

Welcome back, Bill Wiecking

>>Working in AP Physics B (SC651)

Current Course

Course Home

Edit Course Info

Syllabus/Assignments
Grades

Student administration

Instructor administration

My Courses
AP Physics B
AP Physics C
Honors Physics
ePhysicsC
ePhysicsE

My Account
Change password
Manage courses

Homework Home
Logout

ch 8 exam

Chapter 8: Momentum

Section 1: Momentum
8.1.5 A net force of 30 N is applied to a 10 kg object, which starts at rest. What is (7.00) the magnitude of its momentum after 3.0 seconds?

Section 3: Impulse
8.3.8 The graph shows the net force applied on a 0.15 kg object over a 3.0 s time (5.00) interval. (a) What is the average force applied to the object over the 3.0 seconds? (b) What is the impulse? (c) What is its change in velocity?

Section 6: Conservation of momentum
8.6.3 A rifle fires a bullet of mass 0.0350 kg which leaves the barrel with a positive
(5.00) velocity of $304 \mathrm{~m} / \mathrm{s}$. The mass of the rifle and bullet is 3.31 kg . At what velocity does the rifle recoil?

Section 18: Inelastic collisions

8.18.2 During a snowball fight, two snowballs travelling towards each other collide (5.00) head-on. The first is moving east at a speed of vi1 m/s and has a mass of 0.450 kg . The second is moving west at $13.5 \mathrm{~m} / \mathrm{s}$. When the snowballs collide, they stick together and travel west at 3.50 meters per second. What is the mass of the second snowball?
\square

Section 19: Sample problem: ballistic pendulum

8.19.1 A dart gun suspended by strings hangs in equilibrium. The mass of the gun is (5.00) 355 grams, not including a dart. The gun fires a 57.0 gram dart, causing it to swing backwards. The gun swings up to a height of 18.3 centimeters. What was the dart's speed in meters per second just after firing?

Section 20: Center of mass

8.20.1 How far is the center of mass of the Earth-Moon system from the center of (5.00) the Earth? The Earth's mass is $5.97 \times 10^{24} \mathrm{~kg}$, the Moon's mass is $7.4 \times 10^{22} \mathrm{~kg}$, and the distance between their centers is $3.8 \times 10^{8} \mathrm{~m}$.
\square

Back to assignments list

