
ptg10683285

From the Library of Bill Wiecking

ptg10683285

From the Library of Bill Wiecking

ptg10683285

Visual QuickStart Guide

Steven Holzner

1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at www.peachpit.com.
To report errors, please send a note to errata@peachpit.com.
Peachpit Press is a division of Pearson Education.

Copyright © 2010 by Steven Holzner

Editor: Judy Ziajka
Production Coordinator: Myrna Vladic
Compositor: Deb Roberti
Proofreader: Wendy Sharp
Indexer: FireCrystal Communications
Cover Design: Peachpit Press

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. For
information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

!e information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Visual QuickStart Guide is a registered trademark of Peachpit Press, a division of Pearson Education. Any
other product names used in this book may be trademarks of their own respective owners.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim,
the designations appear as requested by the owner of the trademark. All other product names and services
identi"ed throughout this book are used in editorial fashion only and for the bene"t of such companies with
no intention of infringement of the trademark. No such use, or the use of any trade name, is intended to
convey endorsement or other a#liation with this book.

ISBN 13: 978-0-321-69946-6
ISBN 10: 0-321-69946-7

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

From the Library of Bill Wiecking

www.peachpit.com

ptg10683285

To Nancy, of course!

!e book you hold in your hands is the
product of many people’s work. I would
particularly like to thank Wendy Sharp
and Judy Ziajka for their tireless e$orts
to make this book the best it can be and
Danny Kalev for his careful technical
review of the entire manuscript.

From the Library of Bill Wiecking

ptg10683285

Creating Your First Program. 3
Compiling and Running Your First Program 6
Using Variables . 8
Displaying Values in Variables . 9
Working with Data Types . 11
Adding Comments . 13
Using Arithmetic Operators . 15
Using Assignment Operators . 17
Using the Increment and

Decrement Operators . 19
Changing Type with Cast Operators 21

Using the if Statement . 26
Using the else Statement . 27
Using the switch Statement . 29
Using Comparison Operators 31
Using Logical Operators . 32
Using the Conditional Operator 33
Using the for Loop . 35
Using the while Loop . 37
Using the do...while Loop . 39
Using the break Statement . 41

About Creating NS-Class Objects 45
Creating Arrays . 46
Initializing Arrays . 47
Looping over Arrays . 48
Creating Two-Dimensional Arrays 49
Using Pointers . 51
Using Pointer Math . 52
Interchanging Pointers and Arrays 53
Using Strings . 54
Passing Messages to String Objects 56
Using Enumerations . 57

From the Library of Bill Wiecking

ptg10683285

De"ning a Function . 61
Declaring Functions Using Prototypes 62
Passing Arguments to Functions 64
Returning Values from Functions 66
Using Function Scope . 68
Passing Pointers to Functions 70
Passing Arrays to Functions . 72
Passing Constant Data to Functions 74
Using Recursion . 76
Using Pointers to Functions . 77

Creating Objective-C Classes and Objects 82
Using Class Methods . 84
Creating an Object . 86
Creating Object Methods . 87
Storing Data in Objects . 88
Passing Multiple Arguments to Methods 90
Storing the Interface in a Header File 92
Adding the Implementation to the Header File . . . 94
Linking Multiple Files . 95
Using Constructors . 97

About Access Speci"ers . 100
Using Public Access . 102
Using Private Access . 103
Using Protected Access . 105
Using Class Variables . 107
Accessing the Current Object 109
Creating a Variable for Multiple

Object Types . 111
Verifying !at an Object Belongs to a Class 113
Checking an Object's Class with

isKindOfClass . 115
Verifying !at an Object Supports a Method 117
Checking Whether Objects Support a Method . . . 118

Inheriting from a Class . 121
Inheriting Base-Class Data Members 122
Inheriting Base-Class Methods 124
Overriding Base-Class Methods 126
Overloading Base-Class Methods 128

From the Library of Bill Wiecking

ptg10683285

Using Multi-level Inheritance 130
Limiting Access . 132
Restricting Access . 134
Using Constructors with Inheritance 136
Using Polymorphism . 138

About Categories . 143
Categories: Creating the Base Class 145
Categories: Creating Categories 146
Categories: Putting It All Together 147
About Posing . 149
Posing: Creating the Base Class 151
Posing: Creating the Derived Class 152
Posing: Putting It All Together 153
About Protocols . 155
Protocols: De"ning the Protocol and

Interfaces . 157
Protocols: Creating the Class

Implementations . 159
Protocols: Putting It All Together 161

Creating an Array . 165
Accessing Array Elements . 166
Using Enumeration to Loop over an Array 167
Creating a Mutable Array . 169
Adding Elements to a Mutable Array 171
Sorting an Array . 173
Releasing Array Memory . 175
Creating a Dictionary . 176
Enumerating a Dictionary . 178
Creating a Mutable Dictionary 180
Adding Objects to a Mutable Dictionary 181

Creating Test Objects . 185
Displaying the Retain Count 186
Incrementing an Object’s Retain Count 188
Decrementing an Object’s Retain Count 190
Deallocating Objects from Memory 192
Using an Autorelease Pool . 194
Using Self-Managed Memory 195
Deallocating Memory Yourself: Creating

the Class . 197

From the Library of Bill Wiecking

ptg10683285

Deallocating Memory Yourself: Storing
Internal Objects . 198

Deallocating Memory Yourself: Creating
the main Method . 200

Deallocating Memory Yourself: Performing
Deallocation . 201

Catching Exceptions . 205
Handling Exceptions . 206
Using the End Handler . 207
Creating an Exception . 209
Checking What Exception Occurred 211
Handling Multiple Exceptions 213
Passing Exceptions Up the Call Stack 215
Returning Values from Exception Handlers 217
Returning void from an Exception Handler 219
Catching Uncaught Exceptions 221

From the Library of Bill Wiecking

ptg10683285

Welcome to Objective-C. !is book is your
guided tour of this exciting language, and
it gives you what you need to start working
with Objective-C at once.

Using Objective-C, you can write professional
programs that make use of many object-
oriented features—from the basics up to
advanced class inheritance and exception
(run-time error) handling.

Objective-C runs on many di$erent platforms.
For the most part, your code should work
unchanged on all platforms that Objective-C
supports, but where di$erences in support
exist, this book points them out to you.

!is book starts with the basics and contin-
ues on through advanced topics. You’ll begin
by looking at how to get Objective-C started
and how to run basic programs. From there,
you’ll explore data handling, again start-
ing with the basics and moving on through
advanced topics.

After looking at how to write your own
functions, you’ll wrap functions and data
together into objects—the core of Objective-C
programming. And when you start working
with object-oriented programming, the lid is
o$—and we’ll push the envelope as far as it
can go.

!at’s the plan, then: to present a guided tour
of Objective-C, taking you from the beginning
to the most advanced topics. Let’s get started
with Chapter 1 now.

From the Library of Bill Wiecking

ptg10683285

!is book takes you on a guided tour of
Objective-C, from the basics on up through
the cool stu$.

Objective-C is a cross-platform language, so
you’ll "nd it on many systems: the Mac, of
course, but also Linux, UNIX, Windows, and
more—and its core programming code stays
the same across all those platforms.

Objective-C is actually a layer built on
top of the C language, and everything that
works in standard (that is, ANSI) C works
in Objective-C. Objective-C also adds tons
of object-oriented features to the original
C language.

!e way it uses objects is what makes
Objective-C so popular, but just what is an
object? Object-oriented programming was
introduced when programs began to get very
large and the structure of the code began to
get in the way. Object-oriented programming
lets programmers wrap whole sections of
their code into easily handled, self-contained
objects and so let them break up their code.

continues on next page

From the Library of Bill Wiecking

ptg10683285

For example, say you have a bowl of pudding
that you want to keep cold. You could set
up a system of coolant pipes, switches, and
dials that cool your pudding but which take
your constant attention: you have to watch
the temperature, and when the pudding gets
too warm, you have to turn on the coolant
compressor and pump and so on; when the
pudding gets cold enough, you have switch
those things o$.

!at was the old way of programming, with
the guts of every item in your program laid
bare to the whole rest of the program.

Object-oriented programming, by contrast,
lets you wrap all that functionality into a sin-
gle object: a refrigerator. !e refrigerator’s job
is to keep things like pudding cold without
a lot of fuss on your part. It is responsible for
maintaining its own internal state—that is,
remaining cold inside. It has thermostats and
relays and the like to automatically handle
the jobs you previously did manually. So if
you want your pudding kept cold, simply put
it in the refrigerator. All the details are hidden
from view, and your kitchen becomes a much
easier place to handle conceptually.

So it is with object-oriented programming.
Now you can wrap code and data together into
objects that are self-contained, and because all
the details are hidden, your interaction with
those objects becomes a lot simpler.

!at’s the secret behind object-oriented
programming: divide and conquer.

In this book, you’ll see what makes the
objects in Objective-C tick. !ey’re di$erent
than the objects in other languages—they
communicate with messages; you don’t call
the code in them directly—but they’re just as
powerful, and often more so.

We’ll start in this chapter with the basics:
handling basic data items, printing results
from Objective-C programs, running your
programs, and more.

From the Library of Bill Wiecking

ptg10683285

We’re going to jump right into Objective-C by
creating and running a program, which we’ll
name "rst.m.

We’ll start by creating a function—that is,
a bit of code that you can call by name—
named :

Functions can be passed data, as you’ll see
later, but this function isn’t passed any data,
which is why we use the keyword in
the parentheses. Functions can also return
values, and the function returns
an integer value to Objective-C indicating
whether the program succeeded. !e in
front of tells Objective-C to expect an
integer return value. !e code for the
function goes inside curly braces: and .

Next, we’ll use the built-in Objective-C func-
tion named to display some text.
We pass the text we want to display
inside parentheses:

continues on next page

 !e extension for Objective-C code "les
is .m.

From the Library of Bill Wiecking

ptg10683285

To use the function, we have to
tell Objective-C about that function with a
function declaration, as you’ll see when we
discuss how to create functions. !e decla-
rations for the standard I/O functions like

 are contained in an Objective-C "le
named stdio.h, where .h stands for “header
"le”; we include stdio.h in our program as
shown here so Objective-C knows about the

 function:

When the program ends, Objective-C will
expect some indication of whether the func-
tion succeeded. We’ll return a value of 0 to
Objective-C, which means there were no
errors. Listing 1.1 shows the entire program,
which you will create step by step in the
following tasks.

 Note that and are the
same for our purposes. You can use them
interchangeably and in any order.

From the Library of Bill Wiecking

ptg10683285

From http://developer.apple.com/
iphone, download and install the Xcode
Integrated Development Environment.

Run Xcode.

Choose File > New Project.

In the New Project window, choose
Application.

Click the Command-Line Tool icon to
select it.

From the Type drop-down menu,
choose Foundation.

Click the Choose button.

Enter First as the name of your
application.

Select a save location and click the
Save button.

 In the text editor window, enter the code
in Listing 1.1.

 Choose File > Save.

Open a text editor.

Enter the code in Listing 1.1.

Save the "le as !rst.m in a directory of
your choice.

From the Library of Bill Wiecking

http://developer.apple.com/

ptg10683285

To run an Objective-C program, you "rst
have to compile it, which makes Objective-C
convert your code into the machine language
that your computer can understand.

When you run the "rst program, you should
see this result:

!e Objective-C language comes built
into Mac OX 10.6, but not Linux, UNIX, or
Windows, so you’ll have to download it.

If you’re using Linux or UNIX, go to http://
www.GNUstep.org/resources/sources.html
and download and install GNUstep, which
gives you the Objective-C compiler.

If you’re using Windows, go to http://www.
GNUstep.org/experience/Windows.html
and download the Windows installer for
GNUstep and run it to install GNUstep.

 In Xcode, on the Project window toolbar,
click the Build and Run button.
You should see this message:

Congratulations, you’ve run your "rst
Objective-C program!

From the Library of Bill Wiecking

http://www.GNUstep.org/resources/sources.html
http://www.GNUstep.org/resources/sources.html
http://www.GNUstep.org/experience/Windows.html
http://www.GNUstep.org/experience/Windows.html

ptg10683285

 Open a command prompt window.

 Change to the directory containing
"rst.m.

 Enter the following command, prefacing
 with the path to the GNUstep gcc

compiler if your computer can’t "nd the
compiler:

 Run the program, like this:

You should see this message:

Congratulations, you’ve run your "rst
Objective-C program!

 !is book uses as a generic command
prompt.

 Choose Start > Programs > GNUstep > Shell.

 In the shell, change to the directory con-
taining "rst.m/. For example, if "rst.m is
in the directory C:\objectivec, you would
enter the following (where $ is a generic
command prompt):

 In the shell, enter the following command
to compile "rst.m into "rst.exe:

 Execute the "rst.exe program, like this:

You should see this message:

Congratulations, you’ve run your "rst
Objective-C program!

From the Library of Bill Wiecking

ptg10683285

In Objective-C programs, you can store your
data in variables, which are placeholders for
that data.

For example, say you have $1 million in your
bank account and want to keep track of
it; you can store that amount in a variable
named , like this:

!is code creates a variable that stores inte-
gers (again, that’s the part) and initializes
the value in the variable to 1000000.

To display the value in the variable,
you can use :

!is code prints the string
 to start. !e code is a

placeholder that will be replaced by the inte-
ger variable that follows the quoted string,
which is the variable. (!e entry is
the newline code, which makes the text skip
to a new line.)

When this program runs, you’ll see the value
in the variable displayed like this:

 Enter the code shown in Listing 1.2 in
a new program, account.m.

 Create the new variable named
and initialize it to 1000000 (Listing 1.3).

 Display the value in the variable
(Listing 1.4).

 Build and run the account.m program.
You should see this result:

From the Library of Bill Wiecking

ptg10683285

!e capability to display the values stored
in variables with the Objective-C built-in

 function is very useful. In the
previous task, you saw that the code is
a placeholder for integer variables:

Table 1.1 shows some of the most popular
 codes.

For example, if you change the vari-
able in the previous task from the integer
() type to a %oating-point value (),
you can display its value using and

 (for):

In this task, you’ll create a program named
temperature.m that will display a time (as
an integer) and a temperature (as a %oating-
point number). To do that, you’ll use commas
in to separate the variables whose
values you want to display:

continues on next page

From the Library of Bill Wiecking

ptg10683285

Given the "nite precision of computers,
however, you’ll actually see this instead of
73.6 degrees:

You need to round the %oating-point value
up, which you can do by using the code
instead of just . !e code tells the
program that you want your number to be
four total places long with one place after the
decimal point. !at gives you

which is what you want.

 Create a new program named
temperature.m.

 In temperature.m, enter the code shown
in Listing 1.5.

 Save temperature.m.

 Run the temperature.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

Objective-C comes with some built-in data
types that you can use to create variables. For
example, you’ve already seen the type,
which you can use to create integer variables.

!e type is called a primitive in Objective-C,
because it’s built in to the language and it’s
a simple type. Table 1.2 shows the primitive
types in Objective-C.

In this task, we’ll create a program named
datatype.m that has four variables: a charac-
ter, an integer, a long, and a %oat variable:

!e code will display the values of them all:

From the Library of Bill Wiecking

ptg10683285

 Create a new program named
datatype.m.

 In datatype.m, enter the code shown in
Listing 1.6.

 Save datatype.m.

 Run the datatype.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

Objective-C lets you include English-
language comments to yourself or others
in programs. Such comments are useful to
provide documentation or to indicate how
code needs to be modi"ed.

