CASIMIRS OF THE GOLDMAN LIE ALGEBRA OF A CLOSED SURFACE

PAVEL ETINGOF

1. Introduction

Let Σ be a connected closed oriented surface of genus g. In 1986 Goldman GO attached to Σ a Lie algebra $L=L(\Sigma)$, later shown by Turaev (Tu]) to have a natural structure of a Lie bialgebra. It is defined as follows. As a vector space, L has a basis e_{γ} labeled by conjugacy classes γ in the fundamental group $\pi_{1}(\Sigma)$, geometrically represented by closed oriented curves on Σ without a base point. To define the commutator $\left[e_{\gamma_{1}}, e_{\gamma_{2}}\right]$, one needs to bring the two curves γ_{1}, γ_{2} into general position by isotopy, and then for each intersection point p_{i} of the two curves, define $\gamma_{3 i}$ to be the curve obtained by tracing γ_{1} and then γ_{2} starting and ending at p_{i}. Then one defines $\left[e_{\gamma_{1}}, e_{\gamma_{2}}\right.$] to be $\sum_{i} \varepsilon_{i} e_{\gamma_{3 i}}$, where $\varepsilon_{i}=1$ if γ_{1} approaches γ_{2} from the right at p_{i} (with respect to the orientation of Σ), and -1 otherwise.

The combinatorial structure of L has been much studied; see e.g. [C, Tu. However, many problems about the structure of L remained open. In particular, in 2001, M. Chas and D. Sullivan communicated to me the following conjecture.

Conjecture 1.1. The center of L is spanned by the element e_{1}, where $1 \in \pi_{1}(\Sigma)$ is the trivial loop.

In this paper, we will prove this conjecture. In fact, we prove a more general result.

Theorem 1.2. The Poisson center of the Poisson algebra $S^{\bullet} L$ is $Z=\mathbb{C}\left[e_{1}\right]$.
The proof of the theorem occupies the rest of the paper.
Remark. A quiver theoretical analog of Theorem 1.2 is given in [CEG. It claims that if Π is the preprojective algebra of a quiver Q which is not Dynkin or affine Dynkin, then the Poisson center of $S{ }^{\bullet} L$ (where $L=\Pi /[\Pi, \Pi]$ is the necklace Lie algebra attached to Π) consists of polynomials in the vertex idempotents.

2. Proof of the theorem

2.1. Moduli spaces of flat bundles. We will assume that $g>1$, since in the case $g \leq 1$ the theorem is easy.

Recall that the fundamental group $\Gamma=\pi_{1}(\Sigma)$ is generated by X_{1}, \ldots, X_{g}, Y_{1}, \ldots, Y_{g} with defining relation

$$
\begin{equation*}
\prod_{i=1}^{g} X_{i} Y_{i} X_{i}^{-1} Y_{i}^{-1}=1 \tag{1}
\end{equation*}
$$

Thus we can define the scheme of homomorphisms $\widetilde{M}_{g}(N)=\operatorname{Hom}\left(\Gamma, G L_{N}(\mathbb{C})\right)$ to be the closed subscheme in $G L_{N}(\mathbb{C})^{2 g}$ defined by equation (11). One can also define the moduli scheme of representations (or equivalently, of flat connections on Σ) to be the categorical quotient $M_{g}(N)=\widetilde{M}_{g}(N) / P G L_{N}(\mathbb{C})$.

The schemes $\widetilde{M}_{g}(N)$ and $M_{g}(N)$ carry the Atiyah-Bott Poisson structure; its algebraic presentation may be found in FR (using r-matrices) and AMM (using quasi-Hamiltonian reduction); see also [G0.

Let us recall the following known results about these schemes, which we will use in the sequel.

Theorem 2.1. (i) $\widetilde{M}_{g}(N)$ and $M_{g}(N)$ are reduced.
(ii) $\widetilde{M}_{g}(N)$ is a complete intersection in $G L_{N}(\mathbb{C})^{2 g}$.
(iii) $\widetilde{M}_{g}(N)$ and $M_{g}(N)$ are irreducible algebraic varieties. Their generic points correspond to irreducible representations of Γ.
(iv) The Poisson structure on $M_{g}(N)$ is generically symplectic.

