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PREFACE

In 1965, Lofti A. Zadeh introduced the notion of a fuzzy subset of a set as
a method for representing uncertainty. It provoked, at first (and as
expected), a strong negative reaction from some influential scientists and
mathematicians—many of whom turned openly hostile. However, despite
the controversy, the subject also attracted the attention of other
mathematicians and in the following years, the field grew enormously,
finding applications in areas as diverse as washing machines to
handwriting recognition. In its trajectory of stupendous growth, it has also
come to include the theory of fuzzy algebra and for the past five decades,
several researchers have been working on concepts like fuzzy semigroup,
fuzzy groups, fuzzy rings, fuzzy ideals, fuzzy semirings, fuzzy near-rings
and so on.

In this book, we study the subject of Smarandache Fuzzy Algebra.
Originally, the revolutionary theory of Smarandache notions was born as a
paradoxist movement that challenged the status quo of existing
mathematics. The genesis of Smarandache Notions, a field founded by
Florentine Smarandache, is alike to that of Fuzzy Theory: both the fields
imperatively questioned the dogmas of classical mathematics.

Despite the fact that Fuzzy Algebra has been studied for over fifty years,
there are only two books on fuzzy algebra. But both the books do not
cover topics related to fuzzy semirings, fuzzy near-rings etc. so we have
in this book, two parts: In Part 1 we have recalled all the definitions and
properties of fuzzy algebra. In Part II we give Smarandache fuzzy
algebraic notions. This is the first book in fuzzy algebra which covers the
notions of fuzzy semirings and fuzzy near-rings though there are several
papers on these two concepts.

This book has seven chapters, which are divided into two parts. Part I
contains the first chapter, and Part II encloses the remaining six chapters.
In the first chapter, which is subdivided into twelve sections, we deal with
eleven distinct fuzzy algebraic concepts and in the concluding section list
the miscellaneous properties of fuzzy algebra. The eleven fuzzy algebraic
concepts which we analyze are fuzzy sets, fuzzy subgroups, fuzzy sub-
bigroups, fuzzy rings, fuzzy birings, fuzzy fields, fuzzy semirings, fuzzy
near-rings, fuzzy vector spaces, fuzzy semigroups and fuzzy half-
groupoids. The results used in these sections are extensive and we have
succeeded in presenting new concepts defined by several researchers. In
the second chapter we introduce the notion of Smarandache fuzzy
semigroups and its properties and also study Smarandache fuzzy
bisemigroups. In the third chapter, we define the notion of Smarandache
fuzzy half-groupoids and their generalizations (Smarandache fuzzy
groupoids and bigroupoids, Smarandache fuzzy loops and biloops).

Chapter four deals with Smarandache fuzzy rings and Smarandache non-
associative fuzzy rings. This chapter includes Smarandache fuzzy vector
spaces and Smarandache birings. The study of Smarandache fuzzy



semirings and its generalizations comprises the fifth chapter. Likewise, in
the sixth chapter we analyze Smarandache fuzzy near-rings and its
generalizations. In these six chapters, we have succeeded in introducing
around 664 concepts related to Smarandache fuzzy algebra. The reader is
expected to be well-versed with a strong background in Algebra, Fuzzy
Algebra and Smarandache algebraic notions.

The final chapter in this book deals with the applications of Smarandache
Fuzzy algebraic structures. I do not claim that I have exhausted all the
possibilities of applications, all that I have done here is to put forth those
concepts that clearly have relevant applications. When I informed my
interest in writing this book, Dr. Minh Perez of the American Research
Press, editor of the Smarandache Notions Journal, a close research
associate and inspiration-provider par excellence, insisted, rather subtly,
that I try to find applications for these Smarandache notions. I was
worried a little bit about finding the right kind of applications to suit this
book, and then I happened to come across an perceptive interview with
the Father of Fuzzy Sets, Lofti. A. Zadeh. Emphasizing about the long time
it takes for a new subject to secure its place in the spotlight, he says,
"Now: Probabilistic computing. It is interesting that within Artificial
Intelligence it is only within the past several years that it has become sort
of accepted. Previous to that it was not accepted. There was an article in
the New York Times about Bayesian things. It says this technology is 276
years old. Another example that comes to mind is holography. Garbor
came up with his first paper in 1946; I saw the paper. No applications
until the laser was invented! It's only after laser was invented that
holography became useful. And then he got the Nobel Prize. Sometimes it
has to await certain things. ... So, sometimes it's a matter of some
application that all of the sudden brings something to light. Sometimes it
needs that kind of thing." Somewhere between those lines, I could find
the hope that I had longed for. It made me attest to the fact that research
is generally a legacy, and that our effort will subsequently stand up to
speak for itself.

Since I am generalizing now, and speaking of hope and resurrection and
the legacy of effort, and also about movements that challenge the dogmas
and the irrationality of tradition, I am also aware of how all of this
resonates with the social aspects of our life.

Thinking about society, about revolution and revolt, and about the
crusades against domination and dogma, I dedicate this book to Periyar
(Literally meaning, The Great Man), the icon of rationalism. He single-
handedly led the non-brahmins of South India, to a cultural, political and
social awakening, freeing them from the cruel bonds of slavery that
traditional brahminism foisted upon them. He was the first political leader
in India to fight for the concepts of Self-Respect and Social Justice; and in
terms of social reform, he stands unparalleled. His writings and speeches,
which I read with the rigour that is expected of serious research, are now
a permanent part of my personal faith. Periyar's ideology and political
praxis have influenced me overwhelmingly, and his thought drives me to
dissent and to dare.
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Chapter One

SOME RESULTS ON FUZZY ALGEBRA

This chapter has twelve sections. First section we introduce the concept of fuzzy sets.
As there are very few books on fuzzy algebra we have tried our level best to introduce
all the possible definitions of fuzzy groups, fuzzy rings, fuzzy vector spaces, fuzzy
near rings. Section two is devoted to the definition of fuzzy groups and some of its
basic properties. Section three solely deals with the study and introduction of fuzzy
sub-bigroup of a group. Fuzzy rings and its properties are introduced in section four.
Section five introduces the notions of fuzzy birings. Study of fuzzy fields is carried
out in section six. Study of fuzzy semirings and their generalizations are given in
section seven. Section eight gives the properties of fuzzy near-rings and its properties.
We describe the notions of fuzzy vector spaces and fuzzy bivector spaces in section
nine. A brief study of fuzzy semigroups is carried out in the tenth section. The
generalization of fuzzy half groupoids and its generalizations are given in section
eleven. The final section, which is quite radical in nature gives the miscellaneous
properties in fuzzy algebraic structures.

1.1 Fuzzy Subsets

In 1965 Zadeh [144] mathematically formulated the fuzzy subset concept. He defined
fuzzy subset of a non-empty set as a collection of objects with grade of membership
in a continuum, with each object being assigned a value between 0 and 1 by a
membership function. Fuzzy set theory was guided by the assumption that classical
sets were not natural, appropriate or useful notions in describing the real life
problems, because every object encountered in this real physical world carries some
degree of fuzziness. Further the concept of grade of membership is not a probabilistic
concept.

DEFINITION 1.1.1: Let X be a non-empty set. A fuzzy set (subset) U of the set X is a
function : X — [0, 1].

DEFINITION 1.1.2: Let U be a fuzzy subset of a set X. For t [J [0, 1], the set
X, = {x OXx | H(x)= t} is called a t-level subset of the fuzzy subset | .

DEFINITION 1.1.3: A4 fuzzy set of a set X is called a fuzzy point if and only if it takes
the value 0 for all y [J X except one, say, x [JX. If its value at x is t, (0 <t <1) then we
denote this fuzzy point by x; .

DEFINITION 1.1.4: The complement of a fuzzy set U of a set X is denoted by 1f and
defined as f (x) = 1 - U (x) for every x [JX.

We mainly give definitions, which pertain to algebraic operations, or to be more
precise we are not interested in discussing concepts topologically or analytically like
continuity, connected, increasing function or decreasing function. Just we proceed on
to define when are two functions disjoint and the concept of min max functions.



DEFINITION 1.1.5: Two fuzzy subsets [ and A of a set X are said to be disjoint if there
exists no x [JX such that 4 (x) = A (x).

DEFINITION 1.1.6: The union of two fuzzy sets A and U of a set X, denoted by A [J L is
a fuzzy subset of the set X defined as (A [J 1) (x) = max {A (x), U (x)} for every x [JX.
The intersection of two fuzzy (subsets) sets A and [ of a set X, written as A n 4 is a
fuzzy subset of X defined as (A n W) (x) = min {A(x), U (x)} for every x [JX.

DEFINITION 1.1.7: Let A and U be two fuzzy subsets of a set X. Then A is said to be
contained in [, written as A [J W if A (x) < U (x) for every x [JX. If A (x) = U (x) for
every x [1X then we say A and [l are equal and write A = |4

DEFINITION 1.1.8: 4 fuzzy subset U of a set X is said to normal if

SUp U = 1.

xO0X

A fuzzy subset |1 of a set X is said to be normalized if there exist x [/ X such that [ (x)
= 1.

DEFINITION 1.1.9: Letf: X — Y be a function. For a fuzzy set [ in Y, we define
(W) x) =l (f(x) for every x [IX.

For a fuzzy set A in X, f(A) is defined by

sup A(x)  if f(z)=yz0X
0 if there is no such x

A ) = {

wherey [7Y.

DEFINITION 1.1.10: Let X be any set. A fuzzy subset U in the set X has the sup
property if for any subset A of the set X there exists xg [J A such that U (xg) = sup
{Ux) Lix [JA).

DEFINITION 1.1.11: Let A and 4 be fuzzy subsets of the sets X and Y respectively. The
cartesian product of A and [l is defined as A x p: X xY - [0, 1] such that (A x 1) (x,
v) = min {Ax), U ()} for every (x, y) [JX xY. A fuzzy binary relation R, on a set X is
defined as a fuzzy subset of X x X.

The composition of two fuzzy relations Ry and R, is defined by (Ry o Ry )(x, y) =
Sup {min R) (x, t), Ry (t, y)}, for every x, y [JX.

t0x
DEFINITION 1.1.12: Let R) be a fuzzy binary relation on a set X. A fuzzy subset U of

the set X is said to be a pre class of Ry if min {{{ (x), U (V) } SR (x, y) for every x, y []
X

10



A fuzzy binary relation R, on a set X is said to be a similarity relation on the set X if it
is reflexive, symmetric and transitive that is, for every x, y, z [/ X.

Ri(x,x)=1
Ry(x,y)=Ri(y, x)
min { Ry (x, ), Ry (v, z)} SR, (%, 2).

Let U be a fuzzy subset of a set X. If |4 (x) = 0 for every x [J X then we call [ as empty
fuzzy set and denote it by @. If U (x) = I for every x [JX then we call [l as whole fuzzy
set and denote it by 1x.

DEFINITION 1.1.13: A fuzzy binary relation S on X is said to be a similarity relation
on X if it is reflexive, symmetric and transitive i.e.

S x)=1.
Sk y)=8S0 x).
S, y) S, z) S (x, z) forallx, y, zin X.

For more about fuzzy sets please refer [17, 26, 59, 144].

1.2 Groups and fuzzy subgroups

Rosenfield [112] introduced the notion of fuzzy group and showed that many group
theory results can be extended in an elementary manner to develop the theory of fuzzy
group. The underlying logic of the theory of fuzzy group is to provide a strict fuzzy
algebraic structure where level subset of a fuzzy group of a group G is a subgroup of
the group. [14, 15] reduced fuzzy subgroup of a group using the general t-norm.
However, [112] used the t-norm ‘min’ in his definition of fuzzy subgroup of a group.
Fuzzy groups are further investigated by [32, 33] who mainly studied about the level
subgroups of a fuzzy subgroup. [109] analyzed this level subgroups of a fuzzy
subgroup in more detail and investigated whether the family of level subgroups of a
fuzzy subgroup, determine the fuzzy subgroup uniquely or not. The concepts of fuzzy
normal subgroup and fuzzy coset were introduced by [98]. For more about fuzzy
groups please refer [2, 5, 14, 16, 30, 32, 55, 73, 83, 85, 86, 89, 93, 109, 112, 136, 137,
138, 139].

DEFINITION 1.2.1: Let G be a group. A fuzzy subset |4 of a group G is called a fuzzy
subgroup of the group G if

i.  Mxy)2min{ (x), L)} foreveryx, y [JG and
ii.  px') = pu(x) forevery x G.

DEFINITION 1.2.2: Let G be a group. A fuzzy subgroup A of G is called normal if A(x)
=A@y xy) forallx, y OG.

DEFINITION 1.2.3: Let A be a fuzzy subset of S. For t [J[0, 1] the set A, = { s [JS/
A(x) 2t} is called a level subset of the fuzzy subset A.

11



In consequence of the level subset we have the following theorem:

THEOREM 1.2.1: Let G be a group and A be a fuzzy subgroup of G. Then the level
subsets A, fort [1]0, 1], t <A (e) is a subgroup of G, where e is the identity of G.

Proof: Direct, refer [16].

THEOREM 1.2.2: A fuzzy subset [ of a group G is a fuzzy subgroup of the group G if
and only if 1 (xy™") 2>min {1 (x), 1t ()} for every x, y [0G.

Proof: Left for the reader as it is a direct consequence of the definition.

THEOREM 1.2.3: Let [l be a fuzzy subset of a group G. Then U is a fuzzy subgroup of
G if and only if G, is a subgroup (called level subgroup) of the group G for every t []

[0, U (e)], where e is the identity element of the group G.
Proof: Left as an exercise for the reader to prove.

DEFINITION 1.2.4: A fuzzy subgroup U of a group G is called improper if U is
constant on the group G, otherwise [l is termed as proper.

DEFINITION 1.2.5: We can define a fuzzy subgroup U of a group G to be fuzzy normal
subgroup of a group G if U (xy) = U (vx) for every x, y [JG. This is just an equivalent
formation of the normal fuzzy subgroup. Let U be a fuzzy normal subgroup of a group
G. For t ([0, 1], the set i, = {(x, y) 0G xG / u (xy'') >t} is called the t-level
relation of | For the fuzzy normal subgroup U of G and for t [J [0, 1], U, is a
congruence relation on the group G.

In view of all these the reader is expected to prove the following theorem:

THEOREM 1.2.4: Let [ be a fuzzy subgroup of a group G and x [JG. Then U (xy) =
M) for every y []G if and only if U (x) = I (e).

DEFINITION 1.2.6: Let U be a fuzzy subgroup of a group G. For any a [J G, a U
defined by (a 1) x = U (a 'x) for every x [JG is called the fuzzy coset of the group G
determined by a and UL

The reader is expected to prove the following.

THEOREM 1.2.5: Let 1 be a fuzzy subgroup of a group G. Then xG, = G, for every
x[JGandt [7]0, 1].

We now define the order of the fuzzy subgroup p of a group G.

DEFINITION 1.2.7: Let [l be a fuzzy subgroup of a group G and H = {x [JG/ U (x) =
H(e)} then o(L), order of U is defined as o(l) = o(H).

12



THEOREM 1.2.6: Any subgroup H of a group G can be realised as a level subgroup of
some fuzzy subgroup of G.

The proof is left as an exercise to the reader. Some of the characterization about
standard groups in fuzzy terms are given. The proof of all these theorems are left for
the reader to refer and obtain them on their own.

THEOREM 1.2.7: G is a Dedekind group if and only if every fuzzy subgroup of G is
normal.

By a Dedekind group we mean a group, which is abelian or Hamiltonian. (A group G
is Hamiltonian if every subgroup of G is normal)

THEOREM 1.2.8: Let G be a cyclic group of prime order. Then there exists a fuzzy
subgroup A of G such that A(e) =t, and A (x) =t; forall x Ze in G and t, >1t,.

THEOREM 1.2.9: Let G be a finite group of order n and A be a fuzzy subgroup of G.
Let Im (4) = {t;/ A(x) = t; for some x [JG}. Then { 4, } are the only level subgroups of

A.
Now we give more properties about fuzzy subgroups of a cyclic group.

THEOREM [16]: Let G be a group of prime power order. Then G is cyclic if and only
if there exists a fuzzy subgroup A of G such that for x, y [/ G,

i if A(x) = A(y) then (x)= (v)
ii. if A (x) >A() then (x) [] ).

THEOREM [16]: Let G be a group of square free order. Let A be a normal fuzzy
subgroup of G. Then for x, y [/G,

i if o(x) Lo (y) then A (y) SA(x).
ii. if o(x) =0 (y) then A (y) = A(x).

THEOREM [16]: Let G be a group of order py, pa, ..., pr Where the p;’s are primes but
not necessarily distinct. Then G is solvable if and only if there exists a fuzzy subgroup
A of G such that 4, ,4, ..., A, are the only level subgroups of 4, Im (4) = {1, 1, ...,

tf, to >t; > ... >t and the level subgroups form a composition chain.

THEOREM [16]: Suppose that G is a finite group and that G has a composition chain
(e)=Ag [JA; [J...[JA, = G where A;/ Ai_; is cyclic of prime order, i =1, 2, ..., .
Then there exists a composition chain of level subgroups of some fuzzy subgroup A of

G and this composition chain is equivalent to (e) = Ay [JA; [J ... [JA, = G.

The proof of these results can be had from [16].

13



DEFINITION [98]: Let A and U be two fuzzy subgroups of a group G. Then A and [ are
said to be conjugate fuzzy subgroups of G if for some g [1 G, Ax) = U (g 'xg) for
every x [/G.

THEOREM [139]: If A and l are conjugate fuzzy subgroups of the group G then o(A)
= o(l).

Proof: Refer [139] for proof.

Mukherjee and Bhattacharya [98] introduced fuzzy right coset and fuzzy left coset of
a group G. Here we introduce the notion of fuzzy middle coset of a group G mainly to
prove that o(a L o) = o (W) for any fuzzy subgroup  of the group G and a 0 G.

DEFINITION 1.2.8: Let [l be a fuzzy subgroup of a group G. Then for any a, b [1G a
fuzzy middle coset a 4 b of the group G is defined by (a ub) (x) = p (@’ x b") for
every x [JG.

The following example from [139] is interesting which explains the notion of fuzzy
middle coset.

Example 1.2.1: Let G = {1, —1, i, —i} be the group, with respect to the usual
multiplication.

Define u: G - [0, 1] by

1 if x=1
M(x)=<:0.5 ifx=-1
0 if x =1,—1.

Clearly M is a fuzzy subgroup of the group G. A fuzzy middle coset a [ b is calculated
and given by

0 ifx=1-1
(apb)(x) = 10.5  if x =—i
1 ifx=i

foralla=—-landb=-1.

Example 1.2.2: Consider the infinite group Z = {0, 1, -1, 2, -2, ...} with respect to
usual addition. Clearly 2Z is a proper subgroup of Z.

Define u: Z - [0, 1] by

=09 itxD22
K908 if xO2z+1.

14



It is easy to verify that | is a fuzzy subgroup of the group Z. For any a [1 2Z and b [
27 + 1 the fuzzy middle coset a |1 b is given by

0.8 if x02Z

(aib)x) = {0.9 if x02Z +1.

Hence it can be verified that this fuzzy middle coset apb in not a fuzzy subgroup of Z.

We have the following theorem.

THEOREM 1.2.10: If [/ is a fuzzy subgroup of a group G then for any a [JG the fuzzy
middle coset apta” of the group G is also a fuzzy subgroup of the group G.

Proof: Refer [137].

THEOREM 1.2.11: Let i be any fuzzy subgroup of a group G and a [ a”’ be a fuzzy
middle coset of the group G then o (a ia') = o(l) for any a [IG.

Proof: Let U be a fuzzy subgroup of a group G and a [1 G. By Theorem 1.2.10 the
fuzzy middle coset apla ' is a fuzzy subgroup of the group G. Further by the definition
of a fuzzy middle coset of the group G we have (a L a™') (x) = p (a 'xa) for every x 0
G. Hence for any a 0 G, p and apa 'are conjugate fuzzy subgroups of the group G as
there exists a [ G such that (apa')(x) = p(a 'xa) for every x 0 G. By using earlier
theorems which states o(apa ') = o(p) for any a O G.

For the sake of simplicity and better understanding we give the following example.

Example 1.2.3: Let G = S; the symmetric group of degree 3 and pi, p2, p3 U [0, 1]
such that p; =2 p, = ps.

Define u: G - [0, 1] by

p, ifx=e
M) =1p, ifx=(12)
p; otherwise.

Clearly p is a fuzzy subgroup of a group G and o([) = number of elements of the set
{xOG|H(x) =)} =number of elements of the set {e} = 1. Now we can evaluate
apa ' foreverya G as follows:

Fora=ewehaveapa ' =p. Henceo(apa ')=o (M) =1.

For a = (12) we have

15



p, ifx=e
(apa™) (x)=4p, if x=(12)
p;  otherwise.

Hence o(apa ') = 1. For the values of a = (13) and (132) we have apa ' to be equal
which is given by
p, ifx=e

(apa™) (x)=4p, if x=(23)
p;  otherwise.

Hence o(apa ') = 1 for a = (13) and (132). Now for a = (23) and a = (123) we have
apla”' to be equal which is given by

P, if x=e
(apa™) (x)=4p,  ifx=(13)
P; otherwise.

Thus o(apa ') = 1. Hence o(apa ') =o (1) = 1 for any a 0 G.

From this example we see the functions p and apa ™' are not equal for some a 0 G.
Thus it is interesting to note that if 4 is fuzzy subgroup of an abelian group G then the
functions P and apa ' are equal for any a [0 G. However it is important and interesting
to note that the converse of the statement is not true. That is if apa' = i for anya UG
can hold good even if G is not abelian. This is evident from the following example.

Example 1.2.4: Let G = S3 be the symmetric group of degree 3 and py, p2, p3 U [0, 1]
be such that p; = p, = ps.

Define u: G - [0, 1] by

p, ifx=e
H(x)=<p, ifx=(123)andx =(132)

p;  otherwise.

Clearly H is a fuzzy subgroup of G. For any a 0 G the fuzzy subgroup (apa ) is given
by

P, ifx=e
(apa™) (x) =4p, if x =(123)or x =(132)
P; otherwise.

Thus we have (apa ')(x) = p(x) for every x U G. Hence apa ' = for any a [J G. Thus
the functions apla ' and p are identical but G is not an abelian group. It is worthwhile
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to note that in general o(apl) is not defined since ap is not a fuzzy subgroup of the
group G. The reader is advised to construct an example to prove the above claim.

THEOREM 1.2.12: Let 4 be a fuzzy subgroup of a finite group G then o (1) | o(G).

Proof: Let L be a fuzzy subgroup of a finite group with e as its identity element.
Clearly H = {x UG | M(X)=H (e)} is a subgroup of the group G for H is a t- level

subset of the group G where t = [ (e). By Lagranges Theorem o(H) [l o(G). Hence by
the definition of the order of the fuzzy subgroup of the group G we have o (1)Lo(G).

The following theorem is left as an exercise for the reader to prove.

THEOREM 1.2.13: Let A and [ be any two improper fuzzy subgroups of a group G.
Then A and U are conjugate fuzzy subgroups of the group G if and only if A = 4

DEFINITION 1.2.9: Let A and U be two fuzzy subsets of a group G. We say that A and
are conjugate fuzzy subsets of the group G if for some g [7G we have A(x) = (g 'xg)
for every x [1G.

We now give a relation about conjugate fuzzy subsets of a group G.

THEOREM 1.2.14: Let A and U be two fuzzy subsets of an abelian group G. Then A
and [ are conjugate fuzzy subsets of the group G if and only if A = U.

Proof: Let A and [ be conjugate fuzzy subsets of group G then for some g 0 G we
have

Ax) = U (g xg) for everyx 0 G
= U (g gx) for every x OG
= H(x) for every x U G.
Hence A = .

Conversely if A =  then for the identity element e of group G, we have A(x) =
(e 'xe) for every x 0 G. Hence A and | are conjugate fuzzy subsets of the group G.

The reader is requested to prove the following theorem as a matter of routine.
THEOREM 1.2.15: Let A be a fuzzy subgroup of a group G and U be a fuzzy subset of
the group G. If A and [ are conjugate fuzzy subsets of the group G then [l is a fuzzy
subgroup of the group G.

The reader is requested verify if A, u: S; — [0, 1] as
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05 ifx=e
A(x) =104 if x=(123) & x =(132)

0.3 otherwise

and

06 if x=e
H.(x)=1<0.5 if x =(23)
0.3 otherwise

where e is the identity element of Ss, to prove A and . are not conjugate fuzzy subsets
of the group S;.

Now we proceed on to recall the notions of conjugate fuzzy relations of a group and
the generalized conjugate fuzzy relations on a group.

DEFINITION 1.2.10: Let R and R, be any two fuzzy relations on a group G. Then R,
and Ry, are said to be conjugate fuzzy relations on a group G if there exists (g1, g2) [J

G xGsuchthat Ry (x, y) = R, =(g1_1xg1,g2_1yg2) forevery (x,y) /G xG.

DEFINITION 1.2.11: Let R, and Ry, be any two fuzzy relation on a group G. Then R,
and Ry are said to be generalized conjugate fuzzy relations on the group G if there
exists g [JG such that Ry (x, y) = Ry (¢ 'xg, g 'yg) for every (x, y) 0G xG.

THEOREM 1.2.16: Let R) and Ry, be any two fuzzy relations on a group G. If Ry and
Ry are generalized conjugate fuzzy relations on the group G then R, and R, are
conjugate fuzzy relations on the group G.

Proof: Let Ry and R, be generalized conjugate fuzzy relations on the group G. Then
there exists g [l G such that Ry (x, y) = Ry, (g 'xg, g'yg) for every (x, y) 0 G xG.
Now choose g = g» = g. Then for (g1, g2) 0 G x G we have Ry (x, y) =

Ry (gl_lxgl,gglygz) for every (x, y) 1 G x G. Thus R) and R, are conjugate fuzzy
relations on the group G.

The reader can prove that the converse of the above theorem in general is not true.

THEOREM 1.2.17: Let U be a fuzzy normal subgroup of a group G. Then for any g []
G we have i (exg™) = 1 (g 'xg) for every x [IG.

Proof: Straightforward and hence left for the reader to prove.
THEOREM 1.2.18: Let A and i be conjugate fuzzy subgroups of a group G. Then
i. AXxp and i xAare conjugate fuzzy relations on the group G and

ii. A XM and uxAare generalized conjugate fuzzy relations on the group G
only when at least one of A or [Lis a fuzzy normal subgroup of G.
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Proof: The proof can be obtained as a matter of routine. The interested reader can
refer [139].

Now we obtain a condition for a fuzzy relation to be a similarity relation on G.

THEOREM 1.2.19: Let R, be a similarity relation on a group G and Ry be a fuzzy
relation on the group G. If Ry and R, are generalized conjugate fuzzy relations on the
group G then Ry, is a similarity relation on the group G.

Proof: Refer [139].
Now we define some properties on fuzzy symmetric groups.

DEFINITION [55]: Let S, denote the symmetric group on {1, 2, ..., n}. Then we have
the following:

i. LetF (S,) denote the set of all fuzzy subgroups of S.
ii. Letf[JF (S,) thenImf={f(x)|x [JSy).
iii. Letf, g [JF (Sy). If |Im (f)| < |Im (g)| then we write f <g. By this rule we
define max F (S,).
iv. Let fbe afuzzy subgroup of S,. If f = max F (S,) then we say that f is a fuzzy
symmetric subgroup of S,.

THEOREM 1.2.20: Let f be a fuzzy symmetric subgroup of the symmetric group S;
then o(Im f) = 3.

Proof: Please refer [139].

Here we introduce a new concept called co fuzzy symmetric group which is a
generalization of the fuzzy symmetric group.

DEFINITION [139]: Let G (S,) = { g [Jg is a fuzzy subgroup of S, and g (C (1)) is a
constant for every [1LS,} where C ([]) is the conjugacy class of S, containing 1,
which denotes the set of all y [JS, such that y = x [1x" for x [JS,. If g = max G(S,)
then we call g as co-fuzzy symmetric subgroup of S,.

For better understanding of the definition we illustrate it by the following example.

Example 1.2.5: Let G = S; be the symmetric group of degree 3.

Define g: G - [0 1] as follows:

1 ifx=e
g(x)=140.5 if x =(123),(132)
0 otherwise
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where e is the identity element of Ss. It can be easily verified that all level subsets of g
are {e} {e, (123), (132)} and S;. All these level subsets are subgroups of S3, hence g
is a fuzzy subgroup of S;. Further g (C(I'1)) is constant for every NJS; and o (Im (g))
> 0 (Im g (W)) for every subgroup [ of the symmetric groupSs;. Hence g is a co-fuzzy
symmetric subgroup of Ss.

Now we proceed on to prove the following theorem using results of [55].
THEOREM 1.2.21:

i. 1If gis a co-fuzzy symmetric subgroup of the symmetric group S then

o(Im(g)) = 3.
ii. Ifgisa co-fuzzy symmetric subgroup of Sy then o (Im (g)) = 4 and
iii. If gis a co-fuzzy symmetric subgroup of S, (n =5) then o (Im (g)) = 3.

Proof: The proof follows verbatim from [55] when the definition of fuzzy symmetric
group is replaced by the co-fuzzy symmetric group.

THEOREM 1.2.22: Every co fuzzy symmetric subgroup of a symmetric group S, is a
fuzzy symmetric subgroup of the symmetric group S,.

Proof: Follows from the very definitions of fuzzy symmetric subgroup and co fuzzy
symmetric subgroup.

THEOREM 1.2.23: Every fuzzy symmetric subgroup of a symmetric group S, need not
in general be a co-fuzzy symmetric subgroup of S,.

Proof: By an example. Choose pi1, p2, p3 U [0, 1] such that 1 2p; 2 p, 2 p32 0.

Define f: S; - [0 1] by

p, ifx=e
fix)= qp, ifx=(12)

p, otherwise

It can be easily checked that f'is a fuzzy subgroup of S; as all the level subsets of f are
subgroups of S;. Further o(Im (f)) = 3 = o(Im (1)) for every fuzzy subgroup [ of the
symmetric group Ss. Hence f is a fuzzy symmetric subgroup of S; but f(12) # f{(13) in
this example. By the definition of co fuzzy symmetric subgroup it is clear that f is not
a co fuzzy symmetric subgroup of S;. Hence the claim.

Now we proceed on to recall yet a new notion called pseudo fuzzy cosets and pseudo
fuzzy double cosets of a fuzzy subset or a fuzzy subgroup. [98] has defined fuzzy

coset as follows:

DEFINITION [98]: Let U be a fuzzy subgroup of a group G. For any a [JG, a U defined
by (a L) (x) = wia'x) for every x []G is called a fuzzy coset of L
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One of the major marked difference between the cosets in fuzzy subgroup and a group
is "any two fuzzy cosets of a fuzzy subgroup U of a group G are either identical or
disjoint" is not true.

This is established by the following example:

Example 1.2.6: Let G = { 1, 1 } be the group with respect to multiplication.

Define i: G - [0, 1] as follows:

1 if x=-1
2

Mx)=<1 if x=1
1 if x=1,-1
4

The fuzzy cosets il and — ijl of [ are calculated as follows:

l if x=1,-1
4
iwux)=<1 ifx=i
l if x=-1
2
and
l if x=1,-1
4
(-ip) x) =41 if x=-i

l if x =1
2

It is easy to see that these fuzzy cosets il and —ipl are neither identical nor disjoint.
For (in)(i) # (M) (i) implies id and —ip are not identical and (ip)(1) = (—p)(1)
implies iJ and —ip are not disjoint. Hence the claim.

Now we proceed on to recall the notion of pseudo fuzzy coset.

DEFINITION 1.2.12: Let U be a fuzzy subgroup of a group G and a [J G. Then the

pseudo fuzzy coset (ap)” is defined by ((a)”) (x) = p(a) u (x) for every x [JG and for
some p [JP.

Example 1.2.7: Let G = {1, &y o'} be a group with respect to multiplication, where
denotes the cube root of unity. Define i: G — [0, 1] by

® 06 ifx=1
<) =
H 04 ifx=ww
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It is easily checked the pseudo fuzzy coset (ap)” for p(x) = 0.2 for every x 0 G to be
equal to 0.12 if x =1 and 0.08 if x = w, .

We define positive fuzzy subgroup.

DEFINITION 1.2.13: A fuzzy subgroup U of a group G is said to be a positive fuzzy
subgroup of G if L is a positive fuzzy subset of the group G.

THEOREM 1.2.24: Let [l be a positive fuzzy subgroup of a group G then any two
pseudo fuzzy cosets of U are either identical or disjoint.

Proof: Refer [137]. As the proof is lengthy and as the main motivation of the book is
to introduce Smarandache fuzzy concepts we expect the reader to be well versed in
fuzzy algebra, we request the reader to supply the proof.

Now we prove the following interesting theorem.

THEOREM 1.2.25: Let U be a fuzzy subgroup of a group G then the pseudo fuzzy coset
(ap)’is a fuzzy subgroup of the group G for every a [JG.

Proof: Let U be a fuzzy subgroup of a group G. For every x, y in G we have

p(a) 1 (xy )

p(a) min {{(x), K(y)}

min {p(a) K(x), p(a), H(y)}
min {(ap)’ (x), (ap)" ()}

(ap) (xy )

[\l

That is (ap)" (xy_l) > min {(ap)’ (x), (ap)” (y) } for every x, y O G. This proves that
(ap)” is a fuzzy subgroup of the group G. We illustrate this by the following example:

Example 1.2.8: Let G be the Klein four group. Then G = {e, a, b, ab} where a> = ¢ =
b%, ab = ba and e the identity element of G.

Define i: G - [0, 1] as follows

1 ifx=a
2
Hx)=<1 ifx=e
1 if x =b,ab
4

Take the positive fuzzy subset p as follows:
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1 ifx=e

l if x=a

2
POIZIL Gy oy,

3

l if x=ab

4

Now we calculate the pseudo fuzzy cosets of . For the identity element e of the
group G we have (ep)’ = ..

l ifx=e
2
p 1.
(ap) (x) = 2 if x=a
1.
— if x =b,ab
8
l if x=e
3
(bp)* (x) = %ﬁxn
1.
— if x =D, ab
12
and
1 ifx=e
4
@)W = 1 ifx=a
1.
— if x=Db, ab
16

It is easy to check that all the above pseudo fuzzy cosets of U are fuzzy subgroups of
G. As there is no book on fuzzy algebraic theory dealing with all these concepts we
have felt it essential to give proofs and examples atleast in few cases.

THEOREM 1.2.26: Let U be a fuzzy subgroup of a finite group G and t [J [0, 1] then
O(G(taﬂ)P) SO(GL) =0 (aGL)foranya [G.

Proof: The proof'is left as an exercise for the reader to prove.

THEOREM 1.2.27: A4 fuzzy subgroup U of a group G is normalized if and only if 1 (e)
= 1, where e is the identity element of the group G.
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Proof: If 4 is normalized then there exists x [1 G such that p(x) = 1, but by properties
of'a fuzzy subgroup [ of the group G, Y(x) < p(e) for every x [ G. Since Y(x) = 1 and
H(e) = H(x) we have p(e) =1. But p(e) < 1. Hence pi(e) = 1. Conversely if p(e) = 1
then by the very definition of normalized fuzzy subset [ is normalized.

The proof of the following theorem is left as an exercise for the reader, which can be
proved as a matter of routine. The only notion which we use in the theorem is the
notion of pre class of a fuzzy binary relation Ry, . Let [ be a fuzzy subgroup of a group
G. Now we know that a fuzzy subset [ of a set X is said to be a pre class of a fuzzy
binary relation Ry, on the set X if min {{ (x), 1 (y)} < Ry (%, y) for every x, y U X.

THEOREM 1.2.28: Let [ be a fuzzy subgroup of a group Gand R, : G XxG — [0 1] be
given by Ry (x, y) = U (v ™) for every x, y 0G. Then

i. Ryis a similarity relation on the group G only when U is normalized and
ii. Mis a pre class of Ry and in general the pseudo fuzzy coset (a W’ is a pre
class of Ry for any a [JG.

DEFINITION 1.2.14: Let [ be a fuzzy subset of a non-empty set X and a [1X. We define
the pseudo fuzzy coset (ap)” for some p [P by (apy)” (x) = p(a) p(x) for every x [IX.

Example 1.2.9: Let X = {1, 2,3, ...,n} and l: X —[0, 1] is defined by u(x) = 1 for
X

every x [ X. Then the pseudo fuzzy coset (ap)™: X — [0, 1] is computed in the

following manner by taking p(x) = 2L for every x 0 X; (ap)” (x) = for every x
X

2
X

U X.

THEOREM 1.2.29: Let A and U be any two fuzzy subsets of a set X. Then for a [7JX
(ap)” [0 (@A) if and only if i A,

Proof: Left as an exercise for the reader.
Now we proceed on to define the fuzzy partition of a fuzzy subset.

DEFINITION 1.2.15: Let [ be a fuzzy subset of a set X. Then 2 = {A: A is a fuzzy subset
of a set X and A [J [} is said to be a fuzzy partition of U if

i U/] = U and
A0X
ii. any two members of 2 are either identical or disjoint

However we illustrate by an example.
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Example 1.2.10: Let X =N be the set of all natural numbers and 4 be defined by p(x)

1 : : S
= — for every x [J X. Now consider the collection of fuzzy subsets of X which is
X

given by {u} -, where Wi's are such that py (x) = (1 — l)l for every x [J X.
i x

For x 0 X we have

(Quij (x) =sup {[l—%ji}=%[as% - 0,1 > ooj: M(x).

Hence

(O " j(x) = u(x)

i=1

for every x [J X. That is

If i # j then it is easy to verify that

(el

i)x j)x

for every x [0 X. This proves Hi(x) # Mj(x) for every x U X. Hence W and | are
disjoint.

Hence {u}, is a fuzzy partition of .

The following theorem is left for the reader, however the proof can be found in [89].

THEOREM 1.2.30: Let 1 be a positive fuzzy subset of a set X then

i. any two pseudo fuzzy cosets of | are either identical or disjoint.
i U((ap)")=u,
papP
. U ((a,u)P)D U ((a,u)P) and the equality holds good if and only if p is
papP

allX
normal,

iv.  The collection {(a,u)P | a DX} is a fuzzy partition of U if and only if p is

normal.

The following theorem is yet another piece of result on pre class
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THEOREM 1.2.31: Let U be a fuzzy subgroup of a group G and R,: G XxG - [0, 1] be
given by Ry, (x, y) = U v) for every x, y 0G. If A is a fuzzy subset of the group G
such that A [J p then (aA)” is pre class of Ry for any a (G .

Proof: Let U be a fuzzy subgroup of a group G, a [J G and A be a fuzzy subset of the
group G such that A [J .

For x, y [ G we have
min {((aA)°)(x), ((@M)°)y} min { p(a) A(x), p(a) A(y)}

min {p(a) K(x), p(a) H(y)} (since A O )
p(a) min {(x), K(y)}

Lep (xy_l) (since p(a) < 1)

RU (Xa Y)

1 VAN | VAN

That is min {((aA)*)(x), ((aA)P)y} < Ry (x, y) for every x, y O G. Hence (a A)" is a pre
class of Ry, for any a [1 G.

Now we proceed on to define the notion of pseudo fuzzy double cosets.

DEFINITION 1.2.16: Let (4 and A be any two fuzzy subsets of a set X and p [JP. The
pseudo fuzzy double coset (xA) is defined by (UxA) = (xt)" n (xA)F forx OX.

We illustrate this concept by the following example:

Example 1.2.11: Let X = {1, 2, 3} be a set. Take A and [ to be any two fuzzy subsets
of X givenby A (1) =0.2,A(2) =0.8, A(3)=0.4. u(1) =0.5 u(2) = 0.6 and kL (3) =0.7.
Then for a positive fuzzy subset p such that p(1) = p(2) = p(3) = 0.1, we calculate the
pseudo fuzzy double coset ([ x A)" and this is given below.

0.02 ify=1
(MxM)F (y)=40.06 if y=2
0.04 ify=3

The following theorem is left to the reader as the proof can be obtained by a routine
calculation.

THEOREM 1.2.32: Let A and U be any two positive fuzzy subsets of a set X and p [JP.
The set of all pseudo fuzzy double cosets {(xA)"| x X} is a fuzzy partition of (1 N
A) if and only if p is normal.

It can be easily verified that the intersection of any two similarity relations on a set X
is a similarity relation on the set X and on the contrary the union of similarity
relations and composition of similarity relations need not in general be similarity

relations.

The following theorem is left as an exercise for the reader to prove.
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THEOREM 1.2.33: Let A and U be any two fuzzy subgroups of a group G and
R, :GXG - [0,1] begivenby Ryni(x,y) = (NN v ™) for everyx, y 0G.
Then

i. R, ,is a similarity relation on the group G only when both y and A are

normalized.
ii. (uxA)'is a pre class of R, for any x [JG where p [JP.

Consequent of this theorem one can easily prove the following theorem:

THEOREM 1.2.34: Let [ and A be any two fuzzy subgroups of a group G and
R,y :GXG - [0,1] begivenby R, (x,¥) = (N A (xv) for every x, y 0G. If

n is any fuzzy subset of the group G such that n [J 4 n A then 1 is a pre class of
R

HNA*®

We will show by the following example that R, , is not a similarity relation on the

group G.

Example 1.2.12: Let G = {1, & '} be the group with respect to the usual
multiplication, where w denotes the cube root of unity.

Define A, u: G - [0, 1] by

1 ifx=1
M(x)=40.6 if x=Ww
0.5 if x =’
and
0.5 if x=1
H(x)=:04 ifx=w .
03 if x =’

It can be found that for every x 0 G. R, (x, X) = (L n A) (xx)=(n A)(1)=0.5.
Hence R
G.

is not reflexive and hence R ., is not a similarity relation on the group

UnA UnA

In this section we study the concept of fuzzy subgroup using the definition of [70].

DEFINITION [70]: Let G be a group and e denote the identity element of the group G.
A fuzzy subset U of the group G is called a fuzzy subgroup of group G if

i Hoy™) >min {ux), 1)} for every x, y G and
ii. He) = 1.
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Using the results of [70] we give some of the classical results.

DEFINITION [70]: Let U be a fuzzy normal subgroup of a group G and [ be a t-level
congruence relation of [ on G. Let A be a non-empty subset of the group G. The
congruence class of [, containing the element x of the group G is denoted by [x] .

Theset U, (A) ={x UG Ulx], [JA} and U, (A) = {x JG LU[x], n A Z @ are called

respectively the lower and upper approximations of the set A with respect to ;.

We give some simple proofs to the results of [70] using the notions of t-level relation
and the coset.

THEOREM (EXISTENCE THEOREM): Let U be a fuzzy subgroup of a group G. The
congruence class [x], of ; containing the element x of the group G exist only when
is a fuzzy normal subgroup of the group G.

Proof: Let U be a fuzzy subgroup of a group G. [70] has proved that if i is a fuzzy
normal subgroup of a group G then the t-level relation [; of U is a congruence relation
on the group G and hence the congruence class [x], of H; containing the element x of
the group G exist.

Now we prove that for the existence of the congruence class [x], we must have the
fuzzy subgroup [ of the group G to be fuzzy normal subgroup of group G. That is if 4
is not a fuzzy normal subgroup of the group G then the congruence class [x], of M
containing the element x of the group G does not exist.

To prove this, consider the alternating group As.
Choose pi1, p2, p3 U [0, 1] such that 1 >p; >p2>p3; 2 0.
Define i : Ay — [0, 1] by

1 ifx=e
p, ifx=(12)(34)
p, if x=(14)(23), (13)(24)

p, otherwise

H(x) =

where e is the identity element of Aa.

The t-level subsets of U are given by {e}, {e, (1 2) (3 4)}, {e, (12) (3 4),(13)(24),
(1 4)(23)} and A4. All these t-level subsets are subgroups of the alternating group
A4. Hence [ is a fuzzy subgroup of the alternating group A4. For x = (123) and y =

(143), p(xy) = p((123) (143)) = (1 2) 3 4)) = pr and P(yx) = (1 4 3) (1 23)) =
H((1 4)(2 3)) =p2. Asp1 > p2, 1 (xy) # W(yx) for x =(1 2 3)and y = (1 4 3). Hence
is not a fuzzy normal subgroup of A4. Let x = (1 4) (2 3) and y = (1 3) (2 4) then for t

=pi, Hxy ) =pi =t.
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Thus by the definition of t-level relation of U we have (x, y) Il . Further we note that
fora=(123), u((ax)(ay) ') = p2 < p1. So by the definition of t-level relation of P we
have (ax, ay) U W for t = p; and a = (1 2 3). Hence it follows that [ is not a
congruence relation on the alternating group A4. So by the definition of congruence
class, [x], does not exist. That is if [ is not a fuzzy normal subgroup of the group G
then the congruence class [x], of Y containing the element x of the group G does not
exist.

The following theorem is left as an exercise for the reader to prove.

THEOREM 1.2.35: Let U be a fuzzy normal subgroup of a group G and t [J [0, 1].
Then for every x [JG, [x],=xG,, and G, is a normal subgroup of the group G.

This theorem is however illustrated by the following example:

Example 1.2.13: Consider the Klein four group G = {a, b [’ = b* = (ab)* = e} where
e is the identity element of G.

Define u: G - [0, 1] by

1 ifx=e
M(x)=40.6 if x=a
0.2 if x=b,ab

Clearly all the t-level subsets of L are normal subgroups of the group G. So [ is a
fuzzy normal subgroup of the group G. For t = 0.5 we calculate the following

[x]u = {e, a} for all valuesofx=eand x=a
[x]u = {b, ab} for all values of x =b and x = ab

xG, = {e, a } for values of x = ¢ and x = a and

xG, = {b, a b} for the values of x = b and x = ab. This verifies that [x], = xG, for
every x L G.

The following result is also left for the reader to prove.

THEOREM 1.2.36: Let [ be a fuzzy normal subgroup of a group G, t [J[0, 1] and A be
a non-empty subset of the group G. Then

i p(4) = GL4)
i, [(A)=Gi(A4)

where G, is a normal subgroup of the group G.
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Proof: The proof of the following theorem is left for the reader as an exercise.

THEOREM 1.2.37: Let [l and A be fuzzy normal subgroups of a group G and t [7]0, 1].
Let A and B be non-empty subsets of the group G. Then

i pu(4)0A404,04)

i.  f(A0B)= [f,(A4)04(B)

11 AmB#qo:&(AmB)zﬁ(A)m&(B)
iv. AOB= {(A4)U(B)

v. AOB= f1(A)0j(B)

vii  p(AOB)Ou(A4) Ou(B)

vii. AnBZ@, f(AnB)OM(A)n f,(B)
viii.  p, 0A = (A)OA(A)

Now we prove the following theorem:

THEOREM 1.2.38: Let U be a fuzzy normal subgroup of a group G and t [7]0, 1]. If A
and B are non-empty subsets of the group G then [,(A)fL,(B)=[l,(AB).

Proof: Let | be a fuzzy normal subgroup of a group G and t L1 [0, 1]. Let A and B be
any two non-empty subsets of the group G, then AB = {ab [la [J A and b I B} is a
non-empty subset of the group G. We have

(. (AB) Gy(AB)
= GG (B)

= RARG)
Hence {1, (A)fL,(B) =1, (AB).

THEOREM 1.2.39: Let 4 be a fuzzy normal subgroup of a group G and t [7]0, 1]. If A
and B are non-empty subsets of the group G then H(A) p#(B)U [ (AB).

Proof: Let L be a fuzzy normal subgroup of a group G, t [J [0, 1] and A and B by any
two non-empty subsets of the group G. Then AB is non-empty as A and B are non-
empty.

Consider
H (A (B) = G_L(A) G_L(B) 0 G, (AB)= W,(AB) .

Hence ﬁ(A)&(B)D,u,(AB).
The following theorem is left for the reader to prove.
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THEOREM 1.2.40: Let [ and A be fuzzy normal subgroups of a group G and t [7 [0,
1]. If A is a non-empty subset of the group G then

i (WAA(A)=f(A)nA(A)
i (W0 A)(4) = p(4)n A(4) .

THEOREM 1.2.41: Let U be a fuzzy normal subgroup of a group G and t [7]0, 1]. If A
is a subgroup of the group G then [1,( A) is a subgroup of the group G.

Proof: Let | be a fuzzy normal subgroup of a group G and t [J [0, 1]. Then GL is a
normal subgroup of a group G. A is a GL rough subgroup of the group G. By the

definition of rough subgroup, we have GL (A) to be a subgroup of the group G. If u

is a fuzzy normal subgroup of'a group G, t [J [0, 1] and A is a non-empty subset of the
group G then [1,(A) = GL(A) we have [1,(A) to be a subgroup of the group G.

Now we just recall some fuzzy relation and also the condition for the composition of
two fuzzy subgroups to be a fuzzy subgroup.

DEFINITION 1.2.17: Let U be a fuzzy relation on S and let O be a fuzzy subset of S.
Then s called a fuzzy relation on Oif U(x, y)<min(0(x), (y)) for all x, yUS

For any two fuzzy subsets 0 and [ of S; the cartesian product of [l and OTis defined by
(H X 0) (x, y) = min (U (x), O () forall x, y LS.

Let 0 be a fuzzy subset of S. Then the strongest fuzzy relation on O is [y defined by
Ho(x,y) = (0X0) (x,y) =min (0(x), 0W)) forall x, y, S.

The following theorem can be easily verified.
THEOREM 1.2.42: Let [{ and O be fuzzy subsets of S. Then

i. M X0Ois afuzzy relation on S.
il. (,UXO)ZZ,U,XO',fOI’alltU[O,I]

The natural question would be when we have the strongest fuzzy relation can we ever
have the weakest fuzzy subset of S; the answer is yes and it is defined as follows:

If W is a fuzzy relation on S, then the weakest fuzzy subset of S on which U is a fuzzy
relation is 0y, defined by

Tu(x) = SUp {max (U(x, y), Ky, %)/

yas

for all x [JS. We define for any two fuzzy subset [ and gof G. lLoO as
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(Lo OE) = Sup {min (1), A=)},

xX=yz

forallx [JG.

DEFINITION [86]: 4 system of fuzzy singletons {( Xy )y (X ),k} where 0 <t; <A(x;)

for i = 1, 2, ..., k is said to be linearly independent in A if and only if
ni(x;), t--tn(x,) =0, implies nix; = ...=ngxy =0, wheren; [J Z, i =1, 2, ..., k

and t [7(0, 1]. A system of fuzzy singletons is called dependent if it is not independent.
An arbitrary system & of fuzzy singleton is independent in A if and only if every finite
sub-system of & is independent.

We let & denote a system of fuzzy singletons such that for all x, 0 &, 0 <t 4 (x). &=
x Ox, 0& and & = A, n & for all t [J(0, A(0)].

THEOREM 1.2.43: ¢ is independent in A if and only if the fuzzy subgroup of G

generated by &in A is a fuzzy direct sum of fuzzy subgroup of G whose support is
cycle i.e. for

§=1(x), [o<t, < 4cx,),i01} holds (& = D {(x,),).

Proof: Left for the reader to prove as an exercise.

Now in the next section we introduce the concept of fuzzy bigroup which is very new
and an interesting one.

1.3 Fuzzy sub-bigroup of a group

In this section we define fuzzy sub-bigroup of a bigroup [89, 135]. To define the
notion of fuzzy sub-bigroup of a bigroup we define a new notion called the fuzzy

union of any two fuzzy subsets of two distinct sets.

DEFINITION [89, 135]: Let 1 be a fuzzy subset of a set X; and [ be a fuzzy subset of
a set X, then the fuzzy union of the fuzzy sets [ and [b is defined as a function.

M o X, [0 X, - [0, 1] given by

max (H,(x), fy(x)) if xUX, n X,
(i o) (x) = H(x) if xUX, &xUX,
Hy(x) if xOX, &x0X,

We illustrate this definition by the following example:

Example 1.3.1: Let X, = {1,2,3,4,5} and X, = {2, 4, 6, 8, 10} be two sets.
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Define p;: X; — [0, 1] by

1 ifx=12
Mi(x) = 0.6 ifx=3
02 ifx=4,5

and define Yy: X, — [0, 1] by

1 ifx=24
Ma(x) = 0.6 ifx=6
0.2 if x=8,10

It is easy to calculate W, [J [ and it is given as follows:

1 ifx =1,2,4
(W0 w)x) = 0.6 ifx =3,6
02 ifx=5,8,10

Now we proceed on to define fuzzy sub-bigroup of a bigroup.

DEFINITION 1.3.1: Let G = (G; [J G,, +, ) be a bigroup. Then [: G - [0, 1] is said
to be a fuzzy sub-bigroup of the bigroup G if there exists two fuzzy subsets U (of G1)
and & (of G,) such that

i. (U, +)is afuzzy subgroup of (G;, +)
ii. (Lo, ®)is afuzzy subgroup of (G,, *) and
. U= [

We illustrate this by the following example

Example 1.3.2: Consider the bigroup G = {*i, +0, 1, +2, +3_ ...} under the binary
operation ‘+’ and ‘®° where G; = {0, I, *2, ...} and G, = {*1, =*i}.

Define p: G - [0, 1] by

if x=1,-1

H(x) = ifx {0, +2,+4,..}

if xO{£], £3,...)

It is easy to verify that [ is a fuzzy sub-bigroup of the bigroup G, for we can find
Mi: G - [0, 1] by
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1 ifx0{0,+2,%4,..}
Q) =

i () % if x O], £3,...)

and Hp: Gy — [0, 1] given by

if x=1,-1
M2 (x) =

if x=1,-1

That is, there exists two fuzzy subgroups ; of G; and [, of G, such that p =, U .
Now we prove the following theorem.

THEOREM 1.3.1: Every t-level subset of a fuzzy sub-bigroup [ of a bigroup G need
not in general be a sub-bigroup of the bigroup G.

Proof: The proof is by an example. Take G = {—1, 0, 1} to be a bigroup under the
binary operations ‘+’ and ‘®” where G; = {0} and G, = {-1, 1} are groups respectively
with respect to usual addition and usual multiplication.

Define 4: G - [0, 1] by

if x=-1,1

Hx) =
if x=0

A= N|—

Then clearly (M, +, ®) is a fuzzy sub-bigroup of the bigroup (G, +, *). Now consider
1

the level subset GE of the fuzzy sub-bigroup

1

G? :{XDG‘ u(x)Z%} = {1, 1}.

It is easy to verify that {—1, 1} is not a sub-bigroup of the bigroup (G, +, *). Hence the

t-level subset
. 1
Gp [for t= —j
2

of the fuzzy sub-bigroup W is not a sub-bigroup of the bigroup (G, +, *).

We define fuzzy sub-bigroup of a bigroup, to define this concept we introduce the
notion of bilevel subset of a fuzzy sub-bigroup.
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DEFINITION 1.3.2: Let (G = G; [J G», +, ®) be a bigroup and |1 = (U; [J ) be a fuzzy
sub-bigroup of the bigroup G. The bilevel subset of the fuzzy sub-bigroup U of the
bigroup G is defined as G, =G,, 0G,, forevery t [J[0, min {{i (e)), L (e2)}],

where e; denotes the identity element of the group (G;, +) and e, denotes the identity
element of the group (G, *).

Remark: The condition t [J [0, min {M; (e;), Y2 (e2)}] is essential for the bilevel

subset to be a sub-bigroup for if t [ [0, min {H; (e1), M2 (e2)}] then the bilevel subset
need not in general be a sub-bigroup of the bigroup G, which is evident from the
following example:

Example 1.3.3: Take | as in example 1.3.2 then the bi-level subset

GL [for t= ij
4

of the fuzzy sub-bigroup H is given by
G, ={0, %2, +4,..}

which is not a sub-bigroup of the bigroup G. Therefore the bilevel subset

GL [for t= ij
4

is not a sub-bigroup of the bigroup G.

THEOREM 1.3.2: Every bilevel subset of a fuzzy sub-bigroup U of a bigroup G is a
sub-bigroup of the bigroup G.

Proof: Let |l (= 1 O M2) be the fuzzy subgroup of a bigroup (G = G; U Gy, +, °).
Consider the bilevel subset GL of the fuzzy sub-bigroup u for every t [ [0,
min{H;(e;), Ma(e2)}] where e; and e, denote the identity elements of the groups G; and
G, respectively. Then G, = G, O G, where Gful and G;M are subgroups of G
and G, respectively (since G{ul is a t-level subset of the group G; and G;M is a

t-level subset of Gy).

Hence by the definition of sub-bigroup GL is a sub-bigroup of the bigroup (G, +, ).
However to make the theorem explicit we illustrate by the following example.

Example 1.3.4: G = {0, £1, * i} is a bigroup with respect to addition modulo 2 and
multiplication. Clearly G; = {0, 1} and G, = {£l, i} are group with respect to

addition modulo 2 and multiplication respectively.

Define 4: G - [0, 1] by
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1 ifx=0
H(x)=105 ifx==1
03 ifx=ti

It is easy to verify that [ is a fuzzy sub-bigroup of the bigroup G as there exist two
fuzzy subgroups U;: G - [0, 1] and Yo: G - [0, 1] such that p = p; U p, where

() 1 if x=0
X =
Hi 04 ifx=1
and
0 05 ifx=t+1
X =
H2 03 ifx=+i

Now we calculate the bilevel subset GL fort=20.5,

t
Gy,

koG, we=24o0{koe, w21
= {0} O {1}
= {0, £1).

= Gh‘ll b Gtzliz

Thatis G, = {0, i]} It is easily verified that G, is a sub-bigroup of the bigroup G.

Now we proceed on to define fuzzy bigroup of a group.

DEFINITION 1.3.3: 4 fuzzy subset U of a group G is said to be a fuzzy sub-bigroup of
the group G if there exists two fuzzy subgroups [ and b of U (U Z U and L& Z 1)
such that 1 = W [J . Here by the term fuzzy subgroup A of [ we mean that A is a
fuzzy subgroup of the group G and A [J [ (Where L is also a fuzzy subgroup of G).

We illustrate the definition by the following example:

Example 1.3.5: Consider the additive group of integers. G= {0, =1, +2, ... }.

Define 4: G — [0, 1] by

1 ifx 0{0,+2,+4,..}
H(x) = .
0.5  if xO{x1,+3,£5,..}.

It can be verified that Y is a fuzzy sub-bigroup of the group G, as there exists two
fuzzy subgroups ; and [ of U (U # W and Y, # W) such that g = Wy O Y where [y
and [, are as given below.
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1 if xO{0, £2,+4,..}

M) = {0.25 if x O4£1,+3, ..}

and

075 ifx 0 {0,+£2,+4,..}

Ha(x) = {0.5 ifx O (13,0,

The following theorem relates the fuzzy sub-bigroup and the level subset.

THEOREM 1.3.3: Let (4 = L [ L be a fuzzy sub-bigroup of a group G, where [ and
Lo are fuzzy subgroups of the group G. For t [J [0, min {l; (e), L& (e)}], the level
subset G, of [ can be represented as the union of two subgroups of the group G.

Thatis G, =G, 0G,, .

Proof: Let Y be a fuzzy sub-bigroup of a group G and t U [0, min {Y; (e), K2 (e)}].
This implies that there exists fuzzy subgroups H; and [, of the group G; such that p =
My O M. Let GL be the level subset of 4, then we have

xO G, o M(x)=t

- max { Hi(x), la(X)} 2t
= Hi(X) 2 tor Ha(x) 2t
< x0G,, or xOG;,,

ifand only if x 0G,, O G}, .Hence G, =G,;, 0 G}, .

Example 1.3.6: Just in the example 1.3.5. For t = 0.5, GL =G,
G, =2Gand G}, =G.Hence G, =G =G, 0G}, .

Now in the following theorem we give the condition for two fuzzy subgroups p; and
M2 of a fuzzy subgroup U (U # [ and [, # W) to be such that g =, U Yo.

THEOREM 1.3.4: Let U be a fuzzy subgroup of a group G with 3 <o (Im (1Y) < cothen
there exists two fuzzy subgroups [ and [k of U (11 Z M and b Z 1) such that L= L [J
Ho.

Proof: Let U be a fuzzy subgroup of a group G. Suppose Im (1) = {aj, a, ..., an}
where 3 <n<ooand a; >a; > ... >a, Choose by, b, [1[0, 1] be such that a; >b; > a;
>b, >a3 >bs > ... >a,and define Yy, o: G - [0, 1] by
a, if x Oy,
w9 =1 b, ifxOp, Vg,

M(x) otherwise
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and

b, if xOp,
(0 =4 a, if xOp, \W,

M(x) otherwise.

Thus it can be easily verified that both [, and Y, are fuzzy subgroups of .
Further Py Z W, o Z L and U= Wy O Wo.

Clearly the condition 3 < o(Im(|L) < oo cannot be dropped in the above theorem. This
is explained by the following example.

Example 1.3.7: Consider the group G = {1, —1, i, — i} under the usual multiplication.
Define u: G - [0, 1] by

®) 0 if x=1,-1
X =
H 1 if x=1L-1

Then it is easy to verify that [ is a fuzzy subgroup of the group G as all of its level
subsets are subgroups of G. Further o (Im(l)) = 2. If px is a fuzzy subgroup of [ such
that pg [ Y (Uk #ZH) then Pk takes the following form:

o0 k=i
M 0, ifx=1 -1

with 0 < ag <1 for every K in the index set L. It is easy to verify that p; U, # [ for

any j, K [J I. Thus there does not exist two fuzzy subgroups W; and [, of L ([ # M and
M2 # W) such that i = O M.

Now we prove a very interesting theorem.

THEOREM 1.3.5: Every fuzzy sub-bigroup of a group G is a fuzzy subgroup of the
group G but not conversely.

Proof: It follows from the definition of the fuzzy sub-bigroup of a group G that every
sub-bigroup of a group G is a fuzzy subgroup of the group G.

However the converse of this theorem is not true. It is easy to see from example 1.3.7
that Y is a fuzzy subgroup of the group G and there does not exist two fuzzy
subgroups M; and Yy of i (W # W and P # W) such that = Wy O Yp. That is L is not a
fuzzy sub-bigroup of the group G. Now we obtain a necessary and sufficient condition
for a fuzzy subgroup to be a fuzzy sub-bigroup of G.

THEOREM 1.3.6: Let [l be a fuzzy subset of a group G with 3 < o(Im(l)) < co. Then U
is a fuzzy subgroup of the group G if and only if L is a fuzzy sub-bigroup of G.
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Proof: Let Y be a fuzzy subgroup of the group G with 3 < o(Im (M)) < o then there
exists two fuzzy subgroups [; and o of i (41 # U and [y # W) such that L=y O pa.
Hence [ is a fuzzy sub-bigroup of the group G. Conversely, let | be a fuzzy sub-
bigroup of a group G, we know every fuzzy sub-bigroup of a group G is a fuzzy
subgroup of the group G.

We shall illustrate this theorem by example.

Example 1.3.8: Define u: G - [0, 1] where G = {1, —1, i, —i} by

1 if x=1
M(x)=<0.9 ifx=-1
0.8 ifx==i

It is easy to prove that [ is a fuzzy subgroup of the group G and o(Im([t)) = 3. Further,
it can be easily verified that there exists two fuzzy subgroups |, and Py of U (W # U
and [, # J) such that @ = Py where i, W2 : G - [0, 1] are defined by

0.9 if x=1

M) = {0.8 if x = -1, %i

and
1 if x=1
M,(x)=+:0.9 if x =-1
0.7 if x=%1i

The specialty about this section is that we have given examples to illustrate the
theorem; this is mainly done to make one understand the concepts. As there are no
books on bigroups and to the best of my knowledge the concept on fuzzy bigroups
appeared in the year 2002 [135].

1.4 Fuzzy Rings and its properties

In this section we recall the concept of fuzzy rings and some of its basic properties. In
1971 [112, 145] introduced fuzzy sets in the realm of group theory and formulated the
concept of a fuzzy subgroup of a group. Since then many researchers are engaged in
extending the concept / results of abstract algebra to the broader frame work in fuzzy
setting. However not all results on groups and rings can be fuzzified.

In 1982 [73] defined and studied fuzzy subrings as well as fuzzy ideals. Subsequently
among [148, 149] fuzzified certain standard concepts on rings and ideals. Here we
just recall some of the results on fuzzy rings and leave it for the reader to prove or get
the proof of the results by referring the papers in the references. Now we recall
definitions as given by [37].
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DEFINITION [145]: Let [ be any fuzzy subset of a set S and let t [7][0, 1]. The set {s [J
S| Ux) =t} is called a level subset of | and is symbolized by L. Clearly L [J L
whenever t >s.

DEFINITION [140]: Let ‘*’ be a binary composition in a set S and [, O be any two
fuzzy subsets of S. The product UOT of U and Tis defined as follows:

sup (min (,u(y) O'(Z))) wherey,z 1S
(HO)(x)=1qx=re=
0 if xis notexpressibleas x =y z forall y,z[18S.

DEFINITION [140]: A fuzzy subset [l of a ring R is called a fuzzy subring of R if for all
x, v L/R the following requirements are met

L H(x—y) 2min (HX), 4(y)) and
. [ (xy) 2min (1(x), 14y))

Now if the condition (ii) is replaced by (xy) = max (l4(x), K(v)) then U is called a
fuzzy ideal of R.

THEOREM 1.4.1: Let [ be any fuzzy subring / fuzzy ideal of a ring R. If, for some x, y
LR, f(x) <H(y), then f(x —y) = [(X) = [y —X).

Proof: Direct by the very definition of fuzzy subring / fuzzy ideal of a ring R.

Now we proceed on to define the notion of level subring/ level ideal of [, a fuzzy
subring or fuzzy ideal of the ring R.

DEFINITION [36]: Let [ be any fuzzy subring / fuzzy ideal of a ring R and let 0 <t <
H(0). The subring /ideal [ is called a level subring / level ideal of |4

THEOREM 1.4.2: A fuzzy subset [{ of a ring R is a fuzzy ideal of R if and only if the
level subsets [, t []Im(L) are ideals of R.

Proof: Left for the reader as it can be proved using the definition.

THEOREM 1.4.3: If U is any fuzzy ideal of a ring R, then two level ideals
H,, and [, (with t; < t;) are equal if and only if there is no x in R such that

t,SU(x)<t,.
Proof: Left an as exercise for the reader to prove as a matter of routine.

This theorem gives an insight that the level ideals of a fuzzy ideal need not be distinct.
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THEOREM 1.4.4: The level ideals of a fuzzy ideal U form a chain. That is if Im U = {1,
tr, ..., to} with t9 > ... > t,, then the chain of level ideals of U is given by

u, Op O Ou =R.
Proof: Straightforward, hence omitted.
Now we proceed on to recall the definition of fuzzy prime ideal as given by [99, 100].

DEFINITION [99]: A non-constant fuzzy ideal [ of a ring R is called fuzzy prime if for
any fuzzy ideals U, and [ of R the condition [ > [ U implies that either L [J U or
e

It is left for the reader to prove the following theorem.

THEOREM 1.4.5: The level ideal |4, where t = [4(0) is a prime ideal of the ring R.
DEFINITION [99]: 4 fuzzy ideal [ of a ring R, not necessarily non-constant is called
Sfuzzy prime if for any fuzzy ideals [ and [ of R the condition [ [ [J 4 implies that
either Uy [7lor b [T .

Consequent of this definition the following result is left for the reader to prove.
THEOREM 1.4.6: Any constant fuzzy ideal L of a ring R is fuzzy prime.

Now we give the characterization theorem.

THEOREM 1.4.7: If [ is any non-constant fuzzy ideal of a ring R, then [lis fuzzy prime
if and only if | [JIm [ : the ideal 4, t = U(0) is prime and the chain of level ideals of
M consists of 1 [/R.

Proof: Left for the reader to prove.
DEFINITION 1.4.1: An ideal I of a ring R is said to be irreducible if I cannot be
expressed as I} n I, where I; and I, are any two ideals of R properly containing I,

otherwise I is termed reducible.

The following results which will be used are given as theorems, the proof are for the
reader to prove.

THEOREM 1.4.8: Any prime ideal of ring R is irreducible.

THEOREM 1.4.9: In a commutative ring with unity, any ideal, which is both
semiprime and irreducible, is prime.

THEOREM 1.4.10: Every ideal in a Noetherian ring is a finite intersection of
irreducible ideals.

THEOREM 1.4.11: Every irreducible ideal in a Noetherian ring is primary.
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DEFINITION [37]: A fuzzy ideal U of a ring R is called fuzzy irreducible if it is not a
finite intersection of two fuzzy ideals of R properly containing U: otherwise U is
termed fuzzy reducible.

THEOREM [109]: If i is any fuzzy prime ideal of a ring R, then U is fuzzy irreducible.
Proof: Refer [109].
However as a hint for the interested reader we mention the proof is given by the

method of contradiction. We give the theorem from [109] the proof is omitted as it
can be had from [109].

THEOREM [109]: If i is any non-constant fuzzy irreducible ideal of a ring R, then the
following are true.

i. 10Imupu.
ii.  There exists a [J[0, 1] such that U (x) = a for all x [JR \ {x [JR [J
Hx)=1}.

iii.  Theideal {x [JR [ (x)=1} is irreducible.

It is important to recall some of the basic properties of fuzzy subrings and fuzzy ideals
of aring R.

The proofs of all these results are left for the reader to prove.

THEOREM 1.4.12: The intersection of any family of fuzzy subrings (fuzzy ideals) of a
ring R is again a fuzzy subring (fuzzy ideal) of R.

THEOREM 1.4.13: Let [ be any fuzzy subring and 6 be any fuzzy ideal of a ring R.
Then U n Bis a fuzzy ideal of the subring {x [JR [ (x) = £ (0)}.

THEOREM 1.4.14: Let [ be any fuzzy subset of a field F. Then U is a fuzzy ideal of F if
and only if 1 (x) = 1 (y) S (0) forall x, y [JF | {0}.

THEOREM 1.4.15: Let R be a ring. Then R is a field if and only if 1/ (x) = 4 (v) < U (0)
where U is any non-constant fuzzy ideal of R and x, y [JR \ {0}.

THEOREM 1.4.16: Let Iy [/1;[7...[]1, = R be any chain of ideal of a ring R. Let ty, t,
..., tn be some numbers lying in the interval [0, 1] such that ty >t; > ... >t,. Then the
fuzzy subset U of R defined by

to
t.

1

if xU1,

,u(x)—{ if xOIN\_,,i=12,..., n

is a fuzzy ideal of R with F,={1;|i =0, 1, 2, ..., n}.

Now we recall the definition of the product of any two fuzzy ideals of a ring R as
given by [140].
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DEFINITION [140]: Let (4 and 8 be any fuzzy ideals of a ring R. The product it o 8 of
M and Bis defined by

(,u 06’) (x) = :sup kmiin (min (,u(yi ), H(zi))))

where x, y; z; [/R.

It is left for the reader to verify that [l o 0 is the smallest fuzzy ideal of R containing
0.

Notation: At times we will make use of this notation also. Let A (1) be any subset
(fuzzy subset) of a ring R. The ideal (fuzzy subring / fuzzy ideal) generated by A(|) is
denoted by (A) ((W)).

The following theorem which can be proved by a routine computation is left as an
exercise for the reader to prove.

THEOREM [36]: Let [ be a fuzzy subset of a ring R with card Im [ < co. Define
subrings R; of R by

Ro= ({x[JR Dp(x) = Sup M (2)})and

zOR

Ri=(Riy O{x UR Ju(x) = sSup u(z)) 1 <i<k

zOR-R;,;

where k is such that Ry = R. Then k < card Im U Also the fuzzy subset Ul Jof R defined
by

Sup u(z) if xOR,
pr(x)=1 """ ‘ |
sup pu(z) if xOR\R_, I<i<k

zOR\R;_;

is a fuzzy subring generated by [l in R.

To define the concept of fuzzy coset of a fuzzy ideal the following theorem will help;
the proof of which is left for the reader as an exercise.

THEOREM 1.4.17:

i Let U be any fuzzy ideal of a ring R and let t = [4(0). Then the fuzzy subset
ULlof R/l defined by plJ(x + ) = K(x) for all x [JR, is a fuzzy ideal of
R/l .
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ii. If A is an ideal of R and Bis a fuzzy ideal of R/A such that 8 (x + A) = §A)
only when x [J A, then there exists a fuzzy ideal U of R such that 4 = A
where t = [(0) and 8= ulJ

Now we recall the definition of fuzzy coset.

DEFINITION [36]: Let [ be any fuzzy ideal of a ring R and let x [/ R. The fuzzy subset
LJof R defined by [i[fr) = U (r — x) for all v [J R is termed as the fuzzy coset
determined by x and [

For more about these concepts please refer [109]. The following theorem is given, the
proof of which is a matter of routine hence left for the reader as an exercise.

THEOREM 1.4.18: Let [ be any fuzzy ideal of a ring R. Then R, , the set of all fuzzy
cosets of [Lin R is a ring under the binary compositions.

,uxﬂ+ ,qu: ,Uﬂ+y and
ML, L= puld, for all x, y [JR.

Now we proceed on to recall the definition of fuzzy quotient ideal of ring R.

DEFINITION [109]: If i is any fuzzy ideal of a ring R, then the fuzzy ideal | of R,
defined by 1 (") = p(x) for all x R is called the fuzzy quotient ideal determined by
U

The proof can be had from [109].

THEOREM [109]: If 1 is any fuzzy ideal of a ring R, then the map f: R — R, defined
by f(x) = 14" for all x [JR is a homomorphism with kernel [1,, where t = [ (0).

THEOREM [109]: If W is any fuzzy ideal of a ring R, then each fuzzy ideal of R,
corresponds in a natural way to a fuzzy ideal of R.

Proof: Let W' be any fuzzy ideal of Ry. It is entirely straightforward matter to show
that the fuzzy subset 6 of R defined by 6 (x) = ' (U forallx OR, is a fuzzy ideal of
R.

Now we proceed on to define fuzzy semiprime ideal.

DEFINITION [109]: 4 fuzzy ideal U of a ring R is called fuzzy semiprime if for any
fuzzy ideal @of R, the condition 8" (I (m (IZ") implies 8 [T 1.

The following results are direct and can be obtained as a matter of routine and hence
left for the reader as an exercise.

THEOREM 1.4.19: Let [ be any fuzzy subset of a ring R. Then [{(x) = t if and only if x
[ Wy and x [J 4 for all s >t.
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THEOREM 1.4.20: A4 fuzzy ideal [ of a ring R is fuzzy semiprime if and only if |4 t [J
Im L, is a semiprime ideal of R.

THEOREM 1.4.21: An ideal A of a ring R is semiprime if and only if Y, is a fuzzy
semiprime ideal of R.

THEOREM 1.4.22: If [ is any fuzzy semiprime ideal of a ring R, then R, the ring of
fuzzy cosets of [ in R is free from non-zero nilpotent elements.

THEOREM 1.4.23: Let U be any fuzzy ideal of a ring R such that Im U = {t, s} with t >
s. If the ring Ry, has no non-zero nilpotent elements, then the fuzzy ideal U is fuzzy
semiprime.

THEOREM [99]: A4 ring R is regular if and only if every fuzzy ideal of R is idempotent.
Proof: Refer [99].

THEOREM 1.4.24: A ring R is regular if and only if every fuzzy ideal of R is fuzzy
semiprime.

Proof: Straightforward hence left for the reader to prove.
Now we recall some results on fuzzy subrings from [40].

Now for the time being we assume that R is a commutative ring with unit and M will
denote a maximal ideal of R. If R is quasi local, then M is the unique maximal ideal of
R and we write (R, M), whenever we say a subring of R we assume the subring
contains the identity of R. We let g denote the natural homomorphism of R onto R/M.
If S is a subset of R, we let (S) denote the ideal of R generated by S.

Let X and Y be fuzzy subsets of R i.e. functions from R into the closed interval [0, 1].
Then X+Y is the fuzzy subset of R defined by [J z [ R, (X+Y)(z) = sup{min(X(x),
Y(y)} |z=x+y}. Wesay that X Y if X(x) =2 Y(x) for all x JR. Let {X; Ui I I} be
a collection of fuzzy subset of R. Define the fuzzy subset

nx)

[ﬂXij(x)=inf{Xi(z)| 0},

a7

of R by, for all z [ R,

If U is the subset of X, we let &y denote the characteristic function of U in R. We let
Im (X) denote the image of X. We say that X is finite valued if Im (X) is finite. We let
X“={x OR OX (x) >0} the support of X. For all t 0 [0, 1] we let X; = {x DR | X(x)
>t} alevel subset of X in R.
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Let A be a fuzzy subring of R and S a subring of R. Define A|s of R by (Als) (X) =
A(x) if x J S and (A|s) (x) = 0 otherwise . It follows that Al is a fuzzy subring of R. If
B is a fuzzy subring of R such that B"is a field containg the identity of R and B(x) =
B(x ") for all units x in R, then B is called the fuzzy subfield in R. R is said to have a
coefficient field with respect to M if there exist a field F containing the identity of R
such that R = F + M. Suppose that R has a coefficient field F with respect to M. If A =
Alr + A|m where Al is a subfield in R then A|r is called the fuzzy coefficient field of
A with respect to A|m.

THEOREM [40]: Suppose that M is nil and R has a coefficient field. Let A be a fuzzy
subring of R such that for all t, s [OIm(A) with t >s, (As n F)*, (4, n F) = (4, n F)¥
then A = A|lr + Alm

Proof: Refer [40].

Using the above theorem one can easily prove the following theorem, which is once
again left for the reader as an exercise.

THEOREM [40]: Suppose that M is nil, R contains a field K and R/M is separable
algebraic over K. Let A be a fuzzy subring of R such that A [J &. Then A = Alr + A|u
and A|r is a fuzzy subfield in R where F is the coefficient field containing K.

Proof: Left for the reader to refer [40].

THEOREM [40]: Let A be a fuzzy subring of R. Suppose that Im (A) = {ty, t;, ..., ty}
where ty >t; > ... >t, Suppose further that (R, M) and (A, M n A, are complete
local rings for all t [7Im (4) such that R* [7 A, . Then R has a coefficient field F such

that A = A|r + A|y where A|r is a fuzzy subfield of R.
Proof: Refer [40].

Suppose F/K be a field extension and let C and D be fuzzy subfields of F such that D,
C O &. If C and D are linearly disjoint over &k then we write CD = C [0 D where CD
is the composite of C and D. The following results give the structure of the fuzzy field
extension ALk over ALk where KLJA . The proof of these theorems are left for the

reader as an exercise, we only state the theorem; interested reader can refer [40].

THEOREM [40]: Let F/K be a field extension. Suppose that A is a fuzzy subfield of F
such that A [J Ok and that A is finite valued say Im(A4) — {0} = {ty, t;, ..., t,} Where
to >t >t > ...>t, If there exists intermediate field H; of ALK such that
A4, =4, UxH; fori=1,..., nthen there exists fuzzy subfield A; of F, i =0, 1,..., n,

such that A =Ag JA; ... [ Ay (over &), K [T A, = A and A7 =H;,i=1, ... n

THEOREM [40]: Let F/K be a field extension with characteristic p > 0. Suppose that
F' [JK. Let A be a fuzzy subfield of F such that A”=F and A [J &. Suppose that A is
finite valued say Im (4) — {0} = {1y, t;, ..., t,} where ty9 >t; >t, >...>t, Then there
exists fuzzy subfield A; of F;, i = 0, 1, 2, ..., n, such that A = Ag [JA; [J ... [J A,.
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Further more for alli = 0, 1, 2, ..., n there exists set T; of fuzzy subfields of F such
that for all L 0T, L [0& L”/K is simple and

Ai= []L(overoy).

10T,

Now we proceed on to define fuzzy polynomial subring and fuzzy power series
subring.

DEFINITION [40]: Let S be a commutative ring with identity. Let R = S[x, ..., xn] be a

polynomial ring in the indeterminates x; Xx2 ..., X, over S. Let
A be a fuzzy subring of R. If for all

m my . .
— i i
r= E E Coo i X xR

n
i,=0 i;=0

n

where Cy ;. OS. A(r) = min {(minfA(C,,, , )| i;=0,1,....m;, j=12,...n},

min {t; [j =1, 2, ..., n}}, then A is called a fuzzy polynomial subring of R where t; =
A(x)) if x; appears non-trivially in the above representation of r and t; = I otherwise,
j=12 ..., n

DEFINITION [40]: Let S be a commutative ring with identity. Let R = S [[x1, ..., X,]]

be a power series ring in the indeterminates x;, X2, ..., X, over S. Let A be a fuzzy
subring of R.

If for all

[

P=3 3G, e OR where €, 08

ll1
i,=0 i;=0

A(r) = min {inf (A (Ci,.“i”)‘ i;=0,1,...,0,;,j=12,.., n}, min () =12, ..., n}}

then A is called a fuzzy power series subring of R where t; is defined as in the above
equation.

The reader is expected to prove the following theorems.
THEOREM [40]: Let R = S[x;, X2, ..., Xo] be a polynomial ring over S and M = ( x,,
..., Xp). Let A be a fuzzy subring of R. Then A is a fuzzy polynomial subring of R if and

only if A = Als + A|ly and for all v [JR, r Z0, and for all x;,j =1, 2, ..., n. A (xjr) =
min {A(x;), A(r)}.

Proof: Left for the reader as an exercise.

The following theorem is interesting and left for the reader to prove.
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THEOREM [40]: Let R = S [[x4, ..., X, ]] be a power series ring in the in determinants
X1, X2, «.., Xpover Sand M = (xy, ..., X, ). Let A be a fuzzy subring of R.

i. IfAis afuzzy power series subring of R, then A = A|s + A|y and for all v [J
R, rZ0andforallx;,j=1, 2, ..., n A (x, r) = min {A(x;), A(r)}.

ii.  Suppose that Al is a fuzzy ideal in R. If A = A|s + A|y and for all v [JR, r

Z0andforallx;,j=1 2, ..., n. A (x, r) = min {A(x;), A(r)} then A is a
fuzzy power series subring of R.

Now we proceed on to recall some more notions on fuzzy polynomial subrings.

THEOREM [40]: Suppose that R = S[x](S[[x]]) is a polynomial (power series) ring

over S and that A is a fuzzy polynomial (power series) subring of R. If A/y is a fuzzy

ideal of R, then A is constant on M — ( 0) where M = ('x).

Proof: The reader is requested to refer [40].

We will also using the notation for A” and A obtain some interesting results about
fuzzy subrings.

DEFINITION 1.4.2: Let A be a fuzzy subset of R. Define

A”= {xOR | A(x) >0} and
Ap= {xOR | A(x) = A(0)}.

The following theorem is Straightforward hence left for the reader to prove.

THEOREM 1.4.25: Let A be a fuzzy subring (fuzzy ideal) of R. Then Apis a subring
(ideal) of R. If L has the finite intersection property then A”is a subring (ideal) of R .

THEOREM 1.4.26: Let {Ay| a [J Q } be a collection of fuzzy subrings of R. Suppose
that L has the finite intersection property. Then

ZA;:[ZAHJ*.

alQ allQ

Proof: Follows from the fact that if

XD(ZAGJ*

aldQ

if and only if

(zA“j (x) >0

aldQ
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if and only if

sup{inf{Aa (x,) o 0Q}

x=2xa}>0

aldQ

if and only if

=Y.

alQ

for some x, OA, ifand only if

xOY Ay

alQ

The following result is also Straightforward left for the reader as exercise.

THEOREM 1.4.27: Let { Aq | a [J Q} be a collection of fuzzy subrings of R. Suppose
that L has the intersection property. Then

*

N A;:(ﬂ Aaj.

allQ allQ

THEOREM 1.4.28: Let {Ay | a [J Q } be a collection of fuzzy subrings of R. Suppose
that L has the finite intersection property. Then for all B[] Q2

Az 0 Y A, = {0}

a0,

if and only if for all x [JR, x Z 0

(Aﬁ n ZAajzo.

anQy

Proof: Follows from the definitions.

THEOREM 1.4.29: Let {Aq| a [JQ } [J{A} be a collection of fuzzy subrings of R such

that A= ZAL, . Suppose that L has the finite intersection property, then A" = Eg A;,
alQ a

if and only if A= gg A4,.

Proof: Follows from the very definitions.

THEOREM 1.4.30: Let {Aq| a [JQ } be a collection of fuzzy subrings of R. Then
> 4.0 [Z AHJ
allQ allQ *
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Proof: Left as an exercise for the reader to prove.

THEOREM 1.4.31: Let { Ag| a [J Q } be a collection of fuzzy subrings of R . If there
existst [JL, t 1, such that t Zsup{Aa(x) ‘ xUA . for all aDQ} then

DA = ( > Aaj :
all@ allQ *
Proof: Follows from the very definition.

THEOREM 1.4.32: Let { Ag | a [J Q } be a collection of fuzzy subrings of R . Suppose
that L has finite intersection property, if

A =0 4
nga ano 7
then
DA, =04..
a aQ 9

a2

Proof: Left for the reader as an exercise.

THEOREM 1.4.33: Let {Aq | a [JQ} be a collection of fuzzy subrings of R. Then

g ZAH = ZAﬁAa

aldQ alQ
and

(ZAHJA[; =Y A,4,.

alQ all@
Proof: Simple and straightforward for the reader to prove.

THEOREM 1.4.34: If A and B are fuzzy subrings (fuzzy ideals of R). Then

AB(x +y) > inf(AB(x), AB())
AB(x) AB(—x)

forallx, y [JR.

Proof: Left for the reader as an exercise.

THEOREM 1.4.35: Let A and B be fuzzy subrings of R such that
sup {{sup A(x) | x [JAqa}, sup {B(x) | x [/Ba}} <1.

Then (AB)g: AgBQ
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Proof: x J (AB)pif and only if (AB) (x) = 1 if and only if sup {inf {inf (A(y;) B (z)}
1=1,2, ...,n}suchthat x = Z:yizi with n N} =1
i=1

if and only if

for some y; UAgand zi OB (i=1, 2, ... , n) if and only if x JApBo
The following theorem is left for the reader to prove.

THEOREM 1.4.36: Suppose that R has an identity. Let { Aa| a [J 2} be a collection
of fuzzy subrings of R. Suppose that

&= D4,

all@

and for all x [JR, x Z0 (Ao Ap) (x) = 0 forall o, BLIQ, a ZB Then forall a, [JQ,
Aqis a fuzzy ideal of R. If L has the finite intersection property then

5, =0 4,

allQ
Now we proceed on to define fuzzy left coset for a fuzzy ideal A of R.

DEFINITION 1.4.3: Let A be a fuzzy ideal of R. For all r [JR, define fuzzy left coset
r+Abyforallx [JR (r +A) (x) = A(x—r). Let R/IA = {r + ALr [JA}.

The following theorem is Straightforward and hence left for the reader to prove.

THEOREM 1.4.37: Let A be a fuzzy ideal of R. Define ‘“+’ and ‘®’ on R/A by for all r, s
[JR(r+A) +(s+A)=r+s+Aand (r+A) *(s+A4) =r es + A Then R/A is a
commutative ring and R/A = R/Ar

Notation: Let Ry be a subring of R and let A be a fuzzy ideal of R. Let A'q denote the
restriction of &y A of Rq. Then A'q is a fuzzy ideal of Rq.

THEOREM 1.4.38: Suppose that R has an identity. Let {Ry | a [J Q} be a collection of
ideals of R such that R = EQR“ . Let A be a fuzzy ideal of R. Suppose that L has the

finite intersection property. Then there exists a collection of fuzzy ideals of R, {Aa| O
[JQ } such that A = EQA“ and in fact Aa = Oy A forall a [J Q. If 1 >sup {A(x) | x

[JAq} then A'qis a fuzzy ideal of Rpand R/ A = EQR” /A4,.
al
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Proof: Refer [84]. The following result can be proved as a matter of routine, hence
left as an exercise for the reader to prove.

THEOREM 1.4.39: Let {Ay | a [J Q} [ {A} be a collection of fuzzy subrings of R.
Suppose that L has the finite intersection property. If A = EQA“ then for all x (74"

- Y,

allQ

for unique

xo I A, and A(x) = inf {Aa(xa)

x= Zxa,xa DA;}
Pl

THEOREM 1.4.40: Let A and B be fuzzy subrings of R. Suppose that L has the finite

intersection property. Then (AB)UZ AB”

Proof: Straightforward, hence left for the reader to prove.

THEOREM 1.4.41: Suppose that R has an identity. Let {Ry | a [J Q} be a collection of
ideals of R such that R = gg R,. Let A be a fuzzy ideal of R such that 1 >sup {A(x) | x

[JAof. Let Aa = Oy A, for all a [J Q. Suppose that L has the finite intersection
property. Then A is a fuzzy maximal or fuzzy prime or fuzzy primary (L = [0, 1] here)

if and only if for all but one of the Ay's is 1 on Ry and the remaining A'y is fuzzy
maximal or fuzzy prime or fuzzy primary in Rg.
Proof: Left for the reader as an exercise.

Now we proceed on to recall the notion of pairwise co-maximal.

DEFINITION 1.4.4: Suppose that R has an identity. Let {Aq| a [JQ } be fuzzy ideals of
R. The Agis said to be pair wise co-maximal if and only if Aq Z O and Ag + Agp = Or
foralla, BLQ azf

The following theorem is straightforward and left for the reader to prove.

THEOREM 1.4.42: Suppose that R has an identity. Let {Ao| a [J Q2 } be a collection of
finite valued fuzzy ideals of R. Then the Ay are pairwise co-maximal if and only if Aql7
are pairwise co maximal.

Some results on finite collection of finite valued fuzzy ideals of R is recalled.

THEOREM 1.4.43: Suppose that R has an identity. Let {Aq | a [JQ} [] {B} be a finite
collection of finite valued fuzzy ideals of R.
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i The Aq are pairwise co maximal if and only if the. A, are pairwise co

maximal where L = [0, 1].

ii. If B is co maximal with each Ao, then B is co maximal with ﬂAa and
adQ

|_JIA£, where L has the finite intersection property.
ald

iii. If the Aq are pairwise co maximal then ﬂAa = |_JIA£, where L has the
atl

adQ
finite intersection property.

Now we proceed on to recall the definition of fuzzy external direct sum.

DEFINITION 1.4.5: Let {Xq | a [JQ } be a collection of non-empty sets and let A, be a
fuzzy subset of Xq for all a [JQ . Define the Cartesian cross product of the A4 by for
all xg [ X .

[x Aaj(x) — infAatee) | @ 02

alQ

where x = (xq) and (xq) denotes an element of the Cartesian cross product X X, .
allQ

The following theorem can be proved as a matter of routine.

THEOREM 1.4.44: Let { Ry | a [J Q2 } be a collection of commutative rings and let A4
be a fuzzy subring (fuzzy ideal) of Raqfor all a [J Q2. Then X A, is a fuzzy subring

all@

(fuzzy ideal ) of X R, where by X R, we mean external direct sum of the R,.

allQ allQ

The following theorems are very direct by the use of definitions.

THEOREM 1.4.45: Let {Ry | a [J Q2 } be a collection of commutative rings and let A,
be a fuzzy subring (fuzzy ideal) of Rg, for all a (7 Q. Then for all B Q. x AP is

all@

a fuzzy subring (fuzzy ideal) of X R, .

all@

THEOREM 1.4.46: Let {Ay | a [J Q } be a collection of fuzzy subrings of R. Suppose
that L has the finite intersection property. If

ZAL, =[] A4, then ZA[, = x A4, on [ZAHJ .

alQ alQ alQ alQ allQ

THEOREM 1.4.47: Let {Rq | a [J} be a collection of commutative rings. Let Aq be a
fuzzy subring (fuzzy ideal) of Ry for all a [J Q . Suppose that L has the finite

intersection property. Thenin X R, ,[] X A’ = x 4,.

all@ LOQ a0 adQ
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Now we proceed on to define the concept of complete fuzzy direct sum.

DEFINITION 1.4.6: Let {Ry | a [ Q } be a collection of commutative rings and let Ay
be a fuzzy subring of Rq, for all a [J Q2. Then the Cartesian cross product X A, is

aldQ
called the complete fuzzy direct sum of the Ag.

We proceed on to recall the weak fuzzy direct sum.

DEFINITION 1.4.7: Let { Rqa| a [J Q} be a collection of commutative rings and let Ay
be a fuzzy subring of Rqfor all a [1 Q.

Let

>R,

adQ

denote the weak direct sum of the Ry . Define the fuzzy subset

ZD A, of ZD R,

allQ alQ
by for all
x =(x) O ZD R,,
allQ
{ SH4, }(x)= X Ay(x,) -
a0 aldQ
Then

> A,

adQ

is called the weak fuzzy direct sum of the Ao Now we proceed on to recall some of the
extensions of fuzzy subrings and fuzzy ideals as given by [84], that has given a
necessary and sufficient conditions for a fuzzy subring or a fuzzy ideal A of a
commutative ring R to be extended to one A° of a commutative ring S containing R as
a subring such that A and A° have the same image.

One of the applications of these results gives a criterion for a fuzzy subring of an
integral domain R to be extendable to a fuzzy subfield of the quotient field. To this
end we just recall the definition of fuzzy quasi-local subring and some basic
properties about collection of ideals.

THEOREM 1.4.48: Let R be a ring and let {I, | t [JII} be a collection of ideals of R
such that R = [J 1, for all s, t [J1I, s >t if and only if I, [J1,. Define the fuzzy subset A
of Rby forall x [JR, A (x) = sup {t|x [J1,}. Then A is a fuzzy ideal of R.
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Proof: Left for the reader as an exercise.
Notation. II is a non-empty subset of [0, 1] i.e. we use II as the index set.
On similar lines the following theorems can also be proved.

THEOREM 1.4.49: Let R be a ring and let {R, | t [J1I} be a collection of subrings of R
such that R = [J R, for all s, t [JII, s >t if and only if R; [/R,. Define the fuzzy subset
A of R by, forall x [JR, A(x) = sup {t [k [/R,}. Then A is a fuzzy subring of R.

THEOREM 1.4.50: Let R be a ring with unity and let A be a fuzzy subring of R. Then
forall y [JR, y a unit and for all x [JR. A(xy ") =2min { A (x) , A (v)}if and only if A(y)
= A(™") for every unit y in R. In either case A(1) = A(y) where y is a unit.

THEOREM 1.4.51: Let R be a quasi-local ring. If A is fuzzy quasi local subring of R,
then for all t such that 0 <t <A(t), A, is a quasi local ring and M n A, is the unique
maximal ideal of A,.

(We say that A fuzzy subring of R to be a fuzzy quasi local subring of R if and only if
for all x (TR and for all y [JR such that y is a unit, A(xy") =min {A(x), A()} or
equivalently A(y) = A ().

THEOREM 1.4.52: Let R be a quasi-local ring. Let A be a fuzzy subset of R. If for all
t[7Im(A), A, is a quasi local ring with unique maximal ideal M n A, then A is fuzzy
quasi local subring of R.

For proof please refer [84] or the reader is advised to take it as a part of research and
find the proof as the proof is more a matter of routine using basically the definitions.

THEOREM 1.4.53: Let R be a quasi local ring.

i. If A is a fuzzy quasi local subring of R, then A" is quasi local and
A" n M is the unique maximal ideal of A”

ii. IfR'is a subring of R, then R'is quasi-local with unique maximal
ideal M n R'if and only if Ok, is a fuzzy quasi local subring of R.

Next a necessary and sufficient condition for a fuzzy subset A of a ring R to be fuzzy
quasi local is given.

THEOREM 1.4.54: Let R be a quasi local ring. Let {R, | t [J1I} be a collection of quasi
local subrings of R with unique maximal ideals M, of R;, t [JII}, such that R = [J R,
and for all s, t [J1I, s >t if and only if Ry [/R,. Define the fuzzy subset A of R by for all
x [JR. A(x) = sup {t | x [JR,}. Then A is fuzzy quasi local if and only if M; = M n R,
forallt [JII

Before one defines the notion of extensions of fuzzy subrings and fuzzy ideals it is
very essential to see the definition and properties of extension of fuzzy subsets. The
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following three theorems will give explicitly all properties about extension of fuzzy
subsets. The proof of which is once again left for the reader as an exercise.

THEOREM 1.4.55: Let R be a non-empty subset of a set S and let A be a fuzzy subset
of R. If B is an extension of A to a fuzzy subset of S, then A; n Bs = A, for all s, t such
that 0 St <s <1.

THEOREM 1.4.56: Let R be a non-empty subset of a set S and let A be a fuzzy subset
of R. If B={B;| t [/Im(A)} is a collection of subsets of S such that

i. [JB,=S8.
ii. foralls, t [JIm(A), s >t if and only if B; [JB; and
iii. foralls, t [JIm(A), s =t, A, N By = A, then A has an extension to a fuzzy
subset A of S such that (A°); [7B, for all t [7Im (A).

THEOREM 1.4.57: Let R be a non-empty subset of a set S and let A be a fuzzy subset
of R such that A has the sup property. If B={B, [1 [/Im (4)} is a collection of subsets
of S which satisfies (i) to (iii) of conditions given in the above theorem then A has a
unique extension to a fuzzy subset A° of S such that (A°); = B, for all t [7Im (A) and
Im(A°) = Im(4).

Now we proceed on to define extension of fuzzy subrings and fuzzy ideals. Let R be a
subring of S. If I is an ideal of R, we let I° denote the ideal of S extended by .

THEOREM 1.4.58: Let R be a subring of S and let A be a fuzzy ideal of R such that A
has the sup property. If

Uca ) =s

Oim( 4)

and for all s, t [7Im (4), s 2t, A; n (Ay)° = A, then A has a unique extension to a fuzzy
ideal A° of S such that (A°), = (A,)° for all t [7Im (A) and Im(A°) = Im(A). Let R be a
commutative ring with identity. Let M be a multiplicative system in R. Let N = {x [/R
| mx = 0 for some m [JM}. Then N is an ideal of R. Unless otherwise specified, we
assume N = (0)i.e. M is regular. Let Rys denote the quotient ring of R with respect to
M. Since N = ( 0), we can assume that R [J Ry. If A is a fuzzy subring of R, we
assume A(1) = A(0).

THEOREM 1.4.59: Let A be a fuzzy subring of R such that A has the sup property.
Then A can be extended to a fuzzy subring A° of Ry such that for all x, y [JR, y a unit.
Aey™) 2min {A°(x) , A°()} if and only if for all s, t OIm (4), s 2t, A, N (A = Ay
where My = M n A for all s [7Im (A). If either condition holds, A° can be chosen so
that (A°); = (A )y for all t [7Im (A) and Im (A°) = Im(A).

The following two results are very interesting and can be easily verified by the
readers.
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THEOREM 1.4.60: Let A be a fuzzy subring of R such that A has the sup property.
Then A can be extended to a fuzzy quasi local subring A° of Rp = for all s, t [1Im (4),
s 2t, Ay N (As)p = As where Py = P n Ay forall s [JIm (A).

THEOREM 1.4.61: Let R be an integral domain and let Q denote the quotient field of
R. Let A be a fuzzy subring of R such that A has the sup property. Let Q; denote the
smallest subfield of Q which contains A,, for all t [/Im (A). Then A can be extended to
a fuzzy subfield of Q if and only if for all s, t [JIm (A), s =t, A; N Qs = A;.

Now we recall the definition of the extension of fuzzy prime ideals.

Let R and S be rings and let f be a homomorphism of R into S. Let T denote f (R). If 1
is an ideal in R, then the ideal (f(I))° (or simple I°) is defined to be the ideal of S
generated by f (I) and is called the extended ideal or extension of I. If J is an ideal of
S, the ideal J° = f _I(J) is called the contracted ideal or the contraction of J.

DEFINITION [80]: Let A and B be fuzzy subsets of R and T respectively. Define the
fuzzy subsets f(4) of T and f ' (B) of R by f(4) (v) = sup {A(x) [f{x) =y} for all y OT,
77 (B) (x) =B (f(x)) for all x IR .

THEOREM 1.4.62: Suppose A and B are fuzzy ideals of R and T respectively. Then

i.  f(4) and ™ (B) are fuzzy ideals of T and R respectively.
ii. f(A)(0)=A().
iii. [ (B) (0) = B(0).

THEOREM 1.4.63: Let A be a fuzzy ideal of R. Then

L f{A) U(f(4)o
ii. if A has the sup property then [ (4)) 7= f(A7).

Now we proceed on to recall the definition of f-invariant.

DEFINITION 1.4.8: Let A be a fuzzy ideal of R. A is called f-invariant if and only if for
all x, y [JR, f(x) = f(v) implies A(x) = A(y).

In view of this we have the following nice characterization theorem; the proof of
which is left an exercise for the reader.

THEOREM 1.4.64: Let A be a fuzzy ideal of R. Then A is a fuzzy prime ideal of R if
and only if A(0) = 1, |Im(A)| =2 and Ap is a prime ideal of R.

THEOREM 1.4.65: Let A be an f-invariant fuzzy ideal of R such that A has the sup
property. If Apis a prime ideal of R, then f (Ap) is a prime ideal of T.

THEOREM 1.4.66: Let A be an f-invariant fuzzy ideal of R such that Im(A) is finite. If
Apis a prime ideal of R then f (Ar) = (f(4)) .
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THEOREM 1.4.67: Let A be an f-invariant fuzzy ideal of R. If A is a fuzzy prime ideal
of R then f(A) is a fuzzy prime ideal of T.

THEOREM 1.4.68: Let B be a fuzzy ideal of T. Then

i f'BI=f"B).
ii.  If Bpis a prime ideal of T, then f ™ (B) gis a prime ideal of R ,
iii.  If Bis afuzzy prime ideal of T, then f ' (B) is a fuzzy prime ideal of R.
The following are simple but interesting results on fuzzy ideals.

THEOREM 1.4.69: Let I be a fuzzy ideal of S. Then (1 )= (Ir) “.

To prove the following theorem we make the assumption that if M is the
multiplicative system in R. N = {x[J R | xm = 0 for some m [J M} equals ( 0).

THEOREM 1.4.70: Let I be a fuzzy ideal of Ry then (I °)p= (1)) € = (I) “ = I1.

THEOREM 1.4.71: Let A be a fuzzy ideal of R. Then in Ry, (A) 7= ((A°) ) = (A"
and if M is prime to Ay then (A)* = Ay

The reader is requested to refer [80].
We replace the interval [0, 1] by a finite lattice L which has 0 to be the least element

and 1 to be the largest element. All the while, fuzzy ideals have been defined over
[0, 1] when we define it over a lattice L we call them L-fuzzy ideal.

DEFINITION [61-64]: An L-fuzzy ideal is a function J : R — L (R is a commutative
ring with identity L stands for a lattice with 0 and 1) satisfying the following axioms

. Jx+y =2Jx) OJy).
ii. JEx)=Jx).
iii.  J(xy) =2Jx) LJy).
THEOREM [61-64]:

i A function J : R — L is a fuzzy ideal if and only if

J(x—-y)=2J () LJJ(y) and
J(xy) 2J(x) LJI).
ii. IfJ: R — Lis a fuzzy ideal then
(a) J(0) 2J(x) =2J(1) for all x [JR.

(b) J (x-y) =J (0) implies J(x) = J(v) for all x, y [JR
(c) The level cuts J, ={xDR |J(x) > a} are ideals of R. Conversely if each

Jais an ideal then J is a fuzzy ideal.

58



Proof: Please refer [61-64]. A strict level cut Jo = J, = {x R |J (x)> O(} need not be
an ideal unless of course L is totally ordered.

The following result can also be obtained as a matter of routine.

THEOREM 1.4.72: Iff: R — R'is a homomorphism of rings and J: R — L and J': R’
— L are fuzzy ideals, then

i.  f7() is a fuzzy ideal which is constant on ker f and
ll f_j(‘]'(JQ(()Q) = f_l (Jf‘l(‘]r)(()r) )
iii.  f(J) is a fuzzy ideal.
v,  ffla)=J.

v.  if Jis constant on ker f then [ (JJ(,,))Z SCI)risyo)-
vi.  If Jis constant on ker f then f ™ (f(J)) = J.

THEOREM (CORRESPONDENCE THEOREM): If /> R — R'is an epimorphism of rings,
then there is one to one correspondence between the ideals of R' and those of R which
are constant on ker f. If J is a fuzzy ideal of R which is constant on ker f, then f (J) is
the corresponding fuzzy ideal of R'. If J' is a fuzzy ideal of R', then f (J') is the
corresponding fuzzy ideal of R.

Proof: Refer [61].

Now we proceed on to recall the definitions of prime fuzzy ideals, primary fuzzy
ideals and semiprime fuzzy ideals and also some of it basic properties. For more about
these concepts please refer [61-64].

By a prime fuzzy ideal we mean a non-constant fuzzy ideal P : R — L satisfying the
following condition of primeness

P (xy) = P(x) or
P(xy) = P(y) for all x, y L R.

THEOREM 1.4.73: If P: R — L is a prime fuzzy ideal, then the set P(R) of membership
values of P is a totally ordered set with the least element P(1) and the greatest
element P(0).

THEOREM 1.4.74: A fuzzy ideal P: R — L is prime if and only if every level cut Py =
{x [JR | P(x) = a} is prime for all a@ >P(l) For a= P(1), P, =R.

THEOREM 1.4.75: Let Z be a non-empty subset of R. Z is a prime ideal of R if and
only if X.: R — L is a prime fuzzy ideal.

THEOREM 1.4.76: Let R be a principal ideal domain (PID). If P : R — L is a prime
fuzzy ideal and Pp ) Z 0, then P (R) has two elements. P is properly fuzzy if and only
if P(R) has three elements. We see a properly fuzzy prime ideal of a PID R is
equivalent to the fuzzy ideal P : R — L of the following type:
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PO) =1,
Pkx) =a

forall x [JP;\ {0}. P(x) = 0 for all x [/R \ P; where P, is a prime ideal of R and 0 <
ac<l.

DEFINITION 1.4.9: A finite strictly increasing sequence of prime ideals of a ring R, Py
[Py [JP; [J...[J P, is called a chain of prime ideals of length n. The supremum of
the lengths of all chains is called the dimension of R .

DEFINITION 1.4.10: Let R be a ring. Then U |P(R) | L/P: R - [0, 1] is a prime fuzzy
ideal} is called the fuzzy dimension of R.

THEOREM 1.4.77:

i.  The dimension of R is n (< o) if and only if its fuzzy dimension is n + 2.
ii.  An artinian ring has no properly fuzzy prime ideal.
iii. A Boolean ring has no properly fuzzy prime ideal.

The following results are relation on homomorphism and epimorphism of rings.
THEOREM 1.4.78:

i Let f: R — R'is an epimorphism of rings. If P: R — L is a prime fuzzy
ideal which is constant on ker fthen f (P) : R' — L is a prime fuzzy ideal.
ii. If f: R — R'is a homomorphism of rings. If P' : R' — L is a fuzzy prime
ideal then f ™' (P') is a prime fuzzy ideal of R.
iii. Letf: R — R'be an epimorphism of ring.

(a) Let P:R — L be a fuzzy ideal which is constant on ker f. Then P is
prime if and only if f(P) : R' — L is prime.

(b) Let P': R' — L be a fuzzy ideal. Then P'is prime if and only if
f_I(PQ R - Lis prime.

The proof can be got by simple computations and hence left for the reader as exercise.
Now we proceed on to give the definitions of primary fuzzy ideals of a ring.

DEFINITION [149]: 4 fuzzy ideal Q : R — L is called primary if Q(xy) = Q(0) implies
O) = Q(0) or Q(") = Q(0) for some integer n > 0.

DEFINITION [77]: A fuzzy ideal Q : R — L is called primary, if either Q is the
characteristic function of R or

i.  Qis non-constant and
ii. AoBLOJQ =A/0[QorB/[l] \/é is the intersection of all prime fuzzy
ideals.

DEFINITION [146]: 4 fuzzy ideal Q : R — L is called primary, if
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i.  Qis non-constant and
ii. forallx,y ORandr, s OLifx,y [JQ thenx, [JQ or y! [JQ for some
positive integer n.

DEFINITION 1.4.11: A4 fuzzy ideal Q : R — L is called primary if Q is non-constant
and for all x, y [JR, Q(xy) = O(x) or Q") for some positive integer n.

THEOREM 1.4.79:

i. Let Q be an ideal of R. The characteristic function Xp is a primary fuzzy
ideal if and only if Q is a primary ideal.
ii. IfQ:R - Lisprimary then its level cuts Qo = {x[/R[D(x) = a}, a [JL,
are primary.
iii.  Every prime fuzzy ideal is primary.

Proof: Left for the reader to prove.