Objective-C ignores any text between the
markers and , so you can insert com-
ments like this in your code:

You also can change such comments into
multiline comments, like this:

Objective-C also recognizes another type of
comment that is commonly used in the C++
language: one-line comments that begin with

. Objective-C ignores everything after on
a line, so these comments are often used to
annotate single lines of code:

In this task, we’ll add comments to the
datatype.m program from the previous task.

 Open datatype.m for editing.

 In datatype.m, enter the two comments
shown in Listing 1.7.

continues on next page

From the Library of Bill Wiecking

ptg10683285

 In datatype.m, enter the one-line comment
shown in Listing 1.8.

 Save datatype.m.

 Run the datatype.m program to con"rm
that Objective-C ignores the comments.

From the Library of Bill Wiecking

ptg10683285

Like most programming languages,
Objective-C comes stocked with arithmetic
operators to let you perform basic math.
!ese operators let you add values, subtract
them, multiply them, and more (Table 1.3).

You can use these operators with the values
in variables, like this:

We’ll put together a program, operators.m, to
test these operators.

 If you’re not familiar with the modulus
operator, %, it just returns the integer
remainder after division. For example,
since 10 divided by 3 is 3 with a remainder
of 1, 10 % 3 = 1.

From the Library of Bill Wiecking

ptg10683285

 Create a new program named
operators.m.

 In operators.m, enter the code shown in
Listing 1.9.
!is code declares two operands: x and y.

 Add the code to put the arithmetic opera-
tors to use (Listing 1.10).

 Save operators.m.

 Run the operators.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

You’ve already seen that you can assign
values to variables with the assignment
operator =, as shown here:

You can also combine operators with the
assignment operator as a shortcut. For
example, you can write

using the shortcut assignment operator + =
as shown here:

Table 1.4 lists the assignment operators.

 Create a new program named
assignment.m.

 In assignment.m, enter the code shown in
Listing 1.11.
!is code declares two variables: and .

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Add the code to put the assignment
operators to use (Listing 1.12).

 Save assignment.m.

 Run the assignment program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

Objective-C also supports two more operators:
the ++ increment operator and the -- decrement
operator. For instance, to increment the value
in the variable named , you write

, which adds 1 to the value in
. To decrement the value, you

enter , which decreases the
value in by 1.

You can use ++ and -- either before or after
a variable, and the position makes a di$er-
ence. !e expression adds 1 to x and then
evaluates the rest of the line of code, and the
expression "rst evaluates the line of code
and then, after the current line of code has
"nished executing, increments the value in x.

For example, say you have this code:

!is code would print , because
the increment operation was performed
after the assignment. On the other hand,
say you execute:

!is code would print , because the
increment operation was completed "rst and
then the assignment.

Let’s test the increment operator.

 !e decrement operator works the same
way as the increment operator.

From the Library of Bill Wiecking

ptg10683285

 Create a new program named
increment.m.

 In increment.m, enter the code shown in
Listing 1.13.
!is code declares two variables: and .

 Add the code to put the increment opera-
tor to use (Listing 1.14).

 Save increment.m.

 Run the increment.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

Suppose you want to "nd the modulus of two
%oating-point numbers in a program named
cast.m. You might enter the following code:

When you run this code, however, the
Objective-C compiler returns an error
message:

!e problem is that the modulus opera-
tor needs integer operands. To solve this
problem, you can temporarily convert the
%oating-point variables to integer variables
with the cast operator, like this:

Now everything works "ne.

You can use cast operators to convert
between various types: , ,

, and so on.

From the Library of Bill Wiecking

ptg10683285

 Create a new program named cast.m.

 In cast.m, enter the code shown in
Listing 1.15.
!is code declares three variables: , ,
and .

 Add the code to put the modulus opera-
tor and the cast operator to work
(Listing 1.16).

 Save cast.m.

 Run the cast.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

!is chapter is all about taking control of
your code by making programs %ow as you
want. You’ll see how to make choices with the

 statement, loop over and over with loops,
and more.

!e primary program %ow statement that
allows you to make choices is the state-
ment. With the statement, you can test a
condition and execute code depending on
whether or not the statement is true. For
example, say you have a variable named
temperature, which is set to 72:

continues on next page

From the Library of Bill Wiecking

ptg10683285

You can use the = = equality operator to test
whether the value of the temperature vari-
able is equal to 72 and, if so, execute speci"c
code like this:

You can also add an statement that
executes code if the condition in the
statement turns out to be false:

From the Library of Bill Wiecking

ptg10683285

Loops provide another tool for controlling
the %ow of your programs. Loops let you
perform speci"c actions over and over, such
as summing a group of numbers or drawing
lines. For example, in a loop, the most
common type of loop, you initialize a variable
called (usually by setting it to
zero), specify the condition that causes the
loop to end, and an operation to perform
after the body of the loop is executed. In the
example here, the loop ends when the

 variable contains a number greater
than 5; after the body of the loop runs, the

 value is incremented:

!is example displays the text “You’ll see this
"ve times.”

More on the loop and the other loops in
Objective-C is coming up in this chapter.

From the Library of Bill Wiecking

ptg10683285

!e statement is the most basic of the
program %ow control statements. !is state-
ment lets you test a condition, and if the con-
dition is true, lets you execute speci"c code.

For example, if you set a variable named
 to 72, you can use an state-

ment to test to make sure that the variable
does contain 72. You place the condition you
want to test, which in this case is

, using the = = equality operator, inside
parentheses, and the code you want to exe-
cute if the condition is true in curly braces
following the parentheses, like this:

In this case, the temperature does equal
72, so the code in the curly braces will be
executed. Here, that code prints the message
“Perfect weather.”

 Create a new program named if.m.

 In if.m, enter the code shown in Listing 2.1.
!is code creates the vari-
able and checks to see if it equals 72.

 Add the code to display the “perfect
weather” message if the temperature
equals 72 (Listing 2.2).

 Save if.m.

 Run the if.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

!e statement allows you to specify code
that runs if a condition you specify (such as

) is true. !e state-
ment lets you specify alternative code that
runs when an statement’s condition turns
out to be false.

For example, as shown here, you can modify
the previous task’s code to display the mes-
sage “Weather could be better.” if the tem-
perature is not 72.

 If you use an statement, it must
immediately follow an statement.

From the Library of Bill Wiecking

ptg10683285

 Create a new program named else.m.

 In else.m, enter the code shown in
Listing 2.3.
!is code creates the vari-
able and checks to see if it equals 72.

 Add the statement to display alter-
native text if the temperature does not
equal 72 (Listing 2.4).

 Save else.m.

 Run the else.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

If you have many conditions to test, you may
want to use a statement instead of
multiple statements. You can test
text strings (coming up in the next chapter)
or integers with the statement. When
a statement that matches the value
in the variable you’re testing is found in the

 statement, the corresponding code
is executed.

!e following example tests for various tem-
peratures, executing code for each temperature:

From the Library of Bill Wiecking

ptg10683285

 Create a new program named switch.m.

 In switch.m, enter the code shown in
Listing 2.5.
!is code creates the vari-
able and the statement.

 Add the statements to display a mes-
sages corresponding to the temperature
(Listing 2.6).

 Save switch.m.

 Run the switch.m program.
You should see the following:

 If no statement matches the vari-
able you’re testing, the case is
executed.

From the Library of Bill Wiecking

ptg10683285

So far we’ve compared values with the = =
equality comparison operator:

!e equality operator is just one of the
Objective-C comparison operators, which
are listed in Table 2.1.

 Create a new program named
compare.m.

 In compare.m, enter the code shown in
Listing 2.7.
!is program compares the temperature
to 72, and if the temperature is less than
72, it executes code.

 Add the statements to display a
messages if the temperature is below 72
(Listing 2.8).

 Save compare.m.

 Run the compare.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

In the previous task, we checked to see if the
temperature was less than 72:

What if you want to check whether the tem-
perature is between 70 degrees and 74 degrees?
For that, you can use a logical operator. Logical
operators let you connect true-or-false clauses.
Table 2.2 lists the logical operators.

 Create a new program named logical.m.

 In logical.m, enter the code shown in
Listing 2.9.
!is code sets up the statement to
check whether the temperature is less
than 74 and greater than 70.

 Display a message if the temperature is
within the tested range (Listing 2.10).

 Save logical.m.

 Run the logical.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

We’ve seen how you can make decisions in
code using the statement and execute other
code to match the results of those decisions.

You can also use the conditional operator to
make decisions. !is operator lets you evalu-
ate an expression and execute code depend-
ing on the result. !e conditional operator
has this format:

Objective-C evaluates , and if
it’s true, executes ; if it’s false, it
executes . !e returned value
from this operator is the expression that is
executed. For example, you may want to cap
the temperature at 72, and if it’s greater than
72, set it to 72. Here’s how to do that with a
conditional operator:

Here, if the temperature is greater than 72,
the "rst expression, 72, is returned from the
conditional operator. If it’s less than 72, the
temperature itself is returned.

From the Library of Bill Wiecking

ptg10683285

 Create a new program named
conditional.m.

 In conditional.m, enter the code shown in
Listing 2.11.
!is code creates the vari-
able and the statement that uses the
conditional operator to make sure the
temperature is capped.

 Add the code to display the results
(Listing 2.12).

 Save conditional.m.

 Run the conditional.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

Loops let computers do what they excel at:
perform many operations rapidly. Loops let
you execute a section of code over and over,
typically operating on di$erent data in each
loop iteration (that is, each time through
the loop).

!e loop has this format:

Here, is an expression evalu-
ated before the loop starts; you typically set a

 variable (which keeps track of the
number of times the loop has executed) to
zero here. !e speci"cation
is an expression (such as)
that, when it is no longer true, ends the loop.
!e speci"cation
is executed after the body of the loop (in
curly braces following the statement) is
executed; you typically increment the

 value here.

Here’s an example that uses a loop to dis-
play the message “You’ll see this "ve times.”:

From the Library of Bill Wiecking

ptg10683285

 Create a new program named for.m.

 In for.m, enter the code shown in
Listing 2.13.
!is code creates a loop that executes
"ve times.

 Add the code to display the message each
time through the loop (Listing 2.14).

 Save for.m.

 Run the for.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

Objective-C o$ers another popular loop: the
 loop. !is loop keeps executing its

body while a certain condition is true. !e
 loop has this format:

!e loop checks the expres-
sion, and it it’s true, executes the code in
the body of the loop. When the condition
is tested and turns out to be false, the loop
stops executing.

Here’s an example of a loop that dis-
plays the message “You’ll see this "ve times.”:

From the Library of Bill Wiecking

ptg10683285

 Create a new program named while.m.

 In while.m, enter the code shown in
Listing 2.15.
!is code creates a loop that
executes "ve times.

 Add the code to display the message each
time through the loop and to increment

, which is checked by the
 loop before each loop iteration

(Listing 2.16).

 Save while.m.

 Run the while.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

One more popular loop that Objective-C
o$ers is the loop. Like the
loop, this loop keeps executing its body while
a certain condition is true, but unlike the

 loop, it checks its condition after the
loop’s body executes. !e loop
has this format:

!e loop executes its body and
then checks the expression; it
it’s true, the loop executes again. When the
condition is tested and turns out to be false,
the loop stops executing.

Why do you need the loop in
addition to the loop? You typically use
a loop when the loop condition
is set for the "rst time within the loop: for
example, if you’re reading from a "le and ter-
minating the loop at the end of the "le, you
need to try to read from the "le at least once
to see if the "le contains any data for you to
read before the loop is terminated.

Here’s an example that displays the message
“You’ll see this "ve times.” !is time, a

 loop was used:

From the Library of Bill Wiecking

ptg10683285

 Create a new program named do.m.

 In do.m, enter the code shown in
Listing 2.17.
!is code creates a loop that
executes "ve times.

 Add the code to display the message each
time through the loop and to increment

, which is checked by the
 loop after each loop iteration

(Listing 2.18).

 Save do.m.

 Run the do.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

Sometimes you may want to break out of a
loop—that is, terminate it. For example, say
that you’re happily printing the reciprocals
of –1/5 up to 1/5:

However, when you get to 1/0 (division by
zero), Objective-C will report an error. To
avoid that, you can use a statement to
break the loop execution before the attempt
to divide by 0 occurs:

!e statement causes the loop to
end—in this case, avoiding division by zero,

From the Library of Bill Wiecking

ptg10683285

 Create a new program named break.m.

 In break.m, enter the code shown in
Listing 2.19.
!is code prints the reciprocals from –1/5
to 1/5, but will report an error for 1/0.

 Add the code to break loop execution
before the attempt to divide by zero
(Listing 2.20).

 Save break.m.

 Run the break.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

!is chapter is all about working with data
in Objective-C. You’ll use arrays, pointers,
strings, and more.

An array is a set of data items, called elements,
that you can refer to with an array index. For
example, if you store numbers in an array
named , you can address each element
with an index number like this: ,
which refers to the "rst element; ,
which refers to the second element; and so
on. !e following code creates an array of "ve
elements, stores a value of 51 in ,
and then displays that value:

Pointers are special variables that hold the
address in memory of data items. You can
store the address of a variable named
in a pointer with the & operator like this:

continues on next page

From the Library of Bill Wiecking

ptg10683285

You can then refer to the value of as
 like this:

Pointers are very important in Objective-C
because you use them to create objects. For
example, text strings in Objective-C are usu-
ally objects (the “ ” part stands
for NeXtStep, the name of the organization
that originally created these objects). To
create a text string in Objective-C, you create
a pointer to a object. You can pass
that object the message to have it
return a C-style string that can print:

 Here’s an important point: To create
objects of any class that begins with

, you must include the Objective-C
Foundation header "le (the

 line in the
code here).

From the Library of Bill Wiecking

ptg10683285

To create objects of any class that begins
with , you must include the Objective-C
Foundation header "le. If you’re using Xcode
on the Mac, make sure that the Foundation
option is selected on the New Project page
when you create a project. If you’re using
Objective-C in Windows, Linux, or UNIX,
you need a make"le named GNUmake"le
like the following, which compiles a program
named source.m and creates an executable
application named app (which is app.exe
in Windows):

In Linux and UNIX (not Windows), you also
have to set up the GNUstep environment
variables. You do that in the C shell like this:

And you do it like this in the Bourne shell:

On most UNIX systems, <GNUstep root> is
/usr/lib/GNUstep. To run the make"le, just
change to the directory with the make"le
(GNUmake"le) and type make, which creates
the executable application in a subdirectory
named obj. In this example, you can run that
application by typing ./obj/app.

From the Library of Bill Wiecking

ptg10683285

Arrays are sets of elements (which can be of
any Objective-C type) that you can access
using an index value. In the following task,
you’ll declare an array of "ve elements, assign
the value 51 to the "rst element, ,
and then display that value.

 Create a new program named array.m.

 In array.m, enter the code shown in
Listing 3.1.
!is code creates the array named
and sets equal to 51.

 Add the code to display the value in
Listing 3.2).

 Save array.m.

 Run the array.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

You can initialize the value of the elements in
an array when you declare that array by enclos-
ing the initialization values in curly braces:

 Create a new program named
initializearray.m.

 In initializearray.m, enter the code shown
in Listing 3.3.
!is code creates the array and initializes
the values of its elements.

 Calculate the number of elements in the
array, using the operator to get
the size of the whole array and dividing
by the size of a single element (Listing 3.4).

 Save initializearray.m.

