SECTION 3

Mass, Weight, and Gravity

Section Overview

Students explore the difference between mass and weight on Earth and the Moon in a prepared simulation. First, with a partner, they roll two bottles that represent equal masses on Earth and the Moon back and forth across a table. By pushing and stopping each bottle they "feel" the pushing force needed to accelerate and stop the bottles. They also realize that this force is the same for Earth and the Moon and is a measure of an object's resistance to a change in its state of rest or motion (the object's inertia). Then students lift a bottle labeled 1 kg , Earth and feel the downward force of Earth's gravitational pull while holding the bottle. They measure the weight of that bottle by attaching the bottle with a string to a spring scale. Using an identical procedure, students also find the weight of a bottle labeled 1 kg , Moon while pretending to have been transported to the Moon. This measurement represents the weight of the $1-\mathrm{kg}$ bottle on the Moon. Students divide the weight of the bottle on the Moon by the weight of the bottle on Earth and find the ratio of the two weights, which is $1 / 6$. Eventually, they learn that the weight of an object is measured by the force of gravity on that object and its unit is the newton (N).

Background Information

Recall from the Background Information of Pbysics in Action, Section 3, that an object's gravitational mass (determined by using an equal arm balance to compare the object to a standard mass) is equal to an object's inertial mass (determined by comparing the object's acceleration in response to an equal force applied to a standard mass). In this section, the inertial masses of objects are compared as students estimate the amount of force required to produce equal accelerations on a $1-\mathrm{kg}$ object on Earth and the Moon. The inertia, or inertial mass, of an object does not vary with location; an object
should respond to an applied force in the same way on Earth as on the Moon.

A simplified version of Newton's universal law of gravitation is used for students to understand the reduced effect of gravity on the Moon and to predict, in general, what would be the local acceleration due to gravity on any planet (or another moon) in terms of the planet's mass and radius. For your information and for students, if you deem them capable of understanding it, the basis in Newton's universal law of gravitation for proportionality is presented below.
Assume that you have to calculate the gravitational force of attraction between a small object whose mass is $m_{\text {small }}$ and a huge spherical object, such as a planet, whose mass is $m_{\text {huge }}$. Also assume that the distance between the centers of masses of the huge and small objects is r-this can be any distance, large or small, but the smallest possible value occurs when the surfaces of the objects are in contact. According to Newton's universal law of gravitation, each object experiences a force $F=\left(G m_{\text {small }} \cdot m_{\text {huge }}\right) / r^{2}$ toward the center of mass of the other object. This force is consistent with Newton's third law (an equal and opposite pair of forces on each object) and G is the universal gravitational constant equal to $6.67 \times 10^{-11} \mathrm{~m}^{2} /\left(\mathrm{kg} \cdot \mathrm{s}^{2}\right)$. According to Newton's second law, each object will accelerate toward the other object with an amount of acceleration $a=F / m$. The acceleration of the small mass should be equal to $F / m_{\text {small }}$, which can be found by rearranging the above equation as $a_{\text {small }}=F / m_{\text {small }}=\left(G m_{\text {huge }}\right) / r^{2}$. If the small object is located at or very near the surface of the huge spherical object, then, for practical purposes, the radius is the radius of the huge mass, $r=r_{\text {huge }}$, and the above equation becomes $a_{\text {small }}=F / m_{\text {small }}=\left(G m_{\text {huge }}\right) /\left(r_{\text {huge }}^{2}\right)$.

This equation gives the acceleration, which will be experienced by any small object located near the surface of a huge object, such as a planet or a Moon, in terms of properties of only the huge object. This acceleration is called the acceleration due to gravity, or g, of that planet or moon.
Therefore, $g_{\text {huge }}=\left(G m_{\text {huge }}\right) / r_{\text {huge }}^{2}$.
You may wish to substitute values for G, the mass of Earth, and Earth's radius in the equation.

If you do, the answer obtained for $a_{\text {small }}$ will be $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. Doing the same for the Moon will result in $1.6 \mathrm{~m} / \mathrm{s}^{2}$. Only the proportionalities between g, m, and r in the above equation are used to reason toward comparison of the accelerations due to gravity at the surface of Earth and the Moon in the Investigate.

Crucial Physics

- The mass of an object is independent of its location, and is a measure of the object's inertia.
- The weight of an object depends upon the local value of the gravitational field, and can be found using the equation $W=m g$. Weight is a force that is expressed in newtons.
- The strength of a celestial body's gravitational field is proportional to the mass of the body and inversely proportional to the distance from the center of the body.
- The force of gravity can be expressed by the equation $F_{\mathrm{g}}=G m m_{\mathrm{p}} / r_{\mathrm{p}}^{2}$, where p is the notation for planet.