As in case of prime ideals and its relation with epimorphism and homomorphism, we
give here without proof the relation of primary ideals and the epimorphism and
homomorphism.

THEOREM 1.4.80:

i. Letf: R — R'be an epimorphism of rings. If Q : R — L is a primary fuzzy
ideal of R which is constant on ker f, then f(Q) is a primary fuzzy ideal of
R’
ii. Letf:R — R'be a homomorphism of rings. If Q' : R' — L is a primary
fuzzy ideal of R' then f™(Q) is a primary fuzzy ideal of R .
iii. Letf:R — R'be an epimorphism of rings and Q: R - Land Q': R' - L
be a fuzzy ideals.
(@) Q'is primary if and only if f (Q") is primary.
(b) If Q is constant on ker f, then Q is primary if and only if f (Q) is
primary.

Now we proceed on to define the notion of weak primary fuzzy ideals.

DEFINITION 1.4.12: A4 fuzzy ideal J: R — L is said to be weak primary or in short w-
primary if J(xy) = J(x) or J(xy) <J(O") for some integer n > 0.

THEOREM 1.4.81: Every primary fuzzy ideal is w-primary. In particular, every prime
fuzzy ideal is w-primary.

Proof: Direct by the very definitions, hence left for the reader to prove.

We give the following two nice characterization theorems. The proofs are left for the
reader as an exercise.
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THEOREM 1.4.82: A fuzzy ideal is w-primary if and only if each of its level cuts is
primary.

THEOREM 1.4.83: Let Q be an ideal of R. The characteristic function Xp is w-primary
if and only if Q is primary.

Finally we give the following result the proof of which is easy by simple
computations.

THEOREM 1.4.84: Let f: R — R' be a homomorphism of rings, and Q : R — L and
Q':R' - L be fuzzy ideals.

i If @is w-primary then so is f ().

ii. Let f be an epimorphism. Then Q is w-primary if and only if f(Q) is
w-primary.

iii. Let [ be an epimorphism then Q' is w-primary if and only if f ' (Q)
is w-primary.

Let I be an ideal of R, nil-radical defined as VI = {x DR‘ x"OI,n>0}.

DEFINITION [61-64]: If J : R - L is a fuzzy ideal, then the fuzzy set
JJ R - L defined as x/j(x) =0{J(x")|n>0} is called the fuzzy nil radical of J.

This is proved by simple techniques.

THEOREM 1.4.85:

i. IfJ:R - Lisafuzzyideal, then JJ isa fuzzy ideal.
ii. Iflisanideal of R, then \/)(_, =Xy
iii. Forany 0 < a <1 and a fuzzy ideal J: R - L, (\/7)” = \/there
L is a totally ordered set, J, = (x OR |J(x) > a) and
W7), ={x0R/JI(x) > a}.
iv.  In case of non-strict level cuts \/Z O (\/7 )a :

Using these results and definitions the reader is assigned the task of proving the
following theorem.

THEOREM 1.4.86:

i. Iff:R — R'isan epimorphism of rings and J: R — L is a fuzzy ideal,
then f (\/7 ) U f(J). Further if J is constant on ker f then

sWNT)=N70T).
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ii. Iff:R — R'is a homomorphism of rings and J' : R' — L is a fuzzy ideal

then ™! (\/T)zw/f"(J').

The following theorem is a direct consequence of the definition.

THEOREM 1.4.87: If J: R - L and K : R — L are fuzzy ideals, then the following

hold:
i JWT)=vT.
ii. IfJ 0K, then JJ OVK .
iii. NJnK=+JnJK.
iv. IfJ:R - Lis afuzzy ideal with supremum property then \/E = (\/7 )a .
v. IfP:R - Lisprime then JP=r.
vi. If Q: R — L is a primary fuzzy ideal with supremum property then \/é is

the smallest prime fuzzy ideal containing Q.
vii. If L is a totally ordered set and Q : R — L is a primary fuzzy ideal, then

\/é is the smallest prime fuzzy ideal containing Q.

Now we recall the notion of prime fuzzy radical.

DEFINITION 1.4.13: Let J : R — L be a fuzzy ideal and P : R — L denote a prime
fuzzy ideal containing J. The fuzzy ideal v (J) = n {PLJ [JP} is called the prime fuzzy
radical of J.

Using the definitions the reader is expected to prove the following two theorems

THEOREMS 1.4.88:

i. IfJ: R - Lis afuzzy ideal, then JJ O r(J).
ii. If L is a totally ordered set and J: R — L is a fuzzy ideal then JJ O r(J).

DEFINITION 1.4.14: A fuzzy ideal S: R — L is called semiprime fuzzy ideal if S(°) =
Stx) for all x [JR.

The following results are left as an exercise for the reader to prove.
THEOREM 1.4.89:

i. LetS:R — L bea fuzzy ideal, S is semiprime if and only if its level cuts,
S, = (x [ R| S(x)=2 a) are semiprime ideals of R, for all a [JL.
ii. Let S be an ideal of R . S is semiprime if and only if its characteristic
function Xs is a semiprime fuzzy ideal of R.
iii. Letf:R — R'beahomomorphism. If ' : R' — L is a semiprime fuzzy
ideal of R then f ' (S") is a semiprime fuzzy ideal of R.
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iv.. Letf:R — R'be an epimorphism and S : R — L be a semiprime fuzzy
ideal of R which is constant on ker f. Then f(S) is a semiprime fuzzy ideal
of R'. Thus by the correspondence theorem between semiprime fuzzy ideals
of R' and those of R which are constant on the kernel of f.

v.  Every prime fuzzy ideal is semiprime fuzzy ideal.

vi.  Intersection of semiprime fuzzy ideal is a semiprime fuzzy ideal. In
particular intersection of prime fuzzy ideals is a semiprime fuzzy ideal.

vii.  IfS: R — L is a semiprime fuzzy ideal, then the quotient ring R/S is prime.

Now we formulate certain equivalent condition of a fuzzy ideal. The proof of these
relations is omitted.

THEOREM 1.4.90: If'S: R — L is a fuzzy ideal then the following are equivalent

i. Sis semiprime.
ii.  Each level cut of S is semiprime.
iii.  S(x") = x for all integers n >0 and x [JR.
iv.  J IS implies J (7S for all fuzzy ideals J : R — L.
v. J'[S for n >0 implies J [7S for all fuzzy ideals J: R — L.

vii S =S where \S is the fuzzy nil radical of S when L is totally
ordered each of the above statements is equivalent to the following:

a. S coincides with its prime fuzzy radical.
b. S=n{PLP [JC} where Cis a class of prime fuzzy ideals.

1.5 Fuzzy birings

In this section we just introduce the notion of birings and fuzzy birings. The very
concept of birings is very new [135] so the notion is fuzzy birings is defined only in
this book. So we first give some of the basic properties of birings and then give the
fuzzy analogue of it. As the main aim of this book is to introduce the notion of
Smarandache fuzzy algebraic structures we do not stake in discussing elaborately the
concepts other than Smarandache structures.

DEFINITION 1.5.1: 4 non-empty set (R, +, ®) with two binary operations ‘+’ and '*'is
said to be a biring if R = R; [J R, where R; and R, are proper subsets of R and

i. (R, +, *)isaring.
ii. (Ry, +, *)isaring.

Example 1.5.1: Let R = {0, 2, 4, 6, 8§, 10, 12, 14, 16, 3, 9, 15} be a non-empty set. (R,
+, ®) where ‘+’ and ‘¢’ are usual addition and multiplication modulo 18. Take R; = {0,
2,4,6,8,10, 12, 14, 16, } and R, = {0, 3, 6, 9, 15, 12}; clearly (Ry, +, *) and (R», +,
*) are rings.

A biring R is said to be finite if R contains only finite number of elements. If R has
infinite number of elements then we say R is of infinite order. The biring R given in
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example 1.5.1 is of finite order and has 12 elements. We denote the order of R by
[ROor o(R).

DEFINITION 1.5.2: A biring R = R; [J R, is said to be a commutative biring if both R,
and R; are commutative rings. Even if one of R; or R, is not a commutative ring then
we say the biring is a non-commutative biring. We say the biring R has a monounit if
a unit exists which is common to both R; and R,. If R; and R, are rings which has

separate unit then we say the biring R = R; [/ R; is a biring with unit.

It is interesting to note that the biring given in example 1.5.1 has no units but is a
commutative biring of finite order.

Example 1.5.2: Let Ry« denote the set of all 2 x 2 upper triangular matrices with
entries from the ring of integers Z i.e.

a b)(x O
Ry = , |x,y,z, a,b,cZ;.
0 c¢c)\y z

R is an infinite non-commutative biring with monounit.

o

is a non-commutative ring with
Lo = 1 0
o1

For take R =R; O R, where

as the unit

is a non-commutative ring with

L_(ro
201

as the unit. Thus R = R; U R; is a biring with I»x; as a monounit.
DEFINITION 1.5.3: Let R = R; [J R, be a biring. A non-empty subset S of R is said to

be a sub-biring of R if S = S; [JS> and S itself a biring and S; = R; n Sand S> = R, n
S.
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Example 1.5.3: Let R =R, [ R, be a biring given in example 1.5.2. Take S=S, U S,

[ 1o
szz{(g 3) | amz}.

Clearly S is a sub-biring of R.

and

The following theorem is very important which is a characterization theorem.

THEOREM 1.5.1: Let R be a biring where R = R; [/ R,. A non-empty subset S = S; [J
S> of R is a subring of R if and only if R; n S = S; and R; n S = S, are sub-biring of
R; and R; respectively.

Proof: Straightforward by the very definitions.

DEFINITION 1.5.4: Let R = R; [/ R be a biring. A non-empty subset I of R is said to
be a right bi-ideal of R if I = I; [J I, where I, is a right ideal of R; and I, is a right
ideal of R>. I is said to be a left bi-ideal of R if I = I; [J > are left ideals of R; and R>
respectively.

If I =1, [J1, is such that both I,and I, are ideals of R; and R respectively then we say
1 is a bi-ideal of R, then we say I is a bi-ideal of R. Now it may happen when I = 1; [J
1>, I; may be a right ideal of R; and I, may be a left ideal of R, then how to define
ideal structures.

For this case we give the following definition.

DEFINITION 1.5.5: Let R = R; [J R, be a biring. We say the set I = 1; [] 1, is a mixed
bi-ideal of R if I, is a right ideal of R; and I, is a left ideal of R,. Thus we see only in
case of birings we can have the concept of mixed bi-ideals i.e. an ideal simultaneously

having a section to be a left ideal and another section to be right ideal.

Example 1.5.4: Let R = R; [0 R, be a biring given in example 1.5.2 Take [ =1; U I,

where
a o0
I = | a,b0Z
b 0
0 x
L= | xOz
0 0

are left ideals of R; and R; respectively. Thus I is a left bi-ideal of R.
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Now take J = J; O J, where

S
e

is right ideal of R, so J is a right bi-ideal of R.

S
S

are left and right ideals of R; and R, respectively; so K is a mixed bi-ideal of R.

is a right ideal of R and

Take K = K; O K, where

and

DEFINITION 1.5.6: Let R = R; [J R, be a biring. A bi-ideal I = I; [J I, is called a
maximal bi-ideal of R if I, is a maximal ideal of R; and I, is a maximal ideal of R,.
Similarly we can define the concept of minimal bi-ideal as J = J; []J, is a minimal
ideal if J; is a minimal ideal of R; and J; is a minimal ideal of R.. It may happen in a
bi-ideal. I of a ring R = R; [J R, that one of I; or I, may be maximal or minimal then
what do we call the structure I = 1; [J1,. We call I = 1; [, a bi-ideal in which only I,
or I is a maximal ideal as quasi maximal bi-ideal. Similarly we can define quasi
minimal bi-ideal.

We call a bi-ideal I = 1; [J 1 to be a prime bi-ideal of R = R; [/ R, the biring if both I,
and I, are prime ideals of the rings R; and R, respectively.

DEFINITION 1.5.7: Let R = R; [/R> and S = S; [/ S be two subrings. We say a map @
from R to S is a biring homomorphism if @= @ [J @ where @ = @| R, from R; to S|
is a ring homomorphism and @ :@ @ | R is a map from R, to S is a ring
homomorphism. We for notational convenience denote by @ = @ [J @ though this
union ‘L]’ is not the set theoretic union. We define for the homomorphism @: R — S
where R = R; [/ R and S = S; [J S, are birings the kernel of the homomorphism @as
biker ¢ = ker @ [ ker @ here ker @ = {a; [JR; [J@(a;) = 0} and ker @ = {a> [JR>
P >(az) = 0}

The following theorem is straightforward hence left for the reader to prove.
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THEOREM 1.5.2: Let R = R; [J Ry and S = S; [J S, be two birings and @ a biring
homomorphism from R to S then biker ¢= ker @ [] ker @ is a bi-ideal of the biring R.

We may have several other interesting results but we advise the reader to refer [135].
Now we proceed on to define fuzzy birings and give some basic and important results
about them.

DEFINITION 1.5.8: Let (R = R; [JR>, +, ®) be a biring. The map {: R - [0, 1] is
said to be a fuzzy sub-biring of the biring R if there exists two fuzzy subsets U (of R;)
and & (of R;) such that

i. (Ui, +, ) isafuzzy subring of (R;, +, ®)
ii. (o, +, ® is afuzzy subring of (R;, +, ®)
ii. 1= b,

THEOREM 1.5.3: Every t-level subset of a fuzzy sub-biring U of a biring R = R; [/ R>
need not in general be a sub-biring of the biring R.

Proof: The reader is requested to prove by constructing a counter example.

DEFINITION 1.5.9: Let (R = R; [J/R,, +, ®) be a biring and [l (= |41 [J k) be a fuzzy
sub-biring of the biring R. The bilevel subset of the fuzzy sub-biring [ of the biring R
is defined as G, =G,, UG,, foreveryt [J{0, min {{1(0), [£(0)}.

The condition t [ {0, min {{14(0), 1:(0)}. is essential for the bilevel subset be a sub-
biring for if t [7{0, min {14(0), 1:(0)} then the bilevel subset-need not in general be a
sub-biring of the biring R.

DEFINITION 1.5.10: A4 fuzzy subset [ of a ring R is said to be a fuzzy sub-biring of the
ring R if there exists two fuzzy subrings L and b of U (L Z L and [ Z ) such that [

=t U fb.

THEOREM 1.5.4: Every fuzzy sub-biring of a ring R is a fuzzy subring of the ring R
and not conversely.

Proof: Follows by the very definitions.

It is however left for the student to prove that the converse of the above theorem is not
true.

DEFINITION 1.5.11: A4 fuzzy subset [ = l; [J & of a biring R = R;[J R, is called a
fuzzy bi-ideal of R if and only if l; is a fuzzy ideal of R; and [b is a fuzzy ideal of R>.

DEFINITION 1.5.12: A fuzzy subset |4 = 4 [] b of a biring R = R;[/ R, is a fuzzy sub-

biring (fuzzy bi-ideal) of R if and only if the level subsets [, t [JIm (L) = Impy; [J
Im/, are subrings or ideals of R; and R».

68



DEFINITION 1.5.13: Let t1 and @ be any two fuzzy bi-ideals. R = R;[JR,, (U= ; [J b
and 8= 6, [] 6). The product lio 6

of 1 and @ is defined by

(H08)= sup (min(min,(y,),6,(z,)) 0 sup (min(p(y;).6(z;))

X =2y X2 = Zy_/zj
i<oo J<oo

It can be easily verified that Lo 8is a fuzzy bi-ideal of R = R;[JR,.

DEFINITION 1.5.14: A fuzzy bi-ideal [ = [y [J b of a biring R = R;[J R, is called
fuzzy prime if, the bi-ideal 14 = (L1): [ (L) where t = U (0) and t =L (0) is a prime
ideal of R; and R; respectively.

DEFINITION 1.5.15: 4 non-constant fuzzy bi-ideal 4 = ; [ 1> of a biring R = R;[JR>
is called fuzzy prime if, for any two bi-ideals 0 and 6 of R the condition o 8 [J U
either o [Jor 8 [J U (where 8= 6, [1 6 and o= 0; [] g; by 0[]t we mean o; [ [
and 0y [J W similarly 08 [J ptimplies 0; 6 [T 1 and 026, [ Lb).

THEOREM 1.5.5:

i If L= W is a fuzzy prime bi-ideal of a biring R = R;[J R, then the

ideal t, = (11 [J o), = (1) [T (W), t = Wy(0) that is t = W;(0) and t =
L(0) is a prime bi-ideal of R = R;[JR».

ii. A bi-ideal P = P;[J] P; of a biring R = R;[JR>, P ZR is prime if and only if
Xp (Xp is the characteristic function of Pie. Xp = (X, U X, ) is a fuzzy
prime bi-ideal of R.

THEOREM 1.5.6: 4 non-constant fuzzy bi-ideal 4= [ [J 1> of a biring R = R;[JR; is
fuzzy prime if and only if card Im W = 2 and card Impp, = 2, 1 [JIm Wy and 1 [JIm 1>
and the ideal (U;); and (1), where t = ; (0) and t = [ (0) is prime.

Proof: Follows as in case of ideals as each of l;, 1 = 1, 2 are non-constant fuzzy ideals
sois U= |y [ M.

DEFINITION 1.5.16: Let R = R;[/ R, be a biring. Let [i; and L, be two level sub-birings
and level bi-ideals (with s <t) of a fuzzy sub-biring (fuzzy bi-ideal), |1 of a biring R
are equal if and only if there is no x in R such that s < [{(x) <t (that is s < li(x;) <,
s < ,Ug()Cg) <t x; JR; and x> URQ).

The following theorem is left as an exercise for the reader.

THEOREM 1.5.7: Intersection of any family of fuzzy sub-birings (fuzzy bi-ideals) of a
ring R is a fuzzy sub-biring (fuzzy bi-ideal) of R.
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Proof: i : R - [0, 1] where R = R;[] Ry and [ = i U Yiz each Wy is a fuzzy subring
of Ry Mi2 is a fuzzy sub-biring of R, then by usual results on fuzzy ideals we see
intersection of |; is a fuzzy subring of fuzzy ideal for j =1, 2.

THEOREM 1.5.8: If l1is a fuzzy bi-ideal of a biring R = R;[JR,. Then U+ 1= UL
Proof: The result follows as in case of fuzzy ideal.

THEOREM 1.5.9: If i is any fuzzy sub-biring and Bis any fuzzy bi-ideal of a biring R
= R;[J Ry.Then 4 n Bis a fuzzy bi-ideal of the biring 14 = { x [JR [Jux) = 1(0)}.
[H(x) = 1(0) will mean for all x [JR;, ti(x) = Li(0) and for all x [JR>, [b(x) = (0)].

THEOREM 1.5.10: Let U be any fuzzy subset of a bifield F = F; [] F>. Then 1= ; [J
Lo is a fuzzy bi-ideal of F if and only if U (x) = 1 (v) S (0) for all x, y [JF \ {0}. (i.e.
M (x) =) S (0) forallx, y [JF;\ {0} and & (x) = W () < s (0) for all x, y [J
F>\ {0}).

Proof: Follows as in case of ideals in fields.

THEOREM 1.5.11: Let R = R;[/ R>. be any biring . Then R is bifield if and only if (x)
= U(y) <W(0) where U is any non-constant fuzzy bi-ideal of R and x, y [JR | {0}.

Proof: Follows as in case of rings.

THEOREM 1.5.12: If 1 = [ [J b is any fuzzy sub-biring (fuzzy bi-ideal) of a biring R
= R; [JR; and if U(x) <l(y) for some x, y [/R then Lx —y) = U(x) = U —x).

Proof: Left as an exercise for the reader to prove.

DEFINITION 1.5.17: Let l4 = ) [J [&> be any fuzzy subset of a biring R = R;[J R,. The
smallest fuzzy sub-biring (fuzzy bi-ideal) of R containing [ is called the fuzzy sub-
biring (fuzzy bi-ideal ) generated by lin R and is denoted by (1) = (1) [J (L& ).

THEOREM 1.5.13: Let 4t = [ [J &> be any fuzzy subset of a biring. Then the fuzzy
subset (7 of R = R; [ R, defined by tH{x) = sup {k/x O ()} (1Hx) = wi'(x) O
%)) is a fuzzy sub-biring (fuzzy bi-ideal) generated by [ in R according as (W) is
the sub-biring (bi-ideal) generated by L in R. (In other wards Lx) = t when ever x [J
(L) and x [J (U s ) for all s >1).

We just define for any fuzzy bi-ideal 1 = [ [J b of a biring, R = R; [J R, with t =
H(0). Then the fuzzy subset g of R/l is defined by U + 1) = x) forallx [JRis a
fuzzy bi-ideal of R/14,.
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R OR, _ R 0 R,
() OCH), (K (M)
sothat (ff (x+ )= O 1t = pi(x)
=M, (x)0 u,(x)where
=4, (x+(14,),) = p,(x) for xOR, and
= W5 (x+(H4,),) = th(x) for xOR, ).

(Now R/l =

DEFINITION 1.5.18: Let (1 = [ [J b be any fuzzy bi-ideal of the biring R = R;[J R,.
The fuzzy subset . (= (), D(,u;)z) of R where x [J R; [J R, is defined by

U.(r)=H(r—x) forall r [IR i.e. termed as the fuzzy bicoset determined by x and .

(Here
@r) =) or) o W )r) = wy(r=x) 0 py(r-x)

where (,u;)j (r)=M,(r—x) where x, r JR; and (,u::)z (r)=MU,(r—x) wherex, r
[JR;).

Several results can be got for fuzzy birings as in fuzzy case fuzzy rings by appropriate
and suitable modifications.

Note: If |1 is a constant on R = R; [J Ry i.e. i = Y U Yo where ; is a constant on R;
and [, is a constant on R, then R, = (U1 ); and R, = (uz ):;

with
R, =(H,), here

Mo = (M)o O (K)o
Using these definitions the following theorem can be got as a matter of routine.

THEOREM 1.5.14: Let [ be any fuzzy bi-ideal of a biring R = R; [J R, then the
following holds pi(x) = p(0) if and only i, = i, where x OR.

THEOREM 1.5.15: For any fuzzy bi-ideal i of a biring R, the following holds good.
Ry, OR  where p(0) = t.

Now we proceed on to define level bi-ideal fuzzy prime bi-ideal, fuzzy maximal bi-
ideal and so on and give some interesting results on them.

DEFINITION 1.5.19: Let (1 = ; [J [ be any fuzzy bi-ideal of a biring R = R; [/ R>
such that each level bi-ideal 4 t [/Im [ is prime. If LU(x) <(y) for some x, y [/R then

,U(jcy) = H(y) (Here fi(x) <p(y) = pui(x) <pu(y) ifx, y LRy and fo(x) <o) ifx, y [
R>).
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THEOREM 1.5.16: If i/ = 1 [J b is any fuzzy prime bi-ideal of a biring R = R; [/ R>
then U(xy) = max (U(x), 1)) for all x, y [/R.

Proof: As in case of prime ideal we get the proof.

Now we give a nice characterization theorem, the proof of which is to be supplied by
the reader.

THEOREM 1.5.17: If 1 and Bare any two fuzzy prime bi-ideals of a biring R, then [ n
Ois a fuzzy prime bi-ideal of R if and only if 4 [7 Bor 87 1.

(Hintu=u1D u2,9=91 U Gz,um 9=(ul N GI)D(uﬂw 92),R:R1D R, so 6,
uzDezorul D91OTH2D92;H11R1 - [0, 1], M2 : Ry - [0, 1],911R1 - [0, 1] and
0,:R;, » [0, 1]).

THEOREM 1.5.18: Let it = 1y [J > be any fuzzy bi-ideal of a biring R such that I [J
Im W and let 8= 6, [J 6 be any fuzzy prime bi-ideal of the biring R. Then, it n Bis a
fuzzy prime bi-ideal of the biring 14 = {x [JR [Jx) = I}= {x; [JR; [tk 1(x;) = 1} [J
{x2 IRy [J1 (x2) = 1}, where 1t = Ly [J L such that [ : Ry — [0, 1] and [ : Ry —
[0, 1] and Im = Im ; [7Im L.

Proof: Follows as in case of fuzzy prime ideals.

THEOREM 1.5.19: If i = 1 [J [ is a fuzzy prime bi-ideal of a biring R = R; [J R,
then R is an integral bidomain.

Proof: Follows from the fact that each of 4; : Ry - [0, 1] and 4> : Ry — [0, 1] is such
that R, and R, are integral domains so Ry= R, [J R, is an integral bidomain .

THEOREM 1.5.20: Let [ be a fuzzy bi-ideal of biring R = R; [J R such that Im [ =
{1, o} where o7 [0, 1). If R, is an integral bidomain then [lis a fuzzy prime bi-ideal.

Proof: Follows as in case of rings.
DEFINITION 1.5.20: 4 fuzzy bi-ideal |1 of a biring R = R; [/ R; is called fuzzy maximal
bi-ideal if Im = {1, 0} where o[/ [0, 1) and the level bi-ideal |4, = {x [JR [lI (x) =

1} is maximal.

THEOREM 1.5.21: Let (1 = L [J 1> be any fuzzy bi-ideal of a biring R = R; [JR>. Then
M is a fuzzy maximal bi-ideal if and only if R, is a bifield.

Proof: Straightforward by definitions and using fuzzy ideal analogous of a ring.
THEOREM 1.5.22: Let R be a biring a [7]0, 1) and X = {4 [id is a fuzzy bi-ideal of the

biring R with Im = {1, g}}. Then u [JX is fuzzy maximal if and only if for each B [J
Xeither B[ orelse (U+ P) (v) =1 forall y [JR.
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Proof: Follows directly from the definitions and results on rings.

THEOREM 1.5.23: Let 4t = 4 [J [ and 0= 0; [J 03 any two distinct fuzzy maximal
bi-ideals of a biring R such that [40) = 0 (0) and Im = Im Othen U N 0= lO.

Proof: Left as an exercise for the reader.

Now we proceed on to define fuzzy semiprime bi-ideal of a biring.

DEFINITION 1.5.21: A fuzzy bi-ideal U = L [J &> of a biring R = R; [J R, is called
fuzzy semiprime if for any fuzzy bi-ideal 8 of R the condition 8" [J u implies 6 [7
wheren [JZ,.

THEOREM 1.5.24: Intersection of fuzzy semiprime bi-ideals of a biring R is always a
fuzzy semiprime bi-ideal of the biring R.

Proof: Left for the reader as an exercise.
The following theorem is left as an exercise for the reader.

THEOREM 1.5.25: If W is any fuzzy semiprime bi-ideal of a bring R then R, is free
from non-zero nilpotent elements.

Proof: Follows by results as in case of rings.

THEOREM 1.5.26: Let [ be any fuzzy bi-ideal of a biring R with Im U = {t, j} such that
t > j. If the biring R, has no non-zero nilpotent elements then the fuzzy bi-ideal [l is
fuzzy semiprime.

Proof: Follows by definitions and proofs as in case of rings.

DEFINITION 1.5.22: Let R = R; [J R, be a biring R is said to be regular if and only if
both R; and R; are regular rings.

THEOREM 1.5.27: Let R = R; [J R, be a biring; R is regular if and only if every fuzzy
bi-ideal of R is idempotent i.e. both R; and R, are idempotent.

Proof: Follows directly by definitions and results on rings.

THEOREM 1.5.28: 4 biring R = R;[J R; is regular if and only if every fuzzy bi-ideal of
R is fuzzy semiprime.

Proof: Direct by definitions.

Next we proceed on to define fuzzy primary bi-ideals and semiprimary bi-ideals of
birings.

DEFINITION 1.5.23: A fuzzy bi-ideal U of a biring R is called fuzzy primary if for any
two fuzzy bi-ideals g and 6 of the biring R = R; [J R, the condition 0 8 [J \/; and

73



o [ p together imply 6 [J \/; (Here for any fuzzy bi-ideal [t = [ [J &> of a biring R.
The fuzzy nil radical of U symbolized by \/; = \/E [ \/72 is defined by ( \/; )(x) =t
whenever x [J \|U, , x U\/,LTS foralls>t.

Here we assume \/7, = \/(,ul ), O \/(,uz ), ).

The following theorem is straightforward and hence left for the reader to prove.

THEOREM 1.5.29: Every fuzzy prime bi-ideal of a biring R = R; [J R, is a fuzzy
primary bi-ideal of R.

Thus we are guaranteed of the existence of fuzzy primary bi-ideal in a biring.

THEOREM 1.5.30: If 1/ = 1y [J W is any fuzzy primary bi-ideal of a biring R = R; [/ R>
then W, = (L1): [J (W):, t [JIm W is a primary bi-ideal of R.

Proof: Left for the reader as an exercise.

THEOREM 1.5.31: I[f A = A; [J A, is a primary bi-ideal of the biring R = R; [/ R;,
A ZR then the fuzzy subset [t = L [] > of R defined by

1 if xO4,
Hi(x)= .
a if xOR,\A4, where a1[0,1)
and
1 if xOA
Hy(x)= o
a if xUR,\A, where al1/0,1)

M= [ is a fuzzy primary bi-ideal of R.

Proof: Follows as in case of rings with simple modifications.

Now following the results in the above theorems we get the following characterization
theorem; the proof of which is left for the reader to prove.

THEOREM 1.5.32: A necessary and sufficient condition for a bi-ideal A = A; [J A of a
biring R = R; [J R, to be fuzzy primary is that X4 is a fuzzy primary bi-ideal of R.

THEOREM 1.5.33: If 1 = ; [J L is any fuzzy primary bi-ideal of a biring R then \/;

is fuzzy prime.

Proof: Follows as in case of rings with appropriate modification. The fact that a biring
R; O Ry = R is called primary if the zero ideal of both R; and R, are primary.
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THEOREM 1.5.34: If 11 is any fuzzy primary bi-ideal of a biring R = R; [JR>, then the
biring Ry = (R)1 [J (Ry) U is primary.

Proof: Straightforward hence left for the reader to prove.

THEOREM 1.5.35: Let i = [ [J > be any fuzzy bi-ideal of a biring R = R; [/ R, such
that Im y = {1, a } with a < 1. If every zero divisor in Rl is nilpotent then U is fuzzy
primary.

Proof: Follows as in case of rings.

We now present a sufficient condition for a fuzzy bi-ideal to be fuzzy primary.

THEOREM 1.5.36: Let [ be any fuzzy bi-ideal of a biring R = R; [J R such that Im [
={1, a}witha<]l. If\/; is a fuzzy maximal then [ is fuzzy primary.

Proof: Follows as in case of rings by defining i = (41) + Ul (L2) ¢ depending on U =
M1 O Wy as follows:

Uit xOG),
My (x) = )
a it xOR;\(K)),
1 if xO(W,)
Hy(x) = ) e
a if xOR,\(W,),

so that

L x Oy,
a if xOR \(,),

(mx>:{

L xOy(y),
a if xOR, \\J(,),

(mx>:{

\/; = \/z , U444, . Using the fact \/; is fuzzy maximal bi-ideal the rest of the
result follows as in case of rings.

DEFINITION 1.5.24: A fuzzy bi-ideal 1 = ; [ > of the biring R = R; [J R; is called
Sfuzzy semiprimary if \/; = \/z , U\ |, is a fuzzy prime bi-ideal of the biring R.

Now we proceed on to give some interesting results on fuzzy semiprimary bi-ideals of
a biring.

THEOREM 1.5.37: If A = A; [J A, is any semiprimary bi-ideal of a biring R = R; [/ R>
(R; ZA;, A2 ZR;) then the fuzzy subset 1 = L [J b of R defined by
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if xUA4,

1
'uj(x)_{a if xUR,\A; where a <1

and

if xUA,

1
'uZ(x)_{a' if xUOR,\A, where a <1

is a fuzzy semiprimary bi-ideal of R.
Proof: Follows as in case of rings with suitable changes.

THEOREM 1.5.38: If 11 is any fuzzy semiprimary bi-ideal of a biring R = R; [J R, then
M= (U1): LT (L) where t [1Im U is a semiprimary bi-ideal of R.

Proof: Left as an exercise for the reader to prove.

THEOREM 1.5.39: A4 bi-ideal A = A; [J A; of a biring R = R; [J R, is semiprimary if
and only if X4 is a fuzzy semiprimary bi-ideal of R.

Proof: Follows from definitions and also using the method of rings we can get the
proof.

THEOREM 1.5.40: If i = W [J Lo is any fuzzy semiprimary bi-ideal of a ring R then
the biring Ry, is semiprimary.

Proof: The result follows by proving the zero bi-ideal of Ry, = R, R, s
semiprimary.

THEOREM 1.5.41: Let i = [ [J [ by any fuzzy bi-ideal of a biring R = R; [/ R, such
that Im u = {1, a} where a < 1. If the ring R, is semiprimary then [ is a fuzzy
semiprimary bi-ideal of R.

Proof: Follows by the very definitions.

THEOREM 1.5.42: If [ is any non-constant fuzzy semiprimary bi-ideal of a regular
biring then Imu = {1, a}, a [7[0, 1).

Proof: Follows directly by the definitions and by routine methods, hence left for the
reader as an exercise.

Now we proceed on to define the notions of fuzzy irreducible bi-ideals of a biring R.
DEFINITION 1.5.25: A4 fuzzy bi-ideal i = [ [J b of a biring R = R; [/ R, is called

fuzzy irreducible if it is not an intersection of two fuzzy bi-ideals of R properly
containing [, otherwise U is termed as fuzzy reducible.
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THEOREM 1.5.43: If 1 = W [J [ is any fuzzy prime bi-ideal of a biring R then U is
fuzzy irreducible.

Proof: Use the fact h;: Ry — [0, 1] and H2: Ry, — [0, 1] are fuzzy prime ideals of R,
and R, respectively and they are fuzzy irreducible so g = W; U [ is fuzzy irreducible.

THEOREM 1.5.44: Let U be any non-constant fuzzy irreducible bi-ideal of a biring R.
Then there exists a [J[0, 1) such that

i. Imu={I, a}and
ii.  the level bi-ideal {x [JR / l4x) = 1} is irreducible.

Proof: The proof is a matter of routine as in case of rings. Hence it is left for the
reader as an exercise.

THEOREM 1.5.45: If A = A; [J A, is any irreducible bi-ideal of a biring R, A; ZR;,
As ZR> where R = R; [/ R, , then the fuzzy ideal U= L [J 1> of R defined by

1 if xO4,
Hy(x)= )
a if xUR;\4,
and
1 if xOA
Hy(x)= S
a if xUR,\ 4,

(where [ = L [J L) where a [J ][0, 1) is a fuzzy irreducible bi-ideal of the biring R.
Proof: Straightforward as in case of rings.
In view of the earlier theorems we have the following nice characterization theorem.

THEOREM 1.5.46: A necessary and sufficient condition for a bi-ideal A = A; [J A of a
biring R = R; [J R, to be irreducible is that X4 is a fuzzy irreducible bi-ideal of R.

Now we give condition for a fuzzy irreducible bi-ideal to be fuzzy prime.

THEOREM 1.5.47: If 4 = W [J o> is any fuzzy bi-ideal of a biring R which is both
fuzzy semiprime and fuzzy irreducible then U is fuzzy prime.

Proof: Straightforward, hence left for the reader to prove.
THEOREM 1.5.48: In a regular biring every fuzzy irreducible bi-ideal is fuzzy prime.

Proof: 1t is left as an exercise for the reader to prove using earlier results and the
definition of fuzzy irreducible bi-ideal.

77



We say a biring R = R; [ R, to be Noetherian if both R; and R, are Noetherian rings.
Every bi-ideal of a Noetherian biring R = R; I R, can be represented as a finite
intersection of fuzzy primary bi-ideal of R ie. every ideal of Rjand R, can be
represented as a finite intersection of fuzzy primary ideals of R. Now we give a
condition for a biring R = R; [ R, to be Noetherian.

THEOREM 1.5.49: [f the cardinality of the image set of every bi-ideal of a biring R =
R; [JR; is finite then the biring R is Noetherian.

Proof: Using the fact that the biring R = R; [J R, where R; and R, are rings, it is
enough if we can prove that each of R and R; satisfies the Noetherian ring property.

THEOREM 1.5.50: 4 biring R is artinian if and only if every fuzzy ideal is finite
valued.

Proof: As in case of rings the result follows.

THEOREM 1.5.51: If [ is any fuzzy irreducible bi-ideal of a Noetherian biring R then
M is fuzzy primary.

Proof: Easily follows as in case of rings.

THEOREM 1.5.52: Let [ be any fuzzy bi-ideal of a Noetherian biring R = R; [J R
such that Im u = {1, a}, a < 1. Then U = W [J [l can be written as a finite
intersection of fuzzy irreducible bi-ideals of R.

Proof: Let o= (W) U (M2)e= {xUOR; | u(x) =1} O { x Ry | ha(x) = 1}, then by
hypothesis we have

i i xOa),
MOO=G i xoRr ()
i x D),
RO=10 i xOR, (),

We know that there exists irreducible bi-ideals Aj, As, ..., Ay (n <o) of R=R; [ R,
satisfying = A; n Ax n ... n Ay where Aj= A;; U Ap fori=1, 2, ..., n so that Y, =
(Hl)t U (Hz)t where (ul)t: A nAyn...n Ay and (Hz)t =AnpnNnAnn..n Ap
As in case of rings we can define fuzzy bi-ideals ;= (1) U (H2)i by

if x A,

1
i) = {a if x OR,\A,

if xUA,

1
(H2)i(x) = {a if xOR,\A,,
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I i< n. It easily follows each p; is fuzzy irreducible. Thus L= N ... N Yy, thatis i
=M N HP2r N oo N ) O (M2 0 P22 0 eee N ).

Now the following theorem can be easily established by any innovative reader.

THEOREM 1.5.53: If 1 = 1) [J b is a fuzzy bi-ideal of a Noetherian bi-ring R = R; [J
R, such that Im = {1, a}, a < 1, then U can be expressed as a finite intersection of
fuzzy primary bi-ideals of the biring R.

Several more results on fuzzy subrings and fuzzy sub-birings can be obtained; but as
the main aim of the book is only study on the Smarandache fuzzy algebra, we have
restrained ourselves from giving several results. Here also only proofs are hinted and
it is left for the readers to prove.

1.6 Fuzzy Fields and their properties

The concept of fuzzy subfield is recalled in this section. For more about fuzzy
subfield please refer [75, 79].

DEFINITION 1.6.1: Let F be a field, A fuzzy subfield of F is a function A from F into
the closed interval [0, 1] such that for all x, y [JF

(A(x —y) 2min {A(x), A(y)} and
Ay ™) 2min {A(x), A)}; y Z0.

Let A be a fuzzy subset of F and let A= {x [JF /A(x) =A(1)} where I denotes the
multiplicative identity of F. Let K be a subfield of F and let S(F/K) denote the set of

all fuzzy subfields, A of F such that K [/ A= Here we just recall certain properties of
field extensions F/K in terms of fuzzy subfields and conversely.

Let A be a fuzzy subset of the field F. For 0 <t <1, let A, = {x DF| A(x) 2 t} . Then
Az= A, when t = A(l).

The following results are given without proof for the reader. However the interested
reader can refer [75].

THEOREM 1.6.1:

i. IfAisafuzzy subset of F and s, t [/Im (A), the image of A, then s <t if and
only if As [JA,and s = tif and only if A = A;.

ii. If Ais a fuzzy subfield of F, then for all x [JF, x Z0, A(0) 2A(1) 2A(x) =
A(=x) = AKx7).

THEOREM 1.6.2: Let A be a fuzzy subset of F. If A, is a subfield of F for all t [/Im (A),

then A is a fuzzy subfield of F. Conversely, if A is a fuzzy subfield of F, then for all t
such that 0 <t <A(1), A, is a subfield of F.

79



THEOREM 1.6.3: Let S be a subset of F such that |S| (Cardinality of S) =2 2. Then S is

a subfield of F if and only if Xs, the characteristic function of S, is a fuzzy subfield of
F.

Recall if K be a subfield of F i.e. F is an extension field of K then the field extension
is denoted by F/K. S(F/K) denotes the set of all fuzzy subfields A of F such that A- [
K and A: is a subfield of F.

THEOREM 1.6.4: Let F; [JF, []...[JF; ... be a strictly ascending chain of subfields of
F such that [J F; = F. Define the fuzzy subset A of F by A(x) = t, if x [JF; \ F_; where
t; >t fori= 1,2, ... and F, = @ Then A is a fuzzy subfield of F.

Proof: Let x, y 0 F. Then x —y U F; \ F;_; for some i. Hence either x [J F;_; ory U
F; 1. Thus A(x —y) = t; 2 min {A(x), A(y)}, similarly A(xy ') = min {A(x), A(y)} for
y# 0.

THEOREM 1.6.5: Let F = Fy [JF; [J... [JF; [J... be a strictly descending chain of
subfields of F. Define the fuzzy subset A of F by A(x) =t;_;if x [JF;_; \ F; where t;_
<t;<lfori=12,...and A(x) = 1 if x [Jn F,. Then A is a fuzzy subfield of F.

Proof: Direct, hence left for the reader to prove.

THEOREM 1.6.6: Let F'/ K be a field extension and let B be a fuzzy subfield of K. Let
r =inf {B(x) [k [J/K]. Define the fuzzy subset A of F by A(x) = B(x) for all x [JK and
A(x) = mforall x [JF\ K where 0 <m <r. Then A is a fuzzy subfield of F.

Proof: Left as an exercise for the reader to prove.

The following theorem can be easily proved by any reader. The reader is also advised
to refer [75] for more information .

THEOREM 1.6.7: If F is a finite field, then every fuzzy subfield of F is finite valued.

THEOREM 1.6.8: Let F/K be a field extension. Then [F : K] <co if and only if every A
[JS, (F/K) is finite valued.

THEOREM 1.6.9:

i. Suppose that F has characteristic p > 0. Then F is finite if and only if every
fuzzy subfield A of F is finite-valued.

ii. Suppose that F has characteristic 0.
Then [F : Q] < oo if and only if every fuzzy subfield A of F is finite valued.

THEOREM 1.6.10: Suppose that F/K is finitely generated. Then F/K is algebraic if and
only if every A [1S(F/K) is finite valued.
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Proof: Left as an exercise for the reader to prove.

THEOREM 1.6.11: F/K has no proper intermediate fields if and only if every A [J
S(F/K) is three valued or less.

Proof: Please refer [75].

The following theorem which gives equivalent conditions is left as an exercise for the
reader to prove.

THEOREM 1.6.12: The following conditions are equivalent.

i. The intermediate fields of F/K are chained.
ii. There exists C [JS (F/K) such that for all A [JS (F/K). L4 [JLc.
iii. Forall A, B [JS (F/K) and for all A, [/L4 and B []Lg either A, [JBs or By [JA,.

We give a necessary and sufficient condition for F/K to be simple.

THEOREM 1.6.13: F/K is simple if and only if there exists ¢ [JF such that for all A [J
S (F/K) and for all x [JF, A(c) <A(x).

Proof: Direct by the regular computations.

THEOREM 1.6.14: Suppose that [F : K] < co. Then the following conditions are
equivalent.

i. F/K has a finite number of intermediate fields.
ii. There exists C;, Cy ..., C, [J S(F/K) such that for all A [J] S(F/K).
L, 0L O---OL..
iii.  There exists ¢ [JF such that for all A [JS (F/K) and for all x [JF, A (c) <
Ax).

Proof: By the earlier result a
nd from the theorem in [49]. The result can be easily obtained.

THEOREM 1.6.15: Let F/K be a field extension where K has characteristic p >0 and
let ¢ [/F. Then

i. K(c)/ K is separable algebraic if and only if for all A [7S (F/K), A(c) =
A(P).
ii. K(c)/ K is pinely inseparable if and only if there exists a non-negative
integer e such that for all A [JS (F/K), A(cpe) =A(l).
iii. K(c) /K is inseparable if and only if there exists A [JS (F/K) such that A(c) <
A() and there exists a positive integer e such that for all A [7 S (F/K)

A ) =A(e”).

Proof: Left for the reader to find the proof; as the proof does not involve any deeper
knowledge of algebra or field theory.
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Now we proceed on to define the concept of fuzzy bifields. The concept of the
algebraic structure bifields is itself very new [135]. So the notion of fuzzy bifield is
defined for the first time in this book. We just for the sake of completeness recall the
definition of bifields.

DEFINITION 1.6.2: A biring (R, +, *) where R = R; [/ R; is said to be a bifield if (R,
+, ®) and (R, +, *) are fields. If the characteristic of both R; and R are finite then we
say R = R; [/ R; is a bifield of finite characteristic.

IfinR = R; [JR; one of R; or R, is a field of characteristic 0 and one of R; or R; is of
finite characteristic we do not associate any characteristic with it. If both R; or R, in

R = R; [JR; is zero characteristic then we say R is a field of characteristic zero.

Thus unlike in fields we see in case of bifields we can have characteristic prime or
characteristic zero or no characteristic associated with it.

Example 1.6.1: Let R = Z;; [ Q the field of rationals Q and Z;;, the prime field of
characteristic 11. R is a bifield with no characteristic associated with it.

Example 1.6.2: Let R = Q[V2)0 Q. Clearly R is not a bifield as Q 0 Q[v2).

Example 1.6.3: Let R =Q[V2) 0 Q[5). Clearly R is a bifield of characteristic 0.

Example 1.6.4: Let R =7, U Z9; R is a bifield of finite characteristic.

DEFINITION 1.6.3: Let F = F; [/ F, be a bifield, we say a proper subset S of F to be a
sub-bifield if S = S; [J S, and S is a subfield of F; and S> is a subfield of F,. If the
bifield has no proper sub-bifield then we call F a prime bifield.

Example 1.6.5: Let R = Q [] Z5, clearly R is a prime bifield.

Example 1.6.6: Let R =Q\/7,+3)0QW2,V19). Clearly R is a non-prime bifield

for the subset S; = Q(ﬁ)D Q(\/E) and S, = Q(\/g)D Q(\/ﬁ) are sub-bifields of R.
Thus R is not a prime bifield.

DEFINITION 1.6.4: Let (D, +, ®) with D = D; [J D, where (D;, +, ®) and (D,, +, ®) are
integral domains then we call D a bidomain.

THEOREM 1.6.16: Let (R, +, ®) be a bifield. R = R; [J R,. Now (R[x], +, ) where
R/x] = R,[x] [JR:[x] is a bidomain.

Proof: Straightforward hence left for the reader to prove.

Now having seen the definition of bifield we now define fuzzy bifield.
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DEFINITION 1.6.5: Let (F = F; [JF>, +, *) be a bifield. 1: F - [0, 1] is said to be a

fuzzy sub-bifield of the bifield F if there exists two fuzzy subsets [ (of F;) and [ (of
F>) such that

i. (M1, +, ®)is afuzzy sub-field of (F;, +, °).
ii. (M, +, *)is afuzzy sub-field of (F>, +, ®).
ii. H= Hi U,Ug.

DEFINITION 1.6.6: Let (F = F; [JF,, +, *) be a bifield and (S = S; [/ S, +, *) be a
sub-bifield of F. Let B (F/S) denote the set of all fuzzy sub-bifields; A = A; []A> of F,
such that A1 [JS; and A2z []S>. We say A [JB (F/S) is finite bivalued if the image of
A is finite and the image of A is finite where A = A; [J A; is a fuzzy sub-bifield.

THEOREM 1.6.17: Let (F = F; [J F>, +, *) be a finite bifield; then every fuzzy sub-
bifield of F is finite bivalued.

Proof: Follows from the definition.

In view of this we have the following results.

THEOREM 1.6.18: Suppose that (F = F; [J F>, +, *) has finite characteristic bifield
(i.e. characteristic of the field F is a prime p; >0 and the characteristic of the field
F> is a prime p; >0). Then F is finite if and only if every fuzzy sub-bifield A of F is
finite valued.

Proof: Left for the reader to prove, following the steps of finite fuzzy subfield.

THEOREM 1.6.19:

i. Let A be a fuzzy subset of the bifield F and s, t [JIm (A) the image of A
where A = A; [J Ay, then s <t if and only if A; [JA, and s = t if and only if
As=A;. (thatis if (A1) s [J (A1) and (A2)s [J(Az) then only we say As
[JA,, similarly for As = A,).

ii. If Ais afuzzy sub-bifield of F (A = A; [JA; and F = F; [JF>) then for all x
[OF = F; [OF,, x #Z0 we have Ai(x) 2Ai(1) = Ai(x) = A; (—x) = Ai(x"') for i
=1, 2.

Proof: Direct as in case of fuzzy fields.

THEOREM 1.6.20: Let A = A; [J A, be a fuzzy subset of F = F; [JF>. If A, = (A1): [J
(A2); is a sub-bifield of F for all t [/Im(A);then A is a fuzzy sub-bifield of the bifield F.

Conversely if A = A; [] A, is a fuzzy sub-bifield of F = F; [J F then for all t such that

0<t<A;(l),i=1 2; A is a sub-bifield of F. If A is a fuzzy sub-bifield of F, then A, is
called a level sub-bifield of F where 0 <t <A(I).
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THEOREM 1.6.21: Let S = S; [/ S> be a subset of the bifield F = F; [JFri.e (S;isa
subset of F; and S: is a subset of F>) such that |S1| > 2 and |S2| > 2. Then S is a sub-

bifield of F if and only if Xs = Xs, U Xs, 'U' is just only a default of notation, the
characteristic bifunction of S is a fuzzy sub-bifield of F.

Proof: Follows as in case of fuzzy fields.

DEFINITION 1.6.7: Let F = F; [J F> be a bifield. Suppose S; [JS> [J...[]S, []... be a

strictly ascending chain of sub-bifield of F such that []S; = F where S; = Si; [J Sizfor i
= 1, 2, (ze S] = S]] US]Z is a sub-biﬁeld) ie. each S]] Ung US31 U...USn] []...

is a strictly ascending chain of subfields of F; and S;2 [7S2; [7S3: [J...[]S,2 [ ... is a

strictly ascending chain of subfields of F,. Define the fuzzy subset A = A; [JA; of F =

FirOF; by A(x) = t;if x S\ Sicij; j =1, 2; where t; > tivy fori=1, 2, ... and So; = @
and Sp2 = @ Then A is a fuzzy sub-bifield of F.

The proof of the following theorem is left as an exercise for the reader.

THEOREM 1.6.22: Let F = F; [J F> be a bifield F = Sy [JS; [J ... be a strictly
descending chain of sub-bifields of F. Define the fuzzy subset A = A; [] A, of F by
Ax) =tig if x [J Si1j\ Sy whereti; < t;<Ifori=0,1, 2, ... andAx) = 1 if
xUnSjj=1 2and 0 <i<n. Then A is afuzzy sub-bifield of F.

THEOREM 1.6.23: Let F/K be a bifield extension and let B be a fuzzy sub-bifield of K.
Let r = inf {B(x) [x [JK}. Define the fuzzy subset A of F by A(x) = B(x) for all x [/K
and A(x) = m for all x [JF\K; where 0 <m <r. Then A is a fuzzy sub-bifield of F.

Proof: Follows as in case of subfield.
Thus all results regarding fuzzy sub-bifields can be defined and obtained in an

analogous way as in case of fuzzy subfields. These concepts will be once again used
in case of fuzzy bivector spaces.

1.7 Fuzzy Semirings and their generalizations

In this section we introduce the notion of fuzzy semirings and fuzzy sub-birings. The
study of fuzzy k-ideals in semirings started in 1985 [31] followed by several authors.
Even [19] has studied about it. But the notion of fuzzy bisemirings in literature is
totally absent. This concept is defined only in this book. Just for the sake of
completeness we start to give the definition of fuzzy semirings and proceed on.

An algebra (S, +, *) is said to be a semiring if (S, +) is a semigroup with identity 0 and
(S, ) is a semigroup, satisfying the following conditions

i. a*(btc)=a*bt+acc
ii. (b+c)ea=beat+bea

foralla, b, c S.
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A semiring S may have the identity 1 defined by 1 ®* a=a * 1 = a and a zero 0 defined
byO+a=a+0=aforallalJSand0*a=ae*0=0. We say the semiring (S, +, ®) is
abelian if a * b=b * a for all a, b [J S. We say the semiring S is strict ifa + b =0
forcesa=0and b= 0. Let (S, +, *) be a semiring ifa*b=01in S impliesa=0orb =
0 fora, b J S\ {0} then we say the semiring (S, +, ®) is a semidivision ring.

If (S, +, ) is commutative semiring with no zero divisions which is strict then we say
(S, +, *) is a semifield.

Example 1.7.1: Let Z" 0 {0} =S. (S, +, ) is a semifield (Z, set of positive integers).

Example 1.7.2: Let

(¢ 3)jvss07 00
szz = a,b,c,dDZ 0 {0}
c d

is a non-commutative strict semiring which is not a semidivision ring.

Example 1.7.3: Let

SR

be a semiring. M,,, is a semidivision ring.

Example 1.7.4: Let C;; be the chain lattice with 11 elements, Cy; is a finite semiring
in fact a finite semifield.

We denote the order of the semiring S by [S| or o(S), if |S| = e we say the semiring is
of infinite order otherwise S is of finite order if |S| < co.

Now we proceed on to define left (right) ideal in a semiring. Finally we define left k-
ideal of the semiring S.

DEFINITION 1.7.1: Let R be a semiring. A non-empty subset I of R is said to be left
(resp, right) ideal if x, y [JI and r [J1imply x +y [JI and r x [JI (resp. x v [71). If I is
both left and right ideal if R, we say I is a two sided ideal or simply ideal of R. A left
ideal I of a semiring R is said to be a left k-ideal if a [/I and x [JR and if a + x [JI or
x +a [JI then x [J1. Right k-ideal is defined dually and two-sided k-ideal or simply a
k-ideal is both a left and a right k-ideal. A mapping f : R — S is said to be a
homomorphism if f (x +y) = f(x) + f(y) and f(xy) =f (x) f (y) for all x, y [J/R. We note
that if f: R — S is an onto homomorphism and I is left (resp. right) ideal of R, then
f(1) is a left (resp. right) ideal of S.

Now we proceed on to recall the definition of fuzzy ideal of a semiring.
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DEFINITION 1.7.2: A fuzzy subset U of a semiring R is said to be a fuzzy left (resp.
right) ideal of R if fi(x +y) 2min {(x), l(y)} and p(xy) 2 [(y) (resp. p(xy) 2 p(x)) for
all x, y [JR. lis a fuzzy ideal of R if it is both a fuzzy left and a fuzzy right ideal of R.

DEFINITION 1.7.3: 4 fuzzy ideal [ of a semiring R is said to be a fuzzy k-ideal of R if
H(x) 2min {max {p (x +y), 4 (v + x)}, H(¥)}} forallx, y JR.

It is left for the reader to prove the following theorem:

THEOREM 1.7.1: Every fuzzy ideal of a semiring is a fuzzy k-ideal.

THEOREM 1.7.2: Let I be a non-empty subset of a semiring R and A; the characteristic
function of I. Then I is a k-ideal of R if and only if A; is a fuzzy k-ideal of R.

Proof: The reader is advised to give the proof as an exercise.

THEOREM 1.7.3: 4 fuzzy subset [1 of R is a fuzzy left (resp. right) k-ideal of R if and
only if for any t [J[0, 1] such that U, Z @ U, is a left (vesp. right) k-ideal of R, where
M= {x [JR [ (x) 2t}, which is called a level subset of |L

Proof: For proof please refer [52].

Note that if [ is a fuzzy left (resp. right) k-ideal of R then the set R, = {x U R | p(x) =
H(0)} is a left (resp. right) k-ideal of R.

THEOREM 1.7.4: Let I be any left (resp. right) k-ideal of R. Then there exists a fuzzy
left (resp. right) k-ideal [ of R such that |1, = I for some t [/ [0, 1].

Proof: 1If we define a fuzzy subset of R by

®) t if xUOI
X =
H 0 otherwise

for some t [J [0, 1], then if follows that p; =1 for a given s [1 [0, 1]. We have

L. (=R) ifs=0
Hs = Ht(:I) if s<t
(0] if t<s<l1

Since I and R itself are left (resp. right) k-ideals of R, it follows that every non-empty
level subset ps of W is left (resp. right) k-ideal of R. Thus by the earlier theorem | is a
fuzzy left (resp. right) k-ideal of R proving the theorem.

Let 1 and & be fuzzy subsets of the semiring R. We denote that g O & if and only if
M(x) < &(x) forallx O R and p O difand only if g J d and p # .
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THEOREM 1.7.5: Let U be a fuzzy left (resp. right) k-ideal of R. Then two level left
(resp. right) k-ideals s, [ (wWith s <t in [0, 1] ) of U are equal if and only if there is
no x [JR such that s < l(x) <t.

Proof: Suppose s <tin [0, 1] and i s = M. [fthere exists an x [J R such that s < p(x) <
t, then U is a proper subset of U g, a contradiction. Conversely, suppose that there is
no x [J R such that s < p(x) <t. Note that s <t implies P [ ps. If x U WU, then p(x) = s
and so H(X) =t because Y(x) « t. Hence x [l 4 and U = U+ This completes the proof.

For more about these concepts please refer [52]. Now for a given fuzzy k-ideal [ of a
semiring R we denote by Im () the image set of .

THEOREM 1.7.6: Let U be a fuzzy left (resp. right) k-ideal of R. If Im(l) = {t;, t2, ...,
th } Where t; < t; < ...< t,, then the family of left (resp. right) k-ideals
M, (1=1,2,---,n) constitutes the collection of all left (resp. right) ideals of .

Proof: Left as an exercise for the reader and requested to refer [52].
Now we proceed on to study some more notions.

Given any two sets R and S, let Y be a fuzzy subset of R and let f: R - S be any
function. We define a fuzzy subset d on S by

sup u(x) iff(y)ze,y0s
Ay) = x0r(y)
0 otherwise

and we call O the image of [l under f, written f ([). For any fuzzy subset 0 on f(R) we
define a fuzzy subset Y4 on R by p(x) = &(f(x)) for all x [J R, and we call u the pre-
image of & under f which is denoted by £ ' (d).

THEOREM 1.7.7: An onto homomorphic pre image of a fuzzy left (resp. right) k-ideal
is a fuzzy left (resp. right) k-ideal.

Proof: Let f: R - S be an onto homomorphism. Let d be a fuzzy left (resp. right) k-
ideal on S and let [ be the pre image of d under f. Then it was proved that [ is a fuzzy
left (resp. right) ideal of R.

For any x, y UJ d we have

Hx) = O(f(x)) 2 min {max {J(f(x) + f{(y)), &f(y) + f(x))}, Of (y))}
= min{max { &(f (x +y)), &(f(x +y))}, o(f(y))}
= min{max { i (x +y), L (y +X)}, W)}

proving that | is a fuzzy left (resp. right) k-ideal of R.
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THEOREM 1.7.8: Let f be a mapping from a set X to a set Y, and let U be a fuzzy
subset of X. Then for every t [7(0, 1] (f(Y) : = ﬂf(,u[_s).

0<s<t
Proof: Straightforward, hence left for the reader to prove.

THEOREM 1.7.9: Let f : R — S be an onto homomorphism and let [ be a fuzzy left
(resp. right) k-ideal of R. Then the homomorphic image f(14) of [ under f'is a fuzzy left
(resp. right) k-ideal of S.

Proof: The proof can be got as a matter of routine; hence left for the reader to prove.

DEFINITION 1.7.4: A left (resp.right) k-ideal I of R is said to be characteristic, if f(I) =
I for all f [JAut (R), where Aut (R) is the set of all automorphisms of R. A fuzzy left
(resp. right) k-ideal U of R is said to be fuzzy characteristic if [(f(x)) = L(x) for all
x [JR and f [JAut (R).

THEOREM 1.7.10: Let [ be a fuzzy left (resp. right) k-ideal of R and let f : R — R be
an onto homomorphism. Then the mapping u':R - [0, 1] defined by wix) = H(f(x)
for all x [JR is a fuzzy left (resp. right ) k-ideal of R.

Proof: 1t is a matter of routine once we write uf(x) = U (f(x)) 2 min {max {M (f(x) +

f(y)), W (fy) + f(x))}, u(f(y))}.

The simplifications are direct and simple and hence left for the reader to prove.

The following theorems are also straightforward hence stated without proof; so that
the interested reader can do them.

THEOREM 1.7.11: If [ is fuzzy characteristic left (vesp. right) k-ideal of R , then each
level left (resp.right) k-ideal of |1 is characteristic.

THEOREM 1.7.12: Let U be a fuzzy left (resp. right) k-ideal of R and let x [JR. Then
H(x) =tifand only if x [J U, and x [J 45 forall s >t.

We recall the proof of the following theorem.

THEOREM 1.7.13: Let [ be a fuzzy left (resp. right) k-ideal of R. If each level left
(resp right) k-ideal of L is a characteristic then [l is fuzzy characteristic.

Proof: Letx UR and f [ Aut (R). If p (x) =t U [0, 1], then by the just above theorem
we have x [J e and x [ s for all s > t.

Since each level left (resp right) k-ideal of W is characteristic, f(x) U f(U¢) = U+
Assume U (f(x)) = s >t. Then f(x) [ Ys = f(ls). Since fis one to one it follows that x
[d ¢, a contradiction. Hence Y (f(x)) =t = U (x) showing that [ is fuzzy characteristic .

For more about fuzzy semiring properties refer [50, 51, 52, 54].
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Now we proceed on to define fuzzy notions on bisemirings. As bisemirings
themselves are very new much so is the concept of fuzzy bisemiring. Just we recall
the definitions of them.

DEFINITION 1.7.5: Let (S, +, *) be a non-empty set with two binary operations ‘+’
and ‘*’. We call (S, +, ®) a bisemiring if

i. S=S8;0L8;whereboth S; and S, are distinct subsets of S, S; [/S>
and S2 US].
ii. (S5, +, *)is asemiring.
iii. (S +, *)is a semiring.

Example 1.7.5: S = Z° O C, where C, is a chain lattice of order 2 and Z° is a
semiring, thus S is a bisemiring.

DEFINITION 1.7.6: Let (S, +, *) be a bisemiring. If the number of elements in S is
finite we call S a finite bisemiring. If the number of elements in S is infinite we say S is
an infinite bisemiring.

DEFINITION 1.7.7: Let (S, +, *) be a bisemiring. We say S is a commutative
bisemiring if both the semirings S; and S, are commutative otherwise we say the
bisemiring S is a non-commutative bisemiring. Let (S, +, *) be a bisemiring. We say S
is a strict bisemiring if both S; and S, are strict bisemirings where S = S; [/ S,. Let (S,
+, *) be a bisemiring if 0 Zx [JS be a zero divisor if there exists ay Z0 [JS such that
x*y=0. Wesay a bisemiring S has aunit  in Sifa* 1 =1*a=aforallalJS. Let
(S, +, *) is a bisemiring we say S is a bisemifield if S; is a semifield and S; is a
semifield where S = S; []S,. If both S; and S> are non-commutative semirings with no
zero divisors then we call S = S; [JS> to be a bisemidivision ring. It is to be noted that
even if one of S; or S» is non-commutative with no zero divisors but other is a
semifield still S is a bisemidivision ring.

Example 1.7.6: (S, +, ) is a bisemiring. S = S; [1 S; where S; = C; and S; is the
lattice given by

0
Figure 1.7.1

then S is only a bisemiring which is not a semifield.
DEFINITION 1.7.8: Let (S = S; [7 S5, +, *) be a bisemiring which is commutative and

has unit element. The polynomial bisemiring is denoted by S[x] = Si[x] [J S>[x] where
S1/x] and S>[x] are polynomial semirings.
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DEFINITION 1.7.9: Let (S, +, ®) be a bisemiring. (P, +, ®) be a proper sub-bisemiring
of S. We call P a bi-ideal if for all s [/ S and p [JP, sp and ps [/Pie. P = P; [] P>
with s; [JS,, pisiand s;p; [JP;; i =1, 2.

DEFINITION 1.7.10: Let (S, +, ¢) and (S', +, ®) be two bisemirings, where S = S; [] S
and S'=S, 0S8, . We say amap @: S — S'is a bisemiring homomorphism if @ : S,
- Sy and @ : S:— S, is a semiring homomorphism or @ : S; — S, and @ : S> -
S} is a semiring homomorphism where we denote @just by default of notation as @ =

@ L.

As our motivation is to define fuzzy bisemirings as fuzzy bisemirings is not defined
till date we give importance only to the study of fuzzy bisemirings and Smarandache
fuzzy bisemirings.

DEFINITION 1.7.11: (S = S; [JS>, +, ®) is a bisemiring. We say t: S — [0, 1] is a
fuzzy bisemiring, U = W [ L where both 1 : S; — [0, 1] and 1 : S> — [0, 1] are
fuzzy semirings.

Now we proceed on to define fuzzy bi-ideals in a bisemiring.

DEFINITION 1.7.12: A4 fuzzy subset [ of a bisemiring (S = S; [JS,, +, *) is said to be a
fuzzy left (resp. right) bi-ideal of S'if i : S — [0, 1] such that U(x + y) =min {L(x) +
M)}, and U (xy) > U () (resp. U (xy) > U (x)) forall x, y [JS. lLis a fuzzy bi-ideal of S
if it is both a fuzzy left and fuzzy right bi-ideal of S = S; [J S>.

M S - [0, ]] and
oS> — [0, 1] where [ and [ are fuzzy ideals of the semirings S; and S..

DEFINITION 1.7.13: 4 fuzzy ideal U of a bisemiring (S, +, ®) is said to be a fuzzy k-
ideal of S'if 4 (x) 2 min {{max U(x + y), Yy + x)}, Uy)} for all x, y [JS. i.e. L (x) =
min {max {; (x +y), pi(y +x)}, fi(y)} O min{max fho(x + y), oy + x)}, po)} for all
x, v S (x, y [JS,) where S = S; [J S>. If S is additively commutative then the
condition reduces to U(x) =>min{{l (x + y), U)} for all x, y [JS; where l(x) = ti(x) [J

Ho(x) 2min {u(y + x)}, ()} D min {{o(x +y), o)) for all x, y LIS; (x, y [7S3).

DEFINITION 1.7.14: Let I = I; [/ I, be a non-empty subset of a bisemiring S = S; [J S
and Ay = A, U A, the characteristic function of I = 1; [J .

(Here A, the characteristic function of 1 and A, the characteristic function of I).

Then I =1, [J 1, is a k-bi-ideal of S = S; [J S if and only if A; is a fuzzy k-bi-ideal of S
= S] USZ.

Now we proceed on to give some interesting results on bi-ideals.

THEOREM 1.7.14: A fuzzy subset 1t = Ly [ b of S = S; [J S> is a fuzzy left (resp.
right) k-bi-ideal of S if and only if for any t [J [0, 1] such that 1 Z @ (L = (L) [J
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(L)) I is left (vesp. right) k-bi-ideal of S = S; [J S where t, = {x [JS [lf (x) =t} =
{Ix LIS; [l 1(x) 2t} [T {x [JS> [ 2(x) =t} which is called a level subset of |L

Proof: Follows as in case of semirings, by taking each [;; 1= 1, 2. Then as p = p; U
M2 we get the desired result.

THEOREM 1.7.15: Let I be any left (resp. right) k-bi-ideal of S = S; [J S>. Then there
exists a fuzzy left (resp. right) k-bi-ideal 1 = i [J 16> of S = S; [J S> such that l, =
(L) L (W), I =1; LI for some t [7]0, 1].

Proof: If we define a fuzzy subset of S=S; U S, by u=p; U W2

t if xUI,

0 otherwise

M (x) = {

t if xUI,

0 otherwise

2 (X):{

for some t [J [0, 1], then it follows that p=1=1; U I,. For a given s [1 [0, 1] we have

(M) (=S,)  ifs=0
(ul)s = (Hl)t (: 11) ifs<t
® ift<s<l.

The result follows as in case of fuzzy semiring.

Letp=p; O Yy and &= 0, O &, be fuzzy subsets of S =S, [ S,. We say p [J o if and
only if (U O &y, M2 O &) if and only if p(x) < &(x), Hi(X) < 01(X), Ha(X) < &x(x)) for all
xS and pu O difand only if 4 [J dand 1 # O.

THEOREM 1.7.16: Let [/ = U [J b be a fuzzy left (vesp. right) k-bi-ideal of S = S; [J
S». Then two level left (resp. right) k-bi-ideals [, 14 (with s <tin [0, 1] ) of 1= 1 [J
L are equal if and only if there is no x [JS such that s < (x) <t (i.e. s < (x) <t and
s Sb(x) <t).

Proof: As in case of semirings.

THEOREM 1.7.17: Let 4 = l; [J > be a fuzzy left (resp. right) k-bi-ideal of S = S; [J
So. If Im pu=1Im fy JIm [ = {t, to, ..., to} Where t; <t; <...<t,, then the family of
left (resp right) k-bi-ideals p, (i =1, 2, ---,n) constitutes the collection of all level left

(resp. right) ideals of U= L4 [J Lb.

Proof: Direct and the proof is got as a matter of routine as in case of semirings.
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Given any two sets R=R; [ R, and S =S; [I S, let i be a fuzzy subset of R and let
f: R - S be any function f= f; [ f, where f; : R; - S;and f,: R, - S».

We define a fuzzy subset =9, [ & of S=S, [ S, by

sup m(x) if £ (y)Z@yDs,
di(y) = 1x017 ()
0 otherwise

and

sup m,(x) iff,'(y)Z@y0s,
& (y) = 1x065'x)

0 otherwise

and we call d = &; [J &, the image of U = ; [J Y, under f= f; 0 f, written as f(l) =
fi(l) O f(K2). for any fuzzy subset & on f (R) = f; (R)) O f; (R,) we define fuzzy
subset L = W O Y2 on R = R; O Ry by p(x) = 8f(x) i.e. (x) = Wi (X) O Mo (X) where
Hi(x) = & (fi (x)) for x 0 R; and Wy (x) = &, (f2 (x)) for x [J Ry and we call p =, O W
the pre image of 8= &, 0 & under f= f; 0 f; which is denoted by f '(8) = £ (&,) O

£,'(32) -
Now we state the following theorem on pre image.

THEOREM 1.7.18: An onto homomorphism pre image of a fuzzy left (resp. right) k-bi-
ideal is a fuzzy left (resp. right) k-bi-ideal.

Proof: f: R - S be an onto homomorphism of the bisemirings R and S where R = R
ORyand S=S,0S,,f=f0f%.1fi:R - S;and f, : R, - S, be onto semiring
homomorphism. Let 0 be a fuzzy left (resp. right) k-bi-ideal on S = S; O S, and let (1
= W O Wp be the pre image of & under f. Then it was proved that g =, O Yy is a
fuzzy left (resp. right) bi-ideal of R = R; [J Ry. Forany x, y U S =S; I S, we have
M(x) = &(f(x) proving U= W, O W, is a fuzzy left (resp. right) k-bi-ideal.

THEOREM 1.7.19: Let f = f; [J f> be a mapping from a set X = X; [/ X>to aset Y =Y
LY, and let 4= Ly [J i be a fuzzy subset X = X; [J X,. Then for every t [J(0, 1].

6w, = G 0 =] 0 £ | 0] 0 Al

Proof: Follows as in case of semirings.

THEOREM1.7.20:L€l‘f.‘R — S(f:fj Ufg, R=R;[J/R,,S=3S, USZ,ﬁ.'R] Y
f>:R; — S5) be an onto homomorphism, let 1t = U [ b be a fuzzy left (respectively
right) k-bi-ideal of R = R; [J R>. Then the homomorphic image f(1Y) = f1 (1) LI f> (L&)
of U= M [J b under [ = f; [1f>is a fuzzy left (resp. right ) k-bi-ideal of S = S; [JS>.
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Proof: Follows as a matter of routine as in case of semirings.

DEFINITION 1.7.15: A left (resp. right) k-bi-ideal I = I; [J I, of the bisemiring R = R,
[J R; is said to be characteristic if f(I) = I i.e. fi(I;) = I; and f>(I;) = I, for all f = f; [J
f> [JAut (R ) where Aut ( R) is the set of all automorphism of R = R; [J R,. A fuzzy left
(resp. right) k-bi-ideal = l; [J lb of R = R; [JR; is said to be a fuzzy characteristic

if 1Hf(x) = px) (ie. i (fi(x) = fix); [ (f2(x) = po(x) for all x LRy (x L/ Rz and
f1 JAut(R;) and f> [JAut(Ry), = f1 [J fo.

THEOREM 1.7.21: Let (1 = l; [J 1> be a fuzzy left (vesp. right) k-bi-ideal of R = R; [J

Ry and let f : R — R be an onto homomorphism here f = f; [J f>; fi: Ri — R; and
f>: Ry - Ry. Then the mapping ' : R - [0, 1];

(/' R, = [0, 1] and uf - R, ~ [0, 1])

defined by pi'(x) = juf() (where pil'(x) = pi(fi(9) and pf* (x) = padfs(x))) for all x
LJR; (or x [JR,) is a fuzzy left (resp. right ) k-bi-ideal of R = R; [/ R».

Proof: Follows as in case of semirings.

THEOREM 1.7.22: If 1t = L [J b is a fuzzy characteristic left (resp. right) k-bi-ideal
of R = R; [JR; then each level left (resp. right) k-bi-ideal of U is characteristic.

Proof: Left for the reader to work as in case of semiring.

The following theorem is as easy consequence of the above theorem.

THEOREM 1.7.23: Let 4 = [ [J b be a fuzzy left (resp. right) k-bi-ideal of the
bisemiring of R = R; [/ R, and let x [JR. Then (x) = t if and only if x [J l, and x [7J L
foralls >t. (x [JR; then li(x) = t, x [J (L) and x [J(Ly)s for all s >t), if x [/R; then
Lox) =t x [ (o) and x [ (Lb)s for all s > t).

Proof: Follows as in case of semirings.

THEOREM 1.7.24: Let [ = W [J b be a fuzzy left (resp. right) k-bi-ideal of the
bisemiring of R = R; [J Ry If each level left (resp. right) k-bi-ideal of U is
characteristic then [l is fuzzy characteristic.

Proof: Follows as in case of semirings.
All results can be got in case of fuzzy bisemirings but as the main motivation is only
study of Smarandache fuzzy semirings we do not exhaust all results regarding the

fuzzy semirings or fuzzy bisemirings.

Any matrix A in M, (F) will be called a fuzzy matrix we may call M, (F) a fuzzy
matrix semiring. Several results can be had in this direction.
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Further the fuzzy semirings can be utilized in constraint handling rules. For more
about this please refer [51-54]. All applications of fuzzy semirings can be had from
other research papers.

1.8 Fuzzy near-rings and their properties

In this section we recall the definition of fuzzy near-ring, give some new types of
fuzzy near-rings and introduce the notion of fuzzy bi near-rings. Also notions like
Fuzzy near-ring module and fuzzy congruence of a near-ring module are recalled in
this section. For more about fuzzy near-ring literature please refer [28, 38, 56, 57, 71,
122, 130].

DEFINITION [71]: Let R be a near-ring and N a fuzzy set in R. Then N is called a fuzzy
near-ring in R if

i. N ((x+y) 2min{N(), Ny}
ii. N((x) =N (x).
iii. N (xy) 2min {N(x), N(y)} for all x, y in R.

DEFINITION [71]: Let R be a near-ring and N a fuzzy near-ring in R. Let Y be a near-
ring module over R and M a fuzzy set in Y. Then M is called a fuzzy near-ring module
inYif

i. M (x+y) 2min{M(x), M(y);}.
ii. M (Ax)=2min{N(A), Mx)}forallx,y [JY and A [JR.
ii.  M(0) = 1.
If N is an ordinary near-ring then condition (ii) in the above definition is replaced by
ii(a). M(Ax) >M(x) for all A [JN and for all x [JY.
THEOREM [71]: Let Y be a near-ring module over a fuzzy near-ring N in R. Then M is

a fuzzy near-ring module in Y if and only if M ( A(x) + H(x)) =min {min {N (A), M(x)},
min {N(l), M(y)}} for all A, u [JN and for all x, y [JY.

If N is an ordinary near-ring then the above condition is replaced by M (Ax + 4 y) =
min{{M (x), N(y)} for all x, y []Y.

Proof: Left for the reader as an exercise as it can be got directly by the definitions.

THEOREM [71]: Let Y be a near-ring module over a near-ring R with identity. If M is
a fuzzy near-ring module in Y and if A [JR is invertible then M(Ax) = M(x) for all
x Y.

Proof: If A 0 M is invertible then we have for all x 0 Y. M(x) =M (A" Ax) = M(Ax)
> M(x) and so M(Ax) = M(x).
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THEOREM [71]: Let {M; | i [J1} be a family of fuzzy near-ring modules in Y. Then

(\ M, is a fuzzy near-ring module in Y.
i1

Proof: Let M = (1 M, ; then we have for all A O R and for all x, y O Y.

iar

M(x +y) = InfMi&x+y)
il

\}

Inf {min{M; (x), M;(y)}

il

= min {I%If Mi(X), inf M; (Y)}

= min {M(x), M(y)}

and

M(Ax) inf M;(Ax)

i1l

\}

inf {min (N, M; (x)}

i0l

= min {N()\), inf Mi(x)}
01
= min{N()\), M(x)} .

THEOREM [71]: Let Y and W be near-ring modules over a fuzzy near-ring N in a
near-ring R and 8a homomorphism of Y into W. Let M be a fuzzy near-ring module in
W. Then the inverse image 6~ (M) of M is a fuzzy near-ring module in Y.

Proof: For all x, y 0 Y and for all A, p O R, we have

0" (M) (Ax + Hy) M(B(Ax + Wy))
MAB(x) + H8(y))
min{min{N(A), M(8(x)} ,min{N(p), M 8(y))}

min {min {N(A),67 (M) (x)} .min{N(u), 67 (M) () }

AV

By earlier theorems 8™'(M) is a fuzzy near-ring module in Y. Hence the theorem.

We say that a fuzzy set A in M has the sup property if for any subset T of M there
exists t, [J T such that
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Alty) = SUPA().

taT

THEOREM [71]: Let Y and W be near-ring modules over a fuzzy near-ring N in a
near-ring R and 8a homomorphism of Y into W. Let W be a fuzzy near-ring module in
Y that has the sup property. Then the image 8 (M) of M is a fuzzy near-ring module in
w.

Proof: Let W, v OW. It either 87'(u) or 67'(v) is empty, then the result holds good.
Suppose that neither 67'(l) nor 87'(v) is empty, then we have 8(M)(A(u) + pv) =

SUp M(®) 2min {min {N(A), 8(m) (u}, min {N(w), 6(M) (v)} .

w187 (Au+uv)
Hence the result.

Throughout the discussion from now on by a near-ring R we mean a system with two
binary operations addition and multiplication such that

1. The elements of R form a group under “+’.
il. The elements of R form a semigroup under multiplication 'e'.
iil. x*(ytzy=xey+xezforallx,y, zOR.

An R-module that is near-ring module is a system consisting of an additive group M,
a near-ring R, and a mapping (m, r) - mr of M X R into M such that

1. m (x +y) =mx + my for all m UM and for all x, y [ R.
il. m(xy) = (mx)y for all m [J M and for all x, y JR.

DEFINITION 1.8.1: An R-homomorphism f of an R-module M into an R-module M' is a
mapping from M to M'such that (m; + my) f=m;f+ myfand (mf) r = (mr) f for all
m, m;, my [JM and for all v [JR .

The submodules of an R-module M are defined to be kernels of R-homomorphism.

THEOREM [22]: An additive normal subgroup B of an R-module M is a submodule if
and only if, (m + b)r —mr [JB forallm [JM, b [JB and r [JR .

DEFINITION 1.8.2: A relation p on an R-module M is called a congruence on M if it is
an equivalence relation on M such that (a, b) [Jpand (c, d) [J pimply that (a + c, b +
d) [Jpand (ar, br) [Jpfor all a, b, ¢, din M and for all v in R .

DEFINITION [98]: 4 non empty fuzzy subset [ of an additive group G is called a fuzzy
normal subgroup of G if

i. MEx+y)2cmin{l(x), Uy)} forallx, yinG.

ii.  H(~x)=Ux) forallx [JG.
iii. U@y +x-y) =Ux) forallx, yinG.
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Let [ be a fuzzy normal subgroup of an additive group G and x [J G. Then the fuzzy
subset x + U of G defined by (x + 1) (x) = U (v — x) for all y in G is called the fuzzy
coset of U

DEFINITION 1.8.3: Let [ be a non-empty fuzzy subset of an R-module M. Then U is
said to be a fuzzy submodule of M if

i. Wis afuzzy normal subgroup of M and
ii. U{x+yr—xr}=2u()forallx, yin MandforallrinR .

The proof of the following two theorems are omitted as they can be easily obtained by
the reader using direct methods.

THEOREM 1.8.1: Let B be a non-empty subset of an R-module M. Then the

characteristic function Xz is a fuzzy submodule of M if and only if B is a submodule of
M.

THEOREM 1.8.2: Let U be a fuzzy submodule of an R-module M. Then the level subset
W={x M| ) =t} t JIm Wis a submodule of M.

DEFINITION 1.84: Let [ be a fuzzy submodule of an R-module M. Then the
submodules [i’s are called level submodules of M.

THEOREM 1.8.3: For a non-empty fuzzy subset | of an R-module M, the following
assertions are equivalent

i.  Mis afuzzy submodule of M.
ii.  The level subsets [, t [/Im U are submodules of M.

Proof: It is a simple matter of routine.

THEOREM 1.8.4: If [l is a fuzzy normal subgroup of an additive group G. Then x + U
=y + Wif and only if t(x —y) = W(0) for all x, y in G.

Proof: Left for the reader as an exercise.

THEOREM 1.8.5: Let U be a fuzzy submodule of an R-module M. Then the set M / | of
all fuzzy cosets of [ is an R-module with respect to the operations defined by (x + L)
+(v+ ) =(x+y) +Uuand (x + W) r =xr+ Wrforall x, yin M and for all r in R. If f
is a mapping from M to M/ L, defined by xf = x + U for all x [J M then f is an R-
epimorphism with ker f = { x /Ml (x) = u (0)}.

Proof: Please refer [28, 39].

DEFINITION [28]: The R-module M / U is called the quotient R-module of M over its
fuzzy submodule L.
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DEFINITION [28]: Let M be an R-module. A non empty fuzzy relation a on M [i.e. a
mapping a : M xM — [0,1]] is called a fuzzy equivalence relation if

i. a(xx)= Sup a(y,z) for all x,y,z in M (fuzzy reflexive).
y,zOM

ii. a(x,y) =a(,x)forallx, yinM (fuzzy symmetric).

iii. a(x,y)=2 Sup [min a(x,z)a (z,y)]] for all x, y in M (fuzzy transitive).
zOM

DEFINITION 1.8.5: 4 fuzzy equivalence relation a on an R-module M is called a fuzzy
congruence if & (a + ¢, b +d) 2Min [a (a, b), a (c, d)] and a (ar, br) = a (a, b) for
all a, b, ¢, din M and all v in R.

The following theorem is left for the reader as an exercise.

THEOREM 1.8.6: Let p be a relation on an R-module M and A, be its characteristic

Sfunction. Then p is a congruence relation on M if and only if A, is a fuzzy congruence
on M.

DEFINITION [28]: Let a be a fuzzy relation on an R-module M. For each t [J[0, 1] the
set Q, ={(a,b) OMXxXM:a(ab)= t} is called a level relation on a.

THEOREM [28]: Let a be a fuzzy relation on an R-module M. Then Q is a fuzzy
congruence on M if and only if a; is a congruence on M for each t [/Im a.

Proof: Refer [28].

THEOREM [28]: Let a be a fuzzy congruence on an R-module M and Uy be a fuzzy
subset of M, defined by Uy (a) = a (a, 0), a [IM. Then Uy is a fuzzy submodule of M.

Proof: Since Yy (0) =a (0, 0) = sup a (x,y) # 0(as 0 is non empty) it follows that
x,yOM

¢ is non-empty. For a, b in M.

L, (a+b) = (a+b, 0) = min{a(a,0), a(b,0} =min [, (a), u, (b)]
My (—a)=0a(-a,0)=a(-a+0,—a+a) =Min [O( (—a,—a),a (0, a)]
=0 (0,a)=0a(a,0)=H,(a).

Similarly p,(a) 2y, (-a). Thus p,(-a) =H,(a). Again [, (a +b —a)

=0(a+b-a,0)=a(a+b-a,a+0-a)
>0 (b,0) =, (b).

So Y, is a fuzzy normal subgroup of the R-module M. Now for a, bin M and r in R.

ua{(a +b)r—a1} 20{ (a +b)r—ar,}) 2({ (a+b)r—ar, ar—}r
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> Min [O({(a +b)r, al} , a(-ar, — ar)]
= a{(a+b)r,af 2a(a+b,a)=a (b,0)=p,(b).

Thus g is a fuzzy submodule of M.
THEOREM 1.8.7: Let U be a fuzzy submodule of an R-module M. Let a, be the fuzzy
relation on M, defined by a, (x, y) = H(x — y) for x, y in M. Then ay is a fuzzy

congruence on M.

Proof: Since [ is non-empty it follows that oy is non empty. Now oy (x, x) = M (0) =
MH(y—z) forally, zin M= ay (y,z). So

all (Xa X) = SU.p ap (ya Z) .

y,zM

Thus ay is fuzzy reflexive. It is clear that oy is fuzzy symmetric. Again Oy (X, y) =
HXx—y)=H(X—-z+z-—y)2Min [l (X—2), L (z—y)] for all z in M. So

oy (x, y) = sup [Min [, (x,2),0,(zy)] .

zOM

Thus ay, is a fuzzy equivalence relation on M.

Now

Oy (x+u, y+V) H(x+u-v-y)
H(Ey+x+u-v)

Min [W (=y + x), L (u V)]
Min [W (x = y), U (u—V)]
Min [all (Xa Y) » Oy (ua V)]

[\l

Again Xy (xr, yr) = p(xr —yr) = p{(y —y + x) r = yr} 2 p(=y + x) = l(x — y) = au(X, y).
Hence ay, is a fuzzy congruence on M.

Note: oy, is called the fuzzy congruence induced by M and pq is called the fuzzy
submodule induced by a.

Here in the following theorem FS (M) set of all fuzzy submodules of M and FC (M)
the set of all fuzzy congruences on M. The reader is expected to refer [28] for proof.

THEOREM 1.8.8: Let M be an R-module. Then there exists an inclusion preserving
bijection from the set FS(M) of all fuzzy submodules of M to the set FC(M) of all fuzzy
congruences on M.

THEOREM 1.8.9: Let a be a fuzzy congruences on an R-module M and Uy be the fuzzy
submodule induced by a. Let t [JIm Q. Then (Uq) = {x IM[x =0 (a,) } is the
submodule induced by the congruence a,.
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Proof: Let a U M. Now a (M) if and only if (Hq) (a) = t if and only if a(a, 0) = if
and only if (a, 0) UJ o if and only if a [J 0(a) if and only if a [J {x U M [x = 0(0y)}.
Hence the theorem.

THEOREM 1.8.10: Let 4 be a fuzzy submodule of an R-module M and a,, be the fuzzy
congruence induced by (1. Let t [JIm |4 . Then (ay); is the congruence on M induced

by .

Proof: Let B be the congruence on the R-module M induced by . (x, y) O B if and
onlyifx—yOp Let (x,y) O (0y )¢ Therefore (0p) (X, y) 2t=>H(x-—y)2t=
(x—y) Opi= (x,y) UB. Thus (a ) O B. By reversing the above argument we get 3
O (o). Hence (o) =P.

DEFINITION [28]: Let M be an R-module and a be a fuzzy congruence on M. A fuzzy
congruence [ on M is said to be a-invariant if a (x, y) = a (u,V) implies that (B (x, y)
= B, V) forall (x, y),(u, V) [IM xM.

THEOREM [28]: Let M be a R-module and [ be a fuzzy submodule of M. Let a be the
fuzzy congruence on M induced by L Then the fuzzy relation a/ a on M / U defined
bya/ax+ uy+ W=ai,y)isafuzzy congruence on M/ U .

Proof: Assume that x + |=u+ pdandy+pdu=u+ . Then i (x —u) = H(0) and p(y —
V) = (0).

Thus
a(x, u) = sup o (p,q) and

p.qOM
a(y,v) = sup a (p,q)-
p,qOM
Now

Min [a(x, u), (4, y)]
a(u, y)

Min [a(u, V), a(u, y)]
a(u, v).

ax, y)

[ VA | I \V)

Similarly a(u, v) = a(x, y). Thus a(x, y) = d(u, v). Thus, o / o is meaningful. Rest of
the proof is a matter of routine verification.

THEOREM [28]: Let M be an R-module and U be a fuzzy submodule of M. Let  be a
the fuzzy congruence on M induced by [ Then there exists a one to one
correspondence between the set FCo (M) of a-invariant fuzzy congruences on M and
the set FCyq/aq (M / L) of a /@ invariant fuzzy congruences on M / | .

Proof: Refer [28].
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THEOREM 1.8.11: Let M be an R-module and U be a fuzzy submodule of M. Let a be
the fuzzy congruence on M induced by [. Lett = sup Im a'then M/ u [JM / a, .

Proof: We define a mapping 6: M/y - M/, by (x +y) 6 = x 0, where x 0, denotes the
congruence class containing x of the congruence a;, x + L=y + L = (X —y) = H(0)
=ax,y)=supIlmaoa=t=x y o =x0=yo; = (x+ 1) 0=(y+ 0. So O is
well defined.

Now (x+p+y+p)6=(x+y+)0=x+ty)a=xo+tya=x+W0+(y+po
and (Xt O=xr+PW)O0=xr)o=x0)r=((x+W) 0O)r.

Therefore 8 is an R-homomorphism. Again (x + 1) 0= (y+ ) 8 = xa;=y 0= (X, y)

ay=0a(xy)=t=>pExE-y)=t= U x-y) =0a(0, 0) =p0) which implies that
X+ U=y + W So O is injective. Obviously 0 is surjective. Hence the result.

DEFINITION [56]: Let R be a near-ring and let [ be a fuzzy set in R. We say that [ is a
fuzzy subnear-ring of R if for all x, y [/R.

L (x=y) 2min {x), 4()}.
i. p(xy) 2min {f(x), U)}-

If a fuzzy set [ in a near-ring R satisfies the property tU(x —y) 2min {(x), ()} then
letting x = y; (4(0) > U (x) for all x [JR.

DEFINITION [1]: Let (R, +, ®) be a near-ring. A fuzzy set [l in R is called a fuzzy right
(resp. left) R-subgroup of R if

i. Wis afuzzy subgroup of (R ,+).
ii. H(xr) = U (x) (resp. lU(rx) = U (x)) forall v, x [/R .

Example [56]: Let R = {a, b, c, d} be a set with two binary operations as follows.

+ |la |b |c |d * la |b |c |d
a |a |b |c |d a |a [a |a |a
b |[b |a |d |c b |a |a |a |a
c |c |d |b |a c |a |a |a |a
d |d [c [a |b d |[a [a [b |Db

Then (R, +, ) is a near-ring. We define a fuzzy set i: R - [0,1] by p(c ) = p(d) <
H(b) < p(a). Then W is a fuzzy subgroup of (R,+), and we have that p(xr) = p(x) for all
r, X [J R. Hence [ is a fuzzy right R-subgroup of R.

Example [56]: Let R={a, b, ¢, d} be a set with two binary operations as follows:
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Then (R, +, *) is a near-ring. We define a fuzzy set i: R - [0,1] by p(c) = pu(d) < pu(b)
< M(a). Thus p is also a fuzzy right R subgroup of R.

THEOREM [56]: If is a fuzzy right (resp. left) R-subgroup of a near-ring R, then the
set Ry = {x JR (x) = 1 (0)} is a right (resp. left) R-subgroup of R.

Proof: Let x, y U Ry, . Then p(x) = p(y) = H(0). Since Y is a fuzzy right (resp. left) R-
subgroup, it follows that

H(x—y) 2 min {4(x) , l(y)}
= min{p(0), H(0)}
= H1(0).

On the other hand p(x —y) < H(0). Hence we have p(x —y) = H(0) so x —y 0 Ry, Also
for any x [J Ry and r O R, we get [ (xr) = p(x) = H(0) (resp. H(rx) = p(x) = H(0)).

On the other hand p(xr) < p(0) (resp. W(rx) < p(0). Hence we obtain p(xr) = p(0) (resp
M(rx) = H(0)), which shows that x r U Ry, (resp. r x U R;,) Consequently the set Ry, is a
right (resp.left) R-subgroup of R.

DEFINITION 1.8.6: A fuzzy right (resp.left) R-subgroup U of a near-ring R is said to be
normal if there exists x [/R such that [ix) = 1.

Note that if a fuzzy right (resp. left) R-subgroup U of a near-ring R is normal then
H(0) = 1; hence M is a normal fuzzy right (resp. left) R-subgroup of a near-ring R if
and only if p(0) = 1.

THEOREM 1.8.12: Let U be a fuzzy right (resp. left) R-subgroup of a near-ring R and
let I be a fuzzy set in R defined by i'(x) = p(x) + 1 — 1(0) for all x [JR. Then i" is a
normal fuzzy right (resp. left) R-subgroup of R containing L.

Proof: Let x, y J R. Then

min {§(x) + 1 —p(0), H(y) + 1 —p(0)}
min {§(x), K ()} +1—H(0)
H(x—y)+1-H(0)

W(x-y)

min{p" (x), K'(y)}

Al

and for all x, y J R we have
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H(xr) + 1 —u(0)
H(x)+1-p(0)
1 (x).

W (xr)

v

Similarly p'(rx) = p(rx) + 1 — p(0) = p(x) + 1 — p(0) = p'(x). Hence ' is a fuzzy
right (resp. left) R-subgroup of R. Clearly n"(0) =1 and p O p". This gives the proof.

Using the fact p O u* we have the following theorem:

THEOREM 1.8.13: If u is a fuzzy right (resp. left) R-subgroup of R satisfying u" (x) = 0
for some x [/R, then u(x) = 0 also.

THEOREM [1]: Let (R, +, ®) be a near-ring and Xu be the characteristic function of a
subset H [/R. Then H is a right (resp. left) R-subgroup of R if and only if Xu is a fuzzy
right (resp. left) R-subgroup of R.

Proof: Refer [1].

THEOREM 1.8.14: For any right (resp. left) R-subgroup H of a near-ring R, the
characteristic function Xu of H is a normal fuzzy right (resp. left) R-subgroup of R
and R, =H.

Proof: From the above theorem the proof of this theorem can be easily obtained.

THEOREM 1.8.15: Let u and V be fuzzy right (resp. left) R-subgroups of a near-ring R.
If u Jvand u) = v(0) then R, LJR,.

Proof: Assume that p [J v and p(0) = v(0). If x 0 R, then v(x) = p(x) = pn(0) = v(0).
Noting that v(x) < v(0) for all x [J R we have v(x) = v(0) that is x [J R. Hence the
proof.

The following result is a direct consequence of the above theorem; hence left for the
reader.

THEOREM 1.8.16: If u and v are normal fuzzy right (resp. left) R-subgroups of a
near-ring R satisfying u [/ vthen R, [J/R,.

THEOREM 1.8.17: A fuzzy right (resp. left) R-subgroup u of a near-ring R is normal if
and only if i = u .

Proof: Sufficiency is direct. To prove the necessary condition assume p is a normal
fuzzy right (resp. left) R-subgroup of R and let x 00 R. Then p'(x) = w(x) + 1 — u(0) =
1(x) and hence u" = p.

THEOREM 1.8.18: If u is a fuzzy right (resp. left) R-subgroup of a near-ring then
W) =pu"

Proof: For any x [ R, we have (u)"(x) = p'(x) + 1 — u"(0) = u"(x) completing the
proof.
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The following result is direct by the above definition.

THEOREM 1.8.19: If i is a normal fuzzy right (resp. left) R-subgroup of a near-ring
R, then (u*)" = u.

THEOREM 1.8.20: Let u be a fuzzy right (resp. left) R-subgroup of near-ring R. If
there exists a fuzzy right (vesp. left) R-subgroup V of R satisfying V' [J u then u is
normal.

Proof: Suppose there exists a fuzzy right (resp. left) R-subgroup v of R such that v" [
. Then 1 =v™ (0) < u (0) whence p(0) = 1. Hence the proof.

Using the above theorem the following result is straightforward.

THEOREM 1.8.21: Let u be a fuzzy right (resp. left) R-subgroup of a near-ring R. If
there exists a fuzzy right (vesp. left) R-subgroup vV of R satisfying V' [Ju then u* = p.

THEOREM 1.8.22: Let u be a fuzzy right (resp. left) R-subgroup of a near-ring R and
letf: [0, u (0)] — [0,1] be an increasing function. Define a fuzzy set us R — [0,1] by
Ur(x) = f (u(x)) for all x LJ/R. Then uyris a fuzzy right (resp. left) R-subgroup of R. In
particular if f(u(0)) = I then uyis normal and if f(t) =t for all t [7[0, u(0)] then u [J
1y

Proof: Let x, y U R. Then ps(x — y) = f(u(x — y)) 2 f(min pu(x), w(y)) = min {f{p(x)),
f(u(y))} = min{ps (x), uy)} and for all x, r [J R, we have p¢ (xr) = f (p (xr)) = £ (u(x))
= ue(x). Similarly pr (rx) = f(p(rx)) = f (u(x)) = pe (x). Hence pris a fuzzy right (resp.
left) R-subgroup of R. If f (i(0)) = 1 then clearly pris normal. Assume that f{(t) >t for
all t 1[0, n(0)]. Then pr(x) = £ (n(x)) 2 u(x) for all x[IR, which proves that p [ ps.

THEOREM 1.8.23: Let u be a non constant normal fuzzy right (resp. left) R-subgroup
of R, which is maximal in the poset of normal fuzzy right (resp. left) R-subgroups
under set inclusion. Then u takes only the values 0 and 1.

Proof: Please refer [56].

Another normalization of fuzzy right (resp. left) R-subgroup of a near-ring R as given
by [56] is given below.

THEOREM 1.8.24: Let u be a fuzzy right (resp. left) R-subgroup of a near-ring R and
let 1i° be a fuzzy set in R defined by 1’ (x) = u(x) / u(0) for all x JR. Then 1’ is a
normal fuzzy right (resp.left) R-subgroup of R containing u.

Proof: For any x, y J R we have

0000, 1 _ VR HGY)
min {p(x), p (y)} mm{u(o), u(O)}
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FO) H(x—y)

IN
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and for all x, y J R we get

L H(xr)

0
e (xr) 10)

1
FO) H(x)

\}

= H0(x).

Similarly p’(rx) = p’(x). Hence P’ is a fuzzy right (resp. left) R subgroup of R.
Clearly uO(O) =1 and p O p° Hence the claim. Using the fact p U '’ the following
results are straightforward.

THEOREM 1.8.25: If [ is a fuzzy right (resp. left) R-subgroup of a near-ring R
satisfying 1£00)=0 for some x [/R then lx) = 0 also.

THEOREM 1.8.26: Let H be a right (resp. left) R-subgroup of a near-ring R and let iy
be a fuzzy set in R defined by

1 if xUH

0 otherwise

Hn(x) = {

Then [y is a normal fuzzy right (resp.left) R subgroup of R and R,y = H.
Proof: Left for the reader as the proofis direct.

THEOREM 1.8.27: Let [ be a non constant fuzzy right (resp. left) R-subgroup of a
near-ring R such that | is maximal in the poset of normal fuzzy right (resp.left) R-
subgroups under set inclusion. Then

i. Misnormal.
ii. [takes only the values 0 and 1.
iy, = [

iv. Ry is a maximal right (resp.left) R-subgroup of R.

Proof: Please refer [56].
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We have given several of the proofs verbatim from [56] mainly to make it easy when
we do the proofs in case of Smarandache fuzzy near-rings and their ideals and
subgroups. For more about fuzzy near-rings please refer [56, 57].

Now we proceed on to define the notion of fuzzy near-rings.

DEFINITION 1.8.7: Let [ be a non-empty fuzzy subset of a near-ring N (that is [4(x) Z0
for some x [/ N) then W is said to be a fuzzy ideal of N if it satisfies the following
conditions:

L p(x+y) 2min{l(x), L)}
ii. {(—x) =t x).
. H(x) =@ tx—y).
iv. [ (xy) =U(x)and
v. Uix(y+i)—xy}=2p(i)forallx, y, i [JN.
1. If Wis a fuzzy ideal of N then [ (x +y) = U(y + x).
2. If lis a fuzzy ideal of N then U (0) = U (x) for all x [JN. The above two statements
can be easily verified forif weputz =x +y, then U(x +y) =l (z) = U(—x +z +
x) since U is a fuzzy ideal {(—x +x +y +x) = (v + x) (sincez =x + y).

Likewise for the second statement U (0) = U (x —x) =min {U (x), U (-x)} = (x) since
M is a fuzzy ideal (since [ (—x) = UL (x) by the very definition of fuzzy ideal).

DEFINITION 1.8.8: Let I be an ideal of N. we define A; : N — [0, 1] as

1 if x=1
A =
(%) {0 otherwise

Ai(x) is called the characterize function on 1.

THEOREM [130]: Let N be a near-ring and A, the characteristic function on a subset [
of N. Then A; is a fuzzy ideal of N if and only if I is an ideal of N.

DEFINITION [130]: Let i be a fuzzy subset of X. Then the set l, of all t [J[0, 1] is
defined by 1, = {x [IN/ U (x) =t} is called the level subset of t for the near-ring N.

DEFINITION [130]: Let N be a near-ring and U be a fuzzy ideal of N. Then the level
subset t; of N for all t [7]0, t], t <(0) is an ideal of N if and only if L is a fuzzy ideal
of N.

DEFINITION [130]: A4 fuzzy ideal [ of N is called fuzzy prime if for any two fuzzy
ideals oand @of N go8 [] implies o[ or 8 [J L.

Now we use the concept of fuzziness in [ -near-rings as given by [1, 130].

THEOREM [130]: If i is a fuzzy ideal of a near-ring N and a [JN then [ (x) = l{(a) for
all x [ (a).
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Proof: Please refer [1, 130].

DEFINITION [130]: Let [ and O be two fuzzy subsets of M. Then the product of fuzzy
subset ( 0o T)(x) = sup {min (O (y), T (z))} if x is expressible as a product x = yz
where y, z [/M and (0o 1) (x) = 0 otherwise.

DEFINITION [130]: A fuzzy ideal [ of N is said to have fuzzy IFP if U (a n b) = (ab)
foralla, b, n [JN.

DEFINITION [130]: Let [ be a fuzzy ideal of N, [ has fuzzy IFP if and only if [ is a
IFP ideal of N for all 0 <k <1.

DEFINITION [130]: N has strong IFP if and only if every fuzzy ideal of N has fuzzy
IFP.

THEOREM [130]: If (1 is a fuzzy IFP-ideal of N then N, = {x [IN/ 1 (x) = p(0)} is an
IFP ideal of N.

Proof: We have 4 (0) =2 p (x) for all x [ N; write t = W (0). Now N, = [; and by
definitions Qi has IFP. Therefore Ny, is an IFP ideal of N.

Notation: Let [ be a fuzzy ideal of N. For any s [ [0, 1] define B : N — [0, 1] by

Sif U(x)=s
ol

M(x) if U(x) < s.
Since 35 depends on Y, we also denote 3¢ by [3;.

Results:

1. Bs(x)<sforall x ON.
2. [sis a fuzzy ideal of N.
3. Ifp (0)=t, then s >t if and only if Y; = (Bs)s.

The proof of the above 3 statements are left as an exercise for the reader to prove.
We can still equivalently define as a definition or prove it as a theorem.

DEFINITION [130]: uis a fuzzy IFP ideal of N if and only if B; is a fuzzy IFP ideal for
all s [7]0, 1].

Result: A fuzzy ideal Y has IFP if and only if N(g,) has IFP for all s [1 [0, 1].
The above result is assigned as an exercise for the reader to prove.

DEFINITION [130]: Let £ : M — [0, 1]. [ is said to be a fuzzy ideal of M if it satisfies
the following conditions:
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Lo M(x+y)2min{l(x), 4 )}
fi. H(-x) =l x)
. Ux)=Uy +x-y.

v. U(xay)=U(x)and

v. Hilxa®ytz)-xayl2uz)

forallx, y,z [JM and a [T

The following result is left as an exercise for the reader to prove.

THEOREM 1.8.28: Let U be a fuzzy subset of M. Then the level subsets [, = {x [/M /
H(x) 2t} t [JIm W, are ideals of M if and only if [1is a fuzzy ideal of M.

All results true in case of fuzzy ideals of N are true in case of fuzzy ideals of M with
some minor modifications.

The following result can be proved by routine application of definitions.

THEOREM 1.8.29: Let M and M' be two [-near-rings, h : M — M' be an [-
epimorphism and L, O be fuzzy ideals of M and M’ respectively then

i h(h (9) =0
i. W't w) Ouand
iii. hij(h (L) = Uif [ is constant on ker h.

DEFINITION [130]: 4 fuzzy ideal [t of M is said to be a fuzzy prime ideal of M if UL is
not a constant function; and for any two fuzzy ideals o and [ of M, co [ [J 4
implies either o [JLor I [J

Using these definitions it can be proved.

THEOREM [130]: If i is a fuzzy prime ideal of M then M, = {x [IM / 1 (x) = p(0)} is
a prime ideal of M.

PROPOSITION [130]: Let I be an ideal of M and s [/ [0, 1). Let U be a fuzzy subset of
M, defined by

1 if xOI
o=l 0
s otherwise.
Then s a fuzzy prime ideal of M if I is a prime ideal of M.

Proof: Using the fact [ is a non-constant fuzzy ideal of M we can prove the result as a
matter of routine using the basic definitions.

DEFINITION [130]: Let I be an ideal of M. Then A; is a fuzzy prime ideal of M if and
only if l is a prime ideal of M.
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Result 1: If | is a fuzzy prime ideal of M then p(0) = 1.
Proof: 1t is left for the reader to prove.
Result 2: If | is a fuzzy prime ideal of M then |[Im p| = 2.

We further define fuzzy near matrix ring.

DEFINITION 1.8.9: Let P, , denote the set of all n X n matrices with entries form [0, 1]
i.e. Py = {(aj) /a; LJ[0, 1]} for any two matrices A, B [JP,x, define [Jas follows:

a;; ap a,
A — a.Z] a.p a?n
anl anZ al’lﬂ
and
bu bzz bln
B= b21 b?z bZn
bnl an b/m
a,+b, .. a,*b,
a, +b .. a,, tb
21 21 21 2
AOB= _ !
anl +bn1 al’lﬂ +b/m
where

a; +b; if a;+b; <1
a;+b; =101f a;+b; =1
a; +b; =1if a;+b;>1.

Clearly (P, x, L)) is an abelian group and

is zero matrix which acts as the additive identity with respect to [J.
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Define O on P, ., as follows. For A, B [JP,

a, a, b, ... b, a,+...+ta, ... a,+..+%a,
L OB - a.ﬂ a?n o b.ZI ... b, _ a21+....+a2n a21+....+a2n
a,, ... a, b, ... b, a,*..ta, .. a,*..+ta,

where a;.b; = a;for all a; [JA and b;; [JB. Clearly (P,x, ©) is a semigroup. Thus (A
[JB) O©C=A4 OC[B O C. Hence (P,x, [J ©) is a near-ring, which we call as
the fuzzy near matrix ring or fuzzy matrix near-ring.

THEOREM 1.8.30: The fuzzy near- matrix ring is a commutative near-ring.
Proof: Straightforward.

THEOREM 1.8.31: The fuzzy matrix near-ring is not an abelian near-ring.
Proof: For A, B [ P,x, we have A O B # B O A in general.

THEOREM 1.8.32: In {P,x, [ O} we have I, # A where I,x, is the matrix with
diagonal elements I and rest 0.

Proof: Left for the reader to prove.

DEFINITION 1.8.10: Let {P,, [J, O} be a fuzzy near matrix ring we say a subset I of
P,y is a fuzzy left ideal of Py, if

i (I, +) is a normal subgroup of P,
ii. nm' +i)+n.n" [JIforeachi [JI and n, n, n' [JN where n,
denotes the unique right inverse of n.

All properties enjoyed by near-rings can be defined and will be true with appropriate
modifications.

Next we proceed on to define the concept of fuzzy complex near-rings.