 Run the initializearray.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

Arrays and loops are made for each other.
Arrays hold sets of data, and loops let you
iterate over such data sets. Looping over
long sets of data in arrays is one of the things
computers are really good at.

For example, if you have an array of student
scores and want to "nd their average, you can
use a loop:.

 Create a new program named
arrayloop.m.

 In arrayloop.m, enter the code shown in
Listing 3.5.
!is code creates the array and
initializes it.

 Add the code to sum all the elements
in the array and "nd their average
(Listing 3.6).

 Save arrayloop.m.

 Run the arrayloop.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

So far we’ve been working with arrays in
one dimension, but you can create multi-
dimensional arrays as well. While you
access an element in a one-dimensional
array as , you access
elements in a two-dimensional array as

.

For example, if you have an array of student
scores for each of three tests and want to
"nd the average score for each of the three
tests, you can use a two-dimensional array.
You initialize the two-dimensional array with
nested lists in curly braces and loop over the
lists with nested loops:

From the Library of Bill Wiecking

ptg10683285

 Create a new program named array2.m.

 In array2.m, enter the code shown in
Listing 3.7.
!is code creates an array and loops over
each row.

 Add the code to loop over each column
and display the average for each test
(Listing 3.8).

 Save array2.m

 Run the array2.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

Pointers hold the address in memory of data
items. You declare a pointer by prefacing it
with an asterisk (*):

!en you can use the & operator to get the
address of a variable in memory and assign it
to the pointer:

Using the asterisk again, you can refer to the
data pointed to by the pointer::

 Create a new program named
pointers.m.

 In pointers.m, enter the code shown in
Listing 3.9.
!is code creates the pointer and
assigns it the address of the variable
named .

 Assign a new value to the memory location
pointed to by the pointer and display the
data stored in that location (Listing 3.10).

 Save pointers.m.

 Run the pointers.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

If you point to items arranged one after
another in memory, such as in an array,
you can increment or decrement pointers
to point to the next or previous item. For
instance, the following example prints the
"rst number in an array and then the second
number by incrementing a pointer:

 Create a new program named
pointermath.m.

 In pointermath.m, enter the code shown
in Listing 3.11.
!is code simply points to the "rst item in
the array and prints it.

 Add the code to increment the pointer
and display the next element in the array
(Listing 3.12).

 Save pointermath.m.

 Run the pointermath.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

Array names and pointers are in many ways
interchangeable in Objective-C. For example,
you can create an array, assign the name of
the array to a pointer, and treat the pointer as
you would the array name:

 Create a new program named
pointersarray.m.

 In pointersarray.m, enter the code shown
in Listing 3.13.
!is code creates an array and assigns the
array name to a pointer.

 Add the code to display the value of the
assigned element (Listing 3.14).

 Save pointersarray.m.

 Run the pointersarray.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

You might think that Objective-C comes
with a built-in string data type, much like the
built-in types and , but it doesn’t.
Instead, Objective-C uses the Foundation
class .

You "rst include the Foundation classes
(which means you have to use a make"le in
Windows, Linux, and UNIX); then you can
create a string object of class . As
with all Objective-C objects, you get a pointer
to the object and can initialize your string
like this:

!e @ sign in front of the quoted text indi-
cates that you want to use an Objective-C
style of string, not the default C-style of
strings (Objective-C strings have a lot more
power built into them than C strings do).

 Create a new program named string.m.

 In string.m, enter the code shown in
Listing 3.15 to create and display a string.
To print the string with , you’re
converting the string to a C-style string
by sending it the message (you
communicate with Objective-C objects by
sending them messages in this way).

From the Library of Bill Wiecking

ptg10683285

 Save string.m.

 If you’re using Linux, UNIX, or Windows,
create a make"le named GNUmake!le,
as shown in Listing 3.16, and follow the
directions in “About Creating NS-Class
Objects” earlier in this chapter to compile
string.m with the make"le.

 Save GNUmake"le.

 Compile and run the string.m program (in
Linux, UNIX, and Windows, you run the
program as ./obj/string).
You should see the following:

From the Library of Bill Wiecking

ptg10683285

As with other Objective-C objects, you commu-
nicate with objects by passing them
messages. For example, passing a string the
message returns its length, and passing
it the message lets
you get a substring.

For example, if you want to convert a string
that contains an integer into an actual inte-
ger, you use the message, which you
send like this:

 Create a new program named
stringtoint.m.

 In stringtoint.m, enter the code shown in
Listing 3.17.
!is code creates a string named

, initializes it, and then
sends it the message to convert
it to an integer and print that integer.

 Save stringtoint.m.

 If you’re using Linux, UNIX, or Windows,
create a make"le named GNUmake!le,
as shown in Listing 3.18, and follow the
directions in “About Creating NS-Class
Objects” earlier in this chapter to compile
stringtoint.m with the make"le.

 Save GNUmake"le.

 Compile and run the stringtoint.m pro-
gram (in Linux, UNIX, and Windows, you
run the program as ./obj/string).
You should see the following:

 You can "nd all the messages
objects can take at http://developer.
apple.com/mac/library/documentation/
Cocoa/Reference/Foundation/Classes/
NSString_Class/Reference/NSString.
html.

 A function like that’s built into
an object is called a method.

From the Library of Bill Wiecking

http://developer.apple.com/mac/library/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/Reference/NSString.html
http://developer.apple.com/mac/library/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/Reference/NSString.html
http://developer.apple.com/mac/library/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/Reference/NSString.html
http://developer.apple.com/mac/library/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/Reference/NSString.html
http://developer.apple.com/mac/library/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/Reference/NSString.html

ptg10683285

Objective-C lets you de"ne your own named
types, called enumerations. For example, you
can tell Objective-C that an enumeration
named holds values named for the days
of the week, like this:

You can then assign a variable of that type to
one of those values:

 Create a new program named
enumeration.m.

 In enumeration.m, enter the code shown
in Listing 3.19.
!is code creates the enumeration and
assigns the variable to one of the
allowed named values.

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Add the code to test whether today is
Friday (Listing 3.20).

 Save enumeration.m.

 Run the enumeration.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

!is chapter is all about functions, which are
chunks of code you can call to make them
run—and they won’t run unless you call them.

So far, the code in the programs we’ve discussed
has executed automatically when the programs
start. But functions are di$erent; you have to
explicitly call a function by name in your code
before its code will run. !at means that using
functions, you can divide your code into smaller
parts: the divide and conquer technique.

In Objective-C, functions are a crucial stop on
the way to building your own objects. Objects
let you package both data and functions—
called methods when they’re built into
objects—together, as you’ll soon see.

Here is an example of how you might create a
function named :

Note the function’s structure: In front of its
name (here,), you specify a return
type, which indicates the type of the data item

continues on next page

From the Library of Bill Wiecking

ptg10683285

that the function can return. Since
doesn’t return any data, the return type is .

!en, in parentheses following the name
comes a list of arguments; these are the data
items you pass to the function to let it do its
work. Since the function takes no
arguments, it uses for the argument list
as well. !en comes the body of the function—
the actual code that runs when you call the
function—enclosed in curly braces: { and }.
In this case, the function simply
displays a message: “Hello there.”

!e whole thing—the line that gives the func-
tion’s return type, name, and argument list, as
well as the body of the function—is called the
function’s de!nition.

You can call the function by name
to run it from the code in —which
itself is a function:

Now when your program runs, it will start
automatically by calling the function.
!e code in the function includes a
call to the function, which then
will display its message. Nice.

You’ll get the full story on functions here: how
to pass data to them, how to return data from
them, how to pass pointers to them to access
the data in the calling code directly, how to
make them call themselves (a process called
recursion), and how to set up pointers to
them and then call them using those pointers.

From the Library of Bill Wiecking

ptg10683285

In this "rst task, we’ll put to work the
example introduced in the chapter opener:
the function.

 Create a new program named
function.m.

 In function.m, enter the code shown in
Listing 4.1.
!is code creates the function.

 Add the code shown in Listing 4.2.
!is code adds the function and
the call to the function.

 Save function.m.

 Run the function.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

In the previous example, we de"ned the
function in the code before calling it, so
Objective-C knew about the func-
tion before it was called. But the function
de"nition can also come after the call to that
function in your code, like this:

In this case, you must tell Objective-C about
the function with a function
prototype:

From the Library of Bill Wiecking

ptg10683285

A function prototype is just like the line
where you declare a function (the line just
before the function body inside curly braces),
except that you remove the names of any
function arguments (leaving just their types)
and end the prototype with a semicolon.

!e function prototype is also called the
function declaration (as opposed to the func-
tion de"nition, which includes the body of
the function).

You can also put function prototypes in
header "les, whose names end with .h, and
then include them with stdio.h as shown in
the listings here. !at statement
includes the stdio.h header "le, which includes
prototypes for functions such as .

 Create a new program named
functionprototype.m.

 In functionprototype.m, enter the code
shown in Listing 4.3.
!is code creates the func-
tion after the function and adds a
prototype before the function so
Objective-C knows about the
function.

 Add the function to call the
 function (Listing 4.4).

 Save functionprototype.m.

 Run the functionprototype.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

You can pass data to functions so they can
work on that data. For example, you can cre-
ate a function named that you want
to add two integers and display the results.

To indicate which arguments a function
takes, you include an argument list in the
parentheses following the function name
when you de"ne the function. For example,
the function takes two arguments:
the two integers to add, which we’ll name

 and :

Now in the body of the function, you can refer
to the "rst argument as and the second
argument as .

When you create a function prototype, on
the other hand (when you call the function
before de"ning it in your code), you omit the
names of the arguments, instead including
just the type:

Now you can write the body of the
function to add the two integers, which you
can refer to by name, and :

 You specify the type (here) of every
argument in the list just before its name.

From the Library of Bill Wiecking

ptg10683285

 Create a new program named
functionargs.m.

 In functionargs.m, enter the code shown
in Listing 4.5.
!is code creates the function.

 Enter the code to specify the func-
tion and the call to the function
to add 5 plus 10 (Listing 4.6).

 Save functionargs.m.

 Run the functionargs.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

In addition to passing data to functions, you
can have functions return data. !ey can
return a single data item—an integer, for
example—or an array or an object.

To indicate that a function returns a value,
you specify the type of that data value "rst
in a function de"nition or declaration. For
example, you can alter the function
from the previous task to return an integer
value holding the sum of the two values
passed to it, like this:

To actually return the sum of the two values
passed to the function, you use a

 statement:

!at’s how it works: to return a value from
a function, you place the value you want to
return right after the keyword .

Now when you call the function and
pass data to that function, the call itself will
be replaced by the function’s return value. So
to add 5 and 10 and display the results, you
can use this code:

From the Library of Bill Wiecking

ptg10683285

 Create a new program named
functionreturn.m.

 In functionreturn.m, enter the code
shown in Listing 4.7.
!is code creates the function
and sets it up to return the sum of the two
integers passed to it.

 Add the code to call the function
and pass two integers to it (Listing 4.8).

 Save functionreturn.m.

 Run the functionreturn.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

Scope refers to the range of visibility of data
items. Functions de"ne their own scope. !at
is, when you de"ne a variable in a function, it
becomes a local variable for that function and
takes precedence over other versions of the
same variable. For example, you can de"ne an
integer named and set it to 1 like this:

And then you can also de"ne an integer
named inside a function:

!e local version of will take prece-
dence in the function, so here the
statement will display a value of 2 for .
If hadn’t been de"ned locally in the
function, the version from outside the func-
tion would have been used, and the
statement would have shown a value of 1.

In Objective-C, any code block—that is, code
enclosed in curly braces such as function
bodies or the bodies of statements—
de"nes its own scope, so local variables
will always take precedence over variables
de"ned outside the code block.

 Create a new program named
functionscope.m.

 In functionscope.m, enter the code shown
in Listing 4.9.
!is code declares an integer named

 displays its value in , and
then calls a function.

From the Library of Bill Wiecking

ptg10683285

 Add the function that rede"nes
locally as well as in a code block
(Listing 4.10).

 Save functionscope.m.

 Run the functionscope.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

When you pass a pointer to a function, that
function can use the pointer to change data
in the calling code. For instance, here’s an
example that passes a pointer to a function
that changes a variable:

 Create a new program named
functionpasspointers.m.

 In functionpasspointers.m, enter the code
shown in Listing 4.11.
!is code passes a pointer to a function
named .

From the Library of Bill Wiecking

ptg10683285

 Add the code for the function,
which changes the data back in the call-
ing code (Listing 4.12).

 Save functionpasspointers.m.

 Run the functionpasspointers.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

You can also pass arrays to functions. For
instance, the following example adds the
elements of an array and returns the sum:

 Create a new program named
functionpassarrays.m.

 In functionpassarrays.m, enter the code
shown in Listing 4.13.
!is code creates an array and passes it to
a function named .

From the Library of Bill Wiecking

ptg10683285

 Add the code to create the
function (Listing 4.14).

 Save functionpassarrays.m.

 Run the functionpassarrays.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

As you know, if you pass pointers to func-
tions, those functions can change the data
to which the pointers point. Since arrays
can double as pointers, if you pass an array
as a pointer in a function, the function can
change your original array. To avoid that,
when you pass a copy of your array to the
function, mark it as a constant so it can’t be
changed. You mark data as constant with the

 keyword:

In this task, we’ll modify the previous task’s
code to use constant arrays.

 Create a new program named
functionpassconstarrays.m.

 In functionpassconstarrays.m, enter the
code shown in Listing 4.15.
!is code creates an array and passes it to
a function named whose proto-
type indicates that it takes constant arrays.

From the Library of Bill Wiecking

ptg10683285

 Add the code to create the func-
tion, marking the array passed to this
function as a constant in the function’s
argument list (Listing 4.16).

 Save functionpassconstarrays.m.

 Run the functionpassconstarrays.m
program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

Functions can call themselves in Objective-C,
a process called recursion, and this process is
often useful. For example, say you’re writ-
ing a function that calculates factorials: for
example, 6! =6 x 5 x 4 x 3 x 2 x 1 = 720. Here’s a
function that calls itself recursively to "gure
out factorials:

Let’s use this function to calculate 6!.

 Create a new program named
functionrecursion.m.

 In functionrecursion.m, enter the code
shown in Listing 4.17.
!is code calls the function,
passing it a value of 6.

 Add the code to implement the recursive
 function (Listing 4.18).

 Save functionrecursion.m.

 Run the functionrecursion.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

In Objective-C, function names are actually
pointers. You can pass function names to
other functions, and in the receiving func-
tion, you can call the passed function name
if you treat it as a pointer.

For example, you can pass function names
to this function, named ,
and it will call the passed function:

 Create a new program named
functionpointers.m.

 In functionpointers.m, enter the code
shown in Listing 4.19.
!is code sets up a function named

 and passes its name to
.

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Add the code to implement
, which will call the function

pointer you pass to it (Listing 4.20).

 Save functionpointers.m.

 Run the functionpointers.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

As discussed in Chapter 1, object-oriented
programming was introduced to let you
handle bigger programming problems, letting
you package programming components into
easily remembered objects.

!e example used in Chapter 1 was a refriger-
ator. Instead of starting the pumps, regulating
the temperature, and starting the compres-
sor yourself in open code, you wrap all those
actions into an object containing data (such
as the temperature) and methods (that is,
functions, such as) into
an easily remembered object: a refrigerator.
You just put food in the refrigerator, and the
refrigerator cools it for you; all the implemen-
tation details are hidden from view.

