CHAPTER 8: Rotational Motion

Answersto Questions

1.

The odometer designed for 27-inch wheels increases its reading by the circumference of a 27-inch
wheel (277;") for every revolution of the wheel. If a24-inch wheel is used, the odometer will still

register (27z") for every revolution, but only 247" of linear distance will have been traveled.

Thus the odometer will read a distance that is further than you actually traveled, by afactor of
27/24=1.125. The odometer will read 12.5% too high.

If adisk rotates at constant angular velocity, a point on the rim has radial acceleration only —no
tangential acceleration. If the disk’sangular velocity increases uniformly, the point will have both
radial and tangential acceleration. If the disk rotates at constant angular velocity, neither component
of linear acceleration is changing — both radial and tangential acceleration are constant. If the disk
rotates with a uniformly increasing angular velocity, then the radial acceleration is changing, but the
tangential acceleration is a constant non-zero value.

A non-rigid body cannot be described by a single value of angular velocity. Since the body is non-
rigid, the angular position of one part of the body changes with respect to other parts of the body.
Consider the solar system as an example of anon-rigid body or system. Each planet orbitsin
basically the same direction around the Sun, but each planet hasits own angular velocity which is
different than that of the other planets.

Since the torque involves the product of force times lever arm, asmall force can exert a greater
torque than alarger forceif the small force has alarge enough lever arm.

If the lever arm is zero, then the force does not exert any torque and so cannot produce an angular
acceleration. There will be no change in the angular state of motion. However, the force will add to
the net force on the body and so will change the linear acceleration of the body. The body’ s linear
state of motion will change.

When you do a sit-up, torque from your abdomen muscles must rotate the upper half of the body
from alaying-down position to a sitting-up position. The larger the moment of inertia of the upper
half of the body, the more torque is heeded, and thus the harder the sit-up isto do. With the hands
behind the head, the moment of inertia of the upper half of the body is larger than with the hands
outstretched in front.

Thetension force in the bicycle chain can be assumed to be the same at both the front and rear
sprockets. The forceisrelated to the torque at each sprocket by F = z/R, and so 7, / R, =7, / R .

The torque at the rear sprocket iswhat actually accelerates the bicycle, and so 7, = 7, R,/R. .

We see that, to achieve a given torque at the back sprocket, a larger front torque (due to pedaling)
must be present when the rear sprocket issmall. Thusit is harder to pedal with asmall rear sprocket.

Likewise, to achieve a given torque at the back sprocket, alarger front torque (due to pedaling) must
be present when the front sprocket islarger. Thusit is harder to pedal with alarger front sprocket.
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8. Thelegshave alower moment of inertiawhen the leg massis concentrated next to the body. That
means the legs will require less torque to have a given angular acceleration, or, aternatively, a higher
angular acceleration can be developed. Thusthe animal can run fast.

9. Thelong beam increases the rotational inertia of the walker. If the walker gets off-center from the
tightrope, gravity will exert atorgue on the walker causing the walker to rotate with their feet as a
pivot point. With alarger rotational inertia, the angular acceleration caused by that gravitational
torque will be smaller, and the walker will therefore have more time to compensate.

The long size of the beam allows the walker to make relatively small shiftsin their center of massto
bring them back to being centered on the tightrope. 1t is much easier for the walker to move along,
narrow object with the precision needed for small adjustments than a short, heavy object like a
barbell.

10. Just because the net force on a system is zero, the net torque need not be zero.
Consider a uniform object with two equal forces on it, and shown in the first
diagram. The net force on the object is zero (it would not start to translate under
the action of these forces), but there is a net counterclockwise torque about the *
%

center of therod (it would start to rotate under the action of these forces).

Just because the net torque on a system is zero, the net force need not be zero.
Consider an abject with two equal forces on it, as shown in the second diagram.
The net torque on the object is zero (it would not start to rotate under the action of
these forces), but there is a net downward force on the rod (it would start to
tranglate under the action of these forces).

11. Applying conservation of energy at the top and bottom of the incline, assuming that there is no work
done by friction, gives E = E — Mgh=1iMV’+110*. Forasolidbal, | =2MR®. If the
ball rolls without slipping (no work done by friction) then o = v/ R, and so

Mgh=iMV’ +12MR*V?/R? — v=./10gh/7 .
This speed is independent of the angle of the incline, and so both balls will have the same speed at

the bottom. The ball on the incline with the smaller angle will take more time to reach the bottom
than the ball on the incline with the larger angle.

bottom

12. Applying conservation of energy at the top and bottom of the incline, and assuming that thereis no
work done by friction, gives E = E — Mgh=<iMV’+410®.  Forasolid bal,

~ “bottom

I =§MR2. If the ball rolls without dlipping (no work done by friction) then a)=V/R, and so

Mgh=1MV* +12MR*V*/R® — v=,/10gh/7
This speed is independent of the mass and radius of the ball, and so both balls will have the same
speed at the bottom. In fact, thisistrue for ANY height of fall, so the two balls will have identical
instantaneous speeds all along their descent, and so both balls will take the same time to reach the
bottom. Thetotal kinetic energy is KE = KE,_+ KE,, =2 MV? +22MR*V*/R? = ZMv?, and s0
the ball with the larger mass has the greater total kinetic energy. Another way to consider thisisthat
theinitial potential energy of Mgh isall converted to kinetic energy. The larger mass has more
potential energy to begin with (due to the larger mass), and so has more kinetic energy at the bottom.
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13.

15.

16.

17.

18.

19.

Applying conservation of energy at the top and bottom of the incline, assuming that there is no work

done by friction, gives E, = E,,,, — Mgh=2Mv’+1lw°.  If the objectsroll without
. . 2 2 2Mgh .
slipping, then @ =Vv/R, and so Mgh=2Mv* +11(y/R)" — v= M—I/R2 For asolid ball,
+

| =2MR?, and for acylinder, | =2MR?. Thus v, =/10gh/7 and v,, =/4gh/3. Since
Ve > Vo » the sphere has the greater speed at the bottom. That istrue for any amount of height

sphere
change, and so the sphere is always moving faster than the cylinder after they start to move. Thus
the sphere will reach the bottom first. Since both objects started with the same potential energy, both
have the same total kinetic energy at the bottom. But since both objects have the same mass and the
cylinder is moving slower, the cylinder has the smaller trandational KE and thus the greater
rotational KE.

Momentum and angular momentum are conserved for closed systems — systems in which there are
no external forces or torques applied to the system. Probably no macroscopic systems on Earth are
truly closed, and so external forces and torques (like those applied by air friction, for example) affect
the systems over time.

If alarge number of people went to the equator, the rotational inertia of the Earth would increase,
since the people would be further from the axis of rotation. Angular momentum would be conserved
in such an interaction, and so since the rotational inertiaincreased, the angular velocity would
decrease — the Earth would “ dlow down” asmall amount. The length of aday would therefore
increase.

In order to do a somersault, the diver needs some initial angular momentum when she leaves the
diving board, because angular momentum will be conserved during the free-fall motion of the dive.
She cannot exert atorgue on herself in isolation, and so if thereis no angular momentum initially,
there will be no rotation during the rest of the dive.

The moment of inertiawill increase, because most the mass of the disk will be further from the axis
of rotation than it was with the original axis position.

Y our angular velocity will not change. Before you let go of the masses, your body has acertain
angular momentum, which is the product of your moment of inertiaand your angular velocity. No
torques are put upon you by the act of dropping the masses, and so your angular momentum does not
change. If you don’t change your moment of inertia by changing the position of your body, then
your angular velocity will not change. The masses, when dropped, will have a horizontal motion that
istangential to the circle in which they were moving before they were dropped. An object traveling
horizontally at some distance from avertical line (like your axis of rotation) has angular momentum
relative to that vertical line. The masses keep the angular momentum that they had before being
dropped.