DEFINITION 1.8.11: Let V' = {a + ib /a, b [J]0,1]} define on V the operation called
addition denoted by []as follows:

Fora+ib,a; +ib; [JV,a+ib [Ja; +ib;=a+a; +i(b+ b)) wherea [Ja; =a +
ajifata;<landa+a;=a+a;—1ifa+a; =21 where '+'is the usual addition of
numbers. Clearly (V, [J) is a group. Define O on V by (a + ib) O (a; + ib;) = a + ib
forall a +ib, a; + ib; V. (V, ©O) is a semigroup. It is easily verified. (V, [J, O) is a
near-ring, which we call as the fuzzy complex near-ring.
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Further P={a/a [J[0,1]} and C = {ib /b [J[0 1]} are fuzzy complex subnear-rings
of (V, [, O).

PROPOSITION 1.8.1: V has non-trivial idempotent.

Proof: Left for the reader to prove.

THEOREM 1.8.33: Let {V, [] O} be a fuzzy complex near-ring. Every nontrivial fuzzy
subgroup of N is a fuzzy right ideal of V.

Proof: Obvious by the fact that if N is a fuzzy subgroup of V then NV [ N.

It is an open question. Does V have nontrivial fuzzy left ideals and ideals? The reader
is requested to develop new and analogous notions and definitions about these
concepts.

Now a natural question would be can we have the concept of fuzzy non-associative
complex near-ring; to this end we define a fuzzy non-associative complex near-ring.

DEFINITION 1.8.12: Let W = {a + ib /a, b [J [0, 1] called the set of fuzzy complex
numbers}. Define on W two binary operations [7and O as follows:

(W, L)) is a commutative loop where for a + ib, ¢ + id [JW define a + ib [J ¢ + id =
a~c+i(b~d) where ~’ is the difference between a and b. Clearly (W, [)) is a
commutative loop.

Define ©on Wby (a +ib) O (c+id) =a +ibforalla +ib, ¢ +id OW. (W, [] ©)
is called the fuzzy complex non-associative near-ring. ([0, 1], [J, ©) [J(W, [J, ©) is a
fuzzy non-associative subnear-ring.

Obtain interesting properties about these non-associative fuzzy complex near-rings.
Now we proceed on to define fuzzy polynomial near-rings.

DEFINITION 1.8.13: Let R be the set of reals. The fuzzy polynomial near-ring
R/" 1] consists of elements of the form p, * px" + p,x" +.+ p xV where py, p),
wo P R and y;, V5, ..., o LJ[0, 1] with y; < )5 < ... < W,. Two elements p(x) = q (x)
s pi = q. and Yy = s; where p(x)=p,+px" +..+p x"and
q(x)=q, +q,x" +..+q,x" Addition is performed as in the case of usual
polynomials.

Define @on R [x'""] by p(x) © g(x) = p(x) for px). q) TR [x " "].

Clearly {R [x (017 ], +, O} is called the fuzzy right polynomial near-ring. =1 by
definition.
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DEFINITION 1.8.14: Let {R [x 101 ], +, O} be a fuzzy polynomial near-ring. For any
polynomial p(x) [JR [x 04 | define the derivative of p(x) as follows.

If p(x)=p,+px" +.+px™

dp(x) _

s;~1 S,~1 — s;~1 s,~1
dx 0+S1p1x ' +"'+Snpn‘x _(Slpl)x ! ++(Snpn)x

where ‘~’ denotes the difference between s; and 1.

Clearly if p(x)OR[x!"" ] then @DR[}CM‘”] Likewise successive derivatives
X

are also defined i.e. product of s; p; [JR as s; [J [0, 1] and p; [JR i.e. the usual
multiplication of the reals.

Example 1.8.1: Let R be reals R [X[O’ 1]] be a polynomial near-ring.

p(x)=5—6x”5 +2x77% = 15x7"°

dp(x):0_16x4/5+2><3x5/8_15><7x2/9 :_£x4/5 +ix5/8 _£x2/9'

dx 5 8 9 5 4 3

The observation to be made is that no polynomial other than the polynomial x
vanishes after differentiation.

DEFINITION 1.8.15: Let p(x) [J {Rx {01 ]} the fuzzy degree of p(x) is s, where
p(x)=p,+p,x" +. . +px":s, <s,.<s, (p, Z0) deg p(x) = s,. The maximal

degree of any polynomial p(x) can take is 1. Now it is important to note that as in the
case polynomial rings we cannot say deg [p(x).q(x)] = deg p(x) + deg q(x).

But we have always in fuzzy polynomial near-ring.

deg (p(x) q(x)) = deg p(x) for
P, q0x) OR [x ]

as this degree for fuzzy polynomial near-rings is a fuzzy degree we shall denote them

by f(deg (p(x)).

DEFINITION 1.8.16: Let p(x) [J[R [x[o’ 1]], p(x) is said to have a root a'if p(a) = 0.

Example 1.8.2: Let p(x) = V2-x"bea fuzzy polynomial in R {X[O’ 1]]. The root of
p(x) is 2 for p(2) = V2 -2"%=0.
But as in case of root of polynomial of degree n has n and only n roots which is the

fundamental theorem on algebra; we in case of fuzzy polynomial near-rings cannot
say the number of roots in a nice mathematical terminology that is itself fuzzy.
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A study of these fuzzy polynomial near-rings is left open for any interested
researcher. We proceed on to define fuzzy polynomial near-rings when the number of
variables is more than one x and y.

DEFINITION 1.8.17: Let R be the reals x, y be two variables we first assume xy = yx.
Define the fuzzy polynomial near-ring.

Ry 07 y) ={S rx?y® /1, OR; p,0[0,1] ¢, O[01]}

Define ‘+’ as in the case of polynomial and '@ by p(xy) @ q(x, v) = p(x, y). Clearly
R[x[ 0.1 y[ 0.4 | is called as a fuzzy polynomial right near-ring.

DEFINITION 1.8.18: Let {R [x 01 y (0.4 ], L *} be a fuzzy polynomial near-ring in
the variable x and y.

A fuzzy polynomial p(x, y) is said to be homogenous of fuzzy degree t, t [ [0, 1] if p(x,
y) =ax"y" +. . +b x""thent; 20, s; Z0foralli=1,2, .., pands; + t; = tfori =
1,2 .., p.

DEFINITION 1.8.19: Let R {x (01 y 04 g e’} be the fuzzy polynomial near-ring in
the variables x and y. A symmetric fuzzy polynomial is a homogenous polynomial of

\

fuzzy degree t, t [7]0, 1] such that p(x, y) = p,x"y’

<ty Sp < Sp.; < .. <S;Witht; =S8, t2 =S,y ..., t, = S; further p; = p,, P> = Pu-1, --

T4+ p x" Y where t; <t < ..

For example p (x, y) = 3x'" yz/3 + 3% yl/z. p(x,y)=x +y,rQ0]o0,1].

px, ) =x +y +xy +y's*where s +t = 1. s, t, r 0 [0, 1]. We have like other
polynomials we can extend the fuzzy polynomials to any number of variables say Xj,
Xs, ..., X;. under the assumption X;X; = X;X; and denote it by R [Xl[o’ 1], XZ[O’ 1],
Xl 1]] called the fuzzy polynomial near-ring in n variables. The reader is advised to
develop new results on these fuzzy polynomial near-rings.

We have introduced the concept of complex near-ring and the non-associative
complex near-ring now we just define yet another new notion called fuzzy non-
associative near-ring.

DEFINITION 1.8.20: Let {W, [J, O} be the fuzzy non-associative complex near-ring.
Let x be an indeterminate. We define the fuzzy non-associative polynomial near-ring
as follows:

W [x] ={Zp; x / pi W} we say p(x), q(x) [JW[x] are equal if and only if every
coefficient of same power of x is equal i.e. if p(x) = po + pix + ... + p,x"and q(x) = q
+qx + ... +qx" p(x) = q(x) if and only if p; = q;. fori =1, 2, ..., n. Addition is
performed as follows p(x) [J q(x) = py [T gy + ... + (p, [J q,) X" where [J is the
operation on W. For p(x), q(x) in W[x] define p(x) O q(x) = p(x). Clearly {W(x), [,
O} is a fuzzy non-associative complex polynomial near-ring.
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Now take 2’ = Z"[J {0}. Let p: 7’ - W be defined by p(0) = 0, p(x) Zifor 0zx[/Z
X

Clearly p(x) is a fuzzy non-associative subnear-ring of W. Thus p is a fuzzy non-
associative subnear-ring. Let G = AR I Define a map py: G — W[x] by

p(0, 0) = 0.
1 1
px,y)=—+—,x20,y Z0.
Xy
1
p, 0) = —;
X
1
p0,y) =—.
y

Then the map p is a fuzzy non-associative complex subnear-ring of G.
Several interesting research in this direction is thrown open for the reader.
Now we proceed on to define a special class of fuzzy near-ring.

DEFINITION 1.8.21: Let P = [0, 1] the interval from 0 to 1. Define [7and O on P as
follows. For a, b [JP definea [Jb=a+bifa+b<I,allb=0ifa+b=1anda
Ob=a+b-1ifa+b> 1 Thus [Jacts as modulo 1. Define Oona, b [JP = [0, 1]
bya Ob=a; clearly (a [b) Oc=a0Oc+bOc=allb. Clearly (P, [J) is a group
and (P, ©) is a semigroup. Hence (P, [J, ©) is a right near-ring. We call {P, [J], O}
the special fuzzy right near-ring.

DEFINITION 1.8.22: Let (P, [J. ©) be a fuzzy near-ring. Py = {p [JP /p.0 = 0} is
called the fuzzy zero symmetric part and P. = {n [JP / n.0 = n} is called the fuzzy

constant part.

THEOREM 1.8.34: The special fuzzy right near-ring {P, [], O} has no fuzzy invertible
elements.

Proof: Left for the reader to prove.

Let S= {r/p, 0/ 1 <r <p} is a fuzzy subnear-ring or to be more specific if S = {0, Y4,
V2, %}; S is a fuzzy subnear-ring.

DEFINITION 1.8.23: A fuzzy subnear-ring N of P is called fuzzy invariant if NP [J N
and PN [J N we call a fuzzy subnear-ring N of P to be a fuzzy right invariant if NP [J
N.

The following theorem is left as an exercise to the reader.

THEOREM 1.8.35: Every fuzzy subnear-ring N of P is fuzzy right invariant.
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DEFINITION 1.8.24: The set P = {0, 1} with two binary operations [7and O is called
fuzzy right seminear-ring if {P, [J} and {P, O} are right seminear-ring.

All results can be easily extended in case of fuzzy seminear-ring.

Example 1.8.3: Let {P, O, O} be the fuzzy seminear-ring. Define 0 asp O qifp + q
<landp O q=0ifp+q=1. Then (P, U) is a semigroup. Define © asp © q =p for
all p, q O P. Clearly {P, O, O} is a special fuzzy seminear-ring.

Now we proceed on to define binear-rings and the concept of fuzzy binear-rings.

DEFINITION 1.8.25: Let (N,+, ) be a non empty set. We call N a binear-ring if N =
N; [J N, where N; and N> are proper subsets of N i.e. N; [/ N, or N, [JN; satisfying
the following conditions:

Atleast one of (N;, +, ®) is a right near-ring (i = 1, 2) i.e. for preciseness we say

i. (N;, +, ®)is anear-ring.
ii. (N, +,*)isaring.

We say that even if both (N, +, ®) and (N>, +, ®) are right near-rings still we call
(N, +, ®) to be a binear-ring. By default of notation we mean by a binear-ring only a
right binear-ring unless explicitly stated.

DEFINITION 1.8.26: Let (N, +, ®) be a binear-ring. We call (N, +, ) as abelian if (N,
+) is abelian i.e. if N = N; [/ N, then (N,, +) and (N,, +) are both abelian. If both (N,
*) and (N>, ®) are commutative then we call N a commutative binear-ring. If N = Ny
i.e. Nj = (Ny)aand N> = (N2)q then we say N is a distributive binear-ring. If all non-
zero elements of N are left (right) cancelable we say that N fulfills the left (right)
cancellation law. N is a bi-integral domain if both N; and N, has no zero divisors. If
N\ {0}= N;\ {0} and N>\ {0} are both groups then we call N a binear field.

DEFINITION 1.8.27: Let (P,+) be a bigroup i.e. (P = P; [/ P;) with 0 and let N be a
binear-ring [ : N X P — P is called the N-bigroup if for all p; [J P; and for all n, n; [J
N; we have (n +n;) p = np + n;p and (nn;) p = n(n;p) fori =1, 2. N* =N ON¥
stands for N-bigroups.

DEFINITION 1.8.28: A sub-bigroup M of a binear-ring N with M.M [] M is called a
sub-binear-ring of N. A bi subgroup S of N* with NS (7S is a N-sub-bigroup of P.

DEFINITION 1.8.29: Let N = N; [J N be a binear-ring;, P a N-bigroup. A binormal

subgroup (or equivalently we can call it as normal bisubgroup) I of (I = 1; [J 1)
(N,+) is called a bi-ideal of N if

I I]N] Uljal’ldlzNg U[g.

ii. non 0, i I, n(ny + i) —nn; [l and n, ny [N, iy [T, n (ny + i) —
nny [J1,.
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Normal sub-bigroup T of (N,+) with (i) is called right bi ideal of N while normal sub-
bigroup L of (N,+) with (ii) are called left biideals.

A normal sub-bigroup S of P is called bi ideal of N* if for s; OP; (i =1, 2) (P =P; [J
Py)ands [JS;(i=1 2and S=S8,[JS,) forall n; [JN; (i =1, 2, N=N; [JN,).
ni(s +s;) —ns [JS, i = 1,2. Factor binear-ring N / I and factor N-bigroup P/S are
defined as in case of birings.

DEFINITION 1.8.30: 4 sub-binear-ring M of the binear-ring N is called bi-invariant if
MN; [IM; and M, N, [ M, (Where M = M; [JM> and N = N; [J/N,) and N; M; [ M,
and N2 M2 UMZ.

A minimal bi-ideal, minimal right bi-ideal and minimal left bi-ideal and dually the
concept of maximal right bi-ideal, left bi-ideal and maximal bi-ideal are defined as in
case of bi-rings.

DEFINITION 1.8.31: Let N be a binear-ring (N = N; [/ N;, +, ®) and S a sub-
bisemigroup of (N = N; [JN,, +) (where S = S; [JS>). A binear-ring Ns is called a
binear-ring of left (right) quotients with respect to S if

i. Ng=(N,)s U(N,)s, has identity.
ii. N is embeddable in Ns by a binear-ring homomorphism h.
iii. Forall s; [JS; i=1 2;8S=S8;1]8). h(s; ) is invertible in
(N)s ), i=12
iv. Forall gi [J Ny there exists s; [JS; and there exists n; [/ N; such that
qi = h(ni) h(si) s (qi = h(s;) " h(n;)), i=1, 2.

DEFINITION 1.8.32: The binear-ring N (N = N; [/ N,) is said to fulfill the left (right)
ore condition with respect to a given sub-bisemigroup S; of (N;, ®) if for all (s, n) [J
Si X N; there existsn ®*s; =s *n;(s;*n=mn;*s);i=1,2.

Let V denote the collection of all binear-rings and X be any non-empty subset.

DEFINITION 1.8.33: A binear-ring Fx [JV is called a free binear-ring in V over a
binear-ring N if there exists f: X — Fx (where X is any non-empty set) for all N [JV
and for all g: X — N there exists a homomorphism h [JHom (Fx, N); hof=g

x & §F

A\

Let V = {set of all binear-rings}, we simply speak about free binear-ring on X. A
binear-ring is called free if it is free over some set X.
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DEFINITION 1.8.34: 4 finite sequence N = Ny [JN; [JN, [J ... [JN, = {0} of sub-
binear-rings N; of the binear-ring N is called the binormal sequence of N if and only if
foralli {1, 2, ..., t}, N;is a bi-ideal of N;_ .

In the special case when all the N;'s are bi-ideals of the binear-ring N, we call the
binormal sequence an bi-invariant sequence.

DEFINITION 1.8.35: Let P be a bi-ideal of a binear-ring N. P is called the prime bi-
ideal if for all bi-ideals I and J of N; 1J [JN implies I [/ P or J [JP. The binear-ring N
is called a prime binear-ring if {0} is a prime ideal.

DEFINITION 1.8.36: Let S be a bi-ideal of a binear-ring N. S is semiprime if and only
if for all bi-ideals I on N, 1° [JS implies I [7S. N is called a semiprime binear-ring if
{0} is a semiprime bi-ideal.

DEFINITION 1.8.37: Let L be a left bi-ideal in a binear-ring N. L is called modular if
and only if there exists e [/N; [/ N, and for all n [/N; [J N, and for all n [JN; [JN,,
n—ne [/L. In this case we also say that L is modular by e and that e is a right identity
modulo L, since for all n [J/N, ne = n (mod L).

Notation: For z [1 N, denote the bi-ideal generated by the set {n —nz/n U N} by L.
Lz=Nifz=0.z N is called quasi regular if z [1 Lz, S [0 N is called quasi-regular if
and only if for all s [I S, s is quasi regular.

Let N be a binear-ring. An idempotent e [ N = N; [ N, is called central if it is in the
center of (N, ®) or (N, ®) i.e. for all n J N; (or n [J N) we have ne = en.

DEFINITION 1.8.38: 4 binear-ring is said to be biregular if there exists some set E of
central idempotents with

i Foralle [IN; (e [IN>), Nye (N:e) is an ideal of N; (or N). i.e. Nye [7{0}
or {0} [/ N,eorife [/N; n N> then Nye [JN;e is a bi-ideal of N.

DEFINITION 1.8.39: Let N be a binear-ring; N = N; [J N, where N; and N, are near-
rings. The binear-ring N is said to fulfill the insertion factors property (IFP) provided
forall a, b, n [J/N; (or a, b, n [JN,) we have ab = 0 implies anb = 0. The biring has
strong IFP property if every homomorphic image of N has the IFP. The binear-ring N
has the strong IFP if and only if for all I in N and for all a, b, n [/N; (a, b, n [JN>), a,
b [J1; implies anb [J1; (ab [J1, implies anb [/1,) where I = 1; [] 1.

DEFINITION 1.8.40: Let p be a prime. A binear-ring N is called a p-binear-ring
provided that for all x [JN, x = x and px = 0.

DEFINITION 1.8.41: A biright ideal I of a binear-ring N is called right quasi
bireflexive if whenever A and B are bi-ideals of the binear-ring N with AB [J I then
bb' + a) — bb" [JI for all a [JA and b, b’ [JB. A binear-ring N is strongly sub-
bicommutative if it is right quasi bireflexive.

117



DEFINITION 1.8.42: Let N be a binear-ring S a subnormal sub-bigroup of (N, +). S is
called a quasi bi-ideal of N if SN [JNS [JS whereby NS we mean elements of the form
{n(n' +s)—nn'/forall s [JS and for n, n' [/N} = NS.

DEFINITION 1.8.43: An infra binear-ring (INR) is a triple (N, +, ®), (N = N; [/ N,)
where

i (N, +) is a bigroup.
il. (N, *) is a bisemigroup.
iii. (xt+ylez=xez— 0°z+yezforallx y z [/N.

DEFINITION 1.8.44: Let (N, +, ®) be a non-empty set, where N = N; [J N, [JN; [J Ny
where each N is a near-ring or a ring for each i = 1, 2, 3, 4. (N, +, *) is defined as
the quad near-ring or bi-binear-ring.

Example 1.8.4: Let (N, +, *) be a non-empty set, where N =Z, U Z, 11 Z; U Z where
Z, and Z are near-rings and Z;; is the ring of integers modulo 12 and Z; is the prime
field of characteristic 7. N is a quad near-ring.

DEFINITION 1.8.45: Let (N, +, ®) be a binear-ring where N = N; [/ N> and G = G; [J
G be a bigroup. The bigroup binear-ring NG = N;G; [J N;G> [J N>G; [J NG, is a
quad near-ring where each N;G; is a group near-ring or group ring, i = 1, 2 and j =
1, 2. Similarly we can define bisemigroup binear-ring NS = N;S; [/ N>S; [J NS> [J
N>S> where S is a bisemigroup (S = S; [JS;) and N = N; [J N> is a binear-ring. It is
easily verified that the bisemigroup binear-ring is also a quad near-ring where N;S;
are semigroup near-rings or semigroup rings, i = 1, 2 and j = 1, 2. All results
connected with binear-rings can be extended in case of quad near-rings.

DEFINITION 1.8.46: Let (N, +, ®) is a non-empty set where N = N; [/ N,. We say N is
a biseminear-ring if one of (N;, +, ®) or (N2, +, ®) are seminear-rings. Thus for N to
be biseminear-ring we need one of (N;, +, ®) or (N,, +, ®) or both to be a seminear-
ring.

We can have several such biseminear-rings. All notions studied in case of binear-rings
can also be easily studied and generalized for biseminear-rings. The only means to
generate several new classes of biseminear-rings are as follows:

DEFINITION 1.8.47: Let (S, +, ®) be a biseminear-ring with S = S; [JS,. G any group
the group biseminear-ring SG = S;G [J S$;G where S;G are group seminear-rings.
Clearly every group biseminear-ring is a biseminear-ring.

By using this definition we can have infinite class of both commutative or non-
commutative and infinite or finite classes of biseminear-rings. If in the definition of
group biseminear-rings if we replace the group by a semigroup we get yet another
new class of biseminear-rings.

DEFINITION 1.8.48: Let (N, +, ®) be a non-empty set. We say (N, +, ®) is a quad
seminear-ring or bi-biseminear-ring if the following conditions hold good.
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i. N=N; /[N, [JN; []Ngswhere N; are proper subsets of N such that N; []
NiforanyiZj i,j=1, 2, 3, 4.

ii. (N;, +,*)is at least a seminear-ring for i = 1, 2, 3, 4 under the operations
of N. Then we call (N, +, ®) a quad seminear-ring or bi-biseminear-ring.

DEFINITION 1.8.49: Let (N, +, ®) be a binear-ring i.e. N = N; [J N, where N; [J/N; or
N> [J N such that (N;,+, ®) is a near-ring and (N,,+, ®) is a ring. The map {: N —
[0,1] is said to be a fuzzy bi near-ring if 4 = 4 [J &> where L) : N; — [0, 1] is a fuzzy
near-ring and [ : N> — [0,1] is a fuzzy ring; the ‘[’ is just only a notational
convenience.

Equivalently we can define [ restricted to N, is a fuzzy near-ring and U restricted to
N is a fuzzy ring where i = py U py = p; L . Here [ denotes the restriction

of fto Ny and Uy, denotes the restriction of U to No.

All notions as in case of fuzzy near-rings can be extended to fuzzy binear-rings in an
analogous way using appropriately the fuzzy near-ring concept and the fuzzy ring
concept. However we will be defining in the later chapters the concept of
Smarandache fuzzy binear-rings and their properties.

1.9 Fuzzy vector spaces and fuzzy bivector spaces

In this section we introduce the concept of fuzzy bivector spaces and recall the
definition and properties of fuzzy vector spaces. The study of fuzzy vector spaces
started as early as 1977; but till date the study of fuzzy bivector spaces is absent.

For more about fuzzy vector spaces refer [75, 79, 91, 92, 96, 101].

Throughout this section V denotes a vector space over a field F. A fuzzy subset of a
non-empty set S is a function from S into [0, 1]. Let A denote a fuzzy subspace of V
over a fuzzy subfield K of F and let X denote a fuzzy subset of V such that X [J A.
Let (X) denote the intersection of all fuzzy subspaces of V over K that contain X and
are contained in A.

DEFINITION 1.9.1:

i. A fuzzy subset K of F is a fuzzy subfield of F, if K (1) = I and for all ¢, d [JF,
K (c—d) 2min {K(c), K (d)} and K(cd ) 2min { K( c), K (d)} where d Z 0.

ii. A fuzzy subset A of V is a fuzzy subspace over a fuzzy subfield K of F, if A(0) >
0 and for all x, y [JV and for all c [JF, A (x —y) 2min {A(x), A(y)} and A(cx)
2>min {K(c ), A(x)}. If K is a fuzzy subfield of F and if x [JF, x Z 0, then K(0)
=K(l) 2K(x) = K(-x) = K(+ x ).

In the following we let L denote the set of all fuzzy subfields of F and let A denote
the set of all fuzzy subspaces of V over K [J L.
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If A and B are fuzzy subsets of V then A [1 B means A(x) < B(x) for all x [ A. For
0<st<l,let Ac={x0OV]A®X) =>t}.

THEOREM 1.9.1: Let A be a fuzzy subset of V and let s, t [JIm(A).

Then
i. s<tifandonlyifAs/[JA,,
ii. s=tifandonlyifAs=A;.

Proof: It is a matter of routine hence left for the reader as an exercise.

If A O Ay for every fuzzy subfield K' of K. For S a subset of F, we let &s denote the
characteristic function of S.

THEOREM 1.9.2: Let A [/ As_. Then for all t such that 0 <t <A(0). A, is a subspace of
V.

Proof: Straightforward hence left for the reader as an exercise.

THEOREM 1.9.3: Let A be a fuzzy subset of V. If A, is a subspace of V for all t [J
Im(4), then 4 ] 4.

Proof: Proof is a matter of routine and the reader is expected to prove. If A is a fuzzy
subspace of V, then A; is called a level subspace of V where 0 <t < A(0).

THEOREM 1.94: Let V; [V, [J ...[0V; [J ... be a strictly ascending chain of
subspaces of V. Define the fuzzy subset A of V by A(x) = t;, if x [WV; \ Vi_; where t; >
tivifori=1,2,...and Vy = @and A(x) = OZ'fxDV\QIVi. Then AU A .

Proof: Let ¢ O F. If xOV\ @1 V. then A(cx) 2 0 = A(x). Suppose that x [ Vi \ Vi 1.
Then cx [ Vj, thus A (cx) 2 t; = A(X) =2 min {&F (¢ ), A(X)}.

THEOREM 1.9.5: Let V=V, [JV, [J...[0V; [J ... be a strictly descending chain of
subspaces of V. Define the fuzzy subset A of V by A(x) = ti; if x[J Vi1 \ Vi where t;; <
ti<lfori=12 ...,and A(x) = 1 z'fxDAr_lei. Then ADAJF.

Proof: Let c L F. If x DEVi then c x DEVi and so A(cx) =1 = min {0 (c), A(X)}.

Suppose that x O Vi; \ Vi. Then cx O Vi thus A(cx) = t;; = A(X) = min {0 (c),
AX)}. If A O Ak n Ag for K, K' [0 L then Im (A) is fixed no matter whether we
consider A in Ak or A in Ak

Now using all the above results the following theorem can be proved which is left as
an exercise for the reader.
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THEOREM 1.9.6: V' is finite dimensional over F if and only if every AU As_is finite

valued.

The following condition which is given as the theorem is also assigned for the reader
to prove.

THEOREM 1.9.7: Let S be a non empty subset of V. Then S is a subspace of V if and
only if & U045 .

Now we proceed onto recall the concept of fuzzy spanning.

DEFINITION 1.9.2: Let A;, Az, ..., Ay be fuzzy subsets of V and let K be a fuzzy subset
of F.

i. Define the fuzzy subset A; + ... + A, on V by the following: for all x [JV,
(A; +...+ Ay)(x) = sup {min {A;(x;1), ..., An (xn)} [k =x1 +...+x,, x; TV}

ii. Define the fuzzy subset K o A of V by for all x [JV, (K o A)(x) =
sup{min{K(c), Ay)} | ¢ JF,y [JV,x=cy}.

DEFINITION 1.9.3: Let S be a set x [7S and 0 <A < 1. Define the fuzzy subset x, of S
byxy(y) =Aify=xandx,(y) =0ify Zx. x,is called a fuzzy singleton.

THEOREM 1.9.8: Let A be a fuzzy subset of V and let K be a fuzzy subset of F. Let d [/
Fand x [JV. Suppose that 0 s, A <1.

Then forall z [JV.

i. (dyoA)(z) =min {,u, A [ézj}zfd Z0.
ii. (0y0A) (z) =sup {min{ Ay)}y JV}ifz=0.
iii. (Koxy) (z) =sup {min{K(c), A} |c UF,z=cx}ifx Z0andz [JS, (x); 0
ifx Z0 and z [JSy(x).

iv. (K 00,)(z) =sup {min{K(c), A} Jc JF}ifz=0, (Ko 0x)(z) =0ifz Z0.
Proof: Follows by simple and routine work.
THEOREM 1.9.9: Letc, d [JF, x, y [JVand 0 <k, A, 4, v <1.
Then,
dy 0 x3 = (dx)min u, 1 XA+ Yo = (X T Y)min A v)» A0 X3+ Cx 0 Yy = (AX + CY)mingu, A k, vy,
Proof: Left for the reader to refer [75].

The following theorem is also expected to be proved by the reader or refer [75].

THEOREM 1.9.10: Let A [/ Ak and let B, C be fuzzy subsets of V. Let b, c [JF. If B [JA
and C [JA then byo B+ Cyo C [JA where 0 < 4 <K (b) and 0 v <K (c).
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DEFINITION 1.9.4: Let {A; [1 []1} be a non empty collection of fuzzy subsets of V.
Then the fuzzy subset [\ A, of V is defined by the following; for all x [JV
a7

[Q[Aij(x) =inf{4,(x)]i0 1}

THEOREM 1.9.11: If {A; |A; [J Ak, i[J1} is non empty then (1 A [J Ak

a7

Proof: Let ¢ JF and x U V. Then
[n Aij (cx) =inf {A,(cx)| 10} 2 inf {min{K(c), A,(x)}| 01}

= either K(c) or inf{A; (x)[h LI I}.

Hence

[ﬂAij(cx) Zmin{K(c),Q[A(x)}.

a7

DEFINITION 1.9.5: Let A[J Ak and let X be a fuzzy subset of V such that X [JA. Let (X)
denote the intersection of all fuzzy subspaces of V (over K) that contain X and are
contained in A. Then (X) is called the fuzzy subspace of A, fuzzily spanned (or
generated) by X.

THEOREM 1.9.12: Let A/ Ak and let X be a fuzzy subset of V such that X [JA. Define
the fuzzy subset S of V by the following; for all x [V,

Sx) = sup {(Zciﬂioxmij(xﬂ UF,x,0V,K(c,)=H,,
i=1

X(x;)=A,i=12,---,n,n21}. Then (X) =Sand S [JAx.
Proof: Follows by routine calculations. For proof refer [75].

Now we proceed on to define the notion of fuzzy freeness. Let { denote a set of fuzzy
singletons of V such that x, , xx[] {, then A =k > 0. Define the fuzzy subset X({) of V
by the following; for all x 0 V, X (¢) (x) = A if x, U ¢, and X({)(x) = 0, otherwise.
Define ({) = (X(()). Let X be a fuzzy subset of V. Define {((X) = {x) | x OV, A =
X(x) > 0}. Then X ( (x)) = X and ¢ X({)) = C. If there are only a finite number of x)
[ ¢, with A >0 we call ( finite. If X (x) > 0 for only a finite number of x [I X, we call
X finite. Clearly ( is finite if and only if X () is finite and X is finite if and only if
((X) is finite. For x O V let X \ x denote the fuzzy subset of V defined by the
following; forally OV let (X \x) (y) =X (y) ify #x and (X \ x) (y) =0 ify =x.
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DEFINITION 1.9.6: Let A[J Ak and let X be a fuzzy subset of V such that X [JA. Then X
is called a fuzzy system of generators of A over K if (X) = A. X is said to be fuzzy free
over K if for all x) [JX where A = X (x), xa [J (X \x). Xis said to be a fuzzy basis for
A if X is a fuzzy system of generators of A and X is fuzzy free. Let { denote a set of
fuzzy singletons of V such that if x), xx [J{ then A =k and x) [JA. Then {is called a
fuzzy singleton system of generators of A over K. if ({ )= A. {is said to be fuzzy free
over K, if for all xy [7{, x) [J({\ {xp}). {is said to be a fuzzy basis of singletons for A
if {is a fuzzy singleton system of generators of A and { is fuzzy free.

THEOREM 1.9.13: Suppose that A [JAx. Then

i. K isasubfield of F.
ii. A isasubspace of Vover K .

Proof: The work is assigned to the reader as exercise.

THEOREM 1.9.14: Let A/ Ak and let ¢ U {x/, ‘ x0A4,0<A< A(x)} be such that of

xp xXx [ then A = kand let x = {x | xy [J{ }. Suppose inf {k(c) | ¢ [JF} =sup {A(x) |
x [V \{(0)})}. Then {is fuzzy free over k if and only if x is linearly independent over
F.

Proof: 1t is a matter of routine [75].

THEOREM 1.9.15: Let A/ A;. Let ¢ = {x/, ‘ x0A4,0<A< A(x)} be such that if x,, xi

[J{then A =k and X = {x | xy [J{}. Suppose inf {k(c) | ¢ [JF} =sup {A(x) | x [TV |
{0}}. Then ¢ is maximally fuzzy free in A over k if and only if X is a basis for A" over
k.

Proof: Using the fact if A(x) =0 for all x 1 V \ {0} then the result holds with  and X
empty.

Suppose {0} O A". Then k™ = f. Suppose  is maximal fuzzy free, then X is linearly
independent over F. Using earlier theorems we get with simple calculations that { is
maximal.

The following is a simple consequence of the above theorem.

THEOREM 1.9.16: Let A [] Ay. Suppose that inf {k(c) | ¢ [JF} 2sup {A(x) | x [JV '\
{0}}. Then A has maximally fuzzy free sets over k of fuzzy singletons of V and every
such set has the same cardinality.

The following theorem gives condition for the existence of fuzzy basis.

THEOREM 1.9.17: Let A [JAy. Suppose inf {k(c) | c [JF} 2sup {A(x) | x LTV {0} If
A is finite valued, then A has a fuzzy basis over k.

Proof: Matter of routine, hence left for the reader as an exercise.
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The following results are immediate consequence of the above Theorem hence it is
left for the reader to prove.

THEOREM 1.9.18: Let A/[J Ay . Suppose that inf {k(c) | ¢ [JF} = sup A(x) such that
x OV {0} If Vis finite dimensional, then A has a fuzzy basis over k.

THEOREM 1.9.19: Let A/ Ax. Suppose inf {k(c) [Jc [JF} =sup {A(x) [k TV \{0}}. If
A is finitely fuzzily generated over k, then A has a fuzzy basis over k.

Now we define fuzzy linearly independent set.

DEFINITION 1.9.7: Let A7 Ay and let { [ {xp | x [JA", A SA4 (x)} be such that if x;, xi
[J¢, then A = k. Then { is said to fuzzy linearly independent over k if and only if for

every finite subset ixh] ..... Xp, } of {, whenever {ch, 0 xmvj (x) =0 for all x [J
n =1 '

V\ {0} where c; JF, 0 < l; <K(c;)) fori=1,2, ...,n}thenc; =c;= ... =c, = 0.

Finally we recall the following theorem with proof.

THEOREM 1.9.20: Let A[JAx and let { O {x, | x A", 0 < A S A(x)} be such that if x,,
xxk I, then A = K and let Y = (x | xa [7{}. Then {is fuzzy linearly independent over
K if and only if x is linearly independent over K .

Proof: Suppose ( is fuzzy linearly independent over K. Suppose

0= Z:cixiwhereci OK andx, 0x,i=1,2,...,n.

i=1

Let A =min {{, ..., Ko, A1, ..., An} Where 0 < gy £ K (¢i) and 0 < A; £ A(xy) fori=1,
2, ...,n. Then for allx 1 V\ {0},

0-($e) 0= o
i=l A i=1
Hence ¢; =c; = ...= ¢, = 0. Conversely suppose X is linearly independent over K. Let

x7, -+, X,, 0O Suppose that for all x 0 V \ {0}, 0 = Z(Ciu, ° Xihl)(X) then 0 =

A’ Ay

[Zcixij (x). Since A > 0, Z:cixi =0. Hence ¢; = ¢; =...= ¢, = 0. Hence the
i=1 A i=1
theorem.

Now we proceed on to define the notion of fuzzy algebraically independent. Let X be
a fuzzy subset of F, we let @ (X) = {x; [t = X(x) > 0}. If @ is a set of fuzzy singletons
such that x;, x; [J @ implies t = s, then we let X (@) denote the fuzzy subset of F
defined by (X(@)) (x) =t if x, J @ and (X(@)) (x) = 0 if x, [J . Clearly X(@(X)) = X
and @ (X(®)) =@. We leti=(iy, ..., 1n). If F is a field F(F) denotes the set of all fuzzy
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subfields of F. F(A) will denote the set of all fuzzy subsets X of F such that X J A
and F(A/B) the set of all fuzzy subfields C of F such that B J C [J A.

We in the forthcoming definitions and results assume A, B I F(F) and B [ A .

Now we proceed on to recall the definitions as given by [91]. The following notation
and definition is recalled for they are used in the following results.

DEFINITION 1.9.8: Let A, B [/F(R), B [J A, and let X be a fuzzy subset of R such that
X [JA. Define B[X] to be the intersection of all C [JF(R) such that B [J X [JC [JA.
For A, B [JF(F), B [JA and let X be a fuzzy subset of F such that X [JA. Define B(X)
to be the intersection of all C [J F(F) such that B [J X [JC [JA. B [X] is a fuzzy
subring of R and B [X] is a fuzzy subfield of F.

DEFINITION 1.9.9: Let X [JF(A). Then X (or @ (X)) is said to be fuzzy algebraically

independent over B if and only if for all (x; Dy (X e U@ (X ), for all by, b, ...,

b, LJF forall s [J(0, 1], Z(bi)u (Xi)t =.0, where B(b;) 2u;and X (x;) =t;, (j =1, 2,
., n) implies b; = 0 for all i.

If C; [J A is fuzzy algebraically independent over B, then C, is also said to be fuzzy
transcendental over B.

THEOREM 1.9.21: Let X [/ F(A). Then X is fuzzy algebraically independent over B if
and only if for all s [J(0, 1], Xs is algebraically independent over Bs.

Proof: Suppose that X is fuzzy algebraically independent over B. Let s [ (0, 1],
Suppose that 0 = Z:bi(xl)il -+(x,)" where b; 0 Byand x; X, (j=1, 2, ..., n). Then

05 = Z:(bi)S (x,)" -(x,),™ and since B(b;) = s and X (xj) 2 s, bj = 0 for all 1. Thus
X, 1s algebraically independent over Bs. Conversely suppose that X, is algebraically
independent over By for all s [ (0, 1]. Suppose that 0s = Z:(bi)ui (xi)t where B(b;) 2
u; and X(xj) = ti. Then min {mini{u;}, min {t; / j =1, 2, ..., n}} = s and
Z:bi(xl)il ...(Xn)in =0. Thus B (bi)) =2 s andX(x;) = s and so b; [J Bg and x; U X..
Hence b; = 0 for all i. Thus X is fuzzy algebraically independent over B.

The following theorem can also be a proved as a matter of routine.

THEOREM 1. 9 22: Let X [/F(A). Then X is fuzzy algebrazcally independent over B if
and only if X' is algebraically independent over B,

THEOREM 1.9.23: Let X [JF(A).

i Forallt [7(0, 1], B, (X;) [/B(X);.
ii. If B(X) has the sup property then for all t [J(0, 1],

B, (X) =B(X):.
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Proof:

i. Let z [ B¢ (Xy), then (B(X))(z) 2 t follows easily from properties of fuzzy sets.
ii. Let z [J B(X):.. Then (B(X))(z) 2t and since B(X) has the sup property, z has a
representation as an element of B; (X;) by results on fuzzy sets. Thus z [ B; (Xy).

THEOREM 1.9.24: Let X [7F(A). Then B(X)" =B (X ) and B[X ] =B  [X'].

Proof: x 0 B(X)" if and only if (B(X)) (x) > 0 if and only if x O B"(X"). Similarly we
can prove B[X]" = B" [X']. Let X O F(A). We say that X is maximally fuzzy
algebraically independent over B if and only if X is fuzzy algebraically independent
over B and there does not exist Y U F(A) such that Y is fuzzy algebraically
independent over Band X J Y.

THEOREM 1.9.25: Let X [/F(A). Suppose for all x [/ X " we haveng) =A(x). Then X
is maximally [uzzy algebraically independent over B if and only if X is transcendence
basis of A /B .

Proof: By earlier results and routine calculations the result can be arrived.

The following theorem is a direct consequence of the above result. Hence the reader is
expected to prove the result.

THEOREM 1.9.26: A/B has maximal fuzzy algebraically independent fuzzy subsets of
F and the cardinality of each is unique.

First we give some notational conventions using which we define the concept of fuzzy
transcendental and neutral.

Let ¢ L A, t > 0. Suppose that c; is not fuzzy algebraically independent over B. Then
there exists n [J N, there exist b; [ B*, s, ui U (0, 1] such that B(bj)) =u; fori=0, 1, ...,

n and such that 0s = Z(bi)ul (c,)' with not all b;= 0. If the only such s that exists for
i=1

which such an equation holds are strictly less than t, then C; is not fuzzy algebraic

over B.

DEFINITION 1.9.10: Let ¢, [/ A, with t >0 Then ¢, is called fuzzy algebraical over B if
and only if ¢, is not fuzzy transcendental over B. If every such c, is fuzzy algebraical
over B, then A/B is called fuzzy algebraical;, otherwise A/B is called fuzzy
transcendental.

DEFINITION 1.9.11: Let ¢, [J A, with t >0 If there exists s [/ (0, t] such that c¢; [JB,
then c, is called neutral over B. If every such c, is neutral over B, then A/B is called
neutral.

Clearly A/B is neutral if and only if A" = B". Suppose that for ¢ JF, t = A (¢ ) >B(c )
=5 >0. Then ¢, + (-¢c5) = 0, so that ¢, is fuzzy algebraical over B. In fact we can think
of ¢; as being a root of a first degree polynomial in x, x + (—cs) with ¢ [JB.
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THEOREM 1.9.27: A/B is fuzzy algebraical if and only if A/ B is algebraic.

Proof: Suppose that A/B is fuzzy algebraical. Let ¢ [J A’". Then there exist n ON, K O
F not all 0, there exist s, Uy L1 [0, 1] such that

(Kn)un (Ct)n toeet (Kl)u1 (Ct) +(KO)UO = Os wheres <t = A(C) and (Ki)ui UB

fori=0,1,2,...,n. Thus Ky c"+ ... +Kjc+Ky=0and K, OB  fori=0, 1,2, ..., n.
That is ¢ is algebraic over B". Conversely, suppose that A"/ B” is algebraic. Let ¢, 0 A
with t > 0. Then ¢ 0 A" hence there exist n [J N, and K; [J B*, Kinotall0,1=0,1, ...,
n such that K, ¢" + ...+ K;c + K, = 0. Thus

(K)o, (€)" - +(Ky), (¢) +(Ky),, =0,

where B (Kj) =v;fori=0, 1, 2, ..., n. and s = min {t, U,, Uj, ..., Uy}. Hence c; is fuzzy
algebraical over B.

The following theorem is an easy consequence of the earlier theorem.

THEOREM 1.9.28: Let X [/ F(A). Then B(X) = B[X] if and only if B(X)/B is fuzzy
algebraical.

THEOREM 1.9.29: Let C [/ F (A/B). Then A/B is fuzzy algebraical if and only if A/C
and C/B are fuzzy algebraical.

Proof: A’/B’ is algebraic if and only if A/C" and C'/B” are algebraic.

DEFINITION 1.9.12: Let ¢, [/ A with t >0. Suppose that c is a root of a polynomial p(x)
= K" + ...+ Kix + Ky over B". We say that ¢, is fuzzy algebraical with respect to

p(x) over B” if and only if 0, = Z(Ki Ju, (c;) for some v; [7(0, 1] where B (K;) = Ui
i=1

fori=20, 1, 2,* ..,nands <t Fors =t we say that c, is fuzzy algebraic with respect

to p(x) over B .

THEOREM 1.9.30: Let K, b (7B, K #Z 0. If B(K) # B(b) then B(Kb) = min {B(K),
B(b)}.

Proof: Follows as an easy consequence hence left for the reader to prove.

THEOREM 1.9.31: Let ¢, [JA with t > 0. Suppose that c is algebraic over B". Let p(x)
be the minimal polynomial of ¢ over B". If ¢; fuzzy algebraical (not fuzzy algebraic)
with respect to p(x) then c, is fuzzy algebraical (not fuzzy algebraic) with respect to
every irreducible polynomial over B* which has ¢ as a root.

Proof: Let p(x) = x" + ...+ K;x + K,. Then there exists K; such that 0 <B (K;) <t. Let

q (x) be any irreducible polynomial over B’ having ¢ as a root. Then q(x) = Kp(x) for
some K [0 B”. Suppose that B (K) # B (K;). Then 0 < B (KK;) = B(K;) < t suppose that
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B(K) = B(Kj), then 0 < B (K) <t and the desired result follows in this case since K is
the leading coefficient of q (x).

The following result is a direct consequence of the definitions and a matter of routine.

THEOREM 1.9.32: Define the fuzzy subset B™ of F by B™ (x) = A(x) if x [JB* and
B"(x) = 0 if x [JB" Then B" [JF (A/B). Suppose that inf {4 (x) | x JB"} 2sup {A(x) |
x OB}, If A/B is fuzzy algebraical then A/B™ is fuzzy algebraic.

Now we proceed on to define fuzzy transcendence basis.

DEFINITION 1.9.13: Let X [/ F (A). Then X is called a fuzzy transcendence basis of
A/B if and only if X is fuzzy algebraically independent over B and A/B (X) is fuzzy
algebraical.

THEOREM 1.9.33: A/B has a fuzzy transcendence basis and the cardinality of a fuzzy
transceng’ence basis is unique. In fa*ct X is a fuzzy transcendence basis of A/B if and
only if X is a transcendence of A /B .

Proof: Follows easily by the very definition.
Now we proceed on to define fuzzy separable and fuzzy pure inseparable.

DEFINITION 1.9.14: Suppose that ¢, [J A with t > 0. Then ¢, is said to be fuzzy pure
inseparable over B if and only if there exists e [/ N [] {0}, such that b,, b; [J B¥*

where s, Uy, U; [J(0, 1]. B (b;) = Ui fori =0, I such that (KI)U[(c,)”e +(K,), =0,

A/B is called fuzzy pure inseparable if and only if every ¢, [ A with t >0 is fuzzy pure
inseparable over B. ¢, is said to be fuzzy separable algebraical over B if and only if
there exists n [JN, such that b; [JB*, there exist s, U; [J(0, 1], B(b;) = U; fori =20, I,

2, ..., nsuch that 0, = Z(K,- o, (c,) and the polynomial ZKixi (in x) is separable
i=0

over B". A/B is called fuzzy separable algebraical if and only if every ¢; [JA with t >0

is fuzzy separable algebraical over B.

Now ¢; [JA (t >0) in neutral over B if and only if ¢, is fuzzy pure inseparable and
fuzzy separable algebraical over B, yet in either event it is not necessarily the case

that ¢, [JB. If ¢, is fuzzy pure inseparable and fuzzy separable algebraic over B, then
Cy [/B.

The following theorems are a matter of routine and the proofs can be easily supplied
by an innovative reader.

THEOREM 1.9.34:

i. A/Bis fuzzy pure inseparable if and only if A"/B’ is pitrely inseparable.
ii. A/Bis fuzzy separable algebraical if and only if A /B is separable algebraic.
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THEOREM 1.9.35: Let C [/F(A/B),

i A/B is fuzzy pure inseparable if and only if A/C and C/B are fuzzy pure
inseparable.

ii. A/B is fuzzy separable algebraical if and only if A/C and C/B are fuzzy
separable algebraical.

THEOREM 1.9.36: Let ¢, [JA with t > 0. If ¢, is fuzzy algebraical (pure inseparable or
separable algebraical) over B, then B (c;) /B is fuzzy algebraical (pure inseparable or
separable algebraical).

Proof: Define the fuzzy subset ¢ of F by ¢(x) = A(x) if x 0 B (c;) and c(x) = 0 other
wise. Then ¢ = B (¢)” = B" ((c)) = B (c) and B'(c) / B" i.e. ¢ / B" is either
algebraic or purely inseparable or separable algebraic according as ¢ has these
properties over B”,

Using earlier result the proof of the theorem is a mater or routine.
Now we proceed on to define fuzzy separating transcendence basis of A / B.

DEFINITION 1.9.15: Let X [JF (A). Then X is called a fuzzy separating transcendence
basis of A/ B if and only if X is fuzzy algebraically independent over B and A / B(X) is
fuzzy separable algebraical.

The following two theorems are also a matter of routine hence left for the reader as an
exercise.

THEOREM 1.9.37: A/B has a fuzzy separating transcendence basis if and only if A'/B’
has a separating transcend*ence basis. In fact X is a fuzzy separating tfanscendence
basis of A/B if and only if X is a separating transcendence basis of A /B .

THEOREM 1.9.38:

i B has a fuzzy algebraical (pure inseparable or separable algebraical)
closure in A. In fact BY(BY, B¥) is the fuzzy algebraical pure inseparable,

separable algebraical closure of B in A if and only if B (B(’)*,B(S)* ) is
algebraic (purely inseparable separable algebraic) closure of B in Ai.e.
B(c‘)* :B*(C)(B(D* = R'® B(Sf :B*(S))

ii. B [7B” BY and B“ / BY is fuzzy pure inseparable .
The results are as a matter of routine.

DEFINITION 1.9.16: A fuzzy vector space (V, 1)) or Ny is an ordinary vector space V
withamap n:V - [0, 1] satisfying the following conditions.

i N (a+b)2min{n(a), n b))
ii. n(=a) = n(a).
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iii. no) =1
iv. n (ra) = nN(a) for all a, b [JV and r [JF where F is a field.

DEFINITION 1.9.17: For an arbitrary fuzzy vector space Iy and its vector subspace
Nw, the fuzzy vector space (V/W, ) or Nyw determined by

1 ifo aw
nw+ws= sup nu+w) otherwise

Wl
is called the fuzzy quotient vector space, Ny by Nw.

DEFINITION 1.9.18: For an arbitrary fuzzy vector space Ny and its fuzzy vector
subspace Ny, the fuzzy quotient space of Ny by N is determined by

1 vaw
VW)= inf nw+e) vow
W

1t is denoted by /7% .

Now similar to vector spaces are the notions of modules. We recall the definition and
some of the properties of fuzzy modules.

DEFINITION 1.9.19: 4 fuzzy R-module Ny is an ordinary module M with a map 1) : M
— [0, 1] satisfying the following conditions:

i. N(a+b)=2min{ N, nhb);.
i. 1] (=a) = n(a)
ii. n) =1
iv. N (ra) 2n(a)foralla, b [JV andr [JR where R is a
commutative ring with 1.

DEFINITION 1.9.20: For an arbitrary fuzzy module Ny and its fuzzy module (M/N, 1})
or My determined by

1 if mUN

7 (m+N) = sup n(m+n), otherwise

nON

is called the fuzzy quotient module of Ny by N.

THEOREM 1.9.39: Let D be an R-module and N be its submodule. Then the map 1 :
D/N - [0, 1] given by

n@d+N=suphn+n

nON
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determines a fuzzy R-module (D/N, 1}).

Proof: Please refer [103].

DEFINITION 1.9.21: For an arbitrary fuzzy module np and its fuzzy submodule Ny the
fuzzy module 1} p given by the above theorem is called the fuzzy quotient module of

o by .

DEFINITION 1.9.22: For a fuzzy R-module np (note R-module D is divisible if for any
d [JD and v [JR, r Z 0 there exists some d' [ D with vrd' = d) and its arbitrary fuzzy

submodule Ny we can define fuzzy quotient module 1 p.
Its structure is in fact very complicated refer [102].

DEFINITION 1.9.23: For an arbitrary fuzzy divisible module np and its fuzzy prime
submodule Ny, the fuzzy quotient module of Np by Ny is given by

I dON
T@N =1infnd+n), dON

nON
1t is denoted 1] p)w.

Let a vector space V be over R, where R is a field or a division ring. For any Vv [JV
and r OOR, r 0 we choose V =r"'v and then rV' = v. By definition V is a divisible
module. Further let W be a vector subspace of V. For any V [JW andr [JR; r Z0, r V
OW implies ¥ (r v) Or W= W i.e. v OW. This is contrary to the hypothesis. Hence
rv [JW and so W is prime submodule.

For any fuzzy module iy we denote by

M,={aOM| n@ 2p, p 0]0, 1]} and
M? ={a OM| n@ > p, p J[0, 1)}

1t is well known that M,, is called p-level set of M. Moreover if M, is a submodule of M
and then we obtain a fuzzy submodule M, for every p [1]0, 1]. It is easy to verify

that M* is a submodule of M as well as we call M* strong p-level set of M.

The following three results are given without proof. The interested reader is requested
to refer [103].

THEOREM 1.9.40: Let 1y be a fuzzy module and N = M, (a non zero p-level set of M).

Forevery C;={a UM | n (a) =t t [J]0, p)} there exists some index set I (finite or
infinite) such that
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C,=\Jca, + N)with (a,+N)n(a,+N)=@(i#j).

a7

THEOREM 1.9.41: Let 1y be an arbitrary fuzzy module over any ring R and N = Mp
be its p-level submodule. Then the map 1° ; M — [0, 1] given by

1 alN

7@ = {n(a) alN

defines a fuzzy module (M, 1) or Il v

THEOREM 1.9.42: Let M be an arbitrary R-module over a ring R and N = M, be its p-
level submodule. Then for any fuzzy module Ny the map f; M/N - [0, 1] given by

Aa+N) =sup n (@+n

nON
defines a fuzzy module.
Proof: Please refer [103].

DEFINITION 1.9.24: For an arbitrary fuzzy module Ny and its p-level fuzzy submodule
Ny (N = M,,) the fuzzy module fyy given 1 (a + N) = sup N (a + n) is called the

nON
fuzzy quotient module of Ny and Ny Especially we denote N; = {a [IMj (a) = 1}. It
is the fuzzy singular submodule of Ny

THEOREM 1.9.43: Let M be an arbitrary R-module over the ring R and Q = M” be its
strong p-level submodule then for any fuzzy module Ny, the map f: M/Q — [0, 1]
given by } (a +Q) =Sup n(a+q) defines a fuzzy module.

qtQ

Proof: Left for the reader to prove.

DEFINITION 1.9.25: For an arbitrary fuzzy module Ny and its strong p-level fuzzy
submodule Ny (Q = M?) the fuzzy module 1} wy given by fi: M/Q — [0, 1] such that

N (a+ Q) =sup n (a+ q) is called the fuzzy quotient module of My by No.

q00

For more about these please refer the 3 papers of [103].

1.10 Fuzzy semigroup and their properties

The study of fuzzy semigroups started in 1979. Several results have been obtained in
this direction. However to make our study most recent we recall some facts about
fuzzy semigroups from the result of [142, 143]. Researchers have studied many
classes of semigroups using fuzzy ideals. Here we recall most notions from [143].
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DEFINITION [54]: Let S be a non-empty set completely ordered by transitive,
irreflexive relation '<'. For all x, y [/S, exactly one relations x <y, x =y, y < x holds.

Fora, b [JS define

(a, b) = (x[JS/a<x<b}
[a, b) = (x[JS/asx<b}
(a, b] = x[JS/a<x<b}and
[a, b] = {(x[JS/as<x<b)

This notation we have used already we may use them as an algebraic structure viz.
semigroups whenever the situation demands.

Now we define a fuzzy semigroup.

DEFINITION 1.10.1: Let (S, ®) be a semigroup. A map u: S — [0, 1] is called a fuzzy
semigroup if [(x *y) = min {{4x), ()} for all x, y [JS.

From this definition we evolve the following. All algebraic structures viz. fuzzy
groups, fuzzy rings, fuzzy near-rings, fuzzy semirings are obviously fuzzy semigroups
as at least under one operation we have i : X — [0, 1], X an algebraic structure we
have p(x Oy) = min{Y(x), U(y)}. Lcan be some closed operation on X.

Let S denote a semigroup. A non-empty subset I of S is called a left-ideal of S if SI [/ 1.
1 is called a right ideal if IS [/1. I is said to be an ideal of S, if I is both a left and a
right ideal of S.

We call a non-empty subset L of S which is a left ideal of S to be prime if for any two
ideal A and B of S such that AB [JL, it implies that A [JL or B [JL. L is called quasi
prime if for any two left ideals L; and L; of S, LiL, [JL then L; [JL or L, [JL and L is
called weakly quasi prime if any one of the two left ideals of L; and L; of S such that L
[JL;, Lyand LiLy [JL we have L; = L or L, = L.

Let S be a semigroup. A function f from S to the unit interval [0, 1] is a fuzzy subset of
S. A semigroup S itself is a fuzzy subset of S such that S(x) = 1 for all x [JS denoted
by S. Let i and O be any two fuzzy subsets of S. Then the inclusion relation 4 [J O'is
defined by U(x) < Jx) for all x [7S. (1 — ) is a fuzzy subset of S defined for all x [7S.

(1— W) =1-lx), £ n dand U [J dare fuzzy subsets of S defined by (U n J(x) =

min{f(x), ox)}, (U [T I(x) = max{(x), dx)} for all x [7S. The product U * O is
defined as follows:

sup{minflucy). oz}
(H*I(x) =1 x==

0 if xis not expressible as x = yz

"' is an associative operation. We denote a fuzzy point of S by a where
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A xX=a

axx) = {

0 otherwise

For any fuzzy subset f of S it is obvious that = U a, . Let Ay be a fuzzy subset of S
a0 f

defined as follows:

A xOA4

0 otherwise

Then we have a fuzzy point a, of S denoted by M.

A fuzzy subset f of S is called a fuzzy left ideal of S'if S o f [/f and f'is called a fuzzy
right ideal of S if fo S LJf. If f is both a fuzzy left and fuzzy right ideal then we call f a
fuzzy ideal of S. Equivalently if f(xy) > max{f(x), f(y)} for all x, y [JS.

THEOREM 1.10.1: Let f and g be fuzzy subsets of S. Then the following statements are
true:

i. fo(glh)=((og LJ(foh).
ii. fo(gnh=((og n(foh).
iii.  Iff1, f> are fuzzy subsets of S such thatf; [Jf, > [Jg. Thenfiof> [fog.
Proof: Straightforward.
THEOREM 1.10.2: Let ay be a fuzzy point of S. Then
i.  The fuzzy left ideal generated by a, denoted by L(a,), is for all x [,

A xOL(a
Lay(x) = ( .)
0 otherwise
where L(a) is a left ideal of S generated by a.
ii.  The fuzzy ideal generated by a,, denoted by (ay), is for all x [,

A xO(a)
0

otherwise

(ay(x) = {

where (a) is an ideal of S generated by a.

Proof: Left as an exercise for the reader.

THEOREM 1.10.3: Let ay be a fuzzy point of S. The following are true:
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A xO8aS

i. forallx [JS(SoayoS)(x)= )
0 otherwise.

~

i. (ayo by) = (ab)s »y for all fuzzy points a, and by, of S.
iii. (ay)=(ayJayoSlISoayllSoayol), La,) =a, [7S o a,.
iv. (ay)’ OSoasoS.

Proof: The above theorem is easily verified by using simple calculations.

THEOREM 1.10.4: Let A be a subset of S. Then for any A [7 (0, 1] the following
Statements are true

I AfAOAfB:AfAB
ii. ManMe=ANins
ii. M= Ja,

allA
v. SoAfys= A4
v. If A is an ideal (vight, left ideal) of S then My is a fuzzy ideal (fuzzy right, fuzzy
left ideal) of S.

Proof: Easy consequence.

DEFINITION 1.10.2: A fuzzy left ideal f is called prime if for any two fuzzy ideals f;
and f>, f1 o f> [J fimplies thatf; [J forf, [ f.

The following theorem can be proved as a matter of routine.

THEOREM 1.10.5: A fuzzy left ideal f of S is prime if and only if for any two fuzzy
points x,, y; [JS (rt > 0), x, o Soy,0S [J fimplies that x, [Jf or y, [Jf.

THEOREM 1.10.6: 4 left ideal L of S is prime if and only if f1 is a prime fuzzy left ideal
of S.

Proof: Follows as a matter of routine. The reader who is not able to prove kindly refer
[142, 143].

Now we proceed on to recall the definition of quasi prime ideals of semigroup S.
DEFINITION 1.10.3: 4 fuzzy left ideal f is called quasi prime if for any two fuzzy left
ideals f1 and f>; f1 o f> [J fimplies that f; [J fand f> [J f; f'is called quasi semiprime
if for any fuzzy left ideal g of S, & [J fimplies that g [J f.

Similar to the two theorems just stated we have the following two theorems.

THEOREM 1.10.7: A fuzzy left ideal f of S is quasi prime if and only if for any fuzzy
points x,, y; [JS (rt > 0), x, 0 S o y, L/f implies that x, [/f and y, [f.

THEOREM 1.10.8: 4 left ideal L of S is quasi prime if and only if f1 is a quasi prime
fuzzy left ideal of S.
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Now we proceed on to recall the definition of fuzzy m-systems.

DEFINITION 1.10.4: A fuzzy subset f of S is called fuzzy m-system if for any t, s [J
[0, 1) and a, b [JS, f(a) > t, f(b) > s imply that there exists an element x []S such that
flaxb) > t Us.

THEOREM 1.10.9: Let M be a subset of S. Then M is a m-system of S if and only if fi
is a fuzzy m-system.

Proof: For any t, s [J [0, 1) and a, b [J S if fiy(a) > t, fm(b) > s, then a, b [ M. By
hypothesis there exists an element x [J S such that axb [ M that is fy(axb) = 1. Thus
fm(axb) >t Us.

Conversely let a, b 1 M. Then fy(a) = fm(b) = 1. Thus for any t, s U [0, 1), fu(a) > t,
fm(b) > s which implies that there exists an element x [J S such that fy(axb) > s [Ib.
Therefore axb [1 M.

THEOREM 1.10.10: Let f be a fuzzy left ideal of S. Then f is quasi prime if and only if
1 —f'is a fuzzy m-system.

Proof: 1t is easily obtainable by routine calculations, hence left as an exercise for the
reader.

THEOREM 1.10.11: A fuzzy left ideal f is called weakly quasi prime if for any two
fuzzy left ideals {1 and f> such that f [/f; and f [Jf>and f; 0 f> [J fthen fi [ forf> [ f.

THEOREM 1.10.12: A4 left ideal L is weakly quasi prime if and only if f is weakly quasi
prime.

Proof: Please refer [143].

THEOREM 1.10.13: Let S be a commutative, f a fuzzy left ideal of S. Then the
following statements are equivalent.

i. fisprime.
ii.  fis quasi prime.

iii.  fis weakly quasi prime.

Proof: (1) = (ii) = (iii) is obvious. (iii)) = (i). Let f; o f; [J f for any two fuzzy ideals
fi and f; of S. Since S is commutative, so we have fis a fuzzy ideal of S and

GOHo(bOf O fiofOfiofdfofOf?
O f

THEOREM 1.10.14: Let f be a fuzzy left ideal of S. Then the following statements are
equivalent.

i. fis weakly quasi prime fuzzy left ideal of S
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ii. Forany fuzzyideals fi, > JSif (fi LUf) o (f2Lf) [J f thenf; [J forf> [ f.

iii. For any two fuzzy left ideals f1, f> [JSiff1 [J fandf;of> [J fthenf; =forf> [Jf.

iv. Forany two fuzzy ideals f, > [JS, if (fi [J f) of: [J fthenf; [J forfs [Jf.

v. For any two fuzzy points a,, b, [JS (rt > 0) if (a, [Jf) o S o (b, [/ f) LIf, then a, [Jf
or b, [JS.

Proof: Left for the reader to prove.

THEOREM 1.10.15: Let f be fuzzy left ideal of S and L be a fuzzy subset of S satisfying
that

i fnu=0.
ii. Foranya, b, [JU(a, Jf) oS, LJf) nuZ0.

If g is a maximal fuzzy left ideal of S with respect to containing fand g n { = 0. Then
g is a weakly quasiprime fuzzy left ideal of S.

Proof: Let f; and f, be a fuzzy left ideal of S such that g [1 f;, f; and fif; O g. If g fi
and g, [I f; then there exists a; [ f\ g, b, LI £, \ g, (1t > 0).

Thus g U g U L(ay) U fi, g U g O L(by) U £.
By hypothesis, we have

(g0L@) N puz0,(gdLb) n uz0.Letcy U(g L(ay) n pk>0),d U(g
U L(br) n p(1>0).

Then(cx U fH)oSo(dUHUEUHoSo (b UHUfoSohb OffiDSofUfoSo
£, 0 fo So flf o f, 1 g which contradicts with the fact that (cx J f) o So (d; U f) n
M # 0. Hence the claim.

Fuzzy ideals in i(f) and I(f)

Let f be a fuzzy left ideal of S, we define two fuzzy subsets of S, denoted by i(f) and
I(f) respectively as follows (LI x U S),

i(Hx) =0 {ta/x, Of, x, 0SOf ta O[O, 17
I(H(x) = Ofta/ fox, O, ta O[O, 1]}.

THEOREM 1.10.16: Let f be a left-ideal of S. Then i(f) is the largest fuzzy ideal of S
contained in f.

Proof: Left for the reader to prove.

THEOREM 1.10.17: Let S be a semigroup with an identity e and f a prime fuzzy left
ideal of S. If i(f) Z0 then i(f) is a quasi prime fuzzy ideal of S.
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Proof: Let a; and b, (tr > 0) be fuzzy points of S such that a; 0 S o b, [J i(f). Then (S o
a0S)o(Sob,0oS)Ti(f) UL

Since f is prime we have Soa,o SUforSob, oS U f SaySoa oS Uf Using
results we have S 0 a; 0 S [J i(f). Since S has an identity e so that a; = (eae), e 0 a; 0 &
JSoaro S Ui(e).

The following theorem is interesting.

THEOREM 1.10.18: Let f be a fuzzy ideal of S. Then I(f) is the largest fuzzy
subsemigroup of S such that f'is a fuzzy ideal I(f).

Proof: Left as an exercise for the reader. Please refer [143].

THEOREM 1.10.19: Let S be a semigroup with an identity e, f a fuzzy left ideal of S but
not a fuzzy ideal of S. Then the following statements are equivalent.

i. fis aweakly quasi prime fuzzy left ideal of S.
ii. If f1is afuzzy left ideal of S such thatfo f; [J fthen f; [ f.
iii. For any fuzzy point a, [JS if fo (Soa,) [J f, then a, LJf.
iv. fis the largest fuzzy left ideal of S contained in I(f).
Proof: Refer [143].

Now we proceed on to define the concept of strongly semisimple semigroups.

DEFINITION 1.10.5: A4 semigroup S is called strongly semisimple if every left ideals of
S is idempotent. A left ideal f of a semigroup S is called idempotent if f = f o f that is

f1=f
The following result gives equivalent formulation of strongly semisimple semigroup.
THEOREM 1.10.20: For a semigroup S the following conditions are equivalent.

i.  Sisstrongly semisimple.
ii. ForanyalJS, alJ/SaSa.

Proof: For any a [ S, since S is strongly semisimple we have L(a) = L(a)>. Thus L(a)

= L(a)4. Since L(a)’ = (a O Sa)(a O Sa) 0 Sa O SaSa then a 0 L(a) = L(a)* O (Sa O
SaSa), (Sa [] SaSa) [] SaSa.

Conversely let L be any left ideal of S. For any a [ L by (ii) we have a [J SaSa [
L(a)L(a) U L% Thus L O L% Clearly L? O L. Therefore L*=L.

The following theorem characterizes the strongly semisimple semigroups by means of
fuzzy quasi prime left ideals of S.

THEOREM 1.10.21: Let S be a semigroup. Then the following statements are
equivalent.
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i. Every fuzzy left fuzzy ideal of S is idempotent.
ii. Forany two fuzzy left ideals f; and f> of S, fi1 N f> LIf1 0 f.
iii.  For any fuzzy point a, (7S, L(a,) [JL(a,)’
iv.  For any fuzzy point a, [JS, a, [JS o0 a, o0 S o a,.
v.  Every fuzzy left ideal of S is a quasi semiprime fuzzy left ideal of S.
vi. Every fuzzy left ideal of S is the intersection of all quasi prime fuzzy left
ideals of S containing it.

Proof: Since the proof is long, it is left for the reader to prove. The reader is advised
to refer [143].

THEOREM 1.10.22: 4 semigroup S is strongly semisimple if and only if every fuzzy left
ideal of S is idempotent.

Proof: Follows easily by the definitions and the theorem.

THEOREM 1.10.23: Let S be commutative. Then the fuzzy left ideals of S are quasi
prime if and only if they form a chain and S is strongly semisimple.

Proof: Let g and h be fuzzy left ideals of S. Since g o h is a fuzzy left ideal of S by
gohlOSohwehaveglgohUOSohUOhorhOgoh[goS [ g. Thus the fuzzy

left ideals of S form a chain. Moreover for any fuzzy left ideal f of S obviously f? I f.
Since fo fO £ we have f 0 £ so that f>=f.

Conversely let f, g be two fuzzy left ideals of S, and f o g [I h. Since the fuzzy left
ideals of S form a chain i.e. fJ gor g 0 fwe have f> DfogOhorg”’0fogOh
By hypothesis f I h or g [] h holds.

Let X be an alphabet with 1 < |X| < o and X'(X") is the semigroup (free monoid)
generated from X with the operation of adjoin. F stands for 'fuzzy', and F(x) denotes
the set of all fuzzy subsets of X. We denote the cardinality of A_ where A F(X") by

card A. 1 is the identity of X” and we let M be a monoid. For x, y [0 M, and a given
subset Y of a moniod M, we define

X'y={zOM/xz=y}
xy '={zOM/x=zy}

F(Y) = M'YM ' = {m 0O M/ such that there exists u, v J M, umv [ Y} and we use
the notation F(Y) to denote the complement of F(Y) in M i.e. F(Y) = M.F(Y).

We recall some definitions from [72].
DEFINITION 1.10.6: 4 word w [JX" is called unbordered if no proper non-empty left

factor of w is a right factor of w. In other words, w is unbordered if and only if w [J
uX " n X "uimplies u = 1.
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PROPOSITION 1.10.1: Let X be an alphabet with at least two letters for each word u [J
X, there exists v X such that uv is unbordered.

Proof: Obvious hence left for the reader to prove.

DEFINITION 1.10.7: Let A, B [JF(X"). For any x [7X"

[A(x) if B(x)=0
(A-B)(x) = {0 x>0
(AB)(x) = Sup min(A(y),B(z))

yz[]ﬁﬁ

yzOX

THEOREM [27]: An F-subset A [JF(X") of the free monoid X7is an F-code over X if
and only if for all n, m =1 and x;, ..., Xp, X1, ..., X'w JX" the condition xx3...x, =

X,X,..x, =x implies min(A(xy), ..., A(xn), AX"), ..., A(x'w)a = min ([n =m], [x'1, ...,
Xh] o [X1, o Xn]) AT ().

THEOREM [72]: 4 is a F-prefix if and only if for all x, x', u in X" x' = xu implies
min(A(x), A(x")) <[x =x"].

DEFINITION [72]: A function [y : F(X9 - Ry [0 {0} is called a Bernoulli F-
distribution on X“if

M4) = Y. 11(X)
A(x):O
xOXx

forany ¢ Z A OF(XY and (@ = 0 where [ : X7 = Ry is a Bernoulli distribution,
[Tyis positive if [1is positive.

Now we recall definitions from [72].

DEFINITION 1.10.8: Let M be a monoid and let P be a F subset of F(M). An element m
[IM is called A-completable for P if there exists u, v in M such that P(umv) > A where
A L]0, 1].

An 0-completable element for P is called fuzzy completable for P.

THEOREM 1.10.24: If m [/ M is A-completable = MmM n P; # @ if and only if m [J
F(P; )=M'PM;" where A (70, 1].

Proof: Obvious by the very definition.

140



DEFINITION 1.10.9: 4 word which is not A-completable for P is of course F(P; ) the
set F( Py) =M- F( P; ) of A-completable words is a two-sided ideal of M which is
disjoint from P,.

DEFINITION 1.10.10: For a F subset P of F(M), is called A-dense in M if all elements
of M are A-completable for P, A [7]0, 1].

THEOREM 1.10.25: P is A-dense in M if and only if F(Py)= M where A [J[0, 1].

Proof: Left as an exercise for the reader to prove.

DEFINITION 1.10.11: An F subset P of F(M) is called A-complete in M if the F-
submonoid generated by P is A-dense where A [7[0, 1]. P is called F-complete if it is
0-complete.

THEOREM 1.10.26:

i.  Every A-dense set is also A-complete and
ii.  An F-subset A of F(X") is A-complete if and only ifF(A;) = X7

Proof: Suppose that the F-subset P of F(M) is arbitrarily A-dense. Then for any m [J
M, there exists u, v [ M such that P(umv) > A. So P(umv) = P(umv) > A. Thus P"is A-
complete. (ii) implies, suppose that A of F(th is A-complete. Then A" is A-dense and

F( A;) = X" by earlier results. Suppose that F( A;) = X". Then for any m 0 X" we
have m O F(Ay) = XDAX X" that there exists u, v 0 X" such that A{umv) > A. Thus
A"is A-dense and hence A is A-complete.

The following theorem is interesting but the proof'is left for the reader.

THEOREM 1.10.27: Let A [T F(X") be an F-code. Let y [1X” be an unordered word
such that X3X“n X7= @ Let U = X7~ 47— X3X" Then the F-set B = A [J y(Uy)"is
an F-complete code.

THEOREM 1.10.28: Any maximal F-code is F-complete.

Proof: Let A 0 F(X") be an F-code, which is not F-complete. If card (X) = 1, then A =
@and A is not maximal. If card (X) = 2 consider a word u [ F(A%) . We know a word
v 0 X" such that y = uv is unbordered. We still have y O F(A%) (Ifytd F(A%) then
there exists x, z (1 X" such that 0 < A9(xyz) = A(xu(vz)) which contradicts the fact
that u [ F(A%). It follows that A UJ {(y, 1)} is an F-code and A is not a maximal F-
code.

Now we recall the concept of A-thin in a monoid.
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DEFINITION 1.10.12: An F-subset p [J F(M) of a monoid M that is not A-dense (A [J
[0, 1]) is called A-thin. P is called an F-thin set if P is O-thin.

THEOREM 1.10.29: If P is A-thin then there is at least one element m in M that is A-
incompletable for P. P = F(P;) ZM if and only if MmM n P; = @

Proof: Left for the reader.

THEOREM 1.10.30: Let M be a monoid and PQ [JF(M). Then the P [J Q is A-thin if
and only if P and Q are A-thin. If R is A-dense and P is A-thin, then R — P is A-dense.

Proof: 1t is a matter of routine, left for the reader as an exercise.

THEOREM 1.10.31: For A [7 [0, 1], any finite F-subset of X” is clearly A-thin.
Furthermore if A and B are A-thin subsets in F (X) then AB is a A-thin set.

Proof: Refer [72].

THEOREM 1.10.32: Let A [7F(X') be a A-thin and A-complete. A [7[0, 1]. Let w be a
A-incompletable word for A. Then

X7=Jd"'4;¢7 =D 4;G™
diD
glG

where G and D are the sets of right (respectively left) factors of w. Note that the set
D x G is finite.

Proof: Let z 0 X", Since A”is A-dense, the word wzw is A-completable for A", thus
for some u, v 0 X, A{uwzwt) > \. Since w is A-incompletable for A, for any m, n [J
X", A(mwn) < A. Thus w is not a factor of a word in A5.

Here there exists two factorizations w = g1d = gd; such that ug;, dzg, d;v U A;. This

shows that z=d' A} g

THEOREM 1.10.33: Let A be an F-thin and F-complete subset in F(X). For any
positive Bernoulli F-distribution [T on X7 we have 11 r(4) =1.

Proof: We have I'If(th = oo, Note that D x G is finite, then there exists a pair (d, g) [
D x G such that Me(d ™' 4, ¢ =Me(d'Ag ") = oo.

Now d(d'A% g O A" This implies M;(d)M¢ = (d'A% ™M (g) < My (AD). The
positivity of Mg shows that M¢(dg) # 0. Thus M¢(A") = 0. Now M¢(A") < ZI'I c(A™)

n>0

< ZI'If(A)n . Assuming lN¢(A) < 1, we get M(A") < 0. Thus M ¢(A) = 1.

n>0
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THEOREM 1.10.34: Let A [J F(X") be an F-thin set. For any positive Bernoulli F-
distribution on X”we have 1 £(4) < oo

Proof: Let w be a word that is not a factor of a word in Ay, w L F(Aj). Set n= |wl,

we haven>1. For 0 <i<n- 1, consider

A(x), if |x| =1 modn
Ai(x) = :
0, otherwise
It suffices to show that M(A;) is finite fori=0, 1,2, ..., n— 1 Now A; O X'(X" - w)"

Since X" — w is an F-code, we have

- w= (0, - w)f = S -, (w))E

k=0 k=0
The positivity of Mg implies M¢(w) > 0 and consequently M¢[(X" — w)H = /[N ¢(w)].
Thus

1
Me(w)’

Me(A; < Me(X) Me[(X* = w) ] =

nf(A)zn{UAiJsrilnf(Ai): L <o

i=0 i=0 r f(W)

THEOREM 1.10.35: Let A be an F-code over X. Then A is F-complete if and only if A
is F-dense or maximal.

Proof: The reader is expected to prove.

THEOREM 1.10.36: Let A [J F(X") be a finite maximal F-code. For any non-empty
subset Y of X, the F-code A n Y is a maximal F-code over Y. In particular, for each
letter a [7X, there is an integer n such that A(d") > 0.

Proof: Refer [72].
THEOREM 1.10.37: Let A be an F-thin code. The following conditions are equivalent.

i. A isamaximal F-code.

ii.  there exists a positive Bernoulli F-distribution such that [T(4) = 1.
iii. ~ for any positive Bernoulli F-distribution [Ty we have [T(A) = 1.
iv. Ais F-complete.

Proof: Easily follows from the earlier results.
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THEOREM 1.10.38: Let A be an F-thin subset of X” and let [y be a positive Bernoulli
F-distribution. Any two among the three following conditions imply the third.

i. Aisan F-code.
ii. [Tp4) =1
iii. Ais F-complete.

Proof: Refer [72].

The study of fuzzy topological semigroups are not introduced or studied in this book.
As the main aim of this book is fuzzy algebra and Smarandache fuzzy algebra we
have restrained ourselves from this study.

1.11 Fuzzy Sub-half groupoids and its generalizations

In this section we recall the definition of non-closed fuzzy algebraic structures,
namely fuzzy sub-halfgroupoids of a halfgroupoid, which is a generalization of a
fuzzy group. Here we give the necessary and sufficient condition for the two fuzzy
sub-halfgroupoids to have open fuzzy extension. Also we recall yet another new
notion of the concept called anti fuzzy sub halfgroupoid and anti fuzzy extension and
obtain some characterization theorems about them. We also recall the notion of
normalized fuzzy extension and maximal fuzzy extension and obtain a relation
between these two concepts.

A new notion called fuzzy extension chains for half groupoids is studied
characterization theorems for normalized fuzzy extension and maximal fuzzy
extension are obtained. Also a relationship between fuzzy translation extension and
fuzzy multiplication extension is given in this section.

We prove if Y is a fuzzy sub-halfgroupoid of a halfgroupoid P and a U [0, 1 —
sup{H(x) | x O P}] then { Mg [ s (Where S={y: 0 <y<a and yrational }) is an open
fuzzy extension chain for P. We prove that {pg,}m generates the halfgroupoid P if

and only if L is a constant map.

We denote by (P, *) the halfgroupoid where '} need not in general be closed or
associative binary operation.

DEFINITION 1.11.1: Let P be a halfgroupoid. A map 1 : P — [0, 1] is said to be a
fuzzy sub-halfgroupoid of the halfgroupoid P if ab = c in P implies [ (c ) 2min {{{(a) ,
H(b)} (Here ‘a b= c’in P means thata, b, c [/JP and a b = c).

We illustrate this by an example.

Example 1.11.1:
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under usual multiplication as a binary operation P is a half groupoid. Define p: P —
[0, 1] by p(x) = 1 — x for every x [ P. Now, it is easy to verify that [l is a fuzzy sub-
halfgroupoid of the halfgroupoid P.

THEOREM 1.11.1: Let [ be a fuzzy sub-halfgroupoid of a half groupoid P and a, b, c
[JP. Then i (c ) 2min {{{(a), Ub)} does not in general imply a b = c in P.

Proof: In the above example 1.11.1 we see U (¢ ) 2min {H(a), u(b)} butab # c for

1
75

a= b= andc=2i2.

[NSR

DEFINITION 1.11.2: Let W; and [ be any two fuzzy sub-halfgroupoids of a
halfgroupoid P such that

i.  Mi(x) Sl (x)for every x [JP.
ii. ifab=cinPand

M1 (c) = min {L (@), W (D)} then L (c) = min {|b (a), Wb (b)}. Then we say that [ is a

fuzzy extension of ;.

Example 1.11.2: Let

1 1 1 1
P= T 00 <10 <00
{20 2! 22 2“}

be a halfgroupoid with respect to usual multiplication.
Define (y, o : P - [0, 1] by My (x) =1 —x for every x J P and Ma(x) =1 — % for

every x [J P and it is easy to verify that Y, is a fuzzy extension of ;.

THEOREM 1.11.2: Let ; and &> be any two fuzzy sub-halfgroupoid of a halfgroupoid
P.If [ is a fuzzy extension of [ and a b = c in P with b (¢) = min {{& (a) , & (D)}
then it need not in general imply [ (c) = min {14 (@) , t; (b)}.

Proof: The proof is by an example. Take P and [, as in example 1.11.2. Define
M2: P - [0, 1] by Y2 (x) =1 for every x [l P. Now if we take

aZLOandelthen ab=——=—
2 2 2

It is easy to verify that [, (¢) = 1, min {[, (a), K2 (b)}= 1. Yy (¢c) = % and min {Y; (a),

M1 (b)}= 0. This proves that [y (¢) = min {{» (a), h2 (b)} and W; (¢) # min {Y; (a),
Hi(b)}. This completes the proof.
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DEFINITION 1.11.3: Let U and [ be any two fuzzy sub-halfgroupoids of a half
groupoid P. Then the fuzzy extension [ (of W) is said to be an open fuzzy extension of

Hifab =cinPand U (c) >min {{4 (a), ;i (b)} implies b (c) >min {Lb (a), W (D)}
L is said to be closed fuzzy extension of U if it is not an open fuzzy extension of L.

The following example illustrates it.

Example 1.11.3: Consider the halfgroupoid P = {~n,—(n-1), ...,-1,0, 1, ..., n}
under the usual multiplication. Define i, l2: P — [0, 1] by

% if x>0
My (x) = :
— ifx<0
4
and
1 if x>0
) =
Ha (x) % ifx<0

It is easy to check that [, is an open fuzzy extension of [;
THEOREM 1.11.3: Every open fuzzy extension is a fuzzy extension but not conversely.

Proof: Every open fuzzy extension is a fuzzy extension, directly follows from the
definitions of open fuzzy extension and fuzzy extension.

Converse is not true. This is explicit by the following example.

Example 1.11.4: Let P be any halfgroupoid and |, be any fuzzy sub-halfgroupoid of
the halfgroupoid P with o (Im (M;)) = 2. Then it is easy to verify that Y, : P — [0, 1]
given by [, (x) = 1 for every x [l P is a fuzzy extension of Y,. It is easily seen [, is
not an open fuzzy extension of ;.

DEFINITION 1.11.4: Let P be a half groupoid. A countable collection of fuzzy sub
halfgroupoids of the halfgroupoids P, denoted by {1, | i =10, 1, 2, 3, ...} or {,u} oy IS
called fuzzy extension chain for P if [+ is a fuzzy extension of [ fori =0, 1, 2, ... .

A fuzzy extension chain {,u} ., is said to generate P if Uy, =1 , (Here 1p denotes the
i=0
map U : P — [0, 1] such that 4 (x) = I for every x [JP).

A fuzzy extension chain {,u} ., 1s said to be a fuzzy extension chain for P if .+, is an

open fuzzy extension of lifori =0, 1, 2, ....
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Example 1.11.5: Let P be any halfgroupoid and Hi: P — [0, 1] be defined by
M. (x) 2% foreveryx JPandi=0,1,2,....
1+

Then we get a countable collection of fuzzy sub-halfgroupoids {u} —, of the

halfgroupoid P. If ab = ¢ in P and Wis+; (c), = min { Wis1(a) , Miri(b)} then we have
(c)=min {Y;(a), Ki(b)}. Hence Wi, is a fuzzy extension of p; foralli=0, 1, 2, ....

This establishes that {u} —, s a fuzzy extension chain for P.

Now we will prove {u} —, generates the halfgroupoid P. Let x be an arbitrary element
of the halfgroupoid P then we have

(Uouj ©  =sup e

i=0,1,2,...
= sup {—}
i=0,1,2,... i+1

=1 :]P(X)

That is (U uij (x) =1y, for every x [ P. Thus we have proved that U, =1, . This
=0 i=0

implies that {u} —, generates the half groupoid P.

THEOREM 1.11.4: Let ; and [ be any two fuzzy sub half groupoids of a half
groupoid P. If the fuzzy extension [ (of L) is an fuzzy extension of [ then [ (c) =
min {{; (@), f; (b)} if and only if [ (c) = min {1 (@), {2 (b)}.

We prove the converse of the contra positive method. Let ab = c in P and [ (c) #
min{H; (a), 2 (b)} to prove [, (¢) # min {H> (), Hi (b)}.

If ab=c in P and W; (¢) # min {Y,; (a), W (b)}, then we have Y, (c) > min {{; (a),
Hi(b)} (since Y, is a fuzzy subhalf-groupoid of the half groupoid P).

This implies that [, (c) > min {[, (a), M2 (b)} (since Y, is an open fuzzy extension of
M1). That is [, (¢) # min {l (a), M2 (b)}. Hence we have proved that if ab = c in P and
M1 (c) # min {Y; (a), Y (b)} then Uy (c) # min {H» (a), K2 (b)}. This proves that if the
fuzzy extension [, (of W;) is an open fuzzy extension of [; then p; (c) = min {|; (a),
M1 (b)} if and only if Yz (c) = min {{ (a), M2 (b)} for every ab=c in P.

We illustrate the above theorem by an example.
Example 1.11.6: Take Y, and Y, given by the half groupoid P = {—n;, — (n-1), ...,—1,

0,1,..., n} then it is easy to verify that if |, is an open fuzzy extension of [; then [;(c)
= min {{; (a), 4; (b)} if and only if Y, (¢) = min {W (a), Y2 (b)} for every ab=c in P.
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Since there are not many books on fuzzy algebra and especially no paper even on
fuzzy half groupoids we are forced to give all definitions and results about them.

Now we proceed on to give the definition of anti fuzzy extension.

DEFINITION 1.11.5: 4 fuzzy subset [l of a half groupoid P is said to be an anti-fuzzy
subhalfgroupoid of the half groupoid P if ab = c in P implies [i(c) <min{l(a), D)}

DEFINITION 1.11.6: Let U and [ be any two anti fuzzy subhalf-groupoids of a half

groupoid P. Then [ is said to be an anti fuzzy extension of U if the following two
conditions hold good.

i. Ui(x) 2L (x)forevery x []P.
ii. ifab=cinPand l(c) = max {L(a), i (b)} then Li(c) = max {Lb(a), (b)].

As in case of fuzzy extension we can prove that if [, is an anti fuzzy extension of [,
and ab = ¢ in P with Y, (¢) = max {|» (a) , Y2 (b)} then it need not in general imply
that p; (¢) = max {H (2) , Wi (b)}.

DEFINITION 1.11.7: Let Y and [ be any two anti fuzzy subhalf-groupoids of a half
groupoid P. Then the anti fuzzy extension [ (of L) is said to be an open anti fuzzy

extension of [ if a b = cin P and 4 (c) <max {; (a), W (b)} implies [ (c) <
max{{t (a), i (b)}.

If Yy is not an open anti fuzzy extension of |, then we say that [, is a closed anti
fuzzy extension of ;.

DEFINITION 1.11.8: Let P be a half groupoid. A countable collection of anti fuzzy sub
half groupoids of the half groupoid P, denoted by {14 [1 =0, 1, 2, ...} or {,u} oy IS

called an anti fuzzy extension chain for P if L+, is an anti fuzzy extension of [ for i =
0,1,2, ...

We give an example of an anti fuzzy sub-half groupoid and anti fuzzy extension.

1 1 1
P= 000 <1 0 "
{20 2! 2"}

take usual multiplication as the binary composition in P. Define p: P — [0, 1] by M ()
= x for every x U P;. It is clear that [ is an anti fuzzy sub half groupoid of the half
groupoid P.

Example 1.11.7: Let

Define 4y, 42 : P - [0, 1] by

M1 (x) =x for every x [J P and
M2 (X) = % for every x L1 P
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Then it is easy to verify that [, is an anti fuzzy extension of [;.

THEOREM 1.11.5: Let P be a half groupoid. Then [l is a fuzzy subhalf-groupoid of the
half groupoid P if and only if |f is an anti fuzzy subhalf-groupoid of the half groupoid
P.

Proof: Let 1 be a fuzzy subhalf-groupoid of a half groupoid P and ab = ¢ in P. Since
M(x) = 1 — 4 (x) for every x [0 P, we have 4 (¢ ) = min {{ (a) , 4 (b)}if and only if
M(c) < max {u°(a), u°(b)}. This proves that W is a fuzzy subhalf-groupoid of the half
groupoid P if and only if P°is an anti fuzzy sub-half groupoid of the half groupoid P.

THEOREM 1.11.6: Let 4 and [ be any two fuzzy subhalf-groupoids of a half
groupoid P. Then

i. b is a fuzzy extension of M if and only if |45 is an anti fuzzy extension of
M; and
ii. [ an open fuzzy extension of U; if and only if U5 is an open anti fuzzy

extension of | .
Proof: Let 4, and |1, be any two fuzzy sub-half groupoids of a half groupoid P.

Proof of (i): Let W be a fuzzy extension of | to prove W; is an anti fuzzy extension
of Wy . Since W is a fuzzy extension of |;, we have Y (x) < M, (x) for every x O P,

that is ; (x) = Y5 for every x [ P.

Letab=c in P and Y (c) = max{ My (a), 1y (b)} . That is 1 — di(c) = max {1 — p;(a),
1 - (b)} (as Yy (x) =1-p,(x) for every x LI P). By the properties of min and max

functions we have 1 — p;(c) = 1 — min{p;(a), pi(b)}. Hence Wi(c) = min{y(a), Hi(b)}.
Since |, is a fuzzy extension of 4; and ab = ¢ in P we have Ux(c) = min {{2(a), Ya(b)}.
Using the properties of min and max function we have 1 — 1, (¢) = max{1 — b (a), 1 —

Ma(b)}. That is M5 (¢) = max { M5 (a), M5 (b)}. Thus WS is an anti fuzzy extension M.

Similarly we can prove the converse using the fact that 1 — max {a, b} = min {l — a,
1-b} foralla, b 0[O0, 1].

Proof of (ii): Let |, be an open fuzzy extension of ;. To prove U is an open anti
fuzzy extension of M. Since Y, is an open fuzzy extension of 1; we have pi(x) <

Ha(x) for every x O P that is Wy (x) = Y5 (x) for every x [ P.

Let ab=c in P and Y] (c) <max {uf (a), M} (b)} then 1 — py(c) < max{l — p(a), 1 —
Hi(b)}. (Since Wy (x) =1-p,(x) for every x O P). This implies 1 — pi(c) < 1 —
min{p;(a), pi(b)}. That is Wy (¢) > min {H; (a), i (b)}.

As [, is an open fuzzy extension of [; and ab = ¢ in P. We have [, (¢) > min {4 (a),
H2(b)}. By the properties of min and max functions we have 1 — [, (¢) < max {l —
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Ma(a), 1 — Ma(b)}. That is S (c) < max { M5 (a), U5 (b)}. Thus K% is an open anti fuzzy

extension of Y°. Conversely let 4%, be an open anti fuzzy extension of U, then we
prove that [ is an open fuzzy extensions of [; using the fact 1 — max {a, b} = min {1
—a, 1 —b} foralla, b0, 1].

Example 1.11.8: Choose |1, and |, as in the earlier example where
1 1 1 1
P= PV ENCERRE
{20 21 22 2n }

M1 (x)=1—-xforevery x P and [ (x) =1 — % for every x U P. It is easy to verify

that [ is a fuzzy extension of H;. Now we calculate [ and pj as py (x) = x for

every x [J P and p5(x) = % for every x J P.

Clearly p3 is an anti fuzzy extension of M. This shows that [, is a fuzzy extension

of W, if and only if p3 is an anti fuzzy extension of [ .
Now we proceed on to define the concept of maximal fuzzy extension.

DEFINITION 1.11.9: Let [ and [ be any two fuzzy sub-half groupoids of a half
groupoid P. A fuzzy extension [ (of W) is said to be the maximal fuzzy extension of [
if there does not exist any fuzzy sub half groupoid [ of the half groupoid P such that

Lo L.

Example 1.11.9: P = {1, 2, 3, ..., n} be a half groupoid with respect to usual
multiplication. Define W;(x) = %2 for every x [J P and pa(x) = 1 for every x [J P. It is
easy to verify that both W, and [, are fuzzy subhalf groupoids of the groupoid P. Now
we cannot find any fuzzy sub half groupoid P of the half groupoid P such that p, [ p.
Hence | is the maximal fuzzy extension of ;.

DEFINITION 1.11.10: Let ; and [ be any two fuzzy sub-half groupoids of a half
groupoid P. A fuzzy extension [ (of ;) is said to be a normalized fuzzy extension of
M1 if Lb(x) = 1 for some x []P.

In the above example the fuzzy subhalf-groupoid W, is a normalized fuzzy extension
of ;.

THEOREM 1.11.7: Let [ and [ be any two fuzzy sub-half groupoids of a half
groupoid P. If [ is the maximal fuzzy extension of U then [ is a normalized fuzzy

extension of .
The converse is not true in general.

Proof: The first part of the theorem follows from the definitions of the maximal and
normalized fuzzy extensions. The converse is not true. That is every normalized fuzzy
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extension need not in general be a maximal fuzzy extension which can be seen from
the example in whichP = {-n,—(n-1), ...,-1,0, 1, 2, ..., n},

l if x>0
2
Hi(x) = {
— ifx<0
4
and
1 ifx>0
<) =
Ha(x) % if x<0.

Now we proceed on to define fuzzy translations and fuzzy multiplications and its
relation with anti fuzzy extension is obtained.

DEFINITION 1.11.11: Let [ be a fuzzy subset of a set X and a [1[0, 1 —sup {{{ (x) : x
LJX}]. A map y§ :X - [0,1] is called a fuzzy translation Of,uif,ug(x) =U(x)+a
for every x [JX.

We write this fuzzy translation of JL by U , we illustrate this by an example.

Example 1.11.10: Let X = {2, 4, ..., 2n} be a set. Define 4 : X - [0, 1] by p(x) = 1
X

for every x [ X. Then for a = % we have lL} (x) = 1 + % for every x [J X. It is easy to
X

verify that [ is a fuzzy translation of L.

THEOREM 1.11.8: Let U be a fuzzy sub-half groupoid of a half groupoid P and
a [7]0, 1 —sup{u(x) ; x [JP}] then every fuzzy translation ., of [ is a fuzzy sub-half
groupoid of the half groupoid P.

Proof: Let Y be a fuzzy sub-half groupoid of the half groupoid P and a [J [0, 1 — sup
{l(x) ; x L P}]. For ab=c in P we have U (c) 2 max {[ (a), i (b)} that is o + [ (c) =
o + min{ p(a), f(b)} that is o + U (c) 2 min{a + p(a), a + W(b)} (by min property)
that is {1, (¢) = min{ l; (a), K (b)} (by the definition of fuzzy translation).

That is |, is a fuzzy subhalf-groupoid of the half-groupoid P.

THEOREM 1.11.9: Let U be a fuzzy sub-half groupoid of the half groupoid P and a [J
[0, 1 —sup {fi(x); x [TP}]. Then every fuzzy translation ), (of L) is a fuzzy extension

of |
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Proof: Let Y be a fuzzy sub-half groupoid of the half groupoid P and a [J [0, 1 —
sup{{(x) ; x 0 P}]. We know by the earlier result [, is a fuzzy sub-half groupoid of
the half groupoid P.

Clearly Y} (x) = 1 (x) for every x [ P. Further if ab = ¢ in P and [ (¢) = min {J (a),
i(b)} then . (c) =min {|. (a), 4. (b)}. Hence Y. is a fuzzy extension of L.

1 1 1
P: 00 10"
{30 3! 3“}

be a half groupoid with respect to usual multiplication. Define p: P - [0, 1] by M ()
=1 — x for every x [J P. Now it can be easily checked that [ is a fuzzy sub-half

Example 1.11.11: Let

groupoid of the half groupoid P. For a = %we have U (x)=1-x+ % for every x [

P. It is easy to verify that [ is a fuzzy extension of .

THEOREM 1.11.10: Let U be a fuzzy sub half groupoid of a half groupoid P and a [J
[0, 1 —sup {f(x)/ x TP} If U is a fuzzy translation of U then

i. Ml is a maximal fuzzy extension of W if and only if [ is a constant map.

ii. if U has sup property then (L, is a normalized fuzzy extension of [ but not
conversely.

Proof: Let U be a fuzzy sub-half groupoid P and a [ [0, 1 — sup {ji(x) [ I P}]. Then
by earlier result [ is a fuzzy extension of .

Proof of (i): Let |} be a maximal fuzzy extension of [ then Y. (x) =1 for every x [J

P, that is Y (x) = sup {M (y) | y U P} for every x [J P. Hence [ is a constant map.
Conversely let [ be a constant map, that is Y(x) =y for every x [l P (where y is a fixed
element of [0, 1]. Now consider the fuzzy translation 1} of B 1 (x) = U(x) + 0 =y +

1 —y=1 for every x J P. Hence W is a maximal fuzzy extension of [L.

Proof of (ii): Let A have sup property; that is for every subset A of P there exists xo [
A such that [ (xo) = sup {{(y)| y O A}. If possible let as assume that [, is not a
normalized fuzzy extension of W then W (x) < 1 for every x 00 P. That is p(x) <

sup{H(y) | y O P} for x [ P. Since Y has sup property for every subset A of P there
exists xo U A such that p(xo) = sup {H(y) | y U A}. So we get U(x) < U(xo) for every x
0 P. In particular for x = xo we have J(x) < [(xo) which is a contradiction. Hence [}

is a normalized fuzzy extension of .
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If Y. is a normalized fuzzy extension of [l then it does not in general imply that | has
sup property. This can be seen from the example given below.

Consider the half groupoid P = [0, 1] under usual multiplication. Define i : P — [0, 1]
by H(x) = 1 —x for every x U P. It is easy to see that [ is a fuzzy sub-half groupoid of
the half groupoid P. Let o [ [0, 1 —sup {{(x) | x O P}] then W] is a normalized fuzzy
extension of [ for there exists 0 [J P such that p. (0) = 1. Take A = [0, 1] then A [J
[0, 1] and sup {u(x) | x O A} =1.

Now it is easy to verify that there is no xo [J A such that p(x¢) = 1. Hence L does not
have sup property.

DEFINITION 1.11.12: A fuzzy subset U of a set X has the weak sup property if there
exist xg [JX such that L(xg) = sup {{(x) | x [JX }.

THEOREM 1.11.11: Let U be a fuzzy subset of a set X . If [ has sup property then U
has weak sup property but not conversely.

Proof: Let | be a fuzzy subset of a set X. If i has sup property then by the definition
of sup property for every subset A of the set X there exist xo [1 A such that p(xo) =
sup {(y) | y U A}. The above condition is true for every subset A of the set X. If we
take A as X then there exists xo [J A such that p(x¢) =sup {U(y) | y Ul X}. Hence M has
weak sup property.

However the converse is not true this can be seen by the following example.

Consider the set X = [y, 8] where y and 0 are any two arbitrary fixed numbers in the
interval [0, 1] with y < 3. Define W: [y, 8] -0, 1] by i(x) = x for every x [J X. Then
H(d) = sup {M(x) | x O X}. but for A =y, d) we have sup {|i(x) | x [J A} = d and there
is no xo [J A such that p(x¢) = 6. That is P has weak sup property but | does not have
sup property.

Hence we give the characterization for normalized fuzzy extension.

THEOREM 1.11.12: Let [ be a fuzzy sub-half groupoid of a half groupoid P of a [/ 0,
1 —sup {i(x) | x [JP}]. Then W, is a normalized fuzzy extension of i if and only if i
has weak sup property.

Proof: Let 1 be a fuzzy sub-half groupoid of a half groupoid P and a [J [0, 1 — sup
{U(x) | x O P}]. Let { be a normalized fuzzy extension of [ then by the definition of

normalized fuzzy extension we have W (xo) = 1 for some xo 0 P. That is [(xo) = sup
{i(x) | x I P} for some xo U P. Hence W has weak sup property.

Conversely let i have weak sup property. Then there exists xo [l P such that u(xg) =
(M) [ x O Py,
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Now consider the fuzzy translation P} of L. P} (x) =M (x) + 1 —sup{p(x) | x O P}..
Take x = Xo, then we have M. (Xo) = U(Xo) +1 — U(x0) = 1. Hence M. is a normalized
fuzzy extension of Y. This completes the proof of the theorem.

DEFINITION 1.11.13: Let [ be a fuzzy subset of set X and [ [7[0, 1]. A map ,u"f X S
[0, 1] is called a fuzzy multiplication of 1 if Hz(x) = * li(x) for every x [ X. We
denote this fuzzy multiplication of 1 by .

We illustrate this by an example.

Example 1.11.12: Let X = [y, 8] be a set where y and d are any two arbitrary fixed
numbers in the interval [0, 1] with y < &. Define u: [y, 8] - [0, 1] by i(x) = x for

every x [ X. Then for 3 :% we calculate the fuzzy multiplication of i and is given

by Mg (x) =% for every x [J X.

THEOREM 1.11.13: Let [ be an anti fuzzy sub half groupoid of a half groupoid P.
Then every fuzzy multiplication g (of W) is an anti fuzzy extension of

Proof: Can be proved by similar ways using the techniques used in the earlier
theorems.

THEOREM 1.11.14: Let [ be a fuzzy sub-halfgroupoid of a half group P. If a [7[0, 1 —
sup {H(x) | x [JP}] and B [7 (0, 1] then every fuzzy translation y§ (of W) is a fuzzy

extension of fuzzy multiplication g (of 1).

Proof: Let [ be a fuzzy sub-halfgroupoid of a half groupoid P. If a U [0, 1 — sup {j(x)
| x OP}] and B O (0, 1] then fuzzy translation U and the fuzzy multiplication Mg are

fuzzy sub-halfgroupoids of the half groupoid P.

We see that for every x O P, pg (x) = B H(X) < H(xX) S O + [ (X) = Hg (x). Also if
ab=cin P and Y (c) = min { g (a), Kg (b)} then this implies 3 ¢ W (¢) = * min {j
(a), u(b)} that is 1 (¢) = min {p(a), u(b)} (since B # 0) that is o + [ (c) = min{a + Y
(a), a + W(b)} (by min property) that is [} (c) = min{ . (a), K} (b)} (by the definition
of fuzzy translation) . Hence U, is a fuzzy extension of Mg for every a [0, 1 —

sup{(x)0x OO P}] and B OJ (0, 1]. Hence the theorem. It is to be noted that for 3 =0
the result is not true.

Example 1.11.13: Consider the half groupoid P = {~n, (n-1), ..., -1,0, 1, ..., n}
under the usual multiplication. Define i : P - [0, 1] by
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1 )
— ifx>0

H(X) =12
0 if x<0.If ab=c

in P with a < 0 and b < 0 then ¢ > 0. Taking 3 = 0 we see that Yy (c) = 0 =
min{ 47 (@), W ()} and 1] (€)= 1> min { ] (@), 0L (b)) = . Thatis Wis nota

fuzzy extension of g for B =0.

THEOREM 1.11.15: Let U be a fuzzy sub half groupoid of a half groupoid P and a [J
[0, 1 —sup{x) | x [JP}]. Then {,u;, }H,DS where (S = {y, 0 <y < a, and yrational) is

an open fuzzy extension chain for P. Further { ,u;, } generates the half groupoid P

a'os
if and only if [l is a constant map.

Proof: 1t is easy to see from the proof of the earlier theorems that for every a' [I S,
WU, , is a fuzzy sub-half groupoid of the half groupoid P.

Choose 0, 0 O S such that 0 < a; < 0> < o then P, (X) < Hg (x) for every x O P.
Thus for a;, a; O S (1 <)), ugl (x)< ugl (x) for every x [ P without loss of generality
wehave 0 < 0p<a; <0< ... <O S Qi+1 < ...< 0. Then by the above construction
ugo(x) < u;}(x) <. < ugl(x) < ugm < .- Ui (x) for every x O P. Now if ab =
cinP and min{ugl (a), ugl (b) }, then it is easy to see that

u (@ =min{ ! a), u (b))}

fori=0, 1,2, .... Further ifab=c in P and p,(c) > min{ug(a), ue (b)} then we can
easily prove that

M2, (¢) > min{ L, (a), 1L, (b)]

fori=0, 1,2, ... Hence {“ZI }a‘ is an open fuzzy extension chain for P.

s
Now we will prove that {“ZI }G‘DS generates the half groupoid P if and only if a is a
constant map.

Let {“ZI }G‘DS generate the half groupoid P. Then we have atés Ui =1, that is
sup (U (x) | a' 0 S) =1 for every x [ P, that is sup {(x) + o' | a' 0 S} =1 for every

x [ P, that is p(x) + 1 — sup{p(y) | y U P} = 1 for every x U P. That is p(x) =
sup{H(y) | y I P} for every x [ P. This proves that [ is a constant map.
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Conversely let L be a constant map that is Y(x) =y for every x [l P (where y is fixed
element in [0, 1]). Consider [ U ugj (x) for an arbitrary x U P.
a'lsS

sup (u%.(x) | a'0S)

= sup {M(x) +a'|a' S}

= M(x) + 1 —sup {W(y) |y U P}
y+1l-y=1

lp (X)

(U)o

a'lS

since X is an arbitrary element of the half groupoid P we have [ U ugj (x) = lp for
a'lS

every x L] P. Hence {ug,}m generates the half groupoid P.

Now we introduce the notions of fuzzy equivalence relation as given by [144] and
proceed on to recall the definition of fuzzy relation on the groupoid given by [70].

DEFINITION 1.11.14: Let X and Y be two non empty sets, we call a map f: X xX - Y
x Y a semi balanced map if

i. Given a [JX there exists U [JY such that f (a, a) = (U, U).
ii. f(a, a)=(U 0),f (b, b)= (U V) implythatf (a, b) = (U, V).

DEFINITION [144]: Let A and [ be two fuzzy relations on the set X. The sup-min
product A o Wis a fuzzy relation on X defined by

Ao (a b)=supmin{Ala,x) u(xb)};

xOX

a, b [IX; Ais reflexive on X if A (x, x) = 1 for all x [ X; A is symmetric on X if A (a, b)
=A(b, a) for all a, b [7X; and A is transitive on Xif Ao A [JA.

A reflexive, symmetric and transitive fuzzy relation on a set is a fuzzy equivalence
relation.

DEFINITION [112]: Let f be a mapping from the set X into the set Y. If A is a fuzzy
subset of X, the image f'(A) of A is a fuzzy subset of Y defined by

sup Ax).if fT(y)#0
SA) () =107 (x) .

0 otherwise

If [is a fuzzy subset of Y, the preimage or inverse image f ' (1) of [ is the fuzzy subset
of X defined by f ' (1) (x) = (f(x)), x DX.
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DEFINITION [70]: Let A be a fuzzy relation on the groupoid D; A is compatible on D if
A (ac, bd) >min {A (a, b), A (c, d)} for all a, b, ¢, d [JD.

A compatible fuzzy equivalence relation on a groupoid is a congruence.
DEFINITION [45]: A fuzzy relation A on the set X is G-reflexive if for all a Zb in X.

i. A, a) =0.
ii. Af(a, b) <I(A), where d(A) = lnf/] (x,x) .

xOX

A G-reflexive and transitive fuzzy relation X is a G-pre order on X. A symmetric G-
pre order on X is a G-equivalence on X. A compatible G-equivalence fuzzy relation
on a groupoid is a G-congruence.

THEOREM [45]: If A is a G-pre order on the set then Ao A = A.

