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CHAPTER 8:  Rotational Motion  

Answers to Questions  

1. The odometer designed for 27-inch wheels increases its reading by the circumference of a 27-inch 
wheel 27 "  for every revolution of the wheel.  If a 24-inch wheel is used, the odometer will still 

register 27 "  for every revolution, but only 24 "  of linear distance will have been traveled.  

Thus the odometer will read a distance that is further than you actually traveled, by a factor of 
27 24 1.125 .  The odometer will read 12.5% too high.  

2. If a disk rotates at constant angular velocity, a point on the rim has radial acceleration only – no 
tangential acceleration.  If the disk’s angular velocity increases uniformly, the point will have both 
radial and tangential acceleration.  If the disk rotates at constant angular velocity, neither component 
of linear acceleration is changing – both radial and tangential acceleration are constant.  If the disk 
rotates with a uniformly increasing angular velocity, then the radial acceleration is changing, but the 
tangential acceleration is a constant non-zero value.  

3. A non-rigid body cannot be described by a single value of angular velocity.  Since the body is non-
rigid, the angular position of one part of the body changes with respect to other parts of the body.  
Consider the solar system as an example of a non-rigid body or system.  Each planet orbits in 
basically the same direction around the Sun, but each planet has its own angular velocity which is 
different than that of the other planets.  

4. Since the torque involves the product of force times lever arm, a small force can exert a greater 
torque than a larger force if the small force has a large enough lever arm.  

5. If the lever arm is zero, then the force does not exert any torque and so cannot produce an angular 
acceleration.  There will be no change in the angular state of motion.  However, the force will add to 
the net force on the body and so will change the linear acceleration of the body.  The body’s linear 
state of motion will change.  

6. When you do a sit-up, torque from your abdomen muscles must rotate the upper half of the body 
from a laying-down position to a sitting-up position.  The larger the moment of inertia of the upper 
half of the body, the more torque is needed, and thus the harder the sit-up is to do.  With the hands 
behind the head, the moment of inertia of the upper half of the body is larger than with the hands 
outstretched in front.  

7. The tension force in the bicycle chain can be assumed to be the same at both the front and rear 
sprockets.  The force is related to the torque at each sprocket by F R , and so R R F FR R .  

The torque at the rear sprocket is what actually accelerates the bicycle, and so R F R FR R .  

We see that, to achieve a given torque at the back sprocket, a larger front torque (due to pedaling) 
must be present when the rear sprocket is small.  Thus it is harder to pedal with a small rear sprocket.    

Likewise, to achieve a given torque at the back sprocket, a larger front torque (due to pedaling) must 
be present when the front sprocket is larger.  Thus it is harder to pedal with a larger front sprocket.  
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8. The legs have a lower moment of inertia when the leg mass is concentrated next to the body.  That 
means the legs will require less torque to have a given angular acceleration, or, alternatively, a higher 
angular acceleration can be developed.  Thus the animal can run fast.  

9. The long beam increases the rotational inertia of the walker.  If the walker gets off-center from the 
tightrope, gravity will exert a torque on the walker causing the walker to rotate with their feet as a 
pivot point.  With a larger rotational inertia, the angular acceleration caused by that gravitational 
torque will be smaller, and the walker will therefore have more time to compensate.      

The long size of the beam allows the walker to make relatively small shifts in their center of mass to 
bring them back to being centered on the tightrope.  It is much easier for the walker to move a long, 
narrow object with the precision needed for small adjustments than a short, heavy object like a 
barbell.   

10. Just because the net force on a system is zero, the net torque need not be zero.  
Consider a uniform object with two equal forces on it, and shown in the first 
diagram.  The net force on the object is zero (it would not start to translate under 
the action of these forces), but there is a net counterclockwise torque about the 
center of the rod (it would start to rotate under the action of these forces).   

Just because the net torque on a system is zero, the net force need not be zero.  
Consider an object with two equal forces on it, as shown in the second diagram.  
The net torque on the object is zero (it would not start to rotate under the action of 
these forces), but there is a net downward force on the rod (it would start to 
translate under the action of these forces).  

11. Applying conservation of energy at the top and bottom of the incline, assuming that there is no work 

done by friction, gives 2 21 1
top bottom 2 2    

E E Mgh Mv I .  For a solid ball, 22
5

I MR .  If the 

ball rolls without slipping (no work done by friction) then v R , and so  
2 2 2 21 1 2

2 2 5

    

10 7Mgh Mv MR v R v gh  . 

This speed is independent of the angle of the incline, and so both balls will have the same speed at 
the bottom.  The ball on the incline with the smaller angle will take more time to reach the bottom 
than the ball on the incline with the larger angle.  

12. Applying conservation of energy at the top and bottom of the incline, and assuming that there is no 

work done by friction, gives 2 21 1
top bottom 2 2    

E E Mgh Mv I .   For a solid ball, 
22

5
I MR .  If the ball rolls without slipping (no work done by friction) then v R , and so  

2 2 2 21 1 2
2 2 5

    

10 7Mgh Mv MR v R v gh

 

This speed is independent of the mass and radius of the ball, and so both balls will have the same 
speed at the bottom.  In fact, this is true for ANY height of fall, so the two balls will have identical 
instantaneous speeds all along their descent, and so both balls will take the same time to reach the 

bottom.  The total kinetic energy is 2 2 2 2 271 1 2
trans rot 2 2 5 10

KE KE KE Mv MR v R Mv , and so 

the ball with the larger mass has the greater total kinetic energy.  Another way to consider this is that 
the initial potential energy of Mgh  is all converted to kinetic energy.  The larger mass has more 
potential energy to begin with (due to the larger mass), and so has more kinetic energy at the bottom.   
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13. Applying conservation of energy at the top and bottom of the incline, assuming that there is no work 

done by friction, gives 2 21 1
top bottom 2 2    

E E Mgh Mv I .   If the objects roll without 

slipping, then v R , and so 
221 1

2 2 2

2    Mgh
Mgh Mv I v R v

M I R
.  For a solid ball, 

22
5

I MR , and for a cylinder, 21
2

I MR .  Thus  sphere 10 7v gh  and cyl 4 3v gh .  Since 

sphere cylv v , the sphere has the greater speed at the bottom.  That is true for any amount of height 

change, and so the sphere is always moving faster than the cylinder after they start to move.  Thus 
the sphere will reach the bottom first.  Since both objects started with the same potential energy, both 
have the same total kinetic energy at the bottom.  But since both objects have the same mass and the 
cylinder is moving slower, the cylinder has the smaller translational KE and thus the greater 
rotational KE.  

14. Momentum and angular momentum are conserved for closed systems – systems in which there are 
no external forces or torques applied to the system.  Probably no macroscopic systems on Earth are 
truly closed, and so external forces and torques (like those applied by air friction, for example) affect 
the systems over time.  

15. If a large number of people went to the equator, the rotational inertia of the Earth would increase, 
since the people would be further from the axis of rotation.  Angular momentum would be conserved 
in such an interaction, and so since the rotational inertia increased, the angular velocity would 
decrease – the Earth would “slow down” a small amount.  The length of a day would therefore 
increase.  

16. In order to do a somersault, the diver needs some initial angular momentum when she leaves the 
diving board, because angular momentum will be conserved during the free-fall motion of the dive.  
She cannot exert a torque on herself in isolation, and so if there is no angular momentum initially, 
there will be no rotation during the rest of the dive.  

17. The moment of inertia will increase, because most the mass of the disk will be further from the axis 
of rotation than it was with the original axis position.  

