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A theorem of Arne Beurling [1] determines the invariant subspaces of continuous transforma-

tions of a Hilbert space into itself when the factorization theory of functions which are analytic
and bounded by one in the unit disk can be applied in a canonical model of the transforma-

tion. A determination is now made of the invariant subspaces of continuous transformations

of a Hilbert space into itself when the Nevanlinna factorization theory of functions which are
analytic and of bounded type in the unit disk can be applied in the canonical model of the

transformation. A continuous transformation of a Hilbert space into itself need not have a
nontrivial proper closed invariant subspace when the Nevanlinna factorization theory does

not apply in the canonical model of the transformation. An estimation theory for functions

which are analytic and injective in the unit disk is obtained which generalizes the proof of
the Bieberbach conjecture [5].

The Hilbert space of square summable power series is fundamental to applications of
the factorization theory of functions which are analytic in the unit disk. The space is the
Hilbert space C(z) of power series

f(z) =
∑

anz
n

with complex coefficients for which the sum

〈f(z), f(z)〉C(z) =
∑

a−n an

is finite. Summation is over the nonnegative integers n.

A square summable power series f(z) converges in the unit disk and represents a function
f(w) of w in the unit disk whose value at w is a scalar product

f(w) = 〈f(z), (1− w−z)−1〉C(z)

with an element
(1− w−z)−1 =

∑
(wn)−zn

of the Hilbert space. Since the power series is uniquely determined by the function, the
power series is frequently identified with the function which it represents. The represented
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function is continuous in the unit disk. It is also differentiable at w when w is the unit
disk. The difference quotient

f(z)− f(w)

z − w
is represented by a square summable power series.

A fundamental theorem of analytic function theory states that a function which is
differentiable in the unit disk is represented by a power series. If a function W (z) of z in
the unit disk is differentiable and bounded by one, then W (z) is represented by a square
summable power series. Proofs of the representation theorem relate geometric properties
of functions to their analytic equivalents.

The maximum principle states that a differentiable function f(z) of z in the unit disk,
which has a continuous extension to the closure of the unit disk and which is bounded
by one on the unit circle is bounded by one in the disk. A contradiction results from the
assumption that such a function has values which lie outside of the closure of the unit disk.

Since the function maps the closure of the unit disk onto a compact subset of the
complex plane, the complex complement of the set of values is a nonempty open set whose
boundary is not contained in the closure of the unit disk. Elements of the unit disk exist
which are mapped into the part of the boundary which lies outside of the closed disk. The
derivative is easily seen to be zero at such elements of the disk. Such elements a and b of
the unit disk are considered equivalent if no disjoint open subsets A and B of the unit disk
exist such that a belongs to A, such that b belongs to B, and such that the complement in
the disk of the union of A and B is mapped into the closure of the disk. An equivalence
relation has been defined on such elements of the disk. Equivalent elements can be reached
from each other by a chain in the equivalence class. Since the derivative vanishes on the
chain, the function remains constant on the equivalence class. A contradiction is obtained
since the function maps the unit disk onto a compact subset of the complex plane whose
boundary is contained in the closure of the disk.

An application of the maximum principle is made to a function W (z) of z in the unit
disk which is differentiable and bounded by one. If W (w) belongs to the disk for some w
in the disk, then the function

W (z)−W (w)

1−W (z)W (w)−

of z in the disk is differentiable and bounded by one. The function W (z) of z maps the
unit disk into itself if it is not a constant of absolute value one.

These properties of a function W (z) of z in the unit disk, which are differentiable and
bounded by one in the disk, are sufficient [8] for the construction of a Hilbert space H(W )
whose elements are differentiable functions in the disk. The space contains the function

1−W (z)W (w)−

1− zw−
of z, when w is in the disk, as reproducing kernel function for function values at w. The
identity

f(w) = 〈f(z), [1−W (z)W (w)−]/(1− zw−)〉H(W )
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holds for every element f(z) of the space. The elements of the space are continuous
functions in the disk. The difference quotient

f(z)− f(w)

z − w

belongs to the space as a function of z when w is in the space. The elements of the
space are represented by square summable power series. The space H(W ) is contained
contractively in C(z) when an element of the space is identified with its representing power
series. Multiplication by W (z) is a contractive transformation of the space C(z) into itself.

A power series is treated as a Laurent series which has zero coefficients for negative
powers of z. The space of square summable Laurent series is the Hilbert space ext C(z) of
series ∑

anz
n

defined with summation is over all integers n with a finite sum

‖f(z)‖2extC(z) =
∑

a−n an

The space C(z) of square summable power series is contained isometrically in the space
ext C(z) of square summable Laurent series. An isometric transformation of ext C(z) onto
itself, which maps C(z) onto its orthogonal complement, is defined by taking f(z) into
z−1f(z−1). The transformation is its own inverse.

Multiplication transformations are defined in the space of square summable power series
by power series. The conjugate of a power series

W (z) =
∑

Wnz
n

is the power series

W ∗(z) =
∑

W−n z
n

whose coefficients are complex conjugate numbers. If f(z) is a power series,

g(z) = W (z)f(z)

is the power series obtained by Cauchy convolution of coefficients. Multiplication by W (z)
in C(z) is the transformation which takes f(z) into g(z) when f(z) and g(z) belongs to
C(z). Multiplication by W (z) in C(z) is said to be a Toeplitz transformation if it has
domain dense in C(z). If multiplication by W (z) is densely defined as a transformation in
C(z), then the adjoint is a transformation whose domain contains the polynomial elements
of C(z). The adjoint transformation maps a polynomial element f(z) of C(z) into the
polynomial element g(z) of C(z) such that

z−1g(z−1)−W ∗(z)z−1f(z−1)
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is a power series. Multiplication by W (z) in C(z) is then the adjoint of its adjoint restricted
to polynomial elements of C(z).

A Krein space H(W ), whose elements are power series, is constructed from a given
power series W (z) when multiplication by W (z) is a densely defined transformation in
C(z). The space contains

f(z)−W (z)g(z)

whenever f(z) and g(z) are elements of C(z) such that the adjoint of multiplication by
W (z) in C(z) takes f(z) into g(z) and such that g(z) is in the domain of multiplication by
W (z) in C(z). The identity

〈h(z), f(z)−W (z)g(z)〉H(W ) = 〈h(z), f(z)〉C(z)

then holds for every element h(z) of the space H(W ) which belongs to C(z). The series
[f(z)−f(0)]/z belongs to the space H(W ) whenever f(z) belongs to the space. The Krein
space H(W ′) associated with the power series

W ′(z) = zW (z)

is the set of power series f(z) with vector coefficients such that [f(z)− f(0)]/z belongs to
the space H(W ). The identify for difference quotients

〈[f(z)− f(0)]/z, [f(z)− f(0)]/z〉H(W ) = 〈f(z), f(z)〉H(W ′) − f(0)−f(0)

is then satisfied. The resulting properties of the space H(W ) create [4] a canonical coiso-
metric linear system with transfer function W (z). The space H(W ) is the state space of
the linear system. The main transformation, which maps the state space into itself, takes
f(z) into

[f(z)− f(0)]/z.

The input transformation, which maps the space of complex numbers into the state space,
takes c into

[W (z)−W (0)]c/z.

The output transformation, which maps the state space into the space of complex numbers,
takes f(z) into f(0). The external operator, which maps the space of complex numbers
into itself, takes c into

W (0)c.

A matrix of continuous linear transformations has been constructed which maps the Carte-
sian product of the state space and the space of complex numbers continuously into itself.
The coisometric property of the linear system states that the matrix has an isometric
adjoint.

A Krein space is a vector space with scalar product which is the orthogonal sum of a
Hilbert space and the anti–space of a Hilbert space. A Krein space is characterized as a
vector space with scalar product which is self–dual for a norm topology.
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Theorem 1. A vector space with scalar product is a Krein space if it admits a norm which
satisfies the convexity identity

‖(1− t)a+ tb‖2 + t(1− t)‖b− a‖2 = (1− t)‖a‖2 + t‖b‖2

for all elements a and b of the space when 0 < t < 1 and if the linear functionals on
the space which are continuous for the metric topology defined by the norm are the linear
functionals which are continuous for the weak topology induced by duality of the space with
itself.

Proof of Theorem 1. Norms on the space are considered which satisfy the hypotheses of
the theorem. The hypotheses imply that the space is complete in the metric topology
defined by any such norm. If a norm ‖c‖+ is given for elements c of the space, a dual norm
‖c‖− for elements c of the space is defined by the least upper bound

‖a‖− = sup |〈a, b〉|

taken over the elements b of the space such that

‖b‖+ < 1.