DEFINITION [44, 45]: Let A be a fuzzy relation on the set X and let 0 <a <1; Ais a-
reflexive on X if A (a, a) = a and A (a, a) < a for all a, b [J X. An a-reflexive
symmetric and transitive fuzzy relation on X is a fuzzy a-equivalence relation on X.
We call a compatible fuzzy a-equivalence relation on a groupoid as Q-congruence.

Clearly a fuzzy a-equivalence relation is a fuzzy equivalence, if a = 1, and every
fuzzy a-equivalence relation is a G-equivalence.

Now we proceed on to recall definition of fuzzy equivalences and congruences on a
groupoid.

THEOREM [44, 45]: If 11 is compatible fuzzy relation on the groupoid S and f is a
groupoid homomorphism from D x D into S x S then f (1) is a compatible fuzzy
relation on D.

Proof: Let a, b, ¢, d, [ D. Then we have £ (W) (ac, bd) = p (f (ac, bd)) = p (f (a, b) ®
f(c, d) = min {1 (f(a, b), k(£ (c, d)} = min{f " (1) (a, b), £ (W) (c, d)}.

Hence £ (W) is a compatible fuzzy relation on D.
THEOREM [44, 45]: If A is a compatible fuzzy relation on the groupoid D and fis a
groupoid homomorphism from D x D in to S x S then f(A) is a compatible fuzzy

relation on S.

Proof: Let v, v, wy r, I S. In the case when either f_l(U, V) or f_l((,q r) is empty we
have f(A)(Lw, vr) =0 =min {f(A) (U, V), f(A) (W 1)}.

Now, consider the case when f ' (v, v) and f ' (@, r) both are nonempty. Then f '
(LW, vr) is non-empty too. We then have
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fA) L, vr) = sup Axx)

(x,x")0f " (vw,vr)

2 sup A(ac,bd)
(ac,bd) Of ! (Lw,vr)

= sup A(ac,bd)
f(a,b); f(c,d)=(u,v) (wr)

2 Sup Ssup min (A(a,b), A(c,d)}

f(a,b)=(v,v) f(c,d)=(wr)

me{ sup A(a,b), sup )\(c,d)}

f(a,b)=(v,v) f(c,d)=(w,r)

= min{f(A) (v, v), f(A) (@ 1)}.
Hence f (M) is a compatible fuzzy relation on S.

DEFINITION 1.11.15: Let X and Y be two non empty sets. A mappingf: X xX - Y xY
is called a semi balanced mapping, if

i Given a [J X there exists u [JY such that f (a, a) = (U, U).
ii. fla, @) = (U, U) and f(b, b) = (V, V) where a, b [/ X, U, v [JY implies that
fla, b) = (v, V).

One can easily verify the following result for the semi balanced mapping f. If f(a, b) =
(U, V) where a, b [X, U, v []Y then

i fla, a) = (U, V) and f(b, b) = (V, V).
ii. f(b, a) = (U, V) and
iii. given x [J X there exists a unique t, [1Y such that f(a, x) = (U, t.) , f(x, b) =

(t:, V) and f(x, x) = (L, t).

We give an example of a semibalanced map.

Example 1.11.14: Let X ={a,b,c} and Y = {U, Vv, w r}. Consider the map f: X x X
— Y x Y defined by f(a, b) = f(c, b) = (v, V), f(b,a)="f(b,c)=(v,V),f(a,c)="1(c,
a)="1(c,c)="1(a,a)=(v, V) and f (b, b) = (v, ). Then, fis a semi-balanced map.

THEOREM 1.11.16: If f is a semi-balanced map from X x X into Y xY and U is an Q-
equivalence fuzzy relation on Y, then f ' (1) is an a-equivalence fuzzy relation on X.

Proof: Let a, b, 1 X. Then f '(W)(a, a) = K(f(a, a)) = a, because f(a, a) = (v, L) for

some U 0Y, and f '()(a, b) = p(f(a, b)) < a. Thus £ (W) is an a- reflexive fuzzy
relation on X.

Now f '(1)(a, b) = p(v, v)(where f(a, b) = (U, V)) = p (v, V) (by symmetry of ) =
W(f(b, 2)) = £ (W) (b, a).
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Further

£ () o £ (W)(a, b) = supmin {f ' () (a,x), f (W) (x, b)}
= sup min {Uf (a, x), L f(x, b)}
= Sup min {{ (U, t), Mt V)

< sup min { W (U, @), K (W V)}
= (Mol (L,V)SH(L,V)

= H(f (a, b))

= flWwab).

Hence £ (W) is an a-equivalence fuzzy relation on X.

THEOREM 1.11.17: If [/ is an a-congruence fuzzy relation on the groupoid S and f'is a
groupoid homomorphism from D x D into S xS which is a semi balanced map, then
/() is an a-congruence on D.

Proof: Follows by the earlier theorems.

DEFINITION 1.11.16: Let f be a map from X xX into Y xY . A fuzzy relation A on X is
flinvariant if f (a, b) = f(a,;, b;) implies that A (a, b) = A (ay, by). A fuzzy relation A on
X is weakly f-invariant if f(a, b) = f(a;, b) implies that A (a, b) = A (a,, b).

Clearly if A is f~invariant then A is weakly f-invariant but not conversely.

THEOREM 1.11.18: Let f be a semi-balanced map from X xXinto Y xY. If Ais a
weakly f-invariant symmetric fuzzy relation on X with Ao A = A, then A is f~invariant.

Proof: Let f(a, b) = f(a;, b)) = (v, V) where a, a;, b, by 0 X, 0,v Y. Given x I X
by definition there exists a unique tx [J Y such that f (x, x) = (t, tx), f (2, X) = (U, ty) =
f(ar, x) and f(x, b) = (tx, V) = f (x, by).

But A is weakly f-invariant so we get A (a, X) = A (aj, X) and A (X, b) = A (X, by).

Lastly
A(a, b) = (Ao A)(a,b)
= sup {min {A (a, x), A(X, b)}
x[OX
= sup min {A (aj, x), A (x, by)}
x[OX

(Ao A) (ar, by) =A(ay, by).
Hence A is f-invariant.

The following theorem can be deduced from the earlier theorems.
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THEOREM 1.11.19: Let f be a semi balanced map from X x X into Y x Y. If A is an a-

equivalence (or G-equivalence) fuzzy relation on X which is weakly f-invariant then A
is f-invariant.

DEFINITION [44, 45]: A mapping f: X xX — Y xY is a balanced mapping if

i. f(a b)=wu u =a=0>b.
ii. f(a, b)=(u, V) =f(b, a)=(V, u).
iii.  f(a, a) = (u, u) and f(b, b) = (V, VV=f(a, b) = (u, V)

foralla, b [/ X and u, v, [Y.

A mapping f: X X X - Y XY is a balanced mapping if and only if it is a one to one
semi-balanced mapping.

Now we give a condition under which the image of an a-equivalence fuzzy relation is
an 0-equivalence.

THEOREM 1.11.20: Let f be a semi-balanced map from X x X onto Y xY. If A is an a-

equivalence fuzzy relation on X, which is weakly f-invariant, than f(A) is an Q-
equivalence on Y.

Proof: Let u 1 Y. But, f being an onto semi-balanced map there exist a, a' [1 X such

that f (a, a') = (u, u) = f (a, a). By the earlier theorem A is f-invariant. Then we have
here.

f(A)(u, u) = sup A (X x")=A(a,a)=a. Ifu, v OY then there exists a, b [1 F

(x,x") £ (u,u)
such that f (a, b) = (u, v) and f (b, a) = (v, u). We then have f (A)(u, v) =
sup A(X1, X2) =A(a, b) £ 00 and f(A)(u, V) =A (a, b) =A (b, a).

(x1.%2) Of 7 (u,v)
(A is a symmetric fuzzy relation) = f (A)(V, u).
Thus, f(A) is a a-reflexive and a symmetric fuzzy relation on Y. Now, given x [ X

there exists a unique ty [J Y such that f (a, x) = (u, ty), f(x, b) = (tx, v) and f (x, X) =
(tx, tx).

Lastly
f(A)(u, v) = A(a, b) = (AoA) (a, b)
= sup min {A (a, X), A(X, b)}
x00X
= sup min {f(A) (u, t), fA) (t, V)}.
x0OX
= sup min {f(A) (u, &), fiA) (@ V).

= Ao f(A) (u,v).
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Consequently, f(A) is an 0-equivalence on Y.

The following three results are a direct consequence of the above theorems got by
combining a few of them.

The proofs of these are left as an exercise for the reader.

THEOREM 1.11.21: Let f be a balanced map from X x X onto Y x Y. If A is an Q-
equivalence fuzzy relation on X, then f (A) is an a-equivalence on Y.

THEOREM 1.11.22: Let f be a semi-balanced map and a groupoid homomorphism
from D xD onto S xS. If Ais an a-congruence fuzzy relation on D, which is weakly f-
invariant then f(A) is an a-congruence on S.

THEOREM 1.11.23: Let f be a balanced map and a groupoid homomorphism from D x
D onto S x 8. If A is an a-congruence fuzzy relation on D, then f(A) is an a-
congruence on S.

Images and preimages of fuzzy G-equivalences and G-congruences on a groupoid are
recalled from [44] in the following.

THEOREM 1.11.24: Let f be a semi-balanced map from X xX onto Y x Y. It A is a G-
equivalence fuzzy relation on X, which is weakly f-invariant then f(A) is a G-

equivalence on Y with 0(f (A)) = O(A).

Proof: Let U #v [ Y. Then there exists a', a # b [ X such that f(a,a')= (v, V)=
f(a, a) and f (a, b) = (v, V) we then have

fi(A)(v, L) = sup A(x,x") = A(a,a)>0

(x,x")Of 1 (v,0)

As A is f-invariant by earlier results and

£(A) (U,V) Aa,b) <3 (N)

= inf AMxx)

xOX

= inf fA) (t,.t,)

xOX

= inf fA) (ww)

widyY

= O(f(A)).

Thus f (M) is a G-reflexive fuzzy relation on Y with & (f{A) = & (A). Symmetry and
transitivity of £ (A) can be proved, as is evident from earlier theorems.
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The following three theorems are easily deducible from the earlier theorem.

THEOREM 1.11.25: Let f be a balanced map from X x X onto Y x Y. If A is a G-
equivalence fuzzy relation on X, then f (A) is a G-equivalence on Y with Xf(A)) = JA).

THEOREM 1.11.26: If f is a groupoid homomorphism and a semi-balanced map from
D xDonto S xS and A is a G-congruence fuzzy relation on D which is weakly f-
invariant then f(A) is a G-congruence on S with O( f(A)) = d(A).

THEOREM 1.11.27: If f'is a groupoid homomorphism and a balanced map from D x D
onto S xS and A is a G-congruence fuzzy relation on D, then f(A) is a G-congruence

on S with 0 (f(A) = o(A).

DEFINITION 1.11.17: Let [ be a fuzzy relation on Y and let f be a map from X x X into
Y xY. We say [Lis f-stable, if f(a, b) = (U, U), where a Zb [JX and v [JY, implies that
H(f(a. b)) <p(f(x x) forallx X

The f-stable fuzzy relation is illustrated by the following example.

Example 1.11.15: Consider the map f: X X X — Y x Y. Define the fuzzy relations p
and oon'Y as follows.

-1
I'l (ua u) - 3 »
MOV =R = jED = 5
H(s, t) = % foralls#t JY; and
o (u,V) = 0 (v, W
= o(v,Vv)
= 0 (W W)
- 1
3
o (v, L) = o (r, 1)
-1
- 4
a(v,V) = o(w,V) = oV, )
= o(w,V) = o(r,V)
= o(u,r) = o(v,1)
= o(r,Vv) = o(wr)
- - 1
= o(r,w) = s
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Now,

H(f(a,c)) =p(v,v) = % < H(f(x,x)) and o(f(a,c)) < o(f(x,x))

for all x [0 X. Thus i and 0 both are f-stable. It may be noted that Y is a G-
equivalence whereas 0O is not a G-equivalence.

THEOREM 1.11.28: Let f be a semi-balanced map from X x Y into Y XY and let L be a
G-equivalence fuzzy relation on Y which is f-stable. Then f (1) is a G-equivalence on

Xwith 0(f (1) = S(W). Further if f is onto then O(f ~' (1)) = (1)

Proof: Let a U X. Then f (W) (a, a) = U(f(a, a)) = (v, V) >0 wherev O Y. Ifaz b O
X then f(a, b) = (v, v) for some L, v [1 Y. In case U =V the f-stability of [ implies that
(W) (a, b) = u(f(a, b)) < P(f(x,x))= £ (W) (x,x) for all x OX.

Now consider the case when U # V. Then by the G-reflexivity of 4 we get

@b = po,v) <3
= inf H (@ w
wdY
< inf KX, x))
xOX
= inf £ (%) =8 (W)).
xOX

Thus f (W) is a G-reflexive relation on X with & (f ' (1)) = & (). Further, if f is onto
then obviously &(f (W) = 3 (W). As in the proof of the earlier theorem we can show
that f ' (1) is a symmetric and transitive fuzzy relation.

The following results also are left for the reader as an exercise.

THEOREM 1.11.29: Let f be a balanced map from X x X into Y x Y and let |1 be a G-
equivalence fuzzy relation on Y. Then f~ (1) is a G-equivalence on X with o (f (1) =

O(L). Further if f'is onto then d(f (1) = d(1).

Proof: Left for the reader. Please refer [45].

THEOREM 1.11.30: Let f be a groupoid homomorphism and a semi balanced map
from D x D into S x S, and let U be a G-congruence on Y which is f-stable.
Then f~ (1) is a G-congruence on X with & (f (1)) = O (1. Further if f is onto then

3 (W) = (1.

Proof: Follows directly by the earlier theorems.

THEOREM 1.11.31: Let f be a groupoid homomorphism and a balanced map from D x
D into S xS and let | be a G-congruence on Y. Then f (1) is a G-congruence on Y.
Then f (1)) is a G -congruence on X with o (' (1)) = d (1.
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Further if f is onto then S (f (1) = d(1).
For proof refer [45].

We proceed on to recall the definition of G-groupoid and P-fuzzy correspondence.

DEFINITION 1.11.18: Let S;, S> and S3 be non empty sets and A : S; xS> — Sz a
mapping. Then (S;, S», S3, A) is a G-groupoid . If A; and A, are non empty sets and (P,
<) is a partially ordered set then a function A : Ay X A; — P is a binary P-fuzzy
correspondence. By a P-fuzzy correspondence sometimes we consider a quadruple
(A1, A5, P, 4).

IfA; ..., A, are sets and (P, S) is a partially ordered set than a mapping A : A; X ...x
A, to P is an (n-ary) P-fuzzy correspondence on sets Aj, ..., A,. Here we recall a
special type of binary P-fuzzy correspondences such that (A;, S), (A2 S), ..., (A, S) are
also partially ordered sets. We call such a correspondence PG- fuzzy correspondence.
The notion of a binary PG-fuzzy correspondence is a generalization of the notion of a
G-groupoid, since we obtain a binary PG-fuzzy correspondence when we equip all
sets in a G-groupoid with orderings.

If A : A; x ... x4, - P is a P-(or PG-) fuzzy correspondence for p [J P, a p-level
correspondence is a function A : A; XA; X ... XA, — {0, 1} defined by A4, (xi,..., Xy)

=l ifand only if A (x1, X3, ..., Xn) 2P.

By Ap we denote the corresponding p-level subset of A; XA, % ... xA,. Further more
we denote the set of all level subsets of Apby 4 , = {A,|p [JP}.

Since a P-fuzzy correspondence is a P-fuzzy set on a product of sets, the following
results are recalled from [90].

THEOREM 1.11.32: If A : A; XAy x ... XA, — P is a P fuzzy correspondence where
(P, S) is a partially ordered set, then for every (xi, X2, ..., Xy) [JA; XAy X ... XA, the
Jollowing supremum exists in P U (p L/P| A, (x1, X2, ..., Xo) = 1 and A (x}, X2,..., X»)

= p LJP such that Zp (X1, X2, oo, Xp) = 1}

Proof: If K(xl, X2, ..., Xn) = q then Kq(xl, X2, ooy Xp) = 1 . If Kp(xl, X2, ...y Xp) = 1
then A (xi, ..., Xn) = q 2 p. This means that q greater than all p for which Kp (x1, X2,
.oey Xp) = 1, that isA (X1, X2, ..., X)) =q=0U(pUP| Kp(xl, X2, ey Xp) = 1).

THEOREM 1.11.33: [fA = A; XA, x... XA, — P is a P-fuzzy correspondence then

i. Ifp <qforp, q [P, then for every (x;, X2, ..., Xn) [JA; XA X ... 4,,
Ay (X1, X2, ooy Xn) S Ay (X1, ooy Xi)

ii.  If the supremum of a subset Q of P exists then n (A, | p Q) = AUy |, 09).
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iii. (A, |pJQ)=A4;x%... XA,
iv.  forevery (xi, X2, ..., xXp) JA; XAy X ... XA, n (A, O A4 , | (x5, .., X0) [J
P) belongs to the family Ap of level correspondences of A .

Proof: The results can be easily proved using the definitions.

THEOREM 1.11.34: Let F' = {F; [1 [71} be a family of subsets of A; XA X ... XA,
(crisp correspondences) such that

i. |\JF =41x.. x4,.
a7

ii. forevery (x;,x2, ..., Xn) [JA; XAs % ... %A, ; n (F; JF| (x;, ..., x,) [JF;)
[JF.

Let (F, <) be the partially ordered set dual to (F, [J). Then a P-fuzzy correspondence
A: A XAy x ... xA, — F defined with A (xi, ..., x,) = n (F; OF| (x1, ..., x,) [OF;)
has F as its family of level correspondences. Moreover for every F; F, Fi = A .

Proof: By the condition (ii), A is well defined. The only thing left to prove is that F;
= AF, for all F; O F.

Let F; U F then (x1, X2, ..., Xn) DAFI if and only if K(Xl, ..., Xp) 2 Fj if and only if
K(Xl, ..., Xn) OFj;ifand onlyif n (F;0OF | (xi, ..., xn) OF;) OFi.

Since (xi, ..., Xo) O n (F; O F | (x4, ..., Xa) 1s 1n Fj), then (x4, ..., X,) U F;. On the
otherhand if (xi, X2, ..., Xo) U Fj, then (n (F; U F | (x4, ..., x,) O Fj) O F; and as
proven above (Xi, X2, ..., Xn) [J AF,-

Notations as given by [90].

Let Aj, Ay, Az, A4 and As be partially ordered sets and B:AyxA; - Asand D : A,
x Ay - A4, PG fuzzy correspondence. (A, C) where A : A; x As -~ Pand C : Ay
x Az — P are PG-fuzzy correspondences and P is a partially ordered set, of the
functional equation A (x, B(y, z) =C (D (x, y).z) for given PC-fuzzy correspondences
Band D.

We see the equation A (x, B(y, z)) = C (D (x, y), z) always has a nontrivial solution
for arbitrary B: Ay X A3 — Asand D: A; X A, - Ay Indeed for A and C we take
arbitrary PG-fuzzy correspondences

A A xAs > Land C: Ay x Ay — L where L is a distributive lattice (i.e. partially
ordered set).

THEOREM 1.11.35: Let A, As, A3, A4 and As be partially ordered set. Further more
let B: Ay xA; - Asand D : A; XA, — A4 be PG-fuzzy correspondences which are
surjections.
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Let F be a family of ternary correspondences on A; X A; % A3 satisfying the following
conditions:

i. Foreveryy, t JAsand z, u (A3 x [JA; and E [JF if B (y, z) = B (t, u)
then E(x, y, z) = E(x, t, u).

ii. Foreveryx, z [JA;, v, t (JAs u JAsand E OF if D (x, y) = D (2, t) then
Ek, y, u) =E(z t, u).

iii. Forall (x,y,z) [JA; XA, xA3; n (E JF | E(x, y,z) =1) [JF.

. U(E/EUF):A] XAy xXA;3.

v. Forall E [JF, let the correspondence Ap on A; X As and Cg on A4 X As be
defined in the following way:

Ap (x, y) =E(x, z, t) for B (z, t) = y.
vi. Cg(x,y) =E (U, V, y) for D (U, V) = x, then partially ordered sets F, F4 =
{Ag/ E [JF} and Fc = {Cg / E [JF} are isomorphic under the mappings
f: F4 - F defined f(Ag) = E and g : Fc - F defined by g(Cr) = E.
Solutions of the functional equation A (x, B (v, z)) = C (D (x, y), z) are
PG-fuzzy correspondences.

A :A; xAs — Fand C : Ay xA3 — F given by
A(xy)=f (0 (4, 0F| A(xy)=1))
Clxy)=g(n (C;OF|Co(xy)=1))

where (F, <) is the dual of (F, [)).

Proof: (Please refer [90]).

Consequent of this we have the following theorem and example given by [90].

THEOREM 1.11.36: All subsets of the functional equation of generalized associativity.
A (x, B(y,z) = C (D (x,y), z) for PG-fuzzy correspondences where B and D are
subjections given by B : Ay X A3 — Asand D : A, X A3 — A4 which are arbitrary,

PG-fuzzy correspondences and subjections and A, C are given by (i) to (vi) of the
theorem 1.11.35.

Example [90]: Let A;, A, Az, A4 As be partially ordered sets given by the following

figures.
y
a c
£ h y
b X z
. u w
g i t
d Az As
Az Ay
Ay

Figures 1.11.1
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Let P-fuzzy correspondences be given as follows:

oq || o |
<|lc|c|=

eI |< | =

alo o [T
<< |x|>x|o
RS Rl
=[N N [0Q

To find a family of correspondence as on A; X A, X Aj; satisfying conditions for all
EOFandallk JA; and j [0 As.

E (k e, g) = E(,f, h)
E (k e, i) = E(kf1) = E (k, g h)
E(a¢,j) = E(@f) = E(b,ej) =E(bfj)
E(c e, j) = E(cf)) = E(d,e,)) =E(d 1))
E(a, g,)) = E(,g))
E(c,g,)) = E(dg))
such that the family F itself satisfies conditions.
Such a family of correspondences F is given as follows:
Pleh|ei|th | fi|gh]|gi Q|eh |e | th| fi|gh]|g
al| 0 1 |0 |1 1 0 a 1 1 1|1 1 1
b| 0 1|0 |1 1 0 b 1 1 1|1 1 1
c| O ]O[O]O] O]O C 1 1 1 |1 1 0
d|Oo[O0O]O0O]O0O] O0O]O0 d | 1 1 1|1 1 0
R|eh|ei | fh|fi|gh]|g S |eh|e | th|fi|gh]|gi
a| 0[0]0]0] 0 1 a | 0 1|01 1 1
b| 0 |[0]0]0] 0 1 b | 0 1101 1 1
c| 0 1 101 1 0 c | O 1|01 1 1
d| 0 1 ]0]1 1 0 d| O 1101 1 1

The partially ordered set (F, <) is presented in the figure.

The following corresponding families {Ag LE [J F} and {Cg LEE [I F} are obtained.

Ap v | v ]| w Ag | v
a 0 1 0 a 1
b 011 0 b 1
C O[O0 O c 1
d O[O0 O d 1
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AR v | V]| ® As v |v ]| w
a 00 1 a 01 1
b 0O 1 b 011 1
c 01 0 c 011 1
d 01 0 d 011 1
P R
0O S
Figure 1.11.2
Cp | h |1 Co | h| i
X 0 1 X 1 1
y |0]0 y 1|1
z 10 z 1 1
t 00 t 1|0
CR h 1 Cs h 1
X 010 X 0|1
y |01 y |01
z 011 z 1 1
t 110 t 1 1

By the synthesis of these families of correspondences we obtain the following fuzzy
correspondences.

Aluv|lv]|w
a | Q| P | R
b Q| P|R
c Q| R | S
d |Q|R | S

C h 1

x | QP

y QR

z P | R

t R | S

(K , B, C, 5) is a solution of the functional equation.
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It is important and interesting to note that PG-fuzzy correspondences such that all
related partially ordered sets are equal (S, <), A:SxS .S B:SxS .S, C:Sx
S -~ Sand D: S xS - S are semilattices i.e. groupoids satisfying commutative,
idempotent and associative laws. We prove that if such A, B, Cand D are solutions
of the functional equation then they are equal thatis A = B = C = D.

THEOREM 1.11.37: If (S, A), (S, B), (S, C ) and (S, D ) are semi-lattices such that
forallx, y,z 7S, A (x, B(y,z) =C (D (x,y),z) then A=B=C=D.

Proof: Let x, y U S. Then

A Y =A% X)= Ay, Bxx)=C(D(¥x),%) = C(D(x ), %)
A(x, B(y,x)=A(x, Bx,y))= C(D(x,x),y) = C(x, ).
A(x,y)=A(x B(x )

= A(x, B(B(x, ), B(x, y))
=  C(D(x B(xy),B(xy)

= C(D(B(x )%, B(x,y)
= A(B(xy). BKB(x ),
= A(B(x.Y). B(xy).

= By

Similarly we prove C =

This will find several applications in social groups, pattern recognitions, traffic, public
relations and correspondences.

Now using [110], we recall some results about lattice of all idempotent fuzzy subsets
of a groupoids.

We know from the definition of a fuzzy subset of a set S originally defined by [144]
in his classical paper is a mapping from S into the real interval [0, 1]. If A and Y are
fuzzy subsets of S then the equality A = U and the inclusion A [0 W are defined
pointwise, endowed with this partial order the set F(S) of all fuzzy subsets of S form a
completely distributive lattice. The meet A N [ and the join A [0 U the arbitrary

supremum [ A; and the arbitrary infimum n A; can be verified to have the following
formulas.

L (A0 (x)=min{A (x), K (x)}.
i.  (AOW) X)) =min {AX), W(X)}.
ii. (O A) (x) = supi A(X).
iv. (N Aj)(x)=1infi A(x), x O S.

The sup-min product of two fuzzy subsets A and [l of a groupoid D is the fuzzy subset
A. 1 of D defined by
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sup min {)\(a), u(b)} if x is factorizable in D
()\' u)(X) =4 x=ab
0 otherwise.

This product is monotone. It is associative and commutative if the composition in D is
associative and commutative respectively. The following two statements are
equivalent

L A*AOA

ii. min{A(a), A\(b} <A (ab)
foralla, b O D.

If D is a semigroup and n is a positive integer, A" denotes A ® A ® ... * A (n times).

Here we give some of the important subclasses of the class F(G) of all fuzzy subsets
of'a group G with identity e as follows:

i. F_(G):Itistheclass of all A [ F (G) such that A DA« A.

ii. Fo(G) : It is the class of all A O F (G) such that A (x) <A (e) forall x O G.

iii. Fi(G): It is the class of all A O F (G) such that A ¢ A JA. It means F, (G)
is the set of all fuzzy subgroupoids of G.

iv. F2(G) : It is the class of all A O F (G) such that A ®* A = A. In other words
Fz(G) : Fl(G) n F (G)

v. F3(G) =1t is defined by F3(G) = Fi(G) n Fyo(G).

vi. F4(G) : It is the class of all fuzzy subgroups of G.

It is easy to see that F4 (G) U F3 (G) U F» (G) U F, (G) and that F4 (G) U F3 (G) U
Fo(G) U F_; (G). If D is a groupoid the classes F_; (D), F; (D) and F, (D) are similarly
defined. Besides, if D possesses an identity element the classes Fo(D) and F3(D) are
meaningful the figure shows the inclusion relation among the various Fi(G).

F>
Fo

F3

F4

Figure 1.11.3

Throughout this note, D denotes a groupoid and G denotes a group with identity e,
unless otherwise specifically stated.

170



THEOREM 1.11.38: Let A;, p;, A, O F(D)whereilll, jUJ. Then

iii.

A5
i (04)s u=00, +4)
(94)

Proof (i):

(o ]Jeo = supmin{ wansupm o

x=ab

= sup {sup min {A(a), W j(b)}}

x=ab j

= sup {sup min {A(a), 4 (b)}j

j x=ab

= s AR K
]
for all x O D. If x U D and 0 < a < 1, then the fuzzy subset of D that maps x to a and
the other elements of D to 0 is the fuzzy point x4 in D.
For the sake of notational convenience we denote it by (x, a). Upon a moments

reflection one realizes that the class M (D) of all fuzzy points in D is in fact the set of
all join irreducible elements of the completely distributive lattice F (D).

DEFINITION 1.11.19: Given a non empty element A [JF (S), where S is an arbitrary
set, there exists a class {(x, @)} in M(S) not necessarily unique such that
A=U(x.a;).

We call such an expression for A a fuzzy-point expression or simply a reduction of A
in M(S).

We illustrate this example from [110].

Example [110]: Let S = {a, b, c}. If A is the fuzzy subset of S that maps a, b, ¢ to 1,
%, 0 respectively then A = (a,l) U [b, %j is a reduction of A in M (S). There exist

infinitely many reductions of A as follows.
A=[a, L 0 (a,1) O b2 a=bL|0fa, L0l 2|0l 20
4 3 3 2 3 4
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THEOREM 1.11.39: Let D be a groupoid in which the cancellation laws are valid. If
i, ay, (v B), O, B) UF(D), i J1I,j [JJ then

Hoba)) (. B)= 0lcx.a)+ (.8
ii.(y, )+ \0(x.a))=0(3.8) (x.a,)

iii. [Q(xi,ai))-Q(y_,,ﬁ_,FlQ((x,»ai),(y_/,ﬁ./))

Proof: Follows from [4].

THEOREM 1.11.40: Let D be a groupoid in which the cancellation laws are valid. If
AUy, A, WOF(D) where i [J1 and j [1J then

i [(l])li)-u:(l]()li,y).
ii. )I-(O,a,):om-,uj).
i (N2)+(n4, )= N0,

LJ

Proof: Please refer [110]. F_; (D) is not a sublattice of F(D) as is shown in by the
example of [110].

Example [110]: We show in this example F_; (D) is not closed under finite
intersection. Let D = {1, —1, i, —i} with the usual multiplication of complex numbers.
Let A= {1, 1}, B = {-1, i, —i}. Let Xa denote the characteristic function of A with
domain D. We then have Xa U X,. = Xa. Xa where C denotes proper inclusion Xg U

Xp2 = XB- XB> Xa N XB = Xans and (Xa N XB) * (Xa N XB) = X, - CONsequently Xa,
Xs U F; (D) but Xa n Xs and (Xa N XB) ®* (Xa N Xs) are not even comparable.
Nevertheless F_; (D) does not form a join — sublattice of F(D). Infact, its members
form a complete lattice.

THEOREM 1.11.41: Let D be an arbitrary groupoid. Then

i F_i(D) is closed under the formation of arbitrary unions.
ii. F_1(D) is a complete lattice under the meet A U and join A u given by

AODu={Anu}_,and AU = (A 0w.

Proof:
i Let {A\}. OF,(D). Then A, OA, A, D(mi)-[mjj for all i, which

]
implies that A ; [J (U)\J' (U)\ij.
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In other words OA, OF_,.

ii. By (i) every nonempty subset of F_; has an l.u.b.

in F_;. Besides @ [1 F_; Hence by well known results on lattice theory [27]. F_; is a
complete lattice under meet A N P and join A O p given by {Anp}_, and A O p
respectively.

THEOREM 1.11.42: Let D be a semigroup in which the cancellation laws are valid. If
A OF (D) then |A|_ =N A
n=1

Proof: Let p = ﬁ A" A. By earlier theorems we have s u=A>n N> n A n ... OA
n=1

n A n A n ... = In other words u 0 F_; (D). Let & O F_; be such that & 0 A.
Because & [0 & [ A?, by induction we obtain & (] A" for all positive integers n. Hence
0 [0 u. Consequently g = |)\|_1 :

The class Fi(D) is not a sublattice of F(D) . This is explained by the example of [110].

Example [110]: Here it is proved that F;(D) is not closed under the formation of finite
unions. Let D = {a, b, ¢, d} be the set with composition table:

ela|b|c|d
ala|bl|la]d
bla|b|d]|c
cla|d|a]|d
d|lc|d|c|c
Let A be the fuzzy subset of D that maps a, b, ¢, d to 1, %, %,% respectively and let A

be the fuzzy subset of D that maps a, b, ¢, d to 1, %, %,% respectively. Then A, p, [

F1 (D), because the level subsets of them are all subgroupoids of D. However A [
maps a, b, c,d to 1, %, %,% respectively. Clearly, A 0 i O F; (D) because the level

subset {a, b, c} is not a subgroupoid of D. Neverthless F;(D) does not form a meet
sublattice of F(D).

THEOREM [110]: Let D be an arbitrary groupoid then
i.  Fi(D) is closed under the formation of arbitrary intersections.

ii. Fi(D)is a complete lattice under join AUu and meet A [ l given by
AOQu=Anpuand AUu ={A 0.
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Proof:
1 Let {A\}. OF (D). Then [ﬂ)\ij . [ﬂ)\ij OA; ¢ A, OA, forall i, and we get

[O)\ij. [O)\ij O O)\i . In other words O)\i OF(D).

ii. From (i) every non-empty subset of F; has a g. 1. b in F,. Besides, 1 U F;
Consequently, F; is complete lattice under meet A Ol and join A O [

givenby A O u=An pand AOp = {A 0O p}.

THEOREM [110]: Let D be a semigroup. If A [JF(D) then [/1][ = G A
n=1I

Proof: Let p=U A\ OA. By earlier results we have
n=1

Hep=MN0ONOMO--ONONDO NO-=A.

In other words p O F; (D). Let & O F; be such that A O &. Because A* 0 & O & by
induction we obtain A" [0 & for all positive integers n. Hence 1 [0 & consequently

u=[.
THEOREM 1.11.43: Let D be a semigroup.

i. IfA OF. (D) then A", [JF_; (D) for all positive integers n. In other words
F_1(D) is the union of all the monogenic subsemigroups generated by its
own elements.

ii. IfA [JF; (D) then A" [JF, (D) for all positive integers n. In other words
Fi(D) is the union of all the monogenic subsemigroups generated by its
own elements.

Proof: Follows easily with simple calculations.

THEOREM 1.11.44: If A, [JF (D) then the two statements (i) and (ii) that follow are
equivalent.

i. AOF; (D).
ii. (a) ALF; (D) and (b) given d []D there exists sequences {a}, {b,} in D
such that d = a, b, and [jypy min{A(a, ), A(b,)}=A(d).

Proof: (1) = (ii).
Because

sup min {A(a), A(b)} =A * A(d) =A(d),

d=ab
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given by positive integer n there exists a,, bp, [J D such that
d = a, by and A(d) 1 <min {A(a,),A(b,)} <A(d).
n

(i) = (i). If possible let there be d O D such that A ® A (d) < A (d). There exist
sequences {a,}, {bn} in D such that d = ayb, and that |1y min {A(a, ), A(b,)} =A(d).

n-a

On the other hand, we have min {A (a,), A (by) } <A * A (d) for all n. Therefore A (d)
< A * A (d) which is a contradiction so we must have A ® A = A. Hence the claim.

THEOREM 1.11.45: Let A [JF; (D) where D has an identity element. If  is the upper
bound of Ain [0, 1] then the following two statements are equivalent.

i. Given d [JD, there exists sequences {a,}, {bn}in D such that d = a,b, and
[im min {A(a, ), A(b,)} =A(d).
ii. (A_I[T,a’])z =7 [r,a] whenever 0<T<a..
Proof: Refer [110].

THEOREM 1.11.46: Let A [J F(D) where D is a semigroup in which the cancellation
laws are valid. Then A [JF>(D) if and only if

Ax=Ur.
n=1 n=1

Proof: Firstly if A = A%, then A = A* =A’= ... and hence n A" =\ = OA". Conversely
if A A" OO0Nthen N OON = 0N ON OON =0\ =\, therefore A = A\°.

THEOREM 1.11.47: Let {A;} [JF> (D) Then UA, O F,(D) if and only if
U()\ia)\j) DU)\I

i#]

Proof: O, OF,(D) if and only if

o= ()

= U

[gmjm(umgxg

Jeh)
J

()o (g
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if and only if UA;.A,) DUA,.
i i

THEOREM 1.11.48: Let {A}; [J F, (D) where D is a groupoid in which the
cancellation laws are valid. Then (A, OF,(D) if and only if (ﬂ )\i) ONA;*A).
i i

Proof: (1A, OF,(D) if and only if

()=(n)n) = b

ij

- (nev)nho +a)

= ()a(penea)

ifand only if NA; O (A;A)). F2 (D) is neither a meet sublattice nor a join sublattice
i i#]

of F(D) as given by an example in [110].

We have the following theorem:

THEOREM 1.11.49: Let {A)}; [J F, (D) where D is a semigroup in which the
cancellation laws are valid. Then

(04),=0mar=(04),

1

In other words F> (D) is a complete meet sublattice of F_; (D), if D is a semigroup in
which the cancellation laws are valid.

Proof: Left for the reader to prove.

THEOREM 1.11.50: Let {A;}; [JF, (D) where D is a semigroup. Then

(04),=0 047 =(v4)

K
In other words F> (D) is a complete join sublattice of F'; (D), if D is a semigroup.
Proof: Refer [110].

Using the above two theorems we get the following theorem which can be easily
proved.

THEOREM 1.11.51: If D is a semigroup in which the cancellation laws are valid, then
F> (D) is a completely lattice under meet A U i and join A O u given by
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A0p=Ang = fjl(/my)"

and

)lD,u:|)lD,u|I:gl()lD,u)”

Now we proceed on to recall the fuzzy subgroupoid as given by [47]. In this study he
uses the concept of t-norm as given by [150].

DEFINITION [150] : A t-normal is a function T : [0,1] x [0,1] — [0,1] satisfying for
eachx, yandzin [0,1]

i. Tkl =x

ii. T(x,y)<T((zx)ifxs<z
iii. Txy)=T(@, x).
v. T Th,z) =TTk, ), z).

A few t-norms which are frequently encountered are T,,, Prod and Min defined by
Ty (x,y) =My (x +y—1, 0), Prod (x, y) = xy and

b if x<y

Min(x,y)Z{y i y<x

DEFINITION 1.11. 20: 4 t-norm, T; is stronger than a t-norm T5 if and only if T; (x, y)
2T (x,y) forallx, y [7[0,1].

THEOREM 1.11.52: Min is the strongest of all t-norms.

Proof: Directly proved.

Let X = (X, *) be a groupoid we will denote x ® y by xy.

DEFINITION 1.11.21: Let X = (X, ) be a groupoid. A function [: X — [0, 1] is a fuzzy
subgroupoid of X with respect to a t-norm T, if and only if for every x, y [JX we have
H(xy) 2T (1), 1))

DEFINITION 1.11.22: Let X; and X, be groupoid and let L and > be fuzzy
subgroupoids of X; and X, respectively, with respect to a t-norm T. The fuzzy

subgroupoids [ and [ are homomorphic (isomorphic) if and only if there exists a
groupoid homomorphism (isomorphism) @ X; — X, such that |4 = [bo @

In this situation we say that |, is given by pull back of |1, along @.

THEOREM 1.11.53: Let U be a fuzzy subgroupoid of X with respect to Min then [l is a
fuzzy subgroupoid of X with respect to any t-norm T.

Proof: Left as an exercise for the reader.
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DEFINITION 1.11.23: Let (X, ¢ be a groupoid. Let G denote the family of
subgroupoids of X. G is called a generating family if for every element x [J X there
exists a S [JG such that x [JS. {X} is a trivial generating family.

DEFINITION 1.11.24: Let (X, ®) be a groupoid. An element e [J X is called an identity
of X if ex =xe =x forall x [JX.

THEOREM 1.11.54: Let (X, ®) be a groupoid, then X has at most one identity.
Proof: Obvious from the fact if e and e' are two identities e = ee' = €'

THEOREM 1.11.55: Every groupoid is a subgroupoid of some groupoid with an
identity.

Proof: Let (X, *) be a groupoid. Let e be an element such that e [ X. Define an
operation '0o' on the set X' =X [ {e} as followsxoy=x°*yifx,y X;x0e=eo0x
=x for all x J X, e 0 e = e. Then obviously (X, o) is a groupoid with identity e and
(X, ) is a subgroupoid of (X', 0).

DEFINITION 1.11.25: We call (X', o, e) the identity extension of (X, ®) by e. Let (X, )
be a groupoid. By the virtue of the above theorem we may assume that X has an
identity whenever necessary, without loss of generality.

THEOREM 1.11.56: Let (X, o) be a groupoid then there exists a unique identity
extension of X up to isomorphism.

Proof: Let (X', 0, e) be constructed as in the proof of the earlier theorem. Suppose that
(X", ©, v) is also an identity extension of X such that X" = X [0 {u} with identity
element u. It is easily shown that @ X' — X" defined by

X if xOX

u if x=e

- |

is an isomorphism of groupoid X' onto X".

THEOREM 1.11.57: Let (X, *) be a groupoid. Let U : X — [0, 1] be a fuzzy
subgroupoid of X with respect to a t-norm T. Then U can be extended to a fuzzy
subgroupoid ' of X' with respect to the same t-norm T, where X' is the identity
extension of X.

Proof: Let (X', 0, e) be constructed as in the earlier theorem Let U' : X' — [0, 1] be
defined as

1 ifx=e

W(x) = {u(x) if xOX
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Now forany x, y J X"if x, y U X thenxoy=x*y [l X; hence g'(xoy) = (x * y) =
T (M(x), K(y)) =T (K'(x), K'(y)) since W is a fuzzy subgroupoid of X with respect to the
t-norm T. Further more for any x [1 X'; i' (xo0e) = '(x) =T (W'(x), 1) =T (L'(x), W'(e)).

Therefore ' is a fuzzy subgroupoid of X' with respect to the same t-norm p' Lk = M.

It (Q, 4, P)is aprobability space then P is infact a fuzzy subset of ¢ . Let Q =
[0,1]. Let L be the set of all Lebesgue measurable subsets in [0,1] and P be the
Lebesque measure then (Q, L, P) is a probability space.

THEOREM 1.11.58: Let (Q,_4 , P) be a probability space then (4 , n) becomes a
groupoid and P is a fuzzy subgroupoid of 4 with respect to T,,.

Proof: For any A, B 1 4 , we have P(A n B) = P(A) + P(B) - P(ALIB) 2 P(A) +
P(B) — 1. Since P(A n B) 2 0, we obtain P (A n B) 2 Max (P(A) + P(A) — 1,0) =
Tw(P(A), P(B)).

THEOREM 1.11.59: Let (X, ) be a groupoid and let (Q2,_4 , P) be a probability space.
Suppose that the mapping, Y: X — A satisfies ¥ (x y) L[] Yx) n Yy). Set Ux) =
P(Wx)) for all x [J X, then W is a fuzzy subgroupoid of X with respect to T,, One says
that U is induced by the mapping Y and the probability space (2, 4 , P).

Proof: For any x, y U X we have Y (x y) U Y(x) n Y (y) therefore by the above

theorem it follows that p(xy) =P (U (xy)) 2P (Y (x) n W (y)) 2 T (P(W(x), P (W(Y)))
= Tin(H(X) , K(Y))-

The following result is direct hence left for the reader to prove.

THEOREM 1.11.60: Let (X, *) be a groupoid and let (Q2,_4 , P) be a probability space.
If i X - A is a homomorphism from (X, ) to (A , n). Set U(x) = P ({Yx)), then U
is a fuzzy subgroupoid of X with respect to T,,induced by Y and (2,4 , P).

THEOREM 1.11.61: Let (X, ) be a groupoid and G be a generating family of X. For x
X let Sy = {S [JG[k [JS} and let W = {S, [k [JX}. Let A be any O -algebra on G
which contains the O - algebra generated by W and let m be a probability measure on
(G, A). Then u: X — [0,1] defined by p(x) = m(Sy) for each x [J X is a fuzzy
subgroupoid of X with respect to T,. A fuzzy subgroupoid obtained in this manner is
called “subgroupoid generated”.

Proof: Let x, y U X. Suppose that S U1 Sy n Sy; Then S is a subgroupoid of X
containing both x and y. Consequently x y U S and hence S U S,. Therefore S,y [
Sx N Sy. Define P : X — A by x —Sx. Then P (xy) = Sxy U Sx n Sy = P(x) n Y(y).
Set W(x) = m (P(x)) = m(Sx) then by earlier theorem U is a fuzzy subgroupoid of X
with respect to T.

THEOREM 1.11.62: Let (X, *) and all other symbols be the same as described in the

theorem 1.11.61. If there exists an element e of X such that e is contained in every
subgroupoid of the generated family G, then le) = 1.
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Proof: Obviously S. = G and hence pi(e) = m(Se) = m(G) = 1.
The following result is straightforward.

THEOREM 1.11.63: Let all symbols be the same as described in the above theorem. If
(X, ) is a monoid with the identity e then L(e) = 1.

Further we have a still stronger result.

THEOREM 1.11.64: If (X, *) is a group. Let e be its identity, then p(e) = I and p(x")
= Ux) for all x []X.

Proof: Note that S ., =S and hence Hx ) =m (S,-) =m(Sy) = U(x). It is pertinent

to note that if (X, ®) is a group then P obtained in the Theorem 1.11.64 is just the
"subgroup generated"; fuzzy subgroup of X.

THEOREM 1.11.65: Let (2,_4 , P) be a probability space and T be a non empty set.
Let @: Q — T be a mapping. Then @induces a new probability space (T, A, m) where
A={B Ot " (B) A4 }andforeachB [JA, m(B) =P (¢~ (B)).

We say that (T, A, m) is induced by @and (2,4 , P).

THEOREM 1.11.66: Let (2, 4 , P) be a probability space and T be a non empty set.
P(1) denotes the power set of T. Let ¢: 2 — T be a mapping. Suppose that (X, ®) is a
groupoid and there exists a mapping Y : X — P(T) such that

i @ (Yx) 04 forallx OX
ii. WYxy) DWx) n Wy) forall x, y [/ X.

Set pi(x) = P(@~ (W(x)) for all x OX, then W is a fuzzy subgroupoid of X with respect
to Tp.

Proof: By the above result @ and (Q , 4 , P) induce a new probability space (T, A,
m). Result follows by the earlier theorems.

The following result is a direct consequence of the theorems proved; hence left for the
reader as an exercise.

THEOREM 1.11.67: Let Q = [0,1] and L be the set of all Lebesgue measurable sets on
[0,1]. Let P by the Lebesgue measure. Suppose that we have a non empty set T, a
groupoid (X, *) and two mappings as follows:

@: Q2 -1 Y: X - P(1) satisfying

i. @ (k) CL for all x OX.
ii. Yy Jyx) n ) forall x X

Set t(x) =P (¢ I WYx))) for all x [JX, then U is a fuzzy subgroupoid of X with respect
to Tp.
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Now we proceed on to recall properties of a fuzzy subgroupoid of a subgroupoid of a
direct product.

THEOREM 1.11.68: Let (X, *) be a groupoid and let Y be a fixed subgroupoid of X.
Let (Q, A4, P) be a probability space and let (F,®) be a groupoid of functions
mappings Q into X and © defined by pointwise multiplication in the range space. A
further restriction is placed on F by assuming that for each f [JF, Xy = {w [J Q| f(w)
7Y} is an element of 4 . Then v: F - [0,1] defined by v (f) = P(X;) for each fin F
is a fuzzy subgroupoid of F with respect to T,. A fuzzy subgroupoid obtained in this
manner is called * function generated”.

Proof: Let f, g L F. Suppose w U X¢n X, Then f{lw) U Y. Since Y is a subgroupoid
of X. (fo g)(w) = flw) o g(wU Y and consequently w [ Xy,e. Therefore X, U Xt N
Xg. Now consider the mapping P : F - 7 . f - X We have Y (fo g) = Xge L X¢ N
Xe =Y (® n Y(g). Set v(f) =P (Y1) = P(Xy) for all £ I F, then by earlier results v is
a fuzzy subgroupoid of F with respect to Ty,

It is pertinent to mention that for each w [J Q by defining X, = X, we can construct a
direct product uEIQX&) then (F, ©) is in fact a subgroupoid of uEIQX&).

IffUF and flo) LY, for all w [ Q then v (f) = 1.
Now we recall the fuzzy subgroupoid representations.

THEOREM 1.11.69: Every function generated fuzzy subgroupoid is subgroupoid
generated.

Proof: The proof is lengthy the reader is requested to refer [47].
The proof of the following theorem is omitted and the reader is advised to refer [47].

THEOREM 1.11.70: Every subgroupoid generated fuzzy subgroupoid is isomorphic to
a function generated fuzzy subgroupoid.

THEOREM 1.11.71: Let (X, ®) be a groupoid with the identity e and let V be a fuzzy
subgroupoid of X with respect to Min such that V(e) = 1. For each tin [0,1] let X, =
{x [JX, v(x) 2t}). Let a and b be in [0,1] such that a <b; then

i. X is asubgroupoid of X for every tin [0,1].
ii. XplJX,
iii. ifx JX,—Xpforallbin (a, 1]; then V(x) = a.
Proof:

i. For eacht in [0,1] since V(e) = 1 =t we have e [J X;. Hence X; is not empty.
For any x, y U X; it follows that v(x) = t, V(y) = t. Therefore V(xy) =
Min{V(x), V(y)}=t; hence x y [l X;. This shows that X is a subgroupoid of X.

181



ii. For any x [ X}, we have V(x) 2 b. Since b = a it follows that v (x) = a and so x
[ X,. Hence X U X,.

. Ifx X, — Xy for all bin (a, 1] then we havea < v (x) <b foralla<b< 1.
Hence v(x) = a.

Finally we state the following two theorems from [47] the proof is left for the reader
to refer.

THEOREM 1.11.72: Every fuzzy subgroupoid with respect to Min is subgroupoid
generated.

THEOREM 1.11.73: Let U be a subgroupoid generated fuzzy subgroupoid with (X, ®)
and (G, A, m) and set Sy for x [/ X, as described in the theorem 1.11.72. If there exists
G* [J A which is linearly ordered by set inclusion such that m(G*) = [ then U is a
fuzzy subgroupoid with respect to Min.

The converse of the above theorem holds if (X, ®) has an identity e such that U (e) = 1.
In this case we set G* = {x; | t [J[0,1]} then from the earlier result it is obvious that
G* is linearly ordered with measure one.

Some more algebraic properties are discussed in the following:

DEFINITION 1.11.26: Give a groupoid. X = (X, ®) a t-norm T and set I, for each i [/,
let ; be a fuzzy subgroupoid of X with respect to T, we define

N uij ) =inf )}

ior

THEOREM 1.11.74: N, (x) is a fuzzy subgroupoid of X with respect to T.
il

Proof: For any x, y 1 X. We have

;i (%) 2 inf LX)}
01
M (y) 2 inf L)}
i
hence
T (), 15 () > T (inf p, (x), inf p,(y))
foralli O 1.
It follows that
inf [T (), 1 ()] 2 {inf L), inf W (Y)}
i

iln L
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Therefore we have

inf K (xy)}

il

il

Nw )

IV

inf [T 0, )]

iln

_ T [Q uij(x), n uij(y)}

Hence the result.

It is evident that fuzzy subgroupoids of X with respect to a t-norm T form a complete
lattice. In this lattice, the inf of a set of fuzzy subgroupoids [; with respect to T is just
NW;, while their sup is the least [ (i.e. the n ofall Y's) which U [ W;, where [[4 ; (X) =
sup M (x) for all x U X.

DEFINITION 1.11.27: Let f: X — X' be a homomorphism from groupoid X into
groupoid X'. Suppose that V is a fuzzy subgroupoid of X' with respect to a t-norm T.
Then the fuzzy set U = Vo f (defined by U (x) = V (f(x)) for all x [ X) is called the pre
image of V under f.

THEOREM 1.11.75: Let i/ = V o f be the preimage of V under [ as described in the
above definition, then [ is a fuzzy subgroupoid of X with respect to T.

Proof: For x, y J X we have i(xy) = (Vo f) (xy) =V (flx y)) = Vv (f(x), fly) =2
T(v(f(x)), V(f(y))) = T (L(X), I(Y)). So by definition [ is a fuzzy subgroupoid of X
with respect to T.

DEFINITION 1.11.28: Let /- X — X' be a homomorphism from groupoid X onto
groupoid X'. Suppose that U is a fuzzy subgroupoid of X with respect to a t-norm T,
then the fuzzy set Vin X' = f(X) defined by

V) = Sup ux)

A0 (y)
forall y [/ X'is called the image of [ under f.

DEFINITION [112]: We say that a fuzzy set [ in X has the sup property if for any
subset A []X there exists a, [JA such that [{(ag) = sup U(a)

all4
THEOREM 1.11.76: Let - X — X' be a homomorphism from groupoid X on to
groupoid X. Suppose that [l is a fuzzy subgroupoid of X with respect to a t-norm T and
that 1 has the sup property. Let V be a homomorphic image of [{ under f as described
in the earlier definition then V is a fuzzy subgroupoid of X' with respect to T.

Proof: Given f(x), f(y) in iX) = X', let x, O f'(f(x)), yo O £ (f(x)) be such that
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H(xo) = SUp K1)

of 1 (f(x))

M) = Sup M)

tof ™ (£(y)

respectively. Then we have

Vf(x)) = Sup K1) = H(xo)

of 1 (f(x))

Vf(y) = sup K= H(yo).

toF ™ (£(y)

since

(%o, Yo) = 1(Xo) (o)
= f(x) f(y)

we have X,, yo U f ' (f(x), f(y)) hence

Sup M2 2 U (Xo, Yo)-
Z0f7 (£ (x).£(y))
It follows that

V(f(x), fly) = Sup K2 2 U (X, o)

Z0f7 (£ (x).£(y))

2T (U(Xo), M(Yo))
> T (V(x), VAY)).

Therefore v is a fuzzy subgroupoid of X' with respect to T.
Now we proceed on to define fuzzy bigroupoid. The concept of bigroupoid is itself

very new so the notion is fuzzy bigroupoid is totally absent in literature. Here we
define fuzzy bigroupoid and recall just the definition of bigroupoid.

DEFINITION 1.11.29: Let (G, +, ) be a non empty set we call G a bigroupoid if G =
G, [J G, and satisfies the following:

i. (Gy, *)isagroupoid.
ii. (Gz,*)isasemigroup.

Example 1.11.16: Let (G, +, *) be a groupoid where G = G; [ G, with G, a groupoid
given by the following table:
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+ X1 X5 X3
X | Xy | X3 | Xy
X2 [ X2 [ X1 | X3
X; | X5 | Xy | Xy

And G; = S(3) the symmetric semigroup of mappings of (123) to itself.

Clearly (G, +, *) is a bigroupoid.

Now we define fuzzy bigroupoid as follows.

DEFINITION 1.11.30: Let (G, +, ®) be a bigroupoid; G = G; [J G, proper subsets of
G, with (G, +) a groupoid and G, a semigroup. 1l : G — [0, 1] is said to be a fuzzy
bisubgroupoid (or by default of notation fuzzy bigroupoid) if and only if 1 = [J b
where U from G; — [0, 1] is a fuzzy subgroupoid and [b: G, — [0, 1] is a fuzzy

subsemigroup.

Thus almost all properties true in case of fuzzy groupoids and fuzzy semigroups can
be easily extended to the case of fuzzy bisubgroupoids.

Now we proceed on to define fuzzy loops and fuzzy biloops.

DEFINITION [118]: Let G be a group. A fuzzy subset i : G — [0, 1] is called a fuzzy
subloop if for at least a triple x, y, z [JG we have [((xy)z) Z U(x(yz)).

Study of this type was carried out by [118].
Since all groups are loops we can define fuzzy subloop in a more generalized way as

DEFINITION [118]: Let L be a loop A: L — [0, 1] is a fuzzy subloop of L if atleast for
a triple x, y z [JL we have A((xy)z) ZA(x(yz)).

DEFINITION [118]: Let L be a group or a loop. The fuzzy subloop V: L — [0, 1] is
called a fuzzy Bruck subloop if P (x (vx) z) = P(x(y(xz))) and P (xy)” =P (x"' y ) for
all x, y [JL.

DEFINITION [118]: Let G be a group or a loop. A fuzzy subloop P of G (P: G - [0, 1]
is a fuzzy Bol subloop of G if P(((xy)z)y) = P(x((yz))y) for all x, y, z [/ G.

DEFINITION [118]: Let L be a loop or a group. A fuzzy subloop P: L — [0, 1] is
called a fuzzy Moufang subloop of L if P((xy(zx)) = P((x(yz))x) for all x, y, z [JL.

THEOREM 1.11.77: Every fuzzy subloop of a loop L need not in general be a fuzzy
Moufang subloop of L.

Proof: Consider the loop L given by the following table:
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DNk (WIN]|—|O

DNl WIN[(—O (O
Ao |Ww|o [—]|—
W= KO ||
N[O | =B [W]|W
— O [N|n|w] >~
O | W= u|w

Define V:L - [0 1]by V(0) =0, V(i) =0.i foralli O V. V ((14) (21)) =0.2=V (2)
V((1(42)1)) =0=V(0) . So V is not fuzzy Moufang subloop of L.

THEOREM 1.11.78: Let L be a loop or a group. The fuzzy subloop V of L — [0 1] is a
right alternative fuzzy subloop of L if V((xy)y) = V(x(vy)) for all x, y [JL.

Proof: Straightforward by the very definition.

THEOREM 1.11.79: Let L be a loop or a group. A fuzzy subloop V of L is a weak
inverse property loop if V((xy)z) = 0 imply V(x(yz)) = 0 for all x, y, z [JL.

Proof: Given V: L - [0, 1] is a fuzzy subloop of L, clearly if V((xy)z) = 0 imply
V(x(yz)) = 0 then it is the weak inverse property as the result is true for all x, y, z J L
we have V to be a fuzzy subloop which satisfies weak inverse property.

As we are not able to find any other means to define fuzzy subloop as to the best of
the authors knowledge we do not have any other definition for fuzzy subloops we take
this as the basic definition. Also we wish to mention the definition of fuzzy subloops
given by us is distinctly different from the classical definitions of other algebraic
structure.

Also it is pertinent to mention here that all fuzzy subloops are not subloops for they
do not satisfy the axiom of a subloop.

Now we proceed on to define the notion of fuzzy biloop; for which first we give the
definition of biloop.

DEFINITION 1.11.31: Let (L, +, ®) be a non empty set with two binary operations. L is
said to be a biloop if L has 2 nonempty finite proper subsets L; and L; of L such that

I L= L] ULZ.
ii. (L;, +)isaloop.
iii. (L, *)is aloop oragroup.

We define fuzzy biloop and request the reader to refer [ 135] for more properties about
biloops.

DEFINITION 1.11.32: Let (L, +, *) be a biloop. A map p: L - [0, 1] is called fuzzy

biloop if we have (L = L; [JL,) with (L;,+) a loop and (L,, *) group or a loop) [ =
M1 L where U denotes the fuzzy subloop of L; and b is the fuzzy subloop of L; (i.e.
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U restricted to L, is denoted by L and U restricted to L, denoted by (&> the symbol '[]'
in (1= L [J [ is only by default of notation).

All fuzzy properties studied for loops can be easily extended to fuzzy biloops in an
analogous and routine ways.

1.12 Miscellaneous Properties in Fuzzy algebra

This section is devoted to the miscellaneous properties about fuzzy algebra which has
not been covered in the earlier eleven sections like fuzzy continuous map on groups,
fuzzy polynomial ring, fuzzy polynomial semiring, and finally the concept of fuzzy
opposite sets and systems. Now we proceed on to recall the concept of fuzzy
continuous map on groups. For more about these refer [139].

DEFINITION 1.12.1: A4 fuzzy topology Ton a group G is called a g fuzzy topology. The
pair (G, 1) is called a g-fuzzy topological space.

Example 1.12.1: Let G = {1, —1} be the group with respect to usual multiplication
and T= {@g, lg, A, M} where A, p: G - [0, 1] are given by

AX) 1 if x=1
X =
0 if x=-1
and
®) 0 if x=1
X =
H 1 if x=-1.

Now the empty fuzzy set @ and the whole fuzzy set 1 are in T. Further, it is easily
verified that the intersection of any two members of T is a member of T and arbitrary
union of members of T is a member of T. Hence T is a g-fuzzy topology on G.

DEFINITION 1.12.2: Let T; and T; be g-fuzzy topologies on the group G; and G,
respectively. A function f : (G; 1)) — (G T3) is said to be a g-fuzzy continuous map
from Gy to G if it satisfies the following conditions:

i.  Forevery u 01, (1) 01 and

ii.  For every fuzzy subgroup i (of G2) in T, £~ (W) is a fuzzy subgroup (of
G]) int.

This definition is illustrated by the following example.

Example 1.12.2: Let G, = {1,—1, i, -1} be a group with respect to usual multiplication
and G, = {e, a, b, ab} be the Klein four group, where a’=e =Db’, ab=ba and e is the
identity element of the group G. The corresponding g-fuzzy topologies are given by
T = {(pGl 5 lGl 5 )\1, Lll} and T, = {(sz 5 le’ )\2, le} where )\1, M : G1 — [0, 1] and

A2, K2 @ Gy [0, 1] are defined as follows ;
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{1 if x=1,-1

0 ifx=i-i

® 1 ifx=i-i
N
Hi 0 ifx=1-1
1 if x=e
)\ =
%) {0 if x =a,b,ab
®) 0 ifx=e
N
Kz 1 if x=a,b,ab.
Define f: (G, T1) - (G2 T2) by
e ifx=1-1
flx) = b ifx=i
ab if x = -1

Then for every x [J G;, we have calculated the following:
(F (@, ) ) = 96, 0
(16, ) 0 =16, 0
(£ (1) 0 =M, )
(F (1)) 0 =1, (0.
Hence we have
(0, )= @6, (16, )= 16, (7 2)) =2, and (7 (,) =,

This proves f (i) O 1, for every p O To. Further, it is easy to verify that f '(p) is a
fuzzy subgroup of the group G; whenever [ is a fuzzy subgroup of the group Go.
Hence f'is a g-fuzzy continuous map from Gj to G,.

Both the conditions given in definition 1.12.2 are essential for in the above example if
we take Ti = {Q; , 1 , A1} instead of Ty = {@; , 15 , A1, Ju} then clearly condition

(ii) of definition 1.12.2 holds good, but not condition (i) as f (i) O T1. Hence both
the conditions given in the definition are essential.
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THEOREM 1.12.1: Let G; and G, be any two groups. If T, is a g-fuzzy topology on the
group G| and T, is an indiscrete g-fuzzy topology on the group G, then every function
(G, 1)) - (G ) is a g-fuzzy continuous map.

Proof: A fuzzy topology T is said to be an indiscrete fuzzy topology if its only
elements are the empty fuzzy set and the whole fuzzy set. Let T; be a g-fuzzy topology
on the group G; and T, be an indiscrete g-fuzzy topology on the group G,. Since T is
an indiscrete g-fuzzy topology we have T ={ @, , 15 }.

Let f: (G1 T1) — (Gz T2) be any function. We see that every member of T, is a fuzzy
subgroup of the group G,. So it is enough to prove that for every u 0 1o, £ ()0 T..

Casei: Let @; UT,. Then for any x U Gy,

£ ((sz )(x) @, (f(x))
0 (asf(x)G,)

@, (x)

(by the definition of empty fuzzy set) That is (f - ((sz ))(x) =@, (x) for every x U Gi.
Thus we have (f - ((pGZ )) =@, 01,.

Caseii: Let 1; [ T and x [J Gy, then we have

(e, ) 0 = 1o, (F(x))
= I(as f(x)UG,)
= 1Gl (x)

(by the definition of whole fuzzy set). Hence (f - ((sz ))(x) =15, (x) for every x U Gi.
This proves (f - (lG2 )) =1, UT,. Hence fis a g-fuzzy continuous map from G; to G>.

The following example will illustrate the above theorem.

Example 1.12.3: Let G, = {1, -1, 1, -1} and G, = {1, -1} be two groups with respect
to usual multiplication. The corresponding g-fuzzy topologies are given by
T, ={A\,pu}andt, { N, u} where A, (x) =0 for every x 0 Gy, W (x) = 1 for every

x 0 Gy, Az (x) =0 for every x [ G, and W, (x) = 1 for every x [ G,.

Let as consider the function f: G; — G, defined by f(x) = x* for every x 0 G, . Thus
we have for every x [J G,
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(' () 0 = M)
= )\2(X2)
= 0
= A (X).

Thus (f_1 (A, )) (x) = A, (x) for every x [ G;. Hence we have f'(\,)=A,. Further we
have f™ (pz) =W,. It is easy to check that for every function f, f~' ()\2) =M, and

() = n,

Clearly A, and Y, are fuzzy subgroups of the group G,. Thus f'is a g-fuzzy continuous

map from G to G, . Clearly A and A, are fuzzy subgroups of the group G;. Thus f'is
a g-fuzzy continuous map from Gj to G,.

THEOREM 1.12.2: Let 1; and T; be any two discrete g-fuzzy topologies on the groups
(G, *) and (G>, [J respectively. Then every group homomorphism f: (G; 1)) — (G2 T3)
is a g-fuzzy continuous map but not conversely.

Proof: We say a fuzzy topology T on a set X to be a discrete fuzzy topology if it
contains all fuzzy subsets of X. Let T; and T, be any two discrete g-fuzzy topologies
on the groups (Gj, *) and (G2, [ respectively and f be a group homomorphism from
G to G;. Since T; and T, are discrete g-fuzzy topologies by the definition of g-fuzzy
topology we have for every p 0 Tp; £'() O 1y, here it is important to note that ' is
not the usual inverse homomorphism from G; to G;.

Let Y be a fuzzy subgroup (of G») in T, then for x, y L] G, we have

wxey = uleey)
= H(f(x) Uf(y)) (since fis a group homomorphism)
> min {u(f(x)), u(f(y)} (for [ is a fuzzy subgroup of G)

= min{f @) 0. (@) o}

Hence we have (f_l(u)) (x*y)=min {(f_l(u)) (x), (f_l(u)) (y)} for every x, y U Gj.

Further

(') = e
= pl(f(x)'1 (since f'is a group homomorphism)
= (f(x)) (since W is a fuzzy subgroup of the group G,)
= {Fwe.

Thus (f_1 (u)) (x™" =(f_1(|,l)) (x) for every x [ Gy. This proves that f_l(u) is a fuzzy
subgroup (of G;) in T; and hence f'is a g-fuzzy continuous map from G; to G .

The following example shows that a g-fuzzy continuous map need not in general be a
group homomorphism.
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Example 1.12.4: Take G, = {1, -1} and G, = {1, @, ¥} to be groups under the usual
multiplication with discrete g-fuzzy topologies T; and T, on G; and G, respectively.

Now define f: (G, T1) - (G2, T2) by f(1) =1 and f( —1) =

Since T, and T, are discrete g-fuzzy topologies, clearly for every p O To, £ ()0 T,.
Now we will prove that if  is a fuzzy subgroup (of G») in T, then £ () is a fuzzy
subgroup (of Gj) in T;. Let U be a fuzzy subgroup (of G) in T, then we have the
following two cases.

Case (i): If L= @;_ or p=1; then clearly f'(W) is a fuzzy subgroup (of G) in T;.
Case (ii): If p = @;, and p # 1 then Y has the following form:

) t, if x=1
X)=

H t, ifx=ww
where 1 >2t;>1,>0.

Now for every x U Gy,

t, if x=1

(f—l (u)) (x) :p(f(X)) = {t if x=-1

where 1 =2t;>t,=0.

Hence f '(p) is a fuzzy subgroup (of G;) in T,. Thus f is a g-fuzzy continuous map
from G; to Go. It is easy to verify that f(xy) # f(x) (f(y)) for x = y = -1 U G;. This
proves that f is not a group homomorphism.

THEOREM 1.12.3: Let 1; and T, be any two g-fuzzy topologies on groups (G, ®) and
(G>, D) respectively. Then every group homomorphism f: (G, 1;) — (G2 T;) need not in
general be a g-fuzzy continuous map.

Proof: To prove this theorem it is sufficient if we prove the result to be false for a
particular T; and T, defined on any group G as in our definition of g-fuzzy continuous

map we have not assumed G; and G; to be distinct.

Let G be any group. Define two g-fuzzy topologies T; and T, on the group G as
follows:

T, ={@,. 15, N and T, { @, 1, t where A, i : G — [0, 1] is as given below:

1 ifx=e
A(x) = .
0 ifx#e
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and
1 ifxZe

”(X):{o ifx=e

Hence e is the identity element of the group G.

Define f: (G, 1)) - (G, T2) by fix) =x ' for every x O G. It can be easily verified that
fis a group homomorphism. For x [J G and p U T, we have

u(t))
u(x™)
U(x) (for x =e,if andonlyif x™' =e).

(')

This gives (f_1 (u)) (x) =(x) for every x 0 G. Thatis f™' () =. Thus £ (W) OT,,
as U U 1;. Hence f'is not a g-fuzzy continuous map on G.

Now we proceed on to define g-fuzzy homeomorphism.
DEFINITION 1.12.3: Let (G, T;) and (G», T) be any two g-fuzzy topological spaces. A
function f: (Gy, T;)) — (Gs, 1) is said to be a g-fuzzy homeomorphism if it satisfies the
following three conditions.
i. fis one to one and onto.

ii. fis a g-fuzzy continuous map from G; to G, and

iii. [ is a g-fuzzy continuous map from G, to G.
We now give an example of a g-fuzzy homeomorphism.
The following example will illustrate the g-fuzzy homeomorphism.
Example 1.12.5: Take G; and G, to be the set of all integers and even integers

respectively (they are groups with respect to usual addition) with corresponding
topologies T, I{(pGl g, )\} and T, I{(sz,le , u} where A: G, - [0, 1] is defined as

)\(x):{l if x=0

0 ifx=x1,£2,%3,---
and l: G, — [0, 1] is defined as

1 if x=0

”(X)_{o ifX 42,2446,

The function f: (Gy, T1) - (G, T2) given by f(x) = 2x is clearly one to one and onto.
It is easy to verify that £~ @, )= s, » £ lg, )=15 and £ (W) =A.
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Hence f is a g-fuzzy continuous map from G; and G,. Further we have checked that
f ((pGl ) =@, (IGl )= 15, and f(A) = . This proves f " is a g-fuzzy continuous map
from G, to G;. Thus f'is a g-fuzzy homeomorphism from G; to G,.

We know that a fuzzy subset of a set X is said to be a fuzzy point if and only if it
takes the value 0 for all y [J X. expect on one element, say, x [J X.

If its value at x is t (0 <t < 1) then we denote this fuzzy point by x;.

DEFINITION 1.12.4: A fuzzy subset [ in a g-fuzzy topological space, (G, T) is called a
Qq-neighborhood of the fuzzy point x; (for x [J G) if and only if there exists fuzzy
subgroup A (of G) in Tsuch that A [J l and x, g A (where x, q A means t+ A (x) >1 and
X, is quasi coincident with A).

This definition is illustrated by the following example:

Example 1.12.6: Let G = {l, w «’} be the group with respect to the usual
multiplication, where w denotes the cube root of unity.

Let T= {(qg, 1g, A, M} where i, A: G = [0, 1] are given by

B 0.9 if x =1
"D = {0.7 if x =0 W
and
0.9 if x=1
ux) = 08 ifx=w
0.7 if x =W’

It is easy to verify that T is a g-fuzzy topology on the group G. We observe that [ is a
Q. - neighborhood of the fuzzy point w5 as there exists a fuzzy subgroup A [J T such
that A [J 4 and the fuzzy point wy s is quasi coincident with A.

DEFINITION 1.12.5: A g-fuzzy topological space (G, 1) is said to be a g-fuzzy

Housdorff space if and only if for any two fuzzy points x, and ys (x, vy [JG and x Zy)
there exist Q, - neighborhoods A and [l of x, and y respectively such that A n U= @.

The following is a nice characterization theorem.

THEOREM 1.12.4: Let f : (G, 1)) — (G, T3) be a g-fuzzy homeomorphism. Then
(G, 1) is a g-fuzzy Housdorff space if and only if (G,, T3) is a g-fuzzy Housdorff
space.

Proof: Let £: (G, T1) - (G, T2) be a g-fuzzy homeomorphism. Suppose we assume
that (G, T;) is a g-fuzzy Housdorft space we prove (G, T») is a g-fuzzy Housdorff
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space. Let x; and y; be any two fuzzy points in T, with x 2y (x, y 0 G,) then f ' (x) #
f(y) as fis one to one.

Now consider for z [1 G,

(f'x))@ = x (@)
_ t iff(z)=x
0 iff(z)#x
_ t ifz=f"(x)
0 ifzzf"'(x)
- ('w) @.

That is (f_1 (xt)) (z)= (f_l(x))t (z) for every z L1 G;.
From the above equality we have f(x) = (f - (x))t.

Similarly we can prove that f'(y,) = (f - (y))S , just by replacing the fuzzy point x; by
ys. Since (f_1 (x))t and (f_l(y))S , are fuzzy points in T; we have £ '(x, ) and £ (ys) are
also fuzzy points in T; with £ (x) 2 ' (y).

By the definition of a g-fuzzy Hausdorff space there exists Q, -neighborhoods px and
My of f “(x,) and ' (ys) respectively such that P N Hy = @, . That is there exist fuzzy

subgroups A, A, [T, such that

i. A Opyand £'(x) q A
ii. Ay Opyandf '(y)qAyand
i P N Py = @

Since f is a g-fuzzy continuous map from G; to G, and ' is a g-fuzzy continuous
map from G, to G; there exists Qg — neighborhoods f (Hy) and f(Hy) of x; and y;
respectively such that f(l) n f(Hy) = @, . Hence by the definition of g-fuzzy

Hausdorff space (G, 1») is a g-fuzzy Hausdorff space.
Conversely let (G, T2) be a g-fuzzy Hausdorft space. By a similar argument and by
also using the fact that both f and f 'are g-fuzzy continuous maps we can prove that

(G, 11) is a g-fuzzy Hausdorff space.

Now we proceed on to define fuzzy polynomial rings and fuzzy polynomial
semirings.
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We define it in a very different way and in fact it is also quite new.

DEFINITION 1.12.6: Let [0, 1] be a closed interval of the real line. Let R be a
commutative ring with 1 or the field of reals. The fuzzy polynomial ring in the

variable x with coefficients from R denoted by R[x " "] consists of elements of the
form

n

a,,a;,a,JR and
{a0+a1xy1+-~-+a x| " .

Vi, Vo, v, 000, 1] withy, <y, <---<y,

In order to make a ring out of Rfx°" "] we must be able to recognize when two
elements in it are equal, we must be able to add and multiply elements in R[x ° "] so

that axioms defining a ring hold true for Rx!""]. If p(x) = a,+ax" +---+ax" and

q(x) = b, +bx* +---+b _x""are in R[x'""]; p(x) = q(x) if and only if (1) m = n, y; =
s; and a; = b,, for each i.

Ifp(x) = a,+ax" +---+a x"and q(x) = b, + b;x*" +---+b _x" then p(x) + q(x) =
c, X"+t x where Vi<V <... <V, S1<S2 <... <Sw, and t;<t; <... <tg with

Wosi, t, [J[0, 1], 1 Si<n 1 <j<mand]l <p <k i.e. we add two polynomials as in
case of usual polynomials by adding the like powers of x. Now it is easily verified
R[x"" ] is an abelians group under “+’; with 0 = 0+ 0x" +---+0x" as the additive
identity which for short will be denoted by 0.

Now we have to define multiplication ‘0’ of two fuzzy polynomials in R[x'" "]. For
x"and x" OR [x "]

s, t — AL
xX'ox = X if s,+t,<1

= i s+, >
We extend this way of multiplication for any two polynomial p(x), q(x) OR[x[""].

Clearly R[x!" !, o] is a semigroup under ‘o’ and {R[x[o‘U], +,0} is defined to be a
fuzzy polynomial ring.

Now unlike in a polynomial ring we see in case of fuzzy polynomial rings the degree
of fuzzy polynomial is also fuzzy.

DEFINITION 1.12.7: Let p(x) = p, + px"" +---+p x LR 1] we call p(x); a

fuzzy polynomial, the degree of p(x) is y, provided pn Z 0. y, always lie between 0
and 1.

It is pertinent to note that if p(x), q(x) O R[x ] of degrees V. and s, respectively then
the degree of p(x) o q(x) can be Y, + s, or Y, + s, —1 depending on the fact whether y,

+ sn < 1 or Yu + sp > 1 respectively. Thus deg (p(x) o q(x)) in general are not equal to
deg p(x) + deg q(x) in fuzzy polynomials.
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We have nice results analogous to usual polynomial rings.

THEOREM 1.12.5: Let R/x'" /] be the polynomial ring over the field of reals R. Then
R[x" 1] is an infinite dimensional vector space over R.

Proof: Follows from the fact R[x> '] is an additive abelian group for any fuzzy
polynomial ring and we have for all r J R and p(x) U R[x 1, rp(x) O R[x* 1.
R[x* "] is a vector space over R since the interval [0, 1] is of infinite cardinality we
say R[x'" '] is a vector space with infinite basis.

Can we have fuzzy polynomial rings which are finite dimensional or has a finite
basis? The answer is yes.

Example 1.12.7: Let R be the ring of integers R[x'" '] = {all polynomial formed by x°
=1 x", x°'4, x*¢ x*® and x with coefficients from R} = {ao + ax*? + ox™ + a3x™

+ (]4X0'8 + 05X | ay, Oy, O3, 04, O5 O R}.

Clearly R[x[o’ 1]] is a finite dimensional vector space over R.

Dimension of R[x™ '] is 6. One of the basis is [1, x™*, x>, x”¢,x*® and x]

DEFINITION 1.12.8: Let R[x"" "] be a fuzzy polynomial ring. A non empty subset P of
R 1] is said to be a fuzzy polynomial subring of R[x"" "] if P itself is a fuzzy
polynomial ring under the operations inherited from R[x'" ],

One more major difference between a polynomial ring and fuzzy polynomial ring is
that R[x'" "] is not an integral domain even if R is a field.

THEOREM 1.12.6: Let R be a field. R[x!" '] be a fuzzy polynomial ring R[x'" V'] is not
a field or an integral domain.

Proof: To show R[x! '] is not a field or an integral domain we have to show R[x" ']
contains two polynomials 0 # p(x), 0 # q(x) U R[x" "] with p(x) o q(x) = 0. Take p(x)
=x+x"° and q(x) = 1 — x>

poqrx) = xFx)(1-x")
= x +x%° —x —x!
= x+x" —x™ —x
0.

Hence the claim.

DEFINITION 1.12.9: Let R/x!” "] be a fuzzy polynomial ring. A proper subset I of
R[x" 1] is said to be a fuzzy polynomial ideal of the fuzzy polynomial ring if

i. 1is afuzzy polynomial subring of R[x"" "]
ii. Forevery p(x) ﬂR[x[O’ 1]] and q(x) [J1; p(x) o q(x) [J1
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Example 1.12.8: Let Z, = [0, 1] be the prime field of characteristic two and Zo[x1" 1]
be the fuzzy polynomial ring. Can Z,[x" '] have fuzzy polynomial ideal?

Several interesting results can be obtained in case of fuzzy polynomial rings.

Now we proceed on to define fuzzy polynomial semirings. In this section S will
denote a commutative semiring with unit or a semifield.

DEFINITION 1.12.10: Let S be a semiring. Let x be an indeterminate. We call S [
to be a fuzzy polynomial semiring if

S[x[(), 1]] — {So +S1xy[ +"'+Snxy”

S,, 8,8, LIS

and y;, V-, V, O[01] withy, <y, <---<Vy,}.
Let p(x), q(x) [JS [X" 1] where
p()C) = po + plxy] +“'+pnxyn
q(x) = qo + q]xs] + ...+ qusm
p(x) =qx) ifand only if pi = q;, Y =s;, i = 1,..., nwithn =m.
Let p(x), q(x) S [x" ] p() + q(x) = ¢, + ¢, x"" +--+c,x" where for each ¢; = p;
+ g; provided Y = s; i.e. we add two polynomials by adding terms of x which have

equal powers.

Define multiplication of two polynomial p(x), q(x) JS[x/* "],
p(x) o q(x) = {po + pjxyz +...+pnxyn} 0 {qo + Q1XS] +...+qusm}

Pody t D19px" + prgyx’? -+ p g xVn +

s Y +s Vi +Sm yn+sm .
P.q;x" + pqx” et pg ™ -t pag,x ;

Vits; =

p i yits sl
p=1 if yi+s,>1

Example 1.12.9: Let p(x), q(x) be fuzzy polynomials in a fuzzy polynomial semiring
Z[xX* M. p(x) = XM+ 18x™ + x%7 + 3x™, g(x) =3 + x™ + 8x*"" + 11x. We say
degree p(x) is 0.9 and degree of q(x) is 1, degree of p(x) o q(x) # deg p(x) + deg q(x).

We define fuzzy semifields in a different way not as fuzzy subsets.

DEFINITION 1.12.11: Let [0, 1] be a unit interval. Define operation ‘+’ and ‘®’ on
[0, 1] by for all a, b [7]0, 1],
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L h _ {a+b ifa+bs 1

(a+b)-1 if a+b>1.

Then ([0, 1], +) is a commutative semigroup with 0 as its identity. Define ‘®’ on [0, 1]
by a ¢ b as the usual multiplication. Clearly ([0, 1], +, ) is a semifield. We call this
as a fuzzy semifield; as in our opinion when entries are from the unit interval we can
call them as fuzzy semifield as fuzziness allows us to do so.

We can also define fuzzy semirings in a different and classical way as follows.

DEFINITION 1.12.12: Let R be any ring and [0, 1] be the unit interval a map p : R —
[0, 1] is said to be a fuzzy semiring if

- _|p(x)+p(y) if p(x)+p(y)sl
L p(x+ty) = -

p(x)*p(y)=1 if p(x)+p(y)>1
ii. p(xy)=p(x)*py).
iii. p(0) = 0.
iv. p(l) =1ifRis aring with 1.

We say p is a fuzzy semifield if in p(x y) = p(x) * p(y) = 0i.e. p(x) * p(y) =0 if and
only if p(x) = 0 or p(y) = 0.

It is important to note that if R is taken as a semiring instead of a ring then any
semiring homomorphism p from R to [0, 1] is a fuzzy subsemiring. If p is not a
homomorphism then p is not a semiring.

We have for p : R — [0, 1] which is a fuzzy subsemiring then p is said to be a strict
fuzzy semiring if x + y = 0 implies x = 0 and y = 0 then p(x) + p(v) = 0 implies p(x) =
0 and p(y) = 0.

Once again we mention the fuzzy semiring in the usual sense has been carried out in
the section on fuzzy semirings. Here we devote to see fuzzy semiring in a different
perspective.

DEFINITION 1.12.13: Let V = [0, 1] be a fuzzy semifield. An additive abelian
semigroup P with 0 is said to be a fuzzy semivector space over [0, 1] if for all x, y [JP
and c [7]0, 1], cxandx c [JPi.e. c[x +y] =cx+cy [JP. In short [0, 1] P [JP and
PJ0 1] [JP.

We define for the fuzzy semivector space defined in this manner the fuzzy semivector
transformation.

DEFINITION 1.12.14: Let V be a semivector space over a semifield. Let F' and P be
fuzzy semivector spaces over [0, 1]. A map p : V — P is called a fuzzy semivector
transformation if for all v []V, p(v) [JV. For every ¢ [JF, p(c) [J[0, 1] such that
p(ev +w) = p(e)p(v) + p(u) where p(c) L1[0, 1] ; p(u), p(v) LJP.
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plc)+p(d) if p(c)+p(d)<l

Further p(c +d) = { .
p(c)+p(d)=1 if p(c)+p(d)>1

pled) = p(c) * p(d)
p0) = 0
p(l) = 1

forallc,d [JF.

DEFINITION 1.12.15: Let P be a fuzzy semivector space over [0, 1]. The fuzzy
dimension of P over [0, 1] is the minimum number of elements in P required to
generate P.

As in case of semivector spaces [134] several results in this direction can be
developed and defined. But as in case of classical fuzzy semivector space we do not
view fuzzy semivector spaces as a fuzzy subset. As once again we wish to state that
our main motivation is the study of Smarandache fuzzy algebra we leave the fuzzy
algebra development to the reader.

Now we proceed on to define a system called fuzzy opposite sets and systems. This
system happens to be opposite of the system [0, 1] denoted [0, 1] opposite. Here 1
happens to be the least element and 0 happens to be largest element i.e. for example
0.99 is an element closer to largest element 1 in the classical fuzzy sets and systems
but in fuzzy opposite sets and systems 0.99 is an element closer to the least element.

DEFINITION 1.12.16: Let S be a set. A fuzzy subset A of Sis a function A : S - [0, 1] .
The fuzzy opposite subset or opposite fuzzy subset for the same function. A denoted by
A" is a map from S to [0, 1]°7".

In most of the algebraic developments the opposite fuzzy subset which is a fuzzy
subgroup or a fuzzy subring or a fuzzy ideal or a fuzzy module or a fuzzy vector space
happens to give way to fuzzy opposite structures i.e. if A is a fuzzy subgroup of S with
a modification A" happens to be opposite fuzzy subgroup.

DEFINITION 1.12.17: Let G be a group. A fuzzy subset A of G is a fuzzy subgroup of
G IfA:G - [0, 1] such

i. A(xy)2min{A(x), A(y)} forallx, y [JG.
ii. A(x) =A(x") forallx 0G.

Now A°™" is a fuzzy opposite subgroup if A" : G - [0, 1] such that

i. A"(xy) <max {A(x), A(»)}
ii. A%(x) =A%) forallx, y OG.

Thus the notions of fuzzy normality and other notions can be developed using A°"P
given A to be fuzzy algebraic structure.
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DEFINITION 1.12.18: Let A be a fuzzy subset of Si.e. A: S — [0, 1]. Fort [7]0, 1] the
set A= {x [JS[HU(x) =t} is called the level subset of the fuzzy subset A. Now A" is a
fuzzy subset of the set S. For t [7[0, 1], the set A" = {x [JS[U(x) < t} is called
the level subset of the fuzzy opposite subset A.

Most results which hold good for fuzzy level subset can be carried out for level subset
of fuzzy opposite subset A.
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PART TWO
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Here we study Smarandache Fuzzy Algebra.
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Chapter Two

SMARANDACHE FUZZY SEMIGROUPS AND
ITS PROPERTIES

This chapter has five sections. In section one we give the definition of Smarandache
fuzzy semigroup, describe several Smarandache definitions and give results. In
section two we study the Smarandache fuzzy semigroups. Here we have given 28
Smarandache fuzzy definitions of a S-semigroup and we have developed these
properties in about 67 theorems. Section three analyzes about elementwise S-fuzzy
properties in S-semigroups. About 30 new definitions in this direction are given and
the properties enunciated in 59 theorems. The fourth section is devoted to the study of
Smarandache fuzzy bisemigroups and bigroups. Thirty-two new definitions about S-
fuzzy semigroups are introduced and its properties are analyzed in 23 theorems. The
chief attraction is the fifth section which proposes 54 problems for the reader to solve.

2.1. Definition of Smarandache fuzzy semigroups with examples:

In this section we for the first time introduce the concept of Smarandache fuzzy
semigroups. Smarandache semigroups are thoroughly studied in the year [123]. Fuzzy
semigroups were introduced in the late 1970s. To get the concept of Smarandache
fuzzy semigroups we go for the concept of fuzzy groups; as Smarandache groups do
not exist in literature we get almost all properties of groups to be present in
Smarandache semigroups. Just for the sake of reader we recall the definition of
Smarandache semigroup then proceed on to define Smarandache fuzzy semigroup and
give examples.

DEFINITION 2.1.1: Let S be a semigroup. S is said to be a Smarandache semigroup
(S-semigroup) if S has a proper subset P such that P is a group under the operations

of S.

Example 2.1.1: Let S(3) be a permutation semigroup. S(3) is a S-semigroup as
S; 10 S(3) and S; is the permutation group of degree 3.

Example 2.1.2: Let Mnx, = {(a;j)[h;; U Q} be the set of all n X n matrices with entries
from Q. My, is @ semigroup under matrix multiplication. Ppx, = {(aij) = A| |A|# 0}

is a proper subset of M, x, which is a group. So Myx, is a S-semigroup.
The semigroup given in example 2.1.1 is a non-commutative S-semigroup of finite

order where as in example 2.1.2 the semigroup is an infinite non-commutative S-
semigroup.
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Example 2.1.3: Let Zyy = {0, 1, 2, ..., 19} be a semigroup under multiplication.
Clearly, Zyy is a S-semigroup for P = {1, 19} is a subgroup in Zyp. This is a
commutative S-semigroup of finite order.

Example 2.1.4: Let Q[x] be the ring of polynomials; Q[x] is a semigroup under
multiplication. P = Q \ {0} U Q[x] is a group under multiplication; so Q[x] is an
infinite commutative S-semigroup.

As our main motivation in this paper is the study of Smarandache fuzzy semigroup we
stop at this stage and request the reader to refer [123] for complete information
regarding S-semigroup.

Fuzzy semigroups are dealt in chapter one section ten. Now we proceed on to define
Smarandache fuzzy semigroup.

DEFINITION 2.1.2: Let S be a S-semigroup. A fuzzy subset A of S is said to be a
Smarandache fuzzy semigroup (S-fuzzy semigroup) if A : S — [0, 1] is such that A
restricted to atleast one subset P of S which is a subgroup is a fuzzy group. That is for
all x, y [JP [JS. A(x, y) 2min {A(x) , A(y)} and A(x) = A(x ") for all x in P.

This S-fuzzy semigroup is denoted by Api.e. Ap: P — [0, 1] is a fuzzy group.

Thus in case of S-fuzzy semigroup we face several situations which are enlisted below.
Here S denotes a S-semigroup. Suppose P;, P, ..., P, are proper subsets of S which
are groups under the operations of S.

A fuzzy subset A : S — [0, 1] may be a S-fuzzy semigroup or sometimes may not be
S-fuzzy semigroup. So we call all fuzzy subsets from S to [0, 1] which are not S-fuzzy
semigroups where S is a S-semigroup as Smarandache non-fuzzy semigroup (S-non-

fuzzy semigroup).

IfA:S - [0, 1] such that there exist atleast one subset P; [/ S which is a group and
Ap is a fuzzy subgroup then we call the fuzzy subset P a S-fuzzy semigroup.

If the fuzzy subset A : S — [0, 1] in such that A, : P; - [0, 1], fori =1, 2, ..., nare

fuzzy subgroups then we call the fuzzy subset A : S — [0, 1] a Smarandache strong
fuzzy semigroup (S-strong fuzzy semigroup).

Thus we see in general a fuzzy subset A : S — [0, 1] where S is a S-semigroup may be
a S-fuzzy semigroup or a S-strong fuzzy semigroup or S-non-fuzzy semigroup.

Example 2.1.5: Let S(3) be a S-semigroup. The map WU : S(3) — [0, 1] defined by
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) 1 2 3
0.5 if x=
1 2 3

ou irac(l 231 23
=904 afx=ty oy fandly

0.7 otherwise.

Clearly p(x) is a S-fuzzy semigroup. It is easily verified that [ restricted to the subset

P B 1 2 3)(1 2 3)(1 2 3
12 3)72 31131 2
which is a subgroup in S(3) is a fuzzy subgroup. ie. Up : P - [0, 1] is a fuzzy

subgroup.

Thus g : S(3) - [0, 1] is S-fuzzy semigroup. Further, it is worthwhile to note
M :S(@3) - [0, 1] is not a fuzzy subgroup. For if

1 2 3 1 23
X = and y =
(1 3 2} (2 1 3}

1 23 ,
u(xy) = #min {p(x), p(x}
2 31
= min {0.7, 0.7}=0.7.
Thus M is only a S-fuzzy semigroup and not a S-strong fuzzy semigroup.

Example 2.1.6: Let S(3) be a S-semigroup. A : S(3) - [0, 1] be defined by

. 1 2 3
0.7 if x=
(1 2 3}
1 2 3
A(x)=+0.5 if x Z( j

0.8 otherwise

A is a S-fuzzy semigroup and is not a S-strong fuzzy semigroup.

We call these S-fuzzy semigroups as level I S-fuzzy semigroups. Now we proceed on
to define Smarandache fuzzy semigroup of level II.
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DEFINITION 2.1.3: Let S be a S-semigroup A fuzzy semigroup A : S — [0, 1] is called
the Smarandache fuzzy semigroup of level Il (S-fuzzy semigroup of level II) if A
restricted to one of the subsets P of S where P is a group is a fuzzy group that is

Ap: P - [0, 1] is a fuzzy group.
THEOREM 2.1.1: All S-fuzzy semigroup of level Il are S-fuzzy semigroup of level 1.
Proof: Direct by the very definition.

It is important to note that the converse is not true.

THEOREM 2.1.2: Let S be a S-semigroup, |1 : S — [0, 1] be a S-fuzzy semigroup I.
Then [ in general need not be a S-fuzzy semigroup I1.

Proof: Follows by a counter example. Take S(3) which is a S-semigroup. Define

M:S@3) - [0, 1] by
) 1 2 3
0.5 if x =
(1 2 3}

, (1 2 3}
Mx) = 0.3 if x=

0.8 otherwise

Clearly M is a S-fuzzy semigroup I and is not a S-fuzzy semigroup II.

Now we reformulate the definition of S-fuzzy semigroup II in Smarandache language.
Define S-strong fuzzy semigroup II.

DEFINITION 2.1.4: Let S be a S-semigroup. A fuzzy semigroup A : S — [0, 1] is called

the Smarandache strong fuzzy semigroup of level II (S-strong fuzzy semigroup II) if A
restricted to every proper subsets P; which are subgroups in Si.e. A, : S - [0, 1] is

a fuzzy group for every proper subgroup P; in S.

THEOREM 2.1.3: Let S be a S-semigroup. Every S-strong fuzzy semigroup Il is a
S-fuzzy semigroup and not conversely.

Proof: Straightforward.

DEFINITION 2.1.5: Let S be a S-semigroup [ : S — [0, 1] be a fuzzy semigroup. U is
said to be a Smarandache fuzzy semigroup Il (S-fuzzy semigroup IIl) if | has a
proper subset Osuch that 0 < and Ois a fuzzy subgroup.

The study of inter relation between these three types of S-fuzzy semigroup is left as
an exercise for the reader.
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Example 2.1.7: Let

a b
Mg = {( J |a,b,c,d0Z, = {0,1}}
c d

is a S-semigroup. Define Y : My x2 — [0, 1] by

) 1 0
S if A=
0 1

HA) = 4 if |A|#0
9 if|A]=0

Clearly M is a S-fuzzy semigroup.

2.2. Substructures of S-fuzzy semigroups and their properties

In this section we introduce the notion of S-fuzzy ideals in a S-fuzzy semigroup and
also define and introduce several properties enjoyed by fuzzy groups as all S-fuzzy
semigroups contain S-fuzzy subgroups.

DEFINITION 2.2.1: Let G be a S-semigroup. U :G — [0, 1] is said to be a
Smarandache fuzzy ideal (S-fuzzy ideal) of the S-fuzzy semigroup U if H(x) = H(yxy ™)
forallx, y [JA where A [JG and A is a subgroup of G.

DEFINITION 2.2.2: Let G be a S-semigroup and [ :G — [0, 1] be a S-fuzzy semigroup
of G. Fort <l (e), t [7]0, 1] the set |4, = {x [JAl (x) =t} is called the Smarandache
level semigroup (S-level semigroup) of the S-fuzzy semigroup [ where A [JG and A is
the subgroup of the S-semigroup G.

The following results are important.

THEOREM 2.2.1: Let G be a S-semigroup with A [] G is a proper subset of G which is
a subgroup of G 1 : G — [0, 1] is a S-fuzzy semigroup if and only if i (xy™) = min
(H(x), 1(y)) for all x, y [T A.

Proof: The result is straightforward by the very definitions of fuzzy subgroup,
S-semigroup and S-fuzzy semigroup.

THEOREM 2.2.2: Let G be a S-semigroup. Fort < i (e), t [][0, 1] for a given t and
given G and fixed [{ we can have several S-level semigroups depending on the number
of subgroups A in G.

DEFINITION 2.2.3: Let G be a S-semigroup. If A be a proper subset of G which is a
subsemigroup of G and A contains the largest subgroup of G, then we call the fuzzy
subset 4 : G — [0, 1] to be a Smarandache fuzzy hyper subsemigroup (S-fuzzy
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hypersub semigroup) if U restricted to P, i.e. 1 : P — [0, 1], P [JA and P is the
largest subgroup of A is a fuzzy subgroup of G.

Example 2.2.1: Let S (3) be a S-semigroup. Clearly

12 3)(1 2 3\(1 2 3
A= , : os,
11 1/{2 2 2J(3 3 3

is a semigroup. U : S (3) — [0, 1]. The restricted map | : S3 — [0, 1] which is a fuzzy
group. Then [ is a S-fuzzy hyper subsemigroup.

THEOREM 2.2.3: Every S-fuzzy subsemigroup of a S-semigroup G in general need not
be a S-fuzzy hyper subsemigroup of G.

Proof: Follows from the very definition.

COROLLARY 2.2.1: Every S-fuzzy hyper subsemigroup of a S-semigroup G is a
S-fuzzy subsemigroup of G.

Proof: Direct hence left as an exercise for the reader.

DEFINITION 2.2.4: Let G be a S-semigroup. We say G is a Smarandache fuzzy simple
semigroup (S-fuzzy simple semigroup) if G has no S-fuzzy hyper subsemigroup.

Now we proceed on to define Smarandache fuzzy symmetric semigroup.

DEFINITION 2.2.5: Let S(n) denote the symmetric semigroup i.e. the semigroup of all
mapping of a set of n elements {1, 2, ..., n} to itself S(n) under composition of
mappings is a semigroup.

Let SF(S(n)) denote the set of all Smarandache fuzzy subsemigroups of S(n). If
K [TSF(Sm)) then Im = { f(x) [k [JA [JSn)} where A is a proper subset of S(n)
which is a subgroup of S(n) under the operations of S(n) Let 1, g [JSF (S(n)) we say
if Im(L)| < [Im(0)| then we write |4 < 0. By this rule we can define max SF (S(n)). Let
f be a S-fuzzy subsemigroup of Sn). If f = max SF(S(n)) then we say that f is a
Smarandache fuzzy symmetric semigroup of S(n) (S-fuzzy symmetric semigroup of

S(n)).

Now we introduce a new concept called Smarandache co-fuzzy symmetric semigroup.
To do this we just recall the definition of co-fuzzy symmetric group.

DEFINITION [139]: Let G (S,) = {g L& is a fuzzy subgroup of S, and g(C([])) is a
constant for every [1 []S,} where C (T]) is the conjugacy class of S, containing [T,
which denotes the set of all y [JS, such that y = x [1x" for x [JS,. If g = max G(S,)
then we call g as co-fuzzy symmetric subgroup of S, .

DEFINITION 2.2.6: Let SG (S(n)) = {g [& is a S-fuzzy subsemigroup of S(n) and
g(C(l1) is constant for every 1 [] S, } where C (I1) is the conjugacy class of
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S, [78(n) containing [T which denotes the set of all y [JS, such that y =x 1x™" (for
x [78,). If g = max SG(S(n)) then we call g as Smarandache co-fuzzy symmetric
subsemigroup of S(n) (S-co-fuzzy symmetric subsemigroup of S(n)).

THEOREM 2.2.4: Every S-co-fuzzy symmetric subsemigroup of a symmetric
semigroup S(n) is a S-fuzzy symmetric subsemigroup of the symmetric semigroup S(n).

Proof: Follows from the definitions of S-fuzzy symmetric subsemigroup and S-co
fuzzy symmetric subsemigroup.

Now we proceed on to define yet another new concept called Smarandache fuzzy
normal subsemigroup of a S-semigroup.

DEFINITION 2.2.7: A S-fuzzy subsemigroup [ of a S-semigroup G is said to be
a Smarandache fuzzy normal subsemigroup (S-fuzzy normal subsemigroup) of the
S-semigroup G if U(xy) = I (yx) for all x, y [JA, A any proper subset of G which is a
subgroup and [ restricted to A i.e. H: A — [0, 1] is a fuzzy subgroup of A.

Now we define Smarandache fuzzy cosets of a S-semigroup.

DEFINITION 2.2.8: Let [ be a S-fuzzy subsemigroup of S-semigroup G. For any
a [JA [JG (where A is the subgroup associated with this L), a U defined by (all)(x) =
U(a'x) for every x O A is called the Smarandache fuzzy coset (S-fuzzy coset) of
the S-semigroup (S-fuzzy coset of the S-semigroup) G determined by a and [

DEFINITION 2.2.9: Let [ be a S-fuzzy subsemigroup of a S-semigroup G and H
={x A UG (x) = 10)} (where U is the associated S-fuzzy subsemigroup with A)
then o(L), order of U is defined as o(1y) = o(H).

DEFINITION 2.2.10: Let A and [ be two S-fuzzy subsemigroup of a S-semigroup G.
Then A and U are said to be Smarandache conjugate fuzzy subsemigroups
(S-conjugate fuzzy subsemigroups) of G (relative to the same A) if for some g [/A [JG
(4 proper subset of G which is a subgroup) we have A(x) = p(g 'xg) for every x [J A.

The main result on S-conjugate fuzzy subsemigroups of a S-semigroup G is as
follows.

THEOREM 2.2.5: If A and [ are S-conjugate fuzzy subsemigroups relative to a
subgroup A [7G; where G is a S-semigroup, then o(A) = o(1d).

Proof: Let A and [ be S-conjugate fuzzy subsemigroups of the S-semigroup G. By the
very definition of S-conjugate fuzzy subsemigroups of the S-semigroup there exists

g 0 A O G such that A(x) = u(g'xg) for every x 0 A 0 G (A a proper subgroup of
G). Now let us define H = {x DA| A(x) = )\(e)} and K = {x OA | H(x) = u(e)} where e
is the identity element of A [J G.

Clearly H is a subgroup of the subgroup A, for H is a t-level subset of the subgroup A
where t = A(e). Similarly K is also a subgroup of the subgroup A 0 G.
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To prove that o(A) = o(l) it is sufficient to prove o(H) = o(K), by the definition of the
order of the fuzzy subgroup of the subgroup A.

To prove that o(H) = o(K) as the first step we prove H 0 gKg ' for some g 0 A 0 G.
In the second step we prove that for the same g JA; K O g 'Hg.

Let x be any element in H. Since A and [ are S-conjugate fuzzy subsemigroups of the
subgroup A [ G (equivalently of the S-semigroup G) we have for some g [J G.

hig'xg = A®
= A(e) (since x [1 H)
= (g 'eg) (since A and [ are S-conjugate fuzzy subsemigroups of G)

= H(e).

Hence there exists g 0 A such that p (g 'x g) = p(e). Now by the definition of K we
have g 'x g O K implies x [0 gKg '. Therefore H 0 gKg .

To prove the other inclusion: Take x an arbitrary element in K. Since A and [ are
S-conjugate fuzzy subsemigroups of the S-semigroup G for the same g [1 A1 G (A a
proper subset which is a subgroup of the S-semigroup and A and [ are conjugate
fuzzy subgroup relative to this A [J G; i.e. S-conjugate fuzzy subsemigroups of G)
used in the earlier result to prove H 0 g K g we have

AMexg) = H®X
= M (e) (since x [ K)
= Ageg ") (since A and i are conjugate fuzzy subgroups of A O G)
= A(e).

Hence gxg ' [ H for the same g J A 0 G, thatisx Jg 'Hg. Hence K O g 'H g.

From the first and the second steps we have H [ gKg ' and K O g 'Hg, i.e. Hg 0 gK
and gk O Hg Thus Hg = gK so H = gKg'. Since K is a subgroup of the group A
contained in the S-semigroup G we have o(xKx ') = o(K) for every x 0 A. Now
choose x = g. Then we have o (gKg ') = o(K). Therefore o(H) = o(K). Hence o(\) =
o(M). Hence the theorem.

Recall G a S-semigroup. A and B are S-fuzzy subsemigroups of G related to the
subgroup P in G (P U G, P a proper subset of G which is a group) such that B [J A.
Let x; [J A. Then the fuzzy subset x; 0 B (B o x) is called the Smarandache fuzzy left
(right) coset (S-fuzzy left (right) coset) of B in A with representative x; where by the
operation ‘0’ we mean the following for all x U P (x; 0 B) (x) = sup {inf {x (y), B(z)}
such that x = yz}.

We give the following results which can be easily extended to S-fuzzy left (right)
cosets in an analogous way.
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THEOREM 2.2.6: Let G be a S-semigroup. A be a S-fuzzy semigroup of G relative to a
subgroup P [JG. B be a S-fuzzy subsemigroup relative to P, such that B [JA. Then for
allz 0P, (x,0 B) (x) = inf {t, B (x'z)} and (B 0 x,) (z) = inf {t, B (zx")} for x, T A.

Proof: As in case of fuzzy subgroups the proof is straightforward.

THEOREM 2.2.7: Let A, B, and G as in the Theorem 2.2.6 Let x,, ys [JA. Then

i. (x;0B) = (ys 0 B) if and only if inf {t, (B(e)} = inf {s, B (v'x)} and
inf {s, B(e)} = inf {1, B (x"'y)}.

ii. Box;=Boysifandonlyifinf{t B(e)} =inf{s, B(xy ')} and inf {s, B(e)}
=inf{t, B (»x")}.

Proof: Straightforward; hence left for the reader as an exercise.

THEOREM 2.2.8: Let A, B, G be as in Theorem 2.2.6 Let x;, y, [JA. If B(y 'x) = B(e)
then x;0 B =y,0B.

Proof: Since B(x'y) = B(y 'x) = B(e); inf{t, B(e)} = inf{t, B(x 'y)} = inf{t, B(y 'x)}.
Hence by earlier results x; 0 B =y; o B.

THEOREM 2.2.9: Let A, B, G be as in Theorem 2.2.6 Let x,, y, [JA. Then the following
conditions are equivalent.

i. xxoB=y0B.
ii. (v'x);0oB=e0B.
iii. (x'y);0B=e,0B.

Proof: By earlier results we have x; o B = y; o B iff inf{t, B(e)}= inf{t, B(y 'x)} and
inf{t, B(e)} = inf {t, B(x 'y)}. The latter conditions are equivalent to (ii) and (iii).

THEOREM 2.2.10: Let A, B, G and P be as in Theorem 2.2.6. Letx, y [JP and
s, t [1]0, A(e)]. Suppose that B (e) = A(e); then

i. x;0B=ys0Bifandonlyift=inf{s, B(y'x)}, s=inf{t B((x'y)
ii. x;0B=y,0Bifandonlyif (v'x); JB.

iii. x,0 B=ys0B ifand only ift =s SB (x 'y)

iv. x;0B=x50Bifandonlyift=s.

Proof:
1. By earlier results x,0 B = y;0 B ifand only if t = inf {s, B(y 'x)} and

s = inf{t, B(x 'y)}.

il. By (i), xx0 B = y;0 B ifand only if and only if t = inf {t, B (y 'x)},
t = inf{t, B(x 'y)} ifand only if B(y 'x) 2t, B(x 'y) .

iii. By (i) and the fact that B((y 'x) = B(x'y); x,0 B = ys 0 B ifand only if
t =s<B(x'y).

iv. Follows immediately from (iii).
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The proof of the following theorem is true hence only stated and left for the reader to
prove.

THEOREM 2.2.11: Let s, t [/[0, A(e)]. Suppose that B(e) = A(e). If t Zs, then {x,0 B[J
x; A} n {yso B [3s [JA} = @.

We define Smarandache fuzzy normal subsemigroup of a S-semigroup G.

DEFINITION 2.2.11: Let G be a S-semigroup. P a proper subset of G which is a group.
A and B S-fuzzy subsemigroup of G relative to the subgroup P [/ G, B [JA; B is said

to be Smarandache fuzzy normal (S-fuzzy normal) in A if and only if for all x, [ A,
xroB=Box.

THEOREM 2.2.12: Let A, B and G be as in Definition 2.2.11 Let x,, ys [JA. If B is fuzzy
normal in A then (x;0 B) o (ys 0 B) = (xy), 0 B where r = inf {t, s}.

Proof: ‘0’ operation is associative and B o B = B. The proof follows from [73, 74].

THEOREM 2.2.13: Let A, B, P and G be as in Theorem 2.2.12. Let A/ B = {x; o B[J
x; [JA and x [J P}. Suppose that B is S-fuzzy normal in A. Then (A / B, o) is a
semigroup with identity. If B(e) = A(e) then A / B is completely regular, that is A/ B is
union of (disjoint) groups.