18. Your angular velocity will not change.  Before you let go of the masses, your body has a certain 
angular momentum, which is the product of your moment of inertia and your angular velocity.  No 
torques are put upon you by the act of dropping the masses, and so your angular momentum does not 
change.  If you don’t change your moment of inertia by changing the position of your body, then 
your angular velocity will not change.  The masses, when dropped, will have a horizontal motion that 
is tangential to the circle in which they were moving before they were dropped.  An object traveling 
horizontally at some distance from a vertical line (like your axis of rotation) has angular momentum 
relative to that vertical line.  The masses keep the angular momentum that they had before being 
dropped.  

19. The two spheres would have different rotational inertias.  The sphere that is hollow will have a larger 
rotational inertia than the solid sphere.  If the two spheres are allowed to roll down an incline without 
slipping, the sphere with the smaller moment of inertia (the solid one) will reach the bottom of the 
ramp first.  See question number 13 for an explanation of why this happens.  
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20. Using the right hand rule, point the fingers in the direction of the Earth’s rotation, from west to east.  
Then the thumb points north.  Thus the Earth’s angular velocity points along its axis of rotation, 
towards the North Star.  

21. See the diagram.  To the left is west, the direction of the angular velocity.  The 
direction of the linear velocity of a point on the top of the wheel would be into the 
paper, which is north.  If the angular acceleration is east, which is opposite the angular 
velocity, the wheel is slowing down – its angular speed is decreasing.  The tangential 
linear acceleration of the point on top will be in the opposite direction to its linear 
velocity – it will point south.  

22. The angular momentum of the turntable – person system will be conserved, since no external torques 
are being applied as the person walks to the center.  As the person walks to the center, the overall 
moment of inertia of the system gets smaller, since the person is closer to the axis of rotation.  Since 
the angular momentum is constant, the angular velocity must increase.  So the turntable will begin to 
rotate faster as you walk to the center.  This is similar to the spinning ice skater who pulls her arms 
in to increase her angular speed.  

23. The shortstop, while in mid-air, cannot exert a torque on himself, and so his angular momentum will 
be conserved while in the air.  If the upper half of his body rotates in a certain direction during the 
throwing motion, then to conserve angular momentum, the lower half of his body will rotate in the 
opposite direction.  

24. Consider a helicopter in the air with the rotor spinning.  To change the rotor’s angular speed, a 
torque must be applied to the rotor.  That torque has to come from the helicopter, and so by 
Newton’s 3rd law, and equal and opposite torque will be applied by the rotor to the helicopter.  Any 
change in rotor speed would therefore cause the body of the helicopter to spin in a direction opposite 
to the change in the rotor’s angular velocity.     

Some large helicopters have two rotor systems, spinning in opposite directions.  That makes any 
change in the speed of the rotor pair require a net torque of 0, and so the helicopter body would not 
tend to spin.  Smaller helicopters have a tail rotor which rotates in a vertical plane, causing a force on 
the tail of the helicopter in the opposite direction of the tendency of the tail to spin.   

Solutions to Problems  

1. (a) o o30 2 rad 360 6 rad 0.52 rad

  

(b) o o57 2 rad 360 19 60 rad 0.99 rad

  

(c) o o90 2 rad 360 2 rad 1.57 rad

 

(d) o o360 2 rad 360 2 rad 6.28 rad

 

(e) o o420 2 rad 360 7 3rad 7.33 rad

  

2. The angle in radians is the diameter of the object divided by the distance to the object. 
5

3Sun
Sun 6

Earth Sun

2 6.96 10 km2
9.30 10 rad

149.6 10 km

R

r

 
ù

v
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3

3Moon
Moon 3

Earth Moon

2 1.74 10 km2
9.06 10 rad

384 10 km

R

r

  
Since these angles are practically the same, solar eclipses occur.  

3. We find the diameter of the spot from 

5 8 3

Earth Moon

Earth Moon

diameter

    
diameter 1.4 10 rad 3.8 10 m 5.3 10 mr

r

  

4. The initial angular velocity is 
rev 2 rad 1 min

6500 681rad s
min 1 rev 60 sec

o .  Use the   

definition of angular acceleration. 

2 2 20 681rad s
227 rad s 2.3 10 rad s

3.0 st

  

5. The ball rolls 2 r d  of linear distance with each revolution.   

2 m 3.5 m
15.0 rev 3.5 m    7.4 10 m

1 rev 15.0 

d
d

  

6. In each revolution, the wheel moves forward a distance equal to its circumference, d .   

3

rev

8000 m

    

3.7 10 rev
0.68 m

x
x N d N

d

  

7. (a) 22500 rev 2 rad 1 min
261.8 rad sec 2.6 10 rad sec

1 min 1 rev 60 s

  

(b) 261.8 rad sec 0.175 m 46 m sv r

   

22 4 2

R 261.8 rad sec 0.175 m 1.2 10 m sa r

  

8. The angular speed of the merry-go-round is 2 rad 4.0 s 1.57 rad s

  

(a) 1.57 rad sec 1.2 m 1.9 m sv r

  

(b) The acceleration is radial.  There is no tangential acceleration.    
22 2

R 1.57 rad sec 1.2 m 3.0 m s towards the centera r

  

9. (a) The Earth makes one orbit around the Sun in one year.    

7

orbit 7

2 rad 1 yr
1.99 10 rad s

1 yr 3.16 10 st

  

(b) The Earth makes one revolution about its axis in one day.    

5

rotation

2 rad 1 d
7.27 10 rad s

1 d 86,400 st
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10. Each location will have the same angular velocity (1 revolution per day), but the  
radius of the circular path varies with the location.  From the diagram, we see  

cosr R , where R is the radius of the Earth, and r is the radius at latitude .  

(a) 6 22 2 rad 1 d
6.38 10 m 4.64 10 m s

1 d 86400 s
v r r

T

  
(b) 6 o 22 2 rad 1 d

6.38 10 m cos 66.5 1.85 10 m s
1 d 86400 s

v r r
T

  

(c) 6 O 22 2 rad 1 d
6.38 10 m cos 45.0 3.28 10 m s

1 d 86400 s
v r r

T

  

11. The centripetal acceleration is given by 2a r .   Solve for the angular velocity.   
2

4
100, 000 9.8 m s rad 1 rev 60 s

3741 3.6 10 rpm
0.070 m s 2 rad 1 min

a

r

  

12. Convert the rpm values to angular velocities. 

0

rev 2 rad 1 min
130 13.6 rad s

min 1 rev 60 sec

rev 2 rad 1 min
280 29.3 rad s

min 1 rev 60 sec

  

(a) The angular acceleration is found from Eq. 8-9a.    

2 20
0

29.3 rad s 13.6 rad s

    

3.93 rad s 3.9 rad s
4.0 s

t
t

  

(b) To find the components of the acceleration, the instantaneous angular velocity is needed. 
2

0 13.6 rad s 3.93rad s 2.0 s 21.5 rad st

 

The instantaneous radial acceleration is given by 2

Ra r .    
22 2 2

R 21.5 rad s 0.35 m 1.6 10 m sa r

   

The tangential acceleration is given by tana r .    

2 2

tan 3.93rad s 0.35 m 1.4 m sa r

  

13. The tangential speed of the turntable must be equal to the tangential speed of the roller, if there is no  
slippage.   

1 2 1 1 2 2 1 2 2 1

        

v v R R R R

  

14. (a) The angular rotation can be found from Eq. 8-3a.  The initial angular frequency is 0 and the  
final angular frequency is 1 rpm.    

4 2 4 20

rev 2 rad 1.0 min
1 0

min 1 rev 60 s
1.454 10 rad s 1.5 10 rad s

720 st

 

(b) After 5.0 min (300 s), the angular speed is as follows. 
4 2 2

0 0 1.454 10 rad s 300 s 4.363 10 rad st

 
R

r
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Find the components of the acceleration of a point on the outer skin from the angular speed and  
the radius.    

