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CHAPTER 6:  Work and Energy  

Answers to Questions  

1. Some types of physical labor, particularly if it involves lifting objects, such as shoveling dirt or 
carrying shingles up to a roof, are work in the physics sense of the word.  Or, pushing a lawn 
mower would be work corresponding to the physics definition.  When we use the word work for 
employment, such as go to work or school work , there is often no sense of physical labor or of 
moving something through a distance by a force.  

2. Since centripetal means pointing to the center of curvature , then a centripetal force will not do 
work on an object, because if an object is moving in a curved path, by definition the direction 
towards the center of curvature is always perpendicular to the direction of motion.  For a force to do 
work, the force must have a component in the direction of displacement.  So the centripetal force 
does no work.  

3. The normal force can do work on an object if the normal force has a component in the direction of 
displacement of an object.  If someone were to jump up in the air, then the floor pushing upward on 
the person (the normal force) would do positive work and increase the person s kinetic energy.  
Likewise when they hit the floor coming back down, the force of the floor pushing upwards (the 
normal force) would do negative work and decrease the person s kinetic energy.  

4. The woman does work by moving the water with her hands and feet, because she must exert a force 
to move the water some distance.  As she stops swimming and begins to float in the current, the 
current does work on her because she gains kinetic energy.  Once she is floating the same speed as 
the water, her kinetic energy does not change, and so no net work is being done on her.  

5. The kinetic force of friction opposes the relative motion between two objects.  As in the example 
suggested, as the tablecloth is pulled from under the dishes, the relative motion is for the dishes to be 
left behind as the tablecloth is pulled, and so the kinetic friction opposes that and moves the dishes in 
the same direction as the tablecloth.  This is a force that is in the direction of displacement, and so 
positive work is done.  Also note that the cloth is moving faster than the dishes in this case, so that 
the friction is kinetic, not static.  

6. While it is true that no work is being done on the wall by you, there is work being done inside your 
arm muscles.  Exerting a force via a muscle causes small continual motions in your muscles, which 
is work, and which causes you to tire.  An example of this is holding a heavy load at arm s length.  
While at first you may hold the load steady, after a time your arm will begin to shake, which 
indicates the motion of muscles in your arm.  

7. (a) In this case, the same force is applied to both springs.  Spring 1 will stretch less, and so more  
work is done on spring 2. 

(b) In this case, both springs are stretched the same distance.  It takes more force to stretch spring 1,  
and so more work is done on spring 1.  

8. At point C the block s speed will be less than 2 Bv .  The same amount of work was done on the 

block in going from A to B as from B to C since the force and the displacement are the same for each 
segment.  Thus the change in kinetic energy will be the same for each segment.  From A to B, the 
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block gained 21
B2

mv  of kinetic energy.  If the same amount is gained from B to C, then the total 

kinetic energy at C is 2 21 1
C B2 2

2mv mv  which results in C B2v v , or C B1.4v v

  
9. Your gravitational PE will change according to PE mg y .  If we choose some typical values of 

80 kgm  and 0.75 my , then 280 kg 9.8 m s 0.75 m 590 JPE

  

10. Since each balloon has the same initial kinetic energy, and each balloon undergoes the same overall 
change in gravitational PE, each balloon will have the same kinetic energy at the ground, and so each 
one has the same speed at impact.  

11. The two launches will result in the same largest angle.  Applying conservation of energy between the 

launching point and the highest point, we have 21
1 2 max2    

E E mv mgh mgh .  The direction 

of the launching velocity does not matter, and so the same maximum height (and hence maximum 
angle) will results from both launches.  Also, for the first launch, the ball will rise to some maximum 
height and then come back to the launch point with the same speed as when launched.  That then 
exactly duplicates the second launch.  

12. The spring can leave the table if it is compressed enough.  If the spring is compressed an amount 0x , 

then the gain in elastic PE is 21
02

kx .  As the spring is compressed, its center of mass is lowered by 

some amount.  If the spring is uniform, then the center of mass is lowered by 0 2x , and the amount 

of decrease in gravitational PE is 1
02

mgx .  If the gain in elastic PE is more than the loss in 

gravitational PE, so that 21 1
0 02 2

kx mgx  or 0x mg k , then the released spring should rise up off of 

the table, because there is more than enough elastic PE to restore the spring to its original position.  
That extra elastic energy will enable the spring to jump off the table  it can raise its center of 
mass to a higher point and thus rise up off the table.  Where does that extra energy come from?  
From the work you did in compressing the spring.  

13. If the instructor releases the ball without pushing it, the ball should return to exactly the same height 
(barring any dissipative forces) and just touch the instructor s nose as it stops.  But if the instructor 
pushes the ball, giving it extra kinetic energy and hence a larger total energy, the ball will then swing 
to a higher point before stopping, and hit the instructor in the face when it returns.  

14. When water at the top of a waterfall falls to the pool below, initially the water s gravitational PE is 
turned into kinetic energy.  That kinetic energy then can do work on the pool water when it hits it, 
and so some of the pool water is given energy, which makes it splash upwards and outwards and 
creates outgoing water waves, which carry energy.  Some of the energy will become heat, due to 
viscous friction between the falling water and the pool water.  Some of the energy will become 
kinetic energy of air molecules, making sound waves that give the waterfall its roar .    

15. Start the description with the child suspended in mid-air, at the top of a hop.  All of the energy is 
gravitational PE at that point.  Then, the child falls, and gains kinetic energy.  When the child 
reaches the ground, most of the energy is kinetic.  As the spring begins to compress, the kinetic 
energy is changed into elastic PE.  The child also goes down a little bit further as the spring 
compresses, and so more gravitational PE is also changed into elastic PE.  At the very bottom of a 
hop, the energy is all elastic PE.  Then as the child rebounds, the elastic PE is turned into kinetic 
energy and gravitational PE.  When the child reaches the top of the bounce, all of the elastic PE has 
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been changed into gravitational PE, because the child has a speed of 0 at the top.  Then the cycle 
starts over again.  Due to friction, the child must also add energy to the system by pushing down on 
the pogo stick while it is on the ground, getting a more forceful reaction from the ground.  

16. As the skier goes down the hill, the gravitational PE is transformed mostly into kinetic energy, and 
small amount is transformed into heat energy due to the friction between the skis and the snow and 
air friction.  As the skier strikes the snowdrift, the kinetic energy of the skier turns into kinetic 
energy of the snow (by making the snow move), and also into some heat from the friction in moving 
through the snowdrift.  

17. (a) If there is no friction to dissipate any of the energy, then the gravitational PE that the child has  
at the top of the hill all turns into kinetic energy at the bottom of the hill.  The same kinetic 
energy will be present regardless of the slope  the final speed is completely determined by the 
height.  The time it takes to reach the bottom of the hill will be longer for a smaller slope. 

(b) If there is friction, then the longer the path is, the more work that friction will do, and so the  
slower the speed will be at the bottom.  So for a steep hill, the sled will have a greater speed at 
the bottom than for a shallow hill.  

18. Stepping on the log requires that the entire body mass be raised up the height of the log, requiring 
work (that is not recoverable) proportional to the entire body mass.  Stepping over the log only 
requires the raising of the legs, making for a small mass being raised and thus less work.  Also, when 
jumping down, energy is expended to stop the fall from the log.  The potential energy that you had 
at the top of the log is lost when coming down from the log.  

19. If we assume that all of the arrow s kinetic energy is converted into work done against friction, then 
the following relationship exists:   

o 2 2 21 1 1
fr 0 fr 02 2 2

2

0

fr

    

cos180      

2

f i fW KE KE KE F d mv mv F d mv

mv
d

F

 

Thus the distance is proportional to the square of the initial velocity.  So if the initial velocity is 
doubled, the distance will be multiplied by a factor of 4.  Thus the faster arrow penetrates 4 times 
further than the slower arrow.  

20.  (a) Consider that there is no friction to dissipate any energy.  Start the pendulum at the top of a 
swing, and define the lowest point of the swing as the zero location for gravitational PE.  The 
pendulum has maximum gravitational PE at the top of a swing.  Then as it falls, the 
gravitational PE is changed to kinetic energy.  At the bottom of the swing, the energy is all 
kinetic energy.  Then the pendulum starts to rise, and kinetic energy is changed to gravitational 
PE.  Since there is no dissipation, all of the original gravitational PE is converted to kinetic 
energy, and all of the kinetic energy is converted to gravitational PE.  The pendulum rises to the 
same height on both sides of every swing, and reaches the same maximum speed at the bottom 
on every swing.    

(b) If there is friction to dissipate the energy, then on each downward swing, the pendulum will 
have less kinetic energy at the bottom than it had gravitational PE at the top.  And then on each 
swing up, the pendulum will not rise as high as the previous swing, because energy is being lost 
to frictional dissipation any time the pendulum is moving.  So each time it swings, it has a 
smaller maximum displacement.  When a grandfather clock is wound up, a weight is elevated so 
that it has some PE.  That weight then falls at the proper rate to put energy back in to the 
pendulum to replace the energy that was lost to dissipation. 
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21. The superball cannot rebound to a height greater than its original height when dropped.  If it did, it 
would violate conservation of energy.  When a ball collides with the floor, the KE of the ball is 
converted into elastic PE by deforming the ball, much like compressing a spring.  Then as the ball 
springs back to its original shape, that elastic PE is converted to back to KE.  But that process is 
lossy  not all of the elastic PE gets converted back to KE.  Some of the PE is lost, primarily to 

friction.  The superball rebounds higher than many other balls because it is less lossy in its 
rebound than many other materials.  

22. The work done to lift the suitcase is equal to the change in PE of the suitcase, which is the weight of 
the suitcase times the change in height (the height of the table).  
(a) Work does NOT depend on the path, as long as there are no non-conservative forces doing  

work.  
(b) Work does NOT depend on the time taken.  
(c) Work DOES depend on the height of the table  the higher the table, the more work it takes to  

lift the suitcase. 
(d) Work DOES depend on the weight of the suitcase  the more the suitcase weighs, the more  

work it takes to lift the suitcase.  