The least upper bound is finite since every linear functional which is continuous for the
weak topology induced by self–duality is assumed continuous for the metric topology. Since
every linear functional which is continuous for the metric topology is continuous for the
weak topology induced by self–duality, the set of such elements b is a disk for the weak
topology induced by self–duality. The set of elements a of the space such that

‖a‖− ≤ 1

is compact in the weak topology induced by self–duality. The set of elements a of the space
such that

‖a‖− < 1

is open for the metric topology induced by the plus norm. Since the set is a disk for the
weak topology induced by self–duality, the set of elements b of the space such that

‖b‖+ ≤ 1

is compact in the weak topology induced by self–duality.

The convexity identity

‖(1− t)a+ tb‖2+ + t(1− t)‖b− a‖2+ = (1− t)‖a‖2+ + t‖b‖2+

holds by hypothesis for all elements a and b of the space when 0 < t < 1. It will be shown
that the convexity identity

‖(1− t)u+ tv‖2− + t(1− t)‖v − u‖2− = (1− t)‖u‖2− + t‖v‖2−
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holds for all elements u and v of the space when 0 < t < 1. Use is made of the convexity
identity

〈(1− t)a+ tb, (1− t)u+ tv〉+ t(1− t)〈b− a, v − u〉
= (1− t)〈a, u〉+ t〈b, v〉

for elements a, b, u, and v of the space when 0 < t < 1. Since the inequality

|(1− t)〈a, u〉+ t〈b, v〉|
≤ ‖(1− t)a+ tb‖+‖(1− t)u+ tv‖− + t(1− t)‖b− a‖+‖v − u‖−

holds by the definition of the minus norm, the inequality

|(1− t)〈a, u〉+ t〈b, v〉|2 ≤ [‖(1− t)a+ tb‖2+ + t(1− t)‖b− a‖2+]

×[‖(1− t)u+ tv‖2− + t(1− t)‖v − u‖2−]

is satisfied. The inequality

|(1− t)〈a, u〉+ t〈b, v〉|2 ≤ [(1− t)‖a‖2+ + t‖b‖2+]

×[‖(1− t)u+ tv‖2− + t(1− t)‖v − u‖2−]

holds by the convexity identity for the plus norm. The inequality is applied for all elements
a and b of the space such that the inequalities

‖a‖+ ≤ ‖u‖−

and
‖b‖+ ≤ ‖v‖−

are satisfied. The inequality

(1− t)‖u‖2− + t‖v‖2− ≤ ‖(1− t)u+ tv‖2− + t(1− t)‖v − u‖2−

follows by the definition of the minus norm. Equality holds since the reverse inequality is
a consequence of the identities

(1− t)[(1− t)u+ tv] + t[(1− t)u− (1− t)v] = (1− t)u

and
[(1− t)u+ tv]− [(1− t)u− (1− t)v] = v.

It has been verified that the minus norm satisfies the hypotheses of the theorem. The
dual norm to the minus norm is the plus norm. Another norm which satisfies the hypotheses
of the theorem is defined by

‖c‖2t = (1− t)‖c‖2+ + t‖c‖2−
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when 0 < t < 1. Since the inequalities

|〈a, b〉| ≤ ‖a‖+‖b‖−

and
|〈a, b〉| ≤ ‖a‖−‖b‖+

hold for all elements a and b of the space, the inequality

|〈a, b〉| ≤ (1− t)‖a‖+‖b‖− + t‖a‖−‖b‖+

holds when 0 < t < 1. The inequality

|〈a, b〉| ≤ ‖a‖t‖b‖1−t

follows for all elements a and b of the space when 0 < t < 1. The inequality implies that
the dual norm of the t norm is dominated by the 1− t norm. A norm which dominates its
dual norm is obtained when t = 1

2 .

Consider the norms which satisfy the hypotheses of the theorem and which dominate
their dual norms. Since a nonempty totally ordered set of such norms has a greatest lower
bound, which is again such a norm, a minimal such norm exists by the Zorn lemma. If a
minimal norm is chosen as the plus norm, it is equal to the t–norm obtained when t = 1

2 .
It follows that a minimal norm is equal to its dual norm.

If a norm satisfies the hypotheses of the theorem and is equal to its dual norm, a
related scalar product is introduced on the space which may be different from the given
scalar product. Since the given scalar product assumes a subsidiary role in the subsequent
argument, it is distinguished by a prime. A new scalar product is defined by the identity

4〈a, b〉 = ‖a+ b‖2 − ‖a− b‖2 + i‖a+ ib‖2 − i‖a− ib‖2.

The symmetry of a scalar product is immediate. Linearity will be verified.

The identity
〈wa,wb〉 = w−w〈a, b〉

holds for all elements a and b of the space if w is a complex number. The identity

〈ia, b〉 = i〈a, b〉

holds for all elements a and b of the space. The identity

〈ta, b〉 = t〈a, b〉

will be verified for all elements a and b of the space when t is a positive number. It is
sufficient to verify the identity

‖ta+ b‖2 − ‖ta− b‖2 = t‖a+ b‖2 − t‖a− b‖2



8 NEVANLINNA FACTORIZATION AND THE BIEBERBACH CONJECTURE

since a similar identity follows with b replaced by ib. The identity holds since

‖ta+ b‖2 + t‖a− b‖2 = t(1 + t)‖a‖2 + (1 + t)‖b‖2

and
‖ta− b‖2 + t‖a+ b‖2 = t(1 + t)‖a‖2 + (1 + t)‖b‖2

by the convexity identity.

If a, b, and c are elements of the space and if 0 < t < 1, the identity

4〈(1− t)a+ tb, c〉 = ‖(1 + t)(a+ c) + t(b+ c)‖2

−‖(1− t)(a− c) + t(b− c)‖2 + i‖(1− t)(a+ ic) + t(b+ ic)‖2

−i‖(1− t)(a− ic) + t(b− ic)‖2

is satisfied with the right side equal to

(1− t)‖a+ c‖2 + t‖b+ c‖2 − (1− t)‖a− c‖2 − t‖b− c‖2

+i(1− t)‖a+ ic‖2 + it‖b+ ic‖2 − i(1− t)‖a− ic‖2 − it‖b− ic‖2

= 4(1− t)〈a, c〉+ 4t〈b, c〉.

The identity
〈(1− t)a+ tb, c〉 = (1− t)〈a, c〉+ t〈b, c〉

follows.

Linearity of a scalar product is now easily verified. Scalar self–products are nonnegative
since the identity

〈c, c〉 = ‖c‖2

holds a for every element c of the space. A Hilbert space is obtained whose norm is the
minimal norm. Since the inequality

|〈a, b〉′| ≤ ‖a‖‖b‖

holds for all elements a and b of the space, a contractive transformation J of the Hilbert
space into itself exists such that the identity

〈a, b〉′ = 〈Ja, b〉

holds for all elements a and b of the space. The symmetry of the given scalar product
implies that the transformation J is self–adjoint. Since the Hilbert space norm is self–
dual with respect to the given scalar product, the transformation J is also isometric with
respect to the Hilbert space scalar product. The space is the orthogonal sum of the space
of eigenvectors of J for the eigenvalue one and the space of eigenvectors of J for the
eigenvalue minus one. These spaces are also orthogonal with respect to the given scalar
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product. They are the required Hilbert space and anti–space of a Hilbert space for the
orthogonal decomposition of the vector space with scalar product to form a Krein space.

This completes the proof of the theorem.

The orthogonal decomposition of a Krein space is not unique since equivalent norms
can be used. The dimension of the anti–space of a Hilbert space in the decomposition is
however an invariant called the Pontryagin index of the Krein space. Krein spaces are a
natural setting for a complementation theory which was discovered in Hilbert spaces [3].

A generalization of the concept of orthogonal complement applies when a Krein space P
is contained continuously and contractively in a Krein space H. The contractive property
of the inclusion means that the inequality

〈a, a〉H ≤ 〈a, a〉P

holds for every element a of P. Continuity of the inclusion means that an adjoint trans-
formation of H into P exists. A self–adjoint transformation P of H into H is obtained on
composing the inclusion with the adjoint. The inequality

〈Pc, Pc〉H ≤ 〈Pc, Pc〉P

for elements c of H implies the inequality

〈P 2c, c〉H ≤ 〈Pc, c〉H

for elements c of H, which is restated as an inequality

P 2 ≤ P

for self–adjoint transformations in H.

The properties of adjoint transformations are used in the construction of a complemen-
tary space Q to P in H.

Theorem 2. If a Krein space P is contained continuously and contractively in a Krein
space H, then a unique Krein space Q exists, which is contained continuously and contrac-
tively in H, such that the inequality

〈c, c〉H ≤ 〈a, a〉P + 〈b, b〉Q

holds whenever c = a+b with a in P and b in Q and such that every element c of H admits
some such decomposition for which equality holds.

