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CASIMIRS OF THE GOLDMAN LIE ALGEBRA OF A

CLOSED SURFACE

PAVEL ETINGOF

1. Introduction

Let Σ be a connected closed oriented surface of genus g. In 1986 Goldman
[Go] attached to Σ a Lie algebra L = L(Σ), later shown by Turaev ([Tu])
to have a natural structure of a Lie bialgebra. It is defined as follows. As
a vector space, L has a basis eγ labeled by conjugacy classes γ in the fun-
damental group π1(Σ), geometrically represented by closed oriented curves
on Σ without a base point. To define the commutator [eγ1

, eγ2
], one needs

to bring the two curves γ1, γ2 into general position by isotopy, and then
for each intersection point pi of the two curves, define γ3i to be the curve
obtained by tracing γ1 and then γ2 starting and ending at pi. Then one
defines [eγ1

, eγ2
] to be

∑
i εieγ3i

, where εi = 1 if γ1 approaches γ2 from the
right at pi (with respect to the orientation of Σ), and −1 otherwise.

The combinatorial structure of L has been much studied; see e.g. [C,
Tu]. However, many problems about the structure of L remained open.
In particular, in 2001, M. Chas and D. Sullivan communicated to me the
following conjecture.

Conjecture 1.1. The center of L is spanned by the element e1, where
1 ∈ π1(Σ) is the trivial loop.

In this paper, we will prove this conjecture. In fact, we prove a more
general result.

Theorem 1.2. The Poisson center of the Poisson algebra S•L is Z = C[e1].

The proof of the theorem occupies the rest of the paper.
Remark. A quiver theoretical analog of Theorem 1.2 is given in [CEG]. It

claims that if Π is the preprojective algebra of a quiver Q which is not Dynkin
or affine Dynkin, then the Poisson center of S•L (where L = Π/[Π,Π] is the
necklace Lie algebra attached to Π) consists of polynomials in the vertex
idempotents.

2. Proof of the theorem

2.1. Moduli spaces of flat bundles. We will assume that g > 1, since in
the case g ≤ 1 the theorem is easy.
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Recall that the fundamental group Γ = π1(Σ) is generated by X1, ...,Xg ,
Y1, ..., Yg with defining relation

(1)

g∏

i=1

XiYiX
−1

i Y −1

i = 1.

Thus we can define the scheme of homomorphisms M̃g(N) = Hom(Γ, GLN (C))
to be the closed subscheme in GLN (C)2g defined by equation (1). One can
also define the moduli scheme of representations (or equivalently, of flat con-

nections on Σ) to be the categorical quotient Mg(N) = M̃g(N)/PGLN (C).

The schemes M̃g(N) and Mg(N) carry the Atiyah-Bott Poisson struc-
ture; its algebraic presentation may be found in [FR] (using r-matrices) and
[AMM] (using quasi-Hamiltonian reduction); see also [Go].

Let us recall the following known results about these schemes, which we
will use in the sequel.

Theorem 2.1. (i) M̃g(N) and Mg(N) are reduced.

(ii) M̃g(N) is a complete intersection in GLN (C)2g.

(iii) M̃g(N) and Mg(N) are irreducible algebraic varieties. Their generic
points correspond to irreducible representations of Γ.

(iv) The Poisson structure on Mg(N) is generically symplectic.

Proof. Let M̃ ′
g(N) be the algebraic variety corresponding to the scheme

M̃g(N). It is shown in [Li] that this variety is irreducible. Moreover, it
is clear that the generic point of this variety corresponds to an irreducible
representation of Γ (we can choose Xi, Yi generically for i < g and then
solve for Xg, Yg). It is easy to show that near such a point the map µ :
GL(N)2g → SL(N) given by the left hand side of (1) is a submersion. This

implies (ii). We also see that M̃g(N) is generically reduced. Since it is a
complete intesection, it is Cohen-Macaulay and hence reduced everywhere.
Thus we get (i) and (iii). Property (iv) is well known and is readily seen
from [FR] or [AMM]. The theorem is proved. �

2.2. Injectivity of the Goldman homomorphism. Now let us return to
the study of the Lie algebra L. To put ourselves in an algebraic framework,
we note that L is naturally identified with A/[A,A], where A = C[Γ] is
the group algebra of Γ. Thus, elements of L can be represented by linear
combinations of cyclic words in X±1

i , Y ±1

i .
In [Go], Goldman defined a homomorphism of Poisson algebras

φN : S•L → C[Mg(N)]

defined by the formula φN (w)(ρ) = Tr(ρ(w)), where ρ is an N -dimensional
representation of Γ and w is any cyclic word representing an element of L.
It follows from Weyl’s fundamental theorem of invariant theory that the
Goldman homomorphism is surjective.
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Let L+ ⊂ L be the linear span of the elements eγ − e1. Obviously, we
have L = L+ ⊕ Ce1,

Proposition 2.2. For any finite dimensional subspace Y ⊂ S•L+, there
exists an integer N(Y ) such that for N ≥ N(Y ), the map φN |Y is injective.

Proof. Let K(N) be the kernel of φN on S•L+. It is clear that K(N + 1) ⊂
K(N) (as φN+1(eγ − e1)(ρ⊕C) = φN (eγ − e1)(ρ)). Thus it suffices to show
that ∩N≥1K(N) = 0.

Assume the contrary. Then there exists an element 0 6= f ∈ S•L+ such
that φN (f) = 0 for all N .

Recall that according to [FiR], the group Γ is conjugacy separable,
i.e., if elements γ0, ..., γm are pairwise not conjugate in Γ then there exists
a finite quotient Γ′ of Γ such that the images of γ0, ..., γm are not conjugate
in Γ′.

Now let γ0 = 1 and f = P (eγ1
− e1, ..., eγm

− e1), where P is some
polynomial. Let Γ′ be the finite group as above, V1, ..., Vs be the irreducible
representations of Γ′, and χ1, ..., χs be their characters. Let V = ⊕jNjVj;
we regard V as a representation of Γ and let N = dimV . Then φN (f)(V ) =
P (w1, ..., wm), where wi =

∑
j Nj(χj(γi)−χj(1)). By representation theory

of finite groups, the matrix with entries aij = χj(γi)−χj(1) has rank m; thus,
there exist Nj ≥ 0 such that P (w1, ..., wm) 6= 0. For such Nj, φN (f) 6= 0,
which is a contradiction. �

2.3. Proof of Theorem 1.2. Now we are ready to prove Theorem 1.2. Let
z be a central element of the Poisson algebra S•L. Consider the element
φN (z). This is a regular function on Mg(N) which Poisson commutes with
all other functions (since φN is surjective). Since by Theorem 2.1 the scheme
Mg(N) is in fact a variety, which is irreducible and generically symplectic,
any Casimir on this variety must be a scalar.

Since S•L = S•L+ ⊗ C[e1], we can write z as

z = ζ(e1) +

m∑

j=1

ζj(e1)fj,

were fj are linearly independent elements which belong to the augmentation
ideal of S•L+, and ζ, ζj ∈ C[t]. Applying φN to this equation, and using
that φN (e1) = N , we get that

ζ(N) +

m∑

j=1

ζj(N)φN (fj) = γN .

Let Y be the linear span of 1 and fj, j = 1, ...,m in S•L+. By Proposition
2.2, for N ≥ N(Y ), we have

ζ(N) +

m∑

j=1

ζj(N)fj = γN .
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Thus ζj(N) = 0 for N ≥ N(Y ). Hence ζj = 0 for all j and z = ζ(e1). The
theorem is proved.
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