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Abstract. A question which was posed by Felix Hausdorff [12] concerns the accessibility of
the cardinality of an uncountable set from smaller cardinalities. If the set is not a union of

a class of smaller cardinality of sets of smaller cardinality, the question is whether a greatest

cardinality exists which is less than the cardinality of the given set. Although the question
remains unanswered, and may indeed be unanswerable, satisfactory foundations of analysis

are now obtained when the issue is left undecided. A generalization of the Hahn–Banach

theorem is obtained in locally hyperconvex spaces which are modules over a Weierstrass
algebra. A construction of invariant subspaces is an application. If an algebra of continuous

transformations of a Hilbert space into itself is closed in the weak topology induced by the
trace class and does not contain the identity transformation, then a nontrivial proper closed

subspace exists which is a common invariant subspace for the elements of the algebra.

A Weierstrass algebra is an associative algebra with unit over the rational numbers
which admits a conjugation with positivity properties and a related Hausdorff topology.
The conjugation is an anti–automorphism ξ into ξ− of order two. A self–conjugate element
of the algebra is said to be nonnegative if it is a sum

ξ−0 ξ0 + . . .+ ξ−r ξr

with ξ0, . . . , ξr elements of the algebra for some nonnegative integer r. It is assumed that
ξ0, . . . , ξr all vanish if the sum vanishes.

Locally hyperconvex topologies are defined for two–sided modules over a Weierstrass
algebra. A class of nonnegative transformations of the module into itself is assumed given.
A nonnegative transformation is linear when the module is treated as an algebra over
the rational numbers. The sum of two nonnegative transformations is nonnegative. The
inverse of a nonnegative transformation is nonnegative when it exists. An example of a
nonnegative transformation is defined by taking c into ξ−cξ for every element ξ of the
Weierstrass algebra. If inverses exist for nonnegative transformations P and Q and if T
is a nonnegative transformation such that 1− T is nonnegative, then an inverse exists for
the nonnegative transformation

(1− T )P + TQ.

A hyperconvex combination
(1− T )a+ Tb
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of elements a and b of the module is defined using a nonnegative transformation such that
1− T is nonnegative. A subset of the module is said to be hyperconvex if it contains the
hyperconvex combinations of every pair of its elements.

A Hausdorff topology for a module over a Weierstrass algebra is said to be locally
hyperconvex if addition is continuous as a transformation of the Cartesian product of the
module with itself into the module, if every open set is a union of hyperconvex open sets,
and if every hyperconvex open set has an absorption property: Whenever a is an element
of the set and b is an element of the module, an invertible nonnegative transformation T
exists such that 1− T is nonnegative and such that the hyperconvex combination

(1− T )a+ tb

belongs to the set.

A Weierstrass algebra is treated as a module over itself for the definition of a locally
hyperconvex topology. A Weierstrass algebra is required to have a locally hyperconvex
topology. A locally hyperconvex topology of a two–sided module over a Weierstrass algebra
is required to be compatible with the locally hyperconvex topology of the algebra: A
continuous transformation of the Cartesian product of the Weierstrass algebra with itself
into the module is defined by taking a pair of elements ξ and η of the algebra into the
element ξ−cη of the module for every element c of the module.

If a locally hyperconvex topology of a module over a Weierstrass algebra is given, then
a related locally hyperconvex topology is constructed using the concept of a hyperdisk. A
nonempty hyperconvex subset of the module is said to be a hyperdisk if it is disjoint from
the closure of every disjoint hyperconvex set.

If A is a hyperdisk and if B is a hyperconvex set, then the intersection of A with the
closure of B is contained in the closure of the intersection of A with B. For an element
of A which does not belong to the closure of the intersection of A with B belongs to a
hyperconvex open set C whose intersection with A is disjoint from C. Since the intersection
of B with C is a hyperconvex set which is disjoint from A, the hyperdisk A is disjoint from
the closure of the intersection of B with C. Since C is an open set, the intersection of C
with the closure of B is contained in the closure of the intersection of B with C. It follows
that the intersection of A with C is disjoint from the closure of B.

The intersection of hyperdisks A and B is a hyperdisk if it is nonempty. For the
intersection of A and B is a hyperconvex set. If a hyperconvex set C is disjoint from the
intersection of A and B, then the intersection of B and C is a hyperconvex set which is
disjoint from A. Since A is a hyperdisk, A is disjoint from the closure of the intersection of
B and C. Since B is a hyperdisk, the intersection of B with the closure of C is contained
in the closure of the intersection of B with C. It follows that the intersection of A and B
is disjoint from the closure of C.

The hyperdisk topology of a locally hyperconvex space is the locally hyperconvex topol-
ogy whose open sets are the unions of hyperdisk. The hyperdisk topology has the same
closed hyperconvex sets as the given topology. Since every nonempty hyperconvex set
which is open for the given topology is a hyperdisk, every hyperconvex set which is closed
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for the given topology is closed for the hyperdisk topology. If a hyperconvex set B is
closed for the hyperdisk topology, then an element of the space which does not belong to
B belongs to a hyperdisk A which is disjoint from B. Since A is disjoint from the closure
of B, an element of the space which does not belong to B does not belong to the closure
of B.

The closure of a hyperconvex set B with respect to a locally hyperconvex topology is
hyperconvex. For if u and v are elements of the closure of B and if A is a hyperconvex
open set containing the origin, then elements a and b of B exist such that u− a and v− b
belong to A. An element of the hyperconvex span of u and v is a hyperconvex combination

(1− T )u+ Tv

with T a nonnegative transformation such that 1 − T is nonnegative. Since B is hyper-
convex, the hyperconvex combination

(1− T )a+ Tb

belongs to B. Since A is hyperconvex, the difference

[(1− T )u+ Tv]− [(1− T )a+ Tb] = (1− T )(u− a) + T (v − b)

belongs to A.

If B is a nonempty hyperconvex set and if s is an element of the locally hyperconvex
space which does not belong to B, then a hyperconvex set B(s) is constructed so that B
is contained in B(s) and so that s belongs to the closure of B(s). The set B(s) is the set
of hyperconvex combinations

(1− T )s+ Tc

with c an element of B and with T an invertible nonnegative transformation such that
1−T is nonnegative. Every hyperconvex open set which contains s contains an element of
B(s) by the definition of a locally hyperconvex topology. It is sufficient by a translation
to verify hyperconvexity of B(s) when s is the origin. A hyperconvex combination

(1− T )Pa+ TQb

of elements Pa and Qb of B(s) is constructed from elements a and b of B with Ta nonnega-
tive transformation such that 1−T is nonnegative and with P and Q invertible nonnegative
transformations such that 1− P and 1−Q are nonnegative. Then

R = (1− T )P + TQ

is a nonnegative transformation such that

1− P = (1− T )(1− P ) + T (1−Q)
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is nonnegative. Since P and Q are invertible, R is invertible. A nonnegative transformation
S such that 1− S is nonnegative is obtained as a solution of the equations

RS = TQ

and
R(1− S) = (1− T )P.

Since the set B is hyperconvex,

c = (1− S)a+ Sb

is an element of B. The hyperconvex combination

(1− T )Pa+ TQb = Rc

of elements Pa and Qb of the set B(s) is then an element Rc of the set B(s).