4 2 4 2

tan

22 2 3 2

rad

1.454 10 rad s 4.25 m 6.2 10 m s

4.363 10 rad s 4.25 m 8.1 10 m s

a R

a R

  
15. The angular displacement can be found from the following uniform angular acceleration relationship. 

    41 1
2 2

0 15000 rev min 220 s 1min 60s 2.8 10 revo t

  

16. (a) For constant angular acceleration:    

2 2

1200 rev min 4500 rev min 3300 rev min 2 rad 1 min

2.5 s 2.5s 1 rev 60 s

   

1.4 10 rad s

o

t

   

(b) For the angular displacement, given constant angular acceleration: 

21 1
2 2

1 min
4500 rev min 1200 rev min 2.5 s 1.2 10 rev

60 s
o t

  

17. (a) The angular acceleration can be found from 21
2ot t  with 0o . 

1 2

22

2 20 rev2
4.0 10 rev min

1.0 mint

  

(b) The final angular speed can be found from 1
2 o t , with 0o .    

12 20 rev2
4.0 10 rpm

1.0 min
o

t

  

18. Use Eq. 8-9d combined with Eq. 8-2a.   

0 240 rpm 360 rpm
300 rpm

2 2

rev 1 min
300 6.5 s 32.5 rev

min 60 sec
t

  

Each revolution corresponds to a circumference of travel distance.   

0.33 m
32.5 rev 34 m

1 rev

  

19. (a) The angular acceleration can be found from 2 2 2o .    
2 22 2

2 2

0 850 rev min rev 2 rad 1 min rad
241 0.42

2 2 1500 rev min 1 rev 60 s s
o

 

(b) The time to come to a stop can be found from 1
2 o t . 

2 1500 rev2 60 s
210 s

850 rev min 1 mino

t
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20. Since there is no slipping between the wheels, the tangential component of the linear acceleration of 
each wheel must be the same.  
(a) tan tan small small large large

small argel

      
a a r r

 
2 2 2small

large small

large

2.0 cm
7.2 rad s 0.576 rad s 0.58 rad s

25.0 cm

r

r

  
(b) Assume the pottery wheel starts from rest.  Convert the speed to an angular speed, and  

then use Eq. 8-9a.    
rev 2 rad 1 min

65 6.81rad s
min 1 rev 60 s

    

0
0 2

6.81rad s

    

12 s
0.576 rad s

t t

  

21. (a) The angular acceleration can be found from 2 2 2o , with the angular velocities being  

found from v r .  
2

2 2

2 22 2

2
2

2 2

1m s
45 km h 95 km h

3.6 km h

2 rad2 2
2 0.40 m 65 rev

rev  

4.133rad s 4.1rad s

oo
v v

r

  

(b) The time to stop can be found from o t , with a final angular velocity of 0. 

2

1m s
45 km h

3.6 km h
7.6 s

0.40 m 4.133rad s
o ov v

t
r

  

22. (a) The maximum torque will be exerted by the force of her weight, pushing tangential to the circle  
in which the pedal moves.    

20.17 m 55 kg 9.8 m s 92 m Nr F r mg

 

(b) She could exert more torque by pushing down harder with her legs, raising her center of mass.   
She could also pull upwards on the handle bars as she pedals, which will increase the downward 
force of her legs.  

23. The torque is calculated by sinrF .  See the diagram, from the top view.  

(a) For the first case, o90 . 
osin 0.74 m 55 N sin 90 41 m NrF

  

(b) For the second case, o45 . 
osin 0.74 m 55 N sin 45 29 m NrF

    

r

 

F
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24. Each force is oriented so that it is perpendicular to its lever arm.  Call counterclockwise torques 
positive.  The torque due to the three applied forces is given by 

applied
forces

28 N 0.24 m 18 N 0.24 m 35 N 0.12 m 1.8 m N . 

Since this torque is clockwise, we assume the wheel is rotating clockwise, and so the frictional  
torque is counterclockwise.  Thus the net torque is 

net 28 N 0.24 m 18 N 0.24 m 35 N 0.12 m 0.40 m N 1.4 m N

     

1.4 m N , clockwise

  

25. There is a counterclockwise torque due to the force of gravity on the left block, and a clockwise 
torque due to the force of gravity on the right block.  Call clockwise the positive direction. 

2 1 2 1  , clockwisemgL mgL mg L L

  

26. (a) The force required to produce the torque can be found from sinrF .  The force is applied  

perpendicularly to the wrench, so o90 .  Thus     

288 m N
3.1 10 N

0.28 m
F

r

  

(b) The net torque still must be 88 m N .  This is produced by 6 forces, one at each of the 6 points.   
Those forces are also perpendicular to the lever arm, and so    

3

net point point point

88 m N
6    2.0 10 N

6 6 0.0075 m
F r F

r

  

27. For a sphere rotating about an axis through its center, the moment of inertia is given by   
22 22 2

5 5
10.8 kg 0.648 m 1.81 kg mI MR

 

.  

28. Since all of the significant mass is located at the same distance from the axis of rotation, the moment  
of inertia is given by    

2

2 20.667
1.25 kg m 0.139 kg m

2
I MR . 

The hub mass can be ignored because its distance from the axis of rotation is very small, and so it 
has a very small rotational inertia.  

29. (a) The small ball can be treated as a particle for calculating its moment of inertia.    
22 20.650 kg 1.2 m 0.94 kg mI MR

 

(b) To keep a constant angular velocity, the net torque must be zero, and so the torque needed is the  
same magnitude as the torque caused by friction.    

2

applied fr applied fr fr0    0.020 N 1.2 m 2.4 10 m NF r

  

30. (a) The torque exerted by the frictional force is fr sinrF .  The  

frictional force is assumed to be tangential to the clay, and so the angle 
is o90 . 

2 o 2

total fr sin 6.0 10 m 1.5 N sin 90 9.0 10 m NrF

 

direction of 
rotation 

frF
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(b) The time to stop is found from 
o t , with a final angular  

velocity of 0.  The angular acceleration can be found from total I .  The net torque (and 

angular acceleration) is negative since the object is slowing.  

2 2

0 1.6 rev s 2 rad rev
12 s

9.0 10 m N 0.11 kg m
o ot

I

  

31. (a) To calculate the moment of inertia about the y-axis (vertical), use     
2 2 2 22 0.50 m 0.50 m 1.00 m 1.00 mi ixI M R m M m M

 

2 2 2 2 2

 

0.50 m 1.00 m 4.9 kg 0.50 m 1.00 m 6.1 kg mm M

  

(b) To calculate the moment of inertia about the x-axis (horizontal), use     
22 22 2 0.25 m 0.61 kg mi iyI M R m M . 

(c) Because of the larger I value, it is harder to accelerate the array about the vertical axis .  

32 The oxygen molecule has a “dumbbell” geometry, rotating about the dashed line, as 
shown in the diagram.  If the total mass is M, then each atom has a mass of M/2.  If 
the distance between them is d, then the distance from the axis of rotation to each 
atom is d/2.  Treat each atom as a particle for calculating the moment of inertia.   

2 2 2 21
4

46 2 26 10

2 2 2 2 2 2 2  

4 4 1.9 10 kg m 5.3 10 kg 1.2 10 m

I M d M d M d Md

d I M

  

33. The firing force of the rockets will create a net torque, but no net force.  Since each rocket fires 
tangentially, each force has a lever arm equal to the radius of the satellite, and each force is 
perpendicular to the lever arm.  Thus net 4FR .  This torque will cause an angular acceleration 

according to I , where 21
2

I MR  for a cylinder.  The angular acceleration can be found from 

the kinematics by 
t

.  Equating the two expressions for the torque and substituting enables us 

to solve for the force.    