The two spheres would have different rotational inertias. The sphere that is hollow will have alarger
rotational inertiathan the solid sphere. If the two spheres are alowed to roll down an incline without
slipping, the sphere with the smaller moment of inertia (the solid one) will reach the bottom of the
ramp first. See question number 13 for an explanation of why this happens.
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Using the right hand rule, point the fingers in the direction of the Earth’ s rotation, from west to east.

21.

22

23.

24,

Then the thumb points north. Thus the Earth’ s angular velocity points along its axis of rotation,
towards the North Star.

Seethe diagram. To theleft iswest, the direction of the angular velocity. The
direction of the linear velocity of a point on the top of the wheel would be into the
paper, which is north. If the angular acceleration is east, which is opposite the angular
velocity, the wheel is slowing down —its angular speed is decreasing. The tangential
linear acceleration of the point on top will be in the opposite direction to its linear
velocity —it will point south.

The angular momentum of the turntable — person system will be conserved, since no external torques
are being applied as the person walks to the center. As the person walks to the center, the overall
moment of inertia of the system gets smaller, since the person is closer to the axis of rotation. Since
the angular momentum is constant, the angular velocity must increase. So the turntable will begin to
rotate faster as you walk to the center. Thisissimilar to the spinning ice skater who pulls her arms
in to increase her angular speed.

The shortstop, while in mid-air, cannot exert atorque on himself, and so his angular momentum will
be conserved whilein the air. If the upper half of his body rotates in a certain direction during the
throwing motion, then to conserve angular momentum, the lower half of his body will rotate in the
opposite direction.

Consider ahelicopter in the air with the rotor spinning. To change the rotor’ s angular speed, a
torque must be applied to the rotor. That torque has to come from the helicopter, and so by
Newton’s 3" law, and equal and opposite torque will be applied by the rotor to the helicopter. Any
change in rotor speed would therefore cause the body of the helicopter to spin in adirection opposite
to the change in the rotor’ s angular velocity.

Some large helicopters have two rotor systems, spinning in opposite directions. That makes any
change in the speed of the rotor pair require a net torque of 0, and so the helicopter body would not
tend to spin. Smaller helicopters have atail rotor which rotatesin avertical plane, causing aforce on
the tail of the helicopter in the opposite direction of the tendency of the tail to spin.

Solutionsto Problems

(@ (30°)(27 rad/360°) = |7/6rad|=[0.52 rad
(b) (57°)(27 rad/360°) = [19/60rad| =[0.99 rad
(© (90°)(27 rad/360°) = z/2rad] = [1.57 rad
(d) (360°)(27 rad/360°) = |27 rad =]6.28 rad|
(e (420°)(2x rad/360°) =|7z/3rad| = [7.33 rad

The anglein radiansis the diameter of the object divided by the distance to the object.
2 2(6.96x10°km

rg, = PRen _ ( : )_
149.6x10°km

9.30x10°rad

r‘Earth—Sun
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2(1.74x10°k
2, =P 207K o

e 384x10°km
Since these angles are practically the same, solar eclipses occur.

3.  Wefind the diameter of the spot from

0= Giameter = 01, .. = (L4x10°rad) (38x10°m) =
I

Earth—Moon

4. Theinitial angular velocity is o, = (6500 re_v j(zﬂ radj( 1 min jz 681rad/s. Usethe
min lrev 60 sec

definition of angular acceleration.

Ao 0-681rad
a==2 - S orradfs ~[2.3x10 rad/5
At 30s

5. Thebal rolls 2zr = zd of linear distance with each revolution.

d 35
15.0rev(” mj=3.5m S d==2M _174%10%m

1rev 150 »

6. Ineach revolution, the wheel moves forward a distance equal to its circumference, zd .

=N, (rd) > N=22- DDT__[7.700]

2500 27 rad \( 1 mi
7. @ a):( .revj[ i )[ mmj:261.8rad/%c~ 2.6x10° radfsec
1min lrev 60s

(b) v=or=(261.8rad/sec)(0.175 m) =[46m/s

a, = »’r = (261.8rad/sec)’ (0.175 m) = [1.2x10* m/s’

8. Theangular speed of the merry-go-round is 27 rad/4.0 s=1.57rad/s
(@) v=or=(157rad/sec)(1.2m)=[1.9m/s

(b) Theacceleration isradial. Thereisno tangential acceleration.
a, = ’r = (L57radfsec)’ (1.2 m) =|3.0m/s’ towards the center

9. (a) The Earth makes one orbit around the Sun in one year.
_A9_(2zrad ( Lyr - j: 1.99x107" rad/s
At lyr 3.16x10's
(b) The Earth makes one revolution about its axisin one day.

_A0_ (2” radj 1d_ ) _[F27x10° rad/s
At 1d /{86,400

a)orbit

a)rotati on
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10. Each location will have the same angular velocity (1 revolution per day), but the

11.

12.

13. Thetangential speed of the turntable must be equal to the tangential speed of theroller, if thereis no

radius of the circular path varies with the location. From the diagram, we see r
r = Rcos@ , where Risthe radius of the Earth, and r isthe radius at latitude & . )
2 2 1
@ v=or=—"tr :( ﬁf&j)[ d j(6.38><106m)= 4.64x10° m/s
T 1d 86400 s
2 2 1
(b) V=or=—=r =( d radj[ d ](6.38x106m)c0566.5° —[1.85x10° mys
T 1d 86400 s
2 2 1
© v=or=Zr =( i radj( d j(6.38><106m)cos45.00 —[3.28x10° m/s
T 1d 86400 s

The centripetal accelerationisgivenby a=w’r . Solve for the angular velocity.

w:\/%:\/(mo,ooo)(g.Sm/sz) :3741E(1ﬂj( 60 <

0.070 m s \ 2zrad /\ 1 min

Convert the rpm values to angular velocities.

o, =(130 d )(27[ radj(lmin j ~13.6rad/s

min lrev 60 sec

©= (280 had j(Z” rad)[ 1 min j — 29.3rad)s
min lrev 60 sec

(@ Theangular acceleration isfound from Eg. 8-9a.

w—-o, 29.3rad/s-13.6rad/s

t 40s

w=w,+at > a=

j:

— 3.93rad/s? ~[3.9rad/s’

3.6x10"rpm

(b) To find the components of the acceleration, the instantaneous angular velocity is needed.

® = o, + at =13.6rad/s+(3.93rad/s” ) (2.0 s) = 21 5rad/s

The instantaneous radial accelerationisgivenby a, = »’r .

a, = »’r =(2L5rad/s)’ (0.35 m) =[1.6x10* m/s’

The tangential accelerationisgivenby a_ =ar .

an

a,, =or =(3.93rad/s)(0.35 m) = [1.4m/s’

slippage.
Vi=V, — wlRlza)ZRZ - a)l/a)ZZRZ/Rl

14. (@ Theangular rotation can be found from Eq. 8-3a. Theinitial angular frequency is 0 and the

final angular frequency is 1 rpm.

a =
t 720 s

(b) After 5.0 min (300 s), the angular speed is as follows.