Proof. Define Q to be the set of elements b of H such that the least upper bound

〈b, b〉Q = sup[〈a+ b, a+ b〉H − 〈a, a〉P ]
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taken over all elements a of P is finite. It will be shown that Q is a vector space with
scalar product having the desired properties. Since the origin belongs to P, the inequality

〈b, b〉H ≤ 〈b, b〉Q

holds for every element b of Q. Since the inclusion of P in H is contractive, the origin
belongs to Q and has self–product zero. If b belongs to Q and if w is a complex number,
then wb is an element of Q which satisfies the identity

〈wb, wb〉Q = w−w〈b, b〉Q.

The set Q is invariant under multiplication by complex numbers. The set Q is shown to
be a vector space by showing that it is closed under convex combinations.

It will be shown that (1− t)a+ tb belongs to Q whenever a and b are elements of Q and
t is a number, 0 < t < 1. Since an arbitrary pair of elements of P can be written in the
form (1− t)a+ tv and v − u for elements u and v of P, the identity

〈(1− t)a+ tb, (1− t)a+ tb〉Q + t(1− t)〈b− a, b− a〉Q
= sup[〈(1− t)(a+ u) + t(b+ v), (1− t)(a+ u) + t(b+ v)〉H

+t(1− t)〈(b+ v)− (a+ u), (b+ v)− (a+ u)〉H
−〈(1− t)u+ tv, (1− t)u+ tv〉P − t(1− t)〈v − u, v − u〉P ]

holds with the least upper bound taken over all elements u and v of P. By the convexity
identity the least upper bound

〈(1− t)a+ tb, (1− t)a+ tb〉Q + t(1− t)〈b− a, b− a〉Q
= sup[〈a+ u, a+ u〉H − 〈u, u〉P ] + sup[〈b+ v, b+ v〉H − 〈v, v〉P ]

holds over all elements u and v of P. It follows that the identity

〈(1− t)a+ tb, (1− t)a+ tb〉Q + t(1− t)〈b− a, b− a〉Q
= (1− t)〈a, a〉Q + t〈b, b〉Q

is satisfied.

This completes the verification that Q is a vector space. It will be shown that a scalar
product is defined on the space by the identity

4〈a, b〉Q = 〈a+ b, a+ b〉Q − 〈a− b, a− b〉Q + i〈a+ ib, a+ ib〉Q − i〈a− ib, a− ib〉Q.

Linearity and symmetry of a scalar product are verified as in the characterization of Krein
spaces. The nondegeneracy of a scalar product remains to be verified.

Since the inclusion of P in H is continuous, a self–adjoint transformation P of H into
itself exists which coincides with the adjoint of the inclusion of P in H. If c is an element
of H and if a is an element of P, the inequality

〈a− Pc, a− Pc〉H ≤ 〈a− Pc, a− Pc〉P
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implies the inequality

〈(1− P )c, (1− P )c〉Q ≤ 〈c, c〉H − 〈Pc, Pc〉P .

Equality holds since the reverse inequality follows from the definition of the self–product
in Q. If b is an element of Q and if c is an element of H, the inequality

〈b− c, b− c〉H ≤ 〈Pc, Pc〉P + 〈b− (1− P )c, b− (1− P )c〉Q

can be written

〈b, b〉H − 〈b, c〉H − 〈c, b〉H ≤ 〈b, b〉Q − 〈b, (1− P )c〉Q − 〈(1− P )c, b〉Q.

Since b can be replaced by wb for every complex number w, the identity

〈b, c〉H = 〈b, (1− P )c〉Q

is satisfied. The nondegeneracy of a scalar product follows in the space Q. The space
Q is contained continuously in the space H since 1 − P coincides with the adjoint of the
inclusion of Q in the space H.

The intersection of P and Q is considered as a vector space P ∧Q with scalar product

〈a, b〉P∧Q = 〈a, b〉P + 〈a, b〉Q.

Linearity and symmetry of a scalar product are immediate, but nondegeneracy requires
verification. If c is an element of H,

P (1− P )c = (1− P )Pc

is an element of P ∧Q which satisfies the identity

〈a, P (1− P )c〉P∧Q = 〈a, c〉H

for every element a of P ∧ Q. Nondegeneracy of a scalar product in P ∧ Q follows from
nondegeneracy of the scalar product in H. The space P ∧ Q is contained continuously in
the space H. The self–adjoint transformation P (1− P ) in H coincides with the adjoint of
the inclusion of P ∧ Q in H. The inequality

0 ≤ 〈c, c〉P∧Q

holds for every element c of P ∧Q since the identity

0 = c− c

with c in P and −c in Q implies the inequality

0 ≤ 〈c, c〉P + 〈c, c〉Q.
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It will be shown that the space P ∧ Q is a Hilbert space. The metric topology of
the space is the disk topology resulting from duality of the space with itself. Since the
inclusion of P ∧ Q in P is continuous from the weak topology induced by P ∧ Q into the
weak topology induced by P, it is continuous from the disk topology induced by P ∧ Q
into the disk topology induced by P. Since P is a Krein space, it is complete in its disk
topology. A Cauchy sequence of elements cn of P ∧ Q is then a convergent sequence of
elements of P. The limit is an element c of P such that the identity

〈c, a〉P = lim〈cn, a〉P

holds for every element a of P and such that the identity

〈c, c〉P = lim〈cn, cn〉P

is satisfied. Since the inclusion of P in H is continuous from the disk topology of P into
the disk topology of H, the identity

〈c, a〉H = lim〈cn, a〉H

holds for every element a of H and the identity

〈c, c〉H = lim〈cn, cn〉H

is satisfied.

If b is an element of Q, the limits

lim〈cn, b〉Q

and
lim〈cn, cn〉Q

exist since the inclusion of P ∧Q in Q is continuous from the disk topology of P ∧Q into
the disk topology of Q. The sequence of elements cn of Q is Cauchy in the disk topology
of Q. If a is an element of P, the identity

〈a+ c, a+ c〉H = lim〈a+ cn, a+ cn〉H

is satisfied. Since the inequality

〈a+ cn, a+ cn〉H − 〈a, a〉P ≤ 〈cn, cn〉Q

holds for every index n, the inequality

〈a+ c, a+ c〉H − 〈a, a〉P ≤ lim〈cn, cn〉Q

is satisfied. It follows that c belongs to Q and that

〈c, c〉Q ≤ lim〈cn, cn〉Q.
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Since the inequality

〈c− cm, c− cm〉Q ≤ lim〈cn − cm, cn − cm〉Q

holds for every index m and since the elements cn of Q form a Cauchy sequence in the disk
topology of Q, the limit of the elements cn of Q is equal to c. This completes the proof
that P ∧ Q is a Hilbert space.

The Cartesian product of P and Q is isomorphic to the Cartesian product of H and
P ∧ Q. If a is an element of P and if b is an element of Q, a unique element c of P ∧ Q
exists such that the identity

〈a− c, a− c〉P + 〈b+ c, b+ c〉Q = 〈a+ b, a+ b〉H + 〈c, c〉P∧Q

is satisfied. Every element of the Cartesian product of H and P ∧Q is a pair (a+ b, c) for
elements a of P and b of Q for such an element c of P ∧ Q. Since H is a Krein space and
since P ∧ Q is a Hilbert space, the Cartesian product of P and Q is a Krein space. Since
P is a Krein space, it follows that Q is a Krein space.

The existence of a Krein space Q with the desired properties has now been verified.
Uniqueness is proved by showing that a Krein space Q′ with these properties is isometrically
equal to the space Q constructed. Such a space Q′ is contained contractively in the space
Q. The self–adjoint transformation 1− P in H coincides with the adjoint of the inclusion
of Q′ in H. The space P ∧ Q′ is a Hilbert space which is contained contractively in the
Hilbert space P ∧ Q. Since the inclusion is isometric on the range of P (1− P ), which is
dense in both spaces, the space P ∧Q′ is isometrically equal to the space P ∧Q. Since the
Cartesian product of P and Q′ is isomorphic to the Cartesian product of P and Q, the
spaces Q and Q′ are isometrically equal.

This completes the proof of the theorem.

The space Q is called the complementary space to P in H. The space P is recovered as
the complementary space to the space Q in H. The decomposition of an element c of H
as c = a+ b with a an element of P and b an element of Q such that equality hold in the
inequality

〈c, c〉H ≤ 〈a, a〉P + 〈b, b〉Q

is unique. The minimal decomposition results when a is obtained from c under the adjoint
of the inclusion of P in H and b is obtained from c under the adjoint of the inclusion of Q
in H.

A construction is made of complementary subspaces whose inclusion in the full space
have adjoints coinciding with given self–adjoint transformations.

Theorem 3. If a self–adjoint transformation P of a Krein space into itself satisfies the
inequality

P 2 ≤ P,
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then unique Krein spaces P and Q exist, which are contained continuously and contractively
in H and which are complementary spaces in H, such that P coincides with the adjoint of
the inclusion of P in H and 1− P coincides with the adjoint of the inclusion of Q in H.

