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I. Introduction

For many contemporary physics experiments, the use of an optical cavity

has become a powerful tool for enhancement in detection sensitivities,

nonlinear interactions, and quantum dynamics. Indeed, an optical cavity

allows one to extend the interaction length between matter and field, to

build up the optical power, to impose a well-defined mode structure on the

electromagnetic field, to enable extreme nonlinear optics, and to study

manifestly quantum mechanical behavior associated with the modified

2 Jun Ye and Theresa W. Lynn [I



vacuum structure and/or the large field associated with a single photon

confined to a small volume. Experimental activities that have benefited from

the use of optical cavities appear in such diverse areas as ultra-sensitive

detection for classical laser spectroscopy, nonlinear optical devices, optical

frequency metrology and precision measurement, and cavity quantum

electrodynamics (cavity QED). Of course the most important application of

optical cavities is in laser physics itself. However, in this article we will

concentrate on the various applications of external optical cavities

(independent from lasers) that take advantage of the common physical

properties associated with resonator physics.

One of the important themes in laser spectroscopy is to utilize an extended

interaction length between matter and field inside a high finesse cavity for an

increased detection sensitivity. Two key ingredients are needed to achieve the

highest sensitivity possible in detection of atomic and molecular absorptions:

enhancement of the absorption signal and elimination of technical noise.

While the absorption signal is enhanced by an optical cavity, it is important

also to take measures to avoid technical noise; the sharp resonances of the

cavity can introduce additional noise through frequency-to-amplitude noise

conversion. Cavity vibration and drifts can also contribute noise beyond the

fundamental, quantum-noise limit. In this article (Sections IV and V), we

will discuss the application of various modulation techniques combined

with suitable experimental configurations that let one benefit from the

signal enhancement aspect of a cavity, at the same time suppressing the

technical noise in the detection process. Such achievement has enabled

studies of molecular vibration dynamics of weak transitions.

Another important theme is the application of optical frequency

metrology for precision measurements. Section VI addresses the role of

optical cavities in this context. Certainly the use of an optical cavity for laser

frequency stabilization is critical for the development of super-stable optical

local oscillators. The extreme quality factor (1015) associated with some

‘‘forbidden’’ optical transitions in cold and trapped samples of atoms and

ions demands a similar or even higher quality factor on the optical probe

source to take full advantage of the system coherence. Although the advent

of femtosecond-laser-based optical frequency combs has to a certain degree

reduced the utility of cavity-based frequency reference systems, stable optical

cavities continue to provide important services in laser laboratories; either

the cavity modes themselves provide optical frequency markers or a cavity

helps enhance optical to microwave frequency coupling via an intracavity

modulator. And one of the most important applications of optical cavities is

still for laser frequency stabilization, with the scope now extended to cover

ultrafast lasers as well. In fact, cavity-based ultra-sensitive detection of

atomic/molecular absorptions represents an important approach to produce
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accurate and precise frequency references throughout the visible and near-

infrared wavelength regions. We also note that some of the most demanding

work in precision measurement is now associated with cavity-enhanced

Michelson interferemetry to search for gravitational waves or violation of

relativity laws.

A third theme that will be covered in this article (Section VII) is the

exploration of quantum dynamics associated with the enhanced interaction

between atoms and cavity field; where the structure of the cavity enables a

large field amplitude associated with single intracavity photons, the system

dynamics can become manifestly quantum and nonlinear. A high cavity

finesse suppresses the dissipation rate associated with photon decay while a

well-defined spatial mode of the cavity output field (associated with cavity

decay) permits recovery of information about the intracavity dynamics with

high quantum efficiency. Although cavities in the optical domain have not

significantly influenced the atomic radiative properties in a direct manner,

the enhanced coherent interactions between them present an ideal platform

to study open quantum systems.

Before addressing these topics in detail, we begin with some broad

comments and historical context in the remainder of this introduction.

Section II is devoted to description and characterization of the optical

cavities themselves, while Section III gives some simple physical arguments

for the cavity enhancement effect that is crucial for applications ranging

from classical spectroscopy to cavity QED.

A. Signal Enhancement and Optical Field Buildup Inside a Cavity

Improving sensitivity for spectroscopy on an atomic or molecular sample by

placing it inside an optical resonator is a well-known technique and is most

commonly explained in terms of the multipass effect. In fact, it was realized

in the early days of laser development that a laser cavity was useful for

absorption enhancement [1], owing to the multipass effect and the delicate

balance between the laser gain and intracavity absorption [2,3]. However, in

most recent implementations, it is often preferable to separate the absorber

from the laser, in order to extend the experimental flexibility and to

characterize better working parameters. Kastler first suggested that a Fabry-

Perot cavity be employed for the sensitivity of its transmission to small

variations in absorption within the cavity [4]. The external cavity approach

has since been applied to record both linear and high-resolution nonlinear

molecular spectra [5–7]. In particular, enhancement cavities in the form of

cavity ring down spectroscopy [8,9] have been extensively applied in the field

of physical chemistry to study molecular dynamics and reaction kinetics.
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While we defer a detailed discussion of cavity enhancement effects to

Section III, here we make a quick note of the advantages associated with an

optical resonator. The well-known multipass effect leads to an enhancement

of the effective absorption length by a factor of 2F/�, where F is the cavity

finesse. Additionally, the intracavity optical power is built up relative to the

input power via constructive interference, which allows for the study of

nonlinear interactions even with low-power laser sources. An often taken-

for-granted benefit in practice is that although the intracavity interaction is

powered by a high field amplitude, the cavity reduces the output power to

a reasonable level acceptable for subsequent photo-detectors. Alternatively,

high intracavity power can be extracted using high-speed optical switching

devices; this forms the basis of a cavity-based optical amplifier to be

discussed in Section VI.D. Additionally, the geometrical self-cleaning and

mode matching of the optical waves inside a cavity is important both for

eliminating pointing-direction related noise and for obtaining narrow,

unshifted resonance lines [10]. Finally, a stable cavity can be used to stabilize

a laser’s frequency by locking the laser to a cavity resonance, thereby

reducing the detection noise in measurements involving the laser.

B. Issues Related to Technical and Fundamental Noise

Direct absorption measurements often suffer from intensity noise on the

laser. Noise amplitudes typically rise toward the low-frequency region of

the intensity spectrum where many important signals reside; this problem

has motivated development of modulation schemes, such as frequency-

modulation spectroscopy, to encode and recover signals in frequency

intervals with minimal technical noise. The use of an optical cavity, while

effective in enhancing a signal, can also introduce some extra technical noise.

For example, when the relative frequency fluctuation between the laser and

the cavity resonance is of the same order as the cavity linewidth, frequency

noise will be converted to amplitude noise in the detected signal if a naı̈ve,

direct absorption approach is adopted. Because this noise conversion is

inversely proportional to the cavity linewidth, the same enhancement factor

that has improved the signal size can play an equal—but deleterious—role.

Thus, while it is important to reduce noise amplitudes in the first place, it is

usually equally imperative to employ some clever signal recovery techniques

that minimize the influence of noise on the detection result. For any

absorption spectroscopy, the fundamental detection limit is reached when

the minimum signal amplitude equals the noise level associated with the

discrete nature of a photon flux, which has a Poisson distribution for an

ordinary laser output without technical noise. Such performance can be
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achieved when the technical noise is minimized by a differential measure-

ment. For a true differential measurement, quick comparisons of

on-resonance and off-resonance information are required; that is, some sort

of modulation technique should be employed. When combined with an

effective modulation technique, the resonant cavity scheme approaches its

full potential for signal enhancement without added noise.

When cavity finesse is sufficiently high, then in order to limit the

intracavity power to some useful level below system saturation, the power

level associated with the cavity input and transmission will usually be

maintained low. Detection of these small transmission signals with high

signal-to-noise (S/N) is therefore a technical challenge. Although photon

counting has been an effective approach to detect low light levels and

construct useful photon statistics, it is not suitable for coherent detections if

the field phase is the desired quantity to measure. As discussed in Ref. [11],

a balanced heterodyne detection would allow a full construction of the

quantum susceptibility of intracavity absorbers. Optical heterodyne detec-

tion with the aid of a large optical local oscillator field is also an effective

and necessary approach to overcome serious electronic noise limitations.

C. Change of Boundary Conditions—Quantum Effect

Optical elements present boundary conditions that alter the free-space

quantization structure of the electromagnetic field. This modified electro-

magnetic mode structure in turn affects the interactions of an atomic dipole

with light, including decay into the now-altered vacuum. Diverse observa-

tions have demonstrated changes in atomic radiative processes caused by the

presence of a boundary; for example, boundary-induced atomic level shifts

form the basis of the Casimir effect and numerous other phenomena. For a

review of these effects and their development into the field of cavity QED,

see for example Ref. [12].

The boundary conditions imposed by an optical cavity create a set of

electromagnetic field modes confined between the cavity mirrors. These

resonant cavity modes are well-defined in frequency and in spatial structure.

The modes of an optical cavity typically subtend a small fraction of 4� in

solid angle, and thus do not significantly suppress free-space atomic

spontaneous emission. However, the presence of the cavity introduces a new

rate, the rate of coherent exchange of excitation between atom and cavity

field. Through this coherent coupling the atom and cavity decay linewidths

do in fact alter one another, at first perturbatively and then strongly as the

coherent coupling becomes large relative to both decays. Finally, when the

physical size of a cavity is reduced until the cavity mode volume is near
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the atomic ‘‘radiative’’ volume, a whole new set of quantum dynamics

associated with the full quantum susceptibility can be explored within the

setting of cavity quantum electrodynamics [11,13].

D. Applications of Sensitive Detection, Field Enhancement,

and Cavity QED

Sensitive, cavity-enhanced detection schemes have found many different

applications, including the characterization of dielectric stacks [14];

measurement of ultraslow reflector velocities [15]; atmospheric sensing

[16,17]; detection of trace gaseous species [18]; absolute determination of

absorption band strengths and species concentration [19]; analysis of

combustion and plasma dynamics [20,21]; study of chemical kinetics and

molecular dynamics [22,23]; tests of fundamental physical postulates such

as quantum spin statistics [24–26], gravitational wave detections [27,28],

thermal noise detection and control [29], and magnetically induced vacuum

birefringence [30,31]; improvements in laser stabilization and optical

frequency metrology [32–34]; novel schemes for laser cooling [35]; and

research into quantum dynamics and quantum information [36–38],

nonlinear optics [39], and quantum measurement limits [40–42]. The

extension of these methods to study surfaces and condensed matter [43]

and their potential applications as medical instruments only make the field

more exciting [44,45].

II. Mode Structure and Relevant Characteristics

of Fabry–Perot Cavities

In this section we briefly lay out the properties of an optical cavity that will

be relevant to all the scientific applications discussed in this article. Since

Fabry-Perot cavities are by far the most widely used optical cavities to date

and in the immediate future, we concentrate on them in our treatment. More

exotic cavity geometries and fabrication methods are touched upon only

very briefly, in Section VII.G. While this section lays the groundwork for

further discussions, some later sections revisit the issues of precise

measurement of cavity mode spacings, mirror coating properties, and

subtleties of cavity mode structure.

A. Mode Structure and Basic Definitions

Figure 1 shows a Fabry-Perot optical resonator created by aligning two

highly reflective mirrors at separation d measured along the cavity axis.
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Modes of the cavity possess a standing-wave structure along the axis, so the

cavity supports a set of longitudinal modes separated in frequency by a free

spectral range (FSR) of c/2d where c is the speed of light. (Mirror coatings

cause the FSR to deviate very slightly from this simple formula, as will be

discussed in Section VI.) At each longitudinal mode the cavity supports a

complete set of transverse modes of different spatial profiles, perpendicular

to the cavity axis. The TEM00 mode has a cylindrically symmetric Gaussian

profile, characterized by a beam waist w0.

If the two mirrors are assumed to be identical, the cavity is characterized

by the per-mirror power transmission T and loss A. The total empty cavity

loss is Lcav¼ 2(TþA). The cavity finesse (F ) is given by

F ¼ 2�

Lcav

¼ �

T þ A
: ð1Þ

The finesse can also be expressed as the ratio of free spectral range to cavity

linewidth. It is closely related to another commonly used quantity, the

resonator quality factorQ, which is the ratio of the resonant optical frequency

to the cavity decay linewidth. The use of finesse is attractive as it depends

only on the mirror properties and not directly on the cavity dimension. When

the cavity length changes, both the FSR and linewidth of the cavity vary

as the inverse of the cavity length, and hence the finesse remains nearly

constant.Q and F are related by the ratio of the optical frequency to the FSR;

the latter lies normally in the RF/microwave frequency domain.

B. Realization of High-Finesse Cavities

High-finesse cavities are typically constructed from superpolished substrates

coated with a ‘‘stack’’ (40–50 or so alternating layers) of dielectric materials

FIG. 1. Notation for the fields in and out of an optical cavity. The standing-wave field built-

up inside the cavity is shown, along with the radiation field from the prepared atomic dipole.
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so that coating layers have alternating high and low index of refraction. The

layer thickness sets the center wavelength of the coating. These coating

techniques are capable of producing mirror transmission T at or below 10�6

(1 ppm). However, current technology has yet to push mirror loss A below

one to a few ppm. Thus cavity finesses in the range of 105 to 106 constitute

the current state of the art for high-reflectivity, low-loss mirrors and

coatings. Mirror absorption/scatter losses set a limit on F and are

furthermore a hindrance to signal extraction when nonlinear interactions

are present. For example, they are a critical limiting factor in the loss rate

for present cavity QED systems—for the very short cavities used in these

experiments, loss rates associated with A are usually similar in size to the

atomic spontaneous emission rates. To build robust quantum computing/

communications devices from cavity QED components, it is necessary to

improve the ratio of mirror transmission (useful information) to mirror

losses (loss of coherence).

Different cavity lengths are desirable for each application of optical cavity

technology. The smallest cavity mode volumes are demanded by cavity

QED applications, which currently use cavities with transverse mode waists

as small as w0� 10 mm and cavity lengths d� 10 mm or slightly shorter. At

these lengths it is important to consider that the standing-wave light field

inside a cavity penetrates into the mirror coatings, giving a larger mode-

volume than would be otherwise expected from the physical distance

between the mirror surfaces. When the micro-cavities are pushed to shorter

lengths in the quest for greater interaction strengths, the leakage field into

the mirror coatings will have a non-negligible effect on the cavity mode

structure.

III. Cavity Enhancement: A Simple Physics Picture

In this section we will discuss the basic physics associated with the cavity

enhancement effect. We will derive some useful equations from different

perspectives and show that, as with many other subjects, the cavity-

enhancement principle manifests itself in different and yet eventually

equivalent forms. It is useful to explore these different aspects as each

highlights distinct practical consequences and can lead to effective

experimental techniques.

A. Enhanced Optical Radiation and Interaction Length

We start our discussion of cavity-enhancement by directly looking into the

cavity properties. The basic understanding can be developed by placing
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the absorbing atoms or molecules in an optical cavity and then comparing

the absorption level to the intrinsic loss of the cavity. Thus low-loss mirrors

(and consequently high-finesse cavities) help to enhance the signal contrast.

Beginning with the empty-cavity case, we denote the optical input power as

Pin, the cavity-reflected power as Pr, and the cavity-transmitted power as Pt

(see Fig. 1). The resonant cavity reflection efficiency, transmission effi-

ciency, and intracavity build-up power, Pc, can be expressed, respectively, as

Pr

Pin

¼ A

T þ A

� �2

,

Pt

Pin

¼ T

T þ A

� �2

, and

Pc

Pin

¼ T
1

T þ A

� �2

:

ð2Þ

These equations can be easily derived following any modern optics

textbook [46].

Consider a cavity of roundtrip length 2d, filled with a weakly absorbing

gas sample with an absorption coefficient of � per unit length. (By weakly

absorbing we mean the cavity round trip fractional power loss can be

written as 1� exp �2�dð Þ � 2�d. We will also use the assumption that

�d�T, A). In a direct absorption measurement with a sample cell of length

d, the output power is; Pout¼Pin� e��d�Pin (1� �d ). Therefore, the

absorption signal is (Pin��d ), with contrast �Pout/Pout¼��d. When the

sample is placed inside a cavity, the transmitted power is modified according

to Eq. (2),

Pt

Pin

¼ T

T þ Aþ �d

� �2

� T

T þ A

� �2

1� 2
�d

T þ A

� �
: ð3Þ

The detected signal contrast in the cavity transmission is therefore

enhanced to

�Pt

Pt

¼ �2 �d

T þ A
¼ � 2F

�
� �dð Þ: ð4Þ

In practice, the anticipated sample absorption may actually be of the same

order or larger than the mirror transmission coefficients. In this case input

and output mirror parameters should be individually selected to maxi-

mize the resonant cavity transmission under the ‘‘impedance-matching’’
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boundary conditions in the presence of intracavity gas absorption. It is also

worth noting that, although the cavity finesse is determined by the sum of

the mirror transmission T and loss A and neither quantity appears explicitly

in Eq. (4), it is optimal for T to be dominant over A, because this increases

the absolute size of the absorption signal [cf. Eq. (3)]. The ratio of T to A is

even more important for studying nonlinear dynamics; for cavity QED

experiments, for example, T represents an accessible communication

channel for information flow from the cavity to the outside world while A

represents irreversible loss of coherence.

B. Enhanced Radiation (Absorption) of Atomic/Molecular

Dipole Moments Inside the Cavity

Perhaps cavity enhancement can be most simply understood from the

cartoon picture shown in Fig. 2. Suppose a single atom is present within

the mode volume of a resonant light field propagating through a length d.

The total absorption coefficient (�d ) can be interpreted as arising from an

atomic transition rate R multiplied by the interaction time, d/c. From this

intuitive picture, we can immediately understand that if a cavity is placed

around the atom with the intracavity photon lifetime resonantly increased to

�cavity ¼ 2F=�ð Þ � d=c, the absorption coefficient becomes ð�d Þenhanced ¼ R�
�cavity ¼ 2F=�ð Þð�d Þ.

To explore other factors determining the strength of interaction, we take

another look at the microscopic origins of the absorption coefficient (�d )
itself. Denoting the atomic dipole moment � and the transition wavelength

� angular frequency ! ¼ 2�c�, with c being the speed of light), we have the

atomic decay rate � / �2=�3 via the Fermi golden rule. For a cavity mode

of cross-sectional area a, the coupling between the atom and the electric field

of a single photon is g0 / ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!= a�dð Þ

p
. Here the factor within the square

root arises from the energy density for a single photon within the designated

FIG. 2. An intuitive picture of atomic absorption: � is the atomic dipole moment, l the

transition wavelength, � the spontaneous decay rate, g0 the coherent coupling between the

atomic dipole and the light field quantized within the volume of (a�d ), and �0 represents

the resonant atomic absorption cross-section.
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mode volume. The transition rate R above is then given by g20ð1=�Þ.
Therefore �d / g20=�

� �
� d=c � �2=a � �0=a, with � being the resonant

absorption cross-section of the atom. Cavity enhancement of the interaction

lifetime adds a factor of 2F/� as above, so the absorption scales as the cavity

finesse over the cross-sectional area of the mode.

C. Constructive Interference of Atomic/Molecular Radiation

It is clear from Eq. (2) that the intracavity circulating power can be much

larger than the input power. This power buildup is essential to have an

appreciable level of saturation for nonlinear spectroscopy involving very

weak transitions. The strong light field phase-coherently drives the atomic

or molecular dipole moments. The radiation from these prepared dipole

moments is the signal to be detected. However, the strong background of the

unabsorbed incoming light sets the detection noise level, the shot-noise level

in the ideal case (cf. Section IV). With the build-up cavity approach, this

potentially large noise contribution from the intracavity field is reduced

after the sample has been prepared and before the final detection. When the

cavity is tuned onto a molecular line, the major part of the molecular signal

will leak out of the cavity to reach a detector, while a similar, or smaller,

portion of the input power will be transmitted by the cavity and reach the

same detector to set the shot-noise limit. The large intracavity buildup

power, however, will remain trapped inside, where it prepares the phase-

coherent molecular dipole moment of an enhanced magnitude. This result,

although explained here from yet another perspective, is the same cavity

enhancement effect discussed in the previous paragraphs.

To mathematically clarify the preceding discussion, we note that the

intracavity field Ec is related to the input field Ein by Ec ¼ Ein�
ffiffiffiffi
T
p

= T þ Að Þ
(cf. Fig. 1). The radiation field of the prepared dipole moment can be written

as Eatom ¼ �Ec � �d=2ð Þ, where the minus sign accounts for the negative

interference between the sample radiation and the original field that leads to

absorption. The integrated intracavity (single-pass) absorption signal is (�d )
and the factor of 1/2 reflects the fact that we are now dealing with the field

amplitude. When the cavity is tuned to the atomic resonance, this atomic

signal will be resonantly enhanced by constructive interference, by a factor

of 2/(TþA). Here the factor of 2 accounts for the bi-directional effect in the

cavity. Finally the field leaking out of the cavity is attenuated by
ffiffiffiffi
T
p

before

reaching the photodetector. The final field can thus be expressed as

Eatom,output ¼ �
ffiffiffiffi
T
p
� Ec

�d

2

� �
� 2

T þ A

� �
¼ � T

T þ A
Ein�

�d

2

� �
� 2F

�

� �
ð5Þ
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When this quantity is small compared to the transmitted local oscillator

field, Ein �T= T þ Að Þ, the change in output power due to the atom is

proportional to their cross-term, and thus the signal enhancement factor is

again (2F=�). This will be explained in a more detailed manner in Section

IV.B, in the context of discussions about heterodyne detection (Fig. 3). In

Section IV.E we will also show how the same cavity enhancement factor

manifests itself in the detected phase shift of an output field from the cavity.

From a practical point of view, using a cavity is also attractive when the

laser source has a relatively large amplitude noise. Indeed, when a buildup

cavity is used, the subsequent photodetector does not have to receive a large

intensity, even when there is a large interactivity field to enhance the signal

of interest. This allows for high S/N detection outside the cavity with

transmitted power low enough for shot noise to dominate over technical

noise. This effect is similar to the result of polarization spectroscopy [47] or

interference filtering.

D. Field Quantization—Influence of the Cavity Physical Size and

Strong Coupling Regime in Cavity QED

Although our discussion so far has focused mainly on the semiclassical

aspect of the light-matter interaction, it is nonetheless interesting to make

a quick note on the connection between this classical picture of cavity-

enhanced spectroscopy and optical cavity-based quantum electrodynamics

(QED). When the cavity volume (��w2
0d=4) is comparable to the critical

radiation volume of a single atom, namely Vcritical ¼ �2�c=�, the atom-cavity

interaction needs to be treated in a fully quantum picture.
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FIG. 3. Principle of optical (homodyne) heterodyne detection of an absorption signal,

showing the destructive interference between the incident and the radiating fields. Derivation of

a simple shot noise limited S/N ratio is shown.
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Crucial to the realization of manifestly quantum effects in cavity QED is

strong coupling, a condition in which the coherent coupling between atom

and cavity field dominates dissipative rates in the system. For a two-level

atom optimally coupled to a cavity mode, the dipole-field coupling is given

by the Jaynes-Cummings interaction Hamiltonian [48]

ĤHint ¼ �hg0ð�̂�þâaþ �̂�âaþÞ, ð6Þ

where ð�̂�þ, �̂�Þ are atomic dipole raising and lowering operators, ðâa, âaþÞ are
field annihilation and creation operators for the cavity mode, and g0 is one

half of the single-photon Rabi frequency. This rate describes the exchange

of excitation between the atomic dipole ~�� and the electric field ~EE built up

by a single photon of frequency ! residing in the mode volume Vm of the

optical cavity:

g0 ¼ ~�� � ~EE ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h!

2"0Vm

s
: ð7Þ

Thus g0 is a rate of coherent evolution that must be compared with the

dissipative rates for the system. These, in turn, are the atomic spontaneous

emission rate �? and the cavity field decay rate 	. While the regime of

ð	, �?Þ � g0 is described by the classical treatments developed above, we will

see in Section VII that a quantum theory is necessary to account for physics

at g0 � ð	, �?Þ, in the strong coupling regime [49–51].

Though atom-cavity behavior in the strong coupling limit must be

calculated in an inherently quantum treatment, the onset of this regime can

be estimated from quantities well known from classical spectroscopy. In

the optical bistability and cavity QED literature [52,53], there is an atomic

co-operativity parameter defined as Ng20=2	�, where N is the number of

atoms. This quantity signifies the level of modification of the empty

cavity properties by the presence of atoms. Calculation reveals that the

co-operativity parameter is nothing but the now familiar 2F=�ð Þ�d, the

enhanced intracavity absorption signal. This understanding leads to a

natural definition of the critical atom number: N0 ¼ 2	�=g20, which signifies

the level of influence by a single atom on the cavity dynamics. Similarly, the

critical photon number can be defined as m0 ¼ �2=2g20, which is basically the

number of intracavity photons required to saturate an atom, and is directly

related to the aforementioned ratio of cavity mode volume to atomic

radiative volume. More extensive discussions in Section VII will further
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clarify the physical meanings of these quantities and their significance

related to the latest generation of optical cavity QED experiments.

IV. Weak Absorption Measured by Field-Phase

(Frequency-Domain)

In parallel with signal enhancement, the issues of detection noise and how to

reach the fundamental noise limit are equally critical to the implementation

of sensitive spectroscopy. In this section, we will concentrate our discussions

in the frequency domain on the relevant issues related to signal extraction

and noise suppression.

The ultimate detection sensitivity is achieved when we are able to observe

each absorption event individually, and when the noise is limited by the

uncertainty of an event occurrence. This is referred to as the shot-noise limit.

The shot noise is associated with the discrete nature of the interaction

between matter and the photon stream. The shot noise is fundamental in

that it reflects the quantum nature of light from ordinary thermal sources

and lasers far above threshold, sources that carry Poissonian statistics.

Radiation fields can also be ‘‘squeezed’’ to have sub-Poissonian levels

of fluctuation, providing an anomalously low fluctuation level for the

photocurrent (i.e., sub-shot noise).

The signal exiting the cavity can also be measured using phase sensitive

detection methods, i.e., in frequency-domain applications. The phase of

the light, along with the cavity resonance structure, is perturbed by the

molecular radiation, which leads to additional phase shifts. The objective of

this section is to discuss phase-sensitive optical-heterodyne spectroscopy,

using an enhancement-cavity, as a tool for signal acquisition. The advantage

of this approach lies in the characteristic property of frequency modulation

(FM) spectroscopy: the simultaneous and continuous observation and

subtraction of the signal and background optical phases.

A. Fundamental Detection Limits in Classical Spectroscopy

As noted in Section III, the physical origin of the absorption process can be

understood as destructive interference between the incident radiation and

the electric field generated by the coherently driven dipole moments of the

sample. Therefore, direct absorption can be viewed as a homodyne detection

between two interfering fields that have the same frequency. Maximum

sensitivity occurs when the probe field has no amplitude noise beyond its

intrinsic quantum fluctuations. Given a detection bandwidth of B and the
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average photocurrent idc, the associated shot-noise current is given by

in ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2eidcB
p

, where e is the electron charge. Taking the photodetector

responsivity as 
 (dimensions of electrical current per unit power incident on

the detector) and P0 as the incident radiation power, then idc ¼ 
P0 and the

absorption signal isig ¼ �dð Þ
P0. The shot noise will set the fundamental

sensitivity limit for straight absorption spectroscopy. When the S/N

ratio is one, i.e., when the molecular absorption is equivalent to the

shot noise in the measurement bandwidth, we obtain a minimum detectable

absorption of

�dð Þmin¼
ffiffiffiffiffiffiffiffi
2eB


P0

s
: ð8Þ

This direct absorption sensitivity is capable of detecting an absorption of

2� 10�8 over a 1 s averaging time over P0¼ 1mW and a reasonable 

(� 0.8A/W).

Needless to say, this number seems optimistic when compared to

experience. In practice, noise of various technical origins usually dominates

in the low frequency ranges, and actual laser systems display vastly more

noise than the shot noise limit. This extra technical noise may originate in

inadequately smoothed power-supply potentials, laboratory vibrations that

randomly dither the laser’s alignment and mode structure, electromagnetic

pickup from high-frequency or high-current devices, or unwanted optical

feedback. In order to avoid excessive low-frequency noise of technical

origins, one can use modulation techniques, either on the laser amplitude or

frequency, to encode and then detect the absorption at a higher frequency

and within a narrower bandwidth. Of course amplitude modulation of the

laser will result in an enhanced S/N only if the signal response is nonlinear.

Otherwise one just has a high S/N way to see that the laser’s power is

unsteady. Reduced-background detection techniques (such as polarization

and interference spectroscopy) are also often employed to suppress excessive

noise.

B. Introduction to Optical Heterodyne Detection

Before we delve into the details of modulation techniques, it is useful to first

discuss the principle of optical heterodyne detection. The reason is that

modulation detection can often be understood as a heterodyne interaction

between one optical field (the carrier) and another (a modulation sideband).

The optical power will generally have a time-dependent term if the applied

laser field is the sum from two sources, i.e., E1 tð Þ þ E2 tð Þ½ �2. For simplicity
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we have neglected important interference details by assuming the two

contributing fields to be mutually mode-matched. With E1 tð Þ ¼ E1 cos !1tð Þ
and similarly for E2 and !2, when the difference of the two applied

frequencies is within the detector’s response bandwidth, we expect a detected

photocurrent of the form i tð Þ ¼ i1 þ 2
ffiffiffiffiffiffiffi
i1i2
p

sin !1 � !2ð Þtþ i2
� �

. We refer to

the cross-term at the difference frequency as the heterodyne response. If we

had chosen to think of the field E2 as somehow different, such as a weak

field produced by an atomic/molecular sample, one can see one of the

advantages of the heterodyne approach; the scale of the beat current can be

increased by increasing the amplitude of E1, which is referred to as the

‘‘local oscillator’’ (LO) field. It is important that the S/N is not degraded by

use of a larger LO power, as discussed below.

Any real photodetector will have some output noise, even in total

darkness. If we attempt direct detection of a weak signal, the incident power

will need to be sufficiently high to overcome the detector’s intrinsic noise.

Consider the heterodyne case: now the signal-bearing light power is

represented by the cross-term between the local oscillator field and the

weak signal field, i.e., isig / E1E2. On the other hand, because E1 � E2, the

shot noise of the total photocurrent will be dominated by the LO power, i.e.,

in /
ffiffiffiffiffiffi
E2
1

p
¼ E1. It is only this noise term that needs to be adequately large to

mask the detector noise. So by merely using a stronger LO field, we can

overcome the appreciable noise produced by the amplifier circuit that

converts the photocurrent into an output voltage. Ideally then, the S/N of

the heterodyne detection depends only on the amplitude of the signal beam

(E2) and the LO amplitude is cancelled out in the final S/N ratio (see Fig. 3).

Of course, this LO power can carry laser intensity noise to the detector as

well. Any non-fundamental noise imposed on this intensity will be directly

converted into unwelcome detection noise. But typically this noise, called

‘‘technical noise’’ to identify its origin, is concentrated at lower frequencies

and arises from noise processes with ‘‘1/f ’’ frequency dependence. So an

important step toward achieving low-noise performance is to place the

information-carrying heterodyne signal at a frequency sufficiently high that

a negligible level of technical noise is carried by the LO field. This is the

usual motivation for using some form of modulation-based signal recovery

approach.

Optical heterodyne detection also plays a critically important role in

retrieving the full quantum information related to vanishingly small optical

power exiting from a cavity QED system operating in the strong coupling

regime where the critical photon number is below one. A broad detection

bandwidth is desired for a full recovery of quantum dynamics associated

with atom–cavity interactions. In this case a balanced heterodyne detection

is usually adopted to cancel out the noise associated with the LO.
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C. Motivation and Concept of Modulation:

Signal Encoding and Extraction

From a time-domain point-of-view, signal detection schemes employing

modulation (AC) methods permit comparison of two cases in quick

succession. With suitable modulation schemes, these states can represent

on-resonance and off-resonance cases, sampled in rapid succession. By

simultaneously obtaining and subtracting these two pieces of information,

one provides a signal channel with no output unless there is a resonance.

The modulation approach therefore allows efficient extraction of weak

signals from a noisy background. Lorentzian signal recovery with

modulation methods has been well documented [54,55]. In this type of

modulation spectroscopy, the modulation frequency is often chosen to be

relatively low to avoid distortions of the spectral profile by the auxiliary

resonances associated with modulation-induced spectral sidebands. How-

ever, this choice of low-frequency operation usually limits the achievable

S/N, because of the excess noise of the laser source at low frequencies. To

recover the optimum signal size, large (comparable to the absorption

resonance width) modulation amplitudes can be employed. In this case,

however, the intrinsic line shape is masked by the signal acquisition process.

On the other hand, using modulation frequencies much greater than the

width of the spectral feature under study, frequency-modulation (FM)

spectroscopy has become one of the most powerful techniques available for

sensitive and high-speed detection of weak absorption signals [56–58].

In principle, FM spectroscopy offers detection sensitivity close to that of

Eq. (6) by operating at high frequencies where the amplitude noise of the

laser source approaches shot noise. A reasonable modulation index is still

needed to recover an adequate signal. However, the linewidth broadenings

and line shape distortions associated with low-frequency modulation

processes are not present in high-frequency FM spectroscopy. Instead,

one obtains added spectral features. When scanning through an absorption

resonance, each component of the FM spectrum, which consists of a central

carrier and weaker sidebands, interacts with a spectral feature, thereby

preserving the resolution of the laser. The high bandwidth, or equivalently

speaking, a high Nyquist sampling frequency, associated with the high-

frequency modulation enables rapid signal recovery.

When received by a square-law photodiode, a pure frequency-modulated

spectrum will display no photocurrent at the modulation frequency. This is

because the two heterodyne beat signals between the carrier and either

sideband are equal in magnitude but opposite in phase. Hence the net result

is a perfect cancellation. However, the presence of an absorption feature is

revealed as an attenuation and phase shift of one or several of the FM
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components. The perfect FM balance is therefore upset, and the resultant

optical signal has an amplitude-modulated component. The photocurrent

signal can then be phase-sensitively detected using standard radio frequency

techniques, yielding an absorption or dispersion line shape, depending upon

the detection phase. The redistribution by deliberate FM modulation of

some of the carrier power into FM sidebands causes only a slight penalty in

the recovered signal size. When the modulation index � is on the order of

unity or less, the FM spectrum can be approximated by a carrier [� J0(�)]
and two first order sidebands [� J1(�)]. (Here Ji is the ith order Bessel

function.) If only the carrier is tuned to interact with a narrow sub-Doppler

resonance, then the detection process is intrinsically dispersion-sensitive.

Assuming the total probe power is still P0, the detected shot noise current

is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eB
P0ðJ2

0 þ 2J2
1 Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eB
P0

p
. The signal current arising

from the heterodyne beat between the carrier and the sidebands becomesffiffiffi
2
p

P0J0J1 ��, where � is the associated resonance phase shift. The relative

magnitudes of dispersion and absorption (� ¼ �n�!d=c and �n ¼ ���=4�,
where �n is the resonance-inflicted change of refractive index) set the

scale of the equivalent minimum detectable absorption at the shot-noise

limit:

�dð Þmin¼
ffiffiffiffiffiffiffiffi
2eB


P0

s ffiffiffi
2
p

J0 �ð ÞJ1 �ð Þ
: ð9Þ

The modulation-dependent function J0(�) J1(�) has its maximum value of

0.34 at �� 1.1. Compared to Eq. (8) for the ideal case of homodyne

detection, FM heterodyne detection suffers a factor of � 4 loss in sensitivity

for fixed total optical power. This is a small price to pay for completely

avoiding the laser’s technical noise. The S/N loss arises in part because of

the power reduction resulting from conversion of some of the main carrier

to sidebands and in part from the down-conversion of shot-noise from two

additional spectral windows by the two sidebands. Carefully executed FM

detection can often nearly reach the sensitivity limit set in Eq. (9).

D. Combining Cavity Enhancement with Modulation:

Introduction to Cavity-Enhanced FM Spectroscopy

In this and the next sections, we will describe two techniques that combine

the cavity enhancement approach with modulation techniques to reach the

shot-noise limit. These techniques improve the detection sensitivity by a

factor of 2F/�, without the additional noise factors potentially associated

with the use of an enhancement cavity. The two approaches are seemingly
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quite different, with the first one related to the frequency modulation

spectroscopy discussed above, while the second one is related to a time-

domain picture in the context of cavity field ring-down. In cavity-enhanced

FM spectroscopy [59], the on-resonance and off-resonance information is

compared at a radio frequency rate. This technique can be applied to both

linear and nonlinear (sub-Doppler resolution) spectroscopy. In AC ring-

down spectroscopy [60], two slightly different ring-down time constants are

compared, one associated with an empty cavity and the other with

additional intracavity loss. Typically the comparison rate is in the audio

frequency range. The technique is suitable for linear absorption measure-

ments. The differential measurement approach of both techniques allows

them to achieve near shot-noise limited absorption sensitivity. As will be

evident in the following discussions, the two approaches are intimately

related, through the common features of cavity signal enhancement and

technical noise rejection toward the shot-noise limit.

As one considers how to probe an external cavity signal with FM

techniques, the first approach that comes to mind is to lock the laser

frequency to a cavity resonance and then modulate that cavity mode

around the desired molecular resonance while monitoring the cavity

transmission. This approach represents a simple lock-in derivative line

shape recovery process. In order for this method to be successful, it is

important to have a tight frequency lock loop between the laser and the

cavity because any laser frequency noise relative to the cavity will be

converted to amplitude noise. To implement this scheme, a piezoelectric

transducer (PZT) is mounted on one of the cavity mirrors. This assembly

is used to modulate the cavity length, and the laser tracks the modulation.

The modulation frequency is usually limited to the audio range due to

mechanical resonances and roll-off in the frequency response of the PZT

and mirror assembly. Depending upon the laser’s amplitude noise spectral

distribution, the attainable modulation frequency may be too low to reach

shot-noise limited detection. Using a solid-state Nd:YAG laser locked to a

high-finesse (F¼ 100,000) cavity (corresponding to a �1mHz relative

linewidth), a cavity dither at 500Hz, and lock-in detection, an absorption

detection sensitivity of 3� 10�11 (6.4� 10�13/cm) has been measured at 1 s

averaging [61].

To benefit from the full noise-reduction advantages of FM spectroscopy,

one needs to introduce a high-frequency phase-modulation of the probe

field, usually much larger than the resonance linewidth under study. In

addition to the laser-cavity locking issue, another obstacle remains; namely,

the cavity bandwidth limit. Specifically, FM sidebands at a high frequency

are needed to eliminate low-frequency laser amplitude noise, but at the same

time the cavity must respond to the sidebands in exactly the same manner as

20 Jun Ye and Theresa W. Lynn [IV



it responds to the carrier. This will reduce the frequency-to-amplitude noise

conversion process. This goal can be realized by frequency modulating the

input laser beam at exactly the free-spectral range of the cavity. We then

detect and demodulate the cavity-transmitted light at the modulation

frequency. Any small residual frequency variations of the laser will still lead

to some amplitude fluctuations and phase shifts of the transmitted carrier,

but these will also lead to exactly the same amplitude fluctuations and phase

shifts of the sidebands, which are transmitted on nearby cavity axial orders.

So the transmitted light still accurately represents an FM spectral triplet,

with minimal AM conversion caused by the relative laser/cavity frequency

jitter. Thus the noise level can approach the intrinsic AM noise level of the

laser at the FSR frequency.

E. Operation Sensitivity of NICE-OHMS

Figure 4 shows the case where the central component is used to detect the

intracavity molecular resonance, illustrating how the sub-Doppler mole-

cular dispersion causes an unbalance of the laser FM spectrum by a phase

shift on the carrier component. Initially, all the FM components coincide

with their respective cavity modes. When the central cavity mode is tuned

over an atomic/molecular resonance, the mode frequency will be pulled by

FIG. 4. The optical spectrum and the detection principle for NICE-OHMS: !L denotes the

laser frequency and � is the phase-modulation frequency that matches the cavity FSR. The

empty cavity resonance modes are denoted by !0 and !0	�. The original FM symmetry

is upset when the molecular dispersion shifts the cavity resonance (!0) by !m.
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the additional phase shift attributable to the intracavity dispersion. After the

phase sensitive demodulation, the detector viewing the transmitted light will

generate a dispersion signal in the RF beat. We refer to this technique

as (laser frequency-) noise-immune, cavity-enhanced, optical-heterodyne

molecular spectroscopy (NICE-OHMS) [34,59,61,62]. This modulation and

detection scheme makes it possible to use a high-finesse cavity without

introducing additional noise.

To estimate the sensitivity associated with NICE-OHMS, we notice that

the cavity-enhancement effect applies only to the signal; no additional noise

source has been introduced. Therefore the noise-equivalent absorption

signal is that of Eq. (9) for ordinary FM spectroscopy, divided by the cavity

enhancement factor (2F/�). The power in the denominator should be that of

the cavity transmitted light, Pt.

This argument can be supplemented with a more rigorous proof.

Suppose the molecular dispersion changes the intracavity refractive

index by �n, with the shift of cavity resonance given by (�n�!0). Light
going through the cavity will thus acquire an extra phase shift of

� ¼ arctan �n � !0=�ð Þ, where � is the cavity HWHM (measured in

radians). Following the previous treatment and under the assumption of

a small �, we derive

� � �n � !0=� ¼
�

4�
�
!0

�
¼ c

2�

�d

d
¼ FSR

�
� �dð Þ ¼ 2F

�

�d

2

� �
: ð10Þ

The signal amplitude is
ffiffiffi
2
p

PtJ0J1 � � and the shot noise limit is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eB
Pt

p
.

The minimum detectable absorption at S/N¼ 1 is thus,

�dð Þmin¼
�

2F

ffiffiffiffiffiffiffiffi
2eB


Pt

s ffiffiffi
2
p

J0 �ð ÞJ1 �ð Þ
: ð11Þ

A numerical example follows. Suppose the modulation index, �, is 0.5,

and the photodiode responsivity, 
, is 0.85A/W. Also, take the optical

power, Pt, to be 5mW and the detection bandwidth, B, to be 1/2� Hz,

which corresponds to a 1 s time constant. Then, for a single-pass cell, the

noise-equivalent integrated absorption, (�d )min, is 2.2� 10�8. Under the

same conditions, a cavity with a finesse of 100,000 improves the sensitivity

to 3.5� 10�13. As discussed below, a noise-equivalent sensitivity of

5.2� 10�13 of an integrated absorption at 1 s averaging has been achieved.

This corresponds to an absorption of 1� 10�14/cm for a cavity length of

50 cm [61].
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F. Implementing a NICE-OHMS Experiment:

Signal Line Shape, Size, and Sensitivity

An experimental schematic is shown in Fig. 5. Two electro-optic phase

modulators are used to impose two sets of FM sidebands on the laser beam.

Modulation at a low frequency, �, is detected in the cavity-reflected signal

and is used to produce a servo error signal for locking the laser to the cavity.

Sidebands at a higher modulation frequency, � are set to match the cavity’s

free-spectral range (FSR) and are used to probe the intracavity molecular

resonance. This signal is detected in transmission, with adequate optical

isolation between the cavity and the photodiode. To study the resonance

signal line shape and width, precise scanning capability is important. A

frequency-offset locking loop is implemented to permit laser frequency

sweeps at an RF resolution. During the scan, the cavity FSR changes

slightly. To maintain the noise-immune property, the sideband frequency

should track this changing FSR.

As shown in Fig. 4, the laser spectrum has three major components: the

carrier at !L and two phase-modulation sidebands at !L	�. Each of these

three components has its own two sidebands located at 	 � away from itself,

namely at !L	 � !Lþ�	 � and !L��	 � which are not shown in Fig. 4.

The three corresponding cavity resonant peaks are denoted as !0 and

!0	FSR, with FSR¼�. The beam reflected from the cavity carries all

these frequency components and is detected by a photodetector. Demodula-

tion at frequency � produces the servo error signal used to lock the laser

frequency to the narrow-linewidth cavity. Because of the additional modu-

lation, this locking error signal now has three contributions. These are

FIG. 5. General schematic of the NICE-OHMS spectrometer, showing the major components

of the laser/cavity locking, detection of the transmitted FM triplets, and the precision tuning

control.
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the two sideband resonances of strength J1(�)
2 near !0	�, and the carrier

contribution J0(�)
2 near !0. Together, these additively define the lock point.

When none of the laser frequency components is affected by a resonance of

the intracavity molecules, the servo error signal keeps the carrier, !L, and its

two sidebands, !L	�, on the cavity resonance, !0 and !0	�. Thus, the

transmitted beam has the original, perfectly balanced FM spectrum because

the carrier (!L) and the sidebands (!L	�) experience the same phase shifts

and amplitude attenuations. However, when a molecular resonance affects

any of these three components, the interaction converts part of the FM into

AM, which is then detected by the photodetector viewing the transmitted

light.

For example, as shown in Fig. 4, when a molecular resonance is near the

cavity resonance !0 the carrier will experience a modified intracavity

refractive index, which has been changed by �n because of the molecular

absorption. As a result, !0 is shifted by !m¼�!0 �n. If we neglect for the

moment the servo contributions from the two sidebands, then the carrier !L
could be kept at the new cavity resonance center (!0þ!m). On the other

hand, the sidebands, after being shifted to the new positions !L	�þ!m,

will no longer line up with cavity resonances. The resulting phase shifts then

lead to an AM signal recovered by the detector viewing the transmitted

light. In practice, the two sidebands also make limited contributions to the

overall laser-cavity locking error signal and they will partially offset the

contribution provided by the carrier. The net result is that the laser

frequency will be shifted back by its servo in the amount of x¼ 2!m J1(�)
2,

where x is derived from the requirement that x J0(�)
2� 2(!m� x)J1(�)

2¼ 0.

Here we have used the approximation that J0(�)
2þ 2 J1(�)

2¼ 1, valid for

the interesting range �
 1. However, this shift of locking point causes little

effect on the signal detection because it is very small (<100Hz) compared

with the cavity linewidth, which is typically a few tens of kHz.

Taking into account the nonlinear molecular phase shift � and the

additional phase shift �x due to the small change in the locking offset, we

can express the field of the cavity-transmitted light in the following form,

EtðtÞ ¼ Etð0Þ½J0 exp½�ið!t� �xÞ� þ J1 exp½�iðð!þ�Þtþ �� �xÞ�
� J1 exp½�iðð!��Þtþ �� �xÞ�� ð12Þ

We can see that the locking offset phase shift (exp[�i�x]) is a common factor

for all three contributions and can be factored out. The signal current at the

modulation frequency � can be readily derived as

is / J0 �ð ÞJ1 �ð Þ sin �ð Þ sin �tð Þ � J0 �ð ÞJ1 �ð Þ� sin �tð Þ: ð13Þ
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The signal has a pure dispersion line shape and is independent of the laser/

cavity locking point. An important aspect of this line shape is that it

contains only the odd-symmetric response �� sin(�t), and so the line shape

and the apparent line center position are independent of any less than

optimal setting of the RF detection phase at �.

To reject further noise and minimize baseline drift, a small dither can be

applied on the cavity resonance (with the modulation amplitude matching

the width of molecular resonance) at a low audio frequency. This allows a

lock-in detector to process the demodulated RF signal from the output of

the double-balanced mixer that is driven at frequency �. Hence, the line

shape from the RF channel, resulting from modulation detection of an

isolated dispersion resonance, approximates the derivative of a dispersion

profile [55]. Indeed, a theoretical line shape fits the experimental data rather

well, as shown in the bottom curve of Fig. 6.

As explained earlier, another way to detect the intracavity signal is by

simply dithering the cavity resonance onto which the laser frequency is

locked. Lock-in detection is applied to the transmitted light. We refer

to this low-frequency operation as DC detection, to differentiate it

from the high-frequency RF approach of NICE-OHMS. The line shape

FIG. 6. Sensitivity measurement of the NICE-OHMS technique. The upper graph shows the

size of the saturated absorption signal while the lower graph shows the corresponding S/N

obtained via NICE-OHMS detection. The noise equivalent detection sensitivities (normalized to

1s time constant) are 3� 10�11 for cavity dither detection and 5.2� 10�13 for NICE-OHMS.
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measured by DC detection follows the original Wahlquist formula for a

modulation-broadened, derivative line shape [54,55]. Figure 6 shows

the experimental sensitivity achieved using 1.8mTorr of gaseous C2HD.

The transition under study is the (2þ 33) P(5) overtone line of C2HD.

The cavity finesse here is 100,000 and the intracavity power � 300W,

giving a saturation parameter of � 1.75 and a saturation peak contrast of

13.2%. The single-pass (46.9-cm-long cavity) linear absorption is about

3� 10�8. Therefore the absolute level of saturated absorption by the

intracavity molecules is 4� 10�9. This is verified by the DC detection of

the cavity transmission, shown in the top graph of the figure. With the

laser locked to the cavity with a relative linewidth of �1mHz, the simple

cavity-dither and lock-in detection of the transmission yields a S/N

(amplitude/rms noise) of 130 at 1 s averaging. This corresponds to a

detection sensitivity of 3� 10�11 at 1 s. The corresponding S/N from

NICE-OHMS detection is 7700 with a 1 s time constant, as shown in the

bottom graph of the figure. This translates into a noise-equivalent

detection sensitivity of 5.2� 10�13 at 1 s averaging, �1.5 times worse than

the calculated shot-noise limit. The NICE-OHMS result is about sixty

times better than the straightforward dither detection, because of its higher

modulation frequency and its insensitivity to the laser frequency noise

relative to the cavity. We emphasize that the gain in sensitivity by NICE-

OHMS over simple dither detection is even more impressive when the laser

is not well stabilized to the cavity. This high detection sensitivity of the

NICE-OHMS method has opened up many possible spectroscopic

applications, especially for studies of weak, high-order vibration overtone

transitions of various molecules of interest. For example, weak transitions

of C2HD [59], C2H2 [62,63], CO2 [61], O2 [26], CH4 [64], CH3I [65], and

H2O in the near infrared regions have already been investigated using the

NICE-OHMS approach.

Comparing NICE-OHMS and DC signals gives us an appreciation for the

noise-immune nature of the NICE-OHMS detection, as shown in Fig. 7.

This figure shows signals collected using the two techniques under two

different laser/cavity lock conditions. In one set of experiments, the laser

and cavity were tightly locked, and in the second, the laser/cavity lock was

deliberately set to be loose and even oscillating. We can now compare the

recovered S/N ratios before and after the lock was sabotaged. The DC

detection of the intracavity molecular absorption (upper row) is shown to be

critically dependent upon the performance of the laser/cavity lock. (A fast

laser/cavity frequency-lock servo was used for the graphs obtained in the left

column while a slow and noisy servo was used for those in the right column.)

However, increased laser frequency noise relative to the cavity has little

effect on FM detection (bottom row).

26 Jun Ye and Theresa W. Lynn [IV



There is an optimum value of the intracavity sample pressure for the

maximum signal size. An increase of pressure raises the linear absorption,

but at the same time reduces the level of saturation because of the pressure-

broadening of the homogeneous transition width. For fixed cavity

parameters, change of pressure also influences the input power coupling.

A useful model of this behavior is based on an axially averaged field picture

[66,67] in which the moving molecules interact with the average standing

intracavity field. At line center, the counter-propagating waves interact with

the same molecules, thus causing the absorption coefficient to be reduced

from the off-resonance value of �0=
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ S
p

to �0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2S
p

. Here �0 is the

linear absorption coefficient at the center of the Doppler profile and S is the

saturation parameter. The observed nonlinear signal is thus proportional to

�� ¼ �0ffiffiffiffiffiffiffiffiffiffiffiffi
1þ S
p � �0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2S
p : ð14Þ

To perform detailed calculations on signal size, we use Eqs. (2) and (3)

to determine the cavity transmission, along with the following useful

FIG. 7. Demonstration of the noise-immune property of the NICE-OHMS technique. The

C2HD (2þ 33) P(5) resonance signal is recovered by both cavity-dither lock-in (DC) detection

and the NICE-OHMS technique, under the conditions of a tight laser/cavity lock (left column)

and a poor lock (right column).
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relations: �n¼ð���Þ=ð4�Þ, �0¼�p �P, S¼ I=Isat, and Isat¼ I0�ðGTþG0 �PÞ2.
Here �n is the refractive index change caused by the saturated molecular

resonance; �p is the molecular absorption coefficient per unit length and unit

pressure; P is the gas pressure; Isat is the required saturation intensity; �T is

the residual linewidth, at zero pressure and zero power attributable to

transit time broadening; �0 is the pressure broadening coefficient; and I0
is a power-scaling constant that can be determined experimentally. The

natural linewidth (�kHz) of a vibrational overtone transition is negligible in

a saturation calculation because transit time broadening at room

temperature is typically a few hundred kilohertz for a normal cavity mode

waist size. Under the current settings of cavity finesse and C2HD overtone

transition strength, the optimal pressure is � 10mTorr.

G. NICE-OHMS Application: Highly Stable Optical Frequency

Standards and Molecular Dynamics of High-Vibration States

The NICE-OHMS technique can provide information about the line centers

for weak molecular lines in the visible wavelength region at metrological

precision. The narrow linewidths associated with saturated line shapes are

especially useful, as the line centers are narrowly defined, which improves

the long-term stability of a light source locked to such a transition.

Moreover, the high S/N ratio improves short-term stability, permitting more

effective comparisons between various frequency standards. For example,

although the transition strength of the C2HD overtone line is � 1 million

times weaker than the I2 electronic transition commonly used for laser

frequency stabilization at 532 nm, the obtained S/N for C2HD via NICE-

OHMS is only slightly smaller than that of I2. With a narrower linewidth,

the resultant frequency stability of a C2HD-based system becomes

comparable to that of the I2-stabilized system [68,69].

The NICE-OHMS spectrometer provides laser frequency discrimination

information relative to both the cavity resonance and the molecular

transition. It is thus an ideal system with which to achieve simultaneously

good short- and long-term frequency stabilizations. We should note that

although the required laser/cavity locking is much more relaxed for NICE-

OHMS than for direct cavity transmission detection, the laser linewidth

still needs to be narrowed so that a stable optical power is effectively

coupled into the cavity. For metrology purposes, this laser/cavity locking

loop serves as the short-term frequency stabilizer. Modern laser cavity

stabilization loops can routinely track the laser frequency to the cavity

resonance to within a few millihertz. The vibrational noise and long-term

drift in the cavity can be suppressed by stabilizing the cavity to an
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intracavity molecular resonance. The NICE-OHMS signal is intrinsically

dispersive when the molecular resonance is probed by the carrier of the FM

triplet. Used for locking, this could basically eliminate the influence of the

local oscillator frequency drift on the recovered line center. In practice it is

necessary also to dither the cavity length and make a second-harmonic

signal recovery of the RF mixer output. This is partly to suppress the

baseline-offset problem associated with the imperfect FM modulation at the

FSR frequency. Another important issue concerns the final line shape under

the conditions of FM with a residual AM part (RAM) [70,71]. The effect

of RAM is to add an even-symmetric absorption-phase component to the

originally pure dispersion line shape. Unfortunately, this line shape

alteration caused by RAM cannot be corrected by the cavity-dither process.

To achieve the best stabilization results, it is crucial that the FM has a zero

(or at least a small constant) residual AM.

To demonstrate that NICE-OHMS is useful for laser frequency-

stabilization, a Nd:YAG laser at 1.064 mm stabilized on an overtone

transition of C2HD is compared against a frequency-doubled Nd:YAG/I2
reference system [68]. (The 532 nm-stabilized laser has a stability �5� 10–14

at 1 s, as determined from beating experiments with two I2-stabilized

systems.) Figure 8 shows the counted beat frequency versus time. The drift

is � 5Hz/h and has a 60Hz frequency noise at 1-s counter gate time, in

agreement with the S/N available from the C2HD resonance at 1.064 mm.

One representation of frequency stability is the Allan variance [72], which

is determined by comparing adjacent frequency measurements and then

averaging over the whole data set. For a set of N frequency measurements,

fn, each with a sampling time �, the corresponding Allan variance is defined

as �2y �ð Þ ¼ 1=ð2 N � 1ð ÞÞ
PN�1

n¼1 fnþ1 � fnð Þ2. The Allan variance permits

one to separate and isolate different noise processes based on their
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FIG. 8. Stability of beat between I2-stabilized and C2HD-stabilized Nd:YAG lasers. Allan

deviation is determined from the beat record. The frequency noise of the beat is still limited

by the C2HD system, which is about three times worse than the I2 system. However, the

strength of the C2HD transition is about one million times weaker than the I2 transition.
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characteristic time scales. Rather than the variance, it is customary to plot

its square-root, called the Allan deviation. In the short-time domain, the

Allan deviation typically displays a slope of 1=
p
�, where � is the averaging

time. This is because the main contribution to the fast noise originates

from white frequency noise, for example, shot noise. One sees from this

argument that the level of this short-term deviation is controlled by the

ratio between the frequency discrimination linewidth and its S/N. Figure 8

also shows the Allan deviation determined from the beat record of the two

stabilized lasers. The frequency deviation is normalized to the optical

carrier frequency, i.e., 282 THz (1.064 mm). The Allan deviation of

�y ¼ 2� 10�13=
ffiffiffi
�
p

improves to 6� 10�15 at a longer integration time

(>1000 s). This frequency stability, achieved by locking to an extremely

weak reference transition, is a direct result of the spectrometer’s high

detection sensitivity. Notice that the C2HD-stabilized system shows

only three times more frequency noise than the I2 system, which is

notable because the I2 transition strength is approximately a million times

stronger.

One approach to reducing some of the systematic shifts of the reference

frequency is to slow down the motion of the target quantum absorber,

thereby reducing the second order Doppler effect. Slower speeds also imply

longer interaction times. Slower molecules give a narrower linewidth

because the natural lifetime of vibrational transitions usually far exceeds

(more than 300 times, for the acetylenes) the transit-controlled interaction

time, limited by the laser field dimensions. While effective schemes for

molecular cooling and trapping are emerging, optical selection of slow

molecules based on interaction time has been actively pursued since the late

1980s [73–75]. The idea is this: the homogeneous linewidth originating from

collisional broadening can be reduced by lowering the gas pressure until the

mean-free-path of molecules becomes much larger than the transverse

dimension of the optical field. This is referred to as the transit-time regime.

To optically select slow molecules, a low optical power is necessary so that

the low Rabi frequency leads to appreciable saturation only for the slowest

molecules. The observed signal is thus dominated by interaction with the

slowest molecules and consequently the effective interaction time is

increased, limited finally by saturation and residual pressure broadening.

Unfortunately, this avenue toward linewidth reduction is expensive in S/N,

scaling approximately according to the fifth power of the instrumental

resolution increase.

In the free-flight regime, molecules with the mean thermal velocity cross

the laser beam without suffering any collision. In other words, if we define

the collision-broadened homogeneous linewidth (the half-width at half

maximum) as �p and the transit-time linewidth as �T, then �p � �T, with
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�T¼ (�/4) hV? i/w0, where w0 is the laser beam-waist radius and hV?i is the
mean transverse velocity. The situation changes for the slowly moving

molecules. In fact, the slowest molecules are those with transit times longer

than the inverse of the collisional linewidth �p. Therefore these molecules

are in a collisional regime and they have a constant and velocity-

independent saturation parameter S, controlled primarily by the collisional

broadening,

S ¼ �
2E2

�h2�2
p

, ð15Þ

where � is the transition dipole moment and E is the optical field amplitude.

Faster molecules with transit time shorter than 1/�p are in a free-flight

regime, and their saturation parameter depends on their transverse velocity.

Defining � as the interaction time (�4w0/V?), then S equals unity when

�E=�hð Þ� ¼ �. The optical power required to saturate molecules with

transverse velocity V? is thus

Power S¼1ð Þ ¼
c"0
2

E2
� �

�w2
0=2 ¼

c"0
2

��h

�

V?
4w0

� �2�w2
0

2
¼ �

3

64

�h2c"0
�2

V2
?: ð16Þ

Interestingly, the saturation power is independent of the optical field mode

size in the free-flight regime. However, the necessary saturation power does

increase as the square of the transverse velocity, and it can be vastly

different for slow and average thermal molecules because it has been

assumed that �p� �T. In short, a sufficiently low gas pressure can be used

to create a free-flight regime, and a low power laser beam then optically

selects for the slow molecules. The selection is based on the saturation effect

in the recovered resonance signal. The resulting signal linewidth becomes

strongly inhomogeneous, with molecules from different transverse

velocity groups contributing different intensities and widths. Slow

molecules will dominate the contribution to the signal amplitude, and

the width is essentially the homogeneous linewidth �p. Faster moving

molecules will see a reduced saturation and will mostly contribute to the

wings of the resonance. The width is caused by transit effects and increases

with velocity.

This concept has been demonstrated using NICE-OHMS. In the

experiment, a <2mTorr sample gas was used, and the mean-free-path of

molecules is � 30 times longer than the transverse optical field dimension.

The cavity input power was reduced by almost two orders of magnitude

from normal operation. Although the intrinsic transition width associated
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with the (2þ 33) P(5) line of C2HD is on the order of kHz, the observed

linewidth (FWHM) is 705 kHz under normal experimental conditions

similar to those of Fig. 6. This linewidth includes contributions from the

power-saturation and pressure-broadenings of the 270 kHz transit time

linewidth. Working with slow molecules Fig. 9 shows a resonance linewidth

of � 20 kHz. This is thirteen times narrower than that set by the room

temperature transit-time-limit and is mainly limited by the relatively high

pressure (1.8mTorr). The selected molecules have a temperature of �1.8K.

The S/N ratio is vastly reduced, as the optical power is much smaller than

usual and the majority of molecules do not contribute to the observed

saturation signal. In fact, compared with the number of molecules

participating in normal saturation spectroscopy, the slow molecule selection

process has selected only a fraction of 0.75%. At present the limited S/N

associated with the low power has prevented us from taking full advantage

of this narrow linewidth. With an improved system this approach will enable

us to access the information of free molecules with minimized second order

Doppler shift, thereby creating an optical frequency standard of potentially

high accuracy.

FIG. 9. With low power and low gas pressure, optical selection of slow molecules produces

a linewidth thirteen times below the room-temperature transit-time-limit.
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V. Weak Absorption Measured by Field

Decay (Time-Domain)

This section discusses cavity-enhanced methods for measuring very weak

absorptions in the time domain. In these measurements, two cavity modes,

one probing the empty cavity and the other probing intracavity absorption,

are present simultaneously but their intensities are switched temporally

out of phase, with one mode decaying and the other rising, when viewed in

cavity transmission. Heterodyne detection between the two modes reveals

the dynamic time constants associated with the empty cavity and the

intracavity gas absorption. Quick, differential measurement eliminates low

frequency technical noise. This is essentially an improved version of the

cavity ring-down technique and it yields a 1� 10�10 absorption sensitivity

using microwatt-level laser powers.

A. Introduction to Cavity Ring-Down Spectroscopy

and Overview of the Field

Inside a high-finesse cavity, light completes many round-trips, and this

effectively increases the path length by (2F=�). Cavity ring-down spectros-

copy (CRDS) exploits this cavity-enhancement property by measuring

the decay of the intracavity field during these many round-trips. Because

the decay rate increases when an absorber is placed inside the cavity, this

method can be used as a spectroscopic tool. For example, an unknown

absorption coefficient is determined by comparing the known mirror losses

to the cavity losses in the presence of the absorber. Ideally, the mirror losses

should be of the same order of magnitude as the absorption level to be

measured, because this makes the ‘‘background’’ comparable to the ‘‘signal’’

and increases the measurement sensitivity. Because CRDS measures the

decay dynamics after the field has built up inside the cavity, it largely

eliminates the technical noise of the incident radiation field.

However, as commonly implemented, CRDS has two shortcomings. The

first is that CRDS, in its ordinary form, is a long time-interval measurement.

Two decay-time measurements are made, one on the empty cavity decay and

the other on cavity plus sample. The difference between the two measured

decay rates contains the desired intracavity absorption information.

However, the time between the two measurements allows slow drifts and

other technical noise to contaminate the data. The second problem is that

technical noise is the dominant noise source in the signal beyond the point

where the field’s shot noise equals the instrument’s technical noise. To

overcome this limitation, a heterodyne technique was developed [76] that
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superimposes a large local oscillator field onto the decay field so that the

resultant beat signal can always be shot-noise limited. However some form

of modulation strategy is still needed to achieve a rapid differential

measurement.

With a modulation technique to compare signal against background at

short time intervals, one can accurately subtract background noise from the

useful signal. In the context of CRDS, two decay constants are to be

compared in quick succession, one associated with the empty cavity loss

(off-resonance from the intracavity gas sample) and the other associated

with the total intracavity loss. This concept can be realized if two different

optical fields are coupled into two cavity modes, one mode centered on the

molecular transition and the other far away from it. With the aid of a quick

switching between the two frequency components and a subsequent

heterodyne detection for their product, it is possible to reach the

quantum-noise limited detection sensitivity to within a factor of 4 [60].

B. Concept of AC Ring-Down—Separating the Ring-Down

Fields Associated with Cavity and Molecules

Figure 10 illustrates the basic scheme of the alternating-constant (AC) ring-

down method. A continuous-wave (cw) laser beam is split by two acousto-

optic modulators (AOMs) into two beams with a frequency offset such that

both beams resonate with respective cavity modes simultaneously. The

frequency offset is large enough so that only one beam can be tuned onto the

intracavity Doppler-limited molecular resonance at a time. The two beams

are spatially combined and mode-coupled into the cavity. However, the two

optical beams are switched by their respective AOMs, such that only one

beam at a time is present at the cavity input. Despite the switching, a

detector viewing in cavity reflection is able to maintain the laser/cavity lock

using the FM technique [77]. Inside the cavity there is one decaying mode

and one rising mode. That is, on the scale of one ring-down time constant,

the cavity mode that is being coupled in will rise exponentially while the

other mode, with its input switched off, will decay exponentially. The

heterodyne beat waveform between the two modes is detected in

transmission. Demodulation against the known carrier frequency then

yields the heterodyne beat amplitude, which contains information on the

dynamic variation of both modes. In the case of an empty cavity, the beat

amplitude waveform remains unchanged at neighboring switching cycles.

However, when a mode is tuned to a molecular resonance, the system

exhibits two slightly different time constants. The beat waveform becomes

asymmetric between the adjacent cycles, and the difference is related to the

intracavity absorption. The period of a switching cycle can be chosen to
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roughly match the field decay time (1/e) of the empty cavity. This technique

thus offers a quick comparison of on-resonance and off-resonance

information and substantially suppresses technical noise. Because each

ring-down waveform is measured during a switching period that is on the

order of the 1/e field decay time, shot noise dominates throughout the signal

acquisition.

To expand the foregoing discussion, consider the following theoretical

model for this technique. Suppose the round-trip loss of the empty cavity is

Lcav, the round-trip absorption of the intracavity medium is 2�d, and the

round-trip time of flight within the cavity is tround-trip. For a cavity mode that

is far detuned from the sample resonance, the characteristic time constant

associated with the mode dynamics is given by

�cav ¼
2tround-trip

Lcav

: ð17Þ

We note that this is the 1/e decay time of the field, a relevant quantity

because the heterodyne signal is proportional to the product of the two

FIG. 10. Experimental set-up for switched heterodyne ring-down spectroscopy. The two

AOMs provide the necessary frequency offset between the two cavity modes and are switched

out-of-phase. Both beams are stabilized to their respective cavity resonance modes. The

heterodyne beat between the two modes at the cavity transmission is demodulated against

the known carrier frequency to produce the decay signal. PD: photodiode; APD: avalanche

photodiode; PBS: polarized beam splitter.
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fields. For the mode that is tuned to the absorption, the decay time constant

becomes

�abs ¼
2tround-trip

Lcav þ 2�d
: ð18Þ

Following the intensity-switching scheme of Fig. 10, let us assume that

during the interval [0, �t/2], mode 1 (E1) of the empty cavity is switched on,

while mode 2 (E2), which sees the additional intracavity absorption, is

switched off. The two field amplitudes evolve as

E1 ¼ c1½1þ expð��t=2�cavÞ � expð�t=�cavÞ�,
E2 ¼ c2 expð�t=�absÞ ð19Þ

Here c1 and c2 are amplitude coefficients for E1 and E2, respectively. In the

next half cycle, [�t/2,�t], we reverse the two fields such that mode 1 is

switched off and mode 2 on. The product of the two field amplitudes is what

we detect in the demodulated signal of the cavity transmitted heterodyne

beat. If we compare the signal of the two neighboring half-cycles, we obtain

the absorption-dependent signal in the following form:

E1E2ð Þ 0,�t=2½ �� E1E2ð Þ �t=2,�t½ � ¼ c1c2 1þ e�ð�t=2�cavÞ� �
e�ðt=�absÞ

�

� 1þ e�ð�t=2�absÞ� �
e�ðt=�cavÞ�:

ð20Þ

To determine the fundamental limit of sensitivity obtainable by this

method, suppose the two modes have the same amplitude coefficients,

c1 ¼ c2 ¼
ffiffiffiffiffiffi
P0

p
, in transmission, and the light is converted to a photocurrent

according to i ¼ 
� P, where 
 is as before the detector responsivity. The

demodulated beat current is 
� 2E1E2=
ffiffiffi
2
p

. For simplicity of presentation,

we take the small absorption limit, �cav � �abs, and assume�t=�cav � 10. The

difference signal of Eq. (20) becomes

isignal � 

2ffiffiffi
2
p P0 e�ðt=�absÞ � e�ðt=�cavÞ

� 	
¼ �


ffiffiffi
2
p

P0e
�ðt=�cavÞ 1� e�t ð1=�absÞ�ð1=�cavð ÞÞ� 	

¼ �

ffiffiffi
2
p

P0

1

�abs
� 1

�cav

� �
� t� e�ðt=�cavÞ:

ð21Þ

Because the beat amplitude reaches a maximum when E1 ¼ E2, we have

exp �t=�cavð Þ � 1=2, and t ¼ �cav ln 2. Using Eqs. (17) and (18), we obtain

isignal ¼ �

ffiffiffi
2
p

P0�cav
ln 2

2

2�d

2tround-trip
¼ �
P0

ln 2ffiffiffi
2
p 2�d

Lcav

: ð22Þ
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The shot noise produced by the photocurrent, iDC ¼ 
�2
ffiffiffiffiffiffi
P0

p� �
=2

� �2¼

P0=2, is inoise ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eB� 
P0=2
p

. The resultant S/N is thus,

isignal

inoise










shot
noise

¼
ffiffiffiffiffiffiffiffi

P0

eB

r
ln 2ffiffiffi
2
p 2�d

Lcav

: ð23Þ

To find the noise-equivalent sensitivity of single pass integrated absorption,

we set S/N¼ 1, and obtain

�dð Þmin¼
1

ln 2

ffiffiffiffiffiffiffiffi
2eB


P0

s
Lcav

2
¼ 2

ln 2

ffiffiffiffiffiffiffiffi
2eB


P0

s
�

2F
: ð24Þ

Compared to Eq. (8), we see that except for a numerical factor of � 3, shot

noise limited AC ring-down spectroscopy provides a detection sensitivity

enhanced by the familiar factor of (2F/�) over the fundamental limit of

direct absorption measurement.

To relate the model to experimental observations, Fig. 11 visualizes

switching results obtained from Eqs. (19) and (20). The switching period,

�t, is chosen to be 4�cav, and the time axes have been normalized to �cav.
In the case of an empty cavity, shown in the right column, the switched

waveforms of mode 1 and mode 2 are totally symmetric, resulting in an

equivalent signal of the beat amplitude during adjacent half-cycles; thus the

difference gives a zero baseline. When mode 1 and mode 2 see different

intracavity loss, as shown in the left column of the figure, there is a clear

asymmetry in the heterodyne beat amplitudes between the adjacent half-

cycles. The differences, as plotted in the bottom curve, show the level of

additional absorption. In this case, the sample absorption is 10% of the

empty cavity loss.

C. Experimental Results of AC Ring-Down Spectroscopy

The concept discussed in the preceding section has been demonstrated in the

measurement of rovibrational transitions of acetylene. The experiment used

a Yb:YAG laser. The transition involved was the 33 R(29) overtone

resonance of C2H2, located at 1031.6528 nm, with an absorption coefficient

of 4� 10�6 (Torr � cm)�1. In the 46.9 cm long cavity with a finesse of 90,000,

a few milliTorr (1 Torr¼ 133 Pa) of gas was typically used, giving an

adsorption level of 1� 10�6. The beam switching frequency was 1.4 kHz,

corresponding to �t ¼ 714 ms. The cavity transmission was received by an

avalanche photodiode (APD), and the beat signal was sent to an RF
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spectrum analyzer for demodulation. The frequency reference of the RF

spectrum analyzer was connected to the RF signals used to drive the AOMs.

In the linear amplitude display mode, the video output of the spectrum

analyzer in zero-span-mode provides a phase-insensitive demodulation for

the heterodyne beat. To measure the empty cavity finesse, both mode 1 and

mode 2 were tuned out of the molecular resonance. The experimental results

were in excellent agreement with the model presented above.

Mode 2 is then tuned to the center of the acetylene resonance, and the

ring-down waveform becomes clearly asymmetric in the neighboring half

cycles. Figure 12 shows a set of experimental data where intracavity gas

pressure was varied to generate four different intracavity absorption levels

(expressed in terms of single-pass in the graph). The respective ring-down

FIG. 11. Comparison of the demodulated ring-down curve between the empty cavity (right

column) and the cavity with additional absorption (left column). The switching period

�t ¼ 4�cav, and the time axes are normalized to �cav. Shown from top to bottom are the

switching dynamics of mode 1, mode 2, their product (beat), and the difference signal between

the neighboring half cycles.
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FIG. 12. Demodulated heterodyne beat amplitudes between the two switched cavity modes

(left column) in the presence of intracavity absorption (labeled in the graph). Shown in the right

column is the absorption signal obtained by differencing the beat amplitudes in the adjacent

half cycles.
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beat waveforms are shown in the left column of the figure. The absorption

data (shown in the right column) were produced in the following way. First,

a copy of the original data was shifted by a half switching cycle along the

time axis. The differences between the original data and the shifted data

gave the absorption signals. With a single pass absorption of 1.7� 10�6, the

absorption sensitivity normalized to 1 s averaging time was 1.6� 10�10. In

steady state (no switching), each mode has 3 mW (P0) in the cavity

transmission. Given an 
 for the APD of 0.3A/W, the shot-noise limited

sensitivity is � 1.2� 10�11 at 1 s averaging. However, because the APD has

an excess noise factor of � 3 the expected minimum absorption sensitivity

was � 4� 10�11, which is within a factor of 4 of the experimental results.

Further improvement of the system includes the use of faster switching

cycles and the replacement of the APD with a sensitive P-I-N diode in a

resonant matching circuit. At present the switching frequency is limited by

the locking loop between the laser and the cavity. After all, the sideband

locking system also uses the heterodyne principle, in this case the beat is

between the field of the direct reflection off the cavity input mirror and the

field leaked out from the cavity storage. If the mode is switched too fast, the

cavity field does not have sufficient time to establish itself as the frequency/

phase reference for the incident instantaneous laser field to compare against.

An alternative is to stabilize the laser on the cavity with a third mode,

completely away from the molecular resonance and independent of the

other two modes. The third mode can be left on continuously to maintain

lock while the switching can go on as before between the first two modes.

The heterodyne detection RF system can conveniently filter out the

contribution from the third mode. The only penalty in this arrangement is

a somewhat increased level of shot noise, resulting from the added

contribution of the third mode to the photocurrent. A hybrid of the

on-resonance/off-resonance switch with transmission heterodyne detection

against the third mode is another clear avenue for high-sensitivity detection.

VI. From Optical Frequency Metrology

to Ultrafast Technology

Optical cavities have played a central role in laser stabilization and related

precision optical frequency metrology over the past three decades [78]. To

stabilize a laser, one needs to employ some kind of resonance information

to derive a frequency/phase-dependent discrimination signal. The resonance

can be of material origin, such as modes of an optical cavity, or of natural

origin, such as atomic or molecular transitions. The saturation of an atomic
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transition limits the attainable S/N for the servo error signal, which in turn

limits the useful bandwidth of the stabilization loop. In contrast, an optical

cavity can provide a high contrast and basically unlimited S/N for resonance

information. Suitably narrow resonance linewidths can be easily accom-

modated with modern technologies of low loss mirror coatings. Careful

design and control of the material properties can bring the stability of an

optical cavity to a satisfactory level. For the most demanding applications

in ultrahigh-resolution laser spectroscopy [79] and high-precision optical

frequency metrology, an optical cavity has become an indispensable tool to

narrow the linewidth of a laser so that it can be effectively used to

interrogate optical transitions of extraordinary Q. When the desired

property of a stabilized laser is its long-term stability or reproducibility,

the use of a natural resonance then becomes necessary, often in combination

with the use of a pre-stabilization cavity. Discussions presented in Section

IV.G provide an example of this strategy. With the recent emergence of a

remarkable synergy between cw laser-based precision optical frequency

metrology and mode-locked ultrafast lasers [80], precision control of the

frequency spectrum of a mode-locked laser, and consequently of the time-

domain evolution of its carrier-envelope phase, has been actively pursued

with great success [81]. A passive optical cavity has now been used to

directly stabilize a mode-locked femtosecond laser [82].

To accommodate this diverse set of applications, it is important to

develop an improved understanding of the cavity and associated mirror

properties. This knowledge is essential for achieving enhanced detection

sensitivity, for obtaining optimum system design, and for reducing

systematic errors. For example, in cavity QED, one needs to know the

mode structure of the intracavity field in order to quantitatively predict the

atom-cavity coupling; for frequency metrology, accurate determination of

phase shifts of the resonant fields can provide precision frequency markers;

for ultrafast laser applications, a priori information on spectral phase shift

of cavity mirrors determines the intracavity dispersion compensation

schemes; and in quantitative spectroscopy, knowledge of the mirror loss

sets the accuracy scale of absorption measurement. On the technology

development side, the knowledge gained from careful mirror characteriza-

tion could provide guidelines for the optic coating community to develop

in situ measurement and control capabilities of the coating process.

The progress in preparation and understanding of mirrors of exceedingly

low reflection losses has indeed been spectacular, with feasible cavity finesse

now exceeding 1 million. The art of ‘‘superpolishing’’ substrates to

Angstrom-level surface roughness has been developed, augmented by the

technique of depositing 40–50 alternating layers of high and low index

dielectric materials, leading to mirrors with losses guaranteed to be below

VI] APPLICATIONS OF OPTICAL CAVITIES 41



5 parts in a million. Losses of about 1 ppm have been documented over

selected submillimeter-squared areas [83]. The resulting sharpness of the

associated cavity fringes is breathtaking to contemplate; one fringe full

width is represented by a distance below 10�2 Å¼ 10�12m. When we now

feed this interferometer with a milliWatt of technically quiet coherent light,

in a 1-s averaging time – if all goes well and we have only shot noise as the

limitation – these fringes can be effectively subdivided into about 10 million

parts. The resulting distance resolution is 10�19m! Sensitivity to these

incredibly small distances changes has attracted wide attention in many

potential applications, including the possibility of building interferometric

antennas for gravitational-wave radiation [27,28].

In the following two sub-sections (VI.A and VI.B) we will discuss the

application of the cavity-based optical frequency metrology techniques to

various precision measurement tasks, such as characterizing cavity

birefringence to a level of �n/n� 10�17 at 1-s averaging time for potential

search of vacuum birefringence [84], or establishing a cavity-based optical

frequency reference grid with sub-Hertz precision [85]. In VI.C and VI.D we

will establish a connection between the recently developed femtosecond-

laser-based optical frequency comb technology and high-finesse optical

cavities [82] and explore an interesting application of passive amplification

of ultrashort pulses based on cavity-assisted control of pulse repetition

frequency and its carrier-envelope phase [86].

A. Mirror Birefringence – A Case Study of Precision

Measurement of Cavity Fringes

We will present an example of measurement of optical phase anisotropy

across the mirror surface as a useful illustration of the powerful potential of

cavity-based precision measurement. Basically by incorporating mirrors of

interest as part of an optical cavity, one can expect an immediate precision-

enhancement factor similar to the cavity finesse. Shot noise limited

determination of the cavity resonance frequency with orthogonal polariza-

tions can potentially resolve birefringence effects another factor of 1 million

smaller, limited by one’s ability to split the cavity linewidth. Such

measurement capability will open up interesting measurements regarding

intrinsic mirror properties and their modification by light beams: the

Cotton–Mouton effect in various gases [87], the influence of parity-

nonconserving effects in chiral molecules, and an interesting test of QED

based on magnetically induced birefringence of the vacuum, the so-called

‘‘light-by-light’’ scattering Feynman diagram [30,31,88,89]. With the

intracavity light beam of a high-finesse cavity threaded through a string
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of strong dipole magnets, the shot-noise limited measurement sensitivity

of the cavity resonance would allow detection (and measurement!) of

the predicted �n (birefringence) due to QED vacuum polarization

(1.4� 10�22). Furthermore, such an experiment would allow a search for

light scalar and pseudoscalar particles (such as the axion), which can couple

by a two-photon vertex. The limit for the axion – two photon coupling

constant measured by this technique should be comparable to the bound set

from astrophysical arguments.

All high grade mirrors are observed to have a different reflection phase-

shift (or effective plane of reflection) depending upon the state of

polarisation of the incident light. The level of birefringent behavior can be

as small as 0.1 mrad differential phase-shift per bounce. Indeed, it is

extremely difficult to robustly mount fused silica mirrors without inducing

stress-related birefringence. A cavity formed with birefringent mirrors will

accumulate the differential phase shift incurred per mirror bounce and

magnify it by a factor of 2F/� at the cavity transmission. This mirror-related

cavity birefringence presents an adversity to many high precision measure-

ments using a high finesse cavity. For example, in the measurement of parity

nonconservation in Cs atoms, a small systematic error is introduced when

the two counter-propagating waves inside the cavity have slightly different

polarizations, which results from the existence of cavity birefringence [90].

In optical cavity QED experiments, cavity birefringence prevents the full

realization of strong coupling between a closed (cycling) atomic transition

and the cavity mode [11]. However, one could also take advantage of this

intrinsic birefringence to boost the useful signal level. With an appropriate

polarimetric setup, this DC bias can be gainfully employed to convert a

quadratic signal of interest to a linear one, with a scaling factor equal to the

magnitude of cavity birefringence [91]. Accurately measuring the mirror

birefringence could also lead to useful information on surface science. As to

scale, a reasonable contemporary ‘‘gyro-quality’’ mirror may show � 10�6

waves of phase difference at normal incidence for light polarized in two

perpendicular linear polarizations. Exceptional mirrors may be three- or

even ten-fold less. Note that the high S/N enabled by a cavity configuration

(splitting of linewidth) offers us access to another factor of �107 in terms of

sensitivity enhancement.