Proof. Let $\widetilde{M}_{g}^{\prime}(N)$ be the algebraic variety corresponding to the scheme $\widetilde{M}_{g}(N)$. It is shown in [Li that this variety is irreducible. Moreover, it is clear that the generic point of this variety corresponds to an irreducible representation of Γ (we can choose X_{i}, Y_{i} generically for $i<g$ and then solve for $\left.X_{g}, Y_{g}\right)$. It is easy to show that near such a point the map μ : $G L(N)^{2 g} \rightarrow S L(N)$ given by the left hand side of (11) is a submersion. This implies (ii). We also see that $\widetilde{M}_{g}(N)$ is generically reduced. Since it is a complete intesection, it is Cohen-Macaulay and hence reduced everywhere. Thus we get (i) and (iii). Property (iv) is well known and is readily seen from [FR or (AMM. The theorem is proved.
2.2. Injectivity of the Goldman homomorphism. Now let us return to the study of the Lie algebra L. To put ourselves in an algebraic framework, we note that L is naturally identified with $A /[A, A]$, where $A=\mathbb{C}[\Gamma]$ is the group algebra of Γ. Thus, elements of L can be represented by linear combinations of cyclic words in $X_{i}^{ \pm 1}, Y_{i}^{ \pm 1}$.

In GO, Goldman defined a homomorphism of Poisson algebras

$$
\phi_{N}: S^{\bullet} L \rightarrow \mathbb{C}\left[M_{g}(N)\right]
$$

defined by the formula $\phi_{N}(w)(\rho)=\operatorname{Tr}(\rho(w))$, where ρ is an N-dimensional representation of Γ and w is any cyclic word representing an element of L. It follows from Weyl's fundamental theorem of invariant theory that the Goldman homomorphism is surjective.

Let $L_{+} \subset L$ be the linear span of the elements $e_{\gamma}-e_{1}$. Obviously, we have $L=L_{+} \oplus \mathbb{C} e_{1}$,

Proposition 2.2. For any finite dimensional subspace $Y \subset S^{\bullet} L_{+}$, there exists an integer $N(Y)$ such that for $N \geq N(Y)$, the map $\left.\phi_{N}\right|_{Y}$ is injective.

Proof. Let $K(N)$ be the kernel of ϕ_{N} on $S^{\bullet} L_{+}$. It is clear that $K(N+1) \subset$ $K(N)$ (as $\left.\phi_{N+1}\left(e_{\gamma}-e_{1}\right)(\rho \oplus \mathbb{C})=\phi_{N}\left(e_{\gamma}-e_{1}\right)(\rho)\right)$. Thus it suffices to show that $\cap_{N \geq 1} K(N)=0$.

Assume the contrary. Then there exists an element $0 \neq f \in S^{\bullet} L_{+}$such that $\phi_{N}(f)=0$ for all N.

Recall that according to FiR, the group Γ is conjugacy separable, i.e., if elements $\gamma_{0}, \ldots, \gamma_{m}$ are pairwise not conjugate in Γ then there exists a finite quotient Γ^{\prime} of Γ such that the images of $\gamma_{0}, \ldots, \gamma_{m}$ are not conjugate in Γ^{\prime}.