23. The power needed to lift the suitcase is the work required to lift the suitcase, divided by the time that 
it takes. 
(a) Since work does NOT depend on the path, the power will not depend on the path either,  

assuming the time is the same for all paths. 
(b) The power DOES depend on the time taken.  The more time taken, the lower the power needed. 
(c) The power needed DOES depend on the height of the table.  A higher table requires more work 

to lift the suitcase.  If we assume that the time to lift the suitcase is the same in both cases, then 
to lift to the higher table takes more power. 

 (d) The power DOES depend on the weight of the suitcase.  A heavier suitcase requires more force 
to lift, and so requires more work.  Thus the heavier the suitcase, the more power is needed to 
lift it (in the same amount of time).  

24. The climber does the same amount of work whether climbing straight up or via a zigzag path, 
ignoring dissipative forces.  But if a longer zigzag path is taken, it takes more time to do the work, 
and so the power output needed from the climber is less.  That will make the climb easier.  It is easier 
for the human body to generate a small amount of power for long periods of time rather than to 
generate a large power for a small period of time.  

25. Assuming that there are no dissipative forces to consider, for every meter that the load is raised, two 
meters of rope must be pulled up.  This is due to the rope passing over the bottom pulley.  The work 
done by the person pulling must be equal to the work done on the piano.  Since the force on the 
piano is twice that exerted by the person pulling, and since work is force times distance, the person 
must exert their smaller force over twice the distance that the larger pulley force moves the piano.   

Solutions to Problems  

1. The force and the displacement are both downwards, so the angle between them is 0o.   
2 o 3

G cos 265 kg 9.80 m s 2.80 m cos 0 7.27 10 JW mgd
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2. The minimum force required to lift the firefighter is equal to his weight.  The force and the 
displacement are both upwards, so the angle between them is 0o. 

2 o 4

climb climb cos cos 65.0 kg 9.80 m s 20.0m cos 0 1.27 10 JW F d mgd

  
3. (a) See the free-body diagram for the crate as it is being pulled.  Since the  

crate is not accelerating horizontally, P fr 230 NF F .  The work done to 

move it across the floor is the work done by the pulling force.  The angle 
between the pulling force and the direction of motion is 0o.     

o 2

P P cos 0 230 N 4.0 m 1 9.2 10 JW F d

  

(b) See the free-body diagram for the crate as it is being lifted.  Since the crate is not 
accelerating vertically, the pulling force is the same magnitude as the weight.  The 
angle between the pulling force and the direction of motion is 0o.   

o 3

P P cos 0 1300 N 4.0 m 5.2 10 JW F d mgd

   

4. Draw a free-body diagram for the crate as it is being pushed across the floor.   
Since it is not accelerating vertically, NF mg .   Since it is not accelerating 

horizontally, P fr Nk kF F F mg .  The work done to move it across the 

floor is the work done by the pushing force.  The angle between the pushing 
force and the direction of motion is 0o.     

o 2

push push

3

cos 0 1 0.50 160 kg 9.80 m s 10.3 m

       

8.1 10 J

kW F d mgd

  

5. Since the acceleration of the box is constant, use Eq. 2-11b to find the distance moved.  Assume that 
the box starts from rest. 

22 21 1
0 0 2 2

0 2.0 m s 7 s 49 mx x x v t at

 

Then the work done in moving the crate is  
o 2 2cos 0 5 kg 2.0 m s 49 m 4.9 10 JW F x ma x

  

6. The first book is already in position, so no work is required to position it.  The second book must be 
moved upwards by a distance d, by a force equal to its weight, mg.  The force and the displacement 
are in the same direction, so the work is mgd.  The third book will need to be moved a distance of 2d 
by the same size force, so the work is 2mgd,   This continues through all seven books, with each 
needing to be raised by an additional amount of d by a force of mg.  The total work done is  

2 3 4 5 6 7W mgd mgd mgd mgd mgd mgd mgd

 

2 1

   

28 28 1.7 kg 9.8m s 0.043 m 2.0 10 Jmgd .      

mg
NF

PFfrF

x

mg

PFy

mg
NF

PF

frF

x
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7. Consider the diagram shown.  If we assume that the man pushes 
straight down on the end of the lever, then the work done by the 
man (the input work) is given by I I IW F h .  The object moves a 

shorter distance, as seen from the diagram, and so O O OW F h .  

Equate the two amounts of work.  

O I
O O I I

I O

   
F h

F h F h
F h

  

But by similar triangles, we see that I I

O O

h l

h l
, and so O I

I O

F l

F l
.  

8. The piano is moving with a constant velocity down the plane.  PF  is the  

force of the man pushing on the piano.  
(a) Write Newton s 2nd law on each direction for the piano, with an  

acceleration of 0. 

N N

P fr

P fr

2 o o 2

cos 0    cos

sin 0  

sin sin cos

    

330 kg 9.80 m s sin 28 0.40cos 28 3.8 10 N

y

x

k

F F mg F mg

F mg F F

F mg F mg

 

(b) The work done by the man is the work done by PF .  The angle between PF  and the direction of  

motion is 180o. 
o 3

P P cos180 380 N 3.6 m 1.4 10 JW F d . 

(c) The angle between frF  and the direction of motion is 180o.   
o 2 o

fr fr

3

cos180 cos 0.40 330 kg 9.8 m s 3.6 m cos 28

    

4.1 10 J

kW F d mgd
. 

(d) The angle between the force of gravity and the direction of motion is 62o.  So the work done by  
gravity is  

o o 2 o 3cos 62 cos 62 330 kg 9.8 m s 3.6 m cos 62 5.5 10 JG GW F d mgd .  

(e) Since the piano is unaccelerated, the net force on the piano is 0, and so the net work done on the  
piano is also 0.  This can also be seen by adding the three work amounts calculated.  

Net P fr G 1400 J 4100 J 5500 J 0 JW W W W

  

9. (a) Write Newton s 2nd law for the vertical direction, with up as positive. 

L L0.10    1.10yF F Mg Ma M g F Mg

 

(b) The lifting force and the displacement are in the same direction, so the work 
done by the lifting force in lifting the helicopter a vertical distance h is  

o

L L cos 0 1.10W F h Mgh .   

OF

IF

Il

Ol

Ih

Oh

y 

x

 

mg

frF

PF

NF

LF

M g
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10. Draw a free-body diagram of the car on the incline.  Include a frictional 
force, but ignore it in part (a) of the problem.  The minimum work will 
occur when the car is moved at a constant velocity. 
(a) Write Newton s 2nd law in both the x and y directions, noting that the 

car is unaccelerated. 

N N

P P

cos 0    cos

sin 0    sin

y

x

F F mg F mg

F F mg F mg

 

The work done by PF  in moving the car a distance d along the plane (parallel to PF ) is given by  

o 2 o 6

P P cos 0 sin 950 kg 9.80 m s 810 m sin 9.0 1.2 10 JW F d mgd

 

(b) Now include the frictional force, given by fr NkF F .  We still assume that the car is not 

accelerated.  We again write Newton s 2nd law for each direction.  The y-forces are unchanged 
by the addition of friction, and so we still have N cosF mg . 

P fr P frsin 0    sin cos sinx kF F F mg F F mg mg mg . 

The work done by PF  in moving the car a distance d along the plane (parallel to PF ) is given by 
o

P P

2 o o 6

cos 0 sin cos    

950 kg 9.80 m s 810 m sin 9.0 0.25cos9.0 3.0 10 J

kW F d mgd

  

11.  The work done is equal to the area under the graph.  The area is roughly trapezoidal, and so the area  
of the region is found as follows. 

31 1
max min2 2

250 N 150 N 35.0 m 10.0 m 5.0 10 JB AW F F d d

  

12.  The work done will be the area under the Fx vs. x graph.  
(a)  From 0.0x  to 10.0 mx , the shape under the graph is trapezoidal.  The area is  

310 m 4 m
400 N 2.8 10 J

2
aW

  

(b)  From 10.0 mx  to 15.0 mx , the force is in the opposite direction from the direction of  
motion, and so the work will be negative.  Again, since the shape is trapezoidal, we find  

5 m 2 m
200 N 700 J

2
aW . 

Thus the total work from 0.0x  to 15.0 mx  is 32800 J 700 J 2.1 10 J

  

13. The force exerted to stretch a spring is given by stretchF kx

  

(the opposite of the force exerted by the spring, which is 
given by F kx .  A graph of stretchF  vs. x will be a 

straight line of slope k thorough the origin.  The stretch 
from x1 to x2, as shown on the graph, outlines a trapezoidal 
area.  This area represents the work, and is calculated by 

1 1
1 2 2 1 1 2 2 12 2

21
2

   

88 N m 0.096 m 0.020 m 8.4 10 J .

W kx kx x x k x x x x

   

kx2

 

x1 x2 

kx1

 

F = kx 

Stretch distance 

Force

 
y x 

mg

NF

frF
PF
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14. See the graph of force vs. distance.  The work done is 
the area under the graph.  It can be found from the 
formula for a trapezoid.   

1
2

13.0 m 5.0 m 24.0 N 216 JW

      

15. Find the velocity from the kinetic energy, using Eq. 6-3. 
21

21
2 26

2 6.21 10 J2

    

484 m s
5.31 10

KE
KE mv v

m

  

16. (a) Since 21
2

KE mv , then 2v KE m  and so v KE .  Thus if the kinetic energy is  

doubled, the speed will be multiplied by a factor of 2 .  

(b) Since 21
2

KE mv , then 2KE v .  Thus if the speed is doubled, the kinetic energy will be  

multiplied by a factor of 4 .  