(1 rev}(Z;rradj(l.Omin)_
@@ _\ mn/\lrev /| 60s =1.454x10"* rad/s’ ~ |1.5x 10 rad/s’

® = o, +at = 0+ (145410 rad/s’ ) (300 s) = 4.363x10°* rad/s
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Chapter 8 Rotational Motion

Find the components of the acceleration of a point on the outer skin from the angular speed and
the radius.

a,, = aR=(1.454x10" rad/s’ ) (4.25 m) =|6.2x10" m/s’

a,, = 0’R=(4.363x107 rad/s) (4.25m)=(8.1x10° m/s’

15. The angular displacement can be found from the following uniform angular acceleration relationship.

0 = +(w, + )t =(0+15000rev/min)(220 s)(1min/60s) =

16. (a) For constant angular acceleration:
_ ®w-o, 1200rev/min—4500rev/min  -3300rev/min (27; rad](l minj
t 25s 25s lrev 60s

a

= [-1.4x10% rad/s’
(b) For the angular displacement, given constant angular accel eration:

0 =1(w,+ o)t =1(4500rev/min+1200rev/min)(2.5 S)(l mlnj =

60s

17. (a) Theangular acceleration can be found from 6 = w,t +%at2 with @, =0.
20 2(20rev
__20_2(20rev)

= 4.0x10" rev/min’

t*  (LOmin)®
(b) Thefinal angular speed can be found from «9=§(w0 +a))t ,with @, =0.
2(20
wzﬁ—a)o :(_@): 4.0x10" rpm
t 1.0 min

18. Use Eqg. 8-9d combined with Eq. 8-2a.
®+ o, 240rpm+360rpm

2

-
0=t = (300&)( i j(6.5 s) = 32.5 rev
min /\ 60 sec

Each revolution corresponds to a circumference of travel distance.

325 rev{M} =

lrev

o= =300rpm

19. (@) Theangular acceleration can be found from ” = @’ + 220 .

2_w? 0-(850rev/min)’ in)’
I ( /min) :(_241 rqz)(Zﬂ rad)(lmlnj _ _0.42@
20 2(1500 rev) min® )\ 1rev J\ 60s

(b) Thetime to come to astop can be found from 8 =1 (o, + w)t.

(o2 _2(1500rev)( 605)2

o, +o 850rev/min\1min
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20. Sincethereisno slipping between the wheels, the tangential component of the linear accel eration of
each wheel must be the same.

(a') a'tan :atan - asmall rsmall :alargerlarge -
small argel

r, 2.0cm
4 = (7.2radfs’ )( 0 ij — 0.576rad/s* ~|0.58rad/s?

large

alarge = 6Ysmall

(b) Assume the pottery wheel starts from rest. Convert the speed to an angular speed, and
then use Eq. 8-9a.

o= (65 kal j(Z” rad)(lm'nj - 6.81rad/s
min /\ 1rev 60s

o=, +at > (o270 6.81rad/s _

a  0576rad/s’

(@) Theangular acceleration can be found from o’ = a)f + 208 , with the angular velocities being
found from @ = v/r .
2
2 2 1m/s
) j (Vz—Vj) [(45km/h) —(95km/h) }(WJ

a = = > =
20 2r'o 2(0.40 m)’ (65 rev)[ 27 radj
rev

— —4.133rad/s? ~ [-4.1rad/s’

(b) Thetimeto stop can be found from @ = @, + at , with afinal angular velocity of O.

—(45km/h)[3;r|?—/shj
N e A .6km/ _Fos

a ra (040 m)(-4.133rad/s’)

22. (a) Themaximum torque will be exerted by the force of her weight, pushing tangential to the circle
in which the pedal moves.

7r=rF =r,mg =(0.17 m)(55 kg)(9.8m/s’) = [92m-N
(b) She could exert more torgue by pushing down harder with her legs, raising her center of mass.

She could aso pull upwards on the handle bars as she pedals, which will increase the downward
force of her legs.

23. Thetorqueiscalculated by 7 =rF sing. Seethe diagram, from the top view. r
(a) For thefirst case, 8 =90°. |

r=rFsind=(0.74m)(55N)sin90° = [41 m-N ‘9)/
E

(b) For the second case, 9 = 45°.

r=rFsind =(0.74m)(55 N)sin 45° =[29 m-N]
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Each forceis oriented so that it is perpendicular to its lever arm. Call counterclockwise torques

25,

26.

27.

28.

29.

30.

positive. Thetorgue due to the three applied forcesis given by
= (28 N)(O.24 m)—(18 N)(O.24 m)—(35 N)(O.12 m) =-1.8m-N.

z-appl ied
forces

Since this torque is clockwise, we assume the wheel is rotating clockwise, and so the frictional
torque is counterclockwise. Thusthe net torqueis
=(28N)(0.24 m)-(18N)(0.24 m)—(35N)(0.12 m)+0.40m+N = -1.4 meN

= |1.4 meN, cIockWise|

Thereis a counterclockwise torque due to the force of gravity on the left block, and a clockwise
torque due to the force of gravity on the right block. Call clockwise the positive direction.

> r=mgL, -mgL, =[mg(L, - L,) , clockwise

(@) Theforce required to produce the torque can be found from z =rF sind. Theforceisapplied
perpendicularly to the wrench, so 8 =90°. Thus

F =220 apacn]

r 028m
(b) The net torque still must be 88 meN . Thisis produced by 6 forces, one at each of the 6 points.
Those forces are a so perpendicular to the lever arm, and so

(6|:p0|m) ot > P =—=—————=[2.0x10°N

For a sphere rotating about an axis through its center, the moment of inertiais given by
| =2MR’ =2(10.8 kg)(0.648 m)’ =|1.81 kg-m’

Since al of the significant massis located at the same distance from the axis of rotation, the moment
of inertiais given by

2
| = MR?* =(1.25 kg)(06267 j =10.139 kgem®

The hub mass can be ignored because its distance from the axis of rotation is very small, and so it
has avery small rotational inertia.
(@) Thesmall ball can be treated as a particle for calculating its moment of inertia.

| = MR’ =(0.650 kg)(1.2m)’ =|0.94 kg-m’

(b) To keep aconstant angular velocity, the net torque must be zero, and so the torque needed is the
same magnitude as the torque caused by friction.

ZT = Toplied ~ Tt = 0 - Topplied = Tie = F.r= (0'020 N)(l.Z m) :

(@) Thetorque exerted by the frictional forceis r = rF, sing . The direction of

tati
frictional force is assumed to be tangential to the clay, and sotheangle ' © 'O”/’
is@=90°.
Tou =TF, SN0 = (6.0><10‘2m)(15N)S|n90° —[2.0x10?m-N]|
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(b) Thetimeto stop isfound from o =, + ot , with afinal angular
velocity of 0. The angular acceleration can be found from ¢
angular acceleration) is negative since the object is slowing.
- - 0-(1.6 27 rad

(00, _0-0, ( I'ZEI/S)(ﬂ'I' /re'\/)2 _[iz
a 7/l (-9.0x10°m-N)/(0.11kg-m’)

=la . Thenet torque (and

total

31. (a) To calculate the moment of inertia about the y-axis (vertical), use
| => MR =m(0.50 m)’ +M (0.50 m)* +m(1.00 m)* + M (1.00 m)’

=(m+M)[ (050 m)" +(1.00m)" | = (4.9 kg)| (0.50 m)* +(1.00 m)* | =|6.1 kgem’
(b) To calculate the moment of inertia about the x-axis (horizontal), use
I => MR =(2m+2M)(0.25m)’ =0.61 kgem’|.

(c) Becauseof thelarger | value, it is harder to accelerate the array about the .

32 The oxygen molecule has a“dumbbell” geometry, rotating about the dashed line, as !
shown in the diagram. If thetotal massis M, then each atom has a mass of M/2. If O_,_O
the distance between them is d, then the distance from the axis of rotation to each |
atomisd/2. Treat each atom as a particle for calculating the moment of inertia. '

I =(M/2)(d/2)" +(M/2)(d/2)" = 2(M/2)(d/2)" = Md* —
d = Ja1/M = [4(19x10"kg-m* ) /(5.3x10 % kg) =[1.2x10°m|

33. Thefiring force of the rockets will create a net torque, but no net force. Since each rocket fires
tangentially, each force has alever arm equal to the radius of the satellite, and each forceis

perpendicular to the lever arm. Thus 7., = 4FR. Thistorque will cause an angular acceleration

accordingto 7 = la, where | =< MR? for acylinder. The angular acceleration can be found from

A
the kinematicsby a = Ti) . Equating the two expressions for the torque and substituting enables us

to solve for the force.
AFR= 1o = iMR* 22
At
£ _MRAw (3600 kg) (4.0 m)(32rev/min)( 27 rad/rev)(1 min/60s)
8At 8(5.0 min)(60 s/min)

- 20.11N ~[2.0x10'N]

34. (&) Themoment of inertiaof acylinder isfound in Figure 8-21.
| =2 MR? = £(0.580 kg)(8.50x10°m)’ = 2.0953x 10 *kgem® = [2.10x10 *kgem?
(b) Thewheel slowsdown “onitsown” from 1500 rpm to rest in 55.0s. Thisis used to calculate

the frictional torque.