How can we measure these subtle optical phase shifts precisely? Ideally we

will be able to measure them accurately enough so that two measurements

taken with some time separation can be found to agree at the level of

precision demanded by our applications. But first, operationally, how can

we measure the effect accurately? What are the possible tools? It is instantly

clear from the numbers quoted above that it is only with frequency-based

metrology that we can hope to have the accuracy necessary to deal with an

VI] APPLICATIONS OF OPTICAL CAVITIES 43



effect that can range from �1 wave (one cavity fringe) to � 10�13 waves

(10�6� 10�7) as the dynamic range. The ability of the two polarizations to

coexist between the cavity mirrors and then be separated externally with a

polarizing prism is very useful since it enables measurement of the

birefringent effects differentially between the two polarization modes. If

we have a minor amount of residual mirror axial motion (very small relative

to the laser wavelength), there will be a tremendous reduction of its

consequences because of the ‘‘common-mode’’ nature of this excursion as

viewed by the spatially coincident but orthogonally polarized beams. This is

exactly the difference between this approach and the gravitational wave

experiments such as LIGO that must use the Michelson geometry: In that

case the two distant mirrors exist at different spatial locations and the

common-mode concept is not present. Only complex and expensive

vibration isolation will work to produce the necessary inertial-frame

mirrors. By contrast, for a high-finesse birefringence interferometer, the

two beams will be spatially overlaid and sample the same mirror surfaces.

We need isolation only as good as the fringe-width.

In many cases in precision measurement physics it turns out that an

equivalent signal/noise performance can be realized in several different

ways. For example, in the proposed QED birefringence experiment, two

polarization states of light are resonantly interacting with mirrors with small

polarization phase shifts. Theoretically one finds that good performance

and sensitivity can be obtained by measuring the differences in the apparent

transmission when tuned near the high-slope regions around the half-height

of the resonance line shape. A simpler method would be to illuminate the

cavity with light polarized atþ 45� to the birefringence axes, and analyze the

transmitted light with a crossed polarizer [92,93]. Another technique is to

add some external ellipticity modulation to the beam in order to linearize

the signal again via cross-product [94]. Because of the cavity resonance

effect, a very small birefringence will detune the two cavity polarization

modes by a significant part of a linewidth. A compensating phase-plate in

the exit beam can delay the faster component so that the dark fringe

condition can be re-established in the polarizer-transmitted light. The

birefringence is then the measured phase divided by the cavity finesse F. One

sees an inconvenience for this method: What happens if our birefringent

phase shift is larger than �/F. Now we cannot excite both modes of the

cavity simultaneously, so a lower finesse – broader cavity resonance – must

be used.

However, it is clear we prefer to use a very high finesse – this directly

increases the sensitivity. We want to use a frequency-based scheme to

provide the large dynamic range. For laser-cavity locking, one also prefers

to use some appropriate modulation method so that the desired
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anti-symmetric resonance curve is produced by synchronous detection at

the central tuning condition. A particularly attractive modulation/

detection scheme dubbed the Pound-Drever-Hall technique [77] produces

this ‘‘discriminator’’ line shape using laser light reflected from the cavity. It

is desirable to use a modulation frequency well above the cavity resonance

width so that the modulation sidebands are non-resonant, and are

therefore essentially reflected from the cavity input mirror. Upon being

steered to the detector, these two optical frequencies form the ‘‘local

oscillator’’ for heterodyne detection of the resonant electric field at the

carrier frequency. For the birefringence measurement, there actually are

two optical carriers, of crossed polarizations, which are presented to the

cavity. They are near or at resonance, leading to strong resonant power

buildup inside and to a resulting phase shift of the reflected light that is

related to the detuning. Some of these two internal fields leak out,

returning to the detector along with the sidebands that were directly

reflected as noted before. In this way one can generate the two desired

polarization-separated discriminator signals. These detector voltages could

be digitized and analyzed for the subtle detuning difference between the

two polarization modes, as brought about by the mirror birefringence. For

small signals, this would work well. But we need a seven-decade dynamic

range to cover the range between the shot noise level and the full signal of

one fringe width, and another six or so decades to deal with larger

fractional signals where the equivalent birefringence is approaching one

wavelength. To deal with such an extreme dynamic range, clearly a

possible better choice is to lock two tunable coherent optical sources onto

these cavity resonances, one in each polarization, and heterodyne their

outputs to recover our signal as a frequency to be counted by a

contemporary frequency counter, capable of offering, for example, 12

digits resolution and accuracy in 1 second. Another feasible approach

would be to use digitally synthesized frequency sources that can offer a

sine-wave output up to tens of megahertz and can be programmed in steps

as small as 1 mHz. Thus this frequency synthesis approach also offers the

>1012 dynamic range.

Consider the following reasonable laboratory case of a 1 m-long cavity

with F¼ 105, working at a wavelength near 0.5 mm. The fringe order

numbers are �2� 106, and a change by unity results in the corresponding

frequency change of one FSR, which is 150MHz. This FSR is the optical

frequency difference we would have if the birefringence were 1/2 wavelength

(one fringe). The fringe width is FSR/F¼ 1.5 kHz. For �1mW detected

power, the shot noise-determined S/N is � 6� 104 in a typical 100 kHz

control bandwidth, leading to frequency excursions of �¼ 25mHz rms.

The equivalent noise spectral density is
ffiffiffiffiffi
S
p
¼ �=

ffiffiffiffi
B
p
¼ 80mHz=

ffiffiffiffiffiffiffi
Hz
p

.
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Since the modulations at the fast Fourier frequencies accumulate little

optical phase, one can expect that the Lorentzian linewidth of the

stabilized laser under these ideal conditions would be �L ¼ � �
ffiffiffiffiffi
S
p� �2¼

� � S ¼ 0:02mHz [95]. In principle we can lock the laser this accurately to

the cavity fringes. The shot noise-limited equivalent birefringence for a 1 s

measurement would be
ffiffiffi
2
p ffiffiffiffiffi

S
p

=
ffiffiffiffiffiffiffiffi
2��
p

¼ 45mHz. (The
ffiffiffi
2
p

comes from

subtracting two somewhat noisy values to obtain the birefringence.) This

45 mHz sensitivity is to be compared to the 150MHz that corresponds to

the FSR (i.e., a phase change of �), giving an ideal sensitivity of 3� 10�13

of a fringe in 1 s, or equivalently 1� 10�13 radians. The cavity resonance

linewidth can be split by a fraction of 45 mHz/1.5 kHz¼ 3� 10�8. Of course,

the ultimate resolution limit of the minimum-detectable birefringence

changes can be as small as
ffiffiffi
2
p
� 20nHz � 28nHz, provided that the

experimental integration time can be extended until the discussion of the

coherent laser linewidth becomes meaningful and can be gainfully

employed for the measurement process. Of course, given the linewidth of

20 nHz, this integration process may not seem practical. In terms of a

differential index of refraction sensitivity, if the entire cavity were filled

with some gas with magnetically induced birefringence (the Cotton–

Mouton effect) for example, this rather straightforward approach

would bring us in a 1 s averaging time a birefringent index of refraction

sensitivity of 5� 10�23. Here we have used the relation �n/n¼�f/f. This

shows the powerful potential of a cavity-based frequency measurement

approach.

B. Mirror Dispersions, Cavity Mode Spacing, and

Cavity-Based Frequency References

In addition to discussions presented in the previous section, precise

measurement of reflective mirror phase shifts is instrumental for accurate

determination of wavelengths [96,97]. This has not only played an important

role in length metrology, but has also served as an attractive route for the

determination of optical frequencies in the visible region since the speed of

light is now a defined quantity. Of course the second scenario has changed

dramatically since the recent introduction of the femtosecond comb laser

for direct absolute optical frequency measurement. There has also been

extensive research on using the cavity resonant modes to serve as a bridge

between RF/microwave frequencies (represented by FSR) and the optical

frequencies in the visible [85,98,99]. For this approach to work effectively, it

is important that the cavity mode spacing (FSR) is examined and

characterized at a high precision. Considering the inevitable dispersion
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associated with mirror coatings (especially for the low loss dielectric

coatings), the cavity FSR is expected to vary with wavelength.

DeVoe et al. reported the first detailed and precise measurement of the

wavelength-dependent variation of cavity FSR near the center wavelength

of a mirror coating [85]. That work indicates that the cavity FSR will

generally vary quadratically around the coating center wavelength and

the variation can be determined with sub-hertz precision. High cavity

finesse and precision splitting of cavity fringes facilitated by FM-

sideband-based laser-cavity locking helped to achieve this level of

measurement precision. Empirical calibration of the cavity modes allows

the cavity to be used effectively for difference frequency measurement in

the optical domain without systematic errors associated with theoretical

modeling based on Maxwell’s equations. However, this difference

frequency measurement is incoherent as all information about the relative

optical phase is lost. Furthermore, the attempt to perform absolute

optical frequency measurement is still hampered by the need to determine

the geometry-related diffraction phase shift and the inevitable drift of

cavity properties.

The DeVoe work first introduced the two-tone EOM approach for

cavity-related frequency measurement, and was thus the inspiration for the

NICE-OHMS technique presented earlier. Indeed, NICE-OHMS also

provides an attractive approach for measurement of cavity FSR. The basic

principle has been illustrated in Section IV; here we will concentrate on

some operational details. For NICE-OHMS to take full advantage of

noise cancellation, it is important that we maintain a perfect match

between the cavity FSR and the FM sideband frequency. However, since

the laser itself is locked on the cavity, the information about the match

between the sideband frequency and FSR cannot be obtained by simply

detecting and demodulating at the sideband frequency in the cavity

reflected light, which always yields a null signal. We choose to use an

additional FM dither modulation on the sideband frequency itself, along

with synchronous detection of this component in the cavity-reflected or

transmitted light. To maintain a clean separation between the modulation

and control processes, the RF sideband frequency is synthesized from two

signal sources, a stable frequency synthesizer and a tunable frequency

voltage-controlled crystal oscillator (VCXO). The sum frequency is band-

pass filtered and amplified before it is fed to the corresponding electro-

optic modulator. This configuration allows us to separate the modulation

process, where an FM dither signal is applied to the frequency synthesizer,

from the servo process where the frequency of the VCXO is controlled

from the cavity error signal. In doing so we are able to obtain a better

modulation quality and also avoid any change of modulation parameters
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when the VCXO is tuned. This additional dither frequency is low, typically

in the range of 10–300 kHz. Phase-sensitive detection is at the dither

frequency and allows locking for the maximum transmission of the

sideband. This leads to tracking between the sideband frequency and

cavity FSR. Figure 13 shows the counted (gate time 1 s) frequency record

of the VCXO under the locked condition, with the same cavity used for

NICEOHMS detection of the C2HD resonance at 1.064 mm

(FSR� 320MHz and a finesse of 96,000). After removal of the cavity-

associated frequency drift of 5mHz/s, we have rms noise in the frequency

readout about of 40mHz at 1-s averaging time. We have not achieved

shot-noise limited performance in this case due to the technical noise

arising from the residual amplitude modulation (RAM) associated with the

FM sideband generation. The RAM also degrades the long-term stability

of this VCXO-FSR tracking system.

If the desired precision in FSR measurement is only moderate, then a

short-length cavity offers an efficient alternative for characterizing FSR vs.

wavelength [14]. As will be discussed in Section VII, the strong coupling

condition for optical cavity QED experiments is achieved by using a small

cavity length, of the order of 10 mm for the shortest length reported to date.

A 10 mm cavity length translates to a FSR of � 15THz, or a wavelength

difference of a few tens of nanometers for neighboring cavity modes.

Therefore a straightforward 6-digit measurement of the wavelengths of

the cavity modes (by a commercial wavelength meter) acquires a precision

of the order of 5� 10�5 for accurate determination of the equivalent

optical length of the cavity, from which details of the index of refraction

FIG. 13. Measurement of the cavity FSR via the NICE-OHMS technique: matching the FM

sideband frequency to the cavity FSR. Counter gate time 1 s. The average value of the counted

frequency (FSR) is 319.694953MHz.
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and layer thickness of materials in the mirror stack can be adequately

inferred.

The cavity finesse and overall cavity transmission can be measured

directly to determine the mirror losses, A, and transmission, T. This

information can be combined with the FSR measurement in two useful

ways: Firstly, the FSR measurement is sensitive to the difference in

refractive index (nH� nL) of the two alternating materials making up the

multilayer mirror stack [85], whereas the transmission T depends on

the ratio nH/nL. As a result, a precise measurement of both the FSR and T

can be used to determine the values of nH and nL independently.

Moreover, by mapping out the wavelength dependence of the FSR, the

thickness of layers in the mirror stack can be determined. Figure 14 shows

the variation of the cavity FSR with respect to wavelength. The

measurement is carried out with high (� half a million) finesse mirrors

forming a 10 mm scale cavity used for cavity QED experiments presented

later in Section VII. Secondly, if one of the refractive indices is pre-

determined, then the FSR measurement determines the other one, and an

independent value for the mirror transmission T can then be calculated

from nH and nL and compared to the experimentally measured result.

FIG. 14. The effective cavity length measured from the cavity mode splitting frequency (FSR)

has a quadratic variation around the designed wavelength center of the coating. Fitting a model

to these data points gives a measure of mirror transmission (from fitting of the difference

nH� nL) and center wavelength (from fitting layer thickness). The measurement was made on

a 10 mm long cavity with a finesse of � 500,000.
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Indeed, it is often useful to make complementary and mutually confirming

measurements of the cavity properties by the two approaches, i.e.,

measurements of the direct cavity loss and the dispersion of the cavity

modes. It is worth noting that the mirror phase shift (FSR measurement)

is related only to the transmission (index contrast) and center wavelength

(layer thickness). Therefore, if absorption/scatter losses are added to the

model (by introducing an imaginary component to the refractive index) the

cavity resonance wavelengths do not change.

Clearly, the wavelength-dependent phase shift due to the mirror coating,

i.e., the mirror dispersion, makes it impossible to use the FSR of an empty

cavity as a constant frequency marker. However, one can introduce an

active (or passive) modulation element inside the cavity that actively

‘‘mode-locks’’ different cavity modes together to produce a regularly

spaced optical frequency comb. One of the most effective approaches to

optical difference frequency measurement across a few-terahertz gap is

EOM-based optical frequency comb generation, in which an RF electro-

optic modulator (EOM) is placed inside a low-loss optical cavity [100,101].

The cavity FSR matches with the RF sideband frequency. The optical

cavity enhances modulation efficiency by resonating with the seeding

optical carrier and all subsequently generated sidebands, leading to a

spectral comb of frequency-calibrated lines spanning a few THz. The

schematic of such an optical frequency comb generation process is shown

in Fig. 15. The single frequency cw laser is locked on one of the resonance

modes of the EOM cavity, with the FSR of the loaded cavity being an

integer multiple of the EOM modulation frequency. The cavity output

produces a comb spectrum with an intensity profile of exp � kj j�=�F
� �

,

where k is the order of generated sideband from the original carrier, � is

the EOM frequency modulation index, and F is the loaded cavity finesse

[100]. The uniformity of the comb frequency spacing has been carefully

verified [102]. These optical frequency comb generators (OFCG) have

produced spectra extending a few tens of THz [103], nearly 10% of the

optical carrier frequency. Some unique OFCG configurations have been

developed at JILA. For example, by using an auxiliary cavity as a

resonant output-coupling element, one can select a single comb line in the

cavity output [104]. Another scheme uses a single crystal (LiNbO3) to

function both as an EO modulator and as an Optical Parametric

Oscillator, leading to an effective intracavity gain within desired frequency

ranges to enhance the sideband generation efficiency [105].

OFCGs had an immediate impact on the field of optical frequency

measurement. Kourogi and co-workers produced an optical frequency

map (accurate to 10�9) in the telecommunication band near 1.5 mm, using

an OFCG that produced a 2-THz wide comb in that wavelength region,
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connecting various molecular overtone transition bands of C2H2 and HCN

[33]. The absolute frequency of the Cs D2 transition at 852 nm was

measured against the fourth harmonic of the HeNe/CH4 standard, with an

OFCG bridging the remaining frequency gap of 1.78 THz [106]. At JILA,

we used an OFCG to measure the absolute optical frequency of the iodine

stabilized Nd:YAG frequency near 532 nm [69]. The results obtained using

OFCGs have made the advantages of larger bandwidth very clear.

However the bandwidth achievable by a simple EOM-based OFCG is

limited by cavity dispersion and modulation efficiency. To achieve even

larger bandwidth, mode-locked lasers became a natural choice, thus

triggering a true revolution in optical frequency measurement [80,107]. We

note in passing that the OFCGs described above actually generate a train

of short pulses from a cw laser input. This is simply due to interference

among modes with a fixed phase relationship. Indeed the first OFCG was

built to generate short optical pulses [108] rather than for optical

frequency synthesis or metrology. Later work provided even shorter

pulses from an OFCG [109].

C. Femtosecond Laser Optical Frequency Comb

and its Interaction with a Cavity

A laser that can sustain simultaneous oscillation on multiple longitudinal

modes can emit short pulses; it just requires a mechanism to lock the phases

FIG. 15. Schematic of optical frequency comb generator (OFCG) based on an intracavity

electro-optic modulator. OFCG converts a single optical frequency (cw) at the cavity input to a

comb spectrum (pulse) at the cavity output. A high finesse (typically a few hundreds) of the

loaded cavity and a high FM modulation index (�) are instrumental to a broad bandwidth of

the generated comb (typically a few THz).
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of all the modes, which occurs automatically in an OFCG due to the action

of the EOM. Lasers that include such a mechanism are referred to as

‘‘mode-locked’’ (ML). While the term ‘‘mode-locking’’ comes from this

frequency domain description, the actual processes that cause mode-locking

are typically described in the time domain. The inclusion of gain [105,110]

and dispersion compensation [111] in OFCGs brings them even closer to

ML lasers. Indeed the use of ML lasers as optical comb generators has been

developed in parallel with OFCG, starting with the realization that a

regularly spaced train of pulses could excite narrow resonances because of

the correspondence with a comb in the frequency domain [112–115].

Attention was quickly focused on ML lasers as the source of a train of short

pulses [116–119]. In addition, the mode-locked lasers tend to be ‘‘self

adjusting’’ in the sense that they do not require the active matching between

cavity length and modulator frequency that an OFCG does. The recent

explosion of measurements based on ML lasers [107,120–122] has been

largely due to development of the Kerr-lens-mode-locked (KLM) Ti:sap-

phire laser [123–125] and its ability to generate pulses so short that the

spectral width approaches an optical octave. Many recent results have

obtained a spectral width exceeding an octave by spectral broadening

external to the laser cavity [126].

To understand the connection between the ultra-stable world of optical

frequency metrology and the ultra-fast world of ML lasers, we begin by

comparing the unique characters of each field. The ultra-stable field is

typified by high-resolution spectroscopy and high-precision measurements

based on cw lasers that can be best described by their near delta-function

frequency spectra. In sharp contrast, the field of ultra-fast phenomena

encompasses the study of sub-picosecond events utilizing laser pulses that

approach the limit of time domain delta-functions. In fact, at this point in

time state-of-the-art laser sources from these two fields share nearly the

same delta-function ‘‘figure of merit’’ with frequency and temporal widths

on the order of a few parts in 1015Hz and seconds, respectively. The

connection between the ultra-stable and the ultra-fast arises from the fact

that femtosecond (fs) laser oscillators produce pulses in a periodic train via

mode-locking, with a corresponding rigorous periodicity in the spectral

domain. In fact, the frequency domain spectrum consists of a comb of

discrete modes separated by the repetition frequency frep¼ 1/�r.t, where �r.t.
is the cavity round trip time. The extent of the time domain pulse train

provides the frequency resolution of individual comb components, while the

total extent of the frequency domain mode comb is approximately limited to

the inverse of the pulse duration. The generation of ultrashort pulses

requires that the group velocity (vg) dispersion inside the laser cavity be

minimized across the pulse’s frequency spectrum [127]. This criterion is not
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directly related to the frequency comb spacing, since the individual mode

frequencies correspond to eigenmodes of the phase-velocity (vp) of the light.

In general, we have vg 6¼ vp due to laser cavity dispersion. This fact results in

a pulse envelope function that is not fixed with respect to the underlying

optical oscillation frequencies – there is a phase slip between the ‘‘carrier’’

phase and the envelope peak for each of the successive pulses emitted by the

laser [120,128].

The concept of carrier-envelope phase is based on the decomposition of

the pulses into an envelope function, ÊE tð Þ, that is superimposed on a

continuous carrier wave with frequency !c, so that the electric field of

the pulse is written E tð Þ ¼ ÊE tð Þei!ct. The carrier-envelope phase, �ce, is the

phase shift between the peak of the envelope and the closest peak of

the carrier wave, as illustrated in Fig. 16(a). In any dispersive material,

the difference between group and phase velocities will cause �ce to evolve.

And the pulse-to-pulse carrier-envelope phase slip is denoted as �� as

shown in Fig. 16(a). In the frequency domain, �� yields an offset of the

mode comb from exact harmonics of the frep by the amount fceo¼�� frep/

2� Hence each optical comb frequency is effectively given by

fn¼ nfrepþ fceo, as shown in Fig. 16(b). Here n represents an integer (�1
million depending up the ratio of the optical frequency and frep) harmonic

number of the optical comb line. One sees that the frequency-domain

control of both frep and fceo makes it possible to establish a ML-laser

based optical comb at a high precision for absolute optical frequency

measurement and distribution. Precision control of the time-domain

carrier-envelope phase, which has been a highly desirable and yet elusive

goal in ultrafast science since the advent of few-cycle pulses, also

becomes a reality [129,130]. Control of �� requires maintaining a

stable ratio between fceo and frep. It is straightforward to measure fceo
when the bandwidth of the frequency comb spans an optical octave,

which can be facilitated by spectral broadening outside a ML-laser cavity.

Basically we measure the heterodyne beat between comb lines on the high

frequency extreme of the spectrum and the second harmonic of the

corresponding comb lines at the low frequency end of the spectrum.

The resulting beat frequency is | f2n – 2fn|¼ ð fceo þ 2nfrepÞ � 2ð fceoþ




nfrepÞj ¼ fceo.

An optical cavity can also be used to control the two degrees of freedom

associated with a ML-laser comb [82,131]. Appropriate servo error signals

can be obtained if one compares the frep of the comb against the cavity

FSR, while the average frequency of a selected collection of comb lines

is compared against the center frequencies of the corresponding cavity

modes. Just as for the CW laser case, an optical cavity can provide

large S/N ratios for the respective servo error signals that would permit
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FIG. 16. Time-frequency correspondence between �� and fceo. (a) In the time domain, the

relative phase between the carrier (solid) and the envelope (dotted) evolves from pulse to pulse

by the amount ��. �ce is an unknown but controllable, overall constant phase. (b) In the

frequency domain, the elements of the frequency comb of a mode-locked pulse train are spaced

by frep. The entire comb (solid) is offset from integer multiples (dotted) of frep by an offset

frequency fceo¼��frep/2�. Without active stabilization, fceo is a dynamic quantity, which is

sensitive to perturbation of the laser. Hence �� changes in a nondeterministic manner from

pulse to pulse in an unstabilized laser. (c) Principle of coherent pulse amplification scheme with

the aid of an optical cavity with the time domain picture showing matching of the pulse

repetition period with the cavity round trip time. The intracavity pulse is switched out when

sufficient energy is built up in the cavity. Intracavity dispersion compensation is not shown. (d)

Frequency domain illustration showing the matching of the pulse comb structure with

corresponding cavity modes. This ensures the efficient coupling of pulse energy into the cavity.
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superb short-term stability of the passive reference cavity to be transferred

to the ML laser. Another interesting application is to use a passive optical

cavity as a means to temporarily store and coherently enhance the pulsed

electric field [86]. By simultaneously controlling the repetition and carrier

frequencies, the phase coherent superposition of a collection of successive

pulses from a mode-locked laser can be realized inside an optical cavity.

Coherent delay and constructive interference of sequential pulses will

continue until a cavity dump is enabled to switch out the ‘‘amplified’’

pulse. This approach will lead to an effective amplification process

through decimation of the original pulse rate while preserving the

overall coherence from the oscillator. This will be the subject of the next

section.

D. Gainless Amplifier for Ultrafast Pulses Based on

Control of Carrier-Envelope Phase

With the recent realization of phase control of femtosecond lasers, its

potentially powerful applications in extreme nonlinear optics and novel

coherent processes are being actively explored [132]. Ordinarily, the peak

power offered by pulses emitted from a simple oscillator is not sufficient to

drive the high-order nonlinear processes of interest. Naturally, researchers

are interested in the development of phase-controlled pulse amplification

[133,134]. However, the use of conventional amplifiers can introduce a great

deal of phase noise owing to effects such as beam pointing variation, pump

power fluctuation, and amplifier medium instability. A unique approach for

pulse amplification without the use of an active gain medium is the coherent

addition of neighboring pulses inside an optical cavity. The technique relies

on coherent superposition of successive components from a pulse train to

increase the amplitude of a single pulse while reducing the repetition

frequency. This requires not only a suitable delay mechanism to line up

successive pulses, but also the ability to control the phase evolution of the

electric field underlying the pulse. These requirements are similar to those

already realised in coherent pulse synthesis from separate femtosecond

lasers. In that work, precise control of both timing synchronization and

carrier phase locking was achieved to successfully synthesize a single pulse

from two independent pulses. An amplification scheme based on coherent

addition would maintain the carrier-envelope phase coherence of the

original oscillator.

The operation principle of the proposed ‘‘amplifier’’ design is illustrated

in Fig. 16, with time domain action depicted in part (c) and the frequency

domain correspondence in part (d). To ensure efficient coupling into the
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cavity and subsequent power buildup, the repetition rate and carrier-

envelope phase of the input pulses must match those of the pulse circulating

inside the passive cavity. The equivalent frequency domain requirement is

that all frequency components making up the pulse train are tuned into

resonance with corresponding cavity modes as depicted in Fig. 16(d). The

cavity decay time is directly proportional to the overall cavity finesse and is

predetermined to match with the desired pulse amplification factor. For

example, suppose a laser pulse train has a 100MHz repetition rate and we

wish to convert it to an output pulse train with a 1MHz repetition rate with

100 times amplification in the peak power. We would then design the cavity

finesse to be �314 such that the linewidth is 0.32MHz and the field decay

time is roughly 1 ms. This allows the electric fields of roughly 100 pulses to

add coherently inside the cavity before being switched out.

Resonant enhancement cavities are commonly used with cw lasers to

improve efficiencies in nonlinear optical interactions or to increase

sensitivity in spectroscopic applications [135]. Based on these cw techniques,

similar intracavity experiments using ML lasers have been demonstrated

[136–139]. These approaches, however, address only one parameter

(repetition rate or laser average frequency), while both are required for

coherent pulse manipulation. Hence coherent superposition of successive

short pulses for significant amplification would not be feasible. In order to

efficiently couple sub-100 femtosecond (fs) pulses into an optical cavity with

a finesse sufficiently high to build up pulse energy by 100 to greater than

1000 times, two key criteria must be met: (i) the carrier and repetition

frequency of the fs laser must be simultaneously stabilized to those of the

cavity, and (ii) the cavity itself must be designed such that dispersion does

not severely distort the intracavity pulse.

As discussed in previous sections, inevitable dispersion inside an optical

cavity arising from intracavity elements and mirror-reflection phase shifts

leads to a nonuniform cavity mode spacing throughout relevant spectral

regions. This fact will place a practical limit on the spectral bandwidth

(and therefore pulse duration) one can employ in this scheme since the

modes of the fs pulse train are rigorously equally spaced. In addition,

relevant laser comb components coupled into the cavity cannot be

simultaneously locked to the center of corresponding cavity modes, in

contrast to the ideal case shown in Fig. 16(d), leading to a frequency

dependent phase shift imposed on the intracavity spectrum and therefore

distorting the pulse temporal profile. If higher cavity finesse is desired for

greater pulse enhancement, the cavity linewidth will become narrower and

the increased mismatch between the cavity modes and the fs comb will

lead to a further reduction in the useful bandwidth of the cavity. These

facts can also be easily understood from time domain considerations where
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pulses bouncing back and forth in the cavity are broadened and distorted

due to dispersive phase shifts. As a result, the overlap of the incoming

pulse envelopes with the stored pulse is reduced and their constructive

interference is compromised.

Let us assume a four-mirror linear cavity with a pair of fused silica

prisms for dispersion compensation and an intracavity fused silica

Brewster-angled Bragg deflector for switching out the pulse. Two of the

mirrors are used to create an intracavity focus to decrease the switching

time of the Bragg deflector. It should be noted that in order to reduce

intracavity peak powers to avoid substantial nonlinear effects, the input

pulse may be chirped and later recompressed as is commonly practiced in

traditional optical amplifiers. This operation would have no effect on the

results shown here. The input mirror should have a transmission

coefficient matched to the remaining part of the total cavity loss

(impedance matching). The maximum finesse, and hence maximum pulse

magnification, will then be limited by scattering losses in the fused silica,

residual losses at the Brewster angled surfaces, and reflection loss at the

remaining cavity mirrors. We expect a cavity finesse of greater than 1000

will be experimentally feasible.

The round trip phase shift inside the cavity can be expressed in a

power series expansion: �RTð!Þ ¼ �0 þ �1ð! � !0Þ þ �2ð! � !0Þ2=2!þ
�3ð! � !0Þ3=3! þ � � � , where !0 is the center angular frequency of the

mirror coating. The frequency independent phase shift �0 describes the

carrier-envelope phase shift per round trip of the intracavity pulse while

the group delay �1 determines the cavity free-spectral range (FSR) at !0.

These terms are not important to the evaluations as the pulse train

incident on the cavity will be matched to these values when properly

stabilized. The group-delay dispersion will be set to zero at !0 with prism

compensation. The phase shifts due to reflection from the dielectric

mirrors depend strongly on the coating design. For initial calculations we

have chosen to use standard quarter-wave stack mirrors for which

dispersion characteristics are well known, although better performance

may be achieved using mirrors custom designed for dispersion compensa-

tion. A total path length of 0.9 cm through the fused silica components

was assumed with a 30 cm separation between the prisms. The dispersion

coefficients used for the given cavity parameters are �2¼ 0, �3¼ 400 fs3,

and �4¼�1060 fs4.
A time dependent calculation visualizes the evolving intracavity pulse one

round-trip at a time. The calculation is performed in a straightforward

manner by repeatedly solving for the transmitted and reflected fields at the

input mirror after propagating the pulse once through the cavity. Figure 17

illustrates the evolution of a 50 fs pulse inside a cavity with a finesse of
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3140 under the conditions of zero cavity dispersion (dashed curve) and finite

dispersion (solid curve). Three representative pulses at different stages of

‘‘amplification’’ are also shown. Although the 50 fs pulse is stretched by the

dispersive cavity, it is not severely distorted due to its coupling with the

incident pulse train. If the incident pulses become too short, the cavity

finesse becomes too high, or the laser repetition frequency deviates

significantly from the cavity FSR at !0, the intra-cavity pulse may quickly

‘‘pull apart’’ into several pulses, and the meaning of a single pulse width will

be lost.

The results shown here demonstrate the feasibility of a pulse amplification

scheme based on coherent storage and constructive interference of pulsed

electric fields inside a passive optical cavity. Such a technique will preserve

the carrier-envelope phase coherence characteristics of the original pulses

from the oscillator while enabling pulse energies to be increased by 2 or 3

orders of magnitude. This indicates that sub-100 fs pulses with microjoule

energies can be obtained given the nanojoule level of pulse energy available

from current ultrafast lasers. Future cavity designs based on custom

dispersion compensating mirrors may extend the usefulness of this technique

to the sub-20 fs regime. Initial experimental exploration with a picosecond

FIG. 17. Time dependent calculation of the intracavity pulse propagation shows the coherent

evolution of a 50 fs pulse inside a cavity of finesse 3140. Dashed line indicates the ideal case of a

dispersion free cavity perfectly matched with the incident pulse train, while the solid line shows

the effect of cavity dispersion in limiting the amount of energy coupled into the cavity. Three

representative pulses at different stages of ‘‘amplification’’ are also shown.

58 Jun Ye and Theresa W. Lynn [VI



laser has already produced an amplification factor of greater than 50

without any noticeable pulse distortion, using a loaded cavity finesse

of � 200.

VII. Quantum Dynamics

The last two decades have witnessed the emergence of a qualitatively

new set of phenomena in the physics of optical cavities: light-matter

interactions that derive their character explicitly from the quantized nature

of individual atoms and light fields. Such interactions are manifest in the

current generation of cavity QED experiments thanks to a steady

progression of developments in both atomic and optical physics. Technical

improvements have allowed optical cavities with ever higher finesse and

smaller mode volumes; as we shall see, these are the requirements for

coherent dynamics to dominate the interaction of single quanta in the

cavity setting. On the other hand, techniques in atomic physics and laser

cooling have provided the means to deliver into these small cavity mode

volumes single atoms with appropriately chosen internal states and

nonlinear response functions. Today, these capabilities combine to allow

experimental exploration of quantum state estimation and control,

including progress toward quantum logic and quantum communication

using optical cavities. The signal enhancement effects that make optical

cavities so suitable for classical spectroscopy find their analogs in the

quantum regime, making cavity QED a powerful tool for probing the

physics of open quantum systems.

A. Connection and Difference Between Classical and Quantum Regimes

In a classical description of spectroscopy in an optical cavity, an atomic

sample acts as a dispersive medium for the coherent light field circulating in

the cavity mode volume. Classical behavior gives way to quantum when

single quanta, whether of the atomic sample or of the light field itself, begin

to induce nonlinear response in the system. Some critical parameters

delineating this transition have already been briefly introduced. We expand

that intuitive discussion here and complement it with a more quantitative

development in the following sections.

Consider an atomic sample placed inside the cavity mode. The sample

scatters the optical field, producing a wavelength-dependent refractive index

in the cavity mode volume. The atomic sample affects the resonance

properties of the optical cavity if the atom-field interaction strength and the
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number of atoms are sufficient to noticeably alter the free-space dispersion

relation for the light. Thus, if a single atom placed within the mode volume

is to act as a nonlinear medium, it must have a large effective cross-section

for scattering intracavity light. First, the atom should have a near-resonant

dipole interaction with the optical field mode supported by the cavity.

Second, scattering should be enhanced by ensuring that optical wavefronts

have every opportunity to interact with the atom in the process of being

transmitted through the cavity. This second requirement is accomplished by

constructing cavities with high finesse and tightly confined modes, so that

light traverses the distance between the mirrors many times before exiting

the cavity and furthermore has a high chance of interacting with the atomic

cross-section on each pass. Tight mode confinement has the additional

benefit that the light is thoroughly diffractively mixed and thus the

interaction is truly with a single cavity mode that is well-defined throughout

the interaction process. Quantitatively, the importance of a single atom for

the response of the intracavity field is described by the single-atom

cooperativity parameter C1 ¼ g20=2�?	, or by its inverse, the critical atom

number, N0 ¼ 2�?	=g
2
0 [51]. Here g0, �?, and 	 are as introduced in Section

III.D. By re-expressing the single-atom cooperativity in terms of familiar

properties of the cavity and the atomic transition, one finds it scales simply

as C1� 2F�2 �w2
0; the ratio �2/w2

0 can be interpreted as the ratio of atomic

absorption cross-section to cross-sectional area of the cavity mode, and

2F/� is the cavity enhancement factor we have already seen in the

classical context. Note that C1 does not scale explicitly with the length of

a Fabry-Perot cavity.

On the other side of the coin, consider the circumstances necessary to

make the quantized nature of the light field relevant to observations of the

cavity system. In the classical regime the cavity mode volume is occupied by

a large-amplitude coherent field. To fully probe the atomic response

function, the electric field associated with the light must be strong enough to

saturate the atomic dipole. How, then, is a single photon to accomplish this

saturation? Simply put, the photon must be confined to a small volume so

its electric field strength within that volume becomes large. A field of Rabi

frequency � saturates an atomic transition when �� �. Since the Rabi

frequency is proportional to the electric field and thus to the square root of

photon number, the m-photon Rabi frequency is just
ffiffiffiffi
m
p

g0. Therefore we

can define a saturation photon number m0 ¼ �2?=2g20 [51] representing the

number of intracavity photons required to saturate the atom. As promised,

this quantity is inversely proportional to the cavity mode volume through

the factor 1/g20; it is, however, completely independent of the cavity finesse.

We now turn to a more formal treatment of the atom-cavity system. As is

often the case, the conceptually and computationally simplest starting point
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is the purely quantum limit, where the atom and cavity evolve via their

coherent coupling in the absence of dissipation. This system simply obeys

the Schrodinger equation with the Jaynes-Cummings Hamiltonian [48],

HJC ¼ �h!âaþâaþ �h!�̂�þ�̂� þ �hg0ðâa�̂�þ þ âaþ�̂�Þ: ð25Þ

Here we consider a two-level atom and ! is the common resonance

frequency of both atom and cavity. Diagonalizing this Hamiltonian gives

rise to the well-known Jaynes-Cummings ladder of eigenstates for the

coupled atom-cavity system, as illustrated in Fig. 18. The coupled

eigenstates are characterized by the equal sharing of excitation between

the atomic dipole and cavity field, so that the n-excitation bare states g, n


 

and e, n� 1j i of energy n�h! are replaced by

	nj i ¼
1ffiffiffi
2
p g, n



 
	 e, n� 1j i

� �
, ð26Þ

FIG. 18. Jaynes-Cummings ladder of eigenstates for the coupled atom-cavity system. Bare

eigenstates of the atom and cavity field are shown on the left, labeled by atomic internal state

and number of photons in the cavity mode, under the condition !c¼!a¼!. When the atomic

dipole is coupled to the cavity field with single-photon Rabi frequency 2g0, the energy

eigenstates form the ladder shown on the right. The Jaynes-Cummings ladder has pairs of

strong- and weak-field-seeking states with each pair split by an energy that rises as the square

root of the number of excitations.
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with corresponding energy eigenvalues

E	n
¼ n �h!	

ffiffiffi
n
p

�hg0: ð27Þ

To quantitatively predict actual atom-cavity dynamics, a treatment that

moves beyond this idealized picture to include dissipation and driving terms

will be necessary. Two qualitative features, however, are worth noting

immediately from the Jaynes–Cummings ladder itself.

First, in the most fully quantum regime, the atom and cavity field are best

described in a symmetric treatment where they combine to create a single

entity sharing excitation equally. Most notably, for n � 1 excitation, there

exist strong-field-seeking states �nj i that can be thought of as atom-cavity

states bound together by the sharing of a quantum of excitation. If we

permit a detuning �ac between the atom and cavity resonance frequencies,

the sharing of excitation in these ‘‘bound states’’ becomes asymmetric but

the qualitative properties of the ladder remain unchanged.

Second, while a ladder of strong-field- and weak-field-seeking states

recalls the dressed states of atomic interaction with a coherent light field

(e.g., in free space) [140], the Jaynes-Cummings ladder reflects atomic

coupling to a small number of quantized excitations in the cavity mode

rather than to a strong classical field in free space. The anharmonic nature

of the level splittings with increasing n is a feature arising explicitly from the

quantized nature of the cavity field. Thus, to observe effects of field

quantization on the spectrum of atom-cavity response, we can expect that

experiments must probe the saturation behavior of the system and not

simply rely on spectroscopy in the weak-driving limit of n<1 system

excitations. One caveat to this observation, however, is that nonclassical

aspects of the system dynamics can in fact be observed for weak driving; for

example, photon statistics of the cavity output field in time are of interest

even for experiments in the weak-excitation limit.

In the presence of dissipation and driving, and allowing for detuning

between the probe field and the atom and cavity resonant frequencies, the

Jaynes-Cummings Hamiltonian becomes part of a master equation for the

joint atom-cavity density operator �. We consider a driving (and probing)

field " of frequency !p, a cavity resonant at !c¼!pþ�cp, and an atomic

resonance frequency !a¼!pþ�ap approximations, and in the interaction

picture with respect to the probe frequency, the evolution is described by

_�� ¼ � i

�h
ĤH0,�
h i

þ �?ð2�̂���̂�þ � �̂�þ�̂��� ��̂�þ�̂�Þ þ 	ð2âa�âaþ � âaþâa�� �âaþâaÞ,

ĤH0 ¼ �h�cpâa
þâaþ �h�ap�̂�

þ�̂� þ �hgð~rrÞ âa�̂�þ þ âaþ�̂�
� 	

þ "ðâaþ âaþÞ: ð28Þ
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Here gð~rrÞ is the coupling strength which takes into account the atomic

position ~rr within the cavity mode. For a Fabry-Perot cavity supporting

a standing wave mode with Gaussian transverse profile, gð~rrÞ ¼ g0 ð~rrÞ ¼
g0 cosð2�xÞ exp½�ðy2 þ z2Þ=w2

0�. In the fully quantum treatment, the atomic

position ~rr is itself an operator; in experiments to date a quasiclassical

treatment suffices, so the atom may be considered a wavepacket with ~rr
a classical center-of-mass position variable.

This master equation provides a valid description of the atom-cavity

system in any range of parameters ðg0, 	, �?Þ. It can in general be solved only

numerically, but certain limits, either of inherent rates or of driving

strengths, permit analytical treatments of limited application. In the sections

below, we discuss behavior exhibited by theory and experiment in several

parameter regimes from semiclassical to very strongly coupled.

B. Cavity Bistability and Intracavity Nonlinear Optics

Certain parameter regimes are well described by an approximation in which

the joint operator moments in Eq. (28) can be factored. This corresponds to

a semiclassical treatment in which the field is described by its coherent

amplitude âah i ¼ �. Such a replacement is valid in the limit of large critical

parameters (N0,m0)� 1, in which case a collection of atoms acts as a

classical nonlinear intracavity medium. Within this approximation, Eq. (28)

yields an analytic expression for the driving field " ¼ 	 ffiffiffiffiffiffi
m0
p

Y as a function

of the intracavity field âah i $ ffiffiffiffiffiffi
m0
p

X . This relation is the well-known optical

bistability state equation [52]:

Y ¼ X 1þ 2C

1þ �2 þ X2
þ i �� 2C�

1þ �2 þ X2

� �� �
: ð29Þ

Here we have employed the standard notation for the bistability equation,

related to our previous discussions by detunings � ¼ �ap=�? and � ¼ �cp=	,
and N-atom cooperativity parameter C¼NC1. The system saturation

behavior described by this relation is shown in the dotted curve of Fig. 19.

The correspondence between the semiclassical amplitude X and the actual

operator expectation value âah i is only approximate; in general the

intracavity state is not an exact coherent state, but the bistability equation

gives an input–output relation between the driving power �Y2 and a

transmitted photocurrent �X2 which is valid in the limit discussed above.

Optical bistability effects in general have a long history in measurements

within the context of laser physics. Specific cavity QED experiments

measuring optical bistability in two-level systems date from the early 1980s
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([141,142]) and are realizable in relatively low-finesse cavities interacting

with a sample of atoms crossing the cavity mode in a thermal atomic beam.

However, the bistability state equation is also valid when (N0, m0)<1 in the

special case of very weak driving, n� 1 excitations in the system. In this

case, only the first (n¼ 1) excited states of the system must be considered,

and the resulting relationship of joint operator moments makes factoring

formally valid. This fact comes as no surprise in the light of our earlier

discussion of the Jaynes-Cummings ladder; the structure of the spectrum

reflects the quantized field only for higher drive strengths that sample the

anharmonicity of the system eigenvalues. Optical bistability also describes

FIG. 19. Saturation curves for the atom-cavity system of [158], based on semiclassical and

quantum theory. Here !c¼!a¼!p. The probe strength is varied over a range corresponding to

0.1 to 10 photons in the empty cavity. The system saturation is investigated by recording at each

drive strength the ratio of cavity output power for the coupled system as compared with the

empty cavity. The dotted curve shows the prediction of the optical bistability state equation

(semiclassical theory), while the solid curve shows the solution of the master equation (fully

quantum in the field). The semiclassical prediction clearly deviates from the quantum solution

and from the data in this strongly coupled system [158].
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the steady-state behavior of an atom-cavity system where inherent strong

coupling is washed out by the simultaneous interaction of many atoms with

the cavity mode.

Even in the regime of the optical bistability equation, nonclassical

dynamics of the atom-cavity system are accessible. Experiments measuring

the photon statistics of the cavity output field have demonstrated non-

classical correlation functions of the output light with similar work pushing

from this limit to the inherently strong-coupling regime [143–146].

Another instance of intracavity nonlinear optics is the use of optical

cavities to study atomic samples exhibiting electromagnetically induced

transparency (EIT). In an EIT system, three or more atomic levels are used

to create a configuration in which a powerful ‘‘coupling’’ beam on one

transition prepares the atomic sample and thus strongly influences the index

of refraction for a weak probe beam on a second transition [147,148]. In EIT

one can obtain various interesting effects, such as: large Kerr nonlinearity,

very sharp features in the index as a function of probe frequency, slow or

stopped light, and nonlinear behavior at low light intensities. Placing the

EIT medium inside an optical cavity, where the ‘‘probe’’ beam is a resonant

mode of the cavity, enhances these EIT effects so that they can be more

easily measured by means of resonant cavity transmission [149]. For

example, if EIT is present while scanning the cavity length across the probe

resonance, the Kerr nonlinearity induces asymmetry in the cavity line shape;

this asymmetry can be used as a sensitive measurement of the intensity-

dependent index of refraction [150]. Other observations in this setting

include cavity linewidth narrowing related to the slow-light effect [151]

as well as several realizations of all-optical switching where the probe

transmission is gated by the coupling beam amplitude or detuning [39].

While these observations take place in a weakly coupled regime, other

cavity QED effects have also been pointed out for EIT in combination with

strong coupling [152].

C. Interacting Single Quanta: The 1-D Atom

By increasing cavity finesse and decreasing mode volume, we move from

a semiclassical regime to a regime of small critical parameters (N0,m0)<1.

Here single atoms and photons induce nonlinear effects in the system

response. However, this condition is still consistent with overall dissipative

dynamics if the cavity decay rate is fast relative to the coherent coupling g0.

This regime, known as the ‘‘bad cavity’’ limit, is realized for 	 > g20=	 > �?.
In this limit single quanta within the cavity mode interact strongly with one

another, but coherence and information leak rapidly from the system into
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the output channel defined by cavity decay. Thus the atom-cavity coupling

is essentially perturbative, and the atom and cavity each retain their distinct

identities but with decay rates modified by the interaction. For instance, an

atomic excitation, rather than decaying via spontaneous emission at rate �?,
is much more likely to be exchanged into the cavity field and subsequently

decay via the cavity; this preferential decay via the cavity mode at rate g20/	
gives an effectively ‘‘1-D atom.’’

Experiments in this parameter regime include the quantum phase gate

[153] and the use of squeezed light in cavity QED [154]. Both of these effects

involve the production of nonclassical effects on the light field due to

nonlinearities mediated by a ‘‘1-D atom’’ effect [53]. Thus single photons

can interact with one another by means of their common coupling to an

intracavity atom. These effects are seen with single strongly coupled atoms;

since these experiments delivered atoms to the cavity via thermal beams of

atoms transiting a cavity mode, a background of weakly coupled or

‘‘spectator’’ atoms acted to dilute the inherent single-atom effect.

D. Cavity QED: Single Atom Detection, Trapping,

and Quantum Aspects of Detection

By further increasing cavity finesse, we decrease 	 relative to g0 and arrive at

the regime of strong coupling for the atom-cavity system. In this regime,

where g0 � ð	, �?Þ, single quanta are significant and, furthermore, their

coherent interaction dominates other rates in the system. It is in this limit

that observations most closely reflect the ideal structure of the Jaynes-

Cummings ladder. Exchange of excitation at rate g0 is no longer

perturbative, and the system crosses over to a set of joint atom-cavity

eigenstates with widths set by decay rates 	 and �?. The coupled atom-cavity

transmission spectrum reflects this eigenvalue structure via the vacuum Rabi

splitting [155], in which the empty-cavity Lorentzian line profile is trans-

formed into a double-peaked transmission function as shown in Fig. 20 and

first directly observed in [156]. The positions and widths of the vacuum Rabi

sidebands depend on the strength of the driving field E as well as the

parameters ðgð~rrÞ, 	, �?Þ, and are found via steady-state numerical solution of

the master equation.

To fully realize the quantum mechanical phenomena inherent in Eq. (28)

for strong coupling, yet another rate must be made small relative to the

coherent coupling. This is the rate for decoherence as information exits the

system via movement of the individual atoms contributing to the effective

atom number N. If excitation is distributed among an ensemble of atoms,

each poorly coupled or coupled for a short time as it flies across the cavity
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mode, the true structure of the single-atom Jaynes-Cummings ladder cannot

be observed. Thus experiments designed to probe the strong coupling regime

must be carried out with cold atoms, in a situation where atom number

N� 1 is realized through an actual single atom strongly coupled for a time T

satisfying 1/T� g0. Experiments of this type to date have involved a cloud

of atoms trapped in a magneto-optical trap (MOT), cooled via standard

sub-Doppler techniques, and then dropped or launched so that single atoms

arrive in the cavity mode volume with small velocities and interact one-at-a-

time with the cavity field. Such an experiment is shown schematically in

Fig. 21; single atoms fall through the cavity mode and are detected via real-

time changes in the transmission of a continuously monitored cavity probe

beam [11,157–160]. More recently, single atoms have also been caught

within the cavity by means of the quantized field [36,37] or trapped there

using a separate far-off-resonance trap (FORT) [38,161]. Other efforts in

progress include the use of cavities with magnetic traps for atoms [13],

FIG. 20. Vacuum Rabi splitting for the atom-cavity system of [158]. Intracavity ah ij j2,
proportional to transmission as measured by balanced heterodyne detection, is shown as a

function of probe detuning for a fixed probe intensity incident on the cavity. The gray trace

shows the Lorentzian line profile of the empty cavity, while the black trace shows the system’s

spectrum when an atom is strongly coupled to the field, creating a Jaynes-Cummings structure

as in Fig. 18.
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trapped and cooled ions [162,163], and FORTs chaining atoms through the

cavity in the transverse direction [164,165].

Cavity QED with cold atoms in the strong coupling regime has enabled

observation of the vacuum Rabi splitting for single atoms in an optical

cavity, and of the quantum saturation of the atom-cavity response. In the

work of Ref. [158], for example, measurements of cavity transmission vs.

input driving field strength clearly deviate from the prediction of the optical

bistability equation and are instead consistent with numerical solutions of

the quantum master equation itself (Fig. 19, solid line and experimental

data points). This work was carried out with laser-cooled Cesium atoms

dropped through an optical cavity of length d¼ 10.1 mm and finesse

F¼ 180,000, leading to ðg0, 	, �?Þ ¼ 2�ð120, 40, 2:6Þ MHz and critical par-

ameters (N0,m0)¼ (0.014, 2� 10�4). This and subsequent experiments

[36–38,166] thus operate in a regime of critical atom number and saturation

photon number orders of magnitude below unity. In this case driving fields

which populate the cavity mode with coherent amplitudes at or even below

FIG. 21. Experimental schematic for use of cold atoms in cavity QED [36]. A cloud of atoms

is collected in a magneto-optical trap (MOT) directly above the cavity mirrors, cooled to a few

microkelvin, and released to fall over the cavity. Geometry cuts off the flux of atoms to the

actual cavity mode volume so that single atoms arrive one-at-a-time to traverse the cavity field.

As an atom moves through the mode volume, a probe beam is continuously applied and its

transmission through the cavity monitored in real time.
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one photon are sufficient to induce nonlinear response in the system.

Likewise, effective atom numbers well below one interact strongly with

the cavity field and alter the cavity transmission spectrum. Therefore the

presence of a single atom, even when poorly coupled or just entering the

cavity mode volume, can be detected with high S/N via the transmission of

a probe beam through the cavity.

A striking demonstration of strong coupling in optical cavity QED comes

in recent experiments which actually bind an atom in the cavity by creating

the ‘‘bound state’’ �j i of the Jaynes-Cummings ladder [36,37]. Figure 22(a)

(a) (b)

FIG. 22. Jaynes-Cummings ladder and vacuum Rabi splitting to enable trapping of single

atoms with the quantized field. (a) This ladder reflects the continuous evolution of energy

eigenvalues as an atom moves from outside the cavity (no coupling) to the center and back out

again. A driving field at !p<!c<!a populates strong-field-seeking states, leading to an

attractive effective potential for the atom in the cavity. (b) Vacuum Rabi spectrum

corresponding to (a) for the atom-cavity system of [36]. Note the asymmetry in the spectrum

arising from the atom-cavity detuning in this case. A probe beam tuned to the lower Rabi

sideband will see a rise in transmission when an atom is coupled to the cavity mode.
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shows the ladder of atom-cavity energy eigenvalues with emphasis on the

continuous evolution from bare to joint eigenstates as an atom moves from

regions of low coupling to regions where the cavity field is strong.

Concentrating on the ground and first excited states of the manifold, we will

see that this eigenvalue structure enables both sensing and trapping of an

atom by means of the cavity field.

If the cavity is probed at its bare resonance frequency !p � !c, this probe

will be moved out of resonance as the atom-cavity coupling increases,

causing a drop in transmitted light as an atom moves into the cavity. If, on

the other hand, the probe is tuned below the cavity resonance !p<!c and

instead near the lower dressed state, it will move into resonance as an atom

becomes more strongly coupled. In this case the cavity transmission is

originally low and increases as an atom moves toward regions of strong

coupling. To see these effects quantitatively, we find steady-state solutions

of the master equation to obtain the vacuum Rabi spectrum in Fig. 22(b).

As seen already in the data of [158], resonant probe transmission can be

reduced by factors of 102–103, providing enormous S/N for detection of an

intracavity atom. For a probe on the lower vacuum Rabi sideband, the

transmission increase is less drastic, but probing at this frequency is

nevertheless often preferable because of its effect on the atomic motion.

Thus far we have discussed strong coupling between the cavity field and

atomic dipole, or internal state. We can define a further condition of strong

coupling for the external atomic degrees of freedom, which occurs when the

coherent coupling dominates the atomic kinetic energy as well. Under these

circumstances the position-dependent energy eigenvalues cause an impor-

tant mechanical effect on an atom interacting with the cavity mode. For

instance, an attractive effective potential is felt by an atom when a probe

field tuned to the lower vacuum Rabi sideband is used to populate the

strong-field-seeking state �j i. When this potential is large relative to the

atomic kinetic energy, experimental observations range from atom-cavity

scattering effects to largely conservative binding of an atom by a single-

photon cavity field [36,37,158,167].

In the work of Refs. [36,167], the sensing and trapping aspects of strong

coupling are exploited to realize atom–photon binding within an optical

cavity. A deep (�2.5mK) potential associated with the single-quantum

interaction arises from the use of a short cavity with very small mode

volume (d¼ 10.9 mm, w0¼ 14.1 mm). This cavity, with mirror finesse

F¼ 480,000 and ðg0, 	, �?Þ=2� ¼ ð110, 14:2, 2:6Þ MHz, gives critical photon

and atom numbers m0¼ 2.7� 10�4, N0¼ 6� 10�3. The coherent interaction
energy exceeds other relevant energies in the problem, in particular the

atomic kinetic energy Ek� kB(0.5mK) acquired in the 3-mm fall from the

MOT to the cavity mode. Thus an atom can be caught within the cavity if
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the system can be driven from its ground state to the trapping state when the

atom is at a maximum of the cavity field [168–171].

To implement this triggering strategy, atoms are dropped through the

cavity mode while cavity transmission is monitored with a weak probe beam

of frequency !p<!c<!a and 0.05 intracavity photons. Such a weak probe

tuned near the lower vacuum Rabi sideband allows high S/N for

observation of an atom entering the cavity mode, but does not significantly

populate the excited states of the atom-cavity system. Once the probe

transmission rises above a predetermined threshold, indicating that an atom

is in a region of strong coupling to the cavity mode, the probe power is

increased to a level of about 0.3 intracavity photons to create a confining

potential around the atom.

The resulting cavity transmission for an atom trapped in this way is

shown in Fig. 23. It exhibits oscillations between the increased probe level of

0.3 intracavity photons and values as high as âah ij j2� 1 due to the atom’s

motion within the cavity field. Regular oscillations in transmission arise

from atomic motion toward and away from the cavity axis, with the level

falling back to 0.3 photons when the atom eventually heats out of the trap

and escapes from the cavity. Using this protocol, mean atom dwell times in

FIG. 23. Single atoms trapped in orbit with single photons using cavity QED [36]. The main

trace shows probe light transmission through the cavity as a single atom is trapped there. The

probe field, tuned to the lower vacuum Rabi sideband, is initially set to a weak ‘‘sensing’’ level

that does not significantly populate excited states of the system. A rise in probe transmission

signals an atom falling through the center of the cavity mode, triggering a switch to a stronger

‘‘driving’’ light level. The light now drives the system to strong-field-seeking states and the atom

orbits within the cavity, leading to regular oscillations in cavity transmission as shown. The

overlaid trace shows an atom transit signal for constant driving field (no triggered trapping) for

comparison. For this data, !p¼!a� 2� (125MHz) and !c¼!a� 4� (47MHz). The transmis-

sion signal, detected via balanced heterodyne, is proportional to intracavity ah ij j2 and is shown

in those units.
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the cavity of 340 ms are observed, with some rare events lasting up to several

milliseconds. For comparison, the overlaid trace shows a typical transmis-

sion signal for an atom falling through the cavity mode with constant input

field; this no-triggering case shows a �75 ms free-fall time for an atom to

traverse the cavity mode. Triggered-trapping lifetimes are limited by heating

associated with the many decays and re-excitations the atom-cavity system

experiences during a single atomic dwell time. It is important to note that,

while atoms are trapped via their dipole interaction with a red-detuned light

field in a manner reminiscent of the more familiar free-space situation, the

dynamics associated with the atom-cavity system are quantitatively and

qualitatively different from that case [167]. In particular, a free-space

potential of equal intensity would exhibit much greater diffusive heating and

thus would largely fail to trap the atoms seen in this experiment;

furthermore, the single-atom sensing which enables the trapping strategy

is only available through the use of the cavity QED system.

The most interesting feature of the measurement record for a trapped atom

is undoubtedly the oscillation in transmission. The period and amplitude of

these oscillations agrees quantitatively with atomic orbital motion in the

Gaussian mode transverse to the cavity axis. For the parameters of [36]

trapped atoms are tightly confined close to a single antinode of the field and

detectable signatures from axial motion are not observed [36,167], leading to

bounds on the size of any small-amplitude axial excursion. Thus transmission

provides a direct, real-time record of an atom’s radial distance from the

cavity axis; this record can also be used along with the known effective

potential to reconstruct two-dimensional trajectories. Such reconstructions,

as tested by applying the method to simulated atomic trajectories, represent

an atomic position measurement which is about a factor of 5 above the

standard quantum limit (SQL) [36,172].

Current experimental efforts focus on use of this real-time position

information to feed back to actively control atomic positions within the

cavity mode [173]. Progress in this direction aims to use cavity QED to

investigate fundamental questions of quantum measurement and optimal

state estimation and control. The ability to trap an atom with a single

photon field is a dramatic illustration of single-quantum physics in optical

cavities; however, it is the sensing power and S/N for real-time observation

of the system that make the optical cavity unique.

E. Broader Application of Real-Time Sensing Capabilities:

Quantum State Preparation and Detection

Optical cavity QED in the strong coupling regime provides, as we have seen,

a nearly-closed environment for interactions between single quanta.
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Furthermore, it retains the chief merit of optical cavity spectroscopy in the

classical regime: enhanced S/N for observation of intracavity dynamics

through the well-defined output channel of cavity decay. While in the

language of open quantum systems the cavity decay at rate 	 introduces

decoherence into the system, the decay is a single output mode that can be

directed toward some use that actually keeps information within the system

of interest. In the context of optimal state estimation and control, this may

mean measuring the transmitted field and using that information to control

the system via active feedback. Alternatively, for quantum logic and

communication, it may mean measuring the output field to obtain the result

of a computation or sending it efficiently to a distant cavity where it will

coherently interact with a second atom.

One measure of the capability for observation is the so-called ‘‘optical

information’’ rate for monitoring intracavity dynamics through measure-

ment of transmitted light. For a simple estimate of optical information, we

consider the case of a resonant probe, !p¼!c¼!a, whose transmission

drops as an atom enters the cavity mode. The presence of an atom is thus

signaled by a rate dI/dt of ‘‘missing’’ photons at the cavity output. This rate

is given by dI=dt ¼ 	ð âah ij j2empty� hâaij j
2
fullÞ � 	 âah ij j2empty provided that âah ij j2full is

very small. This is the case for strong coupling conditions but driving

strength still small enough to prevent complete saturation of the atomic

response. Thus dI/dt is maximized for âah ij j2full� m0 and âah ij j2empty�
C2

1 âah ij j2full� g20=	
2. This rough argument yields an optical information rate

dI/dt¼ g20/	; the same quantity appears in a formal treatment of the

resonant-probing case as well as in calculations of probing on the lower

vacuum Rabi sideband and in analytic expressions for various schemes to

monitor both atomic position and atom-cavity internal states in a strong-

driving limit [174].

The quantity dI/dt¼ g20/	 corresponds to information about some aspect

of the atom-cavity state accessible at a rate of over 109 per second for the

current generation of strong-coupling Fabry-Perot cavities with alkali

atoms. This must be compared with a rate for monitoring the same atom via

light scattering in free space, where fluorescence rates do not exceed � 107

per second and it is nearly impossible to imagine effective collection of the

light emitted over 4� solid angle. The orders-of-magnitude increase in

detection capability represents one of the main strengths of cavity QED in

quantum state control.

The cavity-enabled sensing ability can be brought to bear in diverse ways.

In a current experiment [38,161], an atom entering the cavity mode is

detected via a cavity QED probe field and then trapped by a separate light

field in a different longitudinal mode of the cavity. This far-off-resonant

trap (FORT) takes advantage of the cavity buildup power to obtain
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intensities large enough to trap the atom even in the face of mechanical

effects caused by the probe field. Furthermore, the sensing power provided

by that probe field allows trapping of one and only one atom in the FORT,

offering opportunities for schemes in quantum information science that rely

on deterministic interaction of a single atom with the field.

Many such schemes fall under the general heading of quantum state

synthesis, using the single-atom medium to prepare single photons and other

nonclassical states of the light field. Existing methods of single-photon

generation encounter difficulty in providing true determinism of the output

field, either in timing or in spatial output channel. The output channel

difficulty is naturally solved in cavity QED, and efficient single-atom

trapping is bringing true on-demand state generation within the realm of

possibility. Proposals encompass not only single photon generation but also

numerous other state preparations, such as the photon turnstile and the

single atom laser [175], as well as schemes for entanglement generation made

possible by the high detection efficiency.

Another direction which relies on real-time sensing in cavity QED is

quantum state estimation and quantum feedback. Real-time active feedback

methods infer the system state and steer it toward some target value; as

cavity-assisted state measurement approaches its fundamental quantum

limit, a servo will be limited by measurement back-action effects.

Performance of such a control loop will depend on minimal-disturbance

measurements for the variable of interest, and the dynamics will exhibit the

evolution-and-collapse patterns characteristic of quantum trajectory theory

[176,177]. Experiments on real-time feedback to atomic position explore this

issue from one direction, but the concept applies equally to other aspects of

the overall atom-cavity state. For instance, ongoing experiments [178] also

apply real-time sensing and feedback toward the goal of designing novel

states of the cavity output field itself.

F. Quantum Logic and Communication Protocols

Cavity QED in the strong coupling regime offers the possibility for efficient

measurement and control of single quanta, as we have seen, and for rapid

and controlled coherent interactions between these single quanta. In the

language of quantum information theory, cavity QED is one of several

viable platforms for quantum logic and quantum communication. Ongoing

technical progress brings the field closer to achieving atomic position

control that is fine enough and stable enough to perform a series of atom-

field logic gates at high fidelity; position control is required for this purpose

because it means a precise knowledge of the coherent coupling rate gð~rrÞ. This
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ability in turn will allow for on-demand atom-cavity interactions to prepare

and coherently couple novel quantum states of the atom and field.

For purposes of quantum information science, optical cavity QED has the

advantage of offering clock rates that are fast in absolute terms, with current

experiments in the range g0=2� � 100–200MHz. Its chief strength, however,

may lie in the marriage of atomic internal states, easily accessible for

preparation and robust enough for storage, with states of the light field

which can be easily and rapidly transported across large distances. In other

words, optical cavity QED provides an attractive setting for the imple-

mentation of diverse protocols in quantum communication, quantum

teleportation and entanglement distribution, and thus eventually extended

quantum networking.

Quantum communication schemes in optical cavity QED generally

involve information (e.g., coherence or entanglement) written onto the

internal state of an atomic sample. The cavity QED interaction transfers

that coherence onto the state of the cavity field, which then exits the cavity

via the decay 	 in a well-defined mode and can be sent to the receiving

station. Here the light may be injected into a second cavity and thus its state

can be written onto a ‘‘target’’ atom. Numerous detailed proposals have

been developed, with attention to realistic conditions for reversibility and to

technical challenges such as atomic localization for high gate fidelity [179].

A closely related variant is the use of similar protocols for teleportation of

atomic (motional) states via light fields [180].

For these schemes as well as for quantum state synthesis protocols, our

previous schematic is typically altered in two important ways. First, to store

information and particularly coherence in the atom, some internal structure

beyond the two-level atom is helpful. A useful internal state configuration is

the lambda system, which consists of two ground states interacting with

a single electronic excited state. The transitions may be distinguished by

frequency (e.g., due to hyperfine splitting between the ground states) or by

polarization, so that the cavity mode interacts selectively with one ground

state and not the second. In such a scheme classical light pulses on the

second leg of the lambda system can also be used to ‘‘gate’’ a cavity QED

interaction and control the dynamics in detail.

The second technical modification is the use of ‘‘one-sided’’ cavities to

replace the symmetric ones we have discussed so far. This change is driven by

the desire for a truly unique, coherent output mode for the cavity.

We envision a cavity with single-mirror transmissions (T1,T2) and losses

(A1,A2). The current generation of cavities have (T1¼T2)> (A1¼A2),

allowing cavity decay to send light out both cavity mirrors equally. A better

situation for quantum communication and nonclassical light generation

would instead be T1� (T2,A1,A2). To achieve this situation while remaining
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in the strong coupling regime, mirrors with very low transmission and losses

are necessary, since one typically desires even T1 about 10 ppm or smaller.

G. Future Outlook for Cavity QED

The rich interplay between optical cavity technology and fundamental

questions of cavity QED promises to continue for some time. One area of

emerging research is cavity-assisted cooling of atoms or molecules, with a

number of theoretical schemes just beginning to be realized in experiment

[181–184]. Some cooling mechanisms rely explicitly on active feedback or on

strong coupling, but others can be thought of as free-space cooling

mechanisms adapted to operate in an optical cavity. Since cooling rates and

temperatures depend on decay rates in the system, the introduction of new

rates through cavity QED and the modification of bare atomic decay rates

can offer substantial gains under some circumstances. As colder atoms

interact in cavity QED, we also approach a situation where the quantization

of atomic external degrees of freedom is important, leading to the regime of

the ‘‘well-dressed’’ atom and novel effects associated with quantized center-

of-mass motion [170,185–189]. As the sensing and cooling effects in cavity

QED are better understood, another prospect is the identification of ways in

which they can be exploited in dispersive settings rather than in the special

case of a single near-resonant transition. Such developments would open up

these techniques of trapping, cooling, and real-time microscopy for

application to more general atomic and molecular systems.

Cavities for these future developments may come in some unfamiliar

guises. Fabry-Perot technology is inherently limited in the mode volume and

thus coupling strengths it can offer; in particular, conventional high-

reflection coating stacks become ‘‘soft’’ boundaries for very short cavities as

a larger and larger fraction of the cavity mode actually resides in the coating

layers themselves [14]. Numerous other cavity designs are being developed

as options. Fairly extensive work, both theoretical and experimental, has

been devoted to whispering gallery modes of microspheres [190]; one of the

main challenges here is coupling light in and out of the mode without

excessive degradation in Q. Another emerging field is the design of optical

cavities using photonic bandgap structures in solids, where cavity properties

can be selected by tuning the lattice and defect structures [191–193].

VIII. Concluding Remarks on Cavity Enhancement

Dramatic progress has been achieved in optical detection sensitivity by

joining laser spectroscopy with resonator physics. The methods discussed in

76 Jun Ye and Theresa W. Lynn [VIII



this article emphasize the importance of separating the atomic signal from

the cavity’s stored field, and the advantage of detecting signals where only

fundamental physical processes introduce noise. We note the importance of

determining the cavity’s response simultaneously for the on-resonance and

off-resonance cases, so that these quantities can be compared from the

measured signal to reveal the atomic/molecular absorption of interest. We

have discussed how the FM method of NICE-OHMS can be used to

implement this signal isolation and subtraction in real time. A repetitive

transient heterodyne detection scheme, with lowered technical requirements

on the laser system, that meets these design principles has also been

discussed. One exciting application of the spectroscopic method discussed in

the article is high-resolution, vibration overtone spectroscopy. Coupling this

method with large, intracavity beam modes and slow moving molecules

[194–196], we expect hyperfine structures and recoil splittings will be

measured in overtone transitions in the near future. The precision with

which these transitions can be measured will be facilitated by the recently

developed femtosecond-comb-referenced laser sources [197,198]. Detailed

and precise studies of systematic variations in the overtone spectra can now

be carried out in a vast range of spectral coverage. Extension of these cavity-

based sensitive laser spectroscopic approaches is destined to have a strong

impact on certain active research areas in condensed matter physics where

detailed information of system dynamics and structures are being vigorously

pursued.

Besides this significant application of optical cavities for ultrasensitive

spectroscopy, the technologies of high finesse and large bandwidth mirror

coating will continue to play major and fascinating roles in optical

frequency metrology and precision tests. The art of producing ultra-

narrow and stable cavity interference fringes and the ability to accurately

split these fringes to a fraction of parts per million will be critical to a vast

array of laser-based modern precision experiments, some of which are

mentioned in Section I.D. The emerging synergy between ultrafast lasers

and optical cavities will not only present a wonderful opportunity for the

extension of sensitive laser spectroscopy to wide spectral coverage, but also

offer the prospect of enhanced nonlinear interactions when ultrafast pulses

are optimally introduced to interact with an intracavity medium. The

continued pursuit of coherent-evolution-dominated open quantum systems

will also push the technological envelope of optical cavities and the related

science. We hope that our brief account of optical cavities and the related

subsequent discussions have helped to thread together a seemingly

disparate set of actively pursued research topics ranging from ultra-

sensitive to ultrafast, and from ultraprecision to ultraquantum.
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Hänsch, and Krausz, F. (2000). Phys. Rev. Lett. 85, 740.

131. Jones, R.J., Diels, J.C., Jasapara, J., and Rudolph, W. (2000). Opt. Commun. 175, 409.

132. Brabec, T., and Krausz, F. (2000). Rev. Mod. Phys. 72, 545.

133. Baltuska, A., Fuji, T., and Kobayashi, T. (2002). Phys. Rev. Lett. 88, 133901.

134. Baltuska, A., Udem, T., Uiberacker, M., Hentschel, M., Goulielmakis, E., Gohle, C.,

Holzwarth, R., Yakoviev, V.S., Scrinzi, A., Hansch, T.W., and Krausz, F. (2003). Nature

421, 611.

135. Heupel, T., Weitz, M., and Hansch, T.W. (1997). Opt. Lett. 22, 1719.

136. Malcolm, G.P.A., Ebrahimzadeh, M., and Ferguson, A.I. (1992). IEEE J. Quantum

Electron. 28, 1172.

137. Crosson, E.R., Haar, P., Marcus, G.A., Schwettman, H.A., Paldus, B.A., Spence, T.G.,

and Zare, R.N. (1999). Rev. Sci. Instrum. 70, 4.

138. Yanovsky, V.P., and Wise, F.W. (1994). Opt. Lett. 19, 1952.

139. McConnell, G., Ferguson, A.I., and Langford, N. (2001). J. Phys. D-Appl. Phys. 34, 2408.

140. Cohen-Tannoudji, C., Dupont-Roc, J., and Grynberg, G. (1992). ‘‘Atom-Photon

Interactions.’’ Wiley, New York.

141. Grant, D.E., and Kimble, H.J. (1982). Opt. Lett. 7, 353.

142. Weyer, K.G., Wiedenmann, H., Rateike, M., Gillivray, W.R.M., Meystre, P., and

Walther, H. (1981). Opt. Commun. 37, 426.

143. Rempe, G., Thompson, R.J., Brecha, R.J., Lee, W.D., and Kimble, H.J. (1991). Phys. Rev.

Lett. 67, 1727.

144. Mielke, S.L., Foster, G.T., and Orozco, L.A. (1998). Phys. Rev. Lett. 80, 3948.

145. Foster, G.T., Orozco, L.A., Castro-Beltran, H.M. and Carmichael, H.J. (2000). Phys. Rev.

Lett. 85, 3149.

146. Foster, G.T., Mielke, S.L., and Orozco, L.A. (2000). Phys. Rev. A 61, 053821.

147. Arimondo, E. (1996). Progress in Optics, 35, 257.

148. Harris, S.E. (1997). Phys. Today 50, 36.

149. Lukin, M.D., Fleischhauer, M., Scully, M.O., and Velichansky, V.L. (1998). Opt. Lett. 23,

295.

150. Wang, H., Goorskey, D., and Xiao, M. (2001). Phys. Rev. Lett. 87, 073601.

151. Wang, H., Goorskey, D.J., Burkett, W.H., and Xiao, M. (2000). Opt. Lett. 25, 1732.

152. Rebic, S., Parkins, A.S., and Tan, S.M. (2002). Phys. Rev. A 65, 063804.

153. Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., and Kimble, H.J. (1995). Phys.

Rev. Lett. 75, 4710.

154. Turchette, Q.A., Georgiades, N.P., Hood, C.J., Kimble, H.J., and Parkins, A.S. (1998).

Phys. Rev. A 58, 4056.

155. Sanchez-Mondragon, J.J., Narozhny, N.B., and Eberly, J.H. (1984). J. Opt. Soc. Am.

B-Opt. Phys. 1, 518.

156. Thompson, R.J., Rempe, G., and Kimble, H.J. (1992). Phys. Rev. Lett. 68, 1132.

157. Mabuchi, H., Turchette, Q.A., Chapman, M.S., and Kimble, H.J. (1996). Opt. Lett. 21,

1393.

158. Hood, C.J., Chapman, M.S., Lynn, T.W., and Kimble, H.J. (1998). Phys. Rev. Lett. 80,

4157.

159. Munstermann, P., Fischer, T., Maunz, P., Pinkse, P.W.H., and Rempe, G. (1999). Phys.

Rev. Lett. 82, 3791.

160. Shimizu, Y., Shiokawa, N., Yamamoto, N., Kozuma, M., Kuga, T., Deng, L., and

Hagley, E.W. (2002). Phys. Rev. Lett. 89, 233001.

161. McKeever, J., Buck, J.R., Boozer, A.D., Kuzmich, A., Naegerl, H.-C., Stamper-Kurn,

D.M., and Kimble, H.J. (2003). Phys. Rev. Lett., 90, 133–602.

82 Jun Ye and Theresa W. Lynn [X



162. Mundt, A.B., Kreuter, A., Becher, C., Leibfried, D., Eschner, J., Schmidt-Kaler, F., and

Blatt, R. (2002). Phys. Rev. Lett. 89, 103001.

163. Walther, H. (2002). private communications.

164. Kuhr, S., Alt, W., Schrader, D., Muller, M., Gomer, V., and Meschede, D. (2001). Science

293, 278.

165. Chapman, M. (2002). private communications.

166. Hood, C.J., Lynn, T.W., Doherty, A.C., Vernooy, D.W., Ye, J., and Kimble, H.J. (2001).

Laser Phys. 11, 1190.

167. Doherty, A.C., Lynn, T.W., Hood, C.J., and Kimble, H.J. (2001). Phys. Rev. A 63,

013401.

168. Haroche, S., Brune, M., and Raimond, J.M. (1991). Europhys. Lett. 14, 19.

169. Englert, B.G., Schwinger, J., Barut, A.O., and Scully, M.O. (1991). Europhys. Lett. 14, 25.

170. Scully, M.O., Meyer, G.M., and Walther, H. (1996). Phys. Rev. Lett. 76, 4144.

171. Doherty, A.C., Parkins, A.S., Tan, S.M., and Walls, D.F. (1997). Phys. Rev. A 56, 833.

172. Mabuchi, H. (1998). Phys. Rev. A 58, 123.

173. Fischer, T., Maunz, P., Pinkse, P.W.H., Puppe, T., and Rempe, G. (2002). Phys. Rev. Lett.

88, 163002.

174. Soklakov, A., and Schack, R. (2002). quant-ph/0210024.

175. Feld, M.S., and An, K.W. (1998). Sci. Am. 279, 56.

176. Mabuchi, H., and Wiseman, H.M. (1998). Phys. Rev. Lett. 81, 4620.

177. Warszawski, P., Wiseman, H.M., and Mabuchi, H. (2002). Phys. Rev. A 65, 023802.

178. Smith, W.P., Reiner, J.E., Orozco, L.A., Kuhr, S., and Wiseman, H.M. (2002). Phys. Rev.

Lett. 89, 133601.

179. Briegel, H.J., Cirac, J.I., Dur, W., van, S.J., Enk, Kimble, H.J., Mabuchi, H., and Zoller,

P. (1999). Quantum Computing and Quantum Communications 1509, 373.

180. Parkins, A.S., and Kimble, H.J. (1999). J. Opt. B-Quantum Semicl. Opt. 1, 496.

181. Domokos, P., Horak, P., and Ritsch, H. (2001). J. Phys. B-At. Mol. Opt. Phys. 34, 187.

182. Gangl, M., and Ritsch, H. (2001). Phys. Rev. A 64, 063414.

183. van Enk, S.J., McKeever, J., Kimble, H.J., and Ye, J. (2001). Phys. Rev. A 64, 013407.

184. Chan, H.W., Black, A.T., and Vuletic, V. (2003). quant-ph/0208100.

185. Meystre, P., Schumacher, E., and Stenholm, S. (1989). Opt. Commun. 73, 443.

186. Ren, W., and Carmichael, H.J. (1995). Phys. Rev. A 51, 752.

187. Herkommer, A.M., Carmichael, H.J., and Schleich, W.P. (1996). Quantum Semiclass. Opt.

8, 189.

188. Doherty, A.C., Parkins, A.S., Tan, S.M., and Walls, D.F. (1998). Phys. Rev. A 57, 4804.

189. Vernooy, D.W., and Kimble, H.J. (1997). Phys. Rev. A 56, 4287.

190. Vernooy, D.W., Furusawa, A., Georgiades, N.P., Ilchenko, V.S., and Kimble, H.J. (1998).

Phys. Rev. A 57, R2293.

191. Yamamoto, Y., and Slusher, R.E. (1993). Phys. Today 46, 66.

192. Chang, R.K., and Campillo, A.J. (1996). (World Scientific, Singapore.

193. Khitrova, G., Gibbs, H.M., Jahnke, F., Kira, M., and Koch, S.W. (1999). Rev. Mod. Phys.

71, 1591.

194. Bethlem, H.L., Berden, G., Crompvoets, F.M.H., Jongma, R.T., van Roij, A.J.A., and

Meijer, G. (2000). Nature 406, 491.

195. Gupta, M., and Herschbach, D. (1999). J. Phys. Chem. A 103, 10670.

196. Doyle, J.M., and Friedrich, B. (1999). Nature 401, 749.

197. Jost, J.D., Hall, J.L., and Ye, J. (2002). Optics Express 10, 515.

198. Foreman, S., Jones, D.J., and Ye, J. (2003). Opt. Lett. 28, 370.

X] APPLICATIONS OF OPTICAL CAVITIES 83



This page 


intentionally 


left blank



ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL. 49

RESONANCE AND THRESHOLD

PHENOMENA IN LOW-ENERGY

ELECTRON COLLISIONS WITH

MOLECULES AND CLUSTERS

H. HOTOP1, M.-W. RUF 1, M. ALLAN 2 and I. I. FABRIKANT 3

1Fachbereich Physik, Universität Kaiserslautern, 67653 Kaiserslautern, Germany
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I. Introduction

A. SETTING THE SCENE

Low-energy collisions of electrons with atoms and molecules are among the

most important elementary processes in gaseous environments such as

*E-mail: hotop@physik.uni-kl.de
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discharges, arcs, gas lasers, gaseous dielectrics and the earth’s atmosphere.

Correspondingly these processes have been studied for a long time, most

notably over the last forty years following the improvement of instrumental

technology and the detection of prominent resonance structure in electron

scattering cross-sections due to the formation of temporary negative ions

(TNI) (Schulz, 1973a, b). A wealth of information has been gained on the

dynamics of these collisions, as documented by many reviews and books

(e.g. Schulz, 1973a, b; Lane, 1980; Trajmar et al., 1983; Christophorou,

1984; Shimamura and Takayanagi, 1984; Allan, 1989; Domcke, 1991;

Buckman and Clark, 1994; Crompton, 1994; Filippelli et al., 1994; Trajmar

et al., 1994; Huo and Gianturco, 1995; Andersen and Bartschat, 1996;

Chutjian et al., 1996; Zecca et al., 1996; Becker et al., 2000; Illenberger,

2000; Winstead and McKoy, 2000; Christophorou and Olthoff, 2001a, b;

Karwacz et al., 2001a, b; Brunger and Buckman, 2002). In spite of this

progress, however, the exploration of threshold phenomena in electron–

molecule collisions at low energies – both in the limit of zero electron energy

and in the neighborhood of onsets for vibrational excitation – has remained

a major challenge for experiment and theory. Experimentally, it is difficult

to achieve the desired resolution (energy width in the meV range) and

to handle electron beams at energies below about 0.1 eV. Theoretically, it

is demanding to incorporate the nuclear dynamics, using descriptions

which go beyond local complex potential models (Burke, 1979; Lane, 1980;

Kazansky and Fabrikant, 1984; Morrison, 1988; Domcke, 1991; Huo

and Gianturco, 1995; Winstead and McKoy, 2000). In this article, we

shall survey some of the insight gained over the past ten years through

experimental investigations and theoretical descriptions of resonance and

threshold phenomena occurring in low-energy electron collisions with

molecules and molecular clusters. We concentrate on work carried out with

very high resolution (energy width 1–10meV) and electron energies typically

below 1 eV. Much of that work has been devoted to anion formation

through electron attachment, but we shall also present examples for total,

elastic and vibrationally inelastic electron scattering. Electron impact

induced neutral dissociation, electronic excitation, and ionization processes

are not considered in this article. We mention, however, recent intriguing

observations on vibrational resonances in positron-annihilation collisions

with molecules. In the remaining part of Section I, we present a brief

qualitative introduction into the field of low-energy electron–molecule

collisions. Recent complementary surveys on electron collisions with

molecules and clusters include several articles in journals (Hashemi et al.,

1990; Domcke, 1991; Märk, 1991; Illenberger, 1992; Smith and Španel,

1994; Dunning, 1995; Chutjian et al., 1996; Ingolfsson et al., 1996; Zecca

et al., 1996; Burrow et al., 1997; Field et al., 2001a; Karwacz et al.,

86 H. Hotop et al. [I



2001a, b; Brunger and Buckman, 2002) and book chapters (Trajmar et al.,

1994; Huo and Gianturco, 1995; Becker et al., 2000; Illenberger, 2000;

Winstead and McKoy, 2000; Christophorou and Olthoff, 2001a,b; Hotop,

2001; Tanaka and Sueoka, 2001).