17.  The work done on the electron is equal to the change in its kinetic energy.  
22 2 31 6 181 1 1

2 12 2 2
0 9.11 10 kg 1.90 10 m s 1.64 10 JW KE mv mv

  

18.  The work done on the car is equal to the change in its kinetic energy, and so  
2

2 2 51 1 1
2 12 2 2

1m s
0 1250 kg 105 km h 5.32 10 J

3.6 km h
W KE mv mv

  

19. The force exerted by the bow on the arrow is in the same direction as the displacement of the arrow.  

Thus ocos 0 110 N 0.78 m 85.8 JW Fd Fd .  But that work changes the KE of the 

arrow, by the work-energy theorem.  Thus  

2 2 21 1
2 1 2 1 2 12 2

2 85.8 J2

    

0 44 m s
0.088 kg

Fd
Fd W KE KE mv mv v v

m

  

20. The work done by the ball on the glove will be the opposite of the work done by the glove on the  
ball.  The work done on the ball is equal to the change in the kinetic energy of the ball. 

22 21 1 1
on ball 2 1 2 12 2 2ball

0 0.140 kg 32 m s 72 JW KE KE mv mv

 

So on glove 72 JW .  But o

on glove on glove cos 0W F d , because the force on the glove is in the same 

direction as the motion of the glove.   

2

on glove on glove

72 J
72 J 0.25 m    2.9 10 N

0.25 m
F F .    

0

5

10

15

20

25

0 2 4 6 8 10 12 14
x (m)

F
x 

(N
)
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21.  The work needed to stop the car is equal to the change  
in the car s kinetic energy.  That work comes from the 
force of friction on the car.  Assume the maximum 
possible frictional force, which results in the minimum 
braking distance.  Thus fr NsF F .  The normal force 

is equal to the car s weight if it is on a level surface, 
and so fr sF mg .  In the diagram, the car is traveling 

to the right. 
2

o 2 2 2 11 1 1
fr 2 1 12 2 2    

cos180        
2

s

s

v
W KE F d mv mv mgd mv d

g

 

Since 2

1d v , if 1v  increases by 50%, or is multiplied by 1.5, then d  will be multiplied by a factor 

of 
2

1.5 , or 2.25. 

 

22.  The work needed to stop the car is equal to the change  
in the car s kinetic energy.  That work comes from the 
force of friction on the car, which is assumed to be 
static friction since the driver locked the brakes.  Thus 

fr NkF F . Since the car is on a level surface, the 

normal force is equal to the car s weight, and so 

fr kF mg  if it is on a level surface.  See the diagram 

for the car.  The car is traveling to the right. 
o 2 2 21 1 1

fr 2 1 12 2 2

2

1

    

cos180    0  

2 2 0.42 9.8 m s 88 m 27 m s

k

k

W KE F d mv mv mgd mv

v gd

 

The mass does not affect the problem, since both the change in kinetic energy and the work done by 

friction are proportional to the mass.  The mass cancels out of the equation.  

23. The original speed of the softball is 
1m s

95 km h 26.39 m s
3.6 km h

.  The final speed is 90% of  

this, or 23.75 m/s.  The work done by air friction causes a change in the kinetic energy of the ball, 
and thus the speed change.  In calculating the work, notice that the force of friction is directed 
oppositely to the direction of motion of the ball. 

o 2 21
fr fr 2 1 2 12

22 2 2 2 2

2 1 1

fr

cos180  

0.9 1 0.25 kg 26.39 m s 0.9 1
1.1 N

2 2 2 15 m

W F d KE KE m v v

m v v mv
F

d d

  

24. If the rock has 80.0 J of work done to it, and it loses all 80.0 J by stopping, then the force of gravity  
must have done 80.0 J of work on the rock.  The force is straight down, and the displacement is 
straight up, so the angle between the force and the displacement is 180o.  The work done by the 
gravity force can be used to find the distance the rock rises. 

o

G G cos cos180 80.0 JW F d mgd

 
d = stopping distance 

mg
NF

frF

d = stopping distance 

mg
NF

frF
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G

2

80.0 J
4.41 m

1.85 kg 9.80 m s

W
d

mg

  
25. (a) From the free-body diagram for the load being lifted, write Newton s 2nd law for  

the vertical direction, with up being positive. 

T

2 3

T

0.160  

1.16 1.16 285 kg 9.80 m s 3.24 10 N

F F mg ma mg

F mg

 

(b)   The net work done on the load is found from the net force.  
o 2

net net

3

cos 0 0.160 0.160 285 kg 9.80 m s 22.0 m

      

9.83 10 J

W F d mg d

 

(c) The work done by the cable on the load is  
o 2 4

cable T cos 0 1.160 1.16 285 kg 9.80 m s 22.0 m 7.13 10 JW F d mg d

 

(d) The work done by gravity on the load is 
o 2 4

G cos180 285 kg 9.80 m s 22.0 m 6.14 10 JW mgd mgd

  

(e) Use the work-energy theory to find the final speed, with an initial speed of 0. 
2 21 1

net 2 1 2 12 2

3

2

2 1

  

2 9.83 10 J2
0 8.31m s

285 kg
net

W KE KE mv mv

W
v v

m

  

26. The elastic PE is given by 21
elastic 2

PE kx  where x is the distance of stretching or compressing of the 

spring from its natural length. 

elastic
2 25 J2

0.34 m
440 N m

PE
x

k

  

27.   Subtract the initial gravitational PE from the final gravitational PE. 
2

G 2 1 2 1 7.0 kg 9.8 m s 1.2 m 82 JPE mgy mgy mg y y

  

28. Subtract the initial gravitational PE from the final gravitational PE. 
2 3

grav 2 1 2 1 64 kg 9.8 m s 4.0 m 2.5 10 JPE mgy mgy mg y y

  

29. Assume that all of the kinetic energy of the car becomes PE of the compressed spring. 
2

2
2 2 41 1

2 2 22

1m s
1200 kg 65 km h

3.6 km h

    

8.1 10 N m
2.2 m

mv
mv kx k

x

  

30. (a) Relative to the ground, the PE is given by     
2

G book ground 2.10 kg 9.80 m s 2.20 m 45.3 JPE mg y y

  
TF

mg
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(b) Relative to the top of the person s head, the PE is given by  
2

G book head 2.10 kg 9.80 m s 0.60 m 12 JPE mg y y h

 
(c) The work done by the person in lifting the book from the ground to the final height is the same  

as the answer to part (a), 45.3 J.  In part (a), the PE is calculated relative to the starting location 
of the application of the force on the book.  The work done by the person is not related to the 
answer to part (b).  

31. (a) The change in PE is given by  
2 5

G 2 1 55 kg 9.80 m s 3300 m 1600 m 9.2 10 JPE mg y y

  

(b) The minimum work required by the hiker would equal the change in PE, which is 59.2 10 J .  

(c)  Yes  .  The actual work may be more than this, because the climber almost certainly had to  
overcome some dissipative forces such as air friction.  Also, as the person steps up and down, 
they do not get the full amount of work back from each up-down event.  For example, there will 
be friction in their joints and muscles.  

32. The spring will stretch enough to hold up the mass.  The force exerted by the spring will be equal to 
the weight of the mass.   

22.5 kg 9.80 m s

    

0.46 m
53 N m

mg
mg k x x

k

  

Thus the ruler reading will be 46 cm 15cm 61cm .  

33. The only forces acting on Jane are gravity and the vine tension.  The tension 
pulls in a centripetal direction, and so can do no work  the tension force is 
perpendicular at all times to her motion.  So Jane s mechanical energy is 
conserved.  Subscript 1 represents Jane at the point where she grabs the vine, and 
subscript 2 represents Jane at the highest point of her swing.   The ground is the 
zero location for PE 0y .  We have 1 5.3m sv , 1 0y , and 2 0v  (top of 

swing).  Solve for y2, the height of her swing. 
2 2 21 1 1
1 1 2 2 1 22 2 2

22

1
2 2

    

0 0  

5.3m s
1.4 m

2 2 9.8 m s

mv mgy mv mgy mv mgy

v
y

g

 

No, the length of the vine does not enter into the calculation, unless the vine is less than 0.7 m long.  
If that were the case, she could not rise 1.4 m high. Instead she would wrap the vine around the tree 
branch.  

34. The forces on the skier are gravity and the normal force.  The normal force is 
perpendicular to the direction of motion, and so does no work.  Thus the skier s 
mechanical energy is conserved.  Subscript 1 represents the skier at the top of 
the hill, and subscript 2 represents the skier at the bottom of the hill.  The 
ground is the zero location for PE 0y .  We have 1 0v , 1 185 my , and 

2 0y  (bottom of the hill).  Solve for v2, the speed at the bottom. 
2 2 21 1 1
1 1 2 2 1 22 2 2

    

0 0  mv mgy mv mgy mgy mv

 

1 1 , v y

2 2 , v y

mg

NF
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2

2 12 2 9.80 m s 185 m 60.2 m s 135 mi hv gy

  
35. The forces on the sled are gravity and the normal force.  The normal force is 

perpendicular to the direction of motion, and so does no work.  Thus the sled s 
mechanical energy is conserved.  Subscript 1 represents the sled at the bottom of 
the hill, and subscript 2 represents the sled at the top of the hill.  The ground is 
the zero location for PE 0y .  We have 1 0y , 2 0v , and 2 1.35 my .  

Solve for v1, the speed at the bottom. 
2 2 21 1 1
1 1 2 2 1 22 2 2

2

1 2

    

0 0  

2 2 9.80 m s 1.35 m 5.14 m s

mv mgy mv mgy mv mgy

v gy

  

Notice that the angle is not used in the calculation.  

