Title: Projectile motion

Purpose: To study projectile motion

Background: Projectiles are defined as object moving:

- 1. under the force of gravity
- 2. no propulsion
- 3. no wings
- 4. in ideal situations, we ignore air resistance
- 5. when graphed over time, it creates a parabolic curve of the form $y=Ax^2$

Material:

- Logger pro
- video capture device
- meter stick
- ball
- thrower
- marking cones

Procedure:

- 1. choose ball
- 2. setup camera, including meter stick for calibration
- 3. start camera capture
- 4. throw ball
- 5. stop camera, analyze
- 6. using logger pro, track with dots
- 7. analyze the graphs

Data:

	VideoAnalysis					VideoAnalysis 2				
	Time (s)	Х	Y	X Velocity	Y Velocity	Time (s)	X (m)	Y (m)	Vx (m/s)	Vy (m/s)
1	0	65	122	242.528	42.883	0.1850	-1.696	-0.05015	3.439	3.239
2	0.01333	70	122	119.624	93.166	0.2183	-1.561	0.08490	4.795	2.350
3	0.04667	72	125	75.704	128.816	0.2517	-1.403	0.1974	4.151	-0.041
4	0.08000	73	131	80.864	134.822	0.2850	-1.726	-0.06516	13.788	1.083
5	0.1133	77	134	83.384	124.742	0.3167	0.4375	0.3786	-0.719	-0.511
6	0.1467	80	138	68.708	140.752	0.3500	-1.709	-0.05130	-16.132	-3.000
7	0.1800	81	144	68.708	151.425	0.3833	-1.695	-0.01028	-5.136	-0.779
8	0.2133	84	149	84.051	155.427	0.4167	-1.695	-0.02395	-1.311	-0.374
9	0.2467	87	154	102.729	156.094	0.4483	-1.655	-0.02395	0.459	-0.012
10	0.2800	91	159	111.401	155.427	0.4817	-1.655	-0.02395	0.131	-0.010
11	0.3133	94	165	124.075	150.758	0.5150	-1.655	-0.02395	0.078	0.050
12	0.3467	100	170	123.408	136.082	0.5483	-1.655	-0.02395	0.165	0.177
13	0.3800	102	174	126.743	109.399	0.6150	-1.655	-0.02395	0.450	0.493
14	0.4133	108	176	139.418	104.063	0.6467	-1.588	0.04440	0.402	0.544
15	0.4467	113	181	124.075	111.401	0.6800	-1.614	0.03073	-0.046	0.054
16	0.4800	116	185	116.070	84.718	0.7450	-1.614	0.03073	-0.020	0.012
17	0.5133	120	186	123.408	58.702	0.8117	-1.614	0.03073	-0.015	-0.008
18	0.5467	124	188	137.416	48.029	0.8450	-1.614	0.03073	0.000	0.000
19	0.5800	129	190	158.096	39.357	0.8783	-1.614	0.03073	0.000	0.000
20	0.6133	136	191	139.418	17.344	0.9433	-1.614	0.03073	0.000	0.000
21	0.6467	138	190	114.532	3.986	1.043	-1.614	0.03073	0.000	-0.007
22	0.6800	142	191	119.347	-2.638	1.108	-1.614	0.03073	0.000	-0.026
23	0.7133	145	190	144.016	-12.456	1.142	-1.614	0.03073	0.000	-0.132
24	0.7483	153	190	138.239	-22.928	1.175	-1.614	0.01706	0.000	-0.099
25	0.7817	155	189	126.600	-37.155	1.242	-1.614	0.01706	0.000	-0.032
26	0.8150	161	188	143.227	-53.950	1.307	-1.614	0.01706	0.000	-0.008
27	0.8483	165	186	137.416	-99.393	1.340	-1.614	0.01706	0.000	0.000
28	0.8817	170	180	123.408	-110.067	1.373	-1.614	0.01706	1.345	-1.431
29	0.9150	173	178	114.736	-102.062	1.438	-1.614	0.01706	3.945	-4.343
30	0.9483	177	174	140.085	-121.407	1.472	-1.614	0.01706	11.713	-12.941

Observations:

- 1. Threw the ball into the air, the ball decelerated and reached its highest point, and then fell down, accelerated and hit the ground.
- 2. When the ball hit the ground, the ball bounced. Repeat its motion in third times and then stopped.

Analysis:

- 1. The ball's motion can be divided into two parts: the ball's ascending and descending.
- 2. Ascending: Due to the gravity of the Earth, the ball's ascending is a uniformly decelerated motion. Its speed decreased, when it equal to o, the ball reached its highest point
- 3. Descending: The ball is free fall now. Because of the acceleration due to gravity, the ball's descending is a uniformly accelerated motion, it reached its biggest speed when it hit the ground.
- 4. From the data table, the ball's initial velocity is roughly 2.350m/s at t=2. However, the data table is not that accurate since according to the graph, the ball's motion is only from t=2 to t=3.5, the data table does not show all the details between this time interval.
- 5. From the graph, using the "curve fit" function, there's an equation y=-4.536(+/-0.08126)t² + 23.75(+/-0.4386)t 30.19(+/-0.5853) fit the curve. Since the eqiation of uniform rectilinear motion is S=Vot + 1/2at² . Thus, compared these two equations, the acceleration can be calculated as (-4.536-0.08126)/(1/2)=-9.23, it roughly close to -9.8, the gravity.
- 6. When the ball hit the ground, ground gave it an upward velocity, so it bounced up.

Conclusion:

This experiment can be said as success. We observed a parabola from the curve of the ball's motion.

But there are many aspects can be improved, such as a better camera, the ball has better elasticity filling with gas instead of the ball used this time.

And the ball should be thrown higher in order to get more data.