Learning Outcomes	Location in the Section	Evidence of Understanding
Compare the masses of objects using applied forces.	Investigate Part A: Steps 2 and 3	Students roll a bottle labeled 1 kg, Earth and a bottle labeled 1 kg, Moon across the table by pushing and stopping the bottles and feeling the amount of force needed to push, stop, and accelerate the bottles.
Measure the weights of objects using a spring balance.	Investigate Part B: Steps 2 and 3	Students attach a spring balance to bottles that are labeled 1 kg, Earth and 1 kg, Moon and measure their weight in newtons.
Understand and apply Newton's universal law of gravitation to compare the acceleration due to gravity on Earth and the Moon.	Investigate Part B: Steps 2 and 3	Students lift the bottles labeled 1 kg, Earth and 1 kg, Moon, "feel" the downward pull, and record the weight of the bottles in newtons. They compare the two weights by dividing the weight of the bottle on Earth by the weight of the bottle on the Moon, and infer the reduced acceleration due to gravity of the Moon from the lower weight.

Section 3 Materials, Preparation, and Safety

Materials and Equipment

PLAN A and PLAN B		
Materials and Equipment	Group (4 students)	Class
Bottle (labeled Earth)	2 per group	
Bottle (labeled Moon)	2 per group	
Spring scale, 0-10 N	1 per group	
Container, 32 oz (for sand)	1 per group	
String, ball		2 per class
Access to water*		1 per class

*Additional items needed not supplied

Time Requirement

- Allow one and a half class periods or 80 minutes for students to complete the Investigate portion of the section.

Teacher Preparation

- Prepare the $1-\mathrm{kg}$ Earth and $1-\mathrm{kg}$ Moon bottles, for the Mass and Weight stations in Parts A and B of the Investigate. If student groups can trade places without moving the bottles, this will reduce the number of bottles necessary to be prepared.
- If you do not have adequate bottles already available you will need to begin collecting 1-qt plastic bottles fitted with caps. Sports drink bottles in 1-qt size work very well. The bottles should be as cylindrical in nature as possible.
- If the bottles you are using are transparent, they should be spray painted or made opaque in some other manner. If painting, ensure the spray paint does not dissolve the plastic.
- Once painted and dry, three-fourths of the bottles (a total of 9 bottles for the example used) should be filled with water until the total mass of the bottle, cap, and water equals 1 kg , or some other value.
- You probably will find that the mass of the painted bottle and cap almost makes up for the amount by which the mass of one quart of water is less than 1 kg ; the bottle probably will be almost full. Once the masses of the bottles have been "trimmed" by adding water to bring the mass of each to 1 kg (if you are a few grams off, it will do no harm), you may wish to permanently seal each bottle by using silicone cement to glue the tops to the bottles. Label $2 / 3$ of the bottles " 1 kg , Earth" and label $1 / 3$ of the bottles " 1 kg , Moon."
- Add sand to one-fourth of the bottles, bringing the total mass of each bottle, cap, and sand to 0.165 kg , or 165 g . (Sand is used to prevent "sloshing" of the filler within the partially filled bottle, making the simulation of lifting the bottle in a Moon environment more realistic.) Because the mass of a 1 -qt plastic bottle typically is 50 g , only a small amount of sand (approximately 115 g) will be needed.
- Each of these bottles should be sealed and labeled "1 kg, Moon"-this label, of course, will not indicate the true mass of each of these bottles, but is "faked" for the simulation of weighing 1 kg in a Moon environment.
- Tie a string approximately $40-\mathrm{cm}$ long around the neck of each bottle to be used at the weigh stations.

Safety Requirements

- Caution students not to open any of the bottles.
- If the bottles have been sealed with silicone cement, give the cement ample time to dry before allowing students to interact with the bottles.
- Use only plastic bottles to prevent any breakage should the bottles be mishandled or dropped.