Objective-C object-oriented programming
(OOP) lets you use classes and objects.
Classes are like cookie cutters—they specify
the cookies you can create—and those cook-
ies are the objects. So you "rst create a class
that speci"es the data and methods (that is,
built-in functions) for your objects, and then
you create objects of that class.

continues on next page

From the Library of Bill Wiecking

ptg10683285

Objective-C has its own syntax for classes
and objects, and if you haven’t programmed
in Objective-C before, this syntax will take
a little time to learn. Here’s an example that
we’ll dissect in this chapter. !is example
de"nes a class, then creates an object of that
class, then stores an integer in that object,
and then prints the stored integer:

!e result of this code looks like this:

From the Library of Bill Wiecking

ptg10683285

Besides using this di$erent syntax, you
communicate with objects by sending them
messages, not by calling object methods
directly. For example, to send a message to
the method of an object named

 to set its internally stored number
to 5, you send a message like this:

.

Objective-C classes are usually based on
the Foundation class , so if you’re
using Linux, UNIX, or Windows, you need to
create a GNUmake"le, make sure you’re in
the same directory as that "le, and type
in the GNUstep shell (see the introduction to
Chapter 3 for more information about setting
up the environment variables to use). If
you enter code in a "le named xxxx.m, your
GNUmake"le "le should look like this:

!en to run your code, enter this at the
GNUstep command prompt:

From the Library of Bill Wiecking

ptg10683285

In this task, you’ll see how to create classes
and objects to get an overview of the
Objective-C syntax. !e subsequent tasks
will "ll in the details.

 Create a new program "le with the
extension .m.

 To create a class, you create an
section, which lists the data in the class
and the method prototypes, and an

 section, which sup-
plies the bodies of the methods, using
the syntax shown in Listing 5.1.

From the Library of Bill Wiecking

ptg10683285

 In the function, you execute the
class methods by sending
the name of the method as a message:

.
You can also create objects, handled as
pointers in Objective-C, with the new
message, like this:

. !en you can execute
object methods by sending the object
the method name as a message, like this:

. Listing
5.2 shows the code.

 Class methods (de"ned with a “+” in front
of their names) can be run using just
the class name, while object methods
(de"ned with a “-” in front of their names)
require you to create an object before you
run them.

From the Library of Bill Wiecking

ptg10683285

A class method is a method you can
execute using just the class name—no
object is required. You de"ne class methods
with a plus sign, “+”, in front of their names
in both the class’s section and

 section, as shown here,
where a class returns some text:

Now you can execute the class method by
sending the class the name of the method
as a message, like this:

You’ll see this example at work in this task.

From the Library of Bill Wiecking

ptg10683285

 Create a new program named
classmethod.m.

 In classmethod.m, enter the code shown
in Listing 5.3.
!is code creates a class named
with one method, , which
returns a string.

 Add the function to execute
 and display the returned

string (Listing 5.4).

 Save classmethod.m.

 Run the classmethod.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

In this task, you’ll start creating objects. Here,
you’ll simply create a class with an empty

 section (while indicating that
the class is derived from the class)
and an empty section:

You’ll create an object by passing the class
the message and then display the mes-
sage “Object created.” as shown here:

 Create a new program named object.m.

 In object.m, enter the code shown in
Listing 5.5.
!is code creates the class.

 Add the code to create the new object of
the class and display a mes-
sage indicating that the object has been
created (Listing 5.6).

 Save object.m.

 Run the object.m program (disregard
the warning about not using the variable
“object” when you compile the code).
You should see the following:

From the Library of Bill Wiecking

ptg10683285

While you can execute a class method with
just the name of the class, you need an object
to be able to execute object methods—and
object methods are more useful because class
methods have restrictions on how they store
data that object methods don’t. You de"ne
an object method in a class by preceding
its prototype and de"nition with a minus
sign, “-”, in both the section and

 section, as shown here,
where we create an object method named

 that returns a string:

 Create a new program named
objectmethod.m.

 In objectmethod.m, enter the code shown
in Listing 5.7.
!is code creates the
class and the method in
that class.

 Add the code to execute the
object method from the function
(Listing 5.8).

 Save objectmethod.m.

 Run the objectmethod.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

In the previous task, you saw how to set up a
method in an object. But objects can contain
both methods and data. In this task, you’ll see
how to store data in objects. You’ll also see
how to pass arguments to object methods.

You set up your data in variables in the
 section. !en your code can

access those variables by name in the
methods in the section.
For example, the code here stores an integer:

!en you can execute an object of this class,
sending it the value 5 to store:

 Create a new program named
objectdata.m.

 In objectdata.m, enter the code shown in
Listing 5.9.
!is code sets up an internal integer
named and a method named

 to store a value in that integer.

From the Library of Bill Wiecking

ptg10683285

 Create an object, set the value of the
internally stored number, and display
that number (Listing 5.10).

 Save objectdata.m.

 Run the objectdata.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

When you pass multiple arguments to a
method, you can name the arguments to
keep them straight. For example, you can
create a method that takes two numbers
and name the second argument
(you can choose any name):

!en when you call this method, you specify
the value for the second argument by name:

 Create a new program named
multipleargs.m.

 In multipleargs.m, enter the code shown
in Listing 5.11.
!is code creates the method,
which can take two arguments.

From the Library of Bill Wiecking

ptg10683285

 Add the code to call the
method (Listing 5.12).

 Save multipleargs.m.

 Run the multipleargs.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

In Objective-C, it’s common to put the
interface part of a class declaration (the
part declared by the keyword)
in its own header "le with the extension .h.
To keep things simple, we’ve not been doing
that here, but the process is easy. You just
store the section of a class
in a "le such as header.h:

!en you include header.h in your program:

 Create a new program named header.m.

 In header.m, enter the code shown in
Listing 5.13.
!is code is just our example that lets
you store numbers in an object, with the
interface section in header.h (make sure
you use the line at
the top of the code).

From the Library of Bill Wiecking

ptg10683285

 Save header.m.

 Create header.h in the same directory
as header.m and add the code shown in
Listing 5.14.

 Save header.h.

 Run the header.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

Objective-C lets you store a class’s implementa-
tion (the part that follows the
keyword) in a header "le in addition to its
interface (see the previous task).

 Create a new program named
header2.m.

 In header2.m, enter the code shown in
Listing 5.15.
!is code creates an object of the

 class, which is declared
and de"ned in header2.h.

 Save header2.m.

 Add the code for the interface and
implementation of the
class to header2.h (Listing 5.16).

 Save header2.h.

 Run the header2.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

You can link together multiple "les to create
a single executable "le. You simply need to
modify your make "le (GNUmake"le) to list
all the .m "les, like this:

In this task, you’ll create an executable "le
based on three "les: main.m, container.h, and
container.m.

 Create a new program named main.m.

 In main.m, enter the code shown in
Listing 5.17.

 Save main.m.

 Create a new "le named container.h.

 In container.h, enter the code shown in
Listing 5.18.

 Save container.h.

 Create a new "le named container.m.

continues on next page

From the Library of Bill Wiecking

ptg10683285

In container.m, enter the code shown in
Listing 5.19.

Save container.m.

 Create a new "le named GNUmake!le.

 In GNUmake"le, enter the code shown
in Listing 5.20.

 Save GNUmake"le.

 Run the main.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

In Objective-C, as in many OOP languages,
you can use constructors, which are spe-
cial methods used to initialize the data
in an object when you create that object.
Constructors can be named anything, but
they’re often named . !e constructor
returns a pointer to the object, and you get
that pointer by calling the super class’s
method (the super class is the class from
which the current class is derived, typically

):

In your code, you can then pass values to the
constructor when you create an object. For
example, the following code initializes the
number stored in the object to 3:

 Create a new program named
constructor.m.

 In constructor.m, enter the code shown in
Listing 5.21.
!is code starts constructor.m with the
interface of the class.

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Enter the code to add the implementa-
tion of the class methods and use the
constructor method to create a new

 object and initialize the inte-
ger stored internally in that object to 3
(Listing 5.22).

 Save constructor.m.

 Run the constructor.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

In this chapter, we take a deeper look at
object-oriented programming in Objective-C.

We start by using access speci!ers—
(the default), , and —to
set the access allowed to members (both
methods and data members such as vari-
ables) of an object.

We also explore how to use class variables—
that is, variables that are associated with a
class, not just an object (in fact, all objects of
that class share the class variables).

Polymorphism refers to using the same code
for di$erent kinds of objects, and we see how
that works in Objective-C, too.

In addition, we explore how to check whether
an object supports a particular method
before trying to use that method, how to
determine the class of an object—and more.

From the Library of Bill Wiecking

ptg10683285

!ere are three access speci"ers:
(the default), which puts no restriction on the
scope of a member; , which restricts
access to code that is in the class in which
the member is declared; and ,
which restricts access to code that is in the
class in which the member is de"ned and
classes derived from that class

So, for example, you can use this code to
access an object’s public variable outside
that object:

 See Chapter 7, “Working with Object-
Oriented Inheritance” for a discussion of
how to derive one class from another.

From the Library of Bill Wiecking

ptg10683285

Here, we’re accessing the public variable as
. You use the arrow nota-

tion to access members of an object, given a
pointer (here) to the object. You’ll also need
a GNUmake"le "le if you’re running in Linux,
UNIX, or Windows:

However, declaring a variable private restricts
access to just code in its class implementation,
which means that this code won’t compile:

You’ll see how to use all three access speci-
"ers in the upcoming tasks.

From the Library of Bill Wiecking

ptg10683285

Public access is the default for object
members, but you can also indicate that
any members are public with the
access speci"er.

 Create a new program "le named access.m.

 Enter the code to create a new class
called with one public member
(Listing 6.1).

 Access the public member in the
function (Listing 6.2).

 Save access.m.

 Run the access.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

You make class members private with the
 access speci"er. Making members

private restricts access to them to the code
in the class in which they are declared.

 Open the access.m program from the
previous task for editing.

 In access.m, enter the new code high-
lighted in Listing 6.3.
!is code creates a private data member.

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Add code to try to access the private
data member from outside the object
(Listing 6.4).

 Save access.m.

 Try to run access.m.
When you try to compile access.m,
you’ll get either a warning or a hard error
(depending on your version of Objective-C
and the platform it’s running on), because
you’re trying to access a private member
from outside an object. (Note that the
warnings will become hard errors in
the future.)

From the Library of Bill Wiecking

ptg10683285

You make class members protected with the
 access speci"er. Making mem-

bers protected restricts access to them to the
code in the class in which they are declared
and classes based on that class.

 Open the access.m program from the
previous task for editing.

 In access.m, enter the new code high-
lighted in Listing 6.5.
!is code creates a protected data
member.

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Add the code shown in Listing 6.6, which
attempts to access the protected member
from outside its containing object.

 Save access.m.

 Try to run access.m,
When you try to compile access.m, you’ll
get either a warning or a hard error (depend-
ing on your version of Objective-C and the
platform it’s running on), because you’re
trying to access a protected member from
outside an object. (Note that the warnings
will become hard errors in the future.)

From the Library of Bill Wiecking

ptg10683285

You can create class variables for use with
your classes, but there’s a hitch: every object
of that class shares the same variable, so
if one object changes a class variable, that
variable is changed for all objects. You create
class variables with the keyword.

Class variables are often useful: for example,
you can use a class variable to keep track of
the number of objects of a particular class cre-
ated in a program. You’ll do that in this task.

 Create a new program named
classvariables.m.

 In classvariables.m, enter the code shown
in Listing 6.7.
!is code creates a class with a class vari-
able named .

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Add the code to create two objects
and display the object count each time
(Listing 6.8).

 Save classvariables.m.

 Run the classvariables.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

Sometimes, you need to access the current
object while executing code in that object.
For example, from constructors you need to
return a pointer to the current object after
you’ve "nished con"guring it.

To get a pointer to the current object, use the
 keyword. You’ve seen self before, but it

deserves its own task.

 Open the classvariables.m program from
the previous task for editing.

 Assign the pointer returned by the base
class’s constructor to the pointer
(Listing 6.9).

continued on next page

From the Library of Bill Wiecking

ptg10683285

 Use the keyword to get a pointer to
the current object (Listing 6.10).
Here, you’re returning a pointer to the
current object from the constructor.

From the Library of Bill Wiecking

ptg10683285

In Objective-C, the type can stand for any
type of object. !at’s useful when you have
one variable that you want to contain mul-
tiple types of objects.

In this task, you create objects of two di$er-
ent class types and place them in the same
variable of type .

 Create a new program named id.m.

 In id.m, enter the code shown in
Listing 6.11.
!is code creates the two classes
you’ll use.

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Add the code to create two objects of
di$erent classes and store those objects,
one after the other, in the variable
(Listing 6.12).

 Save id.m.

 Run the id.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

You can determine whether an object
is a member of a certain class with the

 method. You’ll put that
method to use in the next task to verify
that a certain object is a member of a cer-
tain class, here called . You can get
the class’s name simply by sending it the
message like this: .

 Create a new program named
isMemberOfClass.m.

 In isMemberOfClass.m, enter the code
shown in Listing 6.13.
!is code creates the class.

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Add the code to create an object of the
 class and verify that the object

really is a member of the class
(Listing 6.14).

 Save isMemberOfClass.m.

 Run the isMemberOfClass.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

You can also use to deter-
mine whether an object is a member of
a class. What is the di$erence between

 and ? You
can use to determine whether
an object is a member of a class—or of any
class derived from that class.

For example, we’ve been deriving our
classes from the class, and while

 wouldn’t detect that fact
for any class we’ve based on ,

 would.

 See Chapter 7 for all the details on deriv-
ing one class from another.

 Create a new program named
isKindOfClass.m.

 In isKindOfClass.m, enter the code shown
in Listing 6.15.
!is code creates the class, which
is based on the class.

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Add the code to use to
determine whether is a kind of

 class (Listing 6.16).

 Save isKindOfClass.m.

 Run the isKindOfClass.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

In Objective-C, objects can support methods.
But how do you know if a particular object
supports a particular method? To check
whether an object supports a method, you
can use the function.

 Create a new program named
responds.m.

 In responds.m, enter the code shown in
Listing 6.17.
!is code creates the class that
has a method named .

 Enter the code to check whether an
object of supports a method
named (Listing 6.18).

 Save responds.m.

 Run the responds.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

Besides checking whether an object supports
a particular method, you can check whether
a class will create objects that support a
particular method. To do that, you use the

 method.

 Create a new program named
instances.m.

 In instances.m, enter the code shown in
Listing 6.19.
!is code creates the class that
supports the method.

 Add the code to check whether objects
created from the class will support
the method (Listing 6.20).

 Save instances.m.

 Run the instances.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

!is chapter discusses the process of deriving
one class from another—a process called
inheritance.

You can derive one class from another in
Objective-C. !e class you derive from is
called the base class, and the new class you’re
deriving from the base class is called the
derived class.

!e derived class can inherit all the functional-
ity of the base class, and it can customize that
functionality as well. For example, you might
have a base class named that creates a
generic animal. !e class might have
a method to set the animal’s name, ,
and another to get the animal’s name, .
!en, no matter what kind of animal you want
to create, can serve as a base class for
it, and all the derived animals will have built-in

 and methods.

You might use as a base class for other
classes, such as and . If you create
a class named , for example, you might
want more than just and
methods; for instance, you might also want
add your own method, the method,
which prints out “Meow.”

continues on next page

From the Library of Bill Wiecking

ptg10683285

If you also derive a class named from the
 class, you might add a method named

 to it.