B. DYNAMICS OF LOW-ENERGY ELECTRON–MOLECULE COLLISIONS

The dynamical behaviour of slow electrons traversing gases is to a large

extent determined by two effects: the energy dependent evolution of the

scattering phases for the relevant partial waves and the influence of

temporary negative ion states (resonances). For quite a few atoms and

molecules, special behaviour of the s-wave (l¼ 0) phase shift leads to a deep

Ramsauer-Townsend minimum in the scattering cross-section between

0 and 1 eV which strongly affects the electron mobility in these gases. Even

more importantly, resonances (compound states of the electron–molecule

system with lifetimes ranging typically from 10�15 to 10�11 s) are often

found to dominate the dynamics of electron–molecule collisions over the

energy range 0–10 eV. The extended time interval (compared with the direct

transit time which is below 1 fs), spent by the incoming electron close to the

target while in the resonance state (lifetime �¼ 
/�, �¼ resonance width),

has profound effects especially on collision channels which involve a

reaction of the nuclear framework, i.e. on vibrational excitation VE and on

dissociative attachment DA (forming negative ions). Apart from well-

known shape resonances such as H�2 (
2
�u), N

�
2 (

2
�g), CO

�(2�), O�2 (
2
�g, v� 4)

(Schulz 1973b; Shimamura and Takayanagi, 1984; Allan, 1989; Domcke,

1991; Brunger and Buckman, 2002) which are located below the lowest limit

for DA and owe their lifetime to the centrifugal barrier of the electron,

repulsive anion states above the DA limit are important for VE as well

as DA. The importance of resonances for vibrational excitation (VE) as

well as negative ion formation via dissociative attachment (DA) is illustrated

in Fig. 1.

A resonance is formed when the incoming electron, possessing an

energy E close to the resonance energy, is captured into a low-lying

unoccupied molecular orbital (LUMO) which typically has anti-bonding

character. During the lifetime of the resonance the nuclei start to move

to larger distances under the influence of the destabilizing force brought

into the system by the captured electron. When the electron leaves the

negative ion complex by autodetachment after a time comparable to �,
the nuclei find themselves at a distance substantially larger than the

equilibrium distance of the neutral molecule, i.e. in a vibrationally excited

state. If the lifetime is sufficiently long to allow propagation of the nuclei
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to large distances, dissociative attachment (DA, i.e. formation of XþY�

or X�þY) occurs. The occurrence of VE and DA is thus mediated by

electron scattering through resonances XY�*, as summarized in the

reaction scheme (1):

e�ðEÞ þXYðn, v, JÞ ! XY� ðResonanceÞ
! XYðn0, v0, J 0Þ þ e�ðE0Þ ðScatteringÞ ð1aÞ
! X þ Y� ðDissociative AttachmentÞ ð1bÞ
! XY� ðNon-dissociative AttachmentÞ ð1cÞ

Process (1a) describes elastic scattering (E¼E 0) when the electronic (n),

vibrational (v) and rotational (J) quantum numbers all remain the same.

A reaction with v 0> v and n¼ n 0 corresponds to VE within the initial

electronic state. Process (1c) describes nondissociative attachment (NDA),

i.e. formation of negative ions XY– with lifetimes sufficiently long to

allow mass spectrometric detection. Figure 2 illustrates the dynamics

of vibrational excitation (VE), dissociative attachment (DA) and non-

dissociative attachment (NDA) in a potential curve diagram responsible

for the nuclear motion along the normal coordinate R.

For the situation described by the potential curves in Fig. 2, VE and DA

proceed through electron capture from the neutral ground state potential

V0(R) into the repulsive TNI state XY�* (potential V�
*(R)) which possesses

a resonance width G(R) accounting for autodetachment of the TNI

at internuclear separations smaller than the crossing radius RC; the width

normally rises with decreasing R, but may saturate towards smaller R.

The shaded area represents the Franck-Condon region for the primary

electron capture process involving a molecule XY in its vibrational ground

FIG. 1. Dynamics of vibrational excitation (VE) and dissociative attachment (DA) in

electron–molecule scattering through resonances (from Hotop, 2001).
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state v¼ 0. The energy dependences of the cross-section �vv 0(E) for VE and

�DA(E) for DA (which are similar, but not identical in shape (O’Malley,

1966, 1967; Chu and Burrow, 1994) reflect the Franck-Condon overlap

of the initial v¼ 0 level with the nuclear wave function in the XY�*

resonance state in combination with the effects of autodetachment. For

vibrationally excited states in V0(R), the effective threshold energy for DA

moves to lower energies, and a substantial effect of initial vibrational

excitation is thus expected on the shape of the attachment spectrum

(O’Malley, 1967; Massey, 1976).

At energies close to 0 eV, electron capture occurs into the low-lying anion

state XY� (potential V�(R)) with favorable Franck-Condon factors. In the

depicted case, dissociation out of this anion state is not accessible at low

electron energies. For small molecules (e.g. O�2 (
2
�g, v� 4)), autodetachment

occurs within the characteristic lifetime of the resonance, unless the TNI

is stabilized by vibrational deexcitation in collisions with other particles (as

possible in high density media or in clusters). For molecules with sufficient

complexity (such as SF6, C6F6 or C60), however, the total energy of the XY�

system may be distributed efficiently over the rich vibrational manifold by

intramolecular vibrational redistribution (IVR) in such a way that it can

take a long time before the system finds itself again in a situation favourable

for autodetachment, i.e. nondissociative attachment with formation of a

metastable anion occurs. The effective lifetime of the XY� anion in general

depends on the initial vibrational energy. The energy dependence of the

cross-section for NDA typically peaks at zero energy and decreases rapidly

with rising energy (Christophorou, 1978; Illenberger, 2000).

FIG. 2. Potential curve diagram for low-energy electron–molecule collisions.
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There are quite a number of important cases (e.g. F2, Cl2, O3, CCl4,

CFCl3) for which the repulsive branch of the lowest potential surface for the

XY� anion cuts the neutral ground state potential near the minimum of the

latter (as in Fig. 2), but has its lowest asymptotic limit XþY� lying

energetically below the vibrational ground state of XY. In this case, DA is

exothermic at zero electron energy, and one expects to observe a zero energy

peak in the DA cross-section due to s-wave attachment unless the l¼ 0

partial wave is forbidden by symmetry considerations. Like neutron capture

by nuclei at low energies, the cross-section for s-wave electron attachment

to molecules follows the 1/v law (Bethe, 1935; Wigner, 1948) when the

electron velocity v goes to zero. While beautiful confirmations of this law

have been made in neutron absorption experiments some time ago (e.g. Blatt

and Weisskopf, 1952), clear demonstrations for electron capture collisions

had to wait until sub-meV resolution was achieved in laser photoelectron

attachment experiments (Klar et al., 1992a, b; Schramm et al., 1998).

Interesting resonance and threshold phenomena may occur close to onsets

for vibrational excitation: the channels of the electron–molecule scattering

system (1a,b,c) are coupled and thus ‘feel’ each other. This channel coupling

leads to special structure (Wigner cusps of different shapes, vibrational

Feshbach resonances) in open channels when the collision energy E passes

through the onset for a new inelastic channel. High energy resolution is

needed to reveal these features. For a variety of molecules, threshold peaks,

i.e. large enhancements in VE cross-sections within a narrow region above

the VE onset, are observed, as first discovered for HF and HCl by Rohr

and Linder (1975, 1976). Towards higher energies, VE cross-sections may

exhibit oscillatory ‘boomerang’ structures (Birtwistle and Herzenberg, 1971;

Herzenberg, 1984), found more recently even in molecules like HCl

where they would initially not be expected because of a large resonance

width (Cvejanovic, 1993; Allan et al., 2000; Čı́žek et al., 2001). Very narrow

‘outer well resonances’, superimposed on the broader boomerang structures,

have been identified, initially theoretically, in molecules where the potential

curve of the anion has a secondary minimum at large internuclear

separation (Allan et al., 2000; Čizek et al., 2001). Remarkable progress

towards a deeper understanding of these phenomena has been recently

achieved in a systematic joint experimental and theoretical investigation

of the hydrogen halides (see Section IV.).

For molecules with sufficiently strong long-range electron–molecule

interactions (e.g. due to the molecular polarizability or dipole moment)

the existence of a quasi-discrete low-energy anion state in the continuum

(Vd(R), electron attached to the LUMO) leads to two potential curves

Vres,1(R) and Vres,2(R) (Domcke and Cederbaum, 1981; Gauyacq and

Herzenberg, 1982), as sketched in Fig. 3b. Note that without the long-range
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attraction, only one resonance Vres(R) exists (somewhat shifted below Vd(R)

by the interaction of Vd with the continuum), as shown in Fig. 3a.

For internuclear distances around the equilibrium separation Re of the

neutral curve V0(R), the potential curve Vres,2(R) lies close to, but below

V0(R); in this range, the anion state Vres,2(R) may be viewed as a composite

of the neutral molecule with a diffuse electron bound by long-range forces

(with no need to invoke a centrifugal barrier for the electron). As evident

from Fig. 3b, the low-lying vibrational levels v2 in Vres,2(R) are located just

below the corresponding vibrational levels v0¼ v2 in the neutral molecule.

The level v2¼ 0 may be – when sufficiently bound with respect to the

influence of rotational effects – a stable, detectable anion state (such as a

dipole-bound state, Desfrançois et al., 1996) which is not accessible in

collisions of the molecule with free continuum electrons. The quasi-bound

vibrational levels in Vres,2(R) with v2� 1 lie in the electron–molecule

continuum and correspond to vibrational Feshbach resonances (VFR,

Schramm et al., 1999); they were previously addressed as nuclear-excited

Feshbach resonances (Bardsley and Mandl, 1968; Gauyacq and Herzenberg,

1982; Knoth et al., 1989a; Thümmel et al., 1993). In the depicted case, the

VFRs can only decay by autodetachment through indirect coupling to the

continuum (via kinetic coupling of the two resonance states). The VFRs are

thus expected to live quite long and to appear as narrow features below

vibrational thresholds in elastic or vibrationally inelastic electron scattering

cross-sections (Knoth et al., 1989a; Thümmel et al., 1993; Schramm et al.,

FIG. 3. On the origin of vibrational Feshbach resonances: sketch of potentials without (a)

and with (b) long-range electron–molecule interaction.
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1999; Sergenton et al., 2000); their observation requires high energy

resolution. If the asympotic energy of the discrete anion state Vd(R) lies

below a given VFR, then this and higher-lying VFRs may also decay

by dissociation and thus be observed in DA as well (Schramm et al.,

1999, 2002). Interestingly, vibrational resonances have been recently also

observed in the energy dependent cross-sections for positron annihilation

involving polyatomic molecules in the gas phase (Gilbert et al., 2002),

see Section IV.D.

The following article is organized as follows. In Section II, we survey the

relevant aspects of the underlying theory. In Section III, we describe

experimental aspects with emphasis on recent developments. In Section IV,

selected case studies highlight some of the recent progress in the field. In

Section V, we conclude with a brief summary and address some unsolved

problems.

II. Theory

Theoretical developments in the field of electron–molecule collisions during

the past twenty-five years were covered in several reviews (Burke, 1979;

Lane, 1980; Herzenberg, 1984; Kazansky and Fabrikant, 1984; Morrison,

1988; Domcke, 1991; Huo and Gianturco, 1995). Some aspects of resonance

and threshold phenomena were discussed in these reviews, as well as by

Sadeghpour et al. (2000). The theoretical description of electron–molecule

collisions generally requires an adequate description of electronic, vibra-

tional and rotational degrees of freedom. However, if the typical collision

time is short compared to the rotational period, the molecule can be treated

as having a fixed orientation during the collision process, and the result

for the cross-section can be averaged over orientations. Treatment of

vibrational dynamics is usually more important and more challenging to the

theory. In the electron energy region important for applications, many

inelastic processes such as vibrational excitation and dissociative electron

attachment are driven by negative-ion resonances, as already addressed

in the introduction. The lifetime of these resonance states is quite often

comparable to the vibrational period (e.g., for N2, CO and CO2 molecules)

and sometimes even exceeds it substantially (e.g., for the O2 molecule). The

theoretical description of vibrational dynamics in these cases is usually

based on the nonlocal complex potential describing the nuclear motion in the

intermediate negative-ion state (O’Malley, 1966; Bardsley, 1968; Domcke,

1991). An alternative method is based on the R-matrix approach (Schneider

et al., 1979; Fabrikant, 1990). For studies of resonance and threshold

phenomena the latter one is especially attractive, particularly in the case
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of a strong long-range interaction between the incident electron and the

molecular target. The R matrix allows a convenient parametrization, and all

strong energy dependences of transition amplitudes and cross-sections can

be accounted for by inclusion of the long-range interaction in electronic

channels. In what follows we will briefly describe this approach formulated

by Wigner (1948) and its application to electron–molecule collisions.

A. MULTICHANNEL R-MATRIX THEORY

The fundamental paper of Wigner (1948) gives a unified method for the

description of inelastic processes in the near-threshold region. The method

is based on the R-matrix theory (Wigner and Eisenbud, 1947) which

was initially developed for nuclear reactions, but later on applied to

electron–atom and electron–molecule collisions. The R-matrix theory is a

very powerful tool for analytical studies of near-threshold and resonance

phenomena, as well as for ab initio numerical calculations.

The basic concept of Wigner’s theory is the reaction sphere outside which

only long-range interactions between reactants are important. Initially it

was assumed that this interaction is diagonal, that is interchannel transitions

are impossible outside the sphere. This assumption is not always valid in the

theory of electron–molecule collisions. In particular, the dipolar interaction

can cause transitions between different rotational states. The R-matrix

theory can be generalized for a nondiagonal dipolar interaction outside

the sphere (Gailitis and Damburg, 1963). However, most of the analytical

results (with the exception of dipolar interaction between degenerate

channels) were obtained assuming a diagonal long-range interaction, and

we will use this approximation at the first stage.

A.1. Analytical Theory of Threshold Behavior, Resonances,

and Cusps: Short-Range Interaction

We consider an N-channel system and introduce the multichannel wave

function in the form of an N�N matrix w which has the following form

outside the reaction sphere, r> r0,

w ¼ h�1 � hðþÞS ð2Þ

where S is the scattering matrix and h(	) are channel wavefunctions with the

following asymptotic behavior

h	ij � �ijk
�1=2
i exp½iðkir� li�=2Þ�; ð3Þ
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where ki and li are linear and angular momenta in channel i. The asymptotic

form (3) assumes that all N channels are open. However, the whole

treatment can be easily generalized if there are Nc additional closed

channels. The corresponding diagonal matrix elements of h(þ) behave like

exp�ijkijr : expð�ijkijrÞ, and the matrice h(�) and S become rectangular

with NþNc rows and N columns. For simplicity we will not dwell on further

details related to closed channels.

The partial (for a given set of angular momenta) cross-section for

transitions from an initial state i to a final state f is proportional to |Tfi|
2

where T is the transition matrix related to the scattering matrix by

T ¼ 1 ð¼ unity matrixÞ � S ð4Þ

The function (2) is matched with the internal wavefunction in the form

w ¼ R
dw

dr
ð5Þ

where R is the Wigner R matrix which is a meromorphic function of energy

having poles only on the real axis (Lane and Thomas, 1958). For the

purpose of derivation of the threshold laws we assume that the R matrix can

be considered as an analytical function of energy and expanded in powers of

energy E. This is the essence of the effective range theory (ERT). A special

treatment is necessary if there is a bound, a virtual, or a resonance state near

the threshold.

Using analytical properties of h(þ), one can obtain the equation of Ross

and Shaw (1961)

T ¼ �2iklþ1=2ðM � ik2lþlÞ�1klþ1=2; ð6Þ

where M is a meromorphic function of energy. This equation allows us to

obtain threshold laws for elastic and inelastic processes. In particular the

threshold law for an inelastic process is given by

Tfi � k
lfþ1=2
f : ð7Þ

This is the Wigner threshold law. Usually we are interested in the total (that

is, summed over all orbital angular momenta) cross-section. Then lf is the

lowest angular momentum allowed by the symmetry of the problem. For

example, photodetachment of a bound s electron gives a kf
3 or Ef

3/2

behavior of the cross-section (p-wave emission), whereas photodetachment
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of a bound p electron leads to the kf behavior (s-wave emission) near

threshold because of the dipole selection rules (the d-wave is suppressed

strongly by the kf
5 dependence).

In nonresonant collision processes, when there is no selection rule in l, the

lowest allowed angular momentum is lf¼ 0, therefore we obtain �fi/ kf for

the cross-section of an endothermic process. This law can be usually applied

to the process of electron impact excitation of atoms and molecules, if there

is no dipolar interaction in the final channel. If heavy particles are formed in

the final state (for example in DA and electron impact dissociation

processes) the range of validity of the Wigner law is very narrow (Fabrikant

et al., 1991), therefore, if there is no activation barrier for the process, the

cross-section as a function of energy in the near-threshold region exhibits a

vertical onset (O’Malley, 1966).

Another example is the Wigner-Baz’ cusp (Baz’, 1958). Just for

illustration we will consider now a two-channel case and investigate the

behavior of |T11|
2 near the threshold for excitation of the channel 2. Note

that k2 is real above the threshold, and purely imaginary below the

threshold. This allows us to write |T11|
2 in the following form

jT11j2 ¼
a

bþ ck2l2þ12

; k22 > 0 ð8Þ

jT11j2 ¼
aþ djk2j2l2þ1

bþ f jk2j2l2þ1
; k22 < 0 ð9Þ

where the constants a, b, c, d, and f are expressed through the elements of

the M-matrix. Equation (9) explicitly demonstrates the discontinuity of

d|T11|
2/dE at threshold (the threshold cusp) for l2¼ 0. If l2>0, we still have

formally a nonanalytical behavior appearing as a discontinuity of higher

derivatives. However, this behavior is very hard to detect experimentally.

The paper of Baz’ (1958) shows that this discontinuity results directly from

the conservation of probability or the unitarity of the S matrix.

Note that the explicit expressions for the coefficients allow us to prove

(Fabrikant, unpubl.) that a, b, and c are positive meaning that the elastic

cross-section is always decreasing above the threshold. At the same time

there is no certain relation between d and f, therefore the sign of the energy

derivative below the threshold might be both positive and negative. This

result can be generalized to some multichannel cases. For example, if there

are two open channels and we look at the transition 1! 2, it can be shown

that in the vicinity of the threshold for channel 3 the cross-section �12
exhibits the same type of behavior: the sign of d�12/dE might be both
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positive and negative below threshold, but is always negative above

threshold. This behaviour is illustrated in Fig. 4 and can be found, e.g., in

cross-sections for dissociative attachment around a vibrational excitation

threshold. Indeed, in all observed and calculated cases which involve

long-range interactions decaying faster than r�2 the DA cusp goes

downward above the VE threshold.

Although these results seem to be natural (a cross-section in the ‘old’

channel is decreasing because of the growing cross-section for a transition

into a ‘new’ channel), they are not generally true. In particular, they do not

apply when there is a long-range (dipolar) interaction outside the R-matrix

sphere. The case of the Coulomb interaction gives a completely different

behavior, but we do not discuss it here since this review is concerned with

electron scattering by neutral targets.

Equation (6) contains also information about near-threshold resonances

and virtual states. Let us again consider for simplicity a two-channel case

with l2¼ 0. Assume first that interchannel coupling is negligible, that is

M12¼ 0. Then the T-matrix has a pole in the complex k2 plane whose

position is k2¼�iM22. This corresponds to a bound state when M22<0

and a virtual state when M22>0. If M12 6¼ 0, k2 acquires a nonzero real

part. When M22<0 it corresponds to a Feshbach resonance whereas the

case M22>0 corresponds to a virtual state coupled to channel 1. In the first

case there is a time delay in scattering, and the cross-section exhibits a

Lorentzian or a Fano profile, whereas in the second case the cross-section

FIG. 4. Illustration of cusp structure in partial cross-sections due to interchannel coupling

(see text).
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exhibits an enhancement at the threshold. This phenomenon is closely

connected to the threshold cusps discussed above. In the case of a virtual

state whose corresponding pole is close to k2¼ 0 the cross-section exhibits a

very sharp cusp with a positive derivative at k22 <0 and a negative derivative

at k22 >0. If the interaction in the channel 2 becomes more attractive, the

cusp turns into a Feshbach resonance below the threshold. Examples

illustrating this behavior will be given in Section II.A.4.

A.2. Dipolar Interaction: Stationary Dipole

A similar approach can be applied in the case of a long-range interaction

outside the reaction sphere. In case of electron interaction with a nonrota-

ting dipolar molecule the problem is reduced to diagonalization of the

operator (Mittleman and von Holdt, 1965)

L ¼ lðl þ 1Þ � 2D; ð10Þ

where D is the dipole moment matrix obtained by calculating the matrix

element of the dipolar interaction between the angular momentum

eigenstates.

Diagonalization of the matrix L allows us to express the solution of the

Schrödinger equation outside the reaction sphere as a linear combination

of the Bessel functions with indices liþ 1/2 where li are related to the

eigenvalues �i of the matrix L by

Li ¼ liðli þ 1Þ; i ¼ 0; 1; . . . ð11Þ

The form of the threshold law critically depends on the lowest eigenvalue

�0 (Gailitis and Damburg, 1963). If L0>�1/4, all li are real, the T-matrix

element for inelastic processes is proportional to k�0þ1=2, and the cross-

section to k2�0þ1. This happens if the dipole moment of the molecule is lower

than the critical dipole moment mcr¼ 0.6395 a.u.¼ 1.625D. If m> mcr, or

L0<� 1/4, l0þ 1/2 is purely imaginary, and the cross-section is finite at the

threshold. The cross-section for an inelastic process can be written as

(Fabrikant, 1977,1978) (k� kf).

�fi ¼ const j ei� þ e��k2i� j �2; ð12Þ

where �¼ Iml and the parameter � depends on elements of the M matrix

as well as on the dipole moment. Although � is generally complex, its

imaginary part is small if the interaction with other channels (other than

dipole-coupled near-threshold channels) is weak. In particular � is real for
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pure elastic scattering. In this case analytical continuation of the T matrix

below the threshold into the region of negative kf
2 allows us to find the

poles whose positions are given by the equation

k2 ¼ � expf�½�ð2nþ 1Þ þ ����1g ð13Þ

These are the well-known dipole-supported states, discussed originally by

Fermi and Teller (1947, see also Turner, 1977) and observed in a series of

experiments on charge transfer from Rydberg atoms to polar molecules and

clusters (Desfrançois et al., 1994a, b, c; Desfrançois et al., 1996; Compton

and Hammer, 2001). Note that these states are very rapidly (exponentially)

converging to the threshold, and this is what makes them very different

from the Coulomb Rydberg states. The rotational splitting reduces the

number of these states from infinity to very few, sometimes even to zero.

For example, the HF molecule and water molecule have supercritical dipole

moments, however they do not have stable anion states. Crawford and

Garrett (1977), by performing model calculations for various molecules,

concluded that a dipole-supported state remains bound after inclusion of

rotation, if its fixed-nuclei binding energy exceeds approximately ten percent

of the rotational constant.

If there are open channels below the threshold, the discussed bound states

become dipole-supported Feshbach resonances. If the vibrational motion

of the molecule is included, each dipole-supported state can generate a

series of vibrational Feshbach resonances, originally called ‘nuclear-excited’

Feshbach resonances (Bardsley and Mandl, 1968; Domcke and Cederbaum,

1981; Gauyacq and Herzenberg, 1982).

Above the threshold the analytical structure of Eq. (12) leads to

oscillations of the cross-section as a function of energy. However, these

oscillations cannot be observed in practice (Fabrikant, 1977, 1978). If the

dipole moment is just above the critical, the period of oscillations exceeds

the rotational spacing whereas for higher dipole moments the amplitude of

oscillations becomes exponentially small.

A.3. Rotating Dipole

Turning to the more complicated case of a rotating dipole, we have to

distinguish between two cases. In the first, rotation removes all degeneracies

of the dipole-coupled channels. In the second, some degenerate channels

coupled by the dipolar interaction still remain. The second case is typical

for symmetric-top molecules and molecules with nonzero projection of

the electronic angular momentum on the internuclear axis (e.g., molecules

in a � state).
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If the electron energy in the final state is small compared to the rotational

spacing, the dipole coupling becomes equivalent to the action of a diagonal

potential which behaves at large distances as a polarization potential

�eff/(2r
4) (note that the effective polarizability �eff can be both positive and

negative). In the case of scattering by polar molecules the long-range

behavior of the effective diagonal potential depends on the total angular

momentum J. If J¼ 0 the effective polarizability is given by (Clark, 1979;

Fabrikant, 1983) �eff¼ m2/(3B) where m is the permanent dipole moment

and B the rotational constant. For J>0 and s-wave electrons the effective

(static) polarizability turns to zero, and the long-range behavior is

determined by the dynamical polarization interaction decaying as r�6.

In all cases the Wigner threshold law is restored, and it is also possible

to find an analytical correction to the Wigner law of the order of �eff kf
2 ln kf

(O’Malley, 1965; Damburg, 1968; Gailitis, 1970). The region of the

transition between the Wigner law and the dipole threshold law is much

more complicated. Even in the simplest two-channel case the solution has

a very complicated analytical structure (Gailitis, 1970). Therefore most

of the studies in this region were performed by numerical integration of the

coupled equations (Fabrikant, 1978, 1983).

If the dipole moment of the molecule is supercritical, there is an infinite

number of dipole-supported states in the fixed-nuclei approximation. When

the rotational splitting is included, all or most of them disappear because of

the effective cut-off of the dipole potential. At large distances the effective

electron–dipole interaction decays as r�4 or even faster. At shorter distances,

where the rotational spacing is smaller than the electron–dipole interaction,

the adiabatic body-frame representation (Clark, 1979; Fabrikant, 1983)

is more appropriate for description of the physics. In this region the dipole

potential leads to binding and anisotropy of the electron wavefunction.

The size of the inner (adiabatic) region may be as large as a few hundred a.u.

It means that the dipolar interaction may be strong enough to create a

diffuse bound or a virtual state (Frey et al., 1994). In particular very diffuse

virtual states were found in scattering of Rydberg electrons by HF molecules

(Hill et al., 1996) and CH3Cl molecules (Frey et al., 1995; Fabrikant

and Wilde, 1999).

In the presence of a bound or a virtual state near the threshold

the analysis based on the multichannel formula of Ross and Shaw

(1961), Eq. (6), leads to the following result for the transition cross-section

(k� kf)

�fi ¼
ak

k2 þ 2kIm	þ j	j2
: ð14Þ
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The parameters 	 and a, as well as the positions of the S-matrix poles

depend on J. This dependence was calculated for HF (Fabrikant, 1996)

molecules. For higher J the pole is moving farther away from the origin,

and its influence on the threshold behavior becomes weaker.

In symmetric-top molecules and diatomic molecules with nonzero L,

rotation reduces the dipole moment, but does not average it to zero, as for

diatomic molecules in a � state and nonsymmetric polyatomic molecules.

In diatomic molecules with L 6¼ 0 the channels with the projection of the

electronic angular momentum M¼	L remain degenerate if L-doubling is

neglected. For symmetric tops there is a degeneracy with respect to the

sign of projection of the rotation angular momentum on the symmetry axis.

The reduced dipole moment mav can be defined as mav¼K/[J(Jþ 1)]1/2, where

J is the total rotational angular momentum and K its component about

the symmetry axis. K-doubling and inversion splitting are neglected in

this approximation. Detailed analyses of the threshold exponents for these

cases was done by Engelking (1982) and Engelking and Herrick (1984).

Application to the near-threshold photodetachment of OH� was presented

by Smith et al. (1997). The position of the virtual-state poles as a function

of J and K was calculated for the CH3Cl molecule by Fabrikant and

Wilde (1999).

A.4. Vibrational Dynamics

At ultralow electron energies when the collision time is much longer than

the vibrational period, the projectile electron ‘‘sees’’ the potential averaged

over vibrations, therefore the theoretical description of vibrational motion

is rather simple in this case. At electron energies which are substantially

higher than the vibrational spacing, one can use the adiabatic approxima-

tion (Chase, 1956) whereby the transition amplitude is calculated by taking

the matrix element of the fixed-nuclei amplitude between the initial and

final vibrational states. The intermediate region, where the electron energy

becomes comparable to the vibrational spacing, is the most challenging

for theoretical calculations. On the other hand, due to the very large

difference in masses of the projectile and the target, vibrational excitation

of molecules by electrons and DA processes occur with substantial rates

only when a resonance mechanism is involved whereby at first stage the

electron is captured by the molecule forming a temporary negative-ion state.

Inclusion of the resonance mechanism into the theory makes it simpler

and more physically transparent, although alternative descriptions without

the explicit use of the resonance states are possible (e.g. the zero-range-

potential (ZRP) description applied by Gauyacq, 1982).
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There are two methods for inclusion of the resonance mechanism into

the theory of electron–molecule collisions: the Feshbach projection operator

technique and the R-matrix approach. The first is more convenient for

ab initio calculations of VE and DA. However, because of substantial

computational challenges, this approach has been applied so far only to

diatomic molecules. Even a relatively simple triatomic molecule, CO2, has

been treated (Kazansky, 1995; Rescigno et al., 2002) only in the so-called

local approximation. The idea of the local approximation (O’Malley, 1966;

Bardsley, 1968; Herzenberg, 1968), also called the boomerang model

(Birtwistle and Herzenberg, 1971; Dubé and Herzenberg, 1979), is to

describe the motion of the negative-ion state by the Schrödinger equation

with a local complex potential whereas the actual potential describing

this motion is a nonlocal energy-dependent operator (Domcke, 1991). The

nonlocal effects become particularly important near vibrational excitation

thresholds where the local theory fails to describe vibrational Feshbach

resonances and threshold cusps.

The nonlocal effects can be successfully described within the framework

of the projection-operator approach (Domcke, 1991; Meyer et al., 1991;

Čı́žek et al., 1999) or the resonance R-matrix theory. The ab initio R-matrix

method (Schneider et al., 1979) requires several terms in the R-matrix

expansion to describe a single resonance. This is not physically transparent

and causes difficulties in the calculation of DA processes. In contrast, the

effective R-matrix model (Wong and Light, 1984, 1986) and the resonance

R-matrix model (Fabrikant, 1986) use only one R-matrix state correspond-

ing to the physical resonance. This allows us to find the direct connection

between the parameters of the R-matrix theory and parameters of the

Feshbach projection operator approach, particularly the position and the

width of the negative-ion resonance.

For model calculations we present the fixed-nuclei R matrix in the form

R ¼ �2ð�Þ
Wð�Þ � Ee

þ Rb; ð15Þ

where the surface amplitude �(�) and the R-matrix pole W(�) are standard

parameters of the R-matrix theory, and Rb is a background term which is

assumed to be weakly dependent on electron energy Ee and internuclear

distance � (here, � is understood to represent its deviation from the

equilibrium distance in the neutral potential energy curve). For simplicity we

assume that only one angular mode dominates the resonance scattering,

therefore the fixed-nuclei R matrix includes only one channel. For example,

the resonance scattering by the N2 molecule is dominated by the d-wave,
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whereas the resonant scattering by polar molecules is typically dominated

by the lowest angular mode resulting from the diagonalization of the

operator (10).

The nuclear motion is included by replacing function (15) by the operator

(Schneider et al., 1979).

R ¼ �ð�ÞðT þUð�Þ � EÞ�1�ð�Þ þ Rb ð16Þ

where T is the kinetic energy operator for the nuclear motion, E is the

total energy of the system (including the vibrational energy), and

U(�)¼W(�)þV(�) is the potential energy of the negative-ion state (whereas

V(�) is the potential energy of the neutral molecule). Function U(�) is

equivalent to the diabatic negative-ion state of the projection-operator

theory, although these two are not identical. In particular U(�) depends on
the R-matrix radius r0. In model calculations we try to choose r0 and other

R-matrix parameters in such a way that one curve U(�) represents the

resonance which we want to describe.

The basic equation of the R-matrix theory (5) can then be formally solved.

We introduce a diagonal matrix uþ of radial electron wavefunctions in

different vibrational channels and the surface amplitude matrix c for

transitions between vibrational states of the neutral molecule and negative-

ion states. Then the S matrix for DA can be written in the following form

SDA ¼ 2�ð ~uuþÞ�1ð1þ cGðþÞcLþÞ�1y; ð17Þ

where ~uuþ¼ uþ�Rb(u
þ) 0, Lþ¼ (uþ) 0ð ~uuþÞ�1, G(þ) is the Green operator for

the nuclear motion in the negative-ion state, and y is the column of the first-

order DA amplitudes

yv ¼ hvj�j ðþÞi ð18Þ

where |vi is the eigenstate of the vibrational Hamiltonian for the neutral

molecule, and  (þ) is the nuclear wavefunction describing the motion in the

negative-ion state corresponding to the outgoing-wave boundary condition.

Because of the importance of the vibrational continuum for the calculation

of the DA processes, Eq. (17) is actually an integral equation for SDA. It is

solved by the quasiclassical technique (Kalin and Kazansky, 1990) based on

the quasiseparable representation of the Green operator.

The matrix Lþ in Eq. (17) is responsible for near-threshold resonances

and cusps in partial cross-sections (including dissociative attachment) at
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each VE threshold. For example, in the absence of long-range electron–

molecule interactions we obtain for the s-wave case

Lþv ¼
ikv

1� iRbkv
: ð19Þ

This behavior gives a cusp in SDA at the threshold for vibrational excitation

of the level v. However, the cusps are not very pronounced in the absence

of long-range interactions. Much more pronounced cusps appear when we

include polarization and/or dipolar interactions outside the R-matrix

sphere. If this interaction is attractive enough, it leads to a vibrational

Feshbach resonance below the threshold. Mathematically it corresponds to

a pole of SDA, Eq. (17), in the complex plane of the energy Ev¼ k2v=2 whose

imaginary part is negative and gives the resonance halfwidth. If the

imaginary part of the pole is positive, the pole corresponds to a virtual

state shifted into the complex plane of Ev because of the interchannel

interaction. If the virtual state pole is close to Ev¼ 0, we obtain a very

sharp cusp at threshold. If we decrease the interaction in the channel v, the

pole moves away from Ev¼ 0, and the cusp becomes weaker. This situation

is schematically represented in Fig. 5.

An alternative, and perhaps physically more transparent description

of vibrational Feshbach resonances and threshold effects starts with

the neutral curve V(�) and the ‘‘diabatic’’ negative-ion curve U(�). The

adiabatic negative-ion curve can be obtained from the basic equation of the

R-matrix theory, Eq. (5), but using now the fixed-nuclei approximation.

FIG. 5. Poles of the dynamical S matrix describing vibrational excitation and dissociative

attachment near the threshold Ev¼ 0. The pole F1 represents a sharp vibrational Feshbach

resonance just below the threshold; the pole F2 a broader VFR farther away from the threshold.

The pole V1 represents a sharp virtual-state cusp; the pole V2 a weaker virtual state cusp. Note

that the poles F1 and F2 lie on the physical sheet, whereas V1 and V2 on the nonphysical sheet of

the Riemann surface.
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In the presence of a strong long-range interaction between the electron

and the molecule, the adiabatic curve turns down near the crossing point

and follows the neutral curve down to the internuclear distances close

to equilibrium. This behavior is illustrated in Fig. 6 by choosing model

potential energy curves V(�) and U(�) and calculating the adiabatic energy

curve Uad(�) for a given polarizability of the molecule � and its dipole

moment m. The exact position of the crossing between the neutral and the

adiabatic negative-ion curves depends on the details of the long-range

interaction. In particular, if the dipole moment is supercritical and remains

supercritical down to small internuclear distances �, the curves do not

cross, although in practice the dipole-supported state eventually disappears

because of rotational effects, as discussed above. But generally, such a

behavior of the adiabatic anion curve leads to vibrational states which

lie below, but very close to the vibrational states of the neutral molecule.

Typically, lower vibrational states correspond to sharper resonances

whereas for higher vibrational states we observe cusps which become

weaker with increasing v.

We illustrate these results in Figs. 7 and 8 by presenting DA cross-sections

calculated with the potential curves presented in Fig. 6. In Fig. 7 we increase

polarizability that allows us to go from virtual-state cusps to sharp VFRs,

FIG. 6. Potential energy curves for a model electron scattering problem. V(�), a curve for the

neutral molecule; U(�), the R-matrix pole; Uad(�), the adiabatic anion curve obtained with the

polarizability �¼ 54 a.u. and the dipole moment �¼ 0.638 a.u. The chain curve Uad
1(�)

illustrates the change of the adiabatic curve when U(�) is shifted upwards by �ES¼ 0.1 eV.

The vibrational levels of the neutral molecule are indicated by horizontal solid lines.
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FIG. 7. Dissociative attachment cross-section obtained with potential energy curves V(�) and
U(�) from Fig. 6 and different values of the polarizability � (in a.u.).

FIG. 8. Dissociative attachment cross-sections obtained from the model of Fig. 6 modified by

shifting the curve U(�) by different amounts �ES.
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and then to broader VFRs well below the threshold. Changing the dipole

moment m from 0.4 to 0.9 a.u. (while keeping the polarizability fixed at

�¼ 54 a.u.) produces similar effects (Leber et al., 2000a). A variation of the

crossing point (e.g. through shifting U(�) by simply adding or subtracting

a �-independent energy �ES) also produces strong changes in the DA line

shape. Introduction of a negative shift (lowering U(�)) corresponds to

the solvation energy effect when the molecule is placed in a cluster or a

condensed-matter environment. In Fig. 8 we show how the shape of the

cusp and VFR is changing when U(�) is shifted.
In conclusion we should stress that VFRs and cusps appear only in the

dynamical R-matrix theory, or in the nonlocal complex potential theory

which are basically equivalent. The local theory is not capable to describe

the threshold effects. The effective-range-potential approximation can be

considered as a limiting case of the R-matrix method and therefore is

able to describe threshold effects, too (Gauyacq, 1982; Gauyacq and

Herzenberg, 1984).

B. VOGT-WANNIER AND EXTENDED VOGT-WANNIER MODELS

A completely different approach to the description of inelastic collisions

with zero-energy threshold is used in the Vogt-Wannier (VW) model for the

capture into a polarization well (Vogt and Wannier, 1954). It is assumed

there that the reactive process occurs with 100% probability if the electron

falls into the singularity created by the polarization potential Vpol¼
� �/(2r4). The cross-section depends only on energy and the molecular

polarizability �, and in the s-wave regime at very low energies, it is given by

the simple formula

�VWðE ! 0Þ ¼ 4�½�=ð2EÞ�1=2: ð20Þ

The original VW result, Eq. (37) of Vogt and Wannier (1954), was derived

from the theory of Mathieu functions. For the s-wave contribution Klots

(1976) proposed a simple expression

�K ðEÞ ¼ ½�=ð2EÞ�f1� exp½�4ð2�EÞ1=2�g ð21Þ

which fits the exact Vogt-Wannier result for l¼ 0 to within 8% (see Fig. 9)

and describes the transition from the low-energy behavior (20) to the

unitarity limit �/(2E)¼���2 at higher energies (��¼ reduced de Broglie

wavelength).
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For molecules with high polarizabilities (such as C60, �(C60)� 558 a.u.,

Bonin and Kresin, 1997) higher partial waves may become important even

at rather low electron energies. Near zero energy the cross-section for

capture of an l� 1 partial wave (�VW(E; l� 1)/E l�1/2) is suppressed by

the centrifugal barrier which the electron has to penetrate by tunneling.

Inspection of the numerically computed partial capture cross-sections

�VW(E; l� 1) shows that they exhibit a maximum at an electron energy

Emax,l which is close to the maximum value Veff(rmax; l)¼ [l(lþ 1)]2/(8�)
(a.u.) of the effective potential Veff(r; l)¼ –�/(2r4)þ l(lþ 1)/(2r2) where

rmax,l¼ [2� /(l(lþ 1))]1/2. For �¼ 558 a.u., the maximum values of Veff for

l¼ 1, 2 and 3 are given by 24.4, 219, and 878meV; the maxima are located

at 23.6, 13.6, and 9.6 a0, respectively. In Fig. 10 we show the l¼ 0� 4 Vogt-

Wannier capture cross-sections for electron capture by the C60 molecule.

At very low energies the Wigner threshold behaviour (/E l�1/2) is observed
while towards high energies the respective unitary limit �l¼�(2lþ1)/k2 is

reached. It is interesting to note (see also Vogt and Wannier, 1954; Klots

and Compton, 1996) that the total VW cross-section �VW,tot(E) is found to

agree with the classical Langevin cross-section �Lang(E)¼ 2�[�/(2E)]1/2

(Langevin, 1905) to within 5% for energies above about 4meV (more

generally for �E>0.08 a.u.). Towards lower energies the ratio �VW,tot(E)/

�Lang(E) continuously rises towards the value 2 which is reached in the limit

of zero energy, as illustrated in Fig. 11.

FIG. 9. Ratio �K(E)/�VW(E; l¼ 0) of the approximate s-wave capture cross-section due to

Klots to the s-wave capture cross-section of Vogt and Wannier for a spherically symmetric

target with a polarizability of �¼ 558 a.u.

II] RESONANCE AND THRESHOLD PHENOMENA 107



FIG. 10. Partial l¼ 0–4VW cross-sections and the resulting total VW cross-section (open

circles) for electron capture by a spherically symmetric target with a polarizability of �¼ 558

a.u. In addition the figure presents the limiting s-wave Vogt-Wannier capture cross-section

Eq. (20) (dotted line), the classical Langevin cross-section (short dashes) as well as the unitary

limits �k�2 and 3�k�2 for reactive s-wave and p-wave scattering, respectively.

FIG. 11. Energy dependence of the ratio of the total Vogt-Wannier capture cross-section to

the classical Langevin capture cross-section for a spherically symmetric target with a

polarizability of �¼ 558 a.u.
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The Vogt-Wannier (VW) model seems to be unphysical in the sense that

the actual long-range potential does not have a r�4 singularity. Although

both Eq. (20) and the resonance theory give the same energy dependence for

s-wave electrons, there is no relation between them otherwise. The VW

model does not incorporate the resonance mechanism, therefore there is no

resonance characteristics like a width in its equation.

The situation turns out to be even more complicated for dipolar

molecules. If the electron energy is large compared to the rotational spacing

(an assumption which holds down to sub-meV energies for relatively heavy

molecules), the Bethe-Wigner threshold law should be modified (Fabrikant,

1977). For subcritical dipole moments, �< mcr¼ 0.6395 a.u., the cross-

section becomes proportional to E l�1/2 where l is a threshold exponent

whose value varies between 0 for �¼ 0 and �1/2 (for �¼ mcr). The

resonance theory is consistent with this modification.

An extension of the VW theory for polar targets was given by Fabrikant

and Hotop (2001). We will outline briefly the approach which they used. It

follows closely the original derivation of Vogt and Wannier. The VW theory

assumes the absorption boundary condition at the origin due to capture into

the polarization well. The reaction cross-section �r in this case is given by

(Landau and Lifshitz, 1977)

�r ¼
�

k2

X

ll0
ð�ll0 � jSll0 j2Þ, ð22Þ

where Sll 0 are the matrix elements of the scattering operator in the angular

momentum representation.

The Schrödinger equation for a superposition of the dipolar and

polarization potentials allows separation of the variables. The wavefunction

can be expanded in the dipolar angular harmonics (Mittleman and von

Holdt, 1965) and the radial equation has the form

d2

dr2
þ k2 � lðlþ 1Þ

r2
þ �
r4

� �
uðrÞ ¼ 0, ð23Þ

where k2¼ 2E. For subcritical dipole moments considered here l(lþ 1)>

� 1/4 and l is real.

The scattering matrix can also be transformed into the dipolar angular

harmonics representation where it becomes diagonal. In the low-energy

region only the lowest eigenvalue l makes a contribution to the inelastic
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cross-section which can now be written in the form

�r ¼
�

k2
ð1� jS0j2Þ; ð24Þ

where S0 is the matrix element of the scattering operator corresponding to

the lowest l.

The required solution of the radial equation with the ingoing-wave

boundary conditions at the origin has a simple analytical form in the

low-energy region (Fabrikant, 1979). For S0 we obtain

S0 ¼
1=b� b

1=bþ b expð�2�i�Þ , ð25Þ

and

1� jS0j2 ¼
4 cos2 �l

b2 þ 1=b2 þ 2 cos 2�l
ð26Þ

where b2¼ [(�(1� l�½)/(22lþ1 (�(1þ lþ 1/2))]2(�1/2k)2lþ1, and l(lþ 1) is

an eigenvalue of the operator L2� 2� cos � (see above). Note that although

b is asymptotically small, the threshold exponent � might be close to 0,

as, for example, in the case of CH3I, therefore Eqs. (25), (26) should not

be simplified further. In particular, using 1� |S0|
2¼ 4b2 cos2�l for the

CH3I molecule violates the unitarity limit even at the electron energy

E¼ 0.01meV.

For a target with a given polarizability �, a sub-critical dipole moment

(�< mc, mc¼ 0.6395 a.u.¼ 1.625D) and at electron energies sufficiently high

to view the molecular rotation as frozen, we thus obtain the s-wave capture

cross-section (labelled ‘Extended Vogt-Wannier’, EVW) in the form

�EVWðEÞ ¼ ð�k�2Þ½4 cos2 �lðb2 þ 1=b2 þ 2 cos 2�lÞ�1� ð27Þ

For dipole moments in the range 0
�< mc and l¼ 0, l takes values

in the range 0� l>� 1/2; the relation between l and � is to a good

approximation described by the equation (� in atomic units) (Klar et al.,

2001b)

lð�Þ ¼ �ð1=2Þ þ ð1=2Þ½1� 4�2ð0:66655� 0:15646�2 þ 0:050418�4Þ�1=2:
ð28Þ
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Correspondingly, the cross-section (27) exhibits an energy dependence

�EVW(E)/ E�X with 0.5<X<1. At fixed polarizability �, the absolute

values of the EVW cross-section (27) for nonzero dipole moment exceeds

the Vogt-Wannier cross-section. The EVW formula (27) is a reasonable

approximation to the exact cross-section for electron capture by combined

polarization and dipolar forces for electron energies lower than 0.25/� (a.u.).

For zero dipole moment, formula (27) represents a good approximation

to the exact s-wave VW cross-section for energies such that �E<2 a.u.

(deviations<11%); towards higher energies formula (27) attains too low

values and does not join the unitary limit while the Klots formula (21)

remains a good approximation from low to high energies.

It should be noted, however, that the EVW expression (27) as well as the

original VW and the Klots formula can be considered only as an estimate

of the capture cross-section in the s-wave regime since the resonance

mechanism and the actual nuclear motion (survival probability in the anion

state) are not included. Typically, the VW and EVW formulae work well if

the negative-ion curve crosses the neutral curve in the vicinity of the

minimum of the latter, i.e. in the case of a favourable Franck-Condon factor

(which, however, does not enter the EVW formula), as for the CCl4 (Klar

et al., 2001a) and the CFCl3 molecule (Klar et al., 2001b). Another

limitation of EVW/VW theory is related to the coupling of the attachment

process to vibrationally inelastic channels. As a result, the EVW/VW cross-

section is expected to be valid only up to the first threshold for excitation

of vibrational levels whose symmetry allows strong coupling to the s-wave

attachment process.

In Fig. 12 we present the DA cross-section for methyl iodide molecules in

the vibrational ground state CH3I(3¼ 0), calculated using different

theories: the Klots fit of the VW result, the EVW (including the dipole

moment) result, the complete R-matrix calculation and the results of the

local complex potential (LCP) approximation. The equation for the DA

cross-section in the LCP approximation was derived from the nonlocal

theory by O’Malley (1966) and Bardsley (1968), and can be summarized

(for a nondegenerate doublet resonance) as:

�DAðEÞ ¼ ð2�2=k2ÞGjFCj2S ð29Þ

where G is the resonance width, S is the survival factor, and FC denotes the

Franck-Condon overlap between the initial vibrational level of the neutral

molecule and the continuum nuclear wave function in the dissociative

resonance anion state, normalized to the delta function of energy. Note that

with this normalization |FC|2 has the dimension energy�1, and we do not
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use O’Malley’s delta function approximation for the dissociating state.

The calculation of FC was done, however, assuming that the energy of the

dissociating state is real.

Large deviations between the different theories are observed in Fig. 12,

reaching two orders of magnitude at a fixed energy and with the lowest

cross sections obtained with the local theory and the highest with the EVW.

The energy dependence of the cross-section at ultralow energies is

determined by the threshold exponent (l� 1/2) which is �0.965 for CH3I.

Therefore both the extended Vogt-Wannier model and the local theory

predict a fast growth of the cross-section towards zero energy, approaching

E�0.965. However, the nonlocal R-matrix results above 0.1meV exhibit

an even faster variation. In addition, the nonlocal cross-sections are much

greater (typically almost two orders of magnitude) than those of the local

calculations, in agreement with the experiment. The R-matrix cross-section

near the threshold for vibrational excitation of the symmetric C�I stretch

is dominated by the vibrational Feshbach resonance which was discussed

above in Section II.A.4. All other calculations do not exhibit this resonance.

The strong enhancement (as compared to the local approximation) of the

DA cross-section close to zero energy is caused by the same weakly bound

state which supports the VFR near the 3¼ 1 threshold (Fabrikant and

π

FIG. 12. Illustration of the EVW result compared with the VW result for s-wave attachment

to CH3I (�¼ 54 a0
3, m¼ 1.62D) and comparison with the R-matrix result and LCP theory

(see Fig. 1 in Fabrikant and Hotop, 2001).
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Hotop, 2001). The analytical expression, describing this enhancement for a

molecule with a subcritical dipole moment, can be written as (Fabrikant,

1977, 1978)

� ¼ ck2l�1=j
� ik2lþ1 expð�i�lÞj2, ð30Þ

where 
 is a complex parameter. This is similar to Eq. (12) written for a

supercritical dipole moment. This expression has a pole in the complex k

plane corresponding to a bound or a virtual state, if 
 is real. Because of

the coupling with the DA channel this state, even if it is bound, can decay.

However, the decay width is small because of the potential barrier towards

dissociation. The width of the VFR below the 3¼ 1 threshold is sub-

stantially larger because of the lower potential barrier for the nuclear

motion in the 3¼ 1 state. The resonance disappears at 3¼ 2. In summary,

the big value of the DA cross-section for methyl iodide in the ultra-low

energy region can be explained by the influence of the dipole-supported state

which is not incorporated into the local version of the resonance theory.

III. Experimental Aspects

In this section we discuss three different experimental setups for studies of

electron–molecule collisions at low energies with high resolution (<10meV).

We note that most low-energy electron collision studies in the gas phase

have been and are being carried out at broader energy widths (typically in

the range 30–150meV), e.g. using trochoidal electron monochromators

(TEM) which – by virtue of the magnetic guiding field – rather easily allow

studies down to zero energy and – in conjunction with a TEM for energy

analysis – also provide access to investigations of inelastic scattering with

high sensitivity (Allan, 1989).

A. SETUP INVOLVING ANGLE- AND ENERGY-RESOLVED

DETECTION OF SCATTERED ELECTRONS

A typical apparatus for studies of angle-dependent elastic and inelastic

scattering consists of a hot filament electron source followed by an electro-

static monochromator, a target beam (of either effusive or supersonic

character) and an angle-variable electrostatic energy analyzer (Allan, 1989;

Brunger and Buckman, 2002). Using such an optimized instrument, as

shown in Fig. 13, Allan has recently achieved energy widths down to 7meV

at high signal to background ratio in energy loss spectra and excitation
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functions involving elastic and vibrational inelastic scattering (Allan, 2001a;

Allan and Moreira, 2002; Skalický et al., 2002). Through careful calibration

procedures absolute differential cross-sections are obtained.

Using optimized conventional electron sources, Ibach’s group (1991,

1993) have achieved energy widths down to 1meV in electron scattering

from molecules adsorbed at surfaces under ultrahigh vacuum and low

current conditions.

Photoelectron sources have been used for angle differential gas phase

scattering experiments by Gallagher and coworkers (van Brunt and

Gallagher 1978; Kennerly et al., 1981), Field et al. (1988, 1991a, b) and,

more recently, by Gopalan et al. (2003). In order to avoid the Doppler

effect, differentially-pumped supersonic beam targets were used (see, e.g.,

Götte et al., 2000). In principle an energy width down to 1meV should

be achievable at electron currents around 50 pA (Bömmels et al., 2001;

Gopalan et al., 2003), but the full potential of this approach has yet to be

demonstrated and exploited for angle-differential scattering experiments.

Wienfilter

filament

MAC

pump1 pump1sample

pump2

FIG. 13. The Fribourg apparatus for angle-differential low-energy electron scattering from a

gaseous target beam. A small Wien-type mass filter is used to separate scattered electrons and

fragment anions from dissociative attachment. The analyzers and the electron optics are

differentially pumped as indicated by the arrows. The dots around the collision region (labelled

MAC) represent the ‘magnetic angle-changing device’ (seen in cross-section).
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A long-standing problem, namely the detection of electrons scattered into

angles around 180�, was recently solved by the introduction of ‘magnetic

angle-changing devices’ by Read and coworkers (Read and Channing 1996;

Zubek et al., 1996). They typically consist of two Helmholtz-type pairs of

current coils (coaxial solenoids around a common axis) and are designed

such that the resultant magnetic field is zero in the outer region (allowing

to keep electrostatic energy selectors) and nonzero in the region around

the beam target. So far, the method has been applied mainly to electron

scattering from rare gas atoms (e.g. Cubric et al., 1999; Zubek et al., 1999,

2000; Allan, 2000). An elegant version which is well suited for electron

scattering studies involving collimated supersonic beams has been

implemented by Allan (2000).

B. Measurement of Total Scattering Cross-Sections

Experimental setups for the determination of total electron scattering cross-

sections (comprising elastic as well as all inelastic collisions including

attachment processes) involve a well-collimated electron beam of variable

energy which is transmitted through a collision cell containing the static

target gas. Non-scattered electrons are detected within a narrow angular

range in the forward direction. Some energy analysing device is included

to prevent inelastically forward scattered electrons from being detected;

normally, however, the resolution is not sufficiently high to exclude

electrons which have undergone rotational energy losses in the forward

scattering. This aspect is critical for molecules with dipole moments. The

energy resolution in these experiments is limited by the energy width of

the electron source (�ES), by the potential variations in the target region

(�ET), and ultimately by the Doppler effect (�ED) due to the random

motion of the target molecules (mass mT, average velocity vT, kinetic energy

ET) with respect to the directed electron beam (mass me, velocity ve, kinetic

energy Ee). The collision energy E of the electron–molecule system in the

center-of-mass frame is given by

E � Ee � ðme=mTÞEe � 2ðmeEeET=mTÞ1=2 cos � ð31Þ

where � is the angle between ve and vT. In (31) the second term is the recoil

energy which can be neglected at low collision energies. The third term is

the energy shift ED due to the first order Doppler effect. Here we simply

estimate the Doppler energy width �ED by

�ED ¼ ð1=2Þ½EDð1808Þ � EDð08Þ� ¼ 2ðmeEeET=mTÞ1=2 ð32Þ
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For electron energies below 1 eV and thermal targets (TT¼ 300K) with a

mass above 28 u the Doppler width stays below 2meV, but is has to be taken

into account when (sub) meV resolution is to be achieved.

In Fig. 14 we show an apparatus (Hoffmann et al., 2002) which has been

used in this or similar form by Field and Ziesel with coworkers (Field et al.,

1991a; Ziesel et al., 1993; Gulley et al., 1998a, b; Field et al., 2000; Lunt et al.,

2001; Field et al., 2001a, b, c; Jones et al., 2002; Ziesel et al., 2003) to

investigate total electron scattering cross-sections for a large number of

molecules from low (about 20meV) to medium electron energies (around

10 eV). Electrons are created in the source region by photoionization of

ground state argon atoms (at a pressure of a few tens of mPa) through

the narrow Ar(11s 0, J¼ 1) resonance at 78.65 nm (about 4meV above the

photoionization threshold), using focussed (10–20 mm) monochromatized

synchrotron radiation. The photoelectrons (current up to 1 pA) are

extracted by a weak electric field (20–40Vm�1) and formed into a focussed

beam with a four-element electrostatic lens. The energy width of this beam

is determined mainly by the ionizing photon bandwidth; in the earlier

experiments at SuperACO (LURE, Orsay, FR) and SRS (Daresbury, UK)

the photon energy width amounted typically to 5–6meV while in the recent

experiments at ASTRID (Aarhus, DK) widths around 1meV were achieved

(Field et al., 2000, 2001a, b; Hoffmann et al., 2002).

The electron beam passes through the collision chamber which contains

the target gas at a known number density �T. The beam attenuation as a

function of electron energy is measured by recording the electron current on

a channel electron multiplier situated beyond further optical elements. The

electron energy is scanned by varying the potential in the photoionization

FIG. 14. Schematic diagram of the apparatus for studies of total electron scattering cross

sections involving a VUV photoelectron source (from Hoffmann et al., 2002).
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source. The whole apparatus can be immersed in an axial magnetic field

(typically 2mT), thus allowing the determination of cross-sections for

backward scattering to be compared with the total cross-sections, measured

in the absence of magnetic fields. Absolute cross-sections � are evaluated

using Beer’s law

It ¼ I0 expð��ðEÞ�TzÞ ð33Þ

where It and I0 are the attenuated and the unattenuated electron currents,

respectively, �(E) is the enery dependent scattering cross-section, and z is

effective electron path length in the target gas. Uncertainties for the absolute

values of the cross-sections are around 10%. The absolute energy scale

is calibrated to within 	 5meV. Under optimum conditions cross-sections

are determined at energies down to 10meV. Measurements of backward

cross-sections are limited to incident energies below 650meV; this limit is

imposed by the size of the exit hole (3mm) of the scattering chamber in

conjunction with the value of the guiding axial magnetic field (2mT): above

650meV, forward scattering will contribute to the measured cross-section.

C. MEASUREMENT OF CROSS-SECTIONS FOR ELECTRON ATTACHMENT

The use of VUV photoelectron sources for high resolution studies of

electron attachment to molecules has been initiated by Chutjian and

coworkers (Ajello and Chutjian, 1979; Chutjian and Alajajian, 1985) under

the acronym TPSA (Threshold Photoelectron Spectroscopy for Attach-

ment). In these experiments, rare gas atoms Rg (Rg¼Kr or Xe) were photo-

ionized above the second ionization threshold (formation of Rgþ(2P1/2)þ
e�(Ee)) to create electrons with variable energy by tuning the wavelength

of monochromatized VUV radiation from a Hopfield continuum light

source. By choosing this ionization path, higher energy electrons are

simultaneously created due to formation of Rgþ(2P3/2) ions. The contribu-

tion of these electrons to the attachment signal is only negligible as long as

the attachment cross-section drops sufficiently rapidly with increasing

electron energy. The source volume contained both the rare gas atoms and

the target molecules as static gases at rather high densities (about 0.01 Pa

and 0.45 Pa, resp.). Negative ions, resulting from electron attachment to

the molecules, were extracted with a weak electric field and detected with a

quadrupole mass spectrometer. Attachment spectra for a large number

of molecules were thus obtained over the energy range 0–160meV (Chutjian,

1992; Chutjian et al., 1996). The energy resolution in the TPSA experiments

was limited by the photon bandwidth (typically 6–8meV) and by the
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extraction field. When the wavelength is set close to the Rgþ(2P1/2) threshold

the interpretation of the attachment signals may get complicated by the fact

that autoionizing Rydberg resonances Rg**(2P1/2 ns
0, nd 0) are created

apart from free electrons. At principal quantum numbers n above about

150, the lifetime of these resonances may become sufficiently long by

field- and collision-induced mixing with high angular momentum states

that contributions to the anion signal due to Rydberg electron transfer

cannot be ruled out (Klar et al., 1994a). Recently, Chutjian and coworkers

have used an improved TPSA setup in which coherent VUV radiation,

produced by frequency mixing techniques involving pulsed narrow-band

(sub-meV) lasers, is used to photoionize Xe atoms above the Xeþ(2P1/2)

threshold (Howe et al., 2001). The Xe atoms are provided in conjunction

with the target molecules as a collimated pulsed seeded supersonic beam.

The experiment has the drawback of rather low pulse repetition rate

(about 10 s�1) which makes it difficult to achieve good statistical quality

of the data and to follow attachment cross-sections over several orders of

magnitude.

A powerful variant of the TPSA method has been developed by Klar et al.

(1992a, b, 1994a) which produces monoenergetic electrons by photoioniza-

tion of laser-excited 40Ar*(4p 3D3) atoms (Klar et al., 1994a; Schohl et al.,

1997) or laser excited 39K*(4p3/2) atoms (Weber et al., 1999a, b; Petrov et al.,

2000) with a tunable blue dye laser of narrow bandwidth (typically 0.15meV

or 0.05meV). These laser photoelectron sources have been used in a series

of laser photoelectron attachment (LPA) studies involving molecules and

molecular clusters. A recent version of the experimental setup is shown

schematically in Fig. 15 (Weber et al., 1999b; Barsotti et al., 2002a).

For the first time electron collision experiments in the gas phase have been

thus carried out at sub-meV resolution (Klar et al., 1992a, b) and at incident

energies down to 20 meV (Schramm et al., 1998). While the excited atoms are

provided at low density (about 2� 106 cm�3 for Ar*(4p 3D3), 10
8 cm�3 for

K*(4p3/2)) in a collimated atomic beam, the continuous ionizing intracavity

laser is sufficiently intense (power 1–5W) to achieve typical currents around

1 pA (Ar*) or 50 pA (K*). The two-step ionization path, involving efficient

primary laser excitation of metastable 40Ar(4s 3P2) and ground state.
39K(4s1/2, F¼ 1, 2) atoms to the intermediate levels 40Ar*(4p 3D3) or

39K*(4p3/2, F
0¼ 2, 3) (quasi-stationary excited state population nearly 50%),

is optimized in the sense that the cross-section for ionization of Ar*(4p 3D3)

(Schohl et al., 1997) as well as for K*(4p3/2) atoms (Petrov et al., 2000) is

substantial (around 10�21m2) and three to four orders of magnitude higher

than that for ionization of metastable Ar*(4s 3P2) atoms (Kau et al., 1998;

Petrov et al., 1999) or ground state K(4s) atoms (Sandner et al., 1981),

respectively. We note that an analogous two-step photoionization scheme
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involving ground state Na(3s1/2) atoms has been recently applied by Keil

et al. (1999) to study laser photoelectron attachment to vibrationally

excited Na2 molecules (see Section IV.B). The use of an ionizing laser at

rather long visible wavelengths in all these two-step ionization schemes

is advantageous for several reasons: (i) the high continuous laser intensity,

available with an intracavity Stilbene 3 dye laser, allows substantial

photoelectron currents to be produced from a thin atomic target; (ii) the

bandwidth of the laser can be made sufficiently narrow (e.g. by using a

single mode laser) to allow in situ diagnostics of residual dc electric fields

in the photoionization/attachment volume by studies of the Stark effect

(Frey et al., 1993; Osterwalder and Merkt, 1999) or of the shift of the

ionization threshold (Klar et al., 1994a; Schramm et al., 1998); (iii) the

production of electrons emitted from surfaces by scattered laser light is

negligible in the LPA experiment (wavelengths around 450 nm) while it

is difficult to avoid in the TPSA experiment at VUV wavelengths (Howe

et al., 2001).

Using laser photoionization of Ar*(4p 3D3) atoms over the range

462–433 nm, Klar et al. (1992a, b, 1994a, b, 2001a, b) and Schramm et al.

(1998, 1999, 2002) have carried out the first series of LPA experiments at

(sub) meV resolution over the typical energy range 0.2–173meV for selected

molecules (SF6, CCl4, CFCl3, HI, CH3I, CH2Br2, CCl3Br, 1,1,1-C2Cl3F3),

FIG. 15. Laser photoelectron attachment experiment involving two-step photoionization of

potassium atoms, a supersonic target beam (differentially pumped nozzle) and mass

spectrometric detection of the anions. The auxiliary electron gun is used for diagnostics of the

target beam and of the residual gas by means of electron impact ionization. The laser

photoelectron production scheme is shown on the right side (after Weber et al., 2000).
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present in the photoionization region as a static gas. In order to achieve a

sufficient anion detection efficiency without the loss of energy resolution,

the experiment was pulsed at high repetition rates (up to 140 kHz),

alternating between the electron production/attachment period and the

anion extraction interval, as described in detail in Klar et al. (1992b, 1994a,

2001a, b) and Schramm et al. (1999, 2002). Mass analysis was performed

with a quadrupole filter (Klar et al., 1992a, b, 1994a, 2001a, b) or with a

time-of-flight spectrometer (Schramm et al., 1999, 2002).

A more recent version of the LPA experiment (Fig. 15) is based on

two-step photoionization of potassium atoms in a collimated differentially

pumped beam; by tuning the ionizing wavelength from 455.2 to 424 nm, the

electron energy is continuously varied from zero to 200meV. Typically,

electron currents in the range 20–50 pA are used to limit the energy broad-

ening effects associated with the photoion space charge (FWHM about

30 meV/pA) (Bömmels et al., 2001). A differentially pumped supersonic

beam serves as a well collimated target, allowing – in conjunction with the

increased current – for the first time electron attachment studies of

molecular clusters at meV energy width (Weber et al., 1999a). Negative ions

which are created by electron attachment and drift out of the essentially field

free reaction chamber, are imaged into a quadrupole mass spectrometer

(m/q
 2000 u/e) with a combination of two electrostatic lenses. The

transmitted ions are accelerated to an energy of 1 keV and detected by a

differentially pumped off-axis channel electron multiplier (Sjuts) with low

background (<0.02 s�1). For diagnostics of the target beam (especially

with respect to possible cluster formation), positive ion mass spectra can be

generated by electron impact ionization with an auxiliary electron gun

(current around 0.1–1 mA, energy 75–85 eV).

The reaction volume is surrounded by a cubic chamber, made of six

insulated copper plates. To improve the homogeneity of the surface poten-

tials, the inner walls are coated with colloidal graphite. By applying bias

potentials to each plate, residual dc electric fields are reduced to values

FS<0.2Vm�1; the reduction procedure involves an iterative optimization

of the shape of the attachment spectrum due to SF�6 formation around zero

electron energy (Klar et al., 1994a; Schramm et al., 1998). Magnetic fields

are reduced to values below 2 mT by compensation coils located outside

the vacuum apparatus (Klar et al., 1994a; Weber et al., 1999b) or by the

use of reaction chambers fabricated of mu metal (Schramm et al., 1998,

1999, 2002). The electron energy resolution is limited by the bandwidth

of the ionizing laser (normally �EL� 0.15meV), residual electric fields

(�EF
 0.3meV), the Doppler effect (present in both the photoionization

and in the attachment process, �ED� 0.06E1/2 for target velocities similar

to the potassium atom velocity (600ms�1) with �ED and E in meV), and
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space charge broadening �ESC due to Kþ photoions generated in the

reaction volume (�ESC� 0.9meV at 30 pA photocurrent, see Fig. 7 in

Bömmels et al., 2001). For the sake of normalization, in situ resolution

testing, and compensation of electric stray fields, measurements of SF�6
formation are carried out, using a seeded supersonic beam of about 0.05%

SF6 in He (p0¼ 1 bar, T0¼ 300K). By comparison of the measured anion

yield with the known cross-section for SF�6 formation (Klar et al., 1992a, b,

1994a; Schramm et al., 1998) near 0 eV (convoluted with adjustable resolu-

tion functions), the effective electron energy spread at low energies can be

inferred.

The use of a supersonic beam target has the substantial advantage of

a spatially confined reaction volume. When the molecules of interest are

seeded in light carrier gas (such as helium) the kinetic energy of the

molecules is raised substantially above its thermal value which – under

conditions of weak extraction fields – results in a higher detection efficiency

of the product ions due to dissociative attachment (Barsotti et al., 2002b). In

a mixed supersonic beam, containing the seeded minority component with

molecular mass mS at a fraction x and the atomic carrier gas with mass mC

(fraction 1� x), the flow velocity uS of the seeded component can be

estimated (in the absence of velocity slip) by (Miller, 1988)

uS � f5kBT0=½xmS þ ð1� xÞmC�g1=2 ð34Þ

with kB¼Boltzmann constant.

A nontrivial aspect of DA experiments is a possible influence associated

with the angular distribution of dissociating anions with respect to the

momentum vector of the electron (Massey, 1976), as shown, e.g., for DA to

Cl2 by Azria et al. (1982). This problem is relevant in DA experiments with

a well-defined direction of the electron beam when resonances with different

symmetries are involved, leading to different anion detection efficiencies,

as long as the anions are detected in an angle-sensitive manner. In the

TPSA and LPA experiments angular distribution effects are expected to

be negligible (or small) because the photoelectrons, created in the center

of the reaction region, are emitted in all directions (albeit not fully

isotropically).

The LPA experiment provides highly resolved attachment yield spectra

Ye(E) for anion formation over the typical energy range 0.1–200meV.

The yield is proportional to the absolute cross-section �e(E)¼NYe(E) for

anion formation due to free electron attachment. The normalization

constant N is conveniently determined with reference to known thermal

energy attachment rate coefficients ke(T) (Smith and Španel, 1994;
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Christophorou, 1996) using the expression (Chutjian and Alajajian, 1985;

Klar et al., 1992b, 2001a, b; Chutjian et al., 1996; Schramm et al., 1999, 2002)

keðTÞ ¼ Nð2=meÞ1=2
Z 1

0

YeðEÞE1=2f ðE;TÞdE ð35Þ

with the Maxwellian distribution function f (E;T)¼ (4/�)1/2(kBT)
�3/2E1/2

exp[�E/(kBT)] where kBT¼ 25.85meV for T¼ 300K and
R1
0

f (E;T)dE¼ 1.

In the rate coefficient ke(T) the temperature T addresses both the electron

temperature Te and the gas temperature TG which are assumed to be iden-

tical. In the TPSA and the LPA experiments the gas temperature was

typically TG¼ 300K; thus, rate coefficients ke(T) obtained at T¼Te¼
TG¼ 300K were used for normalization. As shown by Klar et al. (1992b,

2001a) for the cases of SF6 and CCl4 (s-wave attachment, peaking at zero

energy) an integration interval (0, 170) meV in (35) is sufficient to guarantee

errors below 1% in the normalization. In the evaluation the near-zero

energy range requires some care. Klar et al. (1992b, 2001a, b) and Schramm

et al. (1999, 2002) used an analytical cross-section similar to the Klots cross-

section (21) to extrapolate to zero energy (see Section IV.B). It has to be

stressed that the normalization procedure (35) can only be carried out in

a reliable way if the anion yield function is obtained at sufficiently narrow

electron energy width and down to sufficiently low energies. We also

emphasize that the gas temperature is an important parameter since attach-

ment cross-sections may depend very strongly on the rovibrational

distribution of the molecules (O’Malley, 1967; Chantry, 1969; Massey,

1976; Christophorou, 1987; Smith and Španel, 1994; Hahndorf and

Illenberger, 1997).

We conclude this section by briefly mentioning another approach to study

electron–molecule collisions at very low energies. Going back to ideas of

Fermi (1934), electrons in Rydberg orbits can be used as a source of very

slow electrons (Stebbings and Dunning, 1983; Klar et al., 1994b; Dunning,

1995). The concept of the quasi-free electronmodel (Fermi, 1934;Matsuzawa,

1972) allows us to express the rate coefficient knl for a particular process to

occur with Rydberg electrons in specified orbits nl through the cross-section

�e(v) for the same process involving free electrons (Matsuzawa, 1972):

knl ¼
Z 1

0

�eðvÞvfnlðvÞdv ð36Þ

where fnl(v) represents the velocity distribution function of the highly excited

nl electron in the Rydberg atom A**(nl). This equation assumes that the

interaction of the electron with the ion core Aþ and that of the ion core Aþ
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with the target system is negligible throughout the collision process.

At sufficiently low n this assumption is no longer valid (Dunning, 1995;

Desfrançois et al., 1996; Compton and Hammer, 2001). Free electron cross-

sections �e(v) at very low velocities may be tested by comparing measured

rate coefficients knl with those calculated through Eq. (36) on the basis of the

quasi-free electron model. The inverse procedure of deriving free electron

cross-sections from a measured n dependence for a RET process is not

unique and so far has not been demonstrated in a convincing way.

IV. Case Studies

In the following section we shall discuss in some detail recent results which

highlight resonance and threshold effects in low-energy electron collisions

with selected molecules and molecular clusters, as obtained at very high

resolution (i.e. energy widths in the few meV range). The emphasis will be on

angle-differential elastic and vibrationally inelastic electron scattering as

well as on electron attachment studies, but examples for total scattering

cross-sections will also be included. Moreover, we shall briefly discuss

important recent observations made for annihilation of positrons traversing

molecular gases at energies below 1 eV at sufficiently low energy widths to

resolve vibrational structure. Since the long-range electron–molecule

interaction plays a decisive role at the considered low collision energies

the molecules are grouped accordingly.

A. ELECTRON COLLISIONS WITH POLAR MOLECULES

Most molecules in nature are polar species. The presence of a permanent

dipole moment has strong effects on electron–molecule scattering at low

energies since the electron–dipole interaction and the centrifugal potential

have to be treated on an equal footing as pointed out in the theory section.

In Section IV.A we first discuss two groups of such molecular species (the

hydrogen and methyl halides) which exhibit a rich spectrum of resonance

and threshold effects and which have played an important role in the

development of the theory for electron–molecule collisions. In addition we

discuss as a special case of interest the molecule 1,2-C2H2F2: a comparative

investigation of elastic and inelastic electron scattering has been carried for

both the cis-form (dipole moment m¼ 2.42D) and the trans-form (m¼ 0).

A.1. Hydrogen Halides

Studies of threshold behavior in electron collisions with hydrogen halides

HX (where X stands for F, Cl, Br and I atoms) started with the pioneering
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work of Rohr and Linder (1975, 1976) and Rohr (1977, 1978) who discovered

threshold peaks in VE of HF, HCl, and HBr molecules. Threshold

structures were also found in the elastic cross-section (Burrow 1974) and

in transmission spectra (Ziesel et al., 1975a).

It was realized later that these peaks are related to the stepwise structure

in the DA cross-section at VE thresholds, observed first by Ziesel et al.

(1975a) for HCl and later by Abouaf and Teillet-Billy (1977,1980) for HCl,

DCl, HBr and HF molecules and explained by nonlocal effects as early as

in 1974 (Fiquet-Fayard, 1974). Another distinctive property of DA cross-

sections to hydrogen halides is a vertical threshold onset which is a general

feature of an endothermic DA process without a reaction barrier (O’Malley,

1966). More detailed experimental data on VE were obtained in the late

1980s in Ehrhardt’s group (Knoth et al., 1989a,b; Rädle et al., 1989). In the

0! 3 VE cross-section for HF, they found a dip-like resonance structure

below the v¼ 4 threshold (Knoth et al., 1989a), thus providing the first

experimental evidence for a vibrational Feshbach resonance (VFR, then

addressed as nuclear-excited resonance). Recently, the Fribourg group

reported improved results for VE of all the hydrogen halide molecules

(Allan et al., 2000, Sergenton et al., 2000, Sergenton and Allan, 2000; Čı́žek

et al., 2001a; Allan, 2001b), as will be in part discussed below.

Initial attempts to explain threshold peaks in VE were based on model

calculations involving enhancement by a virtual state (Dubé and Herzen-

berg, 1977; Kazansky, 1978, 1982), s-wave bound states (Gauyacq, 1983;

Teillet-Billy and Gauyacq, 1984), or the long-range dipolar interaction

between the electron and the target (Fabrikant, 1977, 1983). (see Morrison,

1988 for a more complete review of the work done before 1988). An

important paper of Domcke and Mündel (1985), based on the nonlocal

complex potential approach (Domcke, 1991), showed that the situation is

much more complex. In the nonlocal treatment the effects of resonances,

virtual states and bound states are all included and distinction between

them is not easily possible. The long range dipolar interaction between the

electron and the molecule leads to a very strong energy dependence of

the resonance capture amplitudes and an unusual behavior of an s-wave

resonance in an adiabatic fixed-nuclei approximation.

In the early 1990s a series of model and semiempirical calculations of DA

and VE for hydrogen halides were performed which led to an understanding

of the basic mechanisms. Some of these calculations were based on the

quasiclassical version of the nonlocal complex potential theory (Kalin and

Kazansky, 1990), and some on the quasiclassical version of the resonance

R-matrix theory (Fabrikant, 1991a) which was shown (Fabrikant, 1990)

to be equivalent to the nonlocal approach. For model or semiempirical

calculations the R-matrix version is more convenient since it allows for
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a simpler parameterization of the input parameters. Quasiclassical R-matrix

calculations for HCl and HF (Fabrikant, 1991a; Fabrikant et al., 1991,

1992) reproduced the major features in VE and DA cross-sections, showing

essential agreement with earlier calculations (Domcke and Mündel, 1985)

for HCl. Variational R-matrix calculations (Thümmel et al., 1992, 1993)

obtained individual rotational contributions to vibrational excitation of HF,

but did not produce results for DA. The effective range approximation was

applied by Gauyacq (1987).

Further development of theoretical methods allowed obtaining accurate

ab initio cross-sections for HF (Gallup et al., 1998), HCl (Horáček et al.,

1998; Čı́žek et al., 1999; Allan et al., 2000), HBr and DBr (Horáček and

Domcke, 1996, Čı́žek et al., 2001), and HI (Horáček et al., 1997; Kolorenc

et al., 2002). Near-threshold DA to vibrationally and rotationally excited

molecules has been studied by Xu et al. (2000) for HF and Kolorenc et al.

(2002) for HI.

Improved experimental techniques led to the discovery of unexpected

oscillatory structures in VE of HCl below the DA threshold (Schafer

and Allan, 1991; Cvejanović 1993). Figure 16 shows the more detailed

FIG. 16. Elastic (left) and v¼ 0 !1 VE cross-sections measured at 90� in HCl. Results of

nonlocal resonance theory are shown on the top, experiment on the bottom. The sharp

structures due to outer-well resonances (q0 and q1) are superimposed on broader boomerang

type oscillations (Allan et al., 2000).

IV] RESONANCE AND THRESHOLD PHENOMENA 125



measurements and results of advanced nonlocal resonance theory calcula-

tions of Allan et al. (2000). The theory (Čı́žek et al., 1999; Allan et al., 2000)

permitted an interpretation of these structures as a combination of

boomerang oscillations, reflecting short-lived wave-packet motion of the

HX� anion, and so-called outer-well resonances, arising from quasibound

energy levels in the outer well of the anion potential curve, as illustrated

in Fig. 17. The HCl� curve follows the general model discussed in Sections I

and II, Figs. 3 and 6. It has an inner and an outer well, separated by a

potential barrier at RB. The adiabatic potential curve of HCl� disappears

below R� 2.8 a0, but vibrational motion of short duration is still possible

on the inner well through nonadiabatic effects (partial re-capture of the

electronic cloud as the nuclei swing back to large R), giving rise to the

VFRs. Quasistationary vibrational levels whose wave function is localized

predominantly in the outer well give rise to the outer-well resonances. They

are coupled to the inner well by tunneling (q0) or passage over the potential

barrier (q1). The outer well resonances appear as sharp dips at 0.632

and 0.699 eV, the VFR associated with the v¼ 2 level as a dip at 0.66 eV

in the spectra of Fig. 16. Note the striking similarity with the situation

encountered in CO2 (Fig. 34). The outer-well resonances may be viewed as

vibrational Feshbach resonances, albeit somewhat different in a quantitative

sense from the ‘inner well vibrational Feshbach resonances’ discussed in

the introduction. Similar structures as for HCl were observed in the elastic
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FIG. 17. Illustration of the outer- and inner-well resonances in HCl. The adiabatic potential

curves of Čı́žek et al. (1999, 2001b) are shown as solid (HCl) and dashed (HCl�) curves

(see also text).
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and VE cross-sections of HBr and DBr by Čı́žek et al. (2001a), who also

presented improved calculations and measurements of the dissociative

attachment channel.

For HF, oscillatory structure below the DA threshold starts to be

observed in the v¼ 0! 3 VE channel and becomes very clear in v¼ 0! 4

VE (Sergenton et al., 2000). Recent high-resolution (15meV) angle-

differential VE results (Allan, 2001b; Čı́žek et al., 2003) for v¼ 0!1, 2, 3,

4 exhibit a plethora of threshold and resonance features which are in full

harmony with a nonlocal resonance model calculation of Čı́žek et al. (2003):

in the v¼ 2 channel, a sharp, dip-like VFR just below the v¼ 3 onset is

found (as predicted by Thümmel et al., 1993); in the v¼ 3 channel, a

broader, deep dip below the v¼ 4 threshold is observed (confirming and

improving the results of Knoth et al., 1989a), followed by oscillatory

structure; in the v¼ 4 channel a weak threshold peak is followed by

impressive oscillations with decreasing energy spacings which cease at the

DA threshold. These results are presented in Fig. 18a and compared with

results of a nonlocal resonance model calculation (Čı́žek et al., 2003).

Impressive agreement between theory and experiment is observed. The

structures can be understood as VFR, which are sharp at lower energies

FIG. 18. VE cross-sections for HF(v¼ 0). (a): experiment (�¼ 90�, Allan, 2001b; Čı́žek et al.,

2003) (b) theory (Čı́žek et al., 2003).
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and gradually become boomerang oscillations at higher energies, where

the anion lifetime is just enough for nuclei to perform one classical

oscillation. This interpretation might at first seem to cause a problem

because HX molecules do not support bound states at relatively small

internuclear distances, close to the equilibrium separation and below

(the same situation occurs for methyl halides discussed in Section IV.A.2).

Appropriate theories predict VFRs even in this case, however (Section II).