A
7, =la, = T‘t"z (2.0953x10 *kgm*)

(0-1500rev/min)( 27 rad/rev)(1 min/60 s)
55.0s

=-5.984x10°m-N
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Chapter 8 Rotational Motion

The net torque causing the angular acceleration is the applied torque plus the (negative)
frictional torque.

ZT:Tapplied+Tfr =la —

1500rev/min) (27 rad/rev)(1 min/60 s)
5.00s

=(2.0953x10 °kg-m" ) (
-[22x107m.N]

35. Thetorque can be calculated from 7 = ¢ . Therotational inertia of arod about its end is given by
| =iML®.

+(5.984><10'3m-N)

Aw

r=la :%MLZEZ%(ZZ kg)(095 m)Z (30reV/S)(27Z' rad/re\/)

0.20s

=162 meN

The torque needed is the moment of inertia of the system (merry-go-round and children) times the
angular acceleration of the system. Let the subscript “mgr” represent the merry-go-round.

-,

)A_a) = (% M g R+ 2M,q Rz)

r=lo=(1,,+! -

mgr children

> (15rev/min)( 27 rad/rev)(1 min/60 s)
10.0s

=[4(760 kg) +2(25 kg)](2.5 m)

=422.15meN = [4.2x10°m-N

Theforce needed is calculated from the torque and the radius. Assume that the forceis all directed
perpendicularly to the radius.

r=F,RSng — F, =7/R=4.2215x10°m.N/2.5 m=[L.7x10°N]|

37. Thetorque on the rotor will cause an angular acceleration given by « = r/ | . Thetorque and angular

acceleration will have the opposite sign of the initial angular velocity because the rotor is being
brought to rest. The rotational inertiaisthat of asolid cylinder. Substitute the expressions for

angular acceleration and rotational inertiainto the equation o’ = »? + 26 , and solve for the
angular displacement.
o = a)f + 206

2 2 2 2 2 2
g2 -, 0-w; -, _ —MRw;

20 2(1) 2(cAMR)  4r

. 2
~(4.80 kg)(0.0710 m)’ [(10, 300 j( 2n radj(l min ﬂ 1
min )\ 1rev 60 s _ 5865 rad( rev ]

4(~1.20 Nem) 27 rad

The time can be found from 6 =4 (w, + ®)t .
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(__20 __2(99%3rev) (605)2

~ w,+® 10,300rev/min\ 1 min

38. (a) Thetorque gives angular acceleration to the ball only, since the arm is considered massless.
The angular acceleration of the ball is found from the given tangential acceleration.

r=la=MRa = MRza’—F:“: MRa,, = (36 kg)(0.3Lm)(7.0m/s)

=7.812meN ~|7.8meN

(b) The triceps muscle must produce the torque required, but with alever arm of only 2.5 cm,
perpendicular to the triceps muscle force.

r=Fr, - F=1/r, =7812m.N/(25x107m) =[3.1x10°N|

39. (a) Theangular acceleration can be found from

Ao o v/r (10.0m/s)/(0.31m)
At t t 0.350 s

(b) Theforce required can be found from the torque, since = = Frsind. In this situation the force

is perpendicular to the lever arm, and so @ = 90°. Thetorqueisalsogivenby 7 = la, where |
isthe moment of inertia of the arm-ball combination. Equate the two expressions for the torque,
and solve for the force.

— 92.17rad/s? ~|92rad/s’

Frsné=Ila
F — IO! — rT’lnalldtfall +%rnarm|‘irm a
rsiné r sin90°
(1.00 kg)(0.31 m)” +1(3.70 kg)(0.31 m)’ , >
= (92.17rad/s’) = [1.9x10°N|

(0.025m)

40. (a) The moment of inertia of athin rod, rotating about its end, is given in Figure 8-21(g). There
are three blades to add.

| =3(3ML*) = ML* = (160 kg)(3.75 m)’ = 2250kgem” ~|2.3x10°kgem"
(b) Thetorque required isthe rotational inertiatimes the angular accel eration, assumed constant.

%: (2250kg.m2)(5.0rev/sec)(27r rad/rev) _

80s

41. Weassumethat m, > m, and so m, will accelerate down, m will . 9/ r
[ 9

total

r= Itotala = total

accelerate up, and the pulley will accelerate clockwise. Call the
direction of acceleration the positive direction for each object. The £ _
masses will have the same accel eration since they are connected by a T Fr,
cord. Therim of the pulley will have that same acceleration since the
cord ismaking it rotate, and s0 «,,,,, = afr . From the free-body +vy Fr Fro s y
diagrams for each object, we have the following. my m

2 F.=F,-mg=ma - F,=mg+ma

2. F.=mg-F,=ma - F,=mg-ma R

mg mg
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Chapter 8 Rotational Motion

a
Zr:FTzr—FTlrzlale

Substitute the expressions for the tensions into the torque equation, and solve for the accel eration.
(m,-m)
(ml +m,+1/r )

If the moment of inertiaisignored, then from the torque equation we seethat F,, = F,,, and the

_(m-m)
(m+m,)"
included will be smaller than if the moment of inertiaisignored.

FTzr—FTlrzlE - (ng—mza)r—(mlg+rnla)r=IE — la=
r r

acceleration will be |a,_; = . We see that the acceleration with the moment of inertia

42. A top view diagram of the hammer is shown, just at the instant of release,
along with the accel eration vectors.
(@) Theangular acceleration isfound from Eg. 8-9c.

o’ = +2aA0 —

e o'~ (v/r)' -0 _ [(28.0m/s)/(1.20 m)]* Ny E

2A0 2A0 2(87 rad)

(b) Thetangential acceleration isfound from the angular acceleration and the radius.
a,, =ar =(10.8rad/s’)(1.20 m) =[13.0m/s’

(c) The centripetal acceleration isfound from the speed and the radius.
=*[r = (28.0m/s)’ [(1.20 m) = [653m/<’

(d) Thenet force isthe masstimes the net acceleration. It isin the same direction as the net
acceleration, also.

F.=ma,=m/a; +a’, =(7.30 kg)\/(li-’,.Om/sz)2 +(653m/sz)2 =

(e) Find the angle from the two acceleration vectors.

) ,13.0m/s’
0 =tan* 2o _ ant =—V° _[114°]
o a, o 653m/s?

43. Theenergy required to bring the rotor up to speed from rest is equal to the final rotational KE of the
rotor.

2z rad \(1min |
KEmt=§Ia)2:%(3.75x102kg-m2){8250 re_v( al j( m'”ﬂ _[140x103
min

1rev 60 s

44. Work can be expressed in rotational quantitiesas W = 7 A8, and so power can be expressed in

W AQ
rotational quantitiesas P=—=7r—=1w .
AU AL
2 1mi
P=rw= (280m-N)(3800 j( ”radj( mlnj=1.114x105Wz1.1><105W
min /\ 1lrev 60 s

1.114><105W( 11p ): 1.5x10*hp
746 W
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45. Thetotal kinetic energy is the sum of the translational and rotational kinetic energies. Since the ball
isrolling without slipping, the angular velocity isgiven by @ =v/R. Therotational inertia of a

sphere about an axis through its center is | =2 mR’.
2

v
=KE_ +KE_ =imv’+ilp’ =imV +i2mR*—=<nmv
rot 2 2 2 25 R2

total trans 10

=0.7(7.3kg)(3.3m/s)’ =

2

KE

46. (a) For the daily rotation about its axis, treat the Earth as a uniform sphere, with an angular
frequency of one revolution per day.