!e class would then have the methods
, , and . !e class

would have the methods , ,
and . So as you can see, although the

 and classes share some functionality,
because they are both classes of animals, they
also have been customized.

!at’s the idea behind inheritance: you
use inheritance when you want to create
classes that share some functionality. Using
inheritance, you can save a lot of work. In
this example, in addition to the and
classes, you might use the class to
derive the , , , , and

 classes.

You can also have multi-level inheritance.
So, for example, you might use the class
as the base class for the and
classes.

 Although inheritance in Objective-C is a
powerful tool, it lacks some capabilities
found in C++ and some other object-
oriented programming languages. For
instance, it lacks operator overloading
and also multiple inheritance (in which
a single class can inherit from multiple
other classes).

From the Library of Bill Wiecking

ptg10683285

We’ll start by taking a look at how to inherit
one class from another. In fact, the programs
you’ve been working with have already been
inheriting classes from , and extend-
ing that capability to any class is easy.

Here, you’ll create one class, , based on
:

!en you’ll create another class, ,
based on :

!ese classes won’t actually do anything—
we’re just looking at the syntax of inheritance
at this point. In the subsequent tasks, you’ll
add data members and methods to base and
derived classes.

 Create a new program "le named
inheritance.m.

 In inheritance.m, enter the code shown
in Listing 7.1 to create and base

 on it.

 Display a message in the function
to indicate that the inheritance worked
(Listing 7.2).

 Save inheritance.m.

 Run the inheritance.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

When you base one class on another, all data
members not declared as are acces-
sible in the derived class.

In this example, you’ll declare a data member
named in the base class and reference it
from an object of the derived class.

 Create a program named inheritdata.m.

 In inheritdata.m, enter the new code
highlighted in Listing 7.3.
!is code creates with a data
member named and derives a class
named based on it. Note that the
data member is declared , which
makes it accessible from code in the base
class, the derived class, and any other
code in the program.

From the Library of Bill Wiecking

ptg10683285

 Add code to create an object of the
derived class, , and access the data
member using that object (Listing 7.4).

 Save inheritdata.m.

 Run the inheritance.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

When a derived class inherits a base class,
the methods of the base class are available
to you in the derived class unless they’re
marked .

In this task, a derived class will inherit a base
class that has one method, and the derived
class will add a new method. !en you’ll call
both methods to verify that they work as
they should.

 Create a program named
inheritmethods.m.

 In inheritmethods.m, enter the new code
highlighted in Listing 7.5.
!is code creates and , each
with a built-in method..

From the Library of Bill Wiecking

ptg10683285

 Add the code to create an object of the
derived class and call both the base class
method and the derived class method to
verify that they work (Listing 7.6)

 Save inheritmethods.m.

 Run the inheritmethods.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

Say that you have a method in a base class
that you need to change. For example, say
you have a method named in the base
class that prints “!is is class 1.”
Clearly, in the derived class, , the
message should say, “!is is class 2.”

You can override the base class method
just by rede"ning it in the derived class.
When you override a method in a derived
class, the overriding method must have the
same prototype (same return type and argu-
ments) as the method you’re overriding.

 Create a new program named
override.m.

 In override.m, enter the code shown in
Listing 7.7.
!is code creates and derives

 from it. Each class has a method
named with the same prototype,
so the version will override the

 version.

From the Library of Bill Wiecking

ptg10683285

 Add the code to create an object of
and call the overridden method
(Listing 7.8).

 Save override.m.

 Run the override.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

You can also overload methods. When you
overload a method, you give it multiple de"-
nitions, and Objective-C chooses the correct
version of the method based on the param-
eter list—the type and number of parameters
must be di$erent for each version of an
overloaded method.

 Create a new program named
overload.m.

 In overload.m, enter the code shown in
Listing 7.9.
!is code creates and derives

 from it; has a method
with no arguments, and has a

 method that takes one argument.

From the Library of Bill Wiecking

ptg10683285

 Add the code to create an object of
 and call the two methods:

one with an argument. and one without
(Listing 7.10).

 Save overload.m.

 Run the overload.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

Inheritance in Objective-C isn’t limited to a
single level. Classes can inherit as many lev-
els of base classes as you want. !e example
in this task shows two-level inheritance.

 Create a new program named
multilevel.m.

 In multilevel.m, enter the code shown
in Listing 7.11.
!is code creates the three classes
you’ll use.

From the Library of Bill Wiecking

ptg10683285

 Add the code to create two objects of the
di$erent classes and store those objects,
one after the other, in the variable
(Listing 7.12).

 Save multilevel.m.

 Run the multilevel.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

By default, the data members and methods
of a base class are available to code in the
derived class. !at may not always be a good
idea, however: for example, if the base class
has an internal variable that keeps track of
some count that the derived class doesn’t
need access to. In such cases, you can use
the access speci"er to mark such
a data member as private. You saw
in the previous chapter, but here you’ll use it
with inheritance.

 Create a new program named private.m.

 In private.m, enter the code shown in
Listing 7.13.
!is code creates the classes you’ll use
and marks a data member of the base
class as private.

From the Library of Bill Wiecking

ptg10683285

 Add the code to try to access the private
variable of the base class using code in the
derived class (Listing 7.14).

 Save private.m.

 Try to run the private.m program.
Depending on your platform, you’ll either
get a hard error (the program will not
compile) or a warning with a message
that, in the future, the warning will be a
hard error.

From the Library of Bill Wiecking

ptg10683285

You can also restrict inheritance if you mark
class members with . !is access
speci"er is less restrictive than ;
derived classes can still use the protected
members of the base class, but no other code
can. !at is, protected members are avail-
able only to the code in the base class and
any classes derived from the base class. You
learned about in the previous
chapter; here, you’ll use it with inheritance.

 Create a new program named
protected.m.

 In protected.m, enter the code shown
in Listing 7.15.
!is code creates the two classes
you’ll use.

From the Library of Bill Wiecking

ptg10683285

 Add the code to access the protected
data member in the derived class
(Listing 7.16).

 Save protected.m.

 Run the protected.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

What if the base class has a constructor? You
can call a base class’s constructor, passing to
it any arguments you want, when you use the

 keyword. !e keyword allows
you to access the base class in your code

In this task, you’ll access the base class’s
constructor.

 Super refers to superclass, another word
for the base class.

 Create a new program named
constructor.m.

 In constructor.m, enter the code shown in
Listing 7.17.
!is code creates the class that
has a constructor named that uses
the keyword.

From the Library of Bill Wiecking

ptg10683285

 Enter the code to create an object of
, which will call the constructor

(Listing 7.18).

 Save constructor.m.

 Run the constructor.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

Polymorphism refers to using the same code
with di$erent objects: that is, when you use
polymorphism, the actual object that is used
when you pass it a message is determined at
run time.

For example, in this task, you’ll execute the
same code twice:

!e variable will hold a
pointer to a di$erent object each time the
code is executed, so the object to which the
message is sent is determined when the
code runs.

 Create a new program named
polymorphism.m.

 In polymorphism.m, enter the code
shown in Listing 7.19.
!is code creates the two classes
you’ll use.

From the Library of Bill Wiecking

ptg10683285

 Add the code to load a variable of the
type with pointers to the two objects, one
after the other, and execute the same line
of code for each object (Listing 7.20).

 Save polymorphism.m.

 Run the polymorphism.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

This page intentionally left blank

From the Library of Bill Wiecking

ptg10683285

In this chapter, we’re going look at three
features of Objective-C object-oriented pro-
gramming: categories, posing, and protocols.

Categories let you extend a class by adding
methods to a class—and you don’t need
access to the base class’s code to do it; you
can create new methods for a class without
editing the class’s de"nition in code. !at can
be useful when you don’t have access to the
source code for a class, or when you don’t
want to change the source code, or when you
want to customize a class in di$erent ways.

To use categories, you create a new "le with
the interfaces for the new methods, use
Objective-C syntax to indicate that you’re
extending another class, and then put the
implementations of the new methods in
another "le. “Categories” is the actual name
of the new methods you add to the class.

Posing involves making one class “pose” as
another. Say that you have a class, ,
and another class, , derived from

. You can create objects of , of
course. But you can also tell to pose
as . From then on in your code, when-
ever you create an object of , you’ll
really be creating an object of . In other
words, is posing as .

continues on next page

From the Library of Bill Wiecking

ptg10683285

!ere are other ways of doing the same thing—
you could use polymorphism, for example (see
the previous chapter). But using posing can be
cleaner because you don’t have to keep track of
what kind of pointer is stored in your variables
all the way through your code.

Protocols are much like what are called
interfaces in Java. A protocol is a speci"ca-
tion for a method, much like its prototype.
When you indicate that a certain class uses
speci"c protocols, you’re indicating that that
class implements those methods. In other
words, protocols let you declare methods; it’s
up to you to de"ne the implementation in
your class.

!is is the closest Objective-C comes to mul-
tiple inheritance, in which you inherit from
multiple classes, because using protocols,
you can make sure all your derived classes
implement the same methods (although the
actual implementation in each class may
be di$erent). !at’s useful if, for example,
you have two base classes, named
and , and want to derive classes named

 and from them. You can make sure
that and implement the methods of

 and by using protocols. When
and use the protocols de"ned by
and , and both automatically
implement a list of methods.

From the Library of Bill Wiecking

ptg10683285

Categories let you extend a class by de"ning
new methods, even if you don’t have access
to that class’s source code or can’t change it.

Say you have a class, , with a single
method, , in the class’s header "le:

Suppose also that the method is de"ned in
the class’s implementation "le:

If you want to extend by adding a
new method, , you can create a new
header "le that lists the interface,
like this:

continues on next page

From the Library of Bill Wiecking

ptg10683285

Note the term in parentheses after
the class name. You can use whatever term
you want here to indicate that you’re extend-
ing the base class and to give a name to that
extension. You use the same term in paren-
theses when you create the implementation
of in its own "le:

In this way, Objective-C allows you to
extend classes without modifying their
source code "les.

From the Library of Bill Wiecking

ptg10683285

In this task, you’ll create a base class that
you’ll extend in the next task using catego-
ries. You’ll create a class named that
contains a method named . Here’s what
the method looks like; it just prints the
message “!is is Class 1.”

 Create a program named class1.m.

 In class1.m, enter the code in Listing 8.1.
!is code creates the class.

 In class1.m, add the code to create the
 method (Listing 8.2).

 Save class1.m.

 Create a header "le named class1.h.

 In class1.h, enter the code shown in
Listing 8.3.

 Save class1.h.
Now you’re ready to extend the class.

From the Library of Bill Wiecking

ptg10683285

In the preceding task, you created ,
complete with a method. In the task
here, you’ll extend using categories
to include a new method, .

!e method looks like this:

After adding this method to , you’ll call
both methods, and , in the
next task.

 Create a program named
class1extender.m.

 In class1extender.m, enter the code in
Listing 8.4.
!is code indicates that you want to
extend using categories.

 In class1extender.m, add the code to
create the method (Listing 8.5).

 Save class1extender.m.

 Create a "le named class1extender.h.

 In class1.h, enter the code in Listing 8.6.

 Save class1extender.h.

From the Library of Bill Wiecking

ptg10683285

In the previous two tasks, you created
and extended it using categories. In this task,
you’ll put the class and its extension
category to work.

 Create a new program named main.m.

 In main.m, enter the code shown in
Listing 8.7.
!is code includes the class1.h and
class1extender.h header "les to make
sure your code knows about
and its extending categories.

 In main.m, add the code to create a new
object of (Listing 8.8).

continues on next page

From the Library of Bill Wiecking

ptg10683285

 In main.m, add the code shown in
Listing 8.9.
!is code calls the method built into
the class and the method
with which you’ve extended .

 Save main.m.

 If you’re using Linux, UNIX, or
Windows, create a new make"le
named GNUmake!le.

 In GNUmake"le, enter the code shown in
Listing 8.10.

 Save GNUmake"le.

 Run the main.m categories program.
You should see the output from both
the method and the extending

 method:

From the Library of Bill Wiecking

ptg10683285

Posing lets one class stand in for another.
Say you have a class, , with a single
method, , in the class’s header "le:

Suppose also that the method is de"ned in
the class’s implementation "le:

Now say that the method is rede"ned in
another class’s implementation "le, and
that is based on :

continues on next page

From the Library of Bill Wiecking

ptg10683285

You can have pose as in your
main method like this:

Now when you create an object of ,
like this:

you’re really creating an object of .
!e method that will be run in this code
is the method1 de"ned in the
implementation.

!is technique is useful as a shortcut way
of handling polymorphism, but you have to
remember that you’re having one class pose
as another when you’re writing the code that
follows the line.

From the Library of Bill Wiecking

ptg10683285

When a class poses as another class, it can
function as a stand-in for that class. You
tell Objective-C that one class is posing for
another, and from then on in your code,
Objective-C uses the class that’s posing as
the original class, even when you use the
original class in your code.

 Create a "le named class1.m.

 In class1.m, enter the code in Listing 8.11.
!is code creates the class.

 In class1.m, add the code to create the
 method (Listing 8.12).

 Save class1.m.

 Create a "le named class1.h.

 In class1.h, enter the code in Listing 8.13.

 Save class1.h.

From the Library of Bill Wiecking

ptg10683285

One class can pose as another only if it’s
based on the class it’s posing as, so in this
task, you’ll derive a class from the base class,

. !is new class will be called ,
and it will rede"ne the method to dis-
play a message indicating that this is :

!is way, when poses as and
you call the method, you’ll see the mes-
sage “!is is Class 2.”, not “!is is Class 1.”

 Create a "le named class2.m.

 In class2.m, enter the code in Listing 8.14.
!is code creates the class.

 In class2.m, add the code to create the
 method (Listing 8.15).

 Save class2.m.

 Create a header "le named class2.h.

 In class2.h, enter the code in Listing 8.16.

 Save class2.h.

From the Library of Bill Wiecking

ptg10683285

To make posing happen, you use the
 keyword. In the example here,

to make pose as , you can use
this line:

From then on, when you create an object of
, you’ll really be creating an object

of , as you’ll see in this task.

 Create a new program named main.m.

 In main.m, enter the code shown in
Listing 8.17.
!is code creates an object of and
calls its method.

 Add the code to make pose as
, create an object of , and

call its method (Listing 8.18).
!is time, it’s actually the
method that will be called.

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Save main.m.

 If you’re using Linux, UNIX, or Windows,
create a make"le named GNUmake!le
as shown in Listing 8.19.

 Run the main.m posing program.
You should see:

From the Library of Bill Wiecking

ptg10683285

Protocols let you specify an interface for
a method or methods that can be used in
multiple classes. For instance, if you have
a method named and want to cre-
ate a protocol for it, you can do that in a "le
named, say, printing.h:

!en you can include printing.h in the
interface "les of other classes. Doing so adds

 to the interfaces of those classes in the
header "le for :

And you can also include printing.h in
another class header, for :

Now you can implement one way for
:

continues on next page

From the Library of Bill Wiecking

ptg10683285

And you can implement another way
for :

!en you can create objects of and
 and call each of their methods

like this:

And each of these methods will be dif-
ferent, so although there was only one proto-
col, there are two di$erent implementations.

Protocols let you de"ne the interface of a
method in this way. Although Objective-C has
no true multiple inheritance capability, you
can use multiple protocols (not classes) as the
basis for derived classes. !e protocols say
what methods you’re including and specify
their return types, but it’s up to you to imple-
ment those methods in the derived classes.
!at’s as close as Objective-C gets to multiple
inheritance (in true multiple inheritance, you
can derive a class from multiple base classes).