36. We assume that all the forces on the jumper are conservative, so that the mechanical energy of the 
jumper is conserved.  Subscript 1 represents the jumper at the bottom of the jump, and subscript 2 
represents the jumper at the top of the jump.  Call the ground the zero location for PE 0y .  We 

have 1 0y , 2 0.70 m sv , and 2 2.10 my .  Solve for v1, the speed at the bottom. 
2 2 2 21 1 1 1
1 1 2 2 1 2 22 2 2 2

22 2

1 2 2    

0  

2 0.70 m s 2 9.80 m s 2.10 m 6.45 m s

mv mgy mv mgy mv mv mgy

v v gy

  

37. (a) Since there are no dissipative forces present, the mechanical energy of the person  trampoline 

  

Earth combination will be conserved.  The level of the unstretched trampoline is the zero level 
for both the elastic and gravitational PE.  Call up the positive direction.  Subscript 1 represents 
the jumper at the top of the jump, and subscript 2 represents the jumper upon arriving at the 
trampoline.  There is no elastic PE involved in this part of the problem.  We have 1 5.0 m sv , 

1 3.0 my , and 2 0y .  Solve for v2, the speed upon arriving at the trampoline. 
2 2 2 21 1 1 1

1 2 1 1 2 2 1 1 22 2 2 2

22 2

2 1 1        

0  

2 5.0 m s 2 9.8 m s 3.0 m 9.154 m s 9.2 m s

E E mv mgy mv mgy mv mgy mv

v v gy

 

The speed is the absolute value of 2v . 

(b) Now let subscript 3 represent the jumper at the maximum stretch of the trampoline.  We have 

2 9.154 m sv , 2 0y , 2 0x , 3 0v , and 3 3x y .  There is no elastic energy at position 2, 

but there is elastic energy at position 3.  Also, the gravitational PE at position 3 is negative, and 
so 3 0y .  A quadratic relationship results from the conservation of energy condition. 

2 2 2 21 1 1 1
2 3 2 2 2 3 3 32 2 2 2

2 2 2 21 1 1 1
2 3 3 3 3 22 2 2 2

2 2 21 1 2 2 2
22 2 2

3 1
2      

0 0 0    0  

4

2

E E mv mgy kx mv mgy kx

mv mgy ky ky mgy mv

mg m g k mv mg m g kmv
y

k k

 

22 22 2 4

4

65 kg 9.8m s 65 kg 9.8m s 6.2 10 N m 65 kg 9.154 m s
    

6.2 10 N m

 
mg

NF
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0.307 m , 0.286 m

 
Since 3 30 , 0.31 my y .  

The first term under the quadratic is about 1000 times smaller than the second term, indicating 
that the problem could have been approximated by not even including gravitational PE for the 
final position.  If that approximation would have been made, the result would have been found 
by taking the negative result from the following solution. 

2 21 1
2 3 2 3 3 22 2 4

65 kg

        

9.2 m s 0.30 m
6.2 10 N m

m
E E mv ky y v

k

 

   
38. Use conservation of energy.  Subscript 1 represents the projectile at the launch point, and subscript 2 

represents the projectile as it reaches the ground.  The ground is the zero location for PE 0y .  

We have 1 185 m sv , 1 265 my , and 2 0y .  Solve for 2v . 
2 2 2 21 1 1 1

1 2 1 1 2 2 1 1 22 2 2 2

22 2

2 1 1

        

0  

2 185m s 2 9.80 m s 265 m 199 m s

E E mv mgy mv mgy mv mgy mv

v v gy

 

Note that the angle of launch does not enter into the problem.  

39. Use conservation of energy.  The level of the ball on the uncompressed 
spring taken as the zero location for both gravitational PE 0y  and 

elastic PE 0x .   Take up to be positive for both. 

(a) Subscript 1 represents the ball at the launch point, and subscript 2  
represents the ball at the location where it just leaves the spring, at the 
uncompressed length.  We have 1 0v , 1 1 0.150 mx y , and 

2 2 0x y .  Solve for 2v . 
2 2 2 21 1 1 1

1 2 1 1 1 2 2 22 2 2 2

2
2 2 1 11 1

1 1 2 22 2

      

2
0 0 0    

E E mv mgy kx mv mgy kx

kx mgy
mgy kx mv v

m

 

2 2

2

950 N m 0.150 m 2 0.30 kg 9.80 m s 0.150 m
8.3m s

0.30 kg
v

 

(b) Subscript 3 represents the ball at its highest point.  We have 1 0v , 1 1 0.150 mx y , 

3 0v , and 3 0x .  Solve for 3y . 
2 2 2 21 1 1 1

1 3 1 1 1 3 3 32 2 2 2

22
2 11

1 1 2 2 12 2      

950 N m 0.150 m
0 0 0    3.6 m

2 2 0.30 kg 9.80 m s

E E mv mgy kx mv mgy kx

kx
mgy kx mgy y y

mg

  

40. Draw a free-body diagram for the block at the top of the curve.  Since the  
block is moving in a circle, the net force is centripetal.  Write Newton s 2nd law 
for the block, with down as positive.  If the block is to be on the verge of falling 
off the track, then N 0F .  

mgNF

1       2      3

0y
0,x
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2 2

R N top top        F F mg m v r mg m v r v gr

 
Now use conservation of energy for the block.  Since the track is frictionless, there are no non-
conservative forces, and mechanical energy will be conserved.  Subscript 1 represents the block at 
the release point, and subscript 2 represents the block at the top of the loop.  The ground is the zero 

location for PE 0y .  We have 1 0v , 1y h , 2v gr , and 2 2y r .  Solve for h. 
2 21 1 1

1 2 1 1 2 22 2 2

        
0 2    2.5E E mv mgy mv mgy mgh mgr mgr h r

  

41. The block-spring combination is assumed to initially be at equilibrium, so the spring is neither 
stretched nor unstretched.  At the release point, the speed of the mass is 0, and so the initial energy is 

all PE, given by 21
02

kx .  That is the total energy of the system.  Thus the energy of the system when 

the block is at a general location with some non-zero speed will still have this same total energy 

value.  This is expressed by 2 2 21 1 1
total 02 2 2

E mv kx kx .  

42.  Consider this diagram for the jumper s fall.    
(a) The mechanical energy of the jumper is conserved.  Use y  

for the distance from the 0 of gravitational PE and x for the 
amount of bungee cord stretch from its unstretched 
length.  Subscript 1 represents the jumper at the start of the 
fall, and subscript 2 represents the jumper at the lowest 
point of the fall.  The bottom of the fall is the zero location 
for gravitational PE 0y , and the location where the 

bungee cord just starts to be stretched is the zero location 
for elastic PE 0x .  We have 1 0v , 1 31 my , 

1 0x , 2 0v , 2 0y , and 2 19 mx .  Apply 

conservation of energy.  
2 2 2 2 21 1 1 1 1

1 2 1 1 1 2 2 2 1 22 2 2 2 2

2

21
22

2

         

2 62 kg 9.8m s 31 m2
104.4 N m 1.0 10 N m

19 m

E E mv mgy kx mv mgy kx mgy kx

mgy
k

x

 

(b)  The maximum acceleration occurs at the location of the maximum force, which  
occurs when the bungee cord has its maximum stretch, at the bottom of the fall.  
Write Newton s 2nd law for the force on the jumper, with upward as positive.  

net cord 2

2 2 22

  

104.4 N m 19 m
9.8 m s 22.2 m s 22 m s

62 kg

F F mg kx mg ma

kx
a g

m

  

43. Since there are no dissipative forces present, the mechanical energy of the roller coaster will be 
conserved.  Subscript 1 represents the coaster at point 1, etc.  The height of point 2 is the zero 
location for gravitational PE.  We have 1 0v  and 1 35 my .  

Point 2:  2 2 21 1 1
1 1 2 2 2 1 22 2 2

   

;  0     mv mgy mv mgy y mgy mv

    

2

2 12 2 9.80 m s 35 m 26 m sv gy

  

Start of fall

 

Contact with bungee 
cord, 0 for elastic PE

 

Bottom of fall, 0 for 
gravitational PE

 

12 m 

19 m 

mg

cordF
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Point 3:  2 2 21 1 1
1 1 3 3 3 1 3 32 2 2

   
;  28 m     mv mgy mv mgy y mgy mv mgy

    
2

3 1 32 2 9.80 m s 7 m 12 m sv g y y

   
Point 4:  2 2 21 1 1

1 1 4 4 4 1 4 12 2 2

   
;  15 m     mv mgy mv mgy y mgy mv mgy

    
2

4 1 42 2 9.80 m s 20 m 20 m sv g y y

  

44. (a) See the diagram for the thrown ball.  The speed at the top of the path  
will be the horizontal component of the original velocity.  

o

top 0 cos 12 m s cos 33 10 m sv v

  

(b) Since there are no dissipative forces in the problem, the mechanical  
energy of the ball is conserved.  Subscript 1 represents the ball at the  
release point, and subscript 2 represents the ball at the top of the path.  The ground is the zero  
location for PE 0y .  We have 1 12 m sv , 1 0y , and 2 1 cosv v .  Solve for 2y . 

2 2 2 2 21 1 1 1
1 2 1 1 2 2 1 1 22 2 2 2

22 2 2 o

1

2 2

        

0 cos  

1 cos 12 m s 1 cos 33
2.2 m

2 2 9.8 m s

E E mv mgy mv mgy mv mv mgy

v
y

g

  

45. The maximum acceleration of 5.0 g occurs where the force is at a maximum.  The  
maximum force occurs at the bottom of the motion, where the spring is at its 
maximum compression.  Write Newton s 2nd law for the elevator at the bottom of the 
motion, with up as the positive direction.    

net spring spring5.0      6.0F F Mg Ma Mg F Mg

  

Now consider the diagram for the elevator at various points 
in its motion.  If there are no non-conservative forces, then 
mechanical energy is conserved.  Subscript 1 represents the 
elevator at the start of its fall, and subscript 2 represents the 
elevator at the bottom of its fall.  The bottom of the fall is 
the zero location for gravitational PE 0y .  There is 

also a point at the top of the spring that we will define as 
the zero location for elastic PE (x = 0).  We have 1 0v , 

1y x h , 1 =0x ,  2 0v , 2 0y , and 2x x .  Apply 

conservation of energy.  