The qualitative picture (Gauyacq, private communication, see also

Sergenton et al., 2000) is that the electron escapes at small internuclear

separations so slowly that it is recaptured with a large probability when

the nuclei swing back to large R where it is bound. Another interesting

feature of boomerang oscillations is that they always occur below the DA

threshold. Strictly speaking, boomerang structure could also occur above

the DA threshold in the presence of potential barriers towards dissociation

from which the nuclear wave packet would be reflected. No such case of

boomerang structure above DA threshold has yet been reported, however.

The same is true for threshold peaks in VE which are generally found

only below the DA threshold (Domcke, 1991, Čı́žek et al., 2001a), but may

appear above it in the presence of a potential barrier towards dissociation.

A specific example of the latter case was recently found, first theoretically

(Schramm et al., 1999) and then experimentally (Allan and Fabrikant,

2002), in methyl iodide. The fact that the DA channel is open in the VFR

region simply means that there is an additional channel for the VFR decay:

predissociation into the valence ionic state. Indeed, as will be discussed

in Section IV.A.2, VFRs also appear in the DA channel in electron collisions

with methyl halides. This mechanism is similar to what is called ‘‘indirect

recombination’’ (O’Malley, 1981) in the theory of dissociative recombina-

tion and was discussed a lot in the relevant literature (Mitchell, 1990).

A.2. Methyl Halides and Related Molecules

Dissociative attachment (DA) in low-energy electron collisions with methyl

halide molecules CH3X (X¼F, Cl, Br, I), yielding X� anions, as well as

vibrational excitation (VE) of the C-X stretch mode 3 may be described by

a one-dimensional model involving just the 3 mode. Although DA at zero

electron energy is an exothermic process for the heavier methyl halides

(X¼Cl, Br, I), the DA rate coefficients differ by orders of magnitudes

at room temperature, rising from an extremely small value for CH3Cl

(of order 10�15 cm3 s�1) via about 10�11 cm3 s�1 for CH3Br to about

10�7 cm3 s�1 for CH3I (Smith and Španel, 1994; Christophorou, 1996). A

comparative study of DA to these molecules can help understand the basic

physics governing the magnitudes of the DA cross-sections for different
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molecules and the dependence of the DA cross-sections on vibrational

temperature and electron energy.

DA to CH3Cl was investigated by swarm and beam techniques (for more

recent studies and references to earlier work see Petrović et al., 1989; Chu

and Burrow, 1990; Datskos et al., 1990; Pearl and Burrow, 1993). Widely

different results for the DA cross-sections were reported that disagree by

many orders of magnitude. Careful experimental investigations (Pearl and

Burrow; 1993, Pearl et al., 1995), supported by semiempirical calculations

(Fabrikant, 1991b, 1994; Pearl et al., 1995), showed that most of the earlier

measurements were affected by contaminants, and the actual value of the

low-energy DA cross section for CH3Cl gas at room temperature is so small

that the process can hardly be detected. However, an increase in molecular

temperature leads to a very rapid exponential rise of the cross-section.

Theory and experiment agree well for temperatures above about 500K

(Pearl et al., 1995). DA cross-sections for CH3Br are substantially larger

than for CH3Cl, but still rather small at room temperature. At T¼ 300K the

swarm unfolded DA cross section of Datskos et al. (1992) shows a peak

at E� 0.38 eV with a size of about 1.8� 10�22 cm2. Both the energy

integrated cross section and the rate coefficient for electron attachment to

CH3Br exhibit a strong increase with rising molecular temperature (Spence

and Schulz, 1973; Alge et al., 1984; Petrović and Crompton, 1987; Datskos

et al., 1992). So far high-resolution electron attachment spectra for CH3Cl

and CH3Br have not been reported. DA to CH3I was studied experimentally

by electron beam (Spence and Schulz, 1973) and swarm (Christophorou,

1976; Alge et al., 1984; Shimamori and Nakatani, 1988; Shimamori et al.,

1992a; Speck et al., 2000) methods and by the threshold photoelectron

attachment technique (Alajajian et al., 1988). In recent LPA studies of DA

to the CH3I molecule (Hotop et al., 1995; Schramm et al., 1999), performed

with meV resolution, a sharp variation of the cross section within a narrow

energy interval below the first threshold for vibrational excitation of the

symmetric stretch 3¼ 1 was observed. This was interpreted in terms of a

vibrational Feshbach resonance (Schramm et al., 1999). Higher vibrational

thresholds do not exhibit resonance behaviour, but show pronounced cusps

of the Baz’-Wigner type (Baz’ 1958).

Using the model outlined in II.A.4, R-matrix calculations were performed

(Schramm et al., 1999; Wilde et al., 2000) with the aim to theoretically

characterize vibrational structure in the DA cross-sections for the methyl

halides and to understand the strong size variation and temperature

dependences of the DA rates for CH3Cl and CH3Br. The parameters of

the neutral potential curve V(�), described in Morse form, were chosen to

reproduce the experimental values for the dissociation energy D0 as well

as the vibrational spacing �G0�1(3). For the negative ion curve U(�),
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described by an exponentially decaying function plus a constant, the vertical

attachment energy (i.e. the value at �¼ 0, the equilibrium distance of the

neutral potential) was chosen to agree with estimates of Modelli et al. (1992)

(obtained from electron transmission spectra). The asymptotic value of U(�)
is fixed by the combined value of D0(CH3�X) and the well-known electron

affinity of X (X¼Cl, Br, I) (Andersen et al., 1999). This leaves as unknown

quantities in the semiempirical R-matrix model the parameter � of the

exponential repulsion inU(�) and the surface amplitude (related to the width

function), described by �(�)¼ �0þ �1/[exp(��)þ 
]. Moreover, the impor-

tant long-range interactions between the electron and the molecule were

taken into account in an appropriate way.

For methyl chloride, the R-matrix parameters were fixed by using

information from ab initio calculations for the anion curve at distances

�>�c (�c denotes the crossing point between V(�) and U(�)) and from

features observed in measurements of the differential VE cross section for

CH3Cl. For methyl iodide, the parameters were obtained by fitting to

the highly resolved absolute DA cross-section, obtained by Schramm et al.

(1999) with reference to swarm data at 300K. For methyl bromide, two

approaches were used which gave quite different results; we here report the

results from model 2 which incorporated information from ab initio

calculations for the anion curve as well as use of the experimental DA rate

coefficient of Petrović and Crompton (1987) at T¼ 440K.

In Fig. 19 we show the relevant potential curves for the three methyl

halides of interest. The most important characteristic and difference between

the three molecules is the location of the crossing point between the

potential curve of the neutral molecule and that of the diabatic anion state

which is close to the outer classical turning point of the 3¼ 8, 5, and 2

vibrational level for CH3Cl, CH3Br, and CH3I, respectively.

In Fig. 20 we present DA cross-sections for two different initial

vibrational states of CH3Cl, namely for 3¼ 0 and for 3¼ 7; note that

the cross-section scales differ by more than eight orders of magnitude. Just

below the onset for vibrational excitation of the 3¼ 8 level, a very sharp

resonance is observed which is interpreted as a VFR (Wilde et al., 2000).

When excited from the 3¼ 0 initial level, this VFR occurs at an energy of

0.68 eV (peak cross section about 3� 10�27m2) whereas in the attachment

spectrum for CH3Cl(3¼ 7) the same VFR shows up at 0.085 eV with a peak

cross section of about 1.1� 10�18m2. The prominent VFR is present in all

CH3Cl(3) attachment spectra for initial levels 3¼ 0� 7. Sharp downward

steps (cusps) are observed at the onsets for 3>8 while a small peak

(indicative of a virtual state) is present at the 3¼ 7 onset in the spectra for

CH3Cl(3¼ 0–6). The adiabatic potential curve for the CH3Cl
� anion

follows the neutral curve in the region close to equilibrium internuclear
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FIG. 19. Potential energy curves for CH3Cl (a) CH3Br (b) and CH3I (c) and their anions. The

neutral curves (full) are denoted by V(�), the diabatic anion curves (broken) by U(�) where �
denotes the C–X distance relative to its equilibrium value (�¼ 0) (from Wilde et al., 2000).

FIG. 20. Calculated DA cross-sections for CH3Cl ((a) 3¼ 0, (b) 3¼ 7). The quantum

number 3 labels the initially populated C–Cl stretch vibrational mode. Vertical broken lines

denote the indicated vibrational thresholds (from Wilde et al., 2000).
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separation (Wilde et al., 2000; see also the general case illustrated in Fig. 3b),

producing about eight vibrationally excited states of CH3Cl
� with a loosely

bound electron, reflected as sharp peaks in the DA cross-sections (Fig. 20).

In the case of CH3I we have only one vibrationally excited state of this type,

therefore the resonance occurs only at the 3¼ 1 threshold. Although there

are eight such states in CH3Cl
�, the resonances at the thresholds with 3<7

are masked by a rapid decrease of the DA cross-section towards lower

energies due to the very fast drop of the Franck-Condon overlap between

the initial vibrational state and the dissociating state.

A similar picture is observed for CH3Br. Here the adiabatic negative-ion

curve supports four excited vibrational states. Due to the lower a diabatic

anion curve in the region of the crossing point, we observe two vibrational

Feshbach resonances at the 3¼ 3 and 3¼ 4 thresholds (see Fig. 21; note

that VFR at the 3¼ 3 threshold is barely seen on the scale of drawing). In

the DA spectrum for CH3Br(3¼ 0) the 3¼ 4 VFR has a peak cross-section

of about 2� 10�22m2 while in the spectrum for CH3Br(3¼ 3) it reaches

1.2� 10�18m2. The attachment spectrum for CH3Br molecules at room

temperature is predicted to exhibit the 3¼ 4 VFR at four different energies

in about equal strength (effective peak cross-sections around 3� 10�22m2),

corresponding to excitation from the thermally populated 3¼ 0, 1, 2, and 3

FIG. 21. Calculated DA cross-sections for CH3Br ((a) 3¼ 0, (b) 3¼ 3). Vertical broken lines

denote the indicated vibrational thresholds (from Wilde et al., 2000).
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vibrational levels (Wilde et al., 2000). As mentioned above, two different

models with more or less equal diabatic curves, but rather different surface

amplitudes were used which yielded rather different cross-sections. The

results shown here were obtained with the higher surface amplitude

(model 2). High-resolution DA experiments for methyl bromide are needed

to prove the presence of the prominent VFR associated with the 3¼ 4 level.

The first clear experimental observation of a VFR in the DA channel was

made for CH3I by the Kaiserslautern group (Hotop et al., 1995; Schramm

et al., 1999). Results were obtained with a thermal target (300K, population

of 3¼ 1 relative to 3¼ 0 about 7.8%) as well as with vibrationally cooled

molecules in a seeded supersonic beam. In Fig. 22 the supersonic beam data

(open circles, adjusted in absolute size to theory) are compared with the

R-matrix fit over the range 0–115meV. Note that at the 3¼ 2 threshold

VFR peak structure is absent in agreement with the experimental data,

taken over a broader electron energy range at TG¼ 300K (insert in Fig. 22;

note that the experimental cross-section has been multiplied by 0.5 for this

comparison). Weak structure is observed in the measured spectrum close

FIG. 22. Comparison of measured (open circles) and calculated (full curves) DA cross-

sections for CH3I. The LPA data in the main frame were measured with a supersonic beam

target, whereas for the LPA data in the inset (measured cross-section multiplied by 0.5) a diffuse

gas target at room temperature was used (from Schramm et al., 1999).
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to the 2¼ 1 onset (E¼ 155meV) which is not reflected by theory because

only the 3 mode is included in the model. The R-matrix results for the shape

of the VFR were found to be very sensitive to the R-matrix parameters

including the long-range electron–molecule interaction, associated with

the permanent electric dipole moment and the polarizability of methyl

iodide (Schramm et al., 1999; Leber et al., 2000a, see also Section II).

In view of the good quality in the description of both the shape and the

absolute value of the DA cross-section one may hope that the R-matrix

model be able to correctly predict electron scattering cross-sections, especi-

ally for VE involving the 3 mode. In Fig. 23 we compare the calculated

cross-sections for elastic and vibrationally inelastic (3¼ 0! 1) scattering

with recent experimental results, with an energy width of 10 meV in the

incident beam (Allan and Fabrikant, 2002). In the elastic channel the VFR

just below the 3¼ 1 onset shows up as a sharp dip whose depth is reduced

in the experimental spectrum due to the energy spread. The 3¼ 0! 1VE

spectrum exhibits a prominent threshold peak, an upward step at the 3¼ 2

threshold, and an upward cusp at the 3¼ 3 onset in very good agreement

between theory and experiment. Similarly good agreement is observed for

3¼ 0! 2 and higher channels VE. We conclude that semiempirical

R-matrix calculations have substantial predictive power once the model

parameters have been appropriately fixed by using information from either

VE or DA experiments in combination with ab initio molecular structure

theory.
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A similar treatment can be applied to the perfluoromethyl chloride

(CF3Cl) molecule. However, since its dipole moment is relatively small

(m¼ 0.196 a.u.), no VFRs were found there. A strong temperature effect in

DA to CF3Cl was detected by Hahndorf et al. (1994) in the low-energy

region (energy width around 0.1 eV). Theoretical calculations have been

performed in the classical approximation (Lehr and Miller 1996; Lehr et al.,

1997) and by the use of the resonance R-matrix method (Wilde et al., 1999).

Recent ab initio calculations of Beyer et al. (2001) combine the R-matrix

method with the projection operator technique to treat the vibrational

dynamics. The semiempirical classical and the R-matrix calculations

reproduce (albeit only qualitatively) the experimental zero-energy peak at

T¼ 800K. For a more detailed comparison between theory and experiment,

high resolution DA measurements as a function of gas temperature would

be interesting.

The LPA method has been applied to investigate DA to the dipolar

halogenated methanes CH3I (see above), CFCl3, CBrCl3, and CH2Br2 at

meV energy width. In all cases s-wave attachment was confirmed at very

low energies where the DA cross-sections showed an energy dependence

between E�1/2 and E�1 (Klar et al., 2001b; Schramm et al., 2002). For

CH2Br2 (which has similar dipole moment and polarizability as CH3I) a

clear VFR just below the onset for the 3¼ 1 symmetric CBr2 stretch

vibration was observed (Schramm et al., 2002). While clear cusp structure

was detected at several vibrational thresholds for CFCl3 (Klar et al., 2001b),

such structure was nearly absent for CBrCl3 (Schramm et al., 2002).

R-matrix calculations demonstrated that Br� formation from DA to CBrCl3
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proceeds by s-wave attachment to the ground anion state at low

energies while a broad peak, observed around 0.6 eV and evolving

predominantly into the statistically favoured Cl� channel, is due to an

excited anion state.

A.3. Electron Scattering from cis- and trans-Difluoroethenes

Use of polyatomic organic compounds allows introducing a ‘‘chemical

dimension’’ into the study of electron scattering by designing molecules

with the desired physical and electronic properties. Cis- and trans-

difluoroethenes (1,2-C2H2F2) represent an example where use is made

of this possibility. Both molecules are virtually identical in terms of size,

the nature of chemical bonding and of electronic structure, but differ

dramatically in the magnitudes of the permanent dipole moments (2.42

Debye in cis and zero by symmetry in trans). This pair of compounds

thus allowed Allan et al. (2002) to study the effect of dipole moment on

the threshold peaks, while keeping the effect of other factors like polari-

zability, presence or absence of double bonds, number of halogens, etc.,

unchanged.

Figure 24 illustrates the trivial effect on the elastic cross-section. The size

of the elastic cross-section is strongly enhanced at low energies by the long-

range force of the permanent dipole moment of cis-difluoroethene, as

expected.

Figures 25 and 26 compare the cross-sections of the C¼C stretch and the

C–F stretch vibrations for the two isomers. A band due to the �* shape

resonance is seen for both types of vibrations, yielding vertical electron

attachment energies of 2.37 eV for cis-difluoroethene and 2.05 eV for trans-

difluoroethene. The resonances thus lie slightly higher than in the parent

compound ethene, which has a resonance at 1.78 eV (Jordan and Burrow,

1978). The effect of the fluorine substituents may be viewed as a stabilizing

inductive effect due to the large electronegativity of fluorine and a

destabilizing conjugative effect due to admixture of the occupied lone

pair orbitals of � symmetry on the fluorines. The higher energy of the

resonance in the cis- compound can be visualized within this picture as

due to destabilizing through-space interaction of the fluorine lone pairs

of � symmetry.

Both the C¼C stretch vibrations (Fig. 25) and the C–F stretch vibrations

(Fig. 26) are excited to about the same degree in the �* shape resonance

region. This reflects the fact that the �* antibonding orbital, which is

temporarily occupied in the shape resonance, is antibonding with respect

to both the C¼C and the C–F distances, and is little influenced by whether

the fluorines are arranged cis or trans.
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Substantial differences appear in the threshold region, however. These

differences were discussed in terms of two effects. The first is the trivial

excitation of infrared active vibrations near threshold by the dipole

mechanism. This excitation is forward-peaked and its extent in Figs. 25

and 26 has been reduced by the large scattering angle of 135�. The remaining

contribution of the excitation by this mechanism was estimated by

calculating the cross-sections within the Born approximation from the

experimental infrared band intensities. This approximation is primarily

intended for forward scattering, but can be assumed to be qualitatively

useful even at the large scattering angle. Threshold cross-sections exceeding

substantially the Born prediction were interpreted as ‘true’ threshold peaks,

in the same sense as in the examples of HF and other halogen halides

described above.

Two observations are made in the excitation of the C¼C stretch

vibrations in Fig. 25. This vibration is excited at threshold only in the cis

isomer where it is infrared active, and nearly absent in the trans isomer

where it is infrared inactive. The cross-section in the former case is, in

addition, substantially higher than the Born prediction.

Threshold peaks are found in the cross-sections for the C–F stretch

excitation for both the cis and the trans isomers in Fig. 26, but only in the cis

isomer, with permanent dipole moment, does the observed cross-section

substantially exceed the Born prediction. (Two C–F stretch vibrations

overlap in the trans compound and both the experimental cross-section and

the Born prediction are the sums for both vibrations.). It was consequently

concluded that two conditions strongly contribute to the presence of ‘true’

threshold peaks. One is a permanent dipole moment and the other a dipole

moment being a function of nuclear coordinate for the normal mode in

question (i.e., the mode must be IR active). This conclusion holds also for

a number of other normal modes of cis and trans difluoroethenes measured

by Allan et al. (2002) but not shown here.

These conclusions are compatible with the notion that the threshold peaks

are closely related with a negative ion state where an electron is bound (in an

electronic sense) by a dipole force in a spatially diffuse wave function, but

only for a certain range of configurations of the nuclei. HF is a prototype

of this mechanism and the present molecules extend it to a case with many

normal modes and a variable permanent dipole moment. The permanent

dipole moment is important by providing a sufficient ‘dipole binding’ in the

first place. The binding energy is further enhanced and becomes a function

of vibrational coordinate (for the normal mode in question) for IR active

vibrations. The permanent dipole moment is not absolutely indispensable,

however, as exemplified by CO2 and CS2. A sufficiently strong polarization

force can replace its effect.
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B. ELECTRON COLLISIONS WITH NONPOLAR MOLECULES

In this subsection we shall discuss molecules which do not possess a

permanent electric dipole moment (i.e. m¼ 0). Most of these molecules

exhibit, however, a permanent electric quadrupole moment Q 6¼ 0, leading

to an interaction VQ(r)/�1/r3 which has to be considered in addition to

the polarization interaction Vpol(r)/�1/r4. Here we consider the three

cases Na2, F2 and Cl2 for which we focus on the threshold behaviour of the

electron attachment cross-section. Very few molecules, characterized by

a high symmetry, neither possess a permanent electric dipole moment nor

a permanent electric quadrupole moment, among them SF6, CCl4 and C60.

These molecules are known as very efficient electron scavengers, and SF6

is being used as a gaseous dielectric in many applications (Christophorou

and Olthoff, 2000). We further discuss the low-energy scattering behaviour

of two linear, symmetric triatomic molecules which exhibit strong

enhancements of elastic and inelastic scattering through a virtual state

(CO2) or a bound anion state (CS2) and also include the weakly polar

molecule N2O (m¼ 0.16D) which is isoelectronic with CO2 and has

exhibited intriguing vibrational structure in a recent high resolution DA

study. These findings are also relevant to the observations of vibrational

resonance structure made for clusters composed of these and related

molecules.

B.1. Electron Attachment to Vibrationally Excited Sodium Molecules

Among the nonpolar diatomic molecules Y2 only a few cases (including the

halogen molecules) exhibit anion formation by dissociative electron

attachment at near-zero electron energies. The threshold behaviour of

DA to the halogen molecules is still under debate (see next subsection). DA

to the alkali dimers is endothermic by a few tenths of an eV. Zero energy

attachment, may, however, be investigated if a sufficient amount of

vibrational energy is present in the molecule. Here we describe the results

of a recent experiment in which high resolution near-zero energy electron

attachment to sodium dimers in a controlled vibrational level v has been

carried out (Keil et al., 1999):

e�ðEÞ þNa2ðX1�þg ; vÞ ! Na�2 ðA2�þg Þ ! Na�ð1SÞ þNað32SÞ: ð37Þ

Figure 27 illustrates the relevant potential energy curves (Külz et al., 1996,

Keil et al., 1999), as obtained in a high level electronic structure calcul-

ation. The electronic configuration of the Na�2 (
2
�u
þ) ground state (chain

curve) is 1�g
2 1�u; it is stable for lower vibrational levels (adiabatic electron
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affinity þ0.44 eV) and is not involved in the processes discussed here. The

Na�2 (A
2
�g
þ) state is stable for internuclear distances R>RC¼ 0.38 nm and

turns into a resonance state for smaller R. At long range it is dominated by

the 1�g 1�u
2 configuration. It acquires significant admixture of a 1�g

2 2�g
configuration at distances below 0.5 nm. For R<RC the 2�g orbital turns

into a continuum wave function; anion formation involves a two-electron

process in which the incoming s-wave electron and one of the molecular 1�g
electrons form the 1�u

2 part of the Feshbach-type Na�2 (A
2
�g
þ) resonance

state. Reaction (37) becomes exothermic for v¼ 11, but due to the barrier

in the Na�2 (A
2
�g
þ) potential energy curve near 0.47 nm the DA cross-

sections for both v¼ 11 and 12 are predicted to be suppressed at very low

energies.

Using a collimated supersonic beam, containing both Na(3s) atoms and

Na2(v¼ 0) molecules, the experiment (Keil et al., 1999) combined the laser

photoelectron attachment method (here two-step photoionization of Na(3s)

through the excited Na(3p3/2) level) with selective vibrational excitation

by means of a two-photon Raman technique with acronym STIRAP

(Stimulated Raman with Adiabatic Passage) (Vitanov et al., 2001). Na�

ions due to the DA process (37) are detected with a time-of-flight mass

spectrometer. In Fig. 28 the attachment spectra for the four selected

vibrational levels v¼ 12, 13, 14, and 22 are shown; they were obtained at an

electron current of about 0.2 nA. There is a clear change in the threshold

behaviour when going from v¼ 12 to higher vibrational levels; for v� 13,

the calculations and the experimental results both exhibit a strong rise of the

FIG. 27. Potential energy curves for Na2 and Na�2 , relevant for threshold electron attachment

to Na2(v>0) molecules (from Keil et al., 1999).
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cross-section towards zero electron energy which is characteristic for s-wave

capture. Note that the theoretical data for v¼ 12 (which show a sharp

rise above 8meV) have been convoluted by a Gaussian with 6meV width

to simulate the effects of experimental resolution. The overall agreement

between the experimental and theoretical results is quite satisfactory

although the experimental anion yields seem to decrease somewhat more

rapidly towards higher energies than the theoretical cross-sections.

B.2. Electron Attachment to Fluorine and Chlorine Molecules

Dissociative electron attachment to the halogen molecules Y2 (Y¼F, Cl,

Br, I) at energies below 1 eV is expected to occur through formation of the

lowest negative-ion state with 2
�u
þ symmetry according to the scheme

(see, e.g., Domcke, 1991; Christophorou and Olthoff, 1999)

e�ðEÞ þ Y2ðX1�þg Þ ! Y�2 ð2�þu Þ ! Y�ð1SÞ þ Yð2PÞ: ð38Þ

This process has been observed in several experimental studies (e.g. Kurepa

and Belić, 1978, Tam and Wong, 1978, Chantry, 1982) as a peak at or close

to zero energy with a width which was to a large extent limited by the

experimental resolution (between 0.08 and 0.2 eV). For F2 Chutjian and

Alajajian (1987) reported s-wave behaviour of the DA cross-section at an

energy width of 6–12meV, using the TPSA method. From a theoretical

FIG. 28. Electron attachment cross-sections for selectively vibrationally excited Na2(v)

molecules (from Keil et al., 1999).
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point of view the process is expected to be dominated by the p-wave because

of the ungerade parity of the resonance state which rules out s-wave

attachment. According to the Wigner threshold law the cross-section should

thus grow with the square root of the electron energy at sufficiently

low energies, as predicted in several theoretical calculations for F2 (Hazi

et al., 1981; Bardsley and Wadehra, 1983; Brems et al., 2002) and for Cl2
(Fabrikant et al., 2000).

Brems et al. (2002) carried out high level ab initio calculations of the

lowest F�2 resonance state by the R-matrix method with the Feshbach-Fano

partitioning technique to treat the nuclear dynamics. Their DA cross-section

exhibits p-wave threshold behavior and reaches a peak around 0.2 eV with a

size of about 1.5� 10�20m2. The experimental DA cross-section of Chantry

(1982) is in satisfactory agreement with the theoretical results over the range

0.6–2 eV, but the increase towards lower energies (compatible with the

TPSA data) remains unexplained. There is clearly a need for a new high-

resolution experiment with the aim to clarify the situation.

For the chlorine molecule, a similar discrepancy as for F2 appeared to

exist. A critical analysis of the early and more recent low resolution

data (Kurepa and Belic, 1978; Tam and Wong, 1978; Feketeova et al., 2003),

based on their comparison with convoluted theoretical cross-section shapes

(using appropriate energy distribution functions), reveals that they are in

fact not contradictory to p-wave attachment (Ruf et al., 2003). In a recent

LPA experiment (energy width near threshold 1meV) Barsotti et al. (2002b)

provided conclusive experimental evidence for p-wave behaviour of the

attachment cross-section for Cl2 by demonstrating the steep rise from

threshold to a maximum located around 50meV.

Recent accurate calculations (Leininger and Gadea, 2000) of potential

curves for Cl2 and Cl�2 provide useful information regarding the dynamics of

the process. The curve crossing between the Cl2(X
1
�þg ) and Cl�2 (

2
�þu ) states

occurs below the left classical turning point for the nuclear motion in Cl2.

Typically the Franck-Condon factor changes relatively slowly in the near-

threshold region, and the energy dependence of the cross-section is mainly

determined by the capture width G which gives the E�1/2 law in the case of

s-wave attachment and the E1/2 law in the case of the p-wave attachment.

However, in the case of attachment to Cl2 the Franck-Condon factor drops

very rapidly with rising energy, therefore the DA cross-section should

exhibit a rather narrow peak near threshold with the E1/2 behavior limited to

energies below 10meV.

To confirm this conjecture, the DA cross-section was calculated by

Fabrikant et al. (2000), using the resonance R-matrix theory. The surface

amplitude � was adjusted to reproduce the recommended value of the DA

cross-section (Christophorou and Olthoff, 1999) at 0.1 eV and the
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magnitude of the swarm-derived DA rate coefficients (McCorkle et al.,

1984). In Fig. 29 we present the fitted potential curves of the problem.

The neutral curve V(�) and the ‘‘diabatic’’ curve U(�) were parameterized

by Morse functions.

In Fig. 30 we show the calculated DA cross-section (full curve) in the

low-energy region (0–200meV) and compare it with the measured LPA

cross-section (open circles, normalized in absolute size to the calculated

value at the maximum, assuming a vibrational temperature of Cl2 of

Ti¼ 500K). The shapes of the experimental and theoretical cross-sections

are in good agreement. We emphasize that the shape of the DA cross-section

for different initial vibrational levels vi is almost independent of vi
(see broken line in Fig. 30, calculated with Ti¼ 300K) while the absolute

size rises strongly with increasing vi, reflecting mainly the changes of the

Franck-Condon factors. The rather sharp decrease of the DA cross-

section above E¼ 0.05 eV is caused by two reasons: the fast drop of the

Franck-Condon factor with rising energy mentioned above and the decrease

of the survival probability of the intermediate negative ion against

autodetachment. It is essential that this behavior is independent of our

normalization procedure. If we vary �, but keep the adiabatic anion curve

fixed, the shape of the cross-section does not change.

The R-matrix calculations were extended to provide semiempirical predic-

tions for vibrational excitation (VE) cross-sections for this molecule of

Σ

Σ

Π

Π

Σ

FIG. 29. Potential energy curves for Cl2 and Cl�2 , relevant for electron attachment

to Cl2(X
1
�g
þ) molecules (from Barsotti et al., 2002b).
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substantial practical interest, not only though the Cl�2 (
2
�u
þ) resonance, but

also through the higher lying 2
�g and

2
�u resonances (Ruf et al., 2003). So far

no direct measurements for these VE cross-sections have been carried out.

B.3. Electron Attachment to SF6 and CCl4

Both SF6 and CCl4 belong to the few molecules for which the Vogt-Wannier

capture model should be applicable in view of missing electric dipole and

quadrupole moments, and it is thus of interest to compare the prediction of

the VW theory with experimental results for the energy dependent

attachment cross-section, obtained at very low energies and high resolution.

To illustrate the importance of the reactive attachment channel, we also

present the total electron scattering cross-sections.

Using energy-variable photoelectrons from VUV photoionization of rare

gas atoms (energy range 0–160meV, energy width 6–8meV), Chutjian and

Alajajian (1985) obtained clear evidence for s-wave behavior of the

attachment cross-section for SF6 and CCl4 at low energies. They used the

following analytical form for the attachment cross-section to describe

the TPSA data over the range from 0 to 140meV (see also Chutjian, 1992;

Chutjian et al., 1996):

�TPSAðEÞ ¼ NTPSA½aE�1=2 expð�E2=l2Þ þ expð�E=gÞ�: ð39Þ

FIG. 30. Cross-section for dissociative electron attachment to Cl2. The absolute scale refers to

the calculation which assumes a vibrational temperature of Ti¼ 500K (full curve). The LPA

data (open circles) and the calculation with Ti¼ 300K (broken curve) have been normalized

to the maximum of the full curve (from Barsotti et al., 2002b).
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It contains three fit parameters a, l, and � and a normalization constant

NTPSA; the latter is determined by use of Eq. (35). The analytical form of

the cross-section (39) has the deficiency that the second exponential term

(which serves to describe the fast decrease of the cross-section at higher

energies) is not cut off towards very low energies where the first term

(which describes the limiting s-wave behavior) should take over. As long as

the first term is not very much larger than the second one, this leads to a

more or less substantial perturbation of the s-wave term (Klar et al., 2001a).

Subsequently, Klar et al. (1992a, b, 2001a), Hotop et al. (1995) and

Schramm et al. (1998) used the laser photoelectron attachment (LPA)

method to investigate anion formation from these two molecules over

a similar energy range, but with substantially reduced energy width (below

1meV). As an important ingredient and improvement over previous work,

they analyzed the effects of residual electric fields (reduced to values below

1V/m) on the near-threshold attachment yield through model calculations

of the attachment yield (Klar et al., 1992b; 1994a, b; 2001a, b; Schramm

et al., 1998). In the spirit of the s-wave capture formula (21) due to Klots

they used the analytical cross-section

�eðEÞ ¼ ð�0=EÞ½1� expð��E1=2Þ� ð40Þ

which was found to provide a very good description of the experimental

attachment yield from threshold up to the first vibrationally inelastic onset

for both SF6 (Klar et al., 1992b; 1994a, b) and CCl4 (Hotop et al., 1995;

Klar et al 2001a). In this way they were able to determine the parameter �
in Eq. (40) to within 10% and thereby quantify the deviations of the

cross section from the limiting behavior �e(E! 0) which – in terms of

Eq. (40) – is given by �e(E! 0)¼ �0�/E1/2. With � expressed in units of

(meV)�1/2, Klar et al. obtained �¼ 0.405(40) for SF6 (Klar et al., 1992b) and

�¼ 0.59(6) for CCl4 (Hotop et al., 1995; Klar et al., 2001a), in both cases

distinctly larger than the prediction obtained from the Klots formula (21),

namely �K¼ 0.228 for SF6 and �K¼ 0.299 for CCl4. For SF6, Schramm

et al. (1998) measured the attachment yield at residual electric fields

as low as 0.01V/m and negligible laser bandwidth for electron energies

from 10meV down to 20 meV; they confirmed the results of Klar et al.

(1992b) for the parameter �. The limiting LPA rate coefficient ke(E! 0)¼
�e(E! 0) (2E/me)

1/2¼ �0�(2/me)
1/2 (5.4(8)� 10�7 cm3 s�1) is in good agree-

ment with the Vogt-Wannier prediction kc¼ 5.15� 10�7 cm3 s�1 (Klar et al.,

1992b) and with RET data for SF�6 formation from SF6 at high principal

quantum numbers n (knl¼ 4.0(10)� 10�7 cm3 s�1, Ling et al., 1992; Klar et

al., 1994b; Dunning, 1995).
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In Fig. 31 we present a comparison of the LPA cross-section (normalized

in absolute size to the thermal rate coefficient due to Petrović and

Crompton, 1985) with the VW result for s-wave attachment (p-wave capture

would reach its peak at an electron energy of about 330meV and is

neglected), with the fit (39) to the TPSA data (Chutjian and Alajajian, 1985)

and with the empirical fit (40) of Klar et al. (1992b). The fit (40) gives a good

description of the LPA data up to the threshold for 1¼ 1 vibrational

excitation where the cross-section exhibits a sharp downward cusp,

predicted theoretically by Gauyacq and Herzenberg (1984) and confirmed

by Klar et al. (1992a, b). Systematic deviations between the LPA and TPSA

results are observed (in spite of using the same thermal rate coefficient for

normalization) here and also for other molecules, as discussed and explained

by Klar et al. (1992b; 1994a; 2001a, b) and Schramm et al. (1999, 2002). In a

more recent study Howe et al. (2001) confirmed the smooth Klots-type

behavior of the SF�6 cross-section (see also below).

For comparison with the (nondissociative) attachment channel, we have

included in Fig. 31 the total scattering cross-section, as presented in the

FIG. 31. Absolute cross-sections for electron collisions with SF6. LPA: Laser photoelectron

attachment (SF�6 formation, Klar et al., 1992b; Hotop et al., 1995), TPSA: Threshold

photoelectron attachment ((SF�6 formation, Chutjian and Alajajian, 1985), see text. For

comparison, we have included the total cross-sections due to Ferch et al. (1982) (full squares),

the Vogt-Wannier s-wave capture cross-section VW(l¼ 0), the limiting s-wave reaction cross

section �k�2 and the LPA fit according to Eq. (40).
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survey of Christophorou and Olthoff (2000, Table 9) and due to Ferch et al.

(1982) at low energies. Below the onset for vibrational excitation of the

symmetric stretch mode 1¼ 1, the total cross-section is 2.23 (90meV) to 2.05

(35meV) times higher than the fitted LPA attachment cross-section.

A decrease of the ratio between the total cross-section and the attachment

cross-section towards very low energies is expected on theoretical grounds;

the ratio should be a linear function of wave vector k at very low energies

and take the value unity for E! 0. Assuming that VE cross-sections of

the lower energy modes (e.g. 6¼ 1, onset at 44meV) can be neglected, the

elastic scattering cross-section �ES can be calculated from the difference

between the total cross-section and the LPA attachment cross-section. The

resulting values for �ES rise from 95� 10�20m2 at 90meV to 195� 10�20m2

at 35meV while the LPA cross-section rises from 78� 10�20m2 to

185� 10�20m2, respectively. A preliminary analysis of these data (Fabri-

kant, unpublished) within the framework of the modified effective range

theory (O’Malley et al., 1962) yields two possible solutions for the electron

scattering length of SF6, namely A� 7.3 a0 and A� –10.0 a0. In the first case

a weakly bound state would exist for which no evidence exists so far

(Christophorou and Olthoff, 2000). The second case would indicate a virtual

state and would make the case of low-energy e–SF6 scattering similar to that

of CO2 (see below). In order to clarify the situation, new measurements

of the total cross-sections down to very low energies are needed. In recent

theoretical calculations of electron scattering from SF6 over the broad

energy range from a few meV to 100 eV, Gianturco and Lucchese (2001)

obtained total cross-sections which are substantially lower than the

experimental results at energies below 1 eV. They attributed the differences

to inelastic channels (vibrational excitation), but did not consider electron

attachment which is the major reaction channel at the lowest energies.

Their elastic cross-section at 35meV is about 40 times lower than the

estimate given above.

Since in the case of s-wave scattering there is no centrifugal barrier to

support the resonance state, the process of low-energy attachment can be

viewed as a direct nonadiabatic capture (Crawford and Koch, 1974;

Gauyacq, 1982). Attachment to SF6 was discussed in terms of nonadiabatic

coupling by Gauyacq and Herzenberg (1984): the low-energy electron can

give up its energy to become bound if the crossing of the negative-ion

curve with the neutral curve occurs close to the equilibrium internuclear

separation. However, there should be a mechanism that is preventing the

electron from escaping into the continuum. In the case of SF6 this occurs

due to a fast intramolecular vibrational redistribution (IVR) of the available

energy over many vibrational modes, before the nuclear framework can

oscillate back to its initial configuration (Gauyacq and Herzenberg, 1984).
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The SF�6 anion becomes metastable, and this explains the nondissociative

feature of low-energy attachment to SF6 (see also Thoss and Domcke,

1998). Since the capture in this case is nonresonant, the VW model becomes

appropriate. Of course a ��/(2r4) singularity, which plays an essential role

in the VW model, is unphysical. However, for sufficiently high � it describes

quite well the probability to find the electron within the molecule where the

direct energy exchange is likely to occur.

The metastability of the SF�6 anion has been the subject of many studies

aiming to determine its lifetime (see Christophorou and Olthoff, 2000, Suess

et al., 2002, and references therein). This lifetime is expected to depend

on the internal energy (i.e. vibrational energy) of the anion and on the

energy E of the electron attached in the primary capture process. Using

a permanent magnet Penning trap, Suess et al. (2002) measured the lifetime

of SF�6 ions, produced by electron transfer from K**(30p) and K**(60p)

Rydberg atoms to a beam of thermal (300K) SF6 molecules. In both

cases, they obtained a lifetime of about 10ms. Previously reported lifetimes

for SF�6 ions formed by free thermal electron capture depend strongly

on the experimental technique used. Experiments using time-of-flight

methods typically yield values of a few tens of microseconds, whereas ion-

cyclotron-resonance methods suggest lifetimes of a millisecond or longer

(Christophorou and Olthoff, 2000). In part, these differences might be

explained by differences in the SF6 gas temperature and the energy of the

attached electrons, leading to SF�6 ions in a variety of states that auto-

detach at different rates. A recent time-of-flight measurement, using a jet-

cooled SF6 target and a laser photoelectron source (LeGarrec et al., 2001),

yielded a lifetime of about 19 ms that was independent of electron energy in

the range 0.4–120meV. This value is difficult to reconcile with the much

longer lifetimes of Dunning’s group (Suess et al., 2002) and with the results

of our laser photoelectron attachment experiments in which the SF�6 ions,

formed by electron capture in the energy range 0–200meV, are detected

100–200 ms after their generation at intensities which indicate that losses

due to autodetachment during this time interval must be small at T¼ 300K.

At elevated temperatures, autodetachment and especially dissociation of

the primary SF�6 anion into the products SF�5 þF are known to occur (Chen

and Chantry, 1979). High-resolution data on the temperature dependence of

the cross-sections for SF�6 and SF�5 formation have recently become

available (Barsotti et al., 2003a). With the anion detected about 100 ms after

their production, it was found that the general shape for the SF�6 cross-

section varied little with a tendency that the decrease towards higher

energies became somewhat steeper with rising temperature. This effect can

be attributed to both autodetachment and dissociation towards SF�5 þF.

For sub-thermal temperatures (due to cooling in a supersonic expansion at
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higher stagnation pressures) cusp structure at vibrational onsets was found

to become clearer. The latter finding is in agreement with recent photo-

electron attachment experiments of Chutjian’s group (Howe et al., 2001) in

which a pulsed, seeded supersonic beam of 10% SF6 in Xenon was used; it is

expected that a considerable amount of vibrational cooling occurs in such

an expansion. Howe et al. (2001) found clear cusp structure around the

vibrational onsets 6, 1, and 3 and a decrease of the cross-section which

was characterized by a parameter � (see Eq. (40)) smaller than the one

obtained by Klar et al. (1992b) at TG¼ 300K.

For the CCl4 molecule, attachment of electrons with very low energies

leads to a CCl4
�* complex with a lifetime of 7.5(25) ps (Popple et al., 1996)

which dissociates to the observed anion products Cl� and CCl3; only a

small fraction of the available excess energy (about 0.6 eV) appears as

translational energy (Popple et al., 1996). In the LPA study of DA to CCl4
(Hotop et al., 1995; Klar et al., 2001a; normalization of LPA cross-section

to thermal rate coefficient of Orient et al., 1989) the experimental energy

resolution was about 0.8meV, as limited by residual electric fields of about

0.5V/m (Klar et al., 2001a). Correspondingly, the extrapolation to the VW

limit is somewhat less certain than for SF6, but model calculations including

the residual field and the cross-section (40) yielded very good agreement

between the modelled and the measured attachment yield for CCl4 in the

threshold region (Klar et al., 2001a).

In Fig. 32 we compare the recommended experimental DA cross-section

for CCl4 (consisting of the LPA cross-section at energies below 173meV

and electron beam data due to Chu and Burrow (1990) at higher energies,

see also Klar et al., 2001a) with the VW s-wave prediction and the LPA fit of

Klar et al. (2001a). The slope of the experimental curve is steeper than that

given by the VW model. This might be indicative – according to the

theoretical discussion of the DA cross-section for methyl iodide (Fig. 12) –

of a weakly bound negative-ion state. Indeed, as was suggested by Burrow et

al. (1982) and Gallup et al. (2003), the ground state 2A1 of the CCl
�
4 anion is

bound with a very small binding energy, whereas the first repulsive excited

state 2T2 (to which the DA peak at 0.8 eV is attributed) has a vertical

attachment energy of 0.94 eV. It is likely that the 2T2 state drives the

resonant DA process whereas the 2A1 state enhances this process at low

energies.

For comparison with the reactive attachment channel, we have included

in Fig. 32 the total scattering cross-section, measured at high resolution by

Ziesel et al. (2003) over the range 15–200meV. Below the onset for

vibrational excitation of the symmetric stretch mode 1¼ 1 (where the DA

cross-section exhibits a clear downward cusp) the total cross-section is nearly

parallel to the DA cross-section (which is close to the unitary limit �/k2) at
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essentially twice the size. Apparently the very low energy region where the

ratio between the total cross-section and the attachment cross-section

becomes a linear function of wave vector k has not been reached yet. Using

the DA cross-section of Klar et al. (2001a) in conjunction with their total

and backward scattering cross-sections (the latter measured down to

8meV), Ziesel et al. (2003) derived phase shifts for s-wave and p-wave

scattering over the energy range 8–55meV. Below 25meV, the s-wave phase

shift varies rather little and takes values around 0.65 rad. In order to reach

the expected limit of 0 or � rad (in the absence or presence of a bound state

compatible with s-wave symmetry) the s-wave phase shift has to change

dramatically from 8meV down to 0meV; this is in sharp contrast to the

weak variation in the range 8–25meV.

In Fig. 33a we present the energy-dependent rate coefficient ke(E) for free

electron attachment to CCl4 over the range (0.8–173)meV (Hotop et al.,

1995; Klar et al., 2001a). The limiting LPA value 12.3(19)� 10�7 cm3 s�1

(full circle, Klar et al., 2001a) is in good agreement with the most recent

FIG. 32. Absolute cross-section for dissociative electron attachment to CCl4 molecules (Cl�

formation, from Klar et al., 2001a), as compared to the Vogt-Wannier s-wave capture cross-

section VW(l¼ 0), the limiting s-wave reaction cross section �/k2 and the LPA fit according to

Eq. (40). For comparison the total scattering cross section (full circles, Ziesel et al., 2003) is

included.
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rate coefficient knl� 11(2)� 10�7 cm3 s�1 (open circle, Dunning, 1995;

Frey et al., 1995) for RET in K**(np)þCCl4 collisions at high principal

quantum numbers (n� 70); they are both distinctly higher than the VW

capture rate coefficient kc(E! 0)¼ 6.74� 10�7 cm3 s�1, possibly due to the

influence of the bound 2A1 anion state (see above). As compared to their

appearance in the DA cross-section (Fig. 32), the downward steps at the

onsets for excitation of one (1¼ 1), two (1¼ 2), and three quanta (1¼ 3)

of the symmetric stretch vibration show up more clearly in the plot of the

DA rate coefficient ke(E). The vertical dashed lines at the three vibrational

onsets label the respective vibrational energy positions determined by

Raman spectroscopy. So far, no theoretical calculations for DA involving

CCl4 are available to our knowledge.

Using the combined DA cross-section shown in Fig. 32, Klar et al.

(2001a) calculated thermal DA rate coefficients ke(Te) for fixed gas temp-

erature TG¼ 300K as a function of electron temperature Te. In Fig. 33b

the obtained results (full line) are compared with two sets of swarm

data, obtained by Shimamori et al. (1992b) with a microwave cavity pulse

radiolysis � microwave heating (MWPR�MH) method (open circles)

and by Španel et al. (1995) with a flowing afterglow/Langmuir probe

(FALP) apparatus involving an electron swarm with a variable tempera-

ture (full squares). We note that the respective rate coefficients at

FIG. 33. Dissociative electron attachment to CCl4 molecules: (a) energy dependence of DA

rate coefficient ke(E); (b) thermal rate coefficient ke(Te) for a Maxwellian electron energy

distribution and fixed gas temperature TG¼ 300K (from Klar et al., 2001a). For details see text.
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T¼Te¼TG¼ 300K agree within their mutual experimental uncertainties

(see Klar et al., 2001a). Good overall agreement with regard to the

dependence on electron temperature is observed between the calculated

results and the swarm data although it appears – as discussed by Klar et al.

(2001a) – that the drop in the rate coefficients towards higher temperatures

is somewhat slower in the FALP data than in both the LPA derived and in

the MWPR�MH results. We emphasize that it is important that the beam

data include results obtained with very high resolution in order to avoid

uncertainties associated with the true behavior of the attachment cross-

section at the lowest energies. For CCl4, about 60% of the total thermal rate

coefficient ke(Te¼TG¼T¼ 300K) stem from electrons with energies

E
 kBT (Klar et al., 2001a).

B.4. Electron Attachment to C60

The fullerene molecule C60 has astounding electron attachment properties;

long-lived C�60 anions are formed from near zero to above 10 eV electron

energy (Lezius et al., 1993). Here we dwell on the threshold behavior of the

cross-section which has been a subject of some controversy. Flowing

afterglow/Langmuir probe (FALP) measurements (Smith et al., 1993; Smith

and Španel, 1996) indicated that electron capture by C60 is characterized by

an activation barrier of 0.26 eV. This was interpreted as a p-wave process by

Tosatti and Manini (1994) who showed that an s state of the C�60 anion is

prohibited by symmetry. Their calculations of the capture rates, based on

a finite potential well model, are in good agreement with the FALP

measurements (Smith et al., 1993; Smith and Španel, 1996), both in terms of

the absolute magnitude and the slope of the rate dependence on the inverse

electron temperature which gives the magnitude of the activation barrier.

However, as noted previously by Huang et al. (1995), the model used by

Tosatti and Manini (1994) and later by Matejcik et al. (1995), does not seem

to represent the physics of the process correctly. First, it ignores the

polarizability of C60 which is very large (558 a.u.). Furthermore, it regards

the capture cross-section as being identical to the elastic cross-section which

is physically incorrect. The simplest way to see this is by looking at

the threshold behavior: whereas the p-wave capture cross-section behaves

as E1/2 at low energies, the elastic p-wave scattering cross-section is

proportional to E 2. The extra factor E 3/2 in the elastic cross-section appears

because the electron has to tunnel through the centrifugal barrier a second

time when leaving the interaction zone. Therefore the good agreement

between the FALP experiments and the calculations of Tosatti and Manini

(1994) seems to be fortuitous.
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Several beam measurements (Jaffke et al., 1994; Huang et al., 1995;

Matejcik et al., 1995) also claim the existence of an activation barrier with

a height of 0.24 (Jaffke et al., 1994) or 0.15 eV (Huang et al., 1995). The

measurements of Jaffke et al. (1994) were reinterpreted by Weber et al.

(1996) who concluded that they can only be understood if an s-wave

contribution or a resonance close to zero energy are present. Note that the

deconvoluted results of Jaffke et al. (1994) were incorrectly shifted on the

energy scale by 0.4 eV (see appendix in Weber et al., 1996), thereby

suggesting a barrier; this, however, was an artifact of the deconvolution

procedure of Jaffke et al. (1994). The presence of the 0.15(5) eV threshold

in the experiment of Huang et al. (1995) is not yet understood; in Fig. 7 of

Huang et al. (1995) the low-energy peak for C�60 formation is found to be

shifted by about þ80meV relative to the peak for SF�6 formation.

The absence of an activation barrier is indicated by experiments on

Rydberg electron attachment to C60 (Finch et al., 1995; Huang et al., 1995;

Weber et al., 1996). They exhibit a flat dependence of the attachment rate

on the principal quantum number n of the Rydberg electron at high n,

indicating an s-wave attachment process. In addition, more recent beam

experiments (Elhamidi et al., 1997; Vasil’ev et al., 1997; Kasperovich et al.,

2001) with free electrons have found evidence for a zero-energy attachment

process (within about 0.03 eV). Several mechanisms for s-wave attachment

involving formation of weakly bound (Weber et al., 1996) or virtual

(Lucchese et al., 1999) states of C�60, supported by the long-range polariz-

ation interaction, have been discussed.

Here we compare the obtained experimental information with the results

of the application of the VW model. In Fig. 10 we presented the l¼ 0

through l¼ 4 contributions to the cross-sections for a capture by a target

with the polarizability 558 a.u., as appropriate for C60 (Bonin and Kresin,

1997). We see that the E1/2 behavior for the p wave occurs within a very

narrow energy range: the p-wave cross-section peaks at E¼ 26meV. This

means that the near-zero energy peaks in the C�60 yield, observed in electron

beam experiments by several groups, could – at least in part – reflect such

a p-wave contribution.

Recent ab initio theoretical calculations (Gianturco et al., 1999; Lucchese

et al., 1999) of elastic e-C60 scattering suggest that in the low-energy region

this process is dominated by a virtual state in the ag symmetry, whose lowest

partial wave component is l¼ 0, and a resonance state in the tlu symmetry

whose lowest partial-wave component is l¼ 1. Therefore one may assume

that the attachment process at low energies is controlled by a combina-

tion of direct capture mediated by a virtual state (similar to low-energy

attachment to SF6) and resonance capture into the tlu state. In model

calculations of the threshold behaviour for C�60 formation in RET and free
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electron attachment to C60, Fabrikant and Hotop (2001) correspondingly

described the capture cross-section by combining the s-wave and the p-wave

VW cross-sections, �0 and �1:

�ðEÞ ¼ cð"�0 þ �1Þ ð41Þ

where c and " are adjustable parameters: " characterizes the relative

contribution of the s-wave and c the absolute value of the cross-section

which was estimated from experimental RET attachment rate coefficients

(Finch et al., 1995; Huang et al., 1995; Weber et al., 1996). A combined fit to

these n-dependent RET data and to the free electron data of Elhamidi et al.

(1997) yielded c¼ 0.1 and "¼ 0.1–0.2 (Fabrikant and Hotop, 2001). The

s-wave zero energy peak dominates the cross-section only at very low

energies (below 3meV). High-resolution free electron attachment experi-

ments are necessary to confirm this prediction.

Note that only 1–2% (c"¼ 0.01 or 0.02) of the s-wave VW cross-section

appears to contribute to the capture process, in contrast with attachment to

SF6. Apparently the stabilization mechanism discussed for SF6 is not as

efficient for C60. The 1–2% fraction can be considered as an efficiency for

conversion of the C�60 virtual state into a bound state, something similar to

the survival probability in the resonance attachment. It has to be mentioned

that the temperature dependence of the attachment rate coefficient observed

in the FALP experiments (Smith et al., 1993; Smith and Španel, 1996)

was found to be not in accord with the combined s- and p-wave model.

Possibly, the electron energy distribution in the temperature-variable FALP

apparatus are not completely thermalized and short of low-energy electrons.

Another possibility is a significant dependence of the negative ion yield

on the rovibrational temperature of C60 (Fabrikant and Hotop, 2001). At

higher temperatures many nontotally symmetric vibrations are excited, and

s-wave attachment might play a more substantial role (Vasil’ev et al., 2001).

B.5. Electron Scattering from CO2, CS2, and N2O

5.a. Carbon Dioxide

Carbon dioxide is linear in its electronic ground state. The lowest

vibrationally excited states, labelled as (v1v2v3), include the bending mode

(010) (82.7meV), the Fermi-coupled pair of the bending overtone and

the symmetric stretch mode (020)/(100) (159.4/172.1meV, average energy

165.7meV), the Fermi-coupled pair (030)/(110) (239.6/257.5meV; average

energy 248.3meV), the asymmetric stretch mode (001) (291.3meV), and the

Fermi-coupled triplet (040)/(120)/(200) (317/342/348meV, average energy
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336meV) (Herzberg, 1945). CO�2 has long been known to have a bent

equilibrium configuration, generally made responsible for the mass

spectrometric observation of metastable CO�2 anions. In recent ab initio

work, Gutsev et al. (1998) obtained a bond angle of 137.8�, an electric

dipole moment of �0.90D and a negative adiabatic electron affinity of

EAad(CO2)¼�0.66 eV for this state of the anion.

Vibrational excitation in CO2 has two distinct energy ranges. The first is

around the 2
�u shape resonance at 3.6 eV, where boomerang structures have

long been known (Boness and Schulz, 1974). The second is dominated by

a virtual state below 2 eV (Morrison, 1982; Herzenberg, 1984; Estrada

and Domcke, 1985; Kochem et al., 1985; Morgan, 1998; Rescigno et al.,

1999; Mazevet et al., 2001; Field et al., 2001b). The virtual state causes

dramatic enhancement of the cross-section near threshold for the excitation

of the symmetric stretch vibration (100), Fermi-coupled with two quanta

of the bending vibration (0200) (Kochem et al., 1985; Field et al., 1991b;

Allan, 2001a). The cross-sections for the excitation of the infrared active

fundamental vibrations, (010) and (001), also exhibit threshold peaks, but

these can be ascribed, at least to a large degree, to direct dipole scattering

(Kochem et al., 1985). Pronounced selectivity was observed in the excitation

of the Fermi-coupled vibrations {(1000), (0200)} in the virtual state

range (Antoni et al., 1986; Allan, 2001a). Selectivity in the excitation of

the Fermi-coupled vibrations was also observed in the shape resonance

region (Johnstone et al., 1995; Kitajima et al., 2000; Allan, 2001a), but this

energy range does not fall into the scope of the present review.

In contrast to the halogen hydrides the elastic cross-section and the cross-

sections for the excitation of the fundamental vibrations do not exhibit

structures of vibrational origin (Kochem et al., 1985; Field et al., 1991b).

This corresponds to the expectation, reflecting the fact that the cross-section

enhancement at threshold is due to a virtual state, which is not associated

with a time delay (Herzenberg, 1984), and consequently cannot support

vibrational structure. Tennysson and Morgan (1999) predicted, however, on

theoretical grounds, that the virtual state becomes bound in the electronic

sense upon sufficiently strong bending of the CO2.

This idea has received strong support from the experimental observation

of vibrational Feshbach resonances and boomerang oscillations in the

excitation of certain higher-lying Fermi-coupled vibrations involving

symmetric stretch and bending by Allan (2002a), as shown in Fig. 34.

Allan (2002a) discussed two possible explanations of these structures. The

first, considered less probable, is that these structures are due to metastable

vibrational levels around the minimum of the valence ground state of CO�2
at a bend geometry, that is that they correspond to the outer well resonances

discussed in this review already in connection with HCl. The second
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explanation, considered more probable, is that the structures are due to

‘inner well’ vibrational Feshbach resonances and boomerang oscillations

supported by a potential surface of the CO�2 where an electron is weakly

electronically bound by dipole and polarization force in the bent and

stretched geometry. The wave function of the electron is spatially very

diffuse. This ‘diffuse’ state of CO�2 becomes the (unbound) virtual state at

the linear geometry.

The latter explanation has received strong support from the CO�2
potential surface calculated by Sommerfeld (2003). His elaborate calculation

succeeded in reproducing both the valence and the diffuse states of CO�2
within the same model. The cut through the adiabatic surface along the

bending coordinate, shown in Fig. 35, shows that the valence ground state

of CO�2 , which has a shallow minimum at bent geometries, rapidly acquires
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diffuse character and turns sharply down as the CO2 framework is

straightened towards the linear geometry. Below a certain bending angle

the anion and neutral surfaces cross and the anionic surface disappears in

the adiabatic sense. The situation is closely related to that discussed in

Section II in connection with Fig. 6. Qualitatively, the oscillations of the

nuclear wave packet on the ‘inner well’ of the CO�2 potential surface can be

pictured in the same way as already discussed for HF�. Around the linear

geometry the CO�2 starts to loose the extra electron since it is no longer

bound in the adiabatic sense. The electron departs only slowly, however,

since we are near threshold. Part of the electron wave function is recaptured

when the nuclei swing over to bent geometry again, giving rise to VFRs of

varying width. The similarity between the HF and CO2 cases is born out

by the striking phenomenological similarity of the HF and CO2 spectra

(Figs. 18 and 34).

It is interesting to compare the present structures to those reported by

Leber et al. (2000b) in dissociative electron attachment to CO2 clusters (see

also Section IV.C). They observed structures below the (010) and the

{(1, 000), (0200)} thresholds, with the difference that a structure was

observed for each member of the latter Fermi dyad in their spectra, whereas

in the present study a structure is observed only for the topmost members of

the Fermi polyads.
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(Sommerfeld, 2003).
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5.b. Carbon Disulfide

CS2 is isovalent with CO2. Like CO2 it does not have a permanent dipole

moment, and it possesses – like CO2 (Q¼�3.1 a.u.) – a sizeable permanent

quadrupole moment (Q (CS2)¼þ 3.3 a.u.) (Compton and Hammer, 2001).

It differs from CO2 in several important aspects, however. It is much more

polarizable than CO2 (average polarizability 59.4 a0
3 for CS2 and 19.4 a0

3

for CO2, Lide, 1995) and has a positive adiabatic electron affinity associated

with the bent valence ground electronic state of CS�2 (Gutsev et al., 1998),

see also Section IV.C.5.

Sohn et al. (1987) measured absolute differential cross-sections in CS2 at

a number of discrete energies between 0.3 and 5 eV. Allan (2001c) reported

deep narrow structures in the elastic and vibrationally inelastic cross-

sections in a crossed-beam study. Jones et al. (2002) found deep structures

in their very low-energy and very high-resolution measurements of the total

integral and backward cross-sections using a synchrotron radiation

photoelectron source. Jones et al. interpreted them in terms of giant

resonances and symmetry selection rules. The total and the differential

cross-sections (the latter multiplied by 4� to obtain an estimate of the

integral cross-section) are compared in Fig. 36. There is a striking agreement

of the shapes of the resonant structures. The 30% difference of the

magnitudes could be in part of instrumental origin, in part due to an aniso-

tropy of the differential cross-section. Figure 37 shows the crossed-beam
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results of Allan (2001c, 2003) for the elastic cross-section and the excitation

of the fundamental vibrations. It shows that near-threshold the elastic,

and to an even more dramatic degree the inelastic cross-sections, are larger

in CS2 than in CO2. In addition, the elastic and the (010) and (100) cross-

sections have deep narrow structures, also in contrast to CO2, where the

threshold peaks in the cross-sections for the fundamental vibrations

are structureless and only certain overtone cross-sections exhibit structure

(Fig. 34). The structure in the (001) cross-section is much less pronounced –

like in CO2.

The structures in the cross-sections are undoubtedly caused by vibrational

activity in the negative ion. In contrast to CO�2 , it is much harder to assign

this activity to a certain electronic state of the anion. The vertical electronic

affinity, corresponding to the lowest valence state 2
�u of CS�2 in its linear

geometry, is around 0 eV (Gutsev et al., 1998). This state splits into the
2A1 and 2B2 branches upon bending. The minimum of the lower branch

corresponds to the adiabatic electron affinity, the experimental and
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theoretical results for which range between about þ0.3 and þ0.9 eV
(Gutsev et al., 1998). This means that the vibrational levels on both

branches of the 2
�u state of CS�2 lie in the same energy range as the struc-

tures in the cross-sections and could be responsible for them, apart from the

‘diffuse’ state which has been invoked to explain the structure in CO2.

The vibrational grids in Fig. 37 indicate that the structures do not, in

contrast to CO2, correspond to vibrational thresholds in a consistent

manner. It is also impossible to assign the observed structures to vibrational

levels of the valence electronic states of CS�2 in a convincing manner. These

vibrations have been calculated at a very high degree of sophistication by

Rosmus and Hochlaf (2002). An assignment is impossible, however, because

the calculated density of CS�2 vibrational states is very high in this energy

range, two branches of the 2
�u state are present, the vibrational origins of

which are not exactly known, and because of further complications due to

spin-orbit splitting and the pronounced anharmonicity of the potentials

(Rosmus and Hochlaf, 2002).

In addition, CS2 is likely, with its larger polarizability, to exert a higher

polarization attraction to an extra electron than CO2. A diffuse electronic

state was postulated experimentally and theoretically already in the less

polarizable CO2, and it is thus very likely that CS2 also supports a diffuse

state, presumably over an even larger range of geometries of the nuclei

than CO2. Avoided crossings, similar to those found in CO2 (Fig. 35),

are likely to cause a complicated adiabatic potential surfaces of the ground

and low-lying excited states of CS�2 . This is probably the reason why the

structures in the CS2 cross-sections, unlike CO2 (Fig. 34), cannot be con-

vincingly associated with vibrational thresholds. An exception is the total

cross-section, very similar to the elastic cross-section, where the dips (not

peaks) could be associated with the thresholds for the fundamental vibrations

by Jones et al. (2002). The remaining sharp structures, at least in the

vibrationally inelastic cross-sections, lack detailed explanation at present.

5.c. Nitrous Oxide

N2O is isoelectronic with CO2. Their (average) polarizabilities (�(N2O)¼
20.4 a0

3, Lide, 1995) agree to within 5%. N2O differs from CO2 in that it has

a small permanent dipole moment (0.16 Debye, Lide, 1995) and, more

importantly, in the much lower lying threshold for dissociative electron

attachment. Cross sections above about 1 eV have been studied both

experimentally and theoretically (see for example Winstead and McKoy,

1998, and the experimental work cited therein). Allan and Skalický (2003)

recently measured the cross-sections below 1 eV, in an energy range with

which this review is concerned.
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The vibrationally inelastic cross-sections shown in Fig. 38 reveal a close

phenomenological similarity with CO2. The cross-section for the excitation

of the fundamental vibrations are structureless (or nearly so) in both N2O

and CO2, but structures appear in the excitation of overtones. The structure

in N2O is richer and deeper than in CO2. In analogy with CO2 we assign

it to vibrational Feshbach resonances supported by an electronic state of

N2O
� with a spatially diffuse electron wave function.

The low threshold to dissociative electron attachment permits the study of

the vibrational Feshbach resonances in the dissociative channel, as shown

in Fig. 39. The spectra were recorded with a resolution of about 10meV in

the incident beam, using an electron spectrometer with hemispherical

analysers and a Wien filter to separate electrons and ions (Fig. 13). For

energetic reasons, the ions can only be O�. The spectrum on the left

resembles closely the spectra of Chantry (1969), Brüning et al. (1998) and

Krishnakumar and Srivastava (1990). The detail of the spectrum on the

right reveals that what initially appeared as a continuous band consists

in reality of narrow peaks (vibrational Feshbach resonances VFR), whose

spacings and positions are related to the bending vibration of N2O. It thus

appears that the mechanism of dissociative electron attachment in N2O

is more complex than the simple picture presented in Fig. 2 in the

introduction. The VFRs act as ‘‘doorway states’’ and then predissociate into
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the dissociative continuum. This mechanism is analogous to that invoked

theoretically for CH3Cl in connection with Fig. 20. Experimentally,

it has been invoked previously in the strongly polar molecule ethylene

carbonate (Stepanović et al., 1999), although the individual VFRs

were not resolved there. Sommerfeld (2002) discussed the role of VFRs

as doorway states from the theoretical point of view in nitromethane. N2O

represents a particularly convincing case because the individual VFRs

could be resolved.

These results shed new light on the astounding observation of extremely

narrow peaks (with widths down to 2.3meV) in the laser photoelectron

attachment spectra of N2O clusters yielding both heterogeneous (N2O)qO
�

and homogeneous (N2O)q
� cluster anions (Weber et al., 1999a; Leber et al.,

2000c). These peaks were found to be located just below the onsets for

vibrational modes of the free N2O molecule (redshifts in the meV range)

and interpreted as VFRs. Similar VFRs with substantially larger redshifts

were subsequently found in attachment spectra for CO2 cluster anions

(Leber et al., 2000b; Barsotti et al., 2002a) as well as for OCS cluster

anions. Evidence for VFRs in O2 cluster anion production has been

obtained by Matejcik et al. (1996, 1999). See Section IV.C for further

discussion.

C. ELECTRON ATTACHMENT TO MOLECULAR CLUSTERS

In this section we discuss resonance phenomena in low-energy electron

attachment to molecular clusters, yielding stable or long-lived anions

detected by mass spectrometers. The reaction scheme can be characterized
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as follows ({�} denotes a set of quantum numbers for the electronic and

ro-vibrational states in question):

ðXY ÞNð�Þ þ e�ðEÞ ! ðXYÞ�N ! ðXY ÞNf�0g þ e�ðE0Þ ð42aÞ
! ðXY Þq�1Y� þ X þ ðN � qÞXY
ðq 
 NÞ ð42bÞ

! ðXY Þ�q þ ðN � qÞXY ðq 
 N1Þ ð42cÞ

! ðXY Þ�zN ð� > 100 msÞ ð42dÞ

Here path (42a) describes elastic (�¼ � 0) or inelastic scattering. Process

(42b) represents dissociative electron attachment (DA) while in the reaction

(42c) (only relevant for clusters, i.e. N� 2) anion formation proceeds

through evaporation of XY constituents. Even if no other stabilizing process

occurs, the temporary negative ion (XY)N
�* (N� 1) can become metastable

with respect to spontaneous re-emission (autodetachment) of the electron, if

the electronic energy is rapidly redistributed into internal degrees of freedom

(intra- and intermolecular vibration, rotation), thereby yielding long-lived

negative ions (XY)N
�z in path (42d), e.g. SF

z
6 from SF6 (see section IV.B) or

small (H2O)N
�z anions (N¼ 2, 6, 7) (Weber et al., 1999b).

Beams of molecular clusters are typically created in supersonic beams

(often using molecules as a minority seed gas in a rare gas atom carrier gas).

Thus a broad size distribution of molecular clusters is produced. The

correlation of the observed anion cluster size q with the size N of the neutral

cluster precursor relevant for the reactions (42) is thus not a priori known.

Positive cluster ion mass spectra, induced by electron impact at typically

70–100 eV electron energy, help to diagnose the presence of neutral clusters,

but normally do not directly reflect the neutral cluster size distribution

due to fragmentation effects which may be very strong for weakly bound

molecular clusters (Buck, 1988). Comparisons of the mass spectra for positive

and negative cluster ions due to electron impact ionization and electron

attachment, respectively, are nevertheless useful in that peculiarities of anion

formation become visible in a rather direct, albeit qualitative way. Schemes

for size selection of neutral cluster beams, based on scattering from atomic

beams, have been developed (Buck and Meyer, 1986), but they yield rather

low size-selected target densities. To our knowledge, size-selected targets of

molecular clusters have not been used in electron attachment work so far.

One of the interesting features of clusters is their role as nanoscale

prototypes for studying the effects of solvation on the characteristics of both

solvent and solvated particle, due to the interaction between a solvated

molecule or ion and its surrounding solvent environment. Solvation effects
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also play a key role in the formation of negative ions by attachment of

slow electrons to clusters. The investigation of cluster anion formation

in collisions of energy-controlled electrons with molecular clusters was

pioneered by the Oak Ridge group (Klots and Compton, 1977, 1978) and

subsequently studied by groups in Konstanz (Knapp et al., 1985, 1986a, b,

1987), Innsbruck (Märk et al., 1985, 1986; Stamatovic et al., 1985a, b; Märk,

1991; Rauth et al., 1992; Matejcik et al., 1996, 1999), and Berlin (Hashemi

et al., 1990, 1991, 1992; Illenberger, 1992, 2000; Jaffke et al., 1992;

Ingolfsson et al., 1996); typical electron energy widths ranged from 0.1 to

1 eV. It was shown that the repulsive negative ion resonances which

dominate anion formation for the monomer molecules via dissociative

attachment at energies in the range 1–10 eV are also important for cluster

anion formation. In clusters, the resonances appear shifted towards lower

energies due to the effects of solvation. For molecular clusters (XY)N
additional features may be observed which reflect the effects of the cluster

environment on the resonance energy and symmetry (Compton, 1980;

Märk, 1991; Ingolfsson et al., 1996). One aspect is the appearance of anion

resonances in clusters whose formation is symmetry-forbidden for the

isolated molecule (Märk, 1991; Illenberger, 1992). Another intriguing result

in cluster anion formation is the observation of a prominent resonance at

zero energy (indicative of an s-wave attachment process) in cases where such

a feature is absent in the monomer (Märk et al., 1985; Stamatović, 1988;

Märk, 1991). The first observations of these ‘zero energy resonances’ for

clusters of oxygen (Märk et al., 1985), carbon dioxide (Stamatovic et al.,

1985a, b; Knapp et al., 1985, 1986a) and water (Knapp et al., 1986b, 1987)

were made by groups at Innsbruck and Konstanz at too broad energy

widths (0.5–1.0 eV), as to elucidate possible structure (e.g. due to vibrational

effects) and to thoroughly understand the origin of these zero energy peaks.

Anion formation in collisions of molecular clusters with near-zero energy

electrons can also be studied by Rydberg electron transfer (RET), as

initiated by Kondow et al. (Kondow 1987), who used electron impact to

produce Kr**(n) Rydberg atoms with a band of principal quantum numbers

n around 25. RET to molecular clusters with state-selected Rydberg

atoms was pioneered by groups at Kaiserslautern (Kraft et al., 1989) and

Villetaneuse (Desfrançois et al., 1989). Interesting structure was observed

in the size dependence of several RET-induced anion cluster mass spectra

such as those for (CO2)q
� (Kondow, 1987; Kraft et al., 1989) and (N2O)qO

�

formation (Kraft et al., 1990), but the origin remained unclear. Rather sharp

peaks in the n-dependence of the RET yield for anion formation involving

strongly dipolar molecules and clusters were observed by the Villetaneuse

group (Desfrançois et al., 1994a, b, c) and interpreted as being due to a

rather n-selective curve-crossing mechanism. In combination with studies of
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field detachment, valuable information on binding energies of electrons,

weakly bound to molecules and clusters by long-range forces, was derived

(Desfrançois et al., 1996, Compton and Hammer, 2001).

In the following subsections we shall discuss free electron attachment to

homogeneous molecular clusters in the range of the ‘zero energy resonance’,

carried out with sufficiently high resolution to resolve vibrational structure.

To put the results for clusters into a proper perspective we include brief

discussions of the characteristics for electron scattering from the respective

monomer molecule. Although not covered in detail here, we mention that

in mixed clusters (i.e. either molecule–atom or molecule–molecule clusters)

interesting features in the energy dependence for anion formation have been

observed which occur close to thresholds for sufficiently strong inelastic

processes in one of the constituents (Illenberger, 1992; Rauth et al., 1992).

The underlying process is addressed as ‘autoscavenging’ (Rauth et al., 1992):

as a result of the inelastic event the scattered electron propagates as a

near-zero energy electron which may be efficiently captured within the

cluster if the other constituent has a prominent zero energy resonance.

Autoscavenging can also occur in homogeneous clusters if the constituents

exhibit both a prominent zero energy resonance and a strong inelastic

channel at higher energies. It was discovered by Klots and Compton (1980)

for the case of methyl iodide clusters and addressed as ‘self-scavenging’.

Both autoscavenging and self-scavenging should not be confused with true

resonances (such as vibrational Feshbach resonances) of the electron-cluster

system.

C.1. Oxygen Clusters

Electron scattering from oxygen molecules at energies below 1 eV is strongly

influenced by the well-known O�2 (
2
�g) resonance (Schulz, 1973b; Allan,

1995). Addition of a �g electron to the oxygen molecule yields a stable

negative ion with an adiabatic binding energy of 0.451(7) eV (Travers et al.,

1989) and an equilibrium distance about 12% longer than that of neutral

O2. The four lowest vibrational levels v 0¼ 0–3 of the O�2 (
2
�g, v

0) anion are

truly bound with a vibrational quantum of �G01¼ 134.4(8) meV (Bailey

et al., 1996). The center-of-gravity of the fine-structure split v 0¼ 4 anion

state is located 0.09 eV above the neutral ground state of O2(X, v00¼ 0)

(Land and Raith, 1974), and the states with v 0� 4 are thus subject to

autodetachment with decay widths Gv 0(E), rising strongly (/E5/2) with

electron energy E, as characteristic for a d�g-wave shape resonance for the

electron-O2 system; for v 0¼ 6, the width is about 1meV (Field et al., 1988;

Allan, 1995; Higgins et al., 1995). Correspondingly, the formation of
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long-lived oxygen anions in electron collisions at sub-eV energies requires

rapid collisional stabilization of the temporary O�2 anion, as possible in

high- pressure media (Bloch and Bradbury, 1935; Christophorou, 1978;

Hatano and Shimamori, 1981) or for oxygen bound in aggregates

(homogeneous or heterogeneous clusters) (Märk, 1991; Illenberger, 1992;

Hatano, 1997). The built-in stabilization capability of clusters was, e.g.,

demonstrated in a recent RET study involving oxygen monomers and

dimers (Kreil et al., 1998): while O�2 formation from O2 molecules is very

inefficient (and only possible through efficient postattachment interactions

with the Rydberg ion core) (Walter et al., 1986; Harth et al., 1989) the rate

coefficient for O�2 formation from oxygen dimers was found to exceed that

involving monomers by four orders of magnitude (Kreil et al., 1998).

In free electron attachment to oxygen clusters at low energies, only

homogeneous (O2)q
� anions (q� 1) can be formed. In the yield for anions

with q¼ 1, 2, 10, measured with about 0.5 eV electron energy width, Märk

et al. (1985) found a prominent peak near zero eV; for large q, the width of

this peak was narrower than for q¼ 1 and 2. Later, Illenberger and

coworkers studied (O2)q
� (q¼ 1–4) anion formation from oxygen clusters

with an energy-selected electron beam of about 0.2 eV width (Hashemi et al.,

1991, 1992; Jaffke et al., 1992); they detected the maximum respective anion

yield at energies clearly above zero energy. More recently, the Innsbruck

group (Matejcik et al., 1996, 1999) had a closer look at anion formation

from oxygen clusters, using an energy-selected, magnetically–collimated

electron beam with a stated energy width around 0.03 eV. They reported the

yield for small cluster anions (O2)q
� (q¼ 1, 2, 3) over the energy range 0–

1 eV. Apart from a resolution-limited peak near-zero energy they detected

peak structure starting at about 80meV with spacings around 110meV and

superimposed on the general drop of the attachment yield towards higher

energies. This structure was ascribed to vibrational levels of the oxygen

anion solvated in oxygen molecules (Matejcik et al., 1999).

In contrast to the findings of the Innsbruck group for (O2)q
� formation

(q¼ 1–3), no clear peak structure is observed in the attachment spectra for

(O2)q
� formation with q¼ 5–14 (Fig. 40), measured by the Kaiserslautern

group with the LPA method at energy widths around 2meV (Barsotti et al.,

2002a). In view of the much improved resolution of the LPA experiment, at

least the peak structure, located near 80meV in the Innsbruck data, should

be present in the LPA data. Reasons for the different observations

may possibly be found in the scenario, by which (O2)q
� anions (q¼ 1–3)

are formed. According to Matejcik et al. (1999) the attachment process

proceeds in such a way that the incoming electron is primarily trapped at

one oxygen molecule in neutral clusters with sizes dominated by the range

N¼ 10–20. Subsequent substantial evaporation then yields the observed
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anions according to the following reaction scheme:

e�ðEÞ þ ðO2ÞN ! ðO2Þ�N ! ðO2Þ�q þ ðN � qÞO2 ð43Þ

For this reaction to be exothermic at zero electron energy, the total binding

energy of the (O2)q
� ion (composed of the adiabatic electron affinity of O2

plus the bond energies of the additional (q� 1) O2 molecules) has to exceed

the total binding energy EN of the neutral precursor cluster of size N. In

particular, O�2 formation requires that EN be smaller than EAad(O2)¼
0.451(7) eV. According to calculations by Matejcik et al. (1999), scaled to

reproduce the cohesive energy of bulk oxygen, the total binding energy

of neutral (O2)N clusters becomes larger than EAad(O2) for N� 14.

Correspondingly, process (43) for q¼ 1 is energetically not possible when

zero energy electrons attach to very cold clusters with N� 14, but may

proceed when the electrons possess a sufficient amount of kinetic energy E

(for N¼ 20, the threshold energy for O�2 formation amounts to about

FIG. 40. Low-energy electron attachment spectra for formation of oxygen cluster anions

(O2)q
�, measured with about 2meV resolution. The numbers above the arrows near-zero energy

give the cluster anion yields for RET at n� 260 (from Barsotti et al., 2002a).
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E¼ 0.3 eV). In contrast, formation of (O2)q
� anions with q� 2 is exothermic

for all neutral sizes up to about N¼ 25 even at zero electron energy. If

a size range of neutral clusters is active as precursor in the cluster anion

formation of a particular anion size q according to (43), the observation of

vibrational structure implies a sufficiently small inhomogeneous broadening

of the vibrational resonance. Model calculations of the distribution function

of the adiabatic electron affinity of clusters with sizes N¼ 10, 15 and 20

(Fig. 8 in Matejcik et al., 1999) for the various cluster structures and

positions of the solvated O�2 in the cluster showed the following behavior at

low cluster temperatures TC: for sufficiently cold (i.e. solid) clusters

(TC
 20K), the width (FWHM) of the distribution function for a

particular N amounted to about 0.07 eV. Moreover, the peak position of

the distribution remained nearly the same (close to 0.8 eV) for N¼ 15 and 20

while it shifted to 0.7 eV for N¼ 10. For (partially) molten clusters, as shown

for TC¼ 40K (Matejcik et al., 1999), the distribution was found to become

wider by about a factor of 2 and thus too broad as to resolve vibrational

structure even for a single precursor size. These calculations thus suggest

that the absence of vibrational structure in our attachment spectra may be

due to the fact that the oxygen clusters in our experiment were not

sufficiently cold. From simulations of the peak structure, assuming solid

oxygen clusters with a certain size range, Matejcik et al. concluded that

neutral clusters around N¼ 15 (ranging from 13 to 20) are responsible

for their attachment spectra with q¼ 1, 2, 3. This size selectivity was not

explained. The authors also did not comment why the same range should be

responsible for the formation of O�2 , O
�
4 , and O�6 ions (note that the peak

structures for cluster anions with q¼ 1, 2, and 3 was found to be located –

within their uncertainties – at the same energies). For O�2 formation,

one would actually expect (in view of the energetic restriction that N may

not be larger than 13) that the average size of the neutral clusters involved

in anion formation is significantly smaller than for dimer and trimer

anion formation with the result that the peaks in the O�2 attachment

spectrum appear at higher energies than those in the dimer and trimer anion

spectra.

In this connection it is appropriate to recall that the Berlin group found

a clear difference in the peak location of the yield for (O2)q
� formation

between q¼ 1 (0.7 eV) and q� 2 (0.4 eV) (Hashemi et al., 1992). This

difference is, on the one hand, compatible with a scenario that, on average,

O�2 formation involves neutral clusters of smaller size than those responsible

for (O2)q
� (q� 2) formation. In the light of the Innsbruck observations

(yielding the maximum yield of small oxygen cluster anions at 0 eV) the

Berlin results may be possibly understood if – as proposed by Matejcik et al.

(1999) – the neutral precursor clusters had a substantially smaller size in the
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Berlin experiment. It is desirable for a better understanding of these

different observations to carry out additional high resolution experiments

which allow to vary the neutral cluster size distribution and the cluster

temperature.

C.2. Nitrous Oxide Clusters

Threshold electron attachment to N2O clusters via Rydberg electron

transfer (RET) close to zero energy (Rydberg binding energy 0.2meV)

produces heterogeneous (N2O)qO
� and homogeneous (N2O)p

� cluster anions
in a highly size selective way (Kraft et al., 1990). The dominant anion species

were observed to be (N2O)qO
� with q¼ 5, 6 and (N2O)p

� with p¼ 7, 8, the

latter being generally less intense than the former. These cluster anion

intensities suggest resonant capture of zero energy electrons for neutral

cluster size N� 8 with subsequent stabilization by intermolecular vibra-

tional redistribution, by evaporation (N2O emission) or by dissociation

(release of N2 fragments).

In Fig. 41 we present the energy dependent yield for formation of hetero-

geneous (N2O)qO
� ions (q¼ 4–9, 11, 13) and in Fig. 42 that of homogeneous

(N2O)p
� ions (p¼ 8, 9, 11, 13), as observed over the energy range 1.5–

178meV by Leber et al. (2000c). For all sizes q and p a sharp increase

towards 0 eV is observed below E� 15meV, indicative of an s-wave

attachment process. In all these spectra, astoundingly narrow peaks are

observed at energies ER close to, but not identical with the excitation

energies E(i) for the bending (2¼ 1, 2) and the N–O stretching (1¼ 1)

vibrational mode of free N2O molecules. The widths (FWHM) of these

peaks (around 2.5meV for the bending fundamental, around 4–5meV for

the bending overtone and the N–O stretching mode (i.e. substantially

broader than the experimental resolution of 1.2meV) are essentially

independent of cluster ion size. They are the narrowest resonances detected

so far in electron scattering for any cluster or polyatomic molecule. They

have been interpreted as vibrational Feshbach resonances (VFRs) (Weber

et al., 1999a, Leber et al., 2000c), i.e. temporary anion states of the type

[(N2O)N�1(N2O(i>0)]�. The energy location and the long lifetime of

these resonances (on the order of 2� 10�13 s for the 2¼ 1 VFRs, if

inhomogeneous broadening due to contributions from different neutral

precursors is neglected) are compatible with the idea of a weakly bound

diffuse excess electron attached to an essentially unperturbed neutral

(N2O)N�1N2O(i>0) cluster by long range forces. The widths of the

resonances increase with electron energy, probably due to rising phase space

for the most probable decay mechanism of the resonances, namely

autodetachment of the captured electron. The peak positions exhibit small
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redshifts, defined as the quantity ��E(i;N)C�ER, which increase with

cluster ion size; here E(i;N)C denotes the intramolecular excitation energy

of the i mode in the neutral cluster with size N which acts as the precursor

for the observed anion of size q or p. It has to be emphasized that

attachment processes involving slow secondary electrons from inelastic

collisions with N2O monomers are ruled out for reasons of low target

density and the inability to produce the observed cluster size dependent

redshift.