From the Library of Bill Wiecking

ptg10683285

When you de"ne a protocol for a method or
methods, you usually store that protocol in
a header "le. You’ll create a protocol named

 for a method named in a "le
named printing.h:

!en you’ll use that protocol for one class in
an interface "le named ClassFirst.h:

You’ll also use the protocol in
an interface "le, ClassSecond.h, for a class
derived from that "rst class:

!en you’ll implement the method for
 and in di$erent ways (in the

next task).

From the Library of Bill Wiecking

ptg10683285

 Create a new "le named printing.h.

 In printing.h, enter the code shown in
Listing 8.20.
!is code creates the protocol for the

 method.

 Save printing.h.

 Create a new "le named ClassFirst.h.

 In ClassFirst.h, enter the code to create
the interface for the "rst class, which
makes use of the new protocol we’ve
de"ned (Listing 8.21).

 Save ClassFirst.h.

 Create a new "le named ClassSecond.h.

 In ClassSecond.h, store the code to set up
the interface for the second class, which
is derived from the "rst class and also
makes use of the new protocol for the

 method (Listing 8.22).

 Save ClassSecond.h.

From the Library of Bill Wiecking

ptg10683285

Now that you’ve de"ned the protocol and
used it in the interfaces with two classes, you
need to de"ne the implementation of the
method in the protocol, here named .

 Create a new program named
ClassFirst.m.

 In ClassFirst.m, enter the code shown in
Listing 8.23.
!is code creates the implementation of

.

 Add the code to create the implementa-
tion of the method (Listing 8.24).

 Save ClassFirst.m.

 Create a new program named
ClassSecond.m.

continues on next page

From the Library of Bill Wiecking

ptg10683285

 In ClassSecond.m, enter the code shown
in Listing 8.25.
!is code creates the implementation of

.

 In ClassSecond.m, add the code to create
the implementation of the method
in (Listing 8.26).

 Save ClassSecond.m.

From the Library of Bill Wiecking

ptg10683285

Now that you’ve de"ned a protocol for the
 method and implemented that method

in two classes, you can create objects of those
classes and call the method in each:

Each method will print a di$erent method,
so although the protocol de"nes an interface
for one method, the actual implementation
depends on the classes that put the method
to use.

 Create a new program named main.m.

 In main.m, enter the code shown in
Listing 8.27.
!is code creates an object of the "rst
class and executes its method.

 Add the code to create an object of
the second class and execute its
method as well (Listing 8.28).

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Save main.m.

 If you’re using Linux, UNIX, or Windows,
create a make"le named GNUmake!le as
shown in Listing 8.29.

 Run the main.m protocols program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

In this chapter, we’re going to explore two
important features of the Objective-C
Foundation classes: arrays and dictionaries.

You saw C-style arrays in Chapter 3. !ose
arrays let you handle your data as a set of val-
ues accessible by index. For example, here’s
how to create a standard array and display
some information about it:

In this chapter, you’re going to build arrays
using the Foundation classes that come with
Objective-C. !ose array classes let you do
more with arrays, such as sort them, as you’ll
see in this chapter.

continues on next page

From the Library of Bill Wiecking

ptg10683285

You can also create dictionaries in Objective-C
using the Foundation classes. A dictionary
in Objective-C is just like an array, but it uses
words as index values, not numerical values.
So while an array might be indexed by the
numbers 0, 1, 2, 3, and so on, a dictionary
would use the index terms “zero,” “one,” “two,”
“three,” and so on. !e index values need not
be sequential; you could as well have used
“banana,” “apple,” and “orange.”

In addition, you can create mutable arrays
and dictionaries: that is, arrays and dictionar-
ies whose length can be changed on the %y in
your code. You’ll see how that works here.

All that and more is coming up in this
chapter, which includes: the ,

, , and
 classes, as well as some others.

From the Library of Bill Wiecking

ptg10683285

You can create an array using the Foundation
class . Such arrays are static and can-
not be changed at run time..

Here’s how you might create such an array,
initializing it to , , and .

 Create a program named createarray.m.

 In createarray.m, enter the code shown in
Listing 9.1.
!is code creates the array and initializes
it with data.

 Add the code to display a message indi-
cating success (Listing 9.2).

 Save createarray.m.

 Run the createarray.m program (ignor-
ing the warning about the unused array
variable).
You should see the following:

 It’s a good idea to end all arrays with the
 object, and as previously discussed,

be sure to use the @ sign to di$erentiate
Objective-C strings from C-style strings:

 You’ll need a GNUmake"le "le as detailed
in previous chapters if you’re using Linux,
UNIX, or Windows.

From the Library of Bill Wiecking

ptg10683285

You created an array in the previous task.
Now how do you access individual elements
in that array? For example, what if you want
to access the element at ?

To do that, you send the array an
 message along with

the index value you want to access:

In this task, you’ll see how to access individual
elements with the message.

 Create a program named
accesselements.m.

 In accesselements.m, enter the code
shown in Listing 9.3.
!is code creates the array and initializes
it with data.

 Add the code to access the elements of
your choice with the mes-
sage and turn the Objective-C string into
a C-style string before passing it to the

 function (Listing 9.4).

 Save accesselements.m.

 Run the accesselements.m program.
You should see the following: To insert an object into an array, you use

the message.

From the Library of Bill Wiecking

ptg10683285

Objective-C provides an easy way to loop
over an array: you can use a
object. Here’s how to create an enumerator
for an array:

!en you can use the enumerator’s
message to get the next element as you iter-
ate the array in a loop.

 Create a new program named
enumerator.m.

 In enumerator.m, enter the code shown in
Listing 9.5.
!is code creates the array, an enumera-
tor for the array, and a placeholder vari-
able for objects from the array.

continues on next page

From the Library of Bill Wiecking

ptg10683285

 In enumerator.m, enter the code shown in
Listing 9.6.
!is code uses the message
to get the next object from the enumera-
tor in a loop. We also create an

 object to keep track
of memory use.

 Save enumerator.m.

 If you’re using Linux, UNIX, or Windows,
create a new make"le named GNUmake!le.

 Run the enumerator.m program.
You should see the following:

 If you want to loop over an array with a
 loop, you can send the array the mes-

sage to get the number of elements
in the array.

From the Library of Bill Wiecking

ptg10683285

!e arrays you create with are "xed
arrays—you cannot change their length at
run time. However, the length of arrays you
create with the class can be
changed when your program runs.

In the next task, you’ll use to
add elements to a mutable array.

 Create a new program named
createmutablearray.m.

 In createmutablearray.m, enter the code
shown in Listing 9.7.
!is code creates the mutable array.

continues on next page

From the Library of Bill Wiecking

ptg10683285

 In createmutablearray.m, enter the code
shown in Listing 9.8.
!is code uses an enumerator and the

 message to get the next object
from the enumerator in a loop.

 Save createmutablearray.m.

 If you’re using Linux, UNIX, or Windows,
create a new make"le named GNUmake!le.

 Run the createmutablearray.m program.
You should see the following:

In the next task, you’ll add elements to
this mutable array.

From the Library of Bill Wiecking

ptg10683285

It’s easy to add new elements to a mutable
array at run time: you just send the

 message.

 Create a "le named addelements.m.

 In addelements.m, enter the code shown
in Listing 9.9.
!is code creates the mutable array you’ll
use and initializes it to , ,
and .

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Enter the code to add the elements
, , and and then

loop over the array to print a list of all the
elements (Listing 9.10).

 Save addelements.m.

 Run the addelements.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

You can sort an array by sending it a
 message. For example,

here’s how you perform a case-insensitive
sort, using the
selector:

 Create a "le named sortarray.m.

 In sortarray.m, enter the code shown in
Listing 9.11.
!is code creates the array and prints it.

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Add the code to sort the array and then
print it (Listing 9.12).

 Save sortarray.m.

 Run the sortarray.m program.
You should see the unsorted array fol-
lowed by this:

From the Library of Bill Wiecking

ptg10683285

!e memory used by a large array can be con-
siderable. You can release the memory used
for an array by sending the array a
message.

 Copy the sortarray.m program to a pro-
gram named releasememory.m.

 In releasememory.m, add the code high-
lighted in Listing 9.13.

 Save releasememory.m.

 Run the releasememory.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

A dictionary lets you use words or other
objects as keys and retrieve or store objects
accessed by that key. In this task, you’ll create
a dictionary to see how it works.

 Create a "le named createdictionary.m.

 In createdictionary.m, enter the code
shown in Listing 9.14.
!is code creates the dictionary and adds
keys and values to it.

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Add the code to display the value for a
particular key (Listing 9.15).

 Save createdictionary.m.

 Run the createdictionary.m program.
You should see the unsorted array fol-
lowed by this:

From the Library of Bill Wiecking

ptg10683285

You can use an enumerator object to loop
over a dictionary just as you can use an
enumerator to loop over an array. In this
task, you’ll use an enumerator to print the
keys and values of an dictionary.

 Create a new program named
enumeratordictionary.m.

 In enumeratordictionary.m, enter the
code shown in Listing 9.16.
!is code creates the dictionary you’ll use.

From the Library of Bill Wiecking

ptg10683285

 Add the code to create the enumerator
and loop over the dictionary (Listing 9.17).

 Save enumeratordictionary.m.

 Run the enumeratordictionary.m
program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

You can extend a mutable dictionary by add-
ing new items or reduce it by removing items.
You’ll see how to create a mutable dictionary
in this task, and you’ll see how to extend it in
code in the next task.

 Create a new program named
createmutabledictionary.m.

 In createmutabledictionary.m, enter the
code shown in Listing 9.18.
!is code creates an object of the

 class.

 Add the code to display a message
indicating that the creation process went
smoothly and to deallocate the memory
used by the mutable dictionary before
ending the program (Listing 9.19).

 Save createmutabledictionary.m.

 Run the createmutabledictionary.m
program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

In the previous task, you created a mutable
dictionary, but didn’t add any data to it. In
this task, you’ll add keys and values to the
mutable dictionary.

 Create a new program named
addkeys.m.

 In addkeys.m, enter the code shown in
Listing 9.20.
!is code creates the mutable dictionary
and uses the message to add
key and value pairs to the dictionary.

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Add the code to print the contents of the
mutable dictionary (Listing 9.21).

 Save addkeys.m.

 Run the protected addkeys.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

In this chapter, you’ll learn about memory
management in Objective-C. Objective-C
keeps track of all the objects you create with a
retain count, and when that count goes down
to zero, Objective-C automatically deallocates
the memory allocated to an object.

For example, say that you create two objects:

Now the retain count of each object is 1, as
you can verify by asking each object what its
retain count is and printing that result:

You can also explicitly increment the retain
count yourself, like this:.

continues on next page

From the Library of Bill Wiecking

ptg10683285

When you pass an object the mes-
sage, it increments its own retain count. So in
this case, the retain count for would
increase from 1 to 2 to 3, and the retain count
for would increase from 1 to 2.

To decrement the retain count, you send an
object a message:

!ese two lines of code reduce the retain
count of to 2 and the retain count
of to 1.

When you send a message that
reduces the retain count of an object to 0,
Objective-C automatically deallocates that
object. You’ll implement the method
for objects yourself in this chapter to see how
Objective-C deallocates your objects.

From the Library of Bill Wiecking

ptg10683285

In this task, you’ll create two test objects
whose retain count you’ll track in the upcom-
ing tasks as you increase and decrease the
retain count.

!e two objects will be objects of ,
which just looks like this (you’ll add methods
to this class in a later task):

All right—now let’s create the test objects.

 Create a program named createobject.m.

 In createobject.m, enter the code shown
in Listing 10.1.
!is code creates the two test objects.

 Add the code to display a message indi-
cating success (Listing 10.2).

 Save createobject.m.

 Run the createobject.m program
(ignoring the warning about not using
the objects).
You should see the following:

From the Library of Bill Wiecking

ptg10683285

When you create objects, Objective-C keeps
track of them with a retain count. To "nd out
what that retain count is, you send an object
a message.

For example, in the previous task, you cre-
ated two new objects:

You can display their retain count (which will
be 1) like this:

 Create a program named retaincount.m.

 In retaincount.m, enter the code shown in
Listing 10.3.
!is code creates the two test objects.

From the Library of Bill Wiecking

ptg10683285

 Add the code to display the retain count
of each new object (Listing 10.4).

 Save retaincount.m.

 Run the retaincount.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

You can increment the retain count of an
object yourself by sending it a mes-
sage. In this task, you’ll increment the retain
counts of two objects and then verify that the
retain counts were indeed incremented.

 Create a new program named
incrementcount.m.

 In incrementcount.m, enter the code
shown in Listing 10.5.
!is code creates the two test objects and
displays their retain counts.

From the Library of Bill Wiecking

ptg10683285

 Add the code to increment the retain
counts and display the results
(Listing 10.6).

 Save incrementcount.m.

 Run the incrementcount.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

You can decrement an object’s retain count
by sending it a message. You do that
here and con"rm that the retain count has
been decremented.

 Create a new program named
decrementcount.m.

 In decrementcount.m, enter the code
shown in Listing 10.7.
!is code creates the two test objects and
increments their retain counts.

From the Library of Bill Wiecking

ptg10683285

 Add the code to decrement the retain
count of each object by 1 and display the
resulting retain count for each object
(Listing 10.8).

 Save decrementcount.m.

 Run the decrementcount.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

When the retain count of an object reaches
zero, Objective-C deallocates that object
from memory. You’ll see how this works by
overriding your objects’ method and
displaying a message when the objects are
deallocated.

 Create a new program named dealloc.m.

 In dealloc.m, enter the code shown in
Listing 10.9.
!is code overrides the
method to display a message con"rming
the deallocation.

From the Library of Bill Wiecking

ptg10683285

 Add the code shown in Listing 10.10.
!is code creates two objects and
increments and decrements the retain
counts of and , "nally
setting their retain counts to zero. At that
point, Objective-C deallocates the objects,
as con"rmed by a message from the over-
ridden method.

 Save dealloc.m.

 Run the dealloc.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

 If you use or to create an object,
you’re responsible for managing the object’s
memory yourself (if memory is a concern).
But for objects that you don’t create with

 or , you can have Objective-C man-
age them for you using an autorelease pool.

Just create a object, and the objects will
be placed in it automatically. At the end of
the program, you have only to release the
pool to release all the objects.

 Create a "le named pool.m.

 In pool.m, enter the code shown in
Listing 10.11.
!is code creates the pool and a pool-
managed object: .

 Add the code to print the object’s retain
count and release the pool when the
program ends (Listing 10.12).

 Save pool.m.

 Run the pool.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

If you create objects using or ,
you’re responsible for managing their
memory yourself (if memory is a concern).
!at means that when you’re done with an
object and want to release its memory, it’s up
to you to do so until its retain count reaches
zero and Objective-C deallocates it.

In this task, you’ll add a self-managed object
to the previous task’s pool.m program so you
can compare the procedures for self-managed
memory and pool-managed memory.

 Open pool.m.

 Add the code to create a self-managed
string (Listing 10.13).

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Add the code to print the self-managed
string’s retain count and release the
object (Listing 10.14).

 Save pool.m.

 Run the edited pool.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

If you create objects of your own classes that
store other objects internally, you’re respon-
sible for releasing the internal objects when
the overall object is deallocated.

In the remaining tasks in this chapter,
you’ll see how this works using an example
class named that internally stores
two objects that correspond to
the friend’s "rst and last names. When the

 object is deallocated, you’ll manually
release the two internal strings.