2 2 2 21 1 1 1
1 2 1 1 1 2 2 22 2 2 2

2 21 1
2 22 2

2

1
2      

0 0 0 0    

6.0 6 6 12
6.0            spring

E E Mv Mgy kx Mv Mgy kx

Mg x h kx Mg x h kx

Mg Mg Mg Mg
F Mg kx x Mg h k k

k k k h

  

46. (a) The work done against gravity is the change in PE.  
2 5

against 2 1
gravity

75 kg 9.8 m s 150 m 1.1 10 JW PE mg y y

   

mg
springF

Start of fall

 

Contact with 
spring, 
 0 for elastic PE

 

Bottom of fall, 0 for 
gravitational PE 

h

 

x 
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(b) The work done by the force on the pedals in one revolution is equal to the tangential force times  
the circumference of the circular path of the pedals.  That work is also equal to the energy 
change of the bicycle during that revolution.  Note that a vertical rise on the incline is related to 
the distance along the incline by rise distance sin . 

pedal tan 1 rev 1 rev1 rev
force

2 o

21 rev
tan

2 sin  

75 kg 9.8 m s 5.1 m sin 7.8sin
4.5 10 N

2 2 0.18 m

W F r PE mg y mgd

mgd
F

r

  

47. Use conservation of energy, where all of the kinetic energy is transformed to thermal energy. 
2

2 61 1
initial final thermal2 2

0.238m s

    

2 7650 kg 95km h 5.3 10 J
1km h

E E mv E

  

48. Apply the conservation of energy to the child, considering work done by gravity and work changed 
into thermal energy.  Subscript 1 represents the child at the top of the slide, and subscript 2 
represents the child at the bottom of the slide.  The ground is the zero location for PE 0y .  We 

have 1 0v , 1 3.5 my , 2 2.2 m sv , and 2 0y .  Solve for the work changed into thermal 

energy. 
2 21 1

1 2 1 1 2 2 thermal2 2

22 2 21 1
thermal 1 22 2      

21.7 kg 9.8m s 3.5 m 21.7 kg 2.2 m s 6.9 10 J

E E mv mgy mv mgy W

W mgy mv

  

49. (a) See the free-body diagram for the ski.  Write Newton s 2nd law for  
forces perpendicular to the direction of motion, noting that there is 
no acceleration perpendicular to the plane. 

N N

fr N

cos    cos  

cosk k

F F mg F mg

F F mg

 

Now use conservation of energy, including the non-conservative friction force.  Subscript 1 
represents the ski at the top of the slope, and subscript 2 represents the ski at the bottom of the 
slope.  The location of the ski at the bottom of the incline is the zero location for gravitational 
PE 0y .  We have 1 0v , 1 siny d , and 2 0y .  Write the conservation of energy 

condition, and solve for the final speed.  Note that fr N cosk kF F mg

 

2 21 1
NC 2 1 2 1 NC 1 22 2

o 2 2 21 1 1
fr 1 1 2 2 22 2 2

o o

2    

cos180    cos sin 

2 sin cos 2 9.80 m s 75 m sin 22 0.090cos 22   

20.69 m s 21m s

k

k

W KE PE mv mv mgy mgy W E E

F d mv mgy mv mgy mgd mgd mv

v gd

  

(b) Now, on the level ground, f kF mg , and there is no change in PE.  Let us again  

use conservation of energy, including the non-conservative friction force, to relate position 2 
with position 3.  Subscript 3 represents the ski at the end of the travel on the level, having 
traveled a distance 3d  on the level.  We have 2 20.69 m sv , 2 0y , 3 0v , and 3 0y . 

d 

mg

NF
frF
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o 2 21 1
NC 2 3 3 2 2 3 32 2

22
2 221

3 2 32    

cos180  

20.69 m s
0   242.7 m 2.4 10 m

2 2 9.80 m s 0.090

f

k

k

W E E F d mv mgy mv mgy

v
mgd mv d

g

  
50. (a) Apply energy conservation with no non-conservative work.  Subscript 1 represents the ball as it  

is dropped, and subscript 2 represents the ball as it reaches the ground.  The ground is the zero 
location for gravitational PE.  We have 1 0v , 1 13.0 my , and 2 0y .  Solve for 2v . 

2 2 21 1 1
1 2 1 1 2 2 1 22 2 2

2

2 1

          

2 2 9.80 m s 13.0 m 16.0 m s

E E mv mgy mv mgy mgy mv

v gy

 

(b) Apply energy conservation, but with non-conservative work due to friction included.  The work  

done by friction will be given by o

NC fr cos180W F d , since the force of friction is in the 

opposite direction as the motion.  The distance d  over which the frictional force acts will be the 
13.0 m distance of fall.  With the same parameters as above, and 2 8.00 m sv , solve for the 

force of friction. 
2 2 21 1 1

1 2 fr 1 1 2 2 fr 1 22 2 2

22
21 2

fr

          

8.00 m s
0.145 kg 9.80 m s 1.06 N

2 2 13.0 m

ncW E E F d mv mgy mv mgy F d mgy mv

y v
F m g

d d

  

51. (a) Calculate the energy of the ball at the two maximum heights, and subtract to find the amount of  
energy lost .  The energy at the two heights is all gravitational PE, since the ball has no KE at 
those maximum heights.  

lost initial final initial final

lost initial final initial final

initial initial initial

2.0 m 1.5 m
0.25 25%

2.0 m

E E E mgy mgy

E mgy mgy y y

E mgy y

 

(b) Due to energy conservation, the KE of the ball just as it leaves the ground is equal to its final 
PE.   

21
final ground final ground2

2

ground final      2 2 9.8m s 1.5 m 5.4 m s

PE KE mgy mv

v gy

 

(c) The energy lost was changed primarily into heat energy  the temperature of the ball and the 
ground would have increased slightly after the bounce.  Some of the energy may have been 
changed into acoustic energy (sound waves).  Some may have been lost due to non-elastic 
deformation of the ball or ground.  

52. Since the crate moves along the floor, there is no change in gravitational  
PE, so use the work-energy theorem:  net 2 1W KE KE .  There are two forces 

doing work:  PF , the pulling force, and fr Nk kF F mg , the frictional 

force.  1 0KE  since the crate starts from rest.  Note that the two forces doing 

work do work over different distances. 
o o

P P P fr fr fr frcos 0          cos180 kW F d W F d mgd

 

mg
NF

f rF
PF
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21
net P fr 2 1 22

2 P fr P P fr

2

0  

2 2

2

   
350 N 30 m 0.30 110 kg 9.8 m s 15 m 10 m s

110 kg

k

W W W KE KE mv

v W W F d mgd
m m

  

53. Since there is a non-conservative force, consider energy conservation with non-conservative work 
included.  Subscript 1 represents the roller coaster at point 1, and subscript 2 represents the roller 
coaster at point 2.  Point 2 is taken as the zero location for gravitational PE.  We have 1 1.70 m sv , 

1 35 my , and 2 0y .  Solve for 2v .  The work done by the non-conservative friction force is 

given by o

NC fr cos180 0.20W F d mgd , since the force is one-fifth of mg, and the force is directed 

exactly opposite to the direction of motion. 
2 21 1

NC 1 2 1 1 2 22 2

22 2 2

2 1 1    

0.2  

0.4 2 0.4 9.80 m s 45.0 m 1.70 m s 2 9.80 m s 35 m

   

22.64 m s 23m s

W E E mgd mv mgy mv mgy

v gd v gy

  

54.  Consider the free-body diagram for the skier in the midst of the motion.   
Write Newton s 2nd law for the direction perpendicular to the plane, 
with an acceleration of 0.     

N N

fr N

cos 0    cos  

cosk k

F F mg F mg

F F mg

 

Apply conservation of energy to the skier, including the non-
conservative friction force.  Subscript 1 represents the skier at the 
bottom of the slope, and subscript 2 represents the skier at the point 
furthest up the slope.  The location of the skier at the bottom of the incline is the zero location for 
gravitational PE 0y .  We have 1 12.0 m sv , 1 0y , 2 0v , and 2 siny d . 

o 2 21 1
NC 1 2 fr 1 1 2 22 2

21
12

22 21
o12 1

o    

cos180  

cos 0 0 sin  

12.0 m ssin
tan tan18.0

cos 2 cos 2 9.80 m s 12.2 m cos18.0    

0.308

k

k

W E E F d mv mgy mv mgy

mgd mv mgd

v gd v

gd gd

  

55.  Use conservation of energy, including the non-conservative frictional force.  The block is on a level  
surface, so there is no gravitational PE change to consider.  The frictional force is given by  

fr Nk kF F mg , since the normal force is equal to the weight.  Subscript 1 represents the block at 

the compressed location, and subscript 2 represents the block at the maximum stretched position.  
The location of the block when the spring is neither stretched nor compressed is the zero location for 
elastic PE (x = 0).  Take right to be the positive direction.  We have 1 0v , 1 0.050 mx , 2 0v , 

and 2 0.023 mx .   

d 

mg

NF

frF
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o 2 2 2 21 1 1 1
NC 1 2 fr 1 1 2 22 2 2 2

2 21 1
1 22 2

2 22 2

1 2

2

    
cos180  

  

180 N m 0.050m 0.023m
0.40

2 2 0.620 kg 9.80 m s 0.073 m

k

k

W E E F x mv kx mv kx

mg x kx kx

k x x

mg x

  