Proof: If x; 0 B, ys0 B J A/ B, then clearly (xy). o B L A/ B where r = inf {t, s}.
Clearly, ea() is the identity of A/ B. ‘0’ is an associative operation. For fixed
t 0 [0, A(e)], let (A / B)Y = {x,0 B [x, 0 A, x 0 P}. Then (A / B)" is closed under o,
e 0 B is the identity of (A / B)® and (x ') ( 0 B is the inverse of x, o B. Hence (A/ B)"
is a group.

Clearly A/B= | J(A/B)".

t0[0,A(e)]

Example 2.2.2: Let G= {e, a, b, ¢, d, f, g} be a semigroup given by the table

O |C o |0 |o|c| T
olafa|o |oy |l

O |Cy |0 | ([To |0

|| |0 [T [
g (e (00 |O |CF | [0Q |09

0 [+|en]o |o|e o |o
0e [+|en]o |oe oo
ooy oo o | |

G is S-semigroup. Define fuzzy subsets A and B of P [1 G where P = {a, b, e, c} the
klein four group by A(e) = A(a) = 1, A(b) = A(c) = % and B(e) = B(a) = 1, B(b)
= B(c) = 2 with A(x) = B(x) = 0 for all other x [ G\ P. Then A and B are S-fuzzy
subsemigroups of G such that B [J A and B is S-fuzzy normal in A. Now e; o B is the
identity of A/B but e34 0 B does not have an inverse. Hence A/B is not a group.
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THEOREM 2.2.14: Let G be a S-semigroup. A and B be S-fuzzy semigroup of G
related to the subgroup P in G. (i.e P [/ G is a proper subset of G which is a group
under the operations of G) such that B [/ A. B is S-fuzzy normal in A if and only if for
allt [7]0, B(e)] B, is normal in A,.

Proof: As in case of fuzzy subgroups.

THEOREM 2.2.15: Let A, B, P and G be as in Theorem 2.2.14. Suppose 0 <t < B(e),
xs [JA and t <s. Then (x; 0 B); = xB; and (B 0 x,), = B;x.

Proof: y O (xs0 B), if and only if (x; 0 B) (y) >t if and only if inf {s, B (x 'y)} 2t if
and only if B (x 'y) 2 tif and only if x ' y 0 By if and only if y O xB,.

THEOREM 2.2.16: Let t [7]0, B(e)]. Suppose that B is fuzzy normal in A. (4, B, G and
P as in Theorem 2.2.14); then A,/ B, [J(4/B)?.

Proof: Refer [86] and the definition to prove this theorem.

DEFINITION 2.2.12: Let G be a S-commutative semigroup, i.e. every proper subset P
of G which is a group is commutative. A, a S-fuzzy subsemigroup of G related to P; P
a subgroup of G. B is S-fuzzy normal in A. We say A is Smarandache bounded
(S-bounded) over B if there exists n [J N such that for all x, [7 A, (x)" [IB. A is
bounded over B if and only if A; [ B, is uniformly bounded for all t [][0, A(e)]. Hence
if A is bounded over B then A,/ B; is a direct product of cyclic groups for all
t [7]0, Ale)].

DEFINITION 2.2.13: Let G be a S-commutative semigroup. A be a S-fuzzy semigroup
of G related to a subgroup P [J G, such that C [JA and A = B [J C the Smarandache
fuzzy direct product (S-fuzzy direct product) of B and Ci.e. A = B o C for all x [JP,
(B n Cx) = 0. Then A, = B, [J C, for all t [J [0, A(e)] Thus A/ B [J

U C U {e, o B} we give some conditions for B to be a Smarandache fuzzy direct

{000,4(e)]

factor (S-fuzzy direct factor) of A.

Let SF (A) denote the set of all S-fuzzy subsemigroups C of G (G a S-semigroup) such
that C [JA and C(e) = A(e). Let C = { x OP[C(x) >0}. Then C"is a subgroup of P.

We say that B is Smarandache compatible (S-compatible) in A if and only if
A(e) = B(e) and for all s, t [](0, A(e)] , s st, As = A, Bsand A, n B = B, . It is shown
that if B is Smarandache divisible (S-divisible) i.e. for all x, [JB with t >0 and for all
n [JN there exists y;, [J B such that (v)" = x, then it need not be the case that B is
a S-fuzzy direct factor of A. If B is S-compatible in A and B is divisible, then B is a
S-fuzzy direct factor of A.

THEOREM 2.2.17: The following conditions are equivalent.

I A(e) = B(e) and there exist subgroup H of G (G a S-semigroup) such that
forallt [J(0, A(e)], A: = B; [JH.
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ii. There exists C [J SF(A) such that A = B [7 C and C " = C qwhere C o=
Cew)-

iii. B is S-compatible in A and there exists C [/SF(A) such that Ap=Bl/C
o

Proof: Left for the reader to prove.

THEOREM 2.2.18: Let A and B be S-fuzzy subsemigroups of the S-semigroup G such
that B [JA, we say that B is S-pure in A if and only if for all x, [JB with t >0, for all n
[IN and for all y; [7A, ()" = x, implies that there exists b, [1B such that (b,)" = x,.

THEOREM 2.2.19: Suppose that B is S-compatible and S-pure in A.

i. If Aw/B, is a direct product of S-cyclic groups, then B is a S-fuzzy direct
factor of A.

ii.  If Bis S-bounded then B is a S-fuzzy direct factor of A.
Proof:

1. Since B is S-pure in A, Bpis S-pure in Ap Hence there exists a subgroup H
if Agsuch that Ag=Bp ] H. Since B is S-compatible in A, A; =B, [J H for
all t [J (0, A(e)], the desired results follows from earlier results.

ii.  Bpis S-pure in Agand Bpis S-bounded. Hence there exists subgroup H
of Agsuch that Ap= B[] H. The result of the proof is direct.

THEOREM 2.2.20: Suppose that B is S-compatible in A. If B is divisible, then B is a S-
direct factor of A.

Proof: Left as an exercise for the reader to prove.

THEOREM 2.2.21: Let G be a S-semigroup. H and K be subgroups of G such
that H [/ K and K [J H, then there exists a S-fuzzy subsemigroup [ of P x P such that
0y is not a S-fuzzy subsemigroup of G. (P [J G is a proper subset which is a group).

Proof: Let Hy= {(e,e)}, HH=HXxGand H, =P xP.Let 1 2ty =2t>t,20. Let L be a
fuzzy subset of P x P such that

H (Ho) =t
vl (H1 \ Ho) =1 and
vl (Hz \ H1) =t,.

Then M is a S-fuzzy subsemigroup of P X P, since [ is a subgroup of P x P for
all t U Im(p). Now there exists h [ H, k [ K such that k [1 H and h [J K then hk [ H
and hk [J K. Hence (hk, x), (x, hk) [ H; for all x J G.

Then oy (hk) = to. Now since (h, k) U H; \ Ho, ou(h) =t; = ou(k). Thus oy(hk) =t, <t
=min {Oy(h), ou(k)}. Hence 0Oy is not a S-fuzzy subsemigroup of G.
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THEOREM 2.2.22: Let 0, be a S-fuzzy semigroup of the S-semigroup G for all S-fuzzy
subgroups [ of P x P [JG x G (P a subgroup of G). Then either G is S a S- cyclic
semigroup of order p" for somem =1 or P =7 ( p%).

Proof: Follows as in case of fuzzy subgroup.
Interested reader may refer [86].

THEOREM 2.2.23: Let [ be a S-fuzzy semigroup of P X P [/ G x G. Then 0y (e) =
H(e,e) =0y (x) for all x [JP and O,(x) = 0y (x_j)for all x [JP.

Proof: Left as an exercise for the reader.

THEOREM 2.2.24: Let G be a S-cyclic semigroup having cyclic subgroups of order p"
for some m = 1, where p is a prime. If [{is a S-fuzzy semigroup of P X P [JG X G then
0y is a fuzzy subgroup of P.

Proof: Follows from [86].

THEOREM 2.2.25: Let G be a S-semigroup having a subgroup Z (p”) = P. If i is
a S-fuzzy semigroup of P X P [JG X G, then 0y is a fuzzy subgroup of P.

Proof: Refer [86].

DEFINITION 2.2.14: Let G be a S-semigroup under addition. A be a S-fuzzy semigroup
of G relative to a subgroup of G relative to a subgroup P, P [J G. We assume
A(0) >0. If x [JP then A(0) 2A(x). Fort [J[0, A(0)], let A, = {x [JP [JA(x) =t}, then
Ay is a subgroup of P. For x [JP and t [J[0, 1] we let x; denote the fuzzy subset of P
defined by x, (vy) =tify =xand x, (y) = 0ify Zx.

Then x, is called a Smarandache fuzzy singleton (S-fuzzy singleton). If x, and y;
are S-fuzzy singletons, then x, + ys is defined to be the fuzzy subset (x + y),
where r = min{t,s;.

DEFINITION 2.2.15: Let G be a S-semigroup. A a S-fuzzy semigroup of G relative to
the subgroup P, P [1G. A is called a Smarandache torsion fuzzy subsemigroup
(S-torsion fuzzy subsemigroup) of G if and only if for all S-fuzzy singletons x, [ A with
t >0 there exists n [/N (N — set of natural integers) such that n (x,) = 0.

DEFINITION 2.2.16: Let G be a S-semigroup. A be a S-fuzzy subsemigroup of G. A is
called a Smarandache p-primary fuzzy subsemigroup (S-p-primary fuzzy
subsemigroup) of G if and only if there exists a prime p such that for all S-fuzzy

singletons x; [J A witht > 0 there exists n [J N ( N-natural integers) such that
p" () =0,

THEOREM 2.2.26: A is S-p-primary if and only if A" is S-p-primary.

Proof: Left for the reader to prove.
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THEOREM 2.2.27: A is a S-p-primary if and only if A, is S-p-primary for all
t [J(0, A(0)] If A is S-p-primary then Anis S-p-primary.

Proof: Easily follows by the very definitions and a matter of routine.
THEOREM 2.2.28: Let p be a prime Define the fuzzy subset A” of G, G a S-semigroup
by for all x OP [0G (P a subgroup of G), A (x) = A(x) if x H(AD)p and A? (x) = 0

otherwise. Then A? is a S-p-primary fuzzy subsemigroup of P (7 G and (A7 )7 =
(4.

Furthermore (A@)), = (4, forallt [7(0, 4 (0)].
Proof: As in case of groups refer [83].

THEOREM 2.2.29: Let p be a prime. Then A? is the unique S-maximal p-primary
fuzzy subsemigroup of P (P [JG) contained in A a S-fuzzy subsemigroup related to P.

Proof: Refer [83].

For p a prime A® is the Smarandache p-primary component of A. Now we proceed
on to define Smarandache divisible fuzzy semigroup of the S-semigroup.

DEFINITION 2.2.17: Let G be a S-semigroup. A be a S-fuzzy subsemigroup of G. A is
called Smarandache divisible fuzzy subsemigroup (S-divisible fuzzy subsemigroup) of
G if and only if for all S-fuzzy singletons x, [ A with t > 0 and for all n [J N there

exists a S-fuzzy singleton y, [JA such that n (y,) = x,.

THEOREM 2.2.30: A4 is S-divisible if and only if A, is S-divisible for all t [](0, A(0)].
Proof: Follows by the very definition.

THEOREM 2.2.31: If 4 is S-divisible then A” and Anare S-divisible.

Proof: Direct by the very definition.

THEOREM 2.2.32: If A" is S-divisible and A is constant on A°\ {0} then A is
S-divisible.

Proof: Let x, J A. with t >0 and n [J N. Then x [J A" and so there exists y U A such
that x = ny. If y = 0 then x = 0 the result is true. Let y # 0. Since A is constant on
A0}, A(y) = A(x) 2 t. Then y; 0 A and x, = n(y,) Hence A is S-divisible.

THEOREM 2.2.33: Let G be a S-semigroup. P a subgroup of G. Forallx, y [JP [JG

and n [JN, ny = x implies that A(x) = A(y) for all S-divisible fuzzy subsemigroups of P
[J G if and only if P is torsion free.
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Proof: Follows as in case of groups by taking the S-semigroup G to contain a proper
subset P such that P is a torsion free group and A : G — [0, 1] is such that A restricted
to P is a divisible fuzzy subgroup A of P.

Recall for G a S-semigroup A a S-fuzzy subsemigroup of G related to P. SF (A) =
{B [B is a S-fuzzy subsemigroup P such that B [J A} = {B [B is a fuzzy subgroup of
P such that B L1 A}. Both are equal as S-fuzzy subsemigroup of G say A acts as a
fuzzy subgroup on P, P UJ G.

DEFINITION 2.2.18: Let B [/SF(A) Then B is said to Smarandache pure (S-pure) in A
if and only if for all S-fuzzy singletons x, [J B with t >0, for all n [JN, for all y, [] A4,
n(vy) = x, implies that there exists b, [/ B such that n(b,) = x,.

Throughout this portion G is an additive abelian group and A fuzzy subgroup of G.

THEOREM 2.2.34: Let B [/SF(A). Then B is S-pure in A if and only if B, is S-pure in
A; forallt [7(0, B (0)].

Proof: Follows from the very definition.
THEOREM 2.2.35: Let B [/SF(A). If B is S-pure in A, then B is S-pure in A
Proof: Direct by the very definition.

DEFINITION 2.2.19: Let G be a S-semigroup. P a proper subset of G which is a
subgroup of G. Let X be a fuzzy subset of P and let n [J N. Define the Smarandache
fuzzy subset (S-fuzzy subset) nX of P [J G by for all x [JP (nX)(x) = 0 if x [/nP and
mX)(x) = sup{X (v )| yUP, x= ny} if x [JnP, We say X has Smarandache sup

property (S-sup property) if and only if Im (X) has a maximal element.
THEOREM 2.2.36: Let n [/N then

i. nA) = A(0).
ii. nA/[JA.
iii. nAis a S-fuzzy subsemigroup of P; P [/ G.
iv. If A has the sup property, then Im (n, A) [JIm (A) where A is a
S-fuzzy subsemigroup of G relative to the group P; P [/ G.

Proof: Follows as in case of fuzzy subgroups.

THEOREM 2.2.37: Let B and C be S-fuzzy subsemigroups of the S-semigroup G
related to the subgroup P. Then

i. (BnC“=B"nc"
ii. (BnC)y=BnCforallt/[J(0 min{B(0), C0)}].
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Proof: Now B and C be S-fuzzy subsemigroup of the S-semigroup G related to the
subgroup P 0 G. x O (B n C)”if and only if (B n C)(x) > 0 if and only if inf {B(x),
C(x)} >0 if and only if B(x) > 0 and C(x) > 0 if and only if x O B”n C"

ii. x (B n C) ifand only if (B n C) (x) 2t if and only if inf {B(x), C(x)} =t if and
only if B(x) 2t and C(x) 2t ifand only if x I B n C..

DEFINITION 2.2.20: Let A be a S-fuzzy subsemigroup of G, G a S-semigroup. If A”is
Smarandache torsion free (S-torsion free) and for x (InA” (n [ON) we have (n A) (x)
= A(a) for some unique w7 A" such that x = nw

THEOREM 2.2.38: Let n [/N. Then

i (nA)"=na”
ii. nA, [JmA), for all t [J (0, A(0)] (A is a S-fuzzy subsemigroup of the
S-semigroup G related to the subgroup P, P []G).
iii.  Let B [JSF(A) and B(0) = A(0).

If A has the sup property and B is pure in A, then n B, = (mB), for all t [7(0, A(0)].
Proof: Exactly as in case of fuzzy group as A is a S-fuzzy semigroup related to P [J G.

THEOREM 2.2.39: Let B, C [JSF(A) such that B(0) = C(0) = A(0) Then we have the
following results to be true.

i. Suppose that A has the sup property. If B is S-pure in A, then for all n [JN, nB
=B n nA.
ii. Suppose that A and B have sup property. If for all n [/N, nB = B n nA, then
B is S-pure in A.
iii. Suppose that A" is S-torsion free, then B is S-pure in A if and only if for
alln [JN, nB =B n nA.
iv. For C [JB.If Cis S-pure in B and B is S-pure in A, then C is pure in A.
v. If Bis S-divisible then B is S-pure in A.
vi. Suppose that A is S-divisible. Then B is S-pure in A if and only if B is
S-divisible.
vii. Let B [JS F (A) be such that B(0) = A(0). If for all x; [J A such that x, [/ B,
there does not exist n [JN such that n (x,) [/B, then B is S-pure in A.

Proof: The proof'is for the reader to prove using the definitions.

THEOREM 2.2.40: Suppose that A”is S-torsion free. Let {By [@ (7.0} be a collection
of S-fuzzy subsemigroups of the S-semigroup G such that By [] A, By is S-pure in A
and Bo0) = A(0) for all a [J Q. Then ﬂBa is S-pure in A.

all@

Proof: Matter of routine using the fact Bq is a S-fuzzy subsemigroup of S-semigroup
G and Bq is S-pure in A.

218



THEOREM 2.2.41: Suppose that A”is S-torsion free. Let B (1S F (4) be such that B(0)
= A(0), then B is contained in a unique smallest S-pure fuzzy subsemigroup in A.

Proof: Straightforward.

THEOREM 2.2.42: Let {Bold [] Q} and {Cqld [J Q} be chains of S-fuzzy
subsemigroups of S-semigroup. Let n [/N then

i n(UBaj: Una,

allQ allQ

. U(Bamca):(UBajm(Ucaj

all@ all@ allQ

Proof: Using the fact each By and Cq are S-fuzzy subsemigroups hence also fuzzy
subgroups of a S-semigroup the proof is analogous to fuzzy subgroup of a group.

THEOREM 2.2.43: Let {Aqald [JQ} be a chain of S-fuzzy subsemigroup of the
S-semigroup G such that Aq [J A, Agis S-pure in A and Aq0) = A(0) for all a [J Q.

Suppose that either A and UA[, have the sup property of A”is S-torsion free, then

all@

U A, is a S-pure fuzzy subsemigroup of G in A.

all@

Proof: For n [J N; we have

n(UAaj: UnA,= [JA, nnA) = {UAGJ N nA

aldQ aldQ aldQ aldQ

by earlier results we get the theorem.

Next we define a new notion called Smarandache fuzzy weak direct sum of a
S-semigroup G.

DEFINITION 2.2.21: Let {Aqy /@ [JQ} be a collection of S-fuzzy subsemigroups of a
S-semigroup G. Then A is said to be Smarandache fuzzy weak direct sum (S-fuzzy
weak direct sum) of the Aqif and only if A = 2 Agand [Jx [JP [JG (P a subgroup of
G)

xio,[Aﬁ noy Aaj(x):o.

alQ|{B}

If A is the S-fuzzy weak direct sum of the Aq then we write A = [ ] 4,.

ale
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THEOREM 2.2.44: Let { Aq[Ja [JQ} be a collection of S-fuzzy subsemigroups of the
S-semigroup G. Such that Aq [JA and Ao(0) = A(0) for all a [J Q. Then A = [ ] 4, if

ale

and only if A”= [] A4, and A = ZAG :

adQ adQ
Proof: As in case of fuzzy subgroups.

It is pertinent to mention here that if {Aqld [0 Q} is a collection of S-fuzzy
subsemigroups of G. A necessary condition for A = [] A, is that A = Aq or A for

alQ

all a Q.

THEOREM 2.2.45: Let {Aqa / a [J Q} be a collection of S-fuzzy subsemigroups of a
S-semigroup G such that A = Aq on A, forall @ [J Q and A= YA . If for all
a, B0Q such that Aq #ApIm (Aa) 1 Im (Ap) (0,1} then A = D A, .

allQ
Proof: Directly as in case of fuzzy subgroups of a group G.

THEOREM 2.2.46: Let { Aq / a [JQ } be a collection of S-fuzzy subsemigroups of a
S-semigroup G such that Ay [JA for all a [J Q. Suppose that either

i UIm(Aa) is finite or

allQ
ii. A47= ] 4,

all@

Then A=Y A, ifand only if Ae(0) = A(0) and A, = Y (4, ), forall t T[0, A(0)].

allQ allQ
Proof: As in case of fuzzy subgroups.

The following theorems for S-fuzzy subsemigroups of a S-semigroups G can be easily
proved on similar lines using the techniques of fuzzy subgroups.

THEOREM 2.2.47: Let {Aqy /@ [JQ} be a collection of S-fuzzy subsemigroups of the
S-semigroup G such that Aq [JA for all a [J Q. Then A = [ ] A, if and only if Ao(0) =

all@

A(0) forall a T Qand A, = [ ]| (A4, ), forall t [7(0, A(0)].

all@

THEOREM 2.2.48: Let {Ay /@ [JQ} be a collection of S-fuzzy subsemigroups of the
S-semigroup G such that Aq [J A for all a [J Q. Suppose that either U Im(A,) is

all@

finite or A”= [] 4, holds. If 4 = ZAL, then Im (4) [J Iéqé(Aa).

all@ all@
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THEOREM 2.2.49: Let {Aqld [] } be a collection of S-fuzzy subsemigroup of the
semigroup G such that Aq [J A for all a [J Q. Suppose that [@Z 2. IfA = [] A4,,

all@

then Im (4) [7{0} = [{Dn})(Aa).

Proof: Using the above theorem we have Im (A) [ I&(Aa) since A = []4,,

all@

A=Aqon A,

Thus §$(Aa) UIm(A) O {0}.

THEOREM 2.2.50: Let B, C, D [JS F (A) be such that D [JB and D (0) = A (0).
Suppose that A = B [J C. Then

i foralln [/N,nA=nB[] nC.
ii. D+C=D/CandB n (D [JC) = D.

Proof: Matter of routine once we take B, C, D to be S-fuzzy subsemigroups we get
the proof as in case of fuzzy subgroups.

THEOREM 2.2.51: Let B and C [JSF(A). If A = B [J C then B and C are S-pure in A.

Proof: Suppose that ny;=x where n N, y; JA and x; B. Since A=B [ C,
A; = B Ci. Thus Bin n A (= nB. Now ny = (ny) «. Hence ny = x,yJ A and
x [ Bt. Thus there exists b [ B; such that nb = x. Hence nb; = x;. Thus B is a S-fuzzy
subsemigroup in A is S-pure in A.

Thus from these results we chiefly observe that those fuzzy results true in case of just
groups can be very easily studied in case of S-semigroups by using S-fuzzy
subsemigroup. Thus it is important to note that except for Smarandache structure such
study would be certainly impossible. Now we give some interesting results on S-fuzzy
semigroups.

THEOREM 2.2.52: Let G be a finite S-semigroup. Suppose that there exists a S-fuzzy
subsemigroup U of G (for some proper subset P of G with P a subgroup of G)
satisfying the following conditions for x, y [J/P [JG.

L p(x) = p(y) implies (x) = (y).
ii.  M(x) > Uy) implies (x) [ ).

Then G is a S-cyclic semigroup.

Proof: For x I P J G, P a subgroup of a S-semigroup G. (x) denotes the subgroup
generated by x.

M : G - [0, 1] such that P restricted to P denoted by Hp is a fuzzy subgroup of P, [ is
a S-fuzzy subsemigroup of G i.e. up: P - [0, 1].
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If Yp is constant on P then pp(x) = Hp(y) for all x, y 0 P and so (x) = (y) by (i)
consequently P = (x). Let us assume that pp is not constant on P. Let Im pp =
{to, ..., tn} With t, >t; > ... >t,. Then the chain of level subgroups of pp in given by

(I"lP)to O (I"lP)tl HE (I"lP)tn =P

Let xOP\ (),
Then Pp(g) = Hp(X) = to1 so that (g) = (x). Hence P\ (up )tn-l [ (x). Now at the
next stage let gI(M;), . Then p,(g) 2t >t,= M (x). By condition (if) we have
(2) O (x). Thus (u,), O (x). This yields P =(x).

. We assert that P = (x). Consider any element g in P ~ (up) ;

tao

THEOREM 2.2.53: Let G be a S-cyclic semigroup having cyclic group P (P [J G) of
order p° where p is a prime. Then there exists a S-fuzzy subsemigroup [p of G
satisfying pp(x) = Hp(y) implies (x )= (y)and tp(x) >p (y) = (x) L (y)
where lip: P - [0, 1] and x, y [JP [JG.

Proof: Consider the chain of subgroups of P U G; (e) = P, U Py O ...[0 P, = P where
P; is the subgroup of P generated by an element of order p', i=0, 1, 2,..., nand e is
the identity element of P. Define a fuzzy subset Jp of P by Hp(e) =t, and pp(x) = t; if
x O P; \ Py foralli=1, 2, ..., n; where t,, ti, ..., t, are numbers lying in the
interval [0, 1] such that t, >t; > ... >t,. Itisa routine matter to confirm that Up is
a S-fuzzy subsemigroup of G satisfying the desired conditions.

The result which follows is a consequence of the above two theorems.

THEOREM 2.2.54: Let G be a S-semigroup having a subgroup P of order p°. Then G
is S-cyclic if and only if there exists a S-fuzzy subsemigroup Up of G such that

forallx,y P, 1 (x) = 1(y) = (x)=(y)and px) > ux) = (x) L (y).

From now onwards till we explicitly specify L denotes a completely distributive
lattice with minimum 0 and maximum 1. X a set, the elements of the direct power L™
are called L-subsets of fuzzy subsets of X. fy and f; denotes the minimum and
maximum respectively of L*.

DEFINITION 2.2.22: Let G be a S-semigroup. P [J G be a subgroup in G. The
Smarandache normal fuzzy subgroups (S-normal fuzzy subgroups) of the S-semigroup
G i.e. the L-subsets of P whose cuts are normal subgroups of P.

THEOREM 2.2.55: An S-L subsemigroup [ of P [/ G is normal if and only if

(! zx) 21) for all x, z [JP. Several interesting results in this direction can be
developed for L-subsets.

Recall for | a fuzzy set in a set S. Then the level subset 4, and strong level subset | ;
of U are defined by

i o= {x JSidx) =t} for t [7]0, 1] ([0, 1] just the unit
interval).
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ii w ={x08|wx)>4 fore 00, 17.

We know for a group G U be a fuzzy set of G. Then U is a fuzzy subgroup of G if the
following conditions hold

i Uxy)2min{Ux), L)} forallx, y [JG.
il. ,u(x_j) = l(x) for x [JG.

If lis a fuzzy subgroup then it attains its supremum at ‘e’ the identity of G that is

SUp H(x)=p(e).

x0G

We agree to call li(e) to be the tip of the fuzzy subgroup [ On the other hand a fuzzy

subgroup may or may not attain its infimum. We shall write in short inf U for
n f H(x) and refer to it as the tale of the fuzzy subgroup [ Two fuzzy subgroup U
x0G

and 1 are said to be similarly bounded if they have the same tip and same tale i.e.

H(e) = 1n(e) and
inf 4 = infn.

The range set of fuzzy subgroup we shall denote by Im [ It is well known that for a
fuzzy subgroup U the level subset [ for each t [ [0, l(e)] is a subgroup of the given
group and is called a level subgroup of W The set of all level subgroups of a fuzzy
subgroup forms a chain. For U a fuzzy subgroup of G, the level subset [4, for t [/Im [
is a subgroup of G and is called the level subgroup of |L

Now we proceed on to give a Smarandache analogue for these using S-semigroups as
we do not have S-groups.

DEFINITION 2.2.23: Let [ be a fuzzy set in a S-semigroup G. If [ is a S-fuzzy
subsemigroup of G associated with a proper subset P [] G, P a subgroup of G. ‘ep’
the identity element of P.

That is

SUp H(x)=plep)

x0pP

we call U(ep) to be the Smarandache tip (S-tip) of the S-fuzzy subsemigroup U of G
relative to the subgroup P [/ G .

Unlike in the case of fuzzy subgroup of a group G we have in case of S-fuzzy
subsemigroups of the S-semigroup G several S-tips associated even with a single

U: G - [0 1] ie if P, ..., Pxare K subgroups in G and if U is such that its
restriction on each P; happens to be a S-fuzzy subsemigroup of G and if
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SUp H(x)=H(e, )

xUOp,

where e, is the identity element of P; for i = 1,2,..., K and if they are distinct i.e.
ep % ep, if j Zi. Then we see for a given U : G — [0 1] we have several S-tips for a

given U We call such maps [ and such S-semigroups G to be Smarandache mullti-
tiped fuzzy semigroups (S-multi-tiped fuzzy semigroups).

Example 2.2.3: Let Z1, = {0, 1, 2,..., 11}; Zy, is a semigroup under multiplication
modulo 12. In fact Z;, is a S-semigroup. The subgroups of Z;, are P; = {1, 11},
P,=1{3,9} Ps={1,5},Ps= {1, 7} and P5s = {4, 8}.

Clearly one can define a U so that Z;, has several S-tips for 1, 3 and 4 are the units of
the subgroup.

DEFINITION 2.2.24: Let G be a S-semigroup. [1: G — [0, 1] restricted to some subset
P of G be a S-fuzzy subsemigroup of G. We see a S-fuzzy subsemigroup as in case of a
fuzzy subgroup may or may not attain its infimum. We shall write inf Up for
lnf Mo (x)and refer to it as Smarandache tale (S-tale) of the S-fuzzy subsemigroup
x0op
W Let U and n be two S-fuzzy subsemigroups of the S-semigroup G related to the
same subset P [] G, P a subgroup of G. We say U and ) are Smarandache similarly
bounded (S-similarly bounded) if they have the same S-tip and the same S-tale that is

Hre(e) = nip(e) and inf pp = inf Np.

Now we define Smarandache equivalent of S-fuzzy subsemigroups.

DEFINITION 2.2.25: Let G be a S-semigroup. Two S-fuzzy subsemigroup n and U of
the S-semigroup G related to the same subgroup P, P [J G are said to be
Smarandache equivalent (S-equivalent) denoted by U =1 if L and n have the same

chain of S-level subgroups in P. Thus, we have contrary of groups in case of
S-semigroups several S-fuzzy subsemigroups and S-equivalences depending on the

subgroups P [JG. The S-relation = can be proved to be a Smarandache equivalence

relation (S-equivalence relation) on the set of S-fuzzy subsemigroups only related to
the same subgroup P [JG. Thus on G a S-semigroup we can have several S-relations
which are S-equivalence relations depending on P, the proper subset of G which is a
subgroup of G. Thus we can say the maximum number of S-relations will correspond
to the number of proper subsets in G which are subgroups under the operations of G.

All properties pertaining to fuzzy subgroups of a group can be extended to S-fuzzy
subsemigroups of a S-semigroup G.

We proceed on to define Smarandache penultimate subsemigroup of a S-semigroup
G.

DEFINITION 2.2.26: Let [ be a fuzzy set in G then the penultimate subset P (i) of [ in
G, defined by P(l) = {x [JG [l (x) >inf 14}. In case [ is a fuzzy subgroup of a group
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G then P (L) is a subgroup of G provided U is a non-constant and P (L) is called the
penultimate subgroup of Uin G.

For more about penultimate subgroups please refer [11]. Now on similar lines we
define Smarandache penultimate subsemigroups of a S-fuzzy subsemigroup | of a
S-semigroup G.

DEFINITION 2.2.27: Let G be a S-semigroup. Let [ be a S-fuzzy subsemigroup of
the S-semigroup G related to a proper subset E of G, E a subgroup of G.

P(up) = {x UEDUg(x) >Im [g}.

In case g is a S-fuzzy subsemigroup of the S-semigroup G (E [JG) then P(lg) is a
S-fuzzy subsemigroup of E provided g is non-constant and P(lg) is called the
Smarandache penultimate subsemigroup (S- penultimate subsemigroup) of g in E
0 G.

It is to be noted by S-penultimate subsemigroup of a S-fuzzy subsemigroup may or
may not be a proper subgroup of the group E (E [J G a subgroup of the S-semigroup
G).

THEOREM 2.2.56: Let [ir be a non-constant S-fuzzy subsemigroup of the S-semigroup
G. Then the S-penultimate subsemigroup P(Ug) is a proper subgroup of E [J G if and
only if U attains its infimum.

Proof: 1 : G - [0, 1] is a fuzzy set of G; E a proper subset of G which is a subgroup
under the operation of G. Ug denotes the restriction map i.e. Ug : E — [0 1] such that
M is fuzzy subgroup of G or [ is a S-fuzzy subsemigroup of G related to E. Now the
rest of the proof is as in case of fuzzy subgroups.

THEOREM 2.2.57: Let n;, 1> and [ be fuzzy sets in a S-semigroup G such that

N1 =N Then (Lo N <o Nand pltf ; < Uitf > and |1 * n < 4 ° Nz on some fixed
subgroup E of G.

Proof: First G is a S-semigroup. E a proper subset of G, E a subgroup under the
operations of G. N, N2 and W are fuzzy sets on G satisfying the conidion n; < Nz
restricted to the subgroup E [J G.

Now using the proof of [7, 10] the result follows:

THEOREM 2.2.58: Let 1] and U be S-fuzzy subsemigroups of a S-semigroup of G. Then
the set product 1] o U contains N and W if and only if ) and U have the same S-tip that
is N(ep) = U(ep) for a subgroup P in G.

Proof: As in case of groups. (Hint: Using P [1 G and P is a subgroup U and n
restricted to P serves the purpose).

THEOREM 2.2.59: Let n and U be S-fuzzy subsemigroups with the same S-tip of
a S-semigroup G relative P (P [JG a subgroup of G). Then the set product ] o lLis a
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S-fuzzy subsemigroup generated by the union of n and U if ol is a S-fuzzy
subsemigroup of G.

Proof: Direct hence left as an exercise for the reader.

THEOREM 2.2.60: Let 17 and 1 be S-fuzzy subsemigroups of a S-semigroup G. Then
the S-penultimate product 1 o U contains 1) and U if ) and U are similarly bound with
respect to the same subgroup P []G.

Proof: Please refer [11] using the subgroup P of the S-semigroup G instead of using
the whole of G.

THEOREM 2.2.61: Let n and [ be S-fuzzy subsemigroups in a S-semigroup G.
Then no K= o Nnifeither N or [ is a S-fuzzy ideal of the S-fuzzy subsemigroup.

Proof: 1f the S-fuzzy subsemigroup W related to P, P [1 G a subgroup of G then we see
M can also be fuzzy normal so that [ is a S-fuzzy ideal of the S-fuzzy subsemigroup.

THEOREM 2.2.62: Let 1) and |4 be S-fuzzy subsemigroups of a S-semigroup G.
Then np e 1= 1 *nifeither N or Wis S-fuzzy ideal of the S-fuzzy subsemigroup.

Proof: Analogous to the proof in case of fuzzy subgroups as S-fuzzy subsemigroup [
of G is also a fuzzy subgroup of G.

THEOREM 2.2.63: Let 1] and 1 be S-fuzzy subsemigroups of a S-semigroup G. Then
the set product [ on is a S-fuzzy subsemigroup if and only if o U= Lo n.

Proof: Straightforward, hence left for the reader to prove.

THEOREM 2.2.64: Let 1) and U be S-fuzzy subsemigroup of a S-semigroup G. Then the
S-penultimate product n * [Lis a S-fuzzy subsemigroup if and only if n e = * 1.

Proof: As in case of fuzzy subgroups by using the very definition.

Example 2.2.4: Let S(4) be the S-symmetric semigroup. Let i and n be S-fuzzy
subsemigroups of S(4) relative to the proper subset S4 of S(4) which is a subgroup.

For
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n (e)

6
1 2 3 4
r] = )
341 2 16
1 2 3 4
r] = D)
21 4 3 16
1 2 3 4
r] = )
4 3 2 1 16
npe) = 16

for all odd permutations of (1234) and n(f3) = 0 for any other permutation {3 in Sa.
1 2 3 4 _ 11
His 41 2 - 16°
1 23 4\(1 2 3 4 7
H 21 4 3)74 3 21 16
12 3 4 (1 2 3 4)(1 23 4\(1 234 5
H2341’4321’3214’1432 16

and Y(y) =0 for any other permutation y in Ss.

We define fuzzy subgroups 1 and [t as follows:

ne = —,
({1 2 3 4 9
N3 41 2 16
(1 2 3 (1 23 4] _ 3
Mo 14 34 3 21 B 16

r](O() = % for each 3 cycle. ﬁ(B) = % for any other permutation 3 in Ss.
(1 2 3 4y (1 2 3 4 _ 11
M 23 4/ a1 2) 7 16
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(1 2 3 4\ (1
u2143’4
St 2 3 4\(1 2 3 4
H2341’4321’

and I (y) = % for any other permutation

2 3 4 _
32 1 B

12 3 4\ _
3 41 2 B

Y n S4.

Free product: The free product of i and I turns out to be constant fuzzy set

(n op) ()

11
16

for each g [J S4. Set product can be verified to be

(_O_)12341234 11
r'”1234’3412 16°

L RN T

(fol) (@) =

for any permutation o in Ss.

It can be verified that neither N nor I is a S-fuzzy ideal of the S-fuzzy subsemigroup

Hand N of S4but o =pon.

The S-permulate subsemigroup P(ﬁ) and P (H) of N and Hrespectively are A4 and

Dg.

THEOREM 2.2.65: Let n and U be the fuzzy set with sup property in a S-semigroup G
relative to a subgroup P [] G. Then for each t [7 [0, 1] ; (/7 0,[1), =1, il, where

fand fI denote the restriction of N and W respectively over P [J G i.e.

1
—
>~

n:P - [01]and i:P - [0,1] with a sup property in the group P.

Proof: Analogous to proof in case of sup property in a group G.

THEOREM 2.2.66: Let 1] and |4 be fuzzy sets in a S-semigroup G with S-penultimate

subsets P () and P (L) respectively. Then

i mou)=n P(u)nP(n)u fort 070, 1]
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ii. (/7 o,u), =nP(u)nP(n)u fort [J[0, 1] provided n and p have sup
property.

Proof: Easily proved by using all the properties and definition.

THEOREM 2.2.67: Let n and U be S-fuzzy ideals of the S-fuzzy subsemigroup of the
S-semigroup G. Then the free product n [jilis a S-fuzzy ideal.

Proof: As n O is a S-fuzzy subsemigroup of the S-semigroup G relative to P we see
n U is a fuzzy subgroup of P. The rest of the proof follows as in case of groups.

We just recall the notion of Smarandache normal subgroup of a S-semigroup.

DEFINITION 2.2.28: Let S be a S-semigroup. Let A be a proper subset of S
which is a group under the operations of S. We say A is a Smarandache
normal subgroup (S- normal subgroup) of the S-semigroup S if xA [JA and Ax [JA
orxA = {0} and Ax = {0} for all x [J S and if 0 is an element in S then we
have xA = {0} and Ax = {0} .

Let S be a S-semigroup [ : S — [0, 1] be a S-fuzzy semigroup of S relative to P,
P[] S; P a subgroup under the operations of S. i.e. p: P — [0, 1] is a fuzzy group
i.e. Upis nothing but [ restricted to P. If in addition we have [ (gx) = U (xg) for every
g [JP and x [JS then we call i a Smarandache fuzzy normal subgroup (S-fuzzy
normal subgroup) of the S-semigroup S.

2.3 Element-wise properties of S-fuzzy subsemigroups

In this section we define several of the element-wise properties in S-fuzzy
subsemigroups.

DEFINITION 2.3.1: Let G be a S-semigroup. A fuzzy subset A of G of the form

tH#0) if y=x
Ny) = L

0 if y=x.
Foryin P [JG, P a subgroup in G is called the Smarandache fuzzy point (S-fuzzy
point) with Smarandache support (S-support) x and value t is denoted by x,.

1t is very important to note that all elements in the S-semigroup G need not in general
have S-fuzzy point. That is to be more precise only those elements in G which fall into
one or more subgroups of G will have S-fuzzy point that too depending on the fuzzy
subset A of G. Thus unlike in a group G we will not be in a position to
associate S-fuzzy points.

DEFINITION 2.3.2: A fuzzy subset A of a S-semigroup G is said to have Smarandache

sup property (S-sup property) if for every non empty subset T of G where T is a
subgroup and there exists a [J T such that A(a) = sup {A@t) [1 T}
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DEFINITION 2.3.3: A fuzzy subset A of a S-semigroup G is said to be an Smarandache
(L] 11 q) fuzzy subsemigroup (S-(L] [l q) fuzzy subsemigroup) of G if for any
x,y [JP [JG (P a subgroup of G) and t, v [7(0, 1]

i Xy i A=) I gA and
i.  xOA= "), 0 gA

DEFINITION 2.3.4: A S-fuzzy subsemigroup A of G is said to be

L.

il

Smarandache (L] [)) fuzzy normal (S-(L] L) fuzzy normal) if for all x, y [JP
OGandt 7(0,1], x. A = (x"'y x); DA

Smarandache (L] 1]l q) fuzzy normal (S-(L]/[I] q) fuzzy normal) (or simply
S-fuzzy normal ) if for any x,y [JP [JGand t [J (0, 1], x, J A =
O'x ) [ gA

Several relations and results in this direction can be evolved using Smarandache fuzzy

notions.

THEOREM 2.3.1:

.

A fuzzy subset A of a S-semigroup G is an S- (L] q) fuzzy subsemigroup
(respectively S- (L] q)fuzzy normal subgroup) related to a subgroup P
of G if and only if the ([l q)- level subset A, of P [JG is a subgroup of P
(normal subgroup of P) for all t [J (0, 1] where Ay, = { x [JPIA (x) =t or
Ax) +t>1).

Let f: G — H be a S-semigroup homomorphism. Let A and U be S-fuzzy
subsemigroups of G and H respectively. Then f (A) and f ' (1) are S-fuzzy
subsemigroups of f (P) and P respectively (P [J G is a subgroup of G).

Proof: Refer [25].

THEOREM 2.3.2: For any S-(L] Il q) fuzzy subsemigroup A of S-semigroup G the
S-(1l q)-level subgroup A; = P (P [JG, P a subgroup of G) for all t [J1 if and only if
Ax) 20.5 for all x [JP [JG.

Proof: Straightforward.

THEOREM 2.3.3: Let G be a S-semigroup. Then given any chain of subgroups Py [JP;
[J...[]P, = P (P a subgroup of G) there exists a S- (L] /[l q)- fuzzy subsemigroup of
P [JG whose S- (Il q)-level subgroups are precisely the members of the chain.

Proof: Let {ti [&; 1(0,0.5);i=1,2,...,r} besuch that t; >t, >...>t.. Let A : P - |
be defined as follows.
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t>0.5 if x=e

>t if xUP, —{e}
Ax) = t, %fxDP1 -P,

t, if xUP, - P,

t, if xOP —P_,

Then A is an S-([J,[0 q)-fuzzy subsemigroup of P [0 G which is not a S- ([J,[0) fuzzy
subsemigroup. Note that Ao s = Py and )\tl =P fori=1,2,...,rasx 0 gA = x O A,

ift 00, 0.5).

It is important to mention here that for a given S-semigroup G we can have several
subgroups P, Q, R,..., X, Y, Z such that we have a chain of subgroups associated with
each of the subgroups P, Q, R,..., X, Y, Z leading to many S-([J,IIl q) fuzzy subgroup
P,Q,R,.... X, Y, Zof G.

Thus only the Smarandache notion alone can give a nice spectrum of S-(LL,II q)
fuzzy subsemigroups relative to a S-semigroup G having several distinct proper

subsets which are subgroups of G.

Example 23.1: Let G be the set of integers together with

1 1 1 . ) .
{0, iE, i?, ER- > x } G is a S-semigroup. Take P = additive group of all
integers. P is a subgroup of G. Let nP = {additive group of all integers multiple of n}.
Then 16P [1 8P [1 4P [ 2P [ P be a chain of subgroups of G.

Let A : P - [0, 1] defined by

0.6 if x=0

0.9 if x#0,x16P
0.7 if x 8P —16P
0.5 if x 14P —8P
0.2 if x[12P —4P
0.1 if xOP —2P.

Ax) =

Then A is a S-fuzzy subsemigroup of P. Note that Ag2s = 4P = Ao = Ao7, Aoy = 2P =
No2, Ao.1 =P.

THEOREM 2.3.4: Let A be a S-(L] 1] q)-fuzzy subgroup of G with Im [ = {t, r} where
0<t<r<05IfA=pullvwhere i, vareS-([]1l q)-fuzzy subsemigroups of G then
either U<V, or V< U

Proof:  Follows as in case of ([, q)-fuzzy subgroup. We say S-(L1, [ q)-fuzzy
subgroup of a S-semigroup G is said to be proper if it is not constant in G.
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THEOREM 2.3.5: Let G be a S-semigroup that has several proper subgroup. A proper
S-([J L) fuzzy subsemigroup A of G such that card. Im A =3 can be expressed as the
union of two proper non-equivalence S-(L][)- fuzzy subsemigroups of G.

Proof: As in case of (L,[J)-fuzzy subgroups.

THEOREM 2.3.6: Let A be a proper S-(LJ] 1] q)-fuzzy subgroup of G such that the
cardinality of {A(x) A (x) <0.5 } =2. Then A can be expressed as the union of two
proper non-([l] q)-equivalent S-(L][1I] q) fuzzy subgroups of G.

Proof: Follows by the same arguments as in case of fuzzy subgroups.

THEOREM 2.3.7: Let A be an S-(L] 1] q)-fuzzy subsemigroup of the S-semigroup G
such that A(x) = 0.5 for all x [7G. Then A can be expressed as the union of two non-
(1] q) equivalent S- (L]l q)-fuzzy subsemigroups if and only if P = H [J K, where
H and K are proper S- (L]l q)-fuzzy subsemigroups of P (where P is a proper subset
of G which is a subgroup of G).

Proof: For proof please refer [23].

DEFINITION 2.3.5: Let U be a fuzzy subset of a S-semigroup G. An S- (L] /1 q) fuzzy
subsemigroup & of G is said to be the S-(L] /Il q)-fuzzy subsemigroup generated by [
in G if ¢ 2 U and for any other S- (L] [l q)-fuzzy subsemigroup n of G with n = [l it
must be N = ¢.

THEOREM 2.3.8: Let U be a fuzzy subset of the S-semigroup G where card Im [l is
finite. Define S-subsemigroups G; of G as follows.

Go =  (xOG@E®x 205}
G = ({Go U{xLUG (x) = sup (H(x) ; x G\ Gy)}})

G, {6, ofx06lux) = sup{ucz),z06 -6}

i=12.., kwhere k <Card Im i and Gx = G. P; [JG; is a proper subset of G; which
is a subgroup. Then the fuzzy subset 6 of G defined by

_[ux)if xOP, 06,
Y lsup{ucz): 20616} if xOR-P_, 0G,-G,_}}

(where P; is a subgroup in G, for i = 0, 1, 2,...k is the S- (L] q)-fuzzy
subsemigroup generated by lin G.

Proof: Left as an exercise for the reader to prove.
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THEOREM 2.3.9: Let f: G — K be a S-semigroup homomorphism. If A and U are
S-fuzzy subsemigroups of G and K respectively, then f (A) and f~ (1) are S-fuzzy
subsemigroups of K and G respectively.

Proof: Please refer [23].

THEOREM 2.3.10: Let - G — H be a S-semigroup homomorphism. Let A and [ be
two S-fuzzy subsemigroups of G and H respectively. Then

i 77 is a S-fuzzy subsemigroup of G.
ii. f(A) is a S-fuzzy subsemigroup of f(G).

Proof: Straightforward by the earlier result and definitions.

Now we proceed on to define Smarandache ([J,1J)-fuzzy left (resp. right) cosets.

DEFINITION 2.3.6: Let A be a S-fuzzy subsemigroup of a S-semigroup G. For x [JP [J
G, P-a subgroup of G.

N (resp.N.):G - [0,1] be defined by X.(g)=A(gx™") (resp. X.(g)=A(x""'g)
forall g [JG is called Smarandache (L] [) fuzzy left (vesp. right coset) (S-(L] L) fuzzy
left (resp. right coset)) of P in G determined by x and A.

Let A be a S-fuzzy subsemigroup of the S-semigroup G. Then A is a S-([][)-fuzzy
normal if and only if A =X for all x [JP EG.

However if Ais S-([ [T q) fuzzy normal, then X may not be equal to X"

This is illustrated by the following example.

Example 2.3.2: Let G be a S-semigroup given by the following table.

[eR o ICHECRIS N Iel [oN k) NoR

R E R = R =N = s

[oxl FoN Kol Y K- KONl o ol Kl N

0 |—a)o (o o S|,
[} fer)l fen)l fen)l fen) el Far) Fan) New)
0 |—+|afo o oo
ool |afo | (O
(=N KN Ko ol N Ko W 0N H ol Kl N @)
Olo (e | |Ta|jo (Do

H = {e, a, b, c, d, f} is a subgroup of G. Define A : G - [0, 1] by A, (eabcdf)=
A(0.7,0.75, 0.8. 0.4, 0.4, 0.4). A(0) = 0 and A(g) = 0. Thus A is an S- (1,00 q)- fuzzy
normal subgroup of G. But since A(fd) = A(b) = 0.8 # 0.75 = A(df) = A (a). A is not S-
(4,0) fuzzy normal.
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DEFINITION [23]: Let A be a S-fuzzy subsemigroup of the S-semigroup G. For
any x [J P [J G, jx (resp./T) oG - [0, 1] is defined by /ix(g)=M(/1(gx_1,0.5)
[resp. /ix(g) =M(A(x"'g,0.5)] forallg [JP [JG and is called S- ({J (70 q)- fuzzy
left (resp. right coset) of P [J G determined by x and A.

THEOREM [23]: Let A be a S-fuzzy subsemigroup of a S-semigroup G. Then A
is S-(L] 1 q)- fuzzy normal if and only if/ix = /Tx forallx [JP [JG.

Proof: Refer [23].

THEOREM [23]: Let A be a S-fuzzy normal subgroup of the S-semigroup G. Let F be
the set of all S-fuzzy cosets of Ain G. Then F is a S-semigroup of all fuzzy cosets of G
determined by A where the multiplication is defined by A.0A, =A,, forallx, y

P, (P G).

Let A:F - [0,1] be defined by A (A,) =M (/1 (x7hH, 0.5) forall x [JP. Then Ais a
S-fuzzy normal subgroup in F.

Proof: Refer [23].

THEOREM 2.3.11: Let A be an S-(L] /11l q)- fuzzy normal subgroup of the S-semigroup
G and A, = H where A, is the S-(III] q) level subgroup of G for t[J (0, 1]. If a, b
[JP []G are such that A, = Ay, then H, = Hp.

Proof: Refer [25].

DEFINITION 2.3.7: A S-subsemigroup H of a S-semigroup G is said to be

Smarandache quasi normal (S-quasi normal) if for every S-subsemigroup K of H, we
have XY =YX, X [JH and Y [JK are subgroups of X and Y respectively.

THEOREM 2.3.12: The S-homomorphic pre-image of a S-quasi normal subgroup is
S-quasi normal.

Proof: Follows by very definitions.

THEOREM 2.3.13: A maximal S-quasi normal subgroup of a S-semigroup G is
normal.

Proof: Left as an exercise for the reader.

THEOREM 2.3.14: Let G be a finite S-semigroup and Q be a S-quasi normal subgroup
T of G. If Q is core-free then every Sylow subgroup in T is S-quasi normal in T [J Q.

Proof: Follows by simple computations.

234



DEFINITION 2.3.8: A S-fuzzy subsemigroup & of G (G a S-subsemigroup) relative to a
subgroup X [J G is called Smarandache fuzzy quasi normal I (S-fuzzy quasi normal 1)

in Gif £o n=no ¢for every S-fuzzy subsemigroup n of X in G.

DEFINITION 2.3.9: A S-fuzzy subsemigroup [ of a S-semigroup G is said to be
Smarandache fuzzy maximal (S-fuzzy maximal) if | is not constant for any S-fuzzy
subsemigroup 1] of G whenever | < 1] either P, =B, (PUG, P a subgroup of G

relative to which [ and 1] are defined or 1 = Xp where P, = {x [/P | l(x) = U(e,)}, ep
identity element of the subgroup P in G.

DEFINITION 2.3.10: Let U be a S-fuzzy subsemigroup of a finite S-semigroup G and let
Sp be a p-sylow subgroup of P, P a subgroup in G. Define a fuzzy subset US,in G as

follows

i xS
,uSp(x) {IU(X) " !

0 if x0S,.

Clearly S, is a S-fuzzy subsemigroup called the Smarandache p-fuzzy sylow
subgroup (S-p-fuzzy Sylow subgroup) of L The following result can be proved as a
matter of routine.

THEOREM 2.3.15: Let & be a S-fuzzy subsemigroup of the S-semigroup G with S-sup
property. Then each level subset L, for t [1 (0, &(e)) is a S-quasi normal subgroup
of P [JG (¢ is a S-fuzzy subsemigroup related to P [7 G) if and only if & is S-fuzzy
quasi normal (I).

DEFINITION 2.3.11: A S-fuzzy semigroup of a S-semigroup G is called a S-fuzzy quasi
normal Il if its S-level subsemigroups are S-quasi normal subsemigroups of G.

Now a characterization theorem for this & to be S-fuzzy quasi normal II is given by
the following Theorem; the proof of which is left for the reader.

THEOREM 2.3.16: Let & be a S-fuzzy subsemigroup of G, G a S-semigroup. Then ¢ is
S-fuzzy quasi normal Il if and only if {o n=no ¢ (restricted to some subgroup
P [JG relative to which {is defined) for any S-subsemigroup n of G.

From now onwards G will denote a S-semigroup, P a subgroup of G (P [J G) under
the operations of G. Let ep be the identity element of P and Ap an S-(L] 1] q)- fuzzy
subsemigroup of G. By a S-fuzzy subsemigroup of G we shall mean a S-(L]/1 q)-
fuzzy subsemigroup of G. For a fuzzy subgroup A of G there exists x and y [7G such
that A(x) 20.5 and A(y) <0.5.

DEFINITION 2.3.12:
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i A is said to be a S-([][)-fuzzy quasi normal if for any S-fuzzy
subsemigroup L of G and for all z [JP [JG, t [7(0,1], z, [7(A o W) if and
onlyifz, [J(lLo A).

ii. A is said to be a S-([J1q) fuzzy quasi normal if for any S-fuzzy
subsemigroup [ of G and for all z [JP [JG, t [7(0,1], z, [J (A o W) implies
z g (1 oA)and z, [ (fLo A) implies z, [ g (A o W).

THEOREM 2.3.17: A is S-([][) fuzzy quasi normal if and only if for any S-fuzzy
subsemigroup [ of G and for allz [JP [JG, (Ao W) z = (Lo A)z.

Proof: By way of contradiction if (A o H)(z) # (L 0 A)(z) for some z [J P O G and we
arrive at a contradiction.

Remark: Let A be an S-(U,00) fuzzy subsemigroup of a S-semigroup G. IfA is a
S-(0,0)-fuzzy quasi normal then A is a S-fuzzy quasi normal subsemigroup of type |
or IL.

As an S-(L,[0 q) fuzzy subsemigroup is different from the S-fuzzy semigroup it
follows that an S-(L1,1J) fuzzy quasi normal for an S-([J,II q) fuzzy subsemigroup is
different from a S-fuzzy quasi normal subsemigroup of type I or II.

THEOREM 2.3.18: A is S-([] /] q)-fuzzy quasi normal if and only if for any S-fuzzy
subsemigroup U of G relative to a subgroup P [J G and for allz [JP, (U o A)(z) =

(Ao W) if (Ao ) <0.5and (Lo A)z) 20.5if (Ao )(z) =0.5.
Proof: Let A be S-([J, [l q) fuzzy quasi normal. Let z [ P O G.

Case 1 (i): Let (A o )(z) <0.5. If possible let (Lo A) (z) Z (A o W) (z). Suppose (i)
(MoA)z)=t<(AoW)(z)=r. Thenz (Ao W) butz O0q (Ko A) a contradiction.

Case 1 (ii) : Let r <t. Then there exists d >0 suchthatr +d<tandr+d+t< 1.

Now 75 O (Lo A) but zws O0g (A o W) a contradiction. So (A o K)(z) = (L o A)(z)
forallzOP OG.

Case 2: Let (A o )(z) =t >0.5. If possible let (1 o A)(z) <0.5. Then zys O (A o W) but

zos UO0Og (U o A) a contradiction. So (U o A)(z) > 0.5. The converse part follows
similarly.

THEOREM 2.3.19: If [ is a S-fuzzy quasi normal subsemigroup (type I or II) of P [/ G,
then Ais an S- (L] q)-fuzzy quasi normal subsemigroup of G.

Proof: Straightforward as in case of subgroups. The following theorems are stated and
the proof is left as an exercise for the reader.
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THEOREM 2.3.20: Let H be any non-empty subset of the S-semigroup G.H is a S-quasi
normal subgroup of G if and only if Xu (the characteristic function of H) is
an S-(L] 1 q) fuzzy quasi normal subgroup of G.

THEOREM 2.3.21: Let A be a S-([] I q)-fuzzy quasi normal subsemigroup of G, G a
S-semigroup with the sup property. Then ([l q)-level subset A, = {x [JP | x; [I] qA}
is a S-quasi normal subsemigroup G relative to P [/G (P a subgroup of G) for all
t [0, 1].

THEOREM 2.3.22: Let A be a fuzzy subset of the S-semigroup G with “sup-property”
and for all t [7(0, 1], S-(IIl q)-level subset A, be a S-quasi normal subsemigroup of
G.

Proof: N is a S-fuzzy subsemigroup of G relative to a proper subset P [J G; P a
subgroup of G. Let L be any S-fuzzy subsemigroup of G and z [J P. Then z [ (A o )
implies z [J (A o W) implies z [ A ® |y implies z [ Y ® A (Since A¢ is S-quasi normal)
implies z [J (L o A), implies z [ q (L o A). Similarly z; (Lo A) = z [ q (A o ).
Therefore A is S-([1,[[1 q)-fuzzy quasi normal.

THEOREM 2.3.23: Let G be a S-semigroup such that for all x, y, U, Vv [J G,
xy 0V =xU° yV. If A pare S-([J [l q) fuzzy quasi normal subsemigroups of G
then so also is Ao U.

Proof: Refer [25] and obtain the proof analogous for S-semigroup G with suitable
modifications.

Remark: Let G be a S-semigroup such that for all x, y, u,v U P (P a subgroup of G),
Xy ® UV = xU * yv and Q(P) is the set of all S-([J,I q)-fuzzy quasi-normal
subsemigroup of P then (Q(P), ) is a commutative semigroup.

Thus for a single S-semigroup G we have several commutative semigroups associated
with them in fact depending on the number of nontrivial subsets P of G which are
subgroups of G.

THEOREM 2.3.24: Let H be a S-semigroup. G a S-semigroup, suppose f is a
S-semigroup homomorphism from G onto H (i.e. f: P/[JG — L [JHi.e. Pand L are
subgroups of G and H respectively and f is a onto group homomorphism i.e.
equivalently f'is a S-semigroup homomorphism), then

i. f(Ao8)=f(A)of(6)where A and 8 are S-fuzzy subsemigroups of P [ G.

ii. f(f'(0)= 6 where 0 is a S-fuzzy subsemigroup of f(P).
Proof: Direct as in case of fuzzy subgroups.
THEOREM 2.3.25: Let f : G - H (H a S-semigroup), be a S-semigroup
homomorphism). If Ais a S-(L] 1] q)-fuzzy quasi normal subgroup of P []G then f (A)

is an S-(L] 1] q)-fuzzy quasi normal subgroup of f (P). (P [J G is a subgroup of the
S-semigroup G).
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Proof: As in case of ([, q) fuzzy normal subgroups of G.

THEOREM 2.3.26: Let f : G — H be a S-semigroup homomorphism and [ be a
S-([0 [T q)~fuzzy quasi normal subsemigroup of G with sup property. Then f (1) is
an S-(L] 1] q)-fuzzy quasi normal subsemigroup of G.

Proof: Refer [25] and obtain an analogous proof by studying the subgroup P
in the S-semigroup G.

THEOREM 2.3.27: S-([] 1]] q) fuzzy normality implies S (L] 1l] q) fuzzy quasi
normality.

Proof: Direct as in case of groups.

It is important to note that S-(U,[1] q) fuzzy quasi normality need not imply S-
(0,00 q) fuzzy normality in case of S-semigroups also.

DEFINITION 2.3.13: Let A be a S-fuzzy subsemigroup of a S-semigroup G. For
any g 0P [0G let SA):P [0G - I defined by S(A¥(x)) = Mg 'xg) for all
x [JP [JG.

This definition is true and can be defined for every proper subset P in G, P a
subgroup of G.

THEOREM 2.3.28: Let A be a S-fuzzy subsemigroup of the S-semigroup G. Then

i Forall g [7P [7G, A is a S-fuzzy subsemigroup of G.
ii. Aisa S- (01 q)-fuzzy normal if and only if A° (x) = M (A(x), 0.5) for
all x JP [JG.
Proof:
i Forany x, y P O G, A* (xy) = Mg 'xyg) = Ag 'xygg ' yg 2 M(A (g
'xg), A (g'ye), 0.5) =M A¥(x), A¥(y), 0.5). Again A(x') = A (g'x 'g) =
Mg'xg)' = M (Ag'xg), 0.5) = M (A%x), 0.5). So A% is a S-fuzzy

subsemigroup relative the subgroup P U G.

ii. Follows directly by the very definition.

DEFINITION 2.3.14: Let A be a S-fuzzy subsemigroup of the S-semigroup G. Then the
Smarandache core (S-core) of A denoted by S (/VG)) and defined by

siir) = nirs| gopPoah

Thus for a given S-semigroup G we can have as many S-core as the number of proper
subset of G which are subgroups of G.
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THEOREM 2.3.29: Let A be a S-fuzzy subsemigroup of G. Then
(m A8 ), =nglg’= S(/]}G) )t forallt [7(0,1], for each subgroup P []G.

Proof: Let t U (0,1].

Thenx O S(\%, ), = (n A*), ifand only if

(n28) 02 tor (nae) )+ t>1
if and only if inf {A(g 'xg)0g O P} >t or inf {A(g 'xg)lg 0 G}+t > 1 ifand only if

(Mg 'xg) =2 tor (\(g 'xg) +t =1 for all g O P if and only if (g 'xg); I q A if and only
if g 'xg O Aifand only ifx OgA; g ' forg OGifandonlyifx O ngA g
g

So ( n A )t =ngh g ' forallt(0,1].

THEOREM 2.3.30: A, is an S- (L] 1] q) fuzzy normal subgroup of G.

Proof: Matter of routine, hence left for the reader as an exercise.

DEFINITION 2.3.15: 4 S-fuzzy subsemigroup A is said to be Smarandache core free
(S-core free) if there exists some a [J](0,1] such that Ap = eq, P [JG. P a subgroup of
G.

DEFINITION 2.3.16: Let A be a S-fuzzy subsemigroup of a finite S-semigroup G and let

Sy be a p-sylow subgroup of P [JG. Let a fuzzy subset &, of P [J G such that &, < A be
defined by

A(x) if xOS,

5"(”:{0 if xOS,.

THEOREM 2.3.31: &, is a S-fuzzy subsemigroup of G.
Proof: Follows by the very definition.
DEFINITION 2.3.17: &p is called S-([] L) fuzzy p-sylow subgroup of A.

DEFINITION 2.3.18: Let A be a S-fuzzy subsemigroup of a finite S-semigroup G and S,
be a p-sylow subgroup of S, [JG. Let a fuzzy subset 4, of G be defined as follows:

A(x) if A(x)<0.5

DXDS””"W:{EM if A(x)20.5

) = 0ifx S,

THEOREM 2.3.32: U4, is a S-fuzzy subsemigroup of a S-semigroup of G.
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Proof: As in case of groups.

DEFINITION 2.3.19: 14, is called a Smarandache (L]l q) fuzzy p-sylow subgroup
(S-(L] [T q) fuzzy p-sylow subgroup) of A.

THEOREM 2.3.33: If 14, is a S-(LJUT q) fuzzy p-sylow subgroup of A then (L), =
A n Sy forallt [J(0, 1].

Proof: Analogous to group. Refer [24].

THEOREM 2.3.34: Let A be an S- (L] q) fuzzy quasi normal subsemigroup of a
finite S-semigroup G. If A is S-core-free then every S-([] [l q)-fuzzy p-sylow subgroup
of Ais S-([] T q) fuzzy quasi normal.

Proof: Left as an exercise for the reader to prove.

DEFINITION 2.3.20: Let A be a S-fuzzy subsemigroup of a S-semigroup G. A is said to
be a S-([] [) fuzzy maximal. [respectively S-([] T q)-fuzzy maximal] if A is not
constant for any other S-fuzzy subsemigroup [ of P [JG, whenever A < U either
[0-Aos] =[L- tos] or 4= X [resp. either [([] q) - Aps] = [(I] q) - Hos] or p =
Xa] where [[]- A,] denotes the level subset or denotes [(I[] q)-level subset].

It is important to mention here following the definition of [32] it is a [[J- AJ-level
subset and [(II] q) - A; ] denotes (Il q)-level subset following definition of [24],
(1] q)-level subset].

It is left for the reader to verify [([I q) - A] = [0-A] and [(ID q)- Aos] =[-Aos] for
all't [J (0,0.5).

THEOREM 2.3.35: Let A be a S-fuzzy subsemigroup of a S-semigroup G. If A is
S-([J [)-fuzzy maximal then A (x) = 0.5 for all x [JP [JG ( P subgroup of G).

Proof: 1f possible let there exist a [1 P [J G such that A (a) <0.5. Definep: POG - 1
by
Ax) A(x)=0.5
Hx) =
0.5 A(x)<0.5

Then clearly [ is a S-fuzzy subsemigroup of G such that A < but [[J - Ags] # [0 -
Hos ]. Clearly L # Xg. So M is not S- ([J,[J) maximal a contradiction.

Therefore A(x) 2 0.5 forallx OP 0O G.

DEFINITION 2.3.21: A S-fuzzy subsemigroup A of a S-semigroup G is said to be
q-fuzzy maximal if for any other S-fuzzy subsemigroup [ of G whenever A < | either

U= Xa OF
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P ={x0P0G|A(x)2A(e} = B, ={x0P 0G| u(x)= (e} .
Following the definitions of [5].

THEOREM 2.3.36: If A is a S-fuzzy maximal subsemigroup of the S-semigroup G then
A is g-fuzzy maximal.

Proof: The result follows from the fact that

xOPOG|Ax) 2AE)} = {x0POG|Nx)=)\(e}

for any S-fuzzy subsemigroup A of G.

THEOREM 2.3.37: If A is a S-q fuzzy maximal subsemigroup of the S-semigroup G
such that A(x) <0.5 for some x [JP [JG, then Im A = 2.

Proof: Let A be a S-q-fuzzy maximal subsemigroup of the S-semigroup G; let
ImA>2. Lett,r,A(e) OImA and t Z r Z A (e). If r < 0.5 then define a fuzzy subset
of P UJ G as follows:

A(e) ifx=e

Hxs) = {t(> Me) ifxZe.

Then Y is a S-fuzzy subsemigroup of G and g = A. Clearly G, # G“ and Y # Xg which

contradicts that A is gq-fuzzy maximal.

Hence r 2 0.5. Similarly t > 0.5. Againt, r 2 0.5 implies that A (x) = 0.5 for all
x O P O G which is a contradiction. Moreover Im A = 1 only when A is constant.
Therefore Im A = 2.

THEOREM 2.3.38: If A is a qg-fuzzy maximal or S-(L] 1] q) fuzzy maximal subsemi-
group of P [JG. Then Pyand Ays are maximal subgroups of P [71G.

Proof: Left for the reader as an exercise.

THEOREM 2.3.39: Let A be a S-([] [T/ q)-fuzzy quasi normal subsemigroup of P [ G
with sup property. If A is g-fuzzy maximal or S-([] [l q)-fuzzy maximal, then A is S-
(L1 q)-fuzzy normal.

Proof: Refer [25] for analogous proof.

Now we define the concept of Smarandache primary fuzzy subsemigroup of a S-
semigroup G. We for the sake of completeness recall some of the definitions.

DEFINITION [14]: Let A be a fuzzy subset of a group G. Then A is called a fuzzy
subgroup of G under a t-norm T (T-fuzzy subgroup) if and only if for all x, y [JG.
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i. Akxy) 2T (A(x), A(Y)).
ii. A(e) = I where e is the identity of G.
ii. Aix) =A@x).

A is called a Min-fuzzy subgroup if A satisfies conditions (i) and (iii) only by
replacing T with Min Let A be a fuzzy subset of the group G. Then the subset
{Ix JGUAx) = t}, t [J]0, 1] of G is called a t-level subset of G under A and
denoted by A,.

DEFINITION 2.3.22: Let A be a fuzzy subset of the S-semigroup G. Then A is called a

Smarandache fuzzy subsemigroup of P [/ G under a t-norm T (S-T-fuzzy
subsemigroup) if and only if for all x, y [JP []G.

i. Axy) 2T (A(x), AY)).
ii. A(e) = I where e is the identity element of P.
ii. A(x) = A(") for all x [T P.

A is called a S-Min-fuzzy subsemigroup if A satisfies conditions (i) and (ii) only by
replacing T by Min.

Let A be a S-fuzzy subsemigroup of P [/ G is called a t-level subset of P [J G under A
and is denoted by S(A4,).

THEOREM 2.3.40: Let A be a S-min fuzzy subsemigroup of the S-semigroup G. Then
every S-t-level subset S(4,) of P [JG, t [J[0, A(e)] is a S-subsemigroup of G.

Proof: As in case of subgroups.

THEOREM 2.3.41: Let A be a S-fuzzy subset of S-subsemigroup G such that every
t-level subset S(A) of P [J G, t [JIm (A) and A(e)= 1. Then A is a S-Min-fuzzy
subsemigroup of P [7G.

Proof: Similar to results in groups.

THEOREM 2.3.42: Let f: G — H be a S-semigroup homomorphism and A be a S-T-
fuzzy subsemigroup of G. Then f(A) is a S-T-fuzzy subsemigroup of H.

Proof: As in case of groups, hence left for the reader to prove.

DEFINITION 2.3.23: Let A be a S-T-fuzzy subsemigroup of a S-semigroup P [] G, xA
(Ax) be left (right) fuzzy coset of A in P [7 G such that xA(g) = A(x"'g Axg) =
A(gx")), g OP OG. Then A is said to be a Smarandache normal fuzzy
subsemigroup (S-normal fuzzy subsemigroup) of G if and only if xA = Ax for all
x [JP [JG and hence P/A = {x A [x [J P} is a group (if A is normal) with the
operation xAyA = xyA, x, y [JP [JG.

Notation: Let A be a S-T-fuzzy subsemigroup of G, x U P 0 G r, n, N, r > n, such

that A(x') = A(x") = 1. Since r > n; then there exists q;, > (I N such that r = q; n; + np,
0 < n, <ny. Therefore, we have two cases either n, =0 orn, # 0. If n =0 then n; | r

242



ie. (n, 1) =np. Ifm # 0 we get A(x™) = A{x™ ™) = T(A(X), AY™) = 1. Again,
since ny < ny, then there exists qa, n3 U N such that n; = qx np + n3, 0 < n3 < ny. Also
here we have two cases either n3 =0 or n3 # 0. If n3 = 0 we get n, | r and (nz, 1) = np. If
n3 # 0, we get

Alxm )= Almmem )T (axm), Alxem))=1

and so on. By the division algorithm there exists q i, nis2 [J N such that n; =
q i+1 N1 + N 42, N2 = 0 and hence A(xnl )= A(xqi+1ni+1 ) =1 that is nj+ Ir.

The following theorem is evident from the above definition.

THEOREM 2.3.43: Let A be a S-T-fuzzy subsemigroup of the S-semigroup G,
x [OP [JG, v, ny [ON, r >n such that A(xX') = A (x") = 1. Then there exists d [JN such
that A(x") = I where d = (r, n).

DEFINITION 2.3.24: Let A be a T - fuzzy subsemigroup of a S-semigroup of G and
x [JP [JG. Then the least positive integer n satisfying the condition A(X") = 1 is
called the fuzzy order of x with respect to A and we use the notation A o (x) = n. If n
does not exist we say x is of infinite fuzzy order with respect to A and write A o (x)=co.

THEOREM 2.3.44: Let A be a S-T-fuzzy subsemigroup of a S-semigroup of P [J G,
x [JP [JG. Then

i. IfAX)=1thenA o (x)r
ii. If Ao (x) <cothen Ao (x)[O(x).

(Here A o(x) = O(x) iff A1 = {e} such that x [JP []G and O(x) is the order x).
Proof: As in case of T-fuzzy subgroups.

THEOREM 2.3.45: Let A be a S-T-fuzzy subgroup of P [J G, G a S-semigroup and
x [OP [JG such that A o (x) <co. Then Ao (x) =Ao (x ).

Proof: Let Ao (x) = nand Ao (x ') = m. Then A((x )" = A(x")") =A®x) = 1.
From the above theorem we get m / n. On the other hand, A(x ™) = A((x ™) =
A((x") ™) =1 and hence n / m. Therefore n = m.

THEOREM 2.3.46: Let A be a S-T-fuzzy subsemigroup an S-commutative semigroup
G. Then the set of all elements in P[] G (P a proper subset of G which is an abelian
group of G) whose fuzzy order with respect to A are finite is a subgroup of P.

Proof: Direct as in case of T-fuzzy subgroup of an abelian group.

DEFINITION 2.3.25: Let A be a S-T fuzzy subsemigroup of an S abelian semigroup G.

Then the subgroup of all elements of P in G whose fuzzy orders with respect to A are
finite is called the torsion part of P with respect to A and is denoted by A”.
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THEOREM 2.3.47: If A is a S-fuzzy subsemigroup of G, G a S-semigroup such that for
x[JP, Ao (x) <oo,n [INthen Ao (x") =[Ao (x)] [T[(n, Ao (x)].

Proof: As in case of crisp case.

THEOREM 2.3.48: Let A be a S-T fuzzy subsemigroup of G and x [JP [J G such that
Ao(x)=niny..n.,n; UN,i=1,2,.., 0., (nj, nj) =1ifi #j. Then there exists x;,
X2, ..., Xp LJP such that A o (x;) = n; foreveryi =1, 2,...r ;X =X;X2... Xr, XiXj = X X;
foralli, j.

Proof: Let q; ={n;; 1 # j }> 1 since the greatest common divisor of qi, qo, ..., qris 1
then there exists a; ] Z such that a;q; + axqa +...+ a,q, = 1. Let by = (x)**

Tll’lj n.

Aot = (ij,aiqi) (ni’ai) o

If p # 1 is a prime number such that pjn; and plaj then p Ua; qu +...+ a; qr .
Therefore, pll which is a contradiction. Put b; = x;, i = 1,2,..., r. Therefore x;x5...x;

= (x)a‘q‘ (x)"% . (x)" " = (x)a‘q‘Jr“'J'afq2 It is clear x; xj = x;; . Hence the claim.

THEOREM 2.3.49: Letf: G — H be a S-homomorphism of S-semigroups and A be a
S-T-fuzzy subsemigroup of G, x [J/P [JG. Then f(A)of(x)) | A o (x) .

Proof: Let Ao(x) = n and (f(A)) o (f(x)) = m. Then (fA)((f(x))") = (A)(f(x")) =
sup{A(y) | y O f'(fix")) = sup {A(y)‘ yOf™ (f(x“))}Z 1; that is because one of the

elements y is x" and consequently A(x") = 1. From earlier results we get m/n. Hence
the result.

DEFINITION 2.3.26: Let A be a S-T-fuzzy subsemigroup of P [ G, G a S-semigroup.
Then the least common multiple of the fuzzy order of the elements of P in G with
respect to A is called the Smarandache order (S-order) of the S-fuzzy subsemigroup A

and is denoted by |SA|F . I it does not exists |SA|F = oo

THEOREM 2.3.50: Let A be a S-T-fuzzy subsemigroup of a finite S-semigroup G; then
|SA|F ‘ |P| but |SA|F 7L|G| (P [J G relative to which A is defined).

Proof: Straightforward; to prove |SA|F‘ |P

, the reader is requested to construct an

example for |SA|F‘ |G| by considering symmetric semigroups S(n).

Thus in general analogous of Lagranges theorem in case of S-fuzzy subsemigroups is
not always possible.

Recall: Let A be a T fuzzy subgroup of G, p a prime. Then A is called primary fuzzy

subgroup of G if for every x in G there exists a natural number r such that A o (x) =
p". Now we proceed on to define S-primary fuzzy subsemigroups of a S-semigroup G.
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DEFINITION 2.3.27: Let A be a S-T-fuzzy subsemigroup of P [ G, G a S-semigroup
and p a prime. Then A is called Smarandache primary fuzzy subsemigroup (S-primary

Sfuzzy subsemigroup) of P [J G if for every x [J P there exists a natural number r such
that Ao(x) =p'.

Clearly every S-T-fuzzy subsemigroup of P [JG is S-primary if and only if there exists
n [JN such that |SA|F =p", p aprime.

THEOREM 2.3.51: If A is a fuzzy subset of a S-semigroup G and every A, t [JIm (A) is
a S-primary subsemigroup of P [JG then A is a S-primary Min fuzzy subsemigroup of
P [G.

Proof: Let x P [0 G such that A(x) =t, t [J Im (A). Then x [J A; and hence there
exists m [J Z such that O(x) = p" where p is a prime. Since A o (x) O(x) there exists

0 <s <m such that Ao(x) =p°i.e. A(xps ) = 1.

Therefore A is a S-primary fuzzy subsemigroup of P U G.

THEOREM 2.3.52: Every S-T-fuzzy subsemigroup of a S-primary semigroup is also
S-primary.

Proof: Direct from the earlier theorem and the fact if the semigroup G is S-primary
then every proper subset P L1 G where P is a subgroup and is S-primary.

THEOREM 2.3.53: Let A be a S-primary Min- fuzzy subsemigroup of the S-semigroup
G. Then every t-level subset A, t [/Im (A), of G is S-primary if Aq = {e} where a =
A(e), e is the identity element of P [/ G relative to which A is defined .

Proof: Let x O P O G, A(x) =t, A o (x) = P, where p is prime r [ N. Since Aa) =
{e}, then O(x) = A o (x) =p". Hence A  is S-primary.

THEOREM 2.3.54: If A is a S-normal T-fuzzy subsemigroup of a S-primary semigroup
G then P/ A is a S-primary semigroup (A is defined relative to P []G).

Proof: As in case of T-fuzzy subgroup of a primary group G.

THEOREM 2.3.55: Let f: G — H be a S-semigroup homomorphism and A be
S-primary T-fuzzy sub semigroup of P [/ G and Aae) = {e}. Then f(4) is S-primary
T-fuzzy subsemigroup of T [JP.

Proof: Left for the reader as an exercise.

THEOREM 2.3.56: Let A be a S-T-fuzzy subsemigroup of a S-cyclic primary
semigroup G such that A; = {e} for x, y [/P [JG Then

i If Ao(x) = Ao(y) then A(x) = A(y).
ii. If Ao(x) >Ao(y) then A (v) >A(x).
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Proof: Since A = {e}. Therefore Ao(x) = O(x) and hence the proof follows by earlier
results.

THEOREM 2.3.57: Let A be a S-T-fuzzy subgroup of an S-abelian semigroup G. Then
the set of all elements whose fuzzy order is a power of a prime p is a subgroup of
P [G.

Proof: Let x, y 0P [0 G such that Ao (x) =p and Ao (y)=p,1r,s ON,s=>r.
Then A((xy_l)ps ): A(xps (y Y )z T(A(xps lA((y_l)ps) =1 thatis Ao (xy )=Por
Ao (xy ) Op®. If A o (xy ') Op® then there exists t N, r < t < s such that Ao(xy ') =
pt. Hence xy_1 has a fuzzy order with respect to A as a power of p. Hence the claim.

DEFINITION 2.3.28: Let A be a S-T-fuzzy subsemigroup of G. A is said to be
Smarandache abelian (S-abelian) if for all a, b [JP [J G, A(a) >0, A(b) >0
implies ab = ba.

DEFINITION 2.3.29: A a S-Min-fuzzy subsemigroup of P [J G is called the

Smarandache p-sylow fuzzy subgroup (S-p-Sylow fuzzy subgroup) of G if it has the
following properties:

i. Card (ImA) <2.
ii. A is a sylow p-subgroup of P (P [JG).

THEOREM 2.3.58: If A is a S-p-sylow normal Min fuzzy subsemigroup of G then A is
not a S-primary fuzzy subgroup of P [J G with order as a power of p.

Proof: A matter of routine as in case of subgroups.

Now we proceed on to define a Smarandache p-component of a S-semigroup G.

DEFINITION 2.3.30: If A is a S-T-fuzzy subsemigroup of P [J G then the set of all
elements in P [J G of a fuzzy order as a power of a prime p with respect to A is called

Smarandache p-component (S-p-compotent) of P [J G with respect to A and it is
denoted by Pp).

THEOREM 2.3.59: Let A be a S-T-fuzzy subsemigroup of P [J G, G a S-semigroup.
Then T is the sum of Ppy), p L7V where V is the set of all prime and it is a direct sum

l.fAj = {e}
Proof: Refer [17] and prove it as in case of S-semigroups.

In the following section we define Smarandache fuzzy bisemigroup.

2.4 Smarandache fuzzy bisemigroups
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In this section we introduce the concept of Smarandache fuzzy bisemigroups. The
study of Smarandache bisemigroups and Smarandache bigroups is very recent [135].
Several interesting properties of these concepts are studied in this section.
DEFINITION 2.4.1: Let (G, * ) be a non empty set such that G = G; [J G; where G,
and G, are proper subsets of G, (G, ¢ U is called a Smarandache bigroup
(S-bigroup) if the following conditions are true:

i. (G, ) isagroup.
ii. (G,0 isa S-semigroup.

Now we have got several results about them which we just recall without proof.
THEOREM [135]: Let G be a S-bigroup then G need not be a bigroup.

Proof: Construct an example to prove.

THEOREM [135]: If G = G; [J G is a S-bigroup then G contains a bigroup.

Proof: Left for the reader to refer [135].

DEFINITION [135]: Let G = G; [J G, be a S-bigroup, we say G is a Smarandache
commutative bigroup (S-commutative bigroup) if G; is a commutative group and
every proper subset S of G, which is a group is a commutative group. If both G, and

G happens to be commutative trivially G becomes a S-commutative bigroup.

We say G is S-weakly commutative if the S-semigroup G, has atleast one proper
subset which is commutative.

The following theorem is straight forward and hence left for the reader to prove.

THEOREM [135]: Let G = G; [J G be a S-commutative bigroup then G is a S-weakly
commutative bigroup and not conversely.

Proof: Left for the reader as an exercise.

DEFINITION 2.4.2: Let G = G; [J G, be a S-bigroup. We say G is a Smarandache
cyclic bigroup (S-cyclic bigroup) if G, is a cyclic group and G, is a S-cyclic
semigroup. We call G a S-weakly cyclic bigroup if every subgroups of G, is cyclic and
G, is a S-weakly cyclic bigroup.

The following theorem is straight forward hence left for the reader to prove.

THEOREM 2.4.1: Let G = G; [J G, be a S-cyclic bigroup then G is a S-weakly cyclic
bigroup.

Now we proceed on to define Smarandache hyper bigroup.
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DEFINITION 2.4.3: Let G = G; [J G, be a S-bigroup. If A be a proper subset of G,
which is the largest group contained in G, and G; has no subgroups, then we
call P = G; [J A the Smarandache hyper bigroup (S-hyper bigroup). We say G is
Smarandache simple bigroup (S-simple bigroup) if G has no S-hyper bigroup.

We define Smarandache double cosets in bigroups.

DEFINITION 2.44: Let G = G; [J G; be a S-bigroup. Let A = A; [J A, and
B =B; [] By be any S-sub-bigroups of G. We define the Smarandache double
coset (S-double coset) as AxB = {A;x;B; [JA>x>B; [JA;x;B; provided x = x;
[ Gy if x Zx; [JG| then we just take A;B; if x = x, [J G> then take Ax:B; otherwise
take A;B; for every x [JG} : AxB = {A;B; [JA>xB; if x [/G,} or ={A;xB; [J A
B, ifx UG} or ={A;x B; [JA>x B, Lif x G, [J G2}

We just recall the definition of Smarandache normal bigroup.

DEFINITION 2.4.5: Let G = G; [J G be a S-bigroup we call a S-sub-bigroup A of G
to be a Smarandache normal sub-bigroup (S-normal sub-bigroup) of G where A
=A; [JA>if xA; [JA; and A;x [TA; if x [1 Gy and xA> [JAz and A2 x [J Az or xA; = {0}
or Ax; = {0} if 0 is an element in G, and x [J G, for all x []G; [] Go. We say G is
Smarandache pseudo simple bigroup (S-pseudo simple bigroup) if G has no S-normal
sub-bigroup.

Now we proceed on to define Smarandache maximal S-bigroup.

DEFINITION 2.4.6: Let G = G; [J G2 be a S-bigroup. We say a proper subset
A =A; [JA; to be Smarandache maximal S-bigroup (S-maximal S-bigroup) of G if
Aj is the largest normal subgroup in G; and A; is the largest proper subset of G»
which is the subgroup of G..

Now we proceed on to define Smarandache fuzzy bigroup.

DEFINITION 2.4.7: Let (G = G; [JG,, +, ¢ be a S-bigroup. Then u: G — [0, 1]
is said to be a Smarandache fuzzy sub-bigroup (S-fuzzy sub-bigroup) of G if there
exists two fuzzy subsets U (of G1) and L (of G2) such that

i. (M1, 1) is afuzzy subgroup of (G;,+)
ii. (Lo, ®)is aS-fuzzy subsemigroup of (G., ®) and

. (= .

We illustrate this by an example.

Example 2.4.1: Consider the S-bigroup G = {0,11,12,-~-,%,%,2—14,-~-}, G, =
{0,£1,+2,--} is a group under usual multiplication and G, = {l,%,ziz,,m} is

a S-semigroup under product. Define i : G - [0, 1] by
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! im{i,;}

3 2°2°
H(x) = 1 if x 0{0,+2,--}

1

2

if xO{+1,£3,--}

It is easily verified that 4, : G; — [0, 1] is given by

if x 0{0,22,4,-}

1
)= % if xO{£1,43,-}

and [, : G2 - [0, 1] given by

ifx =1

exoft L]
22

Thus g = W O Yy is a S-fuzzy sub-bigroup of G = G; U Go.

M, (%) =

THEOREM 2.4.2: Every t-level subset of a S-fuzzy sub-bigroup U of a S-bigroup G
need not in general be a S-sub bigroup of the S-bigroup G.

Proof: The proof is by an example. Take G = {0, 1, -1, 2, 4, 6,...} to be a S-bigroup.
G=G UOG={11} O {0,2,4,6,...}. (G1,*) is a group and (G2, +) is a
S-semigroup.

MH:G - [0, 1]
l if x=1or-1
2
MH(x) = 1 ifx=0
4
1 if x=24,--
8

Clearly (|, +, ) is a S-fuzzy sub bigroup of (G, +, ®). Now consider the level subset
1

G of the fuzzy sub-bigroup

G2 = {XDG‘ u(x)Z%}Z -1, 1}.

249



It is easily verified that {—1,1} is not a S-sub-bigroup of the S-bigroup (G, +, °).
Hence the t-level subset G [for t 2%} of the S-fuzzy sub-bigroup [ is not a sub-

bigroup of the bigroup (G, +, °) .

Now we proceed on to define the bilevel subset of the Smarandache fuzzy sub-
bigroup of'a S-bigroup G.

DEFINITION 2.4.8: Let (G = G; [J Gy, +, ®) be a bigroup and u = (u; [J uz)
be a S-fuzzy sub-bigroup of G. The bilevel subset of the S-fuzzy sub-bigroup u of the

S-bigroup G is defined as G,' :G;,u] 0 Géﬂz for every t [] [0, min {u(e;), uxez)}]

where e; denotes the identity elements of the group (G, +) and e; denotes the identity
element of P> [] G where P, is the proper subset of G, which is the subgroup of G
relative to which u; is defined.

It is left as an exercise for the reader to prove.

THEOREM 2.4.3: Every bilevel subset of a S-fuzzy sub-bigroup u of a S-bigroup G is a
S-sub-bigroup of the S-bigroup G.

Now we define the concept of Smarandache fuzzy sub-bigroup of a S-semigroup G.

DEFINITION 2.4.9: A fuzzy subset u of a S-semigroup G is said to be a Smarandache
fuzzy sub-bisemigroup (S-fuzzy sub-bisemigroup) of the S-semigroup G if there exists
two S-fuzzy subsemigroups w; and u; of u (u; Zu and uy Z ) such that u = u; [J uo.
Here by the term S-fuzzy subsemigroup of 1 we mean that A is a S-fuzzy subsemigroup
of the S-semigroup G and A [Ju (where u is also a fuzzy subgroup of G).

Example 2.4.2: Consider the additive S-semigroup G; G={0,£1,£2, ..., %t |n=
0,1,2,...and t=1,2, ...}. Clearly G is a S-semigroup.

Definep: G - [0, 1]

1 if x0{0,£2,+4,....}
0.5 if xO{xl,%3,...}
nx) = _
. n=1,2,...
0.25 ifxO{n/2"
t=1,2,...

It is easily verified p is a S-fuzzy subsemigroup of the S-semigroup G for we have
two S-fuzzy subsemigroups p; and p, of p (u; # p and py # p) such that p = p; O po
where p; and p, are as given below:
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if x0{0,£2,£4,....)
0.5 if xO{xl+3,...)
w(x) = _
) n=1,2,...
025 ifxOfn/2'
t=1,2,...
075 if x0{0,%2,+4,..}
0.5 if xO{xl+3,...}
w(x) = _
) n=1,2,...
0 ifxO{n/2'
t=1,2,...

In view of these definitions and examples we have the following theorem.

THEOREM 2.4.4: Let u = u; [J u; be a S-fuzzy subsemigroup of a S-semigroup G
where u; and u, are S-fuzzy subsemigroups of G. For t [J [0, min {u; (e1), u: (ez)}]
where e; and e; are identity elements of P; and P, (P; [J G, P> [J G, subgroups of G

and G, relative to which u; and u, are defined. The level subset G/’, of u can be

represented as the union of two subsemigroups of the S-semigroup G, that is G/’,.

Proof: Left as an exercise for the reader.

THEOREM 2.4.5: Let u be a Smarandache fuzzy subsemigroup of a S-semigroup G
with 3 < o(Im(u)) < cothen there exists two S-fuzzy subsemigroups u; and u, of
W, (W1 Zu, o Zu) such that u = u; [J uo.

Proof: Let p be a S-fuzzy subsemigroup of the S-semigroup G. Suppose Im (p) =
{ai, a,..., ay} where 3 <n <ooand a; > a; > ... > a,. Choose by, by [1 [0, 1] be such
that a; >b; >a, > b, >a3;>bs> ... > a, and define p,, po: P - [0, 1], P a subgroup of
the S-semigroup G relative to which p is defined.

a, ifx U,

o

HI(X) = 2 le Duaz \ual

M(x) otherwise

and

b, if xUp,
HZ(X) = aZ le Duaz \ual

M(x) otherwise

Thus it can be easily verified that both p; and p, are S-fuzzy subsemigroups of .
Further p; # pu, p2 Zpand p = p; O .
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It is very evident that the condition 3 < o(Im p) < o cannot be dropped.
The following theorem is left as an exercise for the reader to prove.

THEOREM 2.4.6: Every S-fuzzy sub bisemigroup of a S-semigroup G is a S-fuzzy sub-
semigroup of the S-semigroup G and not conversely.

THEOREM 2.4.7: Let u be a fuzzy subset of a S-semigroup G with 3 <o(lm u) < co
then u is a S-fuzzy sub-bisemigroup of the S-semigroup G if and only if W is a S-fuzzy
sub-bisemigroup of the S-semigroup G.

Proof: The p once defined, it is relative to a particular fixed proper subset P of G
where P is a subgroup under the operations of G. The rest of the result is identical
with the fuzzy sub-bigroup. Almost all the definitions and properties derived in case
of S-fuzzy semigroups can be easily defined and derived for S-fuzzy bigroups and
S-fuzzy bisemigroups. We just give very few of the related results S-fuzzy bigroups
and S-fuzzy bisubsemigroup notions in this section.

DEFINITION 2.4.10: Let (G, +,°) be a S-bigroup. G = G; [J G, where (G;, +) is a
group and (G, °) is a S-semigroup. A: G — [0, 1] where A = A; [J A> with A; a
divisible fuzzy subgroups of G; and A; is a divisible S-fuzzy subsemigroup of G, (i.e.
Ay 0 Gy — [0, 1] is such that A; restricted to the subgroup P, of G: is a fuzzy
subgroup G;). Then we call A = A; [JA>: G - [0, 1] is a Smarandache divisible
fuzzy subgroup (S-divisible fuzzy sub-bigroup) of G.

Several interesting results in this direction can be obtained.

Let G be a S-bigroup; (G = G; [ Gy) A = A; [JA: G - [0, 1] be a S-fuzzy sub-
bisemigroup of G; i.e., A;: G; = [0, 1] is a fuzzy subgroup of G; and A; : G2 - [0, 1]
is a S-fuzzy subsemigroup of G, related to S-sub-bigroup P of G.

S(F(A)) = {B | B is a S-fuzzy sub-bisemigroup of G such that B [JA i.e. B; [JA; and
B> [7A43)

DEFINITION 2.4.11: Let (G =G; [J G, +, ®) bea S-bigroup. Let A : G — [0, 1] be
a S-fuzzy bisubsemigroup of G. Let B [/S (F(A)). Then B is said to be Smarandache
pure (S-pure) in A if and only if for all fuzzy singletons x; [/ B with t >0, for alln [JN
forally, [/A, n () = x, implies that there exists b; [/ B such that n(b,) = x,.

Next we define Smarandache (L, q)- fuzzy sub-bigroup of a S-bigroup G.

DEFINITION 2.4.12: Let (G, +, ® be a S-bigroup. A fuzzy subset A = A; [J A;:
G =G; UG, - [0, 1] is said to be a Smarandache (L]l q) fuzzy sub-bigroup
(S-(L] 1T q) fuzzy sub-bigroup) of G if

i.Foranyx,y JGrandt r [J(0,1] A; : G; - [0, 1], (G1,+) a group, x;, y,
ﬂ/]] = (xy)M(,,r) ﬂ:@/‘; and
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iix, O = (x '), (yA,

iii.A; : Gy - [0, 1], A, defined on P> [7 G, (P, subgroup of the S-semigroup
(G>, ®) is such that for any x, y [JP, and t, v [7(0,1], x,, y» [JA; =
OYuary I A2 and

vx, OAy = (x '), [0 qA,.

The conditions in the above definition are respectively equivalent to

i A1 (xy) =M (A; (x), A1 (v), 0.5) forx, y [1G;.

ii. A2 (xy) =M (A; (x), A2 (v), 0.5) for x, y [P, []G, (P> subgroup of G»).
ii. M) 2M (A (x), 0.5) for all x G,
iv. i) 2M (A5 (x), 0.5) for all x TP, [7G,.

Further we have for any S-([] Il q) - fuzzy sub-bisemigroup A = A; [JA; of G =
G; Gy with A; (x) 20.5 for some x [1Gy, A; (e;) 20.5, e is the identity element of G,
and A; (x) 2 0.5 for some x [JP, [J G2, A; (e3) =0.5; e identity element of P> relative
to which A; is defined.

Further if A is a S-fuzzy subsemigroup of G then A is an S-([JU q)-fuzzy
subsemigroup.

DEFINITION 2.4.13: Let (G = G; [J Go, +, * be a S-bigroup. A a S-fuzzy sub-
bisemigroup of G. A = A; [JA>. G = G; [J Gy - [0, 1] such that A; : G; - [0, 1] is
fuzzy subgroup and A, : G> — [0, 1] is a S-fuzzy subsemigroup relative to P [J G, A
is said to be a

i S- ([0 [)~fuzzy normal if for all x, y (7 G; and t [0(0,1] x; TA; = (v xy);
OAr. Forx,y 0P, 0Gyandt (0,1], x;, O = (v xy); A
ii. S-(L] 1l q)-fuzzy normal (or simply fuzzy normal).
a ifforany x, y 0Gyandt 0(0,1], x, JA; = (v xy): [T qA,.
b ifforanyx, y 0Gyandt (3(0,1] , x, T A; = (v xy): [T qA..

Several results derived for groups using S-(L] 1] q)-fuzzy subgroup and S-(/II] q)-
fuzzy level subgroups can be derived in an analogous way with appropriate
modifications in case of S-bigroups.

The reader is requested to refer [24] and [135] for more innovative notions and
concepts. Now we just define the concept of Smarandache ([,[J)-fuzzy left (resp.
right) coset of a S-bigroup G.

DEFINITION 2.4.14: Let G be a S-bigroup i.e. G = G; [J Gs, (G,, +) is a group and
(Gs, ) is a S-semigroup A: G = G; [J G2 - [0, 1] be the S-fuzzy subsemibigroup of
Gyie A=A Ay where A;: G — [0, 1] is a S-fuzzy semigroup and A; : G> — [0, 1]
is a S-fuzzy subsemigroup relative to a subgroup P, of G2. For x [JG = G; [J G, we
define the following if x; [J G, then A (resp A )G, - I is defined by
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A(g)=Agx;") and X, (g)=A(x]'g)

forall g [JG; and for x; [JP; [1G, we have Aiz (resp /1;2 ): P, [JG — I defined by

A (g)=Algxy') and X, (g)=A(x;'g)

forallg P, X = Aiz, O /1; (resp. A=A O A ) is called the Smarandache (L]L)-
fuzzy left (resp. right) bicoset (S-(L] [)-fuzzy left (resp. right) bicoset) of G determined
by x =x; [Jx; and A.

DEFINITION 2.4.15: Let A = A; [J Ay be a S-fuzzy sub-bisemigroup of a S-bigroup G.
Forx G =G, [JG,, jxl (resp./Tx] ): Gy - [0, 1] is defined by

jx] (g) =M(/1(gx1_1, 0.5)) [resp. /Tx] (g) =M(/1(x1_1g, 0.5))] for all x; [J G; and
/LJ ( resp./TXJ ):P, - [01] is defined by /TXZ g)=M (/1 (gxz_l, 0.5))]
lresp./TXz (g)= M(/] (xglg.0.5))J forallg [JP, [7G,.

Then /1( resp A )is called the Smarandache (O] [T q)-fuzzy left (rvesp. right) bicoset
(S-(L] 1] q)-fuzzy left (resp. right) bicoset) of G determined by x = x; [Jx, and A.

The following theorem is straightforward by the very definition; hence left for the
reader to prove.

THEOREM 2.4.8: Let A be a S-fuzzy sub-bisemigroup of a S-bigroup G. Then A is a
S-(L] [T q) fuzzy normal if and only if XXI = )A\leor allx; JGrand N = XXZ for all
x2 [JP; [T G where A is the restriction of P, in Go.

DEFINITION 2.4.16: Let G be a S-bigroup. H be a S-sub-bigroup of G. H of G is said
to be Smarandache quasi normal (S-quasi normal) if for every S-sub-bigroup K of G;
He*K=K-°*H.

DEFINITION 2.4.17: Let G be a S-bigroup. A S-fuzzy sub-bisemigroup & of G =
G; [J G, is called S-fuzzy quasi normal sub-bisemigroup if éonp = noé for every S-
fuzzy sub-bisemi group n of G.

Unless otherwise mentioned G will denote a S-bigroup with e; identity of G; and e
the identity of P> [ G, and A an S-(L] 7] q) fuzzy sub-bisemigroup of G. By a S-fuzzy
sub-bisemigroup of G we shall mean an S-(L] 17/ q) fuzzy sub-bisemigroup of G.

For a S-fuzzy subsemigroup A of G = G; [J Gz for allx, y [1G;orx, y [JP> []G> such
that A.(x)20.5, i=12and A(y)<0.5, i=12.

DEFINITION 2.4.18:
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i A is said to be S-([] [) fuzzy quasi normal if for any S-fuzzy sub-bisemigroup
Hof G=G; Gy forallx [JGy, t [J(0,1] and if x [/ P> [1G,,

Z ﬂ(/]o,u) o ZZD(,U 0/\).

ii. A is said to be a S-([] q) fuzzy quasi normal if for any S-fuzzy sub-
bisemigroup 4t of G =G; [J G, and forall z [JG;, t [J(0, 1], z [JP;
Gy, t [J(0, 1], z, [T ( Ao W) implies z, [ q (Lo A) and if z [JP> [JGo.

(P is the subgroup relative to which G is defined) and z, [J (14 0 A) implies
z Il q (Ao .

The following theorem is left an exercise for the reader to prove.

THEOREM 2.4.9: A is S-([][)-fuzzy quasi normal if and only if for any S-fuzzy sub-
bisemigroup [ of G and for all z [1G; (or z [JP> [1G), (Ao W(z) = (Lo N(z).

THEOREM 2.4.10: A is a S-([] [T q)-fuzzy quasi normal if and only if for any S-fuzzy
sub-bisemigroup U of G and for all z []G; and for all z [J P, [ G, (P2 a subgroup of

G,) we have (Lo A)(z) = (Ao (=) if (Ao W(z) <0.5and (Lo A)(z) =20.5if (Ao W)(z)
=0.5.

Proof: As in case of fuzzy subgroups.

THEOREM 2.4.11: If A is a S-fuzzy quasi normal subsemigroup of the S-bigroup G =
G; [JGy, then Ais an S-([] 111 q)-fuzzy quasi normal sub-bisemigroup of G.

Proof: Using definitions and the fact that A = A; O A, and A, is fuzzy quasi normal
subgroup of G; and A, is a fuzzy quasi normal subgroup of P, contained in Gy.

THEOREM 2.4.12: Let H be any non-empty subset of G = G, [J G, i.e. H= H; [JH,
(H; [JG; and H> [1G;). Then H is a S-quasi normal sub-bisemigroup of G if and only
if Xu (the characteristic function H) is an S-(L][1I] q)-fuzzy quasi normal sub-
bisemigroup of G.

Proof: As in case of fuzzy subgroups.

THEOREM 2.4.13: Let A be a S-([] [l q)-fuzzy quasi normal sub-bisemigroup of G
with the sup property. Then S-(lI] q)-level subset A, ={x1DG1|(x1),DDq/11} 0

{xZ Up, 0 G2| (x,) U Dq/]z} is a S-quasi normal sub-bi semigroup of G = G; [J G,
forallt [7(0,1].

Proof: Left as an exercise for the reader to prove.
THEOREM 2.4.14: Let A be a fuzzy subset of a S-bigroup G with sup property and for

all t [7(0,1], S-(II] q)-level subset A, be a S-quasi normal sub-bisemigroup of G. Then
Ais an S-(L] 1] q)-fuzzy quasi normal sub-bisemigroup of S-bigroup G.
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Proof: As in case of fuzzy subgroup G the result can be easily proved for S-bigroup
G.

THEOREM 2.4.15: Let f : G — H be S-bigroup homomorphism from the S-bigroup G
to S-bigroup H. Then

i. f(Ao8)=fA)of(68)where Aand 8are S-fuzzy sub-bisemigroups of G.
ii. fif 1(8)) = @where Bis a S-fuzzy sub-bigroup of f{(G).

Proof: Follows by the very definitions.

THEOREM 2.4.16: Let f : G — H be a S-bigroup homomorphism of the S-bigroups G
and H If Ais an S-([J [Tl q) fuzzy quasi normal sub-bisemigroups of G then f(A) is an
S-(L] 1 q) fuzzy quasi normal sub-bisemigroup of f(G).

Proof: Follows by the very definitions.

THEOREM 2.4.17: Let f : G — H be a S-bigroup homomorphism and U be an
(0[] q)~fuzzy quasi normal sub-bisemigroup of H with sup-property. Then (1) is a
S-(L] 1] q)-fuzzy quasi normal sub-bisemigroup of G.

Proof: Left for the reader to prove, using the fact f: G=G; 0 G, - H=H; U H,
where f = f; U f; where f; : G; - H; is a group homomorphism f, : G, - H; is a
S-semigroup homomorphism ie. f, : P, 0 G, - Q. O H, where P, and Q, are
subgroups of G, and H; respectively .

DEFINITION 2.4.19: Let A be a S-fuzzy sub-bisemigroup of a S-bigroup G = G; [J G..
Forany g, G, let A3 : G, - [0,1] and for g [P, [J G, (A defined related to this
Py A% :G, - [01] defined by A (x)= Al(gl_lxgl)for all x [0 G; and
A2 (x )=A, (g5 xg, ) forall x [JP; [0 G, So A2 = A% [0 A%

THEOREM 2.4.18: Let A be a S-fuzzy sub-bisemigroup of the S-bigroup G = G; [J G>.

Then

L. Forall g G, Af'is a fuzzy subgroup of G; and A5 is a S-
fuzzy subsemigroup of G-.

ii. Ais S- (01 q) fuzzy normal if and only if A7 (x;) =M (A,
(x), 0.5) for all x; G, g2 JGs, AT (x2) 2M (A; (x), 0.5) for all x; [JP> and
2 G,

where P, is the subgroup associated with the S-semigroup G, and A = A; [J A;.

Proof: Direct using definitions.
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DEFINITION 2.4.20: Let A be a S-fuzzy sub-bisemigroup of the S-bigroup G =
G; [J G, Then the Smarandache bicore (S-bicore) of A = A; [J A; denoted by
Ao, UAg, is defined by

2o =(n11¢] ¢, 06G,))

and
A, =1 e, 0P, 0G)).

DEFINITION 2.4.21: Let A be a S-fuzzy sub-bisemigroup of a S-bigroup G = G; [J G.
A is said to be Smarandache bicore free (S-bicore free) if there exists a [J(0, 1] such
that A, = e, , e identity element of Gy and A;, = el . el -identity element of P> [J G
(P> — a subgroup of G,).

DEFINITION 2.4.22: Let A be a S-fuzzy sub-bisemigroup of the S-bigroup G. A is said
to be a Smarandache ([][)-fuzzy maximal (S-(LJ][)-fuzzy maximal) if A is not
constant and for any other S-fuzzy sub-bisemigroup [ of the S-bigroup G whenever A
< peither [[1— Aps] = [[1— Hos] (resp. either [(D Dq)—/]oj] = [(D Dq)—,uM] where
[D —/\,] - denotes the level subset and [( O0g) —/\,] denotes the (10gq )-level subset.

DEFINITION 2.4.23: A S-fuzzy sub-bisemigroup A of a S-bigroup G is said to be a
S-q-fuzzy maximal if for any other S-fuzzy sub-bisemigroup U of G whenever A < U
either = Xc of G, = {x UG, UG, | A(x1) = A(ey) if x; UGy, if x2 [JP> [JG; then
A(xz) = A(ey), e identity element of the subgroup P, [7G>}.

5;1 :{XDG] O G2| H(x; )z (e ), x, UG, and p(x,)> f(e;)if x, WP, U Gz}

Several interesting results in this direction can be obtained, some of the results are
proposed as problems in section 2.5.

DEFINITION 2.4.24: Let A be a fuzzy subset of a S-bigroup G. Then A is called a
S-fuzzy sub-bisemigroup of G and a t-norm T (T-fuzzy bigroup) if and only if for all
x, y [JG.

i A;(xy) 2T (Aix), Ai(x), A1(y)) x, vy LJG,.
ii. Aj(e) = 1 where e is the identity of G.
iii. Ai(x) = A;(x).
iv. Axxy) 2T (Ax(x), A2(v)), x, y L1 P> [ G (P> a subgroup of G,
relative to which A = A; [J A is defined).
V. As(e) = 1 where e is the identity of P, [JGa.
V. Ai(x) = Ai(x") for x P, [0G>, A is called the Smarandache

Min fuzzy sub-bisemigroup (S-Min fuzzy sub-bisemigroup) if A satisfies
conditions (i) to (vi) only by replacing T with Min.

DEFINITION 2.4.25: Let A be a fuzzy subset of a S-bigroup G. Then the subset {x []G|
Ax) 2t} of G= G; [J G, is called the Smarandache t-level subset (S-t-level subset) of
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G under A denoted by A, (i.e. A = A; [J Ay and A, = (A1) [T (A3): with Ai(x;) 2t if
x; LG and Ax(xz) 2t if x2 [ G).

THEOREM 2.4.19: Let A be a S-Min fuzzy sub-bisemigroup of the S-bigroup G. Then
every t-level subset A, of G, t [1[0, A(e)] = [0, A; (e;)) [J Az (e;)] where e; is the
identity of the group G, and e; is the identity of the subgroup P, in G, relative to
which A is defined is a S-sub-bigroup of G.

