviour is to be predictable.

6/22. A clear example showing how the presence of “memory” is
related to the observability of a part is given by the digital calcu-
lator with a magnetic tape. Suppose, for simplicity, that at a cer-
tain moment the calculator will produce a 1 or a 2 according to
whether the tape, at a certain point, is magnetised + or—, respec-
tively; the act of magnetisation occurred, say, ten minutes ago,
and whether it was magnetised + or—depended on whether the
operator did or did not, respectively, close a switch. There is thus
the correspondence:

An observer who can see the magnetic tape now can argue that
any reference to the past is unnecessary, for he can account for the
machine’s behaviour (i.e. whether it will produce a 1 or a 2) by its
state now, by examining what the tape carries now. Thus to know

switch closed↔+↔1
switch open↔–↔2
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that it carries a + now is sufficient to allow prediction that the
machine’s next state will be a 1.

On the other hand, an observer who cannot observe the tape can
predict its behaviour only by reference to what was done to the
switch ten minutes ago. He will insist that the machine has “mem-
ory”.

The two observers are not really in conflict, as we can see at
once when we realise that they are talking of two “machines” that
are not identical. To the first observer, “the machine” means “cal-
culator + tape + switch”; to the second it means “calculator +
switch”. They are talking about different systems. (Again it must
be emphasised that in complex systems a mere reference to the
material object is often not sufficient to define adequately the sys-
tem under discussion.) (Compare S.6/14, 12/9.)

Essentially the same difference can occur in a more biological
system. Thus, suppose I am in a friend’s house and, as a car goes
past outside, his dog rushes to a corner of the room and cringes.
To me the behaviour is causeless and inexplicable. Then my
friend says, “He was run over by a car six months ago.” The
behaviour is now accounted for by reference to an event of six
months ago. If we say that the dog shows “memory” we refer to
much the same fact—that his behaviour can be explained, not by
reference to his state now but to what his state was six months ago.
If one is not careful one says that the dog “has” memory, and then
thinks of the dog as having something, as he might have a patch
of black hair. One may then be tempted to start looking for the
thing; and one may discover that this “thing” has some very curi-
ous properties.

Clearly, “memory” is not an objective something that a system
either does or does not possess; it is a concept that the observer
invokes to fill in the gap caused when part of the system is unob-
servable. The fewer the observable variables, the more will the
observer be forced to regard events of the past as playing a part in
the system’s behaviour. Thus “memory” in the brain is only partly
objective. No wonder its properties have sometimes been found to
be unusual or even paradoxical. Clearly the subject requires thor-
ough re-examination from first principles.



PART TWO

VARIETY

Now the soldier realised what a capital tinder-box this
was. If he struck it once, the dog came who sat upon the
chest of copper money, if he struck it twice, the dog came
who had the silver; and if he struck it three times, then
appeared the dog who had the gold.

(“The Tinder-Box”)
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Chapter 7

QUANTITY OF VARIETY

7/1. In Part I we considered the main properties of the machine
usually with the assumption that we had before us the actual thing
about which we would make some definite statement, with refer-
ence to what it is doing here and now. To progress in cybernetics
however, we shall have to extend our range of consideration. The
fundamental questions in regulation and control can be answered
only when we are able to consider the broader set of what it might
do, when “might” is given some exact specification.

Throughout Part II, therefore, we shall be considering always a
set of possibilities. The study will lead us into the subjects c infor-
mation and communication, and how they are coded in their pas-
sages through mechanism. This study is essential for the thorough
understanding of regulation and control. We shall start from the
most elementary or basic considerations possible.

7/2. A second reason for considering a set of possibilities is the
science is little interested in some fact that is valid only for a sin-
gle experiment, conducted on a single day; it seeks always for
generalisations, statements that shall be true for all of a set of
experiment; conducted in a variety of laboratories and on a variety
of occasions. Galileo’s discovery of the law of the pendulum
would have been a little interest had it been valid only for that
pendulum on that afternoon. Its great importance is due precisely
to the fact that it is true over a great range of space and time and
materials. Science looks for the repetitive (S.7/15).

7/3. This fact, that it is the set that science refers to, is often
obscured by a manner of speech. “The chloride ion ...”, says the
lecturer, when clearly he means his statement to apply to all chlo-
ride ions. So we get references to the petrol engine, the growing
child the chronic drunkard, and to other objects in the singular,
when the reference is in fact to the set of all such objects.
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Sometimes it happens that a statement is equally true of the
individual and the set: “the elephant eats with its trunk”, for
instance. But the commonness of such a double application
should not make us overlook the fact that some types of statement
are applicable only to the set (or only to the individual) and
become misleading and a source of confusion if applied to the
other. Thus a gramme of hot hydrogen iodide gas, at some partic-
ular moment, may well be 37 per cent ionised; yet this statement
must not be applied to the individual molecules, which are all
either wholly ionised or not at all; what is true of the set is false of
the individuals. Again, the Conservative M.P.s have, at the
moment, a majority in Parliament; the statement is meaningless if
applied to an individual member. Again, a tyre on a motor-car
may well be travelling due west at 50 m.p.h. when considered as
a whole; yet the portion in contact with the road is motionless, that
at the top is travelling due west at 100 m.p.h., and in fact not a sin-
gle particle in the tyre is behaving as the whole is behaving.

Again, twenty million women may well have thirty million
children, but only by a dangerous distortion of language can we
say that Mrs. Everyman has one and a half children. The statement
can sometimes be made without confusion only because those
who have to take action, those who have to provide schools for the
children, for instance, know that the half-child is not a freak but a
set of ten million children.

Let us then accept it as basic that a statement about a set may be
either true or false (or perhaps meaningless) if applied to the ele-
ments in the set.

Ex.: The following statements apply to “The Cat”, either to the species Felis
domestica or to the cat next door. Consider the applicability of each state-
ment to (i) the species, (ii) the individual:

1. It is a million years old,
2. It is male,
3. Today it is in every continent,
4. It fights its brothers,
5. About a half of it is female,
6. It is closely related to the Ursidae.

7/4. Probability. The exercise just given illustrates the confusion
and nonsense that can occur when a concept that belongs properly
to the set (or individual) is improperly applied to the other. An
outstanding example of this occurs when, of the whole set, some
fraction of the set has a particular property. Thus, of 100 men in a
village 82 may be married. The fraction 0.82 is clearly relevant to
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the set, but has little meaning for any individual, each of whom
either is or is not married. Examine each man as closely as you
please, you will find nothing of “0.82” about him; and if he moves
to another village this figure may change to another without his
having changed at all. Evidently, the “0.82” is a property of the
village, not of the individual.

Nevertheless, it is sometimes found convenient to pretend that
the fraction has a meaning for the individual, and it may be said
that any one person has a “probability” 0.82 of being married.
This form of words is harmless provided it is borne in mind that
the statement, in spite of its apparent reference to the individual,
is really a statement about the village. Let this be forgotten and a
host of “paradoxes” arise, as meaningless and silly as that of
attempting to teach the “half”-child. Later (in Chapter 9) we shall
have to use the concept of probability in conjunction with that of
machine; the origin and real nature of the concept should be borne
in mind perpetually.

7/5. Communication. Another subject in which the concept of a
set plays an essential part is that of “communication”, especially
in the theory developed by Shannon and Wiener. At first, when
one thinks of, say, a telegram arriving, one notices only the sin-
gleness of one telegram. Nevertheless, the act of “communica-
tion” necessarily implies the existence of a set of possibilities, i.e.
more than one, as the following example will show.

A prisoner is to be visited by his wife, who is not to be allowed
to send him any message however simple. It is understood that
they may have agreed, before his capture, on some simple code.
At her visit, she asks to be allowed to send him a cup of coffee;
assuming the beverage is not forbidden, how is the warder to
ensure that no coded message is transmitted by it? He knows that
she is anxious to let her husband know whether or not a confeder-
ate has yet been caught.

The warder will cogitate with reasonings that will go somewhat
as follows: “She might have arranged to let him know by whether
the coffee goes in sweetened or not—I can stop that simply by
adding lots of sugar and then telling him I have done so. She might
have arranged to let him know by whether or not she sends a
spoon—I can stop that by taking away any spoon and then telling
him that Regulations forbid a spoon anyway. She might do it by
sending tea rather than coffee—no, that’s stopped because, as
they know, the canteen will only supply coffee at this time of
day.” So his cogitations go on; what is noteworthy is that at each
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possibility he intuitively attempts to stop the communication by
enforcing a reduction of the possibilities to one—always sweet-
ened, never a spoon, coffee only, and so on. As soon as the possi-
bilities shrink to one, so soon is communication blocked, and the
beverage robbed of its power of transmitting information. The
transmission (and storage) of information is thus essentially
related to the existence of a set of possibilities. The example may
make this statement plausible; in fact it is also supported by all the
work in the modern theory of communication, which has shown
abundantly how essential, and how fruitful, is the concept of the
set of possibilities.

Communication thus necessarily demands a set of messages.
Not only is this so, but the information carried by a particular mes-
sage depends on the set it comes from. The information conveyed
is not an intrinsic property of the individual message. That this is
so can be seen by considering the following example. Two sol-
diers are taken prisoner by two enemy countries A and B, one by
each; and their two wives later each receive the brief message “I
am well”. It is known, however, that country A allows the pris-
oner a choice from

I am well,
I am slightly ill,
I am seriously ill,

while country B allows only the message

I am well

meaning “I am alive”. (Also in the set is the possibility of “no
message”.) The two wives will certainly be aware that though
each has received the same phrase, the informations that they have
received are by no means identical.

From these considerations it follows that, in this book, we must
give up thinking, as we do as individuals, about “this message”.
We must become scientists, detach ourselves, and think about
“people receiving messages”. And this means that we must turn
our attention from any individual message to the set of all the pos-
sibilities.

VARIETY

7/6. Throughout this Part we shall be much concerned with the
question, given a set, of how many distinguishable elements it
contains. Thus, if the order of occurrence is ignored, the set

c, b, c, a, c, c, a, b, c, b, b, a

125

QUANTITY OF VARIETY

which contains twelve elements, contains only three distinct ele-
ments —a, b and c. Such a set will be said to have a variety of
three elements. (A qualification is added in the next section.)

Though this counting may seem simple, care is needed. Thus
the two-armed semaphore can place each arm, independently of
the other, in any of eight positions; so the two arms provide 64
combinations. At a distance, however, the arms have no individu-
ality—“arm A up and arm B down” cannot be distinguished from
“arm A down and arm B up”—so to the distant observer only 36
positions can be distinguished, and the variety is 36, not 64. It will
be noticed that a set’s variety is not an intrinsic property of the set:
the observer and his powers of discrimination may have to be
specified if the variety is to be well defined.

Ex. 1: With 26 letters to choose from, how many 3-letter combinations are avail-
able for motor registration numbers ?

Ex. 2: If a farmer can distinguish 8 breeds of chicks, but cannot sex them, while
his wife can sex them but knows nothing of breeds, how many distinct
classes of chicks can they distinguish when working together?

Ex. 3: A spy in a house with four windows arranged rectangularly is to signal out
to sea at night by each window showing, or not showing, a light. How many
forms can be shown if, in the darkness, the position of the lights relative to
the house cannot be perceived ?

Ex. 4: Bacteria of different species differ in their ability to metabolise various
substances: thus lactose is destroyed by E. cold but not by E. typhi. If a bac-
teriologist has available ten substances, each of which may be destroyed or
not by a given species, what is the maximal number of species that he can
distinguish ?

Ex. 5: If each Personality Test can distinguish five grades of its own character-
istic, what is the least number of such tests necessary to distinguish the
2,000,000,000 individuals of the world’s population?

Ex. 6: In a well-known card trick, the conjurer identifies a card thus: He shows
21 cards to a by-stander, who selects, mentally, one of them without reveal-
ing his choice. The conjurer then deals the 21 cards face upwards into three
equal heaps, with the by-stander seeing the faces, and asks him to say which
heap contains the selected card. He then takes up the cards, again deals them
into three equal heaps, and again asks which heap contains the selected card,
and similarly for a third deal. The conjurer then names the selected card.
What variety is there in (i) the by-stander’s indications, (ii) the conjurer’s
final selection ?

Ex. 7: (Continued.) 21 cards is not, in fact, the maximal number that could be
used. What is the maximum, if the other conditions are unaltered?

Ex. 8: (Continued.) How many times would the by-stander have to indicate
which of three heaps held the selected card if the conjurer were finally to be
able to identify the correct card out of the full pack of 52?

Ex. 9: If a child’s blood group is O and its mother’s group is 0, how much variety
is there in the groups of its possible fathers?
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7/7. It will have been noticed that many of the exercises involved
the finding of products and high powers. Such computations are
often made easier by the use of logarithms. It is assumed that the
reader is familiar with their basic properties, but one formula will
be given for reference. If only logarithms to base a are available
and we want to find the logarithm to the base b of some number
N, then

In particular, log2N = 3.322 log10N.
The word variety, in relation to a set of distinguishable ele-

ments, will be used to mean either (i) the number of distinct ele-
ments, or (ii) the logarithm to the base 2 of the number, the
context indicating the sense used. When variety is measured in the
logarithmic form its unit is the “bit”, a contraction of “BInary
digiT”. Thus the variety of the sexes is 1 bit, and the variety of the
52 playing cards is 5.7 bits, because log2 52 = 3.322 log1052 =
3.322 x 1.7160 = 5.7. The chief advantage of this way of reckon-
ing is that multiplicative combinations now combine by simple
addition. Thus in Ex. 7/6/2 the farmer can distinguish a variety of
3 bits, his wife 1 bit, and the two together 3 + 1 bits, i.e. 4 bits.

To say that a set has “no” variety, that the elements are all of
one type, is, of course, to measure the variety logarithmically; for
the logarithm of 1 is 0.

Ex. 1: In Ex. 7/6/4 how much variety, in bits, does each substance distinguish? 
Ex. 2: In Ex. 7/6/s: (i) how much variety in bits does each test distinguish? (ii)

What is the variety in bits of 2,000,000,000 distinguishable individuals?
From these two varieties check your previous answer.

Ex. 3: What is the variety in bits of the 26 letters of the alphabet?
Ex. 4: (Continued.) What is the variety, in bits, of a block of five letters (not

restricted to forming a word) ? Check the answer by finding the number of
such blocks, and then the variety.

Ex. 5: A question can be answered only by Yes or No; (i) what variety is in the
answer? (ii) In twenty such answers made independently?

Ex. 6: (Continued.) How many objects can be distinguished by twenty questions,
each of which can be answered only by Yes or No ?

Ex. 7: A closed and single-valued transformation is to be considered on six
states:

in which each question mark has to be replaced by a letter. If the replace-
ments are otherwise unrestricted, what variety (logarithmic) is there in the
set of all possible such transformations ?

↓ a b c d e f
? ? ? ? ? ?

Nblog
Nalog

balog
---------------=
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Ex. 8: (Continued.) If the closed transformation had n states what variety is
there?

Ex. 9: If the English vocabulary has variety of 10 bits per word, what is the stor-
age capacity of 10 minutes, speech on a gramophone record, assuming the
speech is at 120 words per minute?

Ex. 10: (Continued.) How does this compare with the capacity of a printed page
of newspaper (approximately)?

Ex. 11: (Continued.) If a pamphlet takes 10 minutes to be read aloud, how does
its variety compare with that of the gramophone record?

Ex. 12: What set is the previous Ex. referring to?
Ex. 13: Can a merely negative event—a light not being lit, a neuron not being

excited, a telegram not arriving—be used as a contribution to variety ?

CONSTRAINT

7/8. A most important concept, with which we shall be much con-
cerned later, is that of constraint. It is a relation between two sets,
and occurs when the variety that exists under one condition is less
than the variety that exists under another. Thus, the variety in the
human sexes is I bit; if a certain school takes only boys, the variety
in the sexes within the school is zero; so as 0 is less than 1, con-
straint exists.

Another well-known example is given by the British traffic
lights, which have three lamps and which go through the sequence
(where “+” means lit and “1” unlit):

Four combinations are thus used. It will be noticed that Red is, at
various times, both lit and unlit; so is Yellow; and so is Green. So
if the three lights could vary independently, eight combinations
could appear. In fact, only four are used; so as four is less than
eight, constraint is present.

7/9. A constraint may be slight or severe. Suppose, for instance,
that a squad of soldiers is to be drawn up in a single rank, and that
“independence” means that they may stand in any order they
please. Various constraints might be placed on the order of stand-
ing, and these constraints may differ in their degree of restriction.
Thus, if the order were given that no man may stand next a man
whose birthday falls on the same day, the constraint would be
slight, for of all the possible arrangements few would be

(1) (2) (3) (4) (1) …
Red: + + 0 0 + …
Yellow: 0 + 0 + 0 …
Green: 0 0 + 0 0 …
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excluded. If, however, the order were given that no man was to
stand at the left of a man who was taller than himself, the con-
straint would be severe; for it would, in fact, allow only one order
of standing (unless two men were of exactly the same height). The
intensity of the constraint is thus shown by the reduction it causes
in the number of possible arrangements.

7/10. It seems that constraints cannot be classified in any simple
way, for they include all cases in which a set, for any reason, is
smaller than it might be. Here I can discuss only certain types of
outstanding commonness and importance, leaving the reader to
add further types if his special interests should lead him to them.

7/11. Constrain in vectors. Sometimes the elements of a set are
vectors, and have components. Thus the traffic signal of S.7/8 was
a vector of three components, each of which could take two values.
In such cases a common and important constraint occurs if the
actual number of vectors that occurs under defined conditions is
fewer than the total number of vectors possible without conditions
(i.e. when each component takes its full range of values independ-
ently of the values taken by the other components). Thus, in the
case of the traffic lights, when Red and Yellow are both lit, only
Green unlit occurs, the vector with Green lit being absent.

It should be noticed that a set of vectors provides several varie-
ties, which must be identified individually if confusion is not to
occur. Consider, for instance, the vector of S.3/5:

(Age of car, Horse-power, Colour).

The first component will have some definite variety, and so will
the second component, and the third. The three varieties need not
be equal. And the variety in the set of vectors will be different
again.

The variety in the set of vectors has, however, one invariable
relation to the varieties of the components—it cannot exceed their
sum (if we think in logarithms, as is more convenient here). Thus,
if a car may have any one of 10 ages, of 8 horse-powers, and of 12
colours, then the variety in the types of car cannot exceed 3.3 +
3.0 + 3.6 bits, i.e. 9.9 bits.

7/12. The components are independent when the variety in the
whole of some given set of vectors equals the sum of the (logarith-
mic) varieties in the individual components. If it were found, for
instance, that all 960 types of car could be observed within some
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defined set of cars, then the three components would be said to be
“independent”, or to “vary independently”, within this defined set.

It should be noticed that such a statement refers essentially to
what is observed to occur within the set; it need contain no refer-
ence to any supposed cause for the independence (or for the con-
straint).

Ex. 1: When Pantagruel and his circle debated whether or not the time had come
for Panurge to marry, they took advisers, who were introduced thus: “...
Rondibilis, is married now, who before was not—Hippothadeus was not
before, nor is yet—Bridlegoose was married once, but is not now—and
Trouillogan is married now, who wedded was to another wife before.” Does
this set of vectors show constraint ?

Ex. 2: If each component can be Head (H) or Tail (T), does the set of four vectors
(H,H,H), (T,T,H), (H,T,T), (T,H,T) show constraint in relation to the set
showing independence ?

7/13. Degrees of freedom. When a set of vectors does not show the
full range of possibilities made available by the components (S.7/
11), the range that remains can sometimes usefully be measured
by saying how many components with independence would give
the same variety. This number of components is called the degrees
of freedom of the set of vectors. Thus the traffic lights (S.7/8)
show a variety of four. If the components continued to have two
states apiece, two components with independence could give the
same variety (of four). So the constraint on the lights can be
expressed by saying that the three components, not independent,
give the same variety as two would if independent; i.e. the three
lights have two degrees of freedom.

If all combinations are possible, then the number of degrees of
freedom is equal to the number of components. If only one com-
bination is possible, the degrees of freedom are zero.

It will be appreciated that this way of measuring what is left free
of constraint is applicable only in certain favourable cases. Thus,
were the traffic lights to show three, or five combinations, the
equivalence would no longer be representable by a simple, whole,
number. The concept is of importance chiefly when the compo-
nents vary continuously, so that each has available an infinite
number of values. A reckoning by degrees of freedom may then
still be possible, though the states cannot be counted.
Ex. 1: If a dealer in second-hand cars boasts that his stock covers a range of 10

ages, 8 horse powers, and 12 colours, in all combinations, how many degrees
of freedom has his stock ?

Ex. 2: The angular positions of the two hands on a clock are the two components
of a vector. Has the set of vectors (in ordinary working round the 12 hours)
a constraint if the angles are measured precisely?
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Ex. 3: (Continued.) How many degrees of freedom has the vector? (Hint: Would
removal of the minute-hand cause an essential loss ?)

Ex. 4: As the two eyes move, pointing the axes in various directions, they define
a vector with four components: the upward and lateral deviations of the right
and left eyes. Man has binocular vision; the chameleon moves his two eyes
independently, each side searching for food on its own side of the body. How
many degrees of freedom have the chameleonts eyes ? Man’s ?

Ex. 5: An arrow, of fixed length, lying in a plane, has three degrees of freedom
for position (for two co-ordinates will fix the position of its centre, say, and
then one angle will determine its direction). How many degrees of freedom
has it if we add the restriction that it must always point in the direction of a
given point P?

Ex. 6: T is a given closed and single-valued transformation, and a any of its oper-
ands. Consider the set of vectors, each of three components,

(a, T(a), T2(a)),
with a given all its possible values in turn. How many degrees of freedom
has the set ?

Ex. 7: In what way does the ordinary graph, of y on x, show constraint ?
Ex. 8: How many degrees of freedom has an ordinary body—a chair say—in

three dimensional space?

IMPORTANCE OF CONSTRAINT

7/14. Constraints are of high importance in cybernetics, and will
be given prominence through the remainder of this book, because
when a constraint exists advantage can usually be taken of it.

Shannon’s work, discussed chiefly in Chapter 9, displays this
thesis clearly. Most of it is directed to estimating the variety that
would exist if full independence occurred, showing that con-
straints (there called “redundancy”) exist, and showing how their
existence makes possible a more efficient use of the channel.

The next few sections will also show something of the wide
applicability and great importance of the concept.

7/15. Laws of Nature. First we can notice that the existence of any
invariant over a set of phenomena implies a constraint, for its exist-
ence implies that the full range of variety does not occur. The gen-
eral theory of invariants is thus a part of the theory of constraints.

Further, as every law of nature implies the existence of an
invariant, it follows that every law of nature is a constraint. Thus,
the Newtonian law says that, of the vectors of planetary positions
and velocities which might occur, e.g. written on paper (the larger
set), only a smaller set will actually occur in the heavens; and the
law specifies what values the elements will have. From our point
of view, what is important is that the law excludes many positions
and velocities, predicting that they will never be found to occur.
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Science looks for laws; it is therefore much concerned with
looking for constraints. (Here the larger set is composed of what
might happen if the behaviour were free and chaotic, and the
smaller set is composed of what does actually happen.)

This point of view, it will be noticed, conforms to what was said
in S.1/5. Cybernetics looks at the totality, in all its possible rich-
ness, and then asks why the actualities should be restricted to
some portion of the total possibilities.

Ex. 1: How is the chemist’s Law of Simple Proportions a constraint? 
Ex. 2: How is the Law of Conservation of Energy a constraint?

7/16. Object as constraint. Constraints are exceedingly common
in the world around us, and many of our basic concepts make use
of it in an essential way. Consider as example the basic concept of
a “thing” or “object”, as something handled in daily life. A chair
is a thing because it has coherence, because we can put it on this
side of a table or that, because we can carry it around or sit on it.
The chair is also a collection of parts.

Now any free object in our three dimensional world has six
degrees of freedom for movement. Were the parts of the chair
unconnected each would have its own six degrees of freedom; and
this is in fact the amount of mobility available to the parts in the
workshop before they are assembled. Thus the four legs, when
separate, have 24 degrees of freedom. After they are joined, how-
ever, they have only the six degrees of freedom of the single
object. That there is a constraint is obvious when one realises that
if the positions of three legs of an assembled chair are known, then
that of the fourth follows necessarily—it has no freedom.

Thus the change from four separate and free legs to one chair
corresponds precisely to the change from the set’s having 24
degrees of freedom to its having only 6. Thus the essence of the
chair’s being a “thing”, a unity, rather than a collection of inde-
pendent parts corresponds to the presence of the constraint.

7/17. Seen from this point of view, the world around us is
extremely rich in constraints. We are so familiar with them that
we take most of them for granted, and are often not even aware
that they exist. To see what the world would be like without its
usual constraints we have to turn to fairy tales or to a “crazy” film,
and even these remove only a fraction of all the constraints.

A world without constraints would be totally chaotic. The tur-
bulent river below Niagara might be such a world (though the
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physicist would still find some constraint here). Our terrestrial
world, to which the living organism is adapted, is far from pre-
senting such a chaos. Later (S.13/5) it will be suggested that the
organism can adapt just so far as the real world is constrained, and
no further.

Ex.: Attempt to count, during the next one minute, all the constraints that are
operating in your surroundings.

7/18. Prediction and constraint. That something is “predictable”
implies that there exists a constraint. If an aircraft, for instance,
were able to move, second by second, from any one point in the
sky to any other point, then the best anti-aircraft prediction would
be helpless and useless. The latter can give useful information only
because an aircraft cannot so move, but must move subject to sev-
eral constraints. There is that due to continuity—an aircraft cannot
suddenly jump, either in position or speed or direction. There is the
constraint due to the aircraft’s individuality of design, which
makes this aircraft behave like an A-10 and that one behave like a
Z-20. There is the constraint due to the pilot’s individuality; and so
on. An aircraft’s future position is thus always somewhat con-
strained, and it is to just this extent that a predictor can be useful.

7/19. Machine as constraint. It will now be appreciated that the
concept of a “machine“, as developed from the inspection of a
protocol (S.6/5), comes from recognising that the sequence in the
protocol shows a particular form of constraint. Were the protocol
to show no constraint, the observer would say it was chaotic or
unpredictable, like a roulette-wheel.

When it shows the characteristic form of constraint, the
observer can take advantage of the fact. He does this by re-coding
the whole protocol into a more compact form, containing only:

Subsequently, instead of the discussion being conducted in terms
of a lengthy protocol, it is conducted compactly in terms of a suc-
cinct transformation; as we did throughout Part I.

Thus, use of the transformation is one example of how one can
turn to advantage the characteristic constraint on behaviour
imposed by its being “machine-like”.

Ex.: If a protocol shows the constraint characteristic of a machine, what does the
constraint exclude ?

(i) a statement of the transformation
and (ii) a statement of the actual input given.
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7/20. Within the set of determinate machines further constraints
may be applied. Thus the set can be restricted to those that have a
certain set of states as operands, or to those that have only one
basin, or to those that are not reducible.

A common and very powerful constraint is that of continuity. It
is a constraint because whereas the function that changes arbitrar-
ily can undergo any change, the continuous function can change,
at each step, only to a neighbouring value. Exercise 4 gives but a
feeble impression of the severity of this constraint.

Ex. 1: The set of closed single-valued transformations (absolute systems) on
three states a, b, c has 27 members (compare Ex. 7/7/7). How many members
remain if we add the restriction that the absolute system is to have no state
of equilibrium?

Ex. 2: (Continued.) Similarly, but the restriction is that there must be only one
basin.

Ex. 3: (Continued.) Similarly, but the restriction is that the transitions a -> b and
b → c may not occur.

Ex. 4: A vector has ten components, each of which can take one of the values: 1,
2, 3, 4. How much variety has the set of vectors if (i) the components vary
independently (S.7/12); (ii) under the rule that no two adjacent components
may differ in value by more than one unit ?

7/21. Learning and constraint. For the psychologist, an important
example of constraint occurs in learning. Pavlov, for instance, in
one experiment gave both thermal and tactile stimuli, as well as
reinforcement by meat powder, in the following combinations:

(The fourth combination occurred, of course, in the intervals.)
Now the total combinations possible are eight; Pavlov presented
only four. It was an essential part of the experiment that the full
set should not be given, for otherwise there would be nothing par-
ticular for the animal to learn. Constraint was an essential feature
of the experiment.

The same principle can be seen more simply in learning by
association. Suppose one wanted the subject, given a letter, to
reply with a number according to the rule

Thermal Tactile Reinforcement
1 + + +
2 + – –
3 – + +
4 – – –

A given : reply with 2
B ,, : ,, ,, 5
C ,, : ,, ,, 3
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The subject might then be given a sequence such as A2, B5, C3,
B5, C3, A2, A2, C3, and so on.

Now this sequence, as a sequence of vectors with two compo-
nents, shows constraint; and if learning is to occur the constraint
is necessary; for without constraint A would be followed equally
by 2, 3 or 5; and the subject would be unable to form any specific
associations. Thus learning is possible only to the extent that the
sequence shows constraint.

The same is true of learning a maze. For this to occur the maze
must retain the same pattern from day to day during the period of
learning. Were the maze to show no constraint, the animal would
be unable to develop the particular (and appropriate) way of
behaving. Thus, learning is worth while only when the environ-
ment shows constraint. (The subject is taken up again in S.13/7.)

VARIETY IN MACHINES

7/22. We can now turn to considering how variety is affected by
a machine’s activities, making our way towards an understanding
of what happens to information when it is handled by a machine.
First, let us notice a fundamental peculiarity of the single-valued
transformation in its relation to variety.

Consider for instance the single-valued transformation

and apply it to some set of the operands, e.g.

B   B   A   C   C   C   A   A   B   A
The result is C   C   B   C   C   C   B   B   C   B

What is important is that the variety in the set has fallen from 3
to 2. A further transformation by Z leads to all C’s, with a variety
of 1.

The reader can easily satisfy himself that such a set, operated on
by a single-valued transformation, can never increase in variety,
and usually falls. The reason for the fall can readily be identified.

In the graph, a confluence of arrows can occur, but a diver-

gence  is impossible. Whenever the transformation makes two
states change to one, variety is lost; and there is no contrary proc-
ess to replace the loss.

Z:  ↓ A B C
B C C
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It is not necessary that the transformation should be closed.
Thus if the same set of ten letters is transformed by Y:

giving q q p p p p p p q p, the variety falls. It is easy to see that
only when the transformation is one-one (over the letters that
actually occur in the set to be transformed) is the set’s variety
unchanged; and this is a very special type of transformation.

Ex. 1: Write the letters A to Z in a row; under it, letter by letter, write the first 26
letters of some well known phrase. The transition from upper row to lower
now defines a single-valued transformation (u). Write your name in full, find
the variety among its letters, transform by u (i.e. “code” it) and find the vari-
ety in the new set of letters How has the variety changed ? Apply u repeat-
edly; draw a graph of how the variety changes step by step.

Ex. 2: In a certain genus of parasite, each species feeds off only one species of
host. If the varieties (in our sense) of parasites’ species and hosts’ species are
unequal, which is the larger?

Ex. 3: “A multiplicity of genotypes may show the same phenotypic feature.” If
the change from each genotype to its corresponding phenotype is a transfor-
mation V, what change in variety does V cause ?

Ex. 4: When a tea-taster tastes a cup of tea, he can be regarded as responsible for
a transformation Y converting “sample of leaf” as operand to “opinion” as
transform. If the taster is perfect, Y will be one-one. How would he be
described if Y were many-one ?

Ex. 5: When read to the nearest degree on each of seven occasions, the temper-
atures of the room and of a thermostatically-controlled water-bath were
found to be

How much variety is shown (i) by the room’s temperatures, (ii) by those of
the bath ? What would have been said had the variety in (i) exceeded that of
(ii)?

* Ex. 6: If the transformation has been formed by letting each state go to one state
selected at random from all the states (independently and with equal proba-
bilities), show that if the number of states is large, the variety will fall at the
first step, in the ratio of 1 to 1 - 1/e, i.e. to about two-thirds. (Hint: The prob-
lem is equivalent (for a single step) to the following: n hunters come sud-
denly on a herd of n deer. Each fires one shot at a deer chosen at random.
Every bullet hits. How many deer will, on the average, be hit? And to what
does the average tend as n tends to infinity?)

7/23. Set and machine. We must now be clear about how a set of
states can be associated with a machine, for no real machine can,
at one time, be in more than one state. A set of states can be con-
sidered for several reasons.

Y:  ↓ A B C
p q p

Room: 65, 62, 68, 63, 62, 59, 61.
Water-bath: 97, 97, 98, 97, 97, 97, 97.
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We may, in fact, not really be considering one machine, however
much we speak in the singular (S.7/3), but may really be consider-
ing a set of replicates, as one might speak of “the Model T Ford”, or
“the anterior horn cell”, or “the white rat”. When this is so we can
consider all the replicates together, one in one state and one in
another; thus we get a set of states for one transformation to act on.

A set of states can also arise even if the machine is unique. For
we may wish to consider not only what it may do at one time from
one state but also what it may do at another time from another
state. So its various possible behaviours at a set of times are natu-
rally related to a set of states as operands.

Finally, a set may be created by the fiat of a theoretician who,
not knowing which state a particular machine is at, wants to trace
out the consequences of all the possibilities. The set now is not the
set of what does exist, but the set of what may exist (so far as the
theoretician is concerned). This method is typically cybernetic,
for it considers the actual in relation to the wider set of the possi-
ble or the conceivable (S.1/3).

7/24. Decay of variety. Having, for one of these reasons, a set of
states and one single-valued transformation, we can now, using
the result of S.7/22, predict that as time progresses the variety in
the set cannot increase and will usually diminish.

This fact may be seen from several points of view.
In the first place it gives precision to the often made remark that

any system, left to itself, runs to some equilibrium. Usually the
remark is based on a vague appeal to experience, but this is unsat-
isfactory, for the conditions are not properly defined. Sometimes
the second law of thermodynamics is appealed to, but this is often
irrelevant to the systems discussed here (S.1/2). The new formu-
lation shows just what is essential.

In the second place it shows that if an observer has an absolute
system, whose transformation he knows but whose states cannot,
for any reason, be observed, then as time goes on his uncertainty
about its state can only diminish. For initially it might be at any
one of all its states, and as time goes on so does the number of its
possible states diminish. Thus, in the extreme case in which it has
only one basin and a state of equilibrium, he can, if initially uncer-
tain, ultimately say with certainty, without making any further
observation, at which state it is.