KE :%Ia)z :i(%MRéanh)a)dzaily

daily daily — 2

2
:%(6.0x1024kg)(6.4x106m)2KZ” rad)( 1 day ﬂ _[26x107]

1day )| 86,400s

(b) For the yearly revolution about the Sun, treat the Earth as a particle, with an angular frequency
of onerevolution per year.

_ 1 2 _ 1 2 2
KEyea\rly 2 Ia)yearly - Z(MRSun- ja)yearly

Earth

2
= 4(6.0x10"kg)(1.5x10"m)’ 2 red ( 1day j =|2.7x10%J
365 day /| 86,400 s

Thusthetotal KE is KE

daily

+KE , = 2.6x10%°J+2.6x10%J=[2.6x10*J|. The KE dueto the
daily motion is about 10,000 smaller than that due to the yearly motion.

47. Thework required isthe changein rotational kinetic energy. Theinitial angular velocity isO.

27 rad \’
W= AKE,, =107 -1 =14 MR'0? = (1640 kg) (750 m)z( sﬁooS) -[42:10

48. Apply conservation of energy to the sphere, as done in Example 8-13.
(@) Thework of Example 8-13 is exactly applicable here. The symbol d isto represent the

distance the sphere rolls along the plane. The sphere is rolling without slipping, so v, = @R.

Vo, =\2gh =2 gdsinG = [2(9.80m/s*)(10.0 m)(sin30.0°) =8.367

=|8.37m/s

@ =V, [R=8.367m/s/(2.00x10"m) =[41.8rad/s

KEtrans % MVéM % MV(Z:M -
(b) KE B % I CM a)z B 1(2 2 VéM B
H(EMR) 2

rot

(c) Only the angular speed depends on the radius. [None of the results depend on the mass|
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Chapter 8

will be conserved. Theinitial state of the system is the configuration with

m_on the ground and all objects at rest. Thefinal state of the system has
m, just reaching the ground, and all objectsin motion. Call the zero level
of gravitational potential energy to be the ground level. Both masses will

The only force doing work in this system is gravity, so mechanical energy
M

have the same speed since they are connected by the rope. Assuming that

the rope does not dlip on the pulley, the angular speed of the pulley is m

related to the speed of the massesby w = v/R. All objects have an initial ¥

speed of 0. oy hi
E =E v

Rotational Motion

B

imyv +imy +2lo” +may, + may, =+mv; +Imy; +1lo; + may,, +mgy,,

2

h=imVv’ +1 v2+i(iMR2)V—f +magh
mgn=smv, +3myVv, +2|3 R mg

_ 2(26.5 kg—18.0 kg)(9.80m/s’ )(3.00
v, = 2(m—m)ch _ 2(265kg 9)(980m/s)(3.00m) _ 3.22m/s
(Mm+m+iM) (26.5kg+18.0 kg+(%)7.50 kg)

50. Sincethe lower end of the pole does not slip on the ground, the friction does no work, and so
mechanical energy is conserved. Theinitial energy isthe potential energy, treating all the mass asiif
it were at the CM. Thefina energy isrotational KE, for rotation about the point of contact with the
ground. Thelinear velocity of thefalling tip of the rod isits angular velocity divided by the length.

PE=KE - mgh=1le’ — mgL/2=%(iml*)(v,, /L)’ -

V., =+/30L = /3(9.80m/s*)(2:30 m) =[8.22m/s

51. Theangular momentum is given by Eq. 8-18.

52. (a)

(b)

53. (a)

L = lo = MR’w = (0.210 kg)(1.10 m)” (10.4rad/s) = |2.64kg-m’ /5

The angular momentum is given by Eqg. 8-18.
= 1o = R0 = 3(25kg) (01| S| 2L L0
s

Imin 1lrev

= [7.1kgem?/s
The torque required is the change in angular momentum per unit time. The final angular
momentum is zero.
I T 0-7.1kg-m’/s
At 6.0s
The negative sign indicates that the torque is used to oppose the initial angular momentum.

-1.2meN

Consider the person and platform a system for angular momentum analysis. Since the force and
torque to raise and/or lower the armsisinternal to the system, the raising or lowering of the
arms will cause no changein the total angular momentum of the system. However, the
rotational inertiaincreases when the arms are raised. Since angular momentum is conserved, an
increase in rotational inertia must be accompanied by a decrease in angular velocity.
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1.30rev/s
' 0.80rev/s

The rotational inertia has increased by afactor of :

O L=L - lo=lo - |, =I ~1.6251, ~16l,

Y
a)f

54. Thereisno net torque on the diver because the only external force (gravity) passes through the center
of mass of the diver. Thus the angular momentum of the diver is conserved. Subscript 1 refersto
the tuck position, and subscript 2 refers to the straight position.

I 2 rev 1
L=L, — lLo=lo, — wzzwlf:(l.mecJ(Ej: 0.38 rev/s

55. The skater’s angular momentum is constant, since no external torques are applied to her.

L=L, > lo=lo - I, =1,2=(46 kg-mz)wz
, 3.0rev/s
She accomplishes this by starting with her arms extended (initial angular velocity) and then
pulling her arms in to the center of her body| (final angular velocity).

0.77 kgem®

56. Because there isno external torque applied to the wheel-clay system, the angular momentum will be
conserved. We assume that the clay is thrown with no angular momentum so that itsinitial angular
momentum is 0. Thissituation isatotally inelastic collision, in which the final angular velocity is
the same for both the clay and the wheel. Subscript 1 represents before the clay is thrown, and
subscript 2 represents after the clay is thrown.

L=L - lLo=lLo, —
L_ IwheeI —CO( %Mwhedezvheel }

- ! 1 2 1 2
I EMwhed Rlvhed +EMchRIay
(5.0 kg)(0.20 m)’
(5.0kg)(0.20 m)’ +(3.1kg)(8.0x102m)’

.

) = O,

' o + 1
2 wheel clay

= (1.5rev/s) =1.36rev/s~|L4rev/s

(@ L=lo=+MRo=21(55kg)(0.15m)’ (3.5EJ( 21” radj = [1akgem? /s
S rev

(b) If therotational inertia does not change, then the change in angular momentum is strictly due to
achangein angular velocity.

2
AL _0-ukgm'/s o

At 50s
The negative sign indicates that the torque isin the opposite direction as the initial angular
momentum.

58. (a) For thedaily rotation about its axis, treat the Earth as a uniform sphere, with an angular
frequency of one revolution per day.

L =1 Dyiry = (% MRéarth ) Dyaity

_2(6.0x10"kg)(6.4x10°m)’ | | 2L ( 1day J - [7.1x107 kgem? /s
lday /\ 86,400s

daily
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Chapter 8 Rotational Motion

(b) For the yearly revolution about the Sun, treat the Earth as a particle, with an angular frequency
of one revolution per year.

Ldaily =1 Dty = (MRsim- ja)daily

Earth

:(6.0x102“kg)(1.5x1011m)2 27 red ( 1 day j = [2.7x10° kgem? /s
365 day /| 86,400 s

59. Sincethere are no external torques on the system, the angular momentum of the 2-disk systemis
conserved. The two disks have the same final angular velocity.

L=L - lo+l(0)=2lo, > |o, =%t

60. Theangular momentum of the disk — rod combination will be conserved because there are no
external torques on the combination. This situation isatotally inelastic collision, in which the final
angular velocity is the same for both the disk and the rod. Subscript 1 represents before the collision,
and subscript 2 represents after the collision. The rod has no initial angular momentum.

