Teresa Choe

Title: Projectile motion

Purpose: To analyze projectile motion using video analysis

Background: Projectiles are defined as objects moving:

- 1. Under the force of gravity
- 2. No propulsion
- 3. No wings
- 4. In ideal situations, we ignore air resistance
- 5. When graphed over time, it creates a parabolic curve of the form $y = Ax^2$

Materials:

Logger Pro

video capture device

meter stick

ball

thrower

Marking cones

Procedure:

- 1. Choose a ball
- 2. Setup camera, including meter stick for calibration
- 3. Start camera capture
- 4. Throw ball
- 5. Stop camera, and analyze
- 6. Using Logger Pro, track with dots
- 7. Analyze the graphs

Data:

Observation: When we threw the ball, the ball ascended, then descended symmetrically. The data shows a parabolic curve for the Y velocity, and a negative linear slope for the X velocity.

Analysis: The distance graph looks similar to the dot track in that they are both parabolic. The velocity decreases constantly, due to friction. The slope of X Velocity is about -2.5 m/s. The error percentage is 4.6%. Acceleration is -4.45, which when doubled, it would be -9.9, close to -9.8 m/s2. The slight air resistance made our g value higher than -9.8 m/s2.

Conclusions: Next time, I would use a camera system that takes faster shots and frames. I would throw the ball higher for more data points and more accuracy. Overall, the experiment was a success because we graphed a parabola that very closely matches the freefall acceleration of 9.8 m/s2.