Proof of Theorem 3. The proof repeats the construction of a complementary space under
a weaker hypothesis. The range of P is considered as a vector space P ′ with scalar product
determined by the identity

〈Pc, Pc〉P′ = 〈Pc, c〉H,

for every element c of H. The space P ′ is contained continuously and contractively in the
space H. The transformation P coincides with the adjoint of the inclusion of P ′ in H. A
Krein space Q, which is contained continuously and contractively in H, is defined as the
set of elements b of H such that the least upper bound

〈b, b〉Q = sup[〈a+ b, a+ b〉H − 〈a, a〉P′]

taken over all elements a of P ′ is finite. The adjoint of the inclusion of Q in H coincides
with 1 − P . The complementary space to Q in H is a Krein space P which contains the
space P ′ isometrically and which is contained continuously and contractively in H. The
adjoint of the inclusion of P in H coincides with 1− P .

This completes the proof of the theorem.

A factorization of continuous and contractive transformations in Krein spaces is an
application of complementation theory.

Theorem 4. The kernel of a continuous and contractive transformation T of a Krein space
P into a Krein space Q is a Hilbert space which is contained continuously and isometrically
in P and whose orthogonal complement in P is mapped isometrically onto a Krein space
which is contained continuously and contractively in Q.

Proof of Theorem 4. Since the transformation T of P into Q is continuous and contractive,
the self–adjoint transformation P = TT ∗ in Q satisfies the inequality P 2 ≤ P . A unique
Krein space M, which is contained continuously and contractively in Q, exists such that
P coincides with the adjoint of the inclusion of M in Q. It will be shown that T maps P
contractively into M.

If a is an element of P and if b is an element of Q, then

〈Ta+ (1− P )b, Ta+ (1− P )b〉Q
= 〈T (a− T ∗b), T (a− T ∗b)〈Q+〉b, b〉Q + 〈b, T (a− T ∗b)〉Q + 〈T (a− T ∗b), b〉Q

is less than or equal to

〈a− T ∗b, a− T ∗b〉P + 〈b, b〉Q + 〈T ∗b, a− T ∗b〉P + 〈a− T ∗b, T ∗b〉P
= 〈a, a〉P + 〈(1− TT ∗)b, b〉Q.
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Since b is an arbitrary element of Q, Ta is an element of M which satisfies the inequality

〈Ta, Ta〉M ≤ 〈a, a〉P .

Equality holds when a = T ∗b for an element b of Q since

〈TT ∗b, TT ∗b〉M = 〈TT ∗b, b〉Q = 〈T ∗b, T ∗b〉P .

Since the transformation of P into M is continuous by the closed graph theorem, the
adjoint transformation is an isometry. The range of the adjoint transformation is a Krein
space which is contained continuously and isometrically in P and whose orthogonal com-
plement is the kernel of T . Since T is contractive, the kernel of T is a Hilbert space.

This completes the proof of the theorem.

A continuous transformation of a Krein space P into a Krein space Q is said to be a
partial isometry if its kernel is a Krein space which is contained continuously and isometri-
cally in P and whose orthogonal complement is mapped isometrically into Q. A partially
isometric transformation of a Krein space into a Krein space is contractive if, and only
if, its kernel is a Hilbert space. Complementation is preserved under contractive partially
isometric transformations of a Krein space onto a Krein space.

Theorem 5. If a contractive partially isometric transformation T maps a Krein space
H onto a Krein space H′ and if Krein spaces P and Q are contained continuously and
contractively as complementary subspaces of H, then Krein spaces P ′ and Q′, which are
contained continuously and contractively as complementary subspaces of H′, exist such that
T acts as a contractive partially isometric transformation of P onto P ′ and of Q onto Q′.

Proof of Theorem 5. Since the Krein spaces P and Q are contained continuously and
contractively in H and since T is a continuous and contractive transformation of H into
H′, T acts as a continuous and contractive transformation of P into H′ and of Q into H′.
Krein spaces P ′ and Q′, which are contained continuously and contractively in H′, exist
such that T acts as a contractive partially isometric transformation of P onto P ′ and of
Q onto Q′. It will be shown that P ′ and Q′ are complementary subspaces of H′.

An element a of P ′ is of the form Ta for an element a of P such that

〈Ta, Ta〉P′ = 〈a, a〉P .

An element b of Q′ is of the form Tb for an element b of Q such that

〈Tb, T b〉Q′ = 〈b, b〉Q.

The element c = a+ b of H satisfies the inequalities

〈c, c〉H ≤ 〈a, a〉P + 〈b, b〉Q
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and
〈Tc, Tc〉H′ ≤ 〈c, c〉H.

The element Tc = Ta+ Tb of H′ satisfies the inequality

〈Tc, Tc〉H′ ≤ 〈Ta, Ta〉P′ + 〈Tb, T b〉Q′ .

An element of H′ is of the form Tc for an element c of H such that

〈Tc, Tc〉H′ = 〈c, c〉H.

An element a of P and an element b of Q exist such that c = a+ b and

〈c, c〉H = 〈a, a〉P + 〈b, b〉Q.

Since the element Ta of P ′ satisfies the inequality

〈Ta, Tb〉P′ ≤ 〈a, a〉P

and since the element Tb of Q′ satisfies the inequality

〈Tb, T b〉Q′ ≤ 〈b, b〉Q,

the element Tc of H satisfies the inequality

〈Tc, Tc〉H′ ≥ 〈Ta, Ta〉P′ + 〈Tb, T b〉Q′ .

Equality holds since the reverse inequality is satisfied.

This completes the proof of the theorem.

A canonical coisometric linear system whose state space is a Hilbert space is constructed
when multiplication by W (z) is a contractive transformation in C(z). The range of multi-
plication by W (z) in C(z) is a Hilbert space which is contained contractively in C(z) when
considered with the unique scalar product such that multiplication by W (z) acts as a par-
tially isometric transformation of C(z) onto the range. The complementary space in C(z)
to the range is the state space H(W ) of a canonical coisometric linear system with transfer
function W (z). Every Hilbert space which is the state space of a canonical coisometric
linear system is so obtained.

A Herglotz space is a Hilbert space, whose elements are power series, such that the
difference-quotient transformation is a continuous transformation of the space into itself
which has an isometric adjoint and such that a continuous transformation of the space
into the space of complex numbers is defined by taking f(z) into f(0). A continuous
transformation of the space into the space of complex numbers is then defined by taking a
power series into its coefficient of zn for every nonnegative integer n. A Herglotz function
for the space is a power series

φ(z) =
∑

φnz
n
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such that the adjoint of the continuous transformation of the space into the complex
numbers takes a complex number c into

1
2
[znφ(z) + φ−0 z

n + · · ·+ φ−n ]c.

A Herglotz function for the space is determined within an added imaginary constant by
the adjoint computation when n is zero. The form of the adjoint for positive integers n is
verified inductively using the isometric property of the adjoint of the difference-quotient
transformation. The adjoint transformation takes f(z) into zf(z) + c for a vector c which
depends continuously on f(z) and which is computed inductively in the present application.
A Herglotz space is uniquely determined by its Herglotz function.

The Herglotz function of a Herglotz space is a power series φ(z) which represents a func-
tion whose values in the unit disk have nonnegative real part. The Poisson representation
of φ(z) is an integral

φ(z) + φ(w)−

1− zw− =
1

π

∫
dµ(θ)

(1− e−iθz)(1− eiθw−)

with respect to a nonnegative measure µ on the Borel sets of the real numbers modulo
2π. The integral converges when z and w are in the unit disk. A unique Herglotz space
L(φ) exists which has φ(z) as Herglotz function. A continuous transformation of the space
L2(µ) onto the space L(φ) exists which takes a function f(θ) of θ in the real numbers
modulo 2π into the power series g(z) with complex coefficients which satisfies the identity

2πc−g(w) =

∫
c−(1− e−iθw)−1dµ(θ)f(θ)

for every complex numbers c when w is in the unit disk. The transformation takes the
function e−iθf(θ) of θ in the real numbers modulo 2π into the power series [g(z)− g(0)]/z
whenever it takes the function f(θ) of θ into the power series g(z). The identity

2π〈g(z), g(z)〉L(φ) =

∫
f(θ)−dµ(θ)f(θ)

holds when the function f(θ) of θ in the real numbers modulo 2π is orthogonal to the
kernel of the transformation.