The diminution can be seen from yet another point of view. If
the variety in the possible states is associated with information, so
that the machine’s being at some particular state conveys some
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particular message, then as time goes on the amount of informa-
tion it stores can only diminish. Thus one of three messages might
be carried to a prisoner by a cup of coffee, the message depending
on whether it was hot, tepid, or cold. This method would work sat-
isfactorily if the time between despatch and receipt was short, but
not if it were long; for whichever of the three states were selected
originally, the states after a short time would be either “tepid” or
“cold”, and after a long time, “cold” only. Thus the longer the
time between despatch and receipt, the less is the system’s capac-
ity for carrying information, so far as this depends on its being at
a particular state.

Ex. 1: If a ball will rest in any one of three differently coloured basins, how much
variety can be stored ?

Ex. 2: (Continued.) If in addition another ball of another colour can be placed,
by how much is the variety increased ?

Ex. 3: That a one-one transformation causes no loss of variety is sometimes used
as a parlour trick. A member of the audience is asked to think of two digits.
He is then asked to multiply one of them by 5, add 7, double the result, and
add the other number. The result is told to the conjurer who then names the
original digits. Show that this transformation retains the original amount of
variety. (Hint: Subtract 14 from the final quantity.) 

Ex. 4 (Continued.) What is the set for the first measure of variety?
Ex. 5: (Another trick.) A member of the audience writes down a two-digit

number, whose digits differ by at least 2. He finds the difference between
this number and the number formed by the same digits in reverse order. To
the difference he adds the number formed by reversing the digits of the dif-
ference. How much variety survives this transformation?

Ex. 6: If a circuit of neurons can carry memory by either reverberating or not,
how much variety can the circuit carry ? What is the set having the variety ? 

Ex. 7: Ten machines, identical in structure, have run past their transients and now
have variety constant at zero. Are they necessarily at a state of equilibrium ?

7/25. Law of Experience. The previous section showed that the
variety in a machine (a set being given and understood) can never
increase and usually decreases. It was assumed there that the
machine was isolated, so that the changes in state were due only
to the inner activities of the machine; we will now consider what
happens to the variety when the system is a machine with input.

Consider first the simplest case, that of a machine with one
parameter P that changes only at long intervals. Suppose, for clar-
ity, that the machine has many replicates, identical in their trans-
formations but differing in which state each is at; and that we are
observing the set of states provided at each moment by the set of
machines. Let P be kept at the same value for all and held at that
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value while the machines change step by step. The conditions are
now as in the previous section, and if we measure the variety in
state over the set of replicates, and observe how the variety
changes with time, we shall see it fall to some minimum. When the
variety has reached its minimum under this input-value (P~), let P
be changed to some new value (P2), the change being made uni-
formly and simultaneously over the whole set of replicates. The
change in value will change the machine’s graph from one form to
another, as for example (if the machine has states A, B,…, F,)

Under P1, all those members that started at A, B or D would go to
D, and those that started at C, E, or F would go to E. The variety,
after some time at P1, would fall to 2 states. When P is changed to
P2, all those systems at D would go, in the first step, to E (for the
transformation is single-valued), and all those at E would go to B.
It is easy to see, therefore, that, provided the same change is made
to all, change of parameter-value to the whole set cannot increase
the set’s variety. This is true, of course, whether D and E are states
of equilibrium or not. Now let the system continue under P2. The
two groups, once resting apart at D and E, will now both come to
B; here all will have the same state, and the variety will fall to
zero. Thus, change of parameter-value makes possible a fall to a
new, and lower, minimum.

The condition that the change P1 -> P2 may lead to a further fall
in variety is clearly that two or more of P1’s states of equilibrium
lie in the same P2 basin. Since this will often happen we can make
the looser, but more vivid, statement that a uniform change at the
inputs of a set of transducers tends to drive the set’s variety down.

As the variety falls, so does the set change so that all its mem-
bers tend, at each moment, to be at the same state. In other words,
changes at the input of a transducer tend to make the system’s
state (at a given moment) less dependent on the transducer’s indi-
vidual initial state and more dependent on the particular sequence
of parameter-values used as input.

The same fact can be looked at from another point of view. In
the argument just given, “the set” was taken, for clarity, to be a set
of replicates of one transducer, all behaving simultaneously. The
theorem is equally applicable to one transducer on a series of
occasions, provided the various initial times are brought into

A B C A → B C
from ↓ ↓ to ↑ ↑

D E ← F D → E F
(P1) (P2)
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proper correspondence. This point of view would be more appro-
priate if we were studying some very complex transducer, making
fresh experiments on it each day. If it contained great numbers of
rather inaccessible parts, there might be difficulty in bringing it
each morning back to some standardised state ready for the next
experiment. The theorem says that if its input is taken, in the early
morning, through some standardised routine, then the longer the
routine, the more certain is it that the machine will be brought,
ready for the experimenter, to some standard state. The experi-
menter may not be able to name the state, but he can be confident
that it tends to be reproducible.

It should be noticed that mere equality of the set’s parameter at
each step of the sequence is not sufficient; if the effect is to be
more than merely nominal (i.e. null) the parameters must undergo
actual, non- zero, change.

The theorem is in no way dependent for its truth on the size of
the system. Very large systems are exactly as subject to it as small,
and may often be expected to show the effect more smoothly and
regularly (by the statistical effect of largeness). It may therefore
be usefully applicable to the brain and to the social and economic
system.

Examples that may correspond to this process are very com-
mon. Perhaps something of this sort occurs when it is found that
a number of boys of marked individuality, having all been through
the same school, develop ways that are more characteristic of the
school they attended than of their original individualities. The
extent to which this tendency to uniformity in behaviour is due to
this property of transducers must be left for further research.

Some name is necessary by which this phenomenon can be
referred to. I shall call it the law of Experience. It can be
described more vividly by the statement that information put in by
change at a parameter tends to destroy and replace information
about the system’s initial state.
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TRANSMISSION OF VARIETY

8/1. The previous chapter has introduced the concept of “variety”,
a concept inseparable from that of “information”, and we have
seen how important it is, in some problems, to recognise that we
are dealing with a set of possibilities.

In the present chapter we shall study how such possibilities are
transmitted through a machine, in the sense of studying the rela-
tion that exists between the set that occurs at the input and the con-
sequent set that occurs, usually in somewhat coded form, at the
output. We shall see that the transmission is, if the machine is
determinate, perfectly orderly and capable of rigorous treatment.
Our aim will be to work towards an understanding good enough
to serve as a basis for considering the extremely complex codings
used by the brain.

8/2. Ubiquity of coding. To get a picture of the amount of coding
that goes on during the ordinary interaction between organism and
environment, let us consider, in some detail, the comparatively sim-
ple sequence of events that occurs when a “Gale warning” is broad-
cast. It starts as some patterned process in the nerve cells of the
meteorologist, and then becomes a pattern of muscle-movements as
he writes or types it, thereby making it a pattern of ink marks on
paper. From here it becomes a pattern of light and dark on the
announcer’s retina, then a pattern of retinal excitation, then a pat-
tern of nerve impulses in the optic nerve, and so on through his
nervous system. It emerges, while he is reading the warning, as a
pattern of lip and tongue movements, and then travels as a pattern
of waves in the air. Reaching the microphone it becomes a pattern
of variations of electrical potential, and then goes through further
changes as it is amplified, modulated, and broadcast. Now it is a
pattern of waves in the ether, and next a pattern in the receiving set.
Back again to the pattern of waves in the air, it then becomes a pat-
tern of vibrations traversing the listener’s ear-drums, ossicles, coch-
lea, and then becomes a pattern of nerve-impulses moving up the
auditory nerve. Here we can leave it, merely noticing that this very
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brief account mentions no less than sixteen major transformations
through all of which something has been preserved, though the
superficial appearances have changed almost out of recognition.

8/3. Complexity of coding. When considering such repeated cod-
ings the observer may easily over-estimate the amount of com-
plexity that has been introduced. It not uncommonly happens that
the amount of complexity is nothing like as large as a first impres-
sion might suggest.

A simple example, showing how a complex coding may have
hidden simplicities, occurs when a simple one-one coding of the al-
phabet is applied first to the message, then to the first coded form to
give a second (doubly-) coded form, then to the second coded form,
and so on for many codings. The final form might be thought to be
extremely mixed, and to need for its decoding as many operations
backwards as were used forwards; in fact, as can easily be verified,
it differs from the original message only by as much as is caused by
a single application of some one-one coding. The final message can
thus be turned back to the original by a single operation.

Ex.: Arrange the cards of a pack in order, and place it on the table face down-
wards. Cut. Cut again. Cut again and again until you are satisfied that the
original order is lost totally. Now pick the pack up and examine its order;
how much order has been lost?

8/4. De-coding. The general study of codings is best introduced
by noticing some of the features of military codings.

We must be careful from the beginning not to interpret “code”
too narrowly. At first we tend to think only of those methods that
turn each letter of the message to some other letter, but this class
is too restricted, for there are many other methods. Thus the
“Playfair” code operates on the letters in pairs, turning each pair
(a vector with two components ) to some other pair. Other codes
put the letters into some new arrangement, while others are
wholly arbitrary, turning, for instance, “two divisions will arrive”
to “Arthur”. These considerations make it clear that if the coding
is a transformation, the operand is the whole message rather than
a letter (though the latter possibility is not excluded). The trans-
formation is therefore essentially of the form

where M1, M2, . . . are the various messages and C1, C2, … are
their coded forms. A coding, then, is specified by a transforma-

U:  ↓ M1 M2 M3 …
C1 C2 C3 …
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tion.
Often the method uses a “key-word” or some other factor that

is capable of changing the code from one form to another. Such a
factor corresponds, of course, to a parameter, giving as many par-
ticular codings (or transformations) U1, U2, ... as there are values
to the factor.

“Decoding” means applying such a transformation to the trans-
form Ci as will restore the original message Mi :

Such a transformation V is said to be the inverse of U; it may then
be written as U-1. In general, only one-one transformations have
single-valued inverses.

If the original message Mi is to be recoverable from the coded
form Ci, whatever value i may have, then both U and U-1 must be
one-one; for if both Mi and Mj were to be transformed to one form
Ck, then the receiver of Ck could not tell which of the M’s had
been sent originally, and Ck cannot be decoded with certainty.

Next suppose that a set of messages, having variety v, is sent
coded by a one-one transformation U. The variety in the set of
coded forms will also be v. Variety is not altered after coding by
a one-one transformation.

It follows that if messages of variety v are to pass through sev-
eral codes in succession, and are to be uniquely restorable to their
original forms, then the process must be one that preserves the
variety in the set at every stage.

Ex. 1: Is the transformation x' = log10 x, applied to positive numbers, a one-one
coding? What is “decoding” it usually called?

Ex. 2: Is the transformation x' = sin x, applied to the positive numbers, a one-one
coding?

Ex. 3: What transformation results from the application of, first, a one-one trans-
formation and then its inverse ?

Ex. 4: What transformation is the inverse of n' = n + 7?
Ex. 5: What transformation is the inverse of x' = 2x + y, y' = x + y?
Ex. 6: If the coded form consists of three English letters, e.g. JNB, what is the

variety of the possible coded forms (measured logarithmically) ?
Ex. 7: (Continued.) How many distinct messages can be sent through such a

code, used once?
Ex. 8. Eight horses are running in a race, and a telegram will tell Mr. A. which

came first and which second. What variety is there in the set of possible mes-
sages ?

Ex. 9: (Continued.) Could the set be coded into a single letter, printed either as
capital or 

V:  ↓ C1 C2 C3 …
M1 M2 M3 …
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Ex. 10: The concentrations “high” or “low” of sex-hormone in the blood of a cer-
tain animal determines whether it will, or will not, go through a ritual of
courtship. If the sex-hormone is very complicated chemically and the ritual
very complicated ethnologically, and if the variable “behaviour” is regarded
as a coded form of the variable “concentration”, how much variety is there
in the set of messages ?

8/5. Coding by machine. Next we can consider what happens when
a message becomes coded by being passed through a machine.

That such questions are of importance in the study of the brain
needs no elaboration. Among their other applications are those
pertaining to “instrumentation”—the science of getting informa-
tion from some more or less inaccessible variable or place, such
as the interior of a furnace or of a working heart, to the observer.
The transmission of such information almost always involves
some intermediate stage of coding, and this must be selected suit-
ably. Until recently, each such instrument was designed simply on
the principles peculiar to the particular branch of science; today,
however, it is known, after the pioneer work of Shannon and
Wiener, that certain general laws hold over all such instruments.
What they are will be described below.

A “machine” was defined in S.3/4 as any set of states whose
changes in time corresponded to a closed single-valued transfor-
mation. This definition applies to the machine that is totally iso-
lated i.e. in constant conditions; it is identical with the absolute
system defined in Design.... In S.4/ I the machine with input was
defined as a system that has a closed single-valued transformation
for each one of the possible states of a set of parameters. This is
identical with the “transducer” of Shannon, which is defined as a
system whose next state is determined by its present state and the
present values of its parameters. (He also assumes that it can have
a finite internal memory, but we shall ignore this for the moment,
returning to it in S.918.)

Assume then that we have before us a transducer M that can be
in some one of the states S1, S2, . . ., Sn, which will be assumed
here to be finite in number. It has one or more parameters that can
take, at each moment, some one of a set of values P1, P2, . . ., Pk.
Each of these values will define a transformation of the S’s. We
now find that such a system can accept a message, can code it, and
can emit the coded form. By “message” I shall mean simply some
succession of states that is, by the coupling between two systems,
at once the output of one system and the input of the other. Often
the state will be a vector. I shall omit consideration of any “mean-
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ing” to be attached to the message and shall consider simply what
will happen in these determinate systems.

For simplicity in the example, suppose that M can take any one
of four states: A, B, C, and D; that the parameters provide three
states Q, R, and S. These suppositions can be shown in tabular
form, which shows the essentials of the “transducer” (as in S.4/l):

Given its initial state and the sequence of values given to the
parameter, its output can be found without difficulty, as in S.4/1.
Thus, suppose it starts at B and that the input is at R; it will change
to C. If the input goes next to Q, it will go from C to A. The results
so far can be shown in tabular form:

It can now easily be verified that if the initial state is B and the
input follows the sequence R Q R S S Q R R Q S R, the output
will follow the sequence B C A A B D B C B C C B.

There is thus no difficulty, given the transducer, its initial state,
and the input sequence, in deducing its trajectory. Though the
example may seem unnatural with its arbitrary jumps, it is in fact
quite representative, and requires only more states, and perhaps
the passage to the limit of continuity to become a completely nat-
ural representation. In the form given, however, various quantita-
tive properties are made obvious and easily calculable, where in
the continuous form the difficult technique of measure theory
must be used.

Ex. 1: Pass the same message (R Q R S S Q R R Q S R) through the same trans-
ducer, this time starting at A.

Ex. 2: Pass the message “R1, R2, R3, R1, R2, R3” through the transducer of S.4/1,
starting it at a.

Ex. 3: (Continued.) Encode the same message through the same transducer, start-
ing it at b.

Ex. 4: (Continued.) Does a transducer’s output depend, for given input, on its ini-
tial state?

Ex. 5: If the transducer is n' = n – a, where a is a parameter, what will its trajec-
tory be if it starts at n = 10 and receives the input sequence 2, 1, –3, –1, 2, 1?

↓ A B C D

Q C C A B
R A C B B

S B D C D

Input-state: R Q
Transducer-state: B C A
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Ex. 6: Pass the message “314159 . . .” (the digits of π) through the transducer n'
= n + a—5, starting the transducer at n = 10.

Ex. 7: If a and b are parameters, so that the vector (a,b) defines a parameter state,
and if the transducer has states defined by the vector (x,y) and transformation

complete the trajectory in the table:

*Ex. 8: A transducer, with parameter u, has the transformation dx/dt = – (u + 4)x;
it is given, from initial state x = 1, the input u = cos t; find the values of x as
output.

*Ex. 9: If a is input to the transducer
dx/dt = y
dy/dt = – x – 2y + a, 

with diagram of immediate effects

what is the output from x if it is started at (0,0) with input a = sin t? (Hint: 
Use the Laplace transform.)

*Ex. 10: If a is input and the transducer is 

dx/dt = k(a – x) 

what characterises x’s behaviour as k is made positive and numerically larger 
and larger?

INVERTING A CODED MESSAGE

8/6. In S.8/4 it was emphasised that, for a code to be useful as a
message-carrier, the possibility of its inversion must exist. Let us
attempt to apply this test to the transducer of S.8/5, regarding it as
a coder.

There are two transformations used, and they must be kept care-
fully distinct. The first is that which corresponds to U of S.8/4,
and whose operands are the individual messages; the second is
that of the transducer. Suppose the transducer of S.8/5 is to be
given a “message” that consists of two letters, each of which may
be one of Q, R, S. Nine messages are possible:

QQ, QR, QS, RQ, RR, RS, SQ, SR, SS





x' = ax + by
y' = x + (a – b)y,

a 1 –2 0 –1 2 5 –2
b –1 1 1 0 1 –2 0
x 2 1 2 ? ? ? ?
y 1 4 –11 ? ? ? ?

a → y →← x,
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and these correspond to M1, M2, . . ., M9 of U. Suppose the trans-
ducer is always started at A; it is easy to verify that the corre-
sponding nine outputs will be (if we ignore the initial and
invariable A):

CA, CB, CC, AC, AA, AB, BC, BC, BB.

These are the C1, C2, . . ., C9 of U. Now the coding performed by
the transducer is not one-one, and there has been some loss of
variety, for there are now only eight distinguishable elements, BC
being duplicated. This transducer therefore fails to provide the
possibility for complete and exact decoding; for if BC arrives,
there is no way of telling whether the original message was SQ or
SR.

In this connexion it must be appreciated that an inability to
decode may be due to one of two very different reasons. It may be
due simply to the fact that the decoder, which exists, is not at hand.
This occurs when a military message finds a signaller without the
code-book, or when a listener has a gramophone record (as a
coded form of the voice) but no gramophone to play it on. Quite
different is the inability when it is due to the fact that two distinct
messages may result in the same output, as when the output BC
comes from the transducer above. All that it indicates is that the
original message might have been SQ or SR, and the decoder that
might distinguish between them does not exist.

It is easy to see that if, in each column of the table, every state
had been different then every transition would have indicated a
unique value of the parameter; so we would thus have been able
to decode any sequence of states emitted by the transducer. The
converse is also true; for if we can decode any sequence of states,
each transition must determine a unique value of the parameter,
and thus the states in a column must be all different. We have thus
identified the characteristic in the transducer that corresponds to
its being a perfect coder.

Ex. 1: In a certain transducer, which has 100 states, the parameters can take 108
combinations of values; can its output always be decoded? (Hint: Try simple
examples in which the number of transformations exceeds that of the states.)

Ex. 2: (To emphasise the distinction between the two transformations.) If a trans-
ducer’s input has 5 states, its output 7, and the message consists of some
sequence of 12, (i) how many operands has the transducer’s transformation,
and (ii) how many has the coding transformation U?

Ex. 3: If a machine is continuous, what does “observing a transition” correspond
to in terms of actual instrumentation ?

*Ex. 4: If the transducer has the transformation dx/dt = ax, where a is the input,
can its output always be decoded ? (Hint: Solve for a.)
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8/7. Designing an inverter. The previous section showed that pro-
vided the transducer did not lose distinctions in transmission from
input to output, the coded message given as output could always
be decoded. In this section we shall show that the same process
can be done automatically, i.e. given a machine that does not lose
distinctions, it is always possible to build another machine that,
receiving the first’s output as input, will emit the original message
as its own output.

We are now adopting a rather different point of view from that
of the previous section. There we were interested in the possibility
of a message being decoded and in whether the decoding could be
done or not—by whom did not matter. We are now turning to the
question of how a mechanism can be built, by us, so that the
mechanism shall do the decoding automatically. We seek, not a
restored message but a machine. How shall it be built? What we
require for its specification, of course, is the usual set of transfor-
mations (S.4/1).

A possible method, the one to be used here, is simply to convert
the process we followed in the preceding section into mechanistic
form, using the fact that each transition gives information about
the parameter-value under which it occurred. We want a
machine, therefore, that will accept a transition as input and give
the original parameter value as output. Now to know which tran-
sition has occurred, i.e. what are the values of i and j in “X i -> Xj”,
is clearly equivalent to knowing what is the value of the vector
(i,j); for a transition can also be thought of as a vector having two
components. We can therefore feed the transitions into an inverter
if the inverter has an input of two parameters, one to take the value
of the earlier state and the other to take the value of the later.

Only one difficulty remains: the transition involves two states
that do not exist at the same moment of time, so one of the
inverter’s inputs must behave now according to what the trans-
ducer’s output was. A simple device, however, will get over this
difficulty. Consider the transducer

Suppose it is started at state r and is given the input Q S S R Q S R
R Q; its output will be r q s s r q s r r q, i.e. after the first letter it
just repeats the input, but one step later. Two such transducers in

↓ q r s

Q q q q
R r r r

S s s s
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series will repeat the message two steps later, and so on. Clearly
there is no difficulty in principle in getting delay.

Suppose that the first transducer, the coder, is:

What we require is a machine that, e.g.

(The input A,C will never actually come to it, for the transition
cannot be emitted from the coder.)

The three machines are coupled thus:

The delayer has the simple form:

and the inverter the form:

to which the input is the vector
(state of delayer, state of coder).

↓ A B C D

Q D A D B
R B B B C
S A C A D

given input A, A will emit S
,, ,, A, B ,, ,, R
,, ,, A, D ,, ,, Q
,, ,, B, A ,, ,, Q

etc.

→ Coder → Delayer
↓

Inverter→

↓ a b c d

A a a a a
B b b b b
C c c c c
D d d d d

↓ Q R S

(a, A) S S S
(a, B) R R R
(a, C) (will not occur)
(a, D) Q Q Q
(b, A) Q Q Q
etc. etc.
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The inverter will now emit the same sequence as was put into
the coder. Thus suppose Q was put in and caused the transition
A → D in the coder. This implies that the inverter will be receiv-
ing at this step, D directly from the coder (for the coder is at D),
and a from the delayer (for the coder was at A the step before).
With input (a, D), the inverter goes to state Q, which is the state
we supposed. And similarly for the other possible states put in.

Thus, given a transducer that does not lose distinctions, an
automatic inverter can always be built. The importance of the
demonstration is that it makes no reference to the transducer’s
actual material—it does not matter whether it is mechanical, or
electronic, or neuronic, or hydraulic—the possibility of inversion
exists. What is necessary is the determinateness of the coder’s
actions, and its maintenance of all distinctions.

Ex. 1: Why cannot the Coder of S.8/5 be used as example? 
Ex. 2: Complete the specification of the inverter just given. 
Ex. 3: Specify a two-step delayer in tabular form.

8/8. (This section may be omitted at first reading.) Now that the
construction of the inverter has been identified in the most general
form, we can examine its construction when the transducer is less
general and more like the machines of every-day life. The next
step is to examine the construction of the inverter when the trans-
formations, of transducer and inverter, are given, not in the
abstract form of a table but by some mathematical function.

As a preliminary, consider building an inverter for the trans-
ducer with input a, variable n, and transformation n' = n + a. A
suitable device for delay would be the transducer with parameter
n, variable p, and transformation p' = n. It is now easily verified
that, given the input a as shown, n (if started at 3) and p (if started
at 1) will change as:

It is now obvious that if the inverter, with a variable m, is to
receive n and p as input, as vector (n,p), and give back a as output,
then M, as transformation, must include such transitions as:

a: 4 –2 –1 0 2 –1 –1 3
n: 3 7 5 4 4 6 5 4
p: 1 3 7 5 4 4 6 5

M:  ↓ (7, 3) (5, 7) (4, 5) (4, 4) …
4 –2 –1 0 …
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Examination of these in detail, to find how the transform follows
from the operand, shows that in all cases

m' = n – p

It is easily verified that the whole system will now emit the values
that the original input had two steps earlier.

(The reader might be tempted to say that as n' = n + a, therefore
a = n' – n, and the code is solved. This statement is true, but it
does not meet our purpose, which is to build a machine (see pare.
2 of S.8/7). It enables us to decode the message but it is not the
specification of a machine. The building or specification requires
the complications of the previous paragraph, which finishes with
m' = n – p, a specification for a machine with input.)

The general rule is now clear. We start with the transducer’s
equation, n' = n + a, and solve it for the parameter: a = n' – n. The
delaying device has the transformation p' = n. The transformation
for the inverter is formed by the rules, applied to the equation
a = n' – n:

1: replace a by the new transducer’s symbol m'; 
2: replace n' by a parameter c; 
3: replace n by a parameter d.

Then, if this inverter is joined to the original transducer by putting
d = n, and to the delayer by c = p, it will have the required prop-
erties.

If the original transducer has more than one variable, the proc-
ess needs only suitable expansion. An example, without explana-
tion, will be sufficient. Suppose the original transducer has
parameters a1 and a2, variables x1 and x2, and transformation

Solving for the parameters gives

A delayer for x1 is p1' = x1, and one for x2 is p2' = x2. The equations
of the inverter are formed from those for a1 and a2 by applying the
rules:

1: replace each ai by a new symbol a1=  m1',  a2 = m2'; 
2: replace each xi 'by a parameter ci : x1' = c1, x2' = c2; 
3: replace each xi by a parameter di: x1 = d1, x2 = d2;

x1' = 2x1 + a1x2
x2' = 2x2 + a1a2

a1 = (x1' – 2x1)/x2
a2 = x2(x2' – 2x2)/(x1' – 2x1)
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There results the transducer

If now this transducer is joined to the original transducer by d1 =
x1, d2 = x2, and to the delayers by c1= p1, c2 = p2, then m1 and m2
will give, respectively, the values that a1 and a2 had two steps ear-
lier.

Ex. 1: Build an inverter for the transducer n' = an.
Ex. 2: Similarly for n' = n – 2a + 4.
Ex. 3: Similarly for x' = ax – by, y' = ax + by.
Ex. 4: Try to build an inverter for the transducer n' = n  + a + b, why can it not

be done ?
*Ex. 5: Build an inverter for the transducer

Ex. 6: Why, in the section, does M have to transform (7,3) to 4, and not to —2,
as the table a few lines higher might suggest ?

8/9. Size of the inverter. With the facts of the previous section, it
is now possible to make some estimate of how much mechanism
is necessary to invert the output of some given transducer. S.8/7
makes clear that if the original transducer is not to lose distinc-
tions it must have at least as many output values as the input has
distinct values. Similarly the inverter must have at least as many,
but need not necessarily have more. The delayers will require lit-
tle, for they are simple. It seems, therefore, that if the inverter is
made of similar components to the original transducer then, what-
ever the complexity or size of the original transducer, the inverter
will have a complexity and size of the same order.

The importance of this observation is that one sometimes feels,
when thinking of the complexities in the cerebral cortex or in an
ecological system, that any effect transmitted through the system
must almost at once become so tangled as to be beyond all possi-
ble unravelling. Evidently this is not so; the complications of cod-
ing added by one transducer are often or usually within the
decoding powers of another transducer of similar size.

TRANSMISSION FROM SYSTEM TO SYSTEM

8/10. “Transmitting” variety. It  may be as well at this point to
clarify a matter on which there has been some confusion. Though
it is tempting to think of variety (or information) as passing

m1' = (c1 – 2d1)/d2
m2' = d2(c2 – 2d2)/(c1 – 2d1)

dx1/dt =a1x1x2 + a2
dx2/dt =(a1—1)x1 + a2x2.
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through a transducer, or variety passing from one transducer to
another, yet the phrase is dangerously misleading. Though an
envelope can contain a message, the single message, being
unique, cannot show variety; so an envelope, though it can con-
tain a message, cannot contain variety: only a set of envelopes can
do that. Similarly, variety cannot exist in a transducer (at any
given moment), for a particular transducer at a particular moment
is in one, and only one, state. A transducer therefore cannot “con-
tain” variety. What can happen is that a number of transducers
(possibly of identical construction), at some given moment, can
show variety in the states occupied; and similarly one transducer,
on a number of occasions, can show variety in the states it occu-
pied on the various occasions.

(What is said here repeats something of what was said in S.7/5,
but the matter can hardly be over-emphasised.)

It must be remembered always that the concepts of “variety”, as
used in this book, and that of “information”, as used in communi-
cation theory, imply reference to some set, not to an individual.
Any attempt to treat variety or information as a thing that can exist
in another thing is likely to lead to difficult “problems” that
should never have arisen.

8/11. Transmission at. one step. Having considered how variety
changes in a single transducer, we can now consider how it passes
from one system to another, from T to U say, where T is an abso-
lute system and U is a transducer.

As has just been said, we assume that many replicates exist, iden-
tical in construction (i.e. in transformation) but able to be in vari-
ous states independently of each other. If, at a given moment, the
T’s have a certain variety, we want to find how soon that variety
spreads to the U’s. Suppose that, at the given moment, the T’s are
occupying nT distinct states and the U’s are occupying nut (The
following argument will be followed more easily if the reader will
compose a simple and manageable example for T and U on which
the argument can be traced.)

T is acting as parameter to U, and to each state of Twill corre-
spond a graph of U. The set of U’s will therefore have as many
graphs as the T’s have values, i.e. nT graphs. This means that from
each U-state there may occur up to nT different transitions (pro-
vided by the nT different graphs), i.e. from the U-state a represent-
ative point may pass to any one of not more than nT U-states. A

T → U
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set of U’s that has all its representative points at the same state can
thus, under the effect of T’s variety, change to a set with its points
scattered over not more than nT states. There are nu such sets of
U’s, each capable of being scattered over not more than nT states,
so the total scattering cannot, after one step, be greater than over
nTnU states. If variety is measured logarithmically, then the vari-
ety in U after one step cannot exceed the sum of those initially in
U and T. In other words, the U’s cannot gain in variety at one step
by more than the variety present in the T’s.

This is the fundamental law of the transmission of variety from
system to system. It will be used frequently in the rest of the book.

Ex. 1: A system has states (t,u) and transformation t' = 2', u' = u + t, so t dominates
u. Eight such systems are started at the states (O,9), (2,5), (0,5), (1,9), (1,5),
(2,5), (0,9), (1,9) respectively. How much variety is in the t’s ? How much
in the u’s ?

Ex. 2: (Continued.) Find the states at the next step. How much variety has t now?
Predict an upper limit to u’s variety. How much has u now?

Ex. 3: In another system, T has two variables, t1 and  t2, and U has two, u1 and
u2. The whole has states ( t1, t2, u1, u2), and transformation  t1' =  t1t2, t2' =  t1,
u1' = u1 + t2u2, u2' = t1u2, so that T dominates U. Three replicas are started
from the initial states (0,0,0,1), (0,0,1,1) and (1,0,0,1). What is T’s variety ?
What is U’s ?

Ex. 4: (Continued.) Find the three states one step later. What is U’s variety now ?

8/12. Transmission at second step. We have just seen that, at the
first step, U may gain in variety by an amount up to that in T; what
will happen at the second step? T may still have some variety: will
this too pass to U, increasing its variety still further ?

Take a simple example. Suppose that every member of the
whole set of replicates was at one of the six states (Ti,Uk), (Ti, Ul),
(Ti, Um), (Tj,Uk), (Tj,Ul), (Tj,Um), so that the T’s were all at either
T' or T and the U’s were all at Ul, Ul or Um. Now the system as a
whole is absolute; so all those at, say (Ti, Uk), while they may
change from state to state, will all change similarly, visiting the
various states together. The same argument holds for those at each
of the other five states. It follows that the set’s variety in state can-
not exceed six, however many replicates there may be in the set,
or however many states there may be in T and U, or for however
long the changes may continue. From this it follows that the U’s
can never show more variety than six U-states. Thus, once U has
increased in variety by the amount in T, all further increase must
cease. If U receives the whole amount in one step (as above) then
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U receives no further increase at the second step, even though T
still has some variety.

It will be noticed how important in the argument are the pair-
ings between the states of T and the states of U, i.e. which value
of T and which of U occur in the same machine. Evidently merely
knowing the quantities of variety in T and in U (over the set of
replicates) is not sufficient for the prediction of how they will
change.

8/13. Transmission through a charmer. We can now consider how
variety, or information, is transmitted through a small intermedi-
ate transducer—a “channel”—where “small” refers to its number
of possible states. Suppose that two large transducers Q and S are
connected by a small transducer R, so that Q dominates R, and R
dominates S.

As usual, let there be a great number of replicates of the whole tri-
ple system. Let R’s number of possible states be r. Put log2r equal
to ρ. Assume that, at the initial state, the Q’s have a variety much
larger than r states, and that the R’s and S’s, for simplicity,have
none. (Had they some variety, S.8/11 shows that the new variety,
gained from Q, would merely add, logarithmically, to what they
possess already.)

Application of S. 8/11 to R and S shows that, at the first step,
S’s variety will not increase at all. So if the three initial varieties,
measured logarithmically, were respectively N, O and 0, then
after the first step they may be as large as N, ρ, and 0, but cannot
be larger.

At the next step, R cannot gain further in variety (by S.8/12), but
S can gain in variety from R (as is easily verified by considering
an actual example such as Ex. 2). So after the second step the vari-
eties may be as large as N, ρ and ρ. Similarly, after the third step
they may be as large as N, ρ and 2ρ; and so on. S’s variety can thus
increase with time as fast as the terms of the series, O, ρ, 2ρ, 3ρ,
. . ., but not faster. The rule is now obvious: a transducer that can-
not take more than r states cannot transmit Variety at more than
log2r bits per step. This is what is meant, essentially, by different
transducers having different “capacities” for transmission.

Conversely, as S’s variety mounts step by step we can see that
the amount of variety that a transducer (such as R) can transmit
is proportional to the product of its capacity, in bits, and the
number of steps taken. From this comes the important corollary,

Q → R → S
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which will be used repeatedly later: given long enough, any trans-
ducer can transmit any amount of variety.

An important aspect of this theorem is its extreme generality.
What sort of a machine it is that is acting as intermediate trans-
ducer, as channel, is quite irrelevant: it may be a tapping-key that
has only the two states “open” and “closed”, or an electric poten-
tial that can take many values, or a whole neural ganglion, or a
newspaper—all are ruled by the theorem. With its aid, quantita-
tive accuracy can be given to the intuitive feeling that some
restriction in the rate of communication is implied if the commu-
nication has to take place through a small intermediate transducer,
such as when the information from retina to visual cortex has to
pass through the lateral geniculate body, or when information
about the movements of a predator have to be passed to the herd
through a solitary scout.