L=L - lLo=lo —

1 Idisk %MRZ (Bj
=@ =X = = =(24rev/s)| — |=|1.4rev/s
2 wll a)ll a)l|:%MR2+l—12M(2R)2 ( /) 5 /

61. Sincethe personiswalking radially, no torques will be exerted on the person-platform system, and
so angular momentum will be conserved. The person will be treated as a point mass. Since the
person isinitially at the center, they have no initia rotationa inertia.

(a') Ll = Lf - Ipletforma)i = ( I platform + l person ) a)f
I platform @ = 920 kg°m2
Ljatorm +MR® 920 kgem” +(75 kg) (3.0 m)

(0) KE =21, =(920kgem’) (20rads)’ =[18x10°]

_ 2 2 _ 1 2 2
KEf 2 ( I platform + I person ) a)f 2 ( I platform + rnpers;on rperson ) a)f

= 3] 920kgem’ + (75 kg) (3.0 m)* |(1.154rad/s)’ = 1062 J = [1.1x10°)]

a)f=

—(2.0rad/s) =1.154rad/s ~ |1.2rad/s

62. The angular momentum of the merry-go-round and people combination will be conserved because
there are no external torques on the combination. This situation isatotally inelastic collision, in
which the final angular velocity is the same for both the merry-go-round and the people. Subscript 1
represents before the collision, and subscript 2 represents after the collision. The people have no
initial angular momentum.

L=L - lLo=lLo, —

I 1 I m-g-r I m-g-r
T T TR
2 -0- + m-g-r + person

2
- (080rad/s) L70kgm 2
1760kg-m* +4(65 kg) (2.1 m)

=10.48rad/s

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rightsreserved. This materia is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.

208



Giancoli Physics: Principles with Applications, 6" Edition

63.

65.

If the people jump off the merry-go-round radially, then they exert no torque on the merry-go-round,
and thus cannot change the angular momentum of the merry-go-round. The merry-go-round would

continue to rotate at |0.80rad/s|.

Since the lost mass carries away no angular momentum, the angular momentum of the remaining
mass will be the same as the initial angular momentum.

o 1, _iMR MR’
o 1, MR’ (05M,)(00IR, )

L=L - lo=lo - =2.0x10"

o, =2.0x10°w, = 2.0x10°" 2r rad ( 1d j: 4.848x10°° rad/s ~ [5x 107 rads
30 day /\ 86400 s
The period would be afactor of 20,000 smaller, which would make it about 130 seconds.
The ratio of angular kinetic energies of the spinning mass would be
2

KE, 1.0 %[%(O.SMi)(0.0lR )2](2.0x10“wi) ) .
= ~= —~— =2.0x10" — |KE, =2x10"KE,
KE  1lo HEULIE

f

N Y

For our crude estimate, we model the hurricane as arigid cylinder of air. Sincethe “cylinder” is
rigid, each part of it has the same angular velocity. The mass of the air is the product of the density
of air times the volume of the air cylinder.

M = oV = pzR%h = (13kg/m’) z(100x10°m)’ (4.0x10°m) = 1.634x 10" kg

(@) KE=2110"=2(1MR?)(V,,/R) =MV,

., . im/s ’ ~ 5y s

- 2(1.634x10" kg){(lZOkm/h)(—aka /hﬂ - 4.539x10°J ~[5x10° ]

) L=lo=(4MR*)(v,,/R)=<MRv,,
1m/s

=1(1.634x10"kg)(1.00x10° m){(lZO km/h)(B = /hﬂ = 2.723x10” kgem? /s

~[3x10” kgm? /5

Angular momentum will be conserved in the Earth — asteroid system, since all forces and torques are
internal to the system. Theinitial angular velocity of the satellite, just before collision, can be found

from o =V o / R..., - Assuming the asteroid becomesimbedded in the Earth at the surface,

asteroid
the Earth and the asteroid will have the same angular velocity after the collision. We model the
Earth as a uniform sphere, and the asteroid as a point mass.

L=L 2 e + | secaPumaic = ( o + Iasteroid)a)f

The moment of inertia of the satellite can be ignored relative to that of the Earth on the right side of
the above equation, and so the percent change in Earth’s angular velocity is found as follows.
= (wf B wEarth) Ias(eroid D geroid

weroid — VEatn®@y T =
10) I 1)

) S /)

Earth™ Earth asteroid

Earth Earth Earth
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Vasteroid
_ 2
% Change — (a)f Oeatn ) (100) — Zrnasteroid RE;nh REarth — zrnasteroid Vasteroid (100)
Diatn 5 M Earth REanh Oearn 5 M gath PEath REanh
1.0x10°kg)(3.0x10* m/s
- (10~ g)(2 Xad /9) (100) =[2.7x10° %
(0.4)(5.97x1024kg)(8g4cr)0 j(6.38><106m)
S

66. When the person and the platform rotate, they do so about the vertical axis. Initially thereisno
angular momentum pointing along the vertical axis, and so any change that the person —wheel —
platform undergoes must result in no net angular momentum along the vertical axis.

(&) If thewhedl is moved so that its angular momentum points upwards, then the person and
platform must get an equal but opposite angular momentum, which will point downwards.
Write the angular momentum conservation condition for the vertical direction to solve for the
angular velocity of the platform.

L=L - O0=l,0,+l.0, > |0

The negative sign means that the platform is rotating in the opposite direction of the wheel. If
the wheel is spinning counterclockwise when viewed from above, the platform is spinning
clockwise.

(b) If thewhed is pointing at a 60° angle to the vertical, then the component
of its angular momentum that is along the vertical directionis

E 60°
I, o, cos60 . Seethediagram. Write the angular momentum %M o

conservation condition for the vertical direction to solve for the angular

velocity of the platform.
I
L=L — 0=I,0,c0860°+|.0, > |o, =—2‘|’" o,
P
Again, the negative sign means that the platform is rotating in the opposite direction of the
wheel.

(c) If thewhedl is moved so that its angular momentum points downwards, then the person and
platform must get an equal but opposite angular momentum, which will point upwards. Write
the angular momentum conservation condition for the vertical direction to solve for the angular
velocity of the platform.

L=L — O0=-l,0,+l0, > |o.=0,l,/l,

The platform is rotating in the same direction as the wheel. If the wheel is spinning
counterclockwise when viewed from above, the platform is also spinning counterclockwise.
(d) Sincethetotal angular momentum is O, if the wheel is stopped from rotating, the platform will

aso stop. Thus |w, =0f.

67. Theangular momentum of the person — turntable system will be conserved. Call the direction of the
person’ s motion the positive rotation direction. Relative to the ground, the person’s speed will be

V+V,, where v isthe person’s speed relative to the turntable, and v, isthe speed of the rim of the
turntable with respect to the ground. The turntable’s angular speed is @, =V, / R, and the person’s
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V+V. Vv : .
L = —+@,. Theperson istreated as a point

angular speed relative to the ground is @, =
particle for calculation of the moment of inertia.

\
L=L - Olea)T+IPa)P=ITa)T+mR2(a)T+E) -

Yoo MRV (55kg)(325m)(38m/s) ~030rad/s

" 1,+mR®  1700kgem’ + (55 kg)(3.25 m)’

68. Since the spool rollswithout dlipping, each point on the edge of the spool moves with a speed of
V=rw=V,, relaiveto the center of the spool, where v, isthe speed of the center of the spool

relative to the ground. Since the spool is moving to the right relative to the ground, and the top of
the spool is moving to the right relative to the center of the spooal, the top of the spool is moving with

aspeed of 2v,, relativeto theground. Thisis the speed of the rope, assuming it isunrolling

without slipping and is at the outer edge of the spool. The speed of the rope is the same as the speed
of the person, since the person is holding the rope. So the person is walking with a speed of twice
that of the center of the spool. Thusif the person moves forward a distance L, in the same time the

center of the spool, traveling with half the speed, moves forward a distance L/ 2|. Therope, to stay

connected both to the person and to the spool, must therefore unwind by an amount L/ 2| aso.