The conjugate dual space of a locally hyperconvex space H over a Weierstrass algebra is
the essentially unique vector space H∗ over the complex numbers which is in duality with
H and which represents the functionals linear over the rational numbers and continuous
for the hyperdisk topology. The pairing

〈a, b〉

of an element a of H with an element b of H∗ is linear over the rational numbers as a
function of a for fixed b and conjugate linear over the complex numbers as a function of b
for fixed a. If b is an element of H∗, b− is the linear functional on H defined by the scalar
product

b−a = 〈a, b〉

for every element a of H. The functional is continuous from the hyperdisk topology of H
to the Euclidean topology of the complex numbers. Every linear functional on H which
is continuous from the hyperdisk topology of H to the Euclidean topology of the complex
numbers is represented by a unique element of H∗. An element b of H∗ is said to be
hyperlinear if the inverse image under b− of every convex subset of the complex plane is a
hyperconvex subset of H.

The hyperconvex Hahn–Banach theorem is an existence theorem for hyperlinear ele-
ments of the conjugate dual space of a locally hyperconvex space.

Theorem 1. If a hyperdisk A of a locally hyperconvex space H is disjoint from a hyper-
convex subset B of H, then a hyperlinear element b of the conjugate dual space H∗ exists
such that b− maps A and B into disjoint subsets of the complex plane.

Proof of Theorem 1. It can be assumed that the set B is nonempty. A maximal hypercon-
vex set which contains B and is disjoint from A exists by the Zorn lemma. It is sufficient
to give a proof of the theorem with B is a maximal hyperconvex set which is disjoint from
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A. Since the closure of B is hyperconvex and is disjoint from A, B is a closed hyperconvex
set. It will be shown that the complement of B is hyperconvex.

If u belongs to the complement of B, a hyperconvex set B(u) is constructed as the set
of hyperconvex combinations

(1− P )u+ Pa

of u and elements a of B with Pa nonnegative transformation such that 1−P is nonnegative
and such that P and 1− P are invertible. Since the closure of B(u) contains u and every
element of B, the element of B(u) can be chosen in A.

If v belongs to the complement of B, a hyperconvex set B(v) is obtained as the set of
hyperconvex combinations

(1−Q)v +Qb

of v and elements b ofB withQ a nonnegative transformation such that 1−Q is nonnegative
and such that Q and 1−Q are invertible. Since the closure of B(v) contains v and every
element of B, the element of B(v) can be chosen in A.

A hyperconvex combination
(1− V )u+ V v

of u and v is defined using a nonnegative transformation V such that 1−V is nonnegative.
Since the nonnegative transformation

(1− P )V + (1−Q)(1− V )

is invertible, a nonnegative transformation T such that 1− T is nonnegative exists which
satisfies the equation

T (1−Q)(1− V ) = (1− T )(1− P )V.

The nonnegative transformations

R = (1− T )P + TQ

and
1−R = (1− T )(1− P ) + T (1−Q)

are invertible. A nonnegative transformation U such that 1−U is nonnegative exists which
satisfies the identities

R(1− U) = (1− T )P

and
RU = TQ.

The identities
(1−R)(1− V ) = (1− T )(1− P )

and
(1−R)V = T (1−Q)
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are satisfied. Since the identity

(1− T )[(1− P )u+ Pa] + T [(1−Q)u+Qb]

= (1−R)[(1− V )u+ V v] +R[(1− U)a+ Ub]

is satisfied, the hyperconvex combination of elements

(1− P )u+ Pa

and

(1−Q)v +Qb

of elements of A is an element of A which is a hyperconvex combination of

(1− V )u+ V v

and the element

(1− U)a+ Ub

of B.

This completes the proof that the complement of B is hyperconvex. Since the hypercon-
vex set B is closed, the hyperconvex complement of B is open. A continuous hyperlinear
functional exists which maps B and its complement into disjoint convex subsets of the real
line. The hyperlinear functional is represented by an element of H∗.

This completes the proof of the theorem.

A locally hyperconvex space admits a strongest locally hyperconvex topology. A hyper-
convex set is open for the strongest locally hyperconvex topology if for every element a of
the set and for every element b of the space, a hyperconvex combination

(1− T )a+ Tb

belongs to the set with T an invertible nonnegative transformation such that 1 − T is
nonnegative.

A characterization of hyperdisks is an application of the proof of the hyperconvex Hahn–
Banach theorem. A nonempty hyperconvex set, which is open for the strongest locally
hyperconvex topology, is a hyperdisk if, and only if, every hyperlinear functional which
maps the set into a proper subset of the complex plane is continuous.

The hyperweak topology of a locally hyperconvex space H is the weakest topology with
respect to which b− is continuous for every hyperlinear element b of the conjugate dual space
H∗. The space H is a Hausdorff space in the hyperweak topology by the Hahn–Banach
theorem. Addition is a continuous transformation of the Cartesian product ofH with itself
into H when H is considered in the hyperweak topology. Every hyperweakly open set is
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a union of hyperweakly open hyperconvex sets. If a is an element of a hyperweakly open
hyperconvex set and if b is an element of H, then

(1− T )a+ Tb

belongs to the set for an invertible nonnegative transformation T such that 1− T is non-
negative. The transformation can be defined to take c into ξ−cξ for a nonzero rational
multiple of the identity transformation. If c is an element of H, the transformation of
the Cartesian product of the Weierstrass algebra with itself into H which takes a pair of
elements ξ and η of the algebra into ξ−cη is continuous when H is considered in the hyper-
weak topology since it is continuous when H is considered in the given locally hyperconvex
topology and since the inclusion of H in itself is continuous from the given locally hyper-
confex topology into the hyperweak topology. The hyperweak topology is then a locally
hyperconvex topology. A hyperconvex set is closed for the hyperweak topology if, and
only if, it is closed for the given locally hyperconvex topology. A hyperlinear functional is
continuous for the hyperweak topology if, and only if, it is continuous for the given locally
hyperconvex topology.

A center for a hyperconvex subset of a locally hyperconvex space is an element a of the
set such that 2a−b belongs to the set whenever b belongs to the set. A hyperconvex subset
of a locally hyperconvex space is said to be centered at a if a is a center of the set.

The conjugate dual space H∗ of a locally hyperconvex space is treated as a two–sided
module over the Weierstrass algebra. If ξ and η are elements of the Weierstrass algebra
and if b is an element of H∗, then ξ−bη is the element of H∗ defined by the identity

(ξ−bη)−a = b−(ξaη−)

for every element a of H. A nonnegative transformation T , which by definition map H
into H, has an adjoint T ∗ which maps H∗ into H∗ and which is defined by the identity

(T ∗b)−a = b−(Ta)

for every element a of H and every element b of H∗. A hyperconvex combination

(1− T ∗)a+ T ∗b

of elements a and b of H∗ is defined using the adjoint T ∗ of a nonnegative transformation
T . A subset of H∗ is said to be hyperconvex if it contains the hyperconvex combinations
of every pair of elements. A center of a hyperconvex subset of H∗ is an element a of the set
such that 2a − b belongs to the set whenever b belongs to the set. A hyperconvex subset
of H∗ is said to be centered at a if a is a center of the set.

If H∗ is the conjugate dual space of a locally hyperconvex space H, the pairing

〈b, a〉 = 〈a, b〉−
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between an element b of H∗ and an element a of H is defined as the complex conjugate
of the pairing between an element a of H and an element b of H∗. If a is an element of
H, a− is the linear functional on H∗ defined by the identity

a−b = 〈b, a〉

for every element b of H∗. The weak topology of H∗ is the weakest topology with respect
to which a− is continuous for every element a of H.

A construction of weakly compact hyperconvex sets of hyperlinear elements of the con-
jugate dual space of a locally hyperconvex space is an application of the compactness of
Cartesian products of compact Hausdorff spaces.