NOTES
\qquad

Meeting the Needs of All Students

Differentiated Instruction: Augmentation and Accommodations

Learning Issue	Reference	Augmentation and Accommodations
Reading comprehension	Physics Talk	Augmentation - Students who struggle with decoding and/or reading comprehension are going to have difficulty extracting information from Physics Talk. Remind students to read the Checking Up questions first because these questions provide a purpose for reading. Then after students are done, monitor accuracy of answers to these questions to see if students understand what they have read. - Divide the Physics Talk into smaller segments, give students time to read the section individually (7-10 minutes), and then discuss the section as a large group or provide direct instruction to supplement the reading. - As students are reading, ask them to write at least five questions they need answered to understand the content of this section. If students are struggling to write good questions, model some examples of different kinds of questions they could ask. - Ask students to develop a chart comparing mass, weight, and gravity on Earth and the Moon. Other topics such as force and inertia could be added to the chart to differentiate the level of challenge. Accommodation - Provide a copy of this section of text for students to highlight and write on as they read. - Provide a reading guide that intentionally cues students to pay attention to the key points of the text. - Provide a blank chart for students to use to compare mass, weight, and gravity on Earth and the Moon. Some students who have more significant difficulty with reading may need a list of choices to match up to the appropriate column in the chart.
Comparing the effects of mass and weight related to forces, distance, speed, and acceleration	Physics to Go Questions 1-6	Augmentation - Students may be able to state that mass is the same on Earth and the Moon and that weight changes because of the change in the acceleration of gravity. However, these students may not be able to apply this concept to explain changes in distance, force, speed, and acceleration. - Help students create a list of formulas that they can use to compare weight, distances, forces, speed, and acceleration on Earth and the Moon. - Remind students that weight affects a person's ability to lift something and mass has more of an effect on a person's ability to push something. Ask students to develop a list of sports actions affected more by mass and a list of actions affected more by weight. Refer students to the examples in Physics Talk if they are struggling. Accommodation - Provide a list of equations for students to use to compare conditions on Earth and the Moon.
Describing the differences between shuffleboard on Earth and the Moon	Physics to Go Question 7	Augmentation - Students will have a difficult time describing the differences between shuffleboard on Earth and the Moon if they do not really understand the sport. Show students an online video of shuffleboard being played. Students could be challenged to act as commentators for the game on Earth and then do the same for a game of shuffleboard on the Moon. Then they could discuss the reasons for the differences in their commentaries.

Strategies for Students with Limited English-Language Proficiency

Learning Issue	Reference	
$\begin{array}{l}\text { Understanding } \\ \text { concepts }\end{array}$	$\begin{array}{l}\text { Investigate } \\ \text { Part B: Step 3.e) }\end{array}$	$\begin{array}{l}\text { If students have difficulty telling how they could reproduce this simulation at } \\ \text { home, ask these questions: Was the 1-kg simulated Moon mass the same as the } \\ \text { 1-kg Earth mass? [Yes] Was the 1-kg simulated Moon weight the same as the } \\ \text { 1-kg Earth weight? [No] Make sure students understand that you had to adjust } \\ \text { the simulated Moon weight to give them the desired investigative experience, } \\ \text { but in doing so, you also reduced the mass. Because the weight on the Moon is } \\ \text { reduced without the mass being reduced, the experience on the Moon would be } \\ \text { different. In a classroom on Earth, there is no way that a single simulation can } \\ \text { represent actual Moon conditions for both weight and mass. }\end{array}$
Comprehension	$\begin{array}{l}\text { Active Physics } \\ \text { Plus }\end{array}$	$\begin{array}{l}\text { Check students' comprehension of the terms "proportional," "inversely } \\ \text { proportional," "proportionality constant," and "gravitational constant." } \\ \text { A clear understanding of these terms is crucial to understanding the universal } \\ \text { law of gravitation. }\end{array}$
$\begin{array}{l}\text { Vocabulary } \\ \text { comprehension }\end{array}$	$\begin{array}{l}\text { The equations related to the universal law of gravitation can look intimidating, } \\ \text { in part because of the subscripts and superscripts. Give students the opportunity }\end{array}$	
to state the equations in words, both verbally and in writing, to help solidify		
their understanding. Also clarify for students that the ratio they find in Step 4		
compares the force of gravity at the surface of Earth to the force of gravity at		
the surface of the Moon.		

SECTION 3

Teaching Suggestions and Sample Answers

What Do You See?

One astronaut can carry the steel cart on his finger easily but another struggles to push a steel cart! Students will most likely to respond to these images wondering why lifting something would be easier than accelerating it, and you can then steer a discussion toward the purpose of the illustration. Ask them to share their impressions among their classmates, and as they respond, take the opportunity to record a few initial impressions. Remind them that their initial perspectives will gradually shift to accommodate new knowledge and they should return to this illustration to gain a better appreciation of the artist's intent.

Students' Prior Conceptions

Students have encountered the concepts of mass, weight, and gravity in previous chapters. Now, you have an opportunity to delve more deeply into student misconceptions of mass, weight, and the force due to the gravity of a planet or a Moon upon the weight of an object.

1. Students do not associate falling objects with a causation force. Referring to the masses of objects and their weights as recorded on a spring balance will reinforce the concept that an invisible force pulls down upon the object. This then pulls down upon the spring, stretching it in a linear manner to record or to measure the force upon the object. This force is the force due to gravity on the object, the weight of the object, and is a causative force even though it is invisible and acts at a distance from the center of Earth. You also have the
opportunity to review the concepts of action and reaction and Newton's second and third laws in this section. Also mention that an object falls because an unbalanced force pulls it down toward the center of Earth or the Moon.
2. Students do not associate mass with gravity and weight. Talking about how a spring balance measures weight on Earth and on the Moon may enable students to differentiate between the mass of an object, its inertia as described by Newton, the weight of the object, and the force of Earth or the Moon on the object. Encourage students to discuss mass-the constant measure of matter throughout the universe-with weight, the variable force upon that matter at specific locations in the universe. Nudge students to predict and to discuss what happens to the stretch of a

What Do You Think?