Proof: Follows by the very definitions; hence left for the reader as an exercise to
prove.

THEOREM 2.4.20: Let A be a fuzzy subset of a S-bigroup G such that every t-level
subset A; of G, t [JIm (A) and A(e;) = 1 = A(e;) where e is the identity element of G,
and ey is the identity element of P, in G, relative to which A is defined. Then A is a
S-Min fuzzy sub-bisemigroup of G.

Proof: As in case of groups. Hence the reader is requested to obtain the proof.

THEOREM 2.4.21: Let f: G — H be a S-bigroup homomorphism and A be a S-T-fuzzy
sub-bisemigroup of G. Then f(A) is a S-T-fuzzy sub-bisemigroup of H.

DEFINITION 2.4.26: Let A be a S-T-fuzzy sub-bisemigroup of the S-bigroup G. x; A,
(Aix;) be the left (right) fuzzy coset of A; in G; such that x;(4i(g;) =

A;(xl_]gl), (Al(xl(gl)) =A,(g,x;"), g1 0Gy, x;[0G; and for x; [P, [1 G, where A

is defined relative to this subgroup P, [J G, we have x> Az (A2 x) be left (right) fuzzy
coset of Az in G such that

%2 (A:(22) = A:(x7'g,)

(Az(xz(gz))) = Az(gzxz_]) . &, UG,
then A = A; [J A, is said to be a Smarandache normal fuzzy sub-bisemigroup
(S-normal fuzzy sub-bisemigroup) of G if and only if x; A; = A; x;1 (x2 A2 = A2 x3) for
all x; [J G and for all x; [J P, [J G.

Hence

G_ ﬁﬂi =()CIAID)C2A2 xIDGlandXZDPZDGZ)
A4 4, A4,

is a S-bigroup with operation.

XAyA =x;y1 A1 [Ix2y2 A, x1 i Gy and x2, y2 [JP> [1Go.

THEOREM 2.4.22: Let A be a S-T- fuzzy sub-bisemigroup of the S-bigroup G =
G, [J Gy For x [J G = G; [J G, there exists r;, n; [J N, r; > n; such that
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A; (xlr’)= Al(x;” )= 1,x; JGyand s, ny LN, 2 >n; such that A, (x;)= Az(x;’f)=]f0r
x2 [J Py [J G, relative to which A is defined and there exists d;, d> [/ N such that
A,(x")=1and A,(x")=1 whered; = (r;, n;) and d, = (r>, ny).

Proof: Follows directly using definitions.

DEFINITION 2.4.27: Let A be a S-T-fuzzy sub-bisemigroup of a S-bigroup G and
x [JG= G; [J G,. Then the least positive integers n;, n; which satisfies the condition
A; (x}”)= land A, (x}’)= 1, x; UGy and x; [JP, [J G, (P, subgroup relative to which
A = A; [ A, is defined) is called the Smarandache fuzzy order (S-fuzzy order)
of x [/G; [J G, relative to A and use the notation A; o (x;) = n; and Az o (x3) = ny.

Ifn; and n, does not exist we say x; and x; is of Smarandache infinite fuzzy
order (S-infinite fuzzy order) with respect to A; and A, and write A; o (x;) = o and
As o (x2) =co. From the above definition we see A; o (x;) = O(x;) if and only if A; =
le1} such that x; [JG; and O(x;) is the order of x; and A o (x2) = O(x,) if and only if
Ay = {ez} such that x; [P, (P, [JG> is a subgroup of G3) and O(x;) is the order of x..

Thus we see the S-fuzzy order is a complete generalization of fuzzy order which is the
generalization of the usual order of the S-bigroup. But that is not true for all x; [7 G,
and x; [J P, [J Gy, as Gy (x;) = 1; hence G; o (x;) = 1 which is clearly
impossible. P> (x;) = 1, hence P, o (x2) = I which is once again impossible.

Now we proceed on to define Smarandache torsion part of a S-bigroup G.

DEFINITION 2.4.28: Let G = G; [J G, be a S-bigroup. A be a S-T-fuzzy sub-
bisemigroup of the bigroup G. Then the S-sub-bigroup of all elements in A whose
S-fuzzy orders with respect to A = A; [J A, are finite is called the Smarandache
torsion part (S-torsion part) of G relative to A and is denoted by S(Ty).

Several interesting results in this direction can be developed. We propose some
problems for the reader in section 2.5.

Now we proceed on to define Smarandache order of the S-fuzzy sub-bisemigroup A.

DEFINITION 2.4.29: Let A be a S-T-fuzzy sub-bisemigroup of the S-bigroup G. Then
the least common multiple of the S-fuzzy order of the elements of G with respect to A
is called the Smarandache order (S-order) of the S-fuzzy sub-bisemigroup A and it is

denoted by |S(A)|G = QS(A2)|G, |S(A1)|G) where A = A; [J A,. If it does not exist then
S(A)=e.

We call a S-bigroup G = G; [J G, to be Smarandache primary (S-primary) if G; is a
primary group and every proper subset P, of G, which is a subgroup of G is a
primary group. We say the S-bigroup G = G; [J G, to be Smarandache weakly
primary (S-weakly primary) if G, is primary and atleast a proper subset which is a
proper subgroup in G, is primary.
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THEOREM 2.4.23: Let G be a S-bigroup. If G is a S-primary bigroup then G is
a S-weakly primary bigroup.

Proof: Direct by the very definition.

DEFINITION 2.4.30: Let A be a S-T-fuzzy sub-bisemigroup of the S-bigroup G =
G; [J Gy and p a prime. Then A is called Smarandache primary fuzzy sub-bisemi-
group (S-primary fuzzy subsemigroup) of G if for every x [J G; [J G, if there exists
natural numbers r;, v [JN such that A; o (x;) = p" and A0 (x2) = p*, x; [JG;
and x; [J P> [] G, (A defined relative to P ).

DEFINITION 2.4.31: Let A be a S-T-fuzzy sub-bisemigroup of a S-bigroup G =
G, [J G,. A is said to be abelian if for all a;, by [JG;, Ai(a;) >0, Ai(b;) >0 implies
arb; =bya; forall as, by [P, []G; (P is the subgroup relative to which A = A; [J A»
is defined) A; (az) = 0, A>(b2) = 0 implies a; b, = bz ay.

DEFINITION 2.4.32: If A is a S-T fuzzy sub-bisemigroup of a S-bigroup G = G; [ G,
then the set of all elements of G is a S-fuzzy order as a power of prime numbers

(1, p2) with respect to A = A; [J A3 is called the Smarandache (p;, p;) components of
G = G; [J G, with respect to A = A; [] A, denoted by

(G)PI(AI)DPJ(AJ) - (Gl)p,(A,) 0 (PZ)PJ(AJ)

(P> [ G, a subgroup relative to which A is defined).

2.5 Problems

In this section we give fifty-four problems on S-fuzzy semigroups and S-fuzzy
bisemigroups for the reader to solve.

The problem section of each chapter happens to be an integral part of the book, for the
solutions to these problems will throw a lot of light about these new Smarandache
fuzzy structures.

Problem 2.5.1: If in S(3) O is a S-fuzzy symmetric semigroup what is o(Im(a))?
Problem 2.5.2: Give an example of a S-fuzzy symmetric semigroup in S(5).
Problem 2.5.3: Obtain some interesting results about S-fuzzy symmetric group S(n).

Problem 2.5.4: If g is a S-co-fuzzy symmetric subsemigroup of the symmetric
semigroup S(3); find o(Im g).

Problem 2.5.5: If g is a S-co-fuzzy symmetric subsemigroup of S(n) then find
O(Im(g)).
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Problem 2.5.6: Give an example to show that every S-fuzzy symmetric subsemigroup
of a symmetric subsemigroup S(n) need not in general be a S-co-fuzzy symmetric
subsemigroup of S(n).

Problem 2.5.7: Obtain some interesting results about S-fuzzy normal subsemigroup
of the S-semigroup G.

Problem 2.5.8: Find conditions so that (A/B, *) is a S-semigroup; or Is (A/B, °)
always a S-semigroup? Justify your answer.

Problem 2.5.9: Find conditions so that (A/B, ¢) is a group? Is this possible? If so
illustrate by an example.

Problem 2.5.10: Give an example of a S-simple semigroup of finite order.
Problem 2.5.11: Obtain some interesting results about SF (A).

Problem 2.5.12: Characterize those S-semigroups G which are S-torsion fuzzy
subsemigroup.

Problem 2.5.13: Give an example of a S-p-primary fuzzy subsemigroup of a
S-semigroup G.

Problem 2.5.14: Characterize those S-semigroups G in which A is S-p-primary if and
only if A* is S-p-primary.

Problem 2.5.15: Can all S-semigroups have S-maximal p-primary fuzzy
subsemigroup?

Problem 2.5.16: Give an example of a S-divisible fuzzy semigroup and characterize
those S-semigroups G which are S-divisible fuzzy semigroups.

Problem 2.5.17: Characterize those S-semigroups G which are S-pure.

Problem 2.5.18: Does there exist any relation between S-pure and S-divisible
S-semigroups G?

Problem 2.5.19: Can all S-semigroups which has a S-fuzzy subsemigroup which is a
S-fuzzy weak direct sum a fuzzy weak direct sum?

Problem 2.5.20: Give an example of a S-semigroup G which has S-normal fuzzy
subgroups.

Problem 2.5.21: Illustrate by an example S-tips in a S-semigroup.
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Problem 2.5.22: Characterize those S-semigroups which has S-multi-tiped fuzzy
semigroups.

Problem 2.5.23: Do all S-semigroups have S-penultimate subsemigroups?

Problem 2.5.24: Characterize those fuzzy sets and the S-semigroup G in which the
concept of S-fuzzy semigroup and S-fuzzy ideal coincide.

Problem 2.5.25: Characterize those fuzzy subset A of S-semigroup G which are
S-(4, I q) fuzzy subsemigroup.

Problem 2.5.26: Give an example of a S-semigroup G which has S-(0J, Il q) fuzzy
subsemigroup.

Problem 2.5.27: Illustrate by an example a S-([J, [J) fuzzy normal subsemigroup of a
S-semigroup G.

Problem 2.5.28: Characterize those A : G — [0,1] which are S-([J, [ q) fuzzy
normal.

Problem 2.5.29: Give an example of a S-fuzzy quasi normal subsemigroups I and II.
Problem 2.5.30: Characterize those S-core S-fuzzy subsemigroup.

Problem 2.5.31: Illustrate by examples S-q-fuzzy maximal subsemigroups of a
S-semigroup G.

Problem 2.5.32: If A is a S-q-fuzzy maximal subsemigroup of a S-semigroup G. Then
prove G,and Ags are maximal subgroups of G.

Problem 2.5.33: Prove S-([J, [ q)-fuzzy normality implies S-(U, Il q)-fuzzy quasi
normality in a S-bigroup G = G; U Ga.

Problem 2.5.34: Prove for A a S-fuzzy sub-bisemigroup of G, that
(m AS )t =ng,(\,).g;" forall t O (0,1] and (m A% )t =ng,(A,).g", forall t 0 (0, 1],
for all g, O P, O Gy. Ag is an S- ([, [ q) fuzzy normal sub-bisemigroup of the
S-bigroup G = G; U Go.

Problem 2.5.35: G be a S-bigroup. Let A be S-([J, [J) fuzzy maximal. Can we prove if
A is not constant and for any other S-fuzzy sub-bisemigroup 4 of G. 4= Xg ?

Problem 2.5.36: Under the conditions of the above problem can we prove t [ (0,0.5)
[(I0 q) —Ad = [0 =AJ and [(T q) = Aos] =[] = Aos]?
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Problem 2.5.37: Prove if A is a S-fuzzy sub-bisemigroup of a S-bigroup G. If A is
S- (0, O)-fuzzy maximal then A(x) = 0.5 for all x [J G; (G; a group and x 0 P, [ Gy,
P, a subgroup of G,).

Problem 2.5.38: Let A be a S-fuzzy maximal fuzzy sub-bisemigroup of the S-bigroup
G. Is A a S-g-fuzzy maximal?

Problem 2.5.39: If A is a S-g-fuzzy maximal sub-bisemigroup of the S-bigroup G
such that A(x) < 0.5 for some x [1 G; O G; (if x O Gy or x [ P, [ G, relative to P,, A
is defined and P, is a subgroup of G;). Is Im A =2?

Problem 2.5.40: If A is a S-q-fuzzy maximal or S-(J, [ q) fuzzy maximal sub-
bisemigroup of the bigroup G. Are Gy and A s S-maximal subgroups of G?

Problem 2.5.41: Prove if A is a S-T-fuzzy sub-bisemigroup of the S-bigroup G then
if Ay (x7)=1then A, 0 (x/) /11 0 G and if A, (x})= 1 then As 0 (x2) /12, x, O P, 0 Gy
(A= A; U A; defined relative to G,) and if A, o(x,) <o then A, o (x1)| O(x;), x1 U

Gy and if A, o (x,) <wthen A, o (x,)| O(x,),x, 0P, 0G,.

Problem 2.5.42: Prove if A is S-T-fuzzy sub-bisemigroup of a S-bigroup G = G; U
G, and x; 0 Gy (x, 0P, 0 Gy) such that A, o(x,) <oothen A, o(x,)=A,o(x]').

A,o(x,)<wthen A,o(x,)=A,0(x;"),x;' OP, 0G,.

Problem 2.5.43: Prove if A is a S-T-fuzzy sub-bisemigroup of a S-bigroup G where
G is a S-commutative bigroup, then the set of all elements in G whose S-fuzzy orders
with respect to A = A; [ A, are finite is a S-sub-bigroup of G.

Problem 2.5.44: Prove if A is a S-T-fuzzy sub-bisemigroup of G then S(T,) is the
torsion subgroup of A if and only if A} = (A; U A2)1 = (A1) U (A2)1 = {e1} U {ea2}, e
the identity element of G; and e; is the identity element of P, [J G;; P, the subgroup of
@G, relative to which A is defined.

Problem 2.5.45: Prove if A is a S-T-fuzzy sub-bisemigroup of the S-bigroup G = G,
U Gz, x U G such that A1 0 (Xl) <00, n U N, (Az 0 (Xz)) < 0, X1 U Gl, X2 U Pz U Gz
then Ao(x") =[A0(x)]/ [0, Ajo(x))] and Aj0(x3?)=[As0(x,)]/ [n,, Ay0(x,)],
n; 0 No. Let f: G - H be a S-bigroup homomorphism and A be a S-T-fuzzy sub-
bisemigroup of G, for x [ G; U Gy; prove f(A;) o (f(x1)) | A1 o (x1) if x; UJ G; and
f(A2) o (f(x2)) | Az 0 (x2) if X, I P, 1 Ga. (P3 is the subgroup in G relative to which A
= A, O A; is defined).
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Problem 2.5.46: Prove if A is a S-T-fuzzy sub-bisemigroup of a finite S-bigroup G
then | S(A1)|F ‘ | G1| and | S(A2)|F ‘ |P2|where P, 0 G, is the subgroup relative to which
A is defined.

Problem 2.5.47: Give an example of a S-primary bigroup.

Problem 2.5.48: Give an example of a S-weakly primary bigroup. Characterize those
bigroups which are

1. S-primary
il. S-weakly primary

Problem 2.5.49: Prove if G is a S-primary bigroup and A is a S-normal Min fuzzy
sub-bisemigroup of G and [G : A] is finite; then there exists natural numbers ry, 12 in

N such that [Gy; Aj] = p" and [P2; As] = p? where G=G; 0 Gyand A=A, 0A;,

A;: Gy - [0, 1] is a Min fuzzy normal subgroup of G; and A, : P, — [0, 1] is a Min
fuzzy normal subgroup of G,.

Problem 2.5.50: Prove every S-T-fuzzy sub bisemigroup of a S-bigroup G is
S-primary if and only if there exists n [J N such that |SA|F =p", p is a prime

fic.SAD|, =p™ and [SA,|, =p™).

Problem 2.5.51: Is it true that every S-T-fuzzy primary sub bisemigroup is a
S-primary bigroup?

Problem 2.5.52: If A is a S-primary Min fuzzy sub bisemigroup of a S-bigroup G, are
the t-level sub bisemigroup A S-Primary? Justify your claim.

Problem 2.5.53: If A is a S-normal T-fuzzy sub bisemigroup of a S-primary bigroup
G can G/A be a S-primary bigroup?

Problem 2.5.54: Is the homomorphic image of a S-primary T-fuzzy sub bisemigroup
a primary S-T-fuzzy sub bisemigroup?
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Chapter Three

SMARANDACHE FUZZY GROUPOIDS AND
THEIR GENERALIZATION

This chapter mainly introduces the notions of Smarandache fuzzy groupoid and
Smarandache fuzzy bigroups. Several interesting results in this direction are given.
The chapter has four sections. In section one we give some results on Smarandache
fuzzy groupoids and around 20 definitions related to Smarandache fuzzy groupoids
are given. Groupoids are the generalizations of loops; so, as all loops are groupoids,
the Smarandache fuzzy loop study has become inevitable. In section two we define
Smarandache fuzzy loop and study these notions. The third section gives in 26
definitions the concepts about Smarandache fuzzy bigroupoids and Smarandache
fuzzy biloops. In order to make this book appealing to researchers, in the final section
we give 111 problems, which would make a reader master the Smarandache fuzzy
groupoid and its generalizations.

3.1 Some results on Smarandache Fuzzy groupoids
In this section we for the first time define the notion of Smarandache fuzzy groupoids
and illustrate it with examples. Fuzzy groupoids are studied extensively by several

researchers like [11, 45, 47, 89, 90, 110].

DEFINITION 3.1.1: 4 Smarandache groupoid (S-groupoid) G is a groupoid which has
a proper subset S, S [JG such that S under the operations of G is a semigroup.

Example 3.1.1: G= {0, 1,2, ..., 5} be a groupoid given by the following table:

DN lWIN|—=[D|O
WIO|W|IO|IW|IO|IO
NN || —
— A==~
O W[(O|WW|D[W|W
(VN1 SARV. 1 O L, § NS N
=R |—=][—=]Wn

Clearly A = {0, 3} is a semigroup of G. Thus G is a S-groupoid.
For several properties about S-groupoids please refer [128].

DEFINITION 3.1.2: Let G be a S-groupoid. A fuzzy subset u from G to [0, 1] is said to
be a Smarandache fuzzy groupoid (S-fuzzy groupoid) G if u restricted to at least one
of the proper subsets P [] G, P a semigroup under the operations of G we have u (xy)
2min {u(x), u(y)} for x, y L1 P, we denote this by up . If for every proper subset P; of
the S-groupoid G. P; a semigroup, the fuzzy subset u : G — [0, 1] is a such that U,
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is a fuzzy semigroup, then we call u : G - [0, 1] a Smarandache strong fuzzy
groupoid (S-strong fuzzy groupoid) of G.

THEOREM 3.1.1: Let G be a S-groupoid. Every S-strong fuzzy groupoid u of G is a
S-fuzzy groupoid u of G.

Proof: Follows by the very definitions.

The definition of S-fuzzy groupoids using S-groupoids will be called as the type I or
level 1 S-fuzzy groupoids, by default of notation we just denote it by S-fuzzy
groupoids.

We define level II or type II S-fuzzy groupoids in the following.

DEFINITION 3.1.3: Let u : X — [0, 1] be a fuzzy subgroupoid of the groupoid X with
respect to a t-norm T. We say u is a Smarandache fuzzy subgroupoid of type II
(S-fuzzy subgroupoid of type Il) of X if and only if X is a S-groupoid.

THEOREM 3.1.2: Every S-fuzzy subgroupoid of type Il (S-subgroupoid of type II) of X
is a fuzzy subgroup of X.

Proof: Direct by the very definition.

THEOREM 3.1.3: Let X be a groupoid. Every fuzzy subgroupoid X need not be
a S-fuzzy subgroupoid of X.

Proof: Follows from the fact if X is not a S-groupoid then certainly even if X is a
fuzzy subgroupoid of X, X will not be a S-fuzzy subgroupoid of X.

DEFINITION 3.1.4: Let X; and X, be two S-groupoids. Let u; and u; be S-fuzzy
subgroupoids of X; and X, respectively, with respect to a t-norm T. The S-fuzzy
subgroupoids u; and u, are Smarandache homomorphic (isomorphic)
(S-homomorphic (isomorphic)) if and only if there exists a S-groupoid homomorphic
(isomorphism) @: X; — X, such that u; = u; o @. In this situation we say that u; is
given by a Smarandache pull back (S-pull back) of u; along @.

DEFINITION 3.1.5: Let (X, ) be a S-groupoid. Let G be the family of S-subgroupoids
of X. G is called a Smarandache generating family (S-generating family) if for every
element x [JS [JX (S a semigroup of X) there exists P [/ X such that x [JP.

DEFINITION 3.1.6: Let (X, *) be a S-groupoid and let Y be a fixed S-subgroupoid of X.
Let (2 A, P) be a probability space and let (V, @) be a S-groupoid of functions
mapping Q into X with @ defined by point wise multiplication in range space. A
further restriction in placed on V by assuming that for each f [JV; X;: {w [ Q| f(&)
7Y} is an element of A . Then U: V — [0, 1] defined by U(f) = P (X for eachf L]V is
a fuzzy subgroupoid of V with respect to Ty. If P (X)) is a S-fuzzy subgroupoid of V for
each f []V then we say the S-fuzzy subgroupoid obtained in this manner is called
Smarandache function generated (S-function generated).
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An innovative reader can obtain several interesting results in this direction.

DEFINITION 3.1.7: Let f : X — X' be a S-homomorphism from a S-groupoid X into a
S-groupoid X. Suppose that V is a S-fuzzy subgroupoid of X' with respect to a t-norm
T. Then the fuzzy let 1t = V o f (defined by U(x) = V (f (x)) for all x []X) is called the
Smarandache pre image (S-pre image) of V under f.

DEFINITION 3.1.8: Let f : X — X' be a S-homomorphism from the S-groupoid X
onto S-groupoid X'. Suppose that u is a S-fuzzy subgroupoid of X with respect to a
t-norm T, then the fuzzy set Vin X' = f(X) defined by

vy = Sup H(x)

X0 (y)

forall y [/ X'is called the Smarandache image (S-image) of u under f.

DEFINITION 3.1.9: 4 fuzzy relation u on a S-groupoid X is said to be fuzzy left (resp.
right) Smarandache compatible (S-compatible) if for all x, y, s [J P [J X, P a
semigroup in X. u (sx, sy) [resp u(xs, ys)] = u(x, y). A S-fuzzy C-equivalence relation
u on a S-groupoid X is said to be a S-fuzzy C-congruence relation on P [J X if

Muix, ), u(z, &) SU((xz, ya) forallx, y, z, wlJP [JX.

DEFINITION 3.1.10: A S-fuzzy subgroupoid A of a S-groupoid X is called a S-fuzzy
regular subgroupoid if for all x [7J P [J X their exist x; [J Ry such that (x, t) [/
implies (x;, t) g g, » A forall t [J(a, c] or equivalently for all x [J Ay, there exists
X7 [JRg such that A (x;) = M (A(x), k).

For more about notations please refer [34].

DEFINITION 3.1.11: A fuzzy inverse subsemigroup A of a S-groupoid X is
called a S-fuzzy normal subsemigroup if

i. Ae) = kforall idempotent e in P [JX (P-semigroup in X).
ii.  Aisfuzzy closed.
iii. (% t) oA = Oxy ™, t) Oaldgay A for all x, y [OP and all t [ (a, c].

(iii) is equivalent to A (yx y ) =M (A(x) , k) for all x [J Asq forall y [JP [TS8.
DEFINITION 3.1.12: Let X be a S-groupoid. A fuzzy subset [ of X is called S-fuzzy left
ideal of X if P o f [J fand fis called the S-fuzzy right ideal of X if fo P [J f, P a

semigroup of X. If f is both a S-fuzzy left and S-fuzzy right ideal of X then f'is called a
S-fuzzy ideal i.e. f(xy) =max {f(x), f(v)} for all x, y [/P [JX.

DEFINITION 3.1.13: 4 fuzzy left ideal f is called Smarandache prime (S-prime) if for
any two S-fuzzy ideals f; and f>, f1 o f> [J fimplies f; [J f or f> [J f.

DEFINITION 3.1.14: A S-fuzzy left ideal f is called Smarandache quasi prime (S-quasi
prime) if for any two S-fuzzy left ideals f; and f>, fi0 f> [If implies f; [/f or f> [If. fis
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called Smarandache quasi semiprime (S-quasi semiprime) if for any S-fuzzy ideal g of
X: ¢ O fimplies g [J f.

DEFINITION 3.1.15: A4 fuzzy subset f of a S-groupoid X is called Smarandache fuzzy
m-system (S-fuzzy m-system) if for any t, s [7[0, 1) and a, b [/P [J X, f(a) 2t, f(b) >s
imply that there exists an element x [JP such that f (a x b) >t Us.

DEFINITION 3.1.16: A S-fuzzy left ideal f is called Smarandache weakly quasi-prime
(S-weakly quasi-prime) if for any two S-fuzzy left ideals f; and f> such thatf [ fi,
fLOfand fi o /o LJf then f1 [Jf or fo [Jf.

Notation: Let f be a S-fuzzy left ideal of a S-groupoid X, we define two fuzzy subsets
of X denoted by i(f) and i(f) respectively as follows : Forall x 1P [ S

i i) ®=0(alx, 0f x_ oPOfta [0, 1]).
i i) () =0{ta| fox, Oftg O[O, 1]}

DEFINITION 3.1.17: A S-groupoid X is called Smarandache strongly semisimple
(S-strongly semisimple) if left ideal of X is idempotent. A S-fuzzy ideal f of a
S-groupoid X is called idempotent if f=fo f that is f = f*.

DEFINITION 3.1.18: Let X be a S-groupoid. We call X a Smarandache fuzzy
multiplicative groupoid (S-fuzzy multiplicative groupoid) if for any two S-fuzzy ideals
u and O of X satisfying U < Othere exists a S-fuzzy ideal A of X such that t= O A.

(Recall for X a S-groupoid; A a fuzzy subset of X is called a S-fuzzy ideal of X if
A(xy) 2 max{A(x), A(y)} for all x, y 0 P 0 X (P a proper subset of X which is a
semigroup).

DEFINITION 3.1.19: Let [ = [0, 1], I* will denote the set of all mappings A: X — 1,
M(x, y) will denote the minimum of x and y. Let A tt [TI*. Then A : X — I is defined
by A(x) = sup {M (A(y), 1(z)) | x = yz} for all x [JP [7X. A S-fuzzy ideal A of X is
called a proper S-fuzzy ideal if A = Xx. Also for any two —S-fuzzy ideals A, U, A <l
willmean A sp,. A Z .

A S-fuzzy ideal A of the S-groupoid X is called S-prime if for any two S-fuzzy ideals
M Oof X HOSA=>HU<Aord<A.

For a S-fuzzy ideal A of a S-groupoid X, the Smarandache fuzzy radical (S-fuzzy
radical) of A denoted by S(rad A) is defined by

S(rad A(x)) =sup { A (xX") Cn ON} forallx OP O X ;
A defined relative to P in X. Clearly S(rad A(x)) is a S-fuzzy ideal of X.

DEFINITION 3.1.20: A S-fuzzy ideal u of a S-groupoid X is said to be idempotent if u
= 1>, A S-fuzzy ideal of form x,Xp where x. is a fuzzy point of the S-groupoid X is
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called a Smarandache principal fuzzy ideal (S-principal fuzzy ideal) of X. (P [/ X; P is
a semigroup).

Several other interesting results in this direction can be obtained. We define
Smarandache compatible fuzzy relation on a S-groupoid X.

DEFINITION 3.1.21: Let X be a S-groupoid. Let P,, P,, ..., P, be r (r >1) proper subset
of X which are semigroups under the operations of X. Let A be a fuzzy relation on the
groupoid X. We say A is a Smarandache compatible (S-compatible) on X, if A(ac, bd)
= min{A(a, b), Alc, d)} for all a, b, ¢, din each P; [] X, i.e. fori=1, 2, ..., r.

A Smarandache compatible fuzzy equivalence relation (S-compatible fuzzy
equivalence relation) on a S-groupoid X is a Smarandache congruence
(S-congruence) on X. If A is compatible on atleast one of the P;’s then we say A is
Smarandache weakly compatible (S-weakly compatible).

Any interested reader can obtain several exciting relations in this direction. Let A be a
fuzzy relation on a set X and let 0 < a < 1; A is a-reflexive on X if A (a, a) = O and
A(a, b) < a for a, b [J X. An a-reflexive, symmetric and transitive fuzzy relation on X
is a fuzzy a-equivalence relation on X. We call a compatible fuzzy a-equivalence
relation on a groupoid, an O-equivalence. A fuzzy a-equivalence relation is a fuzzy
equivalence if a =1 and every fuzzy a-equivalence relation is a G-equivalence. A
G-reflexive and transitive fuzzy relation on X is a G-preorder on X.

DEFINITION 3.1.22: Let X and Y be two nonempty set. A mapping f: X xX — Y xYis
called a semibalanced mapping if

i.  Given a [JX there exists au [JY such that f (a, a) = (u, u)
ii. f(a, a) =, u) andf (b, b) = (v, v) where a, b JX, u, v [JY
implies f (a, b) =(u, v).

Several important properties on semibalanced mapping can be derived.

If f is a semibalanced map from X X X into Y XY and p is an a-equivalence fuzzy
relation on Y then f'(p) is an a-equivalence fuzzy relation on X.

DEFINITION 3.1.23: Let f be a map from X xXinto Y xY. A fuzzy relation A on X is
finvariant if f(a, b) = f(a;, b; ) implies that A(a, b) = A(a;, b;). A fuzzy relation A on
X is weakly f-invariant if f(a, b) = f (a;, b) implies A(a, b) = A(a;, b).

We have several important properties about f-invariant fuzzy relation A. A mapping is
a balanced mapping if

i. f(a,b)=(u,uy=a=h.
i. f(a,b)=(u,v)=1f(b,a)=(v,u).
iii.  f(a,a)=(u, u) and f(b, b) = (v, v) = f(a, b) = (u, v)

foralla,bld Xandu, vOY.
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A mapping f: X x X - Y XY is a balanced mapping if and only if it is one to one
semibalanced mapping. Let p be a fuzzy relation on Y and f be a map from X X X into
Y xY. We say p is f-stable if f (a, b) = (u, u) where a # b [ X and u Il Y implies that
u(fla, b)) < p f(x, x)) for all x 1 X.

Several innovative results in this direction are derived by [45].

The application of Smarandache fuzzy groupoids to the study of fuzzy automaton will
find its place in the seventh chapter of this book.

3.2Smarandache Fuzzy loops and its Properties

In this section we introduce the concept of Smarandache fuzzy loops. Smarandache
loops was introduced in [129] and the concept of fuzzy loops was introduced and
studied in [118]. The notion of Smarandache fuzzy loops enjoys more properties than
that of the fuzzy loops:

Now we just recall the definition of Smarandache loop for the sake of completeness.
DEFINITION 3.2.1: A Smarandache loop (S-loop) is defined to be a loop L such that a
proper subset A of L is a subgroup (with respect to the same induced operation) that

ispzA[JL.

Example 3.2.1: Let L = {e, 1, 2, 3, 4, 5} be a loop given by the following table.

*

— IO |~ [n]w]w

Wlo |~

Alal—=lo |[WIN|[N
O |[—=[(N|WK]|Wn|Wn

N|W|lh|ln|lo |—]|—

nlh(WlN]|—|lo |o

(U0 I SN OS] N\ R E N )

It is easily verified L is a S-loop.

DEFINITION 3.2.2: Let L be a loop. If L has no subloops but only subgroups then we
call L a Smarandache subgroup loop (S-subgroup loop).

Example 3.2.2: Let L = {e, 1, 2, 3, 4, 5} be the loop given in example 3.2.1. All
subloops in L are subgroups. So L is a S-subgroup loop.

DEFINITION 3.2.3: Let L be a loop. A proper subset A of L is said to be a
Smarandache subloop (S-subloop) of L if A is a subloop of L and A itself is a S-loop.

i.e. A contains a proper subset B such that B is a group under the operations of L.

DEFINITION 3.2.4: Let L be a loop. We say a non-empty subset A of L is a
Smarandache normal subloop (S- normal subloop) of L if
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i.  Aisitself a normal subloop of L.
ii. A contains a proper subset B where B is a subgroup under the
operations of L.

If L has no S-normal subloop we say the loop L is Smarandache simple (S-simple).
Several results in this direction can be had from [129].

DEFINITION 3.2.5: Let L be a S-loop. A fuzzy subset (lof L (4: L — [0, 1]) is said to
be a Smarandache fuzzy loop (S-fuzzy loop) if u restricted to at least one of the proper
subsets of P of L where R is a group under the operations of L is such that
u(xy) 2min {u(x), u()} for every x, vy [OP. u(x ') = u(x) for every x [JP. i.e. we can
denote this S-fuzzy loop by up for u is defined relative to P. If u : L - [0, 1] is a fuzzy
subset and u is such that for every proper subset P of L which is a subgroup of L,
u:P - [0, 1] is a fuzzy group, then we call u a Smarandache strong fuzzy subloop
(S-strong fuzzy subloop) of L.

THEOREM 3.2.1: Every S-strong fuzzy subloop of L is a S-fuzzy subloop of L.
Proof: Left as an exercise for the reader as the proof is straightforward.

This definition of S-fuzzy subloop and S-strong fuzzy subloop will be known as the
level 1T or type I S-fuzzy subloops or S-strong fuzzy subloops. But by default of
notation we do not mention it as type I or level I we just say S-fuzzy subloop.

We give the results related with S-fuzzy subloops.

DEFINITION 3.2.6: Let L be a S-loop. A fuzzy subset u of L is said to be a
Smarandache fuzzy normal subloop (S-fuzzy normal subloop) if

i. w:L - [0 1] is a S-fuzzy subloop relative to P. (P a subgroup in L
relative to which u is defined).
ii.  u(xy) =u@x) forallx, y [JP.

Let u be a S-fuzzy normal subloop of the loop L.

Fort [7[0, 1] the set u = {(x, y) (0 P xP | it (xy') >t} is called a Smarandache
t-level relation (S-t-level relation) of u.

Now we define Smarandache fuzzy coset of a S-loop L.

DEFINITION 3.2.7: Let L be a S-loop u be a S-fuzzy subloop of L. For any a [JP [JL,
P a subgroup of L, a u defined by (au) (x) = u (a 'x) for every x [P [JL is called the
Smarandache fuzzy coset (S-fuzzy coset) of the S-loop L defined by a and u. Thus if u
happens to be a S-strong fuzzy subloop of L then we see related to this u we will have

as many S-fuzzy cosets as the number of proper subsets of G which are subgroups of
G.
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DEFINITION 3.2.8: Let A and U be two S-fuzzy subloops of a S-loop L. Then A and
are said to be Smarandache conjugate fuzzy subloops (S-conjugate fuzzy subloops) of
L if for some p [JP. (P subgroup in L relative to which A and U are defined) we have
A(x) = l(p 'xp) for every x P [JL.

If A and U are S-conjugate fuzzy subloops of the S-loop L then o(A) = o(l).

DEFINITION 3.2.9: Let u be a S-fuzzy subloop of a S-loop L then for any a, b [JP [JL
the Smarandache fuzzy middle coset (S-fuzzy middle coset) a u b of the S-loop L is
defined by (aub) (x) = u(a 'xb™') for every x [P [J L. Further we see almost all
results true in case of fuzzy groups can be extended in the case of S-fuzzy subloops of
level L.

Now we define Smarandache fuzzy relations on the S-loop L.

DEFINITION 3.2.10: Let R and R, be any two Smarandache fuzzy relations (S-fuzzy
relations) on a S-loop L. Then R, and R, are said to be Smarandache conjugate fuzzy
relations (S-conjugate fuzzy relations) on the S-loop L if there exists (g;, g2) [/P xP
UL xL (P a subgroup in L relative to which fuzzy relations R, and R, are defined)
such that Ra(x, y) = Ry (gl_lxgl, g5 ygz) for every (x, y) [JP xP.

DEFINITION 3.2.11: Let u be a S-fuzzy subloop of a loop L. For a [/JP (P [JL a
subgroup of L relative to which u is defined). The Smarandache pseudo fuzzy coset

(S-pseudo fuzzy coset) (au) is defined by ((af)”)(x) = p(a)i(x) for every x (P [JL
and for some prime p.

DEFINITION 3.2.12: A S-fuzzy subloop u of a S-loop L is said to be a Smarandache
positive fuzzy subloop (S-positive fuzzy subloop) of the loop L if u is a positive fuzzy
subset of the S-loop L.

Several interesting and innovative Smarandache analogue results can be established in
this direction.

DEFINITION 3.2.13: A S-fuzzy subloop u of a S-loop L is Smarandache normalized
(S-normalized) if and only if u(e) =1 where e is the identity element of the subgroup
P, P [JL, Pasubgroup of L relative to which u is defined.

DEFINITION [138]: A fuzzy topology T on a group G is called a g-fuzzy topology. The
pair (G, 1) is a g-fuzzy topological spaces.

As loops are non-associative loops the concept of analogous Il-topological spaces
cannot be directly built using loops instead of groups. To overcome this problem the
concept of S-loops becomes handy. To this end we next define Smarandache fuzzy
topology on a S-loop L.

DEFINITION 3.2.14: A4 fuzzy topology T on a S-loop L is called a Smarandache [-fuzzy

topology (S-I-fuzzy topology) if T is a g-fuzzy topology relative to atleast one proper
subset P of L where P is a subgroup. We call T a Smarandache strong I-fuzzy topology
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(S-strong I-fuzzy topology) if Tis a S-g fuzzy topology with respect to every proper
subset P of L.

THEOREM 3.2.2: Every S-strong [-fuzzy topology is a S-1 fuzzy topology.
Proof: Direct by the very definition hence left as an exercise for the reader.
DEFINITION 3.2.15: Let 1; and T, be S-I-fuzzy topologies on the S-loops L; and L,

respectively. A function f: (L;, T;)) — (L, D) is said to be a Smarandache [-fuzzy
continuous map (S-I-fuzzy continuous map) from L; to L, if

i f from two proper subsets P; and P, of L; and L, respectively is such
that  f: (P;, T1) — (P2, Ib) is a g-fuzzy continuous map from P; to P..
ii. forevery U 00, f'(w) 01 and
iii. for every S-fuzzy subloop u of Ly in T, f ' (u) is a S-fuzzy subloop of G, in
7.

DEFINITION 3.2.16: Let (L;, 1;) and (L>, T;) be any two S-I-fuzzy topological spaces.
A function f: (L;, ;) — (L2, T2) is said to be a Smarandache I-fuzzy homomorphism
(S-I-fuzzy homomorphism) if it satisfies the following 3 conditions.

i f:(P;, 1) - (P, o) is one to one and onto. (P; is a subgroup of L;
relative to which T, is defined fori = 1, 2).
ii. fis a S-I-fuzzy continuous map from P, to P, and
iii. [ is S-I-fuzzy continuous map from P to P; .

DEFINITION 3.2.17: A fuzzy subset u of a S-I-fuzzy topological space (L, 1) is called a
Smarandache Q; -neighborhood (S-Q; -neighborhood) of the fuzzy point x, (for x [JP
[JL, P a subgroup relative to which T is defined) if and only if there exists S-fuzzy
subloop A (of L) in Tsuch that A [J 14, x; gA (where x, gA means t + A (x) >1 and x, is
quasi coincident with A).

DEFINITION 3.2.18: A S-I-fuzzy topological space (L, 1) is said to be a S-I-fuzzy
Hausdorff space if and only if for any two fuzzy points x; and ys(x,y [JP, Pa
subset of L which is a subgroup relative to which T is defined x Zy) there exists
S-Qr-neighborhoods A and U of x; and y respectively such that A n U= @g.

We have earlier defined the notion of fuzzy singletons; now we proceed on to define
Smarandache p-primary fuzzy subloop of a S-loop L.

DEFINITION 3.2.19: Let L be a S-loop. u is called a Smarandache p-primary subloop
(S-p-primary subloop) of a S-loop L < there exits a prime p such that for all fuzzy
singleton x, [7u with t >0 there exists n [JN (N-integers) such that p"(x,) = 0, .

DEFINITION 3.2.20: Let L be a S-loop u is called a Smarandache divisible fuzzy

subloop (S-divisible fuzzy subloop) of L if and only if for all singletons x, [J [ with
t > 0, there exists n [JN there exists a fuzzy singleton y, [] [ such that n(y;) = x;.
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DEFINITION 3.2.21: Let {{4a | a [J Q} be a collection of S-fuzzy subloops of a S-loop
L. Then u is said to be a Smarandache fuzzy weak direct sum (S-fuzzy weak direct

sum) of the uq if and only if

1= 4,

allQ

and for all x [JPy [JL (Pgis a S-fuzzy subloop relative to which uqis defined)

atlQ{ B}

xio[,uﬁ N z,uaj (x) =0.

If w is a S-fuzzy weak direct sum of o then we write

=] Hy.

allQ

DEFINITION 3.2.22: A fuzzy subset A of a S-Loop L is said to be a Smarandache
(L] [T q) fuzzy subloop (S-(L] Il q) fuzzy subloop) of L relative to a proper subset P
[JL, P a subgroup in L if for any x, y [/P and t, r [J(0, 1]

i. X, ys JAimplies (xy)u g, r I q A and
i. xOA=x"'00qA

Clearly it is left for the reader to verify that conditions (i) and (ii) are equivalent to

i Ay) 2M (A (x), A ), 0.5) forall x, y [JG and
ii. AE) =M (A (x), 0.5) for all x [G.

DEFINITION 3.2.23: 4 S-fuzzy subloop A of a S-loop L is said to be

I Smarandache (L] [)) -fuzzy normal (S-(LJ, [)-fuzzy normal) if for all x, y [J
P [JL (P a subloop of L) and fort [7(0, 1], x, A = (v 'xy), OA.

ii. Smarandache (L] Il q)-fuzzy normal subloop (S-(L] [T q)-fuzzy normal
subloop) if for any x, y P [OL and t [7(0, 1]; x, 0 A implies (v xy), [ gA.

DEFINITION 3.2.24: Two S-fuzzy subloops of a S-loop L are said to be Smarandache
equivalent (S-equivalent) if they have the same family of level subloops otherwise they
are said to be Smarandache non equivalent (S-non equivalent).

DEFINITION 3.2.25: Let u be a fuzzy subset of a S-loop L. an S-([J,[J []q) fuzzy
subloop & of L is said to be the S-([J, [l q) fuzzy subloop generated by u in L if ¢ =
and for any other S-([J, [l q)-fuzzy subloop n of L with n = it must be n = €.
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DEFINITION 3.2.26: Let A be a S-fuzzy subloop of a S-loop L. Forx [P [JL A. (resp.
A ): L — Idefined by X.(g) = A(gx™") (resp. X.(g) = A(x'g)) for all g f OP [JL by
Alg)=A(gx™ ) (resp. X.(g)=A(x"'g)) for all g JP [JL (P a subgroup in L

relative to which A is defined) is called a S-([] [J) fuzzy left (resp. right) coset
of P [ L determined by x and A.

DEFINITION 3.2.27: Let A be a S-fuzzy subloop of a S—loop L. For any x [JP [JL,
A (resp(A.):POL = [0,1] is defined by A(g)=M(A(gx")0.5)
I_resp. /Tx(g) = M(/](x_lg),O.S)J for all g [7P (P a subgroup in L related to which A is

defined) is called Smarandache (L[]l q) fuzzy left (resp. right) coset (S-(L] 1] q)
fuzzy left (resp. right) coset) of L determined by x and A.

DEFINITION 3.2.28: A4 S-subloop H of a loop L is said to be Smarandache quasi
normal (S-quasi normal) if for every S-subloop K of L, HK = K.H.

DEFINITION 3.2.29: A S-fuzzy subloop ¢ of a S-loop L is called Smarandache fuzzy
quasi normal (S-fuzzzy quasi normal) in G if o 7= n o &for every S-fuzzy subloop n
of Pin L.

A S-fuzzy subloop u of a S-loop L is said to be Smarandache fuzzy maximal (S-fuzzy
maximal) if u is not constant and for any S-fuzzy subloop 1 of L whenever U <
either P, = P, or N = Xpwhere P is a subgroup in L.

P,={x P | ux) = Ue); e identity element of the subgroup P in G and P is the
subgroup relative to which u is defined,.

DEFINITION 3.2.30: Let u be a S-fuzzy subloop of a finite S-loop L and let Sp be a S-p-
sylow subloop of L. Define a fuzzy subset s in L as follows:

u(x) if x0S,
Hs (x)= .
' 0 if xO8§,
Clearly g, is a S-fuzzy subloop called a Smarandache p-fuzzy Sylow subloop (S-p-

fuzzy Sylow subloop) of u. A S-fuzzy subloop of L is called Smarandache fuzzy quasi
normal (S-fuzzy quasi normal) if its level subloops are S-quasi normal subloop of L.

The application of S-fuzzy groupoids and S-fuzzy bigroupoids will be described and
discussed in Chapter VII of this book. The major application of them being in the
fuzzy automaton theory.

3.3 Smarandache fuzzy bigroups and Smarandache fuzzy biloops

This section is fully devoted to the introduction of Smarandache fuzzy biloops and

Smarandache fuzzy bigroupoid. In chapter I we have introduced the notion of both
fuzzy biloops and fuzzy bigroupoids.
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Study of just biloops and bigroupoids is elaborately done is [135]. So here we define
several of the properties of Smarandache biloops and Smarandache bigroupoids and
proceed on to sketch their applications.

DEFINITION [128]: Let (G, +, ®) be a non empty set. We call G a Smarandache
bigroupoid (S-bigroupoid) if G; [J G, where G; and G are proper subsets of G
satisfying the following conditions

i. (G;,*)isa S-groupoid.
ii. (Gz,*)isaS-semigroup.

Several interesting and important properties used about them can be had from [135].

DEFINITION 3.3.1: Let (G = G; [J G,, +,*) be a S-bigroupoid. A fuzzy subset
K G - [0, 1] is called the Smarandache fuzzy sub-bigroupoid (S-fuzzy sub-
bigroupoid) of G if u = pu; [J u, where l; : G; - [0, 1] is a S-fuzzy subgroupoid of
G, (u restricted to Gy denoted by u;) [&: Go — [0, 1] is a S-fuzzy subsemigroup of
G, (u restricted to G, is denoted by u;). Thus we say if £H: G — [0, 1] that is
u=u; L u: G Gy, - [0, 1] is a S-fuzzy bigroupoid then l; : G; — [0, 1] which
is a S-fuzzy subgroupoid is defined related to a semigroup P; of G; and
Lo o G2 — [0, 1] which is a S-fuzzy subsemigroup is defined related to a subgroup P>
0fG2 .

Thus we can give yet another definition of the Smarandache fuzzy sub-bigroupoids
which we choose to call it as Smarandache fuzzy sub-bigroupoids of type II.

DEFINITION 3.3.2: Let G be a bigroupoid. A fuzzy subset u of G is said to be a
Smarandache fuzzy sub-bigroupoid II (S-fuzzy sub-bigroupoid Il) of G if there
exists) < such that ) is a fuzzy sub-bisemigroup of G.

THEOREM 3.3.1: Every S-fuzzy sub-bigroupoid u of a bigroupoid G = G; [J G, is a
S-fuzzy sub-bigroupoid of type II.

Proof: Straightforward by the very definitions.

It is left for the reader to verify whether a S-fuzzy sub-bigroupoid II, p of G is a
S-fuzzy sub-bigroupoid of G or will p be a S-fuzzy sub-bigroupoid II of G will imply
G is a S-bigroupoid.

DEFINITION 3.3.3: Let (T, +, ) be a S-biquasi group. i.e. (T, +) is a S-semigroup and
(T, *) is a semigroup. A fuzzy subset u: T — [0, 1] is said to be a Smarandache fuzzy
sub-biquasi group (S-fuzzy sub-biquasi group) if u : (T, +) - [0, 1] is a fuzzy
subsemigroup and U : (T, ®) - [0, 1] is a fuzzy subsemigroup. (Recall the set (T, +, *)
is a Smarandache biquasi group (S-biquasi group) if (T, +) is a S-semigroup and
(T, ) is just a semigroup).

We proceed on to define type II Smarandache sub-biquasi group.
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DEFINITION 3.3.4: Let (X, +, ®) be a biquasi group. A fuzzy subset u of X is said to be
a Smarandache fuzzy sub-biquasi group of type Il (S-fuzzy sub-biquasi group of type
1) of Xifu: (X +) - [0, 1] is a S-fuzzy subsemigroup and u : (X, ¢ - [0, 1] is a
fuzzy subsemigroup of X.

Thus we have the following result, which is direct by the very definitions.

THEOREM 3.3.2: Let (T, +, ®) be a S-biquasi group. Let u: T — [0, 1] be a S-fuzzy
sub-biquasi group then u is a S-fuzzy sub-biquasi group of type IL.

Butifpu: T - [0, 1] is a S-fuzzy sub-biquasi group of type II, will u be a S-fuzzy
sub-biquasi group?

This problem is left for the reader as an exercise.
The applications of S-fuzzy bigroupoids will be dealt in the chapter VII.

DEFINITION 3.3.5: Let X; and X> be two bigroupoids. Let y; and u, be S-fuzzy sub-
bigroupoids of X; and X, respectively with respect to a t-norm T. The S-fuzzy sub-
bigroupoids p; and u, are homomorphic if and only if there exists a S-groupoid
homomorphism (isomorphism) @: X; — X, such that u; = u> o @

DEFINITION 3.3.6: Let (X = X; [J X,, +, *) be a S-bigroupoid. A fuzzy subset A =
A1 [ A; of X is called a Smarandache fuzzy bi-ideal (S-fuzzy bi-ideal) of X if

A1 (x, y) 2max {A; (x), A1 (v)} for all x, y [JP; [JX;; P; relative to which A; is defined
and Az (x, y) 2max {A; (x), A2 (v)} for all x, y [J P> [JX>; P, relative to which A; is
defined.

A S-fuzzy bi-ideal u = u; [J u, of X =X; [J X5 is called prime if for any two
S-fuzzy bi-ideals A and Oof X, AOsu = A spor Os . Let u be a S-fuzzy bi-ideal of
S. The Smarandache fuzzy biradical (S-fuzzy biradical) of u denoted by S(birad 1) =
{sup t,(x;" )| n; [J N} for all x; [J P; [JX; relative to which u; is defined} [J
{sup l,(x5" )| n2 LUN} for all x, [JP; [JX; relative to which u, is defined}. S(birad u)
is a S-fuzzy bi-ideal of X .

A S-fuzzy bi-ideal u = u; [J ux of X = X; [JX: is called Smarandache primary
(S-primary) if for any two S-fuzzy bi-ideals 0, Aof X. O0A < U =0 < U or
A <S(birad p). A S-fuzzy bi-ideal u = u; [J uz of X = X; [J X5 is called Smarandache
maximal (S-maximal) if there does not exist any proper S-fuzzy bi-ideal A of X such
that u <A.

DEFINITION 3.3.7: Let X be a S-bigroupoid, X is called a Smarandache multiplication
bigroupoid (S-multiplication bigroupoid) if for any two S-fuzzy bi-ideals u and 0 of X
satisfying U < Othere exists a S-fuzzy bi-ideal A of X such that = 0 A .

DEFINITION 3.3.8: 4 S-fuzzy bi-ideal of the form x, Xx where x, is a fuzzy point of X is
called the Smarandache fuzzy bi-ideal (S-fuzzy bi-ideal) of X. A S-bigroupoid X is said
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to be a S-fuzzy principal bi-ideal bigroupoid if every S-fuzzy bi-ideal of X is a
S-principal fuzzy bi-ideal .

We proceed on to define Smarandache function generated in case of S-bigroupoids.

DEFINITION 3.3.9: Let (X, +, ¢) be a S-bigroupoid and let Y be a fixed S-bigroupoid
of X. Let (2, 4 , P) be a probability space and let (F, ®) be a S-bigroupoid of
functions mapping Q into X with @ defined by pointwise multiplication in the range

space. A further restriction is placed on F by assuming that for each f [JF, Xy = {w[J
Qlf(w) LY} is an element of A4 .

Then v : F— [0, 1] defined by v (f) = P(Xy) for each f in F is a S-fuzzy sub-
bigroupoid of F with respect to T,,. A S-fuzzy sub-bigroupoid obtained in this manner
is called the Smarandache function generated (S-function generated).

DEFINITION 3.3.10: Given a S-bigroupoid (X = X; [J X5, +, ®) a t-norm T and a set 1,
foreach i [JI and let u; be a S-fuzzy sub-bigroupoid of X with respect to T define.

N u,-j (x)=inf (s4(x)).
iar iar

DEFINITION 3.3.11: Let f: X — X' be a S-homomorphism from a S-bigroupoid X into
a S-bigroupoid X'.  Suppose that V is a S-fuzzy sub-bigroupoid of X' with
respect to a t-norm T. Then the fuzzy set { = Vo [ is called the Smarandache
preimage (S-preimage) of V under f.

DEFINITION 3.3.12: Let f : X — X' be a S-homomorphism from S-bigroupoid X onto
S-bigroupoid X'. Suppose that n is a S-fuzzy sub-bigroupoid of X with respect to
a t-norm T, then the fuzzy set Vin X' = f(X) defined by

V)= Sup M(x)

X0 (y)

forally [JP' [JX' (P'the bisemigroup contained the S-bigroupoid X' relative to which
U is defined) is called the Smarandache image (S-image) of u under f.

DEFINITION 3.3.13: We say that a fuzzy set u in X (X a S-bigroupoid) has the

Smarandache sup property (S-sup property) if for any subset A [] X there exists
a, [JA such that

H(a,)=Sup Hia).

alA

DEFINITION 3.3.14: Let 1 and U be fuzzy subset in a S-bigroupoid (G = G; [J G,, +,

*) with penultimate bisubset BP(1]) and BP (u) respectively. Then for g, [1 G, g [J G,
we define

' (g ) = {xi OP; (1), & = xyi for some y; [TP; (1)}
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(7 =n.0n.. BP(n)=P(n, )0 By(n, ).y =1, Op;)

(n=n: LN, u=u; [Jus ui ; defined on Gi; i =1, 2)

Hi (g 1) = {yi UPi(wy) ; g = x; yi for some x; LIP; (1))}

0 (i i) = {x; LP; (1), g = x; yi for some y; LI P; ()}

M (i 1) = {yi OP; (1) [Bi = x: yi for some x; [TP; ()} i =1, 2.

The fuzzy set n; o U;in G defined by

min SUp n(x) Sup H(y) if gUBP(r)BP(u)
1ol (g) = 7' (gu) yOu' (gn)

min(1n(g), u(g)) if gUBP(nn)BP(u)

is called Smarandache penultimate biproduct (S-penultimate biproduct) of ) and |

For notations about fuzzy regular and inverse subsemigroups please refer [34] we will
be adopting these notions and notations in S-bigroupoids as S-bigroupoids contain
proper subset which is a bisemigroup. Using the concept of fuzzy relation p on a
semigroup S given by [117]. We develop the concept of Smarandache bifuzzy
relation.

DEFINITION 3.3.15: Let X = X; [J X, be a S-bigroupoid. A Smarandache bifuzzy
relation (S-bifuzzy relation) p = p; [J 0» on a S-bigroupoid X is one for which p; is a
fuzzy relation on P; [J X, where P is a semigroup and p; is a fuzzy relation on P, [J
X> where P; is a semigroup. A S-bifuzzy relation p = p; [J p> on a S-bigroupoid X =
X; [J X, is said to be a Smarandache fuzzy C-bicongruence relation (S-fuzzy C-
bicongruence relation) on X if M(p; (x1, v1), P (z1, @ )) S P1 (x1 21, y1 &) forall x;,
vi,z1, & [JP; [J X; (P; semigroup of X;) and M(0: (x2, y2), 02 (z2, &) S 0o (x2,
Z, V2, @) forall x2, z2,y,, @ [J P, [JX;.

A S-bifuzzy relation p= p; [J p> on a S-bigroupoid X = X; [J X, is said to be a
S-fuzzy left (resp. right) bicompatible if for all x;, y;, s; [JX; and x5, y,, s2 [JX> we
have p; (s;x1, s1y1) (vesp. Pr (X1 81, Y1 S1)) =01 (X1, yi) and P> (s2 X2, S2 V2) (vesp.
Pa(X2 82, ¥252) 2 P2 (x2, 2).

DEFINITION 3.3.16: Let X = X; [J X, be a S-bigroupoid such that X is a S-regular
bigroupoid (i., e. X; has a proper subset R; which is a regular semigroup and X, has
a proper subset R, which is a regular semigroup).

A S-fuzzy sub-bigroupoid A of X is called a S-fuzzy regular sub-bigroupoid if
forallx; [JR; [JX; and x> [JR; [JX; there exists x';, x> [/ T where T, = {x'; [JR; [J
Xi | xix'1xp =x1} xR, X5 | xp x'x; = x5} (for all x; [JR; and for all x; [/R;)
such that (x;, t) L, Ay = (X1, t) L@, 5y Arand (x2, 1) Ly Ay = (X2, ) L, g 5 A2
forallt [J(a, c].

Several results in this direction can be had in an analogous way. We suggest some
problems in section 3.4. We just define Smarandache fuzzy prime bi-ideal of a S-
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bigroupoid X; Smarandache fuzzy quasi prime bi-ideal of a S-bigroupoid and
Smarandache fuzzy weakly quasi prime bi-ideal of a S-bigroupoid X.

DEFINITION 3.3.17: Let X = X; [J X> be a S-bigroupoid, a S-fuzzy left bi-ideal f is
called Smarandache prime (S-prime) if for any two S-fuzzy bi-ideals f; and f>,

f1 0 2 fimpliesf; [Jf or >0 f.

DEFINITION 3.3.18: Let X = X; [/ X, be a S-bigroupoid. A S-fuzzy left bi-ideal f of X is
called Smarandache quasi prime (S-quasi prime) if for any two S-fuzzy left bi-ideals f;
and f>, fiofo [J f implies f; [J f or f> [J f; fis called Smarandache quasi-semi
prime (S-quasi semiprime) if for any S-fuzzy left bi-ideal g of X; & [J f implies g [J f.

DEFINITION 3.3.19: Let X be a S-bigroupoid. A S-fuzzy left bi-ideal f is called
Smarandache weakly quasi prime (S-weakly quasi prime) if for any two S-fuzzy left
bi-ideals f; and f> such thatf[J] f1, f [J f>and fi of> L] fthenf; [J forf, [Jf.

Several important results in this direction can be obtained by using [133, 128]. We
have given some problems for any researcher to tackle; as the book is for researchers
to work more on Smarandache notions we restrain ourselves by giving elaborate
proofs.

Now we proceed on to define Smarandache biloops. Several properties related to
bigroups can be easily formulated and obtained we define certain concepts about these
new structures like S-bitale, S-bitip and S-penultimate biloops and give some results
about them.

DEFINITION 3.3.20: Let (L, +, ® be a biloop. We call L a Smarandache biloop
(S-biloop) if L has a proper subset P which is a bigroup.

Now we define Smarandache fuzzy sub-biloop of a biloop L.

DEFINITION 3.3.21: Let (L, +, ® be a S-biloop. We call 4 : L — [0, 1] a
Smarandache fuzzy sub-biloop (S-fuzzy sub-biloop) of L if u related to the sub-
bigroup P in L, is a fuzzy bigroup i.e. for ip : P - [0, 1] is a fuzzy sub-bigroup
where up denotes the restriction of u to P.

This S-fuzzy sub-biloop of L we call as type I but by default of notation we just call
the biloop L as S-fuzzy sub-biloop of L. We now proceed on to give the Smarandache
fuzzy sub-biloop of type II.

DEFINITION 3.3.22: Let L be a biloop. We call u a Smarandache fuzzy sub-biloop of
type Il (S-fuzzy sub-biloop of type Il) if the fuzzy subset u of L is such that exists a
fuzzy subset N of L with n < and n is a Smarandache fuzzy sub-bigroup of L. That is
1 on a fuzzy subset of L where 1 is a fuzzy sub-bigroup of L.

We are requesting the reader to find relations between S-fuzzy sub-biloops of type I
and type II.
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DEFINITION 3.3.23: Let (L = L; [/ Ly, +, ® be a S-biloop. Two S-fuzzy sub-biloops n
and u of the S-biloop L are said to be Smarandache equivalent (S-equivalent) denoted
by u = n if both u and n have the same S-chain of level subgroups. (If u is a S-fuzzy
sub-biloop of the S-biloop X; u; for each t [J[0, u (e)] (e; — identity element of
P; [VX), P; a subgroup of X; relative to u; ; P> is a subgroup of x, where e; is the
identity element of P, [J X, relative to u, where uy = u; [J us), here u(e) =
ur(er) [Juj(ex) is a S-sub-biloop of the given S- biloop L called the Smarandache
level sub-biloop (S-level sub-biloop) of u. The set of all S-level sub-biloop of a S-fuzzy
sub-biloop forms a chain.

DEFINITION 3.3.24: Two S-fuzzy subloops ) and u of a S-biloop L are said to be
S-equivalent denoted by u =1 if u and n have the same chain of S-level subloops. Let

u be a fuzzy subset of a S-biloop L. Then the Smarandache penultimate
(S-penultimate) subset SP (1) of u in L defined by

SP (u) ={x[JB [JL [d (x) >inf 1} (B [JL is a sub-bigroup in the biloop L). In case
u is a S-fuzzy sub-biloop of a S-biloop L then SP (u) is a S-sub-biloop of L provided u
is non -constant and SP (u) is called the S-penultimate sub-biloop of u in L.

Now we define yet another interesting property about S-biloop L.
DEFINITION 3.3.25: Let 1] and u be S-fuzzy sub-biloops of a loop L. Then n is said to
be obtained by a Smarandache shift (S- shift) of the range set Im u if there exists a

one to one order preserving map @from Im u onto Imn such that N = @o u where ‘o’
is the composition of mappings.

DEFINITION 3.3.26: Let L be a S-biloop, U be a S-fuzzy sub-biloop of L. i.e. u =

wr L usx: Ly Ly — [0, 1] is a map, that uj restricted to a subgroup P; in L; is such
that

pi (X)) 2min {ug (x;), wr i)}, xi yi P UL (i =1, 2)
i (x7') =y (x;) for x; OP; OL; (i = 1, 2).

If w is a S-fuzzy sub-biloop then it attains its suppremum at e = e; [/ e, of L, that is

SUP (%) = p (),

x;0R,
wherei =1, 2.

We call u(e) = ui(er) [J uz(es) to be the Smarandache bitip (S-bitip) of the S-fuzzy
sub-biloop u of L.

The S-fuzzy sub-biloop may or may not attain its infimum. We shall write in short inf
u for

Uinf u(x,)

x; 0P, !
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and refer to if as Smarandache bitale (S-bitale) of the S-biloop u = u; [J us of L if

infu=\inf w(x,) U inf u(x)

x; 0P, x; 0P,

Two S-fuzzy sub-biloops u and n are bisimilarly bounded if they have the same S-
bitip and same S-bitale that is u (e) = n(e) i.e. u; (er) [J uxlez) = N (er) L/ Nx(ez) and
inf u =inf n.

Refer bigroup paper[89].

3.4 Problems

This section is purely devoted to the problems. We have proposed 111 problems for
the reader to solve. The problems are of different levels: some require examples/
counter examples, others are routine like theorems some of them are
characterizations. Thus tackling of these problems will make the reader not only
strong in Smarandache notions but will induce him to discover more in Smarandache
notions.

Problem 3.4.1: Let p be a S-fuzzy subgroupoid of X with respect to Min. Is p a S-
fuzzy subgroupoids of X with respect to any t norm T? Justify / illustrate your claim.

Problem 3.4.2: Let (X, ®) be a S-groupoid. Let p : X — [0, 1] be a S-fuzzy
subgroupoid of X with respect to a t norm T. Can p be extended to a S-fuzzy
subgroupoid p' of X' with respect to the same t-norm T, where X' is the identity
extension of X? Substantiate your answer.

Problem 3.4.3: Let (Q, A, P) be a probability space with P a fuzzy subset of A,
(A, n)is a groupoid and P is a fuzzy subgroupoid of A with respect to Ty. Will P be a
S-fuzzy subgroupoid of A?

Problem 3.4.4: Let (Q, A, P) be a probability space and T be a non-empty set [ (T)
denotes the power set of T. Let @ Q — T be a mapping. Suppose (X, ) is a S-
groupoid p: X = [0, 1], u(x) = P(¢ ' (Y(x))) for all x 0 X where : X — O (1), such
that @' (P(x)) O A for all x O X, P (xy) O Y(x) n Y(y) for all x, y 0 X. Prove p is a
S-fuzzy subgroupoid of X.

Problem 3.4.5: Is every S-function generated S-fuzzy subgroupoid a S-subgroupoid
generated?

Problem 3.4.6: Can we say every S-subgroupoid, S-generated fuzzy subgroupoid is
isomorphic to a S-function generated S-fuzzy groupoid?

Problem 3.4.7: Will every S-fuzzy subgroupoid with respect to Min a S-subgroupoid
generated? Justify.
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Problem 3.4.8: Let i =V o f be the S-preimage of v under f, can p be a S-fuzzy
subgroupoid of X with respect to T?

Problem 3.4.9: Prove a S-fuzzy C-equivalence relation p on a S-groupoid X is a
S-fuzzy C-congruence relation if and only if it is both fuzzy left and right compatible.

Problem 3.4.10: Prove a fuzzy subset A of X is a S-fuzzy regular subgroupoid of X if
and only if A; is a regular S subgroupoid of X for all t [J (a, k].

Problem 3.4.11: Prove a fuzzy subset A of X, X a S-groupoid is a fuzzy normal
subgroupoid of X if and only if A; is normal subgroupoid of S for all t U (a, k].

Problem 3.4.12: Prove a S-fuzzy left ideal f of a S-groupoid X is prime if and only if
for any two fuzzy points x,, yt P I X (rt>0) x, 0 Po y; 0 S U fimplies that x, [ f
ory: f.

Problem 3.4.13: Prove a left ideal L of X, X a S-groupoid is prime if and only if fi, is
a S-prime fuzzy left ideal of X.

Problem 3.4.14: Prove a S-fuzzy left ideal f of a S-groupoid X is S-quasi prime if and
only if for any two fuzzy points x,, yi J P U X, (rt >0), x, 0 P o y; U f implies x, U f
ory; [ f. (P is a semigroup contained in X relative to which fis defined).

Problem 3.4.15: Prove a left ideal L of a S-groupoid X is S-quasi prime if and only f.
is a S-quasi prime fuzzy left ideal of X.

Problem 3.4.16: Let M be a subset of X. Prove M is a S-m-system of X if and only if
fm 1s a S-fuzzy m-system.

Problem 3.4.17: Let f be a S-fuzzy left ideal of a S-groupoid X, prove f is S-quasi
prime if and only if 1 — fis a S-fuzzy m-system.

Problem 3.4.18: Prove a left ideal L is S-weakly quasi prime if and only if fi is
S-weakly quasi prime.

Problem 3.4.19: Prove if X is a S-commutative groupoid, f a S-fuzzy left ideal of X,
then

i.  fis S-prime if and only if f'is S-quasi prime.
ii.  fis S-prime if and only if fis S-weakly quasi prime.

Problem 3.4.20: Let f be a S-left ideal of a S-groupoid X. Then prove i(f) is the
S-largest fuzzy ideal of X contained in f.

Problem 3.4.21: Let X be a S-groupoid with identity e and f a S-prime fuzzy left
ideal of S. If i(f) # 0, is i(f) a S-quasi prime fuzzy ideal of S?
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Problem 3.4.22: Prove a S-groupoid X is strongly semisimple if and only if every
S-fuzzy left ideal of X is idempotent.

Problem 3.4.23: Let X be a S-commutative groupoid. Is the S-fuzzy left ideals of X
S-quasi prime if and only if they form a chain and X is strongly semisimple?

Problem 3.4.24: Let X be a S-groupoid which is a S-fuzzy multiplication groupoid. If
f : X - T is an epimorphism then will T be a S-fuzzy multiplication S-groupoid ?

Problem 3.4.25: Can we prove a S-fuzzy ideal A of a S-groupoid X is S-prime if and
only if for any two S-fuzzy points X, ys, X;ys UA = x, O A or ys O A?

Problem 3.4.26: A S-fuzzy ideal A of a S-groupoid X is S-primary if and only for any
two fuzzy points X, ys, X;ys A = x_OA or y! OA for some n > 0. (Is this statement
a valid one?).

Problem 3.4.27: Let A be a S-fuzzy ideal of a S-groupoid X. Is A" also a S-fuzzy ideal
of X for alln >0 and A" = A™'?

Problem 3.4.28: Can we say A is S-prime then A = S(rad A)?

Problem 3.4.29: For any S-fuzzy ideal A of a S-groupoid X. Will S(rad A ) = n {plj
is a S-prime fuzzy ideal of X such that g = A}?

Problem 3.4.30: If A is a S-primary fuzzy ideal of a S-groupoid X then prove, S (rad
A) is a S-prime fuzzy ideal of X.

Problem 3.4.31: Let f: X — T be an epimorphism of S-groupoids and A, | be S-fuzzy
ideals of X and T respectively. Prove f ' (p) is a S-fuzzy ideal of X, and f(A) is a
S-fuzzy ideal of T.

Problem 3.4.32: If S(rad A) is S-prime then A is S-primary — prove !

Problem 3.4.33: Let A be S-prime. Then prove for all positive integer m, A™
is S-primary and its S-fuzzy radical is A.

Problem 3.4.34: Let A be S-prime and A™ # A™" for all m > 0. Is A™ S-prime? Justify.

Problem 3.4.35: If A is S-primary, prove that A = p" for some positive integer n
where p =S (rad A).

Problem 3.4.36: If A is a proper S-prime and p is a S-fuzzy ideal of X, X-S-groupoid
such that p < A", u <A™ for some n > 0 then A" = |; yiXx where y; 0 A - Prove.

Problem 3.4.37: If y is a non —idempotent S-prime fuzzy ideal of X then prove that

there is at most one S-prime fuzzy ideal [l <y such that there is no S-prime ideal
between. y and L.
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Problem 3.4.38: If S-prime fuzzy ideal of a S-groupoid X are linearly ordered with
respect to the inclusion relation ‘<’ then every non-idempotent S-prime fuzzy ideal is
S-principal — prove.

Problem 3.4.39: Let T be the unique S-maximal fuzzy ideal of X, X a S-groupoid
having the sup property. Then for every S-fuzzy ideal p of X either p = 1" for some n
>0 or 4 < 1", prove or disprove?

Problem 3.4.40: Let X be a S-commutative groupoid with every proper subset, which
is a semigroup, is a monoid. Prove every S-fuzzy principal ideal is S-fuzzy
multiplication groupoid.

Problem 3.4.41: If p is a S-compatible fuzzy relation on a S-groupoid X and fis a
S-groupoid homomorphism form X x X into Y x Y will f () be a S-compatible
relation on X?

Problem 3.4.42: Let A be a S-compatible fuzzy relation on the S-groupoid X and f is
a S-groupoid X and f'is a S-groupoid homomorphism from X X X into Y x Y will f(A)
be a S-compatible fuzzy relation on Y?

Problem 3.4.43: If A is a G-pre order on the set X prove A o A =A.

Problem 3.4.44: If p is an O -congruence fuzzy relation on the S-groupoid X and f'is
a S-groupoid homomorphism from D x D into T x T which is a semibalanced map
then prove f () is an a-congruence on D.

Problem 3.4.45: Let fbe a semibalanced map and a S-groupoid homomorphism from
D x D onto S X S. Prove if A is an 0-congruence fuzzy relation on D which is weakly
f-invariant then f(A) is an a-congruence on S.

Problem 3.4.46: If f is a S-groupoid homomorphism and a semibalanced map from
D x D onto T x T and A is a G-congruence fuzzy relation on D which is weakly
f-invariant then prove or disprove f(A) is a G-congruence on S with &(f (A)) = &A).

Problem 3.4.47: If f is a S-groupoid homomorphism and a balanced map from D x D
into TXT and A is a G-congruence fuzzy relation on D then prove f(A)isa
G-congruence on S with 0 (f(A)) = ().

Problem 3.4.48: Obtain some applications of S-fuzzy groupoids to S-fuzzy
automatons.

Problem 3.4.49: Let p be a S-fuzzy normal subloop of a loop L and t [1 [0, 1]. Prove
W is a congruence relation on the subgroup P in L relative to which p is defined.

Problem 3.4.50: Let p be a S-fuzzy normal subloop of a S-loop L and x [J P I L.

Then prove p(xy) = u(y) for every y U P if and only if u(x) = p(e), e the identity
element of the subgroup P relative to which p is defined.
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Problem 3.4.51: Let L be a S-loop p and A be S-conjugate subloop of L relative to
the subgroup P of L then prove o(A) =o(u).

Problem 3.4.52: Let p be a S-fuzzy subloop of a S-loop L then for any a [IP [ L
prove the S-fuzzy middle coset a ppa ' of the S-loop L is also a S-fuzzy subloop of L.

Problem 3.4.53: Let p be a S-fuzzy subloop a of S-loop L and a n a”' be a S-fuzzy
middle coset of the S-loop L relative to the subloop P in L then o (a p a ') = o() for
any a L P.

Problem 3.4.54: Show if p is a S-fuzzy subloop of a finite S-loop then prove in
general o(p) # o(L).

Problem 3.4.55: Let A be a S-fuzzy subloop of a S-loop L relative to a proper subset
P O L (P a subgroup in L). If A and p are conjugate fuzzy subsets of the S-loop L then
prove p is a S-fuzzy subloop of the S-loop L.

Problem 3.4.56: Let Ry and R, be any two fuzzy relations on a S-loop L. If R) and R,
are generalized conjugate fuzzy relations on the subgroup P of L; then prove R, and
R, are conjugate fuzzy relations on the S-loop L.

Problem 3.4.57: Let p be a S-fuzzy normal subloop of the S-loop L. Then prove for
any g 0 P we have p (gxg ') = p (g 'xg) for every x OP O L (P a subgroup L relative
to u).

Problem 3.4.58: Let A and u be S-conjugate fuzzy subloops of a S-loop L relative to
the subgroup P in L. Prove A X p and pu x A are S-conjugate fuzzy relations on L.

Problem 3.4.59: Prove if u is a S-positive fuzzy subloop of a S-loop L then any two
S-pseudo fuzzy cosets of p are either identical or disjoint.

Problem 3.4.60: Let pu be a S-fuzzy subloop of a S-loop L then prove the S-pseudo
fuzzy coset (ap)’ is a S-fuzzy subloop of the S-loop L for every a [0 P, P [0 L is the
subgroup relative to which p is defined.

Problem 3.4.61: Let p be a S-fuzzy subloop of a S-loop L and R;: L x L — [0, 1] be
given by R, (x, y) = pn (xy ") for every x, y OP O L (P a subgroup of L relative to
which p is defined). If A is a fuzzy subset of the S-loop L such that A [J p then prove
(a M) is a pre class of Ry for anya 0P O L.

Problem 3.4.62: Let p and A be any two S-fuzzy subloops of a S-loop L and
Ryna:LXL - [0, 1] givenby Ry np (X, y)=(A n W) (xy ') foreveryx,y 0P O L
(P a subgroup of L relative to which p and A are defined). Prove a Ryn is a similarity
relation on P only when both p and A are normalized.

Problem 3.4.63: Let L; and L, be any two S-loops. If T; is a S-I-fuzzy topology on

the S-loop L; and 1, is an indiscrete S-1-fuzzy topology on the S-loop G, then prove
every function is a S-I-fuzzy continuous map.
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Problem 3.4.64: Let T; and T, be two discrete S-l-fuzzy topology on the S-loops,
(Ly , ®) and (Ly, D) respectively. Then prove every S-loop homomorphism from
(L1, T1) » (La, T2) is a S-I-fuzzy continuous map but not conversely.

Problem 3.4.65: Let T, and T, be any two S-I-fuzzy topologies on the S-loops (L;, )
and (L, D respectively. Then prove every S-loop homomorphism need not in general
be a S-1-fuzzy continuous map.

Problem 3.4.66: Let f : (L, T;) - (Lo, T2) is a S-I-fuzzy homomorphism. Then prove
(L1, Ty) is a S-I-fuzzy Hausdorff space if and only if (L, T») is a S-1-fuzzy Hausdorff
space.

Problem 3.4.67: Formulate the Existence theorem for S-loops. Thatis “Let p be
a S-fuzzy subloop of a S-loop L. The congruence class [x], of p; containing the
element x of the subgroup P in the S-loop L (relative to which p is defined) exists
only when p is a S-fuzzy normal subloop of the S-loop L”. Is this the existence
theorem for S-loops? Justify.

Problem 3.4.68: Prove p is S-fuzzy divisible if and only if p. is S-fuzzy divisible.

Problems 3.4.69: Prove for all x, y [J PU L (P a subgroup of the S-loop L) and n [ N
ny = x implies p(x) = p(y) for all S-divisible fuzzy subloops p of L if and only if P is
torsion free.

Problem 3.4.70: Prove if B and C be S-fuzzy subloops of a S-loop L. Then (B n C)"
=B ' nCand(B n C) =B, n Cforallt (0, min {B(0), C(0)}).

Problem 3.4.71: Let {Jqg | a U Q} be a collection of all S-fuzzy subloops of
the S-loop L such that pg O p and pg (0) = p (0) for all o O Q. Prove p = [ JH, if

alQ

and only if p” = []H, and p= ZHG :

alQ aldQ

Problem 3.4.72: Let p be a S-fuzzy subloop of a S-loop L; p defined relative to P, P a
subgroup contained in L. Ifxy, ... , x, U P [J L are such that min {pu(x;), ..., W(Xn1)} >
W(Xn) then p(x; +...+ Xy) = U(Xn).

Problem 3.4.73: Is an S-(U, U)-fuzzy normal subloop a S-(U, I q)-fuzzy normal
subloop? Is the converse possible?

Problem 3.4.74: Is a S-([1, I q)-fuzzy subloop of'a S-loop L is said to be proper if it
is not constant on G? Justify.

Problem 3.4.75: Let f : L — L; be a S-loop homomorphism of any two S-subloops.
If A and W are S-fuzzy subloops of L and L, respectively; Prove f(A) and f '(p) are
S-fuzzy subloops of L; and L respectively.

Problem 3.4.76: Let f: L — L, be a S-loop homomorphism. Let A and p be any two
S-fuzzy subloops of L and L, respectively. Prove

287



i. £ '(n)isaS-fuzzy subloop of L.
ii.  f(A) is a S-fuzzy subloop of f (L).

Problem 3.4.77: Let A be a S-fuzzy subloop of a S-loop L. Then prove A is
S-(U, I q) — fuzzy normal if and only if )A\X = XX for all x [P [0 L where A is defined
relative to P.

Problem 3.4.78: Let A be a S-fuzzy normal subloop of a S-loop S. Let F be the set of
all cosets of A in P [J L (P is the subgroup of L relative to which A is defined). Prove F
is a group of all S-fuzzy cosets of P in L determined by A where the multiplication is
defined by A, A, = A, for all x, y O P O L. Let A:F - [0,1] be defined by
A (Ax) =M(\(x™),0.5) forall x OP O L. Prove A is a S-fuzzy normal subgroup of
F.

Several interesting problems can be defined in this direction.

Problem. 3.4.79: Will a homomorphic preimage of a S-quasi normal subloop be
S-quasi normal?

Problem 3.4.80: Let 1: G — [0, 1] be S-fuzzy sub-bigroupoid of type II. When will G
be a S-bigroupoid?

Problem 3.4.81: Let p: T - [0, 1] is a S-fuzzy sub-biquasi group of type II.
Is (T, +, *) a S-biquasi group?

Problem 3.4.82: Let pn be a S-fuzzy sub-biloop of a S-biloop L. Can p be a S-fuzzy
sub-biloop of type 11? Justify your claim.

Problem 3.4.83: Construct an example of a biloop L to distinguish between the
S-fuzzy sub-biloops of type I and type II.

Problem 3.4.84: Prove A S-fuzzy bi-ideal A of a S-bigroupoid X is S-prime if and
only if for any two fuzzy points X, ys, X; ys [ A implies x, [J A or ys L] A.

Problem 3.4.85: A S-fuzzy bi-ideal of a S-bigroupoid X is S-primary if and only if

for any two fuzzy points x., ys, Xr ys 0 A implies x, 0 A or y"'s [0 A for some n > 0.
Prove.

Problem 3.4.86: Prove for any S-fuzzy bi-ideal A of a S-bigroupoid X, S(birad A) =
N {H | K is a S-fuzzy prime bi-ideal of X such that p > A}.

Problem 3.4.87: Prove if A is a S-primary fuzzy bi-ideal of X, X a S-bigroupoid then
S(birad A ) is a S-prime fuzzy bi-ideal of X.

Problem 3.4.88: Let X be a S-fuzzy multiplication bigroupoid. If f: X — T is an
S-epimorphism of S-bigroupoids then prove T is a S-fuzzy multiplication bigroupoid.
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Problem 3.4.89: If S(birad A) is S-prime then show A is S-primary.

Problem 3.4.90: Let A be S-prime. Then prove for all positive integer n, A"is
S-primary and its S(birad) is A.

Problem 3.4.91: Let A be S-prime then A" # A" for all n > 0. Prove A" is S-prime.

Problem 3.4.92: If A is S-primary; prove A = p" for some positive integer n where p =
S(birad A).

Problem 3.4.93: If A is a proper S-prime bi-ideal of X and p is a S-fuzzy bi-ideal of a
S-bigroupoid X such that p < A", u <A™ for some n > 0 then prove A" = p : yiX«
where y; [J A.

(Here A : p is defined for any two S-fuzzy bi-ideals of a S-bigroupoid X as A : p =
0{3|dis a S-fuzzy bi-ideal of X such that L < A}; A : p is a S-fuzzy bi-ideal of X).

Problem 3.4.94: Prove every S-function generated fuzzy sub-bigroupoid is sub-
bigroupoid generated.

Problem 3.4.95: Every sub-bigroupoid generated S-fuzzy sub-bigroupoid is
isomorphic to a S-function generated fuzzy sub-bigroupoid. Prove.

Problem 3.4.96: Prove every S-sub-bigroupoid with respect to Min is S-sub-
bigroupoid generated.

Problem 3.4.97: Let u =V o fbe the S-pre image of vV under fthen p is a S-fuzzy sub-
bigroupoid of X with respect to T.

Problem 3.4.98: Let f : X — X' be a S-homomorphism from S-bigroupoid X
onto S-bigroupoid X'. Suppose that p is a S-fuzzy sub-bigroupoid of X with respect to
a t-norm T and that p has the S-sup property. Let v be a S-homomorphic image of p
under f, then prove V is a S-fuzzy sub-bigroupoid of X' with respect to T.

Problem 3.4.99: Is a S-penultimate sub-biloop of a S-fuzzy sub-biloop a proper
S-sub-biloop of the given S-biloop L?

Problem 3.4.100: Let pu be a non constant S-fuzzy sub-biloop of a S-biloop L. Then,
prove U is S-penultimate sub-biloop, SP (p) is a proper S-sub-biloop of L if and only
if p attains its infimum.

Problem 3.4.101: Prove if n and p are S-fuzzy sub-biloops of a S-biloop L then the
set product nop contains N and p if and only if n and p have the same S-bitip that is

n(e) = p(e) i.e. Nier) U Na(e2) = pier) U pa(er) wheren=n; U nzand p = py U po.

Problem 3.4.102: Let n and p be S-fuzzy sub-biloops with the same bitip of a
S-biloop L. Then prove the set product n o p is a S-fuzzy sub-biloop generated by the
union of N and p if nop is a S-fuzzy sub-biloop of S-biloop.
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Problem 3.4.103: Let n and p be S-fuzzy sub-biloops of a S-biloop L. Prove the
S-penultimate product n o p contains n and p if N and p are S- bisimilarly bounded.

Problem 3.4.104: Let n and p be S-fuzzy sub-biloops of a S-sub-biloop L. Then
prove that the set product p o ) is a S-fuzzy sub-biloop if and only ifnop=pon.

Problem 3.4.105: Let n and p be S-fuzzy sub-biloops of a S-biloop L. Prove the
S-penultimate biproduct N © p is a S-fuzzy sub-biloop if and only if N © p=p © n.

Problem 3.4.106: Prove a fuzzy subset A of a S-bigroupoid X is a S-fuzzy sub-
bigroupoid of X if and only if A; is a S-sub-bigroupoid of S for all t [J (a, k]

Problem 3.4.107: Let f be a S-bigroupoid epimorphism of X onto a S-bigroupoid T.
Let A and p be S-fuzzy sub-bigroupoids of X and T respectively. Then prove

i.  f(MA)is a S-fuzzy sub-bigroupoid of T.
ii. f'(u)is a S-fuzzy sub-bigroupoid of X.

Problem 3.4.108: Prove a fuzzy subset A of a S-bigroupoid X = X; I Xj is said to be
a S-fuzzy regular bigroupoid of X if and only if A is a regular S-bigroupoid of X for
all t O (a, k].

Problem 3.4.109: Prove a S-fuzzy left bi-ideal f of a S-bigroupoid X is S-prime if and
only if for any two fuzzy points x!,y! OP, 0 X, and x7,y. OP, O X,(X=X; 0 X,)

(it >0) x'oP oy, oP Of (and x’0P,0y oP, Of, here f = fi 0 £) implies
x! Of,x2 0f, or y, Of, y; Of, .

Problem 3.4.110: Prove a S-fuzzy left bi-ideal f of a S-bigroupoid X is S-quasi prime
if and only if for any two fuzzy points x!,y; 0X, and x7,y;OX, (rt>0)

x!oX, oy} O f, and x’0X,0y. O f,
implies that x, Uf or y; U f.
(i.e. yi,x. Ofor y;, x sz).

Problem 3.4.111: Will the following statements be equivalent where X a S-
commutative bigroupoid. F a S-fuzzy left bi-ideal of X.

i.  fis S-prime bi-ideal.

ii.  fis S-quasi prime bi-ideal.
iii.  fis S-weakly quasi prime.
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CHAPTER FOUR

SMARANDACHE FUZZY RINGS AND
NON-ASSOCIATIVE RINGS

In this chapter we introduce the notion of Smarandache fuzzy rings and Smarandache-
fuzzy non-associative rings. This chapter has five sections. In the first section we
introduce the concept of Smarandache fuzzy rings exhibited in 38 definitions and
thirty theorems. In section two the notion of Smarandache fuzzy vector spaces are
defined. Section three deals with Smarandache fuzzy non-associative rings. Section
four deals with Smarandache fuzzy birings and several of its properties are defined
and studied. In section five we have given 125 problems for the researcher. As this
book is a research book we propose more problems.

4.1 Smarandache fuzzy rings definitions and properties

In this section we introduce the notion of Smarandache fuzzy rings. The study fuzzy
rings [36, 37, 40, 109] is itself recent and still recent is the study of Smarandache
rings [132]. So in this section for the first time we introduce the notion of
Smarandache fuzzy rings. Here we give several examples and give some important
properties about them.

DEFINITION 4.1.1: Let R be a S-ring. A fuzzy subset u of R is said to be a
Smarandache fuzzy ring (S-fuzzy ring) relative to a subset P of R where P is a field if
M P - [0, 1] is such that

p(x—y) 2min {u (x), u(y)}
1y ) 2min {u (%), u()}
v Z0forallx, y [JP.

This S-fuzzy ring will be called as type I; S-fuzzy ring. The condition of S-fuzzy ring I
can be still tightened.

DEFINITION 4.1.2: Let R be a S-ring. Let (i: R — [0, 1] be a fuzzy subset of R. If u is
such that every proper subset P; [/R say i = 1, 2, ..., n where P; is a subfield of R; we
have W: P; — [0, 1] is a fuzzy subfield of R for every P; (i = 1, 2, ..., n) then we call u
a Smarandache fuzzy strong ring of type I (S- fuzzy strong ring of type ).

THEOREM 4.1.1: Every S-fuzzy strong ring of type I is a S-fuzzy ring of type 1.

Proof: Direct by definitions, the converse is not true.

THEOREM 4.1.2: A S-fuzzy ring of type I need in general be a S-fuzzy strong ring of
type 1.

Proof: We prove this by an example. Let Zs = {0, 1, 2, 3, 4, 5} be a S-ring. P = {0, 2,
4} is a subset of Z¢ which is a field.
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Define p: Z¢ — [0, 1]. By
0 if xUJ[0, 1, 3, 5]
pu(x)=+<0.5 ifx=2
1 if x =4.

Clearly p restricted to P is a S-fuzzy ring I which is not S-fuzzy strong ring I as p on
the set P; = {0, 3} which is a field in Z¢ and p is trivial on P;. Hence the claim.

We define Smarandache fuzzy ring of type II.

DEFINITION 4.1.3: Let R be any ring li: R — [0, 1] be a fuzzy subset of R. We say u is
a Smarandache fuzzy subring of type Il (S-fuzzy subring of type II) if there exist a
fuzzy subset 0on R such that o[/ ltand 0: R — [0, 1] is a fuzzy subfield of R. If for a
given u on a ring R no such o exists such thato [J i we say u is a Smarandache non-
fuzzy subring (S-non-fuzzy subring).

Even if 0[] is a fuzzy subring of R still we call u only a S-non-fuzzy ring.

DEFINITION 4.1.4: Let R be a S-ring. A fuzzy subset u of the ring R is called a
Smarandache fuzzy ideal (S-fuzzy ideal) of R if the following conditions are true

i. R has a proper subset X such that

u(x=y) 2min {u (x), u(¥)}
U (xy) 2max {u (x), u(y)} forall x, y [JX. i.e. u on x is a fuzzy ideal.

ii. X contains a proper subset P such that P is a field under the operations of
Rand i: P — [0, 1] is a fuzzy subfield.

Example 4.1.1: Let Z;, = {0, 1, 2, ..., 11} be a S-ring under multiplication and
addition modulo 12.

X =10,2,4,6,8, 10}, 1: Z1» - [0, 1]

0.1 ifxisodd
pux)=<1 ifx=4,80
0.5 ifx=2,6,10.

It is easily verified p is a S-fuzzy ideal of Z5».

Notation: If p and 0 are S-fuzzy ideals of a ring R relative to the same ideal and
fuzzy subfield; then the product p o 8 of u and O defined by

(108) (9) = sup [min(min(u((y,).6(z))))

X=X XizZ;

where x, yi, zi X [0 R, X a S-subring.

292



It can be easily verified that pL o 8 is a S-fuzzy ideal of R.

DEFINITION 4.1.5: A S-fuzzy ideal u of a ring R a Smarandache fuzzy prime (S-fuzzy
prime) if gand @are S-fuzzy ideals of R the condition o 8 [J |1 implies either o [J [ or
60u

Now we proceed on to define Smarandache level subring.

DEFINITION 4.1.6: Let u be a S-fuzzy subring of a S-ring R; t [/ [0, 1] and t < u(0).
The S-fuzzy subring (ideal) u, is called a Smarandache level subring (S-level subring)
of u.

DEFINITION 4.1.7: Let u by any fuzzy subset of a ring R. The smallest S-fuzzy ideal of
R containing u is called the S-fuzzy ideal generated by u and is denoted by (14).

THEOREM 4.1.3: Let u be any fuzzy subset of a S-ring R. Then (Xu) = X¢u -
Proof: Left as an exercise for the reader to prove.

DEFINITION 4.1.8: Let i be a fuzzy subset of a S-ring R. Then the fuzzy subset u” of R
defined by u” (x) = sup{k | x 7 (W) } is a S-fuzzy ideal generated by u in R according
as (W) is a S-fuzzy ideal generated by uy in R. i.e. u'(x) =t whenever x [J( 1) and
x () forall s >t.

DEFINITION 4.1.9: Let u be any S-fuzzy ideal of a S-ring R. The fuzzy subset ,u; of R

where x [JP [JR (P a subfield of R) is defined by ,u; (r) = u(r—x) for all r [JR, is
termed as the Smarandache fuzzy coset (S-fuzzy coset) determined by x and p.

DEFINITION 4.1.10: A fuzzy subset A of a S-ring R is said to be an Smarandache
(L] 1 q) fuzzy subring (S-(L] [I] q) fuzzy subring) of R if for all x, y [JP [/ R (Pis a
subfield relative to which A is defined) and t, v [7(0, 1]

i Xy Ve A=+ Yvee D gA .
il. Xt [TA = (—X)[ a7 qA .
iii. Xy Yr A= V)pee,n D gA.

THEOREM 4.1.4: A fuzzy subset A of a S-ring R is an S-(L] I q) fuzzy subring of R if
and only if A(x—y), A (xy) =M (A(x), A(y), 0.5) forall x, y [/ X [JR, X a proper subset
of R. which is a field.

Proof: Direct by the definitions.

DEFINITION 4.1.11: A fuzzy subset A of a ring R is said to be a Smarandache
(L] 11 q)-fuzzy ideal (S-(L] 1] q)-fuzzy ideal) of R if

i. AisanS-([J [T q) fuzzy subring of R .
ii. x;OAandy [JR = (xy):, (vx): ] qA.
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(Just we once again recall the notation a fuzzy point, x, is said to belong to (resp be
quasi coincident with) a fuzzy set A written as x; [X  (resp x, q A) if A (x) =t (resp.
Ax) +t>1), x, A orx;q Awill denoted by x, [l qA) [25].

In view of these definition the reader is expected to prove.

THEOREM 4.1.5: A fuzzy subset A of a S-ring R is an (L[] [l q)-fuzzy ideal of a S-ring
R if and only if

i. A@x—-y)=MAKX), ADY), 0.5).
ii. Ay, Aox) =M (A(K),0.5) forallx,y [JX[JR.

(X a proper S-subring of R i.e. X contains a subfield as a proper subset).
DEFINITION 4.1.12: An S-([] [/ q) fuzzy ideal of a S-ring R is said to be

I Smarandache (L] 1l] q) fuzzy semiprime (S-(L] [[I] q)-fuzzy semiprime) if for
allx, y OX OR and t 0(0,1], (x*); OA =x, [T gA.

ii. Smarandache (L] [[l] q)-fuzzy prime (S-(L] 1] q)-fuzzy prime) if for all x, y
[ X[ORandt [0, 1] (xy): A = x; [l gA or y, [l gA.

iii. Smarandache (L[] q)-fuzzy semiprimary (S-(L] 1] q)-fuzzy semiprimary) if
forallx,y JX [JRand t [J(0, 1], (xy); A implies x;' [l qAor y/" [ gA for

some n, m [JN.

iv. Smarandache (L] 1] q)-fuzzy primary (S-(L] [l q)-fuzzy primary) if for all x,
yUOXLORandt [J(0, 1], (xy): A =x, 1] gAor y [l qA for somen [JN.

The following three theorems are left as an exercise for the reader.

THEOREM 4.1.6: A fuzzy subset A of a S-ring R is a S-([] [l q) fuzzy subring (ideal)
of R if and only if A, is a S-subring (S-ideal) of R for all t [J(0, 0.5].

THEOREM 4.1.7: A S-(L] [ q) fuzzy ideal of R is S-(L] [l q) fuzzy prime if and only
if Max {A (x), A )} = M (A(xy), 0.5) for all x,y [7X [JR.

THEOREM 4.1.8: 4 S-fuzzy ideal A of a S-ring R is a S-([]/[] q) fuzzy semiprime (or
S-prime or S-semiprimary or S-primary) if and only if A, is S-semiprime (or S-prime
or S-semiprimary or S-primary) for all 0 < t < 0.5.

Now we proceed on to define Smarandache ([J,I1 q) fuzzy radical of A.

DEFINITION 4.1.13: Let A be an S- (L]l q) fuzzy ideal of R. The fuzzy subset Rad A
of R is defined by
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M (sup A(x" );nON },0.5 )if A(x)<0.5

A =
(5 Rad 1) () {)I(x)if)l(x)20.5

is called the Smarandache (L] 1] q) fuzzy radical (S-(L] D] q) fuzzy radical) of A.
Using the definitions and results of [23] the reader is expected to prove.

THEOREM 4.1.9: Let A be an S-([] Il q) fuzzy ideal of the S-ring R. Then

i S Rad Ais an S-([] [T q) fuzzy ideal of R .
ii. If A has the sup-property then S Rad A, = (S Rad A), for all 0 <t <
0.5.

DEFINITION 4.1.14: The subset A, = {x JX | Ax) =2 torA(x) +t>1}={x X
x; [ qA} is called ([T q)-level subset of X determined by A and t.

DEFINITION 4.1.15: A4 Smarandache L-fuzzy ring (S-L fuzzy ring) is a function
u: R — L, L adistribution lattice where (R, +, *) is a S-ring that satisfies,

i u ¥ 0.
ii. ux—y) = uix)Ju®) for every x, y [/P [JR
(P a subfield relative to which u is defined).

iii. u(xy) 2u (x) Lu (v) forevery x, y [JP [JR.
iv. If R is unitary then u(1) = u(0).

S (u) is a S-subring of R where ulls denotes the restriction of u to S(u). Let u : R - L
and u': R' — L are S-L-fuzzy ring (R and R' S-ring).

A Smarandache homomorphism between u and p' is a S-ring homomorphism
f: R — R'that satisfies u' (f(x)) = u(x) for all x in P [JR (P is a subfield relative to
which u is defined )i.e. f'(u) = u .

DEFINITION 4.1.16: A Smarandache L-fuzzy subring ( S-L-fuzzy subring ) of a

S-L-fuzzy ring; [is a S-fuzzy ring u' : R - L (R a S-ring) satisfying u'(x) < u(x) for
all x [JP [JR (where u is defined relative to the subfield P in R).

For u' a S-fuzzy subring of the S-L-fuzzy ring u with L totally ordered. We shall call
' the restriction of u' to S(u). It can be easily proved u'|s is a S-fuzzy subring of ull.

DEFINITION 4.1.17: Let u: R — L be a S-L-fuzzy ring. A Smarandache L-fuzzy ideal
(S-L-fuzzy ideal) of w is a map O: R — L such that the following properties hold.

i O¥# 0.

ii. O(xy) 290 (x) LJO(y) for everyx, y [JP [JR .
iil. Axy) 2u (x) JO(y) for everyx, y [JP [JR .
iv. O(x) <u (x)for every x[JP [JR .

(P is the subfield relative to which the S-L fuzzy ring u is defined).
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As in case of S-L-fuzzy subring, for 0a S-L-fuzzy ideal of the S-L-fuzzy ring u with L
totally ordered, O the restriction of Oto S (u). It holds that Ok is a S-L-fuzzy ideal
of ulls where S(1Y) is a S-subring of R, s denotes the restriction of [ to S(14).

DEFINITION 4.1.18: Let u be a fuzzy subset and t [/ L. The t-level cut u, will be {x [JR
| U(x) =t} and the Smarandache t-level cut (S-t-level cut) Su, will be {x [JP [JR | l(x)
2 t; P is the subfield of the S-ring R relative to which u is defined} Analogously the
t-level strong cut will be {x [JR | i (x) >t} and Smarandache t-level strong cut
(S-t-level strong cut) Sy, will be {x [JP [JRld (x) >t — P defined above} and finally
u” will stand for {x ORI (x) = u (0)} and Su’ = {x OP ORI (x) = u(0), ‘0’ the
additive identity of P}.

DEFINITION 4.1.19: Let S be a O-L-fuzzy ideal of u. We define Smarandache fuzzy
quotient ring ( S-fuzzy quotient ring) u/s (710 /s as u/sld /s: S wlh — L
with u/sl10/s (x + @) = u (x) where a is the S-ideal of S(u), S-maximal among those
contained in S° n SiL.

Now the notion of Smarandache prime L-fuzzy ideals is defined.

DEFINITION 4.1.20: A S-L-fuzzy ideal O of a S-L-fuzzy ring u is said to Smarandache
prime (or Smarandache L-prime) if O ¥ 1 and it satisfies Oxy) [Jx) [Ju(y) < dx)
[Jdy) for every x, y [JP [JR (P a subfield of R relative to which u is defined).

Clearly if u # 1 then we have O (xy) <90 (x) [1O(y) for every x, y [JP [JR. Further a
S-L-fuzzy ideal Oof a S-L-fuzzy ring R is S-L-prime if for every x, y [JP [JR, dxy) =
A0) implies dx) = &0) or Ay) = &0). We see if L is totally ordered then it is evident
that dxy) < dx) [1dy) implies O (xy) = O(o) implies O(x) = O(0) or O(y) = 0(0).

A Smarandache strongly prime L-fuzzy ideal (S-strongly prime L-fuzzy ideal) is
defined as a non-constant S-fuzzy ideal O of a S-ring u that satisfies dxy) = 9dx) or

dxy) = ) forall x, y [JP [JR.

A Smarandache weakly completely fuzzy prime ideal (S-weakly completely fuzzy
prime ideal) is defined when L = [0, 1] as a non constant S-fuzzy ideal O of R that
satisfies O (xy) = max {0 (x), O(y)} for every x, y [JP [JR. (P is a subfield relative to
which O is defined).

Note: This notion can be easily generalized to the case in which we have as arbitrary
lattice L, changing maximum by supremum.

DEFINITION 4.1.21: A S-fuzzy ring u is said to an Smarandache fuzzy integral domain
(S-fuzzy integral domain) if x, y = 0 and u(x) LJu(y) >0 impliesx =0ory =0, x, y [J
P [JR (P is the subfield of the S-ring R relative to which u is defined).

DEFINITION 4.1.22: Let O be a S-L-fuzzy ideal of a S-L-fuzzy ring u. The
Smarandache L-fuzzy radical (S-L-fuzzy radical) of Ois the fuzzy subset of R defined
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by Sr(d)(x) = gv O (") u(x), when u = 1, definition transforms Sr(J(x) :nDDN ox"),
Sr(0)(x) = sup {t [k [] Sr(d,)}.

The following theorems are left as exercises for the reader to prove.
THEOREM 4.1.10: Let O be a S-L-fuzzy ideal of u. Then Sr(0) is S-L-fuzzy ideal of u.

THEOREM 4.1.11: Let O be a S-L-fuzzy ideal of a S-L-fuzzy ring u. Then Sr (r(0)) =
Sr(0).

THEOREM 4.1.12: Let O be a S-prime L-fuzzy ideal of u then Sr (0) = O
THEOREM 4.1.13: Let O be a S-L-fuzzy ideal of u then 0 [7 Sr(d).
THEOREM 4.1.14: Let O, , 0, be S-L-fuzzy ideal of a S-fuzzy ring u

i. Ifo o then Sr (o) [JSr(d).

il. Sr(or n &) =S8r(d) n Sr(d).
iii. If L is totally ordered then

Sr(d) = (9.
3'0—prime
50

Now we proceed on to define Smarandache-primary L-fuzzy ideals.

DEFINITION 4.1.23: 4 S-L-fuzzy ideal O is said to be Smarandache L-primary
(S-L-primary) if 0 (xy) Du(x) Du(y) <0 (x) O gv O0")} forallx, y X [JR (X a

proper subset of R which has a proper subset which is a subfield relative to which 0
is defined).

In case L is a totally order set i.e. L = [0, 1] then we have S-L-primary will coincide
with the notion of S-primary.

DEFINITION 4.1.24: A S-fuzzy ideal A of a S-ring R is called

i Smarandache semiprime (S-semiprime) if A(x’) = Ax) for all x O P R
(P is a subfield of R relative to which A is defined).

ii.  Smarandache prime (S-prime) if A(xy) = A(x) or A(xy) = A(y) for all x, y [J
P/J/R.

iii. Smarandache semiprimary (S-semiprimary) if for all x, y [J P [J R,
A(xy) S AE") for some positive integer n or A(xy) < A(") for some positive
integer n.

iv. Smarandache primary (S-primary) if for all x, y [JP [JR, A(xy) = A(x) or

AO") for some positive integer n.
Y p 8
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v.  Maximal if the level S-ideal { x [P [JRIA (x) = 1} is maximal.

DEFINITION 4.1.25: Let A be a S-fuzzy ideal of a S-ring R. The fuzzy subset S rad A of
R defined by S(Rad A) (x) = sup {A (x") | n >0} is called Smarandache fuzzy radical
(S-fuzzy radical) of A .

Several inter-relations between S-fuzzy prime, S-fuzzy primary, S-fuzzy semiprimary
etc can be obtained as a matter of routine as in of fuzzy rings.

DEFINITION 4.1.26: A S-fuzzy ideal u of a S-ring R is called Smarandache fuzzy
irreducible (S-fuzzy irreducible) if it is not a finite intersection of two S-fuzzy ideals of
R properly containing . If S-fuzzy ideal u of a S-ring R is called Smarandache fuzzy
weakly irreducible (S-fuzzy weakly irreducible) if it not a finite intersection of a
S-fuzzy ideal and a fuzzy ideal of R properly containing u otherwise u is termed as
Smarandache fuzzy reducible (S-fuzzy reducible).

THEOREM 4.1.15: If u is any S-fuzzy prime ideal of a S-ring R, then u is S-fuzzy
irreducible.

Proof: Straightforward as in case of fuzzy prime ideals.
It is left for the reader as an exercise to prove the following theorem.

THEOREM 4.1.16: Let u be a S-fuzzy ideal of a S-ring R. If for some x, y [/P [J/R (P is
the subfield relative to which u is defined) [(x) <u (y) then u (x—y) = u(x) = u(y — x).

Just for the sake of completeness we recall the definition of coset of a fuzzy ideal and
its Smarandache analogue.

DEFINITION 4.1.27: Let J: R — [0, 1] be a S-fuzzy ideal where R is a S-ring . The
fuzzy subset x + J : R — L = [0, 1] defined by (x + J)y = J(y — x) is called a
Smarandache coset of the S-fuzzy ideal (S-coset of the S-fuzzy ideal) J.

THEOREM 4.1.17: If J: R — [0, 1] is a S-fuzzy ideal ,then x +J =y + J if and only if
J(x—y) =J(0) . In that case J(x) = J(y).

Proof: As in case of fuzzy ideal. Hence left for the reader to prove.

THEOREM 4.1.18: Every S-coset of a fuzzy ideal J: R — [0, 1] is constant on
every S-coset of a (non-fuzzy) ideal R; of R. More specifically x + J (z) = J(y — x) for
all z [y + Ry. In particular x + J (z) =J (x) for all x [JR;.

Proof: As in case of fuzzy ideals the proof is straightforward.
DEFINITION 4.1.28: The ring R/J of the S-cosets of the S-fuzzy ideal J is called the

Smarandache factor ring (S-factor ring) or the Smarandache quotient ring (S-quotient
ring) of R by J.
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Let SF denote the set of all Smarandache fuzzy ideals of a S-ring R.

DEFINITION 4.1.29: Let A [/ SF. A representation of A is a finite intersection
A=Q0;n Q>n ... N Qyof S-fuzzy primary ideals of R is called a Smarandache fuzzy
primary representation (S-fuzzy primary representation) of A. If is called irredundant
or reduced if no Q; contains

Ne,

J=1

and the Q; have distinct S-radicals, i = 1, 2, ..., n.
Now we proceed on to define Smarandache fuzzy prime ideal divisor of A.

DEFINITION 4.1.30: Let i [/SF. A S-fuzzy prime ideal o of R is called a Smarandache
fuzzy prime ideal divisor (S-fuzzy prime ideal divisor) of u if o [l and ol s

A Smarandache fuzzy prime ideal divisor o of U is called minimal or isolated if there
does not exist a S-fuzzy prime ideal divisor 0 of U such that o' [/ oand 0'Z O.

DEFINITION 4.1.31: Let u be a S-fuzzy subring of a S-ring R. We say that u is a
Smarandache fuzzy quasi-local subring (S-fuzzy quasi-local subring) of R if and only
if for all x [JR and for all y [JR such that y is a unit.

() 2min {u(x), p()} or equivalently u(y) = p(y~").
The following theorem is straightforward hence left for the reader to prove.

THEOREM 4.1.19: Let R be a S-quasi local ring. If u is a S-fuzzy quasi local subring
of R, then for all t such that 0 <t <u (1). u, is a S-quasi local ring and M n u, is the
unique maximal ideal of u. (M denotes a unique S-maximal ideal of R).

Proof: p is a S-fuzzy subring of R. Using p is S-quasi local p(x) = p(x ') leading to
-1
x U Ht.