Theorem 2. If a hyperdisk A of a locally hyperconvex space H is centered at the origin,
then the set B of elements b of the conjugate dual space H∗ such that the real part of b−

maps A into the interval (−1, 1) is a weakly compact hyperconvex set which is centered at
the origin. The set A is the set of elements a of H such that the real part of a− maps the
set of hyperlinear elements of B into the interval (−1, 1).

Proof of Theorem 2. The set B is clearly hyperconvex and centered at the origin. Since
every element of H is mapped into A by an invertible nonnegative transformation T such
that 1 − TY is nonnegative, the action of b− on H for an element of H∗ is determined
by the restriction to A of c− when c is the element of H∗ such that b = T ∗c. Since the
interval [−1, 1] is a compact hausdorff space I, the set IA of all functons defined on A with
values in I is a compact Hausdorff space in the Cartesian product topology. A hyperlinear
element b of H∗ belongs to B if, and only if, the restriction of b− to A b elongs to IA.
The closure in IA of the functions represent by elements of B consists of functions which
have hyperlinear extensions to H. Since A is a hyperdisk, these hyperlinear functionals
are continuous. Since the hyperlinear functionals are represented by elements of H∗, they
are represented by elements of B. Since B determines a compact subset of IA, the set B
is weakly compact.

If an element a of H belongs to A, then the real part of a− maps B into the interval
(−1, 1). It will be shown that the real part of a− does not map the set of hyperlinear
elements of B into the interval (−1, 1) when an element a of H does not belong to A. A
hyperlinear element b of H∗ then exists by the hyperconvex Hahn–Banach theorem such
that b−a does not belong to the image of A under b−. The choice of b is made so that the
real part of b−a does not belong to the image of A under the real part of b−. Since the
hyperdisk A is centered at the origin, the image of A is a convex open subset of the real
line which is centered at the origin. Since the real part of b−a does not belong to the set,
the choice of b can be made so that the real part of b− maps A into the interval (−1, 1)
and does not map a into the interval. Then b is a hyperlinear element of B such that the
real part of a− does not map b into the interval (−1, 1).

This completes the proof of the theorem.

A converse construction of hyperdisks of a locally hyperconvex space is made from
weakly compact hyperconvex subsets of the conjugate dual space.
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Theorem 3. If a weakly compact hyperconvex set B of the conjugate dual space H∗ of
a locally hyperconvex space H is centered at the origin, then the set A of elements a of
H such that the real part of a− maps B into the interval (−1, 1) is a hyperdisk which is
centered at the origin. The set B is the set of elements b of H∗ such that the real part of
b− maps A into the interval (−1, 1).

Proof of Theorem 3. It will first be shown that B is the set of elements b of H∗ such that
the real part of b− maps A into the interval (−1, 1). The proof is an application of the
hyperconvex Hahn–Banach theorem in which H∗ is treated as a locally hypervonvex space
over the complex numbers as Weierstrass algebra. A nonnegative transformation for H∗ is
multiplication by a nonnegative number. The given locally hyperconvex space H is then a
subspace of the conjugate dual space H∧ of H∗. The space H∧ is a vector space over the
complex numbers whose elements are the linear combinations with complex coefficients of
elements of H. The set A is a subset of the set A∧ of elements a of Hw such that the real
part of a− maps B into the interval (−1, 1). The st A is dense in A∧ considered in the weak
topology induced by H∗. If an element b of H∗ does not belong to the weakly compact
convex set B, then it does not belong to some weakly open convex set which contains B.
Since B is centered at the origin, the weakly open set can be chosen to be centered at the
origin. An element a of H∧ exists such that the real part of a− maps the weakly open set
into the interval (−1, 1) but does not map b into the interval. Since A is weakly dense in
A∧, an element a of A exists such that the real part of a− maps B into the interval (−1, 1)
but does not map b into the interval. The real part of b− does not map A into the interval
(−1, 1).

The set A∧ is hyperconvex and centered at the origin since the set B is hyperconvex
and centered at the origin. The space H∧ is a locally hyperconvex space over the complex
numbers as Weierstrass algebra when considered in the weak topology induced by H. It will
be shown that A∧ is an open subset of H∧ considered in its strongest locally hyperconex
topology. If a is an element of A∧ and if G is an element of H∧, a number t in the interval
(0, 1] exists such that

(1− t)a+ tc

belongs to A∧. Since B is weakly compact, a positive number κ exists such that the real
part of c− maps B into the invertal (−κ, κ). Since the real part of a− maps B into the
interval (−1, 1), a positive number ε exists such that the real part of a− maps B into the
interval (ε− 1, 1− ε). When the positive number t is chosen so small that

tκ < ε

and

t ≤ 1,

then

(1− t)a+ tc

belongs to A∧.
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The set A is shown to be a hyperdisk by showing that a hyperlinear element b of the
conjugate dual space of H for the strongest locally hyperconvex topology belongs to H∗ if
b− maps A into a proper subset of the complex plane. Since A is hyperconvex and centered
at the origin, it can be assumed that the real part of b− maps A into the interval (−1, 1).
The desired conclusion holds since b belongs to B by an argument at the start of the proof.

This completes the proof of the theorem.

The completion of a locally hyperconvex space H in its hyperdisk topology is a locally
hyperconvex space H∧ over the same Weierstrass algebra. The conjugate dual space of
the completion coincides as a set with the conjugate dual space H∗ of H. The inclusion of
H∗ in itself is continuous from the weak topology induced by H∧ into the weak topology
induced by H. The hyperconvex subsets of H∗, which are compact in the weak topology
induced by H, are the hyperconvex subsets of H∗, which are compact in the weak topology
induced by H∧. The weak topology induced by H and the weak topology induced by
H coincide on these sets. A nonempty convex subset of H∗ is said to be a subdisk if it
is disjoint from the weak closure of every disjoint hyperconvex set whose weak closure is
weakly compact. If A is a subdisk and if B is a hyperconvex set whose weak closure is
weakly compact, then the intersection of A with the weak closure of B is contained in the
weak closure of the intersection of A with B. The intersection of two subdisks is a subdisk
if it is nonempty.

The space H∗ is a Hausdorff space in a topology whose open sets are the unions of
subdisks. Addition is continuous as a transformation of the Cartesian product of H∗
with itself into H∗ when H∗ is considered with the subdisk topology. Multiplication is
continuous as a transformation of the Cartesian product of H∗ with the complex numbers
into H∗ when H∗ is considered with the subdisk topology.

A linear functional onH∗ is continuous for the subdisk topology if, and only if, its restric-
tion to every hyperconvex set whose weak closure is weakly compact is weakly continuous.
Every linear functional on H∗ which is continuous for the weak topology is continuous for
the subdisk topology. A linear functional is continuous for the weak topology if, and only
if, it is represented by an element of H. The completion of H is the essentially unique
vector space H∧, which contains H and which is in duality with H∗, such that the linear
functionals on H∗ which are continuous for the subdisk topology are the linear function-
als which are represented by elements of H∧. The pairing of an element a of H with an
element b of H∗ is assumed to be equal to the pairing of a as an element of H∧ with b as
an element of H∗. The compact hyperconvex subsets of H∗ for the weak topology induced
by H∧ are compact hyperconvex subset of H∗ for the weak topology induced by H.

If ξ and η are elements of the Weierstrass algebra, the transformation b into ξ−bη maps
weakly compact hyperconvex subsets of H∗ into weakly compact hyperconvex subsets of
H∗. The transformation of H into itself which takes a into ξaη− has an extension a into
ξaη− of H∧ into itself which is defined by the identity

b−(ξaη−) = (ξ−bη)−a

for every element b of H∗.
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A locally hyperconvex topology of H∧ is defined using the linear functionals on H∗
represented by elements of H∧. The locally hyperconvex topology of H∧ is the topology of
uniform convergence of linear functionals on hyperconvex subsets of H∗ which are compact
in the weak topology induced by H. Every hyperdisk of H∧ is an open set when H∧ is
considered with this topology. The hyperdisk topology ofH is then the subspace topology
which H inherits from H∧. The space H is dense in the space H∧ by the hyperconvex
Hahn–Banach theorem.