As students think of how the mass of a $1-\mathrm{kg}$ object would be affected when on the Moon, ask them to consider the difference between mass and weight. It is evident from the questions that both quantities have different units. You might want to point out this difference and have students record their answers in their Active Physics logs. You will also be able to note the misconceptions students have and their answers will provide the opportunity to address their immediate responses. What Do You Think? becomes the precursor to scientific inquiry if students are prompted with questions that encourage them to think about physics concepts. You should facilitate the continuous participation of shared responses and remind students that they will have another opportunity to revise their answers after they have carried out the Investigate.

What Do You Think?

A Physicist's Response
The mass on the Moon would remain the same, which is 1 kg . The weight on the Moon would be about $1 / 6 \times 10 \mathrm{~N}=1.6 \mathrm{~N}$.

Investigate

Part A: Comparing Mass

1.

Students observe the bottles labeled " 1 kg , Earth" and " 1 kg , Moon."
spring if the weight of the object on the Moon is less than the weight of the same identical object on Earth. Describe the mathematical comparison of the responses of objects to applied forces as it relates to the masses of objects.
3. Students do not associate forces with non-moving things so they neglect to think of gravity as a force always acting on something. You can combat this conception by emphasizing the mathematical application of Newton's universal law of gravitation. Apply concept mapping and use ratios and proportions to show how to derive the gravitational constant for Earth or the Moon. Compare the acceleration due to gravity on Earth to the Moon and emphasize their relation to the mass and to the radius of each attracting body.

NOTES
\qquad

2.

Students roll the 1 kg , Earth bottle back and forth on the table.

3.a)

Students should not be able to detect any differences in the two forces. The force needed to accelerate both bottles as they roll across the table should be the same.

3.b)

Students should indicate that since the same force was required to accelerate the "Earth" kilogram and the "Moon" kilogram, then the two masses should have the same inertia. This is proof that the inertia of an object does not depend upon location; that is, whether it is on Earth or the Moon.

3.c)

If equal forces are applied, and equal acceleration takes place, then according to Newton's second law, the masses must also be the same. As students compare the forces, have them explain what they are comparing (forces necessary to produce accelerations) and what the significance of their findings is in comparing the result of forces on Earth and the Moon.

Part B: Comparing Weight

1.

Students observe the bottles labeled " 1 kg , Earth" and "1 kg, Moon" at the Weight Station.

2.a)

Depending on the accuracy of the spring scale, students should find the weight of the " 1 kg , Earth" to be approximately 10 N .

Teaching Tip

If time and your expertise permit, a dial-type bathroom scale may have a covering placed over the dial that takes all the reading and divides them by six. Students can then stand on the scale and record their weight on the Moon. If a second scale is available, it could either be left unchanged to show weight on Earth, or altered to show weight on another planet, such as Jupiter. For weight on Jupiter, multiply the weight on Earth by 2.7.

3.a)

Students should find the weight of the " 1 kg , Moon" to be approximately 1.6 N .

3.b)

$F_{\text {w(Earth })} / F_{\mathrm{w}(\text { Moon })}=10 \mathrm{~N} / 1.6 \mathrm{~N}=6.25$
The rounded off ratio should be 6 .

3.c)

2-kg masses on Earth would weigh 20 N and $2-\mathrm{kg}$ masses on the Moon would weigh 3.2 N . The rounded-off ratio would again be 6 .

3.d)

The weights of the same masses are different because the gravitational forces of Earth and the Moon on these objects are different. Because the force of gravity on the Moon is one-sixth the force of gravity on Earth, the weight of a $1-\mathrm{kg}$ bottle on the Moon (1.6 N) is one-sixth of its weight on Earth (10 N).

At the Weight Station, you will find two bottles resting upright on a surface, one labeled " 1 kg , Earth" and another labeled "1 kg, Moon." To keep the simulation accurate and realistic, follow the steps described below
2. Grasp the string attached to the bottle labeled 1 kg , Earth and lift the bottle vertically. Get the "feel" of Earth's downward gravitational pull on the bottle and then carefully lower it back to the surface to rest in an upright position. Attach a spring scale calibrated in newtons (N) to the string and measure the bottle's weight.

دa) Record the weight in newtons of the 1 kg , Earth bottle in your log.
3. Pretend you have been transported to the Moon. Remember, this is only a simulation of what it would feel like to lift a kilogram mass on the Moon. Lift and weigh the bottle labeled 1 kg , Moon.
a) Record the weight in newtons of the 1 kg , Moon bottle in your log.

