

Physics You Learned

	Physics Concepts	Is There an Equation?
	The gravitational field strength and the acceleration due to gravity of the Moon is one-sixth that of Earth.	
	Distance (d) equals one-half the acceleration due to gravity (g) times the fall time squared (t^2) .	$d = \frac{1}{2}gt^2$
	For an object falling identical time on Earth and the Moon, the ratio of distances fallen is equal to the ratio of acceleration due to gravity.	$\frac{g_{\rm M}}{g_{\rm E}} = \frac{d_{\rm M}}{d_{\rm E}}$
	The mass of an object on the Moon is the same as the mass of the same object on Earth.	
	Weight (F_w) equals an object's mass (m) times the acceleration of gravity (g) . The weight of an object on the Moon is one-sixth the weight of the same object on Earth.	$F_{\rm w} = mg$
	The strength of a planet's gravitational field depends upon the planet's mass and inversely on the square of the distance from the center of the planet.	
	All falling objects accelerate at the same rate because the ratio of the force of gravity to the mass of the object is the same for all masses.	
	The law of gravitation applies to all masses in the universe.	
Active Pl Plu	The force of gravity (F_g) equals the universal gravitational constant (G) times the product of the masses $(m_1 \text{ and } m_2)$ divided by the square of the distance between their centers (r^2) . The force of gravity between a planet and a mass depends upon the product of the mass of the planet and the mass being attracted, and is inversely proportional to the square of the distance to the planet's center.	$F_{\rm g} = \frac{Gm_1m_2}{r^2}$
	The range of a projectile launched horizontally on the Moon is $\sqrt{6}$ times its range on Earth. The horizontal range of a projectile launched upward at an angle is 6 times its range on Earth.	
	The horizontal distance (d_x) covered by a projectile depends upon the time of flight (Δt) and the horizontal component of the launch velocity (v_x) .	$d_x = v_x \Delta t$
	The vertical position of a projectile (d_y) launched at a given angle (θ) equals the vertical velocity (v_y) times the time of flight (t) minus the distance the object would fall under the influence of gravity during the time of flight.	$d_{y} = v_{y}t - \frac{1}{2}gt^{2}$
Active Pl Plus	Time of flight (t_{total}) equals twice the initial vertical launch velocity (v_{0y}) divided by the acceleration of gravity (g) . The flight time of a projectile launched at an angle is twice the time to the peak of the trajectory .	$t_{\text{total}} = 2t_{\text{max}} = \frac{2\nu_{0y}}{-g}$
Active Pl Plus	The maximum projectile height is proportional to the initial vertical velocity squared and inversely proportional to the gravitational field strength.	$y_{\rm max} = \frac{v_{\rm y0}^2}{-2g}$

	_		
Active Physics Plus		Projectile range (<i>R</i>) equals twice the product of the initial vertical and horizontal velocities $(v_{x0})(v_{y0})$ divided by the gravitational field strength.	$R = x_{\max} = \frac{2\nu_{x0}\nu_{y0}}{-g}$
Active Phy Plus	vsics	Maximum range equals twice the initial velocity squared divided by the acceleration due to gravity. The maximum range of a projectile occurs at a launch angle of 45°.	$R = \frac{v_0^2}{g}$ when $\theta = 45^\circ$
	An mu of r	object's kinetic energy (<i>KE</i>) is proportional to the object's mass (<i>m</i>) ltiplied by its velocity squared (v^2) . Kinetic energy is an object's energy notion.	$KE = \frac{1}{2}mv^2$
	Gra mu due vert	ivitational potential energy (<i>GPE</i>) is proportional to an object's mass(m) ltiplied by its vertical height above the surface (Δh) and the acceleration to gravity(g). Gravitational potential energy is energy due to an object's tical position.	$GPE = mg\Delta h$
	The not dur	e law of conservation of energy states that energy may change forms, but is lost during transformations. The total amount of energy remains the same ing any changes in form.	$Energy_{before} = Energy_{after}$
	Frie mo fore	ction is a force acting between bodies in contact that resists their relative tion. It always acts parallel to the surfaces in contact, and depends upon the ce holding the bodies together.	
	The pen of a	e period (T) of a simple pendulum equals 2π times the square root of the dulum's length (L) divided by the acceleration due to gravity (g) . The period a pendulum depends upon its length and is independent of its mass.	$T = 2\pi \sqrt{\frac{L}{g}}$
	The pen swi Ear	e period (T) of a cylindrical pendulum equals 5.1 times the square root of the dulum's length (L) divided by the acceleration due to gravity (g) . A cylinder nging from a pivot (like a leg) swings more slowly on the Moon than on th due to the decreased acceleration of gravity.	$T = 5.1 \sqrt{\frac{L}{g}}$
	The acceleration of an object falling under the influence of gravity and air resistance depends upon the object's shape, mass, and speed.		
	An who resi	object falling with air resistance will reach a constant terminal velocity en its acceleration is zero. Terminal velocity is reached when the force of air stance equals an object's weight.	
Active Physics Plus		Force of air resistance (F_A) equals a constant (c) times the velocity (v) squared.	$F_{\rm A} = -c v^2$