56. Use conservation of energy, including the non-conservative frictional force.  The block is on a level  
surface, so there is no gravitational PE change to consider.  Since the normal force is equal to the 
weight, the frictional force is fr Nk kF F mg .  Subscript 1 represents the block at the compressed 

location, and subscript 2 represents the block at the maximum stretched position.  The location of the 
block when the spring is neither stretched nor compressed is the zero location for elastic PE (x = 0).  
Take right to be the positive direction.  We have 1 0v , 1 0.18 mx , and 2 0v .  The value of the 

spring constant is found from the fact that a 22-N force compresses the spring 18 cm, and so 
22 N 0.18 m 122.2 N mk F x .  The value of 

2x  must be positive. 
o 2 2 2 21 1 1 1

NC 1 2 fr 1 1 2 22 2 2 2

2 2 2 21 1
2 1 1 2 2 2 1 12 2

22

2 2

2

2    

cos180  

2 2    
0  

2 0.30 0.28 9.80 2 0.30 0.28 9.80
0.18 0.18 0  

122.2 122.2

0.01347

k k
k

W E E F x mv kx mv kx

mg mg
mg x x kx kx x x x x

k k

x x

x x2 2 20.02997 0    0.1665 m, 0.1800m   0.17 mx x

  

57. (a) If there is no air resistance, then conservation of mechanical energy can be used.  Subscript 1  
represents the glider when at launch, at subscript 2 represents the glider at landing.  The landing 
location is the zero location for elastic PE (x = 0).  We have 1 500 my , 2 0y , and 

1

1m s
500 km h 138.9 m s

3.6 km h
v .  Solve for 2v    

2 21 1
1 2 1 1 2 22 2

22 2

2 1 1

3      

3.6 km h
2 138.9 m s 2 9.80 m s 3500 m 296 m s

1m s   

1067 km h 1.1 10 km h

E E mv mgy mv mgy

v v gy

   

(b) Now include the work done by the non-conservative 
frictional force.  Consider the diagram of the glider.  
Calculate the work done by friction. 

o

NC fr fr fr o

3500 m
cos180

sin10
W F d F d F

 

Use the same subscript representations as above, with y1 , 1v , and y2 as before, and 

2

1m s
200 km h 55.56 m s

3.6 km h
v .  Write the energy conservation equation and solve for 

the frictional force. 

10o

 

3500 m

 

d
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2 2

1 2 12 21 1
NC 1 2 fr 1 1 2 22 2

2 2 2

o

3

2        

2

980 kg 138.9 m s 55.56 m s 2 9.80 m s 3500 m
    

3500 m
2

sin10    

2062 N 2 10 N

f

m v v gy
W E E F d mv mgy mv mgy F

d

  

58. The work necessary to lift the piano is the work done by an upward force, equal in magnitude to the 

weight of the piano.  Thus ocos 0W Fd mgh .  The average power output required to lift the 
piano is the work done divided by the time to lift the piano.  

2315 kg 9.80 m s 16.0 m

    

28.2 s
1750 W

W mgh mgh
P t

t t P

  

59. The 18 hp is the power generated by the engine in creating a force on the ground to propel the car 

forward.  The relationship between the power and the force is given by 
W Fd d

P F Fv
t t t

.  

Thus the force to propel the car forward is found by F P v .  If the car has a constant velocity, then 
the total resistive force must be of the same magnitude as the engine force, so that the net force is 
zero.  Thus the total resistive force is also found by F P v .  

218 hp 746 W 1 hp
5.5 10 N

1m s
88km h

3.6 km h

P
F

v

  

60.  The power is given by Eq. 6-16.  The energy transformed is the change in kinetic energy of the car. 
2

2 21
2 12

4

1m s
1400 kg 95 km h

3.6 km henergy transformed

time 2 7.4 s   

6.6 10 W 88 hp

m v vKE
P

t t

  

61. (a)  
550ft lb s 4.45 N 1 m

1 hp 1 hp 746 N m s 746 W
1 hp 1 lb 3.28 ft

   

(b)  
1 hp

75 W 75 W 0.10 hp
746 W

  

62. (a) 61000 W 3600 s 1 J/s
1 kW h 1 kW h 3.6 10 J

1 kW 1 h 1 W

  

(b) 
1 kW 30 d 24 h

520 W 1 month 520 W 1 month 374 kW h
1000 W 1 month 1 d
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370 kW h

  
(c) 

6
93.6 10 J

374 kW h 374 kW h 1.3 10 J
1 kW h

  
(d) 

$0.12
374 kW h $44.88 $45

1 kW h

 

Kilowatt-hours is a measure of energy, not power, and so no, the actual rate at which the energy is 
used does not figure into the bill.  They could use the energy at a constant rate, or at a widely varying 
rate, and as long as the total used is 370 kilowatt-hours, the price would be $45.  

63. The energy transfer from the engine must replace the lost kinetic energy.  From the two speeds,  
calculate the average rate of loss in kinetic energy while in neutral. 

1 2

2 22 2 51 1 1
2 12 2 2

5
4 4

1m s 1m s
85 km h 23.61m s      65 km h 18.06 m s

3.6 km h 3.6 km h

1150 kg 18.06 m s 23.61m s 1.330 10 J

1.330 10 J 1 hp
2.216 10 W , or 2.216 10 W 29.71 hp

6.0 s 746 W

v v

KE mv mv

W
P

t

  

So 4 12.2 10 W or 3.0 10 hp  is needed from the engine.  

64. Since 
W

P
t

, we have 6746 W 3600 s
3.0 hp 1 hr 8.1 10 J

1 hp 1 h
W Pt

  

65. The work done in accelerating the shot put is given by its change in kinetic energy:  The power is the 
energy change per unit time. 

22 2 11
22 122 1 2

7.3 kg 14 m s 0
476.9 W 4.8 10 W

1.5 s

m v vKE KEW
P

t t t

  

66.  The force to lift the water is equal to its weight, and so the work to lift the water is equal to the  
weight times the distance.  The power is the work done per unit time.   

218.0 kg 9.80 m s 3.60 m
10.6 W

60 sec

W mgh
P

t t

  

67.  The minimum force needed to lift the football player vertically is equal to his weight, mg.  The  
distance over which that force would do work would be the change in height, 

o140 m sin 32 74.2 my .  So the work done in raising the player is W mg y  and the power 

output required is the work done per unit time.  
2

3
95 kg 9.80 m s 74.2 m

1047 W 1.0 10 W
66 sec

W mg y
P

t t
.     
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68.  See the free-body diagram for the bicycle on the hill.  Write Newton s 2nd  
law for the x direction, noting that the acceleration is 0.  Solve for the 

magnitude of PF .  The power output related to that force is given by Eq. 6-

17, PP F v .  Use that relationship to find the velocity. 

P P

P 2 o

P

sin 0    sin

0.25 hp 746 W hp    

sin 68 kg 9.8 m s sin 6.0

                        

2.7 m s

xF F mg F mg

P P
P vF v

F mg

  

69.  Consider the free-body diagram for the car.  The car has a constant velocity,  
so the net force on the car is zero.  frF  is the friction force, and carF  is the 

force of the road pushing on the car.  It is equal in magnitude to the force of 
the car pushing on the road, and so we can think of carF  as the force the car 

is able to generate by the engine.  Write Newton s 2nd law in the x direction.   

car fr car frsin    sinxF F F mg F F mg

 

Use Eq. 6-17 to express the power output of the car, and then calculate the 
angle from that expression.  

fr

1 1

fr 2

o

sin  

120hp 746 W 1 hp1 1
sin sin 650 N

1200 kg 9.80 m s 1m s
75 km h

3.6 km h  

18

P F mg v

P
F

mg v

  

70. Draw a free-body diagram for the box being dragged along the floor.  The 
box has a constant speed, so the acceleration is 0 in all directions.  Write 
Newton s 2nd law for both the x (horizontal) and y (vertical) directions. 

N N

P fr P fr N

0    

0    

y

x k k

F F mg F mg

F F F F F F mg

 

The work done by PF  in moving the crate a distance x  is given by o

P cos 0 kW F x mg x .  

The power required is the work done per unit time.   

20.45 310 kg 9.80 m s 1.20 m s 1641W

1 hp
1641W 2.2 hp

746 W

k
k k x

mg xW x
P mg mgv

t t t

     
mg

NF
PF

y

 
x 

mg
NF

f rF PF

mg

NF

frF

carF
y x 
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71. First, consider a free-body diagram for the cyclist going down hill.  Write 
Newton s 2nd law for the x direction, with an acceleration of 0 since the 
cyclist has a constant speed. 

fr frsin 0    sinxF mg F F mg

 
Now consider the diagram for the cyclist going up the hill.  Again, write 
Newton s 2nd law for the x direction, with an acceleration of 0. 

fr P P frsin 0    sinxF F F mg F F mg

 

Assume that the friction force is the same when the speed is the same, so  
the friction force when going uphill is the same magnitude as when going 
downhill. 

P fr sin 2 sinF F mg mg

 

The power output due to this force is given by Eq. 6-17. 
2 o

P

2

2 sin 2 75 kg 9.8 m s 5.0 m s sin 7.0

   

9.0 10 W

P F v mgv

  

72.  The kinetic energy of the moving car is changed into the elastic PE of the bumper, before it deforms. 
2

2
2 2 71 1

2 2 22

1m s
1300 kg 8km h

3.6 km h

    

2.9 10 N m
0.015 m

mv
mv kx k

x

  

73.  The minimum work required to shelve a book is equal to the  
weight of the book times the vertical distance the book is moved 

 

its increase in PE.  See the diagram.  Each book that is placed on 
the lowest shelf has its center of mass moved upwards by 20.5 
cm.  So the work done to move 25 books to the lowest shelf is 

1 25 0.205 mW mg .  Each book that is placed on the second 

shelf has its center of mass moved upwards by 50.5 cm, so the 
work done to move 25 books to the second shelf is 

2 25 0.505 mW mg .  Similarly, 3 25 0.805 mW mg , 4 25 1.105 mW mg , and 

5 25 1.405 mW mg .  The total work done is the sum of the five work expressions. 