The extension space extL(φ) of the Herglotz space L(φ) is a Hilbert space of Laurent
series, which is invariant under division by z, such that the canonical projection onto the
space L(φ) is a partial isometry. The canonical projection takes a Laurent series into
the power series which has the same coefficient of zn for every nonnegative integer n.
Uniqueness of the extension space results from the hypothesis that an element f(z) of the
space vanishes if the projection of znf(z) in the space L(φ) vanishes for every nonnegative
integer n. The norm of f(z) in the extension space is the least upper bound of the norms of
the projections of znf(z) in the given space. Division by z is an isometric transformation
in the space extL(φ) whose adjoint is isometric. A unique continuous transformation of
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the space L2(µ) onto the extension space exists whose composition with the canonical
projection onto the given space is the continuous transformations onto the given space
and which takes the function e−iθf(θ) of θ in the real modulo 2π into the Laurent series
z−1g(z) whenever it takes the function f(θ) of θ into the Laurent series g(z). The identity

2π〈g(z), g(z)〉extL(φ) =

∫
f(θ)−dµ(θ)f(θ)

holds whenever the transformation takes a function f(θ) of θ in the real numbers modulo
2π into the Laurent series g(z).

A spectral subspace of contractivity is constructed for a closed relation T whose domain
is contained in a Hilbert space P and whose range is contained in a Hilbert space Q. The
relation T is then the adjoint of the adjoint relation T ∗ which has its domain contained in
the Hilbert space Q and its range contained in the Hilbert space P. A self-adjoint relation
H in the Cartesian product Hilbert space P ×Q is defined by taking (a, b) into (T ∗b, Ta)
when a is in the domain of T and b is in the domain of T ∗. The spectral subspace of
contractivity for H is a closed subspace of the Cartesian product such that H acts as a
contractive transformation of the subspace into itself. The orthogonal complement is a
closed subspace such that the inverse of H acts as a contractive transformation of the
subspace into itself. Eigenvectors of H for eigenvalues of absolute value one belong to the
spectral subspace of contractivity for H. The square of H is a self-adjoint relation in the
Cartesian product space which has the same spectral subspace of contractivity. Since the
transformation which takes (a, b) into (a,−b) commutes with the square of H, the spectral
subspace of contractivity for H is the Cartesian product of a closed subspace of P and a
closed subspace of Q. The spectral subspace of contractivity for T is the closed subspace
of P. The spectral subspace of contractivity for T ∗ is the closed subspace of Q. The
relation T acts as a contractive transformation of the spectral subspace of contractivity for
T into the spectral subspace of contractivity for T ∗. The relation T ∗ acts as a contractive
transformation of the spectral subspace of contractivity for T ∗ into the spectral subspace of
contractivity for T . The inverse of T acts as a contractive transformation of the orthogonal
complement of the spectral subspace of contractivity for T ∗ into the orthogonal complement
of the spectral subspace of contractivity for T . The inverse of T ∗ acts as a contractive
transformation of the orthogonal complement of the spectral subspace of contractivity for
T into the orthogonal complement of the spectral subspace of contractivity for T ∗. If a is
an element of P and if b is an element of Q such that the identities

Ta = b

and
T ∗b = a

are satisfied, then a belongs to the spectral subspace of contractivity for T and b belongs
to the spectral subspace of contractivity for T ∗.

A Herglotz space is associated with the transfer function W (z) of a canonical coisometric
linear system whose state space is a Hilbert space. Since multiplication by W (z) is an
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everywhere defined and contractive transformation in C(z), the adjoint of multiplication
by W (z) is an everywhere defined and contractive transformation in C(z). The range of
the adjoint is a Hilbert space which is contained contractively in C(z) when it is considered
with the scalar product such that the adjoint acts as a partially isometric transformation
of C(z) onto the range. The space is a Herglotz space. The space C(z) is a Herglotz space
L(1) whose Herglotz function is identically one. The complementary space to the range
Herglotz space is a Herglotz space whose Herglotz function φ(z) is determined within an
added constant, which is a skew-conjugate operator, by the identity

φ(z) + φ∗(z−1) = 2− 2W ∗(z−1)W (z).

The space L(φ) is the set of elements f(z) of C(z) such that W (z)f(z) belongs to the space
H(W ). The scalar product in the space L(φ) is determined by the identity

〈f(z), f(z)〉L(φ) = 〈f(z), f(z)〉C(z) + 〈W (z)f(z),W (z)f(z)〉H(W ).

The adjoint of multiplication by W (z) as a transformation in C(z) acts as a partially
isometric transformation of C(z) onto the complementary space L(1− φ) to L(φ) in C(z).
Since the polynomial elements of C(z) are dense in C(z), the polynomial elements of the
space L(1− φ) are dense in the space L(1− φ).

If a Herglotz space L is contained contractively in C(z) and if the polynomial elements
of the space are dense in the space, then a partially isometric transformation of C(z) onto
L exists which commutes with the difference-quotient transformation and whose kernel
is invariant under multiplication by z. The resulting contractive transformation of C(z)
into itself coincides with the adjoint of multiplication by V (z) for a power series V (z)
with complex coefficients and that multiplication by V (z) is an everywhere defined and
contractive transformation in C(z) and such that the orthogonal complement of the range
of multiplication by V (z) in C(z) is invariant under multiplication by z.

The construction of V (z) is supplied when W (z) is a power series such that multipli-
cation by W (z) is an everywhere defined and contractive transformation in C(z). The
associated Herglotz space L(φ) contains the elements f(z) of C(z) such that W (z)f(z)
belongs to the space H(W ). The identity

‖f(z)‖2L(φ) = ‖f(z)‖2C(z) + ‖W (z)f(z)‖2H(W )

holds for every element f(z) of the space L(φ). The space L(φ) is contained contractively
in C(z). The complementary space to L(φ) in C(z) is a Herglotz space L(1 − φ), which
is contained contractively in C(z), such that the adjoint of multiplication by W (z) in
C(z) acts as a partially isometric transformation of C(z) onto the space L(1 − φ). The
polynomial elements of the space L(1 − φ) are dense in the space. A power series V (z),
such that multiplication by V (z) is an everywhere defined and contractive transformation
in C(z), exists such that the adjoint of multiplication by V (z) as a transformation in C(z)
acts as a partially isometric transformation of C(z) onto the space L(1 − φ) and such
that the kernel of the adjoint transformation is invariant under multiplication by z. A
power series U(z) exists such that multiplication by U(z) is an everywhere defined and
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contractive transformation in C(z), such that the adjoint of multiplication by W (z) in
C(z) is the composition of the adjoint of multiplication by U(z) in C(z) and the adjoint of
multiplication by V (z) in C(z), and such that the range of the adjoint of multiplication by
U(z) in C(z) is orthogonal to the kernel of the adjoint of multiplication by V (z) in C(z).

The Beurling factorization

W (z) = V (z)U(z)

results of a power series W (z) such that multiplication by W (z) is an everywhere defined
and contractive transformation in C(z). The outer function V (z) is a power series such
that multiplication by V (z) is an everywhere defined and contractive transformation in
C(z) and such that the orthogonal complement of the kernel of multiplication by V (z) is
invariant under multiplication by z. The inner function U(z) is a power series such that
multiplication by U(z) is a partially isometric transformation in C(z) and such that the
range of multiplication by U(z) in C(z) is orthogonal to the kernel of multiplication by
V (z).

The Nevanlinna factorization of a power series W (z), such that multiplication by W (z)
is densely defined as a transformation in C(z), is a variant of the Beurling factorization.
An outer function is again a power series V (z) such that multiplication by V (z) is an
everywhere defined and contractive transformation in C(z) and such that the orthogonal
complement of the range of multiplication by V (z) is invariant under multiplication by z.

Theorem 6. If W (z) is a power series such that multiplication by W (z) is densely defined
as a transformation in C(z), then an outer function V (z) exists such that multiplication by

U(z) = W (z)V (z)

is an everywhere defined and contractive transformation in C(z) and such that no nonzero
element f(z) of the space H(V ) exists such that W (z)f(z) belongs to the space H(U).

Proof of Theorem 6. Multiplication by W (z) is extended to a transformation with domain
and range in ext C(z) which commutes with multiplication by z. An element f(z) of the
space ext C(z) belongs to the domain of multiplication by W (z) as transformation in
ext C(z) if zrf(z) belongs to the domain of multiplication by W (z) in C(z) for some
nonnegative integer r. Multiplication by W (z) in ext C(z) takes zrf(z) into zrg(z) when
multiplication by W (z) in C(z) takes f(z) into g(z). The definition is independent of r.
Multiplication by W (z) in ext C(z) is a densely defined transformation in ext C(z), whose
closure is however not assumed to be a transformation. The adjoint of multiplication
by W (z) as a transformation in ext C(z) is a transformation. The spectral subspace of
contractivity for the adjoint of multiplication by W (z) in ext C(z) and its orthogonal
complement are invariant subspaces for multiplication and division by z.