 Create a "le named friends.m.

 In friends.m, enter the code shown in
Listing 10.15.
!is code creates the class and
internally stores the friend’s "rst and
last names.

 Save friends.m.

From the Library of Bill Wiecking

ptg10683285

In this task, you’ll continue working with the
 class from the previous task. Here,

you’ll internally store the friend’s "rst and last
names as objects.

 Open friends.m.

From the Library of Bill Wiecking

ptg10683285

 Add the code to store the friend’s "rst
and last names in the object as

 objects (Listing 10.16).

 Save friends.m.

From the Library of Bill Wiecking

ptg10683285

In this task, you’ll create the method
for the deallocation example to release any
internal objects when the containing object
is deallocated.

 Open friends.m.

 Add the code to create an object of the
 class named (Listing 10.17).

 Add the code to print the friend’s
name and release the object
(Listing 10.18).

 Save friends.m.

From the Library of Bill Wiecking

ptg10683285

!is task completes the examples illustrating
how to release internal memory for custom
objects. Here, you actually release the inter-
nally stored objects when the whole object is
deallocated.

 Open friends.m.

 Add the code to release the internal
strings when the complete object
is deallocated (Listing 10.19).

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Save friends.m.

 Run the friends.m program.
You should see the following:

!e object is deallocated, and its
internally stored objects, and ,
are released.

From the Library of Bill Wiecking

ptg10683285

Errors are a fact of life. Even the most perfect
programmer has code that creates run-time
errors at times. !is chapter is about han-
dling such cases.

You’ll commonly encounter two kinds of
errors: compile-time errors and run-time
errors. Compile-time errors are those raised
by the compiler, and you have to "x those
before you continue with your program. Run-
time errors happen at run-time, even though
your code compiled "ne. Run-time errors are
commonly called exceptions.

Objective-C can handle exceptions, but the way
it does so varies by platform. In this chapter,
we’ll use the GNUstep way of handling excep-
tions, which is the most common method.

Here, you use macros like and
 to handle exceptions when they

happen. For example, this code creates a
custom exception and then reports on it:

continues on next page

From the Library of Bill Wiecking

ptg10683285

We’ll take a look at the details in this chapter.

From the Library of Bill Wiecking

ptg10683285

Whenever your code may cause an exception—
for example, by dividing by zero—you can
enclose it in a macro like this:

!is is the "rst step in GNUstep exception
handling: any exceptions that happen inside
an macro can be handled in an

 macro, which is covered in the
next task.

 Create a program named main.m.

 In main.m, enter the code shown in
Listing 11.1.
!is code creates an block.

 Add your exception-prone code to the
 block (Listing 11.2).

 Save main.m.

From the Library of Bill Wiecking

ptg10683285

When an exception occurs, you can handle
that exception in an macro—
that’s where you place your exception-
handling code, as you’ll see in this task.

 Create a program named main.m.

 In main.m, enter the code shown in
Listing 11.3.
!is code creates the macro.

 Enter the code to add the
macro, which runs when an exception
occurs (Listing 11.4).

 Save main.m.

From the Library of Bill Wiecking

ptg10683285

You can handle exceptions in the
block. After the code in the block
runs, you can have the code in another block,
the block, run, giving you a
chance to add cleanup code.

 Create a new program named main.m.

 In main.m, enter the code shown in
Listing 11.5.
!is code creates the and

 blocks.

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Enter the code to add the
block for code you want executed after
the block (Listing 11.6).

 Save main.m.

From the Library of Bill Wiecking

ptg10683285

Now you’ll cause an exception to occur so
you can handle it and con"rm that your code
works as expected.

In this task, you’ll create an exception object;
then you’ll raise that exception, which causes
the exception to actually occur. After that,
you can catch and handle the exception.

 Create a new program named main.m.

 In main.m, enter the code shown in
Listing 11.7.
!is code creates an exception object and
raises the exception.

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Add the code to display a message from
the exception handler and the exception
end handler (Listing 11.8).

 Save main.m.

 Run the main.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

In exception-handling blocks, you can
refer to the exception that occurred as

, an object built into
Objective-C. !en you can "nd its name
by sending it the message—and so
determine what exception occurred.

In this task, you’ll determine what exception
occurred and display a message to match.

 Create a new program named main.m.

 In main.m, enter the code shown in
Listing 11.9.
!is entry creates the exception and the
exception-handling code.

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Enter the code to check the name of the
exception and display it (Listing 11.10).

 Save main.m.

 Run the main.m program.
You should see the following:

From the Library of Bill Wiecking

ptg10683285

You can also check for multiple exceptions.
To check for multiple exceptions, you use

/ / in the block.

 Create a "le named main.m.

 In main.m, enter the code shown in
Listing 11.11.
!is code checks for multiple exceptions.

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Enter the code to add an block
(Listing 11.12).
You’ll use this block in a later task to
pass any uncaught exceptions back up
the call stack.

 Save main.m.

From the Library of Bill Wiecking

ptg10683285

Sometimes when you’re handling excep-
tions, you’ll want to pass the exceptions back
up the call stack to the exception-handling
code in a calling function. You can do that
simply by raising the exception again in the

 block, as you’ll do in this task.

 Create a new "le named main.m.

 In main.m, enter the code shown in
Listing 11.13.
!is code sets up a framework to handle
multiple exceptions.

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Add the code to pass an uncaught excep-
tion back up the call stack by raising it
again (Listing 11.14).

 Save main.m.

From the Library of Bill Wiecking

ptg10683285

If your exception handler is in a function,
you may want to return a value from that
function—that is, even if an exception occurs
in a function, you may still want to return a
value from that function to the calling code.
However, you can’t just use the return state-
ment in an exception handler—you have to
use , as you’ll see in this task.

 Create a "le named main.m.

 In main.m, enter the code shown in
Listing 11.15.
!is entry sets up exception-handling
code for multiple exceptions.

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Add the code to return values from the
exception-handling code (Listing 11.16).

 Save main.m.

From the Library of Bill Wiecking

ptg10683285

Exception-handling code in a function can
also return a value of from the func-
tion (if you want your function to return a
value of), but you need a special macro,

, to make it do so.

 Create a "le named main.m.

 In main.m, enter the code shown in
Listing 11.17.
!is entry sets up exception-handling
code for multiple exceptions.

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Add the code to return from the
exception-handling code (Listing 11.18).

 Save main.m.

From the Library of Bill Wiecking

ptg10683285

You can set up a special function to catch all
unhandled exceptions by calling

, where
is a pointer to a function (just like a standard
pointer, except that it points to a function) of
the form

. So if you don’t
handle an exception anywhere else, it will be
handled in the
function.

 Create a "le named main.m.

 In main.m, enter the code shown in
Listing 11.19.
!is code sets up the exception-handling
function.

continues on next page

From the Library of Bill Wiecking

ptg10683285

 Add your exception-handling code
(Listing 11.20).

 Save main.m.
Now your code can catch previously
uncaught exceptions.

From the Library of Bill Wiecking

ptg10683285

 inequality operator, 31
 not operator, 32
 command prompt, 7

 (modulus assignment operator), 17
 (modulus operator), 15

 code, 9
 code, 8, 9
 (and operator), 32

 operator, 43, 51
 (asterisk), 51

 (multiplication assignment operator), 17
 (multiplication operator), 15

 (addition assignment operator), 17
 (addition operator), 15

 (increment operator), 19–20
 (plus sign), 84

 (decrement operator), 19
 (subtraction assignment operator), 17

 (subtraction operator), 15
 (division assignment operator), 17

 (division operator), 15
 (comment marker), 13

 (comment marker), 13
 (less-than operator), 31

 (less-than-or-equal-to operator), 31
 (assignment operator), 17

 (equality operator), 24, 26, 31
 (greater-than operator), 31

 (greater-than-or-equal-to operator), 31
 keyword, 82, 92, 94

 keyword, 82, 92
 access speci"er

and base-class data members, 122
and base-class methods, 124
and inheritance, 122, 124, 132
purpose of, 99, 100
using, 103–104

 access speci"er, 99, 100,
105–106, 134

 access speci"er, 99, 100, 102
 sign, 54, 165
 (curly braces), 3, 26, 47, 60

 (or operator), 32
2-dimensional arrays, 49–50

accesselements.m program, 166
access.m program, 102–105, 121
access speci"ers, 99–106, 132–135. See also

speci"c access speci"ers
addelements.m program, 171–172

 function, 64–67, 72–75
addition assignment operator, 17
addition operator, 15
addkeys.m program, 181–182

 message, 171
ampersand, 32, 43, 51
and operator, 32
app.exe application, 45
arguments, 64–65, 90–91
arithmetic operators, 15–16

From the Library of Bill Wiecking

ptg10683285

array2.m program, 50
arrayloop.m program, 48
array.m program, 46
arrays, 46–53, 165–175

accessing elements in, 166
adding elements to, 171–172
creating, 46, 49–50, 163, 165, 169–170
de"ned, 43
initializing, 47
inserting objects in, 166
interchanging pointers and, 53
looping over, 48, 167–168
mutable, 169–172
passing, to functions, 72–73
pointing to items in, 52
releasing memory used for, 175
sorting, 173–174
static, 165
two-dimensional, 46–50
vs. dictionaries, 164

arrow notation, 101
assignment.m program, 17–18
assignment operators, 17–18
asterisk (

in comment markers, 13
declaring pointer with, 51
in multiplication assignment operator, 17
in multiplication operator, 15

autorelease pool, 194
averages, calculating, 48, 50

base classes
accessing, 136
alternate name for, 136
creating, 145, 151
de"ned, 119
inheriting from, 122–123
using, with categories, 147–148

base-class methods
inheriting, 124–125
overloading, 128–129
overriding, 126–127

break.m program, 42
 statement, 41–42

C++, 120
call stack, passing exceptions up,

215–216
 selector, 173

 statement, 29, 30
cast.m program, 22
cast operators, 21–22
categories, 143–148

creating, 146
how they work, 143–144
purpose of, 141, 142
using base class with, 147–148

character variables, 9
 data type, 11, 54

C language, 1
class1extender.h "le, 146
class1extender.m program, 146
class1.h "le, 145, 151
class1.m program, 145, 151
class2.h "le, 152
class2.m program, 152
classes

adding categories to, 146
adding methods to, 141
base (See base classes)
creating, 82–83
de"ning, 80–81
derived (See derived classes)
deriving one from another, 119
extending, 141, 144, 145
inheriting from, 121
making one pose as another, 141, 149,

151–154
purpose of, 79
storing implementation for, 94
storing interface for, 92–93
syntax for, 80
verifying method support for objects

created by, 118
verifying that objects belong to,

113–116
ClassFirst.h "le, 158
ClassFirst.m program, 159
classmethod.m program, 85

From the Library of Bill Wiecking

ptg10683285

class methods
creating, 84–85
de"ned, 84
de"ning, 84
executing, 85

ClassSecond.h "le, 158
ClassSecond.m program, 160
class variables, 99, 107–108. See also variables
classvariables.m program, 109–110
code "les, 3. See also programs
command prompt, 7
comments, 13–14
compare.m program, 31
comparison operators, 31
compile-time errors, 203
compiling programs, 6–7
conditional.m program, 34
conditional operator, 33–34
conditions, testing, 23–24, 26, 29
constant data, 74–75

 keyword, 74
constructor.m program, 97–98, 136–137
constructors

calling base class’s, 136–137
and inheritance, 136–137
purpose of, 97
returning pointer to current object from,

109–110
using, 97–98

container.h "le, 95
container.m program, 96

 message, 168
createarray.m program, 165
createdictionary.m program, 176–177
createmutablearray.m program, 169–170
createmutabledictionary.m program, 180
createobject.m program, 185
curly braces, 3, 26, 47, 60

data
in arrays (See arrays)
declaring pointers for, 51 (See also pointers)
initializing, 97
marking as constant, 74

passing, to functions, 64–65, 74–75
returning, from functions, 66–67
storing

in objects, 88–89
in variables, 8

types of, 11–12, 54
ways of working with, 43–44

datatype.m program, 11–12
data types, 11–12, 54

 method, 184, 192
dealloc.m program, 192–193
decimal integers, 9
declarations, function, 63
decrementcount.m program, 190–191
decrement operator, 19
de"nitions, function, 60
derived classes

creating, 152
de"ned, 119
and inheritance of base-class data members,

122–123
and inheritance of base-class methods,

124–125
and multiple inheritance, 142
overriding methods in, 126–127

dictionaries, 176–182
adding objects to, 181–182
creating, 176–177, 180
enumerating, 178–179
mutable, 180–182
purpose of, 176
vs. arrays, 164

division operator, 15
do.m program, 40

 data type, 11
 loop, 39–40

elements, array, 43, 166, 171–172. See also arrays
else.m program, 28

 statement, 24, 27–28, 213–214
end handler, 207–208
enumeration.m program, 57–58
enumerations, 57–58
enumeratordictionary.m program, 178–179

From the Library of Bill Wiecking

ptg10683285

enumerator.m program, 167–168
equality operator, 24, 26, 31
errors, 203. See also exceptions
exception handlers

returning values from, 217–218
returning value from, 219–220

exceptions, 203–222
catching, 205
catching uncaught, 221–222
checking/displaying name of, 211–212
checking for multiple, 213–214
creating, 209–210
handling, 206–208, 213–214
passing up call stack, 215–216

factorials, 76
"les

header (See header "les)
linking multiple, 95–96
program (See program "les)
source code, 144

 data type, 11, 54
%oating-point values, 9, 11

 loop, 25, 35–36, 48, 168
for.m program, 36
Foundation classes, 54, 81, 163, 164
Foundation header "le, 44, 45. See also

header "les
friends.m program, 197–202
functionargs.m program, 65
function arguments, 64–65
function declarations, 63
function.m program, 61
functionpassconstantarrays.m program, 74–75
functionpasspointers.m program, 70–71
functionpointers.m program, 77–78
functionprototype.m program, 63
function prototypes, 62–63, 64
functionrecursion.m program, 76
functionreturn.m program, 67
functions, 59–78

calling, 60, 76
creating, 59–61
declaring, 62–63

de"ned, 3, 59
de"ning, 60, 61
passing arguments to, 64–65
passing arrays to, 72–73
passing constant data to, 74–75
passing pointers to, 70–71
purpose of, 59
returning values from, 66–67
using pointers to, 77–78

function scope, 68–69
functionscope.m program, 68–69

GNUmake"le, 45, 55, 56, 81, 95–96
GNUstep

command prompt, 81
downloading/installing, 6
environment variables, 45
exception handling, 203, 205
shell, 81

greater-than operator, 31
greater-than-or-equal-to operator, 31

header2.h "le, 94
header2.m program, 94
header "les

adding implementation to, 94
"le extension for, 4
for -class objects, 44, 45
putting function prototypes in, 63
speci"c

class1extender.h, 146
class1.h, 145, 151
class2.h, 152
ClassFirst.h, 158
ClassSecond.h, 158
container.h, 95
header2.h, 94
printing.h, 158
stdio.h, 4, 63

storing interface in, 92–93
header.m program, 92–93
.h "le extension, 4

From the Library of Bill Wiecking

ptg10683285

id.m program, 111–112
 type, 111–112

if.m program, 26
 statement, 23–24, 26, 27, 213–214

 keyword, 82, 92, 94
increment.m program, 20
increment operator, 19–20
inequality operator, 31
inheritance, 119–139

from base-class data members, 122–123
of base-class methods, 124–125
from classes, 121
de"ned, 119
how it works, 119–120
multi-level, 120, 130–131
multiple, 142, 156
overloading base-class methods, 128–129
overriding base-class methods, 126–127
and polymorphism, 138–139
purpose of, 120
restricting, 134–135
stopping, 132–133
using constructors with, 136–137

inheritdata.m program, 122–123
inheritmethods.m program, 124–125
initializearray.m program, 47

 method, 97
 message, 166

instances.m program, 118
 method, 118

 data type, 11
integer variables, 8, 9, 11, 68

 keyword, 82, 92
interfaces, de"ning, 157–158
internal objects, 198–199

 function, 56
I/O functions, 4
isKindOfClass.m program, 115–116
isMemberOfClass.m program, 113–114, 115
iterations, loop, 35

less-than operator, 31
less-than-or-equal-to operator, 31
linking "les, 95–96

Linux
compiling/running programs in, 7
creating GNUmake"le in, 81
creating NS-class objects in, 45
creating programs in, 5

 object, 211
logical.m program, 32
logical operators, 32

 data type, 11
 data type, 11

 variable, 25, 35
loop iterations, 35
loops, 35–42

and arrays, 48, 167–168
breaking out of, 35, 41–42
for enumerating dictionaries, 178–179
keeping track of, 35
purpose of, 25, 35
using speci"c

 loop, 39–40
 loop, 25, 35–36, 48, 168

 loop, 37–38

Mac
compiling/running programs on, 6
creating NS-class objects on, 45
creating programs on, 5

 method, 200
main.m program

for catching exceptions, 205, 221–222
for creating exceptions, 209–210
for handling exceptions, 206
for handling multiple exceptions, 213–214
for identifying exceptions, 211–212
for linking multiple "les, 95
for making one class pose as another,

