Physics Concepts

The gravitational field strength and the acceleration due to gravity of the Moon is one-sixth that of Earth.
Distance (d) equals one-half the acceleration due to gravity (g) times the fall time squared $\left(t^{2}\right)$.
For an object falling identical time on Earth and the Moon, the ratio of distances fallen is equal to the ratio of acceleration due to gravity.
Is There an Equation?
The mass of an object on the Moon is the same as the mass of the same object on Earth.
Weight $\left(F_{\mathrm{w}}\right)$ equals an object's mass (m) times the acceleration of gravity (g). The weight of an object on the Moon is one-sixth the weight of the same object

$$
F_{\mathrm{w}}=m g
$$ on Earth.

The strength of a planet's gravitational field depends upon the planet's mass and inversely on the square of the distance from the center of the planet.
All falling objects accelerate at the same rate because the ratio of the force of gravity to the mass of the object is the same for all masses.
The law of gravitation applies to all masses in the universe.
The force of gravity $\left(F_{\mathrm{g}}\right)$ equals the universal gravitational constant (G) times the product of the masses $\left(m_{1}\right.$ and $\left.m_{2}\right)$ divided by the square of the distance between their centers $\left(r^{2}\right)$. The force of gravity between a planet and a mass depends upon the product of the mass of the planet and the mass being

$$
F_{\mathrm{g}}=\frac{G m_{1} m_{2}}{r^{2}}
$$ attracted, and is inversely proportional to the square of the distance to the planet's center.

The range of a projectile launched horizontally on the Moon is $\sqrt{6}$ times its range on Earth. The horizontal range of a projectile launched upward at an angle is 6 times its range on Earth.
The horizontal distance $\left(d_{\mathrm{x}}\right)$ covered by a projectile depends upon the time of flight (Δt) and the horizontal component of the launch velocity $\left(v_{x}\right)$.

$$
d_{\mathrm{x}}=v_{\mathrm{x}} \Delta t
$$

The vertical position of a projectile $\left(d_{y}\right)$ launched at a given angle (θ) equals the vertical velocity $\left(v_{v}\right)$ times the time of flight (t) minus the distance the object

$$
d_{y}=v_{y} t-\frac{1}{2} g t^{2}
$$

would fall under the influence of gravity during the time of flight.
Time of flight $\left(t_{\text {toal }}\right)$ equals twice the initial vertical launch velocity $\left(v_{0 y}\right)$ divided by the acceleration of gravity (g). The flight time of a projectile

$$
t_{\text {toata }}=2 t_{\max }=\frac{2 v_{0 \mathrm{y}}}{-g}
$$

The maximum projectile height is proportional to the initial vertical velocity squared and inversely proportional to the gravitational field strength.

$$
y_{\max }=\frac{v_{y 0}^{2}}{-2 g}
$$