A subset of the conjugate dual space H∗ of a locally hyperconvex space H is said to
be bounded if its image under a− is a bounded subset of the complex plane for every
element a of H. A weakly compact subset of H∗ is bounded since its image under a−

is a compact subset of the complex plane for every element a of H. A weakly compact
subset of H∗ is also weakly closed. The weak compactness of weakly closed and bounded
hyperconvex subsets of H∗ is a hypothesis in the open mapping theorem and in the closed
graph theorem. An equivalent hypothesis is made on hyperconvex subsets of H.

Theorem 4. Every weakly closed and bounded hyperconvex subset of the conjugate dual
space H∗ of a locally hyperconvex space H is weakly compact if, and only if, every nonempty
hyperconvex subset of H which is open for the strongest locally hyperconvex topology and
whose closure is equal to its closure for the strongest locally hyperconvex topology is a
hyperdisk.

Proof of Theorem 4. A hyperconvex subset of H∗ which is weakly closed and bounded is
contained in a hyperconvex subset of H∗ which is centered at the origin as well as being
weakly closed and bounded. Compactness of the weakly closed and bounded subset follows
from its inclusion in a weakly compact subset which is centered at the origin.

A hyperconvex subset of H containing the origin which is open for the strongest locally
hyperconvex topology and whose closure is equal to its closure for the strongest locally
hyperconvex topology contains a nonempty hyperconvex set which is centered at the origin
as well as being open for the strongest locally hyperconvex topology and having its closure
equal to its closure for the strongest locally hyperconvex topology. The given hyperconvex
set is a hyperdisk if it contains a hyperdisk which is centered at the origin.

If a hyperconvex subset B of H∗ is centered at the origin as well as being weakly closed
and bounded, then the set A of elements a of H such that the real part of a− maps B into
a closed subset of the interval (−1, 1) is a hyperconvex subset of H which is centered at
the origin as well as being open for the strongest locally hyperconvex topology and having
its closure equal to its closure for the strongest locally hyperconvex topology. If A is a
hyperdisk, then the set of elements b of H∗ such that the real part of b− maps A into the
interval (−1, 1) is weakly compact. Since B is a weakly closed subset of a weakly compact
set, it is weakly compact.

If a hyperconvex set A is centered at the origin as well as being open for the strongest
locally hyperconvex topology and having its closure equal to its closure for the strongest
locally hyperconvex topology, then the set of elements b of H∗ such that the real part of
b− maps the closure of A into the interval (−1, 1) is a bounded hyperconvex set which is
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centered at the origin. If the closure of B is weakly compact, then the set of elements a ofH
such that the real part of a− maps the closure of B into the interval (−1, 1) is a hyperdisk
which is centered at the origin. Since the hyperconvex set A is open for the strongest
locally hyperconvex topology and since its closure for the strongest locally hyperconvex
topology contains a hyperdisk, A is a hyperdisk.

This completes the proof of the theorem.

A hyperdisk is an example of a nonempty hyperconvex subset of a locally hyperconvex
space which is open for the strongest locally hyperconvex topology and whose closure is
equal to its closure for the strongest locally hyperconvex topology. The intersection of
two hyperconvex sets which are open for the strongest locally hyperconvex topology and
whose closure is equal to its closure for the strongest locally hyperconvex topology is a
hyperconvex set which is open for the strongest locally hyperconvex topology and whose
closure is equal to its closure for the strongest locally hyperconvex topology. A locally
hyperconvex space is said to be primitive if every nonempty hyperconvex set which is open
for the strongest locally hyperconvex topology and whose closure is equal to its closure
for the strongest locally hyperconvex topology is an open set. If a locally hyperconvex
space is primitive, then every hyperdisk is an open set. If a locally hyperconvex space is
not primitive, then it admits a primitive locally hyperconvex topology whose open sets
are the unions of the nonempty hyperconvex sets which are open for the strongest locally
hyperconvex topology and whose closure for the given topology is equal to its closure for
the strongest locally hyperconvex topology. The inclusion of the space in itself is contin-
uous from the primitive locally hyperconvex topology into the given locally hyperconvex
topology.

A computation of weakly compact hyperconvex subsets of the conjugate dual space of a
locally hyperconvex space is an underlying concept in a proof [1] of the Stone–Weierstrass
theorem.

Theorem 5. A weakly compact hyperconvex subset of the conjugate dual space of a lo-
cally hyperconvex space is the weakly closed convex span of its hyperlinear elements if it is
centered at the origin.

Proof of Theorem 5. Assume that a hyperconvex subset B of the conjugate dual space
H∗ of a locally hyperconvex space H is weakly compact and centered at the origin. The
set of hyperlinear elements of B is weakly compact since it is weakly closed. The set A
of elements a of H such that the real part of a− maps B into the interval (−1, 1) is a
hyperdisk which is centered at the origin. The set B is the set of elements b of H∗ such
that the real part of b− maps A into the interval (−1, 1). It has been seen that A is the
set of element a of H such that the real part of a− maps the set of hyperlinear elements
of B into the interval (−1, 1). It follows that A is the set of element a of H such that the
real part of a− maps the weakly closed convex span of the hyperlinear elements of B into
the interval (−1, 1). The closed convex span of the hyperlinear elements of B is a weakly
compact convex subset of B. The desired conclusion is an application of the Hahn–Banach
theorem for the weak topology of H∗. If an element b of H∗ does not belong to the weakly



CARDINALITY AND INVARIANT SUBSPACES June 14, 2004 13

closed convex span of the hyperlinear element of B, then an element a of H exists such
that a− maps the weakly closed convex span of the hyperlinear element of B into a set
which does not contain the image of b. The choice of a can be made so that the real part of
a− maps the weakly closed convex span of the hyperlinear elements of B into the interval
(−1, 1) and does not map b into the interval. Since a belongs to A, b does not belong to
B.

This completes the proof of the theorem.

A locally hyperconvex space is said to have the hyperconvex Krein–Šmulyan property
if a convex subset of the conjugate dual space is weakly closed whenever it has a weakly
compact intersection with every weakly compact hyperconvex set.

Theorem 6. A locally hyperconvex space H has the hyperconvex Krein-Šmulyan property
if a countable basis exists for the neighborhoods of the origin in the hyperdisk topology.

Proof of Theorem 6. A sequence of hyperdisks An, which are centered at the origin, ex-
ists such that An+1 is contained in An for every positive integer n and such that every
neighborhood of the origin for the hyperdisk topology contains some set An. Define Bn
for every positive integer n as the set of elements b of the conjugate dual space H∗ such
that the real part of b− maps An into the interval (−1, 1). Then Bn is a weakly compact
hyperconvex subset of H∗ which is centered at the origin. The set Bn is contained in the
set Bn+1 for every positive integer n. Every weakly compact hyperconvex subset of H∗
is contained in some set Bn. A convex subset C of H∗ will be shown weakly closed if it
has a weakly compact intersection with every weakly compact hyperconvex set. It needs
to be shown that an element of H∗ which does not belong to C does not belong to the
closure of C. It can by a translation be assumed that the element is the origin. Since
the intersection of C with Bn is a weakly compact convex set which does not contain the
origin, a weakly open convex set Un exists which contains the origin but whose closure is
disjoint from the intersection of C with Bn. The sets Un can be constructed inductively
by the Hahn–Banach theorem so that Un+1 always contains the closure of the intersection
of Un with Bn. A weakly open convex subset U exists which is disjoint from C but which
contains the intersection of the closure of Un with Bn for every positive integer n.