The VFRs evolve to the observed homogeneous and heterogeneous

cluster anions in different ways. Energy redistribution into soft inter-

molecular modes may lead to long-lived homogeneous ions with size p¼N.

Homogeneous cluster anions with p<N are produced upon evaporation of

at least one N2O molecule. Formation of heterogeneous cluster anions

involves removal of one N2 fragment, possibly accompanied by release of

FIG. 41. Low-energy electron attachment spectra for formation of heterogeneous (N2O)qO
�

cluster anions from (N2O)N clusters (q<N). The full vertical lines denote the energy positions

of the 2¼ 1 and the 1¼ 1 intramolecular vibrational excitation in N2O (from Leber et al.,

2000c).
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N2O units. The anion intensities in the threshold mass spectrum and

correlations in the redshifts of the heterogeneous anions �het(q) and of the

homogeneous anions �hom(p) suggest that neutral precursor clusters with

size N on average are correlated with homogeneous anions of size p (
N)

and heterogeneous cluster anions (N2O)qO
� with size q¼ p-(2 or 3)

(Leber et al., 2000c).

In view of the existence of the vibrational Feshbach resonances

[(N2O)N�1(N2O(i>0)]�, it is natural to infer the presence of truly bound,

nonautodetaching anion states [(N2O)N�1(N2O(i¼ 0)]� without intra-

molecular vibrational excitation (see the model calculations below). Such

bound states are not accessible in free electron collisions, but can be

formed by Rydberg electron transfer (RET) as shown, e.g., by Desfrançois

et al. (1996) for dipole bound anions. The strong rise in the free electron

attachment yield towards zero energy is attributed to the influence of these

weakly bound (N2O)N
� capture states without intramolecular excitation

(but possibly with some intermolecular excitation). The rather sharp drop

in the RET-induced anion intensities, as observed at threshold (nffi 250) for

q>6 and p>9, appears to be mainly due to the increasing binding energies

of the [(N2O)N�1(N2O(i¼ 0)]� states with rising N which correlate with a

shift of the maximum RET rate coefficient towards lower principal quantum

numbers n (Desfrançois et al., 1996), as in fact observed experimentally

(Kraft et al., 1990).

FIG. 42. Low-energy electron attachment spectra for formation of homogeneous (N2O)p
�

cluster anions from (N2O)N clusters ( p
N). The full vertical lines denote the energy positions

of the 2¼ 1 and the 1¼ 1 intramolecular vibrational excitation in N2O (from Leber et al.,

2000c).
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In the discussion above, it has been assumed for simplicity that a particular

observed VFR is associated with a single size N only. This assumption,

however, is uncertain in view of the fact that the resonance widths, especially

for the two higher lying VFRs, are larger than or at least similar to the

redshift. Even if the observed VFRs correspond to a mixture of neigh-

bouring sizes N with a mean value hNi and if N is not identical to p, it is still

true, however, that the relation q¼ p-(2 or 3) holds.

In order to provide a qualitative understanding of the small VFR

redshifts, Leber et al. (2000c) performed simple model calculations

for the binding energy EB¼�� of the captured electron in the VFR

state [(N2O)N�1N2O(i>0)]� relative to the energy EN of the neutral

[(N2O)N�1N2O(i>0)] cluster which carries the same amount of intra-

molecular vibrational energy (ER¼ENþEB). The authors ignored geome-

trical arrangement effects of the cluster constituents as well as the

intramolecular vibration and assumed that the binding energy EB is simply

due to the combined effects of the long-range attraction between the

electron and the cluster and the short range interaction U0 at distances

smaller than the cluster radius RN. Leber et al. (2000c) took into account the

polarization attraction Vpol¼�Ne2�(N2O)/(2r4) (neglecting, in the average

over the cluster, the effects associated with the weak dipole moment and

the quadrupole moment of the N2O molecules) and cut it off at the cluster

radius; at electron-cluster distances smaller than RN¼R0(1.5N)1/3 (R0¼
effective radius of a monomer) a constant potential energy U0 was used and

treated as a parameter. In Fig. 43 we sketch the potential model

for U0¼þ 0.2 eV and N¼ 11 and the probability density for the wave

function of the corresponding weakly bound electron (Leber et al., 2000c).

As expected in view of the weak binding energies, the radial extension of

the electron in these resonance states is quite large as illustrated in Fig. 43

for the VFR state with size N¼ 11.

Figure 44 shows the results of these calculations for the electron binding

energies to clusters with N¼ 4–15, using several constant, repulsive values

for the short range potential U0, the isotropic monomer polarizability

�(N2O)¼ 20.4 a0
3 [25] and R0¼ 3 a0 (a0¼Bohr radius). For comparison with

the calculated binding energies (curves), the experimentally derived binding

energies EB,het(N, q)¼��het(qþ 2) (full symbols) and EB,hom(N, p)¼
��hom(p) (open symbols) (i.e. we assume N¼ p¼ qþ 2) are included in

Fig. 44. For the intramolecular excitation energies E(i;N)C in N2O clusters

the values, reported by Gauthier (1988) for 2¼ 2 and 1¼ 1, and for 2¼ 1

the monomer value were adopted. One observes reasonable agreement

between the thus calculated and the observed resonance positions for

U0¼þ 0.2 eV. The use of more elaborate potentials U0 (Stampfli, 1995) does

not provide deeper insight at the present level of accuracy.
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FIG. 43. Probability density (chain curve) for the radial wave function of the electron, weakly

bound to the (N2O)11 cluster and the model potential (full curve) used to calculate this wave

function (Leber et al., 2000c).

−

FIG. 44. Comparison of calculated and experimentally determined binding energies for

weakly bound (N2O)N
� anions, for details see text (Leber et al., 2000c).
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C.3. Carbon Dioxide Clusters

Some properties of the CO2 molecule have been discused in Section IV.B5.

According to molecular dynamics simulations (Etters et al., 1981; Tsukada

et al., 1987; Torchet et al., 1996; Maillet et al., 1998), neutral carbon dioxide

clusters possess icosahedral structure (at least for sizes up to about N¼ 20)

with predicted binding energies around 0.14 eV per molecule for N¼ 13

(Maillet et al., 1998); at sizes above about N¼ 30, a transition to bulk

cubic structure has been predicted, and this bulk structure has been

experimentally verified for N above about 100 (Torchet et al., 1996). Some

information on cluster anion structures is also available. In agreement

with photoelectron spectroscopic observations (Tsukuda et al., 1997a),

ab initio calculations of the equilibrium structures and stabilities for

different isomers of small (CO2)q
� cluster anions (q
 6) find (Saeki et al.,

2001) that the dimer C2O
�
4 acts as the core in clusters with q¼ 2� 5. They

predict evaporation energies for dissociation of one CO2 unit from various

isomers of (CO2)q
� anions in the range 0.1–0.4 eV, rising substantially

(by about 0.15 eV) when going from q¼ 5 to q¼ 4. Tsukada et al. (1987)

developed a theory for the attachment of slow electrons to van der Waals

clusters and applied it to CO2 clusters. They predicted the existence of

FIG. 45. Cluster ion mass spectra for CO2 clusters (after Barsotti et al., 2002a). Open

triangles: mass spectrum of positive ions resulting from 85 eV electron impact ionization; full

circles: mass spectrum of anions due to threshold electron attachment involving K**(nd,

n� 260) Rydberg atoms.
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a threshold size for attachment and a sharp decrease of the attachment

cross-section with rising electron energy.

Previous experimental work of cluster anion formation in energy-

controlled electron collisions with carbon dioxide clusters includes

low-resolution beam studies over extended energy ranges (Compton, 1980,

Stamatovic et al., 1985a, b; Knapp et al., 1985, 1986a), investigations by

Rydberg electron transfer (RET) (Kondow, 1987; Kraft et al., 1989, 1991;

Misaizu et al., 1991) and the recent LPA studies (energy width about 1meV)

(Leber et al., 2000b; Barsotti et al., 2002a). Anion mass spectra obtained by

RET revealed an intriguing anion cluster size dependence. In Fig. 45, the

relative intensities for (CO2)q
þ cluster ions due to 85 eV electron impact

(open triangles) are compared with the relative intensities of the (CO2)q
�

cluster anions (full circles), obtained in RET with a narrow n band of

K**(nd) Rydberg atoms, centered around n¼ 260 (electron binding energy

0.2meV). Note that, in contrast to the anion mass spectra shown in Fig. 2 of

Barsotti et al. (2002a), the anion yield in Fig. 45 was obtained with the ion

optics optimized for each cluster size. (CO2)q
þ ions (q� 1) dominate the

positive ion mass spectrum and exhibit a nearly exponential intensity

decrease with rising cluster size q. As expected on energetic grounds, only

homogeneous ions (CO2)q
� (q>3) are observed in the anion mass spectra

due to electron attachment to carbon dioxide clusters, both in Rydberg

electron transfer (RET) involving K**(nd) atoms (n¼ 14–260) and in free

electron attachment (E¼ 1–200meV). Compared with the positive ion

spectrum, the RET-induced anion cluster mass spectrum is completely

different: the threshold anion spectrum exhibits local maxima at q¼ 5 and

10 as well as a broad maximum around q¼ 22, and deep, local minima

at q¼ 7 and 13. Anion cluster mass spectra at lower principal quantum

numbers (n
 30) (Kondow, 1987; Kraft et al., 1989; Leber, 2000b) differ

significantly from the threshold spectrum in Fig. 45 and indicate a

substantial dependence on electron energy over a narrow range, as will be

understood through the observations in the free electron attachment

spectra.

In Fig. 46 we present the energy dependent yield for (CO2)q
� cluster anions

for selected sizes q from the covered range q¼ 4–32 over the energy range

from 1meV up to 200meV (Barsotti et al., 2000a). For small cluster sizes,

two clearly separated series of resonances are observed which exhibit

redshifts increasing by about 12meV per monomer unit. The key spectrum

observed for q¼ 5 (in which the peaks exhibit the narrowest widths) shows

a distinct zero energy peak (indicative of s-wave attachment), a rather

sharp resonance peaking at about 52meV and a double-peak structure with

a center-of-gravity around 134meV. These three peaks are attributed to

vibrationally excited temporary cluster anion states (vibrational Feshbach
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resonances VFRs) of the type [(CO2)N�1 CO2(v1v2v3)]
� with (v1v2v3)¼ (010)

and (020)/(100), respectively, which evolve into the observed long-lived

(CO2)
�
q ¼5 anions either by redistribution of the vibrational energy among

soft modes of the cluster with formation of a metastable cluster ion with

q¼N or by evaporation of a small number of CO2 units (most likely

N� q¼ 1, see below). As expected for VFRs, their energies are redshifted

from those of the neutral [(CO2)N�1CO2(v1v2v3)] precursor. In contrast to

the sharp VFRs observed for N2O clusters which exhibit small redshifts

in the meV range (see above), the redshift is substantially larger for CO2

clusters, indicating a stronger interaction of the resonantly–captured

electron with CO2 clusters than with N2O clusters. In line with this observa-

tion the resonance widths are larger for CO2 clusters than for N2O clusters.

For any particular (CO2)q
� cluster ion, the width of the observed resonances

FIG. 46. Low-energy electron attachment spectra for formation of (CO2)q
� cluster anions

(q¼ 4 – 32) from (CO2)N clusters (q
N). For q¼ 5, the energy positions of the (v1v2v3)¼ (010)

and the Fermi-coupled (020)/(100) vibrational modes of the CO2 monomer are indicated by

vertical dashed lines. The incremental redshift of the vibrational Feshbach resonances amounts

to about 12meV per monomer unit. For q>7, the 3� (030)/(110) and, for q>10, the 4�
(040)/(120)/(200) vibrational modes are shifted into the electron energy range covered by the

LPA experiment. For q>24, a doubling of the Feshbach resonance peak structure is observed

(3/3 0 and 4/4 0) (after Barsotti et al., 2002a).
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contains contributions due to the intrinsic resonance widths and resonance

positions of all involved neutral precursors which participate in VFR

formation, i.e. the observed resonances are in general inhomogeneously

broadened. In view of the substantial redshift of about 12meV per added

CO2 unit and the comparatively narrow intrinsic width of the VFRs, the

width in conjunction with the redshift of the VFR allows rather direct

conclusions to be drawn on the size range of the involved neutral precursors.

For q¼ 5 the resonances exhibit the smallest widths, and it is plausible

that the attachment spectrum is predominantly associated with a single

neutral precursor size (with the possibility of inhomogeneous broadening

due to contributions from different conformations for that cluster size).

At this narrow peak width, the Fermi-coupled pair (020)/(100) is quite

well resolved. Interestingly, we find the two peaks at similar intensities

in contrast to the situation for vibrationally inelastic scattering of

low energy electrons from CO2 molecules where, close to the threshold

for the pair (020)/(100), the higher energy component is excited almost

exclusively (Allan, 2001a). This finding has been associated with

the influence of a virtual state which has been theoretically predicted

for low-energy electron scattering from carbon dioxide (Morrison, 1982;

FIG. 47. Comparison of calculated and measured binding energies for VFRs in CO2 clusters,

assuming N¼ q (a) and N¼ qþ 1 (b), for details see text (after Barsotti et al., 2002a).
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Estrada and Domcke, 1985; Morgan, 1998) and recently also been confirmed

by total scattering studies at very low energies (Field et al., 2001b).

For q¼ 4 and q� 6, the (010) resonances appear to be significantly

broader than for q¼ 5; this may indicate contributions from two neigh-

bouring neutral precursor sizes, but could also be caused (at least in part) by

the influence of different conformations for a particular N. For larger sizes

(q>7), additional series of peaks, attributed to resonances associated with

the Fermi-coupled pair (030)/(110) and the triplet (040)/(120)/(200), are

successively shifted into the studied energy range. The evolution of these

series is clearly seen in the attachment spectra for the clusters anions with

sizes q¼ 14–32. The trends are similar to those observed at smaller anion

size, but the redshifts per added molecular unit decrease somewhat at higher

q. For cluster sizes q above 24 an interesting doubling of the VFR peak

structure is observed in both the (030)/(110)� 3 and (040)/(120)/(200)� 4

series; the 3 and 4 series evolve ‘normally’ towards lower energies with

intensities decreasing towards higher q while the ‘new’ series 3 0 and 4 0 are
observed at 30–40meV higher energies relative to the 3 and 4 series,

respectively, with intensities rising towards larger N. We tentatively attribute

these two series to arise from the coexisting icosahedral (series 3, 4) and bulk

cubic (series 3 0, 4 0) cluster structures, with the former losing and the latter

gaining importance towards higher N. According to molecular dynamics

simulations for carbon dioxide clusters, the icosahedral (low N) to bulk

cubic (high N) transition is predicted to occur for sizes around N¼ 30

(Torchet et al., 1996).

The attachment spectra shown in Fig. 46 offer the following explanation

for the strongly q-dependent ion intensities in the mass spectrum resulting

from threshold electron attachment (Fig. 45) with minima at q¼ 7 and 13,

a clear maximum at q¼ 10 and another broad maximum for q around 21.

Enhanced cluster ion intensities are found for q-values for which a

substantial overlap of a VFR with zero electron energy exists. For q¼ 9,

10, the (010) resonance has moved close to zero energy, for q¼ 16–22, the

(020)/(100) resonance pair has a more or less substantial overlap with zero

energy. The intensity rise in the threshold attachment mass spectrum from

q¼ 6 to q¼ 5 may be attributed to an influence of (CO2)N
� capture states

without intramolecular excitation (but possibly some intermolecular

excitation). One would expect such an influence to be even stronger for

(CO2)4
� formation, but the autodetachment rates of the temporary (CO2)N

�*

negative ions are expected to rise towards low N and thus their survival

probability towards stabilization and detection as long-lived anions

should decrease. For further discussions including variations of the cluster

anion mass spectrum with increasing electron energy see Barsotti et al.

(2002a).
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Application of the simple spherical model for the electron binding

energies EB, sketched in Section C.2, reproduces the redshifts when – in

contrast to the situation for N2O clusters – attractive short range potentials

are used (Leber et al., 2000b; Barsotti et al., 2002a). Figure 47 shows

calculated electron binding energies to clusters with N¼ 4� 22 (dashed

curves), as obtained with realistic choices of the short range potential U0 (for

further results see Leber et al. (2000b)). For comparison, the experimentally

derived binding energies EB,exp for the (010), (020)/(100), (030)/(110) and

(040)/(120)/(200) resonance series, as calculated from the center-of-gravity

resonance positions ER through EB,exp¼ER�Eq, are included, using two

different assumptions: (a) N¼ q and (b) N¼ qþ 1. In view of the fact

that the intramolecular excitation energies EN in CO2 clusters deviate from

those in the CO2 monomer E1 (see IV.B.5.a) by no more than about 	1meV

(see references in Leber et al. (2000b)) we approximate EN by E1 for all sizes

N of interest.

Reasonable agreement between the calculated and the observed average

resonance positions is observed for the choice U0¼� 0.5 eV at low N

and U0¼� 0.6 eV at higher N. With the weakly N-dependent choice

(Stampfli, 1995)

U0ðNÞ ¼ aN�1=3 þ b; ð44Þ

using a¼þ 0.7 (0.8) eV for N¼ q (N¼ qþ 1) and b¼� 0.866 eV in both

cases, the full curves (labeled var. in (a) and (b)) are obtained, showing

good agreement with the experimentally found binding energies over a

broad range of N. The combined information contained in the q-dependent

redshifts, in the respective resonance widths, in the calculated absolute

values of the electron binding energies and in the slopes of the calculated

EB(N) and of the experimental ER(q) curves allows the conclusion that

the main contributions to cluster anion formation stem from neutral clusters

with sizes N¼ q and/or N¼ qþ 1. Note that in view of the rather narrow

width of the observed VFRs a particular cluster anion size q cannot be

associated with a broad range of precursor sizes N in view of the differential

redshift of about 12meV per added CO2 unit.

The substantially larger binding energies observed for the VFRs in CO2

clusters as compared to those for the VFRs in N2O clusters (see Section C.2)

are due to the fact that the short-range interaction U0 for CO2 is attractive

(note that the polarizabilities of N2O and CO2 agree to within 5%). This

conclusion is confirmed by analysis of experimental results and theoretical

calculations of low-energy electron scattering by CO2 and N2O molecules.

Cross-sections for low-energy electron scattering by CO2 are rapidly
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increasing towards lower energies (Morrison et al., 1982; Field et al., 2001b)

approaching 200� 10�20m2 which corresponds to a large negative scatter-

ing length whose value lies between �7.2 a0 and �6.3 a0 (Fabrikant, 1984;

Mazevet et al., 2001; Field et al., 2001b). On the other hand, experimental

(Szmytkowski et al., 1984) and theoretical (Sarpal et al., 1996; Winstead

and McKoy, 1998) data on electron scattering by the N2O molecule show

that the low-energy cross-section in this case is much smaller and does not

exceed 8� 10�20m2 below E¼ 1 eV. At ultralow energies, the cross-section

should increase due to the (albeit very small, m¼ 0.16D) dipole moment;

but this effect should not be important for clusters. Note that the

quadrupole moment of the molecule, although relevant, does not affect

the energy dependence of the cross-section at low energies (Fabrikant, 1984;

Leber et al., 2000b). For the clusters of interest here, the effects of the

molecular dipole and quadrupole moments should be small as a result of

cancellation due to mixed orientations. Therefore the observed redshifts

of the VFRs can be reproduced by modelling the e�–CO2 and e�–N2O

interaction potentials as a well or a repulsive barrier with a polarization tail.

In the more general expression (44) for the short-range contribution to the

electron interaction with clusters the parameter b is the excess energy of

the electron in the infinite medium and the factor a is a constant which

depends on the dielectric properties of the cluster. Our estimate of b which

employs the effective potentials of monomers and the concept of the

Wigner-Seitz cell (Stampfli, 1995) shows that b for bulk N2O exceeds the

value of b for bulk CO2 by 1 eV which agrees well with our empirical values

for b of �0.87 eV for CO2 and about þ0.2 eV for N2O (Leber et al., 2000c).

The described model is of course very simple. For a detailed understanding

of these fascinating vibrational resonances large-scale ab initio calculations

are needed.

C.4. Carbonyl Sulfide Clusters

Carbonyl sulfide OCS in its ground electronic state is a linear molecule with

an electric dipole moment of m¼ 0.715D (Gutsev et al., 1998). The lowest

vibrationally excited states, labelled (v1v2v3), include the bending mode

(010) (64.5meV), the asymmetric stretch mode (001) (106.5meV) and

the bending overtone (020) (129.0meV). The ground state of the anion

OCS� is bent with an angle of 136�. The adiabatic electron affinity (AEA) of

OCS is not yet well known. Gutsev et al. (1998) report a calculated value

of AEA(OCS)¼� 0.22 eV (CCSD(T) method), while Surber et al. (2002)

conclude that AEA(OCS) is close to zero. Values of this magnitude

are supported by the fact that the properties of OCS are intermediate

between those of CO2 and CS2 which have adiabatic electron affinities
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of AEA(CO2)�� 0.66 eV (Gutsev et al., 1998) and AEA(CS2)¼ 0.9� 1.0 eV

(Oakes and Ellison, 1986). The theoretical results for AEA(OCS), however,

differ from the experimental value of AEA(OCS)� 0.4 eV (Compton et al.,

1975; Chen and Wentworth, 1983).

The dissociation energy of OCS towards SþCO amounts to D0(OC�S)¼
3.13(4) eV (Ziesel et al., 1975b) and the electron affinity of S to EA(S)¼
2.0772 eV (Andersen et al., 1999). S� formation in dissociative attachment

to OCS is thus accessible at energies above about 1.05 eV in agreement with

experimental findings (Ziesel et al., 1975b; Iga et al., 1996). which show

a prominent peak for S� formation, centered at about 1.35 eV (cross-section

of about 2.7� 10�21m2). This peak is connected with a resonance peak

found at about 1.15 eV in elastic scattering from OCS (Karwacz et al.,

2001a).

Rather little is known up to now on the formation of carbonyl sulfide

cluster anions and on their geometrical structure. Kondow and Mitsuke

(1985) investigated formation of negative cluster ions of OCS produced by

electron transfer from a range of Rydberg rare gas atoms around n¼ 25.

Their mass spectrum is dominated by (OCS)q
� ions with a maximum at

q¼ 10. To our knowledge no free electron attachment spectra for OCS

clusters have been reported prior to theLPAworkdiscussed below.Regarding

cluster anion spectroscopy and structure, Sanov et al. (1998) studied the

photochemistry of (OCS)n
� cluster ions following excitation by 395 nm and

790 nm photons. They also presented possible equilibrium geometries of

(OCS)2
� and the relative potential energy curves for the neutral dimer

(OCS)2 and the anion (OCS)2
�.

Using the laser photoelectron attachment method, Barsotti et al. (2003b)

have recently studied the formation of cluster anions in RET and in low-

energy free electron attachment (E¼ 1–200meV) to molecular clusters of

carbonyl sulfide OCS at energy widths of 1–2meV. In Fig. 48 the intensities,

for positive (OCS)þq ions (due to 85 eV electron impact) and normalized to

the anion signal at q=2 and for negative (OCS)q ions (resulting from RET

at high n� 260) are compared. The anion mass spectrum shows a clear peak

at the dimer, but little structure otherwise.

The energy dependences for (OCS)q
� anion formation by free electron

attachment, shown in Fig. 49 for q¼ 1� 9, are characterized by a strong rise

towards zero energy (attributed to s-wave attachment) as well as by

vibrational Feshbach resonances (VFR) whose importance decreases

towards larger cluster sizes q. The electron attachment behavior of OCS

clusters is thus intermediate between that of CO2 clusters (which is

dominated by VFRs) and that of CS2 (which exhibits a strong zero-energy

peak, but no VFRs, see Section C5). Formation of the (OCS)2
� dimer anion

is especially enhanced; its attachment spectrum exhibits a sharp vibrational
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FIG. 48. Intensities of homogenous positive/negative ions (normalized at q=2) due to 85 eV

electron impact/threshold electron attachment involving OCS clusters (Barsotti et al., 2003b).

FIG. 49. Low-energy electron attachment spectra for formation of (OCS)q
� anions from

(OCS)N clusters (q
N). The full vertical lines denote the energy positions of the listed

vibrational modes in the OCS monomer (from Barsotti et al., 2003b).
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Feshbach resonance at 128meV, just below the (020) onset for excitation of

the (123) normal modes in the OCS molecule, a broad structure centered

at about 117meV, a weak structure at about 103meV (just below the v3¼ 1

onset) and a peak at about 59meV below the v2¼ 1 onset. The attachment

spectrum observed for q¼ 1 shows a low counting rate; it also exhibits

a rather sharp resonance peaking at about 128meV. The low intensity

may indicate that OCS� only exists in a few stable or even metastable

rovibrational states, in line with the theoretical results of Surber et al.

(2002). Since the spectra for q¼ 1 and q¼ 2 both exhibit the (020)-peak

essentially at the same energy position, it is plausible that the yield for the

monomer anion OCS� is due to formation of the dimer (OCS)2
� with

subsequent evaporation of a single OCS unit (and not due to attachment of

clusters with sizes q� 3; it is also not expected that (long-lived) OCS� anions
are formed through free electron attachment to OCS monomers).

For q¼ 3 the very sharp peak present in the spectrum at q¼ 2 and

assigned to the vibrational Feshbach resonance of the type v2¼ 2 is no

longer observed, the broad structure appears red-shifted by about 20meV,

and a peak at lower energies is weakly observed, also red-shifted by about

20meV. With the increase of the cluster size (4
 q
 7) only a broad

structure is left in the spectra, red-shifted by about 20meV per added OCS

unit. For q>8 no clear structure is left in the spectra which are dominated

by the rise towards zero energy. The missing of the sharp resonance for

q>2 is similar to the findings for electron attachment to methyl iodide

clusters (Weber et al., 2000, see also subsection C.6). The sharp vibrational

Feshbach resonance, observed at about 61meV (just below the onset for the

C–I stretch vibration v3¼ 1) for dissociative attachment to CH3I monomers

(yielding I� ions), is almost missing in attachment spectra for (CH3I)I
� and

(CH3I)2I
�, which weakly exhibit broad red-shifted structure.

C.5. Carbon Disulfide Clusters

Carbon disulfide CS2 is linear in its electronic ground state. According to

ab initio calculations (Gutsev et al., 1998) the adiabatic electron affinity

is positive with a value of EAad¼ 0.30 eV; the stable anion is bent with a

bond angle of about 144.5� and an electric dipole moment of þ0.46D.

The difference between the theoretical value for EAad and the experimental

result (0.89 eV, Oakes and Ellison, 1986) might in part be due to very

unfavourable Franck-Condon-factors for the transition connecting the

respective vibrational ground levels from the anion to the neutral, preclud-

ing observation of this transition in the experiment (Gutsev et al., 1998).

For optimized linear configurations of CS2 and CS�2 , their energies are

almost identical with the possibility that the linear anion is stable against
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autodetachment by a few millielectron volts. This finding is compatible

with substantial rate coefficients for the formation of CS�2 ions in RET

experiments (Kalamarides et al., 1988; Harth et al., 1989; Carman et al.,

1990) and can explain observations of long-lived weakly bound CS�2 ions

which undergo electric-field-induced detachment when subjected to fields

of only a few kilovolts per centimeter (Kalamarides et al., 1988). Anion

formation involving carbon disulfide clusters has been studied by RET

(Kondow, 1987; Desfrançois et al., 1993) and, more recently, in free electron

attachment experiments with the LPA method (Barsotti et al., 2002a).

Photodetachment and photodestruction studies of (CS2)q
� cluster anions

(e.g. Maeyama et al., 1998) in conjunction with ab initio calculations of the

anion structures and binding energies (e.g. Sanov et al., 1998) indicate that a

C2S
�
4 core is involved in the (CS2)q

� cluster anions with q� 2.

Figure 51 presents the attachment spectra for formation of small carbon

disulfide cluster anions with sizes q¼ 1, 2, 3, 5, as measured with the

LPA method over the energy range 1–150meV (Barsotti et al., 2002a); CS2
molecules (0.34 bar) were coexpanded with helium carrier gas at a total

stagnation pressure of 4.5 bar). For all cluster anion sizes, the attachment

yield shows a monotonous decline towards higher electron energies. Within

the statistical uncertainties no structure is observed. The anion cluster size

distribution in the free electron attachment spectra, viewed at any particular

electron energy, was found to be close to that observed in the threshold

attachment RET mass spectrum which decreased monotonically with

↑

↑

↑

↑

FIG. 50. Low-energy electron attachment spectra for formation of (CS2)q
� anions from

(CS2)N clusters (N� q¼ 1, 2, 3, 5). The numbers above the arrows near zero energy give the

cluster anion yields for RET at n� 260 (from Barsotti et al., 2002a).
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rising q� 1. Electron attachment at near-zero energies is efficient for any

size (including the monomer); the formed temporary cluster anion may

evaporate monomers at an energy expense of about 0.17 eV per molecule

(Desfrançois et al., 1993). In this way reaction (42c) can proceed with an

evaporation of one or more monomers (depending on the values of the

respective electron affinities and evaporation energies). In collisions with

free electrons or Rydberg electrons with sufficiently high principal quantum

number long-lived monomer CS�2 anions are not formed from the neutral

monomer; in these cases, the yield for CS�2 formation originates from

neutral clusters with sizes N� 2.

In comparison with the observations made for cluster anion formation

from CO2 and OCS clusters, in particular with regard to the presence of

vibrational resonances, (see Fig. 1) the question arises why no vibrational

structure is observed at all for carbon disulfide clusters. Note that ‘giant’

scattering resonances have been observed in the energy dependence of the

total cross-section (Jones et al., 2002) as well as in the angle differential

elastic cross-section (Allan, 2001c) for electron scattering from CS2
molecules at very low energies, as discussed in Section B.6 of this chapter.

One essential difference between CO2, OCS and CS2 is the substantial rise in

the adiabatic (as well as in the vertical) electron affinity from CO2 to CS2.

Carbon dioxide does not form a stable negative ion, OCS anions are

just about stable while CS2 possesses states bound by several tenths of an eV

FIG. 51. Comparison of attachment spectra for formation of homogenous cluster anions

(CO2)q (q¼ 5, 8), (OCS)q (q=2, 5), and (CS2)q (q=2, 5). Vibrational Feshbach resonance

dominate the spectra for (CO2)q formation and are still prominent (though broader) in the

(OCS)q spectra (from Barsotti et al., 2002a, 2003b).
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(see above). For CS2 clusters the stronger valence-type electron binding and

the expected stronger effects due to solvation in the cluster anions may thus

preclude the formation of VFRs which reflect long-range electron binding.

C.6. Methyl Iodide Clusters

As described in Section IV.A, a prominent VFR has been observed

(Schramm et al., 1999) in dissociative attachment to CH3I molecules

(yielding I� ions) directly below the onset for the 3¼ 1 C�I stretch

vibration. It was shown that the VFR occurs due to the combined effects

of the dipole and the polarization attraction, and it may thus be expected

that this VFR will look quite different in clusters of methyl iodide, if

present at all. We note that the 3¼ 1 VFR has been suggested to play a

role in photofragmentation of the I��CH3I anion yielding I� ions (Dessent

et al., 1996).

The cross-sections for (CH3I)q I
� (q¼ 1, 2) cluster anion formation reveal

in fact a dramatic influence of the cluster environment on the VFR observed

for methyl iodide monomers: for q¼ 1 a weak, broad shoulder, shifted to

lower energy, remains while for q¼ 2, no significant structure is observed.

This behavior was attributed to solvation effects which move the resonance

position to lower energies and substantially increase the resonance width.

In Fig. 52 we show calculated cross-sections for different solvation energies

(but for a fixed polarizability) using a modified R-matrix model (Weber

et al., 2000).

However, the cusp structure associated with the threshold for vibrational

excitation of the symmetric C–I stretch at E¼ 66.1meV is still clearly seen in

Fig. 52, whereas experimental data do not exhibit the cusp. This can be

explained by interaction of the C–I stretch mode with other modes in the

complex. In particular, the vibrational dynamics of the dimer is influenced

by interaction between the I atoms. To account for this effect, a model

(Thoss and Domcke, 1998) describing interaction between a specific

(system) vibrational mode with a background (bath) mode was adopted

in Weber et al. (2000). The background mode was described by the displaced

harmonic oscillator model (Domcke and Cederbaum, 1977). This approach

allows to construct the Green’s function describing both C�I and soft-mode

vibrations. After calculation of its matrix elements, the problem is reduced

to solving a system of Nv�Np linear algebraic equations for Nv�Np

attachment amplitudes, where Nv is the number of states describing C–I

stretch vibrations, and Np the number of states describing the soft-mode

vibrations. The bath mode is characterized by the frequency parameter !
and the coupling parameter Y¼ (1/2)�!R0

2 where � is the reduced mass

corresponding to soft-mode vibrations and R0 is the distance between the
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minima of the two porential curves describing the neutral molecule and

the negative ion. Another effect which was included in the calculations is

an additional polarization interaction for the incident electron due to the

presence of the second molecule in the dimer. Some sample results for the

DA rate coefficients and their comparison with experiment are presented

in Fig. 53.

Agreement between theory and experiment should be considered more

qualitative than quantitative at the present stage: the theory confirms that

the solvation and polarization effects destroy the vibrational Feshbach

resonance and lead to almost complete disappearance of the threshold cusp

due to coupling with the bath mode. On the other hand, the theoretical

rate coefficient drops with energy too fast as compared to the experimental

observations. One of the possible reasons for this is an overestimation of the

polarization energy in the theoretical model. Indeed, calculations with

a polarization potential whose strength is reduced at shorter distances lead

to a better agreement with experiment, as we can see from Fig. 53.

D. RELATED TOPIC: POSITRON ANNIHILATION

Although this review is focused on electron–molecule collisions, a related

topic of positron–molecule collisions is important and will be briefly

FIG. 52. Calculated cross-sections for dissociative attachment to CH3I monomers with

potential curves, ‘‘solvation’’-shifted by the indicated amounts (from Weber et al., 2000).
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discussed here. Resonances in positron collisions with atomic and molecular

systems were predicted in several theoretical works (for a more complete

review of the subject the reader is referred to the paper of Kimura et al.

(2000)), however until recently there was no direct experimental evidence

for them. Indirect evidence for these resonances was obtained in 1963 when

Paul and Saint-Pierre (1963) observed very high annihilation rates in

thermal positron collisions with certain large molecules. Surko et al. (1988)

extended these studies to larger organic molecules. More recently these

findings were confirmed by a series of experiments performed at the

University of San Diego (Murphy and Surko, 1991; Iwata et al., 1995; Iwata

et al., 2000).

The annihilation rate is usually characterized by the parameter

Zeff ¼ lð�r20cnÞ�1; ð45Þ

where l is the observed annihilation rate, r0 is the classical electron radius,

c is the speed of light, and n is the molecule number density. Equation (45)

reflects a naive view of the annihilation process according to which the

annihilation rate can be obtained by multiplication of the Dirac annihilation

FIG. 53. Comparison between (a) calculated and (b) experimental rate coefficients for

dissociative attachment to methyl iodide dimers yielding (CH3I) I
� ions. The theoretical curves

correspond to different choices of the bath-mode parameters. The chain curve represents a

model with a reduced polarization interaction (from Weber et al., 2000).
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rate of positronium (Ps) by an effective number Zeff of electrons in the

target molecule. However measurements for many hydrocarbons and

partially fluorinated hydrocarbons yield values of Zeff which exceed the

actual number of electrons by several (sometimes 4 or even 5) orders of

magnitude. This is particularly surprising because the measurements are

pertinent to positron energies below the positronium formation threshold.

However, Murphy and Surko (1991) found a simple (albeit pure

empirical) scaling relation for all studied atoms and single-bonded nonpolar

molecules.

lnðZeff Þ ¼ AðEi � EPsÞ�1; ð46Þ

where Ei is the ionization energy of the target and EPs is the binding energy

of positronium. Other interesting observations are: (i) the annihilation rates

for the deuterated and protonated alkanes are very similar if not identical

at room temperatures; (ii) singly fluorinated hydrocarbons have even

higher annihilation rates whereas further fluorination leads to a decrease

of annihilation rate with the perfluorinated molecule having the lowest rate;

(iii) there is no strong correlation between Zeff and molecular dipole

moment.

A theoretical model (Gribakin, 2000, 2001; Iwata et al., 2000) with two

regimes was proposed to explain the observed rates. According to the first

mechanism, annihilation enhancement can occur due to a weakly bound or

a virtual state in the positron–molecule complex. This mechanism (direct

annihilation) can explain a moderate (Zeff below about 1000) enhancement

of the rate. For higher rates a resonant mechanism associated with a

temporary capture of the positron into the field of vibrationally excited

molecules (VFR) is introduced.

The influence of VFRs on the annihilation rates was recently confirmed

by experiments (Gilbert et al., 2002; Barnes et al., 2003) with positron beams

whereby Ps annihilation rates were investigated as a function of the positron

energies from 50meV to several eV at an energy width of about 25meV.

Pronounced peaks below several vibrational excitation thresholds have

been observed providing the first direct evidence for long-lived vibrational

resonances of the positron–molecule complex. Two examples are shown in

Fig. 54. The redshifts of the vibrational resonances (relative to the position

of the C–H stretch mode, dashed line) amount to 0.03 eV in propane

and 0.13 eV in heptane; they are interpreted as a measure of the positron–

molecule binding energy (see Barnes et al., 2003 for details).

The existence of VFRs in positron–molecule systems suggests that there

should be bound states of positron–molecule systems. However, very little
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is known about such systems. Even for positron–atom bound states,

calculations became possible only recently (Dzuba et al., 1995; Ryzhikh and

Mitroy, 1997), and virtually nothing is known about molecules, although

some results were obtained for the relation between positron affinities and

molecular dipole moments (Tachikawa et al., 2001). However, experimental

data do not indicate any significance of the dipole moment for enhanced

annihilation. Theoretical calculations of positron affinities of molecules are

particularly difficult because of the relative weakness of positron–molecule

interactions as compared to the electron–molecule interaction. The reason is

simple: the static potential for the positron–molecule interaction is repulsive

and therefore it strongly reduces the attraction due to the polarization

interaction (Kimura et al., 2000). This makes inclusion of positron–electron

correlations especially important, therefore calculations of positron

affinities are more difficult than those of electron affinities.

Another theoretical challenge has to do with the density of VFRs.

According to recent work on positron annihilation rates (Gribakin, 2000,

2001), a high density of VFRs, growing exponentially with the number

of atoms in the molecule, is required in order to explain the measured

annihilation rates. This was confirmed by recent experiments of Barnes

et al. (2003) which indicate a strong correlation between the spectrum of

FIG. 54. Energy-resolved annihilation rates, Zeff, for (a) propane and (b) heptane. For

comparison, the solid line in (b) shows Zeff for propane, scaled by 60 and shifted downward in

energy by 0.1 eV (Barnes et al., 2003).
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vibrational modes and the annihilation spectrum for propane and heptane

(see Fig. 54). Although we can expect that VFRs are a quite common

phenomenon in electron and positron scattering by polyatomic systems,

there are no theoretical calculations to confirm this judgement. Finally,

studies of VFRs in electron–molecule scattering show that VFRs are

typically supported by the long-range field of the molecule, whereas

annihilation data do not exhibit any correlation between the observed rates

and molecular dipole moments. Certainly, more experimental and

theoretical studies are required to explain this interesting phenomenon.

The theory is still in a very preliminary stage at this point. No calculations

of VFRs and corresponding annihilation rates are available even for simple

diatomic molecules.

However, one aspect of the theory, namely the behavior of the

annihilation cross-section near the threshold for positronium formation,

has been studied in some detail. Equation (46) might suggest that the

annihilation cross-section exhibits a singularity near the threshold. Indeed,

according to the model of Laricchia and Wilkin (1997), Zeff grows as

|Ei�EPs|
�1. Variational calculations (Van Reeth and Humberston, 1998)

demonstrate a weaker divergence |Ei �EPs|
�1/2. However, any divergence

would violate unitarity of the S matrix. To resolve this controversy one

has to introduce the coupling between the Ps formation channel and

the annihilation channel (Gribakin and Ludlow 2002; Igarashi et al.,

2002). Due to this coupling the Ps formation channel is blurred by the

annihilation energy width, and the |Ei�EPs|
�1/2 singularity is removed.

Recent calculations (Gribakin and Ludlow, 2002; Igarashi et al., 2002) for

annihilation in eþ–H collisions demonstrate that the cross-section behaves

as a continuous function of positron energy near the Ps formation threshold.

This result actually follows from a general theory of threshold behavior

for creation of an unstable particle (Baz’, 1961).

V. Conclusions and Perspectives

As shown in this review, significant progress has been made over the

past decade in our understanding of resonance and threshold phenomena in

low-energy electron interactions with molecules and clusters. At very low

energies (below about 0.2 eV) novel photoelectron techniques have allowed

to study attachment cross-sections for both molecules and molecular

clusters at unprecedented (sub-) meV resolution and down to sub- meV

energies. Sharp vibrational Feshbach resonances have been discovered in

molecules as well as molecular clusters, and the fundamental threshold

behaviour was convincingly demonstrated for several polar and nonpolar
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molecules. With free electron cross-sections measured to sub- meV energies,

a realistic extrapolation to zero energy became possible, and accurate

absolute attachment cross-sections were established with reference to

reliable thermal rate coefficients due to electron swarm experiments. For

the first time a critical comparison between free electron attachment and

Rydberg electron transfer data became possible by calculating – within the

quasi-free electron model for Rydberg electron collisions – the RET rate

coefficient from measured free electron attachment cross-sections, and good

agreement was observed for several molecules (Klar et al., 1994b, 2001a, b;

Dunning, 1995).

Using synchrotron-based VUV photoelectron sources, measurements of

total cross-sections have been extended down to about 10meV. Strong

resonances have been detected in CS2 which are similarly present in the

differential elastic cross-section. It can be expected that these observations

are just the beginning of an exciting future of ‘cold electron collisions’ (Field

et al., 2001a) with many resonances yet to discover in electron scattering and

attachment cross-sections. Intriguing examples of such features are the

observation of a deep dip in the total scattering cross-section at 0.1 eV

for nitrobenzene (Lunt et al., 2001) and at 0.07 eV for the CF3Cl molecule

(Field et al., 2001c), tentatively ascribed to interference between a direct

channel of rotational excitation and indirect excitation via a short-lived

negative ion state. Their observation and explanation poses a challenge to

theory.

Substantial progress has also been made in angle-differential electron

scattering studies, using optimized and well-calibrated electrostatic

spectrometers at energy widths below 10meV. Theoretical ab initio DA

and VE cross-sections for hydrogen halides, obtained with the nonlocal

resonance model, agree very well with accurate measurements, and, what is

even more important, many features observed there, like threshold peaks,

boomerang oscillations and VFRs, are now well understood. However, for

several other diatomic molecules the situation is not as clear. In important

cases such as chlorine, no reliable experimental cross-sections for vibrational

excitation are available, and R-matrix calculations of VE and DA

cross-sections in part had to use semiempirical input. A fully ab initio

calculation of VE and DA involving fluorine molecules has been carried out,

but the controversy related to the low-energy behavior of DA (p-wave

versus s-wave) is still unresolved. Certainly more experimental results are

needed here.

The situation with polyatomic molecules is even more complicated.

We have achieved a qualitative understanding of some important features.

The known cases suggest that threshold peaks and possibly also sharp

structures due to VFR may be found in many, presumably most polyatomic
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molecules. They are linked to anion states with an electron in a spatially

diffuse wave function, bound by a combination of dipolar and polarization

forces; the dipolar forces may be active even in molecules without a

permanent dipole moment (such as CO2) when the parent vibrational state

of the VFR is not totally symmetric and acquires a nonzero dipole moment

upon variation of its normal coordinate. The VFRs may substantially

affect the cross-sections by acting as doorways into valence, possibly

dissociative states. The outer wells in anion potentials and the associated

outer well resonances described here are likely to represent prototype

cases for outer wells in many polyatomic molecules. Here the electron

is in a valence orbital whose antibonding properties are responsible

for the substantially different geometry. More studies of polyatomic

molecules at energies below about 1 eV will be needed to confirm these

expectations.

Completely ab initio calculations of near-threshold and resonance

processes for polyatomic molecules are still very difficult. In this field

model and semiempirical calculations continue to play an important role.

Approaches such as the resonance R-matrix method allow us to produce

cross-sections for many transitions using just a few adjustable parameters.

This method was particularly successful for our understanding of VFRs

and threshold features in electron collisions with methyl halides. The major

challenge in this field is extension of the existing methods towards

incorporation of several vibrational modes. For this purpose the wave-

packet propagation method (McCurdy and Turner, 1983; Kazansky, 1995)

seems to be very promising. Some results have been recently obtained

for dissociative attachment (Kazansky, 1995) and vibrational excitation

(Rescigno et al., 2002) of the CO2 molecule. However, the split time

propagation method has been implemented so far only within the

framework of the local resonance model which is not able to describe

correctly threshold phenomena and VFRs. A relevant example is

dissociative attachment to the CH2Br2 molecule with the formation of

Br�. This process cannot be described in a one vibrational mode

approximation. On the other hand, a multidimensional description of the

vibrational dynamics should also include nonlocal effects in order to

reproduce the VFR observed below the threshold for excitation of the

symmetric C–Br stretch. Another challenging example is a recent discovery

of a zero energy peak in O� formation due to dissociative electron

attachment to ozone (Senn et al., 1999), which may play an important

role in the destruction of ozone in the earth’s atmosphere; it is still waiting

for an explanation, also in view of the fact that thermal rate coefficients

for electron attachment to ozone are not compatible with a zero energy

resonance (van Doren et al., 2003).
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With the increasing complexity of the target, the situation is becoming

even more challenging. In particular, we do not have a general theory

of electron attachment to clusters, although some observed features in

electron-cluster interactions, like VFRs and their dependence on cluster

environment, have received an explanation recently. The resonance

R-matrix theory has been generalized to describe DA to methyl iodide

clusters. However, almost no calculations, except some preliminary results

for CO2 clusters (Tsukada et al., 1987), were done for nondissociative

attachment. The major remaining task here is the correct account for the

coupling between the phonon modes in the cluster and the vibrational

modes of individual molecules leading to VFRs in nondissociative

attachment. Several controversies in low-energy electron attachment to

C60 remain unresolved and demand further work.

Although not dealt with in this review, we mention metal clusters as

another object for future studies. One-electron shape resonances in elastic

scattering (Bernath et al., 1995; Ipatov et al., 1998a) and collective plasmon

resonances in elastic and inelastic electron collisions with metal clusters

(Gerchikov et al., 1998; Ipatov et al., 1998b; Connerade et al., 2000) have

been predicted in theoretical calculations and wait for experimental

confirmation. Measurements of electron capture by sodium clusters

(Kasperovich et al., 2000a, b) indicate the validity of the Langevin formula

for capture, as modified by employing the full image-charge interaction

potential which accounts for the finite size of the cluster (Kasperovich et al.,

2000b). Evidence for resonance-enhanced electron capture by potassium

clusters has been reported by Sentürk et al. (2000). Another class of objects,

attracting strongly rising interest recently, are biomolecules. One of the

driving motivations is the question how radiation damage is induced by the

interaction of slow (secondary) electrons with the constituents of biological

systems. Here we just mention pioneering work by Boudaı̈ffa et al. (2000)

who reported resonant formation of DNA strand breaks by low-energy

electrons.

Studies of vibrational resonances in positron–molecule collisions are only

at the beginning stage. Their important observation in recent experiments

has received only qualitative explanation so far, and many unanswered

questions exist in this field. In particular we do not know yet why the

annihilation rates are high in the thermal-energy region, well below

the threshold for vibrational excitation. No calculations of electron affinities

of molecular targets, supporting the assumption about VFRs in positron-

molecule scattering, exist. The observed widths of VFRs in these processes

are also awaiting for theoretical explanations.

Progress in future work on high-resolution low-energy electron (as well

as positron) collisions will inevitably be bound to improved experimental
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techniques. Higher electron currents at energy widths in the meV range are

mandatory for cases in which the product of cross-section and target density

is intrinsically low. While laser photoelectron sources involving gas phase

atoms are increasingly affected by energy broadening due to photoion

space charge at currents above about 100 pA, photoemission from

suitably prepared solid state surfaces (e.g. doped GaAs) holds promise for

major progress (e.g. Pastuszka et al., 2000) when much higher electron

currents at energy widths around 10meV are needed. This technique is,

however, technologically demanding in that ultrahigh vacuum requirements

for the electron source have to be combined with a gaseous target of

sufficient density.

Most of the work discussed in this review dealt with molecules and

clusters in their electronic and vibrational ground state. Regarding electron

collisions with electronically excited atoms and molecules, the status of

the field has been recently surveyed by Christophorou and Olthoff (2001b).

The obvious experimental challenge lies in the preparation of a sufficient

density of selectively excited states to allow electron collision studies at a

decent energy resolution. Advances in laser technology (i.e. high intensity

laser diodes as pumps of solid state lasers in combination with efficient

nonlinear frequency conversion techniques) hold hope for the availability of

broadly tunable, narrowband lasers with high repetition rate and intensity.

Such laser systems could access electronically excited molecules with

intermediate lifetimes comparable to the molecular transit time through

the collision region with the electron beam.

For molecules in the electronic ground state, it is known that electron

collision processes can depend very strongly on the initial vibrational state,

yet rather few studies went beyond the conventional approach of thermally

heating the target molecules in investigating the effects of vibrational

excitation. However, the hope for efficient preparation of selectively excited

vibrational modes has recently substantially increased. Although the

STIRAP method (Vitanov et al., 2001) involving cw lasers is suitable

only in few cases (as discussed for Na2 in this review), it may be applied

to a broader range of molecules when pulsed lasers with sufficient

coherence, pulse energy and repetition rate become available. With the

advent of efficient optical parametric oscillators (OPO) and generators

(OPG) in the infrared region (so far up to about 4 mm), which involve

quasi-phase matching in periodically poled solid state crystals such as

LiNbO3 (see, e.g., Kovalchuk et al., 1997, for a cw single mode OPO

and Bäder et al., 2003, for a transform-limited, seeded nanosecond OPG

with 10 kHz repetition rate), the future looks promising for efficient

excitation of many dipole-allowed vibrational transitions, including the

C–H stretch mode. This should allow a broad range of high resolution
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studies of electron scattering and attachment involving vibrationally excited

molecules.
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Bäder, U., Mattern, T., Bauer, T., Bartschke, J., Rahm, M., Borsutzky, A., and Wallenstein, R.

(2003). Pulsed nanosecond optical parametric generator based on periodically poled lithium

niobate. Opt. Commun. 217, 375–380.

Bailey, C. G., Lavrich, D. J., Serxner, D., and Johnson, M. A. (1996). Autodetachment from

vibrational levels of the O�2 A 2
�u resonance across its dissociation limit by photoexcitation

from O�2 X 2
�g. J. Chem. Phys. 105, 1807–1814.

Bardsley, J. N. (1968). Configuration interaction in the continuum states of molecules. J. Phys.

B 1, 349–364.

Bardsley, J. N., and Mandl, F. (1968). Resonant scattering of electrons by molecules. Rep. Prog.

Phys. 31, 471–511.

Bardsley, J. N., and Wadehra, J. M. (1983). Dissociative attachment in HCl, D2, and F2.

J. Chem. Phys. 78, 7227–7234.

Barnes, L. D., Gilbert, S. J., and Surko, C. M. (2003). Energy-resolved positron annihilation for

molecules. Phys. Rev. A 67, 032706 (1–11).

Barsotti, S., Leber, E., Ruf, M.-W., and Hotop, H. (2002a). High resolution study of cluster

anion formation in low-energy electron collisions with molecular clusters of CO2, CS2, and

O2. Int. J. Mass Spectrom. 220, 313–330.

Barsotti, S., Ruf, M.-W., and Hotop, H. (2002b). Clear experimental evidence for p-wave

attachment-threshold behavior in electron attachment to chlorine molecules. Phys. Rev. Lett.

89, 083201 (1–4).

Barsotti, S., Ruf, M.-W., and Hotop, H. (2003a). Laser photoelectron attachment to SF6

molecules in a seeded supersonic beam at temperatures from 300K to 600K. (in preparation).

Barsotti, S., Sommerfeld, T., Ruf, M.-W., and Hotop, H. (2003b). High resolution study of

cluster anion formation in low-energy electron collisions with OCS clusters. Int. J. Mass.

Spectrom. (submitted).

Baz’, A. I. (1958). The energy dependence of a scattering cross section near the threshold

of a reaction. Sov. Phys. JETP 6, 709–713.

Baz’, A. I. (1961). Energy dependence of cross sections near the ‘‘threshold’’ for unstable

particle production. Sov. Phys. JETP 13, 1058–1061.

Becker, K. H., McCurdy, C. W., Orlando, T. W., and Rescigno, T. M. (Eds.) (2000). ‘‘Current

Status and Future Perspectives of Electron Interactions with Molecules, Clusters, Surfaces,

and Interfaces,’’ Stevens Inst. Technol., Hoboken, NJ, USA.

Bernath, M., Dragún, O., Spinella, M. R., Massmann, H., and Pacheco, J. M. (1995). Response

of metal clusters to elastic electron impact. Phys. Rev. A 52, 2173–2178.

Bethe, H. A. (1935). Theory of disintegration of nuclei by neutrons. Phys. Rev. 47,

747–759.

Beyer, T., Nestmann, B. M., Peyerimhoff, S. D. (2001). Resonant features of inelastic electron

scattering off CF3Cl in the low-energy region. J. Phys. B 34, 3703–3716.

Birtwistle, D. T., and Herzenberg, A. (1971). Vibrational excitation of N2 by resonance

scattering of electrons. J. Phys. B 4, 53–70.

Blatt, J. M., and Weisskopf, V. F. (1952). ‘‘Theoretical Nuclear Physics,’’ Wiley, NY, USA.

Bloch, F., and Bradbury, N. E. (1935). On the Mechanism of Unimolecular Electron Capture.

Phys. Rev. 48, 689–695.
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Petrović, Z. Lj., Wang, W. C., and Lee, L. C. (1989). Dissociative electron attachment to some

chlorine-containing molecules. J. Chem. Phys. 90, 3145–3152.

Popple, R. A., Finch, C. D., Smith, K. A., and Dunning, F. B. (1996). Dissociative electron

attachment to CCl4: lifetime of the CCl4
�* intermediate. J. Chem. Phys. 104, 8485–8489.
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I. Introduction

Photoionization of atoms can be linked to the original discovery of the

photoelectric effect by Hertz (1887) and almost simultaneously by

Hallwachs (1888) in the 19th century. Sophisticated investigations on

photoionization of free atoms were first primarily related to total and

differential cross-section measurements. Photoelectron spectroscopy refers

to measurements of energies and intensities often including their angular

distributions (Berkowitz, 1979). So-called complete or perfect atomic

collision and photoionization experiments were based on analysis of

particle-photon-, particle-particle-coincident correlations and electron- and

atomic spin and orientation effects. References to recent developments of

such investigations can be linked to the monograph by Schmidt (1997) and

the conference report by Becker and Crowe (2001).

Photoionization and atomic collision processes can quantum mechani-

cally be completely described by a limited number of amplitudes and their

phase differences and thus the experiment from which the relevant

amplitudes and phase differences can be extracted has been referred to as

a complete or perfect experiment. The first complete atomic collision

experiment was realized in the early electron–atom collision experiments of

Eminyan et al. (1973) and of Standage and Kleinpoppen (1975). The first
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complete experiment in photoionization of atoms was reported by

Heinzmann and co-workers (see, for example, Heinzman (1980) and

Heckenkamp et al. (1984)). These authors measured the angular distribution

and the spin polarization of photoelectrons for Xe 5p photoionization from

which all the relevant dipole amplitudes and phase differences were

determined. A series of further studies of this kind were mainly restricted

to rare gas atoms (Kessler, 1985).

While the suggestion of quantum mechanically complete collision

experiments as most sensitive and crucial tests on the validities of theoretical

approaches for the understanding of the relevant dynamic process has been

around already since about the middle of the last century (e.g. Fano (1957)

and Jacobs (1972)) further and new kinds of methods for complete atomic

photoionization experiments have only been suggested and carried out

recently. We mention the suggestion by Klar and Klienpoppen (1982) for

which photoionization of polarized atoms with polarized light may lead to a

complete analysis of relevant amplitudes and phases. Various successful

experiments based upon this method have already been reported (Siegel

et al., 1983; Kerling et al., 1990; Plotzke et al., 1986, Godehusen et al., 1998,

Prümper et al., 2000). Magnetic circular dichroism (MCD) describes the

different response of a magnetized piece of material to left- and right handed

circular polarized light. Prümper et al. (2001) performed the first MCD

experiment for polarized iron in the gas phase and observed a remarkable

large MCD effect1 of the ion yield of Fe-vapor far away from any

absorption edge. This large MCD effect in the Fe gas phase is contrary to

MCD of less than 10�4 in thin iron films.

A further approach to a complete photoionization analysis has been

reported by Hausmann et al. (1988); in their experiment on the

photoionization of atomic magnesium, the angular distributions of the

photoelectrons and Auger electrons provide full complete description in

terms of complex matrix elements for continuum s- and d-electrons and

their relative phase (or cosine of the phase).

Lörch et al. (1999) have also reported on a group of studies in which

photoionization data and non-coincident subsequent Auger decay for the

3p3=2 photoionization in atomic calcium leads to a complete extraction of

dipole matrix elements and their phase difference, i.e. jR"d j, jR"sj and �,

from the partial cross-sections, the photoelectron angular distribution

parameter � and the angular distribution parameter of two fine structure

components of the subsequent Auger transition for photon energies near the

Cooper minimum.

1 Between 2 and 6%.
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Related experiments and theoretical studies of the 3p photoionization

of Ca in the vicinity of its ionization threshold were reported by de Fanis

et al. (1999); angular correlation measurements between the 3p photoelec-

tron and the M3N1N1 Auger electron and conventional angular distribution

measurements for both the 3p photoelectron and M3N1N1 Auger electron

were carried out. Random phase approximation calculations for the Ca 3p

photoionization are in good agreement with the amplitudes and phases

extracted from the experimental data.

An interesting experimental determination of the ratios of the s and d

Auger decay amplitudes and their phase difference for the resonant Auger

transition 2p�13=24s�!3s�13p�14sð2P
J
Þ in argon has been reported by Ueda

et al. (1999); they measured the angular correlation between the resonant

Auger emission and the subsequent second-step Auger emission as well as

the angular distributions of these two electron emissions.

A comprehensive problematic of the impossibility to perform complete

valence shell photoionization experiments with closed shell atoms

(Schmidtke et al., 2000a), of the feasibility of a complete Auger decay

experiment by spin and angle resolved electron spectroscopy (Schmidtke

et al., 2000b) on Xe N4O2, 3O2, 3
3P1 and of measurements of the transferred

spin polarization and analysis of Auger amplitudes in Kr M4, 5N1N2, 3
1P1

Auger decay (Schmidtke et al., 2001) highlights present-day research.

These experiments have been accompanied and are partly related to

theoretical studies and numerical calculations of the angular distribution

and spin polarization parameters of Auger emission of the rare gases

(Lohmann et al., 1993; Lohmann and Larkins, 1994). More recently,

Lohmann (1999a) has been able to derive so-called propensity rules in order

to predict large dynamic spin polarization parameters for resonant Auger

transitions avoiding numerical calculations.

There has been considerable success in describing relative intensities,

angular distribution and spin polarization of the emitted Augers electrons

numerically for the N5O2, 3O2, 3 Auger decay of the Xe I ð4d�15=26p3=2 J ¼ 1Þ
photoexcited state (Lohmann, 1999b) while Lohmann and Kleiman (2000)

particularly focussed on the spin-flip transitions.

Other partial stages of developments of complete photoionization

experiments have been reported in connection with alignment measurements

of the produced ions in which separately angular distributions of Auger and

photoelectrons or the polarization of fluorescence radiation is determined

(e.g. the papers on Sr and Ca by Hamdy et al. (1991a,b), and review on

present and future experiments by Mehlhorn (1991)).

We also refer to measurements of alignment parameters of Ar 2p hole

states produced by photoionization in the soft X-ray region (Becker et al.,

1988; Becker, 1989). For the first time these authors measured partial
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photoionization cross-sections and angular distributions of the Ar 2p photo-

lines and their subsequent LMM Auger lines. The latter have been

supplemented by numerical calculations of the Auger angular distribution

parameter by Kabachnik et al. (1991).

A series of alignment studies on atomic ions have been reported of which

we selectively mention those for cadmium ions Cdþð4d�15s2 2D5=2,
2D3=2Þ

by using the He I 584 Å radiation (Caldwell and Zare, 1977) or synchrotron

radiation for photoionization (Kronast et al., 1994; Goodman et al.,

1985). In addition to these studies alignment tensor values of Znþ

ð3d�14s2 2D3=2Þ have been determined (Kronast et al., 1986). For Cdþ ions

relativistic random phase approximation in conjunction with quantum

defect theory describe the experimental alignment reasonable well.

Detailed papers on alignment through synchrotron radiation have

particularly been reported with heavy rare gas ions; we list here those with

Kr and Xe. The alignment of Kr II 4p45p states after the Auger decay of the

Kr I ð3d�15=25p J ¼ 1Þ resonance was measured by using the photon induced

fluorescence spectroscopy (Zimmermann et al., 2000).

The angular dependence of the ultraviolet fluorescence radiation was

(measured by Ehresmann et al. (1988)) in order to determine the alignment

of Xe II and Xe III ionic states populated via the decay of the Xe I

ð4d�15=26p
1P1Þ autoionization resonance through spectator-Auger or Auger-

shake transitions. The alignment of the 5p46p levels after the decay of the

Xe I ð4d�15=26p J ¼ 1Þ resonance was studied experimentally and theoretically

(Lagutin et al., 2000; Meyer et al., 2001).

Photon induced fluorescence spectroscopy was applied for the first time

by Schmoranzer et al. (1997) to study the anisotropy of the vacuum UV

radiation emitted from Kr II satellite states with total angular momentum

J � 3=2 after the photoionization of Kr atoms by linearly polarized

synchrotron radiation near the 4s threshold. The measurements gave

evidence of the fact that the sign of the alignment parameter is practically

independent of the exciting photon energy for the ionic state with J ¼ 5=2
whereas with J ¼ 3=2 states the alignment changes sign with varying energy.

While it is well established that the L3 subshell X-ray emission from

charged particle impact ionization has anisotropic angular radiation (Wille

and Hippler, 1986) equivalent non-statistical population of magnetic

substates of atoms in Photoionization has been studied for the erbium atom

by Papp and Campbell (1992). The observed angular distributions of the L3

photons were well described by the usual function Ið�Þ ¼ I0ð1þ �P2ðcos �ÞÞ,
e.g. Berezhko et al. (1978), with regard to the anisotropy parameter � of the

L‘, L�1, 2 and L�2, 15 photon transitions and unpolarized ionizing photons.

The angular asymmetry parameter �fl for the resonance enhanced photon

induced production of Arþð3s23p44p 2, 4LJÞ fine structure resolved satellites
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were measured by Mentzel et al. (1998) from threshold to 38:4 eV. The �fl
data can be interpreted by a partial wave analysis of photofragmentation

products.

New types of complete photoionization experiments have only recently

been reported by Beyer et al. (1995) and by West et al. (1996). These are

based upon a coincidence analysis of photoelectrons and fluorescence

photons from the decay of excited atoms 2P3=2-state ions. A combination of

applying linearly and circularly polarized synchrotron radiation for the

ionization provided relative s- and d-wave amplitudes and their phase

differences (including the sign). A first approach of the theoretical analysis

was included in the above papers and has been extended by Kabachnik and

Ueda (1995). Their theory, however, is restricted to applications for which

the initial state of the atom is in an S-configuration, i.e. closed shell atoms.

In this paper we would like to give up this restriction and generalize the

initial state for the photoionization such that any arbitrary state can be

chosen. This should enable experimentalists to systematically study through

the periodic table photoionization into excited ions and completely analyze

the relevant amplitudes to a larger degree of completeness. In order to

illustrate the general applicability of our formalism, we partly review specific

experimental setups which occur to be special cases of our general approach.

Using a different notation these cases may be found in the literature

(e.g. Kabachnik and Sazhina, 1976; Bussert and Klar, 1983; Cherepkov,

1983; Kabachnik and Ueda, 1995; Balashov et al., 2000).

The paper is organized as follows. In the next section a general theory for

the description of ð�, e�Þ coincidence experiments is derived. This is done

by means of the density matrix and statistical tensor methods (e.g. Devons

and Goldfarb, 1957; Blum, 1996; Andersen and Bartschat, 2000; Balashov

et al., 2000). In particular, the appropriate parameters containing the

ionization and decay dynamics and the angular dependency are derived.

In Section III the possible different experimental setups are discussed where

special attention is given to additional selection rules which may occur

for the specific experiments. In Section IV we derive the general equations of

angular distribution and of spin and fluorescence polarization, respectively.

In order to express these relation in terms of relative parameters we

introduce the so-called generalized irreducible anisotropy tensors of

alignment and orientation. Besides the common Stokes parameters and

the spin polarization vector of the emitted photoelectron we introduce

so-called tensor polarization parameters. The analysis of special cases of

simultaneous photoelectron fluorescence photon emission will be discussed

in Section V. Section VI summarizes previous and recent developments

related to experimental approaches to complete scattering experiments in

connection with ð�, e�Þ processes and reports of some recent experimental
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investigations of ð�, e�Þ processes for calcium and strontium atoms.

Synchrotron radiation of fixed energy and polarization state simultaneously

photoionizes the atom and excites the ion into a higher state from which

fluorescence photons are emitted. The experimental coincidence analysis of

the photoelectron and the emitted fluorescence photon can lead to results

for relevant amplitudes and phase differences which describe such processes.

Eventually, a short conclusion is given in the last section. Throughout the

paper atomic units, i.e. �h ¼ e ¼ me ¼ 1, are used.

II. Theory

A. GENERAL CONSIDERATIONS

For observing the photoelectron and the subsequently emitted photon

radiation in a coincidence experiment a two-step model is assumed. In a

first step, e.g. by absorption of synchrotron radiation, a simultaneous

photoionization/excitation takes place, i.e. one electron is excited into a

Rydberg state, while the other is emitted into the continuum which leaves

the atom in a singly ionized excited state. In a second step, the ionic state

de-excites via emission of fluorescence radiation.

�Syn þ A�!Aþ þ e�Phot

�! Aþ þ h

ð1Þ

The combined photoionization/excitation; and fluorescence emission

process is illustrated in Fig. 1. The process of a simple inner shell

photoionization with a subsequent fluorescence emission is included in this

approach, too. Fluorescence radiation and the photoelectron shall be

observed in coincidence. This requires explicit knowledge of the total density

matrix q̂qout of the combined ensemble of the excited intermediate ionic state

Aþ

and the photoelectron e�Phot, i.e.

q̂qout ¼ q̂qoutðAþ þ e�PhotÞ: ð2Þ

The total density matrix q̂qin describing the uncorrelated ensemble of the

initial photon �Syn and the atomic state A can be written as a direct product

q̂qin ¼ q̂qðAÞ � q̂qð�SynÞ: ð3Þ

In particular, assuming an arbitrarily polarized synchrotron radiation beam

and choosing the quantization axis along the incoming beam direction, the
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density matrix of the synchrotron radiation photon can be expressed in

terms of Stokes parameters,

q̂qð�SynÞ ¼
I

2

1þ 
2 � 
3 þ i
1
�
3 � i
1 1� 
2

� �
, ð4Þ

where the notation of Blum, (1996) has been adopted. Here, 
1 and 
3
denote the Stokes parameters describing the linear polarization state of the

photon beam, whereas 
2 gives the circular polarization.

Both ensembles are connected by the transition operator Ti

q̂qout ¼ Tiq̂qinT
þ
i : ð5Þ

On the other hand, the final state ensemble consists of the ion Aþ and the

fluorescence photon

q̂qfin ¼ q̂qfinðAþ þ hÞ: ð6Þ

They are connected with the intermediate state ensemble by

q̂qfin ¼ Tf q̂qoutT
þ
f , ð7Þ

where Tf is the transition operator to the final state.

FIG. 1. The combined photoionization/excitation and fluorescence emission process. After

ionization of an inner shell the residual ion remains in an excited state which eventually decays

via emission of fluorescence radiation.
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B. PRIMARY PHOTOIONIZATION/EXCITATION

In the following, the initial atomic state is denoted as jJ0M0i where J0 and

M0 denote the total angular momentum and magnetic quantum number,

respectively. The initial synchrotron radiation photon is characterized as

j!nli where ! is the photon energy, n the incoming beam direction, and

l the helicity of the photon state. Analogously, the intermediate ionic state is

described as jJMi and the photoelectron as jpmsi where p is the electron

momentum and ms the electronic magnetic spin quantum number.

Following textbooks on density matrix formalism, e.g. Devons and

Goldfarb, 1957, Blum, 1996, Andersen and Bartschat, 2000, Balashov et al.,

2000, and expressing the ionic and electronic states in terms of statistical

tensorial sets Eq. (2) may be expressed as

hTðJÞþKQ � tðp̂pÞþkqi ¼ tr ðq̂qoutTðJÞþKQ � tðp̂pÞþkqÞ, ð8Þ

where tr denotes the trace. The statistical tensorial sets TðJÞþKQ and tðp̂pÞþkq
refer to the intermediate excited ionic state and the photoelectron,

respectively. The angular dependency of the photoelectron is given by the

solid angle p̂p which denotes the direction of emission. In particular, we may

write tðp̂pÞþkq ¼ tþkq � 1p̂p where 1p̂p ¼ jp̂pih p̂pj. Analogously, using tensorial sets

for the initial photonic, T þ�� , and atomic states, TðJ0ÞþK0Q0
, and by using

Eq. (5) we obtain

hTðJÞþKQ � tðp̂pÞþkqi ¼
X

K0Q0��

hTðJ0ÞþK0Q0
ihT þ��iBðK0Q0,��;KQ, kqÞ, ð9Þ

where the anisotropy parameter B is defined as

BðK0Q0,��;KQ, kqÞ ¼ tr T ½TðJ0ÞK0Q0
� T �� �Tþ½TðJÞþKQ � tðp̂pÞþkq�

� �
: ð10Þ

The state multipoles hT þ��i describing the synchrotron radiation photon

can be connected to the Stokes parameters which is shown in table I.

In particular, we note that for an arbitrarily polarized photon beam the

tensors hT þK0i, K 
 2 and hT þ2	 2i can be non-zero, only.2

2 Note, that this depends on the choice of quantization axis. In the so-called natural coordinate

frame one would obtain different tensors to be non-zero.
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Inserting complete basis sets the anisotropy parameter B can be

expressed as

BðK0Q0,��;KQ, kqÞ ¼
X

MM0msm
0
s

M0M
0
0
ll0

hJM0jTðJÞþKQjJMihm0sjtþkqjmsihljT �� jl0i

� hJ0M0jTðJ0ÞK0Q0
jJ0M00ihJMpð�ÞmsjTijJ0M0!nli

� hJM0pð�Þm0sjTþi jJ0M00!nl0i ð11Þ
where the asterisk denotes the conjugate complex matrix. The angular

dependency is now contained in the transition matrix elements.

The matrix elements of the irreducible tensors may be expressed in terms

of 3j-symbols

BðK0Q0,��;KQ,kqÞ
¼

X

MM0msm
0
s

M0M
0
0
ll0

hJMpð�ÞmsjTijJ0M0!nlihJM0pð�Þm0sjTþi jJ0M00!nl0i

�ð�1ÞJ�MþJ0�M0þ3=2�ms�l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Kþ1Þð2K0þ1Þð2kþ1Þð2� þ1Þ

p

�
1=2 1=2 k

ms �m0s �q

� �
1 1 �

l �l0 ��

� �
J0 J0 K0

M0 �M00 �Q0

� �
J J K

M �M0 �Q

� �
:

ð12Þ

Table I

The state multipoles of an arbitrarily polarized photon beam and their connection

to the Stokes parameters. The photon beam axis has been chosen as quantization

axis. Multipoles of rank K>2 must be zero due to dipole-selection rules.

State

multipoles

Stokes

parameters

Stokes

parameters

State

multipoles

hT þ00i ¼
Iffiffiffi
3
p I ¼

ffiffiffi
3
p
hT þ00i

hT þ10i ¼
Iffiffiffi
2
p 
2 I
2 ¼

ffiffiffi
2
p
hT þ10i

hT þ1	1i ¼ 0

hT þ20i ¼
1ffiffiffi
2
p hT þ00i ¼

Iffiffiffi
6
p I ¼

ffiffiffi
6
p
hT þ20i ¼

ffiffiffi
3
p

2
ðhT þ00i þ

ffiffiffi
2
p
hT þ20iÞ

hT þ2	1i ¼ 0

hT þ22i ¼
I

2
ð�
3 þ i
1Þ I
3 ¼ �2RehT þ22i

hT þ2�2i ¼ hT þ22i
 ¼ I

2
ð�
3 � i
1Þ I
1 ¼ 2ImhT þ22i
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Following some textbooks on scattering theory, e.g. Amusia (1990), we

expand the transition matrix elements in terms of dipole matrix elements

(see Appendix A).

hJMpð�ÞmsjTijJ0M0!nli

¼ hJMpð�ÞmsjdljJ0M0i

¼ 1ffiffiffiffiffiffiffiffi
jpj2

p
X
‘mjmj
J1M1

ð�iÞ‘ei�
j

‘Y‘mðp̂pÞhðJjÞJ1kdkJ0ið�1Þ�‘þ1=2þmj�JþjþJ1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ1Þð2J1þ1Þ

p ‘ 1=2 j

m ms �mj

 !
J j J1

M mj �M1

 !
J1 1 J0

�M1 l M0

 !
:

ð13Þ

Inserting Eq. (13) twice into Eq. (12) and rearranging the phase factors

the B coefficient can be contracted and we remain with (see Appendix B)

BðK0Q0,��;KQ,kqÞ

¼ 1

4�jpj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Kþ1Þð2K0þ1Þð2kþ1Þð2� þ1Þ

p

�
X

LM
a�b�

X
‘jJ1
‘0 j0J0

1

i‘þ‘
0
eið�

j

‘��
j0
‘0 Þð2aþ1Þð2bþ1Þð2Lþ1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ1Þð2‘0þ1Þ

p
DðLÞM0ðp̂pÞ



�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ1Þð2j0þ1Þð2J1þ1Þð2J 01þ1Þ

p
hðJjÞJ1kdkJ0ihðJj0ÞJ 01kdkJ0i

�ð�1ÞJ 01�J1þLþMþk�q

�
‘ ‘0 L

0 0 0

 ! L k a

M q �

 !
K0 b �

�Q0 � ��

 !
K a b

�Q � �

 !

�

K0 b �

J0 J1 1

J0 J 01 1

8
>>><
>>>:

9
>>>=
>>>;

K a b

J j J1

J j0 J 01

8
>>><
>>>:

9
>>>=
>>>;

L k a

‘ 1=2 j

‘0 1=2 j0

8
>>><
>>>:

9
>>>=
>>>;
: ð14Þ

Equation (14) gives an important result. It represents the most general

contracted form of the anisotropy parameter B. Within the applied two-step
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model, the B parameters provide the full information about the primary

photoionization/excitation process. They contain the ionization dynamics

via the transition matrixs and the scattering phases, as well as the angular

dependency which is given via the rotation matrices. So far, an arbitrarily

polarized synchrotron radiation beam has been assumed. Besides the fact

that we are considering transitions with a resolved initial and final state fine

structure, no further assumptions have been made on the polarization state

of the atom and excited ion, respectively. Thus, the possibility of coincidence

experiments with polarized atoms is included, too. Equation (14) allows also

for an electron–photon coincidence experiment where the spin polarization

of the photelectron is observed together with the polarization of the emitted

fluorescence radiation.

Inspecting Eq. (14) more closely, due to coupling rules, we find the

following general restrictions for the quantum numbers

0 
 � 
 2, 0 
 K0 
 2J0, 0 
 K 
 2J and 0 
 k 
 1: ð15Þ

The restriction on � is a result of the dipole approximation, whereas K0 and

K are limited by the total angular momenta J0 and J of the initial and

intermediate state of the target. The restriction on k is due to the fact that

the observed photoelectrons are spin 1=2 particles.

Note, that due to parity conservation in photoionization the emitted

partial waves must have the same parity. Therefore, the angular momentum

coupling rule of the first 3j-symbol restricts L to even values, i.e.

ð�1ÞL ¼ 1: ð16Þ

Further, we note that due to the dipole approximation either J1 ¼ J0 or

J1 ¼ J0 	 1 must be fulfilled.

It is often more convenient to introduce a so-called irreducible statistical

product tensor hT ðTK , tk; p̂pÞþK	i, see e.g. Brink and Satchler (1962), eq. (4.6),

combining the tensorial sets TðJÞþKQ and tðp̂pÞþkq, referring to the excited

intermediate ionic and photoelectronic states, respectively.

hT ðTK , tk; p̂pÞþK	i ¼
X

Qq

ð�1Þk�Kþ	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Kþ 1Þ

p K k K
Q q �	

� �
hTðJÞþKQ � tðp̂pÞþkqi:

ð17Þ

Note, that the product tensor is defined with respect to a fixed direction p̂p

of photoelectron emission.
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Expressing the product tensors hT ðTK , tk; p̂pÞþK	i with the help of Eq. (9)

and including the remaining phase factor, we may write

hT ðTK , tk; p̂pÞþK	i ¼
X

K0Q0��

hTðJ0ÞþK0Q0
ihT þ��iCðK0Q0,��;K , k,K	Þ, ð18Þ

where the introduced C coefficient is defined as

CðK0Q0,��;K , k,K	Þ ¼
X

Qq

ð�1Þk�Kþ	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Kþ 1Þ

p K k K

Q q �	

 !

� BðK0Q0,��;KQ, kqÞ: ð19Þ

For the remainder of this work we will use the irreducible product tensors

introduced by Eq. (17). Therefore, it is appropriate to use the introduced C

coefficients instead of the B coefficients. That is, we will deal with the

C coefficients as the general anisotropy parameters describing the primary

ionization/excitation process. Inserting Eq. (14) into the above expression

the summation over the magnetic quantum numbers Q, q, and � can be

carried out, where the 1st, 3rd, and 5th 3j-symbols can be combined to form

a 6j-symbol. This yields

CðK0Q0,��;K ,k,K	Þ

¼ 1

4�jpj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Kþ1Þð2Kþ1Þð2K0þ1Þð2kþ1Þð2� þ1Þ

p

�
X

LM
ab�

X
‘jJ1
‘0 j0J0

1

i‘þ‘
0
eið�

j

‘��
j0
‘0 Þð2aþ1Þð2bþ1ÞhðJjÞJ1kdkJ0ihðJj0ÞJ 01kdkJ0iD

ðLÞ
M0ðp̂pÞ



�ð2Lþ1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ1Þð2‘0þ1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ1Þð2j0þ1Þð2J1þ1Þð2J 01þ1Þ

p

�ð�1ÞKþJ 01�J1�a�b

�
‘ ‘0 L

0 0 0

 !
L b K

�M � �	

 !
K0 b �

�Q0 � ��

 !

�
L b K

K k a

( ) K0 b �

J0 J1 1

J0 J 01 1

8
>><
>>:

9
>>=
>>;

K a b

J j J1

J j0 J 01

8
>><
>>:

9
>>=
>>;

L k a

‘ 1=2 j

‘0 1=2 j0

8
>><
>>:

9
>>=
>>;
, ð20Þ
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where ð�1Þ2ðMþqÞ ¼ 1 has been used. Eventually, we note that the

restrictions of Eqs. (15) and (16) for the quantum numbers do apply for

the C coefficients, too. An extensive discussion of the C coefficients for

different experimental set-ups will be given in Section III.

Especially, the selection rule for L to be an even number needs some

further considerations since it implies that the angular dependency of the

photoelectrons is given by rotation matrices of even rank, only.

DðLÞM 0ðp̂pÞ
 6¼ 0 for L even: ð21Þ

Where it is a well-known fact that for an unpolarized synchrotron

radiation beam and an unpolarized target the angular dependency of a

photoionization process is given by the second Legendre polynomial, the

usual so-called �-dependency of the photoelectron, it might be somewhat

surprising to find the spherical harmonics restricted to those of even rank.

Mainly, if one considers that this is a general result which is also valid, e.g.

for a polarized atom and/or an arbitrarily polarized synchrotron radiation

beam. This result can be however explained by keeping in mind that we

applied the dipole approximation.

Generally, the radiation field can be expressed as a linear combination of

its electric and magnetic components of the transverse field, having parity

ð�1ÞLþ1 and ð�1ÞL, respectively.
In the dipole approximation the magnetic component of the radiation

field is neglected and only the zero-order part, i.e. L ¼ 0, of its electric

component is taken into account. Due to this, the parity of all emitted

partial waves must be the same for electric dipole transitions, which

eventually restricts the spherical harmonics to even rank. That is, spherical

harmonics of an odd rank can contribute to the angular distribution of

emitted photoelectrons only if magnetic multipole transitions or higher

order terms of the electric component of the radiation field are taken into

account.

