

Physics You Learned

	Physics Concepts	ls There an Equation?
	A scalar is a quantity that is completely described with a number and units. Scalars add, subtract, multiply, and divide like normal numbers.	
	A vector is a quantity that needs direction as well as a number with the correct units to completely describe it. There are special rules for vector addition and vector multiplication.	
	Displacement is a distance in a certain direction from a specified reference point. Displacement is a vector quantity.	
	Velocity (v) is the change in displacement (Δd) of an object divided by the time interval (Δt) for that displacement to occur. Velocity is a vector quantity having both a speed and a direction.	$v = \frac{\Delta d}{\Delta t}$
	Acceleration (<i>a</i>) is the change in velocity (Δv) of an object divided by the time interval (Δt) for that change to occur. Acceleration is a vector quantity.	$a = \frac{\Delta v}{\Delta t}$
Active Ph Plus	To find the magnitude of the change in velocity $(\Delta \nu)$ of an object changing direction by 90 degrees, the Pythagorean theorem is used to find the square root of the sum of the squares of the velocities. The acceleration is this change in velocity divided by the time interval and is in the direction of the difference between the vectors.	$\Delta v = \sqrt{\left(v_1^2 + v_2^2\right)}$ v_1 = velocity before v_2 = velocity after
	Earth's gravitational field is the region of space where Earth's gravitational force is acting. A gravitational field is a vector quantity that points toward the center of the mass.	
	The force of gravity (F_G) between any two masses (m_1 and m_2) depends upon the product of the masses divided by the distance between their centers, squared (r^2). For a planet, the gravitational field falls off with the inverse square of the distance.	$F_{\rm G} = \frac{Gm_1m_2}{r^2}$
	Because the gravitational force exerted by the Sun on each planet varies inversely as the square of the distance between the Sun and the planet, the planet's orbits are elliptical.	
	Kinetic energy (<i>KE</i>) is proportional to an object's mass (<i>m</i>) multiplied by the mass's velocity squared (ν^2). Kinetic energy is the energy of motion.	$KE = \frac{1}{2}mv^2$
	Gravitational potential energy (<i>GPE</i>) equals an object's mass (<i>m</i>) multiplied by the acceleration of gravity(<i>g</i>) and its vertical height above Earth (Δh). <i>GPE</i> is energy as a result of an object's vertical position above Earth's surface.	$GPE = mg\Delta h$
	When an object is falling or freely descending, the object's gravitational potential energy (GPE) is being converted into kinetic energy (KE) as it descends, and the sum of the GPE and KE is a constant.	<i>GPE + KE =</i> constant
Active Ph Plus	The square of the velocity (v^2) of a falling object equals twice the acceleration of gravity (g) multiplied by the height of fall (Δh) . For a mass falling or freely descending in a gravitational field, the fall speed is independent of the mass.	$v^2 = 2g\Delta b$
	Spring potential energy (<i>SPE</i>) is proportional to the strength of the spring, indicated by the spring constant (k) multiplied by the change in length of the spring squared $(\Delta x)^2$. <i>SPE</i> is the energy stored in a spring when it is stretched or compressed.	$SPE = \frac{1}{2}k(\Delta x)^2$

	For SPE clos syst	a system that uses spring potential energy (like a pop-up toy), the sum of the E , KE , and GPE is a constant. The law of conservation of energy states that for a sed system where no outside energy is added or subtracted, the total energy of the tem remains the same, although it may switch forms.	<i>GPE</i> + <i>KE</i> + <i>SPE</i> = constant
	The weight of an object (F_w) equals the object's mass (m) multiplied by the strength of the gravitational field at that point (g) . Different planets will have different values for g.		$F_{\rm w} = m g$
	The of t	e spring force (F_s) equals the spring constant (k) multiplied by the change in length he spring (Δx) , and is in the direction opposite the change in length.	$F_{\rm s} = -k\Delta x$
	The net force on an object is found by adding the vectors of all the forces acting on the object.		
	Newton's first law states an object traveling with constant speed without direction change has no net force acting upon it.		$F_{\rm net} = 0$
	The divi	e acceleration of an object (<i>a</i>) equals the net force acting on the object (F_{net}) ided by the object's mass.	$a = \frac{F_{\text{net}}}{m}$
Active Phy Plus	vsics	Inertial mass and gravitational mass are equal quantities.	
Active Phy Plus	vsics	The centripetal acceleration (a_c) equals the square of the velocity (ν^2) divided by the radius of the circle (r) and points toward the center of the circle.	$a_{\rm c} = \frac{v^2}{r}$
	For the	an object to travel in a circle, a net force toward the center of the circle, called centripetal force, is required.	
Active Phy Plus	vsics	The centripetal force (F_c) acting on an object equals the object's mass multiplied by its centripetal acceleration. The centripetal force on a roller-coaster car may come from a perpendicular force provided by the track (the normal), the car's weight, or a combination of the two forces.	$F_{\rm c} = \frac{m v^2}{r}$
	The apparent weight of a rider on a roller coaster is the normal force provided by the seat.		
Wo dis		rk (W) equals the force (F) acting in the direction of motion multiplied by blacement of the object (d).	$W = F \bullet d$
	The work done on an object increases the object's energy. This increase can be in any form: <i>KE</i> , <i>GPE</i> , or <i>SPE</i> .		$W = \Delta KE + \Delta GPE + \Delta SPE$
	Pov Pov	ver (P) equals the work done (W) divided by the time required to do the work (Δt) . ver is measured in watts (J/s) .	$P = \frac{W}{\Delta t}$