21
2

4FR I MR

  

1

3600 kg 4.0 m 32 rev min 2 rad rev 1 min 60 s

8 8 5.0 min 60 s min   

20.11 N 2.0 10 N

MR
F

t

  

34. (a) The moment of inertia of a cylinder is found in Figure 8-21.    
22 2 3 2 3 21 1

2 2
0.580 kg 8.50 10 m 2.0953 10 kg m 2.10 10 kg mI MR

  

(b) The wheel slows down “on its own” from 1500 rpm to rest in 55.0s.  This is used to calculate  
the frictional torque.    

3 2

fr fr

0 1500 rev min 2 rad rev 1 min 60 s
2.0953 10 kg m

55.0 s
I I

t

 

3

   

5.984 10 m N
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The net torque causing the angular acceleration is the applied torque plus the (negative) 
frictional torque. 

applied fr

applied fr fr

3 2 3

2

  

1500 rev min 2 rad rev 1 min 60 s

    
2.0953 10 kg m 5.984 10 m N

5.00 s    

7.2 10 m N

I

I I
t

  

35. The torque can be calculated from I .  The rotational inertia of a rod about its end is given by 
21

3
I ML .   

221 1
3 3

3.0 rev s 2 rad rev
2.2 kg 0.95 m 62 m N

0.20 s
I ML

t

  

36. The torque needed is the moment of inertia of the system (merry-go-round and children) times the 
angular acceleration of the system.  Let the subscript “mgr” represent the merry-go-round.   

2 2 01
mgr children mgr child2

21
2

2

2

15 rev min 2 rad rev 1 min 60 s

 

760 kg 2 25 kg 2.5 m
10.0 s 

422.15 m N 4.2 10 m N

I I I M R m R
t t

 

The force needed is calculated from the torque and the radius.  Assume that the force is all directed 
perpendicularly to the radius.   

2 2sin    4.2215 10 m N 2.5 m 1.7 10 NF R F R

  

37.  The torque on the rotor will cause an angular acceleration given by I .  The torque and angular  
acceleration will have the opposite sign of the initial angular velocity because the rotor is being 
brought to rest.  The rotational inertia is that of a solid cylinder.  Substitute the expressions for 

angular acceleration and rotational inertia into the equation 2 2 2o  , and solve for the 

angular displacement.   
2 2

2 2

21
2

2
2

2

0

2 2 42

rev 2 rad 1 min
4.80 kg 0.0710 m 10,300

1 revmin 1 rev 60 s  
5865 rad

4 1.20 N m 2 rad

  

993 rev

o

MR

I MR

  

The time can be found from 1
2 o t . 
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2 993 rev2 60 s
10.9 s

10,300 rev min 1 mino

t

  
38. (a) The torque gives angular acceleration to the ball only, since the arm is considered massless.   

The angular acceleration of the ball is found from the given tangential acceleration.    

2 2 2tan
tan 3.6 kg 0.31 m 7.0 m s

  

7.812 m N 7.8 m N

a
I MR MR MRa

R

 

(b) The triceps muscle must produce the torque required, but with a lever arm of only 2.5 cm,  
perpendicular to the triceps muscle force.    

2 2

    

7.812 m N 2.5 10 m 3.1 10 NFr F r

  

39. (a) The angular acceleration can be found from  

2 210.0 m s 0.31m
92.17 rad s 92 rad s

0.350 s

v r

t t t

 

(b) The force required can be found from the torque, since sinFr .  In this situation the force 

is perpendicular to the lever arm, and so o90 .  The torque is also given by I , where I

 

is the moment of inertia of the arm-ball combination.  Equate the two expressions for the torque, 
and solve for the force.  

2 21
ball ball arm arm3

o

2 21
2 23

sin

sin sin 90

1.00 kg 0.31 m 3.70 kg 0.31 m

   

92.17 rad s 7.9 10 N
0.025 m

Fr I

m d m LI
F

r r

  

40. (a) The moment of inertia of a thin rod, rotating about its end, is given in Figure 8-21(g).  There  
are three blades to add.  

22 2 2 2 21
total 3

3 160 kg 3.75 m 2250 kg m 2.3 10 kg mI ML ML

  

(b) The torque required is the rotational inertia times the angular acceleration, assumed constant.    

2 30
total total

5.0 rev/sec 2 rad rev
2250 kg m 8.8 10 m N

8.0 s
I I

t

  

41. We assume that 2 1m m , and so 2m  will accelerate down, 1m  will 

accelerate up, and the pulley will accelerate clockwise.  Call the 
direction of acceleration the positive direction for each object.  The 
masses will have the same acceleration since they are connected by a 
cord.  The rim of the pulley will have that same acceleration since the 
cord is making it rotate, and so pulley a r .  From the free-body 

diagrams for each object, we have the following.    

1 T1 1 1 T1 1 1 

2 2 T2 2 T2 2 2        

y

y

F F m g m a F m g m a

F m g F m a F m g m a

 

r 

m1

 

m2

 

I 

+ y

 

+ y

 

+ 

 

1m g 2m g

T1F

T1F

T2F

T2F
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tana

rada

neta

  
T2 T1

a
F r F r I I

r

 
Substitute the expressions for the tensions into the torque equation, and solve for the acceleration.   

2 1
T2 T1 2 2 1 1 2

1 2        

m ma a
F r F r I m g m a r m g m a r I a g

r r m m I r

 
If the moment of inertia is ignored, then from the torque equation we see that T2 T1F F , and the 

acceleration will be 2 1
0

1 2

I

m m
a g

m m
.  We see that the acceleration with the moment of inertia 

included will be smaller than if the moment of inertia is ignored.  

42. A top view diagram of the hammer is shown, just at the instant of release, 
along with the acceleration vectors.  
(a) The angular acceleration is found from Eq. 8-9c.    

2 2

0

222 2
20

2  

28.0 m s 1.20 m0
10.8 rad s

2 2 2 8 rad

v r

  

(b) The tangential acceleration is found from the angular acceleration and the radius.    
2 2

tan 10.8 rad s 1.20 m 13.0 m sa r

  

(c) The centripetal acceleration is found from the speed and the radius.    
22 2

rad 28.0 m s 1.20 m 653m sa v r

  

(d) The net force is the mass times the net acceleration.  It is in the same direction as the net  
acceleration, also.    

2 22 2 2 2 3

net net tan rad 7.30 kg 13.0 m s 653m s 4.77 10 NF ma m a a

  

(e) Find the angle from the two acceleration vectors.    
2

1 1 otan

2

rad

13.0 m s
tan tan 1.14

653m s

a

a

  

43. The energy required to bring the rotor up to speed from rest is equal to the final rotational KE of the 
rotor.   

2

2 2 2 41 1
rot 2 2

rev 2 rad 1 min
3.75 10 kg m 8250 1.40 10 J

min 1 rev 60 s
KE I

  

44. Work can be expressed in rotational quantities as W , and so power can be expressed in 

rotational quantities as 
W

P
t t

.   

5 5

5 2

rev 2 rad 1 min
280 m N 3800 1.114 10 W 1.1 10 W

min 1 rev 60 s

1 hp
1.114 10 W 1.5 10 hp

746 W

P
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45. The total kinetic energy is the sum of the translational and rotational kinetic energies.  Since the ball  
is rolling without slipping, the angular velocity is given by v R .  The rotational inertia of a 

sphere about an axis through its center is 22
5

I mR .   
2

2 2 2 2 271 1 1 1 2
total trans rot 2 2 2 2 5 102

2         
0.7 7.3 kg 3.3m s 56 J

v
KE KE KE mv I mv mR mv

R

  

46. (a) For the daily rotation about its axis, treat the Earth as a uniform sphere, with an angular  
frequency of one revolution per day.  