C. EMISSION OF FLUORESCENCE RADIATION

Considering the final state and using Eqs. (6) and (7) the fluorescence

radiation to be detected can be expressed in terms of state multipoles as

hT ðx̂xÞþh � tðp̂pÞþkqi ¼ tr q̂qfinT ðx̂xÞþh � tðp̂pÞþkq
� �

¼ tr Tf q̂qoutT
þ
f ½T ðx̂xÞ

þ
h � tðp̂pÞþkq�

� �
, ð22Þ
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where the tensors T ðx̂xÞþh refer to the fluorescence photon. Its direction of

emission is given by the solid angle x̂x. By using

q̂qout ¼
X

KQ0kq

hTðJÞþKQ0 � tðp̂pÞþ
kq
iTðJÞKQ0 � tðp̂pÞ

kq
ð23Þ

we get

hT ðx̂xÞþh � tðp̂pÞþkqi ¼
X

KQ0kq

hTðJÞþKQ0 � tðp̂pÞþ
kq
iAðKQ0, kq, h, kqÞ, ð24Þ

where the anisotropy parameter A is defined as

AðKQ0, kq, h, kqÞ ¼ tr Tf ½TðJÞKQ0 � tðp̂pÞ
kq
�Tþf ½T ðx̂xÞ

þ
h � tðp̂pÞþkq�

� �
: ð25Þ

The introduction of the anisotropy parameter A is analogously to the

discussion in the previous section. While the B or C coefficients contain the

information on the primary ionization/excitation; dynamics, the A coeffi-

cients yield information on the dynamics of the fluorescence radiation

emission, i.e. the second step according to Eq. (1), respectively.

Inserting complete basis sets the anisotropy parameter A can be

expressed as

AðKQ0, kq, h, kqÞ ¼
X

Mf msm
0
s��0

MM0MsM
0
s

hJfMf�N�pð�ÞmsjTf jJMpð�ÞMsi

� hJMpð�ÞMsjTðJÞKQ0 � t
kq
jJM0pð�ÞM0si

� hJM0pð�ÞM0sjTþf jJfMf�N�0pð�Þm0si
� h�0jT þhj�ihm0sjtþkqjmsi: ð26Þ

Here, jJfMf i denotes total angular momentum and its magnetic component

of the final ionic state. The fluorescence photon is described by j�N�i
where � is the photon energy, N denotes the direction of emission of the

emitted fluorescence photon, and � is the helicity of the photon state.

The transition operator Tf describes the de-excitation via fluorescence

photon emission. Thus, the transition matrix elements are orthogonal with

respect to the magnetic spin quantum numbers of the photoelectron. This

immediately yields the selection rules

ms ¼Ms and m0s ¼M0s, ð27Þ
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and the anisotropy parameter A can be reduced to

AðKQ0,kq,h,kqÞ ¼
X

Mf msm
0
s

��0MM0

hJfMf�N�jTf jJMihJMjTðJÞKQ0 jJM0i

� hmsjtkqjm
0
sihJM0jTþf jJfMf�N�0ih�0jT þhj�ihm0sjtþkqjmsi

Applying the orthonormality condition of the 3j-symbols the sum over ms

and m0s can be carried out which yields

trðt
kq
tþkqÞ ¼

X

msm0s

hmsjtkqjm
0
sihm0sjtþkqjmsi ¼ �kk�qq, ð29Þ

where �xy denotes the Kronecker symbol.

Thus, A can be further reduced and results in

AðKQ0, kq, h, kqÞ ¼
X

Mf ��0

MM0

hJfMf�N�jTf jJMi

� hJMjTðJÞKQ0 jJM0ihJM0jTþf jJfMf�N�0ih�0jT hj�i

¼ AðKQ0, hÞ: ð30Þ

Expressing the irreducible tensors in terms of 3j-symbols we get

AðKQ0,hÞ¼
X

Mf ��0

MM0

hJfMf�N�jTf jJMihJfMf�N�0jTþf jJM0i

�ð�1ÞJ�Mþ1��0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Kþ1Þð2hþ1Þ

p J J K

M �M0 �Q0

 !
1 1 h

� ��0 �

 !
:

ð31Þ

Thus, the anisotropy parameter A depends on the tensorial rank of the

fluorescence photon and the intermediate excited ionic state, only. With this,

Eq. (24) simplifies, too.

hT ðx̂xÞþh � tðp̂pÞþkqi ¼
X

KQ0
hTðJÞþKQ0 � tðp̂pÞþkqiAðKQ0, hÞ: ð32Þ
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Following a similar procedure as for the anisotropy parameter B

(see Appendix C), the dipole approximation can be applied to the fluor-

escence transition matrix elements. By using the Wigner–Eckart theorem the

matrix elements can be replaced by the reduced transition matrices and

by summing over all magnetic quantum numbers the anisotropy parameter

A can be written as

AðKÞ ¼ AðKQ0, hÞ

¼ �hK�Q0 ð�1ÞJþJfþ1�K jhJf kDkJij2
J J K

1 1 Jf

� �
: ð33Þ

This is the angular distribution parameter of photon emission derived by

Berezhko and Kabachnik (1977) using a slightly different notation. It is

discussed in the book by Balashov et al., (2000), too. In particular, we

obtain the normalization parameter A(0) as

Að0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2J þ 1Þ

p jhJf kDkJij2: ð34Þ

This yields some important properties. As can be seen from Eq. (33) all

anisotropy parameters are real numbers. The rank of tensors describing the

fluorescence photon must be the same as for the intermediate ionic state.

The same holds for their magnetic quantum numbers, i.e.

K ¼ h and Q0 ¼ : ð35Þ

The anisotropy parameter A eventually depends only on the tensorial rank

of the intermediate excited ionic state, and it is independent of the magnetic

quantum number.

With this, Eq. (32) simplifies further. The sum over K and Q0 vanishes and
we finally get

hT ðx̂xÞþh � tðp̂pÞþkqi ¼ AðKÞhTðJÞþKQ0 � tðp̂pÞþkqi�hK�Q0 : ð36Þ

Whereas in Eq. (36) the state multipoles htþkqi are already defined with

respect to the incoming synchrotron radiation beam axis as quantization

axis, the tensors hT þKQ0i and thus the anisotropy parameter A are defined

with respect to the axis of radiation emission as quantization axis. Therefore

we need to rotate the quantization axis of the photon system back to the axis
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parallel to the synchrotron radiation beam axis. Using Blum, (1996),

Eq. (4.3.13), and the basic properties of the state multipoles we get

hTðJÞþKQ0 � tðp̂pÞþkqi ¼ TðJÞKQ0 � tðp̂pÞkq
D E

¼ trðq̂qoutTðJÞKQ0 � tðp̂pÞkqÞ
h i

¼
X

Q

DðKÞQQ0 ðx̂xÞtrðq̂qoutTðJÞKQ � tðp̂pÞkqÞ
" #

¼
X

Q

DðKÞQQ0 ðx̂xÞ
hTðJÞþKQ � tðp̂pÞþkqi: ð37Þ

Inserting the above result into Eq. (36) and using Eq. (9) we get

hT ðx̂xÞþKQ0 � tðp̂pÞþkqi ¼ AðKÞ
X

Q

hTðJÞþKQ � tðp̂pÞþkqiD
ðKÞ
QQ0 ðx̂xÞ

, ð38Þ

where

hTðJÞþKQ � tðp̂pÞþkqi ¼
X

K0Q0��

hTðJ0ÞþK0Q0
ihT þ��iBðK0Q0,��;KQ, kqÞ: ð39Þ

Equations (38) and (39) are the most general expressions for any type of

electron–photon coincidence experiment as described in Eq. (1), i.e. so far,

no assumptions have been made on the degree of polarization of the

incoming synchrotron radiation nor on the polarization state of the initial

atomic ensemble. As a matter of fact, by using Eqs. (38) and (39) electron–

photon coincidence experiments of the most general type can be described,

i.e. a simultaneous detection of both, the degree of polarization of the

emitted fluorescence photon, as well as the degree of spin polarization of the

emitted photoelectron.

The dynamics of the primary simultaneous photoionization/excitation is

fully described by the anisotropy parameter B. The information on the

intermediate state ensemble, i.e. the combined system of the singly ionized

excited atom, and of the photoelectron, emitted into a fixed spatial

direction, is given by the state multipoles hTðJÞþKQ � tðp̂pÞþkqi. The dynamics of

de-excitation of the intermediate Rydberg state via fluorescence photon

emission is contained in the anisotropy parameter A, the angular

dependency of the photon system to be observed is provided by the

rotation matrix DðKÞQ0 Qðx̂xÞ, whereas the angular dependency of the photo-

electron is, according to Eq. (14), contained in the B coefficients.
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Equations (38) and (39) may be also expressed by means of the introduced

irreducible statistical product tensors hT ðTK , tk; p̂pÞþK	i and the C coefficients,

hT ðx̂xÞþKQ0 � tðp̂pÞþkqi ¼ AðKÞ
X

K	Q
ð�1ÞK�kþ	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Kþ 1Þ

p K k K
Q q �	

� �

� hT ðTK , tk; p̂pÞþK	iD
ðKÞ
QQ0ðx̂xÞ

, ð40Þ

and

hT ðTK , tk; p̂pÞþK	i ¼
X

K0Q0��

hTðJ0ÞþK0Q0
ihT þ��iCðK0Q0,��;K , k,K	Þ: ð41Þ

Inserting the appropriate quantum numbers into Eqs. (40) and (41), the

general expressions for the angular distribution and spin polarization of the

photoelectron and for the angular distribution and degree of polarization of

the fluorescence radiation can be obtained. We leave this to the discussion in

Section IV.

D. SELECTION OF THE COORDINATE FRAME

Besides the fact that we have initially chosen our quantization axis as

parallel to the synchrotron radiation beam axis, no further assumptions for

the explicit choice of our coordinate system have been made so far. That is,

in our above derivation of the general formalism, the photoelectron is

emitted under the solid angle p̂p ¼ ð#e, ’eÞ whereas the fluorescence photon

is emitted under the angle x̂x ¼ ð�� ,��Þ. The third Euler angles  � and  e can

be generally chosen as zero. The angular dependency of the photoelectron

enters Eq. (20) via the rotation matrices DðLÞM 0ð0,#e, ’eÞ whereas the angular
distribution of the fluorescence photon is contained in the rotation matrices

DðKÞQ0 Qð0, �� ,��Þ of Eq. (40).
For our type of electron–photon coincidence experiment the angular

correlation between photoelectron and fluorescence photon can be

sufficiently described by three angles. That is we may choose an appropriate

coordinate system which suits the experimental setup. We will discuss two

possibilities.

First, suppose a reaction plane defined by the incoming beam axis and

the direction of emission of the fluorescence photon (see Fig. 2). It is then

sufficient to describe the direction of emission by a single angle
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x̂x ¼ ð0, �� , 0Þ. The rotation matrix can then be reduced to a real matrix and

Eq. (40) may be written as

hT ðx̂xÞþKQ0 � tðp̂pÞþkqi ¼ AðKÞ
X

K	Q
ð�1ÞK�kþ	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Kþ 1Þ

p K k K
Q q �	

� �

� hT ðTK , tk; p̂pÞþK	id
ðKÞ
QQ0 ð��Þ: ð42Þ

The angular dependency of the photoelectron must then be expressed by the

complex rotation matrices DðLÞM 0ð0,#e, ’eÞ.
On the other hand, we may define our reaction plane by the incoming

beam axis and the direction of photoelectron emission (see Fig. 3). Thus, the

angular dependency of the photoelectron becomes independent on the polar

angle ’e, and the complex rotation matrices can be reduced to real matrices

DðLÞM 0ð0,#e, 0Þ
 ¼ d

ðLÞ
M 0ð#Þe: ð43Þ

However, the angular distribution of the fluorescence photon is then

expressed by the complex rotation matrices DðKÞQQ0ð0, �� ,��Þ and Eq. (40)

must be used.

FIG. 2. The choice of the coordinate system for ð�, e�Þ coincidence experiments. The reaction

plane is spanned by the incoming synchrotron beam axis � and the direction of emission of the

fluorescence photon h. �� is the angle of photon emission. The photoelectron e� is generally

observed outside the reaction plane. The direction of photoelectron emission is denoted by the

azimuthal angle #e and polar angle ’e, respectively.
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This definition has been widely used in the description of electron–photon

coincidence experiments, e.g. Beyer et al. (1995), West et al. (1996).

Throughout the remainder of the discussion we will use this choice of

coordinate frame. That is, we have p̂p ¼ ð0,#e, 0Þ.
Unfortunately, a contraction of the two rotation matrices is not possible

for the general case. Only in the special case that either Q or Q0 of the

rotation matrix DðKÞQQ0 ð0, �� ,��Þ is equal to zero, both rotation matrices can

be expressed in terms of spherical harmonics which then can be contracted

to form bipolar spherical harmonics. Therefore, we leave the angular

dependency in the uncoupled form.

E. SYMMETRIES OF THE C COEFFICIENTS

In order to minimize the calculational effort we can derive symmetry

relations for the introduced C coefficients. Forming the complex conjugate

of Eq. (20) and using the fact that ð�1Þ‘þ‘0 ¼ 1, since ‘ and ‘0 must have the

same parity, we interchange the indices of summation according to

j !j0, ‘ !‘0, J1 !J 01, M !�M, and � !� �: ð44Þ

FIG. 3. The alternative choice of the coordinate system for ð�, e�Þ coincidence experiments.

The reaction plane is spanned by the incoming synchrotron beam axis � and the direction

of emission of the outgoing photoelectron e�. #e denotes the photoelectron emission angle. The

fluorescence photon h is generally observed outside the reaction plane. The direction

of fluorescence photon emission is denoted by the azimuthal angle �� and polar angle �� ,
respectively.
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Using the symmetry relations of the 9j-symbols and those of the rotation

matrices and the 3j-symbols, i.e.M¼ 	� � �Q0, and, eventually the fact

that, according to Eq. (21), L is even, we obtain as symmetry relation for the

C coefficients

CðK0Q0,��;K, k,K	Þ ¼ ð�1ÞKþkþKþ1þ	���Q0

� CðK0 �Q0,� � �;K , k,K� 	Þ: ð45Þ

The symmetry relation (45) is generally valid for any of the C coefficients.

However, for a particular choice of the coordinate frame we might be able to

find additional symmetries. As has been discussed in Section II.D, we

choose our coordinate frame as is shown in Fig. 3. Then, our reaction plane

is spanned by the incoming synchrotron beam and the direction of

photoelectron emission and according to Eq. (43) the angular dependency

of the C coefficients can be written in form of the real, reduced rotation

matrices.

CðK0Q0,��;K ,k,K	Þ

¼ 1

4�jpj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Kþ 1Þð2K þ 1Þð2K0þ 1Þð2kþ 1Þð2� þ 1Þ

p

�
X

LM
ab�

X
‘jJ1
‘0 j0J0

1

i‘þ‘
0
eið�

j

‘
�� j 0

‘ 0 Þð2aþ 1Þð2bþ 1ÞhðJjÞJ1kdkJ0ihðJj0ÞJ 01kdkJ0id
ðLÞ
M0ð#eÞ

� ð2Lþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð2‘0þ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ 1Þð2j0þ 1Þð2J1þ 1Þð2J 01þ 1Þ

p

�ð�1ÞKþJ 01�J1�a�b

�
‘ ‘0 L

0 0 0

 !
L b K

�M � �	

 !
K0 b �

�Q0 � ��

 !

�
L b K

K k a

( ) K0 b �

J0 J1 1

J0 J 01 1

8
>><
>>:

9
>>=
>>;

K a b

J j J1

J j0 J 01

8
>><
>>:

9
>>=
>>;

L k a

‘ 1=2 j

‘0 1=2 j0

8
>><
>>:

9
>>=
>>;
: ð46Þ

Following the same method as above, we form the complex conjugate of

Eq. (46) and interchange the indices of

j !j0, ‘ !‘0, and J1 !J 01, ð47Þ
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only. Applying the symmetry relations of the nj-symbols and re-arranging

the phase factor, we obtain

CðK0Q0,��;K , k,K	Þ

¼ ð�1ÞKþK0þ��	�Q0��CðK0 �Q0,� � �;K , k,K� 	Þ: ð48Þ

In a similar way but interchanging

M !�M, and � !� �, ð49Þ

only, we obtain

CðK0Q0,��;K , k,K	Þ

¼ ð�1ÞK0þKþkþ�þ1CðK0 �Q0,� � �;K , k,K� 	Þ: ð50Þ

The symmetry relations (48) and (50) are valid for our specific choice of

the coordinate frame. Both can be identified as special cases of the general

symmetry relation (45). This becomes obvious by noting the fact that

combining relations (48) and (50) yields Eq. (45) again.

The relations (45)–(50) can be further simplified for a specific

experimental setup. For example, let us assume an unpolarized target

which is simultaneously ionized and excited by an unpolarized synchrotron

beam. Then, the target state is sufficiently described by the monopole tensor

hTðJ0Þþ00i, and the synchrotron beam by tensors hT þ� 0i, with � ¼ even,

respectively. Thus, we have K0 ¼ Q0 ¼ � ¼ 0, and ð�1Þ� ¼ 1, and the

symmetry relations can be reduced which yields

Cð00,�0;K , k,K	Þ ¼ ð�1ÞKþkþKþ1þ	Cð00,�0;K , k,K� 	Þ, ð51Þ

for the general case. The symmetry relations depending on the coordinate

frame can be reduced to

Cð00,�0;K, k,K	Þ ¼ ð�1ÞK�	Cð00,�0;K , k,K� 	Þ, ð52Þ

and

Cð00,�0;K , k,K	Þ ¼ ð�1ÞKþkþ1Cð00,�0;K , k,K� 	Þ, ð53Þ

respectively.
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III. Different Experimental Setups

In this section, we will consider different possible experimental setups in

more detail, to point out the general applicability of the derived formalism.

Particularly, the different occurring C coefficients are considered and

reduced where applicable in order to simplify the complex general

expressions.

A. UNPOLARIZED TARGET

The most simple type of coincidence experiments can be done by using an

ensemble of unpolarized atoms. The atomic charge cloud is then isotropic

and therefore, the atomic ensemble is sufficiently described by the zero-rank

state multipole

hTðJ0ÞþK0Q0
i ¼ �K0, 0�Q0, 0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J0 þ 1
p : ð54Þ

Thus, Eq. (41) can be reduced to

hT ðTK , tk; p̂pÞþK	i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2J0 þ 1
p

X

��

hT þ��iCunð��;K , k,K	Þ, ð55Þ

where the coefficient Cun has been defined as

Cunð��;K , k,K	Þ ¼ Cð00,��;K , k,K	Þ: ð56Þ

That is, the coefficient Cun is a special case of the general anisotropy

parameter C. Inserting Eq. (55) into Eq. (40) yields

hT ðx̂xÞþKQ0 � tðp̂pÞþkqi

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J0 þ 1
p AðKÞ

X

K	Q
DðKÞQQ0ðx̂xÞ



� ð�1ÞK�kþ	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Kþ 1Þ

p K k K
Q q �	

� �X

��

hT þ��iCunð��;K , k,K	Þ: ð57Þ

Inserting K0 ¼ Q0 ¼ 0 into Eq. (20) yields the selection rules

� ¼ b and � ¼ �: ð58Þ
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Thus, the sum over b and � can be omitted and the C coefficient can be

further contracted,

Cunð��;K , k,K	Þ

¼ 1

4�jpj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Kþ 1Þð2K þ 1Þð2kþ 1Þð2� þ 1Þ

ð2J0 þ 1Þ

s

�
X

aL

X
‘jJ1
‘0 j0J0

1

i‘þ‘
0
eið�

j

‘��
j0
‘0 Þð2aþ 1ÞhðJjÞJ1kdkJ0ihðJj0ÞJ 01kdkJ0iD

ðLÞ
M 0ðp̂pÞ



� ð2L þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð2‘0 þ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j þ 1Þð2j0 þ 1Þð2J1 þ 1Þð2J 01 þ 1Þ

p

� ð�1Þ1þJ0þJ1þa�Kþ�þ�
‘ ‘0 L
0 0 0

 !
L � K
�M � �	

 !

�
L � K
K k a

( )
J1 1 J0

1 J 01 �

( ) K a �

J j J1

J j0 J 01

8
>><
>>:

9
>>=
>>;

L k a

‘ 1=2 j

‘0 1=2 j0

8
>><
>>:

9
>>=
>>;
: ð59Þ

Note, that the sum overM can be omitted since � and 	 are arbitrary but

fixed numbers. Hence,M is restricted to one value via the selection rule of

the 3j-symbol,

M¼ � � 	: ð60Þ

If we further assume that the initial atomic state has a total angular

momentum J0 ¼ 0, e.g. a 1S0 ground state, the second 6j-symbol yields an

additional selection rule

J1 ¼ J 01 ¼ 1: ð61Þ

Thus, the summation over J1 and J 01 can be omitted and we remain with

CJ0¼0
un ð��;K , k,K	Þ

¼ 1

4�jpj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Kþ 1Þð2K þ 1Þð2kþ 1Þð2� þ 1Þ

p

�
X

aL

X

‘j‘0j0
i‘þ‘

0
eið�

j

‘��
j0
‘0 Þð2aþ 1ÞhðJjÞ1kdk0ihðJj0Þ1kdk0iDðLÞM 0ðp̂pÞ
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� ð2L þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð2‘0 þ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j þ 1Þð2j0 þ 1Þ

p

� ð�1Þa�Kþ�
‘ ‘0 L
0 0 0

� � L � K
�M � �	

� �

�
L � K
K k a

� � K a �

J j 1

J j0 1

8
><
>:

9
>=
>;

L k a

‘ 1=2 j

‘0 1=2 j0

8
><
>:

9
>=
>;
: ð62Þ

B. UNOBSERVED PHOTOELECTRON SPIN

In a recent experiment by Beyer et al. (1995) the degree of polarization of

the fluorescence radiation has been detected angle resolved in coincidence

with the emitted photoelectron. However, the spin polarization of the

photoelectron has not been detected. Theoretically, this case has been

discussed by Kabachnik and Ueda (1995).

For such type of experiment only the monopole terms of the tensors tðp̂pÞþkq
are necessary to describe the photoelectron. Inserting k ¼ q ¼ 0 into Eq. (40)

we get

hT ðx̂xÞþKQ0 � tðp̂pÞþ00i ¼ AðKÞ
X

K	Q
ð�1ÞKþ	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Kþ 1Þ

p K 0 K
Q 0 �	

 !

� hT ðTK , t0; p̂pÞþK	iD
ðKÞ
QQ0ðx̂xÞ

: ð63Þ

From the 3j-symbol we get the selection rules

K ¼ K and Q ¼ 	: ð64Þ

Thus, the summation over K and 	 vanishes and we obtain

hT ðx̂xÞþKQ0 � tðp̂pÞþ00i ¼ AðKÞ
X

Q

hT ðTK , t0; p̂pÞþKQiD
ðKÞ
QQ0ðx̂xÞ

: ð65Þ

Using Eq. (41), we express the irreducible product tensor in terms of

C coefficients and Eq. (65) may be written as

hT ðx̂xÞþKQ0 � tðp̂pÞþ00i ¼ AðKÞ
X

Q

DðKÞQQ0ðx̂xÞ


�
X

K0Q0��

hTðJ0ÞþK0Q0
ihT þ��iCðK0Q0,��;K , 0,KQÞ, ð66Þ
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where the angular dependency on the solid angle p̂p of the emitted

photoelectron is contained in the C coefficient.

Inserting k ¼ 0 into Eq. (20) and using the above selection rules the 6j- and

9j-symbols can be further reduced and give the additional selection rule

L ¼ a: ð67Þ

Thus, the sum over a can be omitted which yields

CðK0Q0,��;K , 0,KQÞ

¼ 1

4�jpj2
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2K0 þ 1Þð2� þ 1Þð2K þ 1Þ

p

�
X

LM
b�

X
‘jJ1
‘0 j0J0

1

i‘þ‘
0
eið�

j

‘��
j0
‘0 Þð2bþ 1ÞhðJjÞJ1kdkJ0i hðJj0ÞJ 01kdkJ0iD

ðLÞ
M 0ðp̂pÞ



� ð2L þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð2‘0 þ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j þ 1Þð2j0 þ 1Þð2J1 þ 1Þð2J 01 þ 1Þ

p

� ð�1ÞJ 01�J1þLþj0þ‘þ1=2
‘ ‘0 L
0 0 0

 !
L b K

�M � �Q

 !
K0 b �

�Q0 � ��

 !

�
j j0 L
‘0 ‘ 1=2

( ) K L b

J j J1

J j0 J 01

8
>><
>>:

9
>>=
>>;

K0 b �

J0 J1 1

J0 J 01 1

8
>><
>>:

9
>>=
>>;
: ð68Þ

An interesting relation can be obtained considering an initial 1S0 ground

state , i.e. J0 ¼ 0. Then, the selection rule J1 ¼ J 01 ¼ 1 applies and therefore

the sum over J1 and J 01 disappears. The last 9j-symbol yields K0 ¼ 0 which

implies Q0 ¼ 0. This yields additional selection rules

b ¼ � and � ¼ �: ð69Þ

Thus, the sum over b and � vanishes and we remain with

CJ0¼0ðK0Q0,��;K , 0,KQÞ ¼ CJ0¼0ð00,��;K , 0,KQÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2K þ 1Þð2� þ 1Þ

2

r

�
X

L

X

‘j‘0j0
i‘þ‘

0
eið�

j

‘��
j0
‘0 ÞhðJjÞ1kdk0ihðJj0Þ1kdk0iDðLÞM 0ðp̂pÞ
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� ð2L þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð2‘0 þ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j þ 1Þð2j0 þ 1Þ

p

� ð�1Þ���þLþj0þ‘þ1=2
‘ ‘0 L
0 0 0

� � L � K

�M � �Q

� �

�
j j0 L
‘0 ‘ 1=2

� � K L �

J j 1

J j0 1

8
><
>:

9
>=
>;
: ð70Þ

Note, that � and Q are arbitrary but fixed numbers for each C coefficient.

Thus,M is also fixed and the sum overM can be omitted.

Comparing this result with the discussion of Section IV.A we find Eq. (70)

as a special case of Eq. (62)

CJ0¼0ð00,��;K , 0,KQÞ ¼ CJ0¼0
un ð��;K , 0,KQÞ: ð71Þ

This result is not that surprising since the considered 1S0 ground state

cannot be polarized. Therefore, for the case J0 ¼ 0 Eq. (71) must exist. On

the other hand, this confirms the fact that additional information in

a coincidence experiment can be obtained only if the target is initially not

in a 1S0 ground state.

C. UNDETECTED PHOTOELECTRON

Often, information on the excited ionic system is only required. In such a

situation the photoelectron is not detected, a case which has been considered

by Bussert and Klar (1983). An appropriate example is the description of the

Auger emission within a two-step model. Here, the anisotropy parameters of

angular distribution and spin polarization of the emitted Auger can be

factorized into a parameter describing the Auger emission and a coefficient

containing the dynamics of the primary ionization/excitation process. As

can be seen from Eq. (41), the latter is proportional to our C coefficient

averaged over the electronic spin, i.e. k ¼ 0, and integrated over the solid

angle p̂p of the direction of photoelectron emission. For our general case of

ð�, e�Þ experiments an undetected photoelectron simply refers to a photo-

excitation followed by a photoemission

�Syn þ A�!A�!Aþ h, ð72Þ

i.e. a two-step, non-coincidence experiment. Integrating Eq. (65) over the

solid angle p̂p yields
Z
hT ðx̂xÞþKQ0 � tðp̂pÞþ00idp̂p ¼ AðKÞ

X

Q

Z
hT ðTK , t0; p̂pÞþKQi dp̂pD

ðKÞ
QQ0 ðx̂xÞ

: ð73Þ
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Expressing the integrated irreducible product tensors in terms of C

coefficients we may write Eq. (73) as

Z
hT ðx̂xÞþKQ0 � tðp̂pÞþ00idp̂p ¼ AðKÞ

X

Q

DðKÞQQ0 ðx̂xÞ


�
X

K0Q0��

hTðJ0ÞþK0Q0
ihT þ��iCionðK0Q0,��;K, 0,K	Þ,

ð74Þ

where we introduced the coefficient Cion by using Eq. (68) of Section III.B as

CionðK0Q0,��;K , 0,KQÞ ¼
Z

CðK0Q0,��;K , 0,KQÞ dp̂p: ð75Þ

Using the orthogonality relations of the rotation matrices

Z
DðLÞM 0ðp̂pÞ

dp̂p ¼ �L, 0�M, 08�
2, ð76Þ

and applying the symmetry relations of the nj-symbols we obtain the

following selection rules

‘ ¼ ‘0, j ¼ j0 and b ¼ K , � ¼ Q: ð77Þ

Thus, the summation over b, �, j0, and ‘0 can be omitted and by further

reducing the 9j-symbol we eventually get

CionðK0Q0,��;K , 0,KQÞ

¼
ffiffiffi
2
p
�

jpj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2K0 þ 1Þð2� þ 1Þð2K þ 1Þ

p

�
X

‘jJ1J 01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J1 þ 1Þð2J 01 þ 1Þ

p
hðJjÞJ1kdkJ0ihðJjÞJ 01kdkJ0i

� ð�1ÞJþjþJ1þQ
K0 K �

�Q0 Q ��

� �
J J K

J1 J 01 j

� � K0 K �

J0 J1 1

J0 J 01 1

8
><
>:

9
>=
>;
,

ð78Þ

as the general parameter describing the dynamics of the primary ionization/

excitation process for a non-coincidence experiment.
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Considering the case of an unpolarized atom (see Section III.A and

Bussert and Klar, 1983) Eq. (78) can be further reduced. Inserting

K0 ¼ Q0 ¼ 0 and reducing the nj-symbols we obtain

CionðKÞ ¼ Cionð00,��;K , 0,KQÞ�K,� �Q, �

¼ �

jpj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2J0 þ 1

s
X

‘jJ1J 01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J1 þ 1Þð2J 01 þ 1Þ

p
hðJjÞJ1kdkJ0ihðJjÞJ 01kdkJ0i

� ð�1ÞJ0þ1þJ 01þJ1þJþj
J J K

J1 J 01 j

� �
1 1 K

J1 J 01 J0

� �
: ð79Þ

Thus, the C coefficient depends on the tensorial rank � of the photonic

states, only. Therefore, combining Eqs. (55) and (79), Eq. (74) can be

reduced to

Z
hT ðx̂xÞþKQ0 � tðp̂pÞþ00idp̂p ¼ �K,� �Q, �

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J0 þ 1
p AðKÞ

X

Q

DðKÞQQ0 ðx̂xÞ
hT þ��iCionðKÞ:

ð80Þ

Eventually, assuming the initially unpolarized atoms to be in a J0 ¼ 0

ground state, e.g. the rare gases, we obtain an additional selection rule

J1 ¼ J 01 ¼ 1, ð81Þ

and the above expression can be further reduced which eventually yields

CJ0¼0
ion ðKÞ ¼

ffiffiffi
2
p
�

jpj2
X

‘j

ð�1ÞJ0þJ 01þJþj�K hðJjÞ1kdk0i


 

2 J J K

1 1 j

� �
: ð82Þ

D. UNPOLARIZED ATOMS AND UNDETECTED ELECTRON SPIN

If the photoelectron spin is not detected the selection rules of Eq. (64) apply.

Thus, Eq. (66) reduces to

hT ðx̂xÞþKQ0 � tðp̂pÞþ00i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2J0 þ 1
p AðKÞ

X

Q

DðKÞQQ0 ðx̂xÞ


�
X

��

hT þ��iCunð��;K , 0,KQÞ, ð83Þ
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where the coefficient Cun has been given in Eq. (59). Inserting k ¼ 0 into

Eq. (59) and reducing the nj-symbols yield L ¼ a and we remain with

Cunð��;K , 0,KQÞ

¼ 1

4�jpj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2K þ 1Þð2� þ 1Þ

2ð2J0 þ 1Þ

s

�
X

L

X
‘jJ1
‘0 j0J0

1

i‘þ‘
0
eið�

j

‘��
j0
‘0 ÞhðJjÞJ1kdkJ0ihðJj0ÞJ 01kdkJ0iD

ðLÞ
M 0ðp̂pÞ



� ð2L þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð2‘0 þ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j þ 1Þð2j0 þ 1Þð2J1 þ 1Þð2J 01 þ 1Þ

p

� ð�1ÞJ0þJ1þ�þLþ‘þj0þ3=2
‘ ‘0 L

0 0 0

 !
L � K

�M � �Q

 !

�
J1 1 J0

1 J 01 �

( )
‘0 ‘ L

j j0 1=2

( ) K L �

J j J1

J j0 J 01

8
>><
>>:

9
>>=
>>;
, ð84Þ

where ð�1Þ2K ¼ 1 has been used. Note, that M¼ � � 	 and thus

M¼ � �Q still holds.

For an initial 1S0 ground state we have J0 ¼ 0 which implies J1 ¼ J 01 ¼ 1

which eventually yields

CJ0¼0
un ð��;K , 0,KQÞ

¼ 1

4�jpj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2K þ 1Þð2� þ 1Þ

2

r

�
X

L

X

‘j‘0j0
i‘þ‘

0
eið�

j

‘
��j

0
‘0 ÞhðJjÞ1kdk0ihðJj0Þ1kdk0iDðLÞM 0ðp̂pÞ



� ð�1Þ���þLþ‘þj0þ1=2ð2L þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð2‘0 þ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j þ 1Þð2j0 þ 1Þ

p

�
‘ ‘0 L
0 0 0

 !
L � K

�M � �Q

 !
‘0 ‘ L
j j0 1=2

( ) K L �

J j 1

J j0 1

8
><
>:

9
>=
>;
: ð85Þ

This result is not surprising since it is identical to the special case of Eq. (70)

which has been discussed in Section III.B.
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Integrating Eq. (84) over the solid angle p̂p we should end up with the

result of Section III.C for an unpolarized target, i.e. Eq. (79). Using

the orthogonality of the rotation matrices, Eq. (76), and reducing the

nj-symbols gives the additional selection rules

‘ ¼ ‘0, j ¼ j0 and � ¼ K , � ¼ Q, ð86Þ

and we obtain

Z
Cunð��;K , 0,KQÞ dp̂p

¼ �L, 0�M, 0�‘, ‘0�j, j0�� ,K��,Q

� �

jpj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ð2J0 þ 1Þ

s
X

‘jJ1J 01

hðJjÞJ1kdkJ0ihðJjÞJ 01kdkJ0i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J1 þ 1Þð2J 01 þ 1Þ

p

� ð�1ÞJ0þJ1þJ 01þJþjþ1
1 1 K

J1 J 01 J0

( )
J J K

J1 J 01 j

( )
: ð87Þ

Thus, we end up with the expected result

Z
Cunð��;K , 0,KQÞ dp̂p ¼ CionðKÞ: ð88Þ

E. UNOBSERVED ION STATE

For this case we observe the photoelectron while the ion remains

undetected. This case has been widely discussed throughout the literature.

It has been first investigated by Jacobs (1972), Kabachnik and Sazhina

(1976) and reviewed by Cherepkov (1983). A further discussion has been

given more recently by Balashov et al. (2000). However, we include it since it

occurs as a special case of our general approach. Here, the ionic state is fully

described by the isotropic monopole terms of the tensors TðJÞKQ. Thus, we
have K ¼ 0 which requires Q ¼ Q0 ¼ 0, too. Inserting into Eq. (40) gives

hT ðx̂xÞþ00 � tðp̂pÞþkqi ¼
X

K	
ð�1Þk�	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Kþ 1Þ

p 0 k K
0 q �	

� �
� hT ðT0, tk; p̂pÞþK	i,

ð89Þ
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The 3j-symbol yields the selection rules

k ¼ K and q ¼ 	: ð90Þ

Thus, the summation over K and 	 vanishes and we obtain the simple

relation

hT ðx̂xÞþ00 � tðp̂pÞþkqi ¼ hT ðT0, tk; p̂pÞþkqi, ð91Þ

Due to the selection rules for the photoelectron tensors tðp̂pÞþkq, generalized
product tensors of rank k 
 1 can occur, only. Therefore, the number of

independent parameters to be determined in such type of experiment is

significantly reduced compared to the general case. We will consider this

point in more detail in Section IV.

Using Eq. (41), we express the irreducible product tensor in terms of

C coefficients and Eq. (91) may be written as

hT ðx̂xÞþ00 � tðp̂pÞþkqi ¼
X

K0Q0��

hTðJ0ÞþK0Q0
ihT þ��iCðK0Q0,��; 0, k, kqÞ, ð92Þ

where the angular dependence on the solid angle p̂p is contained in the

C coefficient.

Inserting K ¼ 0 and using the selection rules of Eq. (90) in Eq. (20) we get

the selection rule a ¼ b from the 6j-symbol, and reduction of the nj-symbols

yields

CðK0Q0,��; 0, k, kqÞ

¼ 1

4�jpj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2K0 þ 1Þð2kþ 1Þð2� þ 1Þ

ð2J þ 1Þ

s

�
X

LM
b�

X
‘jJ1
‘0 j0J 0

1

i‘þ‘
0
eið�

j

‘��
j0
‘0 Þð2bþ 1ÞhðJjÞJ1kdkJ0ihðJj0ÞJ 01kdkJ0iD

ðLÞ
M 0ðp̂pÞ



� ð2L þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð2‘0 þ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j þ 1Þð2j0 þ 1Þð2J1 þ 1Þð2J 01 þ 1Þ

p

� ð�1ÞkþLþJþJ 01þj0
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�
‘ ‘0 L
0 0 0

� � L b k

�M � �q

� �
K0 b �

�Q0 � ��

� �

�
j j0 b

J 01 J1 J

� � K0 b �

J0 J1 1

J0 J 01 1

8
><
>:

9
>=
>;

L k b

‘ 1=2 j

‘0 1=2 j0

8
><
>:

9
>=
>;
: ð93Þ

Equation (93) is the general result for the C coefficient for the considered

type of experiment.

If we further assume an unpolarized target we have K0 ¼ Q0 ¼ 0.

Inserting into Eq. (92) gives

hT ðx̂xÞþ00 � tðp̂pÞþkqi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2J0 þ 1
p

X

��

hT þ��iCð00,��; 0, k, kqÞ: ð94Þ

After reducing Eq. (93) we get further selection rules

b ¼ � and � ¼ �, ð95Þ

and we end up with

Cð00,��; 0, k, kqÞ

¼ 1

4�jpj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2kþ 1Þð2� þ 1Þ
ð2J0 þ 1Þð2J þ 1Þ

s

�
X

L

X
‘jJ1
‘0 j0J0

1

i‘þ‘
0
eið�

j

‘��
j0
‘0 ÞhðJjÞJ1kdkJ0ihðJj0ÞJ 01kdkJ0iD

ðLÞ
M 0ðp̂pÞ



� ð2L þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð2‘0 þ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j þ 1Þð2j0 þ 1Þð2J1 þ 1Þð2J 01 þ 1Þ

p

� ð�1ÞkþLþJþJ0þ2J 01þj0þ1��
‘ ‘0 L
0 0 0

� � L � k

�M � �q

� �

�
J 01 J1 �

j j0 J

� �
J 01 J1 �

1 1 J0

� � L k �

‘ 1=2 j

‘0 1=2 j0

8
><
>:

9
>=
>;
: ð96Þ

In Eq. (96) the sum over M can be omitted since the selection rule of

Eq. (60) applies. Equation (96) is a special case of Eq. (59)

Cð00,��; 0, k, kqÞ ¼ Cunð��; 0, k, kqÞ: ð97Þ
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Supposing a 1S0 atomic ground state we have J0 ¼ 0 which yields

J1 ¼ J 01 ¼ 1, and the sum over J1 and J 01 can be omitted. After some

reduction we arrive at

Cð00,��;0,k,kqÞ¼ 1

4�jpj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2kþ1Þð2� þ1Þ
ð2Jþ1Þ

s

�
X

L

X

‘j‘0j0
i‘þ‘

0
eið�

j

‘��
j0
‘0 ÞhðJjÞ1kdk0ihðJj0Þ1kdk0iDðLÞM0ðp̂pÞ



�ð2Lþ1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ1Þð2‘0þ1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ1Þð2j0þ1Þ

p

�ð�1ÞkþLþJþj0þ1þ���
‘ ‘0 L
0 0 0

� � L � k

�M � �q

� �

�
1 1 �

j j0 J

� � L k �

‘ 1=2 j

‘0 1=2 j0

8
><
>:

9
>=
>;
: ð98Þ

Eventually, if not observing the photoelectron spin we have k ¼ q ¼ 0,

and the nj-symbols yield further selection rules

� ¼ L and M¼ �, ð99Þ

and after some reduction we obtain

Cð00,��;0, 0, 00Þ ¼ 1

4�jpj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� þ 1Þ

2ð2J0 þ 1Þð2J þ 1Þ

s

�
X
‘jJ1
‘0 j0J0

1

i‘þ‘
0
eið�

j

‘��
j0
‘0 ÞhðJjÞJ1kdkJ0ihðJj0ÞJ 01kdkJ0iD

ð� Þ
� 0 ðp̂pÞ



�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð2‘0 þ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ 1Þð2j0 þ 1Þð2J1 þ 1Þð2J 01 þ 1Þ

p

� ð�1Þ�þJþJ0þ2J 01þ‘þ1=2
‘ ‘0 �

0 0 0

� �

�
‘ ‘0 �

j0 j 1=2

� �
J 01 J1 �

j j0 J

� �
J 01 J1 �

1 1 J0

� �
: ð100Þ

Equation (100) is related to the well-known angular distribution

parameter of photoelectron emission, the � parameter of photoionization,

e.g Kabachnik and Sazhina (1976), Berezhko and Kabachnik (1977),

Balashov et al., 2000.
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For completeness we consider the 1S0 ground state, i.e. we have

J1 ¼ J 01 ¼ 1, and we remain with

CJ0¼0ð00,��; 0, 0, 00Þ

¼ 1

4�jpj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� þ 1Þ
2ð2J þ 1Þ

s

�
X

‘j‘0j0
i‘þ‘

0
eið�

j

‘
��j

0
‘0 ÞhðJjÞ1kdk0ihðJj0Þ1kdk0iDð� Þ� 0 ðp̂pÞ



�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð2‘0 þ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j þ 1Þð2j0 þ 1Þ

p

� ð�1ÞJþ‘þ1=2
‘ ‘0 �

0 0 0

� �
‘ ‘0 �

j0 j 1=2

� �
1 1 �

j j0 J

� �
: ð101Þ

F. THE NORMALIZATION PARAMETER

In order to express the C coefficient in terms of relative parameters we

eventually consider the normalization coefficient Cð00, 00; 0, 0, 00Þ. Using

the results of Section III.E and inserting � ¼ � ¼ 0 into Eq. (100) the

nj-symbols give additional selection rules

‘ ¼ ‘0, j ¼ j0 and J1 ¼ J 01, ð102Þ

and reducing the relevant nj-symbols eventually yields

Cð00, 00; 0, 0, 00Þ ¼ 1

4�jpj2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6ð2J0 þ 1Þð2J þ 1Þ
p

X

‘jJ1

jhðJjÞJ1kdkJ0ij2 ð103Þ:

Thus, we find the normalization parameter Cð00, 00; 0, 0, 00Þ proportional
to the transition rate of photoionization.

G. NORMALIZATION OF GENERALIZED ANISOTROPY PARAMETERS

In Section IV we will derive the general equations of angular distribution

and of spin and fluorescence polarization, respectively. Therefore, we need

to consider the normalization of the occurring parameters. As we will see

later on, the photoelectron intensity Iðp̂pÞ as well as the total intensity I0
are both related to the zero-order generalized tensor hT ðT0, t0; p̂pÞþ00i.
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Its determination is also necessary for defining the generalized irreducible

anisotropy parameters of alignment and orientation in terms of relative

parameters. From Eq. (41) we find

hT ðT0, t0; p̂pÞþ00i ¼
X

K0Q0��

hTðJ0ÞþK0Q0
ihT þ��iCðK0Q0,��; 0, 0, 00Þ: ð104Þ

Thus, we need to determine the relevant C coefficients of Eq. (104) Using

the result of Eq. (93), inserting k ¼ K ¼ 	 ¼ 0, reducing the nj-symbols, and

applying the additional selection rules

L ¼ b and M¼ �, ð105Þ

results in

CðK0Q0,��; 0, 0, 00Þ

¼ 1

4�jpj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2K0 þ 1Þð2� þ 1Þ

2ð2J þ 1Þ

s

�
X

L

X
‘jJ1
‘0 j0J0

1

i‘þ‘
0
eið�

j

‘��
j0
‘0 ÞhðJjÞJ1kdkJ0ihðJj0ÞJ 01kdkJ0iD

ðLÞ
M 0ðp̂pÞ



� ð2Lþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð2‘0 þ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j þ 1Þð2j0 þ 1Þð2J1 þ 1Þð2J 01 þ 1Þ

p

� ð�1Þ3LþJþJ 01þ2j0þ‘þ1=2þM
‘ ‘0 L
0 0 0

� �
K0 L �

�Q0 M ��

� �

�
j j0 L
J 01 J1 J

� �
j j0 L
‘ ‘0 1=2

� � K0 L �

J0 J1 1

J0 J 01 1

8
><
>:

9
>=
>;
: ð106Þ

The sum over M can be omitted since � and Q0 are arbitrary but fixed

numbers.

The total intensity I0 is proportional to the angle integrated generalized

zero-order tensor. According to Eq. (104) we find

Z
hT ðT0, t0; p̂pÞþ00idp̂p ¼

X

K0Q0��

hTðJ0ÞþK0Q0
ihT þ��i

Z
CðK0Q0,��; 0, 0, 00Þ dp̂p:

ð107Þ

Integrating Eq. (106) over the solid angle p̂p and applying the orthogonality

of the rotation matrices, Eq. (76), yields the selection rules

‘ ¼ ‘0, j ¼ j0, J1 ¼ J 01 and � ¼ K0, � ¼ Q0, ð108Þ
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and after some reduction we eventually get

Z
CðK0Q0,��; 0, 0, 00Þ dp̂p;

¼ �

jpj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2J þ 1

r X

‘jJ1

jhðJjÞJ1kdkJ0ij2ð�1ÞJ1þJ0
J0 J0 K0

1 1 J1

� �
: ð109Þ

Reducing the phase factor we used the fact that Q0 is always even since

Q0 ¼ � must be fulfilled.

IV. Angular Distribution and Electron–Photon Polarization

We will now derive the general equations of angular distribution and of spin

and fluorescence polarization, respectively. The fluorescence polarization

may be expressed in terms of Stokes parameters. Their connection with the

state multipoles have been already given in table I. For the photoelectron,

the cartesian components of the spin polarization vector can be connected to

the electronic state multipoles by

Ipx ¼ �ðhtþ11i � htþ1�1iÞ ¼ �2Rehtþ11i,
Ipy ¼ �iðhtþ11i þ htþ1�1iÞ ¼ 2Imhtþ11i,

Ipz ¼
ffiffiffi
2
p
htþ10i,

ð110Þ

and htþ00i as a normalization factor is given as

ht00i ¼ I=
ffiffiffi
2
p

: ð111Þ

A. ANGULAR DISTRIBUTION

To obtain the general expression for the electron–photon angular

distribution only the monopole terms htþ00i of the electronic tensors have

to be taken into account. For the description of the photonic state, this is

however not sufficient. According to table I, the tensors hT þ00i as well as

hT þ20i both contribute to the angular distribution. This can be explained by

the transversely character of light. Due to the fact that a photon state with

helicity l ¼ 0 cannot be populated a photon beam is always aligned, and

thus the second rank tensor must be included even in the description of an

unpolarized photon beam.
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Using Eq. (40), the total intensity I ¼ Iðx̂x, p̂pÞ to detect a photon emitted

into direction x̂x while a photoelectron has been emitted under the angle p̂p

can then be written as

Iðx̂x, p̂pÞ ¼
ffiffiffi
6
p

2
hT ðx̂xÞþ00 � tðp̂pÞþ00i þ

ffiffiffi
2
p
hT ðx̂xÞþ20 � tðp̂pÞþ00i

� �

¼
ffiffiffi
6
p

2
Að0ÞhT ðT0, t0; p̂pÞþ00i þ

ffiffiffi
2
p

Að2Þ
X

Q

hT ðT2, t0; p̂pÞþ2QiD
ð2Þ
Q 0ðx̂xÞ



 !
:

ð112Þ

Integrating over the solid angle x̂x of photon emission the photoelectron

intensity Iðp̂pÞ is given as

Iðp̂pÞ ¼
Z

Iðx̂x, p̂pÞ dx̂x ¼ 2�
ffiffiffi
6
p

Að0ÞhT ðT0, t0; p̂pÞþ00i: ð113Þ

Eventually, integrating over the solid angle of photelectron emission the

total intensity I0 is

I0 ¼
Z

Iðp̂pÞ dp̂p ¼
Z Z

Iðx̂x, p̂pÞ dx̂x; dp̂p;¼ 2�
ffiffiffi
6
p

Að0Þ
Z
hT ðT0, t0; p̂pÞþ00i dp̂p:

ð114Þ

Using the relative coefficients of photoemission introduced by Berezhko

and Kabachnik (1977) (see also Balashov et al., 2000)

�K ¼ �K0 þ
ffiffiffiffi
K
p AðKÞ

Að0Þ , ð115Þ

and introducing the so-called generalized irreducible anisotropy tensors of

alignment and orientation

AK 	ðTK , tk;p̂pÞ ¼
hT ðTK , tk; p̂pÞþK	iR
hT ðT0, t0; p̂pÞþ00i dp̂p

, ð116Þ

we are able to express the photoelectron intensity Iðp̂pÞ in terms of relative

parameters

Iðp̂pÞ ¼ I0A0 0ðT0, t0; p̂pÞ: ð117Þ

Note, that the zero rank tensor A0 0ðT0, t0; p̂pÞ is still a function of the

photoelectron emission angle. Integrating over the solid angle p̂p yields
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however the simple relation

Z
A0 0ðT0, t0; p̂pÞ dp̂p ¼ 1 ð118Þ

This result is consistent with Eq. (114) since integrating Eq. (117) over the

solid angle p̂p yields the total intensity which is the expected result.

Then, by using the total intensity I0, Eq. (112) may be eventually

expressed as

Iðx̂x, p̂pÞ ¼ I0

4�
A0 0ðT0, t0; p̂pÞ þ �2

X

Q

A2QðT2, t0; p̂pÞDð2ÞQ 0ðx̂xÞ


 !
: ð119Þ

Using the photoelectron intensity Iðp̂pÞ Eq. (119) may be expressed in a

different way

Iðx̂x, p̂pÞ ¼ Iðp̂pÞ
4�

1þ �2
A0 0ðT0, t0; p̂pÞ

X

Q

A2QðT2, t0; p̂pÞDð2ÞQ 0ðx̂xÞ


 !
: ð120Þ

An alternative form can be obtained by applying Eq. (117)

Iðx̂x, p̂pÞ ¼ I0

4�

Iðp̂pÞ
I0
þ �2

X

Q

A2QðT2, t0; p̂pÞDð2ÞQ 0ðx̂xÞ


 !
: ð121Þ

On the other hand, the fluorescence photon intensity Iðx̂xÞ can be obtained

from Eq. (119) by integrating over the solid angle p̂p of photoelectron

emission and using Eq. (118) as

Iðx̂xÞ ¼
Z

Iðx̂x, p̂pÞ dp̂p ¼ I0

4�
1þ �2

X

Q

Dð2ÞQ 0ðx̂xÞ

Z
A2QðT2, t0; p̂pÞ dp̂p

 !
: ð122Þ

Using Eq. (117) in Eq. (122) yields an interesting relation between the angle

dependent fluorescence photon intensity Iðx̂xÞ and the angular dependency

of the photoelectron intensity Iðp̂pÞ

Iðx̂xÞ ¼
Z

Iðx̂x, p̂pÞ dp̂p

¼ 1

4�

Iðp̂pÞ
A0 0ðT0, t0; p̂pÞ

1þ �2
X

Q

Dð2ÞQ 0ðx̂xÞ

Z
A2QðT2, t0; p̂pÞ dp̂p

 !
: ð123Þ
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B. POLARIZATION OF FLUORESCENCE RADIATION

The degree of polarization of the emitted fluorescence radiation is usually

best described by the use of Stokes parameters. Their connection with the

photon tensors hT þKQi is given in table I. Inserting the appropriate quantum

numbers into Eq. (40) we obtain the following expressions for the Stokes

parameters.

I
2ðx̂x, p̂pÞ ¼ 2hT ðx̂xÞþ10 � tðp̂pÞþ00i ¼ 2Að1Þ
X

Q

hT ðT1, t0; p̂pÞþ1QiD
ð1Þ
Q 0ðx̂xÞ

, ð124Þ

I
1ðx̂x, p̂pÞ ¼
ffiffiffi
8
p
hIm T ðx̂xÞþ22 � tðp̂pÞþ00i

¼
ffiffiffi
8
p

Að2Þ
X

Q

hT ðImT2, t0; p̂pÞþ2QiD
ð2Þ
Q 2ðx̂xÞ

, ð125Þ

and

I
3ðx̂x, p̂pÞ ¼ �
ffiffiffi
8
p
hRe T ðx̂xÞþ22 � tðp̂pÞþ00i

¼ �
ffiffiffi
8
p

Að2Þ
X

Q

hT ðReT2, t0; p̂pÞþ2QiD
ð2Þ
Q 2ðx̂xÞ

: ð126Þ

Expressing our results by means of relative parameters, i.e. using Eqs. (115)

and (116), and introducing the abbreviation

Nðx̂x, p̂pÞ ¼ A0 0ðT0, t0; p̂pÞ þ �2
X

Q

A2QðT2, t0; p̂pÞDð2ÞQ 0ðx̂xÞ
, ð127Þ

we eventually get


2ðx̂x, p̂pÞ ¼
1

Nðx̂x, p̂pÞ

ffiffiffi
8

3

r
�1
X

Q

A1QðT1, t0; p̂pÞDð1ÞQ 0ðx̂xÞ
, ð128Þ


1ðx̂x, p̂pÞ ¼
1

Nðx̂x, p̂pÞ

ffiffiffi
8

3

r
�2
X

Q

A2QðImT2, t0; p̂pÞDð2ÞQ 2ðx̂xÞ
, ð129Þ

and


3ðx̂x, p̂pÞ ¼
�1

Nðx̂x, p̂pÞ

ffiffiffi
8

3

r
�2
X

Q

A2QðReT2, t0; p̂pÞDð2ÞQ 2ðx̂xÞ
: ð130Þ
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C. NON-COINCIDENT POLARIZATION OF FLUORESCENCE RADIATION

In order to demonstrate the general applicability of the theory we consider the

observation of polarization of the emitted fluorescence radiation in a non-

coincidence experiment. The related expressions for the Stokes parameters

can be easily obtained by integrating the results of Section III.B over

the solid angle p̂p. In particular, we obtain for the Stokes parameter 
2

I
2ðx̂xÞ ¼ I

Z

2ðx̂x, p̂pÞ dp̂p ¼ 2

Z
hT ðx̂xÞþ10 � tðp̂pÞþ00i dp̂p

¼ 2Að1Þ
X

Q

Z
hT ðT1, t0; p̂pÞþ1Qi dp̂pD

ð1Þ
Q 0ðx̂xÞ

, ð131Þ

Using Eq. (127) we introduce the angle integrated parameter N1

N1ðx̂xÞ ¼
Z

Ndp̂p ¼ 1þ �2
X

Q

Z
A2QðT2, t0; p̂pÞ dp̂pDð2ÞQ 0ðx̂xÞ

: ð132Þ

With Eq. (132) we obtain the angle integrated Stokes parameters in terms

of relative parameters as


2ðx̂xÞ ¼
Z

2ðx̂x, p̂pÞ dp̂p ¼

1

N1ðx̂xÞ

ffiffiffi
8

3

r
�1
X

Q

Z
A1QðT1, t0; p̂pÞ dp̂pDð1ÞQ 0ðx̂xÞ

,

ð133Þ


1ðx̂xÞ ¼
Z

1ðx̂x, p̂pÞ dp̂p ¼

1

N1ðx̂xÞ

ffiffiffi
8

3

r
�2
X

Q

Z
A2QðIm T2, t0; p̂pÞ dp̂pDð2ÞQ 2ðx̂xÞ

,

ð134Þ

and


3ðx̂xÞ ¼
Z

3ðx̂x, p̂pÞ dp̂p ¼

�1
N1ðx̂xÞ

ffiffiffi
8

3

r
�2
X

Q

Z
A2QðReT2, t0; p̂pÞ dp̂pDð2ÞQ 2ðx̂xÞ

:

ð135Þ

D. SPIN POLARIZATION OF PHOTOELECTRONS

We will now express the spin polarization vector of the photoelectron by

its cartesian components. Therefore we assume the y-axis as perpendicular
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to the reaction plane defined by the incoming synchrotron radiation

beam and the axis of photoelectron emission. Using Eqs. (110) and (111)

we obtain

Ipxðx̂x, p̂pÞ ¼ �
ffiffiffi
3
p
ðh T ðx̂xÞþ00 �Re tðp̂pÞþ11i

ffiffiffi
2
p
hT ðx̂xÞþ20 �Re tðp̂pÞþ11iÞ

¼ �
ffiffiffi
3
p �

Að0ÞhT ðT0, Re t1; p̂pÞþ11i

þ
ffiffiffi
2
p

Að2Þ
X

K	Q
ð�1Þ	�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kþ 1
p 2 1 K

Q 1 �	

 !

� hT ðT2, Re t1; p̂pÞþK	iD
ð2Þ
Q 0ðx̂xÞ


�
: ð136Þ

Note, that the summation over Q and 	 in the above equation is not

independent. Due to the fact that the fluorescence photon is always aligned

the number of product tensors hT ðTK , tk; p̂pÞþK	i increases rapidly. It is

therefore no longer possible to adopt the common picture of alignment and

orientation tensors which has been successfully used in a large variety of

experiments.

Expressing Eq. (136) with relative parameters and using Eq. (127) we

obtain

pxðx̂x, p̂pÞ ¼
�

ffiffiffi
2
p

Nðx̂x, p̂pÞ

�
A11ðT0,Re t1; p̂pÞ

þ �2
X

KQ
ð�1ÞQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kþ 1
p 2 1 K

Q 1 �Q� 1

 !

�AKQþ1 ðT2,Re t1; p̂pÞDð2ÞQ0ðx̂xÞ

�
: ð137Þ

Applying the same method we obtain the y-component as

pyðx̂x, p̂pÞ ¼
ffiffiffi
2
p

Nðx̂x, p̂pÞ

�
A11ðT0, Im t1; p̂pÞ

þ �2
X

KQ
ð�1ÞQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kþ 1
p 2 1 K

Q 1 �Q� 1

 !

�AKQþ1 ðT2, Im t1; p̂pÞDð2ÞQ0ðx̂xÞ

�
, ð138Þ
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and for the z-component we get

pzðx̂x, p̂pÞ ¼
1

Nðx̂x, p̂pÞ

�
A1 0ðT0, t1; p̂pÞ

þ �2
X

KQ
ð�1ÞQ�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kþ 1
p 2 1 K

Q 0 �Q

 !
AKQ
ðT2, t1; p̂pÞDð2ÞQ 0ðx̂xÞ


�
:

ð139Þ

E. NON-COINCIDENT SPIN POLARIZATION OF PHOTOELECTRONS

In analogy to the discussion of Section III.C we consider the detection of the

spin polarization of the emitted photoelectrons in a non-coincidence

experiment. The related expressions for the cartesian components of the

spin polarization vector can be obtained by integrating the results of

Section II.D over the solid angle x̂x. Using the orthogonality conditions of

the rotation matrices, only the first term of Eq. (137) survives and we get for

the x-component of the spin polarization vector

pxðp̂pÞ ¼
Z

pxðx̂x, p̂pÞ dx̂x ¼
�

ffiffiffi
2
p

4�

A1 1ðT0, Re t1; p̂pÞ
A0 0ðT0, t0; p̂pÞ

: ð140Þ

Here, we used that the integral over the parameter N yields

Z
Nðx̂x, p̂pÞ dx̂x ¼ 4�A0 0ðT0, t0; p̂pÞ: ð141Þ

Analogously we obtain the angle integrated y-component as

pyðp̂pÞ ¼
Z

pyðx̂x, p̂pÞ dx̂x ¼
ffiffiffi
2
p

4�

A1 1ðT0, Im t1; p̂pÞ
A0 0ðT0, t0; p̂pÞ

, ð142Þ

and for the z-component we get

pzðp̂pÞ ¼
Z

pzðx̂x, p̂pÞ dx̂x ¼
1

4�

A1 0ðT0, t1; p̂pÞ
A0 0ðT0, t0; p̂pÞ

: ð143Þ

F. TENSOR POLARIZATION

Present experimental techniques do not allow to detect both, the electron

and the photon spin, in coincidence. Their theoretical analysis can, however,
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result in new experimental approaches, e.g. a new method of indirectly

determining the electronic spin polarization. For the complete analysis of

such experiments, we introduce the so-called components of tensor polar-

ization. That is, we have to determine all combinations of the type h
i � pji,
where i ¼ 1, 2, 3 and j ¼ x, y, z, respectively. This yields the expressions

Ih
2ðx̂xÞ � pxðp̂pÞi ¼ �
ffiffiffi
8
p
hT ðx̂xÞþ10 �Re tðp̂pÞþ11i, ð144Þ

Ih
2ðx̂xÞ � pyðp̂pÞi ¼
ffiffiffi
8
p
hT ðx̂xÞþ10 � Im tðp̂pÞþ11i, ð145Þ

and

Ih
2ðx̂xÞ � pzðp̂pÞi ¼ 2hT ðx̂xÞþ10 � tðp̂pÞþ10i: ð146Þ

Here we have used the fact that all state multipoles with a magnetic

component q ¼ 0 are real numbers.

The remaining six expressions may be written as

Ih
1ðx̂xÞ � pxðp̂pÞi ¼ �4hIm T ðx̂xÞþ22 �Re tðp̂pÞþ11i, ð147Þ

Ih
1ðx̂xÞ � pyðp̂pÞi ¼ 4hIm T ðx̂xÞþ22 � Im tðp̂pÞþ11i, ð148Þ

Ih
1ðx̂xÞ � pzðp̂pÞi ¼
ffiffiffi
8
p
hIm T ðx̂xÞþ22 � tðp̂pÞþ10i, ð149Þ

and

Ih
3ðx̂xÞ � pxðp̂pÞi ¼ 4hRe T ðx̂xÞþ22 �Re tðp̂pÞþ11i, ð150Þ

Ih
3ðx̂xÞ � pyðp̂pÞi ¼ �4hRe T ðx̂xÞþ22 � Im tðp̂pÞþ11i, ð151Þ

Ih
3ðx̂xÞ � pzðp̂pÞi ¼ �
ffiffiffi
8
p
hRe T ðx̂xÞþ22 � tðp̂pÞþ10i, ð152Þ

respectively. Thus, using Eq. (40), Eq. (144) yields

Ih
2ðx̂xÞ�pxðp̂pÞi ¼�
ffiffiffi
8
p

Að1Þ�
X

K	Q
ð�1Þ	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kþ1
p 1 1 K

Q 1 �	

 !

�hT ðT1,Re t1; p̂pÞþK	iD
ð1Þ
Q0ðx̂xÞ

, ð153Þ
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Using the normalization of Eq. (127), the above result can be expressed with

relative parameters,

h
2ðx̂xÞ � pxðp̂pÞi ¼
�4

Nðx̂x, p̂pÞ
ffiffiffi
3
p �1

X

KQ
ð�1ÞQþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kþ 1
p 1 1 K

Q 1 �Q� 1

 !

�AKQþ1 ðT1, Re t1; p̂pÞDð1ÞQ 0ðx̂xÞ
: ð154Þ

For the components h
2 � pyi and h
2 � pzi we obtain

h
2ðx̂xÞ � pyðp̂pÞi ¼
4

Nðx̂x, p̂pÞ
ffiffiffi
3
p �1

X

KQ
ð�1ÞQþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kþ 1
p 1 1 K

Q 1 �Q� 1

 !

�AKQþ1 ðT1, Im t1; p̂pÞDð1ÞQ 0ðx̂xÞ
, ð155Þ

and

h
2ðx̂xÞ � pzðp̂pÞi ¼
ffiffiffi
8
p

Nðx̂x, p̂pÞ
ffiffiffi
3
p �1

X

KQ
ð�1ÞQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kþ 1
p 1 1 K

Q 0 �Q

 !

�AKQ ðT1, t1; p̂pÞDð1ÞQ 0ðx̂xÞ
 ð156Þ

Analogously, the components h
1 � pji can be expressed as

h
1ðx̂xÞ � pxðp̂pÞi ¼
�

ffiffiffiffiffi
32
p

Nðx̂x, p̂pÞ
ffiffiffi
3
p �2

X

KQ
ð�1ÞQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kþ 1
p 2 1 K

Q 1 �Q� 1

 !

�AKQþ1 ðImT2, Re t1; p̂pÞDð2ÞQ 2ðx̂xÞ
, ð157Þ

h
1ðx̂xÞ � pyðp̂pÞi ¼
ffiffiffiffiffi
32
p

Nðx̂x, p̂pÞ
ffiffiffi
3
p �2

X

KQ
ð�1ÞQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kþ 1
p 2 1 K

Q 1 �Q� 1

 !

�AKQþ1 ðImT2, Im t1; p̂pÞDð2ÞQ 2ðx̂xÞ
, ð158Þ

and

h
1ðx̂xÞ � pzðp̂pÞi ¼
4

Nðx̂x, p̂pÞ
ffiffiffi
3
p �2

X

KQ
ð�1ÞQþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kþ 1
p 2 1 K

Q 0 �Q

 !

�AKQðImT2, t1; p̂pÞDð2ÞQ 2ðx̂xÞ
, ð159Þ
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and for the components h
3 � pji we write

h
3ðx̂xÞ � pxðp̂pÞi ¼
ffiffiffiffiffi
32
p

Nðx̂x, p̂pÞ
ffiffiffi
3
p �2

X

KQ
ð�1ÞQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kþ 1
p 2 1 K

Q 1 �Q� 1

 !

�AKQþ1 ðReT2, Re t1; p̂pÞDð2ÞQ 2ðx̂xÞ
, ð160Þ

h
3ðx̂xÞ � pyðp̂pÞi ¼
�

ffiffiffiffiffi
32
p

Nðx̂x, p̂pÞ
ffiffiffi
3
p �2

X

KQ
ð�1ÞQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kþ 1
p 2 1 K

Q 1 �Q� 1

 !

�AKQþ1 ðReT2, Im t1; p̂pÞDð2ÞQ 2ðx̂xÞ
, ð161Þ

and

h
3ðx̂xÞ � pzðp̂pÞi ¼
�4

Nðx̂x, p̂pÞ
ffiffiffi
3
p �2

X

KQ
ð�1ÞQþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kþ 1
p 2 1 K

Q 0 �Q

 !

�AKQ ðReT2, t1; p̂pÞDð2ÞQ 2ðx̂xÞ
: ð162Þ

As we have seen from the general expression for the tensor polarization

parameters as well as for the other cases discussed in Section IV, there is, for

the most general case, a large number of irreducible anisotropy parameters

AK 	ðTK , tk; p̂pÞ to determine. The maximum number of anisotropy parameter

to occur for a certain type of the experiments discussed is given in table II.

For example if the angular distribution intensity is measured in a

coincidence experiment, the quantity Iðx̂x, p̂pÞ, in general, depends on the

zero rank tensor parameter A0 0ðT0, t0; p̂pÞ and on the five components of the

second rank tensor A2 	ðT2, t0; p̂pÞ, with 	 ¼ �2, � 1, 0, 1, 2. Thus, Iðx̂x, p̂pÞ can
be a function of six independent parameters in the general case. The number

of independent parameters may reduce depending on the specific type of

experiment, see the discussion in Section III, as well as on the quantum

numbers of a specific transition. This will be discussed in the next section.

V. Analysis of a Special Case J0 ¼ 0�!J ¼ 1=2 Transitions

In order to clarify the derived formalism we will now consider a case of an

ideal transitions in more detail. It is illustrated that for a certain transition
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Table II

The generalized irreducible anisotropy parameters AK 	ðTK , tk; p̂pÞ occurring for the different

experimentally observable parameters of angular distribution, spin polarization, Stokes and

tensor polarization, respectively. The angle integrated parameters are abbreviated as

AK 	ðTK , tkÞ.

Exp. Observ. Irr. aniso. par. Mag. comp. 	 No. of coef.

Ang. distrib. Iðx̂x, p̂pÞ A0 0ðT0, t0; p̂pÞ 0 1

A2 	ðT2, t0; p̂pÞ �2, � 1, 0, 1, 2 5

Iðp̂pÞ A0 0ðT0, t0; p̂pÞ 0 1

Iðx̂xÞ A2 	ðT2, t0Þ �2, � 1, 0, 1, 2 5

Fluo. pol. 
2ðx̂x, p̂pÞ A1 	ðT1, t0; p̂pÞ �1, 0, 1 3


1ðx̂x, p̂pÞ A2 	ðImT2, t0; p̂pÞ �2, � 1, 0, 1, 2 5


3ðx̂x, p̂pÞ A2 	ðReT2, t0; p̂pÞ �2, � 1, 0, 1, 2 5


2ðx̂xÞ A1 	ðT1, t0Þ �1, 0, 1 3


1ðx̂xÞ A2 	ðImT2, t0Þ �2, � 1, 0, 1, 2 5


3ðx̂xÞ A2 	ðReT2, t0Þ �2, � 1, 0, 1, 2 5

Spin pol. pxðx̂x, p̂pÞ A1 1ðT0, Ret1; p̂pÞ 1 1

A1 	ðT2, Ret1; p̂pÞ �1, 0, 1 3

A2 	ðT2, Ret1; p̂pÞ �1, 0, 1, 2 4

A3 	ðT2, Ret1; p̂pÞ �1, 0, 1, 2, 3 5

pyðx̂x, p̂pÞ A1 1ðT0, Im t1; p̂pÞ 1 1

A1 	ðT2, Im t1; p̂pÞ �1, 0, 1 3

A2 	ðT2, Im t1; p̂pÞ �1, 0, 1, 2 4

A3 	ðT2, Im t1; p̂pÞ �1, 0, 1, 2, 3 5

pzðx̂x, p̂pÞ A1 0ðT0, t1; p̂pÞ 0 1

A1 	ðT2, t1; p̂pÞ �1, 0, 1 3

A2 	ðT2, t1; p̂pÞ �2, � 1, 1, 2 4

A3 	ðT2, t1; p̂pÞ �2, � 1, 0, 1, 2 5

pxðp̂pÞ A1 1ðT0, Re t1; p̂pÞ 1 1

pyðp̂pÞ A1 1ðT0, Im t1; p̂pÞ 1 1

pzðp̂pÞ A1 0ðT0, t1; p̂pÞ 0 1

Tensor pol. 
2ðx̂xÞ � pxðp̂pÞ
� 

A0 0ðT1, Re t1; p̂pÞ 0 1

A1 	ðT1, Re t1; p̂pÞ 0, 1 2

A2 	ðT1, Re t1; p̂pÞ 0, 1, 2 3

(continued )
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additional selection rules may occur which allow for a reduction of the

general equations.

The simple most case is that of an atomic closed shell target being in

its ground state. For example, for the rare gases this refers to a 1S0 state.

For this case, additional selection rules apply since the atomic charge cloud

is isotropic. This yields a reduced C coefficient which has been derived in

Section III.A.

Table II

Continued.

Exp. Observ. Irr. aniso. par. Mag. comp. 	 No. of coef.


2ðx̂xÞ � pyðp̂pÞ
� 

A0 0ðT1, Im t1; p̂pÞ 0 1

A1 	ðT1, Im t1; p̂pÞ 0, 1 2

A2 	ðT1, Im t1; p̂pÞ 0, 1, 2 3

h
2ðx̂xÞ � pzðp̂pÞi A0 0ðT1, t1; p̂pÞ 0 1

A1 	ðT1, t1; p̂pÞ �1, 1 2

A2 	ðT1, t1; p̂pÞ �1, 0, 1 3


1ðx̂xÞ � pxðp̂pÞ
� 

A1 	ðImT2, Re t1; p̂pÞ �1, 0, 1 3

A2 	ðImT2, Re t1; p̂pÞ �1, 0, 1, 2 4

A3 	ðImT2, Re t1; p̂pÞ �1, 0, 1, 2, 3 5


1ðx̂xÞ � pyðp̂pÞ
� 

A1 	ðImT2, Im t1; p̂pÞ �1, 0, 1 3

A2 	ðImT2, Im t1; p̂pÞ �1, 0, 1, 2 4

A3 	ðImT2, Im t1; p̂pÞ �1, 0, 1, 2, 3 5


1ðx̂xÞ � pzðp̂pÞ
� 

A1 	ðImT2, t1; p̂pÞ �1, 0, 1 3

A2 	ðImT2, t1; p̂pÞ �2, � 1, 1, 2 4

A3 	ðImT2, t1; p̂pÞ �2, � 1, 0, 1, 2 5


3ðx̂xÞ � pxðp̂pÞ
� 

A1 	ðReT2, Re t1; p̂pÞ �1, 0, 1 3

A2 	ðReT2, Re t1; p̂pÞ �1, 0, 1, 2 4

A3 	ðReT2, Re t1; p̂pÞ �1, 0, 1, 2, 3 5


3ðx̂xÞ � pyðp̂pÞ
� 

A1 	ðReT2, Im t1; p̂pÞ �1, 0, 1 3

A2 	ðReT2, Im t1; p̂pÞ �1, 0, 1, 2 4

A3 	ðReT2, Im t1; p̂pÞ �1, 0, 1, 2, 3 5


3ðx̂xÞ � pzðp̂pÞ
� 

A1 	ðReT2, t1; p̂pÞ �1, 0, 1 3

A2 	ðReT2, t1; p̂pÞ �2, � 1, 1, 2 4

A3 	ðReT2, t1; p̂pÞ �2, � 1, 0, 1, 2 5
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Now, let us consider a primary photoionization

� þ AðJ0 ¼ 0Þ �!Aþ
 ðJ ¼ 1=2Þ þ e�, ð163Þ

and the subsequent de-excitation of the residual ionic state via fluorescence

photon emission

Aþ
ðJ ¼ 1=2Þ �!Aþ

 ðJf ¼ 3=2Þ þ h: ð164Þ

Inserting J ¼ 1=2 into Eq. (62) yields

CJ0¼0
un ð��;K , k,K	Þ

¼ 1

4�jpj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Kþ 1Þð2K þ 1Þð2kþ 1Þð2� þ 1Þ

p

�
X

aL

X

‘j‘0j0
i‘þ‘

0
eið�

j

‘��
j0
‘0 Þð2aþ 1Þhð1=2jÞ1kdk0ihð1=2j0Þ1kdk0iDðLÞM 0ðp̂pÞ



� ð2L þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð2‘0 þ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j þ 1Þð2j0 þ 1Þ

p

� ð�1Þa�Kþ�
‘ ‘0 L

0 0 0

 ! L � K

�M � �	

 !

�
L � K

K k a

( ) K a �

1=2 j 1

1=2 j0 1

8
>>><
>>>:

9
>>>=
>>>;

L k a

‘ 1=2 j

‘0 1=2 j0

8
>>><
>>>:

9
>>>=
>>>;
: ð165Þ

The 9j-symbol yields an important restriction to the rank K of the tensors

describing the ionic state

K 
 1: ð166Þ

Thus, the residual ionic state cannot be aligned though oriented.

Therefore, only few of the generalized anisotropy parameters
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survive. The possible non-zero parameters AK 	ðTK , tk; p̂pÞ are listed in

table III.

Due to this, the general equations of angular distribution and fluores-

cence and spin polarization can be significantly reduced.

Table III

The possible non-zero generalized irreducible anisotropy parameters AK 	ðTK , tk; p̂pÞ for
J0=0�!J=1=2 transitions, occurring for the different experimentally observable parameters

of angular distribution, spin polarization, Stokes and tensor polarization, respectively. The

angle integrated parameters are abbreviated as AK 	ðTK , tkÞ. Parameters not shown are zero.

Exp. Observ. Irr. aniso. par. Mag. comp. 	 No. of coef.

Ang. distrib. Iðx̂x, p̂pÞ A0 0ðT0, t0; p̂pÞ 0 1

Iðp̂pÞ A0 0ðT0, t0; p̂pÞ 0 1

Iðx̂xÞ =I0=4�

Fluo. pol. 
2ðx̂x, p̂pÞ A1 	ðT1, t0; p̂pÞ �1, 0, 1 3


1ðx̂x, p̂pÞ =
3ðx̂x, p̂pÞ=0


2ðx̂xÞ A1 	ðT1, t0Þ �1, 0, 1 3


1ðx̂xÞ =
3ðx̂xÞ=0

Spin pol. pxðx̂x, p̂pÞ A1 1ðT0, Re t1; p̂pÞ 1 1

pyðx̂x, p̂pÞ A1 1ðT0, Im t1; p̂pÞ 1 1

pzðx̂x, p̂pÞ A1 0ðT0, t1; p̂pÞ 0 1

pxðp̂pÞ A1 1ðT0, Re t1; p̂pÞ 1 1

pyðp̂pÞ A1 1ðT0, Im t1; p̂pÞ 1 1

pzðp̂pÞ A1 0ðT0, t1; p̂pÞ 0 1

Tensor pol. h
2ðx̂xÞ � pxðp̂pÞi A0 0ðT1, Re t1; p̂pÞ 0 1

A1 	ðT1, Re t1; p̂pÞ 0, 1 2

A2 	ðT1, Re t1; p̂pÞ 0, 1, 2 3

h
2ðx̂xÞ � pyðp̂pÞi A1 1ðT1, Im t1; p̂pÞ 0 1

A1 	ðT1, Im t1; p̂pÞ 0, 1 2

A2 	ðT1, Im t1; p̂pÞ 0, 1, 2 3


2ðx̂xÞ � pzðp̂pÞ
� 

A0 0ðT1, t1; p̂pÞ 0 1

A1 	ðT1, t1; p̂pÞ �1, 1 2

A2 	ðT1, t1; p̂pÞ �1, 0, 1 3

h
1ðx̂xÞ � pxðp̂pÞi =h
1ðx̂xÞ � pyðp̂pÞi =h
1ðx̂xÞ � pzðp̂pÞi =0


3ðx̂xÞ � pxðp̂pÞ
� 

= 
3ðx̂xÞ � pyðp̂pÞ
� 

= 
3ðx̂xÞ � pzðp̂pÞ
� 

¼ 0

V] PHOTOIONIZATION PROCESSES 267



A. ANGULAR DISTRIBUTION

The total intensity I ¼ Iðx̂x, p̂pÞ to detect a photon emitted into direction x̂x

while a photoelectron has been emitted under the angle p̂p reduces to

Iðx̂x, p̂pÞ ¼ I0

4�
A0 0ðT0, t0; p̂pÞ, ð167Þ

whereas the expression for the photoelectron intensity Iðp̂pÞ remains as has

been given in Eq. (117). Connecting Eq. (117) and Eq. (167) yields

Iðp̂pÞ ¼ 4�Iðx̂x, p̂pÞ: ð168Þ

Thus, for the considered type of transition, observation of the angle resolved

intensity Iðx̂x, p̂pÞ yields no additional information that cannot be obtained

from observing the angular distribution of the photoelectron, only. This is

not surprising since an angular dependence of the emitted fluorescence

radiation depends on the existence of an alignment in the residual ion. Since

its total angular momentum is, however, J ¼ 1=2, an alignment cannot

be generated in the final ionic state. As a matter of fact we find from

Eq. (122)

Iðx̂xÞ ¼ I0

4�
: ð169Þ

B. POLARIZATION OF FLUORESCENCE RADIATION

Reducing the expressions for the Stokes parameters according to table III,

we find from Eqs. (128)–(130) that only the Stokes parameter 
2 survives,


2ðx̂x, p̂pÞ ¼
1

Nðp̂pÞ

ffiffiffi
8

3

r
�1
X

Q

A1QðT1, t0; p̂pÞDð1ÞQ 0ðx̂xÞ
, ð170Þ

where the normalization parameter simply reduces to

Nðx̂x, p̂pÞ ¼ Nðp̂pÞ ¼ A0 0ðT0, t0; p̂pÞ: ð171Þ

The two other Stokes parameters 
1 and 
3 cannot be observed in such type

of coincidence experiment due to the J ¼ 1=2 residual ionic state.


1ðx̂x, p̂pÞ ¼ 
3ðx̂x, p̂pÞ ¼ 0: ð172Þ
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C. NON-COINCIDENT POLARIZATION OF FLUORESCENCE RADIATION

For the case of a non-coincident experiment, we obtain a similar reduction.

Again, only the 
2 parameter can be observed. From Eq. (132) we obtain the

normalization parameter as N1ðx̂xÞ ¼ 1 which yields for the Stokes

parameters


2ðx̂xÞ ¼
ffiffiffi
8

3

r
�1
X

Q

Z
A1QðT1, t0; p̂pÞ dp̂pDð1ÞQ 0ðx̂xÞ

, ð173Þ

and


1ðx̂xÞ ¼ 
3ðx̂xÞ ¼ 0: ð174Þ

D. SPIN POLARIZATION OF PHOTOELECTRONS

Though the fluorescence photon is always aligned the restriction of Eq. (166)

again reduces the dependence on the generalized anisotropy parameters to

one coefficient. Using Eq. (171), Eqs. (137)–(139) can be reduced to the

simple expressions

pxðx̂x, p̂pÞ ¼
�

ffiffiffi
2
p
A1 1ðT0, Re t1; p̂pÞ
A0 0ðT0, t0; p̂pÞ

, ð175Þ

pyðx̂x, p̂pÞ ¼
ffiffiffi
2
p
A1 1ðT0, Im t1; p̂pÞ
A0 0ðT0, t0; p̂pÞ

, ð176Þ

and

pzðx̂x, p̂pÞ ¼
A1 0ðT0, t1; p̂pÞ
A0 0ðT0, t0; p̂pÞ

: ð177Þ

E. NON-COINCIDENT SPIN POLARIZATION OF PHOTOELECTRONS

As for the case of angular distribution, the relations for the non-coincident

measurement of the photoelectron spin polarization can be related to the
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coincident case discussed in the previous section. For the considered case of

transitions Eqs. (140–143) remain the same. Thus, we obtain the relations

pxðp̂pÞ ¼
1

4�
pxðx̂x, p̂pÞ, ð178Þ

pyðp̂pÞ ¼
1

4�
pyðx̂x, p̂pÞ, ð179Þ

and

pzðp̂pÞ ¼
1

4�
pzðx̂x, p̂pÞ: ð180Þ

That is, for the considered type of transitions the information which can be

obtained from a measurement of the spin polarization of the emitted

photoelectron in a coincidence experiment is redundant.