Ex. 1: An absolute system, of three parts, Q, R and S, has states (q,r,s) and trans-
formation

Q thus dominates R, and R dominates S. What is R’s capacity as a channel ?
Ex. 2: (Continued.) Nine replicates were started at the initial states (1,0,0),

(2,0,0), . . ., (9,0,0), so that only Q had any initial variety. (i) How did the
variety of the Q’s change over the first five steps? (ii) How did that of the
R’s ? (iii) That of the S’s ?

Ex. 3: (Continued.) Had the answer to Ex. 2(iii) been given as “S:1,1,4,5,5”, why
would it have been obviously wrong, without calculation of the actual trajec-
tories ?

8/14. The exercise just given will have shown that when Q, R and
S form a chain, S can gain in variety step by step from R even
though R can gain no more variety after the first step (S.8/12). The
reason is that the output of R, taken step by step as a sequence,
forms a vector (S.9/9), and the variety in a vector can exceed that
in a component. And if the number of components in a vector can
be increased without limit then the variety in the vector can also
be increased without limit, even though that in each component
remains bounded. Thus a sequence of ten coin-spins can have
variety up to 1024 values, though each component is restricted to
two. Similarly R’s values, though restricted in the exercises to
two, can provide a sequence that has variety of more than two. As

q: ↓ 1 2 3 4 5 6 7 8 9
q': 4 6 6 5 6 5 8 8 8

r' =




0, if q + r is even,
1, ,, ,, ,, odd.

s' = 2s – r.
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the process of transmission goes on, S is affected (and its variety
increased) by the whole sequence, by the whole vector, and thus a
variety of much more than two can pass through R. A shrinkage
in the capacity of a channel can thus be compensated for (to keep
the total variety transmitted constant) by an increase in the length
of the sequence— a fact already noticed in the previous section,
and one that will be used frequently later.

Ex. 1: An absolute system T dominates a chain of transducers A1, A2, A3, A4,…:

A set of replicates commences with variety in T but with none in A1, nor in
A2, etc. Show that after k steps the varieties in A1, A2, . . ., Ak may be
non-zero but that those in Ak+1, Ak+2, . . . must still be zero (i.e. that T’s vari-
ety “cannot have spread farther than Ak”.).

Ex. 2: Of 27 coins, identical in appearance, one is known to be counterfeit and to
be light in weight. A balance is available and the counterfeit coin is to be
identified by a series of balancings, as few as possible. Without finding the
method—by regarding the balance as a transducer carrying information from
the coins to the observer—give a number below which the number of bal-
ancings cannot fall. (Hint: What is the variety at a single balancing if the
results can be only: equality, left pan heavier, right pan heavier?)

8/15. Delay. The arrangement of the system of S.8/13:

can also be viewed as

in which Q and R have been regarded as forming a single system
T which is, of course, absolute. If now an observer studies the
transfer of variety from T to S, with exactly the same events as
those of S.8/13 actually occurring, he will find that the variety is
moving across in small quantities, step by step, unlike the transfer
of S.8/11, which was complete in one step.

The reason for the distinction is simply that in S.8/11 the whole
of the dominating system (T) had an immediate effect on the dom-
inated (U), while in S.8/13 T contained a part Q which had no
immediate effect on the receiver S. Q’s effect had to be exerted
through R, and was thereby delayed.

This more time-consuming transfer is common in real systems
simply because many of them are built of parts not all of which
have an immediate effect on the receiving system. Thus if the cer-
ebral cortex, as receiver, is affected by the environment (which

T → A1 → A2 → A3 → A4 → …

Q → R → S

T → S
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has no immediate effect on the cortex) the action has to take place
through a chain of systems: the sense organs, the sensory nerves,
the sensory nuclei, and so on; and some delay is thereby imposed.
Even within one such part some transfer has to take place from
point to point thereby delaying its transfer to the next part.

Conversely, if a system such as T is found on testing to transmit
its variety to another system only over a number of steps, then it
may be predicted that T, if examined in detail, will be found to
consist of sub- systems coupled so that not all of T’s variables
have an immediate effect on S.

Ex. 1: If T consists of the sub-systems A, . . ., F joined to each other and to S as
shown in the diagram of immediate effects:

how many steps are necessary for all the variety in T to be transferred to S? 
Ex. 2: (Continued.) How long does it take to get a “message”, telling of T’s state,

uniquely from T to S?
Ex. 3: If J, with the variables w, x, y, z, dominates K, with the variable k, by the

transformation w' = w—y, x' = w + xz, y' = 2wy—z, z, = yz2, k'= x—3k, how
many steps are necessary for all the variety in J to be transferred to K?

Ex. 4: (Continued.) In the same system, how long would it take to get a message
from w to z?

8/16. To improve our grasp of these matters, let us next consider
the case of two systems joined so that there is feedback:

S.8/11 showed that T will pass variety to U; will U, now having
this variety, pass it back to T and thereby increase T’s variety still
further ?

Again the answer is given straightforwardly when we consider
a set of replicates. Suppose that initially the variety existed only
between the T’s, the U’s being all at the same state. Divide the
whole set into sub- sets, each sub-set consisting of those with T at
a particular state, so that set i, say, consists of the systems with T
at state Ti. Within such a subset there is now no variety in state,
and no variety can develop, for the whole (T,U)-system is abso-
lute. The initial variety of the T’s, therefore, will not increase,
either at the first step or subsequently. In a determinate system,
feedback does not lead to a regenerative increase in variety.

A ← B →← C
↓ ↑ S
D → E → F

T ←→ U
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What was important in the argument about U’s feedback to T is
that what U feeds back to T is highly correlated with what is in T,
for each U feeds back into the particular T that acted on it a step
earlier, and no other. The argument thus demands an accurate
treatment of the correspondences between the various T’s and U’s.

The arguments of the previous few sections have shown that
though the matter can be treated in words in the simple cases
(those just considered), the attempt to handle complex cases in the
verbal form is likely to lead to intolerable complexities. What is
wanted is a symbolic machinery, an algebra, which will enable the
relations to be handled more or less mechanically, with the rules
of the symbolic manipulation looking after the complexities. It
seems likely that the theory of sets, especially as developed by
Bourbaki and Riguet, will provide the technique. But further
research is needed into these questions.

8/17. Interference. If acid and alkali are passed along the same
pipe they destroy each other; what will happen if two messages
are passed along the same channel?—will they interfere with, and
destroy, each other?

Simple examples are quite sufficient to establish that the same
physical channel may well carry more than one message without
interference, each message travelling as if the others did not exist.
Suppose, for instance, that a sender wanted to let a recipient know
daily, by an advertisement in the personal column of a newspaper,
which of 26 different events was being referred to, and suppose he
arranged to print a single letter as the coded form. The same chan-
nel of “one printed letter” could simultaneously be used to carry
other messages, of variety two, by letting the letter be printed as
lower case or capital. The two messages would then be transmit-
ted with as little interference as if they were on separate pages.
Thus, if ten successive messages were sent, N K e S z t y Z w m
would transmit both n k e s z t y z w m and 1 1 0 1 0 0 0 1 0 0
completely. It is thus possible for two messages to pass through
the same physical thing without mutual destruction.

As an example of rather different type, consider the transforma-
tion of Ex. 2/14/11, and regard the position of, say, A''' as a coded
form of that of A (with B''' similarly as the coded form of B). Thus
treasure might be buried at A and weapons at B, with recording
marks left at A''' and B'''. Now a change in the position of B leads
to a change of A''', so B’s value plays an essential part in the cod-
ing of A to A''' (and conversely of A on B'''); so the two messages
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interact. Nevertheless the interaction is not destructive to the
information about where the treasure and the weapons are, for
given the positions of A"' and B"', those of A and B can always be
reconstructed, i.e. the messages are still capable of being exactly
decoded.

The conditions necessary that two messages should not inter-
fere destructively can be found by considering the basic fact of
coding—that a set of messages are converted to a set of trans-
forms (S.8/4)—and by using the fact that any two messages of dif-
ferent type can be laid side by side and considered as components
of one “vector” message, just as any two variables can always be
regarded as components of one vector. Thus if, in the example of
the printed letter, x represents the variable “which message of the
26” and y represents the variable “which of the two”, then the
printed symbol is a coding of the single message (x,y).

Suppose it is given that the two messages x and y do not interfere
destructively. This implies that both x’s and y’s values are recon-
structible from the received form. It follows that if two primary
messages are distinct, then their coded forms must be distinct (for
otherwise unique decoding would not be possible). From this it fol-
lows that, if the interaction is to be non-destructive, the variety in
the received forms must be not less than that in the original. This
condition holds in the example of the printed letter, for both the
original messages and the printed form have variety of 26 × 2.

The fact that chaos does not necessarily occur when two mes-
sages meet in the same channel is of great importance in
neuro-physiology, especially in that of the cerebral cortex. Here
the richness of connexion is so great that much mixing of mes-
sages must inevitably occur, if only from the lack of any method
for keeping them apart. Thus a stream of impulses coming from
the auditory cortex and carrying information relevant to one reac-
tion may meet a stream of impulses coming from the visual cortex
carrying information relevant to some other reaction. It has been
an outstanding problem in neurophysiology to know how destruc-
tive interaction and chaos is avoided.

The discussion of this section has shown, however, that the
problem is badly stated. Chaos does not necessarily occur when
two messages meet, even though each affects the same physical
set of variables. Through all the changes, provided that no variety
is lost and that the mechanism is determinate in its details, the two
messages can continue to exist, passing merely from one coding
to another. All that is necessary for their recovery is a suitable
inverter; and, as S.8/7 showed, its construction is always possible.
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Ex. 1: (See Ex. 2/14/11.) If A"' is at the point (0,0) and B"' at (0,1), reconstruct
the position of A.

Ex. 2: A transducer has two parameters: α (which can take the values a or A) and
β (which can take the values b or B). Its states—W, X, Y, Z—are trans-
formed according to:

Two messages, one a series of α−values and the other a series of β− values,
are transmitted simultaneously, commencing together. If the recipient is
interested only in the α−message, can he always re-construct it, regardless
of what is sent by β? (Hint: S.8/6.)

Ex. 3: Join rods by hinge-pins, as shown in Fig. 8/17/1:

(The pinned and hinged joints have been separated to show the construc-
tion.) P is a pivot, fixed to a base, on which the rod R can rotate; similarly
for Q and S. The rod M passes over P without connexion; similarly for N and
Q. A tubular constraint C ensures that all movements, for small arcs, shall be
to right or left (as represented in the Figure) only.

Movements at A and B will cause movements at L and N and so to Y and
Z and the whole can be regarded as a device for sending the messages “posi-
tion of A” and “position of B”, via L and N, to the outputs Y and Z. It will
be found that, with B held fixed, movements at A cause movements of both
L and N; similarly, with A held fixed, movements at B also affect both L and
N. Simultaneous messages from A and B thus pass through both L and N
simultaneously, and evidently meet there. Do the messages interact destruc-
tively? (Hint: How does Y move if A alone moves?)

Ex. 4: (Continued.) Find the algebraic relation between the positions at A, B, Y
and Z. What does “decoding” mean in this algebraic form?

↓ W X Y Z
(a,b) W Y Y Y
(a,B) X X W W
(A,b) Z W X X
(A,B) Y Z Z Z

Fig 8/17/1
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Chapter 9

INCESSANT TRANSMISSION

9/1. The present chapter will continue the theme of the previous,
and will study variety and its transmission, but will be concerned
rather with the special case of the transmission that is sustained
for an indefinitely long time. This is the case of the sciatic nerve,
or the telephone cable, that goes on incessantly carrying mes-
sages, unlike the transmissions of the previous chapter, which
were studied for only a few steps in time.

Incessant transmission has been specially studied by Shannon,
and this chapter will, in fact, be devoted chiefly to introducing his
Mathematical Theory of Communication, with special emphasis
on how it is related to the other topics in this Introduction.

What is given in this chapter is, however, a series of notes,
intended to supplement Shannon’s masterly work, rather than a
description that is complete in itself. Shannon’s book must be
regarded as the primary source, and should be consulted first. I
assume that the reader has it available.

9/2. The non-determinate transformation. If the transmission is to
go on for an indefinitely long time, the variety must be sustained,
and therefore not like the case studied in S.8/11, in which T’s
transmission of variety stopped after the first step. Now any deter-
minate system of finite size cannot have a trajectory that is infi-
nitely long (S.4/5). We must therefore now consider a more
comprehensive form of machine and transformation—the non-
determinate.

So far all our transformations have been single-valued, and
have thus represented the machine that is determinate. An exten-
sion was hinted at in S.2/10, and we can now explore the possibil-
ity of an operand having more than one transform. Some
supplementary restriction, however, is required, so as to keep the
possibilities within bounds and subject to some law. It must not
become completely chaotic. A case that has been found to have
many applications is that in which each operand state, instead of
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being transformed to a particular new state, may go to some one
of the possible states, the selection of the particular state being
made by some method or process that gives each state a constant
probability of being the transform. It is the unchangingness of the
probability that provides the law or orderliness on which definite
statements can be based.

Such a transformation would be the following: x' = x + a, where
the value of a is found by spinning a coin and using the rule Head:
a = 1; Tail: a = 0. Thus, if the initial value of x is 4, and the coin
gives the sequence T T H H H T H T T H, the trajectory will be 4,
4, 4, 5, 6,7, 7, 8, 8, 8,9. If the coin gives H T H H T T T H T T, the
trajectory will be 4, 5, 5, 6, 7, 7, 7, 7, 8, 8, 8. Thus the transforma-
tion and the initial state are not sufficient to define a unique tra-
jectory, as was the case in S.2/17; they define only a set of
trajectories. The definition given here is supplemented by instruc-
tions from the coin (compare S.4/19), so that a single trajectory is
arrived at.

The transformation could be represented (uniformly with the
previously used representations) as:

where the 1/2 means that from state 3 the system will change

Such a transformation, and especially the set of trajectories that it
may produce, is called “stochastic”, to distinguish it from the sin-
gle-valued and determinate.

Such a representation soon becomes unmanageable if many
transitions are possible from each state. A more convenient, and
fundamentally suitable, method is that by matrix, similar to that
of S.2/10. A matrix is constructed by writing the possible oper-
ands in a row across the top, and the possible transforms in a col-
umn down the left side; then, at the intersection of column i with
row j, is put the probability that the system, if at state i, will go to
state j.

As example, consider the transformation just described. If the
system was at state 4, and if the coin has a probability 1/2 of giv-

3 4 5
1/2 1/2 1/2 1/2 1/2 1/2 etc.
3 4 4 5 5 6

with probability 1/2 to state 3,
and ,, ,, ,, ,, ,, 4.
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ing Head, then the probability of its going to state 5 is 1/2 and so
would be its probability of staying at 4.

All other transitions have zero probability. So the matrix can be
constructed, cell by cell.

This is the matrix of transition probabilities. (The reader
should be warned that the transposed form, with rows and col-
umns interchanged, is more common in the literature; but the form
given has substantial advantages, e.g. Ex. 12/8/4, besides being
uniform with the notations used throughout this book.)

We should, at this point, be perfectly clear as to what we mean
by “probability”. (See also S.7/4.) Not only must we be clear
about the meaning, but the meaning must itself be stated in the
form of a practical, operational test. (Subjective feelings of
“degree of confidence” are here unusable.) Thus if two observers
differ about whether something has a “constant probability”, by
what test can they resolve this difference ?

Probabilities are frequencies. “A ‘probable’ event is a frequent
event.” (Fisher.) Rain is “probable” at Manchester because it is
frequent at Manchester, and ten Reds in succession at a roulette
wheel is “improbable” because it is infrequent. (The wise reader
will hold tight to this definition, refusing to be drawn into such
merely speculative questions as to what numerical value shall be
given to the “probability” of life on Mars, for which there can be
no frequency.) What was said in S.7/4 is relevant here, for the
concept of probability is, in its practical aspects, meaningful only
over some set in which the various events or possibilities occur
with their characteristic frequencies.

The test for a constant probability thus becomes a test for a con-
stant frequency. The tester allows the process to continue for a
time until some frequency for the event has declared itself. Thus,
if he wished to see whether Manchester had a constant, i.e.
unvarying, probability of rain (in suitably defined conditions), he
would record the rains until he had formed a first estimate of the
frequency. He would then start again, collect new records, and

↓ … 3 4 5 6 …

… … … … … … …
3 … 1/2 0 0 0 …
4 … 1/2 1/2 0 0 …
5 … 0 1/2 1/2 0 …
6 … 0 0 1/2 1/2 …
… … … … … … …
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form a second estimate. He might go on to collect third and fourth
estimates. If these several estimates proved seriously discrepant
he would say that rain at Manchester had no constant probability.
If however they agreed, he could, if he pleased, say that the frac-
tion at which they agreed was the constant probability. Thus an
event, in a very long sequence, has a “constant” probability of
occurring at each step if every long portion of the sequence shows
it occurring with about the same relative frequency.

These words can be stated more accurately in mathematical
terms. What is important here is that throughout this book any
phrases about “probability” have objective meanings whose
validity can be checked by experiment. They do not depend on
any subjective estimate.

Ex. 1: Take the five playing cards Ace, 2, 3, 4, 5. Shuffle them, and lay them in
a row to replace the asterisks in the transformation T:

Is the particular transformation so obtained determinate or not? (Hint: Is it
single-valued or not?)

Ex. 2: What rule must hold over the numbers that appear in each column of a
matrix of transition probabilities?

Ex. 3: Does any rule like that of Ex. 2 hold over the numbers in each row?
Ex. 4: If the transformation defined in this section starts at 4 and goes on for 10

steps, how many trajectories occur in the set so defined?
Ex. 5: How does the kinematic graph of the stochastic transformation differ from

that of the determinate ?

9/3. The stochastic transformation is simply an extension of the
determinate (or single valued). Thus, suppose the matrix of tran-
sition probabilities of a three-state system were:

The change, from the first matrix to the second, though small (and
could be made as small as we please) has taken the system from
the obviously stochastic type to that with the single-valued trans-
formation:

T: ↓ Ace 2 3 4 5
* * * * *

first

↓ A B C

and then

↓ A B C

A 0 0.9 0.1 A 0 1 0

B 0.9 0 0 B 1 0 0

C 0.1 0.1 0.9 C 0 0 1

↓ A B C
B A C
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of the type we have considered throughout the book till now. The
single-valued, determinate, transformation is thus simply a spe-
cial, extreme, case of the stochastic. It is the stochastic in which
all the probabilities have become 0 or 1. This essential unity
should not be obscured by the fact that it is convenient to talk
sometimes of the determinate type and sometimes of the types in
which the important aspect is the fractionality of the probabilities.
Throughout Part III the essential unity of the two types will play
an important part in giving unity to the various types of regulation.

The word “stochastic” can be used in two senses. It can be used
to mean “all types (with constant matrix of transition probabili-
ties), the determinate included as a special case”, or it can mean
“all types other than the determinate”. Both meanings can be
used; but as they are incompatible, care must be taken that the
context shows which is implied.

THE MARKOV CHAIN

9/4. After eight chapters, we now know something about how a sys-
tem changes if its transitions correspond to those of a singlevalued
transformation. What about the behaviour of a system whose tran-
sitions correspond to those of a stochastic transformation? What
would such a system look like if we met one actually working?

Suppose an insect lives in and about a shallow pool—some-
times in the water (W), sometimes under pebbles (P), and some-
times on the bank (B). Suppose that, over each unit interval of
time, there is a constant probability that, being under a pebble, it
will go up on the bank; and similarly for the other possible transi-
tions. (We can assume, if we please, that its actual behaviour at
any instant is determined by minor details and events in its envi-
ronment.) Thus a protocol of its positions might read:

WBWBWPWBWBWBWPWBBWBWPWBWPW
BWBWBBWBWBWBWPPWPWBWBBBW

Suppose, for definiteness, that the transition probabilities are

These probabilities would be found (S.9/2) by observing its
behaviour over long stretches of time, by finding the frequency of,
say, B → W, and then finding the relative frequencies, which are

↓ B W P

B 1/4 3/4 1/8
W 3/4 0 3/4
P 0 1/4 1/8
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the probabilities. Such a table would be, in essence, a summary of
actual past behaviour, extracted from the protocol.

Such a sequence of states, in which, over various long stretches,
the probability of each transition is the same, is known as a
Markov chain, from the name of the mathematician who first
made an extensive study of their properties. (Only during the last
decade or so has their great importance been recognised. The
mathematical books give various types of Markov chain and add
various qualifications. The type defined above will give us all we
want and will not clash with the other definitions, but an impor-
tant qualification is mentioned in S.9/7.)

The term “Markov chain” is sometimes applied to a particular
trajectory produced by a system (e.g. the trajectory given in Ex. 1)
and sometimes to the system (defined by its matrix) which is
capable of producing many trajectories. Reference to the context
must show which is implied.

Ex. 1: A system of two states gave the protocol (of 50 transitions): 
A B A B B B A B A A B A B A B A B B B B A B A A B A B B A A B
A B B A B A A A B A B B A A B B A B B A.
Draw up an estimate of its matrix of transition probabilities.

Ex. 2: Use the method of S.9/2 (with the coin) to construct several trajectories,
so as to establish that one matrix can give rise to many different trajectories. 

Ex. 3: Use a table of random numbers to generate a Markov chain on two states
A and B by the rule:

Ex. 4: (Continued.) What is its matrix of transition probabilities?

9/5. Ex. 9/4/1 shows how the behaviour of a system specifies its
matrix. Conversely, the matrix will yield information about the
tendencies of the system, though not the particular details. Thus
suppose a scientist, not the original observer, saw the insect’s
matrix of transition probabilities:

If
Then

Present state Random number next state
A 0 or 1 A
,, 2, 3 … 9 B
B 0, 1, 2, 3, 4 A
,, 5, 6, 7, 8, 9 B

↓ B W P

B 1/4 3/4 1/8
W 3/4 0 3/4
P 0 1/4 1/8
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He can deduce that if it is in water it will not stay there, for W → W
has probability zero, but will go usually to the bank, for W → B
has the highest probability in the column. From the bank it will
probably go to the water, and then back to the bank. If under a
pebble it also tends to go to the water. So clearly it spends much
of its time oscillating between bank and water. Time spent under
the pebbles will be small. The protocol given, which was con-
structed with a table of random numbers, shows these properties.

Thus the matrix contains information about any particular sys-
tem’s probable behaviour.

Ex. 1 Had the P-column of the matrix a 1 in the lowest cell and zero elsewhere,
what could be deduced about the insect’s mode of life ?

Ex. 2: A fly wanders round a room between positions A, B, C, and D, with tran-
sition probabilities:

One of the positions is an unpleasantly hot stove and another is a fly-paper.
Which are they ?

Ex. 3: If the protocol and matrix of Ex. 9/4/1 are regarded as codings of each
other, which is the direction of coding that loses information?

9/6. Equilibrium in a Markov chain. Suppose now that large num-
bers of such insects live in the same pond, and that each behaves
independently of the others. As we draw back from the pond the
individual insects will gradually disappear from view, and all we
will see are three grey clouds, three populations, one on the bank,
one in the water, and one under the pebbles. These three popula-
tions now become three quantities that can change with time. If
they are dB, dW, and dP  respectively at some moment, then their
values at one interval later, dB' etc., can be found by considering
what their constituent individuals will do. Thus, of the insects in
the water, three-quarters will change over to B, and will add their
number on to dB, while a quarter will add their number to dP.
Thus, after the change the new population on the bank, dB', will be
1/4 dB + 3/4 dW + 1/8 dP . In general therefore the three populations
will change in accordance with the transformation (on the vector
with three components)

It must be noticed, as fundamentally important, that the system

↓ A B C D
A 1/2 0 0 1/3
B 1/4 1 0 1/3
C 1/4 0 1/2 1/3
D 0 0 1/2 0

dB' = 1/4 dB + 3/4 dW + 1/8 dP
dw' = 3/4 dB + 3/4dP
dP' = 1/4 dW + 1/8dP
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composed of three populations (if large enough to be free from
sampling irregularities) is determinate, although the individual
insects behave only with certain probabilities.

To follow the process in detail let us suppose that we start an
experiment by forcing 100 of them under the pebbles and then
watching what happens. The initial vector of the three populations
(dB , dW, dP) will thus be (0, 0, 100). What the numbers will be at
the next step will be subject to the vagaries of random sampling;
for it is not impossible that each of the hundred might stay under
the pebbles. On the average, however (i.e. the average if the whole
100 were tested over and over again) only about 12.5 would
remain there, the remainder going to the bank (12.5 also) and to
the water (75). Thus, after the first step the population will have
shown the change (0, 0, 100) → (12.5, 75, 12.5).

In this way the average numbers in the three populations may
be found, step by step, using the process of S.3/6. The next state
is thus found to be (60.9, 18.8, 20.3), and the trajectory of this sys-
tem (of three degrees of freedom—not a hundred ) is shown in
Fig. 9/6/1.

It will be seen that the populations tend, through dying oscilla-
tions, to a state of equilibrium, at (44.9, 42.9, 12.2), at which the
system will remain indefinitely. Here “the system” means, of
course, these three variables.

It is worth noticing that when the system has settled down, and
is practically at its terminal populations, there will be a sharp con-
trast between the populations, which are unchanging, and the
insects, which are moving incessantly. The same pond can thus
provide two very different meanings to the one word “system”.
(“Equilibrium” here corresponds to what the physicist calls a
“steady state”.)

Fig. 9/6/1
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The equilibrial values of a Markov chain are readily computed.
At equilibrium the values are unchanging, so dB', say, is equal to
dB. So the first line of the equation becomes

The other lines are treated similarly. The lines are not all inde-
pendent, however, for the three populations must, in this example,
sum to 100; one line (any one) is therefore struck out and replaced
by

The equations then become, e.g.,

which can be solved in the usual way. In this example the equi-
librial values are (44 9, 42 9, 12 2); as S.9/S predicted, any indi-
vidual insect does not spend much time under the pebbles.

Ex. 1: Find the populations that would follow the initial state of putting all the
insects on the bank.

Ex. 2: Verify the equilibrial values.
Ex. 3: A six-sided die was heavily biased by a weight hidden in face x. When

placed in a box with face f upwards and given a thorough shaking, the prob-
ability that it would change to face g was found, over prolonged testing, to
be:

Which is x? (Hint: Beware!)
Ex. 4: A compound AB is dissolved in water. In each small interval of time each

molecule has a 1% chance of dissociating, and each dissociated A has an
0.1% chance of becoming combined again. What is the matrix of transition
probabilities of a molecule, the two states being “dissociated” and “not dis-
sociated”? (Hint: Can the number of B’s dissociated be ignored ?)

Ex. 5: (Continued.) What is the equilibrial value of the percentage dissociated?
Ex. 6: Write out the transformations of (i) the individual insect’s transitions and

(ii) the population’s transitions. How are they related ?
Ex. 7: How many states appear in the insect’s transitions? How many in the sys-

tem of populations ?

dB = 1/4 dB + 3/4 dW+ 1/8 dP
i.e. 0 = – 3/4 dB + 3/4 dW+ 1/8 dP

dB + dW + dP = 100

– 3/4 dB + 3/4 dW+ 1/8 dP = 0
dB + dW+ dP = 100

1/4 dW– 7/8 dP = 0

f
↓ 1 2 3 4 5 6

g

1 0.1 0.1 0.1 0.1 0.1 0.1
2 0.1 0.1 0.1 0.1 0.1 0.1
3 0.5 0.5 0.5 0.5 0.5 0.5
4 0.1 0.1 0.1 0.1 0.1 0.1
5 0.1 0.1 0.1 0.1 0.1 0.1
6 0.1 0.1 0.1 0.1 0.1 0.1
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*Ex. 8: If D is the column vector of the populations in the various states, D' the
vector one step later, and M the matrix of transition probabilities, show that,
in ordinary matrix algebra,

D'=MD,  D"=M 2D,   and    D(n) = MnD.
(This simple and natural relation is lost if the matrix is written in transposed
form. Compare Ex. 2/16/3 and 12/8/4.)

9/7. Dependence on earlier values. The definition of a Markov
chain, given in S.9/4, omitted an important qualification: the
probabilities of transition must not depend on states earlier than
the operand. Thus if the insect behaves as a Markov chain it will
be found that when on the bank it will go to the water in 75% of
the cases, whether before being on the bank it was at bank, water,
or pebbles. One would test the fact experimentally by collecting
the three corresponding percentages and then seeing if they were
all equal at 75%.

Here is a protocol in which the independence does not hold:
A A B B A B B A A B B A B B A B B A B B A A B B A B B A B A B A

The transitions, on a direct count, are

In particular we notice that B is followed by A and B about
equally. If we now re-classify these 18 transitions from B accord-
ing to what letter preceded the B we get:

So what state follows B depends markedly on what state came
before the B. Thus this sequence is not a Markov chain. Some-
times the fact can be described in metaphor by saying that the sys-
tem’s “memory” extends back for more than one state (compare
S.6/21).

This dependence of the probability on what came earlier is a
marked characteristic of the sequences of letters given by a lan-
guage such as English. Thus: what is the probability that an s will
be followed by a t? It depends much on what preceded the s; thus
es followed by t is common, but ds followed by t is rare. Were the
letters a Markov chain, then s would be followed by t with the
same frequency in the two cases.

↓ A B

A 3 10

B 10 8

… AB was  followed by




A: 2 times
B: 8 ,,

… BB ,, ,, ,,




A: 8 ,,
B: 0 ,,
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These dependencies are characteristic in language, which con-
tains many of them. They range from the simple linkages of the
type just mentioned to the long range linkages that make the end-
ing “… of Kantian transcendentalism” more probable in a book
that starts “The university of the eighteenth century…” than in
one that starts “The modern racehorse …”.

Ex.: How are the four transitions C → C, C → D, D → C, and D → D  affected
in frequency of occurrence by the state that immediately preceded each oper-
and, in the protocol:

D D C C D C C D D C C D C C D D C C D C C D D C C D D D D D D D D C 
C D D D C C D C C D C? 

(Hint: Classify the observed transitions.)

9/8. Re-coding to Markov form. When a system is found to pro-
duce trajectories in which the transition probabilities depend in a
constant way on what states preceded each operand, the system,
though not Markovian, can be made so by a method that is more
important than may at first seem—one re-defines the system.

Thus suppose that the system is like that of Ex. 9/7/1 (the pre-
ceding), and suppose that the transitions are such that after the
two-state sequence … CC it always goes to D, regardless of what
occurred earlier, that after …  DC it always goes to C, that after
… CD it goes equally frequently in the long run to C and D, and
similarly after … DD. We now simply define new states that are
vectors, having two components—the earlier state as first compo-
nent and the later one as second. Thus if the original system has
just produced a trajectory ending … DC, we say that the new sys-
tem is at the state (D, C). If the original then moves on to state C,
so that its trajectory is now … DCC, we say that the new system
has gone on to the state (C, C). So the new system has undergone
the transition (D, C) → (C, C). These new states do form a
Markov chain, for their probabilities (as assumed here) do not
depend on earlier state in fact the matrix is

(Notice that the transition (C,D) → (C,D) is impossible; for any
state that ends (–,D) can only go to one that starts (D,–). Some
other transitions are similarly impossible in the new system.)

↓ (C,C) (C,D) (D,C) (D,D)

(C,C) 0 0 1 0
(C,D) 1 0 0 0
(D,C) 0 1/2 0 1/2
(D,D) 0 1/2 0 1/2
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If, in another system, the transition probabilities depend on val-
ues occurring n steps back, then the new states must be defined as
vectors over n consecutive states.

The method of re-defining may seem artificial and pointless.
Actually it is of fundamental importance, for it moves our attention
from a system that is not state-determined to one that is. The new
system is better predictable, for its “state” takes account of the orig-
inal system’s past history. Thus, with the original form, to know
that the system was at state C did not allow one to say more than
that it might go to either C or D. With the second form, to know that
it was at the state (D,C) enabled one to predict its behaviour with
certainty, just as with the original form one could predict with cer-
tainty when one knew what had happened earlier. What is impor-
tant is that the method shows that the two methods of “knowing” a
system—by its present state or by its past history— have an exact
relation. The theory of the system that is not completely observable
(S.6/21) made use of this fact in essentially the same way. We are
thus led again to the conclusion that the existence of “memory” in
a real system is not an intrinsic property of the system—we hypoth-
esise its existence when our powers of observation are limited.
Thus, to say “that system seems to me to have memory” is equiva-
lent to saying “my powers of observation do not permit me to make
a valid prediction on the basis of one observation, but I can make a
valid prediction after a sequence of observations”.

9/9. Sequence as vector. In the earlier chapters we have often used
vectors, and so far they have always had a finite and definite
number of components. It is possible, however, for a vector to
have an infinite, or indefinitely large number of components. Pro-
vided one is cautious, the complication need cause little danger.

Thus a sequence can be regarded as a vector whose first com-
ponent is the first value in the sequence, and so on to the n-th com-
ponent, which is the n-th value. Thus if I spin a coin five times,
the result, taken as a whole, might be the vector with five compo-
nents (H, T, T, H, T). Such vectors are common in the theory of
probability, where they may be generated by repeated sampling.

If such a vector is formed by sampling with replacement, it has
only the slight peculiarity that each value comes from the same
component set, whereas a more general type, that of S.3/5 for
instance, can have a different set for each component.

9/10. Constraint in a set of sequences. A set of such sequences can
show constraint, just as a set of vectors can (S.7/11), by not having
the full range that the range of components, if they were independ-
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ent, would make possible. If the sequence is of finite length, e.g.
five spins of a coin, as in the previous paragraph, the constraint
can be identified and treated exactly as in S.7/11. When, however,
it is indefinitely long, as is often the case with sequences (whose
termination is often arbitrary and irrelevant) we must use some
other method, without, however, changing what is essential.

What the method is can be found by considering how an infi-
nitely long vector can be specified. Clearly such a vector cannot
be wholly arbitrary, in components and values, as was the vector
in S.3/5, for an infinity of time and paper would be necessary for
its writing down. Usually such indefinitely long vectors are spec-
ified by some process. First the value of the initial component is
given and then a specified process (a transformation) is applied to
generate the further components in succession (like the “integra-
tion” of S.3/9).

We can now deduce what is necessary if a set of such vectors is
to show no constraint. Suppose we build up the set of “no con-
straint”, and proceed component by component. By S.7/12, the first
component must take its full range of values; then each of these val-
ues must be combined with each of the second component’s possi-
ble values; and each of these pairs must be combined with each of
the third component’s possible values; and so on. The rule is that as
each new component is added, all its possible values must occur.