This completes the proof of the theorem.

A transformation T of a locally hyperconvex space P into a locally hyperconvex space
Q is said to be hyperlinear if P and Q are modules over the same Weierstrass algebra, if
the transformations are linear when P and Q are treated as vector spaces over the rational
numbers, if the identity

T (ξ−cη) = ξ−(Tc)η

holds for every element c of P when ξ and η are elements of the Weierstrass algebra, and
if the transformation maps hyperconvex subsets of P into hyperconvex subsets of Q. If
the transformation is continuous from a locally hyperconvex topology of P to a locally
hyperconvex topology of Q, then it is continuous from the hyperweak topology of P to
the hyperweak topology of Q since the closed hyperconvex sets for a locally hyperconvex
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topology are identical with the closed hyperconvex sets for the hyperweak topology and
since continuity of a hyperlinear transformation is decided by closures of hyperconvex sets.
The transformation is then continuous from the hyperdisk topology of P to the hyperdisk
topology of Q. For if A is a hyperdisk of Q, the inverse image of A in P is a hyperconvex
set. If a hyperconvex set C of P is disjoint from the inverse image of A, then the image of
C in Q is a hyperconvex set which is disjoint from A. Since A is a hyperdisk, the closure of
the image of C in Q is a hyperconvex set B which is disjoint from A. Since T is continuous
from the hyperweak topology of P to the hyperweak topology of Q, the inverse image of
B in P is a closed hyperconvex set. Since C is contained in the inverse image of B, the
closure of C is contained in the inverse image of B. Since the inverse image of B is disjoint
from the inverse image of A, the closure of C is disjoint from the inverse image of A. This
completes the verification that the inverse image of A is a hyperdisk.

The hyperconvex closed graph theorem applies to hyperlinear transformations in prim-
itive locally hyperconvex spaces which have the hyperconvex Krein–Šmulyan property.

Theorem 7. A hyperlinear transformation T of a primitive locally hyperconvex space P
into a locally hyperconvex space Q which has the hyperconvex Krein–Šmulyan property is
continuous if it has a closed graph in the Cartesian product of P and Q.

Proof of Theorem 7. Continuity of T is proved by showing that the domain of the adjoint
T ∗ of T contains every element of the conjugate dual space Q∗ of Q. The adjoint takes an
element a of Q∗ into an element b of the conjugate dual space P∗ of P when the identity

a−Tc = b−c

holds for every element c of the domain of T , which is P by hypothesis. If every element of
Q∗ belongs to the domain of T ∗, then T is continuous from the hyperweak topology of P
to the hyperweak topology of Q. Since P is then continuous from the hyperdisk topology
of P to the hyperdisk topology of Q and since P is a primitive locally hyperconvex space,
T is continuous from the given locally hyperconvex topology of P to the given locally
hyperconvex topology of Q.

The adjoint T ∗ is a relation which has a closed graph in the Cartesian product of Q∗,
which is considered in the weak topology induced by Q, and P∗, which is considered in the
weak topology induced by P. The adjoint T ∗ is a transformation since the domain of T is
dense in P. Since T has a closed graph, T is the adjoint of T ∗. Since T is a transformation,
the domain of T ∗ is in Q∗.

The proof of the theorem is completed by showing that the domain of T ∗ is a weakly
closed subset of Q∗. The domain of T ∗ is hyperconvex since the transformation T is
hyperlinear. Since the locally hyperconvex space Q has the Krein–Šmulyan property, it
is sufficient to show that the domain of T ∗ has a weakly compact intersection with every
weakly compact hyperconvex subset of Q∗. If B is a weakly compact hyperconvex subset
of Q∗, then the set of elements of P∗ of the form T ∗b with b in B is hyperconvex since T
is hyperlinear and is bounded since the identity

a−(T ∗b) = (Ta)−b
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holds for every element a of P. Since the locally hyperconvex space P is primitive, the
weak closure of the set of elements of P∗ of the form T ∗b with b in B is a weakly compact
hyperconvex subset C of P∗. The Cartesian product of B and C is a compact subset of the
Cartesian product of Q∗ in the weak topology induced by Q and P∗ in the weak topology
induced by P. Since the graph of T ∗ is a closed subset of the Cartesian product space,
it has a compact intersection with the Cartesian product of B and C. It follows that the
intersection of B with the domain of T ∗ is weakly compact.

This completes the proof of the theorem.

If a hyperlinear transformation T of a locally hyperconvex space P onto a locally hyper-
convex space Q maps open sets for the locally hyperconvex topology of P into open sets for
the locally hyperconvex topology of Q, then it maps open sets for the hyperweak topology
of P into open sets for the hyperweak topology of Q. The transformation them maps open
sets for the hyperdisk topology of P into open sets for the hyperdisk topology of Q. For if
A is a hyperdisk of P, the image of A in Q is a hyperconvex set. If a hyperconvex subset
C of Q is disjoint from the image of A, then the inverse image of C in P is disjoint from
A. Since A is a hyperdisk, the closure of the inverse image of C in P is a hyperconvex set
B which is disjoint from A. The image of B in Q is then a closed hyperconvex set which
contains C and is disjoint from the image of A. This completes the verification that the
image of A is a hyperdisk.

The hyperconvex open mapping theorem applies to continuous hyperlinear transforma-
tions in primitive locally hyperconvex spaces which have the hyperconvex Krein–Šmulyan
property.

Theorem 8. A hyperlinear transformation T of a locally hyperconvex space P which has
the hyperconvex Krein–Šmulyan property onto a primitive locally hyperconvex space Q maps
open sets into open sets if it is continuous.

Proof of Theorem 8. Since T is hyperlinear and continuous, the kernel of T is a closed
vector subspace of P which is invariant under multiplication by elements of the Weierstrass
algebra. The quotient space of P is a locally hyperconvex space whose conjugate dual
space is identified with the set of elements b of the conjugate dual space of P such that b−

annihilates the kernel of T . Since the space P has the hyperconvex Krein–Šmulyan property
by hypothesis, the quotient space of P has the hyperconvex Krein–Šmulyan property.

It can without loss of generality be assumed that the kernel of T contains no nonzero
element. The inverse T−1 of T is then a hyperlinear transformation of Q into P which has
a closed graph. The desired conclusions follow from the closed graph theorem.

This completes the proof of the theorem.

An example of a Weierstrass algebra is the set C(S) of all functions on a discrete space
S. The topology of pointwise convergence on S is a locally hyperconvex topology of C(S).
The topology is the only locally hyperconvex topology of C(S) when S is a finite set since
C(S) has finite dimension as a vector space over the complex numbers. The space C(S) is
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then a primitive locally hyperconvex space which has the Krein–Šmulyan property. The
same conclusions hold when S is an infinite set.

Theorem 9. If S is a discrete space, the Weierstrass algebra C(S) has a unique locally
hyperconvex topology. The space C(S) is a primitive locally hyperconvex space which has
the Krein–Šmulyan property.

Proof of Theorem 9. The set S is a discrete subset of a Hausdorff space S∧ such that every
function f(s) of s in S has a unique continuous extension as a function f(s) of s in S∧ and
such that every homomorphism of C(S) onto the complex numbers, which always takes
the conjugate function into the conjugate number, is of the form f into f(s) for a unique
element s of S∧. The topology of pointwise convergence on S∧ is a locally hyperconvex
topology of C(S). The hyperconvex closed graph theorem is applied to show that the
topology is identical with the topology of pointwise convergence on S.