2 2 21 1 2
daily daily Earth daily2 2 5

KE I MR

 

2
224 6 291

5

2 rad 1 day

          

6.0 10 kg 6.4 10 m 2.6 10 J
1 day 86,400 s

  

(b) For the yearly revolution about the Sun, treat the Earth as a particle, with an angular frequency  
of one revolution per year.    

2 2 21 1
yearly yearly Sun- yearly2 2

Earth

KE I MR

    

2
224 11 331

2

2 rad 1 day

          

6.0 10 kg 1.5 10 m 2.7 10 J
365 day 86,400 s

 

Thus the total KE is 29 33 33

daily yearly 2.6 10 J 2.6 10 J 2.6 10 JKE KE .  The KE due to the 

daily motion is about 10,000 smaller than that due to the yearly motion.  

47. The work required is the change in rotational kinetic energy.  The initial angular velocity is 0.   
2

22 2 2 2 41 1 1 1 1
rot 2 2 2 2 4

2 rad
1640 kg 7.50 m 1.42 10 J

8.00 s
f i fW KE I I MR

  

48. Apply conservation of energy to the sphere, as done in Example 8-13.  
(a) The work of Example 8-13 is exactly applicable here.  The symbol d is to represent the  

distance the sphere rolls along the plane.  The sphere is rolling without slipping, so CMv R . 

2 o10 10 10
CM 7 7 7

1

CM

sin 9.80 m s 10.0 m sin 30.0 8.367

  

8.37 m s

8.367 m s 2.00 10 m 41.8 rad s

v gh gd

v R

  

(b) 
2 21 1
CM CMtrans 2 2

221
2 CMrot CM2 1 2

2 5 2

2.5
Mv MvKE

vKE I
MR

R

  

(c) Only the angular speed depends on the radius.  None of the results depend on the mass. 
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49. The only force doing work in this system is gravity, so mechanical energy 
will be conserved.  The initial state of the system is the configuration with 

1m  on the ground and all objects at rest.  The final state of the system has 

2m  just reaching the ground, and all objects in motion.  Call the zero level 

of gravitational potential energy to be the ground level.  Both masses will 
have the same speed since they are connected by the rope.  Assuming that 
the rope does not slip on the pulley, the angular speed of the pulley is 
related to the speed of the masses by v R .  All objects have an initial 
speed of 0. 

i fE E

 

2 2 2 2 2 21 1 1 1 1 1
1 2 1 1 2 2 1 2 1 1 2 22 2 2 2 2 2i i i i i f f f f fm v m v I m gy m gy m v m v I m gy m gy

 

2

2 2 21 1 1 1
2 1 2 12 2 2 2 2

f

f f

v
m gh m v m v MR m gh

R

 

2

2 1

1 1
1 2 2 2

2 26.5 kg 18.0 kg 9.80 m s 3.00 m2
3.22 m s

26.5 kg 18.0 kg 7.50 kg
f

m m gh
v

m m M

  

50. Since the lower end of the pole does not slip on the ground, the friction does no work, and so 
mechanical energy is conserved.  The initial energy is the potential energy, treating all the mass as if 
it were at the CM.  The final energy is rotational KE, for rotation about the point of contact with the 
ground.  The linear velocity of the falling tip of the rod is its angular velocity divided by the length.    

22 21 1 1
end2 2 3

2

end

        

2  

3 3 9.80 m s 2.30 m 8.22 m s

PE KE mgh I mg L mL v L

v gL

   

51. The angular momentum is given by Eq. 8-18.   
22 20.210 kg 1.10 m 10.4 rad s 2.64 kg m sL I MR

  

52. (a) The angular momentum is given by Eq. 8-18.    

221 1
2 2

2

1500 rev 2 rad 1 min
2.8 kg 0.18 m

1 min 1 rev 60 s

7.1kg m s  

L I MR

  

(b) The torque required is the change in angular momentum per unit time.  The final angular  
momentum is zero.    

2

0 0 7.1kg m s
1.2 m N

6.0 s

L L

t

   

The negative sign indicates that the torque is used to oppose the initial angular momentum.  

53. (a) Consider the person and platform a system for angular momentum analysis.  Since the force and  
torque to raise and/or lower the arms is internal to the system, the raising or lowering of the 
arms will cause no change in the total angular momentum of the system.  However, the 
rotational inertia increases when the arms are raised.  Since angular momentum is conserved, an 
increase in rotational inertia must be accompanied by a decrease in angular velocity. 

m1 

m2 

h 

R

 
M
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(b) 
1.30 rev s

        
1.625 1.6

0.80 rev s
i

i f i i f f f i i i i

f

L L I I I I I I I

   
The rotational inertia has increased by a factor of 1.6 .  

54. There is no net torque on the diver because the only external force (gravity) passes through the center 
of mass of the diver.  Thus the angular momentum of the diver is conserved.  Subscript 1 refers to 
the tuck position, and subscript 2 refers to the straight position.   

1
1 2 1 1 2 2 2 1

2

2 rev 1

        

0.38 rev s
1.5 sec 3.5

I
L L I I

I

  

55. The skater’s angular momentum is constant, since no external torques are applied to her.   

2 20.50 rev s

        

4.6 kg m 0.77 kg m
3.0 rev s

i
i f i i f f f i

f

L L I I I I

  

She accomplishes this by starting with her arms extended (initial angular velocity) and then  

pulling her arms in to the center of her body  (final angular velocity).  

56. Because there is no external torque applied to the wheel-clay system, the angular momentum will be 
conserved.  We assume that the clay is thrown with no angular momentum so that its initial angular 
momentum is 0.  This situation is a totally inelastic collision, in which the final angular velocity is 
the same for both the clay and the wheel.  Subscript 1 represents before the clay is thrown, and 
subscript 2 represents after the clay is thrown.     

1 2 1 1 2 2

      

L L I I

   

21
wheel wheelwheel1 2

2 1 1 2 21 1
2 wheel clay wheel wheel clay clay2 2

2

22 2

5.0 kg 0.20 m

   

1.5rev s 1.36 rev s 1.4 rev s
5.0 kg 0.20 m 3.1 kg 8.0 10 m

M RII

I I I M R M R

  

57. (a) 
22 21 1

2 2

rev 2 rad
55 kg 0.15 m 3.5 14 kg m s

s 1 rev
L I MR

  

(b) If the rotational inertia does not change, then the change in angular momentum is strictly due to  
a change in angular velocity. 

20 14 kg m s
2.7m N

5.0 s

L

t

   

The negative sign indicates that the torque is in the opposite direction as the initial angular  
momentum.  

58. (a) For the daily rotation about its axis, treat the Earth as a uniform sphere, with an angular  
frequency of one revolution per day. 

22
daily daily Earth daily5

224 6 33 22
5

2 rad 1 day

       

6.0 10 kg 6.4 10 m 7.1 10 kg m s
1 day 86,400 s

L I MR
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(b) For the yearly revolution about the Sun, treat the Earth as a particle, with an angular frequency  
of one revolution per year.    

2

daily daily Sun- daily
Earth

224 11 40 22 rad 1 day

          
6.0 10 kg 1.5 10 m 2.7 10 kg m s

365 day 86,400 s

L I MR

  

59. Since there are no external torques on the system, the angular momentum of the 2-disk system is 
conserved.  The two disks have the same final angular velocity.   

1
2    

0 2    i f f fL L I I I

  

60. The angular momentum of the disk – rod combination will be conserved because there are no 
external torques on the combination.  This situation is a totally inelastic collision, in which the final 
angular velocity is the same for both the disk and the rod.  Subscript 1 represents before the collision, 
and subscript 2 represents after the collision.  The rod has no initial angular momentum.   