It will now be seen that the set of vectors with no constraint cor-
responds to the Markov chain that, at each transition, has all the
transitions equally probable. (When the probability becomes an
actual frequency, lots of chains will occur, thus providing the set
of sequences.) Thus, if there are three states possible to each com-
ponent, the sequences of no constraint will be the set generated by
the matrix

Ex. 1: The exponential series defines an infinitely long vector with components:

What transformation generates the series by obtaining each component from
that on its left? (Hint: Call the components t1, t2, ..., etc.; ti' is the same as
t1+1.) 

Ex. 2: Does the series produced by a true die show constraint ? 
Ex. 3: (Continued.) Does the series of Ex. 9/4/3 ? 

↓ A B C

A 1/3 1/3 1/3
B 1/3 1/3 1/3
C 1/3 1/3 1/3

1 x
x

2

2
----- x

3

2 3⋅
---------- x

4

2 3 4⋅ ⋅
------------------ …, , , , ,
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ENTROPY

9/11. We have seen throughout S.7/5 and Chapter 8 how informa-
tion cannot be transmitted in larger quantity than the quantity of
variety allows. We have seen how constraint can lessen some
potential quantity of variety. And we have just seen, in the previ-
ous section, how a source of variety such as a Markov chain has
zero constraint when all its transitions are equally probable. It fol-
lows that this condition (of zero constraint) is the one that enables
the information source, if it behaves as a Markov chain, to trans-
mit the maximal quantity of information (in given time).

Shannon has devised a measure for the quantity of variety shown
by a Markov chain at each step—the entropy—that has proved of
fundamental importance in many questions relating to incessant
transmission. This measure is developed in the following way.

If a set has variety, and we take a sample of one item from the
set, by some defined sampling process, then the various possible
results of the drawing will be associated with various, correspond-
ing probabilities. Thus if the traffic lights have variety four, show-
ing the combinations

1 Red
2 Red and Yellow
3 Green
4 Yellow, 

and if they are on for durations of 25, 5, 25 and 5 seconds respec-
tively, then if a motorist turns up suddenly at irregular times he
would find the lights in the various states with frequencies of
about 42, 8, 42 and 8% respectively. As probabilities these
become 0.42, 0.08, 0.42 and 0.08. Thus the state “Green” has (if
this particular method of sampling be used) a probability of 0 42;
and similarly for the others.

Conversely, any set of probabilities—any set of positive frac-
tions that adds up to 1—can be regarded as corresponding to some
set whose members show variety. Shannon’s calculation proceeds
from the probabilities by the calculation, if the probabilities are
p1, p2, …, pn, of

– p1 log p1 – p2 log p2 – … pn log pn , 

a quantity which he calls the entropy of the set of probabilities
and which he denotes by H. Thus if we take logs to the base 10,
the entropy of the set associated with the traffic lights is
– 0.42 log100.42 – 0.08 log100.08 – 0.42 log100.42 – 0.08 log100.08
which equals 0.492. (Notice that log10 0.42 = 1.6232 = –1.0000 +
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0.6232 = – 0.3768; so the first term is ( – 0.42)( – 0.3768), which
is + 0.158; and similarly for the other terms.) Had the logs been
taken to the base 2 (S.7/7) the result would have been 1.63 bits.

The word “entropy” will be used in this book solely as it is used
by Shannon, any broader concept being referred to as “variety” or
in some other way.

Ex. 1: On 80 occasions when I arrived at a certain level-crossing it was closed on
14. What is the entropy of the set of probabilities?

Ex. 2: From a shuffled pack of cards one is drawn. Three events are distin-
guished:

E1 the drawing of the King of Clubs,
E2: the drawing of any Spade
E3: the drawing of any other card.

What is the entropy of the variety of the distinguishable events ?
Ex. 3: What is the entropy of the variety in one throw of an unbiased die ?
Ex. 4: What is the entropy in the variety of the set of possibilities of the outcomes

(with their order preserved) of two successive throws of an unbiased die ?
Ex. 5: (Continued.) What is the entropy of n successive throws ? 
*Ex. 6: What is the limit of –p log p as p tends to zero ?

9/12. The entropy so calculated has several important properties.
First, it is maximal, for a given number (n) of probabilities, when
the probabilities are all equal. H is then equal to log n, precisely
the measure of variety defined in S.7/7. (Equality of the probabil-
ities, in each column, was noticed in S.9/10 to be necessary for the
constraint to be minimal, i.e. for the variety to be maximal.) Sec-
ondly, different H’s derived from different sets can, with suitable
qualifications, be combined to yield an average entropy.

Such a combination is used to find the entropy appropriate to a
Markov chain. Each column (or row if written in the transposed
form) has a set of probabilities that sum to 1. Each can therefore
provide an entropy. Shannon defines the entropy (of one step of
the chain) as the average of these entropies, each being weighted
by the proportion in which that state, corresponding to the col-
umn, occurs when the sequence has settled to its equilibrium (S.9/
6). Thus the transition probabilities of that section, with corre-
sponding entropies and equilibrial proportions shown below, are

↓ B W P

B 1/4 3/4 1/8
W 3/4 0 3/4
P 0 1/4 1/8

Entropy: 0.811 0.811 1.061
Equilibrial proportion: 0.449 0.429 0.122
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Then the average entropy (per step in the sequence) is

0.449 × 0.811 + 0.429 × 0.811 + 0.122 × 1.061 = 0.842 bits.

A coin spun repeatedly produces a series with entropy, at each
spin, of 1 bit. So the series of locations taken by one of the insects
as time goes on is not quite so variable as the series produced by
a spun coin, for 0.842 is less than 1.00. In this way Shannon’s
measure enables different degrees of variety to be compared.

The reason for taking a weighted average is that we start by
finding three entropies: 0.811, 0.811, and 1.061; and from them
we want one. Were they all the same we would obviously just use
that value, but they are not. We can, however, argue thus: When
the system has reached equilibrium, 45°/O of the insects will be at
state B, 43% at W, and 12% at P. This is equivalent, as the insects
circulate between all the states, to saying that each insect spends
45% of its time at B, 43% at W, and 12% at P. In other words, 45%
of its transitions will be from B, 43% from W, and 12% from P.
Thus 45% of its transitions will be with entropy, or variety, of
0.811, 43% also with 0.811, and 12% with 1.061. Thus, transi-
tions with an entropy of 0.811 will be frequent (and the value
“0.811” should count heavily) and those with an entropy of 1.061
will be rather rare (and the value “1.061” should count little). So
the average is weighted: 88% in favour of 0.811 and 12% in
favour of 1.061, i.e.

which is, effectively, what was used above.

Ex. 1: Show that the series of H’s and T’s produced by a spun coin has an average
entropy of 1 bit per spin. (Hint: Construct the matrix of transition probabili-
ties.)

Ex. 2: (Continued.) What happens to the entropy if the coin is biased ? (Hint: Try
the effect of changing the probabilities.)

9/13. Before developing the subject further, it is as well to notice
that Shannon’s measure, and the various important theorems that
use it, make certain assumptions. These are commonly fulfilled in
telephone engineering but are by no means so commonly fulfilled
in biological work, and in the topics discussed in this book. His
measure and theorems must therefore be applied cautiously. His
main assumptions are as follows.

(1) If applied to a set of probabilities, the various fractions must
add up to 1; the entropy cannot be calculated over an incomplete
set of possibilities.

weighted average 45 0.811 43 0.811 12 1.061×+×+×
45 43 12+ +

------------------------------------------------------------------------------------------=
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(2) If applied to an information source, with several sets of prob-
abilities, the matrix of transition probabilities must be Markovian;
that is to say, the probability of each transition must depend only
on the state the system is at (the operand) and not on the states it
was at earlier (S.9/7). If necessary, the states of the source should
first be re-defined, as in S.9/8, so that it becomes Markovian.

(3) The several entropies of the several columns are averaged
(S.9/12) using the proportions of the terminal equilibrium (S.9/6).
It follows that the theorems assume that the system, however it
was started, has been allowed to go on for a long time so that the
states have reached their equilibrial densities.

Shannon’s results must therefore be applied to biological mate-
rial only after a detailed check on their applicability has been made.

A similar warning may be given before any attempt is made to
play loosely, and on a merely verbal level, with the two entropies
of Shannon and of statistical mechanics. Arguments in these sub-
jects need great care, for a very slight change in the conditions or
assumptions may make a statement change from rigorously true
to ridiculously false. Moving in these regions is like moving in a
jungle full of pitfalls. Those who know most about the subject are
usually the most cautious in speaking about it.

Ex. 1: Work out mentally the entropy of the matrix with transition probabilities

(Hint: This is not a feat of calculation but of finding a peculiar simplicity.
What does that 1 in the main diagonal mean (Ex. 9/5/1)? So what is the final
equilibrium of the system? Do the entropies of columns A and C matter? And
what is the entropy of B’s column (Ex. 9/11/6)?)

Ex. 2: (Continued.) Explain the paradox: “When the system is at A there is vari-
ety or uncertainty in the next state, so the entropy cannot be zero.”

9/14. A little confusion has sometimes arisen because Shannon’s
measure of “entropy”, given over a set of probabilities P1, P2, ….
is the sum of Pi log Pi, multiplied by –1 whereas the definition
given by Wiener in his Cybernetics for “amount of information”
is the same sum of Pi log Pi unchanged (i.e. multiplied by +1).
(The reader should notice that p log p is necessarily negative, so
the multiplier “–1” makes it a positive number.)

There need however be no confusion, for the basic ideas are
identical. Both regard information as “that which removes uncer-

↓ A B C

A 0.2 0 0.3
B 0.7 1.0 0.3
C 0.1 0 0.4
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tainty”, and both measure it by the amount of uncertainty it
removes. Both further are concerned basically with the gain or
increase in information that occurs when a message arrives—the
absolute quantities present before or after being of minor interest.

Now it is clear that when the probabilities are well spread, as in
A of Fig. 9/14/1, the uncertainty is greater than when they are
compact, as in B.

So the receipt of a message that makes the recipient revise his esti-
mate, of what will happen, from distribution A to distribution B,
contains a positive amount of information. Now Σp log p (where
Σ means “the sum of”), if applied to A, will give a more negative
number than if applied to B; both will be negative but A’s will be
the larger in absolute value. Thus A might give–20 for the sum
and B might give –3. If we use Σp log p multiplied by plus 1 as
amount of information to be associated with each distribution, i.e.
with each set of probabilities, then as, in general,

Gain (of anything) = Final quantity minus initial quantity

so the gain of information will be
( – 3) – (– 20)

which is + 17, a positive quantity, which is what we want. Thus,
looked at from this point of view, which is Wiener’s, Σp log p
should be multiplied by plus 1, i.e. left unchanged; then we calcu-
late the gain.

Shannon, however, is concerned throughout his book with the
special case in which the received message is known with cer-
tainty. So the probabilities are all zero except for a single I. Over
such a set Σp log p is just zero; so the final quantity is zero, and
the gain of information is

0 – (initial quantity).
In other words, the information in the message, which equals the
gain in information, is Σp log p calculated over the initial distri-
bution, multiplied by minus 1, which gives Shannon’s measure.

Fig. 9/14/1
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Thus the two measures are no more discrepant than are the two
ways of measuring “how far is point Q to the right of point P”
shown in Fig. 9/14/2.

Here P and Q can be thought of as corresponding to two degrees
of uncertainty, with more certainty to the right, and with a mes-
sage shifting the recipient from P to Q.

The distance from P to Q can be measured in two ways, which
are clearly equivalent. Wiener’s way is to lay the rule against P
and Q (as W in the Fig.); then the distance that Q lies to the right
of P is given by

(Q’s reading) minus (P’s reading).

Shannon’s way (S in the Fig.) is to lay the zero opposite Q, and
then the distance that Q is to the right of P is given by

minus (P’s reading).

There is obviously no real discrepancy between the two methods.

9/15. Channel capacity. It is necessary to distinguish two ways of
reckoning “entropy” in relation to a Markov chain, even after the
unit (logarithmic base) has been decided. The figure calculated in
S.9/12, from the transition probabilities, gives the entropy, or
variety to be expected, at the next, single, step of the chain. Thus
if an unbiased coin has already given T T H H T H H H H, the
uncertainty of what will come next amounts to I bit. The symbol
that next follows has also an uncertainty of 1 bit; and so on. So the
chain as a whole has an uncertainty, or entropy, of 1 bit per step.

Two steps should then have an uncertainty, or variety, of 2 bits,
and this is so; for the next two steps can be any one of HH, HT,
TH or TT, with probabilities 1/4, 1/4, 1/4 and 14, which gives H
= 2 bits. Briefly it can be said that the entropy of a length of
Markov chain is proportional to its length (provided always that
it has settled down to equilibrium).

Quite another way of making the measurement on the chain is

Fig. 9/14/2
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introduced when one considers how fast in time the chain is being
produced by some real physical process. So far this aspect has
been ignored, the sole graduation being in terms of the chain’s
own steps. The new scale requires only a simple rule of proportion
for its introduction. Thus if (as in S.9/12) the insects’ “unit time”
for one step is twenty seconds, then as each 20 seconds produces
0 84 bits, 60 seconds will produce (60/20)0 84 bits; so each insect
is producing variety of location at the rate of 2 53 bits per minute.

Such a rate is the most natural way of measuring the capacity of
a channel, which is simply anything that can be driven by its input
to take, at each moment, one of a variety of states, and which can
transmit that state to some receiver. The rate at which it can trans-
mit depends both on how fast the steps can succeed one another
and on the variety available at each step.

It should be noticed that a “channel” is defined in cybernetics
purely in terms of certain behavioural relations between two
points; if two points are so related then a “channel” exists between
them, quite independently of whether any material connexion can
be seen between them. (Consider, for instance, Exs. 4/15/2, 6/7/
1.) Because of this fact the channels that the cyberneticist sees
may be very different from those seen by one trained in another
science. In elementary cases this is obvious enough. No one
denies the reality of some functional connexion from magnet to
magnet, though no experiment has yet demonstrated any interme-
diate structure.

Sometimes the channel may follow an unusual path. Thus the
brain requires information about what happens after it has emitted
“commands” to an organ, and usually there is a sensory nerve
from organ to brain that carries the “monitoring” information.
Monitoring the vocal cords, therefore, may be done by a sensory
nerve from cords to brain. An effective monitoring, however, can
also be achieved without any nerve in the neck by use of the sound
waves, which travel through the air, linking vocal cords and brain,
via the ear. To the anatomist this is not a channel, to the commu-
nication engineer it is. Here we need simply appreciate that each
is right within his own branch of science.

More complex applications of this principle exist. Suppose we
ask someone whether 287 times 419 is 118213; he is likely to reply
“I can’t do it in my head—give me pencil and paper”. Holding the
numbers 287 and 419, together with the operation “multiply”, as
parameters he will then generate a process (a transient in the termi-
nology of S.4/5) which will set up a series of impulses passing
down the nerves of his arm, generating a series of pencil marks on
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the paper, then the marks will affect his retina and so on to his brain
where an interaction will occur with the trace (whatever that may
be) of “118213”; he will then give a final answer. What we must
notice here is that this process, from brain, through motor cortex,
arm, pencil, marks, light rays, retina, and visual cortex back to
brain, is, to the communication engineer, a typical “channel”, link-
ing “transmitter” to “receiver”. To the cyberneticist, therefore, the
white matter, and similar fibres, are not the only channels of com-
munication available to the brain: some of the communication
between part and part may take place through the environment.

9/16. Redundancy. In S.7/14 it was stated that when a constraint
exists, advantage can usually be taken of it. An illustration of this
thesis occurs when the transmission is incessant.

For simplicity, reconsider the traffic lights —Red, Yellow, and
Green—that show only the combinations

(1) Red
(2) Red and Yellow 
(3) Green 
(4) Yellow.

Each component (each lamp or colour) can be either lit or unlit, so
the total variety possible, if the components were independent
would be 8 states. In fact, only 4 combinations are used, so the set
shows constraint.

Now reconsider these facts after recognising that a variety of
four signals is necessary:

If we have components that can each take two values, + or –, we can
ask how many components will be necessary to give this variety.
The answer is obviously two; and by a suitable re-coding, such as

+ + = Stop
+ – = Prepare to go 
– – = Go 
– + = Prepare to stop

the same variety can be achieved with a vector of only two com-
ponents. The fact that the number of components can be reduced
(from three to two) without loss of variety can be expressed by

(i) Stop
(ii) Prepare to go

(iii) Go
(iv) Prepare to stop.
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saying that the first set of vectors shows redundancy, here of one
lamp.

The constraint could clearly be taken advantage of. Thus, if
electric lights were very expensive, the cost of the signals, when
re-coded to the new form, would be reduced to two-thirds.

Exactly the same lights may also show quite a different redun-
dancy if regarded as the generators of a different set of vectors.
Suppose that the lights are clock-operated, rather than traf-
fic-operated, so that they go through the regular cycle of states (as
numbered above)

...3, 4, 1, 2, 3, 4, 1, 2, 3, ...

The sequence that it will produce (regarded as a vector, S.9/9)
can only be one of the four vectors:

Were there independence at each step, as one might get from a
four-sided die, and n components, the variety would be 4n; in fact
it is only 4. To make the matter quite clear, notice that the same
variety could be obtained by vectors with only one component:

all the components after the first being omitted; so all the later
components are redundant.

Thus a sequence can show redundancy if at each step the next
value has not complete independence of the earlier steps. (Com-
pare S.9/10.) If the sequence is a Markov chain, redundancy will
be shown by its entropy having a value less than the maximum.

The fact that the one set of traffic lights provides two grossly
different sets of vectors illustrates yet again that great care is nec-
essary when applying these concepts to some object, for the object
often provides a great richness of sets for discussion. Thus the
question “Do traffic lights show redundancy?” is not admissible;
for it fails to indicate which of the sets of vectors is being consid-
ered; and the answer may vary grossly from set to set.

This injunction is particularly necessary in a book addressed to
workers in biological subjects, for here the sets of vectors are
often definable only with some difficulty, helped out perhaps with

(i) (1, 2, 3, 4, 1, 2, …)
(ii) (2, 3, 4, 1, 2, 3, …)

(iii) (3, 4, 1, 2, 3, 4, …)
(iv) (4, 1, 2, 3, 4, 1, …)

(i) (1)
(ii) (2)

(iii) (3)
(iv) (4)
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some arbitrariness. (Compare S.6114.) There is therefore every
temptation to let one’s grasp of the set under discussion be intui-
tive and vague rather than explicit and exact. The reader may
often find that some intractable contradiction between two argu-
ments will be resolved if a more accurate definition of the set
under discussion is achieved; for often the contradiction is due to
the fact that the two arguments are really referring to two distinct
sets, both closely associated with the same object or organism.

Ex. 1: In a Table for the identification of bacteria by their power to ferment sug-
ars, 62 species are noted as producing “acid”, “acid and gas”, or “nothing”
from each of 14 sugars. Each species thus corresponds to a vector of 14 com-
ponents, each of which can take one of three values. Is the set redundant ?
To how many components might the vector be reduced ? 

Ex. 2: If a Markov chain has no redundancy, how may its matrix be recognised
at a glance?

9/17. It is now possible to state what is perhaps the most funda-
mental of the theorems introduced by Shannon. Let us suppose
that we want to transmit a message with H bits per step, as we
might want to report on the movements of a single insect in the
pool. H is here 0 84 bits per step (S.9/12), or, as the telegraphist
would say, per symbol, thinking of such a series as … P W B W
B B B W P P P W B W P W …. Suppose, for definiteness, that 20
seconds elapse between step and step. Since the time-rate of these
events is now given, H can also be stated as 2.53 bits per minute.
Shannon’s theorem then says that any channel with this capacity
can carry the report, and that it cannot be carried by any channel
with less than this capacity. It also says that a coding always exists
by which the channel can be so used.

It was, perhaps, obvious enough that high-speed channels could
report more than slow; what is important about this theorem is,
first, its great generality (for it makes no reference to any specific
machinery, and therefore applies to telegraphs, nerve-fibres, con-
versation, equally) and secondly its quantitative rigour. Thus, if
the pond were far in the hills, the question might occur whether
smoke signals could carry the report. Suppose a distinct puff
could be either sent or not sent in each quarter-minute, but not
faster. The entropy per symbol is here I bit, and the channel’s
capacity is therefore 4 bits per minute. Since 4 is greater than 2 53,
the channel can do the reporting, and a code can be found, turning
positions to puffs, that will carry the information.

Shannon has himself constructed an example which shows
exquisitely the exactness of this quantitative law. Suppose a
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source is producing letters A, B, C, D with frequencies in the ratio
of 4, 2, 1, 1 respectively, the successive symbols being independ-
ent. A typical portion of the sequence would be … B A A B D A
A A A B C A B A A D A .... At equilibrium the relative frequen-
cies of A, B, C, D would be 1/2, 1/4, 1/8, 1/8 respectively, and the
entropy is 14 bits per step (i.e. per letter).

Now a channel that could produce, at each step, any one of four
states without constraint would have a capacity of 2 bits per step.
Shannon’s theorem says that there must exist a coding that will
enable the latter channel (of capacity 2 bits per step) to transmit
such a sequence (with entropy 1 3/4 bits per step) so that any long
message requires fewer steps in the ratio of 2 to 1 3/4, i.e. of 8 to
7. The coding, devised by Shannon, that achieves this is as fol-
lows. First code the message by

e.g. the message above,

Now divide the lower line into pairs and re-code into a new set of
letters by

These codes convert any message in “A to D” into the letters “E
to H”, and conversely, without ambiguity. What is remarkable is
that if we take a typical set of eight of the original letters (each
represented with its typical frequency) we find that they can be
transmitted as seven of the new:

thus demonstrating the possibility of the compression, a compres-
sion that was predicted quantitatively by the entropy of the origi-
nal message!

Ex. 1: Show that the coding gives a one-one correspondence between message
sent and message received (except for a possible ambiguity in the first letter).

↓ A B C D
0 10 110 111

↓ B . A A B . D . . A A A A B . C . . A B . A A D . . A
1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 0 1 1 1 0

↓ 00 01 10 11
E F G H

↓
A A A A B . B . C . . D . .
0 0 0 0 1 0 1 0 1 1 0 1 1 1
. E . E . G . G . H . F . H
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Ex. 2: Printed English has an entropy of about 10 bits per word. We can read
about 200 words per minute. Give a lower bound to the channel capacity of
the optic nerve.

Ex. 3: If a pianist can put each of ten fingers on any one of three notes, and can
do this 300 times a minute, find a lower bound to the channel capacity of the
nerves to the upper limbs.

Ex. 4: A bank’s records, consisting of an endless sequence of apparently random
digits, O to 9, are to be encoded into Braille for storage. If 10,000 digits are
to be stored per hour, how fast must the Braille be printed if optimal coding
is used? (Hint: There are 64 symbols in the Braille “alphabet”.)

9/18. One more example will be given, to show the astonishing
power that Shannon’s method has of grasping the essentials in
communication. Consider the system, of states a, b, c, d, with tran-
sition probabilities

A typical sequence would be

…b b b c a b c a b b c d d a c d a b c a c d d d d d d a b b…

The equilibrial probabilities are 6/35, 9/35, 6/35, 14/35 respec-
tively. The entropy is soon found to be 0.92 bits per letter. Now
suppose that the distinction between a and d is lost, i.e. code by

Surely some information must be lost? Let us see. There are
now only three states X, b, c, where X means “either a or d”. Thus
the previous message would now start … b b b c X b c X b b c X
X X c .... The transition probabilities are found to be

(Thus c → X must be 1 because c always went to either a or d;  the
transitions from a and from d need weighting by the (equilibrial)
probabilities of being at a or d.) The new states have equilibrial

↓ a b c d

a 0 0 0.3 0.3
b 0.6 0.6 0 0
c 0.4 0.4 0 0
d 0 0 0.7 0.7

↓ a b c d
X b c X

↓ X b c

X 0.70 0 1
b 0.18 0.6 0
c 0.12 0.4 0
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probabilities of X, 20/35; b, 9/35; c, 6/35 and entropies of Hx,
1.173; Hb, 0.971; Hc, 0. So the entropy of the new series is 0.92
bits per letter—exactly the same as before!

This fact says uncompromisingly that no information was lost
when the d’s and a’s were merged to X’s. It says, therefore, that
there must be some way of restoring the original four-letter mes-
sage from the three, of telling which of the X’s were a’s and which
were d’s. Closer examination shows that this can be done, strik-
ingly verifying the rather surprising prediction.

Ex.: How is 
b b b c X b c X b b c X X X c X X b c X c X X X X X X X b b 

to be de-coded to its original form?

NOISE

9/19. It may happen that the whole input to a transducer can be
divided into two or more components, and we wish to consider the
components individually. This happened in Ex. 8/17/3, where the
two messages were sent simultaneously through the same trans-
ducer and recovered separately at the output. Sometimes, how-
ever, the two inputs are not both completely deducible from the
output. If we are interested solely in one of the input components,
as a source of variety, regarding the other as merely an unavoida-
ble nuisance, then the situation is commonly described as that of
a “message corrupted by noise”.

It must be noticed that noise is in no intrinsic way distinguish-
able from any other form of variety. Only when some recipient is
given, who will state which of the two is important to him, is a dis-
tinction between message and noise possible. Thus suppose that
over a wire is coming both some conversation and some effects
from a cathode that is emitting irregularly. To someone who
wants to hear the conversation, the variations at the cathode are
“noise”; but to the engineer who is trying to make accurate meas-
urements of what is going on at the cathode, the conversation is
“noise”. “Noise” is thus purely relative to some given recipient,
who must say which information he wants to ignore.

The point is worth emphasis because, as one of the commonest
sources of uninteresting variety in electronic systems is the ther-
mal dance (Brownian movement) of the molecules and electrons,
electronic engineers tend to use the word “noise” without qualifi-
cation to mean this particular source. Within their speciality they
will probably continue to use the word in this sense, but workers
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in other sciences need not follow suit. In biology especially
“noise” will seldom refer to this particular source; more com-
monly, the “noise” in one system will be due to some other mac-
roscopic system from which the system under study cannot be
completely isolated.

Should the two (or more) messages be completely and simultane-
ously recoverable, by de-coding of the output, the concept of noise
is of little use. Chiefly it is wanted when the two messages (one
wanted, one unwanted) interact with some mutual destruction,
making the coding not fully reversible. To see this occur let us go
back to the fundamental processes. The irreversibility must mean
that the variety is not sustained (S.8/6), and that distinct elements at
the inputs are represented at the output by one element. Consider
the case in which the input is a vector with two components,

Suppose the output is a variable that can take values 1, 2, …, 9,
and that the coding was

If now the input message were the sequence B A C B A CA A B B,
while the “noise” gave simultaneously the sequence G F FE E E
G F G E, then the output would be

1, 4, 7, 2, 6, 3, 2, 4, 1, 2 

and the de-coding could give, for the first component, only the
approximation

B, A, C, A or B, A, C, A or B, A, B, A or B. 

Thus the original message to this input has been “corrupted” by
“noise” at the other input.

In this example the channel is quite capable of carrying the mes-
sage without ambiguity if the noise is suppressed by the second
input being held constant, at E say. For then the coding is one-one: 

and reversible.
It will be noticed that the interaction occurred because only

eight of the nine possible output states were used. By this perma-
nent restriction, the capacity of the channel was reduced.

the first having possible values ofA, B or C
,, second ,, ,, ,, ,,E, F or G.

↓ AE AF AG BE BF BG CE CF CG
6 4 2 2 9 1 3 7 5

↓ A B C
6 2 3
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Ex. 1: What is the coding, of first input to output, if the second output is kept con-
stant (i) at F; (ii) at G?

Ex. 2: A system of three states —P, Q, R—is to transmit changes at two inputs,
α and β, each of which can take two states. The states of the inputs and of
the system change in step. Is noise-free transmission possible ?

9/20. Distortion. It should be noticed that falsification of a mes-
sage is not necessarily identical with the effect of noise. “If a par-
ticular transmitted signal always produces the same received
signal, i.e. the received signal is a definite function of the trans-
mitted signal, then the effect may be called distortion. If this func-
tion has an inverse—no two transmitted signals producing the
same received signal—distortion may be corrected, at least in
principle, by merely performing the inverse functional operation
on the received signal.” (Shannon.)

Ex. 1: Is the change by which the erect object falls on to the retina inverted a dis-
tortion or a corruption ?

Ex. 2: A tension applied to a muscle evokes a steady stream of impulses whose
frequency is not proportional to the tension. Is the deviation from propor-
tionality a distortion or a corruption?

Ex. 3: (Continued.) If the nerve carrying the impulses is subjected to alcohol
vapour of sufficient strength it will cease to conduct for all tensions. Is this
a distortion or a corruption?

9/21. Equivocation. A suitable measure for the degree of corrup-
tion has not, so far as I am aware, been developed for use in the
basic cases. In the case of the channel that transmits incessantly,
however, Shannon has developed the appropriate measure.

It is assumed first that both the original signals and the received
signals form Markov chains of the type defined in S.9/4. The data
of the messages can then be presented in a form which shows the
frequencies (or probabilities) with which all the possible combi-
nations of the vector (symbol sent, symbol received) occur. Thus,
to use an example of Shannon’s suppose 0’s and 1’s are being
sent, and that the probabilities (here relative frequencies) of the
symbols being received are:

Of every thousand symbols sent, ten arrive in the wrong form, an
error of one per cent.

At first sight this “one per cent wrong” might seem the natural

Symbol sent 0 0 1 1
Symbol received 0 1 0 1
Probability 0.495 0.005 0.005 0.495
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measure for the amount of information lost, but this interpretation
leads to nonsense. Thus if, in the same transmission, the line were
actually cut and the recipient simply tossed a coin to get a “mes-
sage” he would get about a half of the symbols right, yet no infor-
mation whatever would have been transmitted. Shannon has
shown conclusively that the natural measure is the equivocation,
which is calculated as follows.

First find the entropy over all possible classes:

– 0.495 log 0.495 – 0.005 log 0.005
– 0.005 log 0.005 – 0.495 log 0.495

Call this H1 it is 1.081 bits per symbol. Next collect together the
received signals, and their probabilities; this gives the table

Find its entropy:

– 0.5 log 0.5 – 0.5 log 0.5

Call this H2. It is 1.000 bits per symbol. Then the equivocation is
H1 – H2 : 0.081 bits per symbol.

The actual rate at which information is being transmitted,
allowance being made for the effect of noise, is the entropy of the
source, less the equivocation. The source here has entropy 1.000
bits per symbol, as follows from:

So the original amount supplied is 1.000 bits per symbol. Of this
0.919 gets through and 0.081 is destroyed by noise.

Ex. 1: What is the equivocation of the transmission of S.9/19, if all nine combi-
nations of letters occur, in the long run, with equal frequency?

Ex. 2: (Continued.) What happens to the equivocation if the first input uses only
the symbols B and C, so that the combinations BE, BF, BG, CE, CF, CG
occur with equal frequencies? Is the answer reasonable?

*Ex. 3: Prove the following rules, which are useful when we want to find the
value of the expression–p loga p, and p is either very small or very near to 1:

Symbol received 0 1
Probability 0.5 0.5

Symbol sent 0 1
Probability 0.5 0.5

(i)

(ii)

(iii)

If p xy, p palog– xy xalog yalog+( );–= =

If p 10
z–
, p palog–

z 10
z–×

a10log
-------------------;= =

If p is very close to 1, put 1p– q= , and p palog–
1

aelog
------------- q

q
2

2
-----– … 

 =
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Ex. 4: Find –p log2 p when p is 0.00025. (Hint: Write p as 2.5 × 10–4 and use (i)).

Ex. 5: During a blood count, lymphocytes and monocytes are being examined
under the microscope and discriminated by the haematologist. If he mistakes
one in every hundred lymphocytes for a monocyte, and one in every two
hundred monocytes for a lymphocyte, and if these cells occur in the blood in
the ratio of 19 lymphocytes to 1 monocyte, what is his equivocation? (Hint:
Use the results of the previous two exercises.)

9/22. Error-free transmission. We now come to Shannon’s funda-
mental theorem on the transmission of information in the presence
of noise (i.e. when other, irrelevant, inputs are active). It might be
thought that when messages are sent through a channel that sub-
jects each message to a definite chance of being altered at random,
then the possibility of receiving a message that is correct with cer-
tainty would be impossible. Shannon however has shown conclu-
sively that this view, however plausible, is mistaken. Reliable
messages can be transmitted over an unreliable channel. The
reader who finds this incredible must go to Shannon’s book for
the proof; here I state only the result.

Let the information to be transmitted be of quantity H, and sup-
pose the equivocation to be E, so that information of amount H–E
is received. (It is assumed, as in all Shannon’s book, that the trans-
mission is incessant.) What the theorem says is that if the channel
capacity be increased by an amount not less than E—by the provi-
sion perhaps of another channel in parallel—then it is possible so
to encode the messages that the fraction of errors still persisting
may be brought as near zero as one pleases. (The price of a very
small fraction of errors is delay in the transmission, for enough
message-symbols must accumulate to make the average of the
accumulated material approach the value of the average over all
time.)

Conversely, with less delay, one can still make the errors as few
as one pleases by increasing the channel capacity beyond the min-
imal quantity E.

The importance of this theorem can hardly be overestimated in
its contribution to our understanding of how an intricately con-
nected system such as the cerebral cortex can conduct messages
without each message gradually becoming so corrupted by error
and interference as to be useless. What the theorem says is that if
plenty of channel capacity is available then the errors may be
kept down to any level desired. Now in the brain, and especially
in the cortex there is little restriction in channel capacity, for
more can usually be obtained simply by the taking of more fibres,
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whether by growth in embryogeny or by some functional tak-
ing-over in learning.

The full impact of this theorem on neuropsychology has yet to
be felt. Its power lies not so much in its ability to solve the prob-
lem “How does the brain overcome the ever-increasing corruption
of its internal messages?” as in its showing that the problem
hardly arises, or that it is a minor, rather than a major, one.

The theorem illustrates another way in which cybernetics can
be useful in biology. Cybernetic methods may be decisive in the
treatment of certain difficult problems not by a direct winning of
the solution but by a demonstration that the problem is wrongly
conceived, or based on an erroneous assumption.

Some of today’s outstanding problems about the brain and
behaviour come to us from mediaeval and earlier times, when the
basic assumptions were very different and often, by today’s stand-
ards, ludicrously false. Some of these problems are probably
wrongly put, and are on a par with the problem, classic in medi-
aeval medicine: what are the relations between the four elements
and the four humours? This problem, be it noticed, was never
solved—what happened was that when chemists and pathologists
got to know more about the body they realised that they must
ignore it.