The space ext C(z) is contained contractively in a Hilbert space ext P such that a dense
set of elements of the complementary space to ext C(z) in ext P belong to ext C(z) and
such that the adjoint of multiplication by W (z) as a transformation in ext C(z) maps
the intersection of its domain with the orthogonal complement of its spectral subspace of
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contractivity onto the intersection of ext C(z) with the complementary space to ext C(z) in
ext P. The intersection of ext C(z) with the complementary space to ext C(z) in ext P is
invariant under division by z. Division by z is an isometric transformation with respect to
the scalar product of P as well as with respect to the scalar product of the complementary
space to ext C(z) in ext P.

The canonical projection of ext C(z) onto C(z) determines a partially isometric trans-
formation of ext P onto a Hilbert space P, a dense set of whose elements belong to C(z).
The space C(z) is contained contractively in the space P. The partially isometric transfor-
mation of ext P onto P acts as a partially isometric transformation of the complementary
space to ext C(z) in ext P onto the complementary space to C(z) in P. The intersection of
C(z) with P and the intersection of C(z) with the complementary space to C(z) in P are
invariant subspaces for the difference-quotient transformation. The continuous extension
of the difference-quotient transformation has an isometric adjoint in P as well as in the
complementary space to C(z) in P.

Since the polynomial elements of C(z) are dense in P, an isometric transformation of
P onto C(z) exists which intertwines the continuous extension of the difference-quotient
transformation in P with the difference-quotient transformation in C(z). Since C(z) is
contained contractively in P, a contractive transformation of C(z) into itself is obtained
which commutes with the difference-quotient transformation. The transformation is the
adjoint of multiplication by V (z) for a power series V (z) such that multiplication by
V (z) is everywhere defined and contractive as a transformation in C(z). A Hilbert space
H(V ) exists which is the state space of a canonical coisometric linear system with transfer
function V (z). The Herglotz space L(φ) associated with the space H(V ) is contained
contractively in C(z). The continuous extension of the adjoint of multiplication by V (z)
acts as an isometric transformation of P onto C(z). The adjoint of multiplication by
V (z) as a transformation in C(z) acts as an isometric transformation of C(z) onto the
complementary space L(1 − ψ) to the space L(ψ) in C(z). The continuous extension of
the adjoint of multiplication by V (z) as a transformation in C(z) acts as an isometric
transformation of the complementary space to C(z) in P onto the space L(ψ).

A Hilbert space ext Q, which is contained contractively in the space ext P, exists such
that the intersection of ext Q with ext C(z) is the range of the adjoint of multiplication
by W (z) as a transformation in ext C(z). The space ext Q is the orthogonal sum of its
intersection with the spectral subspace of contractivity for multiplication by W (z) in ext
C(z) and the closure of its intersection with the orthogonal complement in ext C(z) of
the spectral subspace. The complementary space to ext C(z) in ext Q is isometrically
equal to the closure in ext Q of its intersection with the orthogonal complement of the
spectral subspace. The adjoint of multiplication by W (z) as a transformation in ext C(z)
acts as a partially isometric transformation of its spectral subspace of contractivity onto
the intersection of ext Q with the spectral subspace of contractivity for multiplication by
W (z) as a transformation in ext C(z). The space ext Q and its complementary space
in the space ext P are invariant subspaces for the continuous extension of division by z.
The continuous extension of division by z is an isometric transformation in ext Q and its
complementary space in ext P.
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The partially isometric transformation of ext P onto P, which is determined by the
canonical projection of ext C(z) onto C(z), acts as a partially isometric transformation of
ext Q onto a Hilbert space which is contained contractively in P. The canonical projection
of ext C(z) onto C(z) acts as a partially isometric transformation of the complementary
space to ext Q in ext P onto the complementary space to Q in P. The space Q and
its complementary space in P are invariant subspaces for the continuous extension of the
difference-quotient transformation. The continuous extension of the difference-quotient
transformation has an isometric adjoint in Q and in its complementary space in P.

The power series
U(z) = W (z)V (z)

has properties which are derived from adjoints of multiplication transformations. Since
multiplication by W (z) is a densely defined transformation in C(z) by hypothesis, the ad-
joint of multiplication by W (z) as a transformation in C(z) is contained in the closure of
the composition of the adjoint of multiplication by W (z) as a transformation in ext C(z)
with the canonical projection of ext C(z) onto C(z). The range of the adjoint of multipli-
cation by W (z) as a transformation in C(z) is contained in Q. The continuous extension of
the adjoint of multiplication by W (z) as a transformation in C(z) is a contractive transfor-
mation of C(z) into Q. The continuous extension of the adjoint of multiplication by V (z)
as a transformation in C(z) acts as a contractive transformation of Q into C(z). Since the
adjoint of multiplication by U(z) in C(z) is contained in the composition of the continuous
extension of the adjoint of multiplicative by W (z) in C(z) with the continuous extension of
the adjoint of multiplication by V (z) in C(z) and since C(z) is contained contractively in
Q, the adjoint of multiplication by U(z) is an everywhere defined and contractive transfor-
mation in C(z). The contractive property is first verified on polynomial elements of C(z).
If then follows for all elements of C(z). Multiplication by U(z) is everywhere defined and
contractive as a transformation in C(z).

A Hilbert space H(U) exists which is the state space of a canonical coisometric linear
system with transfer function U(z). The adjoint of multiplication by U(z) as a transfor-
mation in C(z) acts as a partially isometric transformation of C(z) onto the complementary
space L(1− φ) in C(z) to the Herglotz space L(φ) associated with the space H(0).

Since the complementary space to C(z) in the space P is contained isometrically in the
space Q, no nonzero element of the complementary space to C(z) in the space P belongs
to the complementary space to the space Q in the space P. Since the continuous extension
of the adjoint of multiplication by V (z) in C(z) acts as an isometric transformation of the
complementary space to C(z) in P onto the space L(ψ) and of the complementary space
to Q in P onto L(φ), the intersection of the spaces L(φ) and L(ψ) contains no nonzero
element.

The space H(V ) is the set of elements f(z) of C(z) such that the adjoint of multiplication
by V (z) in C(z) maps f(z) into an element g(z) of the space L(ψ). The identity

‖f(z)‖2H(V ) = ‖f(z)‖2C(z) + ‖g(z)‖2L(ψ)

is then satisfied. Since the continuous extension of the adjoint of multiplication by V (z) as
a transformation in C(z) acts as an isometric transformation of the complementary space
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to C(z) in the space P onto the space L(ψ), the space H(V ) is the intersection of C(z) with
the complementary space to C(z) in the space P. The square of the norm of an element of
the space H(V ) is the sum of the square of its norm as an element of C(z) and the square
of its norm as an element of the complementary space to C(z) in the space P.

The space H(U) is the set of element f(z) of C(z) such that the adjoint of multiplication
by U(z) in C(z) maps f(z) into an element g(z) of the space L(φ). The identity

‖f(z)‖2H(U) = ‖f(z)‖2C(z) + ‖g(z)‖2L(φ)

is then satisfied. Since the continuous extension of the adjoint of multiplication by V (z) as
a transformation in C(z) acts as an isometric transformation of the complementary space
to Q in P onto the space L(φ), the space H(U) is the set of elements f(z) of C(z) such
that the adjoint of multiplication by W (z) in C(z) maps f(z) into an element h(z) of
the complementary space to Q in P. Since h(z) then belongs to the spectral subspace of
contractivity for multiplication by W (z) as a transformation in ext C(z), the element f(z)
of C(z) is the projection of an element of ext C(z) which belongs to the spectral subspace
of contractivity for the adjoint of multiplication by W (z) as a transformation in ext C(z).

If f(z) is an element of the space H(V ) such that W (z)f(z) belongs to the space
H(U), then W (z)f(z) belongs to the orthogonal complement of the spectral subspace of
contractivity for multiplication by W (z) as a transformation in ext C(z) since f(z) belongs
to the orthogonal complement of the spectral subspace of contractivity for multiplication
by W (z) as a transformation in ext C(z). An element g(z) of the spectral subspace of
contractivity for the adjoint of multiplication by W (z) as a transformation in ext C(z)
exists which has W (z)f(z) as its orthogonal projection in C(z). The product W (z)f(z) is
equal to zero since it is orthogonal to g(z). The element f(z) of C(z) is equal to zero since
it is orthogonal to the spectral subspace of contractivity for multiplication by W (z) as a
transformation in ext C(z).

This completes the proof of the theorem.