Notation: For the sake of completeness we recall that u* ={xUOPOROp(x)>0}is a
S-subring of the S-ring R. Let R be a non empty subset of a set S and let A be a fuzzy
subset of R. If B is an extension of A to a fuzzy subset of S, then A; n By = A, for all
s,tsuchthat 0 <St<s<1. A is an extension to a fuzzy subset A° of S such
that (A%), O B, for all t (] Im (A).

A%(y) = sup {t Oy OBy where B 0 B = {BOtOIm (A)}, A%(y) =
max {m [y [ By}.

Let I be an ideal of a ring R, S be a subring of R. I° denotes the ideal of S generated by
I. If A is a fuzzy ideal of R; S a subring of R, such that A has sup property. If

U@ =s

tOIm(A)
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and for all s, t 0 Im (A), s =2 t. A, n (Ay)° = A, then A has a unique extension to a
fuzzy ideal A® of S such that (A%), = (A,)° for all t 0 Im (A) and Im (A®) = Im (A).

Further A%(xy ') = min {A%(x), A%(y)} if and only if for all s, t 0 Im (A), s = t.
Further A can be extended to a fuzzy quasi local subring A® of Rp if and only if for all
s, t UIm(A),s2t A n(A,), =A where P;=P n A foralls [JIm (A). Let R and

S be S-rings, fa S-ring homomorphism of R onto S. Let T denote f (R).

DEFINITION 4.1.32: Let A and B be fuzzy subsets of R and T respectively. Define the
fuzzy subsets f (4) of T and f(B) of R by f(A) (v) = Sup {A(x) | f(x) =y} forall y IT.
1 (B) (x) = Bf(x)) for all x [JR.

DEFINITION 4.1.33: Suppose A and B are S-fuzzy ideals of R and T respectively. Then
we have f(4) and [ (B) are S-fuzzy ideals of T and R respectively, with f(4)(0) = A(0),
1 (B)(0) = B(0); where R and S are S-rings, f a S-ring homomorphism of R into S;
T denotes f(R). If I is an S-ideal of R, then the ideal f (1) € or I° is defined to be the
S-ideal of S degenerated by f (I) and it is called the Smarandache extended ideal
(S-extended ideal) or Smarandache extension (S-extension) of 1. If J is an S-ideal of S,
the S-ideal J° = f'(J) is called the Smarandache contracted ideal (S-contracted ideal)
or the Smarandache contraction (S-contraction) of J.

The following result is straightforward from the very definitions.

THEOREM 4.1.20: Let A be a S-fuzzy ideal of the S-ring R. The

L S U fA)n
ii. If A has the sup property then f (4) o= f(AD.

We proceed on to define the notion of Smarandache f-invariant ideal.

DEFINITION 4.1.34: Let A be a S-fuzzy ideal of S-ring R. A is called Smarandache
f-invariant (S-f-invariant ideal) if and only if for all x [JP [JR, f(x) = f(y) implies A(x)
= A(y) . (P the subfield relative to which A is defined).

The following theorems are straightforward; hence left for the reader to prove.

THEOREM 4.1.21: Let A be a S-fuzzy ideal of R. Then A is a S-fuzzy ideal of R if and
only if A(0) = 1, |Im(A)| = 2 and A is a prime ideal of R.

THEOREM 4.1.22: Let A be an Smarandache f-invariant fuzzy ideal of the S-ring R,
such that A has the sup property. If Agis a S-prime ideal R, then f (A7) is a S-prime
ideal of T.

THEOREM 4.1.23: Let A be a S-f-invariant fuzzy ideal of the S-ring R such that Im (A)
is finite.

If A is a S-prime ideal of R then f(Ar) = f(A) o
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THEOREM 4.1.24: Let A be an S-f-invariant fuzzy ideal of R. If A is a S-fuzzy prime
ideal of R then f(A) is a S-fuzzy prime ideal of T.

(Here f: R - S; R and S, S-rings and f'is a S-ring homomorphism and f(S) = T).

Several other interesting results in this direction can be obtained using the results of
[84]. The innovative reader is expected to find several Smarandache analogous of
these results and prove the above theorems; as the proof of these theorems can be
done as a matter of routine using mainly the definitions.

Throughout this section Q denote a non empty set we take R to be always a S-ring
and all fuzzy ideals are S-fuzzy ideals of R.

DEFINITION 4.1.35: Let {Aqld [] Q} be a collection of fuzzy subsets of a S-ring R.
Define the fuzzy subset z A, of R and for all x [JR by

allQ

(ZAHJ (x) = sup {inf {{Aexa @ O} |x = Y 4,}.

alQ all@

Forx, xq JR, x = Zxa.

alQ

DEFINITION 4.1.36: Let {Aq [Ja [ Q } be a collection of all S-fuzzy subrings
(S-ideals) of a S-ring R. Then z A, is a S-fuzzy subring (S-fuzzy ideals) of R and A,

allQ

0 ZAG forall a [JQ. Let {Aqld []Q} []{A} be a collection of S-fuzzy subrings of

adQ
R. Then A is said to be the Smarandache fuzzy weak direct sum (S-fuzzy weak direct

sum) of the Ay if and only if A = ZAG and for all x [J X [JR (x Z 0, A defined

aldQ

relative to X in R), x Z 0, (AB N ZAGJ (x) = 0. If A is the S-fuzzy weak direct sum of

alJQB

Aqthen we write A = [ | A, We have A" = {x R | A (x) >0} and Ap={x [OR | A (x)

adQ
= A(0)}.
THEOREM 4.1.25: Let A be S —fuzzy subring (S-fuzzy ideal) of a S-ring R. Then A is
a S-subring (S-ideal) of R. If L has the finite intersection property then A" is a S-
subring (S-ideal) of R.

Proof: Follows by the very definitions, hence left for the reader to prove.

Notation: Let A and B be fuzzy subsets of a S-ring R. Define the fuzzy subset AB of
R for all x J R, by (AB)(x) = sup{inf(inf{A(y;), B(zi)}) such thati=1,2, ..., n [

X = Zn:yizi,nDN}.
i=1
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Using this notation prove the following theorem:

THEOREM 4.1.26: Let A and B be S-fuzzy subrings (S-fuzzy ideals ) of R. Then AB is a
S-fuzzy subring (S-fuzzy ideal) of R.

THEOREM 4.1.27: Let {Aqld []Q} be a collection of S-fuzzy subrings of R. (i.e.Aa: R

— L where L has the finite intersection property Ag’s defined relative to a fixed
subfield X of R. Then

ZAL’::[ZAHJ*.

all@ all@

Proof: x U [ZAGJ if and only if [ZAGJ(X) > 0 if and only if sup{inf{Aq(xq)!
adQ adQ

ab Q}k = > x, >0ifand only if x = » x, for sum xq 0 A} if and only if x O

a0Q a0Q
*
A

aldQ

Prove on similar lines.

THEOREM 4.1.28: Let { A Ja [JQ} be a collection of S-fuzzy subrings of R; where
Aa: R — L, L has intersection property, then prove.

ne=(n+)

all@ allQ

(all A4' s defined relative to one fixed subfield).

THEOREM 4.1.29: Let {A,ld/[@ } be a collection of S-fuzzy subrings of R relative to a
complete distributive lattice L with finite intersection property. Then for all B[] Q.

A; N ZA; = {0} if and only if for all x [JX [JR; x Z0), [Aﬁ N ZAHJ (x) = 0.

a0, a0,

Proof: Straightforward using the definitions.

Now we define Smarandache pairwise co maximal fuzzy ideals of a S-ring with
identity.

DEFINITION 4.1.37: Suppose that R is a S-ring with 1. Let Ao, al@ be S-fuzzy ideals
of R. Aq are said to be Smarandache pairwise co-maximal (S-pairwise co-maximal) if

and only if Ag Z Ok for all a 1 Q and Aqg + Ap= &k forall a, BLQ aZp

It is left for the reader to prove using the definitions.
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THEOREM 4.1.30: Suppose that R is a S-ring with identity. Let {Aq | a [J Q} be a
collection of finite valued S-fuzzy ideals of R. Ay are S-pairwise co-maximal if and
only if Aanare S- pairwise co-maximal.

We define the notion of Smarandache complete fuzzy direct sum.

DEFINITION 4.1.38: Let {Ry| a [JQ } be a collection of S-commutative ring and let
Aq be a S-fuzzy subring of R for all a [J Q2 then the Cartesian cross-product X A, is

alQ
called Smarandache complete fuzzy direct sum (S-complete fuzzy direct sum) of the

O O O a
Aa. Define the fuzzy subset ZAH of Z:R[7 by for all x [y (xq) [J ZRH ) ZAH (x)

all@ all@ all@ all@

O
= X A, (xg). Then ZAH is called the Smarandache weak fuzzy direct sum (S-weak

all@ all@

fuzzy direct sum) of the Ag.

Several interesting results in this direction can be obtained by any studious reader.
Here it is pertinent to mention that the definition of several fuzzy concepts are defined
in different ways by different researchers hence in this text one may find that we
would have at many instances recalled those definitions. Also in some places we
would have recalled the definition it is a pertinent repetition, mainly for easy reading.

Finally we mention that our study is not totally exhaustive about all fuzzy algebraic
structures. We give here only those fuzzy algebraic structures for which we are in a
position to obtain a Smarandache analogue. Every chapter on Smarandache notions
ends with a set of problems several of them are routine theorems and some of them
are research problems but an innovative researcher can certainly work on them.

4.2. Smarandache Fuzzy vector spaces and its properties

The study of Smarandache fuzzy vector spaces is new as the notion of Smarandache
vector spaces is meager. A little insight about S-vector spaces can be had from [135].
In this section we define S-fuzzy vector spaces and its properties. Nearly 15
definitions about fuzzy vector spaces are given in this section.

DEFINITION [135]: The Smarandache K-vectorial space (S-K-Vectroial space) is
defined to be a S-vectorial space (A, +, ) such that a proper subset of A is a
K-algebra (with respect to the same induced operation and another 'x' operation
internal on A where K is a commutative field.

DEFINITION [135]: Let A be a K-vectorial space. A proper subset X of A is said to be
a Smarandache K-vectorial subspace (S-K-vectorial subspace) of A if X itself is a
S-K-vectorial space.

DEFINITION [135]: Let V be a finite dimensional vector space over a field K. Let B =
{Vi, ..., V! be a basis of V. We say B is a Smarandache basis (S-basis) of V if B has a
proper subset say A, A [/B and A Z @, A Z B such that A generates a subspace which
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is linear algebra over K that is W is the subspace generated by A then W
must be a K-algebra with the same operation of V.

THEOREM [135]: Let A be a K-vectorial space. If A has a S-K-vectorial subspace then
A is a S-K-vectorial space.

Proof: Straightforward by the very definition.

THEOREM [135]: Let V be a vector space over the field K. If B is a S-basis then B is a
basis of V.

Proof: Left for the reader as an exercise.

DEFINITION [135]: Let V be a finite dimensional vector space over a field K. Let B =

{Vi,..., Uy} be a basis of V. If every proper subset of B generates a linear algebra
over K then we call B a Smarandache strong basis (S-strong basis) for V.

DEFINITION [135]: Let V be any vector space over the field K. We say L is
Smarandache finite dimensional vector space (S-finite dimensional vector space) of K
if every S-basis has only finite number of elements in it. It is interesting to note that if
L is a finite dimensional vector space then L is a Smarandache finite dimensional
space (S-finite dimensional space) provided L has a finite S-basis.

THEOREM [135]: Let V be a vector space over the field K. If A = {v,, ..., V,} is a
S-strong basis of V then A is a S-basis of V.

Proof: Direct by the very definitions hence left for the reader to prove.

DEFINITION 4.2.1: Let V be a vector space over a field F and let T be a linear
operator from V to V. T is said to be a Smarandache linear operator (S-linear
operator) on V if V has a S-basis which is mapped by T onto another basis V.

DEFINITION 4.2.2: Let T be a S-linear operator defined on the space V. A
characteristic value C in F associated with T is said to be a Smarandache
characteristic value (S-characteristic value) of T if the characteristic vector of T
associated with C is in a linear algebra. So the eigen vector associated with
the S-characteristic values will be called a Smarandache eigen vectors (S-eigen
vectors) or Smarandache characteristic vector (S-characteristic vectors).

As we do not have any book or paper on Smarandache vector spaces except a section
of it covered by [135] we have just recalled what is very basic. All other results can
be carried out as a matter of routine.

Now we proceed on to define Smarandache fuzzy vector spaces. From now onwards
we take only Smarandache fields.

DEFINITION [135]: A Smarandache field is defined to be a field (A, +, %) such that a

proper subset of A is a k-algebra (with respect to the same induced operations and
external operations).
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But we in the paper [135] fields define differently.

DEFINITION 4.2.3: A4 finite ring (i.e. a ring having finite number of elements) is said to
be a Smarandache Galois field (S-Galois field) if S contains a proper subset A, A []S
such that A is a field under the operations of S.

This definition is partly justified as all finite fields are Galois fields.

Now for us to develop the notion of Smarandache fuzzy vector spaces we make some
more amendments in the definition of Smarandache vector space. We will call the
definition of Smarandache vector space given here as the classical definition of
Smarandache vector space. We define Smarandache vector space in a Smarandache
style so that lucid expansion of the theory is possible. This Smarandache vector space
we call it as Smarandache vector space of type II or non classical Smarandache vector
space.

DEFINITION 4.2.4: Let R be a S-ring. We call an additive abelian group V to be a
Smarandache vector space of type Il (S-vector space of type II) over R relative to
F [JR (where F is a proper subset of R which is a field) if V is a vector space over F.

Thus at the first sight we may have V to be a S-vector space of type Il relative to one
subfield say F [/ R; but V may fail to be a S-vector space of type Il over some other

subfield F; in R. Secondly when will it continue to be S-vector space of type Il over all
subfields in R.

As the definition is very new we are constrained to give some examples of them.

Example 4.2.1: Let Z,, = {0,1, 2,..., 11} be a S-ring. Let V = P [x] where P is the
field [0, 4, 8]. P [x] is the polynomial ring in the variable x over P = [0, 4, 8]. P[x] is a
S-vector space of type Il over the Z;5.

As P[x] is a vector space over P = [0,4, 8] [ Z;,. We use this concept of S-vector
space Il to define S-fuzzy vector space.

DEFINITION 4.2.5: Let R be a S-ring. V be a S-vector space of type Il over R relative
to P(P L[] R). We call a fuzzy subset U of V to be a Smarandache fuzzy
vectorspace over the S-fuzzy ring (S-fuzzy vectorspace over the S-fuzzy ring) O of
R (iie. 0: R - [0, 1] is a fuzzy subset of R such that o: P — [0, 1] is a fuzzy field
where P [J R is a subfield of the S-ring R) if u(0) >0 and for all x, y [JV and for all
c [JP [JR, u(x —y) =2min {u (x), u(y)} and u(cx) = min {0 (c) , u(x);.

DEFINITION 4.2.6: Let R be a S-ring having n-subfields in it say P, ..., P, (i.e.) each
P; [JR and P; is a subfield under the operations of R). Let V be a S-vector space over
R. If V is a S-vector space over R relative to every subfield P; in R then we call V the
Smarandache strong vector space (S-strong vector space) over R.

Thus we have the following straightforward result.
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THEOREM 4.2.1: Let R be a S-ring. If V is a S-strong vector space over R then V is a
S-vector space over R.

THEOREM 4.2.2: A S-vector space V over a S-ring R in general is not a S-strong
vector space over R.

Proof: By an example. Consider Zs = {0, 1, 2, 3, 4, 5} be the S-ring under addition
and multiplication modulo 6. Take P; = {0,3} and P, = {0, 2, 4}; these are the only
subfields of Zs. Let V = Py[x]; P1[x] is a S-vector space over P; but V is not a S-vector
space over P,. Thus V is not a S-strong vector space. Hence the claim.

On similar lines we can define S-strong fuzzy space.

DEFINITION 4.2.7: Let R be a S-ring. V be a S-strong vector space of type Il over R.
We call a fuzzy subset u of 'V to be a Smarandache strong fuzzy vector space (S-strong
fuzzy vector space) over the S-fuzzy ring G; of R; 0;: Pi [JR — [0, 1] where P; [/R are
subfields fori =1, 2, ..., nif u(0) >0 and for all x, y [JV and for all ¢ [JP; [JR (i =
1, 2,...n), u(x—y) >min { u(x), u(y)}and u(cx) =min {0 (c), u(x)}, i=1,2,..., n.

As in case of S-strong vector spaces we have the following theorem.

THEOREM 4.2.3: Let V be a S-strong fuzzy vector space over the S-ring R. Then Vis a
S-fuzzy vector space over R..

Proof: Direct by the very definitions.
The reader is expected to construct examples and counter examples to study them.

If A and B are fuzzy subset of V then A [J B means A(x) < B(x) for all x I V. For
0 <t< 1,let Ar={x0UVDIOAKX) =t}, where V is a S-fuzzy vector space over
the S-ring R. Let U denote the set of all S-fuzzy subfield of a S-ring R. Let 4p
denote the set of all S-fuzzy subspaces of V over P [1 R.

DEFINITION 4.2.8: Let A, Ay, ..., Ay be fuzzy subsets of a S-vector space V and let K be
a fuzzy subset of the S-ring R. Define Smarandache fuzzy subset A; +...+ A, of V by
the following, for all x [JV. (A; + ...+ Ay)(x) = sup {min {A1(x}),..., An (xn)}Ix = x; +
vt Xy, x; LIV}, Define the fuzzy subset K o A of V by for all x [V, (K o A)(x) =
sup{min {K(c), Ay)} [t [JP [JR,y [JV, x = cy[JP is a subfield in R relative to which
Vis defined).

DEFINITION 4.2.9: Let {4; [1 [J1} be a non empty collection of fuzzy subsets of V, V a
S-fuzzy subspace of V. Then the fuzzy subset () 4, of V is defined by the following for
a7

all x 7V, [QA,) (x) =inf {A; (x) [1 [J1}.

Let A [] Ay, K a fuzzy subset of the S-ring R relative to a subfield P [JR. X be a fuzzy
subset of V such that X [JA. Let ( X) denote the intersection of all fuzzy subspaces of
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V (over K) that contain X and are contained in A then (X) is called the Smarandache
fuzzy subspace (S-fuzzy subspace) of A fuzzily spanned or generated by X.

We give some more notions and concepts about S-fuzzy vector spaces. Let & denote a
set of fuzzy singletons of V such that x,, x; [J ¢ then A = k >0. Define the fuzzy subset
of X (&) of V by the following for all x [7V. X()(x) = Aif xy [T Eand X (€)(x) = 0
otherwise. Define (¢ )= (X (£)). Let X be a fuzzy subset of V, define & (X) = {x) [Jx [J
V, A=Xkx) >0}

Then X (§ (X)) = X and & (X(&)) = & If there are only a finite number of x, [J & with
A >0 we call & finite (or Smarandache finite). If X (x) >0 for only a finite number of
x [JX, we call X finite. Clearly ¢ is finite if and only if X () is S-finite and X is finite
if and only if & (X) is S-finite. For x [JV let X | {x} denote the fuzzy subset of V defined
by the following; forall y [JV. (X\{x}) (v) =X@) if y Z xand (X\{x}) (v) =0if
v =x. Let A [JAk (K a fuzzy subset defined relative to a subfield P in a S-ring R) and
let X be a fuzzy subset of V such that X [JA. Then X is called the Smarandache fuzzy
system of generators (S-fuzzy system of generators) of A over K if (X) = A. X is said to
be Smarandache fuzzy free (S-fuzzy free) over K if for all x) [J X where A = X(x),
xy [ (X \x). Xis said to be a Smarandache fuzzy basis {S-fuzzy basis} for A relative
to a subfield P [J R, R a S-ring if X is a fuzzy system of generators of A and X is
S-fuzzy free. Let & denote a set of fuzzy singletons of V such that if x, xx [J & then
A =k and xy [J A. Then ¢ is called a Smarandache fuzzy singleton system of
generators (S-fuzzy singleton system of generators) of A over K if (¢ )= A.  is said
to be S-fuzzy free over K if for all xy [ &, xa [J (& \{xp}t). &is said to be a S-fuzzy basis
of singletons for A if & is a fuzzy singleton system of generators of A and & is S-fuzzy
free.

Several interesting results in the direction of Smarandache fuzzy free can be obtained
analogous to results on fuzzy freeness.

Now we proceed on to define Smarandache fuzzy linearly independent over P [J R.

DEFINITION 4.2.10: Let R be a S-ring, V be a S-vector space over P [/R (P a field in
R). Let A [1 Ay, K a fuzzy field of P or K is a S-fuzzy ring R relative to P and let
E O {xy [k OA ) s A(x)) be such that if x5, xi [0 & then A = k. Then §is said to be
Smarandache fuzzy linearly independent (S-fuzzy linearly independent) over K of P if

and only if for every finite subset kxlﬂz Xy ) of & whenever (cho X, j (x) =0
n i=1 J

forallx [JV\ {0} where c¢; [/P [JR, 0 <u; [JK (c;)) fori=1,2,... nthenc;=cr;=...=
cn = 0.

Now we proceed on to define Smarandache fuzzy modules.

DEFINITION 4.2.11: The Smarandache R-module (S-R-module) is defined to be an R-
module (4, +, X) such that a proper subset of A is a S-algebra (with respect to the
same induced operations and another ‘X’ operations internal on A) where R is a
commutative unitary S-ring and S its proper subset which is field.
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Example 4.2.2: Let R[x] be the polynomical ring in the variable x with coefficients
from the real field R. Q[x] is a S-R-module for it is a S-algebra.

We just recall the definition of Smarandache right (left) module.

DEFINITION 4.2.12: Let R be a S-ring 1. A non-empty set B which is an additive
abelian group is said to be a Smarandache right (left) module I (S-right(left) module
1) relative to a S-subring I, A if D [JA where D is a field then DB [JB and BD [J/B i.e.
bd (and db) are in B with b(d + ¢) = bd + dc for all d, ¢ [/D and b [JB ((d + ¢)b =
db + cb). If B is simultaneously a S-right module I and S-left module I over the same
relative S-subring I then we say B is a Smarandache module I (S-module ).

DEFINITION 4.2.13: Let R be a S-ring Il. We say a non-empty set B which is an
additive abelian group is said to be a Smarandache right (left) module Il (S-right
(left) module 1) relative to a S-subring I, A if D [JA where D is a division ring or an
integral domain, then DB [JB and BD [/B; i.e., bd(and db) are in B. with b(d + c) =
bd + bc [Jd, ¢ [ID and b [JB ((d + ¢) b =db + cb). If B is simultaneously a S-right
module Il and S-left module Il over the same relative S-subring II then we say B is a
Smarandache module II (S-module I1).

DEFINITION 4.2.14: Let (4, +, ®) be a S-ring. B be a proper subset of A (B [JA) which
is a field. A set M is said to be a Smarandache pseudo right (left) module (S-pseudo
right(left) module)of A related to B if

i (M, +) is an additive abelian group.
ii. Forb [/Band m [JM m.b [/M (b.m [JM).
iil. (m; + my)b = m;b + mab, (b.(m;+my)=bm;+bmj) for m;, my [/M and b [J

B. If M is simultaneously a S-pseudo right module and S-pseudo left module,
we say M is a Smarandache pseudo module (S-pseudo module) related to B.

Here also we wish to state if M; is a S-pseudo module related to B, M; need not be S-
pseudo module related to some other subfield B; of A. Thus we see we can have
different S-pseudo modules associated with different subfields in a ring.

Example 4.2.3: Let Z>S4 be the group ring of the symmetric group of degree 4 over
the field Z,. M = {0, 2g, g []S4}(2g denotes the sum of all elements from Sy). M is a S-
module Il over Z,. M is a S-M-module Il over Z;A,. Clearly M is also a S-ideal II and
S-pseudo ideal of Z,S4.

But to define Smarandache fuzzy module and Smarandache fuzzy algebra we have to
strike a mediocre between the S-modules and fuzzy modules and S-algebras and fuzzy
algebras. As the concept of fuzziness involves lots of fuzziness and Smarandache
property involves adaptability of both richer structure as a substructure or weaker
structure as a substructure of a richer structure we define Smarandache fuzzy modules
and Smarandache fuzzy algebras in a very different way.
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DEFINITION 4.2.15: Let M be a S-left (or S-right) R-module over a S-ring R. (], M) is
called a Smarandache fuzzy left (Smarandache fuzzy right) R-module if there is a map
n:M - [0, 1] satisfying the following conditions:

i n(a+b)2min{n), nb)}a, b M.
ii. n(—a) = n(a) foralla [JM.
iii. 17 (0) =1 (0 is the zero element of M),
iv. n(ra)=n(a)(a JMandr [P [JR, P a field) It is denoted by 1|, where

the S-fuzzy module is defined relative to P [/R; P a subfield of R .

nN(M) expresses the cardinal number of all fuzzy values n(a) (a [J M). We are
interested in the situation (V) <+ [J. It is well known fact that Noetherian modules
are a large class of modules which play an important role in modular theory.

Several important and interesting results can be obtained in this direction.

4.3. Smarandache fuzzy non-associative rings

In this section we introduce the notion of Smarandache fuzzy non associative rings
and recall the basic notion about Smarandache non associative ring which for short
we denote as SNA-rings. Lot of information about SNA-rings can be had from [131].

Throughout this book by a non associative ring (R, +, ®*) we mean a non empty set R
endowed with two binary operations ‘+’ and ‘¢’ such that (R, +) is an additive abelian
group with ‘0’ acting as the additive identity and (R, ®) is a non associative semigroup
or a groupoid such that the distributive lawsa ¢ (b+c)=aeb+aecand(a+b)ec=
a*ctbecforalla,b, c R holds true.

Now we recall the definition of Smarandache non-associative ring (SNA-ring).

DEFINITION 4.3.1: Let (R, +, ¢ be a non-associative ring R is said to be a
Smarandache non-associative ring (SNA-ring) if R contains a proper subset P such
that P is an associative ring under the operations of R.

Example 4.3.1: Let R be a field and L be a loop given by the following table. RL be
the loop ring of the loop L over R. RL is a SNA-ring. The loop L is given by the
following table:

a] a az aq as a6 a7
c a] | A3 a4 | as A | A7
al al € as a ae as ay as

ap ap as € ae as a7 as al
as as ap ae € a7 as al as
a4 a4 6 a3 a7 c a1 as )
as as as a7 as al € a ae
g e ay as al as ap € as
a7 ay a4 a as ar e as €
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Clearly RL is a SNA-ring. We can get class of SNA-rings using loops over rings and
groupoid over rings which we choose to call as loop rings and groupoid rings.

DEFINITION 4.3.2: Let R be a non-associative ring. A non-empty subset S of R is said
to be a SNA-subring of R if S contains a proper subset P such that P is an associative
ring under the operations of R .

The following theorem is straightforward.

THEOREM 4.3.1: Let R be a non-associative ring. If R has a proper subset S such that
S'is a SNA subring then R is a SNA-ring.

Further it is left for the reader to verify that every subring of a SNA-ring R in general
need not be a S-subring of R.

DEFINITION 4.3.3: Let R be any non associative ring. A proper subset I of R is said to
be a SNA right / left ideal of R if

i. Iis a SNA-subring of R say J [/ 1, J is a proper subset of I which is an
associative subring under the operations of R .

ii.  If Iis simultaneous by both a SNA right ideal and SNA left ideal then we
say 1 is a SNA-ideal of R .

THEOREM 4.3.2: Let R be any non associative ring. If R has a SNA-ideal then R is a
SNA-ring.

Proof: Obvious from the fact that if R has a SNA-ideal say I then we see R has a
subset which is an associative ring. Hence the claim.

We have SNA-rings which satisfies special identities like Bruck, Bol, Moufang, right/
left alternative.

DEFINITION 4.3.4: Let R = (R ,+, ) be a SNA-ring we say R is a SNA-Moufang ring
if R contains a subring S where S is a SNA subring and for all x, y z in S we have

(x Uy) Oz Ox) = (x Uy Uz)) Ux
that is the Moufang identity is true.
(R, +, D is said to be SNA Bol ring if R satisfies the Bol identity
((x Uy) Oz) Uy =x U((y Oz) Oy)
forall x, y, z [JS [JR; where S is a proper SNA-subring. We say the SNA-ring R is
said to be SNA-right (left) alternative ring if (xy)y = x(vv) [(xx)y = x(xy)]. If R is a

simultaneously both a right and left alternative NA ring then we call R a
Smarandache alternative (S-alternative ring) ring.
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DEFINITION 4.3.5: Let R be a non-associative ring. R is said to be a SNA-
commutative ring if R has a subring S such that a proper subset P of S is a
commutative associative ring with respect to the operation of R. R is said to be a SNA
strong commutative ring if every subset P of R which is an associative subring is
commutative.

Now we proceed on to define Smarandache fuzzy non-associative rings.

DEFINITION 4.3.6: Let R be a SNA-ring. A fuzzy subset |1: R — [0, 1] is said to be a
Smarandache non-associative fuzzy ring (SNA-fuzzy ring) if 4 : P — [0, 1] is a fuzzy
ring where P is a proper subset of R which is an associative ring under the operations
of R and denote it by up. We call the fuzzy subset it : R — [0, 1] to be a Smarandache
non-associative strong fuzzy ring (SNA-strong fuzzy ring) if 4 : P; — [0, 1] is a fuzzy
subring of R for every proper subset P; [J R which is a subring of R. Thus we denote
the SNA strong fuzzy ring by just u as u is a SNA-fuzzy ring for every subring P; [/ R
where P; is a subring of R .

We have the following interesting theorem.

THEOREM 4.3.3: Let R be a SNA-ring. Every SNA-strong fuzzy ring is a SNA-fuzzy
ring.

Proof: Straightforward by the very definitions.

DEFINITION 4.3.7: Let R be a SNA-ring. A fuzzy subset u of the SNA-ring R is said to
be Smarandache non associative fuzzy subring (S-non associative fuzzy subring) of u ,
if W : T - [0,1] is a SNA-fuzzy ring where T is a SNA-subring of R. i.e.
M oL — [0, 1] where L is a proper subset of T and L is an associative
subring of T [J R.

DEFINITION 4.3.8: Let R be a SNA-ring. A fuzzy subset u of R is said to be
Smarandache non associative fuzzy ideal (S-non associative fuzzy ideal) of R if for all
x,y [JP [JR (where P is a subset of R which is an associative subring under the
operations of R). u(x —y) = min (u(x), u(v)) and u(xy) =max (u(x), u(y)). Recall if
u and 8 be any two SNA-fuzzy ideals of a SNA-ring R. The product u o 6 of u and 6
is defined by

(mob)x) = Sup {min (min (u(yy), 6(z))}

X=X vz
i<

where x, y;, z: [JP [JR }. It is easily verified that u o 6 is a SNA-fuzzy ideal of R and
Ho 8 =(ub)

Further pn0 in general is not a SNA-fuzzy ideal. It is left as an exercise for the reader
to prove the above statement.

DEFINITION 4.3.9: An SNA-ideal P of a SNA-ring R, P ZR is called SNA-prime if
a, b [JP, implies either a [JP or b [JP.
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DEFINITION 4.3.10: A SNA fuzzy ideal u of a SNA-ring R is called SNA-fuzzy prime
ideal if the ideal u; where t = u(0) is a SNA-prime ideal of R .

A non constant SNA-fuzzy ideal u of a SNA-ring R is called SNA-fuzzy prime if for any
two SNA-fuzzy ideals o and 6 of R (defined relative to the same P [JR) the condition
o6 [ [ implies either o [] i or 8 [J .

Recall a SNA-ring R is SNA-regular if for each element x in P [/ R (P an associative
subring of R) there exists y in P such that xyx = x. We say R is SNA-strongly regular if
for each subset P [JR, P an associative ring; P is regular. It can be easily verified.

THEOREM 4.3.4: If R is a SNA strongly regular ring then R is a SNA-regular ring.
We have the notion of fuzzy primary ideal in case of SNA-rings.

DEFINITION 4.3.11: Let R be a SNA-ring. A SNA-fuzzy ideal u of R relative to P [JR
(P an associative subring of R) is SNA-fuzzy primary if for any two SNA fuzzy ideals o
and 6 of R relative to the same associative subring P the conditions o 8 [J \/; and

o [J i together imply 8 [7 \/; )

Several other properties and results for SNA-rings can be developed analogous to
associative rings.

Now we just define SNA-fuzzy semiprimary ideal of a SNA-ring R.

DEFINITION 4.3.12: Let R be a SNA-ring. A SNA fuzzy ideal u of the ring R relative to
P [JR is called SNA-fuzzy semiprimary if \/; is a SNA-fuzzy prime ideal of R relative
to P.

Almost all results in case of fuzzy semiprimary ideals of an associative ring can be
deduced/ derived in case of SNA-rings.

Now we proceed on to define the concept of fuzzy irreducible ideals in case of SNA-
rings.

DEFINITION 4.3.13: Let R be a SNA-ring. A fuzzy ideal u of the ring R relative to the
associative subring P [J R is called SNA-fuzzy irreducible if it is not an intersection
of any two SNA-fuzzy ideals of R (relative to the same P) properly containing u;
otherwise u is termed SNA-fuzzy reducible.

THEOREM 4.3.5: Let R be a SNA-ring. If u is a SNA-fuzzy prime ideal of R then u is
SNA-fuzzy irreducible.

Proof: Using the fact p is a SNA-fuzzy prime ideal of R relative to the associative
subring P in R we prove p is SNA-fuzzy irreducible relative to the same subring P.
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Several results true in case of S-ring can be also derived in case of SNA-rings. This
task is left as an exercise for the reader. This study of SNA-rings is more complicated
and interesting as p a fuzzy structure can be defined relative to every associative
subring of a SNA-ring. Each subring may possess various properties accordingly the
p will also enjoy distinct properties. So further research in this direction will yield
many interesting results.

4.4. Smarandache fuzzy birings and its properties

In this section we just introduce the notions of Smarandache fuzzy birings and its
properties. We deal with both birings which are associative as well as non associative.
We define some concepts so that the reader can develop further properties that are
already studied in case of associative and non-associative rings. The concept of
birings and fuzzy birings are introduced in chapter 1.

DEFINITION 4.4.1: A Smarandache biring (S-biring) (R, +, ®) is a non empty set with

two binary operations ‘+’ and ‘®’ such that R = R; [J R, where R; and R, are proper
subsets of R and

i. (R;,+, ®isaS-ring
ii. (Ry,+, ®)isaS-ring.

If only one of R; or R is a S-ring then we call (R, +, ®) a Smarandache weak biring
(S- weak biring).

We define Smarandache conventional biring as follows:

DEFINITION 4.4.2: Let (R, +, ¢ be a biring. R is said to be a Smarandache
conventional biring (S-conventional biring) if and only if R has a proper subset that is

a bifield.

DEFINITION 4.4.3: Let (R, +, ¢ be a biring. A proper subset P of R is said to be a
Smarandache sub-biring (S-sub-biring) if (P, +, ®) is itself a S-biring. Similarly we
say for a biring (R, +, ¢ a proper subset P of R is said to be as Smarandache
conventional sub-biring (S-conventional sub-biring) if (P, +, ¢ is itself a
S-conventional biring under the operations of R .

The following theorem is straightforward.

THEOREM 4.4.1: If a biring R has a S-sub-biring then R is itself a S-biring. If a biring
R has S-conventional sub-biring then R itself is a S-conventional biring.

DEFINITION 4.4.4: Let R be a biring. We say R is a Smarandache commutative biring
(S-commutative biring) if every S-sub-biring is commutative. If atleast one of the
S-sub-biring of R is commutative then we say R is a Smarandache weakly

commutative biring (S-weakly commutative biring).

The following theorem is direct hence left for the reader to prove.
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THEOREM 4.4.2: Let (R, +, ) be a biring. If R is a S-commutative biring then R is a
S-weakly commutative biring.

Now we define type II Smarandache biring.

DEFINITION 4.4.5: Let (R, +, ¢ be a non empty set. We say (R, +, ® is a
Smarandache biring II (S-biring II) if R contains a proper subset P such that P is a
bidivision ring. If R has no S-zero divisors then we call R a Smarandache division
biring (S-division biring) if R is non commutative and R is commutative then we call R
a Smarandache integral domain (S-integral domain).

We recall the definition of Smarandache bi-ideal and Smarandache pseudo bi-ideal of
S-birings.

DEFINITION 4.4.6: Let (R, +, ®) be a biring. The Smarandache bi-ideal (S-bi-ideal) P
of R is defined as an ideal of the biring R where P is a S-sub-biring.

DEFINITION 4.4.7: Let (R, +, ) be a S-conventional biring. B [/R is a bifield of R . A
non-empty subset P of R is said to be Smarandache pseudo right bi-ideal (S-pseudo
right bi-ideal) of R related to P if

i. (P,+) an abelian bigroup.
ii. Forb [JBandp [JP we havepeb [JP.

On similar lines we define Smarandache pseudo left bi-ideal (S-pseudo left bi-ideal),
if P is both a S-pseudo right bi-ideal and S-pseudo left bi-ideal.

We call a S-biring (R, +, ®) to be a Smarandache simple biring (S-simple biring) if R
has no S- bi-ideals. If R has no S-pseudo bi-ideals then we call R Smarandache
pseudo simple biring (S-pseudo simple biring).

DEFINITION 4.4.8: Let (R, +, ®) be a biring. A non-empty subset M is said to be a
Smarandache bimodule (S-bimodule) if M is an S-abelian semigroup with 0 under the
operation + i.e. M = M; [/ M, and Let R = R; [JR; be a biring, a non-empty set M is
said to be a R-bimodule (or a bimodule over the biring R) if M is an abelian bigroup,
under addition ‘+’ say with M = M; [J M, such that for every r; [J/R; and m; [J M,
there exists an element vy m; in M; and for every r2 [JR, and m, [/ M, there exists an
element r; my in M, subject to

I r;(a1+b1) = r1a1+r1b1;r1 ﬂR]dl’ldd],b] HM].
il. Fg(a2+b2) = rar+raby; r; IRy and ay, by [T M.

iii. r;(sias) = (r;s1)ajforry, s;LJR;and a; [JM,.
iv. r(s2az) = (r282) asforry, s; [JRy and a; [JM,.
v. (ri+s;)a; = ria; tspag,rr, siJRand a; [JM.

Vi. (r2+582)a; roa; + sy a; wherers, s; [JRy and ay [ M.

In short if M is a bigroup (M = M; [J M) under ‘“+’ then M, is a R;-module and M, is
a R;-module then we say M is a R-bimodule over the biring R = R; [J R>.
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If the biring R has unit 1 and if 1.m; = m; and 1.m; = m; for every m; [JM; and
my [J M then we call M a unitial R-bimodule. Thus the concept of R-bimodule forces
both the structures to be bistructures i.e. we demand the group should be a bigroup
and also the ring must be a biring then only we can speak of a R-bimodule.

Let M be a R-bimodule an additive sub-bigroup, A of M i.e. A = A; [JA; where A, is a
subgroup of M; and A; is a subgroup of A, is called the sub-bimodule of the bimodule
M if when ever r; [JR; and r» [JR, and a; [JAand a; [JA; we have r; a; [JA; and
r>d HAZ.

A bimodule M is cyclic if there is an element m; [J M; and m, [J M, such that for
every m [J M is of the form m = rym; where r; [JR; and for every m' [/ M, is of the
form m' = romy; where r> [JR,. Thus cyclic bimodules is nothing but bicyclic groups,
that is the bigroup G = G; [J G is a bicyclic group if both G; and G, are cyclic
groups.

DEFINITION 4.4.9: Let (R, +, 0) be a biring. We say R is a Smarandache semiprime
biring (S-semiprime biring) if R contains no non zero S-bi-ideal with square zero.

Now we proceed on to define S-na biring.

DEFINITION 4.4.10: Let (R, +, ®) with R = R; [/ R, be a na-biring, R is said to be a
Smarandache na-biring (S-na-biring) if R has a proper subset P such that P =
P; [J P, and P is an associative biring under the operations of R. Let (R, +, ®) be a
na-biring.

A proper subset P [/ R is said to be a Smarandache na sub-biring (S-na-sub-biring) if
P is itself a na-sub-biring and P is a S-na-biring.

THEOREM 4.4.3: If (R, +, *) has a na-sub-biring which is a S-na sub-biring then we
say R is a S-na-biring.

Proof: Follows directly from the definitions, hence left for the reader to prove.
DEFINITION 4.4.11: Let (R, +, *) be a na-biring. We say R is a Smarandache
commutative na-biring (S-commutative na-biring) if every S- na sub-biring of R is

commutative. If at least one S-na sub-biring is commutative then we call R a
Smarandache weakly commutative na-biring (S-weakly commutative na-biring).

THEOREM 4.4.4: Let R = R; [/ R, be a na-biring. If R is a strongly subcommutative
biring then R is a S-commutative biring.

Proof: Straightforward, hence left for the reader to prove.
DEFINITION 4.4.12: Let (R, +, *) be a na-biring, we call R a Smarandache Moufang

biring (S-Moufang biring) if R has a proper subset P; such that P is a S-sub-na-biring
of P and every triple of R satisfies the Moufang identity

(w)(zx) = (x(yz))x
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forallx, y, z [JP.

Similarly R = R; [J R, is a Smarandache Bruck biring (S-Bruck biring) if R has
proper subset P such that

i. Pisa S-na sub-biring of R .
ii.  (x(yx) z=x (v(xz) and (xy) " =x"'y!

is true for all x, y, z [/ P. We call (R, +, ®) a Smarandache Bol biring (S-Bol biring) if
(xyz)y =x((yx) y) for all x, y, z [JP, P [JR is a S-na sub-biring of R.

On similar lines we define Smarandache left (right) alternative birings and
Smarandache WIP-birings.

DEFINITION 4.4.13: Let R = (R; [/ Ry, +, ) be a na-biring. If every S-na sub-biring P
of R satisfies Moufang, Bol, Bruck, alternative (right / left) or WIP then we call R a
Smarandache strong Moufang, Bol, Bruck, alternative (right/ left) or WIP biring
respectively.

Several interesting results can be obtained in this direction.
Now we proceed on to define the concepts of Smarandache fuzzy birings.

DEFINITION 4.4.14: Let (R, +, ®) be a S-biring where R = R; [J R,. A fuzzy subset
u: R - [0, 1] is said to be a Smarandache fuzzy biring (S-fuzzy biring) if the
following conditions are true.

p=w Op: Ry ORy — [0, 1] s such that p: Ry — [0, 1] is a S-fuzzy ring of R,
relative to Py [J Ry and p; : Ry — [0, 1] is a S-fuzzy ring of R, relative to P, [ R,.
(Here P; and P, are proper subsets of R; and R such that P; and P, are subfields
of R; and R respectively) i.e. ui : Pi - [0, 1] is a fuzzy subfield; i=1, 2. If p : R
- [0, 1] the fuzzy subset of R is such that p is a S-fuzzy biring relative to every
subfield in R then we call p a Smarandache strong fuzzy biring (S-strong fuzzy
biring).

The following theorem is direct hence left for the reader as an exercise.
THEOREM 4.4.5: Every S-strong fuzzy biring R is a S-fuzzy biring.

Now we proceed on to define Smarandache fuzzy sub-biring and Smarandache fuzzy
bi-ideal of a S-biring R.

DEFINITION 4.4.15: Let (R, +, ¢ be a S-biring. A fuzzy subset u : R — [0, 1] is said

to be a Smarandache fuzzy ideal (S-fuzzy ideal) of the biring R if the following
conditions are satisfied.

u=u; LJ u> : Ry [JRy — [0, 1] is such that u; : R; — [0, 1] is a S-fuzzy ideal of
Ry and us;: R, — [0, 1] is a S-fuzzy ideal of R>. We call the fuzzy subset u =
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ur L ux: R - [0, 1] to be a Smarandache fuzzy weak bi-ideal (S-fuzzy weak bi-
ideal) of R = R; [/ R, if atleast one u; or u; is a S-fuzzy ideal and the other is just a
fuzzy ideal.

THEOREM 4.4.6: Let (R = R; [/ R,, +, ) be a S-biring. u : R — [0, 1] be a S-fuzzy bi-
ideal of R then u is a S-fuzzy weak bi-ideal of R.

Proof: Obvious by the very definitions.
Now just we define the notion of Smarandache fuzzy sub-biring.

DEFINITION 4.4.16: Let (R =R; [/R,, +, ¢ be a S-biring. The fuzzy subset u =
ur L ux: R - [0, 1] is a said to be a Smarandache fuzzy sub-biring (S-fuzzy sub-
biring) of R if u = u; Jpu>: R — [0, 1] is such that u; : R; — [0, 1] a S-fuzzy
subring of Ry and u; : Ry — [0, 1] is a S-fuzzy subring of R».

Nowifu=u; LJuy: Ry [JRy - [0, 1] is said to be a S-fuzzy weak sub-biring if only
one of u; of uz is a S-fuzzy subring and the other is just fuzzy subring.

The following theorem is left as an exercise for the reader to prove.

THEOREM 4.4.7: Let (R = R; [/ R,, +, ®) be a S-biring. The fuzzy subset u = u; [J u; :
R; [JR; - [0, 1] is a S-fuzzy sub-biring of R then u is a S-fuzzy weak sub-biring of
R.

DEFINITION 4.4.17: Let (R = R; [/ R,, +, ®) be a S-biring. A S-fuzzy bi-ideal u of the
S-biring R is said to be Smarandache fuzzy prime (S-fuzzy prime) if the ideal u, = (ui);
[ (uz); where t = u(0) = u; (0) LJ uz(0) is a S-prime bi-ideal of R .

Following the definition of [100] we have this analogous definition for S-fuzzy prime
bi-ideals.

DEFINITION 4.4.18: Let (R = R; [/ R,, +, ®) be a S-biring. A non constant S-fuzzy bi-
ideal u of the biring R is called Smarandache fuzzy prime bi-ideal (S-fuzzy prime bi-
ideal) of R if for any two S-fuzzy bi-ideals 0 and 6 of R the condition o 8 [J |1 implies
either o [] |1 or 8 [ U.

A S-fuzzy bi-ideal u of a biring R not necessarily non constant is called Smarandache
fuzzy prime if for any two S-fuzzy bi-ideals 0 and 6 of R the condition 0 8 [] U
implies either o [J 4 or 8 [J U.

Notation: Let p and 0 be any two S-fuzzy bi-ideals of a S-biring R.u, 8: Ry O Ry —
[0, 1]the sum p + 0= (u; 0 6;) T (20 6,) : Ry O Ry - [0, 1] is defined by

(u+0)(x) = (w1 O O)(x1) O (n2 0 62)(x2) =

sup [min (p; (y1), min 6(z)) O (min px(y2), min 6x(z2))],
X =y 7
X,y 2,
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where X1, Y1, Z1 U R1 and X2, Y2, 22 U Rz.

DEFINITION 4.4.19: Let u be a S-fuzzy sub-biring (S-fuzzy bi-ideal) of a S-biring R =
Ry R, t [J]0, 1] and t < pu(0) = u;(0) L7 u2(0).

The sub-biring (bi-ideal) u, is called a S-level sub-biring (S-level bi-ideal) of u .

DEFINITION 4.4.20: Let u be a fuzzy subset of a S-biring R. The Smarandache

smallest fuzzy sub-biring (Smarandache smallest fuzzy bi-ideal) of R = R; [/ R,
containing u is called the S-fuzzy sub-biring (S-fuzzy bi-ideal) generated by u in R
and is denoted by (u).

DEFINITION 4.4.21: Let F be a S-homomorphism from a S-biring R onto a S-biring R’
if and only if for u and 0 any S-fuzzy bi-ideals of R. We have

fluto) = f(w+f(o)
f(uo) = f(wWf(o)
ftuno) O f(wnfo)

with equality if at least one of u or Ois f-invariant.
Now we proceed on to define Smarandache fuzzy bi coset of a S-biring R.

DEFINITION 4.4.22: Let u be any S-fuzzy bi-ideal of the S-biring R. The fuzzy subset
.=\ 0 423). of P=P, 0P, TR, [TR: defined by for x; (TP, and x> (7P

X

(plf)xl (r,)) =W, (r, —x,) forall r; [JP; and

(). @) =n, @, —x,) forall r OP,

is termed as the Smarandache fuzzy bicoset (S-fuzzy bicoset) determined by (x;, x2)
and = u; [ .

We give the S-fuzzy prime ideal in yet another form.

DEFINITION 4.4.23: Let u = u; [/ u> be any S-fuzzy bi-ideal of a S-biring R is said to
be a Smarandache fuzzy bilevel ideal (S-fuzzy bilevel ideal) if and each level bi-ideal

e = (w1 Ly, t JIm pis prime wy (x;) <pg(vi) and us (x2) < pz(v2) for some x; ,
v1 LJP; (u; is defined relative to P; [JR; and u; is defined relative to P, [/ R;) then

pi(x1yr) =ur (vi) and pz (x2y2) = p2 (v2)-

DEFINITION 4.4.24: A S-fuzzy bi-ideal of a S-biring R is called a Smarandache fuzzy
maximal bi-ideal (S-fuzzy maximal bi-ideal) if Im u = {1, a } where a [7[0,1) and the
level bi-ideal (u; [Juz): = {x; [JP; [JR; and x; [JP> [JRy /u;(x1) = 1, uz2 (x2) = 1}
is maximal.

318



DEFINITION 4.4.25: A fuzzy bi-ideal u = u; [J us of a S-biring, R = R; [J R> is called
Smarandache fuzzy semiprime (S-fuzzy semiprime) if for any S-fuzzy bi-ideal 6 of R
the condition 8" [J U (i.e. 8= 6, [J 6, 8/ Ou, and 67 O u) implies that 8 [J p,
wheren [JZ,.

DEFINITION 4.4.26: Let R be a S-biring. R is biregular if for each element x;, y; in
P; [JR; and x5, y; in P> [JR, where P; and P, are subfields in R; and R respectively;
we have x;yix; =Xi, X2Y2X2 = X.

DEFINITION 4.4.27: A S-fuzzy bi-ideal u = u; [J u> of a S-biring R is called
Smarandache fuzzy primary (S-fuzzy primary) if for any two S-fuzzy bi-ideals o and 6

of R the conditions o 8 [J] \/; and o [] [ together imply 6 [J \/;

DEFINITION 4.4.28: A S-fuzzy bi-ideal u of a S-biring R is called S-fuzzy semiprimary
if \/; is a S-fuzzy prime bi-ideal of R.

DEFINITION 4.4.29: A S-fuzzy bi-ideal u of a S-biring R is called S-fuzzy irreducible if
it is not an intersection of two S-fuzzy bi-ideals of R properly containing u = u; [J u;
otherwise u is termed as S-fuzzy reducible.

Now one can study all the properties which we have defined and described for
S-birings can be easily extended to the case of Smarandache non associative birings.

Here we mention a few of the concepts and the rest of the development is left for the
reader as research.

From now onwards we denote a Smarandache non-associative biring by S-na-biring.
We give only few definitions.

DEFINITION 4.4.30: Let (R = R; [/ R>, +, ®) be a S-na-biring that is P = P; [J P> be a
S-biring of R. A fuzzy subset u : R — [0, 1] is said to be a S-na-fuzzy sub-biring of R
if forall x, y [JP = P; [] P, we have

I p(x—=y)2min (1 (x), u () and
ii. w(xy) 2min (u (x), 1 ()

or equivalently we can say if u = u; [J us then u; is a S-fuzzy subring of P; and u; is a
S-fuzzy subring of P..

So the S-na-fuzzy sub-biring is associated with an associative S-biring contained in
the S-na-biring.

If in the definition of S-na-fuzzy sub-biring u = u; [J us only one of u; or us (say) u; is
a S-fuzzy subring and u; is just a fuzzy subring then we call u a Smarandache na-

fuzzy weakly sub-biring (S-na-fuzzy weakly sub-biring) of R.

The following theorem is direct and hence left for the reader as an exercise.
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THEOREM 4.4.8: Let (R = R; [J R, +, ¢ be a S-na biring. u be a S-na-fuzzy sub-
biring of R then u is a S-na —fuzzy weakly sub-biring of R .

DEFINITION 4.4.31: Let R be a S-na-biring. A fuzzy subset u of a S-biring R is called
a Smarandache na fuzzy bi-ideal (S-na fuzzy bi-ideal) of R if u = u; [J u, is defined
relative to P = P; [] P,, P an associative biring in R .

Ifur (xp=yr) 2min (u; (x;), w1 (vi)), w1 (x1y1) = max (ug (x1), i (vr)) and uz (x2 -
Y2) 2min (U2 (x2), g2 (v2)), p2 (x2y2) 2 max (uz (x2), uz (v2)) for all x;, y; L/ Py and
X2, y2 [1P; or equivalently we can say u; is a S-fuzzy ideal of P; and u; is a S-fuzzy
ideal of P> or still we can say u; is a S-fuzzy bi-ideal of P; [JP;.

If u:R; VR, — [0, 1] is a fuzzy subset such that u; : P; — [0, 1] is a S-fuzzy ideal
of Prand u; : P — [0, 1] is a fuzzy ideal of P> then we call u = u; [J u, : P =
P, [J P, - [0, 1] as a S-na-fuzzy weakly bi-ideal of R .

Thus we can say if in the definition of S-na-fuzzy bi-ideal of R only if u; or u; is just a
fuzzy ideal and not a S-fuzzy ideal then we call u a S-na — fuzzy weakly bi-ideal of R .

THEOREM 4.4.9: Let R = R; [/R; be a S-na-biring. u : R - [0, 1] be a S-na-fuzzy bi -
ideal of R then u is a S-na-fuzzy weakly bi-ideal of R .

Proof: Straightforward by very definitions, hence left for the reader as an exercise to
prove.

DEFINITION 4.4.32: Let (R = R; [J R,, +, ¢ be a S-na-biring. A fuzzy set
u: R — [0, 1] is called a Smarandache na-fuzzy prime bi-ideal (S-na-fuzzy prime bi-
ideal) relative to P [J R if u = u; [J u; is a such that for any two S-na-fuzzy bi-ideals
o=0; [Joyand 8 = 6, [J 6, of R relative to the same P, the condition 0; 6 [7 u;
and 0, 6 [J u, implies that either g [ u;, 0 [J uz or 6 [J u;and 6 [J u,.

All notions like S-na-fuzzy primary bi-ideal, S-na-fuzzy maximal bi-ideal, S-na-fuzzy
semiprimary bi-ideal and S-na-fuzzy irreducible bi-ideal can be defined and all
properties studied as in case of S-birings. As the aim of the text is to make a
researcher work on these notions in several places we just define and give the possible
properties for the reader to prove. The last section of each chapter serves this purpose.

4.5. Problems

This section gives problems about S-fuzzy rings and their generalizations. About 125
problems regarding S-fuzzy rings and S-fuzzy birings are given.

Problem 4.5.1: Can the S-ring Zs have S-fuzzy ideals?

Problem 4.5.2: Find all S-fuzzy ideals of the S-ring Zsy.
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Problem 4.5.3: Let Z, = {0,1,2,..., n—1} be a S-ring, n = p}'p3? ---p;*, t >2, 0 > 1;
1=1,2, ..t

How many S-fuzzy ideals can Z, have?
Problem 4.5.4: Characterize those S-rings which has no S-fuzzy ideals.

Problem 4.5.5: Characterize those S-rings which has always non trivial S-fuzzy
ideals.

Problem 4.5.6: Obtain some interesting results between S-fuzzy ideals and level
subsets of a S-ring R.

Problem 4.5.7: Is it true that if p is a S-fuzzy ideal of R, then p is S-fuzzy prime if
the ideal p, where t = u(0) is a S-prime ideal of R?

Problem 4.5.8: A S-ideal P of a S-ring R, P # R is S-prime if and only if Xp is a
S-fuzzy prime ideal of R.

Problem 4.5.9: Prove or disprove a non constant S-fuzzy ideal p of a S-ring R is
S-fuzzy prime if and only if card Im p =2, 1 [J Im p and the S-ideal p, where t = p(0)
is S-prime.

Problem 4.5.10: Prove two S-level subrings ps and p; (with s < t) of a S-fuzzy
subring p of a S-ring R are equal if and only if there is no x in R such that s < u(x) <t.

Notation: F, = {p; [t U Im p} If Im p = {t,,..., ta} with to >t; >...>t, then we have
the chain p, Uy, Oy, O---Op, =R.

Problem 4.5.11: Prove for two S-fuzzy subrings (S-fuzzy ideals) p and 0 of a S-ring
such that card Im p < [J, card Im 6 < J are equal if and only if Imp = Im0O and F,, = Fe.

Problem 4.5.12: If A is a S-subring (S-ideal) of a S-ring R, A # R then the fuzzy
subset p of R defined by

®) s ifxOA
X =
H t ifxOR\A

where s, t [J [0, 1], prove for s >t is a S-fuzzy subring (S-fuzzy ideal) of the S-ring.

Problem 4.5.13: Prove or disprove if a non-empty subset P of a S-ring R isa
S-subring (S-ideal) of R if and only if Xp is a S-fuzzy subring (S-fuzzy ideal) of R.
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Problem 4.5.14: Prove the intersection of any family of S-fuzzy subrings (S-fuzzy
ideals) of a S-ring R is a S-fuzzy subring, S-fuzzy ideal of R.

Problem 4.5.15: If p is a S-fuzzy ideal ofa S-ring R will p + p = p?

Problem 4.5.16: Let p be a S-fuzzy subring and 0 is any S-fuzzy ideal of a S-ring R
then prove p N O is a S-fuzzy ideal of the S-ring.

Problem 4.5.17: Let p be any S-fuzzy ideal of a S-ring R such that Imp = {t} or{0, s}

where t 0 [0, 1] and s (J (0, 1]. If u =0 O O, where 0 and 0 are S-fuzzy ideals of R
then prove either 0 [J 6 or 6 U 0o.

Problem 4.5.18: Let p be any S-fuzzy ideal of a S-ring R such that Im p has three or

more elements or Im p = {t, t'} where t, t' [1 (0, 1], t > t'. Does there exists S-fuzzy
ideals 0 and 8 of R suchthatpy=0 06,0 [0 6 and 6 [0 0?

Problem 4.5.19: Let f be a S-ring homomorphism from R to R' If p and o are
S-fuzzy ideals of R prove the following are true.

i f(u+o)=f(p +fo).
ii.  f(uo)=f(p)f().
iii. f(uno)Ofw n f(O)

with equality if atleast one of p or O is f-invariant.

Problem 4.5.20: Prove if p is a S-fuzzy ideal of a S-ring R; then R, the set of all
S-fuzzy cosets of p in R is a S-ring under the compositions

TR TIETION
TR TSI
for all x [J P [J R (P a subfield of R).

Problem 4.5.21: Prove or disprove if p is a constant R, = (M,) where p is a S-fuzzy
ideal relative to a fixed subfield P in R.

Problem 4.5.22: Prove or disprove if p is a S-fuzzy ideal of a S-ring R then p(x) =
w(0) = M. =, where x 0P R (u defined relative to the subfield P in R).

Problem 4.5.23: For any S-fuzzy ideal pu of a S-ring R. Prove R‘ M, OR,, where t =
1(0).
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Problem 4.5.24: Can we say if p is any S-fuzzy ideal of a S-ring R and R is
S-Noetherian or S-Artinian then so is R,,?

Problem 4.5.25: Prove if f is a S-homomorphism from a S-ring R onto a S-ring R’
and W' is any S-fuzzy prime ideal of R' then prove f (i) is a S-fuzzy prime ideal of R.

Problem 4.5.26: Prove

L. AOW=A0W.
. ANWi=A¢NnHe
. AOMENV}=AOWn ADOV).
v. An@EOVK=Anu)OMANV).
(Xt) 0 {(X)t N (X)H} where A denotes the complement of A.

*)oi®, om.-
vii, (N, Op) O 0 (Wi

<

—

V1.

Problem 4.5.27: Is p|s [ 9|s a S-L-fuzzy ring? Justify your claim.

Problem 4.5.28: Prove or disprove if d is a S-prime L fuzzy ideal of u, then &(x;, ...,
Xn) O U(x1) Opx2) ...0W(xn) £ &(x1) O...00 (xs) forall x, ..., x, UPIOR (Pisa
subfield of R relative to which p is defined).

Problem 4.5.29: If L is a totally ordered set and & is a S-prime L-fuzzy ideal of p,
then 0 is a S-prime ideal of p, for every t in L such t < &(0) prove.

Problem 4.5.30: Let p be a S-L-fuzzy ring and 0 a S-prime fuzzy ideal of p. If u; is a
S-fuzzy subring of p and &(0) O «(0) # 0 then d n pis a S-prime fuzzy ideal of ¢
Justify.

Problem 4.5.31: Let p and p' be S-fuzzy rings f: R » R' be a S-ring homomorphism
and &' is a S-prime fuzzy ideal of p'; prove £ (8 ') is a S-prime fuzzy ideal of .

Problem 4.5.32: Is S,(8)(x) = %5 (x") equivalent to Sr(d)(x) = sup{t Ox [ Sr(d)}?

Problem 4.5.33: Prove if 0 is a S-primary L-fuzzy ideal and L if finite and totally
ordered, then prove O, is a S-primary ideal of p for every t [ L.

Problem 4.5.34: Prove if 0 is a S-prime fuzzy ideal then & is S-primary.

Problem 4.5.35: If d is a S-primary prove Sr (d) is a S-fuzzy prime ideal.
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Problem 4.5.36: If p is any non constant S-fuzzy irreducible ideal of a S-ring R, are
the following results true?

1 I UIm p.
ii.  There exists a [1[0,1) such that u(x) = a for all x [J P' [J R where P' =P \

{x OPUp (x) =1} here P is a subfield of the S-ring R relative to which p
is defined.

iii.  The S-ideal {x J RO p (x) = 1} is irreducible.

Problem 4.5.37: Prove a S-fuzzy ideal of a S-commutative ring with unity is S-fuzzy
semiprime if and only if each of its S-level ideals is a semiprime ideal of the given
ring.

Problem 4.5.38: Prove a S-commutative ring with unity is S-regular if and only if
each of its S-fuzzy ideals is S-fuzzy semiprime.

Problem 4.5.39: Let R be a S-commutative ring with unity. If p is any S-fuzzy ideal
of R which is both S-fuzzy semiprime and S-fuzzy irreducible prove p is S-fuzzy
prime.

Problem 4.5.40: Prove in a S-commutative regular ring with unity every S-fuzzy
irreducible ideal is S-fuzzy prime.

Problem 4.5.41: J : R -~ L =0, 1] be a S-fuzzy, ideal and x, y, u,v be any element in
R.Ifx+J=u+Jandy+J=v +]J, thenprove (x +ty)+J=(u+Vv)+Jandxy+]J=
uv +1J.

Problem 4.5.42: Prove every S-fuzzy ideal A of R such that A(0) = 1 and A is finite
valued has a S-fuzzy primary representations if and only if every S-ideal of R has a
S-primary representation.

Problem 4.5.43: Prove every S-fuzzy ideal A of R such that A(0) = 1 has a S-fuzzy
primary representation if and only if R is S-artinian.

Problem 4.5.44: Let A [1 S F. Suppose that a has a S-reduced fuzzy primary
representation A = Q; n...n Q, Prove A has a finite set (Py,..., Pp), m < n, of
isolated S-fuzzy prime ideal divisors. Further more. JA=Pi n...n P,
Problem 4.5.45: Let A U SF. Suppose that A has a S-reduced fuzzy primary
representation A = Q; n...Nn Q. Prove Im (A) = UIm(Qi).

i=1

Problem 4.5.46: Let R be a S-quasi local ring.
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i.  If Y is a S-fuzzy quasi local subring of R then prove u- is quasi local and
H” N M is the unique S-maximal ideal of p".

ii.  IfR'is a S-subring of R, prove R' is a S-quasi local with unique S-maximal
ideal M n R'if and only if &r is a S-fuzzy quasi local subring of R.

Problem 4.5.47: Let {Aq / o JQ} [0 A be the collection of S-fuzzy subrings of a
S-ring R such that A = ZAG . Suppose L has finite intersection property. Prove A”=

alQ

[]A, ifandonly if A= []A,.

alQ allQ

Problem 4.5.48: Let {Aq/ a U Q} be a collection of S-fuzzy subrings of a S-ring R.

Prove » (A, ). O [ZAGJ*.

alQ aldQ

Problem 4.5.49: Let {Aq/ 0 [ Q} be a collection of all S-fuzzy subrings of a S-ring.
If there exists t [J L, t # 1, such that t = sup {Aq(x)| x U Agnfor all a U Q}, then prove

>(0)=( 2

allQ aldQ

Problem 4.5.50: Let {Aq| 0 [I Q} be a finite collection of S-fuzzy subring of R. If Aq
is finite-valued for all a [J Q, then prove

>(0)=(

alQ aldQ

Problem 4.5.51: Let {Aq a [0 Q} be a finite collection of S-fuzzy subrings of R.
Suppose that L has finite intersection. If

ZAG = |:|A(X

alQ alQ

Prove

YA =[]A,

allQ alQ

Problem 4.5.52: Let {Aq o [ Q} be a collection of S-fuzzy subrings of R. Then
prove

ABZAG = ZABAG

aldQ aldQ

and
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[ESAﬂ}ABZEZAﬂAB

aldQ aldQ

Problem 4.5.53: Let A and B be S-fuzzy subrings of R such that sup{sup{A(x) | x [
Aql, sup {B(x)|a U Bq}} < 1. Prove (AB)o= ABn

Problem 4.5.54: Let A be a fuzzy subset of V and let s, t [ Im (A). Prove

i. s<tifand onlyif A; [J A..
ii. s=tifand onlyif A;=A..

Problem 4.5.55: Let A [J 4 5, . Then for all t such that 0 <t < A(0), prove A;is a S-
subspace of V.

Problem 4.5.56: Let A be fuzzy subset of the S-vector space V. If A; is a S-subspace
of V for all t 0 Im(A) will A [0 4 4 .

[Hint: For S a subset of F, we let ds denote the characteristic function of S].

Problem 4.5.57: Let A be a fuzzy subset of a S-fuzzy vector space V and let K be a
fuzzy subset of the S-ring R. For d 0 P [ R and x [J V (V defined relative to the
subfield P in R). Suppose that 0 < g, A < 1. Then for all z I V, prove

i (dyo A)(z) =min{J, A[%z

ii. (Oyo A)(z)=sup{min {4, A(y)}/y O V}ifz=0;(Opo0 A)z)=0ifz#0.

iii. (ko x))(z) =sup{min {k(c), A} /c 0P OR, z=cx} if x # 0 and z [J sp(x);
0 if x # 0 and z [J sp(x).

iv. (ko Oy)(z) =sup{min{k(c), A /c OF}ifz=0; (ko 0r)(z)ifz Z 0.

j}ﬁd¢0

Problem 4.5.58: Prove the following. Letc, d OPOR, x,ydOVand 0 <K, A, 1,V <
I. Then dy 0 xp = (AX)min @, A XA+ Y = (X + Ymin A, vy du 0 Xp T Ck 0 Yy =
(dX + C}’)min{p,)\, K,V}.

Problem 4.5.59: Show if M is a &-Noetherian module over a S-ring R, prove for any
S-fuzzy module ny,, N(M) < -+co.

Problem 4.5.60: Is it true if N(M) < oo for any S-module M over a S-ring R then M is
a S-Noetherian module?

Problem 4.5.61: Prove or disprove if M is a S-left (or S-right) R module where R is
an S-ring. Then prove or disprove N(M) < oo for every S-fuzzy evaluation n if and
only if M is a S-Noetherian module.
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Problem 4.5.62: Let V be a S-vector space 1. Then prove n(V) < e for every S-fuzzy
vector space Ny if and only if V is a S-finite dimensional vector space.

Problem 4.5.63: Let n,, is a S-fuzzy module over R, (P J R is a subfield relative to

which ny is defined) and N be its singular S-fuzzy submodule i.e. N; = {a [ M/ n(a)
= 1}. Then prove or disprove the following statements:

1. In the S-fuzzy quotient module (ﬁ,% j,ﬁ(ﬁ) =1, if and only
1
ifa=0.
ii. In the S-fuzzy module (n, M), n(a') = n(a) if a and a' belong to

the same coset.

Problem 4.5.64: For any S-fuzzy module n;, and its singular S-fuzzy module Ny,
prove if [M/N;| < o implies N(M) < oo,

Problem 4.5.65: Give an example of a SNA-fuzzy ring which is not a SNA-strong
fuzzy ring.

Problem 4.5.66: Prove if [l is a SNA-fuzzy ideal of R then

i H(X) = H(—x) < u(0) for all x OP O R.
ii. H(x —y) = H(O0) = p(x) = u(y), x, yUP IR

P relative to which [ is defined.

Problem 4.5.67: Let R be a SNA-ring. A fuzzy subset [ of R is a SNA-fuzzy ideal of
R if and only if the level subsets |, t [1 Im Y are SNA-fuzzy ideals of R relative to the
same subring P [J R — Prove.

Problem 4.5.68: If f is a S-homomorphism of a SNA-ring R onto a SNA-ring R', then
for each SNA-fuzzy subring U of R, f(l) is a SNA-fuzzy subring of R' and for each
SNA-fuzzy subring [' of R, f'(l') is a SNA-subring of R — Prove.

Problem 4.5.69: Verify whether the above statement is true, if SNA-fuzzy subring is
replaced by the SNA-fuzzy ideal of R.

Problem 4.5.70: R is a SNA-ring, is it true that R is SNA-regular ring if and only if
00 =0 n O where 0 and O are any two SNA-fuzzy ideal of R relative to the same
PUOR.

Problem 4.5.71:
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1. If p is any SNA-fuzzy prime ideal of a SNA-ring R then prove the
SNA-ideal [, t = H(0), is a prime ideal of R.
il. Prove an SNA-ideal P of a SNA-ring R, R # P is prime if and only if
characteristic function Xp is a SNA-fuzzy prime ideal of R.
iil. Will Im p = 2? Justify your claim.

Problem 4.5.72: SNA-fuzzy ideal u of a SNA-ring. Prove [ is a SNA-fuzzy
semiprime if for any SNA-fuzzy ideal 8 of R the condition 6 " J W implies that 8 0 p
where n [1 Z,.

Problem 4.5.73: Prove an ideal I of a SNA-ring R is semiprime if and only if X; is a
SNA-fuzzy semiprime ideal of R.

Problem 4.5.74: If | is any SNA-fuzzy ideal of a SNA-ring such that Im g = {to, ti,
..o tn} and to > ... > ty, then prove Y is SNA-fuzzy semiprime if and only if [, is a

semiprime ideal of R foralli=0, 1,2, ..., n.

Problem 4.5.75: Is the intersection of a SNA-fuzzy semiprime ideal of a SNA-ring
relative to a fixed P [J R, a SNA-fuzzy semiprime of R relative to the same fixed P?
(P an associative subring or R).

Problem 4.5.76: Is it true that a SNA-regular ring every SNA-fuzzy ideal of R is
idempotent?

Problem 4.5.77: Suppose the SNA-fuzzy ideal of the SNA-ring is idempotent relative
to an associative subring P of R. Then P is a regular subring of R.

Problem 4.5.78: Prove in a SNA-ring R every SNA-fuzzy prime ideal of R relative to
the associative subring P of R is a SNA-fuzzy primary ideal of R relative to the same
P.

Problem 4.5.79: Let A be any SNA-primary ideal of a SNA-ring R, relative to P [J R,
A # R, then the fuzzy subset Y of R defined by

1 ifxOA
H(x) = ,

a ifxOP\Awherea [I[0,])
is a SNA-fuzzy primary ideal of R relative to P.

Problem 4.5.80: If p is any SNA-fuzzy semiprimary ideal of a SNA-ring relative to P
then prove Ys where s [J Im [ is a SNA-semiprimary ideal of R relative to P.

Problem 4.5.81: Let R be a SNA-ring. If 4 is any SNA-fuzzy semiprimary ideal of R
prove the ring Ry, is semiprimary relative to the same P.
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Problem 4.5.82: Let [ be any SNA-fuzzy ideal of a SNA-ring R P is SNA-fuzzy
semiprime and SNA-fuzzy irreducible relative to the same associative subring P [J R.
Prove M is SNA-fuzzy prime relative to P.

Problem 4.5.83: Give an example of a S-weakly commutative biring which is not a
S-commutative biring.

Problem 4.5.84: Let (R = Q[x] U (R x R), +, *) be a biring. Define L : R - [0, 1] a
S-fuzzy biring of R.

[Hint: R is a biring as R = R; [J R, where R; = Q[x] is a S-ring as Q [ Q[x] is a field
inQ[x], R, =0 x01, 0 x {0} 0O x [ is a field in Ry).

Problem 4.5.85: Give an example of a S-strong fuzzy biring.

Problem 4.5.86: Give an example of a S-fuzzy biring which is not a S-strong fuzzy
biring.

Problem 4.5.87: Prove a fuzzy subset U = [4; 0 lo; R=R; O R, - [0, 1] of a S-fuzzy
sub-biring ( S-fuzzy bi-ideal ) of R if and only if H¢= ()0 (K2) ¢ U Impu =
Im p; O Imy, are S-fuzzy bisubrings (S-fuzzy bi-ideals) of R.

Problem 4.5.88: Prove a non-constant S-fuzzy bi-ideal [ of a biring R is S-fuzzy
prime if and only if Card Im =2, 1 [J Im [ and bi-ideal Y, where t = p(0) is prime.

Problem 4.5.89: Prove two levels S-sub-birings (level S-bi-ideals) Y5 and [ (with
s <t) of a S-fuzzy sub-biring (S-fuzzy bi-ideal) [ of a S-biring R are equal if and only
if there is no x in R such that s < p(x) <t; (s < li(x) <t; s < Ma(x) <1).

Problem 4.5.90: Will the intersection of any family of S-fuzzy sub-birings (S-fuzzy
bi-ideals) of a S-biring a S-fuzzy sub-biring (S-fuzzy bi-ideal) of R.

Problem 4.5.91: If U is any S-fuzzy bi-ideal of a S-biring R then will p + g = u?
Justify your claim.

Problem 4.5.92: If | is any S-fuzzy sub-biring and 0 is any S-fuzzy bi-ideal of R then
will 4 n O a S-fuzzy bi-ideal of R?

Problem 4.5.93: Let U be any fuzzy subset of a S-bifield F. Then prove [ is a S-fuzzy
bi-ideal of F if and only if p(x) = p(y) < H(0) (i.e. ti(x1) = i(y1) < H1(0) and pa(xz) =
le(yz) < le(O) for all X1, X2 OF;\ {O} and Yi, Y2 U Fz\{O}, where F=F; O Fz)

Problem 4.5.94: Let [ be any S-fuzzy sub-biring (S-fuzzy bi-ideal) of a S-biring R =
R; 0 Ryand if Hl(xl) < Hl(yl) and Hz(Xz) < le(yz) for some X1, Y1 OR; and X2, V2 UR,
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then prove Hi(x; — y1) = pu(x1) = Hi(yr — x1) and Hao(x2 — y2) = Ha(X2) = Ha(y2 — X2)
where L= O Yo M1 : Ry - [0, 1] and W : Ry - [0, 1].

Problem 4.5.95: Prove if {' = W OWL/i0Z} is a collection of S-fuzzy bi-ideals of
S-biring R such that W Opf OW O..0W O..and W O O, O0...0W O...
then
Uw =[Uuij O [Uuéj
iz, iz, iz,

is a S-fuzzy bi-ideal of R.

Problem 4.5.96: If | is any S-fuzzy bi-ideal of a S-biring R then p(x) = p(0) =
W, =, where x OR; O R,.

(Hint: To be more precise 4 = Wi U Mo, W : Py - [0, 1] and Yy : P, — [0, 1] with
Mi(x1) = Hi(0) and pa(x2) = pa(0) if and only if py, =(,); and p, =(u,);, xi O P,
and X2 U Pz)

Problem 4.5.97: Prove if H is any S-fuzzy prime bi-ideal of a S-biring R then [;(x1y1)

= max {Hl(Xl), Hl(yl)}, Hz(Xzyz) = max {Hz(Xz), Hz(yz)} for all X1, Y1 P, ORy and X2,
Y2 D Pz D Rz (R:Rl D Rz)

Problem 4.5.98: Prove if [l and O are any two S-fuzzy prime bi-ideals of a S-biring R
then 4 N B is a S-fuzzy prime bi-ideal of R if and only if p [J 6 or 6 [J .

Problem 4.5.99: Prove I a S-bi-ideal of a S-biring R is semiprime if and only if X; is a
S-fuzzy semiprime bi-ideal of R.

Problem 4.5.100: If (i is any S-fuzzy bi-ideal of a S-biring R such that Im (L = {to, ti,
.. ta} and to>t; > ... >ty then P is S-fuzzy semiprime if and only if H,  is a

S-semiprime bi-ideal of R foralli=0, 1, 2, ..., n.

Problem 4.5.101: Prove the intersection of S-fuzzy semiprime (S-fuzzy prime, S-
fuzzy maximal) bi-ideals of a S-biring R is always a S-fuzzy semiprime bi-ideal of R.

Problem 4.5.102: Prove a S-biring R is regular if and only if every S-fuzzy bi-ideal
of R is idempotent.

Problem 4.5.103: Prove every S-fuzzy prime bi-ideal of a S-biring R is S-fuzzy
primary bi-ideal of R.

Problem 4.5.104: Prove if Y is any S-fuzzy primary bi-ideal of a S-biring R then [,
tlJ Im M is a S-primary bi-ideal of R.
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Problem 4.5.105: Prove if | is any S-fuzzy primary bi-ideal of a S-biring R then Vi
is S-fuzzy prime.

Problem 4.5.106: Prove if [ is any S-fuzzy primary bi-ideal of a S-biring R then the
S-biring Ry, is primary.

Problem 4.5.107: If Y is any S-fuzzy semiprimary bi-ideal of a S-biring R then prove
Ms where s [ Im | is a semi-primary bi-ideal of R.

Problem 4.5.108: Prove if [ is any S-fuzzy semiprimary bi-ideal of a S-biring R then
the biring R, is semiprimary.

Problem 4.5.109: Prove if W is any S-fuzzy prime bi-ideal of a S-biring R then [ is
S-fuzzy irreducible.

Problem 4.5.110: Prove if R is a S-regular biring then every S-fuzzy irreducible bi-
ideal is fuzzy prime.

Problem 4.5.111: Obtain some innovative results on S-fuzzy bi-modules on
S-birings.

Problem 4.5.112: Give an example of a S-na-fuzzy weakly sub-biring, which is not a
S-na-fuzzy sub-biring.

Problem 4.5.113: Give an example of a S-na-fuzzy bi-ideal.

Problem 4.5.114: Give an example of a S-na-fuzzy weakly bi-ideal, which is not a
S-na-fuzzy bi-ideal.

Problem 4.5.115: Give a necessary and sufficient condition for a S-na-biring to have
only S-na-fuzzy weakly bi-ideal.

Problem 4.5.116: Define S-na-fuzzy irreducible bi-ideal of a S-na-biring.
Problem 4.5.117: Give an example of

i.  a S-na-fuzzy irreducible bi-ideal.
ii.  a S-na-fuzzy reducible bi-ideal.

Problem 4.5.118: Define S-na-fuzzy semi-primary bi-ideal of a S-na-biring. Illustrate
it by an example.

Problem 4.5.119: Prove if [l is any S-na-fuzzy semiprimary bi-ideal of a S-na-biring
R then the biring R is semiprimary.
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Problem 4.5.120: Prove/disprove if [ is any S-na-fuzzy ideal which is both S-na-
fuzzy semiprime and S-na-fuzzy irreducible then [ is S-na-fuzzy prime bi-ideal.

Problem 4.5.121: If R is a S-na-regular biring will every S-na-fuzzy irreducible
bi-ideal of R be S-na-fuzzy prime?

Problem 4.5.122: Obtain a necessary and sufficient condition for a S-na-fuzzy bi-
ideal to be S-na-fuzzy irreducible bi-ideal of R.

Problem 4.5.123: Obtain a necessary and sufficient condition for a S-na-fuzzy bi-
ideal of a S-na-biring R to be S-na-fuzzy primary bi-ideal of R.

Problem 4.5.124: Let R be a S-na-biring. If |1 is any S-na-fuzzy bi-ideal of R, will VL
a S-na- fuzzy maximal bi-ideal imply [ is a S-na-fuzzy primary bi-ideal of R?

Problem 4.5.125: If l is a S-na-fuzzy primary bi-ideal of a S-na-biring R. Prove V| is
the smallest S-na-fuzzy prime bi-ideal of R containing J.
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CHAPTER FIVE

SMARANDACHE FUZZY SEMIRINGS AND
THEIR GENERALIZATIONS

Study of semirings and fuzzy semirings are carried out by several researchers. But the
notion of Smarandache semirings is new [134]. The concept of Smarandache fuzzy
semiring is introduced in this chapter. This chapter has five sections. In section one
we introduce the concept of Smarandache semirings and its properties.
Smarandachaic fuzzy properties and Smarandache properties are given in semirings.
We give about 25 definitions recalling the Smarandache-ic fuzzy properties in
semirings. In section two Smarandache fuzzy semivector spaces are defined and its
properties are derived. Smarandache fuzzy non-associative semirings are introduced
and studied in section three. Smarandache fuzzy bisemirings both associative and
non-associative are introduced and studied in section four which contains about forty
definitions. The final part of the chapter, the fifth section contains fifty-four problems
of interest.

5.1 Smarandache semirings and its properties

The study of fuzzy semirings is dealt in chapter 1. In this section we just recall the
definition of Smarandache semirings and give a few of its properties. This section
defines the notions of Smarandache fuzzy semirings and gives some of its basic
properties. As the main motivation of the text is to introduce the Smarandache fuzzy
concepts and make the reader work on these concepts we have restrained from giving
several theorems with proofs, instead we propose them as problems in section five.
Now we start to recollect some of the basic definitions about Smarandache semirings.

DEFINITION 5.1.1: The Smarandache semiring (S-semiring) S which will be denoted
from here on wards as S-semiring is defined to be a semiring S such that a proper
subset B of S'is a semifield with respect to the same induced operations.

Example 5.1.1: R® = {set of all positive reals with 0} is a S-semiring. For Z’ DR’ is a
semifield. Clearly we can prove all semirings in general are not S-semirings.

DEFINITION 5.1.2: Let S be a semiring. A non-empty proper subset A of S is said to be
a Smarandache subsemiring (S-subsemiring) if A is a S-semiring.

In view of these definitions we have the following theorem which is left as an
exercise for the reader to prove.

THEOREM 5.1.1: If S is a semiring which has a non-trivial S-subsemiring then S is a
S-semiring.

DEFINITION 5.1.3: Let S be a S-semiring. We say S is a Smarandache commutative
semiring (S-commutative semiring) if S has a S-subsemiring which is commutative. If
the S-semiring has no commutative S-subsemiring then we say S is a Smarandache
non-commutative semiring (S-non-commutative semiring).
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DEFINITION 5.1.4: Let S be a semiring. A non-empty subset P of S is said to be a
Smarandache right (left) ideal (S-right (left) ideal) of S if the following conditions are
satisfied
i.  Pisa S-subsemiring.
ii. Foreveryp [JP and A []P where A is the semifield of P we have for all
alJA andp [JP, ap (pa) is in A.

If P is simultaneously both S-right ideal and a S-left ideal then we say P is a
Smarandache ideal (S-ideal) of S.

The following theorem is of interest.

THEOREM 5.1.2: Let S be a S-semiring. Every S-ideal of S is a S-subsemiring of S but
every S-subsemiring of S need not in general be a S-ideal of S.

Proof: By an example.

b
Example 5.1.2: Let M>x = {(a dj/a,b,c,dDCZ =(0,1)} = set of all 2 x 2
C

matrices with entries from the chain lattice C..

oHo oo o} o)

0
0
0
0
1
1
0
1

1
1
1
0
1
1

Clearly M>x; is a S-semiring with 16 elements in it. For

= {o 6 9

1s a semifield. To find ideals in M»x,. The set

0 0)(1 O
S= :
0 0)10 O
is a subsemiring of Myx,. Clearly S is not a S-subsemiring so S cannot be a S-ideal of
M2x2-
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is a S-subsemiring of Max,, which is not a S-ideal of Max,.

DEFINITION 5.1.5: Let S be a semiring. A non-empty proper subset A of S is said to
be Smarandache pseudo-subsemiring (S-pseudo subsemiring) if the following
condition is true.

If there exists a subset P of S such that A [J P; where P is a S-subsemiring i.e. P has a
subset B such that B is a semifield under the operations of S or P itself is a semifield
under the operations of S.

THEOREM 5.1.3: Let S be a semiring every proper subset of S need not in general be a
S-pseudo subsemiring.

The reader is expected to prove by an example.

THEOREM 5.1.4: Let S be a semiring if S contains a S-pseudo subsemiring then S is a
S-semiring.

Proof: S is a semiring and S contains a S-pseudo subsemiring A, i.e. A is contained in
a semifield P, P contained in S. So S is a S-semiring.

The concept of S-pseudo subsemiring leads to the definition of S-pseudo ideals in the
semiring.

DEFINITION 5.1.6: Let S be a semiring. A non-empty subset P of S is said to be a
Smarandache pseudo right (left) ideal (S-pseudo right (left) ideal) of the semiring S if
the following conditions are true.

i.  Pisa S-pseudo subsemiring i.e. P L1 A, A a semifield in S.
ii.  Foreveryp P andeveryalA, ap UP (palP).

If P is simultaneously both a S-pseudo right ideal and a S-pseudo left ideal we say P is
a Smarandache pseudo ideal (S-pseudo ideal).

Now we define two new notions about S-semiring viz. Smarandache dual ideal and
Smarandache pseudo dual ideal of a semiring S.

DEFINITION 5.1.7: Let S be a semiring. A non-empty subset P of S is said to be a
Smarandache dual ideal (S-dual ideal) of S if the following conditions hold good.

i. P isa S-subsemiring.
ii. Foreveryp UPandallA\{0O} a+pisinA, where A []P.

DEFINITION 5.1.8: Let S be a semiring. A non-empty subset P of S is said to be a

Smarandache pseudo dual ideal (S-pseudo dual ideal) of S if the following conditions
are true.
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1. P is a S-pseudo subsemiring i.e. P J A, A is a semifield in S or
A contains a semifield.

il. For every p O P and a O A, p + a O P. Clearly P is
simultaneously left and right S-pseudo dual ideal of S as S is
additively commutative.

The reader is assigned the work of finding examples. Of course, several examples
exist. Here we introduce yet another nice substructure in a semiring called a
Smarandache semidivision ring.

DEFINITION 5.1.9: Let S be a S-semiring. S is said to be a Smarandache semidivision
ring (S-semidivision ring) if the proper subset A [ S is such that

1. A is a Smarandache subsemiring which is non-commutative.
ii. A contains a subset P such that P is a semidivision ring that is P has
no zero divisors and P is a non-commutative semiring.

Now we proceed on to define the notion of Smarandache fuzzy semirings.

DEFINITION 5.1.10: A4 fuzzy subset u of a S-semiring S is called a Smarandache fuzzy
semiring (S-fuzzy semiring) relative to P []S where P is a field if for all x, y [/ P

u(x+y) 2min (u(x), u(v) and
u(xy) 2min (1 (x), 1 (y).

Thus every S-fuzzy semiring u will be associated with a semifield P contained in S.
Further we see u need not be a S-fuzzy semiring relative to all fuzzy subsets u on a
S-semiring S.

We say a fuzzy subset u of a S-semiring S to be a Smarandache strong fuzzy semiring
(S-strong fuzzy semiring) if u relative to every proper subset P which is a subsemifield
of S is a S-fuzzy semiring.

THEOREM 5.1.5: Let u be a fuzzy subset of a S-semiring S. If u is a S-strong fuzzy
semiring then u is a S-fuzzy semiring.

Proof: Direct by the very definition.
Now we define the notion of Smarandache fuzzy ideal of a semiring.
DEFINITION 5.1.11: Let S be a S-semiring. A fuzzy subset u of a S-semiring R is called

a Smarandache fuzzy ideal (S-fuzzy ideal) of R relative to a proper subset P of R
where P is a semifield if u satisfies the following conditions.

ux +y) 2min (ux), u(y)
u(xy) 2max (u(x), u(y)
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forallx, y [JP [JR.

Example 5.1.3: Consider the S-semiring which is a distributive lattice whose Hasse
diagram is as follows:
1

<4,

0

Figure 5.1.1

This has several semifields and we can define S-fuzzy ideals accordingly. Product of
S-fuzzy ideals of a S-semiring S is defined as in case of S-rings relative to a proper
subset which is a semifield.

Now we proceed on to define Smarandache fuzzy prime ideals of a S-semiring S.

DEFINITION 5.1.12: 4 S-fuzzy ideal u of a S-semiring S is called a Smarandache fuzzy
prime (S-fuzzy prime) if the ideal u, where t = (0) is a prime ideal of P [JS (P a subset
of S which is a semifield) or following [116] we define the S-fuzzy prime ideal of a S-
semiring in a different way.

A non-constant-S-fuzzy ideal u of a S-semiring S is called S-fuzzy prime if for any two
S-fuzzy ideals oand @ of P [JS (u defined only relative to the semifield P in S) the
condition 0 8 [J [ implies o[ Lor 8 [J .

Recall, u be any S-fuzzy subsemiring of the S-semiring S, t [J[0, 1] and t < 1 (0). The
S-subsemiring (S-ideal) u, is called a S-level subsemiring (S-level ideal) of u. We just
recall the definition of S-fuzzy quotient ideal of a S-semiring S.

DEFINITION 5.1.13: Let u be a S-fuzzy ideal of a S-semiring S relative to a
subsemifield P in S. The S-fuzzy ideal u' of R, defined by /4’(;1:) = u(x) for all x [JP
is designated as the Smarandache fuzzy quotient ideal (S-fuzzy quotient ideal) of the
S-semiring S relative to the semifield P, P [JS. From now onwards we will denote by

L={L <, [], [} the completely distributive lattice which has ‘0’to be the least
element and ‘1’ to be the greatest element.

Let X be a non-empty set. A L-fuzzy set in X is a map u : X - L and F(X) will denote

the set of all L-fuzzy sets in X. if u, v [JF (X) then u [JVif and only if u (x) [JV (x) for
allx X and u [Jvifandonly if u [Jv and v Z L.
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1t is easily seen (F(X), [J,[J, [J = F(X) is again a complete distributive lattice which
has the least and the greatest element say 0 and 1. 0 (x) =0 and 1 (x) = 1 for all x
X

We recall these concepts in order to define the notion of Smarandache normal L-fuzzy
ideals in a S-semiring.

DEFINITION [50]: Let i [JF (S), S a semiring. Then u is called on L-fuzzy left (vesp.
right)ideal of S if for all x, y [JS.

i. wis an L-fuzzy subsemigroup of (S,+) that is u(x —y) =min (u(x), u(y))
and

ii.  u(x, y) 2u(y) (resp. (ux) >u(xy)).

We give the definition of Smarandache L-fuzzy ideal of a S-semiring.

DEFINITION 5.1.14: Let S be S-semiring. u [JF(S). Clearly F(S) is also a S-semiring.
u is called a Smarandache L-fuzzy left (vesp. right) ideal (S-L-fuzzy left (resp. right
ideal) of Sif for all x,y [JP [JS, P a semifield we have u is a L-fuzzy subsemigroup
of (P, +) that is

Lou(x +y) 2min {ux), u(y)}.
ii. u(xy) 2uy) (resp. u(xy) 2 u(x)).

Thus we assume [ [JF(P) [JF(S).

DEFINITION 5.1.15: A S-L-fuzzy left (resp. right) ideal u of S; S a S-semiring is
Smarandache normal relative (S-normal relative) to P in S if u(0) = 1.

Note: The 0 in P will be different for different P’s in S.

For instance if we take S = {0, a, b, 1} to be the distributive lattice which is a S-
semiring.

0
Figure 5.1.2

Py ={a, 1}, P, = {b, 1} and P; = {0,1} are semifields. Also one can take P4 = {0, a}
and Ps = {0, b} to be semifields of S. Thus S has five distinct semifields.

Thus in case of S-L-fuzzy ideals p(0) is the largest value of p only relative to each P;
for varying i we will have p(0) to be varying seen from the above example. Recall, let
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1 be an S-L-fuzzy left (resp. right) ideal of the S-semiring S and let u” be an L-fuzzy
set in S defined by p(x) = u(x) + 1 — u(0) for all x ,0 P O S then pn" will be a
Smarandache normal L-fuzzy left (resp. right) ideal (S-normal L-fuzzy left (resp.
right) ideal) of S relative to P containing p Thus p* will vary from P to P i.e. depends
on the subsemifield P in S.

Now we proceed on to develop an analogous results of isomorphism theorems and
fuzzy k-ideals given by [52]. He calls a semiring S to be a k- semiring if for any a, b

U S there exists a unique element c in S such that either b=a + ¢ or a=b + ¢ but not
both.

Now we define the Smarandache analogue of it.

DEFINITION 5.1.16: Let S be a S-semiring. We call S a Smarandache k-semiring (S-k-
semiring) if for any a, b [JP [JS (P a semifield in S) there exists a unique element c in
P such that either b = a + c or a = b + ¢ but not both [52] calls a non-empty subset |
of a semiring S to be subsemiring of 1 if I itself is a semiring with respect to the binary
operations defined in S. An ideal I of a semiring S is called a k-ideal if r + a [J1
implies v [J1 for each v [JS and each a [J1.

We define Smarandache k-ideal of a S-semiring.

DEFINITION 5.1.17: Let S be a S-semiring. A S-ideal I of the S-semiring S is called a
Smarandache k-ideal (S-k-ideal) if v + a [J I implies r [/ I for each v [JP [JS and
eacha [J1.

The extension k-semiring is defined by [52] as follows.

Let S be a k-semiring. Let S' be a set of the same continuality with S\ { 0 } such that
S n S'"= @ and let us denote the image of a [JS \ {0} under a given bijection by a'.
Let O and ® denote addition and multiplication respectively on the set S =S 0 8" as
follows:

a+tb if a,bUS

_|(x+y)" ifa=x"and b=y'00S§'

e if alS,b=y'0 S"and a=y+c
c’ if aS,b=y'08" ,a+c=y

allb

where c is the unique element in S such that either a =y + c or a + ¢ =y but not both
and

ab if a,bUS

(xy)' ifa=x',b=y'0108
(ay)' if allS,b=3»'00 8’
(xb)" if a=x'0S" and b11S.
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(It is easily verified that these operations are well defined). [52] calls if S is K-
semiring then (S,0,®) is a ring called the extension ring of S. For he denotes ©a

the additive inverse of any element a [JS and write a 1O b simply as a © b. then it
is clear that a' = ©a and a =©a' for all a [JS.

Now we define the Smarandache extension ring of a Smarandache k-semiring.

DEFINITION 5.1.18: Let S be a S-k-semiring (S,0,®) be a extension ring of S. If
(S,0,0)is a S-ring then we call (S,0,0)a Smarandache extension ring
(S-extension ring) of the S-k-semiring S. For a S-k-semiring S,I a S-ideal and I' =
{a'0S8' [ [T1). Then I is a S-k-ideal of S if and only if I=101" is an S-ideal of

the S-extension ring, R. We call 1 the Smarandache extension ideal (S-extension
ideal) of 1.

DEFINITION 5.1.19: 4 mapping f from a S-k-semiring S into a S-k-semiring R is called
a S-k-semiring homomorphism if

f(a+Db)=fla) +f(b) and
f(ab)=fla) fib)

foralla, b [JP []S (P a semifield in S) and f (a), f(b) [JP; [JR, P; a semifield in R.

Now for f: S — R a S-k- semiring homomorphism. Let S and R be S-extension rings
of S and R respectively. Define amap f:S — R by

_(f(x) ifx0S
/() _{(f(x))’ if x08"

Then if f is a S-ring homomorphism, we call f the S-extension ring homomorphism

off.
Several results in this direction can be obtained by an innovative reader.

DEFINITION 5.1.20: Let A be a S-fuzzy ideal of a S-semiring S. Then A is called a
Smarandache k-fuzzy ideal (S-k-fuzzy ideal) of S if A(x + y) = A(0) and A(y) = A(0)
imply A(x) = A(0) where A is defined relative to the subsemifield P in S and 0
corresponds to the 0 of P. For A the S-k-fuzzy ideal of S, the set A, =

{x gp S|A(x) > t} (t L]0, 1]) is called the level subset of S with respect to A.

Now we proceed on to define the concept of S-fuzzy prime and primary ideal of a
S-semiring R.

DEFINITION 5.1.21: 4 S-fuzzy ideal A of a S-semiring R is called Smarandache fuzzy

prime (S-fuzzy prime) if for all a, b [JP [JR either A(ab) = A(a) or else A(ab) = A(b),
A defined relative to P [/R.
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DEFINITION 5.1.22: A S-fuzzy ideal A of a S-semiring R is called Smarandache fuzzy
semiprime (S-fuzzy semiprime) if A(a") = A(a) for all a, [P [JR and for all m [7Z..
(P is the semifield of R relative to which A is defined).

Next we give the concept of S-fuzzy maximal ideals of the S-semiring.

DEFINITION 5.1.23: Let A be a S-fuzzy ideal of a S-semiring R such that all of its
subsets are S-k-ideals of R. A S-fuzzy ideal A of R is called S-fuzzy maximal if

i A) =1,
ii. A(e) <A(0) and
iii. whenever A(b) < A(0) where some b [JP[JR (P the semifield

relative to which A is defined) then Z(ep U (rb)') = A(0) for somer [JP [JR
where ep is the identity of P.

DEFINITION 5.1.24: A semiring S is said to be semiregular if for each a [/ S there are
X1, X2 [7S such that a + ax;a = axya. We call a S-semiring, S to be Smarandache
semiregular (S-semiregular) if for each a [J P [JS, P a proper subset which is a
semifield we have x;, x, [P such that a + ax;a = ax;a.

DEFINITION 5.1.25: A semiring S is said to have k-closure A of a subset A [ S if
A ={xDS| x+a,=a,,a,,a, DA} Af A is a left ideal of S, then A is the smallest left

k-ideal of S containing A. We also have A=4 foreach A [JS and A [JB []S implies
AUB.
For a S-semiring S, A [JS (A a proper subset of S), the Smarandache k-closure (S-k-

closure) A of A is defined by A I{XDP [ S| P a subsemifield of S, x + a; = ay, ay,
ap HA}.

Several interesting results in this direction can be had and the reader is expected to
define and study them.

5.2. Smarandache Fuzzy semivector spaces

The notion of semivector spaces over semifields is a recent one. Further the study of
Smarandache semivector spaces is a very recent one [134]. Here we just recall the
definition of Smarandache semivector spaces and some of its basic properties. The
main motivation of this section is to introduce the notion of Smarandache fuzzy
semivector spaces.

DEFINITION [134]: Let G be a semigroup under the operation ‘+°. S any semifield G,

be a semivector space over S. G is said to be a Smarandache semivector space
(S-semivector space) over S if G is a Smarandache semigroup.
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Example 5.2.1: Let S = Q x Z° be a semigroup under componentwise addition. S is a
semivector space over Z°, the semifield. Now we see S is a S-semivector space over
Z°. It is important to note S = Q X Z° is not a semivector space over the semifield Q°.

Example 5.2.2: Let Q° x Q° x Q° = S be a semigroup under component-wise addition.
Clearly S is a semivector space over Q° but S is not a S-semivector space as
S=Q°xQ°xQ’is not a S-semigroup.

THEOREM 5.2.1: All S-semivector spaces over a semifield S are semivector spaces but
all semivector spaces need not be S-semivector spaces.

Proof: By the very definition of S-semivector spaces we see all S-semivector spaces
are semivector spaces. We note that all semivector spaces need not in general be
S-semivector spaces as seen from the above Example 5.2.2.

DEFINITION 5.2.1: Let V be a S-semigroup which is a S-semivector space over a
semifield S. A proper subset W of V is said to be Smarandache subsemivector space
(S-subsemivector space) of V if W is a S-subsemigroup or W itself is a S-semigroup.

Example 5.2.3: Let V=Q° x Z° X Z, V is a S-semivector space over Z°. W = Q° x Z°
x 27 is a S-subsemivector space of V. In fact W; = Q° x {0} x Z [ Visalsoa
S-subsemivector space of V. But W, = Q° x Z° x Z° [1 V is not a S-subsemivector
space of V over Z°. But W, is a subsemivector space of V over Z°.

THEOREM 5.2.2: Let V be a S-semivector space over the semifield F. Every
S-subsemivector space over S is a subsemivector space over S. But all subsemivector
spaces of a S- semivector space need not be S-subsemivector space over S.

Proof: By the very definition of S-subsemivector spaces W [ V we see W is a
subsemivector space of V. But every subsemivector space W of V in general is not a
S-subsemivector space as is evidenced from example 5.2.3 the subsemivector space
W, =Q°x Z°x Z° 0 V is not a S-subsemivector space of V. Hence the claim.

Example 5.2.4: Consider V=27 xZ°, V is a S-semigroup. V is a S-semivector space
over Z°. We see the set {(-1, 1), (1, 1)} will not span V completely {(-1, 0) (1, 0),
(0, 1)} will span V. It is left for the reader to find out sets, which can span V

completely. Can we find a smaller set, which can span V than the set, {(-1, 0), (1, 0),

0, 1)}?

Let V be any S-semivector space over the semifield S. Suppose vy, ..., v, be n set of
elements in V then we say

in V to be a linear combination of the vi's. We see when V is just a semivector space
given in chapter I we could find semivector spaces using finite lattices but when we
have made the definition of S-semivector spaces we see the class of those semivector
spaces built using lattices can never be S-semivector spaces as we cannot make even
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semilattices into S-semigroups as x . X = X for all x in a semilattice. So we are left
only with those semivector spaces built using Q°, Z° and R° as semifields.

DEFINITION 5.2.2: Let V be a S-semigroup which is a S-semivector space over a
semifield S. Let P = {v;, ..., v} be a finite set which spans V and the v; in the set P
are such that no v; 's in P can be expressed as the linear combination of the other
elements in P\ {vi}. In this case we say P is a linearly independent set, which span V.

DEFINITION 5.2.3: Let V be a S-semigroup which is a S-semivector space over a
semifield S. If only one finite set P spans V and no other set can span V and if the
elements of that set is linearly independent, that is no one of them can be expressed in
terms of others then we say V is a finite dimensional S-semivector space and the
cardinality of P is the dimension of V.

We see in the case of S-semivector spaces V the number of elements which spans V
are always larger than the number of elements which spans the semivector spaces,
which are not S-semivector spaces.

DEFINITION 5.2.4: Let V be a semigroup which is a S-semivector space over a
semifield S. A Smarandache basis for V (S-basis for V) is a set of linearly independent
elements, which span a S-subsemivector space P of V, that is P, is a S-subsemivector
space of V, so P is also a S-semigroup. Thus for any semivector space V we can have
several S-basis for V.

Example 5.2.5: Let V =Z7° x Z be a S-semivector space over Z. Let P = {0} x {pZ}
be a S-subsemivector space of V. Now the S-basis for P is {(0, p), (0, -p)}. We see for
each prime p we can have S-subsemivector space which have different S-basis.

DEFINITION 5.2.5: Let V and W be any two S-semigroups. We assume P []V and
C [JW are two proper subsets which are groups in V and W respectively. V and W be
S-semivector spaces over the same semifield F. A map T: V — W is said to be a
Smarandache linear transformation (S-linear transformation) if T(cp; + ps) = cIp; +
Ip; for all p;, p> JP and Tp;, Tp> [J C i.e. T restricted to the subsets which are
subgroups acts as linear transformation.

Example 5.2.6: Let V =Z7° x Z° x 7° be a semigroup under addition. Clearly V is a
semivector space over Z° but V is never a S-semivector space.

In view of this we have got a distinct behaviour of S-semivector space. We know if F
isafield V=F xF x ... X F (ntimes) is a vector space over F. If S is a semifield then
W=S xS x ... S=(ntimes) is a semivector over S. But for a S- semivector space we
cannot have this for we see none of the standard semifields defined using Z°, Q° and
R are S-semigroups. They are only semigroups under addition and they do not
contain a proper subset which is a group under addition.

THEOREM 5.2.3: Let V be a S-semivector space over Q° or Z° or R°, then we can
always find a subspace in V which is not a S-semivector space.

Proof: If V is to be a S-semivector space the only possibility is that we should take
care to see that V is only a semigroup having a subset which is a group i.e. our basic
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assumption is V is not a group but V is a S-semigroup. Keeping this in view, if V is to
be a S-semivector space over Z° (or Q° or R%) we can have V=7°x Z° x Z2° x Q x R
X ... x Z°ie. V has at least once Z° occurring or Q° occurring or R® occurring and
equally it is a must that in the product V, either Z or Q or R must occur for V to be a
S-semigroup. Thus we see if V is a S-semivector space over Z°. Certainly W = Z° x

. x Z° 0V is a semivector space over Z° and is not a S-semivector space over Z°.
Hence the claim.

THEOREM 5.2.4: Let V =8, x ... X8, is a S-semivector space over Z° or R ° or Q°
where S; [7{Z°, Z, Q°, O, R°, R}.

i.  Ifoneof'the Siis Z or Z° then V can be a S-semivector space only over Z °.

ii.  If none of the S; is Z or Z° and one of the S;is Q or Q°, V can be a S-
semivector space only over Z° or Q °.

iii.  If none of the S; is Z or Z° or Q or Q ° only R or R° then V can be a S-
semivector space over Z° or Q ° or R °.

Proof: 1t is left for the reader to verify all the three possibilities.

THEOREM 5.2.5: Let V =S, x ...x S, where S; [J{Z°, Z, Q°, O, R or R°} be a S-
semigroup.

i. IfVis a S-semivector space over Z° then W = Z° x ... xZ° (n times) is a
subsemivector space of 'V which is not a S-subsemivector space of V.

ii.  If'Vis a S-semivector space over Q° then W= Q° x ...x (’ (n times) is a
subsemivector space of 'V which is not a S-subsemivector space of V.

iii.  If' Vis a S-semivector space over R’ then W = R’ x ... X R’ (n times) is a
subsemivector space of V and is not a S-subsemivector space of V.

Proof: Left for the reader to do the proof as an exercise.

THEOREM 5.2.6: Let V = S; x ... x S, where S; [ {Z°,Z, R°, R, Q°, Q} if Visa
S-semivector space over Q°. Then W =7° x ... xZ° ('n times) [1V is only a subset of
V but never a subspace of V.

Proof: Use the fact V is defined over Q° and not over Z°.

We define a new concept called Smarandache pseudo subsemivector space.
DEFINITION 5.2.6: Let V be a vector space over S. Let W be a proper subset of V. If W
is not a subsemivector space over S but W is a subsemivector space over a proper

subset P [] S, then we say W is a Smarandache pseudo semivector space (S- pseudo
semivector space) over P []S.
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Example 5.2.7: Let V=Q° x R° X Q be a S-semivector space over Q°. Now W = Z° x
Z° x 7° and W; = Q° x Q° x Q° are S-pseudo semivector spaces over Z° [1 Q°.

Once the notion of S-semivector spaces are given the concept of Smarandache anti-
semivector spaces becomes vital. So we now proceed on to define Smarandache anti-
semivector spaces.

DEFINITION 5.2.7: Let V be a vector space over the field F. We say V is a
Smarandache anti semivector space (S-anti semivector space) over F if there exists a
subspace W [1V such that W is a semivector space over the semifield S [/F. Here W
is just a semigroup under '+' and S is a semifield in F.

Example 5.2.8: Let V=Q x R x Q be a vector space over Q. We see W = Q° x R® x
Q is a S-semivector space over Q°. W; =Z x Z° x Z° is not a S-semivector space over
Q°. But V is a S-anti semivector space over Q as P=Z7° x Z° x Z° is a semivector
space over Z°.

Example 5.2.9: Let V=0Q x Q x Q x Q x Q, (5 times) is a vector space over Q. Now
W=27ZxZ"%xZ7°xZ7Z°xZ7Z"is a S-semivector space over Z°. So V is a S-anti
semivector space. The basis for V=0QxQxQxQxQis {(1,0,0,0,0) (0,1, 0,0,
0),(0,0,1,0,0),(0,0,0,0, 1),(0,0,0, 1, 0)} as a vector space over Q.