F. TENSOR POLARIZATION

Interesting information can be, however, obtained by inspecting the

introduced tensor polarization parameters. Using the normalization of

Eq. (171), we may write Eqs. (154)–(156) as

h
2ðx̂xÞ � pxðp̂pÞi ¼
�4�1ffiffiffi

3
p
A0 0ðT0, t0; p̂pÞ

X

KQ
ð�1ÞQþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kþ 1
p 1 1 K

Q 1 �Q� 1

� �

�AKQþ1 ðT1, Re t1; p̂pÞ Dð1ÞQ 0ðx̂xÞ
, ð181Þ

h
2ðx̂xÞ � pyðp̂pÞi ¼
4�1ffiffiffi

3
p
A0 0ðT0, t0; p̂pÞ

X

KQ
ð�1ÞQþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kþ 1
p 1 1 K

Q 1 �Q� 1

� �

�AKQþ1 ðT1, Im t1; p̂pÞ Dð1ÞQ 0ðx̂xÞ
, ð182Þ

and

h
2ðx̂xÞ � pzðp̂pÞi ¼
ffiffiffi
8
p
�1ffiffiffi

3
p
A0 0ðT0, t0; p̂pÞ

X

KQ
ð�1ÞQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kþ 1
p 1 1 K

Q 0 �Q

� �

�AKQðT1, t1; p̂pÞDð1ÞQ 0ðx̂xÞ
: ð183Þ

Thus, even for the considered type of a simple J0 ¼ 0�! J ¼ 1=2 ionic

transition we obtain information from the tensor polarization parameters.
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However, inspecting Eq. (165) more closely, one has to realize the fact that

for the case of 0�!1=2 transitions, we have only three independent

parameters in the C coefficients to determine. In detail, the C coefficient is a

function of the modulus of the hð1=2, jÞ1kdk0i, j ¼ 1=2, 3=2 transition matrix

elements and the phase difference of the emitted "s1=2 and "d3=2 partial

waves. Thus, the information which is contained in the tensor polarization

parameters can be achieved, too, within a more simple experiment. For

example, measuring the photoelectron spin polarization in a non-

coincidental setup.

The other tensor polarization parameters which connect the linear

components of the Stokes parameters with the spin polarization of the

photoelectron cannot be observed since their detection requires the existence

of an alignment in the residual ionic core which cannot be generated for

a J ¼ 1=2 state. Therefore, Eqs. (157)–(162) simply yield

h
1ðx̂xÞ � pjðp̂pÞi ¼ h
3ðx̂xÞ � pjðp̂pÞi ¼ 0 for j ¼ x, y, z: ð184Þ

Inserting the possible quantum numbers for K and Q – see table III –

expressing the 3j symbols by their actual values and writing the rotation

matrices Dð1ÞQ 0ðx̂xÞ

in terms of the explicit angular functions, the non-zero

tensor polarization parameters may be expressed as

h
2ðx̂xÞ�pxðp̂pÞi ¼
ffiffiffi
8
p
�1ffiffiffi

3
p
A00ðT0, t0; p̂pÞ

�
½A11ðT1,Re t1; p̂pÞ�A21ðT1,Re t1; p̂pÞ�cos��

þ �1ffiffiffi
3
p A00ðT1,Re t1; p̂pÞþ

1ffiffiffi
2
p A10ðT1,Re t1; p̂pÞ

�

� 1ffiffiffi
6
p A20ðT1,Re t1; p̂pÞ

�
sin�� exp�i��

þA22ðT1,Re t1; p̂pÞsin�� exp i��
�
, ð185Þ

h
2ðx̂xÞ�pyðp̂pÞi ¼
�

ffiffiffi
8
p
�1ffiffiffi

3
p
A00ðT0, t0; p̂pÞ

�
½A11ðT1, Im t1; p̂pÞ�A21ðT1, Im t1; p̂pÞ�cos��

þ �1ffiffiffi
3
p A00ðT1, Im t1; p̂pÞþ

1ffiffiffi
2
p A10ðT1, Im t1; p̂pÞ

�

� 1ffiffiffi
6
p A20ðT1, Im t1; p̂pÞ

�
sin�� exp�i��

þA22ðT1, Im t1; p̂pÞsin�� exp i��
�
, ð186Þ
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and

h
2ðx̂xÞ�pzðp̂pÞi ¼
�

ffiffiffi
8
p
�1ffiffiffi

3
p
A00ðT0,t0; p̂pÞ

1ffiffiffi
3
p ½A00ðT1,t1; p̂pÞ�

ffiffiffi
2
p
A20ðT1, t1; p̂pÞ�cos��

�

þ1

2
½A1�1ðT1,t1; p̂pÞ�A2�1ðT1,t1; p̂pÞ�sin�� exp�i��

�1

2
½�A11ðT1, t1; p̂pÞþA21ðT1,t1; p̂pÞ�sin�� exp i��

�
: ð187Þ

Thus, for the three non-zero tensor polarization parameters the angular

dependency on the angles �� and �� is given by the same angular functions

weighted, however, by different combinations AK 	ðTK , tk; p̂pÞ of the

generalized irreducible anisotropy tensors of alignment and orientation.

VI. Experimental Approaches and Results

A. COMPLETE PHOTOIONIZATION AND ð�, e�Þ COINCIDENCE EXPERIMENTS

While photoionization experiments with free atoms have been carried out

with regard to measurements of total cross sections and photoelectron

angular distributions selectively during the first half of the last century,

approaches to so-called complete photoionization experiments started about

the eighties (see, e.g., Schmidt, 1997; Becker and Crowe, 2001). Complete

means perfect results of the analysis of the relevant photoionization in terms

of a quantum mechanical description with amplitudes (Bederson, 1963;

Fano, 1957), i.e. their real parts and relative phases. In atomic collision

physics complete experiments were reported with electron–photon angular

coincidence measurements from helium electron impact excitation; since

about the seventies (Eminyan et al., 1973). Macek and Jaecks (1971) first

described a concise theory. Further developments towards complete

scattering experiments can be listed as follows: the early pioneering

electron-polarized atom recoil experiment by Rubin et al. (1969) and the

spin filter experiment of atoms by Bederson et al. (1960); the unpolarized

electron scattered by partially polarized atoms (Hils et al., 1972);

superelastic electron scattering from laser-excited atoms (Hertel and Stoll,

1974); analysis of production of photoelectrons from heavy atoms

(Heinzmann et al., 1970; Heinzman, 1980); electron–photon coincidences

by laser excitation of atoms (MacGillivray and Standage, 1988); towards

complete photoionization Auger electron experiments (Grum-Grzhmailo

et al., 2001; Scherer et al., 2001); alignment measurements in Hþ þH
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collisions (Hippler et al., 1988); complete photoionization experiments with

polarized atoms as targets (Cherepkov, 1983; Siegel et al., 1983; Kerling

et al., 1990; Becker and Kleinpoppen, 1999; Sonntag and Zimmermann,

1995; Plotzke et al., 1986; Klar and Kleinpoppen, 1982); double photo-

ionization of atoms whereby two electrons are ejected (Schwarzpkopf et al.,

1993; Cvejanovic and Reddish, 2000; Cvejanovic et al., 2002); spin-

asymmetries in polarized electron/polarized atom scattering (Alguard

et al., 1977; Hils and Kleinpoppen, 1978; Berger and Kessler, 1986; Baum

et al., 1999).

The ultimate complete atomic collision experiment requires application of

polarized incoming (atomic) beams and polarized atomic targets with a

combined coincidence and spin analysis of the collision partners. Mainly

because of lack of intensities for such an ultimate complete collision

experiment we are, however, in a position of restricting ourselves to feasible

types of experiments and processes. With regard to more comprehensive

arguments on this issue we like to refer to the paper by Datz et al. (1999).

The ð�, e�Þ process is expected to be such process with regard to theoretical

analysis and experimental feasibility. We will report now selectively on some

results of recent ð�, e�Þ experiments.

B. COINCIDENCE MEASUREMENTS ON CALCIUM ATOMS

The main example for the ð�, e�Þ process was the photoionization of an

atom into an excited ion state and the subsequent decay into the ionic

ground state with the simultaneous emission and observation of the

fluorescence radiation in coincidence which eliminates cascading problems.

In principle, the description of photoelectron–fluorescent photon coin-

cidence measurements is similar to that of photoelectron–Auger coincidence

experiments of the type reported by Kämmerling and Schmidt (1991). In

order to avoid spin complications the initial ground state of the atom has

been elected to be a singlet state, i.e. 1S0. The obvious choice of first

experimental studies was connected with Ca and Sr atoms. In its ground

state calcium has the electron configuration of Cað1s22s22p63s23p64s2Þ 1S0.
Photoionization into an excited Caþ ion of the ð1s2 . . . 3p64pÞ 2P3=2

configuration works particularly efficient with high peak cross sections,

� 10�15 cm2, through resonance regions, i.e. initially, the direct ionization

and excitation process to be studied was

� þ Cað4s2, 1S0Þ �!Caþð4p, 2P1=2, 3=2Þ þ e� ð188aÞ

�!Caþð4s, 2S1=2Þ þ � 0, ð188bÞ
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while � is the synchrotron photon, � 0 denotes the fluorescence photon with

wave lengths of l ¼ 393:3 and 396:8 nm, respectively. While this ð�, e�Þ
direct process has a very low cross section (910�19 cm2), calculations by

Altun and Kelly (1985) indicated a much larger cross section (’ 10�15 cm2)

into the 4p, 2P state by correlation with excitation of the 3p electrons via the

3p–3d giant resonance according to

� þ Cað4s2, 1S0Þ �!Cað3p5, nfsdg, n0‘0, n00‘00Þ ð189aÞ

�!Caþð3p64p, 2P1=2, 3=2Þ þ e� ð189bÞ

�!Caþð4s, 2S1=2Þ þ � 00: ð189cÞ

In fact there are several transitions of the 3p–3d resonance depending

on the values of n‘, n0‘0, n00‘00 and their couplings. Cað4s2, 1S0Þ �!
Cað3p54s23d, 1P1Þ at the synchrotron energy of 31:4 eV and the overlapping

resonances Cað4s2, 1S0Þ�!Cað3p53d3, 1P1Þ, Cað3p54s23d, 3D1Þ, Cað3p54s
3d2, 1P1Þ, or Cað3p54s24d, 3P1Þ at about 31:5 eV. Accordingly these

resonances are called Ca 3p–3d resonances and have been extensively

studied. Correspondingly strontium with the ground state configuration of

Srð1s22s2 2p63s23p63d104s24p65s2Þ 1S0 has Sr 4p–4d resonances. The object

of previous photoelectron studies was not only to provide quantitative

information about the decay channels of the complex Ca 3p–3d and Sr

4p–4d resonances, but also to obtain a complete description for the

photoionization channel leaving the ion in the Caþ4p 2P3=2 and Srþ5p 2P3=2

levels. Hamdy et al. (1991a, b) had previously made polarization measure-

ments of the fluorescence radiation into the ion ground state and determined

the alignment tensors for Caþ in the 4p 2P3=2 state and the Srþ in the 5p 2P3=2

state.

The geometry of the coincidence experiments for the photoelectrons and

fluorescence-polarized photons of Ca and Sr by Beyer et al. (1995) and

Ueda et al. (1998) was such that the polarization of the coincident

fluorescence radiation was referred to the linear polarization of the

incoming synchrotron radiation. Figure 4 shows the experimental results

with regard to the Ca 3p–3d resonance region: the upper part (a) has a

peak at 31:4 eV which corresponds to the above resonance 3p54s23d, 1P1

whereas the peak at 31:5 eV shows the overlapping four resonances

characterized above according to the identification of Mansfield and

Newsom (1977, 1981). Curve (b) is the asymmetry parameter � for the

corresponding photoelectron. Curves (c) and (d) show the polarization as

characterized above of the fluorescence photons taken in coincidence with
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FIG. 4. Experimental results of the ð�, e�Þ coincidence studies in the Ca 3p�! 3d resonance

region: (a) relative partial cross-section for photoelectron ejection leaving the Caþ ion in the 4p

excited state; (b) asymmetry parameter � for the photoelectrons; (c) and polarization of the

fluorescent photons taken in coincidence with the photoelectrons at the detection angles

� ¼ �1358; and (d) � ¼ �908, note the principle direction of the polarization is parallel to the

z-axis; (e) fluorescence polarization calculated from non-coincidence experiments.
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the photoelectrons. The data in curve (c) were taken at an angle

�e ¼ �135� and in curve (d) at �e ¼ �90�. Curve (e) shows non-

coincidence data of fluorescence polarization which agree well with earlier

data of Hamdy et al. (1991a). Obviously, there is a large difference

between the non-coincidence data and the coincidence data. If we assume

that the 31:4 eV resonance, i.e. 3p54s23d, 1P1 agrees well with LS coupling

and apply the analysis and formalism of Berezhko et al. (1978) the

photoelectron emission into s- and d-waves give ratios of their

photoionization amplitudes and their phase differences and can be

extracted as follows: jDsj=jDdj ¼ 1:4 þ0:6�0:3 and j�j ¼ 44:28 þ28�58. The errors

include uncertainties in the polarization of the fluorescence, the �
parameter and the polarization of the linear polarization of the

synchrotron radiation (their circular polarization has been taken as zero).

C. COINCIDENCE MEASUREMENTS ON STRONTIUM ATOMS

A second ð�, e�Þ study case we like to discuss is related to the

Srð1s2 . . . 4p65s2Þ 1S0 atom. For the whole of this photoionization process

of this atom LS coupling cannot be assumed as compared to the

case of calcium. Therefore, the resonantly enhanced photoionization

channel of Sr at a synchrotron energy of about 25 eV has been applied to

populate the excited state of the Srþ ion. The radiative decay

5p 2P3=2�!5s 2S1=2 of this ion state is connected to a coincidence

measurement with the relevant photoelectron whereby an optical filter

will be used to remove the unpolarized 5p 2P1=2 component. We focus our

interest on a well separated resonance at 25:105 eV (see number 2 of Fig. 5)

whose excited state is dominated by the 4p5ð4d3, 4FÞ 5F1 component. The

resulting photoionization of interest for the experiment can be summarized

by the following sub-processes

hð25:105 eVÞ þ Srð5s2, 1S0Þ �!Srð4p5½4d3, 4F�, 5F1Þ ð190aÞ

�!Srþð4p65p, 2P1=2, 3=2Þ þ e� ð190bÞ

�!Srþð5s, 2S1=2Þ þ hð3:040 eVÞ,
ð190cÞ

The fluorescence lines from the P1=2, 3=2 states can be separated by

about 100meV. An optical filter can be used to entirely distinguish

the Srþ 4p65p 2P3=2, 1=2 and 4p65s 2S1=2 components. The experimental

photoelectron fluorescent photon coincidence rates of the above Sr atom
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has been analyzed in detail by Kabachnik and Ueda (1995) as follows.

Assuming that the incident synchrotron radiation is partially linearly

polarized ðPlin 
 1Þ and its circular polarization zero ðPcirc ¼ 0Þ the reference
frame is chosen in such a way that the z-axis is along the principal axis of the

linear polarization of the incoming photon and the y-axis along the photon

beam. The photoelectron is detected in the x–z-plane at an angle � with

respect to the z-axis while the fluorescent photon is detected along the

x-axis. The chosen experimental geometry varies slightly from the reaction

plane geometry (see Fig. 3) which has been discussed in Section II.E used for

the present theoretical analysis where the incoming synchrotron beam axis

has been chosen as z-axis. By resolving the spin-orbit components of the

5p 2P1=2 and 5p 2P3=2 states of Srþ the photoelectron angular distributions

were measured with an electron spectrometer of only 40meV for the coinc-

idence measurements. From these data at the photon energy of autoioniza-

tion of Sr at 25:105 eV the following branching ratios of the relevant

differential cross-sections and anisotropy parameters can be derived

�5p2P1=2=�5p2P3=2
¼ 0:85	 0:08, ð191Þ

FIG. 5. Yield of photoelectrons as a function of the photon energy of the synchrotron

radiation, where the strontium ion is left in the Srþ 5p 2P1=2, 3=2 excited state. The data were

taken at � ffi 108 whereby the 2P1=2, 3=2 levels could be resolved by the wave lengths of the

fluorescence photons (Ueda et al., 1998).
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�5p2P1=2
¼ 1:28	 0:09, ð192Þ

�5p2P3=2
¼ 0:67: ð193Þ

Note that the branching ratio is far away from the statistical value of 0:5
and the two � values are significantly different.

Ueda et al. (1998) demonstrated by their above coincidence measurements

in the resonance illustrated in Fig. 5 that they depend on ratios of five

amplitudes D
ðJÞ
j of photoejected electron waves leaving the Srþ ion in the

5p 2PJ states; D
ðJÞ
j are characterized by the J ¼ 1=2 and J ¼ 3=2 values of

2P1=2, 3=2 states and the j corresponding to the s wave with j ¼ 1=2 and

j ¼ 3=2 and j ¼ 5=2 to the d waves, and one phase difference between the

s and d waves. By using a combination of coincidence data from the angular

correlation between the photoejected electron and the subsequent fluor-

escent photons and electron angular distribution measurements, the relevant

� values and the dipole amplitudes can be determined in the region of an

autoionization resonance (Kabachnik and Sazhina, 1976).

In Fig. 5 the yield of photoelectrons, where the Srþ ion is left in the 5p

excited state, is shown as a function of the synchrotron photon energy of

the 4p excitation. The resonances have been identified in connection with

the photoabsorption measurements of Mansfield and Newsom (1981).

Coincidence measurements were carried out at energies indicated by arrows.

They were analyzed by Kabachnik and Ueda (1995), and based upon the

autoionization of strong resonances in the framework of Fano’s theory for

q� 0 Fano (1961) and Kabachnik and Sazhina’s (1976) representation

of the above dipole amplitudes. We are picking out results as examples of

the peaks 2 and 4 of Fig. 5.

The branching ratios D
ð1=2Þ
1=2 : D

ð3=2Þ
1=2 and D

ð1=2Þ
3=2 : D

ð3=2Þ
3=2 : D

ð3=2Þ
5=2 extracted

from the angular correlation experiment characterize the relative contribu-

tion of the fine structure subchannels of the s or d continua. For the

resonance peaks 2 and 4 of Fig. 5 we summarize the data in tables IV–VI

extracted from experiments using the following normalization convention

D
2

s : D
2

d �
½Dð1=2Þ1=2 �

2 þ ½Dð3=2Þ1=2 �
2

½Dð1=2Þ3=2 �
2 þ ½Dð3=2Þ3=2 �

2 þ ½Dð3=2Þ5=2 �
2
, ð194Þ

D
2

s þD
2

d ¼ 1, ð195Þ

D
ð1=2Þ
1=2 : D

ð3=2Þ
1=2 � D

ð1=2Þ
1=2 : D

ð3=2Þ
1=2 , ð196Þ

278 B. Lohmann et al. [VI



½Dð1=2Þ1=2 �2 þ ½D
ð3=2Þ
1=2 �2 ¼ 1, ð197Þ

D
ð1=2Þ
3=2 : D

ð3=2Þ
3=2 : D

ð3=2Þ
5=2 � D

ð1=2Þ
3=2 : D

ð3=2Þ
3=2 : D

ð3=2Þ
5=2 , ð198Þ

and

½Dð1=2Þ3=2 �2 þ ½D
ð3=2Þ
3=2 �2 þ ½D

ð3=2Þ
5=2 �2 ¼ 1: ð199Þ

Table IV

Photoelectron anisotropy parameters and branching ratio of the cross-sections in the 4p excited

autoionization resonances in Sr (with peak numbers of Fig. 5).

Peak no. Phot. energy Assignment �ð1=2Þ �ð3=2Þ �ð1=2Þ=�ð3=2Þ

2 25.105 eV 4p5ð4d3; 4 FÞ 5F1 1:28	 0:09 0:67	 0:09 0:85	 0:08

4 25.256 eV 4p5ð5s24d1; 2 DÞ 1P1 1:87	 0:02 1:53	 0:03 0:57	 0:01

Table V

Phase difference �=�ð3=2Þ1=2 � �
ð3=2Þ
3=2 and ratios of dipole amplitudes of the 4p excited

autoionization resonances in Sr.

Peak no. � ½� rad� D
ð3=2Þ
1=2 : D

ð3=2Þ
3=2 D

ð3=2Þ
3=2 : D

ð3=2Þ
5=2 R=D

ð1=2Þ
1=2 : D

ð1=2Þ
3=2

2 0:77	 0:13 1:3	 0:3 2:3	 1:3 0:14	 0:13, 1:51	 0:48

4 1:01	 0:79 0:9	 0:4 1:1	 0:6 0:43	 0:79, 1:08	 1:90

Table VI

Branching ratio D
2

s : D
2

d and ratios of dipole amplitudes D
ð1=2Þ
1=2 : D

ð3=2Þ
1=2 and

D
ð1=2Þ
3=2 : D

ð3=2Þ
3=2 : D

ð3=2Þ
5=2 . Where two sets of values are shown they correspond to the two solutions

for R; see text.

Peak

no.

D
2
s : D

2
d D

ð1=2Þ
1=2 : D

ð3=2Þ
1=2 D

ð1=2Þ
3=2 : D

ð3=2Þ
3=2 : D

ð3=2Þ
5=2

2 0:33	 0:39:0:67	 0:39 0:16	 0:15:0:99	 0:03 0:82	 1:28:0:53	 0:48:0:23	 0:25

2 0:64	 0:13:0:36	 0:13 0:71	 0:11:0:71	 0:47 0:62	 0:24:0:72	 0:22:0:31	 0:20

4 0:26	 0:15:0:74	 0:15 0:46	 0:22:0:89	 0:09 0:64	 0:48:0:57	 0:31:0:51	 0:38

4 0:40	 0:21:0:60	 0:21 0:70	 0:26:0:72	 0:12 0:53	 0:34:0:63	 0:33:0:57	 0:42

1P1 0.577:0.816 0.577:0.258:0.775

3P1 0.816:0.577 0.408:0.730:0.548

3D1 0.707:0.632:0.316
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The physical significance of the two values of R in table V, leading to two

sets of resonances 2, 4 (and also 6) is not yet clarified in the paper of Ueda

et al. (1998). From the ratios of D
ðJÞ
j in table V and the experimental values

of �ð1=2Þ=�ð3=2Þ in table IV relative values of the five amplitudes (normalized

on the unit scale introduced above) are summarized in table VI in the form

of three ratios. The physical meaning of D
2

s : D
2

d is the branching ratio

between the s and d electron waves. It was found that the s wave is as strong

as the d wave in most resonances.

The ratios D
ð1=2Þ
1=2 : D

ð3=2Þ
1=2 and D

ð1=2Þ
3=2 : D

ð3=2Þ
3=2 : D

ð3=2Þ
5=2 which are determined

from experiment characterize the relative contribution of the fine structure
subchannels in the s or d continua. Within the LS coupling approximation,

direct photoionization of the 1S0 ground state of Sr, leaving the ion in the

5p excited level of Srþ, leads to 5p"s and 5p"d 1P1 continuum states. These
1P1 continua, consisting of the ion and photoelectron, can be described in

the jj coupling scheme using an LS � jj recoupling matrix, leading to

the states 5p 2P1=2 þ "s1=2 and "d3=2 or 5p 2P3=2 þ "s1=2, "d3=2 and "d5=2. The

ratios D
ð1=2Þ
1=2 : D

ð3=2Þ
1=2 and D

ð1=2Þ
3=2 : D

ð3=2Þ
3=2 : D

ð3=2Þ
5=2 will then correspond to

the amplitudes of the LS � jj recoupling matrix elements themselves. This

holds also for the strong 1P1 autoionization resonance, as in the case of the

Ca 3p54s23d 1P1 resonance which has been discussed before (Beyer et al.,

1995, 1996; West et al., 1996), because the selection rules dictate that the

continuum into which the resonance decays is also 1P1.

Amplitudes estimated from the LS � jj recoupling matrix for 1P1 are also

given in table VI. We can clearly see that the experimental ratios are in

general far from the predictions based on the assumption that the final

continuum states are 1P1. According to Mansfield and Newsom (1981),

resonance number 4 is 97% 4p55s24d 1P1. The result of Ueda et al. (1998),

however, clearly indicates that this resonance is certainly not a pure 1P1

resonance. Further evidence that this line is not a pure 1P1 resonance comes

from measurements of the fluorescence polarization when the electron

ejection angle is 270�. According to Kabachnik and Ueda (1995) in this

case the polarization should be 0:6 if the resonance is pure 1P1. This result

is based only on momentum conservation and therefore, in a sense, is

model-independent.
Previously, Ueda et al. (1993) tried to extract the ratio D

2

s : D
2

d and

the phase difference � from the measured values of alignment and photo-

electron asymmetry parameter �3=2 at the peak of resonance number 4,
assuming that it is purely LS coupled. These results indicate that the pure

LS coupling approximation is inappropriate, and the earlier values therefore

should not be compared directly with those discussed here.

The breakdown of the assumption of 1P1 for the final continuum states of

the resonances studied is already evident in table IV. If the assumption held,
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then the branching ratio �ð1=2Þ=�ð3=2Þ would have the statistical value of 0:5,
and �ð1=2Þ should be equal to �ð3=2Þ. Such predictions do not agree with any

experimental results.

The reason for the breakdown of the assumption of 1P1 symmetry for the

final continuum states is that all the resonances investigated here have large
3P1 and 3D1 components, and possibly others as well. As a result the

resonances can autoionize into the 3P1 and
3D1 continua. If the resonance is

predominantly 3P1 ð3D1Þ, the continuum into which the resonance decays is

also predominantly 3P1 ð3D1Þ. The amplitudes expected from LS � jj

recoupling for pure 3P1 and 3D1 states are also given in table VI. It should

be noted that none of the resonance states is pure 3P1 or 3D1;

photoexcitation to these resonances takes place via the 1P1 component.

In conclusion, one can show that the ratios of five amplitudes and one

phase difference for the photoejected electron waves can be determined, in

the case where the Srþ ion is left in the 5p 2P1=2 and 5p 2P3=2 states. The

analysis of the amplitudes and phase difference shows that the major

contribution of this technique is that it can identify the presence of

components of different symmetries within a resonance line, giving

quantitative information difficult to obtain from other experimental

methods. Furthermore, since one is able to determine branching ratios for

the amplitudes of the outgoing waves, it is now possible to make a direct

comparison of these fundamental parameters with theoretical calculations,

though it must be pointed out that such calculations are complex for

an atom such as Sr because of the large number of channels involved. In a

subsequent paper by West et al. (1998) it was demonstrated for the case of

measuring the angular correlation of the photoejected electron and

polarized fluorescence photon according to the reactions (190a)–(190c) that

all photoionization parameters of dipole amplitude ratios and phases can be

determined even for the relativistic case.

VII. Conclusion and Outlook

In parts of this paper we referred on the developments of so-called complete

atomic collision and photoionization experiments with free atoms. How-

ever, we concentrated extensively on the analysis of angle and spin resolved

ð�, e�Þ coincidence experiments. By means of the density matrix and

statistical tensor methods we derived a general theory which allows for a

description of a large variety of ð�, e�Þ coincidence experiments. Applying a

two step model the primary photoionization process has been dealt with

independent of the subsequent fluorescence photon emission. For the
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description of the photoionization we introduced C coefficients which fully

contain the dynamics of the photoelectron emission, whereas the A

coefficients contain the dynamics of the fluorescence photon emission.

The latter have been already used for the interpretation of non-coincidence

fluorescence photon emission experiments by many research groups. For the

C coefficients, the general symmetry relations have been derived. For such

type of ð�, e�Þ coincidence experiments different experimental geometries are

possible. Therefore, we discussed two different choices of the coordinate

frame in more detail.

A large variety of different experimental setups have been discussed. Here,

our focus has been on the additional selection rules due to the considered

experiments and on the possible reduction of the general equations. In

particular, we have been able to demonstrate, that the introduced C

coefficients do considerably reduce for certain types of experiments. We

discussed the cases of experiments with an unpolarized target, the case of

not observing the photoelectron spin, as well as not observing the

photoelectron at all. Combining these results we considered the case of an

unpolarized target and carrying out the coincidence experiment though not

detecting the photoelectron spin. On the other hand, we investigated

experiments without observing the residual ionic state, i.e. not observing the

emitted fluorescence. This case has been demonstrated to be the one of non-

coincidence photoelectron emission. In particular, we considered the

additional selection rules for each type of experiment which occur when

using a target with an initial 1S0 ground state.

In order to introduce relative parameters we discussed the occurring

normalization parameters. Using the introduced generalized irreducible

anisotropy tensor of alignment and orientation we have been able to express

the coupled statistical tensorial sets in terms of relative quantities. With this,

the general equations of angular distribution and spin polarization for

electron–photon coincidence experiments are derived. We discussed the

angular distribution coincidence intensities in detail, and considered the case

of detecting the fluorescence photon polarization in coincidence with the

emitted photoelectron. Detailed examples related to Ca and Sr atoms have

been discussed; they show examples of complete scattering experiments

(Becker and Crowe, 2001) by which all relevant amplitudes and phase

differences can be determined. Another special case of experiments is related

to the non-coincident measurement of the fluorescence radiation polarized.

For both experiments, information can be obtained from measuring the

angle dependent Stokes parameters. For experiments observing the spin

polarization of the emitted photoelectrons in coincidence with the emitted

fluorescence radiation, information can be obtained by measuring the angle

dependent cartesian components of the spin polarization vector of the
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photoelectron. Again, a special case is the non-coincident measurement of

the spin polarization of the photoelectron. A more complicated, and up

today not possible, experiment is the simultaneous detection of the

polarization of the emitted fluorescence photon and the spin polarization

of the outgoing photoelectron. Here, we introduced the new tensor

polarization parameters determined as the outer product of the components

of the Stokes parameters and the spin polarization vector, respectively.

Observing these new set of parameters may allow for obtaining an even

more refined information on ð�, e�Þ coincidence experiments in the near

future. However, these new parameters are related to a large number of

anisotropy tensor parameters which makes their theoretical interpretation

feasible.

In order to give a more simple example we have therefore discussed the

simple most case of a J0 ¼ 0�! J ¼ 1=2 transition in more detail. We have

shown, that the general expressions for the observable quantities of angular

distribution, spin and fluorescence polarization, as well as for the tensor

polarization parameters considerably reduce for this case. The remaining

expression are, however, still voluminous. Therefore, we have postponed a

more detailed analysis, i.e. expressing the observable quantities simply in

terms of modulo of the transition matrix elements and the occurring phase

differences, to a more extended work in the near future.
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IX. Appendix A: Expansion of Dipole Matrix Elements

Following Amusia (1990), pp. 16 the T-matrix of photoionization may be

written as

hJMpð�ÞmsjTijJ0M0!nli ¼
XN

q¼1
hJMpð�Þmsj expik�rðel � pqÞjJ0M0i, ð200Þ
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where N denotes the number of electrons in the atomic shell, el (l ¼ 	1) is
the photon polarization vector which is chosen that el � n ¼ 0, and pq is the

momentum of the qth electron of the atom. Note, that for the case of

fluorescence photon emission (see Section II.C and Appendix C) the

complex conjugate operator must be used.

Applying the long-wavelength limit of the dipole approximation, i.e.

krq � 1, the exponential function can be replaced by unity expik�r � 1.

Thus, for an arbitrarily polarized photon beam, the T-matrix elements

may be written as

hJMpð�ÞmsjTijJ0M0!nli ¼
XN

q¼1
hJMpð�Þmsjðel � pqÞjJ0M0i

¼
XN

q¼1
i!hJMpð�Þmsjðel � rqÞjJ0M0i, ð201Þ

where the first term denotes the ‘‘velocity form’’ and the latter the ‘‘length

form’’ of the dipole transition matrix elements. The dipole approximation is

valid in a rather broad region of energy (Amusia, 1990)

Z2 < !� Z��1 ð202Þ

where ��1 ¼ 137 denotes the fine structure constant. Throughout the paper

we will use the length form of the dipole matrix elements.

In our chosen coordinate frame the polarization vector el can be

eliminated by noting that in the helicity system the coordinate system is

‘‘spanned’’ by the three unit vectors eþ1, e�1, n, and that the dipole operator

r can be therefore expanded in terms of this basis3

r ¼ rþ1eþ1 þ r�1e�1 þ r0n, ð203Þ

where r	1 and r0 are the components of r along the directions of e	1 and n,

respectively. That is, r	1 and r0 are the spherical components of the vector r.

In this system the scalar product of r and el is given by

el � r ¼ rl: ð204Þ

3 Here, and throughout the following the index q and the summation over q, referring to the qth

electron, are suppressed if not causing ambiguities.
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The final state electron wavefunction can be expanded into partial waves.

Applying the results of Lohmann (1990) we get

jpð�Þmsi ¼  ð�Þpms
ðrÞ ¼ 1ffiffiffiffiffiffiffiffi

jpj2
p

X
‘mjmj

m0�

i‘ e�i�
j

‘ Y‘mðp̂pÞR
j
"‘ðrÞY‘m0 ðr̂rÞ��

� ð‘m1=2msj jmjÞ ð‘m01=2�j jmjÞ , ð205Þ

which yields for the expansion coefficients

a
j
‘m ¼ j‘mjpð�Þ

� 
¼ 1ffiffiffiffiffiffiffiffi
jpj2

p i‘ e�i�
j

‘ Y‘mðp̂pÞ : ð206Þ

Inserting the partial wave expansions into the transition matrix elements

we get

hJMpð�ÞmsjrljJ0M0i
¼
X

‘m

a
j
‘mhJM‘m1=2msjrljJ0M0i

¼
X
‘mjmj
J1M1

a
j
‘mhðJjÞJ1M1jrljJ0M0ið‘m1=2msj jmjÞðJMjmjjJ1M1Þ: ð207Þ

Using the fact that r̂rl is a tensor operator of rank one and applying the

Wigner–Eckart theorem we get

hJ1M1jrljJ0M0i ¼ ð�1ÞJ1�M1
J1 1 J0
�M1 l M0

� �
hJ1krkJ0i: ð208Þ

With this, we obtain for the dipole matrix element

hJMpð�ÞmsjTijJ0M0!nli
¼ hJMpð�ÞmsjdljJ0M0i
¼
X
‘mjmj
J1M1

a
j
‘mhðJjÞJ1kdkJ0ið�1Þ�‘þ1=2þmj�JþjþJ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j þ 1Þð2J1 þ 1Þ

p

�
‘ 1=2 j

m ms �mj

� �
J j J1

M mj �M1

� �
J1 1 J0

�M1 l M0

� �
, ð209Þ

where we introduced the abbreviation dl ¼ i!rl. Inserting the expansion

coefficients we finally end up with Eq. (13).
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X. Appendix B: Contraction of B Coefficients

Inserting Eq. (13) twice into Eq. (12) and re-arranging all factors yields

BðK0Q0,��;KQ,kqÞ

¼ 1

jpj2
X

MM0msm
0
s

M0M
0
0
ll0

X
‘mjmj
J1M1

X

‘0m0 j0m0
j

J 0
1
M0
1

ð�1Þ‘i‘þ‘0eið�j‘��
j0

‘0Þ

�Y‘mðp̂pÞY‘0m0 ðp̂pÞhðJjÞJ1kdkJ0ihðJj0ÞJ 01kdkJ0i

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Kþ1Þð2K0þ1Þð2kþ1Þð2� þ1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ1Þð2j0þ1Þð2J1þ1Þð2J 01þ1Þ

p

�ð�1Þ�‘þ1=2þmj�JþjþJ1 ð�1Þ�‘0þ1=2þm0j�Jþj0þJ 01 ð�1ÞJ�MþJ0�M0þ3=2�ms�l

�
‘ 1=2 j

m ms �mj

 !
J j J1

M mj �M1

 !
J1 1 J0

�M1 l M0

 !

�
‘0 1=2 j0

m0 m0s �m0j

 !
J j0 J 01

M0 m0j �M01

 !
J 01 1 J0

�M01 l0 M00

 !

�
1=2 1=2 k

ms �m0s �q

 !
1 1 �

l �l0 ��

 !
J0 J0 K0

M0 �M00 �Q0

 !
J J K

M �M0 �Q

 !
:

ð210Þ

Applying Brink and Satchler (1962), appendix III, p. 119, the summation

over quantum numbers M0, M00, l, and l0 can be carried out and by

contracting the 3rd, 6th, 8th, and 9th 3j-symbols to a 9j-symbol we get

BðK0Q0,��;KQ,kqÞ

¼ 1

jpj2
X

MM0msm
0
s

b�

X
‘mjmj
J1M1

X

‘0m0 j0m0
j

J 0
1
M0
1

i‘þ‘
0
eið�

j

‘��
j0
‘0 Þ

� ð2bþ 1ÞY‘mðp̂pÞY‘0m0 ðp̂pÞhðJjÞJ1kdkJ0ihðJj0ÞJ 01kdkJ0i

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2K þ 1Þð2K0þ 1Þð2kþ 1Þð2� þ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ 1Þð2j0þ 1Þð2J1þ 1Þð2J 01þ 1Þ

p

� ð�1Þmj�JþjþJ1 ð�1Þ�‘0þm0j�Jþj0 ð�1ÞJ�Mþ3=2�msþJ1�M1
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�
1=2 1=2 k

ms �m0s �q

� �
‘ 1=2 j

m ms �mj

� �
‘0 1=2 j0

m0 m0s �m0j

 !

�
J J K

M �M0 �Q

� �
J j J1

M mj �M1

� �
J j0 J 01
M0 m0j �M01

 !

�
K0 b �

�Q0 � ��

� �
b J1 J 01
� �M1 M01

� � K0 b �

J0 J1 1

J0 J 01 1

8
><
>:

9
>=
>;
: ð211Þ

Here, M0 þ l ¼M1 has been used and the artificial angular momentum b

and z-component � has been introduced. By using the same formula we sum

over M, M0, M1, and M01 by contracting the 3j-symbols 4, 5, 6, and 8 which

yields another 9j-symbol,

BðK0Q0,��;KQ,kqÞ

¼ 1

jpj2
X

msm
0
s

a�b�

X
‘mjmjJ1

‘0m0 j0m0
j
J 0
1

i‘þ‘
0
eið�

j

‘��
j0
‘0 Þ

�ð2aþ 1Þð2bþ 1ÞY‘mðp̂pÞY‘0m0ðp̂pÞhðJjÞJ1kdkJ0ihðJj0ÞJ 01kdkJ0i

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2K þ 1Þð2K0þ 1Þð2kþ 1Þð2� þ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ 1Þð2j0þ 1Þð2J1þ 1Þð2J 01þ 1Þ

p

�ð�1Þ3=2�ms�‘0þm0jþjþJ1�J 01

�
1=2 1=2 k

ms �m0s �q

 !
‘ 1=2 j

m ms �mj

 !
‘0 1=2 j0

m0 m0s �m0j

 !
a j j0

� mj �m0j

 !

�
K0 b �

�Q0 � ��

 !
K a b

�Q � �

 ! K0 b �

J0 J1 1

J0 J 01 1

8
><
>:

9
>=
>;

K a b

J j J1

J j0 J 01

8
><
>:

9
>=
>;
, ð212Þ

where ð�1Þ2ðJ�MÞ ¼ 1 and M þmj ¼M1 have been used. Applying Brink

and Satchler (1962), app. IV, p 121, the two spherical harmonics can be

contracted. This yields

BðK0Q0,��;KQ, kqÞ

¼ 1

4�jpj2
X

msm
0
sLM

a�b�

X
‘mjmjJ1

‘0m0 j0m0
j
J0
1

i‘þ‘
0
eið�

j

‘��
j

‘Þð2aþ 1Þð2bþ 1Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð2‘0 þ 1Þ

p
ð2L þ 1ÞDðLÞM 0ðp̂pÞ

hðJjÞJ1kdkJ0ihðJj0ÞJ 01kdkJ0i
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�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2K þ 1Þð2K0þ 1Þð2kþ 1Þð2� þ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ 1Þð2j0þ 1Þð2J1þ 1Þð2J 01þ 1Þ

p

�ð�1Þ3=2�ms�‘0þm0jþjþJ1�J 01þm0þM

�
‘ ‘0 L
0 0 0

� �
‘ ‘0 L
m �m0 �M

� �
a j j0

� mj �m0j

 !

�
1=2 1=2 k

ms �m0s �q

� �
‘ 1=2 j

m ms �mj

� �
‘0 1=2 j0

m0 m0s �m0j

 !

�
K0 b �

�Q0 � ��

� �
K a b

�Q � �

� � K0 b �

J0 J1 1

J0 J 01 1

8
><
>:

9
>=
>;

K a b

J j J1

J j0 J 01

8
><
>:

9
>=
>;
, ð213Þ

where we expressed the spherical harmonics in terms of rotation matrices.

YLMðp̂pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L þ 1

4�

r
DðLÞM 0ðp̂pÞ

: ð214Þ

Using Brink and Satchler (1962), appendix III, p 119, rearranging the phase

factor, where ð�1Þ2m0 ¼ 1, ð�1Þ2ð j0þjþaÞ ¼ 1,m0j ¼ m0 þm0s andm0s �ms ¼�q0
have been used, the 3j-symbols 2–6 can be contracted to another 9j-symbol

and by summing overm,m0,ms,m
0
s,mj, andm0j, we eventually obtain Eq. (14).

XI. Appendix C: Reduction of A Coefficients

Applying a similar procedure as for the anisotropy parameter B, the dipole

approximation can be applied to the fluorescence transition matrix elements,

hJfMf�N�jTf jJMi ¼
XN

q¼1
hJfMf ðe� � PqÞjJjMi

¼
XN

q¼1
�i�hJfMf jðe� � RqÞjJMi: ð215Þ

Again, expanding the dipole operator R in a helicity basis, suppressing the

electronic index q, and by applying the Wigner–Eckart theorem we get

hJfMf�N�jTf jJMi ¼ i�hJfMf jR��jJMi

¼ ð�1ÞJf�Mfþ1 Jf 1 J

�Mf �� M

� �
hJf kDkJi, ð216Þ

where we used D ¼ �i�R and the fact that e� � R ¼ R� ¼ �R��.
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Inserting Eq. (216) twice into Eq. (31) we obtain

AðKQ0, hÞ ¼
X

Mf ��0

MM0

ð�1ÞJ�Mþ1��0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2K þ 1Þð2hþ 1Þ

p
hJf kDkJihJf kDkJi

�
Jf 1 J

�Mf �� M

� �
Jf 1 J

�Mf ��0 M0

� �

�
J J K

M �M0 �Q0

� �
1 1 h

� ��0 �

� �
: ð217Þ

Applying Blum, (1996), appendix (C9), the summation over �,�0, andMf

can be carried out. Re-arranging the phase factor yields

AðKQ0, hÞ ¼
X

MM0
ð�1ÞJ�Jf�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2K þ 1Þð2hþ 1Þ

p
hJf kDkJihJf kDkJi

�
J J K

M �M0 �Q0

 !
J J h

�M0 M �

 !
J J h

1 1 Jf

( )
, ð218Þ

and by using the orthogonality relation of the 3j-symbols we get with Blum,

(1996), eq. C4b

AðKQ0, hÞ ¼ ð�1ÞJþJfþ1�h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2K þ 1Þð2hþ 1Þ

p
hJf kDkJihJf kDkJi

� 1

2hþ 1
�hK�Q0

J J h

1 1 Jf

� �
, ð219Þ

which finally gives Eq. (33).
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I. Overview

Quantum mechanics is a tremendously successful theory playing a central

role in natural sciences even beyond physics, and has been verified in

countless experiments, some of which were carried out with very high
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precision. Despite its great success and its history reaching back more than

hundred years, still today the interpretation of quantum mechanics

challenges our intuition that has been formed by an environment governed

by classical physical laws.

Quantum optical experiments may come very close to idealized situations

of gedanken experiments originally conceived to test and better understand

the predictions and implications of quantum theory. An experimental

system ideally suited to carry out such experiments will be dealt with in

this work: electrodynamically trapped ions provide us with individual

localized quantum systems well isolated from the environment. The

interaction with electromagnetic radiation allows for preparation and

detection of quantum states, even of single ions (Neuhauser et al., 1980).

Since the first storage and detection of a collection of ions in Paul and

Penning traps has been reported (Fischer, 1959; Church and Dehmelt, 1969;

Ifflander and Werth, 1977), a large variety of intriguing experiments

were carried out, for instance, the demonstration of optical cooling

(Neuhauser et al., 1978; Wineland et al., 1978) and experiments related to

fundamental physical questions (for instance, Bergquist et al., 1986; Sauter

et al., 1986; Diedrich and Walther, 1987; Schubert et al., 1992; Guthöhrlein

et al., 2001; Howe et al., 2001). Also, for precision measurements and

frequency standards the use of trapped ions is well established (for instance,

(Becker et al., 2001; Diddams et al., 2001; Stenger et al., 2001).

The fact that quantum mechanics makes only statistical predictions let

Albert Einstein and others doubt whether this theory is correct, or more

specific, whether it gives a complete description of physical reality as they

perceived it. Einstein cast part of his doubts about this theory in the words

‘‘Gott würfelt nicht’’ (‘‘God doesn’t roll dice’’) that is, according to his

opinion laws of nature do not contain this intrinsic randomness and a

proper theory should account for that.

Another puzzling feature of quantum mechanics was pointed out by

Einstein, Podolsky, and Rosen (EPR) in Einstein et al. (1935). Quantum

theory predicts correlations between two or more quantum systems once

an entangled state of these systems has been generated. These correlations

persist even after the quantum systems have been brought to spacelike

separated points. The statistical nature of quantum mechanical predictions,

and the superposition principle, together with quantum mechanical

commutation relations give rise to such nonlocal correlations (Einstein

et al., 1935). Einstein found this, what he later called ‘‘spukhafte

Fernwirkung’’ (‘‘spooky action at a distance’’) deeply disturbing and

concluded that quantum mechanics is an incomplete theory. The term

‘‘Verschränkung’’ (entanglement) has been coined by E. Schrödinger to

describe such correlated quantum systems (Schrödinger, 1935). Recently,
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entangled states of various physical systems have been created and analyzed

in experiments (a review can be found in Whitaker, 2000). All experimental

findings have been in agreement with quantum mechanical predictions.

There is no a priori reason not to apply quantum mechanics to objects like

a measurement apparatus made up from a large number of elementary

constituents each of which is perfectly described by quantum theory. This,

however, may be a cause for yet more discomfort, since it leads to seemingly

paradoxical or absurd consequences as Erwin Schrödinger pointed out

(Schrödinger, 1935). With a gedanken experiment he illustrated the

consequences of including an object usually described by classical physics

(he chose a cat) into a quantum mechanical description.1 The cat is ‘coupled’

to a quantum system prepared in a superposition state, and in the course

of the gedanken experiment the cat, too, assumes a superposition state of

‘being dead’ and ‘being alive’ (Schrödinger, 1935): an entangled state of

quantum system and cat results.

The cat can be viewed as a macroscopic apparatus that is used to measure

the state of a quantum system. Thus, if the quantum system initially is in a

superposition of two states, then linearity of quantum mechanics demands

the measurement apparatus, too, to be in a superposition of two of its meter

states. This is clearly not what we usually observe in experiments. Reference

(Brune et al., 1996) describes a cavity QED experiment where an

electromagnetic field acts as meter for the quantum state of individual

atoms. It is shown how the decay of the initially prepared superposition

of meter states is the faster the larger the initial separation of these states is.

For macroscopically distinct meter states this decay of a superposition state

into a statistical mixture of states (that is, either one or the other is realized)

is usually too fast to be observable experimentally. Thus, superpositions

of macroscopically distinct states are never observed. Schrödinger-cat like

states have also been investigated with trapped ions (Myatt et al., 2000) and

superconducting quantum interference devices (Friedman et al., 2000).

The first step in a measurement process requires some interaction between

the quantum system and a second system (the probe), and consequently a

correlation is established between the two systems. (In general, this will result

in an entangled state between quantum system and probe.) This correlation

reduces or even destroys the quantum system’s capability to display

characteristics of a superposition state in subsequent local operations, and

the appropriate description of the quantum system alone is a statistical

mixture of states. The coupling of the probe to a macroscopic apparatus

leads to a reduction of the probe itself from a coherent superposition into a

1 Arguably classical physics is not sufficient to describe a cat. For the purpose of the gedanken

experiment, therefore, it might be useful to choose an inanimate macroscopic object.
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statistical mixture (for instance, Zurek, 1991; Giulini et al., 1996 and

references therein). When the apparatus is finally found in one of its meter

states, quantum mechanics tells us that the quantum system is reset to the

state correlated with this particular meter state. This will be evident in any

subsequent manipulation the quantum system is subjected to. If the

quantum system would undergo some kind of evolution as long as it is

not being measured, then the measurement process might impede or even

freeze this evolution. This slowing down (or coming to a complete halt) of

the dynamics of a quantum system when subjected to frequent measure-

ments has been termed quantum Zeno effect or quantum Zeno paradox

(Misra and Sudarshan, 1977).

An unambiguous demonstration of this effect requires measurements on

individual quantum systems as opposed to ensemble measurements. Such an

experiment has been carried out with individual electrodynamically trapped

Ybþ ions prepared in a well-defined quantum state, and it is shown

that even negative-result measurements (which do not involve local

interaction between quantum system and apparatus in a ‘‘classical’’ sense)

impede the quantum system’s evolution (Section IV).

Now we turn to the concept of a quantum state that is a central ingredient

of quantum theory. How can an arbitrary unknown state of a quantum

system be determined accurately? The determination of the set of

expectation values of the observables associated with a specific quantum

state is complicated by the fact that after a measurement of one observable,

information on the complementary observable is no longer available. Only

if infinitely many identical copies of a given state were available could

this task be achieved. Since this requirement cannot be fulfilled in

experiments, it is of interest to investigate ways to gain optimal knowledge

of a given quantum state making use of finite resources. In addition,

quantum state estimation is, for instance, relevant for quantum commu-

nication where quantum information at the receiver end of a quantum

channel has to be deciphered.

If N identically prepared quantum systems in an unknown arbitrary state

are available, how can this state be determined? In other words, what is

the optimal strategy to gain the maximal amount of information about

the state of a quantum system using finite physical resources? Quantum

states of various physical systems such as light fields, molecular wave

packets, motional states of trapped ions, and atomic beams have been

determined experimentally (for a review of recent work see, for instance,

(Freyberger et al., 1997; Schleich and Raymer, 1997; Bužek et al., 1998;

Walmsley and Waxer, 1998; White et al., 1999; Lvovsky et al., 2001).

Optimal strategies to read out information encoded in the quantum state

of a given number N of identical two-state systems (qubits) have been
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proposed in recent years. However, they require intricate measurements

using a basis of entangled states. It is desirable to have a measurement

strategy at hand that gives an estimate of a quantum state with high fidelity,

even if N measurements are performed separately (even sequentially) on

each individual qubit, that is, if a factorizing basis is employed for state

estimation. Sequential measurements on arbitrary but identically prepared

states of a qubit, the ground state hyperfine levels of electrodynamically

trapped 171Ybþ, are described in Section V. The measurement basis is

varied during a sequence of N measurements conditioned on the results

of previous measurements in this sequence. The experimental efficiency

and fidelity of such a self-learning measurement (Fischer et al., 2000) is

compared with strategies where the measurement basis is randomly chosen

during a sequence of N measurements.

In addition to puzzling us with fundamental questions regarding,

for example, the measurement process, quantum mechanics holds the

opportunity to put its laws to practical use. In the field of quantum

information processing (QIP) and communication basic elements of

computers are explored that would be able to solve problems that, for all

practical purposes, cannot be handled by classical computers and commu-

nication devices (Feynman, 1982; Deutsch, 1985; Gruska, 1999; Nielsen and

Chuang, 2000, and references therein). The computation of properties

of quantum systems themselves is particularly suited to be performed on

a quantum computer, even on a device where logic operations can only

be carried out with limited precision. Exchange of information can be

made secure by using encrypting methods that rely on quantum properties,

for instance, of optical radiation. While exploring these routes to new

types of computing and communication, again much will be learned about

still unsolved issues in quantum mechanics, for instance, regarding the

characterization of entanglement (Lewenstein et al., 2000). The experimental

system described in this work is well suited to conduct investigations in this

new field.

The great potential that trapped ions have as a physical system for

quantum information processing (QIP) was first recognized in Cirac and

Zoller (1995), and important experimental steps have been undertaken

toward the realization of an elementary quantum computer with this system

(for instance, Appasamy et al., 1998; Wineland et al., 1998; Roos et al.,

1999; Hannemann et al., 2002). At the same time, the advanced state of

experiments with trapped ions reveals the difficulties that still have to be

overcome.

Using 171Ybþ ions we have realized a quantum channel, that is,

propagation of quantum information in time or space, under the influence

of well-controlled disturbances. The parameters characterizing the quantum
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channel can be adjusted at will and various types of quantum channels

(that may occur in other experimental systems, too) can be implemented

with individual ions. Thus a model system is realized to investigate, for

example, the reconstruction of quantum information after transmission

through a noisy quantum channel (Section VI.A). Transfer of quantum

states becomes important when quantum information is distributed between

different quantum processors, as is envisaged, for instance, for ion trap

quantum information processing (Pellizzari, 1997; van Enk et al., 1999).

Furthermore, codes for quantum information processing, and in particular

error correction codes may be tested for their applicability under well-

defined, non-ideal conditions.

These experiments demonstrate the ability to prepare arbitrary states of

this SU2 system with very high precision – a prerequisite for quantum

information processing. The coherence time of the hyperfine qubit in 171Ybþ

is long on the timescale of qubit operations and is essentially limited by the

coherence time of microwave radiation used to drive the qubit transition.

In addition to the ability to perform arbitrary single-qubit operations, a

second fundamental type of operation is required for QIP: conditional

quantum dynamics with, at least, two qubits. Any quantum algorithm

can then be synthesized using these elementary building blocks (Barenco

et al., 1995; DiVincenzo, 1995). While two internal states of each trapped

ion serve as a qubit, communication between these qubits, necessary for

conditional dynamics, is achieved via the vibrational motion of the ion

string in a linear trap (the ‘‘bus-qubit’’) (Cirac and Zoller (1995)). Thus, it

is necessary to couple external (motional) and internal degrees of freedom.

Common to all experiments performed to date – related either to QIP or

other research fields – that require some kind of coupling between internal

and external degrees of freedom of atoms is the use of optical radiation

for this purpose. The recoil energy Er ¼ ð �hkÞ2=2m taken up by an atom upon

absorption or emission of a photon may change the atom’s motional

state (k ¼ 2�=�, � is the wavelength of the applied electromagnetic

radiation, and m is the mass of the ion). In order for this to happen with

appreciable probability with a harmonically trapped atom, the ratio

between Er and the quantized motional energy of the trapped atom, �h
should not be too small ( is the angular frequency of the vibrational mode

to be excited). Therefore, in usual traps, driving radiation in the optical

regime is necessary to couple internal and external dynamics of trapped

atoms.

The distance between neighboring ions �z in a linear electrodynamic

ion trap is determined by the mutual Coulomb repulsion of the ions

and the time-averaged force exerted on the ions by the electrodynamic

trapping field. Manipulation of individual ions is usually achieved by
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focusing electromagnetic radiation to a spot size much smaller than �z.
Again, only optical radiation is useful for this purpose.

In Section VI.B a new concept for ion traps is described that allows for

experiments requiring individual addressing of ions and conditional

dynamics with several ions even with radiation in the radio frequency (rf)

or microwave (mw) regime. It is shown how an additional magnetic

field gradient applied to an electrodynamic trap individually shifts ionic

qubit resonances making them distinguishable in frequency space. Thus,

individual addressing for the purpose of single qubit operations becomes

possible using long-wavelength radiation. At the same time, a coupling term

between internal and motional states arises even when rf or mw radiation

is applied to drive qubit transitions. Thus, conditional quantum dynamics

can be carried out in this modified electrodynamic trap, and in such a

new type of trap all schemes originally devised for optical QIP in ion traps

can be applied in the rf or mw regime, too.

Many phenomena that were only recently studied in the optical domain

form the basis for techniques belonging to the standard repertoire of coherent

manipulation of nuclear and electronic magnetic moments associated with

their spins. Nuclear magnetic resonance (NMR) experiments have been

tremendously successful in the field of QIP taking advantage of highly

sophisticated experimental techniques. However NMR experiments usually

work with macroscopic ensembles of spins and considerable effort has

to be devoted to the preparation of pseudo-pure states of spins with initial

thermal population distribution. This preparation leads to an exponentially

growing cost (with the number N of qubits) either in signal strength or

the number of experiments involved (Vandersypen et al., 2000), since the

fraction of spins in their ground state is proportional to N=2N .
Trapped ions, on the other hand, provide individual qubits – for example,

hyperfine states as described in this work – well isolated from their

environment with read-out efficiency near unity. It would be desirable to

combine the advantages of trapped ions and NMR techniques in future

experiments using either ‘‘conventional’’ ion trap methods, but now with

mw radiation as outlined above, or, as described in the second part of

Section VI.B.2, treating the ion string as a N-qubit molecule with adjustable

spin-spin coupling constants: In a suitably modified ion trap, ionic qubit

states are pairwise coupled. This spin–spin coupling can be formally

described in the same way as J-coupling in molecules used for NMR, even

though the physical origin of the interaction is very different. Thus,

successful techniques and technology developed in spin resonance experi-

ments, like NMR or ESR, can immediately be applied to trapped ions. An

advantage of an artificial ‘‘molecule’’ in a trap is that the coupling constants

Jij between qubits i and j can be chosen by the experimenter by setting the
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magnetic field gradient, the secular trap frequency, and the type of ions

used. In addition, individual spins can be detected state selectively with an

efficiency close to 100% by collecting scattered resonance fluorescence.

Another avenue toward quantum computation with trapped ions is the use

of an electric quadrupole transition (E2 transition) as a qubit (Appasamy

et al., 1998; Hughes et al., 1998; Barton et al., 2000; Schmidt-Kaler et al.,

2000). Section VI.G gives an account of experiments carried out with Baþ

and 172Yb+ ions where the E2 transition between the ground state S1=2 and

the metastable excited D5=2 state is investigated.

Cooling of the collective motion of several particles is prerequisite for

implementing conditional quantum dynamics on trapped ions. A study of

the collective vibrational motion of two trapped 138Baþ ions cooled by two

light fields is described in Section VI.C.3. Parameter regimes of the laser

light irradiating the ions can be identified that imply most efficient laser

cooling and are least susceptible to drifts, fluctuations, and uncertainties in

laser parameters (Reiß et al., 2002).

II. Spin Resonance with Single Ybþ Ions

In this section we introduce experiments with 171Ybþ ions demonstrating the

precise manipulation of hyperfine states of single ions essentially free

of longitudinal and transverse relaxation. The experimental techniques

outlined here, form the basis for further experiments with individual Yb+

ions described in Sections IV, V, and VI.

A. EXPERIMENTAL SETUP FOR YB
þ

171Ybþ and 172Ybþ ions are confined in a miniature Paul trap (diameter of

2mm). Excitation of the S1=2�P1=2 transition of Ybþ serves for initial

cooling and detection of resonantly scattered light near 369 nm (Fig. 1). For

this purpose, infrared light near 738 nm is generated by a laser system based

on a commercial Ti:Sapphire laser and frequency doubled using a LiIO3

crystal mounted at the center of a homemade ring resonator. The emission

frequency is stabilized against drift using an additional reference resonator.

Optical pumping into the D3=2 state is prevented by illuminating the ions

with laser light near 935 nm. This couples state jD3=2,F ¼ 1i via a dipole

allowed transition to state j½3=2�1=2, F¼ 0i that in turn decays to the ground

state jS1=2, F¼ 1i. Light near 935 nm is produced by a homemade tunable,

stabilized diode laser. Excitation spectra recorded with this laser have been

recorded that exhibit sidebands due to micromotion of an ion in the trap.

Making these sidebands disappear by adjusting the voltages applied to
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FIG. 1. (Top) Relevant energy levels of 171Ybþ. The hyperfine splitting is shown only for the

ground state (not to scale). (Bottom) Schematic drawing of major experimental elements. All

lasers are frequency stabilized employing reference resonators (not shown.) MW: microwave;

PMT: photo multiplier tube; DSP: digital signal processing; AOM: acousto optic modulator.

For most experiments described in this work (using 171Ybþ) the elements drawn with bold lines

are used.
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additional electrodes close to the trap serves for positioning the ion the field

free potential minimum at the center of the trap.

The quantum mechanical two-state system used for the experiments

described in Sections IV, V, and VI is the S1=2 ground-state hyperfine

doublet with total angular momentum F ¼ 0, 1 of 171Ybþ. The

j0i � jS1=2,F ¼ 0i $ jS1=2,F ¼ 1, mF ¼ 0i � j1i ð1Þ

transition with Bohr frequency !0 is driven by a quasiresonant microwave

(mw) field with angular frequency near ! ¼ 2� 12:6GHz. The time

evolution of the system is virtually free of decoherence, that is, transversal

and longitudinal relaxation rates are negligible. However, imperfect

preparation and detection may limit the purity of the states. Photon-

counting resonance fluorescence on the S1=2(F¼ 1)$ P1=2(F¼ 0) transition

at 369 nm serves for state-selective detection with efficiency >98%. Optical

pumping into the jF ¼ 1,mF ¼ 	1i levels during a detection period is

avoided when the E vector of the linearly polarized light subtends 45� with
the direction of the applied dc magnetic field. The light is usually detuned to

the red side of the resonance line by a few MHz in order to laser-cool the

ion. Cooling is achieved by simultaneously irradiating the ion with light

from both laser sources and with microwave radiation (Fig. 1).

When exciting the electric quadrupole transition S1/2�D5/2 (Section

VI.C), the Yb+ ion may decay into the extremely long-lived F7/2 state. Light

generated by a tunable diode laser near 638 nm resonantly couples this state

to the excited state D[5/2]5/2 such that optical pumping is avoided. The time

needed to repump the ion from the F7/2 state to the S1/2 state has been

determined as a function of the intensity of the laser light near 638 nm

(Riebe, 2000). It saturates at �ms.

B. GROUND STATE HYPERFINE TRANSITION IN
171YB

þ

The two hyperfine states of Yb+, |0i and |1i are coupled by a resonant,

linearly polarized microwave field coherently driving transitions on this

resonance. In a semiclassical description of the magnetic dipole interaction

between a microwave field travelling in the y-direction and the hyperfine

states of 171Ybþ the Hamiltonian reads

H ¼ �h

2
!0�z � ~�� � ~BB

¼ �h

2
!0�z þ

�h

2
�Bx cosðky� !tþ �0Þ�x ð2Þ
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where ~�� is the magnetic dipole operator of the ion, ~BB ¼ ðBx�
cosðky� !tþ �0Þ, 0, 0ÞT is the magnetic field associated with the microwave

radiation, and � is the gyromagnetic ratio. The initial phase of the mw

field, � ¼ kyþ �0 at the location of the ion is set to zero in what follows.

Transforming this Hamiltonian according to ~HH ¼ expðið!=2Þt�zÞH�
expð�ið!=2Þt�zÞ, and invoking the rotating wave approximation yields the

time evolution operator

UðtÞ ¼ exp � i

2
t ��z þ��xð Þ

� �
ð3Þ

governing the dynamics of the two-state system. The detuning � � !0 � !,
the Rabi frequency is denoted by � ¼ �Bx=2, and �z, x represent the usual

Pauli matrices. If the ion is initially prepared in state |0i, then the

probability to find it in state j1i after time t is

P1ðtÞ ¼
�

�R

� �2

sin2
�R

2
t

� �
ð4Þ

where �R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2
p

. A pure state j�,�i ¼ cos ð�=2Þj0i þ sin ð�=2Þei�j1i
represented by a unit vector in 3D configuration space (Bloch vector) is

prepared by driving the hyperfine doublet with mw pulses with appro-

priately chosen detuning � � !0 � !, and duration tmw ¼ �=�, and by

allowing for free precession for a prescribed time tp ¼ �=�.
The vertical bars in Fig. 2 indicate the experimentally determined

excitation probability of state |1i (single 171Ybþ ion) as a function of the mw

pulse length tmw; the solid line is a fit using Eq. 4 (Rabi oscillations).

The observed Rabi oscillations are free of decoherence over experi-

mentally relevant timescales. However, the contrast of the oscillations is

below unity, since the initial state |0i was prepared with probability 0:89.
This limitation will be addressed in future experiments. Figure 3 displays

data from a Ramsey-type experiment (Ramsey, 1956) where the ion

undergoes free precession for time tp between two subsequent mw pulses.

This experimental signal, too, is essentially free of decoherence, and the

contrast of the Ramsey fringes is only limited by the finite preparation

efficiency. The data in Figs. 2 and 3 show that single-qubit operations are

carried out with high precision, an important prerequisite for scalable

quantum computing.
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FIG. 2. Rabi oscillations: Excitation probability of state j1i � jS1=2F ¼ 0;mF ¼ 0i of a single
Yb+ ion averaged over 85 preparation–detection cycles as a function of mw pulse length tmw.

The solid line results from a fit using Eq. 4 giving �R ¼ 2:9165� 2�kHz. The error bars

indicate one standard deviation of the statistical error resulting from the finite number of

preparation–detection cycles. The sub-unity contrast of the signal is due to imperfect initial state

preparation by optical pumping (which will be improved in future experiments).
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FIG. 3. Data from a Ramsey-type experiment where the ion undergoes free precession

between two subsequent mw pulses (detuning � ¼ 103:9� 2�Hz, averaged over 100

realizations). The error bars are of statistical origin. This experimental signal, too, is essentially

free of decoherence and the contrast of the so-called Ramsey fringes is only limited by the finite

preparation efficiency. The data displayed in Fig. 2 and in this figure show that single-qubit

operations are carried out with high precision, an important prerequisite for scalable quantum

computing.
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III. Elements of Quantum Measurements

A. MEASUREMENTS AND DECOHERENCE

In what follows, we consider the process of performing a measurement on

a quantum system. We start by considering the interaction between the

quantum system to be measured and a second system, the quantum probe,

assuming that pure states of both are prepared before an interaction

between the two takes place. Initially, the state of the (unknown) quantum

system j ii ¼
P

n cnjni (jni are the eigenstates of the system Hamiltonian

with complex coefficients cn) and of the (known) state of the quantum probe

j�ii factorizes, that is we have j ii � j�ii. The interaction between

system and probe is assumed to be governed by a Hamiltonian of the

form (Giulini et al., 1996, Chapter 3)

Hint ¼
X

n

jnihnj � ÂAn ð5Þ

where ÂAn are operators acting only in the Hilbert space of the probe. They

transform the probe conditioned on the state of the quantum system.

If j ii ¼ jni, then, after the interaction has taken place the combined state

of system and probe reads

jnij�ii����!
Hint jnij�ni: ð6Þ

For the sake of a clearer discussion in the following paragraphs we assume

that h�kj�li ¼ �kl. In general, if the quantum system is initially prepared

in a superposition state, the first step of the measurement will result in an

entangled state between system and probe

j iij�ii ¼
X

n

cnjnij�ii����!
Hint

X

n

cnjnij�ni: ð7Þ

Thus, if the quantum system initially is in a superposition of states, then

linearity of quantum mechanics demands the probe, too, to be in a

superposition of its states.

There is no a priori reason not to apply quantum mechanics, and, in

particular the above treatment, to objects used as a probe that are made up

of a large number of elementary constituents each of which is perfectly

described by quantum mechanics. E. Schrödinger (Schrödinger, 1935)

illustrated how quantum theory, if applied to macroscopic objects, may lead

to predictions that are not in agreement with our observations. He imagined
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a cat coupled to an individual quantum system that may exist in a

superposition of states, say |ei and |gi. The apparatus is constructed

such that if the quantum system is in |ei, the cat remains untouched,

whereas state |gi means the cat will be killed by an intricate mechanism.

The formal quantum mechanical description of this situation leads to the

conclusion that the cat is in a superposition state of being dead and being

alive, once the quantum system assumes a superposition state.

If the cat is replaced by an apparatus that is used to measure the state

of the quantum system, one immediately sees that Schrödinger’s

gedanken experiment illustrates part of the measurement problem in

quantum mechanics: Why does a macroscopic probe correlated to the

quantum system’s state not exist in a superposition of its possible states,

but instead always assumes one or the other?

The Kopenhagen interpretation solves this contradiction between

quantum mechanical predictions and actual observations by postulating

that quantum mechanics does not apply to a classical apparatus. Following

this interpretation there exists a border beyond which quantum mechanics

is no longer valid. This, of course, provokes the questions where exactly

this borderline should be drawn and what parameter(s) have to be changed

in order to turn a given quantum system into a classical device.

The mathematical counterpart of this view was formulated by von

Neumann: he postulated two possible time evolutions in quantum mechanics

(von Neumann, 1932): One is the unitary time evolution that a quantum

system undergoes according to Schrödinger’s equation in absence of any

attempt to perform a measurement (von Neumann’s ‘‘zweiter Eingriff ’’ or

‘‘second intervention’’). This evolution is reversible. The other process is

the irreversible quasi instantaneous time evolution when a measurement on

the system is performed. It leads to a projection of the wave function on

one of the eigenfunctions of the measured observable (called the ‘‘first

intervention’’ by von Neumann).

The theory of decoherence (Zurch, 1991; Giulini et al., 1996) answers the

question how a superposition of a quantum system in the course of a

measurement is reduced to a state described by a local diagonal density

matrix (after tracing out the probe degrees of freedom), a mathematical entity

describing possible alternative outcomes, but not a superposition of states.

We will consider this approach in more detail in the following paragraphs.

A cavity-QED experiment similar to the gedanken experiment envisioned

by Schrödinger is realized by first preparing a Rydberg atom in a super-

position of two internal energy eigenstates |ei and |gi (Brune et al. (1996)).

Then, this quantum system is sent through a cavity containing an

electromagnetic field in a Glauber state (coherent state corresponding to

the cat in the gedankan experiment), j�i whose phase is changed by
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dispersive interaction (no energy exchange takes place between atom and

field) depending on the state of the atom. The combined atom–field state

after the interaction reads

j	iatom, cav ¼ 1=
ffiffiffi
2
p
ðjeij�ei’iC þ jgij�e�i’iCÞ: ð8Þ

The decay of this coherent superposition of probe states correlated with a

quantum system (Rydberg atom) toward a statistical mixture was indeed

experimentally observed and quantitatively compared with theoretical

predictions (Brune et al., 1996). It could be shown that the decay of the

superposition becomes faster with increasing distinguishability of the two

probe states involved in the measurement of the quantum system.

This decay from a superposition toward a statistical mixture is monitored

by sending a second atom through the cavity (a time � after the first atom)

and detecting this second atom’s state after it has interacted dispersively

with the cavity field. The analysis of the correlations between the first and

second atom’s measurement results then reveals to what degree the off-

diagonal elements of the density matrix (the coherences, created through the

interaction with the first atom) describing the cavity field have decayed at

time � when the second atom was passing through the cavity (Maitre et al.,

1997).

(Gedanken) experiments on quantum complementary, too, have dealt

with the influence of correlations and measurements on an observed system.

As an example we consider first the diffraction of electrons when passing

through a double slit resulting in an interference pattern on a screen mounted

behind the double slit (Feynman et al., 1965; Messiah, 1976). Any attempt

to determine the path the electrons have taken, that is through which slit

they passed, destroys the interference pattern. This can be explained by

showing that the act of position measurement imposes an uncontrollable

momentum kick on the electrons in accordance withHeisenberg’s uncertainty

principle (Bohr, 1949; reprinted in Bohr, 1983). This is to be regarded as

a local physical interaction (Knight, 1998).

In Scully et al. (1991) it is shown by means of a gedanken experiment,

without making use of the uncertainty principle, that the loss of interference

may be caused by a nonlocal correlation of a welcher weg detector with the

observed system: An atomic beam is detected on a screen after it has passed

through a double slit. After having passed the double slit, the wave function

describing the center-of-mass (COM) motion of the atoms is

	ð~rrÞ ¼ 1ffiffiffi
2
p  1ð~rrÞ þ  2ð~rrÞ

� �
ð9Þ
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where the subscripts 1 and 2 refer to the two slits. The probability to

detect an atom at location ~RR on the screen is then given by

	ð ~RRÞ









2

¼ 1

2
j 1ð ~RRÞj2 þ j 2ð ~RRÞj2 þ  1 2 þ  2 1 ð10Þ

where the last two terms are responsible for the appearance of interference

fringes on the screen.

Now an empty (vacuum state) micromaser cavity is placed in front of

each slit and the atoms are brought into an excited internal state, jei, before
they reach one of the cavities. The interaction between atom and cavity

is adjusted such that upon passing through a cavity an atom will emit a

photon in the cavity and return to its lower state, jgi. Consequently, the
combined state of atomic COM wave function and cavity field is now an

entangled one and reads

	ð~rrÞ ¼ 1ffiffiffi
2
p  1ð~rrÞj1i1j0i2 þ  2ð~rrÞj0i1j1i2

� �
: ð11Þ

Here, the state ket representing a cavity field is labeled with the number

of photons present in the cavity, and the subscripts indicate in front of

which slit the respective cavity is placed. Calculating again the probability

distribution on the screen now gives

	ð ~RRÞ









2

¼ 1

2
j 1ð ~RRÞj2 þ j 2ð ~RRÞj2 þ  1 2h1j0i1h0j1i2 þ  2 1h0j1i1h1j0i2:

ð12Þ

The two last terms responsible for the appearance of interference fringes

disappear, since the cavity states are orthogonal, and with them the

interference pattern on the screen. It is emphasized in Scully et al. (1991)

that the welcher weg detector functions without recoil on the atoms and

negligible change of the spatial wave function of the atoms. The atoms, after

having interacted with the welcher weg detector behave like a statistical

ensemble, and the loss of the atomic spatial coherences is due to the

nonlocal correlation of the atom with the detector. Such a correlation is

generally produced in every welcher weg scheme, but its effect of

suppressing interference is often covered by local physical back action on

the observed quantum object (Dürr et al., 1998).

The ability of the atomic COM wave function to display interference can

be restored in this gedanken experiment by erasing the welcher weg
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information (Scully et al., 1991, and references therein; Scully and Walther,

1998). However, the interference is regained only, if the detection events due

to atoms arriving at the screen are sorted according to the final state of the

device used to erase the Welcher Weg information (a detector for the

photons in this gedanken experiment). Experiments along these lines have

demonstrated such quantum erasers (Kwiat et al., 1992; Chapman et al.,

1995; Herzog et al., 1995).

Here, we have considered the extreme case that complete information

on the atoms path is available and the interference disappears completely.

A general quantitative relation between the amount of welcher weg

information stored in a detector and the visibility of interference fringes

has been given in Englert (1996). In order to verify this relation, a welcher

weg experiment using an atom interferometer was carried out and is

described in Dürr et al. (1998a,b). In that experiment the amount of

information stored in the detector and the contrast of interference fringes

were determined independently.

The first part of the cavity-QED experiment described by Brune et al.

(1996) (that is, before the second atom is sent through the cavity) can be

interpreted as an atom interferometer with a welcher weg detector in one of

the arms of the interferometer (compare also Gerry, 1996): Before the atom

enters the cavity a coherent superposition of its energy eigenstates

1=
ffiffiffi
2
p
ðjei þ jgiÞ is prepared by applying a �=2-pulse to the atom. The

analogy with an optical Mach–Zehnder interferometer where a photon is

sent along one of two possible paths after the first beam splitter (in a

classical view) is manifest in the fact that the atom may cross the cavity

either in state |ei or state |gi (again classically speaking). After the atom has

passed through the cavity, a second �=2-pulse is applied corresponding to

the second beam splitter (or combiner) in an optical interferometer.

Placing a photodetector in one of the arms of the Mach–Zehnder

interferometer would reveal information on which path the photon took.

Here, the coherent field in the cavity that undergoes a phase shift correlated

to the atom’s state acts as a welcher weg detector. The cavity field does not

act as a ‘‘digital’’ detector indicating the state of the atom with certainty.

Instead, the two coherent field components correlated with the two atomic

states may have some overlap (i.e., h�ei’j�e�i’i 6¼ 0) such that they cannot

be distinguished with certainty. Consequently, the correct state of the

atom could only be inferred with probability below unity, if a measurement

of the cavity field were performed. Therefore, the interference fringes do

not completely disappear, but instead a reduced contrast of the fringes

is observed (Fig. 3 in Brune et al., 1996).

After the welcher weg detector (the field in the cavity-QED experiment)

and the atom have become entangled, the atom’s capability to display
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interference vanishes. If only the atom is considered, that is, only one part of

the entangled entities quantum system and quantum probe, then it appears

as if the atom had been reduced to a statistical mixture of states as opposed

to a coherent superposition. This is evident when considering the reduced

density matrix of the atom obtained by ‘‘tracing out’’ the probe degrees of

freedom. By applying a suitable global operation on probe and the atom

together, the capability of the atomic states to show interference can be

restored. This has been demonstrated in a different experiment

where the Welcher Weg information is encoded in the photon number

instead of the phase of the field (Bertet et al., 2001). Thus, the reversibility of

the interaction of system and probe is demonstrated.

The quantum probe itself – in the experiment described in Brune et al.

(1996) represented by the mesoscopic cavity field initially prepared in a

superposition of two states by the interaction with the atom – eventually

undergoes decoherence: photons escaping from the resonator into the

environment lead to entanglement between the atom, cavity field, and

the previously empty, but now occupied ‘‘free space’’ modes of the

electromagnetic field. Finally, this process results in a local diagonal density

matrix (after tracing out the ‘‘free’’ field modes) describing a statistical

mixture of the state of the atom (system) and the cavity field (probe). That

is, the outcome of any subsequent manipulation of only the atom and/or

cavity field will be characterized by the initial absence (before this further

manipulation takes place) of coherent superpositions.

This argument can, of course, be extended further, including into the

description also the environment with which the photons escaping from the

cavity may eventually interact. Taking this argument consecutively further,

always leaves behind some entities (the atom, cavity field, ‘‘free’’ field, . . .)

that will behave as statistical mixtures, if the next entity is not included in

the theoretical description and further experiments. In practical experiments

it seems impossible to include the whole chain of entities in further

manipulations. Therefore, for all practical purposes, the correlation

established between system, probe, and environment irreversibly destroys

the system’s and probe’s superposition state. For a macroscopic environ-

ment (e.g., a measurement apparatus) this reduction to a statistical mixture

occurs quasi-instantaneously (Giulini et al., 1996).

In the considerations to follow, we divide the measurement apparatus,

used to extract information about the state of a quantum system, into a

quantum probe that interacts with the observed quantum system and a

macroscopic device (called ‘‘apparatus’’ henceforth) coupled to the probe

and yielding macroscopically distinct read-outs. The measurement process

is then formally composed of two stages (von Neumann, 1932; Braginsky

and Khalili, 1992; Alter and Yamamoto, 2001). First a unitary interaction
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between quantum probe and the quantum system takes place. Then the

quantum probe is coupled to the apparatus that indicates the state of the

probe by assuming macroscopically distinct states (e.g., pointer positions.)

The ‘‘environment’’ in the cavity-QED experiment described above takes on

only part of the role of the apparatus: in principle, information about the

probe’s state is available in the environment after a time determined by

the decay constant of the cavity field. However, it will be difficult for

an experimenter to extract this information by translating it into distinct

read-outs of a macroscopic meter.

B. MEASUREMENTS ON INDIVIDUAL QUANTUM SYSTEMS

The theory of decoherence explains the appearance of local alternatives with

certain statistical weights instead of coherent superpositions in quantum

mechanical measurements. But it does not give an indication of which

eigenstate the probe (and consequently the system) will be reduced to as

the final result of the measurement. The density matrix describing system

and probe, according to decoherence theory, becomes diagonal as a result

of the interaction with the apparatus, but, in general, still has more than

one diagonal element larger than zero. This will be a valid description, if

after a measurement has been performed on an ensemble of quantum

systems, further manipulations of this ensemble are carried out. However,

such a density matrix is not in agreement with the experimental observation

that after a measurement has taken place on an individual quantum system,

and a particular eigenvalue of the measured observable has been obtained,

subsequent measurements again yield the same result. After such a

measurement, the state of this single quantum system has to be described

by the density operator � ¼ jnihnj of a pure state, that is all diagonal

elements vanish except one. Decoherence cannot explain or predict what

particular outcome a given measurement on an individual quantum system

has (i.e., which diagonal element becomes unity). The measurement of a

single quantum system corresponds to a projection of the system’s

(and probe’s) wave function on a particular eigenstate jni (j�ni) in accord

with von Neumann’s first intervention (the projection postulate).

According to the projection postulate, the wave function of the object

collapses into an eigenfunction of the measured observable due to the

interaction between the measurement apparatus and the measured quantum

object. The result of the measurement will be the corresponding eigenvalue.

One could suspect that the statistical character of the measurement process

described by the projection postulate is due to incomplete knowledge of the

quantum state of the measurement apparatus. However, von Neumann
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showed that the measurement process remains stochastic even if the state

of the measurement apparatus were known (Chapter VI.C in von Neumann,

1932). We have seen that decoherence can account for the quasi-

instantaneous disappearance of superpositions and the appearance of

distinct measurement outcomes with certain probabilities, but not for

the ‘‘choice’’ of a particular outcome of a measurement on an individual

system (the projection postulate, too, does not explain this last point).

A quantum mechanical wave function can be determined experimentally

from an ensemble experiment. Either a series of measurements is performed

on identically prepared single systems, or a single measurement on an

ensemble of identical systems is carried out (von Neumann, 1932; Raymer,

1997; Alter and Yamamoto, 2001). The wave function is interpreted as a

probability amplitude that defines a probability density PðaÞ ¼ jh j ij2, the
distribution of possible results a 2 R of measurements of an observable ÂA.

The corresponding expectation value hai ¼ h jÂAj i defines the center

position and the width hð�aÞ2i ¼ ha2i � hai2 of the probability density. It is

possible to determine both quantities in an ensemble measurement, and

therefore to infer the quantum wave function up to a phase.

The expectation value might be estimated from

hai � 1

N

XN

n¼1
an ð13Þ

where the an are the results of local measurements on identically prepared

independent quantum systems. In a similar way ha2i and hai2 can be

determined, and thus hð�aÞ2i. Though it is possible to determine an

unknown quantum wave function from an ensemble measurement, it is

impossible with a single quantum system, neither from a single measurement

nor from a series of subsequent measurements. If a1 is the result of a single

measurement, the estimated expectation value hasi ¼ a1, and in general

hai 6¼ hasi. The quantum uncertainty, hð�aÞ2i of the measured observable

remains undetermined, since ha2s i ¼ hasi2 ¼ a21. Even if a series of measure-

ments on the same single system is performed, it is not possible to infer the

probability distribution P(a). The results of N subsequent measurements

of ÂA on a single system are not independent, and one will obtain the same

eigenvalue a1 ¼ a2 ¼ � � � ¼ aN for every observation. The estimated

expectation value will then again be hasi ¼ ha1i ¼ a1, and the variance

h�ai ¼ 0 (compare also Chapter 2 in Alter and Yamamoto, 2001).