Sb) Divide the weight of 1 kg on Earth by the weight of 1 kg on the Moon and round off the answer to the nearest integer. Show your work and record your answer in your log.
\c) If $2-\mathrm{kg}$ masses instead of $1-\mathrm{kg}$ masses had been used, what do you think would have been the individual weights of the bottles on Earth and the Moon? What would the ratio of the weights be? Write your answers in your log.
\d) Why do you think the weights of equal masses, one on Earth and the other on the Moon, are different? Be as specific as you can. Use the values in your log to support your answer.

De) Your teacher knew the difference in weight of an object on Earth and the Moon to produce this simulation. How could you reproduce this simulation with two water bottles at home?

Physics Talk

GRAVITY ON THE PLANETS AND THE MOONS
In Section 2, you saw that the acceleration due to gravity on the Moon is γ_{6} of the acceleration due to gravity on Earth. Therefore, you probably were not surprised when the simulation in this Investigate showed that the weight of an object on the Moon is $\% / 6$ of the weight showed that the weight or an object on the Moon is $/ 6$ of the weight
of the same object on Earth. Since, according to F ma, the amount of the same object on Earth. Since, according to F ma, the amount
of acceleration of an object depends directly on the amount of applied of acceleration of an object depends directly on the amount of applied
force, the reduced rate of free-fall acceleration on the Moon must be force, the reduced rate of free-fall acceleration on the Moon must be
caused by a gravitational pull that is smaller on the Moon than on Earth On the Moon, both the free-fall acceleration and the force causing the acceleration are 1_{6} of the amounts on Earth, regardless of what object is compared at both locations. But why 1_{6} and not some other ratio? Isaac Newton answered that question.

Active Physics

The weight in both cases is proportional to the mass, but the proportionality constant depends on the mass and radius of the planet or the Moon.
3.e)

Student's answers should be similar to what follows. To reproduce the simulation, you have to realize that objects on the Moon weigh one-sixth of what they do on Earth. To make a simulation at home, the two
water bottles plus their contents have to have weights in the ratio of 6 to 1 for Earth and the Moon. This means, however, that the two bottles would not have the same inertia.

Physics Talk

This section explains Newton's universal law of gravitation and why the gravitational pull on objects on the Moon is $1 / 6$ the force of gravity experienced by objects on Earth. Students read that the force of gravity due to a celestial body is dependent on the body's mass and size. They discover that all objects exert a gravitational pull on all other objects, big or small, regardless
of their size. The same theory is extended to planetary bodies.
It would be useful for students if they described Newton's law of universal gravitation between planets in their own words. To facilitate this process, ask students to provide an explanation, using Earth and the Moon as examples, to elaborate how acceleration due to gravity is affected by the mass and size of a planet. Consider asking students why Earth's size
would make its acceleration due to gravity 16 times less than the Moon's acceleration if the masses were equal. Students should be able to describe why an object's acceleration on the Moon would be $1 / 6$ times less than that on Earth.

To reinforce the difference between mass and weight, ask students to define the two quantities in terms of what they observed in the Investigate. It is important for students to realize that the rate of fall or acceleration due to gravity is the same for all objects on a given planet, but the force of the gravity on an object varies with mass. Point out to students that it is the ratio of the force of gravity on an object to an object's mass that determines the acceleration due to gravity. Students should note that this ratio is the same for objects on the planet's surface. Emphasize that the feather and a hammer fall at the same rate on the Moon due to the absence of air resistance, unlike Earth where air resistance alters the net force acting on an object and thus, the rate of fall.

Physics Words inertia: the natural tendency of objects to resist a change in velocity (acceleration) weight: the vertic downward force a result of gravity, measured in newtons in the SI system.

However, the athlete would be thrilled at the result. For an amount of muscular work done by the athlete equal to a shot-put effort on Earth, the shot put would fly six times further.
Mass is a measure of the inertia or resistance to acceleration of an object. Mass is measured in units of kilograms (1000 g). Weight is the force of gravity on an object near the surface of a planet, moon, asteroid, and so on. It depends on the object's mass and the amount of gravitational pull on the specific planet. The unit of force is the newton (N).
A surprising result occurs when you look at weight and mass for different objects on Earth.

- A heavy object has a large weight on Earth. This means that the force of gravity is large. It also has large mass and therefore, it has a large inertia and it is hard to get it moving. Large force of gravity and a large inertia gives the heavy object an acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ on Earth.
- A light object has a small weight on Earth. This means that the force of gravity is small. It also has a small mass and therefore, has a small inertia and it is easy to get it moving. Small force of gravity and a small inertia gives the light object an acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ on Earth.
- All objects have the same acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ on Earth. This is contrary to many people's "common sense." That is one reason many people did not believe Galileo when he tried to explain that all objects fall at the same rate.