Some of our classic problems in the brain—perhaps some of
those relating to localisation, causation, and learning—may well
be found to be of this type. It seems likely that the new insight
given by cybernetics may enable us to advance to a better discrim-
ination; if this happens, it will dispose of some questions by a
clear demonstration that they should not be asked.



PART THREE

REGULATION AND CONTROL

The fourldation of all physiology must be the physiology
of permanence.

(Darlington)
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Chapter 10

REGULATION IN BIOLOGICAL 
SYSTEMS

10/1. The two previous Parts have treated of Mechanism (and the
processes within the system) and Variety (and the processes of
communication between system and system). These two subjects
had to be studied first, as they are fundamental. Now we shall use
them, and in Part III we shall study what is the central theme of
cybernetics —regulation and control.

This first chapter reviews the place of regulation in biology, and
shows briefly why it is of fundamental importance. It shows how
regulation is essentially related to the flow of variety. The next
chapter (11) studies this relation in more detail, and displays a
quantitative law—that the quantity of regulation that can be
achieved is bounded by the quantity of information that can be
transmitted in a certain channel. The next chapter (12) takes up the
question of how the abstract principles of chapter 11 are to be
embodied—what sort of machinery can perform what is wanted.
This chapter introduces a new sort of machine, the Markovian,
which extends the possibilities considered in Part I. The remain-
ing chapters consider the achievement of regulation and control as
the difficulties increase, particularly those that arise when the sys-
tem becomes very large.

At first, in Part III, we will assume that the regulator is already
provided, either by being inborn, by being specially made by a
manufacturer, or by some other means. The question of what
made the regulator, of how the regulator, which does such useful
things, came itself to be made will be taken up at S.13/10.

10/2. The present chapter aims primarily at supplying motive to
the reader, by showing that the subjects discussed in the later
chapters (11 onwards) are of fundamental importance in biology.
The subject of regulation in biology is so vast that no single chap-
ter can do it justice. Cannon’s Wisdom of the Body treated it ade-
quately so far as internal, vegetative activities are concerned, but
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there has yet to be written the book, much larger in size, that shall
show how all the organism’s exteriorly-directed activities—its
“higher” activities—are all similarly regulatory, i.e. homeostatic.
In this chapter I have had to leave much of this to the reader’s
imagination, trusting that, as a biologist, he will probably already
be sufficiently familiar with the thesis. The thesis in any case has
been discussed to some extent in Design for a Brain.

The chief purpose of this chapter is to tie together the concepts
of regulation, information, and survival, to show how intimately
they are related, and to show how all three can be treated by a
method that is entirely uniform with what has gone before in the
book, and that can be made as rigorous, objective, and unambig-
uous as one pleases.

10/3. The foundation. Let us start at the beginning. The most basic
facts in biology are that this earth is now two thousand million
years old, and that the biologist studies mostly that which exists
today. From these two facts follow a well-known deduction,
which I would like to restate in our terms.

We saw in S.4/23 that if a dynamic system is large and com-
posed of parts with much repetition, and if it contains any prop-
erty that is autocatalytic, i.e. whose occurrence at one point
increases the probability that it will occur again at another point,
then such a system is, so far as that property is concerned, essen-
tially unstable in its absence. This earth contained carbon and
other necessary elements, and it is a fact that many combinations
of carbon, nitrogen, and a few others are self-reproducing. It fol-
lows that though the state of “being lifeless” is almost a state of
equilibrium, yet this equilibrium is unstable (S.5/6), a single devi-
ation from it being sufficient to start a trajectory that deviates
more and more from the “lifeless” state. What we see today in the
biological world are these “autocatalytic” processes showing all
the peculiarities that have been imposed on them by two thousand
million years of elimination of those forms that cannot survive.

The organisms we see today are deeply marked by the selective
action of two thousand million years’ attrition. Any form in any
way defective in its power of survival has been eliminated; and
today the features of almost every form bear the marks of being
adapted to ensure survival rather than any other possible outcome.
Eyes, roots, cilia, shells and claws are so fashioned as to maximise
the chance of survival. And when we study the brain we are again
studying a means to survival.
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10/4. What has just been said is well enough known. It enables us,
however, to join these facts on to the ideas developed in this book
and to show the connexion exactly.

For consider what is meant, in general, by “survival”. Suppose
a mouse is trying to escape from a cat, so that the survival of the
mouse is in question. As a dynamic system, the mouse can be in
a variety of states; thus it can be in various postures, its head can
be turned this way or that, its temperature can have various val-
ues, it may have two ears or one. These different states may occur
during its attempt to escape and it may still be said to have sur-
vived. On the other hand if the mouse changes to the state in
which it is in four separated pieces, or has lost its head, or has
become a solution of amino-acids circulating in the cat’s blood
then we do not consider its arrival at one of these states as corre-
sponding to “survival”.

The concept of “survival” can thus be translated into perfectly
rigorous terms, similar to those used throughout the book. The
various states (M for Mouse) that the mouse may be in initially
and that it may pass into after the affair with the cat is a set M1,
M2, …, Mk, …, Mn. We decide that, for various reasons of what is
practical and convenient, we shall restrict the words “living
mouse” to mean the mouse in one of the states in some subset of
these possibilities, in M1 to Mk say. If now some operation C (for
cat) acts on the mouse in state Mi, and C(Mi) gives, say, M2, then
we may say that M has “survived” the operation of C, for M2  is in
the set M1, … Mk.

If now a particular mouse is very skilled and always survives
the operation C, then all the states C(M1), C(M2), …, C(Mk), are
contained in the set M1, …, Mk. We now see that this representa-
tion of survival is identical with that of the “stability” of a set (S.5/
5). Thus the concepts of “survival” and “stability” can be brought
into an exact relationship; and facts and theorems about either can
be used with the other, provided the exactness is sustained.

The states M are often defined in terms of variables. The states
M1, …, Mk, that correspond to the living organism are then those
states in which certain essential variables are kept within
assigned (“physiological”) limits.

Ex. 1: If n is 10 and k is 5, what would the operation C(M7) = M9 correspond
to?

Ex. 2: (Continued.) What would the operation C(M8) = M4 correspond to? 
Ex. 3: What would be an appropriate definition of “lethal”, if C’s attack were

invariably fatal to M?
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10/5. What is it survives, over the ages ? Not the individual organ-
ism, but certain peculiarly well compounded gene-patterns, par-
ticularly those that lead to the production of an individual that
carries the gene-pattern well protected within itself, and that,
within the span of one generation, can look after itself.

What this means is that those gene-patterns are specially likely
to survive (and therefore to exist today) that cause to grow,
between themselves and the dangerous world, some more or less
elaborate mechanism for defence. So the genes in Testudo cause
the growth of a shell; and the genes in Homo cause the growth of
a brain. (The genes that did not cause such growths have long
since been eliminated.)
Now regard the system as one of parts in communication. In the
previous section the diagram of immediate effects (of cat and
mouse) was (or could be regarded as)

We are now considering the case in which the diagram is

in which E is the set of essential variables, D is the source of dis-
turbance and dangers (such as C) from the rest of the world, and
F is the interpolated part (shell, brain, etc.) formed by the gene-
pattern for the protection of E. (F may also include such parts of
the environment as may similarly be used for E’s protection—
burrow for rabbit, shell for hermit-crab, pike for pike-man, and
sword (as defence) for swordsman.)

For convenience in reference throughout Part III, let the states
of the essential variables E be divided into a set η∇ those that cor-
respond to “organism living” or “good”—and not-η∇ those that
correspond to “organism not living” or “bad”. (Often the classifi-
cation cannot be as simple as this, but no difficulty will occur in
principle; nothing to be said excludes the possibility of a finer
classification.)

To make the assumptions clear, here are some simple cases, as
illustration. (Inanimate regulatory systems are given first for sim-
plicity.)

(1) The thermostatically-controlled water-bath. E is its temper-
ature, and what is desired (η) is the temperature range between,
say 36° and 37°C. D is the set of all the disturbances that may
drive the temperature outside that range—addition of cold water,
cold draughts blowing, immersion of cold objects, etc. F is the

C → M

D → F → E
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whole regulatory machinery. F, by its action, tends to lessen the
effect of D on E.

(2) The automatic pilot. E is a vector with three components—
yaw, pitch, and roll—and η is the set of positions in which these
three are all within certain limits. D is the set of disturbances that
may affect these variables, such as gusts of wind, movements of
the passengers in the plane, and irregularities in the thrusts of the
engines. F is the whole machinery—pilot, ailerons, rudder, etc.—
whose action determines how D shall affect E.

(3) The bicycle rider. E is chiefly his angle with the vertical. ,1
is the set of small permissible deviations. D is the set of those dis-
turbances that threaten to make the deviation become large. F is
the whole machinery—mechanical, anatomical, neuronic—that
determines what the effect of D is on E.

Many other examples will occur later. Meanwhile we can sum-
marise by saying that natural selection favours those gene-pat-
terns that get, in whatever way, a regulator F between the
disturbances D and the essential variables E. Other things being
equal, the better F is as a regulator, the larger the organism’s
chance of survival.

Ex.: What variables are kept within limits by the following regulatory mecha-
nisms: (i) the air-conditioner; (ii) the climber’s oxygen supply; (iii) the wind-
screen-wiper; (iv) the headlights of a car; (v) the kitchen refrigerator; (vi) the
phototaxic plant; (vii) sun-glasses; (viii) the flexion reflex (a quick lifting of
the foot evoked by treading on a sharp stone); (ix) blinking when an object
approaches the eye quickly; (x) predictor for anti-aircraft gunfire.

10/6. Regulation blocks the flow of variety. On what scale can any
particular mechanism F be measured for its value or success as a
regulator ? The perfect thermostat would be one that, in spite of
disturbance, kept the temperature constant at the desired level. In
general, there are two characteristics required: the maintenance of
the temperature within close limits, and the correspondence of
this range with the desired one. What we must notice in particular
is that the set of permissible values, η, has less variety than the set
of all possible values in E; for η is some set selected from the
states of E. If F is a regulator, the insertion of F between D and E
lessens the variety that is transmitted from D to E. Thus an essen-
tial function of F as a regulator is that it shall block the transmis-
sion of variety from disturbance to essential variable.

Since this characteristic also implies that the regulator’s func-
tion is to block the flow of information, let us look at the thesis
more closely to see whether it is reasonable.

Suppose that two water-baths are offered me, and I want to
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decide which to buy. I test each for a day against similar distur-
bances and then look at the records of the temperatures; they are
as in Fig. 10/6/1:

There is no doubt that Model B is the better; and I decide this pre-
cisely because its record gives me no information, as does A’s,
about what disturbances, of heat or cold, came to it. The thermom-
eter and water in bath B have been unable, as it were, to see any-
thing of the disturbances D.

The same argument will apply, with obvious modifications, to
the automatic pilot. If it is a good regulator the passengers will
have a smooth flight whatever the gustiness outside. They will, in
short, be prevented from knowing whether or not it is gusty out-
side. Thus a good pilot acts as a barrier against the transmission
of that information.

The same argument applies to an air-conditioner. If I live in an
air-conditioned room, and can tell, by the hotness of the room,
that it is getting hot outside, then that conditioner is failing as a
regulator. If it is really good, and the blinds are drawn, I shall be
unable to form any idea of what the outside weather is like. The
good conditioner blocks the flow inwards of information about
the weather.

The same thesis applies to the higher regulations achieved by
such activities as hunting for food, and earning one’s daily bread.
Thus while the unskilled hunter or earner, in difficult times, will
starve and will force his liver and tissues (the essential variables)
to extreme and perhaps unphysiological states, the skilled hunter
or earner will go through the same difficult times with his liver
and tissues never taken to extremes. In other words, his skill as a
regulator is shown by the fact, among others, that it prevents

Fig. 10/6/1
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information about the times reaching the essential variables. In
the same way, the skilled provider for a family may go through
difficult times without his family realising that anything unusual
has happened. The family of an unskilled provider would have
discovered it.

In general, then, an essential feature of the good regulator is
that it blocks the flow of variety from disturbances to essential
variables.

10/7. The blocking may take place in a variety of ways, which
prove, however, on closer examination to be fundamentally the
same. Two extreme forms will illustrate the range.

One way of blocking the flow (from the source of disturbance
D to the essential variable E) is to interpose something that acts as
a simple passive block to the disturbances. Such is the tortoise’s
shell, which reduces a variety of impacts, blows, bites, etc. to a
negligible disturbance of the sensitive tissues within. In the same
class are the tree’s bark, the seal’s coat of blubber, and the human
skull.

At the other extreme from this static defence is the defence by
skilled counter-action—the defence that gets information about
the disturbance to come, prepares for its arrival, and then meets
the disturbance, which may be complex and mobile, with a
defence that is equally complex and mobile. This is the defence of
the fencer, in some deadly duel, who wears no armour and who
trusts to his skill in parrying. This is the defence used mostly by
the higher organisms, who have developed a nervous system pre-
cisely for the carrying out of this method.

When considering this second form we should be careful to
notice the part played by information and variety in the process.
The fencer must watch his opponent closely, and he must gain
information in all ways possible if he is to survive. For this pur-
pose he is born with eyes, and for this purpose he learns how to
use them. Nevertheless, the end result of this skill, if successful,
is shown by his essential variables, such as his blood-volume,
remaining within normal limits, much as if the duel had not
occurred. Information flows freely to the non-essential variables,
but the variety in the distinction “duel or no-duel” has been pre-
vented from reaching the essential variables.

Through the remaining chapters we shall be considering this
type of active defence, asking such questions as: what principles
must govern it? What mechanisms can achieve it? And, what is to
be done when the regulation is very difficult?
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REQUISITE VARIETY

11/1. In the previous chapter we considered regulation from the
biological point of view, taking it as something sufficiently well
understood. In this chapter we shall examine the process of regu-
lation itself, with the aim of finding out exactly what is involved
and implied. In particular we shall develop ways of measuring the
amount or degree of regulation achieved, and we shall show that
this amount has an upper limit.

11/2. The subject of regulation is very wide in its applications,
covering as it does most of the activities in physiology, sociology,
ecology, economics, and much of the activities in almost every
branch of science and life. Further, the types of regulator that exist
are almost bewildering in their variety. One way of treating the
subject would be to deal seriatim with the various types, and chap-
ter 12 will, in fact, indicate them. In this chapter, however, we
shall be attempting to get at the core of the subject—to find what
is common to all.

What is common to all regulators, however, is not, at first sight
much like any particular form. We will therefore start anew in the
next section, making no explicit reference to what has gone
before. Only after the new subject has been sufficiently developed
will we beam to consider any relation it may have to regulation.

11/3. Play and outcome. Let us therefore forget all about regula-
tion and simply suppose that we are watching two players, R and
D, who are engaged in a game. We shall follow the fortunes of R,
who is attempting to score an a. The rules are as follows. They
have before them Table 11/3/1, which can be seen by both:

Table 11/3/l
R

α β γ

D
1 b a c
2 a c b
3 c b a
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D must play first, by selecting a number, and thus a particular row.
R, knowing this number, then selects a Greek letter, and thus a
particular column. The italic letter specified by the intersection of
the row and column is the outcome. If it is an a, R wins; if not, R
loses.

Examination of the table soon shows that with this particular
table R can win always. Whatever value D selects first, R can
always select a Greek letter that will give the desired outcome.
Thus if D selects 1, R selects β; if D selects 2, R selects α; and so
on. In fact, if R acts according to the transformation

then he can always force the outcome to be a.
R’s position, with this particular table, is peculiarly favourable,

for not only can R always force a as the outcome, but he can as
readily force, if desired, b or c as the outcome. R has, in fact, com-
plete control of the outcome.

Ex. 1: What transformation should R use to force c as outcome?
Ex. 2: If both R’s and D’s values are integers, and the outcome E is also an inte-

ger, given by
E = R – 2D,

find an expression to give R in terms of D when the desired outcome is 37. 
Ex. 3: A car’s back wheels are skidding. D is the variable “Side to which the tail

is moving”, with two values, Right and Left. R is the driver’s action “Direc-
tion in which he turns the steering wheel” with two values, Right and Left.
Form the 2 x 2 table and fill in the outcomes.

Ex. 4: If R’s play is determined by D’s in accordance with the transformation

and many games are observed, what will be the variety in the many outcomes? 
Ex. 5: Has R complete control of the outcome if the table is triunique?

11/4. The Table used above is, of course, peculiarly favourable to
R. Other Tables are, however, possible. Thus, suppose D and R,
playing on the same rules, are now given Table 11/4/1 in which D
now has a choice of five, and R a choice of four moves.

If a is the target, R can always win. In fact, if D selects 3, R has
several ways of winning. As every row has at least one a, R can
always force the appearance of a as the outcome. On the other
hand, if the target is b he cannot always win. For if D selects 3,
there is no move by R that will give b as the outcome. And if the
target is c, R is quite helpless, for D wins always.

↓ 1 2 3
β α γ

↓ 1 2 3
β α γ
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It will be seen that different arrangements within the table, and
different numbers of states available to D and R, can give rise to
a variety of situations from the point of view of R.

Ex. 1: With Table I l /4/ l, can R always win if the target is d? 
Ex. 2: (Continued.) What transformation should R use?
Ex. 3: (Continued.) If a is the target and D, for some reason, never plays 5, how

can R simplify his method of play?
Ex. 4: A guest is coming to dinner, but the butler does not know who. He knows

only that it may be Mr. A, who drinks only sherry or wine, Mrs. B, who
drinks only gin or brandy, or Mr. C, who drinks only red wine, brandy or
sherry. In the cellar he finds he has only whisky, gin, and sherry. Can he find
something acceptable to the guest, whoever comes ?

11/5. Can any general statement be made about R’s modes of play
and prospects of success ?

If full generality is allowed in the Table, the possibilities are so
many, arbitrary and complicated that little can be said. There is
one type, however, that allows a precise statement and is at the
same time sufficiently general to be of interest. (It is also funda-
mental in the theory of regulation.)

From all possible tables let us eliminate those that make R’s
game too easy to be of interest. Ex. 11/4/3 showed that if a column
contains repetitions, R’s play need not be discriminating; that is,
R need not change his move with each change of D’s move. Let
us consider, then, only those tables in which no column contains
a repeated outcome. When this is so R must select his move on full
knowledge of D’s move; i.e. any change of D’s move must require
a change on R’s part. (Nothing is assumed here about how the out-
comes in one column are related to those in another, so these rela-
tions are unrestricted.) Such a Table is 11/5/1. Now, some target
being given, let R specify what his move will be for each move by
D. What is essential is that, win or lose, he must specify one and

Table 11/4/l
R

α β γ δ

D

1 b d a a
2 a d a d
3 d a a a
4 d b a b
5 d a b d

205

REQUISITE VARIETY

only one move in response to each possible move of D. His spec-
ification, or “strategy” as it might be called, might appear:

He is, of course, specifying a transformation (which must be sin-
glevalued, as R may not make two moves simultaneously):

This transformation uniquely specifies a set of outcomes—
those that will actually occur if D, over a sequence of plays,
includes every possible move at least once. For 1 and γ give the
outcome k, and so on, leading to the transformation:

It can now be stated that the variety in this set of outcomes cannot
be less than

i.e., in this case, 9/3.
It is easily proved. Suppose R marks one element in each row

and concentrates simply on keeping the variety of the marked ele-

Table 11/5/l

R
α β γ

D

1 f f k
2 k e f
3 m k a
4 b b b
5 c q c
6 h h m
7 j d d
8 a p j
9 l n h

If D selects 1, I shall selectγ
,, ,, ,, 2, ,, ,, ,, α
,, ,, ,, 3, ,, ,, ,, β

… …
,, ,, ,, 9, ,, ,, ,, α

↓ 1 2 3 … 9
γ α β … α

↓ (1,γ) (2,α) (3,β) … (9,α)
k k k … l

D ’s variety
R ’s variety

----------------------------
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ments as small as possible (ignoring for the moment any idea of a
target). He marks an element in the first row. In the second row he
must change to a new column if he is not to increase the variety
by adding a new, different, element; for in the initially selected
column the elements are all different, by hypothesis. To keep the
variety down to one element he must change to a new column at
each row. (This is the best he can do; it may be that change from
column to column is not sufficient to keep the variety down to one
element, but this is irrelevant, for we are interested only in what
is the least possible variety, assuming that everything falls as
favourably as possible). So if R has n moves available (three in the
example), at the n-th row all the columns are used, so one of the
columns must be used again for the next row, and a new outcome
must be allowed into the set of outcomes. Thus in Table 11/5/1,
selection of the k’s in the first three rows will enable the variety
to be kept to one element, but at the fourth row a second element
must be allowed into the set of outcomes.

In general: If no two elements in the same column are equal,
and if a set of outcomes is selected by R, one from each row, and
if the table has r rows and c columns, then the variety in the
selected set of outcomes cannot be fewer than r/c.

THE LAW OF REQUISITE VARIETY

11/6. We can now look at this game (still with the restriction that
no element may be repeated in a column) from a slightly different
point of view. If R, S move is unvarying, so that he produces the
same move, whatever D, S move, then the variety in the outcomes
will be as large as the variety in D’S moves. D now is, as it were,
exerting full control over the outcomes.

If next R uses, or has available, two moves, then the variety of
the outcomes can be reduced to a half (but not lower). If R has
three moves, it can be reduced to a third (but not lower); and so
on. Thus if the variety in the outcomes is to be reduced to some
assigned number, or assigned fraction of D, S variety, R, S variety
must be increased to at least the appropriate minimum. Only vari-
ety in R, S moves can force down the variety in the outcomes.

11/7. If the varieties are measured logarithmically (as is almost
always convenient), and if the same conditions hold, then the the-
orem takes a very simple form. Let VD be the variety of D, VR that
of R, and VO that of the outcome (all measured logarithmically).
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Then the previous section has proved that VO cannot be less,
numerically, than the value of VD – VR. Thus VO’s minimum is VD
– VR.

If VD  is  given and fixed, VD – VR can be lessened only by a cor-
responding increase in VR. Thus the variety in the outcomes, if
minimal, can be decreased further only by a corresponding
increase in that of R. (A more general statement is given in S.11/9.)

This is the law of Requisite Variety. To put it more pictur-
esquely: only variety in R can force down the variety due to D;
variety can destroy variety.

This thesis is so fundamental in the general theory of regulation
that I shall give some further illustrations and proofs before turn-
ing to consider its actual application.

11/8. (This section can be omitted at first reading.) The law is of
very general applicability, and by no means just a trivial outcome
of the tabular form. To show that this is so, what is essentially the
same theorem will be proved in the case when the variety is spread
out in time and the fluctuation incessant—the case specially con-
sidered by Shannon. (The notation and concepts in this section are
those of Shannon’s book.)

Let D, R, and E be three variables, such that each is an informa-
tion source, though “source” here is not to imply that they are act-
ing independently. Without any regard for how they are related
causally, a variety of entropies can be calculated, or measured
empirically. There is H(D,R,E), the entropy of the vector that has
the three as components; there is HD (E), the uncertainty in E
when D, S state is known; there is HED (R), the uncertainty in R
when both E and D are known; and so on.

The condition introduced in S.11/5 (that no element shall occur
twice in a column) here corresponds to the condition that if R is
fixed, or given, the entropy of E (corresponding to that of the out-
come) is not to be less than that of D, i.e.

HR (E) > HR (D)

Now whatever the causal or other relations between D, R and E,
algebraic necessity requires that their entropies must be related so
that

H(D) + HD (R) = H(R) + HR (D)
for each side of the equation equals H(R,D). Substitute HR(E)  for
HR(D), and we get

H(D) + HD (R) < H(R) + HR (E)
< H(R,E).
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But always, by algebraic necessity,

H(R, E)< H(R) + H(E)
so H(D) + HD (R) < H(R) + HR (E)
i. e. H(E) > H(D) + HD (E) – H(R).

Thus the entropy of the E’s has a certain minimum. If this mini-
mum is to be affected by a relation between the D- and R-sources,
it can be made least when HD(R) = 0, i.e. when R is a determinate
function of D. When this is so, then H(E)’s minimum is H(D) –
H(R), a deduction similar to that of the previous section. It says
simply that the minimal value of E’s entropy can be forced down
below that of D only by an equal increase in that of R.

11/9. The theorems just established can easily be modified to give
a worth-while extension.

Consider the case when, even when R does nothing (i.e. pro-
duces the same move whatever D does) the variety of outcome is
less than that of D. This is the case in Table 11/4/1. Thus if R gives
the reply α to all D’s moves, then the outcomes are a, b or d— a
variety of three, less than D’s variety of five. To get a manageable
calculation, suppose that within each column each element is now
repeated k times (instead of the “once only” of S.11/5). The same
argument as before, modified in that kn rows may provide only
one outcome, leads to the theorem that

VO > VD – log k – log VR ,

in which the varieties are measured logarithmically.
An exactly similar modification may be made to the theorem in

terms of entropies, by supposing, not as in S.11/8 that

HR (E) > HR (D), but that
HR (E) > HR (D) – K.

H(E)’s minimum then becomes

H(D) – K – H(R),

with a similar interpretation.

11/10. The law states that certain events are impossible. It is
important that we should be clear as to the origin of the impossi-
bility. Thus, what has the statement to fear from experiment?

It has nothing to do with the properties of matter. So if the law
is stated in the form “No machine can …”, it is not to be over-
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thrown by the invention of some new device or some new elec-
tronic circuit, or the discovery of some new element. It does not
even have anything to do with the properties of the machine in the
general sense of Chapter 4; for it comes from the Table, such as
that of S.11/4; this Table says simply that certain D-R combina-
tions lead to certain outcomes, but is quite independent of what-
ever it is that determines the outcome. Experiments can only
provide such tables.

The theorem is primarily a statement about possible arrange-
ments in a rectangular table. It says that certain types of arrange-
ment cannot be made. It is thus no more dependent on special
properties of machines than is, say, the “theorem” that four
objects can be arranged to form a square while three can not. The
law therefore owes nothing to experiment.

11/11. Regulation again. We can now take up again the subject of
regulation, ignored since the beginning of this chapter, for the law
of Requisite Variety enables us to apply a measure to regulation.
I et us go back and reconsider what is meant, essentially, by “reg-
ulation”.

There is first a set of disturbances D, that start in the world out-
side the organism, often far from it, and that threaten, if the regu-
lator R does nothing, to drive the essential variables E outside
their proper range of values. The values of E correspond to the
“outcomes” of the previous sections. Of all these E-values only a
few (η) are compatible with the organism’s life, or are unobjec-
tionable, so that the regulator R, to be successful, must take its
value in a way so related to that of D that the outcome is, if possi-
ble, always within the acceptable set 17, i.e. within physiological
limits. Regulation is thus related fundamentally to the game of
S.11/4. Let us trace the relation in more detail.

The Table T is first assumed to be given. It is the hard external
world, or those internal matters that the would-be regulator has to
take for granted. Now starts a process. D takes an arbitrary value,
R takes some value determined by D’s value, the Table deter-
mines an outcome, and this either is or is not in η. Usually the
process is repeated, as when a water-bath deals, during the day,
with various disturbances. Then another value is taken by D,
another by R, another outcome occurs, and this also may be either
in η or not. And so on. If R is a well-made regulator—one that
works successfully—then R is such a transformation of D that all
the outcomes fall within η. In this case R and T together are act-
ing as the barrier F (S.10/5.)
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We can now show these relations by the diagram of immediate
effects:

The arrows represent actual channels of communication. For the
variety in D determines the variety in R, and that in T is deter-
mined by that in both D and R. If R and T are in fact actual
machines, then R has an input from D, and T has two inputs.

(When R and T are embodied in actual machines, care must be
taken that we are clear about what we are referring to. If some
machine is providing the basis for T, it will have (by S.4/1) a set
of states that occur step by step. These states, and these steps, are
essentially independent of the discrete steps that we have consid-
ered to be taken by D, R, and T in this chapter. Thus, T gives the
outcome, and any particular outcome may be compared with
another, as unit with unit. Each individual outcome may, how-
ever, in another context, be analysed more finely. Thus a thirsty
organism may follow trajectory 1 and get relief, or trajectory 2
and die of thirst. For some purposes the two outcomes can be
treated as units, particularly if they are to be contrasted. If how-
ever we want to investigate the behaviour in more detail, we can
regard trajectory 1 as composed of a sequence of states, separated
by steps in time that are of quite a different order of size from
those between successive regulatory acts to successive distur-
bances.)

We can now interpret the general phenomenon of regulation in
terms of communication. If R does nothing, i.e. keeps to one
value, then the variety in D threatens to go through T to E, con-
trary to what is wanted. It may happen that T, without change by
R, will block some of the variety (S.11/9), and occasionally this
blocking may give sufficient constancy at E for survival. More
commonly, a further suppression at E is necessary; it can be
achieved, as we saw in S.11/6, only by further variety at R.

We can now select a portion of the diagram, and focus attention
on R as a transmitter:

T

D E

R

D → R → T
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The law of Requisite Variety says that R’s capacity as a regulator
cannot exceed R’s capacity as a channel of communication.

In the form just given, the law of Requisite Variety can be
shown in exact relation to Shannon’s Theorem 10, which says that
if noise appears in a message, the amount of noise that can be
removed by a correction channel is limited to the amount of infor-
mation that can be carried by that channel.

Thus, his “noise” corresponds to our “disturbance”, his “correc-
tion channel” to our “regulator R” , and his “message of entropy
H” becomes, in our case, a message of entropy zero, for it is con-
stancy that is to be “transmitted”. Thus the use of a regulator to
achieve homeostasis and the use of a correction channel to sup-
press noise are homologous.

Ex. 1: A certain insect has an optic nerve of a hundred fibres, each of which can
carry twenty bits per second; is this sufficient to enable it to defend itself
against ten distinct dangers, each of which may, or may not, independently,
be present in each second?

Ex. 2: A ship’s telegraph from bridge to engine-room can determine one of nine
speeds not oftener than one signal in five seconds, and the wheel can deter-
mine one of fifty rudder-positions in each second. Since experience has
shown that this means of control is normally sufficient for full regulation,
estimate a normal upper limit for the disturbances (gusts, traffic, shoals, etc.)
that threaten the ship’s safety.

Ex. 3: A general is opposed by an army of ten divisions, each of which may
manoeuvre with a variety of 106 bits in each day. His intelligence comes
through 10 signallers, each of whom can transmit 60 letters per minute for 8
hours in each day, in a code that transmits 2 bits per letter. Is his intelli-
gence-channel sufficient for him to be able to achieve complete regulation?

Ex. 4: (Continued.) The general can dictate orders at 500 bits/minute for 12
hours/day. If his Intelligence were complete, would this verbal channel be
sufficient for complete regulation ?

11/12. The diagram of immediate effects given in the previous
section is clearly related to the formulation for “directive correla-
tion” given by Sommerhoff, who, in his Analytical Biology, uses
the diagram

Rt1

Gt2

Et1

CVo

t0 t1 t2
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If I am not misinterpreting him, his concepts and those used here
are equivalent thus:

Coenetic variable (CVo) ↔ Disturbance (D)
Response (Rt1) ↔ Response (R)

Environmental circumstances (Et1) ↔ Table (T)
Subsequent occurrence (Gt2) ↔ Outcome (E)

A reading of his book may thus help to extend much of the theory
given in this Part, for he discusses the subject extensively.

11/13. The law now enables us to see the relations existing
between the various types of variety and information that affect
the living organism.

A species continues to exist (S.10/14) primarily because its
members can block the flow of variety (thought of as disturbance)
to the gene-pattern (S.10/6), and this blockage is the species’ most
fundamental need. Natural selection has shown the advantage to
be gained by taking a large amount of variety (as information)
partly into the system (so that it does not reach the gene-pattern)
and then using this information so that the flow via R blocks the
flow through the environment T.

This point of view enables us to resolve what might at first seem
a paradox—that the higher organisms have sensitive skins,
responsive nervous systems, and often an instinct that impels
them, in play or curiosity, to bring more variety to the system than
is immediately necessary. Would not their chance of survival be
improved by an avoidance of this variety?

The discussion in this chapter has shown that variety (whether
information or disturbance) comes to the organism in two forms.
There is that which threatens the survival of the gene-pattern—the
direct transmission by T from D to E. This part must be blocked
at all costs. And there is that which, while it may threaten the
gene-pattern, can be transformed (or re-coded) through the regu-
lator R and used to block the effect of the remainder (in T). This
information is useful, and should (if the regulator can be pro-
vided) be made as large as possible; for, by the law of Requisite
Variety, the amount of disturbance that reaches the gene-pattern
can be diminished only by the amount of information so transmit-
ted. That is the importance of the law in biology.

It is also of importance to us as we make our way towards the
last chapter. In its elementary forms the law is intuitively obvious
and hardly deserving statement. If, for instance, a press photogra-
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pher  would deal with twenty subjects that are (for exposure and
distance) distinct, then his camera must obviously be capable of
at least twenty distinct settings if all the negatives are to be
brought to a uniform density and sharpness. Where the law, in its
quantitative form, develops its power is when we come to con-
sider the system in which these matters are not so obvious, and
particularly when it is very large. Thus, by how much can a dicta-
tor control a country? It is commonly said that Hitler’s control
over Germany was total. So far as his power of regulation (in the
sense of S.10/6) was concerned, the law says that his control
amounted to just 1 man-power, and no more. (Whether this state-
ment is true must be tested by the future; its chief virtue now is
that it is exact and uncompromising.) Thus the law, though trite in
the simple cases, can give real guidance in those cases that are
much too complex to be handled by unaided intuition.

CONTROL

11/14. The formulations given in this chapter have already sug-
gested that regulation and control are intimately related. Thus, in
S.11/3, Table 11/3/1 enables R not only to achieve a as outcome
in spite of all D’s variations; but equally to achieve b or c at will.

We can look at the situation in another way. Suppose the deci-
sion of what outcome is to be the target is made by some control-
ler, C, whom R must obey. C’s decision will affect R’s choice of
α, β or γ; so the diagram of immediate effects is

Thus the whole represents a system with two independent inputs,
C and D.

Suppose now that R is a perfect regulator. If C sets a as the tar-
get, then (through R’s agency) E will take the value a, whatever
value D may take. Similarly, if C sets b as target, b will appear as
outcome whatever value D may take. And so on. And if C sets a
particular sequence—a, b, a. c, c, a, say—as sequential or com-
pound target, then that sequence will be produced, regardless of
D’s values during the sequence. (It is assumed for convenience
that the components move in step.) Thus the fact that R is a perfect

D → T → E

C → R
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regulator gives C complete control over the output, in spite of the
entrance of disturbing effects by way of D. Thus, perfect regula-
tion of the outcome by R makes possible a complete control over
the outcome by C.