The Hilbert space H(U) is contained continuously and isometrically in a Krein space
H(W ), whose elements are power series, such that multiplication by W (z) acts as an
isometric transformation of the anti-space of the Hilbert space H(V ) onto the orthogonal
complement of the space H(U) in the space H(W ). The space H(U ′) corresponding to the
power series

U ′(z) = zU(z)

with complex coefficients is the set of power series f(z) with complex coefficients such that
[f(z)− f(0)]/z belongs to the space H(U). The identity for difference quotients

‖[f(z)− f(0)]/z‖2H(U) = ‖f(z)‖2H(U ′) − f(0)−f(0)

is satisfied. The space H(U) is contained contractively in the space H(U ′). The space
H(W ′) corresponding to the power series

W ′(z) = zW (z)



24 NEVANLINNA FACTORIZATION AND THE BIEBERBACH CONJECTURE

with complex coefficients is the set of power series f(z) with complex coefficients such that
[f(z)− f(0)]/z belongs to the space H(W ). The identity for difference quotients

〈[f(z)− f(0)]/z, [f(z)− f(0)]/z〉H(W ) = 〈f(z), f(z)〉H(W ′) − f(0)−f(0)

is satisfied. The space H(U ′) is contained continuously and isometrically in the space
H(W ′). Multiplication by W ′(z) is an isometric transformation of the anti-space of the
Hilbert space H(V ) onto the orthogonal complement of the space H(U ′) in the space
H(W ′). The space H(W ) is contained continuously and contractively in the space H(W ′).
Multiplication by W (z) is a partially isometric transformation of the space of complex
numbers onto the complementary space to the space H(W ) in the space H(W ′). The space
H(W ) is the state space of a canonical coisometric linear system with transfer function
W (z).

A canonical unitary linear is constructed from a canonical coisometric linear system with
state space H(W ) and transfer function W (z) when the inequality for difference quotients

〈[f(z)− f(0)]/z, [f(z)− f(0)]/z〉H(W ) ≤ 〈f(z), f(z)〉H(W ) − f(0)−f(0)

holds for every element f(z) of the space. The inequality is satisfied by the canonical
coisometric linear system constructed when multiplication by W (z) is densely defined as
a transformation in C(z). The elements of the state space D(W ) of the canonical unitary
linear system are pairs (f(z), g(z)) of power series. Power series f(z) and

g(z) =
∑

anz
n

with complex coefficients determine an element of the space D(W ) if f(z) is an element of
the space H(W ) such that

zr+1f(z)−W (z)(a0z
r + . . .+ ar)

belongs to the space H(W ) for every nonnegative integer r and such that the sequence of
numbers

〈zr+1f(z)−W (z)(a0z
r + . . .+ ar), z

r+1f(z)−W (z)(a0z
r + . . .+ ar)〉H(W )

+a−0 a0 + . . .+ a−r ar

is bounded. The inequality for difference quotients in the space H(W ) implies that the
sequence is nondecreasing. The limit of the sequence is taken as the definition of the scalar
self–product

〈f(z), g(z)), (f(z), g(z))〉D(W ).

The space D(W ) is a Krein space. A contractive partially isometric transformation of the
space D(W ) onto the space H(W ) is defined by taking (f(z), g(z)) into f(z). A continuous
transformation of the space D(W ) into itself is defined by taking (f(z), g(z)) into

([f(z)− f(0)]/z, zg(z)−W ∗(z)f(0)).
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The identity for difference quotients

〈([f(z)− f(0)]/z, zg(z)−W ∗(z)f(0)), ([f(z)− f(0)]/z, zg(z)−W ∗(z)f(z))〉D(W )

= 〈(f(z), g(z)), (f(z), g(z))〉D(W )− f(0)−f(0)

is satisfied. The adjoint transformation of the space D(W ) into itself takes (f(z), g(z))
into

(zf(z)−W (z)g(0), [g(z)− g(0)]/z).

The identity for difference quotients

〈(zf(z)−W (z)g(0), [g(z)− g(0)]/z), (zf(z)−W (z)g(0), [g(z)− g(0)]/z)〉D(W )

= 〈(f(z), g(z)), (f(z), g(z))〉D(W )− g(0)−g(0)

is satisfied.

A construction has been made of the state space D(W ) of a canonical unitary linear
system with transfer function W (z). The main transformation takes (f(z), g(z)) into

([f(z)− f(0)]/z, zg(z)−W ∗(z)f(0)).

The input transformation takes c into

([W (z)−W (0)]c/z, [1−W ∗(z)W (0)]c).

The output transformation takes (f(z), g(z)) into f(0). The external operator is W (0).
The unitary property of the linear system is a consequence of the two identities for dif-
ference quotients. The transformation which takes (f(z), g(z)) into (g(z), f(z)) maps the
space D(W ) isometrically onto the state space D(W ∗) of a canonical unitary linear system
with transfer function W ∗(z).

Uniqueness of a canonical unitary linear system with transfer function W (z) is obtained
when multiplication by W (z) is densely defined as a transformation in C(z).

Theorem 7. If W (z) is a power series such that multiplication by W (z) is densely defined
as a transformation in C(z), if V (z) and

U(z) = W (z)V (z)

are power series such that multiplication by U(z) and multiplication by V (z) are everywhere
defined and contractive as transformations in C(z), if no nonzero element f(z) of the space
H(V ) exists such that W (z)f(z) belongs to the space H(U), and if D(W ) is the state
space of a canonical unitary linear system with transfer function W (z), then a contractive
partially isometric transformation of the space D(W ) onto a Krein space H(W ), which
is the state space of a canonical coisometric linear system with transfer function W (z),
is defined by taking (f(z), g(z)) into f(z). The space H(U) is contained continuously
and isometrically in the space H(W ). Multiplication by W (z) is a partially isometric
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transformation of the anti–space of the space H(V ) onto the orthogonal complement of the
space H(U) in the space H(W ).

Proof of Theorem 7. A transformation of the Cartesian product of the space D(W ) and the
space D(V ) onto a vector space D, whose elements are pairs of power series with complex
coefficients, is defined by taking an element (f(z), g(z)) of the space D(W ) and an element
(h(z), k(z)) of the space D(V ) into the element (u(z), v(z)) of the space D defined by

u(z) = f(z) +W (z)h(z)

and

v(z) = k(z) + V ∗(z)g(z).

The space D is the state space of a linear system with transfer function U(z). The main
transformation takes (u(z), v(z)) into

([u(z)− u(0)]/z, zv(z)− U∗(z)u(0)).

If

u(z) = f(z) +W (z)h(z)

and

v(z) = k(z) + V ∗(z)g(z),

then

[u(z)− u(0)]/z = f ′(z) +W (z)h′(z)

and

zv(z)− U∗(z)u(0) = k′(z) + V ∗(z)g′(z)

with (f ′(z), g′(z)) the element of the space D(W ) defined by

f ′(z) = [f(z)− f(0)]/z + [W (z)−W (0)]h(0)/z

and

g′(z) = zg(z)−W ∗(z)h(0) + [1−W ∗(z)W (0)]h(0)

and with (h′(z), k′(z)) the element of the space D(V ) defined by

h′(z) = [h(z)− h(0)]/z

and

k′(z) = zk(z)− V ∗(z)h(0).

The input transformation takes a complex number c into

([1− U(z)U(0)−]c, [U∗(z)− U∗(0)]c/z)
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where

[1− U(z)U(0)−]c = [1−W (z)W (0)−]c+W (z)[1− V (z)V (0)−]W (0)−c

and

[U∗(z)− U∗(0)]c/z = [V ∗(z)− V ∗(0)]W ∗(0)c/z + V ∗(z)[U∗(z)− U∗(0)]c/z

with
([1−W (z)W (0)−]c, [W ∗(z)−W ∗(0)]c/z)

an element of the space D(W ) and

([1− V (z)V (0)−]W (0)−c, [V ∗(z)− V ∗(0)]W ∗(0)c/z)

an element of the space D(W ). The output transformation takes (u(z), v(z)) into u(0). If

u(z) = f(z) +W (z)h(z)

and
v(z) = k(z) + V ∗(z)g(z)

with (f(z), g(z)) in the space D(W ) and (h(z), k(z)) in the space D(V ), then

u(0) = f(0) +W (0)g(0).

The external operator is
U(0) = W (0)V (0).

The matrix entries of the linear system with state space D and transfer function U(z)
are constructed from the matrix entries of a unitary linear system whose state space is the
Cartesian product of the space D(W ) and the space D(V ) and whose transfer function is
U(z). A partially isometric transformation exists of the Cartesian product of the spaces
D(W ) and D(V ) onto the space D(U) which is compatible with the structure of these
spaces as state spaces of unitary linear systems with transfer function U(z). Since the
transformation of the Cartesian product space onto the space D is identical with the
transformation of the Cartesian product space onto the space D(U), the space D is a
Hilbert space which is the state space D(U) of a canonical unitary linear system with
transfer function U(z). The transformation of the Cartesian product space onto the space
D, equal to D(U), is a partial isometry.

A Krein space E is constructed whose elements are the pairs (f(z), g(z)) of power series
such that

(−f(z), V ∗(z)g(z))

belongs to the space D(V ) and
(W (z)f(z),−g(z))
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belongs to the space D(W ). The scalar product is defined in the space so that the identity

〈(f(z), g(z)), (f(z), g(z))〉E = 〈(−f(z), V ∗(z)g(z)), (−f(z), V ∗(z)g(z))〉D(V )

+〈(W (z)f(z),−g(z)), (W (z)f(z),−g(z))〉D(W )

is satisfied. An isometric transformation of the space E onto itself is defined by taking
(f(z), g(z)) into

([f(z)− f(0)]/z, f(0) + zg(z)).