The same thing happens on the Moon, where the acceleration of al objects is $1.6 \mathrm{~m} / \mathrm{s}^{2}$. That is why the feather and hammer dropped on the Moon fell at the same rate. (Feathers and hammers do not fall at the and hammers do not fall at the
same rate on Earth because the air same rate on Earth because the air
alters the fall on Earth. Without air alters the fall on Earth. Without air
resistance, everything on the Moon resistance, everyt
falls identically.)
Mass is the same on Earth, the Moon, and any other place in the universe. Weight on Earth is six universe. Weight on Earth is six
times as large as weight on the Moon. A $90-\mathrm{kg}$ high school football player weighs approximately 900 N on Earth (approximately 210 lb). That same $90-\mathrm{kg}$ player weighs only 150 N (approximately 33 lb) on the Moon.

At the end of the last Apollo 15 Moon walk in 1971, Commander David Scott performed a live demonstration for the television cameras. He held out a geologic hammer and a feather and dropped them the photo you can see a hammer in his right hand and a feather in his left hand

Checking Up

1.

For two planets with equal sizes (radii) but different masses, the planet with the larger mass will have the larger acceleration due to gravity.
2.

For two planets of equal mass but different sizes, the smaller planet will have the larger acceleration due to gravity.

3.

When a mass is transferred from Earth to the Moon, the object's weight decreases because the Moon's acceleration due to gravity is lower. The inertia of the mass will remain the same, since inertia depends upon the mass, not the weight.

4.

The force of gravity between two people is very small for
two reasons: First, the force of gravity is a very weak force, which depends upon the masses attracting one another. Second, the mass of a person (even a very large person) is quite small compared to the mass of a planet.
Masses such as planets exert gravitational forces which make the force between two small masses, such as people, look small in comparison.

Active Physics Plus

Students explore Newton's equation of universal gravitation. By equating the force of gravity on an object with that object's weight, they see that the acceleration due to gravity on a planet is directly proportional to a planet's mass and inversely proportional to the square of the planets' radii. Students then solve problems to calculate the acceleration due to gravity for Earth and the Moon, and compare these values using the relative mass and radii of the two bodies.
1.
$g_{\mathrm{p}}=G m_{\mathrm{p}} / r_{\mathrm{p}}^{2}$ for Earth,
$m_{\mathrm{p}}=5.98 \times 10^{24} \mathrm{~kg}$,
$r_{\mathrm{p}}=6.38 \times 10^{6} \mathrm{~m}$ and
$G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
substituting in the formula yields
$g_{\mathrm{E}}=\frac{\left[\begin{array}{l}\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right) \times \\ \left(5.98 \times 10^{24} \mathrm{~kg}\right)\end{array}\right]}{\left(6.38 \times 10^{6} \mathrm{~m}\right)^{2}}=$
$9.8 \mathrm{~N} / \mathrm{kg}$.
2.
$g_{\mathrm{p}}=G m_{\mathrm{p}} / r_{\mathrm{p}}^{2}$ for the Moon
$m_{\mathrm{p}}=7.36 \times 10^{22} \mathrm{~kg}$,
$r_{\mathrm{p}}=1.74 \times 10^{6} \mathrm{~m}$ and
$G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
substituting in the formula yields
$g_{\mathrm{M}}=\frac{\left[\begin{array}{l}\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right) \times \\ \left(7.36 \times 10^{22} \mathrm{~kg}\right)\end{array}\right]}{\left(1.74 \times 10^{6} \mathrm{~m}\right)^{2}}$

$$
=1.62 \mathrm{~N} / \mathrm{kg} .
$$

3.

$g_{\mathrm{E}} / g_{\mathrm{M}}=$
$(9.8 \mathrm{~N} / \mathrm{kg}) /(1.62 \mathrm{~N} / \mathrm{kg})=6.04$.
4.
$F_{\mathrm{E}}=G M_{\mathrm{E}} m / r_{\mathrm{E}}^{2}$
$F_{\mathrm{M}}=\frac{G(1 / 100) M_{\mathrm{E}} m}{\left(1 / 4 r_{\mathrm{E}}\right)^{2}}$
Dividing $F_{\mathrm{E}} / F_{\mathrm{M}}$, G. M_{E} and r_{E} all cancel, leaving
$\frac{1}{(1 / 100) /(1 / 4)^{2}}=\frac{100}{16}=6.25$,
which is close to the value for Question 3.

What Do You Think Now?

Encourage students to edit and update their answers. They should be able to distinguish between mass and weight using examples from the Investigate and Physics Talk. Ask them to explain why mass is an attribute of objects while weight is a derived characteristic. Determine what students understand when mass is described as an intrinsic
property of objects. Share A Physicist's Response to highlight the concepts of mass and weight. Make sure that students have ample opportunity to discuss their preconceptions. Have them share their answers and revisit the What Do You See? section to see how their initial perceptions have changed with a better understanding of physics concepts.