1 2 1 1 2 2

      

L L I I

   

21
disk1 2

2 1 1 1 221 1
2 disk rod 2 12

3
2.4 rev s 1.4 rev s

52

MRII

I I I MR M R

  

61. Since the person is walking radially, no torques will be exerted on the person-platform system, and 
so angular momentum will be conserved.  The person will be treated as a point mass.  Since the 
person is initially at the center, they have no initial rotational inertia.  
(a) platform platform person    i f i fL L I I I

 

2
platform

22 2
platform

920 kg m
2.0 rad s 1.154 rad s 1.2 rad s

920 kg m 75 kg 3.0 m
f i

I

I mR

  

(b) 
22 2 31 1

platform2 2
920 kg m 2.0 rad s 1.8 10 Ji iKE I

 

2 2 21 1
platform person platform person person2 2

2 22 31
2       

920 kg m 75 kg 3.0 m 1.154 rad s 1062 J 1.1 10 J

f f fKE I I I m r

  

62. The angular momentum of the merry-go-round and people combination will be conserved because 
there are no external torques on the combination.  This situation is a totally inelastic collision, in 
which the final angular velocity is the same for both the merry-go-round and the people.  Subscript 1 
represents before the collision, and subscript 2 represents after the collision.  The people have no 
initial angular momentum. 

1 2 1 1 2 2

      

L L I I

 

m-g-r m-g-r1
2 1 1 1 2

2 m-g-r people m-g-r person

2

22

4

1760 kg m

    

0.80 rad s 0.48 rad s
1760 kg m 4 65 kg 2.1 m

I II

I I I I M R
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If the people jump off the merry-go-round radially, then they exert no torque on the merry-go-round, 
and thus cannot change the angular momentum of the merry-go-round.  The merry-go-round would 

continue to rotate at 0.80 rad s .  

63. Since the lost mass carries away no angular momentum, the angular momentum of the remaining 
mass will be the same as the initial angular momentum.   

2 22
45

222
5

4 4 2 2

        

2.0 10
0.5 0.01

2 rad 1 d
2.0 10 2.0 10 4.848 10 rad s 5 10 rad s

30 day 86400 s

f i ii i i
i f i i f f

i f f f i f

f i

M RI M R
L L I I

I M R M R

  

The period would be a factor of 20,000 smaller, which would make it about 130 seconds.  
The ratio of angular kinetic energies of the spinning mass would be   

22 41 221
2 52 4 4

2 2 21 1 2
2 2 5

0.5 0.01 2.0 10
2.0 10    2 10

i i if f f

f i

i i i i i i

M RKE I
KE KE

KE I M R

  

64. For our crude estimate, we model the hurricane as a rigid cylinder of air.  Since the “cylinder” is 
rigid, each part of it has the same angular velocity.  The mass of the air is the product of the density 
of air times the volume of the air cylinder.   

22 3 5 3 141.3kg m 1.00 10 m 4.0 10 m 1.634 10 kgM V R h

  

(a) 
22 2 21 1 1 1

edge edge2 2 2 4
KE I MR v R Mv

   

2

14 16 161
4

1m s

     

1.634 10 kg 120 km h 4.539 10 J 5 10 J
3.6 km h

  

(b) 21 1
edge edge2 2

L I MR v R MRv

 

14 5 20 21
2

20 2

1m s

  

1.634 10 kg 1.00 10 m 120 km h 2.723 10 kg m s
3.6 km h  

3 10 kg m s

  

65. Angular momentum will be conserved in the Earth – asteroid system, since all forces and torques are 
internal to the system.  The initial angular velocity of the satellite, just before collision, can be found 
from asteroid asteroid Earthv R .  Assuming the asteroid becomes imbedded in the Earth at the surface, 

the Earth and the asteroid will have the same angular velocity after the collision.  We model the 
Earth as a uniform sphere, and the asteroid as a point mass.   

Earth Earth asteroid asteroid Earth asteroid    i f fL L I I I I

  

The moment of inertia of the satellite can be ignored relative to that of the Earth on the right side of 
the above equation, and so the percent  change in Earth’s angular velocity is found as follows.   

Earth asteroid asteroid
Earth Earth asteroid asteroid Earth

Earth Earth Earth

    

f

f

I
I I I

I
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60o

 

LW = IW W

   
asteroid

2
Earth asteroid Earth Earth asteroid asteroid

22 2
Earth Earth Earth Earth Earth Earth Earth5 5

5 4

24

% change 100 100

1.0 10 kg 3.0 10 m s
                    

2 rad
0.4 5.97 10 kg 6.38 10

86400s

f

v

m R R m v

M R M R

16

6

100 2.7 10 %

m

  

66. When the person and the platform rotate, they do so about the vertical axis.  Initially there is no 
angular momentum pointing along the vertical axis, and so any change that the person – wheel – 
platform undergoes must result in no net angular momentum along the vertical axis. 
(a) If the wheel is moved so that its angular momentum points upwards, then the person and 

platform must get an equal but opposite angular momentum, which will point downwards.  
Write the angular momentum conservation condition for the vertical direction to solve for the 
angular velocity of the platform.    

W
W W P P P W

P    

0    i f

I
L L I I

I

 

The negative sign means that the platform is rotating in the opposite direction of the wheel.  If 
the wheel is spinning counterclockwise when viewed from above, the platform is spinning 
clockwise. 

(b) If the wheel is pointing at a 60o angle to the vertical, then the component 
of its angular momentum that is along the vertical direction is 

o

W W cos 60I .  See the diagram.  Write the angular momentum 

conservation condition for the vertical direction to solve for the angular 
velocity of the platform.   

o W
W W P P P W

P    

0 cos 60    
2

i f

I
L L I I

I

 

Again, the negative sign means that the platform is rotating in the opposite direction of the 
wheel. 

(c) If the wheel is moved so that its angular momentum points downwards, then the person and  
platform must get an equal but opposite angular momentum, which will point upwards.  Write 
the angular momentum conservation condition for the vertical direction to solve for the angular 
velocity of the platform.    

W W P P P W W P

    

0    i fL L I I I I

 

The platform is rotating in the same direction as the wheel.  If the wheel is spinning 
counterclockwise when viewed from above, the platform is also spinning counterclockwise. 

(d) Since the total angular momentum is 0, if the wheel is stopped from rotating, the platform will 

also stop.  Thus P 0 .  

67. The angular momentum of the person – turntable system will be conserved.  Call the direction of the 
person’s motion the positive rotation direction.  Relative to the ground, the person’s speed will be 

Tv v , where v  is the person’s speed relative to the turntable, and Tv  is the speed of the rim of the 

turntable with respect to the ground.  The turntable’s angular speed is T Tv R , and the person’s 
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angular speed relative to the ground is T
P T

v v v

R R
.  The person is treated as a point 

particle for calculation of the moment of inertia.   

2

T T P P T T T

T 22 2
T    

0  

55 kg 3.25 m 3.8 m s
0.30 rad s

1700 kg m 55 kg 3.25 m

i f

v
L L I I I mR

R

mRv

I mR

  

68. Since the spool rolls without slipping, each point on the edge of the spool moves with a speed of  

CMv r v  relative to the center of the spool, where CMv  is the speed of the center of the spool 

relative to the ground.  Since the spool is moving to the right relative to the ground, and the top of 
the spool is moving to the right relative to the center of the spool, the top of the spool is moving with 
a speed of CM2v  relative to the ground.  This is the speed of the rope, assuming it is unrolling 

without slipping and is at the outer edge of the spool.  The speed of the rope is the same as the speed 
of the person, since the person is holding the rope.  So the person is walking with a speed of twice 
that of the center of the spool.  Thus if the person moves forward a distance L , in the same time the 

center of the spool, traveling with half the speed, moves forward a distance 2L .  The rope, to stay 

connected both to the person and to the spool, must therefore unwind by an amount 2L  also.   