The Weierstrass algebra C(S) is a locally hyperconvex space P in the topology of point-
wise convergence on S. It will be shown that P is a primitive locally hyperconvex space.
A computation is made of the hyperconvex subsets of the conjugate dual space P∗ of P
which are weakly compact and centered at the origin. Such a set B is the weakly closed
convex span of its hyperlinear elements. A nonzero hyperlinear element b of B is supported
at an element s of S. A complex number λ exists such that the identity

b−f = λf(s)

holds for every element f of C(S). Since the set of hyperlinear elements of B is weakly
compact, the set of products b−f with b a hyperlinear element of B is a compact subset
of the complex plane for every function f(s) of s in S. It follows that only a finite number
of elements s of S support nonzero hyperlinear elements of B. Since the set B is then the
convex span of a finite set of hyperlinear elements of P∗, the hyperdisk of elements a of
P such that the real part of a− maps B into the interval (−1, 1) is an open subset. Every
element of P∗ is a finite linear combination of hyperlinear elements. A similar argument
shows that every bounded subset of P∗ is contained in the convex span of a finite set of
hyperlinear elements of P∗. It follows that every weakly closed and bounded subset of P∗
is weakly compact.

The Weierstrass algebra C(S) is a locally hyperconvex space Q in the topology of point-
wise convergence on S∧. It will be shown that the space Q has the hyperconvex Krein–
Šmulyan property. If S′ is a finite subset of S∧, then the space C(S′) of all functions on S′
has a unique locally hyperconvex topology. A homomorphism of C(S) onto C(S′), which
commutes with complex conjugation, is defined by restricting a function f(s) of s in S∧
to the function f(s) of s in S′. The topology of Q is the weakest topology with respect to
which the homomorphism is continuous for every finite subset S′ of S∧. An element of the
conjugate dual space of C(S′) is identified with an element b of Q∗ such that b− annihi-
lates every function f(s) of s in S which vanishes on S′. The space Q∗ is the union of the
conjugate dual spaces of the Weierstrass algebras C(S′) taken over all finite subsets S′ of
S∧. A convex subset of Q∗ is weakly closed if, and only if, it has a closed intersection with
the conjugate dual space of C(S′) for every finite subset S′ of S∧. Since the Weierstrass
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algebra C(S′) has the hyperconvex Krein–Šmulyan property for every finite subset S′ of
S∧, a convex subset of Q∗ is weakly closed if it has a weakly compact intersection with
every weakly compact hyperconvex set.

The inclusion of P in Q is a hyperlinear transformation which has a closed graph since
it has a continuous inverse. Since P is a primitive locally hyperconvex space and since
Q has the hyperconvex Krein–Šmulyan property, the inclusion of P in Q is continuous.
Since the spaces P and Q then have the same topology, the completion S∧ of S is equal to
S. It follows that the hyperdisk topology of P and Q is the strongest locally hyperconvex
topology. Since the topology of P and Q is also the weakest locally hyperconvex topology,
it is the only locally hyperconvex topology. It has been shown that the topology of P and
Q is a primitive locally hyperconvex topology which has the Krein–Šmulyan property.

This completes the proof of the theorem.

Cardinal numbers are constructed by a theorem of Georg Cantor, which states that no
transformation maps a set onto the class of its subsets [4]. If a transformation T maps a
set S into the subsets of S, then a subset S∞ of S is constructed which does not belong
to the range of T . The set S∞ is the set of elements s of S for which no elements sn of S
can be constructed for every nonnegative integer n so that s0 is equal to s and so that sn
belongs to Tsn−1 when n is positive. An element s of S then belongs to S∞ if, and only
if, Ts is a subset of S∞. It follows that S∞ is never equal to Ts for an element s of S.

If γ is a given cardinal number, then a transformation T may map a set S onto the class
of its subsets of cardinality less than γ. A continuum of order γ is a set of least cardinality
which has the same cardinality as the class of its subsets of cardinality less than γ. A
parametrization of a continuum S of order γ is an injective transformation J of S onto the
class of its subsets of cardinality less than γ such that no elements sn of S can be chosen for
every nonnegative integer n so that sn belongs to Jsn−1 when n is positive. A continuum
S of order γ admits a parametrization since an injective transformation T exists of S onto
the class of its subsets of cardinality less than γ. Since S∞ is then a continuum of order γ,
it has the same cardinality as S. The restriction of T to S∞ is a parametrization of S∞.
If W is an injective transformation of S onto S∞, then a parametrization J of S is defined
so that Ja is always the set of elements b such that Wb belongs to TWa.

A parametrization J of a continuum S of order γ is essentially unique. If an injective
transformation T maps S onto the class of its subsets of cardinality less than γ, then an
injective transformation W of S onto S∞ exists such that Ja is always the set of elements
b such that Wb belongs to TWa. The construction of W is an application of the Zorn
lemma. Consider the class C of injective transformations W with domain contained in S
and with range contained in S∞ such that every element of Ja belongs to the domain of W
whenever a belongs to the domain of W and such that Ja is always the set of elements b
of S such that Wb belongs to TWa. A transformation U of class C is considered less than
or equal to a transformation V of class C if the graph of U is contained in the graph of
V . A well–ordered subclass of C always has an upper bound in C. The graph of the upper
bound is the union of the graphs of the members of the subclass. A maximal member of
the class C is an injective transformation W of S onto S∞ such that Ja is always the set
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of elements b of S such that Wb belongs to TWa.

The empty set is a continuum whose order is the least cardinal number. A set which
has only one element is a continuum whose order is one. A countably infinite set is a
continuum whose order is the least infinite cardinal number. A construction is made of
continua of greater order.

If S is an infinite set and if γ is the least cardinal number greater than the cardinality
of S, then the class C of all subsets of S is a set which has the same cardinality as the class
of its subsets of cardinality less than γ. For the cardinality of the class of all subsets of C
of cardinality less than γ is less than or equal to the cardinality of all transformations of
S into the set of all functions defined on S with values in a set with two elements. The
cardinality of the class of all subsets of C of cardinality less than γ is then less than or equal
to the cardinality of the set of all functions defined on the Cartesian product S × S with
values in a set with two elements. Since S is an infinite set, it has the same cardinality as
the Cartesian product S × S. The cardinality of the class of all subsets of C of cardinality
less than γ is then less than or equal to the cardinality of C.

A continuum of order γ exists. A partial ordering of a continuum is defined by a
parametrization J of the continuum. The inequality b < a for elements a and b of the con-
tinuum means that elements s0, . . . , sr of the continuum can be defined for some positive
integer r so that s0 is equal to a, so that sn belongs to Jsn−1 when n is positive, and so
that Jr is equal to b. If a cardinal number α is less than γ, then a continuum of order α
is obtained as the set of elements a of the continuum of order γ such that the cardinality
of Jb is less than α whenever b is less than or equal to a. The restriction of J to the
continuum of order α is a parametrization of the continuum of order α.

A continuum of order γ exists for every cardinal number γ. The continuum is said
to be regular if no set of cardinality γ is the union of a class of cardinality less than
γ whose members are sets of cardinality less than γ. An equivalent condition is given
using a parametrization J of the continuum. The cardinality of the set of elements of the
continuum which are less than any given element s is less than γ. For otherwise a sequence
of elements sn of the continuum can be defined for every nonnegative integer n so that
s0 is equal to s, so that sn belongs to Jsn−1 when n is positive, and so that the set of
elements of the continuum which are less than sn does not have cardinality less than γ.
The inductive construction of sn from sn−1 is made possible by regularity since the set
of elements of the continuum which are less than an element a of the continuum is the
union over the elements b of Ja of the set of elements of the continuum which are less than
b. Since the cardinality of Ja is less than γ, the cardinality of the set of elements of the
continuum which are less than b is at least γ for some element b of Ja if the cardinality of
the set of elements of the continuum which are less than a is at least γ. A contradiction
of the properties of a parametrization results.