The inverse isometric transformation takes (f(z), g(z)) into

(g(0) + zf(z), [g(z)− g(0)]/z).

An inverse isometric transformation exists of the space D(U) into the Cartesian product
of the spaces D(W ) and the space D(V ). Every element of the space D(U) is uniquely of
the form

(f(z) +W (z)h(z), k(z) + V ∗(z)g(z))

for elements (f(z), g(z)) of the space D(W ) and (h(z), k(z)) of the space D(V ) such that
the identity

〈(f(z), g(z)), (W (z)u(z),−v(z))〉D(W ) = 〈(h(z), k(z)), (u(z),−V ∗(z)v(z))〉D(V )

holds for every element (u(z), v(z)) of the space E . The image of the space E in the
Cartesian product of the space D(W ) and the space D(V ) consists of the pairs of elements
(W (z)u(z),−v(z)) of the space D(W ) and elements (−u(z), V ∗(z)v(z)) of the space D(V )
which are parametrized by elements (u(z), v(z)) of the space E . The pair of elements
(f(z), g(z)) of the space D(W ) and (h(z), k(z)) of the space D(V ) is orthogonal in the
Cartesian product space to the image of the space E .

If (h(z), k(z)) is an element of the space D(V ), an element (u(z), v(z)) of the space
E exists such that an element of the Cartesian product space in the image of D(U) is
obtained as the pair consisting of the element (W (z)u(z),−v(z)) of the space D(W ) and
the element

(h(z)− u(z), k(z) + V ∗(z)v(z))

of the space D(V ). Then

(W (z)[h(z)− u(z)], k(z) + V ∗(z)v(z))

is an element of the space D(U). Since no nonzero element f(z) of the space H(V ) exists
such that W (z)f(z) belongs to the space H(U), no nonzero element (f(z), g(z)) of the
space D(V ) exists such that

(W (z)f(z), g(z))

belongs to the space D(U). It follows that

(h(z), k(z)) = (u(z),−V ∗(z)v(z)).
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The image of the space D(U) in the Cartesian product space consists of pairs of elements
(f(z), g(z)) of the space D(W ) such that (f(z), V ∗(z)g(z)) belongs to the space D(U) and
the zero element of the space D(V ). A continuous isometric transformation of the space
D(U) into the space D(W ) is defined by taking (f(z), V ∗(z)g(z)) into (f(z), g(z)). The
orthogonal complement in the space D(W ) of the image of the space D(U) consists of the
elements of the space D(W ) of the form (W (z)u(z),−v(z)) with (u(z), v(z)) in the space
E . Since (−u(z), V ∗(z)v(z)) then belongs to the space D(V ), the identity

−〈(W (z)u(z),−v(z)), (W (z)u(z),−v(z))〉D(W )

= 〈(−u(z), V ∗(z)v(z)), (−u(z), V ∗(z)v(z))〉D(V )

is then satisfied. An isometric transformation of the anti–space of the space D(V ) onto
the orthogonal complement in the space D(W ) of the image of the space D(U) is defined
by taking (u(z),−V ∗(z)v(z)) into (W (z)u(z),−v(z)).

The space D(W ) is isometrically equal to the state space of the canonical unitary linear
system with transfer function W (z) which is constructed from the state space H(W ) of
the canonical coisometric linear system with transfer function W (z) when multiplication
by W (z) is densely defined as a transformation in C(z). A contractive partially isometric
transformation of the space D(W ) onto the space H(W ) is defined by taking (f(z), g(z))
into f(z).

This completes the proof of the theorem.

The factorization theory of power series which represent functions analytic in the unit
disk is treated when the Nevanlinna factorization theory does not apply. The multiplication
of power series is considered only when they are the transfer functions of canonical unitary
linear systems which are related to each other by the extension space of a Herglotz space.

Assume that D(U) is the state space of a canonical unitary linear system with transfer
function U(z) and that D(V ) is the state space of a canonical unitary linear system with
transformation V (z) such that Hilbert space C of pairs of a power series with complex
coefficients is constructed from the spaces D(U) and D(V ). A pair (f(z), g(z)) of power
series with complex coefficients belongs to the space ξ if, and only if,

(U(z)f(z), g(z))

belongs to the space D(U) and

(−f(z), V ∗(z)g(z))

belongs to the space D(V ). The identity

〈(f(z), g(z)), (f(z), g(z))〉C
= 〈(U(z)f(z),−g(z)), (U(z)f(z),−g(z))〉D(U)

+〈(−f(z), V ∗(z)g(z)), (−f(z), V ∗(z)g(z))〉D(V )



30 NEVANLINNA FACTORIZATION AND THE BIEBERBACH CONJECTURE

holds for every element (f(z), g(z)) of the space ξ. Then the state space D(W ) of a
canonical unitary linear system with transfer function

W (z) = U(z)V (z)

exists whose elements are pairs (u(z), v(z)) with

u(z) = f(z) + U(z)h(z)

and
v(z) = k(z) + V ∗(z)g(z)

for elements (f(z), g(z)) of the space D(U) and (h(z), k(z)) of the space D(V ). The scalar
self–product

〈(u(z), v(z)), (u(z), v(z))〉D(W )

is the greatest lower bound of sums

〈(f(z), g(z)), (f(z), g(z))〉D(U)

+〈(h(z), k(z)), (h(z), k(z))〉D(V )

of scalar self–products of representing elements (f(z), g(z) of the spaceD(U) and (h(z), k(z))
of the space D(V ).

If neither U(λ) nor V (λ) has absolute value one for some λ in the unit disk, then the
set of elements (f(z), g(z)) of the space D(U) such that f(z) vanishes at λ is a Krein
space which is contained continuously and isometrically in the space D(U), and the set
of elements (f(z), g(z)) of the space D(V ) such that f(z) vanishes at λ is a Krein space
which is contained continuously and isometrically in the space D(V ). A partially isometric
transformation of the space D(U) onto a Krein space of dimension one is defined by taking
(f(z), g(z)) into f(λ). A partially isometric transformation of the space D(V ) onto a Krein
space of dimension one is defined by taking (f(z), g(z)) into f(λ). The element

[1− U(λ)U(λ)−]/(1− λλ)−)

of the image of the space D(U) has scalar self–product equal to itself. The element

[1− V (λ)V (λ)−]/(1− λλ−)

of the image of the space D(V ) has scalar product equal to itself. A partially isometric
transformation of the space E onto a Hilbert space of dimension at most one is defined by
taking (f(z), g(z)) into f(λ). Since the scalar self–product of the element

1− U(λ)U(λ)−

1− λλ− U(λ)
1− V (λ)V (λ)−

1− λλ− U(λ)−

of the space is

U(λ)
1− V (λ)V (λ)−

1− λλ− U(λ)−
1− U(λ)U(λ)−

1− λλ− U(λ)
1− V (λ)V (λ)−

1− λλ− U(λ)−

+
1− U(λ)U(λ)−

1− λλ− U(λ)
1− V (λ)V (λ)−

1− λλ− U(λ)−
1− U(λ)U(λ)−

1− λλ− ,

the inequality
1 ≤ [1− U(λ)U(λ)−]−1 + [1− V (λ)V (λ)−]−1

is satisfied.

A converse result holds.
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Theorem 8. If D(U) is the state space of a canonical unitary linear system with transfer
function U(z) and if D(V ) is the state space of a canonical unitary linear system with
transfer function V (z) such that the inequality

1 ≤ [1− |U(z)|2]−1 + [1− |V (z)|2]−1

holds when z is in the unit disk, then a Hilbert space E exists whose elements are the pairs
(u(z), v(z)) of power series

u(z) = f(z) + U(z)h(z)

and
v(z) = k(z) + V ∗(z)g(z)

for elements (f(z), g(z)) of the space D(U) and (h(z), k(z)) of the space D(V ) and which
satisfies the identity

〈(u(z), v(z)), (u(z), v(z))〉sD(W )

= 〈(f(z), g(z)), (f(z), g(z))〉D(U)

+〈(h(z), k(z)), (h(z), k(z))〉D(V ).

Canonical coisometric linear systems whose state space is a Hilbert space appear in the
estimation theory of injective analytic mappings of the unit disk into itself [7]. The proof
of the Bieberbach conjecture [5] and the related estimation theory of powers of Riemann
mapping functions [6] are treated as applications of the factorization theory of functions
which are analytic and bounded by one in the unit disk. Canonical coisometric linear
systems whose state space is a Krein space appear in the estimation theory of injective
analytic mappings of the unit disk when the image region is not contained in the disk.
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