2 3

25 0.205 m .505 m .805 m 1.105 m 1.405 m

   

25 1.5 kg 9.80 m s 4.025 m 1479 J 1.5 10 J

W mg

  

74. Assume that there are no non-conservative forces doing work, so the mechanical energy of the 
jumper will be conserved.  Subscript 1 represents the jumper at the launch point of the jump, and 
subscript 2 represents the jumper at the highest point.  The starting height of the jump is the zero 
location for PE 0y .  We have 1 0y , 2 1.1 my , and 2 6.5m sv .  Solve for v1.   

2 21 1
1 2 1 1 2 22 2

22 2

1 2 2      2 6.5 m s 2 9.8 m s 1.1 m 8.0 m s

E E mv mgy mv mgy

v v gy

    

floor

 

3rd shelf

 

2rd shelf

 

1st shelf

 

20.5 cm

 

50.5 cm

 
y

 
x

  

y

 

x

 

mg

mg

NF

NF

frF

frF

PF
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75. (a) Consider a free-body diagram for the block at the top of the curve.  Since  
the block is moving in a circle, the net force is centripetal.  Write 
Newton s 2nd law for the block, with down as vertical.  If the block is to be 
on the verge of falling off the track, then N 0F .     

2 2

R N top top top        F F mg m v r mg m v r v gr

 
Now use conservation of energy for the block.  Since the track is frictionless, there are no non-
conservative forces, and mechanical energy will be conserved.  Subscript 1 represents the block 
at the release point, and subscript 2 represents the block at the top of the loop.  The ground is 

the zero location for PE 0y .  We have 1 0v , 1y h , 2 topv v gr , and 2 2y r .  

Solve for h. 
2 21 1 1

1 2 1 1 2 22 2 2

        

2    2.5E E mv mgy mv mgy mgh mgr mgr h r

 

(b) Now the release height is 2 5h r .  Use conservation of energy again.  Subscript 1 represents 
the block at the (new) release point, and subscript 2 represents the block at the bottom of the 

loop.  We have 1 0v , 1 5y r , and 2 0y .  Solve for 2

2v . 
2 2 21 1

1 2 1 1 2 2 22 2

        

10E E mv mgy mv mgy v rg .   

Now consider the free-body diagram for the block at the bottom of the 
loop.  The net force must be upward and radial.  Write Newton s 2nd law 
for the vertical direction, with up as positive. 

2

R N

2

N

  

10
11

F F mg m v r

m rg
F mg m v r mg mg

r

 

(c) Use conservation of energy again.  Subscript 2 is as in part (b) above, and subscript 3 represents 

the block at the top of the loop.  We have 2 0y , 2 10v rg , and 3 2y r .  Solve for 2

3v .   
2 2 21 1 1

2 3 2 2 3 3 32 2 2

2

3

        

5 0 2  

6

E E mv mgy mv mgy mrg mv rmg

v rg

 

Refer to the free-body diagram and analysis of part (a) to find the normal force. 

2 2

R N top N

6    
5

rmg
F F mg m v r F m v r mg mg mg

r

  

(d) When moving on the level, the normal force is the same as the weight, NF mg .  

76.  (a) Use conservation of energy, including the work done by the non-conservative force of the snow  
on the pilot.  Subscript 1 represents the pilot at the top of the snowbank, and subscript 2 
represents the pilot at the bottom of the crater.  The bottom of the crater is the zero location for 
PE 0y .  We have v1 = 35 m/s , y1 = 1.1 m, v2 = 0, and y2 = 0.  Solve for the non-

conservative work. 
2 21 1

NC 1 2 NC 1 1 2 22 2

      

W E E W mv mgy mv mgy

 

22 21 1
NC 1 12 2

4 4

78 kg 35 m s 78 kg 9.8 m s 1.1 m

      

4.862 10 J 4.9 10 J

W mv mgy

  

(b) The work done by the snowbank is done by an upward force, while the pilot moves down. 
o

NC snow snowcos180  W F d F d

 

mg

NF

mgNF
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4
4 4NC

snow

4.862 10 J
4.420 10 N 4.4 10 N

1.1 m

W
F

d

  
(c) To find the work done by air friction, another non-conservative force, use energy conservation  

including the work done by the non-conservative force of air friction.  Subscript 1 represents the 
pilot at the start of the descent, and subscript 3 represents the pilot at the top of the snowbank.  
The top of the snowbank is the zero location for PE 0y .  We have v1 = 0 m/s , y1 = 370 m, 

v2 = 35 m/s, and y2 = 0.  Solve for the non-conservative work. 
2 21 1

NC 1 2 NC 1 1 2 22 2

22 21 1
NC 2 12 2

5 5      

78 kg 35 m s 78 kg 9.8 m s 370 m

2.351 10 J 2.4 10 J

W E E W mv mgy mv mgy

W mv mgy

  

77. (a) The tension in the cord is perpendicular to the path at all times, and so the tension in the cord  
does not do any work on the ball.  Thus the mechanical energy of the ball is conserved.  
Subscript 1 represents the ball when it is horizontal, and subscript 2 represents the ball at the 
lowest point on its path.  The lowest point on the path is the zero location for PE 0y .  We 

have 1 0v , 1y L , and 2 0y .  Solve for v2.   

2 2 21 1 1
1 2 1 1 2 2 2 22 2 2            

2E E mv mgy mv mgy mgL mv v gL

  

(b) Use conservation of energy, to relate points 2 and 3.  Point 2 is as described above.  Subscript 3  
represents the ball at the top of its circular path around the peg.  The lowest point on the path is 

the zero location for PE 0y .  We have 1 2v gL , 1 0y , and 

2 2 2 0.80 0.40y L h L L L .  Solve for v2.   
2 2 21 1 1 1

2 3 2 2 3 3 22 2 2 2

2

        

2 0.40  

1.2

E E mv mgy mv mgy m gL mv mg L

v gL

  

78. (a) The work done by the hiker against gravity is the change in gravitational PE.   
2 5 5

G 65 kg 9.8 m s 3700 m 2300 m 8.918 10 J 8.9 10 JW mg y

  

(b) The average power output is found by dividing the work by the time taken. 
5

2

8.918 10 J
49.54 W 50 W

5 h 3600 s 1 h

1 hp
49.54 W 6.6 10 hp

746 W

grav

output

W
P

t

  

(c) The output power is the efficiency times the input power. 

output 2

output input input

49.54 W
0.15    3.3 10 W 0.44 hp

0.15 0.15

P
P P P

  

79.   (a) The work done by gravity as the elevator falls is the opposite of the change in gravitational PE. 
2

G 1 2 1 2 920 kg 9.8 m s 28 mW PE PE PE mg y y

 

5 5

    

2.524 10 J 2.5 10 J
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Gravity is the only force doing work on the elevator as it falls (ignoring friction), so this result 
is also the net work done on the elevator as it falls.  

(b) The net work done on the elevator is equal to its change in kinetic energy.  The net work done  
just before striking the spring is the work done by gravity found above.  

1
G 2 1 1 2 22

2

2 1 2    

0  

2 2 9.8m s 28 m 23.43m s 23m s

W KE KE mg y y mv

v g y y

  

(c) Use conservation of energy.  Subscript 1 represents the elevator just before striking the spring,  
and subscript 2 represents the elevator at the bottom of its motion.  The level of the elevator just 
before striking the spring is the zero location for both gravitational PE and elastic PE.  We have 

1 23.43m sv , 1 0y , and 2 0v .  We assume that 2 0y .   
2 2 2 21 1 1 1

1 2 1 1 1 2 2 22 2 2 2

22 2

1
2 2 22

12 2

2 2 1 2      

2 4
4

2 0    
2

E E mv mgy ky mv mgy ky

mvmg m g
mg m g mkvmg m k k ky y v y

k k k

 

We must choose the negative root so that 2y  is negative.  Thus 

2 22 2 5

2 5

920 kg 9.8 m s 920 kg 9.8 m s 920 kg 2.2 10 N m 23.43m s

2.2 10 N m   

1.56 m

y

  

80. The force to lift a person is equal to the person s weight, so the work to lift a person up a vertical 
distance h is equal to mgh.  The work needed to lift N people is Nmgh, and so the power needed is 
the total work divided by the total time.  We assume the mass of the average person to be 70 kg, 

2

6 6
47000 70 kg 9.80 m s 200 m

1.79 10 W 2 10 W
3600 s

W Nmgh
P

t t
.  

81. (a) Use conservation of mechanical energy, assuming there are no non-conservative forces.   
Subscript 1 represents the water at the top of the dam, and subscript 2 represents the water as it 
strikes the turbine blades.  The level of the turbine blades is the zero location for PE 0y .  

We have 1 0v , 1 80 my , and 2 0y .  Solve for v2. 
2 2 21 1 1

1 2 1 1 2 2 1 22 2 2

2 1

2 1

          

2 2 9.8 m s 81 m 39.84 m s 4.0 10 m s

E E mv mgy mv mgy mgy mv

v gy

 

(b) The energy of the water at the level of the turbine blades is all kinetic energy, and so is given by  
21
22

mv .  58% of that energy gets transferred to the turbine blades.  The rate of energy transfer to 

the turbine blades is the power developed by the water. 
2

2 51
22

0.58 650 kg s 39.84 m s
0.58 3.0 10 W

2

m
P v

t
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82. Consider the free-body diagram for the coaster at the bottom of the loop.  The 
net force must be an upward centripetal force.  

2 2

bottom N bottom N bottom
bottom bottom    

F F mg m v R F mg m v R

 
Now consider the force diagram at the top of the loop.  Again, the net force 
must be centripetal, and so must be downward. 

2 2

top N top top
top top    

NF F mg m v R F m v R mg .   

Assume that the speed at the top is large enough that 
top

0NF , and so 

topv Rg .  Now apply the conservation of mechanical energy.  Subscript 1 represents the coaster 

at the bottom of the loop, and subscript 2 represents the coaster at the top of the loop.  The level of 
the bottom of the loop is the zero location for PE 0y .  We have y1 = 0 and y2 = 2R. 