153–154
for passing exceptions up call stack,

215–216
for returning values from exception handler,

217–220
for using base class with categories,

147–148
for using end handler, 207–208
for using protocols, 161–162

From the Library of Bill Wiecking

ptg10683285

make"le, 45, 54, 55, 81
memory

deallocating, 192–193, 197–202
how Objective-C manages, 183–184
releasing array, 175
self-managed, 195–196

methods
adding to classes, 141
base-class (See base-class methods)
class (See class methods)
creating, 85, 87
de"ned, 56, 59
de"ning implementation of, 159–160
de"ning protocols for, 155–158
for initializing data, 97
object, 81, 83, 87, 88
overloading, 128–129
passing arguments to, 90–91
verifying object support for, 117–118

.m "le extension, 3
modulus operator, 15, 21–22
multi-level inheritance, 120, 130–131
multilevel.m program, 130–131
multipleargs.m program, 90–91
multiple exceptions, 213–214
multiple inheritance, 142, 156
multiplication operator, 15
mutable arrays, 169–172
mutable dictionaries, 180–182

 message, 211
 message, 167, 168

NeXtStep, 44
 object, 165

not operator, 32
 class, 165

-class objects, 45
 macro, 205

 block, 207–208
 object, 167

 macro, 205, 206, 215–216
 class, 169

 class, 81
 function, 218–219

 objects, 44, 54, 56
 function, 221

 macro, 219–220

 message, 166
objectdata.m program, 88–89
Objective-C

adding comments in, 13–14
arrays (See arrays)
categories, 141, 143–148
and C language, 1
classes, 79–81 (See also classes)
compiling/running programs in, 6–7
creating functions in, 59–61 (See also

functions)
creating programs in, 3–5
as cross-platform language, 1
data types, 11–12, 54
dictionaries (See dictionaries)
directing program %ow in, 23–42
exception handling, 203–222
handling data in (See data)
and inheritance, 119–120 (See also

inheritance)
memory management, 183–184, 194 (See also

memory)
object-oriented programming in, 79–80, 99

(See also object-oriented programming)
objects (See objects)
operators (See operators)
platform considerations, 1, viii
protocols, 142, 155–162
purpose of, viii
using posing in, 141–142, 149–154
using variables in, 8–10 (See also variables)

objectmethod.m program, 87
object methods, 81, 83, 87, 88
object.m program, 86, 108
object-oriented inheritance, 119–139

of base-class data members, 122–123
of base-class methods, 124–125
from classes, 121
multi-level, 130–131
overloading base-class methods, 128–129

From the Library of Bill Wiecking

ptg10683285

overriding base-class methods, 126–127
and polymorphism, 138–139
restricting, 134–135
stopping, 132–133
using constructors with, 136–137

object-oriented programming, 99–118
how it works, 1–2, 79–81
purpose of, 1–2, 79

objects
accessing current, 109–110
communicating with, 81
creating, 82–83, 86, 185
deallocating from memory, 192–193
decrementing retain count for, 190–191
de"ned, 1
determining class for, 113–116
displaying retain count for, 186–187
incrementing retain count for, 188–189
initializing data in, 97
sending messages to, 81
storing data in, 88–89
storing internal, 198–199
syntax for, 80–81
using self-managed memory for, 195–196
verifying that method is supported by,

117–118
OOP, 79, 97. See also object-oriented

programming
operators

arithmetic, 15–16
assignment, 17–18
cast, 21–22
comparison, 31
conditional, 33–34
decrement, 19
increment, 19–20
logical, 32

operators.m program, 15–16
or operator, 32
overload.m program, 128–129
override.m program, 126–127

plus sign, 84
pointer math, 52
pointermath.m program, 52

pointers
to current object, 109–110
declaring, 51
to functions, 77–78
incrementing, 52
passing, to functions, 70–71
purpose of, 43–44
using arrays as, 53

pointersarray.m program, 53
pointers.m program, 51
polymorphism, 99, 138–139, 142, 150
pool.m program, 194–195, 196

 object, 194
 keyword, 153

posing, 149–154
creating base class, 151
creating derived class, 152
how it works, 141–142, 149–150
putting it together, 153–154
vs. polymorphism, 142, 150

primitive data types, 11
 function, 3–4, 8, 9, 44, 54

printing.h "le, 158
 access speci"er

and base-class data members, 122
and base-class methods, 124
and inheritance, 122, 124, 132
purpose of, 99, 100
using, 103–104

private.m program, 132–133
program %ow, controlling, 23–42

with statement, 41–42
with comparison operators, 31
with conditional operator, 33–34
with loop, 39–40
with statement, 24, 27–28
with statement, 23, 26
with logical operators, 32
with loop, 25, 35–36, 168
with statement, 29–30
with loop, 37–38

programs
adding comments to, 13–14
compiling/running, 6–7
creating, 3–5
directing %ow of, 23–25 (See also

program %ow)

From the Library of Bill Wiecking

ptg10683285

programs (continued)
speci"c

accesselements.m, 166
access.m, 102–105, 121
addelements.m, 171–172
addkeys.m, 181–182
array2.m, 50
arrayloop.m, 48
array.m, 46
assignment.m, 17–18
break.m, 42
cast.m, 22
class1extender.m, 146
class1.m, 145, 151
class2.m, 152
ClassFirst.m, 159
classmethod.m, 85
ClassSecond.m, 160
classvariables.m, 109–110
compare.m, 31
conditional.m, 34
constructor.m, 97–98, 136–137
container.m, 96
createarray.m, 165
createdictionary.m, 176–177
createmutablearray.m, 169–170
createmutabledictionary.m, 180
createobject.m, 185
datatype.m, 11–12
dealloc.m, 192–193
decrementcount.m, 190–191
do.m, 40
else.m, 28
enumeration.m, 57–58
enumeratordictionary.m, 178–179
enumerator.m, 167–168
for.m, 36
friends.m, 197–202
functionargs.m, 65
function.m, 61
functionpassconstantarrays.m, 74–75
functionpasspointers.m, 70–71
functionpointers.m, 77–78
functionprototype.m, 63
functionrecursion.m, 76
functionreturn.m, 67

functionscope.m, 68–69
header2.m, 94
header.m, 92–93
id.m, 111–112
if.m, 26
increment.m, 20
inheritdata.m, 122–123
inheritmethods.m, 124–125
initializearray.m, 47
instances.m, 118
isKindOfClass.m, 115–116
isMemberOfClass.m, 113–114, 115
logical.m, 32
main.m, 95, 147, 153, 161, 205–222
multilevel.m, 130–131
multipleargs.m, 90–91
objectdata.m, 88–89
object.m, 86, 108
objectmethod.m, 87
operators.m, 15–16
overload.m, 128–129
override.m, 126–127
pointermath.m, 52
pointersarray.m, 53
pointers.m, 51
pool.m, 194–195, 196
private.m, 132–133
protected.m, 134–135
releasememory.m, 175
responds.m, 117
retaincount.m, 186–187
sortarray.m, 173–174
source.m, 45
string.m, 54
stringtoint.m, 56
switch.m, 30
temperature.m, 10
while.m, 38

 access speci"er, 99, 100,
105–106, 134

protected.m program, 134–135
protocols, 155–162

creating class implementations for, 159–160
de"ned, 142
de"ning, 157–158
how they work, 155–156

From the Library of Bill Wiecking

ptg10683285

purpose of, 155
using, 161–162
using multiple, 156

prototypes, function, 62–63, 64
 access speci"er, 99, 100, 102

recursion, 60, 76
releasememory.m program, 175

 message, 184, 190
responds.m program, 117

 function, 117
retain count, 183–191

decrementing, 184, 190–191
displaying, 186–187
incrementing, 183–184, 188–189
purpose of, 183

 message, 186
retaincount.m program, 186–187

 message, 184, 188
run-time errors, 203. See also exceptions

scienti"c notation, 9
scope, function, 68–69

 keyword, 109–110
self-managed memory, 195–196

 data type, 11
signed decimal integers, 9
sortarray.m program, 173–174

 message, 173
source code "les, 144
source.m program, 45
static arrays, 165
stdio.h "le, 4, 63
string.m program, 54
strings, 9, 29, 44, 54–56, 165
stringtoint.m program, 56
subtraction operator, 15
super classes, 97

 keyword, 136
switch.m program, 30

 statement, 29–30

temperature.m program, 10
text strings, 29, 44. See also strings
two-dimensional arrays, 49–50

UNIX
compiling/running programs in, 7
creating GNUmake"le in, 81
creating NS-class objects in, 45
creating programs in, 5

unsigned decimal integers, 9

values
assigning to variables, 17–18
displaying in variables, 9–10
returning from functions, 66–67

variables
assigning values to, 17–18
class, 99, 107–108
creating, 8, 111–112
displaying values in, 9–10
for multiple object types, 111–112
public vs. private, 100–104
purpose of, 8

 value, 219–220

 loop, 37–38
while.m program, 38
Windows

compiling/running programs in, 7
creating GNUmake"le in, 81
creating NS-class objects in, 45
creating programs in, 5

Xcode, 5, 6, 45

From the Library of Bill Wiecking

ptg10683285

Simply visit www.peachpit.com/safarienabled and
enter code PIXTOXA to try it today.

Get free online access
to this book for 45 days!
And get access to thousands more by signing
up for a free trial to Safari Books Online!

With the purchase of this book you have instant online,
searchable access to it for 45 days on Safari Books Online!
And while you’re there, be sure to check out Safari Books
Online’s on-demand digital library and their free trial offer
(a separate sign-up process). Safari Books Online subscribers
have access to thousands of technical, creative and business
books, instructional videos, and articles from the world’s
leading publishers.

From the Library of Bill Wiecking

www.peachpit.com/safarienabled

	Table of Contents
	Introduction
	Chapter 1: Getting Started: Essential Objective-C
	Creating Your First Program
	Compiling and Running Your First Program
	Using Variables
	Displaying Values in Variables
	Working with Data Types
	Adding Comments
	Using Arithmetic Operators
	Using Assignment Operators
	Using the Increment and Decrement Operators
	Changing Type with Cast Operators

	Chapter 2: Directing Program Flow
	Using the if Statement
	Using the else Statement
	Using the switch Statement
	Using Comparison Operators
	Using Logical Operators
	Using the Conditional Operator
	Using the for Loop
	Using the while Loop
	Using the do...while Loop
	Using the break Statement

	Chapter 3: Handling Data
	About Creating NS-Class Objects
	Creating Arrays
	Initializing Arrays
	Looping over Arrays
	Creating Two-Dimensional Arrays
	Using Pointers
	Using Pointer Math
	Interchanging Pointers and Arrays
	Using Strings
	Passing Messages to String Objects
	Using Enumerations

	Chapter 4: Creating Functions
	Defining a Function
	Declaring Functions Using Prototypes
	Passing Arguments to Functions
	Returning Values from Functions
	Using Function Scope
	Passing Pointers to Functions
	Passing Arrays to Functions
	Passing Constant Data to Functions
	Using Recursion
	Using Pointers to Functions

	Chapter 5: Classes and Objects
	Creating Objective-C Classes and Objects
	Using Class Methods
	Creating an Object
	Creating Object Methods
	Storing Data in Objects
	Passing Multiple Arguments to Methods
	Storing the Interface in a Header File
	Adding the Implementation to the Header File
	Linking Multiple Files
	Using Constructors

	Chapter 6: Object-Oriented Programming
	About Access Specifiers
	Using Public Access
	Using Private Access
	Using Protected Access
	Using Class Variables
	Accessing the Current Object
	Creating a Variable for Multiple Object Types
	Verifying That an Object Belongs to a Class
	Checking an Object's Class with isKindOfClass
	Verifying That an Object Supports a Method
	Checking Whether Objects Support a Method

	Chapter 7: Working with Object-Oriented Inheritance
	Inheriting from a Class
	Inheriting Base-Class Data Members
	Inheriting Base-Class Methods
	Overriding Base-Class Methods
	Overloading Base-Class Methods
	Using Multi-level Inheritance
	Limiting Access
	Restricting Access
	Using Constructors with Inheritance
	Using Polymorphism

	Chapter 8: Categories, Posing, and Protocols
	About Categories
	Categories: Creating the Base Class
	Categories: Creating Categories
	Categories: Putting It All Together
	About Posing
	Posing: Creating the Base Class
	Posing: Creating the Derived Class
	Posing: Putting It All Together
	About Protocols
	Protocols: Defining the Protocol and Interfaces
	Protocols: Creating the Class Implementations
	Protocols: Putting It All Together

	Chapter 9: Using Arrays and Dictionaries
	Creating an Array
	Accessing Array Elements
	Using Enumeration to Loop over an Array
	Creating a Mutable Array
	Adding Elements to a Mutable Array
	Sorting an Array
	Releasing Array Memory
	Creating a Dictionary
	Enumerating a Dictionary
	Creating a Mutable Dictionary
	Adding Objects to a Mutable Dictionary

	Chapter 10: Managing Memory in Objective-C
	Creating Test Objects
	Displaying the Retain Count
	Incrementing an Object’s Retain Count
	Decrementing an Object’s Retain Count
	Deallocating Objects from Memory
	Using an Autorelease Pool
	Using Self-Managed Memory
	Deallocating Memory Yourself: Creating the Class
	Deallocating Memory Yourself: Storing Internal Objects
	Deallocating Memory Yourself: Creating the main Method
	Deallocating Memory Yourself: Performing Deallocation

	Chapter 11: Exception Handling
	Catching Exceptions
	Handling Exceptions
	Using the End Handler
	Creating an Exception
	Checking What Exception Occurred
	Handling Multiple Exceptions
	Passing Exceptions Up the Call Stack
	Returning Values from Exception Handlers
	Returning void from an Exception Handler
	Catching Uncaught Exceptions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