Reflecting on the Section and the Challenge

Now that students know that lifting a mass is six times easier on the Moon than on Earth, ask them to reflect on how this will affect their sport on the Moon. Point out that all parts of a sport may not be affected when the location is changed from Earth to the Moon. Emphasize that accelerating an object requires just as much force on Earth as on the Moon. Ask students to reflect on all aspects of a sport from their Chapter Challenge. What students have learned in this section should give them more confidence in inventing a sport that meets the required criteria. Ask students to read the text of Reflecting on the Section and the Challenge carefully to gain ideas on what aspects of their presentations they could further strengthen.

Physics Essential Questions

What does it mean?

The mass is identical on Earth and the Moon. Mass is a measure of the amount of matter. The weights are not identical. Weight is a force that is dependent of the gravitational field strength on the planet or the Moon's surface.

How do you know?

The simulation provided a physical sense that the weights would be different on Earth and the Moon, even when the mass is identical.

Why do you believe?
Newton's law of gravitation states that $F=G M m / d^{2}$, where M is the mass of Earth or the Moon and d is equal to the radius of Earth or the Moon. By taking into consideration the ratio of the masses of Earth and the Moon and their relative sizes, it can be shown that the force of attraction (weight) is six times greater on Earth.
Why should you care?
In weightlifting, a person could lift 6 times as much mass. If someone can bench press 50 kg (110 pounds) on Earth, he can bench press 300 kg (660 pounds) on the Moon.

Physics to Go

1.

Because the strength of the Moon's gravitational field is $1 / 6$ that of Earth, the weight of an object $F_{\text {w }}=m g$ would be $1 / 6$ th that on Earth. Thus, if a person can lift 220 lb on Earth, he or she could lift $220 \times 6=1320 \mathrm{lb}$ on the Moon.

2.

A bat's inertia or resistance to being accelerated would be unchanged on the Moon; therefore, a batter's ability to swing a bat would be unchanged on the Moon.

3.

A baseball's inertia would be equal on the Moon and Earth; therefore, a ball's response to being hit by a bat would be the same on the Moon as on Earth. An equally good explanation is that the law of conservation of momentum applies equally on the Moon and Earth.

4.a)

The correct distance for the center field wall on the Moon should be much farther away. $(400 \mathrm{ft} \times 6=2400 \mathrm{ft})$ A baseball would spend 6 times as long in the air on the Moon as on Earth.

4.b)

- If a batted fly ball spends six times longer in the air on the Moon compared to on Earth, a change in base path distance or the rules of the game may be necessary. A significant change in the distance from the pitcher's mound to home plate would not be called for. (See the next bullet for an explanation.)
- A baseball pitcher would be able to throw a ball at the

Chapter 9 Sports on the Moon

Physics to Go

1. How would the sport of weight lifting be different on the Moon? If a person can lift 220 lb on Earth, what weight could that person lift on the Moon?
2. How would a baseball player's ability to swing (accelerate) a bat be affected on the Moon? Assume that a spacesuit does not inhibit the batter's movement.
3. For equal swings of the bat and equal speeds of the ball, how would the speed of a baseball when it leaves the bat compare on Earth and the Moon?
4. Imagine an outdoor game of baseball at Lunar Stadium.
a) The center field wall is about 400 ft from home plate at a baseball park on Earth. Explain what the appropriate distance for the center field wall would be at Lunar Stadium. Use equations and numbers to explain your answers.
b) Other aspects of baseball might be different on the Moon.

- Should the pitcher's mound and the bases at Lunar Stadium be located at the same or different distances from home plate as on Earth? Explain your answer.
- How fast would a major-league pitcher capable of a $100 \mathrm{mi} / \mathrm{h}$ "Earth pitch" be able to throw the ball on the Moon? Explain your answer.
- How fast would players be able to run the bases on the Moon? Why?
c) Describe the problems fans in the center field bleachers might have:
- seeing a player slide into second base or home plate
- watching a high fly ball
- eating a hot dog
- shouting at the umpire

5. Water would be very expensive on the Moon because it is unavailable
a) If you purchased a precious 1-L bottle of "Genuine Earth Water" at the Lunar Mall, what would be its mass, in kilograms? (Hint: On Earth, 1 L of water has a mass of 1 kg and a weight of 9.8 N .)
b) What would be its weight, in newtons?
6. If you bought 10 kg of potatoes on the Moon, would they make as many servings as 10 kg of potatoes make on Earth?

same speed on the Moon and on Earth because the "launch speed" depends on the inertia of the ball, which is the same in both locations. However, the pitcher is not able to accelerate his body forward as quickly on the Moon, due to a lower friction force.