We can see the same facts from yet another point of view. If an
attempt at control, by C over E:

is disturbed or made noisy by another, independent, input D, so
that the connexions are

then a suitable regulator R, taking information from both C and D,
and interposed between C and T:

may be able to form, with T, a compound channel to E that trans-
mits fully from C while transmitting nothing from D.

The achievement of control may thus depend necessarily on the
achievement of regulation. The two are thus intimately related.

Ex. 1: From Table 31/3/l form the set of transformations, with c as parameter,
that must be used by R if C is to have complete control over the outcome.
(Hint: What are the operands?)

Ex. 2: If, in the last diagram of this section, C wants to transmit to E at 20 bits/
second, and a source D is providing noise at 5 bits/second, and T is such
that if R is constant, E will vary at 2 bits/second, how much capacity must
the channel from D to R have (at least) if C s control over E is to be
complete?

Ex. 3: (Continued.) How much capacity (at least) is necessary along the channel
from C to R ?

Ex. 4: (Continued.) How much along that from R to T?

C → E

D D

E or T → E

C C

D → T → E
↑

C → R
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11/15. In our treatment of regulation the emphasis has fallen on its
property of reducing the variety in the outcome; without regula-
tion the variety is large—with regulation it is small. The limit of
this reduction is the regulation that holds the outcome rigorously
constant. This point of view is undoubtedly valid, but at first it
may seem to contrast sharply with the naive view that living
organisms are, in general, anything but immobile. A few words,
in addition to what was said in S.11/13, may be useful.

It should be appreciated that the distinction between “constant”
and “varying” often depends on the exact definition of what is
being referred to. Thus if a searchlight follows an aircraft accu-
rately we may notice either that the searchlight moved through a
great range of angles (angles in relation to the earth) or that the
angle it made with the aircraft remained constant at zero. Obvi-
ously both points of view are valid; there is no real contradiction
in this example between “great range” and “constant”, for they
refer to different variables.

Again, the driver who steers a car accurately from one town to
another along a winding lane can be regarded either as one who
has caused the steering wheel to show much activity and change
or as one who, throughout the trip, has kept the distance between
car and verge almost constant.

Many of the activities of living organisms permit this double
aspect. On the one hand the observer can notice the great deal of
actual movement and change that occurs, and on the other hand he
can observe that throughout these activities, so far as they are co-
ordinated or homeostatic, there are invariants and constancies that
show the degree of regulation that is being achieved.

Many variations are possible on the same theme. Thus if varia-
ble x is always doing just the same as variable y, then the quantity
x – y is constant at zero. So if y’s values are given by some outside
factor, any regulator that acts on x so as to keep x – y constant at
zero is in fact forcing x to vary, copying y. Similarly, “making x
do the opposite to y” corresponds to “keeping x + y at some con-
stant value”. And “make the variable w change so that it is always
just twice as large as v’s (fluctuating) rate of change” corresponds
to “keep the quantity w – 2dv/dt constant”.

It is a great convenience in exposition and in the processes of
general theory to be able to treat all “targets” as if they were of the
form “keep the outcome constant at a”. The reader must, however,
not be misled into thinking that the theory beat’ only of immobil-
ity; he must accustom himself to interchanging the corresponding
concepts freely.
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SOME VARIATIONS

11/16. In S.11/4 the essential facts implied by regulation were
shown as a simple rectangular table, as if it were a game between
two players D and R. The reader may feel that this formulation is
much too simple and that there are well known regulations that it
is insufficient to represent. The formulation, however, is really
much more general than it seems, and in the remaining sections of
this chapter we shall examine various complications that prove,
on closer examination, to be really included in the basic formula-
tion of S.11/4.

11/17. Compound disturbance. The basic formulation of S.11/4
included only one source of disturbance D, and thus seems, at first
sight, not to include all those cases, innumerable in the biological
world, in which the regulation has to be conducted against several
disturbances coming simultaneously by several channels. Thus, a
cyclist often has to deal both with obstructions due to traffic and
with disequilibrations due to gusts.

In fact, however, this case is included; for nothing in this chap-
ter excludes the possibility that D may be a vector, with any
number of components. A vectorial D is thus able to represent all
such compound disturbances within the basic formulation.

11/18. Noise. A related case occurs when T is “noisy”—when T
has an extra input that is affected by some disturbance that inter-
feres with it. This might be the case if T were an electrical
machine, somewhat disturbed by variations in the mains’ voltage.
At first sight this case seems to be not represented in the basic for-
mulation.

It must be appreciated that D, T, E, etc. were defined in S.11/3
in purely functional form. Thus “D” is “that which disturbs”.
Given any real system some care may b necessary in deciding
what corresponds to D, what to T, and so on. Further, a boundary
drawn provisionally between D and T (and the other boundaries)
may, on second thoughts, require moving. Thus one set of bound-
aries on the real system may give a system that purports to be of
D, T, etc. yet does not agree with the basic formulation of S.11/4.
Then it may be found that a shifting of the boundaries, to give a
new D. T, etc., gives a set that does agree with the formulation.

If a preliminary placing of the boundaries shows that this (pro-
visional) T is noisy, then the boundaries should be re-drawn so as
to get T’s input of noise (S.9/19) included as a component in D. D
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is now “that which disturbs”, and T has no third input, so the for-
mulation agrees with that of S.11/4.

There is, of course, no suggestion here that the noise, as a dis-
turbance, can be allowed for magically by merely thinking differ-
ently about it. The suggestion is that if we start again from the
beginning and re-define D and T then some new transformation of
D may be able to restore regulation. The new transformation will,
of course, have to be more complex than the old, for D will have
more components.

11/19. Initial states. A related case occurs when T is some machine
that shows its behaviour by a trajectory, with the outcome E
depending on the properties of T’s trajectory. The outcomes will
then usually be affected by which of T’s states is the initial one.
How does T’s initial state come into the basic formulation of S.11/4?

If the initial state can be controlled, so that the trajectory can be
started always from some standardised state, then no difficulty
arises. (In this connexion the method of S.7/25 may be useful.) It
may however happen, especially if the system is very large, that
T’s initial state cannot be standardised. Does the basic formula-
tion include this case?

It does; for D, as a vector, can be re-defined to include T’s initial
state. Then the variety brought to E by the variety in T’s initial
state is allotted its proper place in the formulation.

11/20. Compound target. It may happen that the acceptable states
η at E may have more than one condition. Thus of a thermostat it
might be demanded that

This difficulty can be dealt with by the same method as in S.11/
17, by recognising that E may be a vector, with more than one
component, and that what is acceptable (η) may be given in the
form of separate specifications for each component.

Thus, by allowing E to become a vector, the basic formulation
of S. 11/4 can be made to include all cases in which the target is
complex, or conditional, or qualified.

11/21. Internal complexities. As a last example, showing how
comprehensive the basic formulation really is, consider the case
in which the major problem seems to be not so much a regulation

(i) it shall usually stay between 36° and 37°C;
(ii) if displaced by + 10° it shall return to the allowed range

within one minute.
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as an interaction between several regulations. Thus a signalman
may have to handle several trains coming to his section simulta-
neously. To handle any one by itself would be straightforward,
but here the problem is the control of them as a complex whole
pattern.

This case is in fact still covered by the basic formulation. For
nothing in that formulation prevents the quantities or states or ele-
ments in D, R, T, or E from being made of parts, and the parts
interrelated. The fact that “D” is a single letter in no way implies
that what it represents must be internally simple or unitary.

The signalman’s “disturbance” D is the particular set of trains
arriving in some particular pattern over space and time. Other
arrangements would provide other values for D, which must, of
course, be a vector. The outcomes E will be various complex pat-
terns of trains moving in relation to one another and moving away
from his section. The acceptable set η  will certainly include a com-
ponent “no collision” and will probably include others as well. His
responses R will include a variety of patterns of movements of sig-
nals and points. T is what is given—the basic matters of geography,
mechanics, signalling techniques, etc., that lead determinately from
the situation that has arisen and his reaction pattern to outcome.

It will be seen therefore that the basic formulation is capable, in
principle, of including cases of any degree of internal complexity.
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Chapter 12

THE ERROR-CONTROLLED 
REGULATOR

12/1. In the previous chapter we studied the nature of regulation,
and showed that certain relations and laws must hold if regulation
is to be achieved. There we assumed that regulation was achieved,
and then studied what was necessary. This point of view, however,
though useful, hardly corresponds with that commonly used in
practice. Let us change to a new point of view.

In practice, the question of regulation usually arises in this way:
The essential variables E are given, and also given is the set of
states η in which they must be maintained if the organism is to
survive (or the industrial plant to run satisfactorily). These two
must be given before all else. Before any regulation can be under-
taken or even discussed, we must know what is important and
what is wanted. Any particular species has its requirements
given—the cat must keep itself dry, the fish must keep itself wet.
A servo-mechanism has its aim given by other considerations—
one must keep an incubating room hot, another must keep a refrig-
erating room cold. Throughout this book it is assumed that outside
considerations have already determined what is to be the goal, i.e.
what are the acceptable states η. Our concern, within the book, is
solely with the problem of how to achieve the goal in spite of dis-
turbances and difficulties.

The disturbances D threaten to drive E outside the set η. If D
acts through some dynamic system (an environment) T, then the
diagram of immediate effects is initially

The organism (or whoever is interested in E), however, has some
power of forming another dynamic system R (e.g. a brain or a ser-
vomechanism) which can be coupled to T and which, if properly
made, will form with T a whole, F, so that the diagram of immediate
effects becomes

D → T → E

D → F → E
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and such that F blocks the flow of variety from D to E, so that E
stays within η.

T is usually given. It is the environment which the organism is
facing together with those parts of the organism that have to be
taken as given in the regulation. It cannot just be abolished, but
can usually be manipulated. The problem of regulation is then, in
general:

Given E, η, T, and D, to form the mechanism R so that R and
T, coupled, act to keep E within η.

From now to the end of the book we shall be studying how var-
ious types of data (E, η, T, and D) can specify the form of
machine with input (R) that will give regulation. We want to
deduce the form of R.

Were the situation always as simple as it was in Table 11/3/1,
the subject would soon be exhausted. As it is, many deviations
from that form are possible, so we shall proceed to examine vari-
ous deviations, as they put various difficulties in the way of the
design or specification of the regulator R.

We can now assume, in discussing some particular regulation,
that full use has been made of the possibilities of redefining (S.11/
16) so that the formulation is either like that of S.11/3, which gave
perfect regulation and control, or like those in S.11/4, in which
such perfection was impossible. The remainder of the book will
be concerned essentially with those cases in which perfect regula-
tion is not possible but in which we wish the regulation to be as
good as is possible in the conditions given.

12/2. Sensory and motor restriction. A simple introduction to the
real difficulties is that given when R’s capacity, as a channel for
transmitting variety or information from D to T, becomes insuffi-
cient, according to the law of Requisite Variety, to reduce the vari-
ety in E to that in η. When this happens, the regulation is necessarily
imperfect.

Examples of the phenomenon are myriad. First are all the cases
of sensory restriction, of deafness, of the driver who cannot see
clearly through a rain-obscured windscreen. There are the organ-
isms that cannot see ultra-violet light, and the tabetic who cannot
feel where his feet are. These are restrictions in the channel from
D to R.

Then there are the restrictions in the channel from R to T, those
on the effector side of R. There is the man who has lost an arm,
the insect that cannot fly, the salivary gland that cannot secrete,
and the rudder that is stuck.
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A similar restriction of R’s capacity may occur in those cases
where R’s effect on T is vectorial, i.e. effected through more than
one channel or component to T, and some diminution has
occurred in the number of T’s parameters accessible to R. (Com-
pare S.7/12.) Thus a failure at one of the controls on the dashboard
may impair the driver’s ability to keep the car running well.

The case when R cannot receive full information about T’s ini-
tial state (discussed in S.11/19) is really included in the cases
mentioned above. Such a difficulty occurs to a railway signalman
in a fog. He is well informed that a disturbance “fog” has arrived,
but he often has difficulty in ascertaining the present state of the
system he is controlling, i.e. the present positions of the trains in
his sector. With this restriction in the flow of information from T
to R goes the difficulty, or even impossibility, of maintaining full
regulation.

12/3. The basic formulation of S.11/4 assumed that the process of
regulation went through its successive stages in the following order:

(1) a particular disturbance threatens at D;
(2) it acts on R, which transforms it to a response;
(3) the two values, of D and R, act on T simultaneously to pro-

duce T’s outcome;
(4) the outcome is a state in E, or affects E.

Thus (3) supposes that if R is an actual material system, it performs
all its work before T starts to move. We assumed, in other words
that the regulator R moved at a higher order of speed than T.

This sequence does actually occur in many cases. When the cat
approaches, the mouse may react so as to get to its hole before the
cat’s claws actually strike. We say in general that the organism
has reacted to the threat (at D) rather than to the disaster itself (at
E), and has thus forestalled the disaster. The formulation is thus
properly representative of many important regulations.

On the other hand, there are many important cases in which this
anticipation is not possible—in which R’s action cannot be com-
pleted before the outcome (at T) starts to be determined. (An
example is given in the next section.) In such cases the regulation
envisaged in S.11/3 is impossible. What then is to be done?

One method, of course, is to speed up the transmission of infor-
mation from D to R; and many regulating systems have various
devices specially to this end. Primitive nerve fibres develop mye-
lin sheaths, so that the passage to the brain may be faster. Some
organisms develop a sense of smell, so that the appropriate
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response may be prepared in time for the actual bodily encounter.
And economic systems send messages by cable rather than by
messenger so that the arrival in port of a ship with a perishable
cargo can be prepared for.

Sometimes, however, the available resources do not include a
speeding-up of the transmission through R; R’s reaction cannot be
got to T before the outcome commences. In that case, the best that
can be done is that the imperfect regulation should at least be as
good as it can be made in the circumstances. The succeeding sec-
tions will discuss how this can be done.

12/4. Regulation by error. A well-known regulator that cannot react
directly to the original disturbance D is the thermostat controlled
water- bath, which is unable to say “I see someone coming with a
cold flask that is to be immersed in me—I must act now”. On the
contrary, the regulator gets no information about the disturbance
until the temperature of the water (E) actually begins to drop. And
the same limitation applies to the other possible disturbances, such
as the approach of a patch of sunlight that will warm it, or the leav-
ing open of a door that will bring a draught to cool it.

The same limitation holds over many important regulators.
There is, for instance, a mechanism that helps to keep constant the
oxygen supply to the tissues: any long-continued lack of oxygen
causes eventually an increase in the number of red corpuscles
contained in the blood. So people with certain types of heart dis-
ease, and those living at high altitudes, where the air is thin, tend
to develop such an increase. This regulation draws its information
from the harmful effect (the lack of oxygen) itself, not from the
cause (D) of the heart disease, or from the decision to live at a
higher altitude.

From the point of view of communication, the new phenomena
are easily related to those of the old. The difference is simply that
now the information from D to R (which must pass if the regulator
R is to play any useful part whatever) comes through T. Instead of

R is thus getting its information about D by way of T:

D → T → E D → T → E
↑ we have ↑↓
R R

D → T → R →
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and the information available for regulatory purposes is whatever
survives the coding imposed by its passage through T (S.8/5).

Sometimes the information available to R is forced to take an
even longer route, so that R is affected only by the actual effect at
E. The diagram of immediate effects is then

and we have the basic form of the simple “error-controlled servo-
mechanism” or “closed loop regulator”, with its well-known feed-
back from E to R. The reader should appreciate that this form differs
from that of the basic formulation (S.11/4) only in that the informa-
tion about D gets to R by the longer route

Again, the information available to R is only such as survives the
transmission through T and E:

This form is of the greatest importance and widest applicability.
The remainder of the book will be devoted to it. (The other cases
are essentially simpler and do not need so much consideration.)

12/5. A fundamental property of the error-controlled regulator is
that it cannot be perfect in the sense of S.11/3.

Suppose we attempt to formulate the error-controlled system by
the method used in S.11/3 and 4. We take a table of double entry,
with D and R determining an outcome in E. Each column has a
variety equal to that of D. What is new is that the rules must be
modified. Whereas previously D made a selection (a particular
disturbance), then R, and thus E was determined, the play now is
that after D’s initial selection, R must take a value that is a deter-
minate function of the outcome E (for R is error-controlled). It is
easily shown that with these conditions E’s variety will be as
large as D’s—i.e. R can achieve no regulation, no matter how R is
constructed (i.e. no matter what transformation is used to turn E’s
value to an R-value).

If the formal proof is not required, a simpler line of reasoning
can show why this must be so. As we saw, R gets its information

D → T → E
↑
R

D → T → E → R →
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through T and E. Suppose R is somehow regulating successfully;
then this would imply that the variety at E is reduced below that
of D—perhaps even reduced to zero. This very reduction makes
the channel

to have a lessened capacity; if E should be held quite constant then
the channel is quite blocked. So the more successful R is in keeping
E constant, the more does R block the channel by which it is receiv-
ing its necessary information. Clearly, any success by R can at best
be partial.

12/6. Fortunately, in many cases complete regulation is not neces-
sary. So far, we have rather assumed that the states of the essential
variables E were sharply divided into “normal” (η) and “lethal”, so
occurrence of the “undesirable” states was wholly incompatible
with regulation. It often happens, however, that the systems show
continuity, so that the states of the essential variables lie along a
scale of undesirability. Thus a land animal can pass through many
degrees of dehydration before dying of thirst; and a suitable reversal
from half way along the scale may justly be called “regulatory” if it
saves the animal’s life, though it may not have saved the animal
from discomfort.

Thus the presence of continuity makes possible a regulation
that, though not perfect, is of the greatest practical importance.
Small errors are allowed to occur; then, by giving their informa-
tion to R, they make possible a regulation against great errors.
This is the basic theory, in terms of communication, of the simple
feedback regulator.

12/7. The reader may feel that excessive attention has just been
given to the error-controlled regulator, in that we have stated with
care what is already well known. The accuracy of statement is,
however, probably advisable, as we are going now to extend the
subject of the error- controlled regulator over a range much wider
than usual.

This type of regulator is already well known when embodied in
a determinate machine. Then it gives the servo-mechanism, the
thermostat, the homeostatic mechanism in physiology, and so on.
It can, however, be embodied in a non-determinate machine, and
it then gives rise to a class of phenomena not yet commonly occur-

D → T → E →
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ring in industrial machinery but of the commonest occurrence and
highest importance in biological systems. The subject is returned
to in S.12/11. Meanwhile we must turn aside to see what is
involved in this idea of a “non-determinate” machine.

THE MARKOVIAN MACHINE

12/8. We are now going to consider a class of machine more general
than that considered in Parts I and II. (Logically, the subject should
have been considered earlier, but so much of those Parts was con-
cerned with the determinate machine (i.e. one whose transforma-
tions are single- valued) that an account of a more general type
might have been confusing.)

A “machine” is essentially a system whose behaviour is suffi-
ciently law-abiding or repetitive for us to be able to make some
prediction about what it will do (S.7/19). If a prediction can be
made, the prediction may be in one of a variety of forms. Of one
machine we may be able to predict its next state—we then say it
is “determinate” and is one of the machines treated in Part I. Of
another machine we may be unable to predict its next state, but we
may be able to predict that, if the conditions are repeated many
times, the frequencies of the various states will be found to have
certain values. This possible constancy in the frequencies has
already been noticed in S.9/2. It is the characteristic of the Markov
chain.

We can therefore consider a new class of absolute system: it is
one whose states change with time not by a single-valued trans-
formation but by a matrix of transition probabilities. For it to
remain the same absolute system the values of the probabilities
must be unchanging.

In S.2/10 it was shown that a single-valued transformation
could be specified by a matrix of transitions, with 0’s or 1’s in the
cells (there given for simplicity as 0’s or +’s). In S.9/4 a Markov
chain was specified by a similar matrix containing fractions. Thus
a determinate absolute system is a special case of a Markovian
machine; it is the extreme form of a Markovian machine in which
all the probabilities have become either O or 1. (Compare S.9/3.)

A “machine with input” was a set of absolute systems, distin-
guished by a parameter. A Markovian machine with input must
similarly be a set of Markovian machines, specified by a set of
matrices, with a parameter and its values to indicate which matrix
is to be used at any particular step.

The idea of a Markovian machine is a natural extension of the
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idea of the ordinary, determinate machine—the type considered
throughout Part I. If the probabilities are all O or I then the two are
identical. If the probabilities are all very near to O or I, we get a
machine that is almost determinate in its behaviour but that occa-
sionally does the unusual thing. As the probabilities deviate fur-
ther and further from O and 1, so does the behaviour at each step
become less and less determinate, and more and more like that of
one of the insects considered in S.9/4.

It should be noticed that the definition, while allowing some
indeterminacy, is still absolutely strict in certain respects. If the
machine, when at state x, goes on 90% of occasions to y and on
10% of occasions to z, then those percentages must be constant
(in the sense that the relative frequencies must tend to those per-
centages as the sequence is made longer; and the limits must be
unchanging as sequence follows sequence). What this means in
practice is that the conditions that determine the percentages must
remain constant.

The exercises that follow will enable the reader to gain some
familiarity with the idea.

Ex. 1: A metronome-pendulum oscillates steadily between its two extreme
states, R and L, but when at the right (R) it has a 1% chance of sticking there
at that step. What is its matrix of transition probabilities ?

Ex. 2: A determinate machine α has the transformation

A Markovian machine β has the matrix of transition probabilities

How do their behaviours differ? (Hint: Draw α’s graph and draw β’s graph
after letting the probabilities go to 1 or 0.)

Ex. 3: A Markovian machine with input has a parameter that can take three val-
ues—p, q, r—and has two states, a and b, with matrices

It is started at state b, and goes one step with the input at q, then one step with
it at r, then one step with it at p. What are the probabilities that it will now be
at a or b?

↓ A B C D
B D D D

↓ A B C D

A 0 0 0 0
B 0.9 0 0 0
C 0 0 0.2 0
D 0.1 1.0 0.8 1.0

(p) (q) (r)
↓ a b ↓ a b ↓ a b

a 1/2 1 a 1/4 3/4 a 1/3 3/4
b 1/2 0 b 3/4 1/4 b 2/3 1/4
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*Ex. 4: (Continued.) What general rule, using matrix multiplication, allows the
answer to be written down algebraically? (Hint: Ex. 9/6/8.)

*Ex. 5: Couple the Markovian machine (with states a, 6, c and input-states α,
β)

to the Markovian machine (with states e, f and input-states δ, ε, θ)

by the transformations

What is the Markovian machine (without input) that results ? (Hint: Try
changing the probabilities to O and 1, so as to make the systems determi-
nate, and follow S.4/8; then make the probabilities fractional and follow
the same basic method.)

*Ex. 6: (Continued.) Must the new matrix still be Markovian?
*Ex. 7: If M is a Markovian machine which dominates a determinate machine N,

show that N’s output becomes a Markov chain only after M has arrived at
statistical equilibrium (in the sense of S.9/6).

12/9. Whether a given real machine appears Markovian or deter-
minate will sometimes depend on how much of the machine is
observable (S.3/11); and sometimes a real machine may be such
that an apparently small change of the range of observation may
be sufficient to change the appearances from that of one class to
the other.

Thus, suppose a digital computing machine has attached to it a
long tape carrying random numbers, which are used in some proc-
ess it is working through. To an observer who cannot inspect the
tape, the machine’s output is indeterminate, but to an observer
who has a copy of the tape it is determinate. Thus the question “Is
this machine really determinate?” is meaningless and inappropri-
ate unless the observer’s range of observation is given exactly. In
other words, sometimes the distinction between Markovian and
determinate can be made only after the system has been defined
accurately. (We thus have yet another example of how inadequate
is the defining of “the system” by identifying it with a real object.

↓ a b c ↓ a b c

α:
a 0.2 0.3 0.3

β:
a 0.3 0.9 0.5

b . 0.7 0.2 b 0.6 0.1 0.5
c 0.8 . 0.5 c 0.1 . .

↓ e f ↓ e f ↓ e f

δ: e 0.7 0.5 ε: e 0.2 0.7 θ: e 0.5 0.4
f 0.3 0.5 f 0.8 0.3 f 0.5 0.6

↓ a b c ↓ e f
ε δ θ β α
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Real objects may provide a variety of equally plausible “sys-
tems”, which may differ from one another grossly in those prop-
erties we are interested in here, and the answer to a particular
question may depend grossly on which system it happens to be
applied to.) (Compare S.6/22.)

12/10. The close relation between the Markovian machine and the
determinate can also be shown by the existence of mixed forms.
Thus, suppose a rat has partly learned the maze, of nine cells, shown
in Fig. 12/11/1,

in which G is the goal. For reasons that need not be detailed here,
the rat can get no sensory clues in cells 1, 2, 3 and 6 (lightly shaded),
so when in one of these cells it moves at random to such other cells
as the maze permits. Thus, if we put it repeatedly in cell 3 it goes
with equal probability to 2 or to 6. (I assume equal probability
merely for convenience.) In cells 4, 5, 7, 8 and G, however, clues
are available, and it moves directly from cell to cell towards G.
Thus, if we put it repeatedly in cell 5 it goes always to 8 and then to
G. Such behaviour is not grossly atypical in biological work.

The matrix of its transitions can be found readily enough. Thus,
from 1 it can go only to 2 (by the maze’s construction). From 2 it
goes to 1, 3, or 5 with equal probability. From 4 it goes only to 5.
From G, the only transition is to G itself. So the matrix can be
built up.

Ex.: Construct a possible matrix of its transition probabilities.

12/11. Stability. The Markovian machine will be found on exami-
nation to have properties corresponding to those described in Part I,
though often modified in an obvious way. Thus, the machine’s kin-
ematic graph is constructible; though, as the transformation is not

Fig. 12/10/1
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single-valued, more than one arrow can go from each state. Thus
the Markovian machine

has the graph of Fig. 12/11/1, in which each arrow has a fraction
indicating the probability that that arrow will be traversed by the
representative point.

In this particular example it can be seen that systems at c will all
sooner or later leave it, never to return.

A Markovian machine has various forms of stability, which
correspond to those mentioned in Chapter 5. The stable region is
a set of states such that once the representative point has entered
a state in the set it can never leave the set. Thus a and b above form
a stable region.

A state of equilibrium is simply the region shrunk to a single
state. Just as, in the determinate system, all machines started in a
basin will come to a state of equilibrium, if one exists, so too do
the Markovian; and the state of equilibrium is sometimes called
an absorbing state. The example of S.9/4 had no state of equilib-
rium. It would have acquired one had we added the fourth position
“on a fly-paper”, whence the name.

Around a state of equilibrium, the behaviour of a Markovian
machine differs clearly from that of a determinate. If the system
has a finite number of states, then if it is on a trajectory leading to
a state of equilibrium, any individual determinate system must
arrive at the state of equilibrium after traversing a particular tra-
jectory and therefore after an exact number of steps. Thus, in the

↓ a b c

a 0.2 0.3 0.1
b 0.8 0.7 0.5
c . . 0.4

Fig. 12/11/1
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first graph of S.2/17, a system at C will arrive at D in exactly two
steps. If the system is Markovian, however, it does not take a
unique number of steps; and the duration of the trajectory can be
predicted only on the average. Thus suppose the Markovian
machine is

with a a state of equilibrium. Start a great number of such systems
all at b. After the first step, half of them will have gone to a and half
will be still at b. At the second step, a half of those still at b will
move over to a and a half (i.e. a quarter of the whole) will remain at
b. By continuing in this way we find that, of those that were started
at b,

and so on. The average time taken to get from b to a is thus

Some of the trajectories will be much longer than 2 steps.
As is now well known, a system around a state of equilibrium

behaves as if “goal-seeking”, the state being the goal. A corre-
sponding phenomenon appears in the Markovian case. Here,
instead of the system going determinately to the goal, it seems to
wander, indeterminately, among the states, consistently moving to
another when not at the state of equilibrium and equally consist-
ently stopping there when it chances upon that state. The state still
appears to have the relation of “goal” to the system, but the system
seems to get there by trying a random sequence of states and then
moving or sticking according to the state it has arrived at. Thus, the
objective properties of getting success by trial and error are shown
when a Markovian machine moves to a state of equilibrium.

At this point it may be worth saying that the common name of
“trial and error” is about as misleading as it can be. “Trial” is in
the singular, whereas the essence of the method is that the
attempts go on and on. “Error” is also ill-chosen, for the important
element is the success at the end. “Hunt and stick” seems to
describe the process both more vividly and more accurately. I
shall use it in preference to the other.

↓ a b

a 1 1/2
b 0 1/2

1/2 reacha after 1 step
1/4 ,, ,, ,, 2 ,,
1/8 ,, ,, ,, 3 ,,

1 2 1 1 4 2 1 8 3 …+×⁄+×⁄+×⁄
1 2 1 4 1 8 …+⁄+⁄+⁄

----------------------------------------------------------------------------------- 2 steps.=
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Movement to a goal by the process of hunt and stick is thus
homologous, by S.12/8, to movement by a determinate trajectory
for both are the movement of a machine to a state of equilibrium.
With caution, we can apply the same set of principles and argu-
ments to both.

Ex. 1: What states of equilibrium has the system of Ex. 12/10/l ?
Ex. 2: A Markovian machine has matrix

It is started at a on many occasions; how would its behaviour be described
in the language of rat-maze psychology ?

MARKOVIAN REGULATION

12/12. The progression of a single Markovian machine to a state of
equilibrium is much less orderly than that of a determinate machine,
so the Markovian type is little used in the regulators of industry. In
comparison with the smooth and direct regulation of an ordinary
servo- mechanism it must seem fumbling indeed. Nevertheless, liv-
ing organisms use this more general method freely, for a machine
that uses it is, on the whole, much more easily constructed and
maintained; for the same reason it tends to be less upset by minor
injuries. It is in fact often used for many simple regulations where
speed and efficiency are not of importance.

A first example occurs when the occupant of a room wishes to
regulate the number of flies in the room at, or near, zero. Putting
a flypaper at a suitable site causes no determinate change in the
number of flies. Nevertheless, the only state of equilibrium for
each fly is now “on the paper”, and the state of equilibrium for
“number of flies not on the paper” is zero. The method is primitive
but it has the great virtues of demanding little and of working suf-
ficiently well in practice.

A similar method of regulation is that often used by the golfer
who is looking for a lost ball in an area known to contain it. The
states are his positions in the area, and his rule is, for all the states
but one, “go on wandering”; for one however it is “stop the wan-
dering”. Though not perhaps ideal, the method is none the less
capable of giving a simple regulation.

↓ a b c d e f

a 1/3 1/3 . . . .
b 1/3 1/3 . . . .
c 1/3 1/3 . . . .
d . . 1 . . .
e . . . 1 . .
f . . . . 1 1
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Another example of regulation, of a low order of efficiency,
would be shown by a rat with serious brain damage who cannot
remember anything of a maze, but who can recognise food when
encountered and who then stops to eat. (Contrast his behaviour
with that of a rat who does not stop at the food.) His progression
would be largely at random, probably with some errors repeated;
nevertheless his behaviour shows a rudimentary form of regula-
tion, for having found the food he will stop to eat it, and will live,
while the other rat will keep moving and starve.

Ex. 1: A married couple decide to have children till they have a boy and then to
stop. (i) Is the process regulatory ? (ii)What is the matrix of transition prob-
abilities ?

Ex. 2: Is the game “Heads, I win; Tails, we toss again” regulatory?

12/13. So far we have considered only the way in which a Marko-
vian machine moves to its goal. In principle, its sole difference from
a determinate machine is that its trajectory is not unique. Provided
we bear this difference in mind, regulation by the Markovian
machine can have applied to it all the concepts we have developed
in the earlier chapters of this Part.

(The warning given in S.11/11 (pare. 5) must be borne in mind.
The steps that take a Markovian machine along its trajectory are
of a smaller order of magnitude than the steps that separate one act
of regulation (one “move” in the sense of S.11/3) from another.
The latter steps correspond to change from one trajectory to
another —quite different to the change from one point to the next
along one trajectory.)

Thus the basic formulation of S.11/4 is compatible with either
determinate or Markovian machines in T and R to provide the
actual outcome. No difference in principle exists, though if we
describe their behaviour in psychological or anthropomorphic
terms the descriptions may seem very different. Thus if R is
required (for given disturbance) to show its regulatory power by
going to some state, then a determinate R will go to it directly, as
if it knows what it wants, while a Markovian R will appear to
search for it.

The Markovian machine can be used, like the determinate, as a
means to control; for the arguments of S.11/14 apply to both (they
were concerned only with which outcomes were obtained, not
with how they were obtained.) So used, it has the disadvantage of
being uncertain in its trajectory, but it has the advantage of being
easily designed.
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12/14. Regulation by error. The basic formulation of S 11/4 is of
extremely wide applicability. Perhaps its most important particular
case occurs when both T and R are machines (determinate or Mark-
ovian) and when the values of E depend on the various states of
equilibrium that T may come to, with ,η as some state (or states)
that have some appropriate or desired property. Most physical reg-
ulators are of this type. If R and T are Markovian machines the
bringing of T to a desired state of equilibrium η by the action of R
can readily be achieved if advantage is taken of the fundamental
fact that if two machines (such as T and R are now assumed to be)
are coupled, the whole can be at a state of equilibrium only when
each part is itself at a state of equilibrium, in the conditions pro-
vided by the other. The thesis was stated in S.5/13 for the determi-
nate machine, but it is just as true for the Markovian.

Let the regulator R be built as follows. Let it have an input that
can take two values, β and γ. When its input is β (for “bad”) let no
state be one of equilibrium, and when its input is γ (for “good”) let
them all be equilibrial. Now couple it to T so that all the states in
η are transformed, at R’s input, to the value γ, and all others to the
value β. Let the whole follow some trajectory. The only states of
equilibrium the whole can go to are those that have R at a state of
equilibrium (by S.5/13); but this implies that R’s input must be at
γ, and this implies that T’s state must be at one of η. Thus the con-
struction of R makes it a vetoer of all states of equilibrium in T
save those in η. The whole is thus regulatory; and as T and R are
here Markovian, the whole will seem to be hunting for a “desira-
ble” state, and will stick to it when found. R might be regarded as
“directing” T’s hunting.

(The possibility that T and R may become trapped in a stable
region that contains states not in η can be made as small as we
please by making R large, i.e. by giving it plenty of states, and by
seeing that its β −matrix is richly connected, so that from any state
it has some non- zero probability of moving to any other state.)

Ex. 1: What, briefly, must characterise the matrix γ, and what β?
*Ex. 2: Show that the thesis of S.5/13 is equally true for the Markovian machine.