An example of a regular continuum of order γ is obtained when γ is the least cardinal
number which is greater than the cardinality of some infinite set. The cardinality of the
continuum is then equal to the cardinality of the class of all subsets of the set. A topology
is defined on a parametrized continuum.
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A nonempty continuum S acquires the structure of a commutative ring as a result of a
parametrization J . The sum a + b of elements a and b of the continuum is the element c
of the continuum such that Jc is the set of elements of the union of Ja and Jb which do
not belong to the intersection of Ja and Jb. The product ab of elements a and b of the
continuum is the element c of the continuum such that Jc is the intersection of Ja and Jb.
The origin of the continuum is defined as the element c of the continuum such that Jc is
the empty set. The origin of the continuum is the zero element of the ring. The sum of
every element of the ring with itself is equal to zero. The product of every element of the
ring with zero is equal to zero. The ring contains no unit.

A generalization of convexity applies in a continuum with parametrization J . A subset
of the continuum is said to be paraconvex if it contains an element c of the continuum
whenever it contains elements a and b of the continuum such that Jc contains the inter-
section of Ja and Jb and is contained in the union of Ja and Jb. Examples of paraconvex
sets whose complement is paraconvex are defined using an element c of the continuum.
The set of elements s of the continuum such that c belongs to Js is paraconvex. The set
of elements s of the continuum such that c does not belong to Js is paraconvex.

If C is a subset of a continuum with parametrization J , then the set of elements of
the continuum which parametrize subsets of C is a subring. A homomorphism of the
continuum onto the subring which leaves every element of the subring fixed is defined by
taking a into b whenever Jb is the intersection of Ja with C. The inverse image under the
homomorphism of every paraconvex subset is paraconvex.

A Hausdorff topology for a continuum with parametrization J is said to be locally
paraconvex if addition is continuous as a transformation of the Cartesian product of the
continuum with itself into the continuum and if every open set is a union of paraconvex
open sets. The discrete topology of the continuum is a locally paraconvex topology. A
paraconvex set which is closed for every locally paraconvex topology is defined by an ele-
ment s of the continuum and consists of the elements of the continuum which parametrize
sets containing s. If C is a finite subset of the continuum, the canonical homomorphism
of the continuum onto the subring of elements which parametrize subsets of C is contin-
uous for every locally paraconvex topology when the subring is considered in the discrete
topology. The weakest topology of the continuum with respect to which every such homo-
morphism is continuous is the weakest locally paraconvex topology of the continuum. If
C is a subset of the continuum, the set of elements of the continuum which parametrize
subset of C is compact with respect to the weakest locally paraconvex topology if, and
only if, the cardinality of C is less than the order of the continuum.

The paraconvex Hahn–Banach theorem applies to a continuum with parametrization J
when the continuum is considered in some locally paraconvex topology. A paradisk is a
nonempty paraconvex subset of the continuum which is disjoint from the closure of every
disjoint paraconvex set.

Theorem 10. If A is a paradisk and if B is a nonempty disjoint paraconvex set, then
a maximal paraconvex set which contains B and is disjoint from A is closed and has
paraconvex complement.
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Proof of Theorem 10. Since A is a paradisk, the closure of B is disjoint from A. It will
be shown that B is closed by showing that the closure of B is paraconvex. It needs to be
shown that an element of the paraconvex span of u and v belongs to the closure of B if u
and v belong to the closure of B. It can be a translation be assumed that the element of
the paraconvex span of u and v is the origin. Then Ju and Jv are disjoint sets. It needs
to be shown that every paraconvex open set ∆ which contains the origin has a nonempty
intersection with B.

A paraconvex open set which contains u is the set of elements of the continuum which
parametrizes a subset of the union of Ju and Ja for some element a of ∆. Since u belongs
to the closure of B, some subset of the union of Ju and Ja is parametrized by an element
of B for some element a of ∆.

A paraconvex open set which contains v is the set of elements of the continuum which
parametrize a subset of the union of Jv and Jb for some element b of ∆. Since v belongs
to the closure of B, some subset of the union of Jv and Jb is parametrized by an element
of B for some element b of ∆. Since Ju and Jv are disjoint sets and since B is paraconvex,
a subset of the union of Ja and Jb is parametrized by an element of B. This completes
the verification that ∆ has a nonempty intersection with B.

It will be shown that the complement of B is paraconvex. If an element s of the
continuum does not belong to B, a paraconvex set B(s) is defined as the union of the
paraconvex spans of s with elements of B. The verification that B(s) is paraconvex reduces
to a verification for pairs of elements a and b of B. The union of the paraconvex spans
of s with elements of the paraconvex span of a and b needs to be shown paraconvex. If u
belongs to the paraconvex span of s and a, then Ju contains the intersection of Js and Ja
and is contained in the union of Js and Ja. If v belongs to the paraconvex span of Js and
Jb, then Jv contains the intersection of Js and Jb and is contained in the union of Js and
Jb. If w belongs to the paraconvex span of u and v, then Jw contains the intersection of
Js with the intersection of Ja and Jb and is contained in the union of Js with the union
of Ja and Jb. If c is the element of the paraconvex span of a and b which parametrizes
the union of Ja and Jb, then w belongs to the paraconvex span of s and c.

It remains to verify that the complement of B is paraconvex. If u belongs to the
complement of B, an element a of B exists such that the paraconvex span of u and a
contains an element a′ of A. If v belongs to the complement of B, an element b of B exists
such that the paraconvex span of v and b contains an element b′ of A. It will be shown
that every element of the paraconvex span of u and v belongs to the complement of B. It
can by a translation be assumed that the element of the paraconvex span of u and v is
the origin. Then Ju and Jv are disjoint sets. Since B is paraconvex, an element c of B
exists which parametrizes the union of Ja and Jb. Since A is paraconvex, an element c′ of
A exists which parametrizes the intersection of Ja′ and Jb′. Since Ja′ is contained in the
union of Ja and Ju, since Jb′ is contained in the union of Jb and Jv, and since Ju and
Jv are disjoint, Jc′ is contained in Jc. Since c′ belongs to the paraconvex span of c and
the origin, the origin does not belong to B.

This completes the proof of the theorem.
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A continuum S with parametrization J is contained in a continuum whose order is the
least cardinal number greater than the cardinality of S and whose parametrization extends
the parametrization of S. The weakest locally paraconvex topology of S is the subspace
topology of the weakest locally paraconvex topology of the larger continuum. The com-
pletion of S in the weakest locally paraconvex topology is the set of elements of the larger
continuum which parametrize subsets of S. The completion of S in the weakest locally
paraconvex topology is compact. The completion of the continuum in a locally paracon-
vex topology is a subring of its completion in the weakest locally paraconvex topology.
The discrete topology of the continuum is its strongest locally paraconvex topology. The
continuum is complete in its strongest locally paraconvex topology.

