Key Physics Concepts

Section Summaries
Section 1 Identifying and Classifying: What Is a Sport? Students apply their knowledge of sports to identify attributes that define an activity as a sport. From this, they begin to consider how differences between Earth and the Moon can affect sports. Section 2 Acceleration Due to Gravity: Free Fall on the Moon Students compare the free fall of different objects. They then calculate acceleration with respect to gravity on the Moon using measurements obtained from a slow-motion video of an astronaut in space dropping objects.

Section 3 Mass, Weight, and Gravity

Using a simulation that allows for the comparison of mass and weight between Earth and the Moon, students investigate the ratio of gravity on Earth to that on the Moon. After determining that an object's inertia does not change, the forces needed to overcome weight and inertia on the Moon are discussed.

Section 4 Projectile Motion on the Moon

Beginning with scale drawings, students calculate the distances that projected objects will travel on the Moon. These distances are then compared to projectiles launched on Earth with the same velocity to determine how sports that use projectiles would be changed on the Moon.

Section 5 Gravity, Work, and Energy: Jumping on the Moon

Students measure vertical distances when jumping and then analyze their motion in terms of work and conservation of energy. Applying what they know about gravity on the Moon, they predict vertical distances they could jump on the Moon.

Physics Principles

Pattern

 identification
Gravity

Acceleration
Distance covered by
accelerating objects

Inertia
Weight
Universal law of gravitation Newton's second law

Projectile motion Gravity

Section 6 Momentum and Gravity: Golf on the Moon
Using a variety of balls, students measure the height each bounces when dropped and when
projected by a collision. They use this data to infer a golf ball's speed when hit on Earth and on
the Moon. The interaction of different golf clubs and golf balls with varying degrees of mass is
also investigated.
Section 6 Momentum and Gravity: Golf on the Moon
Using a variety of balls, students measure the height each bounces when dropped and when
projected by a collision. They use this data to infer a golf ball's speed when hit on Earth and on
the Moon. The interaction of different golf clubs and golf balls with varying degrees of mass is
also investigated.
Section 6 Momentum and Gravity: Golf on the Moon
Using a variety of balls, students measure the height each bounces when dropped and when
projected by a collision. They use this data to infer a golf ball's speed when hit on Earth and on
the Moon. The interaction of different golf clubs and golf balls with varying degrees of mass is
also investigated.
Section 6 Momentum and Gravity: Golf on the Moon
Using a variety of balls, students measure the height each bounces when dropped and when
projected by a collision. They use this data to infer a golf ball's speed when hit on Earth and on
the Moon. The interaction of different golf clubs and golf balls with varying degrees of mass is
also investigated. also investigated.

Section 7 Friction: Sliding on the Moon

Students investigate the force necessary to overcome the friction between objects and the surfaces on which they move. They then relate this to gravity and predict the force needed to overcome the friction against a sliding motion made on the Moon.

Weight

Friction
Coefficient of friction Normal force

Newton's second law

Gravitational potential energy Kinetic energy

Work

Gravitational potential energy Kinetic energy Conservation of energy

Key Physics Concepts

Section Summaries

Section 8 Modeling Human Motion: Bounding on the Moon

Using cylinders of different lengths and weights, students explore pendulum motion. They then compare the motion of the pendulums to the swinging motion of human legs when walking, finally predicting how walking on the Moon and on Earth is different.

Section 9 Air Resistance and Terminal Velocity: "Airy" Indoor Sports on the Moon

Students start by investigating how mass and terminal velocity are related. They then use badminton shuttlecocks to investigate how air resistance affects motion. They then apply what they know about the ratio of gravity on Earth to that of the Moon to predict the air resistance to motion on the Moon.

Physics Principles

Gravitational field strength
Simple harmonic motion
Period of a pendulum

Air resistance Terminal velocity

NOTES

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