12/15. The homeostat. In this form we can get another point of view
on the homeostat. In S.5/14 (which the reader should read again) we
considered it as a whole which moved to an equilibrium, but there
we considered the values on the stepping-switches to be soldered
on, given, and known. Thus B’s behaviour was determinate. We
can, however, re- define the homeostat to include the process by
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which the values in Fisher and Yates’ Table of Random Numbers
acted as determinants (as they certainly did). If now we ignore (i.e.
take for granted) the resistors on the switches, then we can regard
part B (of S.5/14) as being composed of a relay and a channel only,
to which comes values from the Table. We now regard B as having
two inputs.

B’s state is still a vector of two components—a value provided by
the Table and the state of the relay (whether energised or not). To
an Observer who cannot observe the Table, B is Markovian (com-
pare S.12/9). Its input from A has two states, β and γ; and it has been
built so that at β no state is equilibrial, and at γ every state is. Finally
it is coupled as in S.5/14.

The whole is now Markovian (so long as the Table is not
observed). It goes to an equilibrium (as in S.5/14), but will now
seem, to this Observer, to proceed to it by the process of hunt and
stick, searching apparently at random for what it wants, and
retaining it when it gets it.

It is worth noticing that while the relay’s input is at β, variety in
the Table is transmitted to A, but when the input comes to y, the
transmission is stopped. The relay thus acts as a “tap” to the flow
of variety from the Table to A. The whole moves to a state of equi-
librium, which must be one in which the entry of variety from the
Table is blocked. It has now gone to a state such that the entry of
variety from the Table (which would displace it from the state) is
prevented. Thus the whole is, as it were, self-locking in this con-
dition. (It thus exemplifies the thesis of S.4/22.)

12/16. The example of the previous section showed regulation
occurring in a system that is part determinate (the interactions
between the magnets in A) and part Markovian (the values taken by
the channel in part B). The example shows the essential uniformity
and generality of the concepts used. Later we shall want to use this

Table

Relay
B

Channel

A
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generality freely, so that often we shall not need to make the distinc-
tion between determinate and Markovian.

Another example of regulation by a Markovian system is worth
considering as it is so well known. Children play a game called
“Hot or Cold?” One player (call him Tom for T) is blindfolded.
The others then place some object in one of a variety of places,
and thus initiate the disturbance D. Tom can use his hands to find
the object, and tries to find it, but the outcome is apt to be failure.
The process is usually made regulatory by the partnership of Rob
(for R), who sees where the object is (input from D) and who can
give information to Tom. He does this with the convention that
the object is emitting heat, and he informs Tom of how this would
be felt by Tom: “You’re freezing; still freezing; getting a little
warmer; no, you’re getting cold again; …”. And the children (if
young) are delighted to find that this process is actually regula-
tory, in that Tom is always brought finally to the goal.

Here, of course, it is Tom who is Markovian, for he wanders, at
each next step, somewhat at random. Rob’s behaviour is more
determinate, for he aims at giving an accurate coding of the rela-
tive position.

Regulation that uses Markovian machinery can therefore now
be regarded as familiar and ordinary.

DETERMINATE REGULATION

12/17. Having treated the case in which T and R are embodied in
machines, and considered that in which the machinery is Marko-
vian, we can now take up again the thread dropped in S.12/7, and
can specialise further and consider the case in which the probabili-
ties have all become 0 or 1 (S.12/8), so that the machinery is deter-
minate. We continue with the regulator that is error-controlled. In
order, as biologists, to explore thoroughly the more primitive forms
of regulation, let us consider the case in which the feedback has a
variety of only two states.

An example of such a system occurs in the telephone exchange
when a selector starts to hunt for a disengaged line. The selector
tries each in turn, in a determinate order, gets from each in turn the
information “engaged” or “disengaged”, and stops moving
(arrives at a state of equilibrium) at the first disengaged line. The
set of disturbances here is the set of possible distributions of
“engaged” or “disengaged” among the lines. The system is regu-
latory because, whatever the disturbance, the outcome is always
connexion with a disengaged line.
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The mechanism is known to be error-controlled, for the infor-
mation that determines whether it shall move on or stick comes
from the line itself.

This case is so simple as to be somewhat degenerate. If we pay
no attention to the internal actions between R and T, so that they
fuse to form the F of S.10/5, then the case becomes simply that of
a determinate system which, when the initial state is given, runs
along a determinate trajectory to a state of equilibrium. Thus
every basin with a state of equilibrium in η can be said to show a
simple form of regulation; for it acts so as to reduce the variety in
the initial states (as disturbance D) to the smaller variety in the ter-
minal state.

Much the same can be said of the rat that knows its way about
a warehouse; for wherever it gets to it can make its way back to
the nest. As much can be said for the computer that is pro-
grammed to work by a method of successive approximation; for,
at whatever value it is started, the successive values are moved
determinately to the goal, which is its only state of equilibrium.

Ex.: A card is to be found in a shuffled pack of 52 by examination of them one
by one. How many will have to be examined, on the average, if (i) the cards
are examined seriatim, (ii) if one is drawn, examined, returned if not wanted,
the pack shuffled, a card drawn, and so on? (Systematic versus random
searching.)

12/18. When the machinery is all determinate, the problem of S. 12/
14 may arise—that of getting T to go to some state of equilibrium
that has some desired property. When this is so, the solution given
there for the Markovian machine is, of course, still valid: one cou-
ples on a vetoer.

12/19. Continuous variation. After these primitive forms, we
arrive at the regulators whose variables can vary continuously. (It
must be remembered that the continuous is a special case of the
discrete, by S.2/1.) Of the great numbers that exist I can take only
one or two for mention, for we are interested here only in their
general principles.

Typical is the gas-heated incubator. It contains a capsule which
swells as the temperature rises. The mechanism is arranged so that
the swelling of the capsule cuts down the size of the gas flame (or
of the amount of hot air coming to the incubator); an undue rise of
temperature is thus prevented.
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The diagram of immediate effects is specially worth noting. It is

or some equivalent form. In it, D, T, R and E are readily identified
(though the distinctions between T and R and their parts are some-
what arbitrary). The whole acts to block the passage of variety from
the Disturbances (whatever they are) to the eggs. If the aim of the
regulator is re-defined slightly as being to keep constant the temper-
ature of the incubator, then the regulator is controlled by the error
rather than by the disturbances themselves.

In this form of regulator, the system must, of course, be stable
for any given disturbance, and the desired temperature must be the
system’s state of equilibrium. The feedback around the circuit
must thus usually be negative.

Many regulators in the living body are of this simple form, and
Cannon’s work has made them well known. Typical is that which
regulates the pH of the blood by the amount of carbon dioxide in it:

Again the system shows the features just mentioned.
Among the innumerable examples of such mechanisms

should be included the economic. Tustin’s Mechanism of Eco-

Disturbances
Temp. of
incubator
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Size of flame 
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Capsule
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nomic Systems shows how closely their properties are cussed
here.

Ex. 1: Draw the diagram of immediate effects of any regulator known to you.
Ex. 2: (Continued.) Think of some other parameters whose change would affect

the regulator’s working; add them to the diagram.

12/20. A variant of this class, worth mention for the sake of com-
pleteness, is that in which the regulating mechanism becomes
active only intermittently.

A reservoir tank, for instance, may have the level of fluid in it
kept between two given levels by a siphon which has its inner
opening at the lower level and its bend at the upper level. If the
supply is usually greater than the demand, the siphon, by coming
into action when the fluid reaches the upper level and by stopping
its action when it reaches the lower, will keep the level within the
desired range.

Many physiological regulators act intermittently. The reaction
to cold by shivering is such a case. This particular reaction is of
special interest to us (compare S.12/4) in that activity in the regu-
lator can be evoked either by an actual fall in the bodily tempera-
ture (error-control, from E) or, before the body has had time to
cool, by the sight of things that will bring cold (control from D).

THE POWER AMPLIFIER

12/21. The fact that the discussion in this chapter has usually
referred to the output E as being constant must not be allowed to
obscure the fact that this form can cover a very great number of
cases that, at first sight, have no element of constancy in them. The
subject was referred to in S.11/15. Here we shall consider an appli-
cation that is important in many ways already, and that will be
needed for reference when we come to Chapter 14. I refer to those
regulators and controllers that amplify power.

Power amplifiers exist in many forms. Here I shall describe
only one, selecting a form that is simple and clear (Fig. 12/21/1).

Compressed air is supplied freely at A and makes its way past
the constriction C before either going into the bellows B or escap-
ing at the valve V. The pressure at A is much higher than the usual
working pressure in B, and the aperture at C is small, so air flows
past C at a fairly constant rate. It must then either escape at V or
accumulate in B, driving up the pressure z. How fast the air escapes
at V, where a hole is obstructed to some degree by a cone, depends
on the movement up or down (x) of the cone, which is attached to
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one end of a light stiff rod J, which can turn on a pivot K. Thus if
K is unmoving, a movement down at the other end L will lift the
cone, will allow air to escape, and will cause a fall of the pressure
z inside B; conversely, a movement up at L will make z rise.

The air pressure in B works in opposition to a heavy weight P,
which IS continued upwards as a pillar, the whole weight being
able to move only up or down. The pillar carries two pivots, K and

M. M is pivot for a strong bar G, which is fixed at one end, F Thus
if P moves upwards, M must move upwards by the same amount,
and G’s free end H must move upwards by twice the distance.

Now let us see what happens if L is moved. Suppose the opera-
tor lifts L by one inch. The other end (V) falls at once by one inch
the valve is more obstructed, less air escapes, and more accumu-
lates in B, sending up the pressure. The increased pressure will lift
P, and thus M and H. Thus H’s movements tend simply to copy
L’s. (We can notice that the upward movement of P (L being fixed
after its one inch rise) will make the valve V open, so the response
of the whole system to L’s movement will be self-limiting, for the
feedback is negative; subject to certain quantitative details, which

Fig. 12/21/1
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would require exact treatment in any particular embodiment, the
system is thus stable at a state of equilibrium whose position is
determined by L’s position.)

The whole can thus also be regarded as a stable system that acts
so that, while a movement of, say, one inch at L would tend to
cause, at V, a movement of one inch also, the reaction of the sys-
tem annuls this. So the system can also be regarded as one that
acts so as to keep the position of V constant.

We can now see how it can become a power amplifier, and be
used as a crane.

The designer takes care to see that the lever J is light, and that
the valve is shaped so that the escaping air, or the pressure z, has
little effect on the force required at L. He also takes care that B
shall have a large area of action on P, and that the average work-
ing pressure z shall be high (with the pressure at A higher still). If
he is successful, a small force at L, raising it through one inch, will
be sufficient to evoke a large force at H sufficient to raise a heavy
mass through the same distance. Thus a force of 1 lb. moving
through one inch at L may result in a force of 1000 lbs. moving
through one inch at H. It is thus a work- (or power-) amplifier.

So far it has given merely a simple and clear exemplification of
the principles of regulation and control described earlier. Later
(S.14/1) we shall return to it, for we shall have to be clear about
how we can have, simultaneously, a law saying that energy cannot
be created, and also a power-amplifier.

Ex. 1: How many degrees of freedom for movement have the three bodies, P,
J, G?

Ex. 2: Modify the arrangement so as to make H move oppositely to L while
keeping the equilibrium stable.

Ex. 3: Modify the arrangement so that the equilibrium is unstable.

GAMES AND STRATEGIES

12/22. The subjects of regulation and control are extremely exten-
sive, and what has been said so far only begins to open up the sub-
ject. Another large branch of the subject arises when D and R are
vectors, and when the compounding that leads eventually to the
outcome in T or E is so distributed in time that the components of
D and R occur alternately. In this case the whole disturbance pre-
sented and the whole response evoked each consists of a sequence
of sub-disturbances and sub- responses.
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This, for instance, may be the case in wild life when a prey
attempts to regulate against an attack by a predator, when the
whole struggle progresses through alternating stages of threat and
parry. Here the predator’s whole attack consists of a sequence of
actions D1, D2, D3 …, each of which evokes a response, so that the
whole response is also a sequence, R1, R2, R3, …,The whole strug-
gle thus consists of the double sequence

D1, R1, D2, R2, D3 , R3, …

The outcome will depend on some relation between the predator’s
whole attack and the prey’s whole response.

We are now considering an even more complex interpretation
of the basic formulation of S.11/4. It is common enough in the
biological world however. In its real form it is the Battle of Life;
in its mathematical form it is the Theory of Games and Strategies.
Thus in a game of chess the outcome depends on what particular
sequence of moves by White and Black

W1, B1, W2, B2, W3 , B3, …

has been produced. (What was called a “move” in S.11/4 corre-
sponds, of course, to a play here.)

This theory, well founded by von Neumann in the ’30s, though
not yet fully developed, is already too extensive for more than
mention here. We should, however, take care to notice its close
and exact relation to the subject in this book. It will undoubtedly
be of great scientific importance in biology; for the inborn char-
acteristics of living organisms are simply the strategies that have
been found satisfactory over centuries of competition, and built
into the young animal so as to be ready for use at the first demand.
Just as many players have found “P—Q4” a good way of opening
the game of Chess, so have many species found “Grow teeth” to
be a good way of opening the Battle of Life.

The relation between the theory of games and the subjects
treated in this book can be shown precisely.

The first fact is that the basic formulation of S.11/4—the Table of
Outcomes, on which the theory of regulation and control has been
based—is identical with the “Pay-off matrix” that is fundamental in
the theory of games. By using this common concept, the two theories
can readily be made to show their exact relation in special cases.

The second fact is that the theory of games, as formulated by
von Neumann and Morgenstern, is isomorphic with that of certain
machines with input. Let us consider the machine that is equiva-
lent to his generalised game (Fig. 12/22/1). (In the Figure, the let-
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ters correspond with those by von Neumann in his Chapter 2,
which should be consulted; his T’s do not correspond to the usage
in this book.)

There is a machine M with input. Its internal structure (its
transformations) is known to the players Ti It has three types of
input: Γ, V, and T. A parameter Γ, a witch perhaps, determines
which structure it shall have, i.e. which game is to be played.
Other inputs Vi allow random moves to be made (e.g. effects
from a roulette wheel or pack of shuffled cards to be injected; cf.
S.12/15). Each player, Ti, is a determinate dynamic system, cou-
pled to M both ways. He receives information from M by speci-

fied channels Ii and then acts determinately on M. The site of
connexion of the I’s is defined by Γ. Effects from each T,
together with those of the other T’s and the V’s, exert, through M,
complex controls over the dials G. When the play, i.e. trajectory,
is completed, the umpire H reads the G’s and then makes corre-
sponding payments to the T’s.

What we have here is evidently the case of several regulators,
each trying to achieve a goal in G, working simultaneously, and
interacting competitively within M. (The possibility of competi-
tion between regulators has not been considered explicitly in these
chapters till now.)

If the system is ultrastable, each T’s behaviour will be deter-
mined by parameters, behaving as step-functions. If a particular
player is “satisfied” by the payment from H, his parameters will

Fig 12/22/1
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retain their values and his strategy will be unchanged; but if dis-
satisfied (i.e. if the payment falls below some critical value) the
step-functions will change value, and the loser, at the next play,
will use a new strategy.

A related subject is the theory of military codings and de-cod-
ings. Shannon’s Communication theory of secrecy systems has
shown how intimately related are these various subjects. Almost
any advance in our knowledge of one throws light on the others.

More than this cannot be said at present, for the relationships
have yet to be explored and developed. It seems to be clear that the
theory of regulation (which includes many of the outstanding prob-
lems of organisation in brain and society) and the theory of games
will have much to learn from each other. If the reader feels that
these studies are somewhat abstract and devoid of applications, he
should reflect on the fact that the theories of games and cybernetics
are simply the foundations of the theory of How to get your Own
Way. Few subjects can be richer in applications than that!

12/23. We are now at the end of the chapter, and the biologist may
feel somewhat dissatisfied, for this chapter has treated only of sys-
tems that were sufficiently small and manageable to be understood.
What happens, he may ask, when regulation and control are
attempted in systems of biological size and complexity ? What hap-
pens, for instance, when regulation and control are attempted in the
brain or in a human society?

Discussion of this question will occupy the remaining chapters.
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REGULATING THE VERY LARGE 
SYSTEM

13/1. Regulation and control in the very large system is of pecu-
liar interest to the worker in any of the biological sciences, for
most of the systems he deals with are complex and composed of
almost uncountably many parts. The ecologist may want to regu-
late the incidence of an infection in a biological system of great
size and complexity, with climate, soil, host’s reactions, preda-
tors, competitors, and many other factors playing a part. The
economist may want to regulate against a tendency to slump in a
system in which prices, availability of labour, consumer’s
demands, costs of raw materials, are only a few of the factors that
play some part. The sociologist faces a similar situation. And the
psychotherapist attempts to regulate the working of a sick brain
that is of the same order of size as his own, and of fearful com-
plexity. These regulations are obviously very different from those
considered in the simple mechanisms of the previous chapter. At
first sight they look so different that one may well wonder
whether what has been said so far is not essentially inapplicable.

13/2. This, however, is not so. To repeat what was said in S.4/18,
many of the propositions established earlier are stated in a form
that leaves the size of the system irrelevant. (Sometimes the
number of states or the number of variables may be involved, but
in such a way that the proposition remains true whatever the
actual number.)

Regulation in biological systems certainly raises difficult prob-
lems —that can be admitted freely. But let us be careful, in admit-
ting this, not to attribute the difficulty to the wrong source.
Largeness in itself is not the source; it tends to be so regarded partly
because its obviousness makes it catch the eye and partly because
variations in size tend to be correlated with variations in the source
of the real difficulty. What is usually the main cause of difficulty is
the variety in the disturbances that must be regulated against.

The size of the dynamic system that embodies T tends to be corre-
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lated with the variety in D for several reasons. If T is made of many
parts, and there is uncertainty about the initial state of any part, then
that variety will be allocated to D (S. 11/19); so in general, other
things being equal, the greater the number of parts the greater the
variety in D. Secondly, if each part is not completely isolated from
the world around, each part’s input will contribute some variety
which will be allocated to D; so in general, the greater the number of
parts the greater the number of components in D; and therefore, if
the components have some independence, the greater the variety in
D. (There may be other reasons as well but these will suffice.)

Thus, when the effects of size are distinguished from those that
affect the variety in D, it will usually be found that the former is,
in itself, irrelevant, and that what matters is the latter.

It now follows that when the system T is very large and the
regulator R very much smaller (a common case in biology), the
law of Requisite Variety is Likely to play a dominating part. Its
importance is that, if R is fixed in its channel capacity, the law
places an absolute limit to the amount of regulation (or control)
that can be achieved by R, no matter how R is re-arranged inter-
nally, or how great the opportunity in T. Thus the ecologist, if his
capacity as a channel is unchangeable, may be able at best only to
achieve a fraction of what he would like to do. This fraction may
be disposed in various ways —he may decide to control outbreaks
rather than extensions, or virus infections rather than bacillary—
but the quantity of control that he can exert is still bounded. So too
the economist may have to decide to what aspect he shall devote
his powers, and the psychotherapist may have to decide what
symptoms shall be neglected and what controlled.

The change in the point of view suggested here is not unlike that
introduced into statistics by the work of Sir Ronald Fisher. Before
him, it was taken for granted that, however clever the statistician,
a cleverer could get more information out of the data. Then he
showed that any given extraction of information had a maximum,
and that the statistician’s duty was simply to get near the maxi-
mum— beyond that no man could go. Similarly, before Shan-
non’s work it was thought that any channel, with a little more
skill, could be modified to carry a little more information. He
showed that the engineer’s duty is to get reasonably near the max-
imum, for beyond it no-one can go. The law of Requisite Variety
enforces a similar strategy on the would-be regulator and control-
ler: he should try to get near his maximum—beyond that he can-
not go. Let us therefore approach the very large system with no
extravagant ideas of what is achievable.
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13/3. Before we proceed we should notice that when the system is
very large the distinction between D, the source of the distur-
bances, and T, the system that yields the outcome, may be some-
what vague, in the sense that the boundary can often be drawn in
a variety of ways that are equally satisfactory.

This flexibility is particularly well-marked among the systems
that occur on this earth (for the terrestrial systems tend markedly
to have certain general characteristics). On this earth, the whole
dynamic biological and ecological system tends to consist of
many subsystems loosely coupled (S.4/20); and the sub-systems
themselves tend to consist of yet smaller systems, again more
closely coupled internally yet less closely coupled between one
another; and so on. Thus in a herd of cattle, the coupling between
members is much looser than the couplings within one member
and between its parts (e.g. between its four limbs); and the four
limbs are not coupled as closely to one another as are the mole-
cules within one bone. Thus if some portion of the totality is
marked out as T, the chief source D of disturbance is often other
systems that are loosely coupled to T, and often sufficiently sim-
ilar to those in T that they might equally reasonably have been
included in it. In the discussion that follows, through the rest of
the book, this fact must be borne in mind: that sometimes an
equally reasonable demarcation of T and D might have drawn the
boundary differently, without the final conclusions being affected
significantly. Arbitrary or not, however, some boundary must
always be drawn, at least in practical scientific work, for other-
wise no definite statement can be made.

13/4. When the system T is very large—when the organism as
regulator faces a very large and complex environment with lim-
ited resources—there are various ways that may make regulation
possible. (If regulation is not possible, the organism perishes—an
extremely common outcome that must not be forgotten; but this
case needs no detailed consideration.)

Sometimes regulation may be made possible by a re-defining of
what is to be regarded as acceptable—by a lowering of standards.
This is a somewhat trivial solution, though not to be forgotten as
a possibility.

Another possibility is to increase the scope and power of R, until
R’s capacity is made adequate. This method must obviously never
be forgotten; but we shall give it no detailed consideration. Let us
consider more fully the interesting case in which the regulation,
apparently most difficult or impossible, is actually possible.
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13/5. Constraints. What this means, by the law of Requisite Vari-
ety, is that the variety in the disturbances D is not really as large
as it seems; in other words, by S.7/8, the disturbances show a con-
straint.

Thus the case we are led to is the following: D has many com-
ponents, each of which shows variety. The first estimate of D’s
variety puts it too high, and we are in danger of deducing (if the
regulator’s capacity is given) that regulation of E to a certain
degree is not possible. Further examination of D may, however,
show that the components are not independent, that constraint
exists, and that the real variety in D is much lower than the first
estimate. It may be found that, with R’s capacity given, this
smaller variety can be regulated against, and full regulation or
control achieved at E. Thus the discovery of a constraint may con-
vert “regulation impossible” to “regulation possible”. If R’s
capacity is fixed, it is the only way.

We are thus led again to the importance and usefulness of dis-
covering constraints, and to yet another example of the thesis that
when a constraint exists it can be turned to use (S.7/14).

Let us then consider the question of what constraints may occur
in the disturbances that affect very large systems, and how they
may be turned to use. The question is of major practical impor-
tance, for if R’s capacity is not easily increased and the other meth-
ods are not possible, then the law of Requisite Variety says that the
discovery of a constraint is the would-be regulator’s only hope.

13/6. As was said in S.7/10, constraints do not fall into a few sim-
ply- described classes. Having indicated some of the more inter-
esting possibilities in Chapter 7, I can only continue to mention
those classes that are of peculiar interest to us now. With this brief
reference I shall pass by a vast subject, that comprises a major part
of all human activity.

Accordingly we shall study one particular form of constraint. It
is of great interest in itself, it will illustrate the thesis of the last
chapter, and it is of considerable practical importance in the reg-
ulation of the very large system.

REPETITIVE DISTURBANCE

13/7. Though little reference has been made to the fact in the last
few chapters, many disturbances (and the corresponding regula-
tory responses) are repetitive, especially if the system is viewed
over a long time. The cough reflex is regulatory and useful not
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merely because it removes this particle of dust but because, in a
lifetime, it removes particles again and again—as many times as
are necessary. Most of the physiological regulators act again and
again, as often as is necessary. And the coastal lifeboat saves lives
not once but again and again. If, in the last few chapters, we have
spoken of “the regulatory response” in the singular, this is only
because the single action is typical of the set, not because the set
necessarily has only one element.

So many of the well-known regulations are repetitive that it is
difficult to find a regulation that acts once only. A possible exam-
ple is given by an observatory making plans so as to have every-
thing ready in case a supernova should occur, an event not likely
to occur twice in the director’s lifetime. Various possibilities
would have to be considered—in which part of the sky it might
appear, whether during day or night, the spectral and other pecu-
liarities which would determine what particular type of plate and
filter should be used in photographing it, and so on. In making his
plans, the director would, in fact, draw up a table like that of S.11/
4, showing the uncertainties (D) to be feared, the resources (R)
available, and the outcomes (E). Inspection of the table, as in Ex.
11/4/4, would then enable him to decide whether, in all cases, he
would get what he wanted.

There are, therefore, cases in which the regulation has to be
exerted against a non-repetitive disturbance, but they are uncommon.

From here on we shall consider the case in which the distur-
bance, and the regulatory response, occur more than once; for
such cases show constraint, of which advantage can be taken.

13/8. The constraint occurs in the following way.
The basic formulation of the regulatory process referred to a set

of disturbances but assumed only that the separate elements in the
set were distinct, nothing more. Like any other quantity, a distur-
bance may be simple or a vector. In the latter case, at least two
main types are distinguishable.

The first type was discussed in S.11/17: the several components
of the disturbance act simultaneously; as an air-conditioner might,
at each moment, regulate both temperature and humidity.

The second type is well shown by the thermostatically-control-
led water bath, it can be regarded as a regulator, over either short
or long intervals of time. Over the short interval, “the distur-
bance” means such an event as “the immersion of this flask”, and
“its response” means “what happens over the next minute”. Its
behaviour can be judged good or bad according to what happened
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in that minute. There is also the long interval. After it has worked
for a year someone may ask me whether it has proved a good reg-
ulator over the year. While deciding the reply, I think of the whole
year’s disturbance as a sort of Grand Disturbance (made up of
many individual disturbances, with a small d), to which it has pro-
duced a Grand Response (made up of many individual responses,
with a small r). According to some standard of what a bath should
do over a year (e.g. never fail badly once, or have an average devi-
ation of less than 1/2°, etc.) I form an opinion about the Grand
Outcome— whether it was Good or Bad—and answer the ques-
tion accordingly.

It should be noticed that what is “Good” in the Grand Outcome
does not follow necessarily from what is “good” (η) in the indi-
vidual outcomes; it must be defined anew. Thus, if I go in for a
lottery and have three tickets, a win on one (and consequent loss
on the other two) naturally counts as “Good” in the Grand Out-
come; so here I good + 2 bad = Good. On the other hand, if I am
tried three times for murder and am found not guilty for one, the
individual results are still I good + 2 bad, but in this case the
Grand Outcome must naturally count as Bad. In the case when the
individual disturbances each threaten the organism with death,
Good in the Grand Outcome must naturally correspond to “good
in every one of the individual outcomes”.

These Grand Disturbances are vectors whose components are
the individual disturbances that came hour by hour. These vectors
show a form of constraint. Thus, go back to the very first example
of a vector (S.3/5). It was A; contrast it with B:

Obviously B is restricted in a way that A is not. For the variety in
the left-hand words in A’s three rows is three; in B’s three rows it
is one.

Vectors like B are common in the theory of probability, where
they occur under the heading “sampling with replacement”. Thus,
the spin of a coin can give only two results, H or T. A coin spun
six times in succession, however, can give results such as (H, H,
T, H, T, H), or (T, T, H, H, T, H), and so on for 64 possibilities.
(Compare S.9/9.)

What is important here is that, in such a set of vectors (in those
whose components all come from the same basic class, as in B),

A B
Age of car: ............ Age of Jack’s car: ............
Horse power: ............ ,, ,, Jill’s ,, ............
Colour: ............ ,, ,, Tom’s ,, ............
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two varieties can be distinguished: there is (i) the variety within
the basic class (2 for the coin, the number of distinct possible ages
in B), and (ii) the variety built up by using the basic class n times
over (if the vector has n components). In the example of the coin,
the two varieties are 2 and 64. In general, if the variety within the
basic class is k, and the vector has n components, each a member
of the class, then the two varieties are, at most, k, and kn. In par-
ticular it should be noticed that if the variety in the basic class has
some limit, then a suitably large value of n will enable the second
variety to be made larger than the limit.

13/9. These considerations are applicable in many cases of regu-
lation. Suppose, for definiteness, that the water bath may be
affected in each minute by one of the three individual distur-
bances:

(a) a draught of air cooling it, 
(b) sunshine warming it, 
(c) a cold object being immersed in it.

The variety is three, but this number is hardly representative of
the variety that will actually occur over a long time. Over a year,
say, the Grand Disturbance is a long vector, with perhaps some
hundreds of components. Thus one Grand Disturbance might be
the vector (i.e. the sequence) with 400 components:

(a, b, a, b, b, a, c, b, b, c, c, b, b, …c, b, a, b).

And if the individually correct responses are, respectively α, β
and γ, then the Grand Response appropriate to this particular Dis-
turbance would be the vector (i.e. sequence)

(α, β, α, β, β, α, γ, β, β, γ, γ, β, β, …γ, β, α, β).
If there is no constraint in the Disturbance from component to

component as one goes from left to right, the whole set of possible
Disturbances has variety of 3400; and the Grand Response must
have at least as much if full regulation is to be obtained.

We now come to the point: the double sequence, as it occurred
in time, shows the characteristic constraint of a machine, i.e. it
defines a machine up to an isomorphism. Thus, in the example
just given, the events occurred in the order, from left to right:

a b a b b a c b b c c …, etc.
α β α β β α γ β β γ γ …, etc.

(though not necessarily at equal time-intervals). It is now easily
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verified that this sequence, as a protocol, defines the machine with
input:

Thus when the Grand Disturbance is a vector whose components
are all from a basic set of disturbances, the Grand Response can
either be a vector of equal variety or the output of a suitable
machine with input.

13/10. Suppose that the regulation discussed throughout Part III is
the responsibility of some entity Q, often the possessor of the
essential variables E. Through the previous chapters we have stud-
ied how the regulator R must behave. We have now seen that in the
case when the disturbances are repetitive, Q has the option of
either being the regulator (i.e. acting as R) or of building a machine
that, once built, will act as R and will carry out a regulation of
indefinite length without further action by Q. We have thus arrived
at the question: should Q achieve the regulation directly, by his
own actions, or should he build a machine to undertake the work?

The question would also have arisen for another reason. From
the beginning of Part III we took for granted that the regulator
existed, and we then asked what properties it must have. Nothing
was said about how the regulator came to be made, about the fac-
tors that brought it into existence. Thus, having seen in S.10/5 how
advantageous it would be if the organism could have a regulator,
we showed no means by which the advantage could be gained.

For both these reasons we must now start to consider how a reg-
ulatory machine is actually to be designed and made. Here we
shall be thinking not so much of the engineer at his bench as of the
brain that, if it is to achieve regulation in its learned reactions,
must somehow cause the development of regulatory machinery
within the nervous material available; or of the sociologist who
wants a regulatory organisation to bring harmony into society.

To understand what is involved, we must look more closely at
what is implied, in principle, in the “designing” of a regulatory
machine.

DESIGNING THE REGULATOR

3|11. Design as communication. Let us forget, temporarily, all
about “regulation”, and turn simply to certain questions related to
the design and construction of a machine, any machine.

↓ α β γ
a α α α
b β β β
c γ γ γ
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Our treatment of it, while losing nothing in precision, must be
very broad—that is to say, abstract—for, as biologists, we want to
consider machines of far wider type than those of steel and brass.
Within the formula

Entity Ω designs machine M

we want to include such cases as

(l) The genes determining the formation of the heart.
(2) A mechanic making a bicycle.
(3) One part of the brain determining the internal connexions in 

a nerve-net.
(4) A works-manager laying out a factory to get production go-

ing along certain lines.
(5) A mathematician programming an automatic computer to 

behave in a certain way.

What we shall be concerned with, if we hold to the cybernetic
point of view, is not the more obvious processes of shaping or
assembling pieces of matter, but with the less obvious questions of
what determines the final model, of how it comes to be selected.
We are interested in tracing long chains of cause and effect, so that
we can relate a set of possible initial causes to a set of final
machines issuing as consequence; as a telephone mechanic, with a
cable of a hundred wires, relates each one going in at one end to
some one coming out at the other. By treating the matter in this
way we shall find that certain quantitative relations must hold; on
them we can base the ideas of the last chapter. Throughout, we
shall be exemplifying the thesis of D. M. MacKay: that quantity of
information, as measured here, always corresponds to some quan-
tity, i.e. intensity, of selection, either actual or imaginable.

The concepts of selecting, designing, constructing, building
(briefly, in any way being responsible for the eventual appearance
of) an actual machine share a common property, when one identi-
fies and measures the varieties concerned in the process. What
might turn up as M has variety—an embryo might produce any one
of many forms of muscular blood-pump. In fact, the gene-pattern in
Lumbricus leads to the production of an earthworm’s heart, the
gene-pattern in Rana leads to the production of a frog’s heart, and
that in Homo to a man’s heart. Control, by the gene-pattern over the
heart, is clearly involved. So too is regulation, for in whatever state
the molecules in Lumbricus happen to be initially (there being vari-
ety in the possibilities), under the action of the gene-pattern the
variety disappears, and a heart of standard worm’s form appears.
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It will be noticed that the concepts of design or construction are
essentially applicable to sets, in spite of the common linguistic use
of the singular. (Compare S.7/3.) Thus “the gene-pattern deter-
mines the form of the heart” is a shorthand way of saying that ele-
ments in the set of gene-patterns among different species can be
put into correspondence with those in the set of possible hearts in
the various species, like the wires at the two ends of a telephone
cable. Thus the act of “designing” or “making” a machine is
essentially an act of communication from Maker to Made, and the
principles of communication theory apply to it. In particular the
measures that were developed for treating the case in which vari-
ous possible messages are reduced to one message can now be
applied to the case when various possible machines are reduced to
one machine.

A useful conceptual device for forcing this aspect into promi-
nence is to imagine that the act of designing has to take place
through the telephone, or by some other specific channel. The
quantities of variety can then readily be identified by identifica-
tion of the actual quantity of information that will have to be trans-
mitted.

13/12. When a designer selects the final form of the machine,
what does “selecting” the machine mean in terms of the general
concepts of this book? Consider the following sequence of exam-
ples, in which the final machine is a radio receiver.