69. The spin angular momentum of the Moon can be calculated by 22
spin spin spin Moon spin5

L I MR .  The  

orbital angular momentum can be calculated by 2

orbit orbit orbit orbit orbitL I MR .  Because the same 

side of the Moon always faces the Earth, spin orbit .   
2 22 62

spin Moon spin5 6Moon2
52 8

orbit orbit orbit orbit

1.74 10 m
0.4 8.21 10

3.84 10 m

L MR R

L MR R

  

70.  As discussed in section 8-3, from the reference frame of the axle of the wheel, the points on the wheel  
are all moving with the same speed of v r , where v  is the speed of the axle of the wheel relative 
to the ground.  The top of the tire has a velocity of v  to the right relative to the axle, so it has a 
velocity of 2v  to the right relative to the ground.   

top rel top rel center rel
ground center ground

2

top rel 0
ground

 

to the right to the right 2 to the right

2 2 2 2 1.00 m s 3.0 s 6.0 m s

v v v

v v v at at

v v v

  

71. The torque is found from I .  The angular acceleration can be found from o t , with an  

initial angular velocity of 0.  The rotational inertia is that of a cylinder.   

221
2

1800 rev s 2 rad rev
0.5 1.4 kg 0.20 m 53 m N

6.0 s
oI MR

t
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72. (a) There are two forces on the yo-yo: gravity and the string  
tension.  If we assume that the top of the string is held in a 
fixed position, then the tension does no work, and so 
mechanical energy is conserved.  The initial gravitational 
PE is converted into rotational and translational KE.  Since 
the yo-yo rolls without slipping at the point of contact of 
the string, the velocity of the CM is simply related to the 
angular velocity of the yo-yo:  CMv r , where r is the 

radius of the inner hub.  Let m be the mass of the inner hub, and M and R be the mass and radius 
of each outer disk.  Calculate the rotational inertia of the yo-yo about its CM, and then use 
conservation of energy to find the linear speed of the CM.  We take the 0 of gravitational PE to 
be at the bottom of its fall.    

2 2 2 21 1 1
CM 2 2 2

2 23 3 2 2 5 21
2

3 2

total

2     

5.0 10 kg 5.0 10 m 5.0 10 kg 3.75 10 m 7.038 10 kg m

2 5.0 10 kg 2 5.0 10 kg 0.105 kg

I mr MR mr MR

m m M

 

2 2 2 2 2CM CM1 1 1 1 1 1
total total CM CM total CM CM total CM2 2 2 2 2 22 2

  

  

i fPE KE

I I
m gh m v I m v v m v

r r

 

2

total
CM

5 2
CM1

1total2 2
2 23

0.105 kg 9.80 m s 1.0 m
0.8395 0.84 m s

7.038 10 kg m
0.105 kg

5.0 10 m

m gh
v

I
m

r

  

(b) Calculate the ratio rot totKE KE .    

2CM1
2 21 CM2 2

CMrot rot CM CM2

2

tot tot total total total

25 2

23 2

2

7.038 10 kg m 0.8395 m s

         

0.96 96%
2 5.0 10 m 0.105 kg 9.8 m s 1.0 m

I
vIKE KE I vr

KE PE m gh m gh r m gh

  

73. (a) The linear speed of the chain must be the same as it passes over both sprockets.  The linear  
speed is related to the angular speed by v R , and so    

R R F FR R . 

If the spacing of the teeth on the sprockets is a distance d, then the number of teeth on a 
sprocket times the spacing distance must give the circumference of the sprocket. 

2Nd R  and so 
2

Nd
R .  Thus  

    

2 2
R F R F

R F

F R

N d N d N

N

  

(b) 52 13 4.0R F

   

(c) 42 28 1.5R F

  
mg

TF
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74. Since the lost mass carries away no angular momentum, the angular momentum of the remaining 
mass will be the same as the initial angular momentum.   

2822
Sun 105

222 4
5 Sun

10 10 9

9 4    

8.0 6.96 10 m
1.601 10

0.25 8.0 1.1 10 m

1rev
1.601 10 1.601 10 1.334 10 rev day

12 day    

1.3 10 rev day 1.5 10 rev s

i f i i f f

f i ii

i f f f

f i

L L I I

MM RI

I M R M

  

75. (a) The initial energy of the flywheel is used for two purposes – to give the car translational kinetic  
energy 20 times, and to replace the energy lost due to friction, from air resistance and from 
braking.  The statement of the problem leads us to ignore any gravitational potential energy 
changes. 

o 21
fr final initial fr car car flywheel2

21
flywheel fr car car2   

cos180W KE KE F x M v KE

KE F x M v

 

2

5 1
2

1m s             
450 N 3.5 10 m 20 1400 kg 95 km h

3.6 km h

 

8 8

             

1.672 10 J 1.7 10 J

   

(b) 21
flywheel 2

KE I

 

8

3

221 1
flywheel flywheel2 2

2 1.672 10 J2 2
2.2 10 rad s

240 kg 0.75 m

KE KE

I M R

  

(c) To find the time, use the relationship that 
Work

Power
t

, where the work done by the motor  

will be equal to the kinetic energy of the flywheel.    
8

3
1.672 10 J

    

1.494 10 s 25 min
150 hp 746 W hp

W W
P t

t P

  

76. The mass of a hydrogen atom is 1.01 atomic mass units.  The atomic mass unit is 
271.66 10 kg .  Since the axis passes through the oxygen atom, it will have no  

rotational inertia. 
(a) If the axis is perpendicular to the plane of the molecule, then each hydrogen 

atom is a distance L from the axis of rotation. 
22 27 9

perp

45 2

2 2 1.01 1.66 10 kg 0.96 10 m

      

3.1 10 kg m

HI m L

 

(b) If the axis is in the plane of the molecule, bisecting the H-O-H bonds, each  

hydrogen atom is a distance of 10 osin 9.6 10 m sin 52yL L

 

107.564 10 m .  Thus the moment of inertia is 

oxygen

 

hydrogen 

hydrogen

 

L yL
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22 27 10 45 2

plane 2 2 1.01 1.66 10 kg 7.564 10 m 1.9 10 kg mH yI m L

  
77. (a) Assuming that there are no dissipative forces doing work,  

conservation of energy may be used to find the final height h of 
the hoop.  Take the bottom of the incline to be the zero level of 
gravitational potential energy.  We assume that the hoop is 
rolling without sliding, so that v R .  Relate the conditions 
at the bottom of the incline to the conditions at the top by conservation of energy.  The hoop has 
both translational and rotational kinetic energy at the bottom, and the rotational inertia of the 

hoop is given by 2I mR . 
2

2 2 2 21 1 1 1
bottom top 2 2 2 2 2

22

2

            

3.3m s
1.111 m

9.8 m s

v
E E mv I mgh mv mR mgh

R

v
h

g

   

The distance along the plane is given by 
o

1.111 m
4.293 m 4.3 m

sin sin15

h
d

  

(b) The time can be found from the constant accelerated linear motion.  Use the relationship  

1
2

2 4.293 m2

    

2.602 s
0 3.3m s

o

o

x
x v v t t

v v
. 

This is the time to go up the plane.  The time to come back down the plane is the same, and so 

the total time is 5.2 s .  