69. The spin angular momentum of the Moon can be calculated by L, =1_, @, =¢MR; o, . The

orbital angular momentum can be calculated by L, =1, ®,,, = MR’ @, - Because the same

orbit

side of the Moon aways facesthe Earth, o, = o,

orbit *

L. 2MR._ o, ’ 1.74x10°m )’
Spin — 5 RMoon spin :%( RMoonj 204( X m — 8.21><1076

Lorbit M R)zrbil a)orbil R)rbit 384 X 108 m

70. Asdiscussed in section 8-3, from the reference frame of the axle of the wheel, the points on the wheel
are all moving with the same speed of v=rw , where v isthe speed of the axle of the wheel relative
to the ground. Thetop of the tire has avelocity of v to the right relative to the axle, so it hasa
velocity of 2v to theright relative to the ground.

v +V e = (Vtotheright)+ (v to theright) = 2v to theright

V =
ground center ground

top rel ﬂtopre!
= 2v=2(v, +at) = 2at = 2(1.00m/s" ) (3.0's) = [6.0m/s

Vtop rel
ground

71. Thetorqueisfound from 7 = I« . The angular acceleration can be found from w = o, + at, with an
initial angular velocity of 0. Therotationa inertiais that of a cylinder.

r=la =§MR2(‘”;“’° ) = 0.5(1.4 kg)(0.20 m)’ (1800rev/s)(2r radrev) - [53meN]

6.0s

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rightsreserved. This materia is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.

211



Chapter 8

72. (a)

(b)

73. (a)

(b)
(©)

Rotational Motion

There are two forces on the yo-yo: gravity and the string

tension. If we assume that the top of the stringisheld in a
fixed position, then the tension does no work, and so
mechanical energy isconserved. Theinitia gravitational
PE is converted into rotational and translational KE. Since
the yo-yo rolls without slipping at the point of contact of
mg

the string, the velocity of the CM is simply related to the
angular velocity of theyo-yo: Vv, =r®, wherer isthe

radius of theinner hub. Let m be the mass of the inner hub, and M and R be the mass and radius
of each outer disk. Calculate the rotational inertia of the yo-yo about its CM, and then use
conservation of energy to find the linear speed of the CM. We take the 0 of gravitational PE to
be at the bottom of itsfall.

Loy =2mr? +2(4MR?) =2 mr® + MR?
= 1(5.0x10°kg)(5.0x10°m)’ +(5.0x107kg)(3.75x107m)’ = 7.038x 10 *kgem’

M, =M+2M =5.0x10°kg+2(5.0x10kg) = 0.105 kg

PE =KE, —

I I
-1 2 L 2_1 2 i_cm 2 _ |1 i_cM 2
mtotaJ gh 2 mtotaIVCM + 2 ICMw 2 motalVCM + 2 rz VCM | 2 mtotal + 2 r2 VCM -

o[ | (0105kg)(9.80m/s*)(1.0m) _ 05305 [05ATTS

R lew ) (7.038x10 °kgem*)
2 Moa *72 1/ (0.105 kg) +

(5.0x10°m)’
Calculatetheratio KE,, /KE,, .
2 iIﬂv2 2
KErot _ KErot _%Icma) _ 2 I‘2 N _ ICMVCM
KE, PE, myoh mggh 2r’m,gh

7.038x10 °kgem?)(0.8395m/s)’
__ (708820 °kg-m’)( /s) ~0.96=

2(5.0x10°m)’ (0.105 kg)(9.8m/s* (1.0 m)

The linear speed of the chain must be the same as it passes over both sprockets. The linear
speed is related to the angular speed by v=wR, and so

wRy = o R .

If the spacing of the teeth on the sprockets is a distance d, then the number of teeth on a
sprocket times the spacing distance must give the circumference of the sprocket.

Nd N.d N_d N

Nd =27zR andso R=— Thus o,—=—=0. — — LN

2 2 Foor o. N

F R

wg [ ®. =52/13=4.0

wyfo. =42/28=15
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74. Sincethelost mass carries away no angular momentum, the angular momentum of the remaining
mass will be the same as the initial angular momentum.

L=L - lo=l,o,

.1 MR (80M,)(6.96x10°m)’
ERLARE

- — =1.601x10"
o 1. §MR (025)(8.0M,)(11x10'm)

lrev
2 day
~|1.3x10° rev/day = 1.5x 10" rev/s

o, =1.601x10"° » =1.601x10" [1 j =1.334x10° rev/day

75. (a) Theinitia energy of the flywheel is used for two purposes — to give the car translational kinetic
energy 20 times, and to replace the energy lost dueto friction, from air resistance and from
braking. The statement of the problem leads usto ignore any gravitational potential energy
changes.

W, =KE;, ~KE ;s — FfrAXCOS]-SOO = %Mcarvfar - KEﬂywheeI

KEfIywheeI = FfrAX +% M carvozar

- (450 N)(35x10°m) + (20)2(1400 kg){(% kny h)(ﬂﬂz

3.6km/h
=1.672x10°J~|1.7x10°J

(b) KEfIywheeI = % ¥o3

2KE 2KE 2(1.672x10°J
a)z\/ :\/ =\/ ( ) 2.2x10° radfs
1M

I flywhesl R!Tywheel %(240 kg)(0.75 m)2 -

Work
() Tofind thetime, use the relationship that Power = % , where the work done by the motor

will be equal to the kinetic energy of the flywhed!.

oW W (1.672x10°J)

== =1.494x10°s ~[25 min
t P (150 hp)(746 W/hp) "

76. The mass of a hydrogen atom is 1.01 atomic mass units. The atomic mass unit is hydrogen
1.66x10 %" kg. Since the axis passes through the oxygen atom, it will have no

rotational inertia.
(a) If theaxisis perpendicular to the plane of the molecule, then each hydrogen
atom isadistance L from the axis of rotation. Ty

|,y = 2M, L° = 2(1.01) (1.66x 10 kg)(0.96x10°m)’

=13.1x10*kgem’
(b) If theaxisisin the plane of the molecule, bisecting the H-O-H bonds, each
hydrogen atom isadistance of L, = Lsing =(9.6x10°m)sin52°

hydrog

=7.564x10"°m. Thusthe moment of inertiais
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Chapter 8 Rotational Motion

= 2m, L® = 2(1.01)(1.66x10 7kg)(7.564x10°m)’ =|1.9x10 *“kg-m”

I plane

77. (a) Assuming that there are no dissipative forces doing work,
conservation of energy may be used to find the final height h of N
the hoop. Take the bottom of the incline to be the zero level of !
gravitational potential energy. We assume that the hoop is O h:
H |

rolling without sliding, so that w = v/ R. Relate the conditions v

at the bottom of the incline to the conditions at the top by conservation of energy. The hoop has
both trandational and rotational kinetic energy at the bottom, and the rotational inertia of the

hoopisgiven by | = mR?*.

V2

E E, > fm’+ilo*=mgh - imv’+imR’ RZ:mgh —

bottom = 'top

2 2
:V_:M =1.111m
g 9.8m/s’

h 1.111m
The distance along the planeisgivenby d = ——=— =4293m= m
sing  sinl5’
(b) Thetime can be found from the constant accelerated linear motion. Use the relationship

2(4.2
Ax:%(v+vo)t - t= 2Ax = ( 93m)=2.6023.
vV+vy,  0+33m/s

Thisisthetimeto go up the plane. The time to come back down the plane is the same, and so

the total timeis .