- Players would not be able to run as usual on the Moon (as will be explained in detail in Section 8 later in this chapter); therefore, research is needed to find out how fast players would be able
to move from base to base in order to establish how to adjust the distance between bases.

4.c)

- Fans in the center field bleachers would be nearly $\frac{1}{2}$ mile from the infield-one mile is 5280 feet. Seeing a player slide into a base would be impossible.
- A fly ball would rise 6 times higher on the Moon than on Earth; a high fly ball would rise nearly out of sight.

- Outdoor baseball would require space helmets for spectators; eating a hot dog would be difficult.
- Because there is no air on the Moon, sound is not transmitted. Therefore, shouting at an umpire would not be possible.

5.a)

On the Moon, 1 liter of water would have the same mass as on Earth, a mass of 1 kg .

5.b)

The weight of 1 kg of water on the Moon would be given by $F_{\mathrm{w}}=m g=(1 \mathrm{~kg})\left(1.6 \mathrm{~m} / \mathrm{s}^{2}\right)$ or a weight of 1.6 N .

6.

They would make the same number of servings.

7.

The answer is no, but students might enjoy realizing how words like "attraction" and "falling" are used in both scientific and nonscientific ways.

8.

Preparing for the Chapter Challenge
Student answers will vary depending upon the sport played. With decreased weight, a sport such as wrestling may lead to people being thrown long distances, and possibly landing in a bad place. Other sports like bowling would not be affected at all. Students should justify their reasons for why the sport would be safe or not safe due to the decreased weight.

Inquiring Further

Because the weight of an object is related to its volume, the weight increases as the cube of the size. This can be seen from the volume of a simple sphere given by $V=4 / 3 \pi r^{3}$. The ability of a bone to support a weight depends upon the bone's area, which increases as the square of the size (area of a circle $=\pi r^{2}$). Since the volume and weight increase faster than the bone's size, larger animals need progressively larger bones to support their increased weight. Mice have thin, delicate bones, while elephants have large, thick bones.
The bones of an animal evolved on a planet with high gravity would be thicker, and the animal might appear to be smaller, squat, and thick-boned. An animal evolved on a planet with low gravity might appear, tall, thin and have more delicate bones, since less force is required to support the lower weight.

SECTION 3 QUIZ

9-3a Blackline Master

The acceleration due to gravity on the Moon is $1.6 \mathrm{~m} / \mathrm{s}^{2}$ and is $10 \mathrm{~m} / \mathrm{s}^{2}$ on Earth.

1. A helium-filled balloon with a mass of 4 kg is moved from Earth to the Moon. The mass of the balloon on the Moon would be
a) 4 kg .
b) $4 / 6 \mathrm{~kg}$.
c) 1 kg .
d) 24 kg .
2. A $5-\mathrm{kg}$ mass weighs 49 N on Earth. When the mass is transferred to the Moon, the weight of the mass would be
a) 5 kg .
b) 49 N .
c) $5 / 6 \mathrm{~kg}$.
d) $49 / 6 \mathrm{~N}$.
3. Two planets have identical masses, but planet A is one-half the radius of planet B .

Compared to the acceleration due to gravity on planet A, the acceleration due to gravity on planet B is
a) four times greater.
b) twice as great.
c) half.
d) one quarter.
4. Two planets have identical radii, but planet A is one-half the mass of planet B . Compared to the acceleration due to gravity on planet A , the acceleration due to gravity on planet B is
a) four times greater.
b) twice as great.
c) half.
d) one quarter.
5. The reason a hammer and a feather accelerate at the same rate on the Moon when dropped, but not on Earth, is that
a) the Moon pulls equally on all objects but Earth does not.
b) the Moon is smaller than Earth.
c) Earth has an atmosphere but the Moon does not.
d) Earth has a larger mass than the Moon.

SECTION 3 QUIZ ANSWERS

(1) a) The mass of an object does not change when transferred from Earth to the Moon, so it would still be 4 kg .
(2) d) The weight of an object on the Moon is one-sixth the weight of an object on Earth because the Moon's gravitational field is one-sixth that of Earth.
(3) d) If the masses are equal, the acceleration due to gravity decreases with the inverse square of the radius. Since planet B has twice the radius, the acceleration due to gravity on the planet will be $\left(\frac{1}{2}\right)^{2}$ or one-fourth as strong.

4 b) If the radii of the planets are equal, the acceleration due to gravity increases with planet's mass. A planet with double the mass will have double the acceleration due to gravity.
(5) without an atmosphere, all objects on the Moon fall at the same rate. Gravity pulls harder on objects of large mass than those with small mass. Although it is true that the Moon is smaller than Earth, Choice b) and that Earth has a larger mass than the Moon, Choice d), these are not the reasons that all objects accelerate at the same rate.