Now what is the basis or the set which spans W =Z x Z° x Z° x Z° x Z° over Z°.
Clearly the set of 5 elements cannot span W. So we see in case of S-anti semivector
spaces the basis of V cannot generate W. If we take W1 = Q°x Q°x Q°x Q°x Z as a
S-semivector space over Z°. Clearly W cannot be finitely generated by a set. Thus a
vector space, which has dimension 5, becomes infinite dimensional when it is a S-anti
semivector space.

DEFINITION 5.2.8: Let V and W be any two vector spaces over the field F. Suppose U
LIV and X [JW be two subsets of V and W respectively which are S-semigroups and
so are S-semivector spaces over S [JF that is V and W are S-anti semivector spaces.
Amap T: V — W is said to be a Smarandache T-linear transformation (S-T-linear
transformation) of the S-anti semivector spaces if T: U — X is a S-linear
transformation.

Example 5.2.10: Let V=Q x Q xQ and W=R xR x R x R be two vector spaces
over Q. Clearly, U=ZxZ°xZ° [0 Vand X =Q x Z x Z° x Z° [1 W are S-semigroups
and U and X are S-semivector spaces so V and W are S-anti semivector spaces.

T:V - W be defined by T(x,y,2)=(X,X,272) for (x,y,z) 0ZxZ°xZ° and
(x, X, z, z) J X is a S-T-linear operator.

Now we proceed onto define the notion of Smarandache fuzzy semivector spaces and

Smarandache fuzzy anti-semivector spaces and obtain some interesting results about
them.
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DEFINITION 5.2.9: A Smarandache fuzzy semivector space (S-fuzzy semivector space)
(G, n) is or Ng is an ordinary S-semivector space G with a map n : G — [0, 1]
satisfying the following conditions:

i. N(a+b)=min (N (a), Nb)).
ii. nN=a) nNia).
ii. no) =1
iv. nra)=2n(a

foralla, b [JP [JG where P is a subgroup under the operations of G and r [JS where
S is the semifield over which G is defined.

Thus it is important to note that in case of S-semivector spaces Il we see that 1] is
dependent solely on a subgroup P of the S-semigroup G that for varying P we may see
that n: G - [0, 1] may or may not be a S-fuzzy semivector space of V. Thus the very
concept of S-fuzzy semivector space is a relative concept.

DEFINITION 5.2.10: A S-fuzzy semivector space (G, 1) or nNg is an ordinary
semivector space G with a map n : G — [0, 1] satisfying the conditions of the
Definition 5.2.9. If n: G — [0, 1] is a S-fuzzy semivector space for every subgroup P;
of G then we call n the Smarandache strong fuzzy semivector space (S-strong fuzzy
semivector space) of G.

The following theorem is immediate from the two definitions.

THEOREM 5.2.7: Let  : G — [0, 1] be a S-strong fuzzy semivector space of G over
the semifield S, then 1 is a S-fuzzy semivector space of G.

Proof: Straightforward by the very definitions hence left as an exercise for the reader
to prove.

Now we proceed on to define S-fuzzy subsemivector space.

DEFINITION 5.2.11: Let (G, n7) be a S-fuzzy semivector space related a subgroup
P [JG over the semifield S. We call 0: H [JG — [0, 1] a S-fuzzy subsemivector space
of n relativeto P [J H [J G where H is a S-subsemigroup G; and o [J n that
is 0: G - [0, 1] is a S-fuzzy semivector space relative to the same P []
H which we denote by iy i.e. 0 = Ny [J Ne.

Now we define Smarandache fuzzy quotient semivector space.

DEFINITION 5.2.12: For an arbitrary S-fuzzy semivector space ng and its S-fuzzy

O
subsemivector space Ny the Smarandache fuzzy semivector space (G/H, 1) or Ng,y
determined by
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1 ullH

O
nu+H)= sup n(u+w) otherwise

alH

is called the Smarandache fuzzy quotient semivector space (S-fuzzy quotient

O
semivector space) of Ng by Nu. or equivalently we can say n i.e. the S-fuzzy quotient
semivector space of g by Ny is determined by

. 1 vOH
MVHH)=Vinf (v+w) vOH

alH

it will be denoted by 1];,,,. Let Ag denote the collection of all S-semivector spaces of

G, G a S-semigroup, relative to the subgroup P []G with respect to the fuzzy subset S;
of the semifield S.

DEFINITION 5.2.13: Let A, Ay, ..., A, be fuzzy subsets of G and let K be any fuzzy
subset of S

i. Define the fuzzy subset A;+...+ A, of G by the following for all x [/H [JG
(H a subgroup of G) (A;+...+ 4, ) (x) = sup {min {A; (x1),..., Ay (x») [J
x=x;+..tx,, x; JH [JG}.

ii. Define the fuzzy subset K o A of G by, for all x [/H [JG (K 0 A)(x) =
sup{min {K(c), A(y)} LJc [JS, y [JH [JG, x = cy}.

Fuzzy singletons are defined as in case of any other fuzzy subset.

Further almost all results related to S-fuzzy vector spaces can be developed in case of
S-fuzzy semivector spaces.

DEFINITION 5.2.14: Let {A; [1 [J 1} be a non-empty collection of fuzzy subsets of S.
Then the fuzzy subset ﬂAi of G is defined by the following for all x [/ H [JG (H a

iar

subgroup of G)

(ﬂ A,} (x) = inf {4; (x) 1 [1}.

a7

Let A [J A ¢ where S, is a fuzzy subset of the semifield S. Let X be a fuzzy subset of G

such that X [J A. (relative to some fixed subgroup, H of G) Let (X) denote the
intersection of all fuzzy subsemispaces of G (over S;) that contain X and are
contained in A. Then (X) is called the Smarandache fuzzy subsemispaces (S-fuzzy
subsemispaces) of A fuzzily spanned by X. We define the notion of fuzzy freeness in
case of Smarandache fuzzy semivector spaces.
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Let & denote a set of fuzzy singletons of H in G such that x, , x, [ then A = v > 0.
Define the fuzzy subset X( ¢ ) of H in G by the following for all x [/H [JG, X(¢)(x) =
A ifxa [JEand X(&)(x) = 0 otherwise. Define (&)= (X(&)). Let X be a fuzzy subset of
Hin G. Define £ (X) = {xa[x [JH TG, A= X(x) >0}. Then X(¢ (X)) = X and & (X(§))
= & If there are only a finite number of x) [7 & with A >0, we call € finite. If X(x) >0
for only a finite number of x [7X, we call X finite. Clearly &is finite if and only if X(¢)
is finite and X is finite if and only if & (X) is finite. For x [JH [J G, let X\{x} denote the
fuzzy subset of H in G defined by the following, for ally [JH [JG, (X \x) (v) = X(y) if
yZxand (X \x)(v) = 0ify = x. Let S; be a fuzzy subset of the semifield S. Let A [J
A and let X be a fuzzy subset of H [ G (H a subgroup of the S-semigroup G) such

that X [JA. Then X is called a Smarandache fuzzy system of generator (S-fuzzy system
of generator) of A over S;if (X)=A.

X is said to be Smarandache fuzzy free (S-fuzzy free) over Sy if for all x) [J X, where A
= X(x), x) [J( X\ x). Xis said to be a Smarandache fuzzy basis (S-fuzzy basis) for A if
X is a S-fuzzy system of generators of A and X is S-fuzzy free. Let & denote a set of
fuzzy singletons of H [J G such that x) xi [JEthen A = k, and x) [J A, then & is called
a Smarandache fuzzy singletons system of generators (S-fuzzy singletons system of
generators) of A over S, if, (&) = A. is said to be S-fuzzy free over S, if for all x, [7 ¢

xy [ (& Vixa}) & is said to be fuzzy free over Sy if for all xy [7&, x) [ (&) {xa}), &

is said to be a fuzzy basis of singletons for A if & is a S-fuzzy singleton system of
generators of A and &is S-fuzzy free.

For A= (&) (0), 0, [J () for every set & of fuzzy singletons of Hin G. Also xy [7( &)
for every such  where x [JH []G. Thus if £is a set of fuzzy singletons of H [7 G such
that either xg or 0y [J ¢ then € is not S-fuzzy free over S; .

LetA ] A . SetA" = {x OH G [H(x) >0} and S;* = {c [IS[B; (c) >0}

It is easy to prove the following theorem hence left for the reader as an exercise.

THEOREM 5.2.8: Suppose A [] 4 . Then

i. S is a subsemifield of S.
ii. A*is a S subsemispace of the S-semivector space H [JG over S; .

Now we proceed on to define the notion of Smarandache fuzzy linearly independent
set over a fuzzy subset S; of a semifield S.

DEFINITION 5.2.15: Let A [J 4  , and let § [J{xa[k [JA* A <A (x)} be such that if

xp, xk [JEthen A = k. Then §is said to be a Smarandache fuzzy linearly independent
(S-fuzzy linearly independent) over S; if and only if for every finite subset
Xp, X5 0 X, | of & whenever

n

[Zn:ciﬂi 0 xhij(x) =0
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for all x [JH\{0} [JG (0 is the additive identity of the subgroup H contained in the S-
semigroup G) where ¢;[]S, 0 <u; <Si(c) fori =1, 2,...,nthenc; =c:=...= ¢, = 0.
Several analogous results can be obtained.

Following the definitions of [79] we give some definitions of S-fuzzy semivector
spaces. It is left for the reader to obtain a necessary and sufficient condition for these
concepts to be equivalent or counter examples to show the non-equivalence of these
definitions.

From now onwards S will be a semifield and G a S-semigroup and G a S-semivector
space over S.

DEFINITION 5.2.16: A fuzzy subset u of the S semivector space G is a Smarandache
subsemispace (S-subsemispace) of G if for any a,b [JS and x , y [JH [JG (H a
subgroup relative to which u is defined ) the following conditions holds good. u (ax +
by) = ux) [J u@y). If i is a S-fuzzy subsemispace of the S-semivector space G and a
LJ]0, 1] then define Gu= {x [JH [JG [Lu (x) =2 a ).

The subspaces G, aO0Im u are S-level subspaces of u relative to H [J G. A set of
vectors B is S-fuzzy linearly independent if

i.  Bis S-linear independent.

ii. u [z aix,} = I:DI U (a; x;) for finitely many distinct element xy, ..., x, of B.
i=1

A S-fuzzy basis for the S-fuzzy subsemispace u is a S-fuzzy linearly independent basis
for HJG.

Now we define Smarandache linear maps of S-semivector spaces.

DEFINITION 5.2.17: Let G and L be S-semivector spaces over the same semifield S
andletu: G - [0, 1] and A: L - [0, 1] be S-fuzzy subsemispaces.

The S-linear map relative to subgroup H in G, ¢ : G - L, from the fuzzy
subsemispaces u to S-fuzzy subsemispaces A if A (@x)) = u (x) for all x [JH [7G. The
space of S-fuzzy linear maps from u to A is denoted by S F Hom (u,A).

Suppose SF Hom (u,A) be a collection of S-fuzzy linear maps from u to A defined
relative to the subgroup H in G. We define a function v from SF (Hom (u,A)) into unit
interval [0, 1] where u : G - [0, 1] and A : G - [0, 1] are S-fuzzy subsemispaces
(relative to the subgroup H in G) G and L respectively such that V determines the
S-fuzzy subsemispace of SF Hom (u , A).

The fuzzy subset v of SF Hom (u, A) is defined by
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inf M@ x)-ux} | xOHOG, grx)£0if ¢ 20
- sup{/](o(x))—,u(x)|xDHDGif(p=0.

Thus if @ Z0 then V (@) is the greatest real number a such that for every vector x in
H [JG we have either A (@gx)) —u (x) =a or @(x) = 0.

We assume from now onwards G and L are finite dimensional S-semivector spaces
defined over the same semifield S.

w:G [0 1]
A:G - [0, 1]

are S-fuzzy subsemispaces with S-fuzzy bases {ey, ..., en} and {fi, ..., fu} respectively.

Then the Smarandache dual functionals (S-dual functionals) {e',é&’, ..., €'} and {f
f2 e f™) form S-fuzzy basis of S-fuzzy subsemivector spaces.

u*:G* - [0, 1] and
A¥:G* 5 [0, 1].

If ¢ [JS Hom (G,L) then the dual map @* [JS Hom (G* L*) defined by ¢(g) (x) =
g(@(x) ) for every g /P *[JL* and x [JH [] G where P* is the related subgroup of
H* in G* in the S-semigroup L*. It is left for the reader to find out whether

g(f )e)=r(mce))

=5 1)
=0 és-

and

@(f')=0,¢.

Now we will just test whether we can define Smarandache fuzzy continuity of linear
maps of S-semivector spaces.

We consider X to be a S-semivector space over the semifiled Q' or R”. Fuzzy subsets
of X are denoted by greek letters, in general X, denotes the characteristic function of

a set A.

By a fuzzy point (singleton) u we mean a fuzzy subset u : X — [0, 1] such that

f2] = {a if z=x

0 otherwise
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where a [7(0,1), I* ={,u| H:X -1 =[0,1]} Here I denotes the closed interval [0),

1]. Forany v 01 u+ v 1% is defined by (1 + v) (x) = sup {11 (v) Ov () +
v=x, H /X, Hasubgroup in X}.

Ifu O1%t 00° R t 20, then (t u) (x) = u (Xu [3) = u (H/ 1), (H X is an additive
subgroup of X relative to which u is defined)

0 if x#0
0. ) = [] u(y) if x=0.

yOHOX

For any two sets X and Y, f : X — Y then the fuzzification of f denoted by f itself is
defined by

[ w(x) if f(y)#20
.  fwy) =)
0 otherwise forall y OY and for all uOI"*

i.  flw &) =ulfx) forall x OX, for all u G1%. u (1 is said to be a
Smarandache fuzzy subsemispace (S-fuzzy subsemispace) if

i. u+us<uand
ii. tu<pforallt Q" orR’ (u:HOX [0, 1] is a S-fuzzy
subsemivector space).

S-convex if tu+ (1-1u) <Hforeacht [J]0, 1]
S-balanced if tu < ufort [7Q° orR°, | t| <1
S-absorbing if [ ] tu(x) = 1 for all x [JH [JX (H a subgroup of X).

t>0

Recall (X, 1) be a topological space and w (1) = { f[f: (X, O - [0, 1] is lower
semicontinuous}, W(T) is a fuzzy topology on X.

This will called as fuzzy topology induced by Ton X. Let ( X, 0) be a fuzzy topology
i(0) the ordinary topology on X. A base for i(0) is provided by the finite intersection

fn]l7il (Lh, 1], vildo, 0L Amap f: (X, 1) - (Y, T') is continuous if and only if for
i=1
every 0T inf~'(u) 0 Tin X where (X, 1) and (Y, T) are fuzzy topological spaces.

DEFINITION 5.2.18: A4 fuzzy topology T. on a S-semivector space X is said to be
S-fuzzy semivector topology if addition and scalar multiplication are continuous from
H xH and Q ° x H respectively to H [7X (H an additive subgroup of the S-semigroup
X) with the fuzzy topology induced by the usual topology on Q°. A S-semivector space
together with a S-fuzzy semivector topology is called a S-fuzzy topological semivector
space.
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A fuzzy seminorm on X is an absolutely convex absorbing fuzzy subset of X. A fuzzy
seminorm on X is a fuzzy norm if [ Jip(x) = 0 for x Z0.

t>0

If pis a fuzzy seminorm on X we define P : X — Ry by P (x) = inf {t >0ltp(x) >
L}. Clearly Ppis a seminorm on X for each []/7(0,1).

DEFINITION 5.2.19: A Smarandache fuzzy seminorm (S-fuzzy seminorm) on a
S-seminorm on a S-semivector space X is an S-absolutely, S-convex absorbing fuzzy
subset of X.

Obtain some interesting results in this direction using S-semivector spaces in the place
of vector spaces.

We just define the notion of Smarandache fuzzy anti-semivector spaces.

DEFINITION 5.2.20: Let V be a vector space over the field F. We say a fuzzy subset u
on V is a Smarandache fuzzy anti-semivector space (S- fuzzy anti-semivector space)
over F if there exists a subspace W of V such that W is a semivector space over the
semifield S contained in F. Here uy : W — [0, 1] is a S-fuzzy semivector space then
we call u the S-fuzzy anti-semivector space.

All results can be derived in an analogous way for S-fuzzy anti-semivector spaces.

5.3 Smarandache Fuzzy non-associative semirings

In this section for the first time we introduce both the notion of non-associative
semirings, Smarandache non-associative semirings and above all the notion of
Smarandache fuzzy non-associative semirings and derive several interesting
properties about them.

DEFINITION 5.3.1: Let (S, +, ®) be a semiring. We call S a non-associative semiring if

i (S, +) is a commutative monoid and
ii. (S, *) is a groupoid i.e. a non-associative semigroup and
iil. a°*tb+c)=a*b+taecand(a +b) °c=a°c+becforalla b cl/
S.

Example 5.3.1: Let Z° = {set of all positive integers with zero}, Z’ is a semiring. Let
(L, *) be a loop given by the following table:

Ol 1 | g || |88
Ll lg | g | g |gs|egs
g e |1 | g|g || g
© | &g | 1 |g|g | g
g g lg g |1 ]g [
g | g | & | g || 1 | &
g | g | &|lgla|eg]|l

352



Clearly the loop semiring Z'L is a non-associative semiring. A non-associative
semiring can also be constructed using groupoids; i.e. groupoid semirings are non-
associative semiring.

Now we proceed on to define Smarandache non-associative semirings.

DEFINITION 5.3.2: Let (S, +, ® be a non-associative semiring. S is said to be a
Smarandache non-associative semiring (S-non-associative semiring) if S contains a
proper subset P such that (P, +, *) is an associative semiring.

The class of S-na-semirings is non-empty. For consider class of loop semirings SL for
varying loops and varying semirings. SL is a S-na-semiring.

Now as our main motivation is to define Smarandache fuzzy-na-semirings, we having
defined S-na-semiring just give the definitions of Smarandache non-associative
subsemirings, Smarandache non-associative ideals in semirings and finally the notion
of Smarandache non-associative k-semirings.

DEFINITION 5.3.3: Let (S, +, ® be a non-associative semiring. A subsemiring (P, +,
*) is said to be a Smarandache non-associative subsemiring (S-non-associative
subsemiring) if (P, +, ) itself is a S-na semiring.

We have the following nice result which is of course direct.

THEOREM 5.3.1: Let (S, +, ® be a na semiring if (S, +, ¢ has a S-na-subsemiring
then (S, +, *) itself is a S-na-semiring.

DEFINITION 5.3.4: Let (S, +, ¢ be a S-na semiring. An non-empty subset I of S is said
to be a Smarandache na-ideal (S-na-ideal) if

i. [lisa S-subsemiring.
ii. pl JI and Ip [J1I for all p [J P [JS where P is an associative

subsemiring of S relative to which I is defined.

Thus it has become noteworthy to mention that I may not be a S-ideal of S relative to
all associative subsemirings of S.

If'in case I happens to be a S-ideal relative to every associative subsemiring of S then
we call I a Smarandache strong non-associative ideal (S-strong non-associative ideal)

of S.
THEOREM 5.3.2: Every S-strong na-ideal of S is a S-na ideal of S.

Proof: Straightforward by the very definition hence left as an exercise for the reader
to prove.

Now we proceed on to define the notion of Smarandache semiregular na-semirings.
DEFINITION 5.3.5: Let (S, +, ¢ be a non-associative semiring which is a S- na

semiring. Let P []S be such that (P, +, ®) be an associative semiring.

353



If for each a [J P there exists x;, x [JS such that a + ax;a = axa we call S a
Smarandache non-associative semiregular semiring (S-non-associative semiregular
semiring).

Let S be a semiring and A [7S. The k-closure A of A is defined by A = { x [JS[% +
a; = ay, aj, a; [JA} We say, A [JP [JS where P is an associative semiring of S to be
Smarandache k-closure (S-k-closure) of Aif A = {x OP[k + a; = as ay, a; [JA}. If
A is a left ideal of S then A is the smallest left k-ideal of S containing A. If A is a S-

na-left ideal of S then A which is a S-k-closure of a is smallest S-left k-ideal of S
containing A.

DEFINITION 5.3.6: Let S be a S-na-semiring. S is called a Smarandache na-k-semiring
(S-na-k-semiring) if for any a, b [/ P [JS (P an associative semiring in S) there exists
a unique c in P such that either b = a + c or a = b + ¢ but not both. Thus we see in
case of S-na-k-semiring unlike semirings we can have several S-na-k-semirings
depending on the number of associative semirings in the S-na-semiring which happen
to be k- semirings.

Now we proceed on to define Smarandache fuzzy non-associative ideals (S-fuzzy na-
ideals) and their properties.

DEFINITION 5.3.7: Let (S, +, ® be a non-associative semiring. A fuzzy subset u of the
semiring S is said to be a Smarandache fuzzy left (resp. right) ideal of S'if u(x +y) =

min {u(x), u(y)} and u(xy) >u (v) (resp. u(xy) =u(x)) for all x, y [J/P []S where P is
an associative semiring relative to which u is defined. u is a Smarandache fuzzy ideal

of S if it is both a S-fuzzy left and a S-fuzzy right ideal of S.

DEFINITION 5.3.8: 4 S-fuzzy ideal u of a S-na-semiring S is said to be a Smarandache

fuzzy k-ideal (S-fuzzy k-ideal) of S if u(x) =min {max {u(x +y), u(yv +x)}, u()} for
all x, y [JP [J S.

All other notions and results related to S-na semirings can be developed in case of S-
semirings. So we leave rest of the result to be proved by the reader.

5.4 Smarandache fuzzy bisemirings and its properties

In this section we introduce the concept of Smarandache fuzzy bisemirings. The study
of Smarandache bisemirings and the notion of bisemirings is very recent. Here we
recall some basic properties about Smarandache bisemirings and then proceed on to
define Smarandache fuzzy bisemirings.

The notion of bisemirings is introduced in Chapter 1. Here we just recall the definition
of Smarandache bisemiring. For more about S-bisemirings please refer [135].

DEFINITION 5.4.1: Let (S, +, *) be a bisemiring. We call (S, +, *) a Smarandache

bisemiring (S-bisemiring) if S has a proper subset P such that P under the operations
of S is a bisemifield.
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DEFINITION 5.4.2: Let S be a bisemiring. A non-empty proper subset A of S is said to
be a Smarandache sub-bisemiring (S-sub-bisemiring) if A is a S-bisemiring i.e. A has
a proper subset P such that P is a bisemifield under the operations of S.

THEOREM 5.4.1: If (S, +, ®) is a bisemiring having a S-sub-bisemiring then S is a
S-bisemiring.

Proof: Follows from the very definitions.

DEFINITION 5.4.3: Let S be a S-bisemiring. We say S is a Smarandache commutative
bisemiring (S-commutative bisemiring) if S has a S-sub-bisemiring, which is
commutative. If S has no commutative S-sub-bisemirings then we call S to be a
Smarandache non-commutative bisemiring (S-non-commutative bisemiring). If every
S-sub-bisemiring of S is commutative then we call S a Smarandache strongly
commutative bisemiring (S-strongly commutative bisemiring).

DEFINITION 5.4.4: Let (S, +, *) be a bisemiring. A non-empty subset P of S is said to
be a Smarandache right (left) bi-ideal (S-right (left) bi-ideal) of S if the following
conditions are satisfied.

i.  Pisa S-sub-bisemiring.

ii. Foreveryp [JPand A [JP where A is a bisemifield of P we have for all a [JA
andp [JP, a *p (p *a) is in A. If P is simultaneously both a S-right bi-ideal
and S-left bi-ideal then we say P is a Smarandache bi-ideal (S-bi-ideal) of S.

DEFINITION 5.4.5: Let (S, +, ®) be a bisemiring. A proper subset A of S is said to be
Smarandache pseudo sub-bisemiring (S-pseudo sub-bisemiring) if the following
conditions are true:

If there exists a subset of P of S such that A [J P, where P is a S-sub-bisemiring, i.e. P
has a subset B such that B is a bisemifield under the operations of S or P itself is a
bisemifield under the operations of S.

DEFINITION 5.4.6: Let S be a bisemiring. A non-empty subset P of S is said to be a
Smarandache pseudo right (left) bi-ideal (S-pseudo right (left) bi-ideal) of the
bisemiring S if the following conditions are true:

i P is a S-pseudo sub-bisemiring i.e. P [/ A, A is a bisemifield in S.

ii. For every p [J P and every a [JA, a *p JP (p *a [JP). If Pis
simultaneously both a S-pseudo right bi-ideal and S-pseudo left bi-ideal
then we say P is a Smarandache pseudo bi-ideal (S-pseudo bi-ideal).

DEFINITION 5.4.7: Let S be a bisemiring. A nonempty subset P of S is said to be a
Smarandache dual bi-ideal (S-dual bi-ideal) of S if the following conditions hold
good:

i P is a S-sub-bisemiring.
ii. Foreveryp [JPand a [JA\{0}); a + pisin A, where A [JP.
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DEFINITION 5.4.8: Let S be a bisemiring. A nonempty subset P of S is said to be a
Smarandache pseudo dual bi-ideal (S-pseudo dual bi-ideal) of S if the following
conditions are true:

i P is a S-pseudo sub-bisemiring i.e. P [J A, A is a bisemifield in S or A
contains a bisemifield.

ii. Foreveryp [JPand a [JA, p + a [JP. Clearly P is simultaneously left and
right S-pseudo dual bi-ideal of S as S is additively commutative.

DEFINITION 5.4.9: Let S be a S-bisemiring. S is said to be a Smarandache
bisemidivision ring (S-bisemidivision ring) if the proper subset A [JS is such that

i A is a S-sub-bisemiring.
ii. A contains a subset P such that P is a bisemidivision ring, that is P has no
zero divisors and P is a non-commutative bisemiring.

DEFINITION 5.4.10: Let S be a bisemiring we say S is a Smarandache right chain
bisemiring (S-right chain bisemiring) if the S-right bi-ideals of S are totally ordered
by inclusion.

Similarly we define Smarandache left chain bisemirings (S-left chain bisemirings).

If all the S-bi-ideals of the bisemiring are ordered by inclusion we say S is a
Smarandache chain bisemiring (S-chain bisemiring).

DEFINITION 5.4.11: Let S be a bisemiring. If S; [JS> [ ... is a monotonic ascending
chain of S-bi-ideals S; and there exists a positive integer r such that S, = S, for all
r = n, then we say the bisemiring S satisfies the Smarandache ascending chain
conditions (S-acc) for S-bi-ideals in the bisemiring S.

We say S satisfies Smarandache descending chain conditions (S-dcc) on S-bi-ideals
Si, if every strictly decreasing sequence of S-ideals N; [J N> [J ... in S is of finite
length. The Smarandache min conditions (S-min conditions) for S-bi-ideals holds in S
if given any set P of S-bi-ideals in S, there is a bi-ideal of P that does not properly
contain any other bi-ideal in the set P.

Similarly one can define Smarandache maximum condition (S-maximum condition)
for S-bi-ideals in case of bisemirings.

DEFINITION 5.4.12: Let S be a bisemiring. S is said to be a Smarandache idempotent
bisemiring (S-idempotent bisemiring) if a proper subset P of S that is a sub-

bisemiring of S satisfies the following conditions:

i P is a S-sub-bisemiring.
ii. P is an idempotent bisemiring.

DEFINITION 5.4.13: Let S be a bisemiring. S is said to be a Smarandache e-bisemiring
(S-e-bisemiring) if S contains a proper subset A satisfying the following conditions:
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i. A is asub-bisemiring.
ii. Ais aS-sub-bisemiring.
iii. A is a e-bisemiring.

DEFINITION 5.4.14: A bisemiring S is said to be Smarandache bisemiring of level 1]
(S-bisemiring of level 1l) if S contains a proper subset P that is a bifield.

DEFINITION 5.4.15: Let R be a biring. R is said to be a Smarandache anti-bisemiring
(S-anti-bisemiring) if R contains a subset S such that S is just a bisemiring.

DEFINITION 5.4.16: Let S be a bisemifield. S = S; [J S: is said to be a Smarandache
bisemifield (S-bisemifield) if a proper subset P = P; [] P, of S is a S-bisemialgebra
with respect to the same induced operations and an external operator (i.e. P;is a
S-semialgebra and P; is a k-semialgebra, P = P; [] P, is a S-bisemialgebra).

DEFINITION 5.4.17: Let S be a bisemifield. S is said to be a Smarandache bisemifield
of level 11 (S-bisemifield of level 11) if S has a proper subset P where P is a bifield.

DEFINITION 5.4.18: Let S be a bisemifield. A proper subset P of S is said to be a
Smarandache sub-bisemifield I (II) (S-sub-bisemifield I (Il)) if P is a S-bisemifield of
level I (or level II).

DEFINITION 5.4.19: Let S be a bifield or a biring. S is said to be a Smarandache anti-
bisemifield (S-anti-bisemifield) if S has a proper subset, A which is a bisemifield.

DEFINITION 5.4.20: Let S be a biring or a bifield. A proper subset P in S is said to be
a Smarandache anti sub-bisemifield (S-anti sub-bisemifield) of S if P is itself a S-anti
bisemifield.

DEFINITION 5.4.21: Let S be a bifield or a biring, which is a S-anti bisemifield. If we
can find a subset P in the sub-bisemifield T in S such that

i. Pis a bisemiring.
ii. forallp [JPandt [T, pt [JP, then P is called the Smarandache anti
bi-ideal (S-anti bi-ideal) of the S-anti-bisemifield.

Now we just define na bisemiring before we proceed onto define Smarandache na
bisemirings.

DEFINITION 5.4.22: Let (S, +, *) be a bisemiring. We say S is a non-associative
bisemiring if S = S; [JS> where S; and S> are semirings where at least one of S; or S
is a non-associative semiring.

DEFINITION 5.4.23: Let (S, +, *) be an associative bisemiring. Let L be a loop, the
loop bisemiring SL = S;L [J] SoL (where S = S; [7 S, S; and S» are commutative
semirings with unit) and S;L and S:L are the loop semirings of the loop L over the

semirings S; and S, respectively.

Clearly the loop bisemiring is a non-associative bisemiring.
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DEFINITION 5.4.24: Let (S, +, *) be a commutative bisemiring with 1 and G any
groupoid. The groupoid bisemiring SG = S,G [J S>G is a non-associative bisemiring.
(S:G and S>G are the groupoid semirings of the groupoid G over the semirings S; and
S, respectively).

DEFINITION 5.4.25: Let (S, +, ®) be a non-associative bisemiring. We say S is a strict
bisemiring if a + b = 0 then a = 0 and b = 0. We call (S, +, *) a na-bisemiring, to be
a commutative bisemiring if both S; and S, are commutative semirings. (S, +, ®) is

said to be a semiring with unit if there exists 1 [/S such that [*s =s * 1 = s for all
s[7S.

An element 0 Zx [JS is said to be a zero divisor if there exists 0 Zy [JS such that x *
v = 0. A na-bisemiring which has no zero-divisors but which is commutative with unit
is called a non-associative bisemifield. If the operation in S is non-commutative we
call S a na-bidivision semiring.

DEFINITION 5.4.26: Let (S, +, *) be a na-bisemiring. We say S is a Moufang
bisemiring if all elements of S satisfy the Moufang identity i.e. (xy)(zx) = (x(yz))x for
all x, y, z [1S. A na-bisemiring S is said to be a Bruck bisemiring if (x(yz))z = x(y(xz))
and (xy)' =x""y forall x, y, z [JS. A na-bisemiring S is called a Bol bisemiring if
((xy)z)y = x((vz)y) for all x, y, z []S. We call a na-bisemiring S to be right alternative
if (xy)y = x(vy) for all x, y [JS; left alternative if (xx)y = x(xy) and alternative if it is
both right and left alternative.

DEFINITION 5.4.27: Let (S, +, ®) be a na-bisemiring. x [/ S is said to be right quasi
regular (r.q.r) if there exists a y [J/R such that x o y = 0 and x is said to be left quasi
regular (1.q.r) if there exists a y' [/R such that y' o x = 0.

An element is quasi regular (q.r) if it is both right and left quasi-regular.

v is known as the right quasi inverse (r.q.i) of x and y' as the left quasi inverse (l.q.i)
of x. A right ideal or left ideal in R is said to be right quasi regular (L.q.r or q.r
respectively) if each of its elements is right quasi regular (l.q.r or q.r respectively).

DEFINITION 5.4.28: Let S be a na-bisemiring. An element x [/ S is said to be right
regular (left regular) if there exists ay [JS (v' [JS) such that x(yx) = x ((xy')x = x).

DEFINITION 5.4.29: Let S be a na-bisemiring. The Jacobson radical J(S) of a
bisemiring S is defined as follows: J(S) = {x [JS /xS is right quasi-regular ideal of S.
A bisemiring is said to be semisimple if J(S) = {0} where J(S) is the Jacobson radical
of S.

DEFINITION 5.4.30: Let S be a na-bisemiring. We say S is prime if for any two ideals
A, Bin S, AB = 0 implies A = 0 or B = 0.

Example 5.4.1: Let S = S;G [ S,G be a bisemiring where S; and S, are semirings
given by the following figures:
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Figure 5.4.2

and G is the groupoid given by the following table:

° c ao al a
€ € ao a a
a0 a0 € ap al
a] a] a (& o
Q [aj]a|a| €

SG = S1G O S,G is a na-bisemiring having non-trivial zero divisors and idempotents.

Having described the concept non-associative bisemirings we now proceed onto recall
the definition of Smarandache non-associative bisemirings.

DEFINITION 5.4.31: Let (S, +, ®) be a na-bisemiring. We say S is a Smarandache na

bisemiring (S-na bisemiring) if S has a proper subset P, (P [/ S) such that P is an
associative bisemiring.
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DEFINITION 5.4.32: Let (S, +, ®) be a na- bisemiring. A proper subset P of S is said to
be a Smarandache na sub-bisemiring (S-na sub-bisemiring) if P itself under the
operations of S is a S-na-bisemiring.

DEFINITION 5.4.33: Let (S, +, *) be a na bisemiring. We say S is a Smarandache
commutative na bisemiring (S-commutative na bisemiring) if S has a S-sub-bisemiring
P that is commutative. If every S-sub-bisemiring P of S is commutative we call S a
Smarandache strongly commutative bisemiring (S-strongly commutative bisemiring)
even if S is commutative and S has no S-sub-bisemiring then also S is not
Smarandache commutative (S-commutative).

DEFINITION 5.4.34: Let (S, +, *) be a na bisemiring. We call S a Smarandache
Moufang bisemiring (S-Moufang bisemiring) if S has a proper subset P where P is a
S-sub-bisemiring of S and P satisfies the Moufang identities i.e. P is a Moufang
bisemiring.

DEFINITION 5.4.35: Let (S, +, ) be a non-associative bisemiring.

If every S-sub-bisemiring P of S satisfies the Moufang identity i.e. every P is a
Moufang bisemiring then we call S a Smarandache strong Moufang bisemiring
(S-strong Moufang bisemiring).

DEFINITION 5.4.36: Let (S,+, ®) be a S-bisemiring. A fuzzy subset u : S - [0, 1] is

said to be a Smarandache fuzzy bisemiring (S-fuzzy bisemiring) if u : P — [0, 1]
where P is a bisemifield of S satisfies the following:

Lop(x+ty) 2min{u(x), p ()}
ii. uxy)2u@andu(xy) = u((x),x,yJP[IS.

Thus while defining S-fuzzy bisemirings u we have some semifield P [] S associated
with it.

Nowifu:S - [0,1]is afuzzy subset of S such that u related to every subsemifield P;
contained in S satisfies the conditions

p(x +y)2min {u (x), u (v)} and
u(xy) 2 p () and
uxy) >u(x)

for all x, y [JP; [JS then we call the fuzzy subset u to be the Smarandache strong
fuzzy bisemiring (S-strong fuzzy bisemiring).

THEOREM 5.4.2: Every S-strong fuzzy bisemiring is a S-fuzzy bisemiring.
Proof: Straightforward by the very definitions.

We can also define Smarandache fuzzy bisemirings in a different way.
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DEFINITION 5.4.37: Let (S, +, ®) be a S-bisemiring. u : S — [0, 1] be a fuzzy subset of
S suppose S = S; [/ S: is the S - bisemiring having P = P; [] P, where P; []S; and P>
L[] S, are semifields i.e. P is a bisemifield of S. We say u is a Smarandache fuzzy
bisemiring (S-fuzzy bisemiring) if u = w; [J uy and u; : S; - [0, 1] is a S-fuzzy
semiring relative to Py and u; : S> — [0,1 ] is a S-fuzzy semiring relative to S..

The reader is requested to prove or disprove or obtain conditions for the equivalence
of the two definitions.

Now we proceed on to define the notion of Smarandache L-fuzzy bi-ideals
Smarandache fuzzy k-bi-ideals of k-bisemirings. From now onwards we will let L
denote the complete distributive lattice.

L = (L, <,0,0) will denote a complete distributive lattice. Let (S=S; I S», +, *) be a
S-bisemiring. Let F(S) denote the set of all L-fuzzy sets of S i.e. F(S) = {u:S - L}.
For g, v OF(S) pUv ifand only if u (x) <v(x) forallx UP=P, 0P, OS=S, 085,
0(x) =0, T(x) = 1 for all x O P. It is easily verified (F(S), O, O, 0) is again a
S- bisemiring.

Now we take S a S-bisemiring F(S) the S-bisemiring associated with S and define
S-fuzzy bi-ideals.

DEFINITION 5.4.38: Let 1 [J F(S). Then u is called an Smarandache L-fuzzy left
(resp. right) bi-ideal of S if for all x, y [JP = P; [J P, []S we have

i. wisan S-L- fuzzy sub-bisemigroup of (S,+) i.e.
. u(x+y) 2min{p(x), p )}
i, pu(xy) 2 p ) (resp. u(xy) 2 u(x)

that is we can say if u = u; [Ju; and u; : Py — L and u; : P> — L then u; and u; are
S-L-fuzzy left (resp. right) ideals of P; and P; respectively.

All results pertaining to S-L-fuzzy bisemirings can be obtained using the definitions
of S-L-fuzzy ideals in S-semirings as a matter of routine.

DEFINITION 5.4.39: Let u be a S-L-fuzzy bi-ideal of the S-bisemiring R. We say u is
S-L-fuzzy normal if u; (0;) =1 and u>(0;) = 1 where ‘0, ‘0, are zero elements i.e.
additive identity of P; and P, respectively.

DEFINITION 5.4.40: A S-fuzzy left bi-ideal A of a S-bisemiring S is called a S-fuzzy left
k-bi-ideal of S if for any x, y, z [JP [JS, x + y = z implies A(x) =min {A() , A(z)}
where A is defined relative to P, the bisemifield of S. Let A and B be two fuzzy subsets
of a S-bisemiring S = S; [1S>. The k-product A oi B is defined by for A = A' [7 4° and
B=B OB whereAd' : S, - [0,1] A*:S, - [0,1],B':S, - [0, 1] and B’ : S, —
[0, 1]
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sup [min{ A’(a,), B'(b, )}, i=12]
A-/Ook B-/(x) = xa,b,=asb,

0 if x cannot be written as x +a,b, = a,b,
forj=1,2.

One can derive several interesting results in this case like Ao, B'(x) JA' n BI,j=

I, 2. But we proceed on to define semiregular bisemirings and S-semiregular
bisemirings.

DEFINITION 5.4.41: A bisemiring S is said to be semiregular if for each a; [1S; (i = 1,
2 where S = S; [1S,) there are x;; x2; [JS;; i = 1, 2; such that a; + a;x;1a; = a;x2; a;
and a; + axx;pax = ax»a;.

We now proceed on to define Smarandache semiregular bisemiring.

DEFINITION 5.4.42: A bisemiring (S = S; [/ S, +, ) is said to be Smarandache
semiregular bisemiring (S-semiregular bisemiring) if S has a proper subset P =
P; [J P> where P is a semiregular sub-bisemiring of S.

For the bisemiring S we define k-closure of A [JS by

YR us,
x, S,

such that

x;ta=az
X2 tap=azx

where A = A; [JA> with A; [JS1, A> [JS> and ayy, az; [JA; and a;, az, [JA,} where
have A=A, 0 A,. Thus we can equivalently formulate the k-closure A of A of a
bisemiring S = S; [7Sy as A; (7S, has A , and Ay [7S> has A , where S; and S; are

semirings and A=A, O A, is a k-closure of the bisemiring.
1t is left for the reader to prove in case of bisemiring S = S; [JS,, A, B [JS
AB=4B.
Further if A is the smallest left k-bi-ideal of S containing A and if in a bisemiring S,

if A and B are right and left bi-ideals of the bisemiring S then it can be proved AB =
A n B.

Let S be a bisemiring. A k-bi-ideal I of S is called bi prime if [ ZS and for any two bi-
ideals A and B of S, AB [J1 implies either A [/1 or B [J1. We say in the S-bisemiring S
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a k-bi-ideal I of S to be S- bi prime if | is a bi prime bi-ideal relative to a bisemifield P
inS.

We say a fuzzy k-bi-ideal P of a bisemiring S is said to be bi prime if P is not a
constant function and for any two fuzzy bi-ideals A and B of S A o B [J P implies
either A [JP of B [JP.

We say the fuzzy k bi-ideal P of S-bisemiring S is a Smarandache fuzzy k-bi-ideal
(S-fuzzy k-bi-ideal) of S if P is a fuzzy k-bi-ideal relative a proper subset T []S where
T is a bisemifield under the operations of S.

Several interesting results in this direction can be obtained by any innovative reader.

Now we know in case of Smarandache bisemirings of level II we can have all
Smarandache fuzzy concepts related to fuzzy fields. All the more several types of
these concepts can also developed in case of Smarandache anti bisemifield.

We know a Smarandache na-bisemiring has a subset which is an associative
bisemiring. Thus we have in case of S-na-bisemiring all properties true of bisemirings
can be easily adopted and studied.

For we can define the very fuzzy set pu from S to [0, 1] by pu = p; U p, where p : Sy
- [0, 1] and p, : Sz — [0, 1]. So for defining the notions of Smarandache L-fuzzy bi-
ideals p in case of S-na-bisemirings, we can define p = p; [ p,.S; 0 Sy - [0, 1] and
by wi : S; - [0, 1] and p, : So — [0, 1] to be S-fuzzy k ideals and similarly by
defining p; : Si - [0, 1] for i = 1,2 as Smarandache normal L-fuzzy ideals in
semirings; so that p = p; U pu, be comes Smarandache normal L-fuzzy bi-ideals in S-
bisemirings.

Thus in case of Smarandache non-associative bisemirings, we can define and derive
the notions of S-fuzzy k-bi-ideals and S-fuzzy k-bi-ideals in S-k-bisemirings.

5.5 Problems

This section gives fifty four problems for the reader to solve. By solving these
problems the author hopes that the reader would have mastered both Smarandache

semirings and Smarandache fuzzy semirings. The problems will certainly throw light
on the subject.

Problem 5.5.1: Give an example of a S-strong fuzzy semiring .

Problem 5.5.2: Construct an example of a S-fuzzy semiring which is not a S-strong
fuzzy semiring.

Problem 5.5.3: Give an example of a S-fuzzy subsemiring which is not a S-fuzzy
ideal.
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Problem 5.5.4: What is relation between S-fuzzy subsemiring and S-fuzzy ideals of a
semiring?

Problem 5.5.5: If p is a S-fuzzy ideal of a S-semiring relative to P [J S. Will p(x + y)
=10) = wx) =wy) for all x, y P I R?

Problem 5.5.6: Let p be a fuzzy subset of a S-semiring S. Is it true p of the
S-semiring S is a S-fuzzy-subsemiring (S-fuzzy ideal) of S if and only if the level
subsets n ¢, t U Im p are S-subsemirings (S-ideals) of S relative to a fixed proper
subset P in S, P a semifield in S?

Problem 5.5.7: Let S and S' be S-semirings and f a S-homomorphism of the
S-semirings from S onto S' then prove for each S-fuzzy subsemiring (S-fuzzy ideal)
related to a subsemifield P [J S. f(pn) is a S-fuzzy subsemiring (S-fuzzy ideal) of S' and
for each S-fuzzy subsemiring (S-fuzzy ideal) p' of S', f (') is a S-fuzzy subsemiring.
(S-fuzzy ideal) of S.

Problem 5.5.8: Is it true if S is a S-regular semiring then 06 = 0 n B where 0 and 0
are S-fuzzy ideals of S relative to a fixed semifield P in S. If 080 = 0 n 0 does it imply
S is a S-regular semiring?

Problem 5.5.9: If u is any S-fuzzy prime ideal of a S-semiring S then prove the ideal
Ui, t = p(0) is a S-prime ideal of S.

Problem 5.5.10: Prove for a S-semiring S the two S-level subsemirings (S-level
ideals) ps and p (with s <t) of a S-fuzzy subsemiirng (S-fuzzy ideal) of p of the S-
semiring S are equal if and only if there is no x in P [J R such that s < u(x) <t.

Problem 5.5.11: Prove / disprove the intersection of any family of S-fuzzy
subsemirings (S-fuzzy ideals) of a S-semiring S is a S-fuzzy subsemiring (S-fuzzy
ideal) of S.

Problem 5.5.12: Let p be any S-fuzzy ideal of a S-subsemiring such that Im p = {t}
or {0, s} where t =[0, 1] and s J (0, 1]. If p = 0 0 B where 0 and 0 are S-fuzzy ideals
of a S-semiring S defined relative to the same P then prove either 0 [1 6 or 6 [J 0.

Problem 5.5.13: Let f be a S-homomorphism from the S-semiring S onto a S-
semiring S'. If p and 0 are S-fuzzy ideals of S then the prove the following are true:

i f(p+0)="1fw +fo).

ii. fuo)=fp) fo).
iii. fluno) O fw) n fo).

with equality if atleast one of p are O is f-invariant (1 and 0 defined relative to the
same semifield P in S).
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Problem 5.5.14: Suppose p is a S-L-fuzzy left (respectively right) ideal of S relative
to P O S (P a semifield), will S, = {x U PI{ (x) = H(0)} is a left (resp. right) S- ideal
of P? Justify your claim.

Problem 5.5.15: Prove if p is a S-L-fuzzy left (resp. right) ideal of a S-semiring S

satisfying p'(x) = 0 for some x 0 P O S (P is the subsemifield relative to which p is
defined). Prove p(x) = 0.

Problem 5.5.16: Let p and v be S-L-fuzzy left (resp. right) ideals of S relative to P a
semifield contained in S. If p [0 v and p(0) =Vv(0) then prove P, U P,.

Problem 5.5.17: If p and v are S-normal L-fuzzy left (resp. right) ideals of the
S-semiring S containing the semifield P relative to which p and v are defined,
satisfying p [J v then prove P, [1 Py.

Problem 5.5.18: An S-L-fuzzy left (right) ideal p of a S-semiring S, prove is
S-normal if and only if p~ = p.

Problem 5.5.19: p a S-L-fuzzy left (right) ideal of S.

1. Wil (W) =p ?
ii. Will (p )" = p?

Problem 5.5.20: Let p be a S-L-fuzzy left (resp. right) ideal of a S-semigroup S
relative to P [ S. If there exists a S-L-fuzzy left (resp. right) ideal v of S relative to
same P satisfying V- [J p then prove p is S-normal.

Problem 5.5.21: Let p be a S-L-fuzzy left (resp. right) ideal of S relative to P, P [J S.
If there exists a S-L-fuzzy left (respectively right) ideal v of S relative to P I S
satisfying v' O p then prove p* = p.

Problem 5.5.22: Let S be a k-semiring, I be an ideal and I' = {a' 0 S' [Ja [ I}. Then
prove I is a k-ideal of S if and only if I =1 [J I' is an ideal of the extension ring
S called the extension ideal of I.

Problem 5.5.23: Let I be a S-k-ideal of a S-k-semiring S, I the S-extension ideal of
the S-ring S, WillaOT =(a+ 1) n SwhereadS?

Problem 5.5.24: Let I be a S-k-ideal of the S-k-semiring S. Then prove S/I={a [ I
[l 0P S} is a S-k-semiring under the operations (a I ) I (b I)=allb I and
@O0DO®GUI)=(ab) UL
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Problem 5.5.25: Let A be a S-fuzzy ideal of a S-semiring S. Then the level set A
(t < A(0)) is the S-ideal of S.

Problem 5.5.26: Let A be a S-fuzzy ideal of a S-semiring S. IF A is a S-k-ideal of S
for eacht < A(0). Then prove A is a S-k-fuzzy ideal of S.

Problem 5.5.27: Let f : R — S be an S-epimorphism of semirings (R and S are
S-semirings) and A an f-invariant S-fuzzy ideal of R. Then prove f(A) is a S-fuzzy
ideal of S.

Problem 5.5.28: A S-fuzzy ideal A of a S-semiring S is called S-fuzzy semiprimary if
for all a, b 0 S either A (ab) < A (a") for some n [1 Z; or else A(ab) < A (b™) for
some m [ Z, where Z; is the set of all non-negative integers.

Problem 5.5.29: Prove an S-ideal I of a S-semiring R with identity is S-semiprimary
if and only if Xi, the characteristic function of I is a S-fuzzy semiprimary ideal of R.

Problem 5.5.30: If R is a S-commutative semiring with identity, then prove A is any
S-semiprimary fuzzy ideal of R if and only if A;, where t U Im (A) Im is a
semiprimary ideal of R.

Problem 5.5.31: Prove if A is a S-fuzzy semiprime ideal of a S-k-semiring R such
that all of its level subsets are S-k-ideals relative to the same P [ R. Prove R/A has no
non-zero nilpotent elements.

Problem 5.5.32: Let A be a S-fuzzy primary ideal of the S-semiring R such that all of
its level subsets are S-k-ideals of R. Then prove every zero divisor of R/A is nil
potent.

Problem 5.5.33: Let f: R - S be an S-epimorphism of S-k-semirings and B a
S-fuzzy ideal of S. Then prove B is a S-fuzzy maximal k-ideal of S if and only if f 'B
is a S-fuzzy maximal k-ideal of R relative to P.

Problem 5.5.34: Prove for a S-semiring S and A, B [J P [I S; we have AB= AB.

Problem 5.5.35: Suppose A and B are respectively right and left S-k-ideals of a
S-semiring S then AB 0 A n B.

Problem 5.5.36: Prove a S-semiring S is S-semigular if and only if for any right

S-k-ideal A and for any left S-k-ideal B, AB = A n B.

Problem 5.5.37: Prove any S-semiring S, is S-semiregular if and only if for any
S-fuzzy right k-ideal A and any S-fuzzy left k-ideal B, Aox B=A n B.
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sup [minfA(,), Bb,)|i=1, 2]
(A ok B)(X) = < x+ab=ayb,

0if x cannot be written as x +a,b, =a,b,.

where A and B are two fuzzy subsets of a S-semiring.

Problem 5.5.38: Prove in case of S-fuzzy semivector spaces, for c,d I S, x, y U H
OG,0<k,A,v,u<1. Then dy 0 xp = (dX)min (urt> X2 T Yo = (X + Y)min A w)» AL O Xp +
Cr 0 Yy = (dX + C¥) min (u, A, Kk, v}-

Problem 5.5.39: Prove the fuzzy subset v of SF (Hom (u, A)) is a S-fuzzy
subsemispace of SF Hom (p , A).

Problem 5.5.40: Give an example of a S-strong fuzzy bisemigroup.

Problem 5.5.41: Illustrate by an example a S-fuzzy bisemigroup which is not a
S-strong fuzzy bisemigroup.

Problem 5.5.42: Prove if p is a S-L-fuzzy left (resp. right) bi-ideal of the
S-bisemiring S and let p* be a L-fuzzy set in S defined by p'(x) = u(x) + 1 — p(0) for
allx OP O S. Prove p" is S-L-fuzzy normal left (resp. right) bi-ideal of S containing
[T

Problem 5.5.43: Let u be a S-L-fuzzy left (resp. right) bi-ideal of S satisfying p'(x) =
0 for some x J P [ S then prove pu(x) = 0.

Problem 5.5.44: Let p and L be S-L-fuzzy left (resp. right) bi-ideals of S (S a
S-bisemiring. If p [J v and pu(0) = v(0) prove S, U Sy.

Problem 5.5.45: Prove in case of S-L-fuzzy left (or right) bi-ideals of S(u")" = p".
Also prove (p)"if u is S-L-fuzzy normal left (resp. right) bi-ideal of S.

Problem 5.5.46: Prove a bisemiring S is semiregular if and only if for any right k-bi-

ideal A and for any left k-bi-ideal B, AB [ A n B.

Problem 5.5.47: A S- bisemiring S is S-semiregular if and only if for any S-fuzzy k-
bi-ideal A and any fuzzy k-bi-ideal B, A oy B=A n B.

Problem 5.5.48: Define for a S-bisemiring the S-fuzzy pseudo ideal. Illustrate this by
an example.

Problem 5.5.49: Does there exist an example of a non-associative semiring other than
the semirings got using loops and groupoids i.e. loop semirings and groupoid
semirings?
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Problem 5.5.50: If S is a S-na-semiring and A, B O P [ S have the S-k-closure A
and B, will AB=AB?

Problem 5.5.51: Let A and B be S-right and S-left k-ideals of the S-na-semiring S,
will AB O A n B? Justify your claim.

Problem 5.5.52: Prove or disprove. A S-na-semiring S is S-semiregular if and only if

for any S-right k-ideal A and for any S-left k-ideal B, AB = A n B.

Problem 5.5.53: Prove or disprove if p is a S-fuzzy k-ideal of S, S a S-na-semiring
then p, = {x O S Uu(x) 2t} is a S-fuzzy k-ideal.

Problem 5.5.54: Let A be a S-fuzzy k-ideal of S, S a S-fuzzy na semiring S. Then
A(x) < A(0) for all x I S.
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Chapter Six

SMARANDACHE FUZZY NEAR-RING AND
ITS PROPERTIES

This chapter has four sections. In the first section we recall the definition of
Smarandache near-rings and define the new notion of Smarandache fuzzy near-rings.
Properties like Smarandache normal fuzzy-R-subgroups and S-fuzzy congruence of a
near-ring module are defined in section 1. In section two we define these notions in
the context of non-associative near-rings and study them. Study of bistructures is very
important and inevitable as we do not see any proper structure given by union of two
algebraic structures and union of two distinct algebraic structures. So section three is
devoted to introduction and study of Smarandache fuzzy bistructures. The final
section is completely devoted to giving problem about S-fuzzy near-rings and their
properties. These problems will make the researcher to get more ideas and they can
construct more and more Smarandache notions and find also suitable applications
about them.

6.1 Smarandache Fuzzy Near-rings

In this section we just recall the definition of Smarandache near-rings and introduce
the notions of Smarandache fuzzy near-rings and their properties. The concept of
Smarandache fuzzy congruence of a near-ring module and Smarandache normal fuzzy
R-subgroups in near-rings are mainly introduced and studied in this section.

As in this book we have only recalled the concept of fuzzy near-rings and its
properties, in this section we recall the notions of Smarandache near-rings and
Smarandache seminear-rings. We also define for the first time both notions of
Smarandache fuzzy seminear-rings and fuzzy seminear-rings.

DEFINITION 6.1.1: N is said to be a Smarandache near-ring (S-near-ring) if (N, +, *)
is a near-ring and has a proper subset A such that (A, +, *) is a near-field.

Example 6.1.1: Let Z, = {0, 1} be the near-field. Take any group G such that Z,G is
the group near-ring of the group G over the near-field Z,. Z,G is a S-near-ring as
Z, U Z,G and Z, is a near-field.

It is important to note that in case of S-near-rings we can get several or a new class of
S-near-ring by using group near-rings and semigroup near-rings using basically the
near-field Z, or any Z,,.

Example 6.1.2: Let Z, = {0, 1} be a near-field and S(n) any symmetric semigroup.
The semigroup near-ring Z,S(n) is a S-near-ring. This S-near-ring can be of any order
finite or infinite depending on the order of the group or the semigroup which is used.
Similarly they can be commutative or non-commutative which depends basically on
the groups and semigroups.
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DEFINITION 6.1.2: Let (N, +, ®) be a S-near-ring. A non-empty proper subset T of N is
said to be a Smarandache subnear-ring (S-subnear ring) if (T, +, ) is a S-near-ring;
i.e. T has a proper subset which is a nearfield.

DEFINITION 6.1.3: Let (P, +) be a S-semigroup with zero 0 and let N be a S-near-
ring. Let {: N xY — Y where Y is a proper subset of P which is a group under the
operations of P. (P, L) is called the Smarandache N-group (S-N-group) if for all y [JY
and for all n, n; [J/N we have (n + n;) y = ny + n;y and (nn;) y = n(n, y). S (NP)
stands for S-N-groups.

DEFINITION 6.1.4: A S-semigroup M of a near-ring N is called a Smarandache-quasi
subnear-ring (S-quasi subnear-ring) of N if X [/ M where X is a subgroup of M which
is such that X X [JX.

DEFINITION 6.1.5: A S-subsemigroup Y of S(N P) with NY [J Y is said to be a
Smarandache N-subgroup (S-N-subgroup) of P.

DEFINITION 6.1.6: Let N and N; be two S-near-rings. P and P; be S-N-subgroups.

I h : N - N; is
called a Smarandache near-ring homomorphism (S-near-ring homomorphism)
if for all m, n [JM (M is a proper subset of N which is a near-field) we have

h (m +n) =h(m) + h(n),
h (mn) = h(m) h(n) where h (m) and

h (m) [JM; (M, is a proper subset of N; which is a near-field).lt is to be noted
that h need not even be defined on whole of N.

il h : P - P;is
called the Smarandache N-subgroup-homomorphism  (S-N-subgroup-
homomorphism) if for all p, q in S (S the proper subset of P which is a S-N-
subgroup of the S-semigroup P) and for all m [JM [JN (M a subfield of N) h(p

+.q) = h(p) + h(g) and h(mp) = mh(p); h(p), h(g) and mh(p) LJS; (S; a
proper subset of P; which is a S-N; subgroup of S-semigroup P; ).

Here also we do not demand h to be defined on whole of P.

DEFINITION 6.1.7: Let N be a S-near-ring. A normal subgroup I of (N, +) is called a
Smarandache ideal (S-ideal) of N related to X if

i. IX[IL
ii. Ux,y[JXandforalliJI; x(y+1i)—xy /]

where X is the near-field contained in N.

A subgroup may or may not be a S-ideal related to all near-fields. Thus while defining
S-ideal it is important to mention the related near-field.
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Normal subgroup T of (N, +) with (a) is called S-right ideals of N related to X while
normal subgroups L of (N, +) with (b) are called S-left ideals of N related to X.

DEFINITION 6.1.8: A proper subset S of P is called a Smarandache ideal of S(N P)
(S-ideal ofS(N)P) related to Y if

i S is a S-normal subgroup of the S-semigroup P.
ii. Foralls; [JS and s [JY (Y is the subgroup of P) and for all m [JM (M
the near-field of N)

n(s+s;)—ns/l/S

A S-near ring is Smarandache simple (S-simple) if it has no S-ideals. S(N?) is called
Smarandache N-simple (S-N-simple) if it has no S-normal subgroups except 0 and P.

DEFINITION 6.1.9: A S-subnear-ring M of a near-ring N is called Smarandache
invariant (S-invariant) related to the near-field X in N if M X [JM and X M [J M
where X is a S-near-field of N. Thus in case of S-invariance it is only a relative
concept as a S-subnear-ring M may not be invariant related to every near-fields in the
near-ring N.

DEFINITION 6.1.10: Let X and Y be S-semigroups ofS(NP). (X:Y) ={n UM /nY JX}
where M is a near-field contained in N. (0, x) is called the Smarandache annihilator
(S-annihilator) of X.

DEFINITION 6.1.11: Let N be a near-ring and S a S-subsemigroup of (N, +). The near-
ring N; is called the Smarandache-near-ring of left (right) quotients (S-near-ring of
left (right) quotients) of N with respect to S if

i. Ny has identity.
ii. Nisembeddable in Ny, by a homomorphism h.
iii. Foralls [JS; h(s) is invertible in (N, °).
iv. Forall g [JNy, there exists s [/S and there exist n [JN such that ¢ = h(n) h(s)d
(4 =h(s)" hn)).

The problem whether Nj is a S-near-ring is left as an open problem.

DEFINITION 6.1.12: The near-ring N is said to fulfil the Smarandache left (right) ore
conditions (S-left(right) ore condition) (ore (1)) with respect to a given S-
subsemigroup P of (N, ) if for (s, n) [JS XN there exists ns; = sn; (S;n = n;s).
DEFINITION 6.1.13: If S = {s [/N /s is cancellable}, the Ny if it exists and if Ng is a
S-near-ring then N is called the Smarandache left (vight) quotient (S-left(right)
quotient) near-ring of N.

THEOREM 6.1.1: If Ny is a S-quotient near-ring then Ny is a quotient near-ring.

Proof: Obvious by the very definition.
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It is once again an interesting problem to obtain a necessary and sufficient condition
for a left (right) quotient near-ring N to be a S-quotient near-ring.

Let S(V) denote the collection of all S-near-rings and X be any nonempty subset
which is S-semigroup under ‘+’ or ‘’.

We define Smarandache free near-ring as follows.

DEFINITION 6.1.14: A S-near-ring F,, [JS(V) is called a Smarandache free near-ring
(S-free near-ring) in V over X if thereexists f:X — F forall N[V and for all
g X — N there exists a S-near-ring homomorphism h [JS (Hom F,, N) [Here
S (Hom (Fy, N)) denotes the collection of S-homomorphism from F, to N] such that
hof=g

THEOREM 6.1.2: Let F, be a S-free near-ring then F is a free near-ring.
Proof: Obvious by the very definition.

DEFINITION 6.1.15: z [/ N is called Smarandache quasi regular (S-quasi regular) if
z [JL,. An S-ideal P [J N is called S-quasi regular if and only if for all s [JP, s is
S-quasi regular.

DEFINITION 6.1.16: A ring R is said to be Smarandache biregular (S-biregular) if
each S-principal ideal is generated by an idempotent.

DEFINITION 6.1.17: Let N be a near-ring. N is said to by Smarandache biregular
(S-biregular) if there exists some set E of central S-idempotents with

i For all e [/N; Ne is an S-ideal of N.
ii. For all n [J N there exists e [JE; Ne = (n) (principal ideal
generated by n).
iii. Foralle, f[JE e+f=f+e.
iv. Foralle, f[JE, ef [JE and e + f—ef [/E.

DEFINITION 6.1.18: Let I be an S-ideal. The intersection of all S-prime ideal P, such
that I [J P is called the Smarandache prime radical (S-prime radical) of 1, i.e. S(I) =

NP

17apr

THEOREM 6.1.3: Let I be a S-ideal of N. S(I) be the S-prime radical of I then S(I) is a
prime radical of L.

Now we proceed on to define the notions of Smarandache seminear-rings.
DEFINITION 6.1.19: Let N be a seminear-ring. N is said to be a Smarandache

seminear-ring of level II (S-seminear-ring of level Il) if N contains a proper subset P
which is a semiring. Clearly the S-mixed direct product gives S-seminear-ring I1.
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DEFINITION 6.1.20: Let N be a S-near-ring. N is said to fulfil the Smarandache
insertion of factors property (S-IFP for short) if for all a, b [JN we have a . b = 0
implies anb = 0 for all n [JP, P [JN, where P is a near-field.

We say N has S-strong IFP property if every homomorphic image of N has the IFP
property or we redefine this as:

DEFINITION 6.1.21: Let N be a S-near-ring and I a S-ideal of N. N is said to fulfil
Smarandache strong IFP property (S-strong IFP property) if and only if for all
a, b [/N, ab [JI implies anb [J] where n [JP, P [/N and P is a near-field.

DEFINITION 6.1.22: Let N be a near-ring. A S-right ideal I of N is called
Smarandache right quasi reflexive (S-right quasi reflexive) if whenever A and B are
S-ideals of N with AB [J1, then b(b' + a) —bb' [/ for all a [JA and for all b, b’ [JB.

DEFINITION 6.1.23: Let N be a near-ring. N is said to be Smarandache strongly
subcommutative (S-strongly subcommutative) if every S-right ideal of it is S-right
quasi reflexive.

DEFINITION 6.1.24: Let N be a near-ring. S a S-subnormal subgroup of (N, +). S is
called a Smarandache quasi-ideal (S-quasi ideal) of N if SN [JS and NS [JS where by

NS we mean elements of the form {n(n' + s) — nn'/ for all s [JS and for all n, n' [J N}
= NS.

DEFINITION 6.1.25: A left-near-ring N is said to be Smarandache left-self-distributive
(S-left self distributive) if the identity abc = abac is satisfied for a, b, c [JA, A [/ N
and A is a S-subnear-ring of N.

DEFINITION 6.1.26: Let R be a S-near-ring. R is said to be Smarandache equiprime
(S-equiprime) if for all 0 Za [JP [JR. P the near-field in R and for x, y [JR, arx =
ary for all v [J R implies x = y. If B is a S-ideal of R, B is called a Smarandache
equiprime ideal (S-equiprime ideal) if R/B is an S-equiprime near-ring.

DEFINITION 6.1.27: Let (N, +,%) be a triple. N is said to be a Smarandache infra-
near-ring (S-INR) where

i. (S, *)isaS-semigroup.
ii. (N, ®) is asemigroup.

iii. (x+y)z=xz—0z+yzforallx, y,z/[JN.

DEFINITION 6.1.28: Let I be a S-left ideal of N. Suppose I satisfies the following
conditions:

i. a,x,y [N, anx—any [JIforalln [JN impliesx—y [JI.
ii. 1is left invariant.

iii. ON LI

Then I is called a Smarandache equiprime left-ideal (S-equiprime left ideal) of N.
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DEFINITION 6.1.29: Let N be a S-near-ring. N is said to be Smarandache partially
ordered (S-partially ordered) by <if

i. <makes (N, +) into a partially ordered S-semigroup.
ii. foralln,n'[JN, n20andn'> 0implies nn' 2 0.

DEFINITION 6.1.30: Let M be a S-[-near-ring, then a S-normal subsemigroup I of
(M, +) is called

i. aS-leftidealif aa(b +1i)—aab [Jlforalla, b [JM, a [JI andi [J
L
ii. aS-rightidealifi aa [Jlforalla [JM, a[JI andi [JI and
iii. a S-ideal if it is both S-left and S-right ideal.

DEFINITION [130]: 4 non-empty set N is said to be a Smarandache seminear-ring
(S-seminear-ring) if (N, +, ®) is a seminear-ring having a proper subset A, (A [J N)
such that A under the same operations of N is a near-ring, that is (A, +,*) is a near-
ring.

DEFINITION 6.1.31: Let (N, +, ¢ be a seminear-ring. If in the S-semigroup (N, +)
every proper subset (A, +) which is a group is commutative then we say the
S-seminear-ring N is Smarandache commutative (S-commutative). Thus if (N, +, ) is
commutative and if (N, +) is S-semigroup then trivially (N, +, ®) is S-commutative.
Secondly if (N, +, ) is S-commutative seminear-ring then N need not in general be
commutative.

DEFINITION 6.1.32: Let (N, +, ) be a seminear-ring. If (N, +) is a S-semigroup and if
N has at least one proper subset which is a subgroup that is commutative then we say
the seminear-ring (N, +, ) is a Smarandache weakly commutative seminear-ring
(S-weakly commutative seminear-ring).

THEOREM 6.1.4: Let (N, +, ¢ be a seminear-ring which is S-commutative then N is
S-weakly commutative.

Proof: Proof is direct and the reader is expected to prove.

DEFINITION 6.1.33: Let (N, +, ¢ be a seminear-ring. (N, +) be a S-semigroup such
that every proper subset A of N which is a group is a cyclic subgroup then we say the
seminear-ring (N, +, ®) is a Smarandache cyclic seminear-ring (S-cyclic seminear-
ring). In particular (N, +, ) has at least one proper subset which is a cyclic group,
we call (N, +, ¢ a Smarandache weakly cyclic seminear-ring (S-weakly cyclic
seminear-ring).

DEFINITION 6.1.34: Let N and N; be any two S-seminear-rings. We say a map @from
N to N; is a Smarandache seminear-ring homomorphism (S-seminear-ring
homomorphism) from A to A; where A [/ N is a near-ring and A; [J N, is a near-ring
and @x +y) = @x) + @A), @Axy) = @x)@y) where x, y [/A and @x), @y) [J/A; and it

is true for all x, y [JA. We need not even have the map @to be well-defined or even
defined on the whole of N.
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The concept of Smarandache isomorphism (S-isomorphism) etc. are defined in a
similar way.

DEFINITION 6.1.35: Let (N, +, ¢ be a seminear-ring. We say N is a Smarandache
seminear-ring of level Il (S-seminear-ring Il) if N has a proper subset P where P is a
semiring.

DEFINITION [130]: N is said to be a Smarandache pseudo seminear-ring (S-pseudo
seminear-ring) if N is a near-ring and has a proper subset A of N which is a
seminear-ring under the operations of N.

DEFINITION 6.1.36: Let N and N; be the S-pseudo seminear-ring. A mapping @: N —
N; is said to be a Smarandache pseudo seminear-ring homomorphism (S-pseudo
seminear-ring homomorphism) if @ restricted from A to A; is a seminear-ring
homomorphism where A and A; are proper subsets of N and N; which are seminear-
rings. Thus @need not even be defined on the whole of N.

We define the concept of S-pseudo subseminear-ring and Smarandache pseudo ideals
of a near-ring.

DEFINITION 6.1.37: Let N be a near-ring if N has a proper subset A which is a
subnear-ring A and if A itself a S-pseudo seminear-ring then we say A is a
Smarandache pseudo subseminear-ring (S-pseudo subseminear-ring).

DEFINITION 6.1.38: Let N be a near-ring. A proper subset M of N is said to be a
Smarandache pseudo ideal (S-pseudo ideal) if M is a S-ideal of the near-ring N.

THEOREM 6.1.5: Let N be a near-ring. If N has a S-pseudo subseminear-ring then N
is a S-pseudo seminear-ring.

Proof: Straightforward by the very definitions.

It is left for the reader to construct a S-pseudo seminear-rings which has no S-pseudo
subseminear-rings.

DEFINITION 6.1.39: Let N be a S-pseudo seminear-ring, if N has no proper S-pseudo
subseminear-ring then we say N is a Smarandache pseudo simple seminear-ring
(S-pseudo simple seminear-ring).

DEFINITION 6.1.40: N is said to be Smarandache pseudo seminear-ring (S-pseudo
seminear-ring) if N is a near-ring and has a proper subset A of N such that A is a
seminear-ring under the operations of N.

DEFINITION 6.1.41: Let N and N; be two S-pseudo seminear-rings. h : N — N is a

Smarandache pseudo seminear ring homomorphism (S-pseudo seminear-ring
homomorphism) if h restricted from A to A; is a seminear-ring homomorphism.
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DEFINITION 6.1.42: Let N be a S-seminear-ring Il. An additive subgroup A of N is
called a Smarandache N-subgroup Il (S-N-subgroup II) if NA [/ N (AN [J A) where
NA ={na/n [JN and a [JA}.

Thus we see in case of S-seminear-rings we have the concept of S-N-subgroup. We
define S-left ideal for S-seminear-ring.

DEFINITION 6.1.43: Let (N, +, ¢ be a S-seminear-ring. A proper subset I of N is
called Smarandache left ideal (S-left ideal II) in N if

i (I, +) is a normal subgroup of A [JN where (A, +) is a group.
ii. n(n;+1i)+mn.n; JIforeachi [J1, n, n; [JA where n, denotes
the unique inverse of n.

DEFINITION 6.1.44: A nonempty subset I of (N, +, ®); N a S-seminear-ring is called a
Smarandache ideal II (S-ideal 1I) in N if

i. lisaS-leftideal.
ii. IA[JI (A [JN; Ais a near-ring).

DEFINITION 6.1.45: Let N be a S-seminear ring. N is said to be a Smarandache
s-seminear-ring 11 (S-s-seminear-ring 11) if a [/ Na for each a [JA [JN; where A is a
near ring.

Now we define Smarandache fuzzy near-rings.
DEFINITION 6.1.46: Let R be a S-near-ring. A fuzzy set i : R — [0, 1] is called a

Smarandache fuzzy near-ring (S-fuzzy near-ring) related to P [/ R where P is a near-
field satisfying the following conditions:

L. H(x + y) 2min{(H(x), 1)}
ii. H(=x) = L(x).
fil. H(xy) 2 min{ fi(x), H()}.
iv. ) = ") forall x, y (OP [JR.

Thus while defining S-fuzzy near-rings it is also a relative concept related to which
near-field it is defined.

In view of this we have the following definition.

DEFINITION 6.1.47: Let R be a S-near-ring. |4 a fuzzy subset of R. We call U a
Smarandache strong fuzzy near-ring (S-strong fuzzy near-ring) if [ is a S-fuzzy near-
ring relative to every near-field in R.

THEOREM 6.1.6: If R is a S-near-ring and [ : R — [0, 1] is a S-strong fuzzy near-
rings of R then U a S-fuzzy near-ring.

Proof: Straightforward by the very definitions, hence left for the reader to prove.
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Now we proceed on to define the concept of Smarandache fuzzy near-ring module.

DEFINITION 6.1.48: Let R be a S-near-ring and [ a S-fuzzy near-ring in R. Let Y be a
S-near-ring module over the S-near-ring R and O a fuzzy set in Y. Then O'is called the
Smarandache fuzzy near-ring module (S-fuzzy near-ring module) in Y if

i. o@+y 2min{ox), o)}
ii. O(Ax) 2min{iL(A), o)} forallx,y [JYand A [JP [JR .
iii. o(0)=1.

1t is worthwhile to mention in S-near-rings the condition 0 (Ax) =min{{l (A), O (x)} is
replaced by o (Ax) > o (x) for all A [JP [JR and x [JY.

DEFINITION 6.1.49: Let R be a S-near-ring. A fuzzy subset [ of R is called the
Smarandache fuzzy right (resp. left) R-subgroup of R if

i. Wis a S-fuzzy subgroup of (P, +); P [/R a subnear-field of R .
ii. H(xr) > l(x) (respectively [rx) > L(x)) for all v, x [/P [JR.

The S-fuzzy right R-subgroup U is said to be fuzzy normal whenever l(a) = 1.

DEFINITION 6.1.50: Let [ be a S-fuzzy right (resp. left) R subgroup of a S-near-ring

R and let 1" be a fuzzy set in R defined by 1 (x) = u(x) + 1 — 1(0) for all x [IP [IR
(P a near-field of the S-near-ring R), (" is called the Smarandache fuzzy right (resp.
left) R subgroup (S-fuzzy right (resp. left) R-subgroup) of R containing [

The following is in easy consequence of the definition.

THEOREM 6.1.7: Let [ be a S-fuzzy right (resp. left) S-fuzzy R-subgroup of R
satisfying ' (x) = 0 for some x [JP [IR then f(x) = 0 also (0 is the additive identity
of P).

Proof: Easy and straightforward, hence left as an exercise for the reader to prove.

THEOREM 6.1.8: Let [ and V be S-fuzzy right (resp. left) R-subgroups of a S-near-
ring R.If 1 [J v and p(0) = V(0) then P, [J P, (where P [JR is a near-field relative to
which both U and V are defined).

Proof: Assume [ 1 v and p(0) = v(0) (0 is the zero of the near-field P in R). If x [1 P,
then v(x) = p(x) = H(0) = v(0), noting v(x) < v(0) for all x J P [J R we have V(x) =
v(0) hence x [1 P,. Hence the claim.

THEOREM 6.1.9: 4 S-fuzzy right (resp. left) R-subgroup U of a S-near-ring R is
S-normal if and only if I = I

Proof: Using the definition the proof is straightforward, hence left for the reader as an
exercise.
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THEOREM 6.1.10: If i is a S-fuzzy right (resp. left) R-subgroup of a S-near-ring R
then (1) = 1.

Proof: For any x 0 P 0 R relative to which [ is defined we have (1) (x) = (1'(x)) +
1 —u'(0) = u'(x). Hence the claim.

Note: If we change the near-field P from P to say P, and [ is not defined relative to P,
then the above result is not true unless otherwise U is a S-strong fuzzy subgroup.
Further even if x [J R \ P the result may not in general be true as all the axioms by Y
are satisfied only in P and not on the whole of R. Several other interesting results in
this direction can be defined and proved by any reader. Since when we define [ a
S-fuzzy R-subgroup or 0 a S-fuzzy right (resp. left) near-ring module we do not
demand in any way [ or O to be completely well defined on the whole of the S-near-
ring R what we only expect is that iU or 0 is defined on the proper subsets P in R
where P is a near-field. In this way all results will be distinct and different from fuzzy
near-ring modules and fuzzy R-subgroups.

Only when p : R — [0, 1] happen to be well defined on R and on every proper subset
P in R which is a near field we will have the coincidence of fuzzy and S-fuzzy
concept.

Now using the results of [28] we give the definition of S-fuzzy congruence of a near-
ring module which is slightly different from the definitions of [71].

DEFINITION 6.1.51: Let u-be a non-empty subset of a S-R-module M of a S-near ring
R. Then u is said to be Smarandache fuzzy submodule (S-fuzzy module) of M if

i. u(x+y)=>Minfu(x), u(y)} forallx, y [JM.
. ux)=u((x) Ox JM.
iii. u@+tx—y)=u®@forallxy M.
v. u(x+yr—xr2u@))forallx,y IMandr [JP [JR.

P is the subnear field of the S-near ring relative to which the S-R-module M is
defined.

The following results are direct by the very definition.

THEOREM 6.1.11: Let u be a S-fuzzy submodule of a S-R-module M. Then the level
subset u, = {x UM | u (x) 2t}; t [JIm u is a S-sub module of M.

(Hint: u is a S-fuzzy submodule of a S-R-module M. Then the S-submodule u,’s are
called the S-level submodule of M).

THEOREM 6.1.12: Let u be a S-fuzzy normal subgroup of M. Then x + u = u + x if
and only if u (x —y) = u (0) for all x, y in M.

Proof: Here M is a S-R-module of the S-near ring R. The proof is direct by the
definition.
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DEFINITION 6.1.52: Let M be a S-R-module u be a S-fuzzy submodule of M. M/ u =
{all fuzzy cosets of u with operations (x + w) + (v +u) =(x+y) tuand (x + p)r=
xr + u for all x, y [JM and for all v [JP; P a proper subset of R which is a near field
under the operations of R}, M / u is defined as the Smarandache fuzzy quotient
R-module (S-fuzzy quotient R-module) of M over the S-fuzzy submodule u.

DEFINITION 6.1.53: Let M be a S-R-module. A non-empty fuzzy relation on M i.e. a
mapping  from M x M - [0, 1] is called the Smarandache fuzzy equivalence
relation (S-fuzzy equivalence relation) that is a fuzzy equivalence relation @ defined
on a S-R-module will be called as a S-fuzzy equivalence relation. A S-fuzzy
equivalence relation a on an S-R-module M is called a Smarandache fuzzy
congruence (S-fuzzy congruence) if a (a + ¢, b +d) = Min [a (a, b), O (c, d)] and
a (ar, br) 2 a (a, b) for all a, b, ¢, d in M and for all r [JP [JR (P is the proper
subset in the S-near ring R relative to which the S-R-module M is defined). Let a be a
S-fuzzy relation on a S-R-module M. For each t [J[0, 1] the set a ;= {(a, b) [/M xR |
a (a, b) >t} is called the Smarandache level relation (S-level relation) of Q.

Now we proceed on to define the concept of Smarandache fuzzy seminear ring for the
first time. Before we define Smarandache fuzzy seminear ring we will first define the
concept of fuzzy seminear rings and its properties.

DEFINITION 6.1.54: Let T be a seminear ring. N a fuzzy set in T. Then N is called a
fuzzy seminear ring in N if

i. N(x+y)2min {N(x), Ny)}.
ii. N(xy) 2min {N (x), N(y),}.

We now define the concept of fuzzy seminear-ring module.

DEFINITION 6.1.55: Let T be a seminear ring. N a fuzzy seminear rving in T. Let Y be a
seminear ring module over T and M, a fuzzy set in Y. Then M is called a fuzzy
seminear ring module in Y if

i. M(x+y)2min{Mx), M(y),}.
ii. M (Ax)2min{N(A), M(x)} for all x, y [7Y and for all A [Jt.

DEFINITION 6.1.56: Let (T, +, ) be a seminear ring. A fuzzy subset u in T is called a
fuzzy right (resp. left) T-subsemigroup of T if

i. wis afuzzy subsemigroup of (T, +).
ii. ulxr) 2u(x) (resp. Urx) = l(x)) for all x, r [JT.

THEOREM 6.1.13: Let u be a fuzzy right (resp. left) T-subsemigroup of a seminear
ring T then the set T, = {x T/ u(x) = u (0)} is a right (resp. left) R subsemigroup of
T.

Proof: Straightforward by the definition.
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DEFINITION 6.1.57: Let u be a nonempty fuzzy subset of a T-semimodule M. Then u is
said to be a fuzzy semisubmodule of M if

L. u(x+y)=2Min[u(x), u®)].
. u(x+y)r+xr)2uy)

forallx,yinMandrinT.

On similar lines we can define fuzzy equivalence relation and fuzzy congruence on G
an T-semimodule over a seminear ring T.

If G is a T-semimodule. A non empty fuzzy relation a on G is a mapping a: G xG —
[0, 1] is called a fuzzy equivalence relation if

ax, x) = Sup a®y, z)forallx,y zinG.

y,z0G
ax y)=a(@,x)forallx,yin G

awxy 2 Sup [Min (@ (x z), a (z, y)] x, y /G for all x, y in G.

y,z0G

A fuzzy equivalence relation a on an T-semimodule G is called fuzzy congruence if
Qa+c, b+d 2Min[a(a, b), a(c, d)] and a (ar, br) = a (a, b) for all a, b, ¢, d in
GandforallrinT.

THEOREM 6.1.14: Let a be a fuzzy congruence on a T-semimodule G and uq be the
fuzzy subsemimodule induced by a. Let t [/Im a. Then (ug); ={x JG/x =0 ()} is
the subsemimodule induced by the congruence a,.

Proof: Leta 0 G. Now a U (o)t = (La) (@) 2t = O (a,0) 2t = (a,0)t, 0y = a =
O(ay) = all{xUOG|x=0(ay)}. Hence the result.

DEFINITION 6.1.58: Let G be a T-semimodule and a be a fuzzy congruence on G. A
fuzzy congruence [ on G. A fuzzy congruence [fon G is said to be « - invariant if

ax, y) =a (v, V) implies [ (x, vy) = B(U, V) for all (x, y), (U, V) G xG.

Now we proceed on to define Smarandache fuzzy seminear rings.

DEFINITION 6.1.59: Let R be a S-seminear ring. A fuzzy subset u on R is said to be a
Smarandache fuzzy seminear ring (S-fuzzy seminear-ring) if U : P — [0, 1] is a
S-fuzzy semiring where P [/R and P is a semiring.

We can define S-fuzzy seminear ring yet in another way.

DEFINITION 6.1.60: Let R be a S-seminear ring. A fuzzy subset u of R is said to be a
Smarandache fuzzy seminear ring (S-fuzzy seminear ring) if
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pu(x +y) 2ux) + uy)
p(=x) = u(x)
p(xy) 2minfu(x), p()}

forallx, y [JN [JR where N a proper subset of R is a near ring in R.

The S-fuzzy seminear ring II definition will be distinguished from the other S-fuzzy
seminear ring definition by denoting it as S-fuzzy seminear ring II.

In case of S-fuzzy seminear ring II all definitions and results proved in case of fuzzy
near rings can be easily transformed into S-fuzzy seminear rings II.

Now we define Smarandache fuzzy seminear ring semimodule II.

DEFINITION 6.1.61: Let R be a S-seminear ring with P a proper subset of R which is a
near ring and N a fuzzy near ring in P. Let Y be a near ring module over P and M a
fuzzy set in Y. Then M is called the Smarandache fuzzy seminear ring semimodule (S-
fuzzy seminear ring semimodule) in Y if

i. M(x+y)2min{M(x), M(y),}.
ii. M(Ax) 2min {N(A), M(x)} for all x, y [7Y for all A [JP.
ii. M(0) = 1.

The following theorem is direct.

THEOREM 6.1.15: Let Y be a S-seminear ring semimodule over a S-seminear ring R
with identity. If M is a S-fuzzy seminear ring semimodule in Y and if A [JP [JR
(Y defined as module over the near ring P contained in R) is invertible then M(Ax) =
M(x) for all x []y.

Proof: As in case of S-near rings using the definition the result is got as a matter of
routine.

Several other results can be defined for S-seminear rings and extended for S-fuzzy
seminear ring of many other levels which we defined in [130]. The reader is advised
to go through the results in [130] and obtain some more interesting results about these
structures.

6.2 Smarandache Non-associative Fuzzy near-ring

In this section we just recall the definition of S-non-associative seminear-ring and
their Smarandache fuzzy analogues. Also we proceed on to define Smarandache non-
associative near-rings and their Smarandache fuzzy analogue. We derive some

interesting results about them.

DEFINITION 6.2.1: Let (N, ‘+°, “®’) be a non-empty set endowed with two binary
operation ‘+’ and ‘®’ satisfying the following:
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i. (N, +)is a semigroup.
ii. (N, ®isagroupoid.
iii. (@a+b)jc=aec+becforalla b c[JN; (N, ‘+° ‘®)is called the
right seminear-ring which is non-associative.

If we replace (c) bya *(b+c)=a *b+a *cforalla b, ¢ UN. Then (N, +’, ®’) is
a non-associative left seminear-ring.

DEFINITION 6.2.2: Let (N, +, ®) be a seminear-ring which is not associative. A subset
P of N is said to be a subseminear-ring if (P, +, ) is a seminear-ring.

DEFINITION 6.2.3: Let N be a non-associative seminear-ring. An additive
subsemigroup A of N is called the N-subsemigroup (right N-subsemigroup) if NA [J A
(AN []A) where NA = {na/n [JN, a [JA).

DEFINITION 6.2.4: A non-empty subset I of N is called left ideal in N if

i (I, +) is a normal subsemigroup of (N, +).
ii. n(n;+i)+nn; Jlforeachi [JI, n, n; [JN.

DEFINITION 6.2.5: Let N be a non-associative seminear-ring. A nonempty subset I of
N is called an ideal in N if

i.lis a left ideal.
ii.IN [J1.

DEFINITION 6.2.6: A non-associative seminear-ring N is called left bipotent if Na =
Nd’ forainN.

DEFINITION 6.2.7: A non-associative seminear-ring N is said to be a s-seminear-ring
if a [JNa for each a in N.

The following definitions about strictly prime ideals would be of interest when we
develop Smarandache notions.

DEFINITION 6.2.8: An ideal P (# N) is called strictly prime if for any two N-
subsemigroups A and B of N such that AB [JP then A [/P or B [JP.

DEFINITION 6.2.9: An ideal B of a non-associative (NA for short) seminear-ring N is
called strictly essential if B n K Z {0} for every non-zero N-subsemigroup K of N.

DEFINITION 6.2.10: An element x in N is said to be singular if there exists a non-zero
strictly essential left ideal A in N such that Ax = {0}.

Several other analogous results existing in near-rings and seminear-rings can also be

defined for non-associative seminear-rings. Now we proceed on to define
Smarandache notions.
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DEFINITION 6.2.11: Let (N, +, * be a non associative seminear-ring. N is said be a
Smarandache non associative seminear-ring of level I (S-NA seminear-ring ) if

i. (N, t)isaS-semigroup.
ii. (N, ®) isa S-groupoid.
iii. (a+b)jc=aec+becforalla b, c//N.

DEFINITION 6.2.12: Let (N, +, ®) be a non-associative seminear-ring. N is said to
have a Smarandache subseminear-ring (S-subseminear-ring) P [J N if P is itself a
S-seminear-ring.

DEFINITION 6.2.13: Let (N, +, ¢ be a non-associative seminear-ring. An additive
S-subsemigroup A of N is called the Smarandache left N-subsemigroup (S-N-left
subsemigroup) (right N-subsemigroup) if NA [JA (AN [JA) where Na = {na /n [JN,
alJA).

DEFINITION 6.2.14: A non-empty subset I of N is called Smarandache left ideal (S-left
ideal) in N if

i. (I, +)is a normal S-subsemigroup of (N, +).
ii. n(n;+i)+nn; Jlforeachi /I n n; [JN.

DEFINITION 6.2.15: Let N be a NA-seminear-ring. A nonempty subset I of N is called
a Smarandache ideal (S-ideal) in N if

i. lisa S-leftideal.
ii. IN/[JIL

DEFINITION 6.2.16: A S-NA-seminear-ring N is called Smarandache left bipotent
(S-left bipotent) if Na = Nd’ for every a in N.

DEFINITION 6.2.17: Let (N, +, ¢ be a NA seminear-ring. N is said to be a
Smarandache seminear-ring I of type A (S-seminear-ring I of type A) if N has a
proper subset P such that (P, +, *) is an associative seminear-ring.

DEFINITION 6.2.18: Let N be a NA-seminear-ring. N is said to be a Smarandache NA
seminear-ring I of type B (S-NA seminear-ring I of type B) if N has a proper subset P
where P is a near-ring.

DEFINITION 6.2.19: Let N and N; be two S-seminear-rings, we say a map @from N to
Nj is a Smarandache non-associative seminear ring homomorphism (S-NA seminear-
ring homomorphism) if

Px+y) =9+ @0)
Pxy) = @) 9O)

forallx, y [JN.
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DEFINITION 6.2.20: Let (N, +, ¢ be a NA seminear-ring, we say N is a Smarandache
NA seminear-ring Il (S-NA-seminear-ring II) if N has a proper subset P which is a
associative seminear-ring.

THEOREM 6.2.1: Let N be a S-NA seminear-ring Il then N is a S-NA-seminear-ring |
of type A.

Proof: Obvious by the very definition. Now using the S-mixed direct product
definition of seminear-rings we can extend it to the case of non-associative seminear-
rings. This method will help to build a class of S-NA seminear-rings of type II.

DEFINITION 6.2.21: Let N be a S-NA seminear-ring 1. An additive S-semigroup A of
N is said to be a S-left N subsemigroup (right-N subsemigroup) if PA [J A and
(AP [J A). where P is a proper subset of N and P is a seminear-ring which is
associative. PA = {pa/p [JP and a [JA}.

DEFINITION 6.2.22: Let N and N; be any two S-NA-seminear-rings A mapping @ from
N to Nj is called a Smarandache-NA seminear-ring homomorphism (S-NA seminear-
ring homomorphism) if @ maps every p [/ P [J N (p a associative seminear-ring-
associative) into a unique element @ (p) [/ P; [J N; where P; is an associative

seminear-ring such that @(p + p') = @) + (') and P (p; p2) = P(p1) P(p2) for
every p;, p» LJP [] N.

It is important to note that @ need not be defined on the whole of N it is sufficient if @
is defined on a subset P of N where P is an associative seminear-ring. Thus if P [J N
and P; [0 Ny and @ : N - N;j is such that ¢ is one to one and on to from P to P; the
two S NA seminear-rings would become isomorphic even if they are not having same
number of elements in them.

DEFINITION 6.2.23: Let N be a S-NA-seminear-ring. An additive S-semigroup A of N
is said to be a Smarandache left ideal (S-left ideal) of N if it is an ideal of the
semigroup (N, +) with the conditions.

p1 (p2 +a)—p;p> [JA for each a [JA; p;, p> [JP [JN; P a seminear-ring.

DEFINITION 6.2.24: A subset I of N is called a S-ideal if it is a S-left ideal and IP [J1
where P []N is the associative seminear-ring.

DEFINITION 6.2.25: A S-NA seminear-ring N has Smarandache IFP (S-IFP) (insertion
of factor property) if for a, b [JP, ab = 0 implies a.p.B = 0 for allp [JP [JN since N
is non-associative we have to restrict our selves only to the associative substructure to
define IFP property as a (nb) Z (an) b in general for all a, n, b [JN.

Now we proceed onto define Smarandache fuzzy seminear-rings and its properties.
DEFINITION 6.2.26: Let N be a S-non-associative seminear-ring il : N — [0, 1] be a

fuzzy subset of N such that if 4 : P — [0, 1] is a Smarandache fuzzy seminear-ring
(S-fuzzy seminear-ring) where P is a proper subset of N which is a S-seminear-ring
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under the operations of N. Then we call 4 a Smarandache fuzzy non-associative
seminear-ring (S-fuzzy non-associative seminear-ring) of N.

DEFINITION 6.2.27: Let R be a S-non-associative seminear-ring. N a fuzzy seminear-
ring of R. Let Y be a S-seminear-ring semimodule over R. M a fuzzy set in Y. Then M
is called a Smarandache fuzzy non-associative seminear-ring semimodule (S-fuzzy
non-associative seminear-ring semimodule) (or just module) in Y if

i M(x + y) 2min{M(x), M(y))}.
ii. M(Ax) 2min{N(A), M(x)}.

forallx,y JY, A [JP [JR. P is the near-ring over which the module Y is defined.

All properties enjoyed by S-fuzzy seminear-rings and S-fuzzy near-rings can be
transferred in to the definitions of S-fuzzy non-associative seminear-ring with
appropriate modifications. As we have given all Smarandache properties about non-
associative seminear-rings it would be easy for any reader to define the Smarandache
fuzzy analogue for them. Now we proceed on to define some properties about
Smarandache non-associative near-ring thereby paving way for the definition and
study of Smarandache fuzzy non-associative near-rings.

DEFINITION 6.2.28: The system N = (N, ‘“+°, “®’, 0) is called a Smarandache right
loop half groupoid near-ring (S-right loop half groupoid near-ring) provided.

i (N, +, 0) is a Smarandache loop.
ii. (N, '*') is a half groupoid.
iii. (n;®ny) ®n3; = n;*(mny*n3) for all n;, ny, ny [J N for which

ny ® nyny ®nz (ny *ny) *nzandn; ®(ny *nz) LJN.

iv. (n; +mny) ny=mn; ®*n3 +ny *n3 forall n;, ny, ny [J N for which
(n; + ny) ®n3 n; ®*n3, ny *n3 [JN. If instead of (iv) in N the
identity n; ® (n, + n3) = n; *n, + n; ®n; is satisfied then we say N
is a Smarandache left half groupoid near-ring (S-left half groupoid
near-ring).

We just say (L, +) is a S-loop if L has a proper subset P such that (P, +) is an additive
group.

DEFINITION 6.2.29: A Smarandache right loop near-ring (S-right loop near-ring) N is
a system (N, +, ) of double composition ‘+’ and ‘*’ such that

i (N, +) is a S-loop.
ii. (N, °) is a S-semigroup.
iii. The multiplication ‘*’ is right distributive over addition that is for all

ny, ny, n3 [JN (n; +ny) *n3 =n; ®n3 +ny *ns.
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THEOREM 6.2.2: Let N be a S-right loop near-ring then N is a S-right loop half
groupoid near-ring.

Proof: Obvious by the very definitions.

THEOREM 6.2.3: Let N be a S-right loop half groupoid near-ring, then N is not in
general a S-right loop near-ring.

Proof: Obvious. (N, ) is only a half groupoid so it can never be a S-semigroup.

DEFINITION 6.2.30: A nonempty subset M of a S-loop (N, +, ‘®’, 0) is said to be a

Smarandache subloop near-ring (S-subloop near-ring) of N if and only if (M, ‘+°, ‘®’,
0) is a S-loop near-ring.

DEFINITION 6.2.31: Let N be a non-associative near-ring we say N is a Smarandache
quasi non-associative near-ring (S-quasi non-associative near-ring) if N has a proper
subset which is a ring under the operations of N.

DEFINITION 6.2.32: Let N be a nom-associative seminear-ring we say N is a
Smarandache quasi non-associative seminear-ring (S-quasi non-associative
seminear-ring) if N has a proper subset P such that P is a semiring.

DEFINITION 6.2.33: Let (N, +, *) be a S-quasi seminear-ring. We call a non-empty
subset I to be a Smarandache quasi left ideal (S-quasi left ideals) in N if

i (I, +) is a S-semigroup.
ii. n (nl +1i) + nn' L1 for each i [JI and n, n' OP; Pa semiring in N.

We say I is a S-quasi ideal if IP [J1.

DEFINITION 6.2.34: Let (N, +, *) be a S-quasi near-ring. We say a non-empty subset [
of N to be a Smarandache quasi left ideal (S-quasi left ideal) in N if

i (I, +) is a subgroup.
ii. n (nl +1i) + nn'’ L1 for each i [JI and nn' OR R [ON and R a ring.

We say I is a S-quasi ideal if I is a S-quasi left ideal of N and IR [/ 1.

DEFINITION 6.2.35: Let N be a S-quasi near-ring (S-quasi seminear-ring). We say N
is Smarandache quasi bipotent (S-quasi bipotent) if Pa = Pa’ where P N and P is a
ring (P [JN and P is a semiring) for every a in N.

DEFINITION 6.2.36: Let N be a S-quasi near-ring (S-quasi seminear-ring) N is said to
be a Smarandache quasi s-near-ring (S-quasi s-near-ring) (S-quasi s-seminear-ring,
in short, S-quasi s-seminear-ring) if a [JPa for each a in N where P is a proper
subset N which is a ring (P [J N and P is a semiring).
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DEFINITION 6.2.37: Let N be a Smarandache quasi near-ring (S-quasi near-ring) N is
said to be Smarandache quasi regular (S-quasi regular) if for each a in N there exists
xinP; P[] N, Paring (P [JN and P a semiring) such that a = a(xa) = (ax)a.

DEFINITION 6.2.38: A Smarandache quasi seminear-ring (S-quasi near-ring) N is
called Smarandache quasi irreducible (S-quasi irreducible) (Smarandache quasi
simple) if it contains only the trivial S-quasi N-subgroups (S quasi N-subsemigroups).

DEFINITION 6.2.39: Let N be a S-quasi near-ring (S-quasi seminear-ring) an element
x is said to be quasi central if xy = yx for all y [/R; R [JN is a ring (or R [JN and R
is a semiring).

DEFINITION 6.2.40: Let N be a S-quasi near-ring (or S-quasi seminear-ring) N is said
to be Smarandache quasi subdirectly irreducible (S-quasi subdirectly irreducible) if
the intersection of all nonzero S-quasi ideals of N is nonzero.

DEFINITION 6.2.41: Let N be a S-quasi near-ring (S-quasi seminear-ring) N is said to
have Smarandache quasi insertion of factors property (S-quasi IFP) if a, b [JN, ab =
0 implies arb = 0 where v [/R, R [/N and R is a ring (or r [JR, R [/N, R is a
semiring).

DEFINITION 6.2.42: Let N be a non-associative S-near-ring we say N is Smarandache
weakly divisible (S-weakly divisble) if for all x, y [J N there exists a z [JP; P [/ N
where P is an associative ring or P is a near-field such that xz =y or zx = y.

DEFINITION 6.2.43: Let N be a non-associative S-seminear-ring we say N is
Smarandache weakly divisible (S-weakly divisible) if for all x, y [J N there exists
z [JP, P [JN where P is an associative seminear-ring such that xz =y or zx = y.

DEFINITION 6.2.44: Let N be a S-quasi near-ring (S-quasi seminear-ring). We say N
is Smarandache quasi weakly divisible (S-quasi weakly divisible) if for all x, y [/ N
there exists z [JR; R aring R [JN (R a semiring R [J/N) such that xz =y or yz = x.

DEFINITION 6.2.45: Let P be a seminear pseudo ring (SNP-ring) we say P is a
Smarandache SNP-ring I (S-SNP-ring 1) if P has a proper subset T [] P such that T is
a seminear-ring. Smarandache SNP-ring Il (S-SNP-ring 1l) if P has a proper subset
R [JP such that R is a near-ring. Smarandache SNP-ring III (S-SNP-ring I1l) if P has
a proper W [J P such (W, [] @) is a semiring. Thus we have 3 levels of S-SNP rings.
A Smarandache SNP subring (S-SNP subring) is defined as a proper subset U of P
such that (U, [J, ©) is a S-SNP-ring.

DEFINITION 6.2.46: Let (P, [] ©) be a SNP-ring. A proper subset I of P is called a
Smarandache SNP- ideal (S-SNP-ideal) if

i. forallp,q L pl]qlJL

ii. 001
iii. Forallp [Jlandr [JP we havep Ororr Op [J1.
iv. 1lisaS-SNP-ring.
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DEFINITION 6.2.47: Let (R, [J ©®) be a quasi SNP-ring. R is said to be a
Smarandache quasi SNP-rings (S-quasi SNP-ring) if and only if R is a S-SNP-ring.

DEFINITION 6.2.48: Let (R, [J, ©) and (R;, [J, @) be any two S-SNP-ring, we say a
map @is a Smarandache SNP-homomorphism I (Il or I1I) (S-SNP homomorphism I, 11
or Ill) if @ S to S; where S [JR and S; [J R; are seminear-ring (or near-ring or
semiring) respectively and @is a seminear-ring homomorphism from S to S; (or near-
ring homomorphism from S to S; or a semiring homomorphism from S to S;). @need
not be defined on the entire set R or R'itis sufficient if it is well defined on S to S;.

Now we proceed on to define Smarandache right quasi regular element. We just
recall that an element x [JR, R a ring is said to be right quasi regular if there exist
v [JR such that x o y = x + y—xy = 0 and left quasi regular if there exist yj [JR such
thatyj ox =10 =y1 +x—y1x.

Quasi regular if it is right and left quasi regular simultaneously. We say an element
x [JR is Smarandache right quasi regular (S-right quasi regular) if there exist y and
z[JRsuchthatxoy=x+y—-xy=0,x0z=x+z—xz=0butyoz=y+z—yz Z0
andzoy =y +z—zx Z0.

Similarly we define Smarandache left quasi regular (S-left quasi regular) and x will
be Smarandache quasi regular (S-quasi regular) if it is simultaneously S-right quasi
regular and S-left quasi regular.

Using these definitions the reader can define the Smarandache fuzzy analogue of
them. Just for the sake to interest the reader we give a few definitions here.

DEFINITION 6.2.49: Let N be a S-non-associative near-ring. A fuzzy subset 1 : N —
[0, 1] is said to be a Smarandache fuzzy non-associative near-ring (S-fuzzy non-
associative near-ring) if [ (x + y) = min {{{ (x), L )}, L (—x) = U (X), U (xy) =
min{{d (x), L (v)} forallx, y [JP, P a proper subset of N and P is an associative near-
ring or a near-field.

Thus we in case of S-fuzzy non-associative near-rings do not demand that p be
defined on the whole of the S-non-associative near-ring N, it is enough if U is defined
on a proper subset of N which is an associative near-ring or a near-field. Thus having
defined the notion of S-na-fuzzy near-ring our interest would be for a given S-na-
near-ring N; how many S-na-fuzzy near-rings can be defined.

DEFINITION 6.2.50: Let N be a S-na-near-ring. Let U be a fuzzy subset of Ni.e. U: N
- [0, 1]. W is said to be a Smarandache strongly fuzzy non-associative near-ring
(S-strongly fuzzy nonm-associative near-ring) if U is a S-fuzzy non-associative near-
ring if for every proper subset P in N where P is a near-field.

THEOREM 6.2.4: Let N be a S-non-associative near-ring. If ff : N — [0, 1] is a

S-strongly fuzzy non-associative near-ring then [l is a S-fuzzy non-associative near-
ring.
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Proof: Straightforward by the very definitions and hence left for the reader to prove.

DEFINITION 6.2.51: Let R be a S-non-associative near-ring and N a S-fuzzy-na-near-
ring in R. Let Y be a S-non-associative near-ring module over R and M a fuzzy set in
Y. Then M is called a S-fuzzy na-near-ring module in Y if

i M +y) = Min{M(x), M(y))}.
ii. M(Ax) = Min{N(A), M(x).
iil. M) =1

forallx,y [7Y and A [JP [JR where P is a proper subset of R and P is an associative
near-ring or a near-field.

THEOREM 6.2.5: Let {M;/ i [J1} be a family of S-fuzzy non-associative near-ring
modules relative to a fixed associative subnear-ring P in R, all the M;'s are defined in

Y. Then ﬂM . is a S-fuzzy non-associative near-ring module in Y.
a7

Proof: Using the fact if M = ﬂM ., then we have A U P O R (P relative to which all
a7

M;'s are defined) and for all x, y I Y

M(x+y) = inf M(x+y)
inf{min{Mi(x)»Mi(y}
mlin{inf M;(x), inf Mi(y)}
min{M(x), M(y)}

\}

On similar lines we have M(Ax) = Min{N(A), M(x)}. Hence the theorem.

Several other properties can be defined and studied in case of S-fuzzy na-near-rings.

6.3 Smarandache Fuzzy Binear-rings

In this section we introduce just the notions of Smarandache fuzzy binear-rings,
Smarandache fuzzy biseminear-rings, Smarandache non-associative binear-rings and
Smarandache non-associative biseminear-rings and their Smarandache fuzzy
analogues. Several results in this direction are given.

DEFINITION 6.3.1: Let (N, +, ®) be a binear-ring. (N = N; [J N> ). We say N is a
Smarandache binear-ring (S-binear-ring) if N contains a proper subset P such that P
under the operations '+' and '*' is a binear field; i.e., (P = P; [J P>, +, ®) is a binear

field

DEFINITION 6.3.2: Let (N, +, ®) be a binear-ring. A proper subset P of N is said to be
a Smarandache subbinear-ring (S-subbinear-ring) if P itself is a S-binear-ring.
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DEFINITION 6.3.3: Let P be a S-bisemigroup with 0 and let N be a S-binear-ring. A
map [: N XY — Y where Y is a proper subset of P which is a bigroup under the
operations of P, (P, ) is called the Smarandache N-bigroup (S-N-bigroup) if for all
y OY and for all n, n; ON we have (n + n;)y = ny + ny and (nn;) y = n(m;). S (N*)
stands for the S-N-bigroups.

DEFINITION 6.3.4: A S-bisemigroup M of the binear-ring N is called a Smarandache
quasi sub-binear-ring (S-quasi sub-binear-ring) of N if X [J M where X is a
bisubgroup of M which is such that XX [/ X.

DEFINITION 6.3.5: A S-sub-bisemigroup Y of S(N*) with NY [J Y is said to be a
Smarandache N-sub-bigroup (S-N-sub-bigroup) of P.

DEFINITION 6.3.6: Let N and N' be two S-binear-rings P and P' be S-N-sub-bigroups

i h : N - N'is called a Smarandache binear-ring
homomorphism (S-binear-ring homomorphism) if for all m, n [JM we have h
(m + n) = h(m) + h(n), h(mn) = h(m)h(n) where h(m), h(n) JM' (M' is a
proper subset of N' which is a binearfield). It is to be noted that h need not
even be defined on whole of N.

ii. h: P — P'is called the Smarandache N-sub-bigroup
homomorphism (S-N-sub-bigroup homomorphism) if for all p, q in S (S the
proper subset of P which is a S-N-sub-bigroup of the S-bisemigroup P) and
forallm [J M [J N (M a nearfield of N); h(p + q) = h(p) + h(q) and h(mp)
=mh(p), h(p), h(q) and mh(p) [JS' (S"is a proper subset of P' which is S-N'-
sub-bigroup of S-bisemigroup P').

Here also we do not demand h to be defined on whole of P.

DEFINITION 6.3.7: Let (N, +, ®) be a S-binear-ring. A normal sub-bigroup I of (N, +)
is called a Smarandache bi-ideal (S-bi-ideal) of N related to X, where X is a
binearfield contained in N if (X = X; [J X5, X; and X, are near fields).

I [1X1 ﬂ[[,'[ng ﬂ[gwhel”e[:h ﬂ[g.
ii. Ox;, yvi U X; and for all k; V1, xi (vi + k) —xy; J1;; i =1, 2.

DEFINITION 6.3.8: A proper subset S of P is called a S-bi-ideal of S(N*) related toY if

i S is a S-normal sub-bigroup of the S-bisemigroup.

ii. For all s; [JS and s [JY and for all m [JM (M the binear field of N),
n(s +s;)—ns [JS.

A S-binear-ring is S-bi-ideal if it has no S-bi-ideals. S(N *) is called Smarandache
N-bisimple (S-N-bisimple) if it has no S-normal sub-bigroups expect 0 and P.

DEFINITION 6.3.9: A S-sub-binear-ring M of a binear-ring N is called Smarandache

bi-invariant (S-bi-invariant) related to the binearfield X in N if MX [JM and XM [JM
where X is a S-binear field of N. Thus in case of Smarandache bi-invariance (S-bi-
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invariance) it is only a relative concept as a S-sub-binear-ring M may not be
invariant r