When a parametrized continuum is considered in a locally paraconvex topology, a locally
paraconvex topology exists whose open sets are the unions of paradisks. For the existence
of the paradisk topology it needs to be verified that the intersection of two paradisks is
a paradisk if it is not empty. A preliminary verification is made. If A is a paradisk and
if B is a paraconvex set, then the intersection of A with the closure of B is contained in
the closure of the intersection of A and B. For if an element of A does not belong to the
closure of the intersection of A and B, it belongs to a paraconvex open set C which is
disjoint from the intersection of A and B. Since C is an open set, the intersection of C
with the closure of B is contained in the closure of the intersection of C and B. Since the
intersection of B and C is a paraconvex set which is disjoint from A, the closure of the
intersection of B and C is disjoint from A. Since the intersection of C with the closure of
B is disjoint from A, the intersection of A and C is disjoint from the closure of B.

If A and B are paradisks whose intersection is nonempty, and if C is a paraconvex set
which is disjoint from the intersection of A and B, then the intersection of B and C is
a paraconvex set which is disjoint from A. Since A is a paradisk, A is disjoint from the
closure of the intersection of B and C. Since B is a paradisk, the intersection of B with
the closure of C is contained in the closure of the intersection of B and C. Since the
intersection of A and B is disjoint from the closure of C, the intersection of A and B is a
paradisk.

A paraconvex set is closed for the given topology if, and only if, it is closed for the
paradisk topology. Since every open set for the given topology is an open set for the
paradisk topology, every closed set for the given topology is a closed set for the paradisk
topology. If a paraconvex set B is closed for the paradisk topology and if an element a
of the continuum does not belong to B, then a belongs to a paradisk A which is disjoint
from B. Since A is disjoint from the closure of B for the given topology, a does not belong
to the closure of B for the given topology. Neighborhoods of the origin for the paradisk
topology induced by the parametrization are determined by subsets of the continuum
whose cardinality is less than the order of the continuum. The neighborhood determined
by the set C is the set of elements s of the continuum such that Js is disjoint from C.

Uniqueness of the locally hyperconvex topology for the Weierstrass algebra of all func-
tions on a discrete space removes a hypothesis in a theorem of Shirota [10].

Theorem 11. The strongest locally hyperconvex topology of the Weierstrass algebra C(S)
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of continuous functions on a complete uniform space S is the hyperdisk topology of the
topology of pointwise convergence on the space.

Proof of Theorem 11. A defining pseudo–metric for the uniform space is a function ρ(a, b)
of elements a and b of the space with nonnegative values which satisfies the identity

ρ(a, b) = ρ(b, a)

for all elements a and b of the space and which satisfies the inequality

ρ(a, c) ≤ ρ(a, b) + ρ(b, c)

for all elements a, b, and c of the space. Continuity of a function f(s) of s in S means that
for every element a of S and every positive number ε a defining pseudo–metric ρ exists
such that the inequality

|f(a)− f(b)| < ε

holds whenever the inequality
ρ(a, b) < 1

is satisfied. The space of all continuous functions on a uniform space S forms a Weierstrass
algebra C(S). The space S is a subspace of a Hausdorff space S∧ such that every continuous
function f(s) of s in S has a unique continuous extension as a function f(s) of s in S∧ and
such that every homomorphism of the Weierstrass algebra C(S) onto the complex numbers
is of the form f into f(s) for a unique element s of S∧. It will be shown that every defining
pseudo–metric ρ(a, b) of a and b in S admits an extension as a pseudo–metric ρ(a, b) of a
and b in S∧ such that every element of the Weierstrass algebra C(S) is continuous on the
resulting uniform space S∧ and such that S is dense in S∧. It is sufficient to show that
for every defining pseudo–metric ρ and for every element s of S∧ an element a of S exists
such that the inequality

ρ(a, s) < 1

is satisfied.

A well–ordering of the space S is assumed for the construction of functions from a given
pseudo–metric ρ. An element b of the space is said to be generated by an element a of the
space if a is the least element of the space which satisfies the inequality

ρ(a, b) < 1.

The inequality
ρ(a, b) ≤ 1− 2−n

then holds when n is sufficiently large. The inequality

ρ(a′, b) ≥ 1

holds when a′ is less than a. If an element s of the space satisfies the inequality

ρ(b, s) < 2−n−1,
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then the inequality
ρ(a, s) < 1− 2−n−1

is satisfied and the inequality
ρ(a′, s) > 1− 2−n−1

holds when a′ is less than a. A function

δn(a, s′) = inf ρ(s, s′)

of s′ is defined as a greatest lower bound taken over the elements s such that either the
inequality

ρ(a, s) < 1− 2−n−1

is violated or the inequality
ρ(a′, s) > 1− 2−n−1

is violated for some element a′ less than a. The inequality

δn(a, b) ≥ 2−n−1

then holds when b is generated by a and the inequality

ρ(a, b) ≤ 1− 2−n

is satisfied. When a and a′ are distinct generators, the set of elements s such that δn(a, s)
is positive is disjoint from the set of elements s such that δn(a′, s) is positive.

For every positive integer n the sum∑
δn(a, s)

taken over all generators a is a continuous function of s in S which has a unique continuous
extension as a function of s in S∧. The sum has a positive limit in the limit of large n for
every element s of S∧. If k(a) is a function of generators a, then the sum∑

k(a)δn(a, s)

taken over all generators a is a continuous function of s in S which has a unique con-
tinuous extension as a function of s in S∧. The Weierstrass algebra of all functions on
the discrete space of generators admits a unique locally hyperconvex topology. Since the
taking of function values at an element s of S∧ is a hyperlinear functional on the algebra,
it determines a generator a such that

δn(a, s) > 0

and hence such that
ρ(a, s) < 1.
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This completes the proof of the theorem.

A construction of invariant subspaces is an application of the hyperconvex Hahn–Banach
theorem. A Banach space is a complete locally convex space whose topology is determined
by a distinguished disk, called the unit disk. The unit disk is centered at the origin and
is invariant under multiplication by numbers of absolute value one. Every neighborhood
of the origin contains the image of the unit disk under multiplication by some positive
number. Every Banach space is a primitive locally convex space which has the Krein–
Šmulyan property. A Banach space H is said to be reflexive if its conjugate dual space H∗
is a Banach space in the disk topology constructed from the weak topology induced by H.
The weak closure of the unit disk of H∗ is then weakly compact. The unit disk of H∗ is
chosen so that its weak closure is the set of elements b of H∗ such that the real part of b−

maps the unit disk of H into the interval (−1, 1). Then H is the conjugate dual space of
H∗. The topology of H is the disk topology of the weak topology induced by H∗.

The conjugate dual space H∗ of H is treated as a Hausdorff space in the weak topology
induced by H. A corresponding Weierstrass algebra C(S) is the space of all continuous
functions on S. A module H∗(S) over the Weierstrass algebra is the set of all functions
f(s) of s in S with values in H∗ such that the function c−f(s) of s in S belongs to C(S) for
every element c of H. The adjoint of a continuous linear transformation of H into itself is
an example of an element of H∗(S) which is characterized by linearity as a transformation
of H∗ into itself.

A continuous linear transformation ab− of the Banach space H into itself is defined by

(ab−)c = a(b−c)

for every element c of H when a is an element of H and b is an element of H∗. The adjoint
is the transformation ba− of H∗ into itself defined by

(ba−)c = b(a−c)

for every element c of H∗.

Theorem 12. If the identity transformation does not belong to the closure of an algebra
of continuous linear transformations of a reflexive Banach space H into itself in the weak
topology induced by the trace class, then a nontrivial subspace of the Banach space, which
is a common invariant subspace for the elements of the algebra, and a nontrivial subspace
of the conjugate dual space H∗, which is a common invariant subspace for the adjoints of
elements of the algebra, exist which are orthogonal to each other with respect to the pairing
between H and H∗.
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