78. (a) The force of gravity acting through the CM will cause a clockwise torque which produces an  
angular acceleration.  At the moment of release, the force of gravity is perpendicular to the lever 
arm from the hinge to the CM.    

gravity

21
rod about end 3

2 3

    

2

Mg L g
I

I ML L

  

(b) At the end of the rod, there is a tangential acceleration equal to the angular acceleration times  
the distance from the hinge.  There is no radial acceleration since at the moment of release, the 
speed of the end of the rod is 0.  Thus the tangential acceleration is the entire linear acceleration.    

3
linear tan 2

a a L g

  

79. The wheel is rolling about the point of contact with the step, and so 
all torques are to be taken about that point.  As soon as the wheel is 
off the floor, there will be only two forces that can exert torques on 
the wheel – the pulling force and the force of gravity.  There will 
not be a normal force of contact between the wheel and the floor 
once the wheel is off the floor, and any force on the wheel from the 
point of the step cannot exert a torque about that very point.  
Calculate the net torque on the wheel, with clockwise torques 
positive.  The minimum force occurs when the net torque is 0. 

h

 

22R R hmg

F

R h R

h
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22

22 2

0

2

F R h mg R R h

Mg R R h Mg Rh h
F

R h R h

  
80. (a) In order not to fall over, the net torque on the cyclist about an axis  

through the CM and parallel to the ground must be zero.  Consider the 
free-body diagram shown.  Sum torques about the CM, with 
counterclockwise as positive, and set the sum equal to zero.    

fr
N fr

N

0    tan
F x

F x F y
F y

 

(b) The cyclist is not accelerating vertically, so NF mg .  The cyclist is  

accelerating horizontally, because he is traveling in a circle.  Thus the 

frictional force must be supplying the centripetal force, so 2

frF m v r .    
22 2 2

1 1 o ofr

2
N

4.2 m s
tan    tan tan 15.71 16

6.4 m 9.8 m s

F m v r v v

F mg rg rg

  

(c) From 2

frF m v r , the smallest turning radius results in the maximum force.  The maximum  

static frictional force is fr NF F .  Use this to calculate the radius.    
22

2

min N min 2

4.2 m s

    

2.6 m
0.70 9.8 m s

v
m v r F mg r

g

  

81. Assume that the angular acceleration is uniform.  Then the torque required to whirl the rock is the 
moment of inertia of the rock (treated as a particle) times the angular acceleration.   

2

2 0
0.50 kg 1.5 m rev 2 rad 1 min

120 2.8 m N
5.0 s min rev 60 s

I mr
t

  

That torque comes from the arm swinging the sling, and so comes from the arm muscles.  

82. Assume a mass of 50 kg, corresponding to a weight of about 110 lb.  From  
Table 7-1, we find that the total arm and hand mass is about 12.5% of the 
total mass, and so the rest of the body is about 87.5% of the total mass.  
Model the skater as a cylinder of mass 44 kg, and model each arm as a thin 
rod of mass 3 kg.  Estimate the body as 150 cm tall with a radius of 15 cm.  
Estimate the arm dimension as 50 cm long.  

With the arms held tightly, we approximate that the arms are part of the body 
cylinder.  A sketch of the skater in this configuration is then as shown in the 
first diagram.  In this configuration, the rotational inertia is  

21
in cylinder total body2

body

I I M R .      

15 cm 

150 cm 

mg

NF

frF

y

x
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With the arms extended, the configuration changes to the second  
diagram.  In this configuration, the rotational inertia is  

2 21 1
out body arms body body arm arm2 3

2I I I M R M L

  
The forces and torques involved in changing the configuration 
of the skater are internal to the skater, and so the skater’s 
angular momentum is conserved during a configuration change.  
Thus   

in out in in out out

      

L L I I

 

21
2total body2 1

body 2out in
2 22 21 1 1 1

in out body body arm arm2 3 2 3

50 kg 0.15 m

2 44 kg 0.15 m 2 3 kg 0.50 m

0.575 0.6

M R
I

I M R M L

  

83. (a) The angular momentum of AM  will be    
22 21 1

A 1 12 2
6.0 kg 0.60 m 7.2 rad s 7.8 kg m sA AL I M R .  

(b) The torque required to accelerate 
AM  will be    

27.8 kg m s 0
3.9 m N

2.0 s

L

t

  

(c) Since there are no torques external to the two plates, the angular momentum of the two plates  
will be conserved.  Since the two plates stick together, they will have a common final angular 
velocity.  This is a totally inelastic collision.    

A 1 A B 2

      

i fL L I I I

 

21
AA 2 A

2 1 1 12 21 1
A B A B A B2 2

6.0 kg
7.2 rad s

15.0 kg    

2.9 rad s

M RI M

I I M R M R M M

  

84. Since frictional losses can be ignored, energy will be conserved for the marble.  Define the 0 position 
of PE to be the bottom of the track, so that the bottom of the ball is initially a height h above the 0 
position of PE.  Since r R , the marble’s CM is very close to the surface of the track.  While the 
marble is on the loop, we then approximate that it will be moving in a circle of radius R.   When the 
marble is at the top of the loop, we approximate that its CM is a distance of 2R above the 0 position 
of PE.  For the marble to just be on the verge of leaving the track means the normal force between 
the marble and the track is zero, and so the centripetal force at the top must be equal to the 
gravitational force on the marble.    

2

top of
loop 2

top of
loop    

mv

mg v gR
R

 

We assume that the marble is rolling without slipping, and so v r , and that the marble is 
released from rest.  Use energy conservation to relate the release point to the point at the top of the 
loop.  Note that the marble has both translational and rotational kinetic energy. 

15 cm 

150 cm 

50 cm 
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release top of release release top of top of
loop loop loop

2

top of
loop2 2 2 21 1 1 1 2

top of top of top of2 2 2 2 5 2
loop loop loop

27 7
top of10 10
loop    

0 2 2

2 2 2.7 

E E KE PE KE PE

v

mgh mv I mg R mv mr mgR
r

mgh mv mgR mgR mgR mgR

   
2.7h R

  

85. Since frictional losses can be ignored, energy will be conserved for the marble.  Define the 0 position 
of PE to be bottom of the track, so that the bottom of the ball is initially a height h above the 0 
position of PE.  Since we are not to assume that r R , then while the marble is on the loop portion 
of the track, it is moving in a circle of radius R r , and when at the top of the loop, the bottom of 
the marble is a height of 2 R r  above the 0 position of PE (see the diagram).  For the marble to 

just be on the verge of leaving the track means the normal force between 
the marble and the track is zero, and so the centripetal force at the top 
must be equal to the gravitational force on the marble.   

  

2

top of
loop 2

top of
loop    

mv

mg v g R r
R r

 

We assume that the marble is rolling without slipping and so v r , 
and that the marble is released from rest.  Use energy conservation to relate the release point to the 
point at the top of the loop.  Note that the marble has both translational and rotational kinetic energy.   

release top of release release top of top of
loop loop loop

2

top of
loop2 2 2 21 1 1 1 2

top of top of top of2 2 2 2 5 2
loop loop loop

27 7
top of10 10
loop    

0 2 2

2 2

E E KE PE KE PE

v

mgh mv I mg R r mv mr mg R r
r

mgh mv mg R r mg R r mg R 2.7

2.7

r mg R r

h R r

  

86. (a) The angular acceleration can be found from 2 2 2o , with the angular velocities being  

given by v r . 
2

2 2

2 22 2

22

2 2

1m s
60.0 km h 90.0 km h

3.6 km h

2 2 2 0.45 m 85 rev 2 rad rev  

1.6053rad s 1.61rad s

oo
v v

r

   

(b) The time to stop can be found from o t , with a final angular velocity of 0. 

2

1m s
0 60.0 km h

3.6 km h
23 s

0.45 m 1.6053rad s
o ov v

t
r

  

2 2R r

0y




