Key Physics Concepts

Section Summaries

Physics Principles

Section 1 Reaction Time: Responding to Road Hazards

Using various reaction timers, students explore the time it takes them to react to a situation. This section introduces students to the process of first beginning with their own ideas and predictions, then implementing an investigation that results in both qualitative and quantitative data.

Section 2 Measurement: Errors, Accuracy, and Precision

Students count the number of strides it takes them to cover a selected distance in an area away from traffic. Students measure the length of their stride using a meter stick and calculate the entire distance by multiplying the total number of strides with the length of each stride. The measurements are then compared by each group. By comparing measurements, students arrive at an understanding of error and the different kinds of errors present in a measurement.

Section 3 Average Speed: Following Distance and Models of Motion

Strobe or multiple-exposure photos of a moving vehicle are used to illustrate speed and acceleration. Students then use a motion detector to measure their walking speed and obtain a computer-generated graph of their motion. Information about speed and velocity is then connected to reaction distance with a discussion on tailgating.

Section 4 Graphing Motion: Distance, Velocity, and Acceleration

Students use sloped tracks to investigate the speed and distance an automobile travels before stopping. They then examine data on time and distance required to stop a vehicle moving at various speeds. This is connected to the total time required to react to a hazard, apply force to the brake, and slow the motion of the vehicle to a complete stop.

Section 5 Negative Acceleration: Braking Your Automobile

The students investigate the relationship between an automobile's speed and the distance required to bring it to a stop. Students draw graphs to study the change in velocity with respect to time. The concept of negative acceleration is explored in this context.

Section 6 Using Models: Intersections with a Yellow Light

Using a spreadsheet model of an intersection, students explore how reaction time, speed, and stopping distance affect what they should do at a yellow light. This also introduces them to how transportation engineers use a computer simulation to model various factors affecting decisions about speed limits and traffic-light cycles. Students now have the opportunity to apply their understanding of reaction time, distance vs. velocity, and braking distance to identify the STOP, GO, and Dilemma Zones at intersections when they see a yellow light.

Section 7 Centripetal Force: Driving on Curves

Students' perceptions and prior learning about the force needed to change the direction of a moving object are challenged in this section. After performing investigations, they reflect on the discrepancy between their perceptions and observed results. Students then read for more information on how forces change the direction.

Average speed Instantaneous speed Velocity Reaction distance

Errors in

 measurement Accuracy PrecisionReaction distance

Acceleration

 Positive acceleration Negative acceleration Vector quantity
Negative acceleration

 Braking distance
Speed

Negative acceleration Distance vs. time relationships

Force

Centripetal force
Centripetal acceleration