The first is the case of the buyer who has three machines before
him, and he selects one. The second case, equivalent to the first
from the abstract point of view, occurs when the designer of a
radio set, wavering between three possible circuits, finally selects
one. The third case, abstractly equivalent to the previous two,
occurs when the owner of a radio set that has three circuits built
into it, moves a switch to one of three positions and thereby
selects which circuit shall actually be used. Thus, from the
abstract point of view, selecting one machine from three is equiv-
alent to selecting one value from three at a parameter. For exam-
ple, suppose the choice is to be between the three machines α, β
and γ (each on the states a and b);

Suppose β is selected and the selector finishes with the machine

α: ↓ a b β: ↓ a b γ: ↓ a b
b a a a b b

↓ a b
a a
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Abstractly this selection is identical with having initially a
machine with three-valued input:

and then deciding that the input shall be fixed permanently at β.
(The processes are identical in the sense that if some observer
watches only the results of the processes, he cannot tell which has
occurred except by reference to other, unmentioned, criteria.)

In this example, fixing the input at β leaves the resulting
machine an absolute system, without input. If the result of the
selection is to be a machine with input, then the original machine
must start with two or more inputs, so that the fixing of one by the
act of design selection leaves the others free for further variation
as ordinary inputs.

The designer’s act of selecting one model from many is equivalent
to some determining factor fixing an input at a permanent value.

13/13. (This section treats a minor complication.)
In the examples above, the choice has been between machines

whose transformations have had the same set of operands, i.e. the
same set of states in the machine. What if the choice were to lie
between, say,

Can such a selection be represented by the fixing of an input
value? Such a choice might occur in the early stages of design, as
when the first decision is made whether the components shall be
electronic or hydraulic.

In fact this case is contained in the former, and can be repre-
sented in it by a mere change of notation. Thus the choice just
mentioned can equally be represented as that between µ and v in
the (reducible) machine, whose states are couples:

↓ a b

α b a
β a a
γ b b

↓
a b

and ↓
p q r

?
b a r q r

↓ (a,p) (a,q) (a,r) (b,p) (b,q) (b,r)

µ (b .) (b .) (b .) (a .) (a .) (a .)
ν (. r) (. q) (. r) (. r) (. q) (. r)
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(In the transformation, dots represent values that do not matter.)
If now µ is chosen, one part gives the machine

the other components being ignored; while if v is chosen, the
other part gives

Thus the initial formulation is really quite general.

13/14. Design in a Black Box. It will be noticed that the operation
of “design”, as understood here, can be carried out within a Black
Box, if it has an input. In fact, the owner of the radio set (S.13/12),
if he knows nothing of its contents, but does know how the output
is affected by the switch, does perform the act of “design in a Black
Box” when he sets the switch and gets the desired behaviour.

Other examples extend the range of the same theme. The Black
Box, or the radio set, may be dominated by another machine,
whose activities and values determine the switch’s position. If so,
we can say (provided we remember the sense in which we are
using the words) that the dominating machine, when it sets the
switch at a particular position, “designs” the radio set. What is
important is that the dominating machine shows to the radio set
those properties that are objectively shown by the behaviour of a
designer.

The same point of view may be applied to the brain, and we can
see how one part of a brain can show towards another part the
objective behavioural relationship of designer to machine. We can
begin to see how one part—a basal structure perhaps—can act as
“designer” towards a part it dominates, towards a neural network,
say.

Thus the idea of one machine designing another can be stated in
exact and general terms—exact in the sense that experiment can
be used to show objectively whether or not this relationship holds.

QUANTITY OF SELECTION

13/15. This aspect of design—of the reduction in numbers that
occurs when the many initial possibilities are reduced to the final
few or one—can easily be measured. We can use the same scales

↓
a b
b a

↓
p q r
r q r
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as are used for measuring variety and information (S.7/7 and 9/11)
and they can be measured either directly or logarithmically.

The measure, besides being convenient, has the natural prop-
erty that it specifies the capacity that the channel C must have

if the transmission of the necessary variety or information from
Designer to Machine is to be possible.

It will be noticed that this method does nothing to answer the
question “how much design is there in this machine (without ref-
erence to what it might have been)?” for the measure exists only
over the set of possibilities. It applies, not to the thing that results,
but to the act of communication (S.13/11).

The exercises will help to give reality to the somewhat abstract
arguments, and will show that they agree satisfactorily with what
is evident intuitively.

Ex. 1: At one stage in the design of a certain electrical machine, three distinct
ohmic resistances must have their values decided on. Each may have any
one of the values 10, 15, 22, 33, 47, 67 or loo ohms independently. How
much variety must the designer supply (by the law of Requisite Variety) if
the possibilities are to be reduced to one?

Ex. 2: (Continued. A similar three is to have its resistances selected to the near-
est ohm, i.e. from the set 10, 11, 12, …, 99, 100. How much variety must
the designer now supply ?

Ex. 3: Three resistances can each have the value of 10, 20 or 30 ohms. If they
are connected in parallel, how much variety must the designer supply if the
possible electrical properties are to be reduced to one ?

Ex. 4: How much design is needed if the decision lies between the two
machines, both with states a, b, c, d:

Ex. 5: How much design goes to the production of a penny stamp, (i) as con-
sisting of 15,000 half-tone dots each of which may be at any one of 10
intensities? (ii) as the final form selected by Her Majesty from three sub-
mitted forms? Explain the lack of agreement.

Ex. 6: How much variety must be supplied to reduce to one the possible
machines on a given n states? (Hint: Ex. 7/7/8.)

Ex. 7: (Continued.) Similarly when the machine’s states number n and the
input’s states (after design) number i.

Designer → Machine
C

↓
a b c d

and ↓
a b c d

?
b a b c c b c a
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13/16. Exactly the same measure may be applied to the design of
a Markovian machine. Thus the variety between the two Marko-
vian machines

is just 1 bit, for we are choosing between two objects, whose inner
contents—the various fractions—are here irrelevant. (This quantity
of 1 bit is, of course, different from the 1.58 bits that would be asso-
ciated with the right-hand matrix regarded as an information source
that produces 1 58 bits on the average, at each step (S.9/12).)

13/17. Selection in stages. The process of selection may be either
more or less spread out in time. In particular, it may take place in
discrete stages.

The driver about to choose a new car often proceeds in this way.
He first says, perhaps, “It must cost less than £1000”. This crite-
rion effects some reduction in the number of possibilities. Then
perhaps he adds that it must also be able to take five people. So he
goes on. Each new criterion makes the surviving possibilities
fewer. If he can buy only one car then the criteria must eventually
reduce the possibilities to one. Somehow this reduction must be
made, even if the spin of a coin has to be used as final selector.

The abstract selection (or design) of a machine can similarly
take place in stages. Thus suppose the machine has the four states
a, b, c, d. The transformation T

—in which the asterisks are not yet decided on—leaves all possi-
bilities open. The change to transformation U

represents a partial selection. U also represents a set of transfor-
mations, though a smaller set. So does V:

↓

and

↓
1/3 1/2 1/4 1/3 1/3 1/3
1/3 . 1/2 1/3 1/3 1/3
1/3 1/2 1/4 1/3 1/3 1/3

T: ↓
a b c d
* * * *

U: ↓
a b c d
c * b *

V: ↓
a b c d

b or c * * *
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which excludes all single-valued transformations that include the
transitions a → a or a → d. A machine can thus be selected in
stages, and the stages may be defined in various ways.

What is fundamental quantitatively is that the overall selection
achieved cannot be more than the sum (if measured logarithmically)
of the separate selections. (Selection is measured by the fall in vari-
ety.) Thus if a pack of cards is taken, and a 2-bit selection is made
and then a 3-bit, a unique card cannot be indicated unless a further
selection of at least 0.7 bits is made, for log2 52 is 5.7. The limitation
is absolute, and has nothing to do (if a machine is selected) with the
type of machine or with the mode of selection used.

Ex. 1: How many possibilities are removed when, to the closed, single-valued
transformation on a, b and c with all 27 forms initially possible, the restric-
tion is added “It must have no state of equilibrium” ?

Ex. 2: (Continued.) When the restriction is “It must have three states of equilib-
rium” ?

Ex. 3: In logarithmic measure, how much selection was exerted in Ex. I ?
*Ex. 4: How much selection is exerted on an absolute system of n states, a1, a2,

…, an, with all transformations initially possible, if the restriction is added
“It must contain no state of equilibrium?” (Hint: To how many states may
al now transform, instead of to the n previously?) (Cf. Ex. 1.) 

*Ex. 5: (Continued.) To what does this quantity tend as n tends to infinity?
(Hint: Calculate it for n = 10, 100, 1000.) (This estimation can be applied
to the machine of S.12/15.)

*Ex. 6: If, as described in this section, the cards of a shuffled pack are searched
(without further shuffling) one by one in succession for a particular card,
how much information is gained, on the average, as the first, second, third,
etc., cards are examined? (Systematic searching.)

*Ex. 7: (Continued.) How much if, after each failure, the wrong card is
replaced and the pack shuffled before the next card is drawn? (Random
searching.)

13/18. Supplementation of selection. The fact that selection can
often be achieved by stages carries with it the implication that the
whole selection can often be carried out by more than one selec-
tor, so that the action of one selector can be supplemented by the
action of others.

An example would occur if a husband, selecting a new car from
the available models, first decided that it must cost less than £1000,
and then allowed his wife to make the remainder of the selection. It
would occur again if the wife, having reduced the number to two
models, appealed to the spin of a coin to make the final decision.

Examples are ubiquitous. (Those that follow show supplementa-
tion by random factors, as we shall be interested in them in the next
chapter.) At Bridge, the state of the game at the moment when the
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first card is led has been selected partly by the bids of the players and
partly by chance—by the outcome of the statistically standardised
act of shuffling—which has selected the distribution of the cards.
(Compare Fig. 12/22/1.) The Rules of Bridge ensure, in fact, that a
definite part of the whole determination shall be assigned to chance,
i.e. to shuffling carried out in a prescribed way. Such an appeal to
chance was frequently used in the past as a method for supplement-
ing selection. The Roman general, for instance, after having made
many decisions, would often leave the remainder to be determined
by some other factor such as the flight of the next flock of birds, or
the configurations shown in the entrails of a freshly-killed sheep.
(Supplementation was used earlier in this book in S.4/19 and 12/15.)

In scientific work the first deliberate use of wholly uncorrelated
selectors to provide “random” determination to complete the
selection imposed by the experimenter, was made apparently by
Sir Ronald Fisher; for he first appreciated its fundamental impor-
tance and usefulness.

(By saying a factor is random, I do not refer to what the factor
is in itself, but to the relation it has with the main system. Thus the
successive digits of π are as determinate as any numbers can be,
yet a block of a thousand of them might serve quite well as ran-
dom numbers for agricultural experiments, not because they are
random but because they are probably uncorrelated with the
peculiarities of a particular set of plots. Supplementation by
“chance” thus means (apart from minor, special requirements)
supplementation by taking effects (or variety) from a system
whose behaviour is uncorrelated with that of the main system. An
example was given in S.12/15. Thus if a chance variable were
required, yesterday’s price of a gold-share might be suitable if the
main system under study was a rat in a maze, but it would not be
suitable if the main system were a portion of the financial-eco-
nomic system.)

SELECTION AND MACHINERY

13/19. Selection by machine. In the preceding sections we have
considered the questions of communication involved when a
machine is to be selected. Whatever does the selecting is, how-
ever, on general cybernetic principles, also to be considered as a
mechanism. Thus, having considered the system

when L acts so as to design or select the machine M, we must now
consider L as a machine, in some way acting as designer or selec-

L → M
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tor. How can a machine select? The answer must, of course, be
given in terms compatible with those already used in this Part.

Perhaps the simplest process of selection occurs when a machine
goes along a particular trajectory, so that after state i (say) it goes to
state j (say) and not to any other of its states. This is the ordinary
selection that a machine makes when its “message” (the protocol
from it) says that the machine has this transformation and no other.

Another process of selection shown by a machine is that noticed
in S.7/24: every determinate machine shows selection as it
reduces the variety in its possible states from the maximum ini-
tially to the number of its basins finally.

Another process of selection was treated in S.5/13, when one part
of a whole can select from states of equilibrium in the other part by
“vetoing” some of them. This is perhaps the most obvious form of
selection, for, as the two are watched, the imaginative observer can
almost hear the vetoing part say “… no good, still no good, I won’t
have it, still no good, Hold It!—yes, we’ll keep that permanently.”
If a machine is to be built as a selector (perhaps to carry out the pro-
gramme hinted at in the final section) it will, so far as I can see, have
to be built to act in this way. It is the way of the second-order feed-
back in Fig. 5/14/1 (supplemented in S.12/15).

There are doubtless other methods, but these will suffice for
illustration, and they are sufficient to give definiteness to the idea
of a machine “selecting”; (though special consideration is hardly
necessary, for in Shannon’s theory every act of communication is
also one of selection—that by which the particular message is
caused to appear).

13/20. Duration of selection. At this point a word should be said
about how long a given act of selection may take, for when actual
cases are examined, the time taken may, at first estimate, seem too
long for any practical achievement. The question becomes specially
important when the regulator is to be developed for regulation of a
very large system. Approximate calculation of the amount of selec-
tion likely to be necessary may suggest that it will take a time far
surpassing the cosmological; and one may jump to the conclusion
that the time taken in actually achieving the selection would have to
be equally long. This is far from being the case, however.

The basic principles have been made clear by Shannon, espe-
cially in his Communication theory of secrecy systems. He has
shown that if a particular selection is wanted, of 1 from N, and if
the selector can indicate (or otherwise act appropriately) only as
to whether the required element is or is not in a given set, then the
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method that achieves the whole selection in the fewest steps is
selection by successive dichotomies, so that the early selections
are between group and group, not between elements. This method
is much faster than the method of examining the N one by one,
seriatim. And if N becomes very large, the method of selecting
among groups becomes almost incomparably faster. Lack of
space prohibits an adequate treatment of this important subject,
but it should not be left until I have given an example to show
something of how enormously faster the dichotomising method is.

Let us consider a really big selection. Suppose that, somewhere in
the universe (as visible to the astronomer) there is a unique atom; the
selector wants to find it. The visible universe contains about
100,000000 galaxies, each of which contains about 100000,000000
suns and their systems; each solar system contains about 300000
bodies like the earth, and the earth contains about 1,000000,000000
cubic miles. A cubic mile contains about 1000,000000,000000,000000
dust particles, each of which contains about 10000,000000,000000
atoms. He wants to find a particular one!

Let us take this as a unit of very large-scale selection, and call
it 1 mega-pick; it is about 1 from 1073. How long will the finding
of the particular atom take?

Two methods are worth comparing. By the first, the atoms are
examined one at a time, and a high-speed electronic tester is used to
examine a million in each second. Simple calculation shows that the
number of centuries it would take to find the atom would require
more than the width of this page to write down. Thus, following this
method dooms the selection to failure (for all practical purposes).

In the second method he uses (assuming it possible) the method
of dichotomy, asking first: is the atom in this half or that? Then,
taking what is indicated, is it in this half or that?. And so on. Sup-
pose this could be done only at one step in each second. How long
would this method take ? The answer is: just over four minutes!
With this method, success has become possible.

This illustration may help to give conviction to the statement
that the method of selection by groups is very much faster than the
method of searching item by item. Further, it is precisely when the
time of searching item by item becomes excessively long that the
method of searching by groups really shows its power of keeping
the time short.

13/21. Selection and reducibility. What does this mean when a
particular machine is to be selected ? Suppose, for definiteness
that it has 50 inputs, that each input can take any one of 25 values,



262

AN INTRODUCTION TO CYBERNETICS

and that a particular one of the possible forms is sought. This
selection is just about 1 megapick, and we know that the attempt
to select seriatim is hopeless. Can the selection be made by
groups? We can if there can be found some practical way of
grouping the input-states.

A particular case, of great practical importance, occurs when
the whole machine is reducible (S.4/14) and when the inputs go
separately to the various sub-systems. Then the sequence: select
the right value for part 1, on part 1’s input; select the right value
for part 2, on part 2’s input; and so on—corresponds to the selec-
tion being conducted by groups, by the fast method. Thus, if the
machine is reducible the fast method of selection can be used.

In fact, reducibility is extremely common in our terrestrial sys-
tems. It is so common that we usually take it for granted, but he
who would learn how to regulate the very large system must
become fully aware of it.

To get some idea of how much the world we live in shows
reducibility, compare its ordinary behaviour with what would
happen if, suddenly, the reducibility were lost, i.e. if every varia-
ble had an effect, immediate or delayed, on every other variable.
The turning over of a page of this book, instead of being just that
and nothing more, might cause the lights to change, the table to
start moving, the clock to change its rate, and so on throughout the
room. Were the world really to be irreducible, regulation would
be so difficult as to be impossible, and no organised form of life
could persist (S.7/17).

The subject must be left now, but what was said in Design … on
“Iterated systems”, and in the chapters that followed, expands the
thesis. Meanwhile we can draw the conclusion that if a responsi-
ble entity Ω (S.13/10) is to design (i.e. select) a machine to act as
regulator to a very large system, so that the regulator itself is
somewhat large, the achieving of the necessary selection within a
reasonably short time is likely to depend much on whether the
regulator can be made in reducible form.

13/22. Whence the Regulator? Now at last we can answer the
question that has been latent throughout Part III: how is the
desired regulator to be brought into being? The question was
raised in S.13/10, but since then we have explored a variety of top-
ics, which had to be discussed before the threads could be pulled
together. Let us now survey the position.

The process of arriving eventually at a particular machine with
desired properties implies selection, and it also implies that the
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responsible entity Q (of S.13/10) has worked successfully to a
goal With whatever variety the components were initially availa-
ble, an with whatever variety the designs (i.e. input values) might
have varied from the final appropriate form, the maker Q acted in
relation to the goal so as to achieve it. He therefore acted as a reg-
ulator. Thus the making of a machine of desired properties (in the
sense of getting it rather than one with undesired properties) is an
act of regulation.

Suppose now that this machine of desired properties is the reg-
ulator discussed throughout Part III—how is it to be made The
answer is inescapable: by another regulator.

Is this a reduction ad absurdum of our whole position? I thin
not. For the obvious question “where does it all start?” is readily
answered. As biologists, our fundamental fact (S.10/3) is that the
earth has now existed for a long time, that selection has acted
throughout this time, and that selection favours the appearance c
regulators (S.10/5). These facts alone are sufficient to account for
the presence on the earth today of many good regulators. And n~
further explanation is necessary if it should be found that some o
these regulators have as goal the bringing of some mechanism to
standard form, even if the standard form is that of a regulator
(with goal, of course, distinct from that of the first). The scientist
would merely be mildly curious as to why something that could
be done directly, in one stage, is actually done indirectly, in two.

We can thus answer this section’s question by saying that a reg-
ulator can be selected from some general set of mechanisms (man,
non- regulatory) only by being either the survivor of some process
of natural selection or by being made (another process of selection
by another regulator.

13/23. Is not this making of the desired regulator by two stages
wasteful? That it should be arrived at in two stages suggests that
the problem of getting a regulator always has to be solved before
it can be tackled!

Again, what does this imply when the very large system to be
regulated is the social and economic world and the responsible
entity Ω is some set, of sociologists perhaps, whose capacity, as a
regulator, is limited to that available to the members of the species
Homo? Does this imply that no advance in regulation is possible
(for the regulator will have to be built by members of the species)?

It does not; for when regulation is achieved in stages—when a
regulator R1 acts so as to bring into existence a regulator R2—the
capacity of R2 is not bounded by that of R1. The possibility arises
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that R2 may be of capacity greater than R1, so that an amplification
occurs. This possibility is studied in the next chapter, where we
shall see that, apart from being necessarily wasteful, the method
of regulation by stages opens up some remarkable possibilities.
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Chapter 14

AMPLIFYING REGULATION

14/1. What is an amplifier? An amplifier, in general, is a device
that, if given a little of something, will emit a lot of it. A sound
amplifier, if given a little sound (into a microphone) will emit a
lot of sound. A power-amplifier, such as the one described in
S.12/21, if given a little power (enough to move L) will emit a lot
of power (from H). And a money-amplifier would be a device
that, if given a little money, would emit a lot.

Such devices work by having available a generous reservoir of
what is to be emitted, and then using the input to act as controller
to the flow from the reservoir. Rarely an amplifier acts by directly
magnifying the input, as does the cine-projectionist’s lens; but
more commonly it works by supplementation. Thus the
power-amplifier has some source that will provide power abun-
dantly (the compressed air at A in Fig. 12/21/1), and it is this
source that provides most of the power in the output, the input
contributing little or nothing towards the output. Similarly, the
work performed by the cranedriver on the control-handle does
nothing directly towards lifting the main weight, for the whole of
his work is expended in moving electrical or other switch gear.

It will be seen that in the power amplifier (e.g. that of Fig. 12/21/
1) the whole process—that of lifting a heavy weight at H, by a
force at L—goes in two stages, by two coupled systems. It is this
separation into two stages that makes power-amplification possi-
ble, for otherwise, i.e. in one stage, the law of conservation of
energy would make any simple and direct amplification of power
impossible. Stage 1 consists of the movement, by the operator, of
the point L against the friction at K and the pressure at V; over this
stage energy, or power, is conserved strictly. Stage 2 consists of the
movement of compressed air into or out of B and the lifting of P,
G and H; over this stage, also, energy is conserved; for the energy
used when the weight at H is lifted is derived from the expansion
of the compressed air. Thus the whole system can be regarded as
composed of two systems, within each of which energy is con-
served strictly, and so coupled that forces of 0, 1, 2…dynes at L
correspond respectively to forces of 0, 1000, 2000,… dynes (or
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some other multiple) at H.  It is the division into two stages that
enables a power-amplifier to be built in spite of the law of conser-
vation of energy, the point being that the energy supplied to the
input in stage 1 can be supplemented to give the output in stage 2.

Sometimes the proportionality is important, as in the radio
amplifier. Then the machine has to be made so that the ratio has
the same value all along the scale. In other cases the exact value
of the ratio is of little importance, as in the crane, the essential
point in it being that the input values shall all be within some
given limit (that set by the strength of the crane driver’s arm) and
that the output shall be supplemented generously, so that it much
exceeds the value of the input.

Ex.: Design a “water-amplifier”, i.e. a device that, if water is pumped into the
input at x ml/see will emit, from its output, water at 100x ml/sec.

14/2. The process of amplification can thus be looked at from two
very different points of view, which are apt to lead to two very dif-
ferent opinions about whether amplification does or does not
occur.

On the one side stands the theoretician—a designer of cranes,
perhaps, who must understand the inner nature of the process if he
is to make the crane effective. To him there is no real amplifica-
tion: the power emitted does not exceed the (total) power sup-
plied. He knows that the operator at the control is successful
simply because the operator can, as it were, rob other sources of
energy (coal, oil, etc.) to achieve his end. Had Nature not provided
the coal as a generous source of supplementation, the operator
would not be able to lift the heavy load. The operator gets “ampli-
fication” simply by calling in King Coal to help him. So the basic
type of amplifier is the boy who can lift big weights—because his
father is willing to lift them for him!

All this is true; yet on the other side stands the practical man
who wants to use the thing, the man who decides what machinery
to install at the quay-side, say. If he has access to an abundant
source of cheap power, then for him “amplification” becomes
very real and practical. It means the difference between the ships
being loaded quickly and easily by movements of a control han-
dle, or slowly and laboriously by hand. When the load is larger, a
locomotive for instance, the non-availability of a power-amplifier
might mean that the job could not be done at all. Thus, to the prac-
tical man the possibility of such an apparent amplification is of
great importance.
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Obviously, both points of view are right. Designers of cranes
should be well aware that they are not really amplifiers, but the
users of them should think of them as if they were.

14/3. We can now see how we should view the question of ampli-
fying regulation. During the designing (in this chapter) we shall
have to be clearly aware that the designer is really achieving only
a supplementation, by robbing some easily available and abun-
dant source of it. When he comes to use it, however (a matter for
the future), he should forget the fact, and should know only that
he is now like a workman equipped with power-operated tools,
able to achieve tasks impossible to the unaided workman.

14/4. Regulation and selection. In S.13/10 we started to consider
what would get the regulator (previously assumed to be given)
into actual existence, either as a formula for behaving, contained
within the organism (Q) that wants the regulation, or as a material
machine built by the organism to act for him. We saw that the
quantity of design that goes to it can be measured (by the amount
of selection necessary) and we saw (S.13/18) that selection can, in
a sense, be amplified. To make the matter clearer, let us consider
more directly the relation between regulation and selection, espe-
cially so far as the quantities of variety or information are con-
cerned. If the diagram of immediate effects is

we want to know how much variety or information the channel C
between them will have to carry.

To get a regulator made, selection is essential. Here are three
examples:

The first regulator we discussed (S.11/3) led to our identifying
it as

and this particular transformation (the regulatory) had to be
selected from the set of all transformations possible, which num-
bered, in this case, 27 (cf. Ex. 7/7/8). Here the regulator is “made”
by being unambiguously specified, i.e. distinguished from the
others.

In S.13/12 another method was used, and a machine, which
might be a regulator, was “designed” by a particular value being
selected from the set of possible input-values.

Designer → Regulator
C

R: ↓
1 2 3
β α γ
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A third method for getting a regulator made is to assemble it in
hardware, as a mechanic makes a water bath. Again selection is
necessary: components have to be selected (distinguished) from
other possible objects, and the mode of assembling and coupling
has to be selected from the other, incorrect, modes. The quantity
of selection used can be measured; and any dispute about the
measurement can be resolved by the method of S.13/11 (final par-
agraph).

It follows from S.13/18 that if the final regulator can be arrived
at by stages (the whole selection occurring in stages) the possibil-
ity exists that the provision of a small regulator at the first stage
may lead to the final establishment of a much bigger regulator (i.e.
one of larger capacity) so that the process shows amplification.

This is the sense in which “amplifying” regulation is to be
understood. The law of Requisite Variety, like the law of Conser-
vation of Energy, absolutely prohibits any direct and simple mag-
nification but it does not prohibit supplementation.

14/5. Let us consider some examples which will actually show
such amplification of regulation.

Suppose the disturbances are fluctuations in the mains’ voltage,
which come to an apparatus owned by Q at the rate of hundreds a
second, and threaten to disturb it. Assume that the variety per sec-
ond provided by these disturbances far exceeds his capacity as a
channel, so it is impossible for him to regulate against them by
direct personal action. However, he has available a manufac-
turer’s catalogue, which shows three items:

1: Television set,
2: Mains stabiliser,
3: Frequency changer.

Assume that it is within his capacity for him to make a suitable
selection of one from three; if now he performs the appropriate
selection, the end result will be that the brains’ supply to his appa-
ratus will become stabilised. Thus his three possible primary
selections can be put into correspondence with three outcomes,
one of which is “mains’ voltage stabilised”.

The latter regulation (over, say, a year) involves far more selec-
tion than of one from three; so over the whole transaction an
undoubted amplification has occurred.

In this example the supplementation is so obvious, and his
dependence on the manufacturer’s power as a designer so blatant,
that the reader may be tempted to dismiss this “amplification” as
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not worth serious consideration. (It is not, however, more blatant
than the crane-driver’s dependence on a suitable power supply.)
This case, however, is only somewhat extreme (having been
selected to show one end of the scale). Other cases lie further
along the scale, and are of more general interest. The principle,
however, remains unaltered.

Next consider the case in which Q wants a water bath to be
restored to a certain temperature; restorations will be required 100
times in each day and over a whole year. This means that on
36,500 occasions the temperature must be corrected by a raising
or a lowering—a one-bit selection, say. The whole Grand Distur-
bance (S.13/8) thus has variety of 236S00 possibilities. Q proba-
bly could transmit this in the year, but finds it inconvenient. If
then his resources are such that he can make a thermostat at a cost
of, say, 1000 bits, then by using the fact that the Grand Distur-
bance is repetitive (S.13/9), the act of selecting appropriately from
1000 bits has as consequence the correct selection from 36,500
bits. So an amplification of about x 36 (if measured on the loga-
rithmic scale) has occurred.

This second example is more ordinary than the first. The fact
that its method is widely used in practice shows whether or not the
practical man thinks it worth while.

There is, of course, not necessarily any amplification; and the
practical man, before he builds a machine to do a job, always
makes at least an intuitive assessment of the balance:

What this chapter deals with are the actual quantities involved,
when our interest is centred on the amount of communication and
selection that is required.

Finally let us consider an example in which the possibility of
amplification is obvious and of practical use. Suppose twenty men
are given the task of keeping two thousand rooms constant in tem-
perature and humidity. If some means of control exists in each
room, the twenty may yet find the task beyond their capacity if
they try to compensate for all the atmospheric variations by
manipulation of the controls directly. It may happen, however,
that machines are available such that if the men become mechan-
ics and act as regulators to the machines, the machines can be
made into air-conditioners and maintained as such. And it may
further happen that the amount of regulation that the mechanics

Cost (in some sense) of making 
the machine which will do the 
job.

Cost incurred by doing it 
himself.
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can supply to the conditioners is sufficient to keep the condition-
ers effectively in control of the two thousand rooms. Thus the reg-
ulation that could not be done in one stage may, if the conditions
are suitable, be possible in two.

The quantities of communication (the channel capacities)
involved in these regulations could be measured to any desired
accuracy, and the exact degree of any amplification ascertained.
Thus if amplification had actually occurred, the reality of the fact
could be demonstrated beyond dispute.

Whence (in the last example) comes the supplementation? In
general, from whatever supplies the other inputs. In the example
just given, these include the other factors that contributed to the
machines’ design and manufacture, and also the environment
itself, which communicates to the conditioner, and not to the
mechanic, what is the temperature and humidity at each moment.
As a result, these sources of information play a part in the total
regulation, without using the mechanic as a channel.

The example just given shows two levels of regulation, but there
is no reason why the number should stop at two. A doctor who
looks after the set of mechanics and keeps them healthy and able
to work might claim, so far as the rooms were concerned, to be a
regulator at the third level. The matter need not be pursued further
once the principle is clear, especially since many cases will proba-
bly not show the various regulators arranged in a simple hierarchy.

14/6. Amplification in the brain. We can now understand quanti-
tatively why this indirect method has proved superior—why it is
the method used by those organisms that have the most powerful
resources for regulation—it allows amplification.

The gene-pattern, as a store or channel for variety, has limited
capacity. Survival goes especially to those species that use the
capacity efficiently. It can be used directly or indirectly.

The direct use occurs when the gene-pattern is used directly to
specify the regulator. The regulator is made (in the embryo) and
the organism passes its life responding to each disturbance as the
gene-pattern has determined. Amplification does not occur (from
our present point of view, though some advantage is gained (S.13/
9) if the disturbances recur frequently in the organism’s lifetime).

The indirect use occurs when the gene-pattern builds a regulator
(R1) whose action is to build the main regulator (R2), especially if
this process is raised through several orders or levels. By achiev-
ing the ultimate regulation through stages, the possibility of
large-scale supplementation occurs, and thus the possibility of an
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ultimate regulation far greater than could be achieved by the
gene-pattern directly.

A clear example of how one regulator can act so as to cause the
development of another occurred in S.12/15. Part B of the home-
ostat was built and thus became the primary regulator Rl. Coupled
to Part A, it acts so as to cause A to become stable with its needles
at the centre. When this is achieved, A acts as a regulator (R2)
towards disturbances coming to it that would make the needles
diverge. Though the R2 of this particular example is extremely
simple, nothing in principle separates this case from those in
which the regulator R2 is of any degree of complexity.

The method of achieving regulation in two stages, by which the
gene- pattern makes R1, and Rl makes R2, is the method of the
mammals, whose gene-pattern is used, in its action on the embryo
brain, to determine the development at birth of some fundamental
regulators (Rl) whose action is not immediately to the organism’s
advantage. From birth onwards, however, they act towards the
cerebral cortex so as to develop in it a vast regulatory mechanism
(R2) that, by the time adulthood arrives, is a much better regulator
(i.e. of larger capacity) than could have been produced by the
action of the gene-pattern directly.

Whence comes the supplementation? From random sources as
in S.12/15 and from the environment itself! For it is the environ-
ment that is forced to provide much of the determination about
how the organism shall act. Thus gene-pattern and environment
both contribute to the shaping of the fully developed adult, and in
this way the quantity of design supplied by the gene-pattern is
supplemented by design (as variety and information) coming
from the environment. Thus the adult eventually shows more reg-
ulatory capacity than could have been determined by the
gene-pattern alone. The amplification of regulation is thus no new
thing, for the higher animals, those that adapt by learning, discov-
ered the method long ago.

May it not be possible that the amplification can be increased
even further? If so, is there not a possibility that we can use our
present powers of regulation to form a more highly developed
regulator, of much more than human capacity, that can regulate
the various ills that occur in society, which, in relation to us, is a
very large system?

14/7. Amplifying intelligence. This book is intended to be an
Introduction, and for twelve chapters it has kept to its purpose.
The last two chapters, however, have developed the subject some-
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what speculatively, partly to give the reader practice in applying
the earlier methods, and partly to show what lies ahead, for the
prospects are exciting.

In S.13/18 we saw that selection can be amplified. Now “prob-
lem solving” is largely, perhaps entirely, a matter of appropriate
selection. Take, for instance, any popular book of problems and
puzzles. Almost every one can be reduced to the form: out of a
certain set, indicate one element. Thus of all possible numbers of
apples that John might have in his sack we are asked to find a cer-
tain one; or of all possible pencil lines drawn through a given pat-
tern of dots, a certain one is wanted; or of all possible distributions
of letters into a given set of spaces, a certain one is wanted. It is,
in fact, difficult to think of a problem, either playful or serious,
that does not ultimately require an appropriate selection as neces-
sary and sufficient for its solution.

It is also clear that many of the tests used for measuring “intel-
ligence” are scored essentially according to the candidate’s power
of appropriate selection. Thus one test shows the child a common
object and asks its name: out of all words the child must select the
proper one. Another test asks the child how it would find a ball in
a field: out of all the possible paths the child must select one of the
suitable few. Thus it is not impossible that what is commonly
referred to as “intellectual power” may be equivalent to “power of
appropriate selection”. Indeed, if a talking Black Box were to
show high power of appropriate selection in such matters—so
that, when given difficult problems it persistently gave correct
answers—we could hardly deny that it was showing the behavio-
ral equivalent of “high intelligence”.

If this is so, and as we know that power of selection can be
amplified, it seems to follow that intellectual power, like physical
power, can be amplified. Let no one say that it cannot be done, for
the gene-patterns do it every time they form a brain that grows up
to be something better than the gene-pattern could have specified
in detail. What is new is that we can now do it synthetically, con-
sciously, deliberately.

But this book must stop; these are not matters for an Introduction.
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