78. (a) Theforce of gravity acting through the CM will cause a clockwise torque which produces an
angular acceleration. At the moment of release, the force of gravity is perpendicular to the lever
arm from the hinge to the CM.

z-graz\/ity _ Mg L/2 — 3_9

Irodaboutend %MLZ 2L

(b) Attheend of the rod, there is atangential acceleration equal to the angular acceleration times
the distance from the hinge. Thereisno radia acceleration since at the moment of release, the
speed of the end of therod is0. Thus the tangential acceleration isthe entire linear acceleration.

a1inear :atan :aL: %g

r=la - a=

79. Thewhesel isrolling about the point of contact with the step, and so
al torgques are to be taken about that point. As soon asthe wheel is
off the floor, there will be only two forces that can exert torques on
the wheel — the pulling force and the force of gravity. There will £

not be anormal force of contact between thewheel and thefloor | 7777 R
once the whedl is off the floor, and any force on the wheel from the _Fff_h _________
point of the step cannot exert atorque about that very point. h
Calculate the net torque on the wheel, with clockwise torques
positive. The minimum force occurs when the net torque is 0. \
mg R -(R-h)
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> ¢=F(R-h)-mgyR*~(R-h)* =0
- l\/lt.ll\/R":—(R—h)2 _|Mgv2r-°

R-h R-h

80. (a) Inorder not to fall over, the net torque on the cyclist about an axis .
through the CM and parallel to the ground must be zero. Consider the \ :
free-body diagram shown. Sum torques about the CM, with R :
counterclockwise as positive, and set the sum equal to zero. mg 9 1

F |

Y r=Fx-Fy=0 > S X _tano !

Fo Y !

(b) Thecyclistisnot accelerating vertically, so F, = mg. Thecyclistis E

accelerating horizontally, because heistraveling in acircle. Thusthe o X
frictional force must be supplying the centripetal force, so F, = mv2/ r.

’ ’ ? 4.2m/s)’

o =fe VIV (420
Fv ~mg g rg (6.4 m)(9.8m/s’)

() From F, = mvz/ r, the smallest turning radius results in the maximum force. The maximum

static frictional forceis F, = uF, . Usethisto calculate the radius.

(4.2 m/s)2 _

(0.70)(9.8m/s’)

D el T

~1571° ~

2
V
mvz/rmin :IuFN zlum - rmin ==
Mg

81. Assumethat the angular acceleration is uniform. Then the torque required to whirl the rock isthe
moment of inertia of the rock (treated as a particle) times the angular acceleration.

r=la= (mrz)(w_tw‘)j _ (050 k:?)(sl's m). KlZO r;?;j(ztezadj(lggi:)} ~[28m-N

That torque comes from the arm swinging the sling, and so comes from the arm muscles.

82. Assume amass of 50 kg, corresponding to aweight of about 110 Ib. From
Table 7-1, we find that the total arm and hand mass is about 12.5% of the o
total mass, and so the rest of the body is about 87.5% of the total mass.

Model the skater as a cylinder of mass 44 kg, and model each arm as athin
rod of mass 3 kg. Estimate the body as 150 cm tall with aradius of 15 cm.
Estimate the arm dimension as 50 cm long.

5

Q)
o
3

With the arms held tightly, we approximate that the arms are part of the body :
cylinder. A sketch of the skater in this configuration is then as shown in the
first diagram. In this configuration, the rotational inertiais

_ _1 2
Iin - Icylinder 2 Mtotal Rnody'
body
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83.

With the arms extended, the configuration changes to the second
diagram. In this configuration, the rotational inertiais

_ 1 2 1 2
+Iarms_2Mbodbeody+23M L

am —am

Iout = Ibody

The forces and torgues involved in changing the configuration
of the skater are internal to the skater, and so the skater’s
angular momentum is conserved during a configuration change.
Thus

Lin = Lout - Iina)in = Iouta)out -
1 2
-y _ Iin _ ? Mtb(:)tgy RbOdy _ %(50 kg)(015 m)2
o, o IM R +2IM_ L7 1(44kg)(0.15m)" +21(3kg)(0.50 m)’

= 0575~

(&) Theangular momentum of M, will be
L, =1,0, =+ M,Ro, =1(6.0kg)(0.60 m)* (7.2rad/s) =|7.8kg-m?/].
(b) Thetorque required to accelerate M, will be

(c) Sincethere are no torques external to the two plates, the angular momentum of the two plates
will be conserved. Since the two plates stick together, they will have acommon final angular
velocity. Thisisatotally inelastic collision.

L=L - lLo=(,+l,)o, >

I iIM, R M 6.0k
, = & w, = 22 . >0 = & w, = _g (7.2I‘Ed/$)
N 1M, R +iM,R M, +M, 15.0 kg

2

=|2.9 radfs

Since frictional losses can beignored, energy will be conserved for the marble. Define the O position
of PE to be the bottom of the track, so that the bottom of the ball isinitialy a height h above the O
position of PE. Since r <« R, the marble’'s CM is very close to the surface of the track. While the
marble is on the loop, we then approximate that it will be moving in acircle of radius R. When the
marbleis at the top of the loop, we approximate that its CM is a distance of 2R above the 0 position
of PE. For the marbleto just be on the verge of leaving the track means the normal force between
the marble and the track is zero, and so the centripetal force at the top must be equal to the

gravitational force on the marble.

2
top of

loop 2
—_— — n’g -V =0R
R oot =9
We assume that the marble isrolling without slipping, and so @ = v/r , and that the marbleis

released from rest. Use energy conservation to relate the release point to the point at the top of the
loop. Note that the marble has both translational and rotational kinetic energy.
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Erelm = Etopof - KEre!aase + PEre!ease = KEtopof + PEtopof

loop loop loop

2
Vtop of
loop

1 2 1 2 1 2 1(2 2
O+mgh=2mv, , +3l@, + MI2R=3mv, +3(gmr )_r2 +2mgR

top of
loop loop loop

mgh=1—70mv2 +2mgR=+mgR+2mgR=2.7mgR — |h=27R

top of
loop

85. Sincefrictional losses can be ignored, energy will be conserved for the marble. Define the 0 position
of PE to be bottom of the track, so that the bottom of the ball isinitially a height h above the O
position of PE. Since we are not to assume that r <« R, then while the marble is on the loop portion
of thetrack, itismoving inacircle of radius R—r , and when at the top of the loop, the bottom of

the marbleisaheight of 2(R-r) above the O position of PE (see the diagram). For the marbleto

just be on the verge of leaving the track means the normal force between
the marble and the track is zero, and so the centripetal force at the top

must be equal to the gravitational force on the marble.

2
top of

loop 2
= - V.4 =9(R-r
Ror ™7 V=900
We assume that the marble isrolling without slipping and so @ = v/r ,
and that the marble is released from rest. Use energy conservation to relate the release point to the
point at the top of the loop. Note that the marble has both tranglational and rotational kinetic energy.

Erew = Eopsr = KEgoee + PEgoee = KE o +PE

release top of release release top of
loop loop loop

2
Vtopof
_ 4 2 1 2 _ 4 2 1(2 2 loop
0+mgh=4mv, . +3lw, , +mg2(R-r)=1mv, +3(gmr )—r2 +2mg(R-r)
loop loop loop

rngh=1—70mvipof +2mg(R-r)=%tmg(R-r)+2mg(R-r)=27mg(R-r)

loop

h=27(R-r)

86. (a) Theangular acceleration can be found from «” = »? + 2.0 , with the angular velocities being

givenby w=v/r.
Cwt (Fv) [(60.0km/h)’ —(90.0km/h)2](%]
“TT20 2% 2(045m) (85 rev) (27 radrev)

— ~1.6053rad/s’ ~ |-1.61rad/s’

(b) Thetimeto stop can be found from @ = @, + at , with afinal angular velocity of O.

0-(60.0km/h)| —™/S_
(LOZ0, VoV, 3.6km/h

«  rta  (045m)(-16053rad/s)

=[23s
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