2 2 2 21 1
1 2 1 1 2 2 bottom top2 2

        

4E E mv mgy mv mgy v v gR .  

The difference in apparent weights is the difference in the normal forces. 
2 2 2 2

N N bottom top bottom top
bottom top

2                  

2 4 6

F F mg m v R m v R mg mg m v v R

mg m gR R mg

  

Notice that the result does not depend on either v or R .  

83. (a) Assume that the energy of the candy bar is completely converted into a change of PE:  

candy 6
bar 3

candy 2
bar

1.1 10 J

    

1.4 10 m
82 kg 9.8m s

E

E PE mg y y
mg

.  

(b) If the person jumped to the ground, the same energy is all converted into kinetic energy. 

6candy
bar2 21

candy 2
bar

2
2 1.1 10 J

    

1.6 10 m s
82 kg

E

E mv v
m

   

84. Since there are no non-conservative forces, the mechanical energy of the projectile will be 
conserved.  Subscript 1 represents the projectile at launch and subscript 2 represents the projectile as 
it strikes the ground.  The ground is the zero location for PE 0y .  We have 1 175 m sv , 

1 165 my , and 2 0y .  Solve for v2.   
2 2 2 21 1 1 1

1 2 1 1 2 2 1 1 22 2 2 2

22 2

2 1 1

          

2 175 m s 2 9.8 m s 165 m 184 m s

E E mv mgy mv mgy mv mgy mv

v v gy

 

Notice that the launch angle does not enter the problem, and so does not influence the final speed.  

85. The spring constant for the scale can be found from the 0.6 mm compression due to the 710 N force.  

6

4

710 N
1.183 10 N m

6.0 10 m

F
k

x
.  Use conservation of energy for the jump.  Subscript 1 

represents the initial location, and subscript 2 represents the location at maximum compression of the 
scale spring.  Assume that the location of the uncompressed scale spring is the 0 location for 
gravitational PE. We have 1 2 0v v  and 1 1.0 my .  Solve for y2, which must be negative.  

mg

N
bottom

F

mgN
top

F
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2 2 21 1 1
1 2 1 1 2 2 22 2 2

2 2 2 3 31
1 2 2 2 2 1 2 22

2 2

2

6 2 4

scale      

    
2 2 1.200 10 1.200 10 0

3.52 10 m ,3.40 10 m

1.183 10 N m 3.52 10 m 4.2 10 N

E E mv mgy mv mgy ky

mg mg
mgy mgy ky y y y y y

k k

y

F k x

  

86. (a) Use conservation of energy for the swinging motion.  Subscript 1  
represents the student initially grabbing the rope, and subscript 2 
represents the student at the top of the swing.  The location where the 
student initially grabs the rope is the zero location for PE 0y .  

We have 1 5.0 m sv , 1 0y , and 2 0v .  Solve for y2. 
2 21 1

1 2 1 1 2 22 2

2
2 11
1 2 22

          

2

E E mv mgy mv mgy

v
mv mgy y h

g

 

Calculate the angle from the relationship in the diagram. 
2

1

22
1 1 o1

2

cos 1 1  
2

5.0 m s
cos 1 cos 1 29

2 2 9.8 m s 10 m

vL h h

L L gL

v

gL

 

(b) At the release point, the speed is 0, and so there is no radial acceleration,  

since 2

Ra v r .  Thus the centripetal force must be 0.  Use the free-body 

diagram to write Newton s 2nd law for the radial direction. 

R T

2 o 2

T

cos 0  

cos 65 kg 9.8m s cos 29 5.6 10 N

F F mg

F mg

  

(c) Write Newton s 2nd law for the radial direction for any angle, and solve for the tension. 
2 2

R T Tcos    cosF F mg m v r F mg m v r

 

As the angle decreases, the tension increases, and as the speed increases, the tension increases.  
Both effects are greatest at the bottom of the swing, and so that is where the tension will be at 
its maximum. 

2

2 2 2

T 1
max

65 kg 5.0 m s
cos 0 65 kg 9.8m s 8.0 10 N

10 m
F mg m v r

  

87. The minimum vertical force needed to raise the athlete is equal to the athlete s weight.  If the athlete 

moves upward a distance y , then the work done by the lifting force is ocos 0W Fd mg y , the 
change in PE.  The power output needed to accomplish this work in a certain time t is the work 
divided by the time. 

2

2
72 kg 9.8 m s 5.0 m

3.9 10 W
9.0 s

W mg y
P

t t

  

L

 

y2 = h 

L - h 

mg

TF
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88. The energy to be stored is the power multiplied by the time:  E Pt .  The energy will be stored as 
the gravitational PE increase in the water:  E PE mg y Vg y , where  is the density of 
the water, and V  is the volume of the water. 

6

4 3

3 2

120 10 W 3600 s

    
8.5 10 m

1000 kg m 9.8 m s 520 m

Pt
Pt Vg y V

g y

  

89. If the original spring is stretched a distance x from equilibrium, then the potential energy stored is 
21

full 2
PE kx .  Alternatively, think of the original spring as being made up of the two halves of the 

spring, connected from end to end.  Each half of the spring has a spring constant k , to be 
determined.  As the spring is stretched a distance x, each half-spring is stretched a distance x/2.  Each 

half-spring will have an amount of potential energy stored of  
21

half 2
2PE k x .  The amount of 

energy in the two half-springs must equal the amount of energy in the full spring.    
221 1

full half 2 2
2    2 2    2PE PE kx k x k k

  

90. Consider the free-body diagram for the block.  The block is moving up the  
plane. 

(a) 
221 1

1 12 2
6.0 kg 2.2 m s 14.52 J 15 JKE mv

 

(b) o o 2

P P cos 37 75 N 8.0 m cos 37 479.2 J 4.8 10 JW F d

 

(c) o 2

fr fr cos180 25 N 8.0 m 2.0 10 JW F d

 

(d) o 2 ocos127 6.0 kg 9.8 m s 8.0 m cos127GW mgd

 

2

     

283.1 J 2.8 10 J

 

(e) o

N N cos 90 0 JW F d

 

(f) By the work-energy theorem,  

total 2 1

2 total 1 P fr G N 1

  

10.62 J 11 J

W KE KE

KE W KE W W W W KE

  

91. The power output for either scenario is given by the change in kinetic energy, divided by the time 
required to change the kinetic energy.  Subscripts of f and i are used for final and initial values of 
speed and kinetic energy.  Subscript 1 represents the acceleration from 35 km/h to 55 km/h, and 
subscript 2 represents the acceleration from 55 km/h to 75 km/h. 

2 2 2 21 1
1 1 2 22 21 1 2 2

1 2

1 1 2 2

        
f i f if i f i

m v v m v vKE KE KE KE
P P

t t t t

 

Equate the two expressions for power, and solve for t2. 
2 2 2 2 2 21 1
1 1 2 2 2 22 2

2 1 2 2
1 2 1 1    

f i f i f i

f i

m v v m v v v v
t t

t t v v

 

Since the velocities are included as a ratio, any consistent set of units may be used for the velocities.  
Thus no conversion from km/h to some other units is needed. 

2 2 2 2

2 2

2 1 2 22 2

1 1

75 km h 55 km h
3.2 s 4.6 s

55 km h 35 km h

f i

f i

v v
t t

v v

 

d 

mg

NF

frF

PF
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92. See the free-body diagram for the patient on the treadmill.  We assume that there  
are no dissipative forces.  Since the patient has a constant velocity, the net force 
parallel to the plane must be 0.  Write Newton s 2nd law for forces parallel to the 

plane, and then calculate the power output of force PF . 

parallel P P

2 o

sin 0    sin

1m s
sin 75 kg 9.8 m s 3.3km h sin15

3.6 km h   

174.4 W 170 W

P

F F mg F mg

P F v mgv

  

This is about 2 to 3 times the wattage of typical household light bulbs (60 100 W).  

93. (a) Assume that there are no non-conservative forces on the rock, and so its mechanical energy is  
conserved.  Subscript 1 represents the rock as it leaves the volcano, and subscript 2 represents 
the rock at  its highest point.  The location as the rock leaves the volcano is the zero location for 
PE 0y .  We have 1 0y , 2 500 my , and 2 0v .  Solve for v1. 

2 2 21 1 1
1 2 1 1 2 2 1 22 2 2

2 2

1 2

          

2 2 9.80 m s 500 m 98.99 m s 1 10 m s

E E mv mgy mv mgy mv mgy

v gy
. 

(b) The power output is the energy transferred to the launched rocks per unit time.  The launching  

energy of a single rock is 21
12

mv , and so the energy of 1000 rocks is 21
12

1000 mv .  Divide this 

energy by the time it takes to launch 1000 rocks to find the power output needed to launch the 
rocks. 

2 21
12 7

1000 500 500 kg 98.99 m s
4 10 W

60 sec

mv
P

t

  

94. (a) The maximum power output from the falling water would occur if all of the potential energy  
available were converted into work to turn the wheel.  The rate of potential energy delivery to 
the wheel from the falling water is the power available. 

2

3
95 kg 9.8 m s 2.0 m

1.9 10 W
1 sec

W mgh
P

t t

 

(b) To find the speed of the water as it hits the wheel, use energy conservation with no non- 
conservative forces.  Subscript 1 represents the water at the start of the descent, and subscript 2 
represents the water as it hits the wheel at the bottom of the descent.  The bottom of the descent 
is the zero location for PE 0y .  We have 1 0v , 1 2.0 my , and 2 0y .  Solve for v2. 

2 2 21 1 1
1 1 2 2 1 22 2 2

2

2 1

      

2 2 9.8 m s 2.0 m 6.3m s

mv mgy mv mgy mgy mv

v gy

   
mg

NF PF