Now let $\gamma_{0}=1$ and $f=P\left(e_{\gamma_{1}}-e_{1}, \ldots, e_{\gamma_{m}}-e_{1}\right)$, where P is some polynomial. Let Γ^{\prime} be the finite group as above, V_{1}, \ldots, V_{s} be the irreducible representations of Γ^{\prime}, and $\chi_{1}, \ldots, \chi_{s}$ be their characters. Let $V=\oplus_{j} N_{j} V_{j}$; we regard V as a representation of Γ and let $N=\operatorname{dim} V$. Then $\phi_{N}(f)(V)=$ $P\left(w_{1}, \ldots, w_{m}\right)$, where $w_{i}=\sum_{j} N_{j}\left(\chi_{j}\left(\gamma_{i}\right)-\chi_{j}(1)\right)$. By representation theory of finite groups, the matrix with entries $a_{i j}=\chi_{j}\left(\gamma_{i}\right)-\chi_{j}(1)$ has rank m; thus, there exist $N_{j} \geq 0$ such that $P\left(w_{1}, \ldots, w_{m}\right) \neq 0$. For such $N_{j}, \phi_{N}(f) \neq 0$, which is a contradiction.
2.3. Proof of Theorem 1.2, Now we are ready to prove Theorem 1.2, Let z be a central element of the Poisson algebra $S^{\bullet} L$. Consider the element $\phi_{N}(z)$. This is a regular function on $M_{g}(N)$ which Poisson commutes with all other functions (since ϕ_{N} is surjective). Since by Theorem [2.1] the scheme $M_{g}(N)$ is in fact a variety, which is irreducible and generically symplectic, any Casimir on this variety must be a scalar.

Since $S^{\bullet} L=S^{\bullet} L_{+} \otimes \mathbb{C}\left[e_{1}\right]$, we can write z as

$$
z=\zeta\left(e_{1}\right)+\sum_{j=1}^{m} \zeta_{j}\left(e_{1}\right) f_{j},
$$

were f_{j} are linearly independent elements which belong to the augmentation ideal of $S^{\bullet} L_{+}$, and $\zeta, \zeta_{j} \in \mathbb{C}[t]$. Applying ϕ_{N} to this equation, and using that $\phi_{N}\left(e_{1}\right)=N$, we get that

$$
\zeta(N)+\sum_{j=1}^{m} \zeta_{j}(N) \phi_{N}\left(f_{j}\right)=\gamma_{N}
$$

Let Y be the linear span of 1 and $f_{j}, j=1, \ldots, m$ in $S^{\bullet} L_{+}$. By Proposition 2.2] for $N \geq N(Y)$, we have

$$
\zeta(N)+\sum_{j=1}^{m} \zeta_{j}(N) f_{j}=\gamma_{N}
$$

Thus $\zeta_{j}(N)=0$ for $N \geq N(Y)$. Hence $\zeta_{j}=0$ for all j and $z=\zeta\left(e_{1}\right)$. The theorem is proved.

Acknowledgements. This work was partially supported by the NSF grant DMS-9988796 and the CRDF grant RM1-2545-MO-03. I am grateful to M. Chas and D. Sullivan for posing the problem, and to Hebrew University for hospitality. I also thank V. Ginzburg for useful discussions and M. Sapir for explanations and references about conjugacy separability.

References

[AMM] A. Alekseev, A. Malkin, E. Meinrenken, Lie group valued moment maps, J. Differential Geom. 48 (1998), 445-495.
[CEG] W. Crawley-Boevey, P. Etingof, V. Ginzburg, Noncommutative geometry of preprojective algebras, to appear.
[C] M. Chas, Combinatorial Lie bialgebras of curves on surfaces. Topology 43 (2004), no. $3,543-568$.
[FiR] B. Fine, G. Rosenberger, Conjugacy separability of Fuchsian groups and related questions. Combinatorial group theory (College Park, MD, 1988), 11-18, Contemp. Math., 109, Amer. Math. Soc., Providence, RI, 1990.
[FR] Fock, V. V.; Rosly, A. A. Poisson structure on moduli of flat connections on Riemann surfaces and the r-matrix. Moscow Seminar in Mathematical Physics, 67-86, Amer. Math. Soc. Transl. Ser. 2, 191, Amer. Math. Soc., Providence, RI, 1999.
[Go] W.M. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Inventiones Math., 85 (1986), 263-302
[Li] J. Li, The space of surface group representations, Manuscripta Math. 78 (1993), no. 3, 223-243.
[Tu] V.G. Turaev, Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. Ecole Norm. Sup. (4) 24 (6) (1991) 635-704.

Department of Mathematics, Massachusetts Institute of Technology, CambRidge, MA 02139, USA

E-mail address: etingof@math.mit.edu