In this sense, quantum mechanics is not an ergodic theory, in contrast

to classical statistics where a series of measurements on a single system is

equivalent to a single measurement on an ensemble of identical systems.

Only if an observed single quantum system is identically prepared in
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advance of every subsequent measurement, a series of measurements on

a single quantum system is equivalent to a single measurement of an

ensemble of quantum systems.

In general, it is not possible to predict the outcome of a measurement on

an individual quantum system with certainty, even if complete knowledge

of the initial quantum wave function is available. The obtained results

are statistical, if the system is not initially prepared in an eigenstate of

the observable being measured. On the other hand, if the initial state is

an eigenstate, then the measurement is compatible to the preparation.

Therefore, even a single measurement may yield partial information about

the systems initial state. If an eigenvalue is obtained corresponding to a

particular eigenstate jni, the observed system was initially not in an

eigenstate jn0i orthogonal to the measured one.

So far, in the discussion of measurements on quantum systems we have

not explicitly considered the case of negative result measurements (for a

recent review see Whitaker, 2000). We will restrict the following discussion

to quantum mechanical two-state systems for clarity. In some experimental

situations (real or gedanken) the apparatus coupled to the quantum probe

and quantum system, may respond (for example by a ‘‘click’’ or the

deflection of a pointer) indicating one state of the measured system, or not

respond at all indicating the other. Such measurements where the

experimental result is the absence of a physical event rather than the

occurrence of an event have been described, for instance, in Renninger

(1960) and Dicke (1981). A negative-result measurement or observation

leads to a collapse of the wave function without local physical interaction

involved between measurement apparatus and observed quantum system.

This will be discussed in more detail in the following paragraphs. In

particular, the meaning of the concept ‘‘local physical interaction’’ is looked

at in this context.

The situation described above is analogue to a gedanken experiment

depicted in Chapter 3.3.2.3 in Giulini et al., 1996. There, a Stern–Gerlach

(SG) apparatus is considered that is oriented to yield at its exit spin-1/2

particles with their spin pointing either in the positive or negative z

direction. Particles with different spin directions propagate along spatially

separate trajectories upon exiting the SG device (Fig. 4). A non-absorbing

detector, DA is placed in only one of the exit ‘‘channels’’ A of the device SG

such that it will register a particle passing through. If the particle takes the

other channel B (corresponding to the orthogonal spin direction) then the

detector DA does not respond. If for times greater than tA (the time needed

for the particle to travel from the entrance of SG to DA), DA has not

indicated the passing through of a particle, and if an additional auxiliary

detector DB were used in channel B, placed far away from SG and DA
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(we take tB � tA), then this detector DB would register the particle with

certainty at time tB after it was launched at the entrance of SG. Even though

in this example, in a classical sense, the particle and the detector DA never

interacted, since they are located in regions of space separated by a distance

much larger than the deBroglie wavelength of the particle, the mere

possibility for detection may change the behavior of the particle: a spin-1/2

at the entrance of SG initially prepared in a superposition of eigenstates of �z
is effectively reduced to an eigenstate of �z. In Giulini et al., 1996 it is

argued: ‘‘The claim that the particle did not interact at all with the detector

[DA] in the case of a spin-down result (detector DA does not ‘‘click’’) must be

wrong, since a (superposition state) is different from an ensemble of z-up

and z-down states.’’ In this argument, the change of a quantum state is

taken as a sufficient condition for ‘‘interaction’’ between the quantum

system and some device (quantum or macroscopic). What is termed

‘‘interaction’’ in Giulini et al., 1996, we consider as the consequence of a

negative result measurement, a measurement not involving a local physical

interaction between detector and system.

If detector DA did not respond (a negative-result measurement occurred)

then the quantum state has nevertheless changed as described above: a

coherent superposition is reduced not only to a statistical mixture, but to

a definite state. In a classical sense, no interaction between the particle

and the detector took place, since the particle is travelling along path B

for t > tA. This we consider the absence of local physical interaction.

The Hamiltonian describing the quantum system (spin-1/2 after having

passed through SG) and the detector (DA) contains a term coupling the spin

system to the detector DA, only if the spin is in the z-up state, thus describing

a conditional local physical interaction (which is absent if the spin is in

z-down state). In general, a Hamiltonian determines eigenstates and -values,

and fixes a range of possible measurement outcomes, some of which may be

obtained without local physical interaction.

FIG. 4. Illustration of a negative result measurement using a Stern–Gerlach apparatus (SG)

with a nonabsorbing detector (DA) at one of its exits (see text).
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IV. Impeded Quantum Evolution: the Quantum Zeno Effect

The nonlocal character of negative result measurements manifests itself in

an effect that Misra and Sudarshan named ‘‘Zeno’s paradox in quantum

theory’’ (or ‘‘quantum Zeno effect’’) alluding to the paradoxes of the

greek philosopher Zeno of Elea (born around 490BC), who claimed that

motion of classical objects is an illusion. Zeno illustrated his point of view

with various examples one of which is the following: before an object

can reach a point at a distance d from its present location, it must have

passed through the point at distance d / 2. Carrying this argument further,

it means that infinitely many points have to be passed in finite time before

d can be reached. Therefore motion is not possible according to this

argument. Modern Mathematics resolves this apparent ‘‘paradox’’ making

use of real numbers and convergent infinite series. In the quantum

domain the notion ‘‘quantum Zeno effect’’ refers to the impediment or

even suppression of the dynamical evolution of a quantum system

by frequent measurements of the system’s state (see, for instance, Khalfin,

1968; Fonda et al., 1973; Misra and Sudarshan, 1977; Beige and Hegerfeldt,

1996; Home and Whitaker (1997)) and references therein, and also

Chapter V.2 in von Neumann, 1932).

How does a quantum system behave, whose evolution in time is unitary,

under repeated measurements separated by the time 4t? This will be

considered for the case of ideal measurements, that is, the measurement

is instantaneous and leaves the quantum system in an eigenstate of the

observable being measured (Beige and Hegerfeldt, 1997). Let jai be an

eigenstate of observable ÂA, and P̂aPa ¼ jaihaj the corresponding projector.

If a quantum system, initially prepared in state j ð0Þi, undergoes ideal

measurements at times t1, t2, . . . with 4t ¼ ti � ti�1 (i ¼ 1, 2, . . . ,N), then

after N successive measurements the system is found in state

j ðtN , 0Þi ¼ P̂aPaÛUðtN , tN�1Þ P̂aPa . . . P̂aPa ÛUðt1, 0Þj ð0Þi ð14Þ

where ÛUðti, ti�1Þ denotes the unitary time evolution operator for the

quantum system between two measurements. The probability to find

the quantum system in the state jai after N ideal measurements is

Pa ¼ jhaj ðtn, 0Þij2 ð15Þ

¼ jhajÛUðt1, 0Þj ð0Þij2
Yn

i¼2
jhajÛUðti, ti�1Þjaij2, ð16Þ
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and an expansion gives:

jhajÛUðti, ti�1Þjaij2 ’ 1�4t2ð4ĤHÞ2 ð17Þ

If the time interval between subsequent measurements goes to zero, 4t! 0,

then Pa tends to 1 and the survival probability becomes Pa ¼ jhaj ð0Þij2.
This simple argument shows that a quantum system initially in a state j ii
turns into an eigenstate jai under repeated ideal measurements for 4t! 0

with probability jhaj ð0Þij2 (von Neumann, 1932). If j ð0Þi ¼ jai, the system
remains in jai for 4t! 0.

For short times the survival probability of the state will be proportional

to t2, and the decay rate of this state is proportional to t. In contrast, an

exponential decay occurs with a constant rate, and a decay for time t1,

followed by an interruption (or measurement), followed by further decay

for a time t2 is equivalent to uninterrupted decay for a time t1 þ t2 (Home

and Whitaker (1997)).

A simple quantum system to demonstrate the quantum Zeno effect is

a stable two-level system (states |0i and |1i with energy separation �h!0)

driven by a resonant harmonic perturbation. After unitary time evolution

of duration 4t, the probability of finding the system in the initially

prepared eigenstate, e.g. (the survival probability), P0 ¼ cos2ð�=2Þ, where
� ¼ � ��t, and � is the Rabi frequency. The corresponding transition

probability P1 ¼ sin2ð�=2Þ. For small time intervals �t the survival

probability becomes

P0 ¼ cos2
�
� ��t

2

�
’ 1��2�t2

4
ð18Þ

displaying the initial quadratic time dependence required for the quantum

Zeno effect.

When an ideal measurement is carried out at the end of a period of

evolution �t, the quantum system is reset to one of its eigenstates. If during

time evolution one performs q successive ideal measurements a time �t

apart, the survival probability to find the system in the initial eigenstate

in measurement q under the condition that it was found q� 1 times in this

state before,

P00 ¼ cos2�qð�=2Þ : ð19Þ
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In Fig. 5a P00 is shown for several values of �. On the other hand,

if no measurements were performed and the system evolve coherently,

the (a priori) probability that the system is in the initial state after time

t ¼ n ��t is PcohðnÞ ¼ cos2ðn � �=2Þ (Fig. 5b).
In their original proposal of the quantum Zeno effect Misra and

Sudarshan used the term ‘‘quantum Zeno paradox’’ for the case of

‘‘freezing’’ the system to a particular state by means of continuous

observation of the systems unitary evolution (Misra and Sudarshan,

1977), while the term ‘‘quantum Zeno effect’’ was used to characterize its

impediment (Peres, 1980; Pascazio and Namiki, 1994; Cook, 1998). Other

authors distinguish between unitary evolution of the quantum system and

exponential decay of an unstable system, and the suppression of the latter is

regarded paradoxical (Block and Berman, 1991). In Home and Whitaker

(1997) it is pointed out that the quantum Zeno effect is a quantum effect due

FIG. 5. (a) Probability, P00ðqÞ to find a harmonically driven two-state system in the initially

prepared state j0i in each one of q successive measurements, resulting in uninterrupted

sequences of q equal results (for several nutation angles � ¼ ��t). (b) A priori probability for

the system to be in state j0i after time n ��t, if no measurements are performed.
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to the initial quadratic time dependence of quantum mechanical evolution.

In contrast, a strictly exponential decay is a classical concept. In order

for the quantum Zeno effect to take place when the system is characterized

by an exponential decay, deviations from the exponential law at short

times would be required (an initial quadratic time dependence). For

unstable quantum systems these short time deviations were indeed predicted

(Winter, 1961, Fonda et al., 1978), and observed experimentally in

the tunneling of atoms from a trapped state into the continuum (Wilkinson

et al., 1997). The use of the term quantum Zeno paradox to describe

the inhibition of an exponential decay, therefore, seems inappropriate,

since it requires the same initial time dependence to take place as in the

unitary case.

What can be regarded as paradoxical about the quantum Zeno effect? In

the comprehensive review by Home and Whitaker (1997), it is stressed that

the paradoxical aspect is the retardation of evolution without any back

action on the observed quantum system during the measurement process, as

a consequence of negative result measurements. In the terminology used in

this article this would correspond to the absence of local physical interaction

in the course of a negative result measurement. The mere presence

of the macroscopic measurement apparatus (like the detector DA in the

Stern–Gerlach scheme discussed above) may affect the quantum system due

to the nonlocal correlation between the two. Home and Whitaker (1997)

suggest that a nonlocal negative result measurement on a microscopic

system characterizes the quantum Zeno paradox.

It seems sensible to extend this definition of the quantum Zeno paradox

to two more classes of measurements that are not of the negative-result type

(Toschek and Wunderlich, 2001): (i) measurements free of back action

(quantum nondemolition measurement (Braginsky and Khalili, 1992; Alter

and Yamamoto, 2001), that in fact give rise to positive results, and (ii)

measurements whose back action cannot account for the retarding effect.

In both cases the local interaction (in connection with positive results)

alone, cannot explain the change in the dynamics of the quantum system,

and experiments that obey those criteria would show the quantum Zeno

paradox.

In the theoretical considerations at the beginning of this section state

vectors have been used, that is, the behavior of individual quantum systems

was investigated. Why is it necessary to carry out experiments on the

quantum Zeno paradox with individual quantum systems? Important work

related to this question is found, for instance, in Spiller (1994), Nakazato

et al. (1996), Alter and Yamamoto (1997), Wawer et al. (1998). The next

paragraphs will be concerned with some aspects connected to this question.

A more detailed discussion, concerning in particular experiments
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with trapped ions, is given in Toschek and Wunderlich (2001) and

Wunderlich et al. (2001).

The original formulation of the quantum Zeno effect considered the

probability for the observed system to stay in its initial state throughout

the time interval during which measurements are made. It has been pointed

out (Nakazato et al., 1996) that in ensemble measurements it is not possible

to record this probability, unless different subensembles are chosen for

each measurement, conditioned on previous measurement results. In usual

ensemble experiments only the net probability of making or not making

a transition from 0 to 1 after a series of N measurements is recorded and

calculated to interpret the experiment. Experiments with single quantum

system permit to record each individual measurement result and thus to

select sequences of results where the system remained in its initial state.

Furthermore, by making a series of measurements on an ensemble of

identically prepared quantum systems the effect of the measurement on the

quantum systems’ evolution cannot be distinguished from mere dephasing

of the members of the ensemble (Spiller, 1994). (For example, collisions

between atoms lead to dephasing of the atoms’ wave functions.) Both

processes lead to the destruction of coherences (off-diagonal elements of

the density matrix) and give rise to identical dynamical behavior when the

quantum system, after the measurement has been performed or dephasing

has set in, will be subjected to subsequent manipulations. When investigat-

ing the quantum Zeno paradox we are interested in the change in the

system’s dynamics conditioned on the outcome of the measurement, in

particular of negative-result measurements. Since dephasing of an ensemble

as described above might occur independently of the measurement results,

the question whether and how a series of particular measurement results

is correlated with, and influences the quantum system’s dynamics cannot be

answered by an ensemble experiment. One might argue that dephasing is a

measurement no matter how it comes about. During the process where the

wave functions of the members of an otherwise isolated ensemble loose their

initial phase relation via some mutual interaction (they have been identically

prepared initially) correlations are established between members of this

ensemble. This, however, does not establish a measurement of the initial

state of the quantum systems.

In accordance with the discussion in Section III, the following condition is

taken as a necessary one to constitute a measurement: some correlation

is established between the quantum system (or an ensemble of quantum

systems) and the ‘‘outside world’’ (not described by the elements of the

Hilbert space(s) of the quantum system(s) under investigation). This could

be an apparatus that assumes classically distinct states correlated to the

quantum system’s state.
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A. EXPERIMENTS

An experiment with several thousand Be+ ions stored in an electromagnetic

trap (Itano et al., 1990, 1991) (based on a proposal by Cook for a single ion

(Cook, 1988)) indeed shows the reduction of the transition probability

between coherently driven hyperfine states (here, we label them |0i and |1i)
when the ions’ state was frequently probed. Probing the ions’ state is

achieved by irradiating them with light resonantly coupling one of the

hyperfine states to a third level j2i such that scattering of light occurs, if and

only if an ion occupies, say state j0i.
After initial preparation of the ions in j0i, they are driven by a microwave

�-pulse inverting the population of the hyperfine states. To investigate the

effect of repeated measurements on the transition probability between states

j0i and j1i, the sample of ions is irradiated, during the driving pulse, by N

resonant probe light pulses. At the end of the microwave pulse the

population of state j0i is measured by again applying a probe pulse and

detecting scattered light. The outcome of the experiment shows a reduction

of the observed transition probability in agreement with the predicted net

transition probability

Pe1ðTÞ ¼
1

2
½1� cosNð�=NÞ� ð20Þ

where � ¼ �, and T is the duration of the microwave pulse. The index el

indicates that the ions in this ensemble experiment are found in state j1i
irrespective of the results of intermediate probing (taking place between

initial preparation and final probing N). The corresponding survival

probability Pe0 ¼ 1� Pe1. The theoretical transition probability is derived

from a quantum mechanical model taking into account the probe light

pulses that leave the population of states j0i and j1i unchanged and just set

the coherences to zero (Itano et al., 1990).

The inhibition of the quantum system’s evolution was considered to be a

consequence of measurements (light scattering) frequently projecting the

ions back to their initial state. In Frerichs and Schenzle (1991), calculations

of the dynamics of such a three level system are reported. It is deemed not

necessary to invoke the notion of measurement together with state reduction

to explain that the quantum system’s evolution was impeded in the

experiment. Instead, the retardation of the 2-state system’s evolution is

interpreted as a dynamical effect that can be explained when the third level

is included in the quantum mechanical description (Block and Berman,

1991; Frerichs and Schenzle, 1991; Gagen and Milburn, 1993). Indeed, good

agreement is found with experimental data gathered from the ensemble of
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Be+ ions. This is not so surprising, since the results of the experiment are

expectation values of an ensemble of ions, and one would not expect

quantum mechanics to fail in predicting the correct ensemble average. Each

measurement leads to a diagonal density matrix describing the ions

(�00 6¼ 0 6¼ �11), however, with both diagonal elements different from zero.

However the paradoxical aspect of quantum mechanics, and in particular of

quantum Zeno, comes into focus when the eigenvalue of every single system

as a result of a measurement is revealed.

Both state reduction and Bloch equations may lead to identical results

when measurements on an ensemble are performed. This has been shown in

Power and Knight (1996) and Beige and Hegerfeldt (1996) where the

ensemble quantum Zeno experiment with Be+ ions is simulated using

quantum jump techniques in order to test whether the projection postulate

is applicable to describe the observed results. It is pointed out that for an

ensemble, the quantum trajectories produced by the quantum jump

approach reproduce the density matrix probabilities resulting from

the Bloch equations. In the latter model the decay of the coherences

is due to coupling of the driven transition to the strong monitor transition

(Frerichs and Schenzle, 1991; Power and Knight, 1996). Therefore, to

understand the ensemble-averaged relaxation, it is not necessary to refer to

state reduction. In Beige and Hegerfeldt (1996) it is suggested that under

particular conditions (that were fulfilled in the experiment) the projection

postulate is a useful tool that gives the right results. On the other hand,

in Power and Knight (1996) it is pointed out that the Bloch equations do

not hold for the description of the quantum Zeno effect with a single ion,

since one of the diagonal elements of the density matrix disappears

whereas in an ensemble, in general, both diagonal elements assume nonzero

values.

Another aspect (connected to the above argument) to mention is that in

the Beþ experiment only the net transition probability at the end of the

microwave pulse is recorded. Intermediate back-and-forth transitions

between states j0i and j1i of individual members of the ensemble, as well

as correlated transitions of ions, could not be detected. In Nakazato et al.

(1996) it is worked out that, if one takes into account the result of every

intermediate measurement, the probability in Eq. 20 describes not the

quantum Zeno effect of a two-level system, but includes these intermediate

back-and-forth transitions, which means the system does not necessarily

stay in the initial state. The correct description is the one in Eq. 19. Both

Eqs. 20 and 19 imply that an ensemble (for N !1 nonselective

measurements) and a single quantum system (q!1 selective measure-

ments) are found in the initial state. However, for small N (q), expression 20

and 19 yield markedly different results (Section IV.C.)
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The experiment described in Kwiat et al. (1995) aimed at the

demonstration of an optical version of the quantum Zeno effect. Based

on a suggestion put forth in Elitzur and Vaidman (1993), the propagation of

a photon in a sequence of Mach–Zehnder interferometers is restricted to

only one arm of the interferometers due to interaction-free measurements.

Even though the outcome of the experiment obeys the mathematics of

the quantum Zeno effect, the physics seems different as pointed out in Home

and Whitaker (1997) where it is argued that the result of this experiment is

explicable, as far as the quantum Zeno effect is concerned, in terms of

classical physics. A modification of this experiment shows the polarization

rotation of photons to be impeded because of an interaction-free

measurement within the Mach–Zehnder interferometer (Kwiat et al.,

1999). As in the previous experiment the mathematics of the quantum

Zeno effect describes well the dynamical behavior of the system. According

to the arguments in Home and Whitaker (1997) and Whitaker (2000), it

appears that again the physics necessary for the quantum Zeno effect is not

involved. An experiment that can be classically described gives equivalent

results: the rotation of the polarization of light passing through an optically

active substance is retarded by means of a sequence of polarization

analyzers (Peres, 1980).

Recently an experiment was performed to demonstrate the quantum Zeno

effect and the anti-Zeno effect in an unstable system (Fischer et al., 2001).

The anti-Zeno effect describes an acceleration of the decay of an unstable

system under repeated observation (Kofman and Kurizki, 2000; Facchi

et al., 2001). As stated previously, the quantum Zeno effect may occur, if

the short time evolution of the decay deviates from a purely exponential one

(Winter, 1961; Fonda et al., 1978; Wilkinson et al., 1997). Reference

(Fischer et al., 2001) describes the decay via tunneling of an ensemble of

atoms trapped in an optical potential created by a standing light wave.

Acceleration of the standing wave leads to a deformed potential, thus

admitting tunneling of some atoms out of the optical potential wells.

The tunneling probability shows a marked deviation from exponential decay

for short times that has its origin in the initial reversibility of the decay

process. Tunneling is initiated by applying high acceleration to

the atoms trapped in the standing wave for a time ttunnel, and interrupted

for time tinterr during which the acceleration was low. The interruption of

tunneling is considered a measurement of the number of atoms that remain

trapped, since tinterr is chosen such that the fraction of trapped atoms

separate in momentum space from the atoms that have tunneled during

ttunnel. The insertion of periods of low acceleration indeed leads to a slower

decay of the survival probability of trapped atoms. It seems that this

experiment does not satisfy the criteria for the quantum Zeno paradox for
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similar reasons as the experiment with an ensemble of Be+ ions outlined

above. The final measurement of the spatial distribution of all atoms yields

an ensemble average in agreement with the unitary time evolution predicted

by the Schrödinger equation. The intermediate measurement results

(obtained after periods of low acceleration) were not recorded; even if this

had been the case, back-and-forth transitions between trapped and

free states of individual members of the ensemble during the initial period

(reversible dynamics) would have gone unnoticed.

The discussed experiments appear not suitable to demonstrate the

Quantum-Zeno-Effect, or rather the quantum Zeno paradox, for they

do not address a key point that makes up the nature of the effect:

the retardation of the evolution of a quantum system due to a (possibly

nonlocal) correlation between the observed individual quantum system and

the macroscopic measurement apparatus during the repeated measurement

process. This correlation leads to an irreversible change in the system’s

wave function and is evident even in negative result measurements where its

effect is not concealed by local physical interaction. The latter, too, may

indeed affect the system’s transition probability under the condition of an

initial quadratic time dependence. However, such a change in the time

evolution is necessary but not sufficient for the quantum Zeno effect.

B. QUANTUM ZENO EXPERIMENT ON AN OPTICAL TRANSITION

An experiment with a single 172Yb+ ion demonstrating the quantum Zeno

effect will be outlined in what follows (Balzer et al., 2000). The electronic

states S1=2 � j0i and D5=2 � j1i, connected via an optical electric quadrupole

transition close to 411 nm, serve as a two-level quantum system. State j0i
is probed by coupling it to state P1/2 via a strong dipole transition

and detecting resonance fluorescence close to 369 nm. The quadrupole

transition j0i � j1i was coherently driven using light emitted by a diode laser

with emission bandwidth 30Hz (in 2ms). To demonstrate the retardation of

quantum evolution, driving light pulses close to 411 nm alternated with

probe pulses at 396 nm. The duration, �t and the Rabi-frequency, � of the

driving pulse were set to fixed values, and the frequency of the light field was

slightly detuned from exact resonance in order to vary the effective nutation

angle �eff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2
p

��t. The intensity and the duration of the probe

field were adjusted such that the observation of resonance fluorescence

results in state reduction to state j0i, while the absence of fluorescence

results in state j1i with near-unity probability. Each outcome of probing

was registered, and a complete record of the evolution of the single quantum

system was acquired. Thus, a trajectory of ‘‘on’’ results (resonance
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fluorescence was observed) and ‘‘off ’’ (no fluorescence, i.e. negative) results

is obtained. The statistical distribution of uninterrupted sequences of q

equal results was found in good agreement with P00ðq� 1Þ ¼ UðqÞ=Uð1Þ
where U(q) is the normalized number of sequences with q equal results, and

U(1) denotes the probability for this result at the beginning of the sequence.

This shows the impediment of the system’s evolution under repeated

measurements, and thus the quantum Zeno effect. A theoretical model

taking into account spontaneous decay of the D5/2 state fits well the

recorded series of ‘‘off ’’ events (negative-result measurements) as well as to

the ‘‘on’’ events (positive-result measurements). It has been shown that

the effect of the measurement on the ion’s evolution is not intertwined with

additional dephasing effects (Balzer et al., 2000; Toschek and Wunderlich,

2001). The observed impediment of the driven evolution of the system’s

population is a consequence of the correlation between the observed

quantum system and the macroscopic meter.

In this experiment the angle of nutation � was not exactly predetermined.

During the driving pulse, the system’s population undergoes multiple

Rabi oscillations giving an effective nutation angle �eff ¼ �mod2� at the end

of the interaction that varies in a small range due to not perfect experimental

conditions. Therefore, the exact nutation angle was obtained from a fit of

experimental data. The analysis of the experiment is further complicated

by spontaneous decay from the relatively short-lived D5/2 state (lifetime

of 6ms (Fawcett and Wilson, 1991)) into the S1=2 ground state and the

extremely long-lived F7=2 state of 172Yb+ (lifetime of about 10 years

(Roberts et al., 1997)). In addition, the relatively short time series recorded

in this experiment may cause interpretational difficulties.

C. QUANTUM ZENO EXPERIMENT ON A HYPERFINE TRANSITION

In this section we describe an experiment with a single 171Ybþ ion whose

ground-state hyperfine states are used as the quantum system to be

measured. Here, the quantum Zeno paradox is demonstrated avoiding the

complications associated with relaxation processes and optical pumping

as in the experiment described in the previous section (Balzer et al., 2002).

The hyperfine transition is free of spontaneous decay and the use of

microwave radiation allows for the precise preparation of states with a

desired mutation angle �. Sufficiently extensive data records ensure an

unambiguous interpretation of these experiments.

A semiclassical treatment of the magnetic dipole interaction between

microwave field and hyperfine states of Yb+ in an interaction picture

(and making the rotating wave approximation) yields the time evolution
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operator UðtÞ ¼ exp½�i=2tð��z þ��xÞ�. (compare Section II). For t > 0 the

ion evolves into a superposition state

j iI ¼ cos
�

2
j0i þ sin

�

2
ei�j1i, ð21Þ

and the probability, P1ðtÞ to find the system in j1i is proportional to t2 for

small t. In the experiment the resonance condition !0 ¼ ! is fulfilled to

good approximation, and after time T ¼ �=� of unperturbed evolution,

a measurement of the ion’s state will reveal it to be in state j1i with close to

unit probability.

C.1. State-selective detection

The relevant energy levels of the 171Ybþ ion are schematically shown in

Fig. 1. Sufficiently long irradiating the ion with UV laser light will prepare

the ion in the ground state F¼ 0 by optical pumping. The occupation of

the F¼ 1 level (after interaction with the microwave field) is probed by

irradiating the ion with light at 369 nm (UV laser light,) thus exciting

resonance fluorescence on the electric dipole transition S1/2, F ¼ 1$ P1=2,

and detecting scattered photons using a photomultiplier tube. An ‘‘on’’

result (scattered photons are registered) leaves the ion in state j1i, otherwise
the ion is in the j0i (‘‘off ’’ result; no photons are registered.)

While the UV light is turned on for detection of the ion’s state, the ion

may be viewed as a beam splitter for the incident light beam: Either the light

is completely ‘‘transmitted’’, that is, the initially populated light mode

(characterized by annihilation operator b) remains unchanged. This

will occur with probability, w0 close to unity, if the ion is in state j0i
during the UV laser pulse (we take w0 ¼ 1 in what follows). Or, photons

are scattered into some other mode b0 6¼ b (that may be different for every

scattered photon) if the ion resides in j1i. The latter occurs with probability

w1 determined by the detuning relative to the S1=2,F ¼ 1 $ P1=2,F ¼ 0

resonance, intensity, and duration of the incident UV light. For a

sufficiently long UV light pulse eventually a photon will be scattered into

mode b0, and we may take w1 ¼ 1. After one photon has been scattered into

mode b0, the ionic state correlated with this electromagnetic field mode b0 is
j1i. Thus, the correlation established between the state of the light field and

the ion’s state is

j0ijbi ! j0ijbi
j1ijbi ! j1ijb0i, ð22Þ
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and consequently

�j0i þ �j1i ! �j0ijbi þ �j1ijb0i ð23Þ

In this (simplified) description jbi represents the em field in its initial mode,

and jb0i stands for a different mode occupied by a single photon. Since the

field states jbi and jb0i are orthogonal, the density matrix describing the

ion’s state (obtained by tracing over the field states) becomes diagonal,

and coherences of the ion’s states j0i and j1i that may have existed are no

longer observable (Giulini et al., 1996). The field carries information about

the ion’s state, thus destroying the ion’s ability to display characteristics

of a superposition state in subsequent manipulations it may be subjected to.

The scattered photon in mode jbi may be absorbed by the photo cathode

of a photomultiplier tube leading, after several amplification stages, to

the ejection of a large number of photo electrons from the surface of the

last dynode of the photo multiplier. This current pulse strikes the anode

of the multiplier and is further amplified and finally registered as a voltage

pulse by a suitable counter. Thus, the ion’s state is eventually correlated

irreversibly with the macroscopic environment. The irreversible correlation

will actually take place much earlier in the detection chain. Irreversibility

here means it is not possible, or rather very improbable, to restore the photo

cathode (which would include, for instance, the power supply connected

to it) to its state before an electron was ejected in response to an impinging

photon.

Does the finite detection efficiency for photons (only the small fraction

of about 4� 10�3 of scattered photons are detected during an ‘‘on’’ event)

influence the interpretation of and conclusions drawn from the experiment

described here? In order to answer this question we look in some more

detail at the process of correlation between the ion’s state and the rest of the

world.

After the first photon has been scattered from mode b into an orthogonal

mode b0, a correlation between the ion and its macroscopic environment has

been established, even if this photon is not registered by the photomultiplier

tube, but instead is absorbed, for instance, by the wall of the vacuum

recipient housing the ion trap. Welcher weg information about the state of

the ion is available, and the ion is left in a statistical mixture of states,

corresponding to a density matrix with two diagonal elements different

from zero (if one uses the density matrix formalism to describe an ensemble

of such individual quantum systems). The quantum Zeno experiment

described below shows that the correct description of the single ion’s state

after a measurement pulse is either j0i or j1i (corresponding to a density
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matrix with only one diagonal element). One may wonder whether (after a

single photon has been scattered and absorbed by a wall) the ion is already

reduced to the F¼ 1 state, or, alternatively if it is necessary for the scattered

photon to hit the photo detector and thus yield a macroscopically distinct

read-out for this to happen.

The second alternative does not seem plausible, since it would mean

that the macroscopic photo detector plays a distinctive role compared with

other macroscopic entities, like the wall of the vacuum recipient. No matter

where the photon is absorbed, the absorption will result in an irreversible

correlation of the ion with its environment, thus destroying the ion’s

coherences. However, the absorption in the wall does not yield macro-

scopically distinct states in the sense that an observer could access the

information on the ion’s state stored in the post-absorption state of the

wall (as opposed to the case when the photon hits the detector). Should

the ion’s state reduction (here to state j1i) only happen if an apparatus

yields distinct read-outs, then this would mean that the ion’s dynamics

depends on whether the photo detector is switched on or off during a

sequence of N measurements (which seems implausible). Such a sequence of

measurements (only the last one of N measurement results is actually

registered) has not been performed experimentally with a single ion. One

would assume that the ion’s dynamics is not changed during such a sequence

compared to one where all intermediate results are ‘‘amplified’’ to distinct

read-outs (as was actually done, and is necessary to demonstrate the

quantum Zeno effect). If this assumption is correct, then this together

with the experimental results described below, implies that state reduction

of the ion occurs independently of the information gain of any observer. In

addition, it means that after one photon has been scattered by the ion, the

ion is in state j1i. Once it is in state j1i, it will scatter many more photons

during the detection interval (about 107 s�1), some of which will be

registered by the photo detector. Therefore, if and only if the ion is in state

j1i, will a distinctive macroscopic read-out be obtained (resulting from

photo detection) corresponding to this state. Similar reasoning shows that

the absence of photo counts correlates with the ion being in state j0i.

C.2. Fractionated �-pulse

To demonstrate the quantum Zeno paradox we investigate the impediment

of an induced transition by means of measurements, similar to the proposal

in Cook (1988). First, an 171Ybþ ion is illuminated for 50ms with UV light

and thus prepared in state j0i. The intensity, detuning, and duration of

microwave radiation applied to the ion is adjusted such that a �-pulse
results, inducing a transition to state j1i. This is achieved, if subsequent
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probing using UV light invariably leads to registration of fluorescence

yielding an ‘‘on’’ result (Fig. 6a). The duration of the �-pulse was 2.9ms.

In order to separate the influence of the measurement pulses clearly from

the driving field, the applied �-pulse is fractionated in N pulses of equal area

�=N a time �probe ¼ 3ms apart (Fig. 6b). The frequency of microwave

radiation is carefully set to resonance with the ionic transition by means of

Ramsey-type experiments (compare Section II). Thus, there is no dephasing

between driving field and ion due to free precession during the intermissions,

and the fractionated excitation will again result in a transition with nutation

angle N � �=N. Pulses of probe light are applied during the N� 1 ‘‘gaps’’ of

duration �probe, and the photon counter is gated open synchronously in order

to register or not register scattered photons indicating the ions excitation to

state j1i or survival in the initially prepared state j0i, respectively (Fig. 6c.)

The experimental succession of initial preparation in j0i, applying N

microwave pulses and N probe pulse is repeated 2000=N times.

The experiment is carried out for N ¼ 1, 2, 3, 4, and 10. We are interested

in those sequences where all N measurements give a negative (‘‘off ’’) result,

indicating the survival of the ion in its initially prepared state. The number
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FIG. 6. (a) Excitation of the hyperfine transition in 171Ybþ by applying a microwave �-pulse.
(b) Fractionated �-pulse without intermediate probing, and (c) with intermediate probing

using light at 369 nm and simultaneous detection of the scattered photons (PC: photon counter,

prep: initial preparation by a light pulse at 369 nm).
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of these sequences normalized by the total number of sequences is plotted

in Fig. 7 versus the number of probe interventions (grey bars). The

data shown in Fig. 7 have been corrected to account for the imperfect

initial state preparation with an efficiency of 82%, as well as possible false

detection of one of the N results. The number of photo counts during a

detection interval are Poisson distributed characterized by mean photon

numbers of about 5 (‘‘on’’ results) and 0.2 (‘‘off ’’ result), respectively.

Since the two distributions overlap to some degree, wrong assignments may

occur. To distinguish between ‘‘on’’ and ‘‘off ’’ a fixed threshold is used.

This threshold is chosen such that in less than 0.5% of the cases an ‘‘on’’

result is mistaken as ‘‘off ’’. The error bars represent the variance of the

binomial distribution of the number of recorded sequences of ‘‘on’’ and

‘‘off ’’ results. In contrast to the proposal by Cook (1988) the result of

each of N measurements is registered. Therefore, it is possible to

identify sequences of results that represent survival of the ion in the initially

prepared state, j0i during the N observations. The survival probability

vanishes for N¼ 1 and increases to 77% for N¼ 10 showing that the

evolution is impeded by frequent measurements.

The occurrence of sequences of N equal results (‘‘off ’’) follows

P00ðNÞ ¼ cos2Nð�=2NÞ, according to Eq. (19). This is different from

the ‘‘net’’ probability Pe0ðNÞ ¼ 1=2ð1þ cosNð�=NÞÞ where intermediate
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FIG. 7. Probability of survival in the initially prepared state versus the number, N–1 of probe

interventions. The gray bars indicate the corrected (see text) measurement results which agree

well with the calculated values of the survival probability P00 (black bars). This demonstrates

the quantum Zeno effect. The light gray bars give the survival probability when no

measurement pulses are applied. The measured values differ significantly from the values

of the probability Pe0 (white bars), that does not properly describe the quantum Zeno effect

(see text).
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transitions between j0i and j1i are taken into account as discussed above.

These two probabilities are significantly different for small values of N. The

quantum Zeno paradox is evident in the correspondence of the experimental

data in Fig. 7 with P00.

In principle it is possible to analyze the recorded data by ignoring the

results of the first N� 1 probe interventions in each sequence. More

specifically, one could extract from the data the probability for the ion to

end up in state j0i after the Nth measurement irrespective of its history. This

probability would then be expected to agree with results from an ensemble

experiment, provided no dephasing in the ensemble occurred. However,

owing to the population accumulating in the Zeeman sublevels

jF ¼ 1,mF ¼ 	1i during an ‘‘on’’ detection interval, the upper state j1i
may be decoupled by the probe light from the two-level system (Balzer et al.,

2002a): once an ‘‘on’’ result has been obtained, the ion may have made a

transition to one of the Zeeman levels jF ¼ 1,mF ¼ 	1i and is no longer

affected by the subsequent microwave driving pulse. (This does not affect

the determination of the survival probability in state j0i.)

C.3. Statistics of sequences of equal results

In the experiment described in the previous section, the quantum Zeno effect

is manifest in the survival probability of the initially prepared state j0i
growing with the number of intermediate measurements during the driving

�-pulse. In other words, frequent measurements hinder the transition to

state j1i, in accordance with Cook’s suggestion to demonstrate the quantum

Zeno effect. However, to demonstrate the quantum Zeno effect, it is not

necessary to employ a fractionated �-pulse. The retardation of the evolution

of an initially prepared state will show up in a sequence of alternated driving

and probing, too. We have recorded series of 10 000 pairs each consisting of

a drive pulse and a probe pulse as shown in Fig. 8 (top) resulting in

trajectories of alternating sequences of ‘‘on’’ and ‘‘off ’’ results (Fig. 8,

bottom). The normalized number of sequences of q equal results, U(q)

corresponds, to good approximation, to the probability of survival in one of

the eigenstates, P00:

UðqÞ=Uð1Þ ¼ P00ðq� 1Þ , ð24Þ

where U(1) denotes the probability to find the ion in this state at the very

beginning of sequence. P00 is the conditional probability according to Eq. 19.

The statistical distributions of the ‘‘off ’’ sequences, P00ðq� 1Þ ¼
UðqÞ=Uð1Þ is shown in Fig. 9 for the nutation angles � ¼ �,�=2,�=5 and

� ¼ 2�� 0:1 (dashed lines). The duration of a microwave pulse that
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corresponds to � ¼ 2� was set here to 4.9ms. The interval of probing was

2ms. The solid lines indicate the survival probabilities P00ðq� 1Þ. A

systematic deviation of 3% from the preset values of � emerges from slightly

varying the preset areas of the driving pulse while fitting P00 to the data. For

long sequences (large q), the data show strong deviations from the calculated

survival probability. This is due to the finite length of the experimental

trajectory.

FIG. 8. Top: Measurement scheme of alternating excitation and detection. Bottom:

Schematic of a trajectory of results.

FIG. 9. Statistical distribution of ‘‘off ’’ sequences, P00ðq� 1Þ ¼ UðqÞ=Uð1Þ versus q�1 (for

different values of the nutation angle � indicated in the figure). The correspondence of the

measurement results (dots) with the survival probabilities P00ðq� 1Þ (solid lines) verifies the

quantum Zeno effect. Deviations between measured and calculated values for large q are due to

the finite length of the experimental trajectories of measurement results.
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Both experiments on the hyperfine transition of the 171Ybþ-ion show

clearly the quantum Zeno effect, the retardation of the evolution of an

individual quantum system as a consequence of measurements. In parti-

cular, they demonstrate the quantum Zeno paradox, since the measurement

results are of the negative-result type, indicating a correlation between the

observed individual quantum system and the measurement apparatus

without local physical interaction.

V. Quantum State Estimation Using

Adaptive Measurements

A. INTRODUCTION

Determining an arbitrary state of a quantum system is a task of central

importance in quantum physics, and in particular, in quantum information

processing and communication where quantum mechanical 2-state

systems (qubits) are elementary constituents. In order to gain complete

knowledge about the state of a quantum system infinitely many measure-

ments have to be performed on infinitely many identical copies of

this quantum state. Naturally, the question arises how much information

about a quantum state can be extracted using finite resources and what

strategies are best suited for this purpose. A first indication of the appro-

priate operations to be carried out with two identically prepared qubits in

order to gain maximal information about their state was given by Peres and

Wootters (1991). It was strongly suggested that optimal information gain is

achieved when a suitable measurement on both particles together is

performed. The measure that served to quantify the gain of information

in these theoretical considerations was the Shannon information.

The Shannon information (or entropy) �
P

n pn log2 pn (Shannon, 1948) is

a measure for the uncertainty about the true value of some variable before

a measurement of this variable takes place. The variable may take on m

different values with probability pn, n ¼ 1 . . .m. Alternatively, the Shannon

information can be viewed as giving a measure for the information that is

gained by ascertaining the value of this variable. In Brukner and Zeilinger

(2001) it is argued that this measure is not adequate in the quantum domain,

since the state of a quantum system is not well defined prior to observation.

Only if the quantum system is in an eigenstate before and after a

measurement is performed, does the measurement indeed reveal a

preexisting property. In general, however, this is deemed not the case in

the quantum domain, and therefore, the Shannon information is not

suitable as a measure for the uncertainty associated with an observable
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before a measurement takes place. This statement may also be expressed in

different words: In the quantum world not even the possible alternatives of

measurement outcomes are fixed before a measurement is carried out. This

fact is also at the core of the EPR program where quantum mechanics

predicts nonclassical correlations between two particles (Einstein et al.,

1935). An alternative measure for the information content of a quantum

system invariant under unitary transformations has been suggested in

Brukner and Zeilinger (1999).

The suggestion in Peres and Wootters (1991) that the optimal measure-

ment for determining a quantum state of two identically prepared

particles needs to be carried out on both particles together, was proven in

Massar and Popescu (1995). In more technical terms this means that

the operator characterizing the measurement does not factorize into

components that act in the Hilbert spaces of individual particles only. In

Massar and Popescu (1995) it was also shown that the same is true when

N ¼ 1, 2, 3, . . . identically prepared qubits are available. The states to be

estimated were drawn randomly from a uniform distribution over the Bloch

sphere and the cost function that has been optimized was the fidelity

cos2ð�=2Þ where � is the angle between the actual and estimated directions.

The optimal fidelity that can be reached is ðN þ 1Þ=ðN þ 2Þ. As a special case

of optimal quantum state estimation of systems of arbitrary finite dimension

the upper bound ðN þ 1Þ=ðN þ 2Þ for the mean fidelity of an estimate of N

qubits was rederived in Derka et al. (1998). In addition, it was shown

that finite positive operator valued measurements (POVMs) are sufficient

for optimal state estimation. This result implied that an experimental

realization of such measurements is feasible, at least in principle.

Subsequently, optimal POVMs were derived to determine the pure

state of a qubit with the minimal number of projectors when up to N¼ 5

copies of the unknown state are available (Latorre et al., 1998). Still, the

proposed optimal and minimal strategy requires the experimental imple-

mentation of rather intricate non-factorizing measurement operators.

In addition, all N qubits have to be available simultaneously for a

measurement.

In Bužek et al. (1999, 2000) investigations are reported on how an

arbitrary qubit state j i can be turned into the state j ?i orthogonal to the

initial one. Such a quantum mechanical universal NOT (U-NOT) operation

would correspond to the classical NOT gate that changes the value of a

classical bit. It is shown that a U-NOT gate corresponds to an anti-unitary

operation, and an ideal gate transforming an unknown quantum state into

its orthogonal state does not exist. If a single qubit in a pure state is given

and no a priori information on this state is available, then measuring

the quantum state and using this information to prepare a state j ?i gives
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the optimal result. If N qubits in state j i are available, then too, the

optimal U-NOT operation can be attained by estimating the initial quantum

state using these N qubits and subsequently preparing the desired state.

Thus, the optimal fidelity ðN þ 1Þ=ðN þ 2Þ for a U-NOT is reached which

coincides with the optimal fidelity for state estimation.

Gill and Massar (2000) consider the problem of quantum state

reconstruction when taking advantage of a large ensemble of identically

prepared quantum states in a finite dimensional Hilbert space. For N !1
any sensible measurement strategy yields a perfect estimate of a given

quantum state, and since for large N the estimate drawn from any strategy

comes very close to the true value, the distinguishing feature between

different strategies applied to large ensembles is the rate at which

neighboring states can be distinguished. A quantitative measure for this

rate is introduced and an upper bound for any type of estimation strategy is

derived in Gill and Massar (2000). For the case of a 2-dimensional Hilbert

space (qubits) an explicit measurement strategy for pure states is given

attaining this upper bound when using separate measurements on each

particle. It turned out that for mixed states this upper bound is also valid

as long as measurements are carried out in a factorizing basis. However, if

collective measurements are allowed for, then this bound is not necessarily

valid. Therefore, mixed states exhibit nonlocality without entanglement

when large ensembles are available whereas pure states do not show

this feature.

Nonlocality without entanglement has been described in Bennett et al.

(1999). There unentangled quantum states of a composite quantum system

are described that can only be distinguished by a joint measurement on the

whole system, but not by separate measurements on the individual

constituents, not even when exchange of classical information between the

observers measuring the individual objects is allowed for. A joint measure-

ment on the quantum system reveals more information than any

‘‘classically’’ coordinated measurements of the individual parts.

In Massar and Popescu (2000) it is shown that different definitions for

the target function that is to be maximized in quantum state estimation

may lead to different recipes for optimal measurements. This in turn will

determine the properties of the quantum state that is revealed in a quantum

measurement. It is shown that no matter what type of target function is

chosen, the maximum amount of information that can be obtained from one

qubit is one bit.

Estimating a quantum state can also be viewed as the decoding procedure

at the receiver end of a quantum channel necessary to recover elements

of an alphabet that have been encoded in quantum states by a sender

(see, for instance, Jones (1994). A sketch of the steps necessary for the
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transmission of quantum information is displayed in Fig. 10. The sender

prepares a quantum state by setting the classical parameters of an

appropriate device that prepares the desired quantum state. Then, the

quantum system propagates in space or time until it reaches the receiver

equipped with an apparatus capable of performing measurements in any

basis, and it is her/his task to give the best possible estimate of this quantum

state after N identically prepared copies of the quantum system have been

sent. In order to specify what ‘‘best possible’’ means, the Shannon

information and von Neumann entropy for this situation have been

computed, and an upper bound for the information obtainable from N

identically prepared quantum states as well as a lower bound on the entropy

have been derived (Jones, 1994).

The quantum information associated with a state of a qubit to be

transmitted can be viewed as a unit vector indicating a direction in space.

If no common coordinate system has been established, then the transmission

of a direction in space between two distant parties requires a physical

object. In the quantum domain, N identically prepared spin-1/2 systems

may serve for this purpose. It has been shown that the optimal state, that

is, the one that yields the highest average fidelity F ¼ hcos2ð�=2Þi
of transmission is an entangled one for N > 2 (Bagan et al., 2000,

2001; Peres and Scudo, 2001) (� is the angle between the estimated and

the actual direction to be transmitted). The use of product states

for communication of a spin direction has been investigated in Bagan

et al. (2001).

FIG. 10. The steps necessary for transmission of information using quantum systems are

schematically shown.
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Debugging of a quantum algorithm is another possible application

for quantum state estimation (Fischer et al., 2000). Once a quantum

algorithm has been implemented, it has to be tested, for instance by

checking the state of a certain qubit in the course of the computation.

In such a case the qubits are only available sequentially and efficient

estimation is desirable, that is, a large overlap of the estimated state with

the true one while keeping the number of repetitions of the algorithm as

small as possible.

First experimental steps toward entanglement-enhanced determination

(N¼ 2) of a quantum state have been undertaken (Meyer et al., 2001).

The rotation angle around a specific axis of the total angular momentum

of 2 spin systems has been estimated with an uncertainty below the standard

quantum limit. The related problem of measuring in an optimal way the

phase difference � between the two arms of a Mach–Zehnder interferometer

has been addressed in Berry and Wiseman (2000). The optimal input state

has been derived and an adaptive measurement scheme is proposed that

relies on the detection of photon counts and yields a variance in � close to

the optimal result.

We have seen that optimal strategies to read out information encoded

in the quantum state of a limited number of identical qubits require

intricate measurements using a basis of entangled states. The first

experimental demonstration of a self-learning measurement (employing a

factorizing basis) of an arbitrary quantum state (Hannemann et al., 2002)

and an experimental comparison with other strategies is reviewed in what

follows.

B. ELEMENTS OF THE THEORY OF SELF-LEARNING MEASUREMENTS

It was recently shown that quantum state estimation of qubits with fidelity

close to the optimum is possible when a self-learning algorithm is used

(Fischer et al., 2000). When using this algorithm, N members of an ensemble

of identically prepared quantum systems in a pure state,

j i ¼ j i1 � j i2 � � � � � j iN , ð25Þ

can be measured individually, that is, they do not have to be available

simultaneously. In other words, the measurement operator M̂M employed to

estimate the state can be written as a tensor product and we have

M̂Mj i ¼ m̂m1j i1 � m̂m2j i2 � � � � � m̂mN j iN ð26Þ
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The operators m̂mn project onto the orthonormal basis states

j�ðnÞm ,�ðnÞm i ¼ cos
�ðnÞm
2
j0i þ sin

�ðnÞm
2

ei�
ðnÞ
m j1i and j�� �ðnÞm ,�þ �ðnÞm i ð27Þ

An experimental realization of a self-learning measurement on an

individual quantum system in order to estimate its state is reported in

Hannemann et al. (2002). The projector m̂mn of measurement n is varied in

real time during a sequence of Nmeasurements conditioned on the results of

previous measurements m̂ml, l < n in this sequence (for the first measurement,

n¼ 1, obviously no prior knowledge of the state is available and the first

measurement basis can be chosen arbitrarily). The cost function that is

optimized when proceeding from measurement n to nþ 1 is the fidelity of

the estimated state after measurement nþ 1. This will be detailed in the

following paragraphs.

Prior to the first measurement no information on the qubit state

is available and the corresponding density matrix %0 reflecting this

ignorance is

%0 ¼
Z �

0

d� sin �

Z 2�

0

d�w0ð�,�Þ j�,�ih�,�j, ð28Þ

where w0ð�,�Þ ¼ 1=4� is the probability density on the Bloch sphere.

After the qubit has been measured in the direction ð�m,�mÞ the new

distribution wnð�,�Þ is obtained from Bayes rule (Bayes, 1763), reprinted in

Bayes (1958):

wnð�,�j�m,�mÞ ¼
wn�1ð�,�Þ jh�m,�mj�,�ij2

pnð�m,�mÞ
, ð29Þ

where wn�1ð�,�Þ gives the a priori probability density to find the qubit along

the direction indicated by � and �. The conditional probability to measure

the qubit along the direction j�m,�mi if it is in state j�,�i is given by

jh�m,�mj�,�ij2. Correct normalization is ensured by the denominator

pnð�m,�mÞ ¼
Z �

0

d� sin �

Z 2�

0

d� wn�1ð�,�Þ jh�m,�mj�,�ij2 ð30Þ

that gives the probability to measure the qubit along the direction j�m,�mi
irrespective of its actual state, that is, integrated over all possible a priori

directions.
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The adaptive algorithm needs to find optimal measurement axes ð�m,�mÞn
after each step. The optimization is based on the knowledge gained from the

preceding measurements as represented by wn�1ð�,�Þ.
The cost function used to find the optimal measurement is the fidelity

Fn�1ð�,�Þ ¼ h�,�j%n�1j�,�i: ð31Þ

After n� 1 measurements the knowledge of the state is represented by

wn�1ð�,�Þ and the fidelity of any state j�,�i is

Fn�1ð�,�Þ ¼
Z �

0

d�0 sin �0
Z 2�

0

d�0wn�1ð�0,�0Þjh�,�j�0,�0ij2 ð32Þ

The estimated state after n� 1 measurements j�est,�estin�1 has to maximize

this fidelity:

Fn�1ð�est,�estÞ ¼ F
opt
n1 � maxFn�1ð�,�Þ ð33Þ

In order to find the optimal direction for the next measurement n, the

expected mean fidelity after the next measurement is maximized as a

function of the measurement axis. Suppose the system will be found in the

direction ð�m,�mÞ. Then the fidelity would be given by:

Fnð�,�j�m,�mÞ ¼
Z �

0

d�0 sin �0
Z 2�

0

d�0 wnð�0,�0j�m,�mÞ jh�,�j�0,�0ij2 ð34Þ

where the expected distribution after this measurement, wnð�0,�0j�m,�mÞ is
obtained from Bayes rule (Eq. 29). The optimal fidelity Fopt

n ð�m,�mÞ is then
found by maximizing this function with respect to ð�,�Þ.
A measurement along a certain axis will reveal the system to be in one of

two possible states: Either it is found along this axis ð�m,�mÞ, or in the

opposite direction ð ���m, ���mÞ � ð�� �m,�þ �mÞ. So far we have only taken

into account the first of these two possible outcomes of the measurement.

The optimized fidelity for the second result is calculated analogously and

occurs with probability pnð ���m, ���mÞ (Eq. 30). Thus the expected mean fidelity

after the next measurement is given by the optimized fidelities for each

outcome, weighted by the estimated probability for that outcome:

�FFnð�m,�mÞ ¼ pnð�m,�mÞFopt
n ð�m,�mÞ þ pnð ���m, ���mÞFopt

n ð ���m, ���mÞ ð35Þ
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The optimal measurement direction ð�optm ,�optm Þ has to maximize this

function.

The direction of the first (n¼ 1) measurement is of course arbitrary, since

there is no a priori information on the state. The expected mean fidelity

in this case is �FF1 ¼ 2=3, independently of ð�m,�mÞ1. For measurements

two and three the following analytical expressions have been derived:
�FF2 ¼ ð1=2þ cosð�=2� �=4Þ=

ffiffiffiffiffi
18
p
Þ, where the expected mean fidelity depends

on the relative angle � between the second and the first measurement

direction. Thus the optimal second measurement direction has to be

orthogonal to the first one, yielding �FF
opt
2 ¼ ð1=2þ 1=

ffiffiffiffiffi
18
p
Þ. The optimal

third measurement axis is orthogonal to both previous directions and yields
�FF
opt
3 ¼ ð1=2þ 1=

ffiffiffiffiffi
12
p
Þ.

Interestingly, if the Shannon information is used as a cost function to find

the optimal measurement directions, then the theoretically obtained fidelity

of the estimated state after N measurements is not as high as is the case, if

the fidelity is employed as outlined above (Fischer et al., 2000). This may

hint at the inadequacy of the use of the Shannon measure in the quantum

domain as pointed out by Brukner and Zeilinger (2001). However, the log2
function occurring in the Shannon measure for information poses some

difficulties when numerically optimizing the cost function, and the less

precise final estimate of the quantum state in our numerical studies could be

caused by accumulating round-off errors.

C. EXPERIMENT

A typical sequence of measurements where the adaptive algorithm outlined

above has been realized is depicted in Fig. 11. The probability density

wnð�,�Þ is shown on the surface of the Bloch sphere and the measurement

directions n (dashed line with open arrow head) and nþ 1 (solid line with

solid arrow head) are indicated. Here, the state to be estimated is

j�prep,�prepi ¼ j3�=4,�=4i. The white solid circle on the Bloch sphere

represents the parameters �p and �p of the state to be estimated, and does

not indicate a quantum mechanical uncertainty. These parameters are part

of a recipe to prepare the desired quantum state using a classical apparatus.

When such a quantum state is subjected to a measurement, for instance,

along the z-direction, then after this measurement, of course, there will be

no more information available about the components of the initial state

in the x- and y-directions in accordance with the uncertainty relation

derived from the commutators of the spin-1/2 operators. Only in the limit

N !1 for N suitably chosen measurements of N states prepared according

to the same recipe, the parameters � and � could be recovered. The
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uncertainty associated with the preparation of a specific quantum state,

j�,�i is not a quantum mechanical one, it is determined by technical issues.

If the electromagnetic field used for preparation of an ionic quantum state

contains a large number of photons, for example, a coherent intense

field emitted by a mw source with mean photon number hMi satisfying
h4Mi=hMi � 1 (Haroche, 1971), then the ‘‘graininess’’ of the field can be

safely neglected, and the amplitude stability of the applied mw field

determined by technical specifications of the mw source would limit the

precision of state preparation. The time resolution (25 ns) of the digital

signal processing system controlling the mw source is another technical

limitation for the accuracy and precision of state preparation. (In the actual

experiment, the initial preparation of state is the main source of imprecision

when an arbitrary quantum state is generated.)

Imprecision in the initial preparation of j0i and in the subsequent

preparation of a desired quantum state, relaxation and dephasing of the

quantum state before it is being measured, and the effect of an imperfect

...

n = 2n = 1 n = 3

n = 4 n = 12

FIG. 11. A sequence of N¼ 12 adaptive measurements carried out on identically prepared

qubits in order to estimate their state (j3�=4; �=4i, marked by a white solid circle). The

probability density wnð�; �Þ is gray scale coded on the surface of the Bloch sphere (the gray scale

code is different for each measurement). In addition, contour lines indicate where wn takes on

the values 0:1; 0:2, . . . A gray straight line through each Bloch sphere shows the measurement

direction and the filled gray circle indicates the measurement outcome. The fidelity of state

estimation of this particular run is 94.9%.
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measurement can be concisely summarized as the action of a depolarizing

quantum channel together with a systematic bias.

%! ð1� 2�Þ%þ �I þ�
�z , ð36Þ

where �
 � ð
1 � 
0Þ=2 is the difference in detection efficiencies for state j1i
and j0i, respectively; 0 
 � 
 1=2, and here we have � 
 1� �

 � 1�
ð
1 þ 
0Þ=2 with 1=2 
 
0, 1 
 1. This description is also applicable to

other types of experiments where imperfections may be due to other physical

reasons. The third term on the rhs in 36 arises whenever the efficiencies

of detection for states j0i and j1i differ from each other, and has a specific

influence on different estimation strategies. For any strategy, �
 6¼ 0 means

that the fidelity of state estimation depends on the state to be measured as

can be seen in Fig. 12. Figure 12 also displays data obtained from

experimental runs where the N measurement directions are chosen

randomly.

Experiments are necessarily imperfect, that is, they never perfectly reflect

results obtained from theoretical considerations. In the case of quantum

state estimation this means that an estimate with fidelity equal to the

theoretical value cannot be obtained. Here, the performance of the experi-

mental apparatus has been characterized quantitatively and completely

(that is, the features that are relevant for the experiment). Taking

into account the known experimental imperfections, the theoretical

value for the fidelity of state estimation is numerically calculated for

an ensemble of 10 000 states drawn randomly from a uniform distribution

on the Bloch sphere. This theoretical mean fidelity is then compared to the

experimental result of the self-learning algorithm and the random strategy

(Fig. 13).

Decoherence inevitably occurs in any experiment and it has been shown

that under this commonplace condition the self-learning strategy still yields

the best results. Even more, the self-learning and the random strategy

show a larger difference in mean fidelity (85.0% compared to 81.9%, the

difference exceeding 5 standard errors) in the ‘real’ experimental world than

the difference between the ideal theoretical values (92.5% and 91%,

respectively, for N¼ 12).

The estimation procedure discussed here allows for separate (local)

measurements on each qubit. Following each measurement on a particular

qubit, classical information is used to determine the best measurement to be

performed on the next qubit. In reference (Bagan et al., 2002) the optimal

LOCC scheme (performing local operations with exchange of classical

information) is introduced for arbitrary states on the Bloch sphere (3D case).
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Interestingly, if the state to be estimated lies in the xy-plane (2D case), then

local operations alone suffice to obtain the optimal state estimate and

classical communication is not necessary. This optimal LO(CC) scheme

exhibits the same asymptotic behavior with the number N of qubits as the

optimal scheme taking advantage of collective measurements, and yields

(according to theory) a slightly better average fidelity than the adaptive

scheme presented here.

FIG. 12. The experimentally determined average fidelity of state estimation as a function of

the difference in detection efficiency, �
 for states j0i and j1i, respectively. The fidelity is

plotted for different states to be estimated. For �
 ¼ 0 the fidelity should be independent of the

initial state which is indeed observed in the experiment. (a) Self-learning estimation; (b)

Random choice of basis.
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VI. Quantum Information

The investigations of fundamental questions of quantum mechanics, in

addition to their intrinsic interest, may also prove useful to construct an

information processor functioning according to the principles of quantum

mechanics. If such a quantum computer were available, it could be used

for a variety of tasks a classical computer, for all practical purposes, could not

handle. A famous example for such a task is the factoring of large numbers.

The difficulty of this task ensures the security of communication encrypted

according to the RSA procedure (developed by R. Rivest; A. Shamir; and L.

Adleman (Rivest et al., 1978)), if the large number the encryption is based

on, is changed after a time interval short compared to the computational time

needed to carry out the factorization of this number. In Shor (1994, 1997)

an algorithm is described, based on the laws of quantum mechanics, that

could be used to find the prime factors of a given number of the order 10N

in time T proportional to ðlnNÞ3, as compared to the best known classical

algorithm where T / expðsðlnNÞ1=3ðln lnNÞ2=3Þ with OðsÞ ¼ 2.

For N¼ 130 (a typical order of magnitude of today’s RSA-type

encrypting schemes) a classical computer using the best known algorithm
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FIG. 13. The average fidelity of state estimation as a function of the number N of available

qubits. Diamonds and stars indicate theoretical values for the self-learning algorithm and the

random choice of measurement basis, respectively (taking into account the experimental

preparation and detection efficiencies). Solid squares show the experimentally determined

values for these two measurement strategies.
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would need about 1017 instructions, whereas a quantum computer running

Shor’s algorithm (Shor, 1994) could solve the same task using 1010 instruc-

tions, thus reducing the time needed for this computation by a factor 107,

if the same speed for an elementary operation is assumed for both types

of computers. The efficiency of the Shor algorithm relies on the efficient

implementation of Fourier transformations with quantum logic. Its

advantage over the classical algorithm increases with increasing complexity

of the problem to be solved (here with N). It was shown, that a single

qubit in a pure state together with log2 N qubits in arbitrary mixed

states suffice to implement Shor’s factoring algorithm (Parker and Plenio,

2000).

The calculation of properties or dynamics of quantum systems is a

promising line of action for a quantum computer, even one with only few

qubits and operating with limited precision (Feynman, 1982; Molmer and

Sorensen, 2000). In Abrams and Lloyd (1999) it is shown how a quantum

computer consisting of about 100 qubits can be used to calculate eigenvalues

and eigenvectors of Hamilton operators. Computing, for instance, energy

levels and correlation energies of a Boron atom with 5 electrons is a rather

intricate problem: if 20 angular wave functions and 40 radial wave functions

are used, then this amounts to a total of about 1015 many body basis states

to be considered in such a calculation. Sophisticated classical techniques

have been developed to circumvent problems arising from the exponentially

growing space of basis states. Still, a quantum computer of very limited size

may be able to perform more accurate calculations (Abrams and Lloyd,

1999). Somaroo et al. (1999) describes how proton nuclear spins have been

used to simulate the dynamics of a truncated quantum harmonic oscillator

employing nuclear magnetic resonance techniques. Nonlinear dynamical

problems that are hard or impossible (for all practical purposes) to solve on

a classical computer due to accumulating round-off errors may also be

simulated efficiently on a quantum computer (Georgeot and Shepelyansky,

2001a,b, 2002).

What is the origin of the computational power of a quantum computer?

The elementary switching unit (bit) of usual classical computers is a

transistor that may assume two distinct macroscopic states that can be

identified with the computational binary states 0 and 1. In a quantum

computer transistors are replaced by two-state quantum systems (qubits)

that may exist in arbitrary superposition states �j0i þ �j1i with the complex

numbers �,� satisfying j�j2 þ j�j2 ¼ 1. The possibility to exploit the

quantum mechanical superposition principle and the linearity of operations

in Hilbert space for massive parallel computing is one ingredient for a

quantum computer. The art of designing quantum algorithms makes use of

another feature of quantum mechanics: the ability to display interference.
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Roughly speaking, a quantum algorithm has to be designed such that

different computational paths interfere in such a way that at the end of

the algorithm the correct result survives with probability near unity (Cleve

et al., 1998). Recent introductions to quantum computing can be found, for

instance, in Nielsen and Chuang (2000) and Gruska (1999).

To date, nuclear magnetic resonance applied to macroscopic ensembles of

molecules (Gershenfeld and Chuang, 1997) and electrodynamically trapped

ions (Cirac and Zoller, 1995) are the two physical systems that have been

most successfully used to demonstrate quantum logic operations, and even

complete quantum algorithms (Jones and Mosca, 1998; Chuang et al., 1998;

Vandersypen et al., 2001). Also, their specific advantages and shortcomings

have been thoroughly investigated, experimentally and theoretically.

Introductions to quantum computing with an emphasis on ion traps or

nuclear magnetic resonance are given, for instance, in Steane (1997);

Wineland et al. (1998); Sasura and Buzek (2002), and Jones (2001),

respectively.

Sections V and VI.A describe experiments with trapped 171Ybþ ions

addressing basic questions of quantum mechanics that, at the same time,

are relevant for QIP: the self-learning measurement of arbitrary qubit states

and the realization and characterization of various quantum channels.

These experiments also demonstrate the ability to perform arbitrary single-

qubit gates with individual 171Ybþ ions with high precision – a prerequisite

for QIP. The coherence time of the hyperfine qubit in 171Ybþ is, for

all practical purposes, limited by the coherence time of microwave (mw)

radiation used to drive the qubit transition.

In addition to single-qubit operations, a second basic ingredient is

required for QIP with trapped ions: conditional quantum dynamics with,

at least, two qubits. Any quantum algorithm can then be synthesized

using these elementary building blocks (Barenco et al. 1995; DiVincenzo,

1995). Communication between qubits, necessary for conditional quantum

dynamics, is achieved via the vibrational motion of the whole ion string

(Cirac and Zoller, 1995; Jonathan et al., 2000; Sorensen and Molmer, 2000).

Thus, external (motional) and internal degrees of freedom need to be

coupled. Driving a hyperfine transition with mw radiation (as in the

experiments described in this article) does not allow for such a coupling,

since the Lamb–Dicke parameter is essentially zero for long-wavelength

radiation. Also, the inter-ion spacing in usual traps is much smaller than the

wavelength of mw radiation and, therefore, individual addressing of ions

is not possible. Section VI.B.2 describes how an additional magnetic field

gradient applied to an electrodynamic trap individually shifts ionic qubit

resonances thus making them distinguishable in frequency space. At

the same time, coupling of internal and motional states is possible even
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for mw radiation. With the introduction of this additional static field,

all optical schemes devised for QIP in ion traps can be applied in the mw

regime, too.

Instead of applying usual methods for coherent manipulation of trapped

ions, a string of ions in such a modified trap can be treated like a molecule

in NMR experiments taking advantage of spin–spin coupling. A collection

of trapped ions forms a N-qubit ‘‘molecule’’ with adjustable spin–spin

coupling constants (second part of Section VI.B.2.)

A. REALIZATION OF QUANTUM CHANNELS

Quantum logic operations, and other experiments where coherent super-

positions of quantum states have to remain intact for a certain time, are

carried out ideally under perfect, noiseless conditions. However, the

inevitable coupling of qubits to their environment and the imperfection

inherent to any physical operation with qubits invariably degrade the

performance of quantum logic operations.

A quantum channel describes the general dynamics of a qubit under

propagation in space and/or time. This evolution of qubits can be associated

with a physical device used to transmit quantum information (like an optical

fiber). When employing quantum states to transmit information, the

sequence of necessary steps can be visualized as follows (compare Fig.

10): some physical apparatus is used to prepare a quantum state using a set

of classical variables. The quantum state propagates, signified by the

quantum channel until it is measured by a receiver again using a suitable

apparatus to extract the values of classical variables. The optimal

reconstruction of quantum states has been the topic of experiments

described in the previous section. Now we consider explicitly the influence

of the environment on a quantum state once it has been prepared, that is, we

investigate the influence of the quantum channel on the transmission of

quantum information (Hannemann et al., n.d).

The state of a qubit is completely determined by the expectation

values h�xi, h�yi, and h�zi, and the density matrix describing its state can

be written as

� ¼ 1

2
ðI þ ~ss � ~��Þ ð37Þ

where ~ss � ~�� ¼ h�xi�x þ h�yi�y þ h�zi�z, and �x, y, z are the Pauli matrices.

Ideally, while being transmitted through the quantum channel, the qubit’s

state described by the Bloch vector ~ss is not changed. However, in general,

the propagation of the qubit through a quantum channel will alter the
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qubit’s state and ~s0s0 will be obtained at the quantum channel’s exit.

This change of the qubits state can be of reversible or irreversible nature.

The quantum channel may also stand for a quantum memory storing

a qubit state which may undergo some change until it is ‘activated’ again,

that is, transferred to another quantum system or being subjected to a

measurement. It can also represent the dynamics of a qubit during

a quantum computation. The most economical error correcting and

avoiding codes used to correct or stabilize quantum information depend

on the type of quantum channel the qubits are exposed to.

Two examples for detrimental effects acting on qubit states (the

consequence of ‘‘noise’’) are given in what follows. A phase damping

channel leads to decoherence of a qubit state, affecting the off-diagonal

elements �10 ¼ �01 ¼ h�xi � ih�yi of the density matrix that are diminished

or disappear completely while the diagonal elements remain unchanged.

It transforms a Bloch vector according to

~ss 0 ¼
1� 2� 0 0

0 1� 2� 0

0 0 1

0
@

1
A~ss, ð38Þ

with 0 
 � 
 1=2. The �x and �y components of the Bloch vector shrink

by a factor 1� 2�.
A quantum channel that fully depolarizes the quantum state of a qubit

transforms any state � into a completely mixed state �0 ¼ 1=2 I . A partially

depolarizing channel can be characterized by a parameter 0 
 � 
 1=2 that

is interpreted as the probability for changing the qubit’s state into its

orthogonal state: if the input state is pure, then we choose the basis such that

the qubit’s initial density matrix reads

� ¼ 1

2
ðI þ �zÞ: ð39Þ

After the quantum channel

�0 ¼ ð1� �Þ 1
2
ðI þ �zÞ þ �

1

2
ðI � �zÞ: ð40Þ

The action of the depolarizing channel is independent of the initial

polarization of the qubit, hence can be described by

~ss! ~ss 0 ¼ ð1� 2�Þ~ss: ð41Þ
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In (Fujiwara and Algoet, 1999) it is shown that any quantum channel

for qubits can be cast in the form

~ss 0 ¼ M̂M~ssþ ~vv : ð42Þ

where M̂M 2 R
3�3 and ~vv 2 R

3. Equation 42 yields ~ss 0, the Bloch vector of the

qubit after it has traversed the quantum channel characterized by M̂M and ~vv.
Various quantum channels have been realized experimentally with 171Ybþ

ions (Hannemann et al., n.d) and the matrix and vector elements

Mij ¼ 2Pij � Piz � Pið�zÞ

vi ¼ Piz þ Pið�zÞ � 1 ð43Þ

are determined by measuring the probabilities (or rather relative frequen-

cies) Pij ¼ hij�0jji, where �0 is the density matrix describing the qubit state

after the quantum channel, and i, j 2 fx, y, zg (Hannemann et al., n.d).

Exploiting coherent and incoherent operations on the hyperfine qubits

of Yb+ we realized and completely characterized a polarization rotating

quantum channel, a phase damping quantum channel acting in the xy-plane,

and a phase damping quantum channel acting in an arbitrary plane. A Pauli

channel and combinations of the aforementioned channels can also be

realized. Incoherent disturbances to a quantum channel are realized by

applying to the qubit a noisy magnetic field with well-defined spectral

properties in conjunction with coherent microwave operations. Another

possibility to produce a desired quantum channel is realized by applying to

the qubit small amounts of light close to 369 nm, thus inducing well-defined

quantities of longitudinal and/or transversal relaxation during coherent

microwave operations (Balzer et al., 2002b). This light-induced decoherence

is readily applicable to individually addressed quantum systems, it may be

switched on and off immediately, and it is reproducible. Although, in the

present experiment, the coherent drive was microwave radiation resonant

with a ground-state hyperfine transition in Yb+, the same principle seems to

apply to a system where a dipole-forbidden optical transition is driven by

laser light (for example in Ca+ or Ba+).

An example of an experimentally realized quantum channel is displayed

in Fig. 14. Here, a channel affected by controlled amounts of phase damping

in the plane normal to the unit vector ~nn ¼ ð1,�=6, 0ÞT (in polar coordinates)

has been implemented. The applied noisy magnetic field causes in addition a

small amount of amplitude damping (detailed in Hannemann et al., n.d).

Each matrix element is plotted as a function of the amplitude of the

additional noisy magnetic field.
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Since the elements of the matrix describing the quantum channel can be

varied over a wide range, this experimental system can be used to simulate

specific quantum channels characteristic for other physical implementations

of QIP, too. Error correction is essential for QIP, since decoherence is

ubiquitous. We have implemented different quantum channels characterized

by reversible and irreversible dynamics that can be used, for instance,

to experimentally test the capabilities of different types of quantum error

correcting codes under varying conditions.

If spatially separated quantum information processors, for example, ion

traps each containing a limited number of qubits are connected to allow

for the exchange of quantum information, then it will also be useful to be

able to first characterize the quantum channel and then apply the

appropriate strategy to avoid or correct these specific errors.

FIG. 14. Experimentally realized quantum channel with designed phase damping in the plane

normal to the unit vector ~nn ¼ ð1; �=6; 0ÞT (in polar coordinates). In addition, a small amount of

amplitude damping is present. The relative amplitude of the noise magnetic field was varied

between �19 dB and �1 dB.
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B. NEW CONCEPTS FOR SPIN RESONANCE WITH TRAPPED IONS

The discussion of a new approach to ion trap quantum computing in this

section is restricted to the use of electrodynamic Paul traps, even though this

concept should also be applicable when other trapping techniques are

employed, for example, Penning traps (Powell et al., 2002).

B.1. Linear ion trap

In a linear Paul trap (Paul et al., 1958), a time-dependent two-dimensional

quadrupole field strongly confines the ions in the radial direction yielding an

average effective harmonic potential (Ghosh, 1995). An additional static

electric field is applied to harmonically confine the ions also in the

axial direction (Prestage et al., 1989; Raizen et al., 1992). If the confinement

of N ions is much stronger in the radial than in the axial direction, the

ions will form a linear chain (Dubin, 1993; Schiffer, 1993) with inter-ion

spacing

�z � � 2N�0:56 ð44Þ

where

� � ðe2=4��0m21Þ1=3, ð45Þ

m is the mass of one singly charged ion, e the elementary charge, and 1 is

the angular vibrational frequency of the center-of-mass (COM) mode of the

ion string (Steane, 1997; James, 1998). The distance between neighboring

ions, �z is determined by the mutual Coulomb repulsion of the ions and the

trapping potential. Typically, �z is of the order of a few mm; for example,

�z � 7 mm for N¼ 10 171Ybþ ions with 1 ¼ 100� 2�kHz.

Two appropriately chosen internal states of each ion confined in a linear

electrodynamic trap represent a quantum mechanical 2-state system that

may serve as one qubit. In order to prepare these quantum mechanical

2-state systems individually (single qubit operations), electromagnetic

radiation is aimed at one ion at a time, that is, it must be focused to a

spot size much smaller than �z. Therefore, optical radiation is usually

required for individual addressing of qubits in ion traps (Nägerl et al., 1999).

In order to implement conditional quantum dynamics with ionic qubits,

it is necessary (in addition to single qubit operations) to couple external

and internal degrees of freedom. The interaction Hamiltonian governing the
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dynamics of a particular ion j at position zj subjected to an electromagnetic

field with angular frequency ! and initial phase �0 reads

HI ¼
�h

2
�ð�þj þ ��j Þ exp½iðkzj � !tþ �0Þ� þ exp½�iðkzj � !tþ �0Þ�

� 	

¼ �h

2
�ð�þj þ ��j Þ exp

XN

n

iSnj
nðayn þ anÞ � i!tþ i�

" #
þ h:c:

" #
ð46Þ

where � ¼ ~dd � ~FF= �h is the Rabi frequency with ~dd � ~FF signifying either

magnetic or electric coupling between the atomic dipole and the respective

field component. �þ,� ¼ 1=2ð�x 	 �yÞ represent the atomic raising and

lowering operators, respectively, ðayn and an are the creation and annihilation

operators of vibrational mode n, and Snj are the coefficients of the unitary

transformation matrix that diagonalizes the dynamical matrix describing the

axial degrees of freedom of a linear string of N ions (Wunderlich, 2001). The

Lamb–Dicke parameters 
n determining the coupling strength between

internal and motional dynamics are given by


n �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð �hkÞ2
2m

= �hn

s

¼ �hk

2�pn
¼ �zn 2�

�
: ð47Þ

The square of 
n gives the ratio between the change in kinetic energy of

the atom due to the absorption or emission of a photon and the quantized

energy spacing of the harmonic oscillator mode characterized by angular

frequency n. The mean square deviation of the vibrational mode’s

ground state wave function in momentum space, ð�pnÞ2 ¼ �hmn=2, and

the corresponding quantity in position space, ð�znÞ2 ¼ �h=2mn. Only if 
n
is nonvanishing, will the absorption or emission of photons be possibly

accompanied by a change of the motional state of the atom. Trapping a
171Ybþ ion, for example, with 1 ¼ 100� 2� kHz gives �z1 � 17 nm and it

is clear from Eq. (47) that driving radiation in the optical regime is necessary

to couple internal and external dynamics of these trapped ions (Fig. 15).

B.2. Spin resonance with trapped ions

As was briefly outlined in the introductory Section I, it would be beneficial

for ion trap experiments to take advantage of the highly developed

technological resources used in spin resonance (e.g., NMR) experiments. In

particular, employing microwave radiation with extremely long coherence
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time compared to optical radiation allows for precise and, on the timescale

of typical experiments, virtually decoherence free manipulation of qubits.2

In what follows it is outlined how in a linear ion trap with an additional

axial magnetic field gradient, @zB (i) ions can be individually addressed

in frequency space, and (ii) the Hamiltonian governing the interaction

between microwave radiation and ions is formally identical with Eq. (46),

with the usual Lamb–Dicke parameter 
 replaced by a new effective LDP 
0

scaling with @zB=
3=2
1 (Mintert and Wunderlich, 2001; Wunderlich, 2001).

Individual addressing of qubits in a modified ion trap Applying a magnetic

field gradient ~BB ¼ bz � ẑzþ B0 along the axial direction of a linear ion

trap causes a z-dependent Zeeman shift of the internal ionic states j0i and
j1i. Thus the transition frequency !ðjÞ01, j ¼ 1 . . .N, of each ion is individually

shifted and the qubits can be addressed in frequency space. The Breit–Rabi

2 Optical radiation with a long coherence time has been realized experimentally (for instance,

Rafac et al., 2000). However, building and maintaining such intricate light sources is

exceedingly challenging compared to the case of rf or mw radiation.

FIG. 15. Illustration of a linear ion trap including an axial magnetic field gradient. The static

field makes individual ions distinguishable in frequency space by Zeeman-shifting their internal

energy levels (solid horizontal lines represent qubit states). In addition, it mediates the coupling

between internal and external degrees of freedom when a driving field is applied (dashed

horizontal lines stand for vibrational energy levels of the ion string, see text).
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formula (Corney, 1977)

EmImJ
¼ EHFS

2ð2I þ 1Þ � gI�NBmq 	
EHFS

2
1þ 4mq�j

2I þ 1
þ �2j

� �1
2

ð48Þ

gives the energy levels of the hyperfine levels for electron total angular

momentum J ¼ 1=2 and arbitrary values of the nuclear spin I. The hyperfine

splitting between levels with total angular momentum F ¼ I þ 1=2 and

F ¼ I � 1=2 in zero magnetic field is denoted by EHFS, mq ¼ mI 	 1=2, and
the plus (minus) sign in front of the last term in Eq. (48) is to be used for

levels originating from zero-field levels F ¼ I þ 1=2 (F ¼ I � 1=2). The

dimensionless quantity �j is defined as

�j �
gJ þ gIme=mp

� �
�BBðzjÞ

EHFS

ð49Þ

where me and mp indicate the electron and proton mass, respectively, gJ and

gI are the electronic and nuclear g-factor, and �B is the Bohr magneton.

Figure 16 shows a plot of the hyperfine levels of the ground state of Yb+

as a function of the scaled magnetic field, �, and the allowed magnetic

0 0.5 1 1.5

E
/E

H
F

S

-1

-0.5

0

0.5

1

mq mI mS

0 + -

-1 - -

0 - +

1 + +

E0

E1

FIG. 16. Hyperfine levels of an atom with nuclear spin I¼ 1/2 and electron angular

momentum J¼ 1/2 (for Yb+ J¼ 1/2¼ s) as a function of scaled magnetic field. Magnetic dipole

transitions are indicated for �-polarized radiation (solid lines, weak field; dashed lines, strong

field), and for �-polarization (dotted line). The levels marked E0 and E1 are well suited to serve

as qubit states.
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dipole transitions are also displayed. In a weak static magnetic field ~BB the

selection rules �mF ¼ 	1 and �F ¼ 0, 	 1 hold for �-polarized radiation

(that is, the electric field vector is parallel to ~BB; solid lines in Fig. 16),

and �mF ¼ 0 and �F ¼ 	1 are valid for �-polarization (dotted line in Fig.

16). In a strong static field the selection rules are �mS ¼ 	1 and �mI ¼ 0

for �-polarized radiation (dashed lines) and �mS ¼ 0 and �mI ¼ 0 for �-
polarization (no allowed transitions). Therefore, in order to avoid unwanted

overlap of resonance frequencies, E0 and E1 are the appropriate choice as

qubit states. For the case of the ground state of 171Ybþ where

EHFS= �h ¼ 12:6� 2�GHz, a strong magnetic field (i.e., � � 1) amounts to

0.45 T.

Choosing the levels E0 and E1 indicated in Fig. 16 as qubit states and

neglecting the contribution of the nuclear spin to the total energy (since the

nuclear magneton �N � �B), the dependence of the qubit resonance

frequency on the axial coordinate is given by

@!ðjÞ01
@z
¼ 1

2�h
gJ�B

@BðzÞ
@z

1þ �jffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2j

q

0
B@

1
CA: ð50Þ

The electronic angular momentum is due to the spin of a valence electron

and we have gJ ¼ gS ¼ 2.

When separating the qubit resonance frequencies through the application

of a magnetic field gradient, overlap between the motional sidebands of

the qubit transitions has to be avoided. Therefore, the gradient has to be

chosen such that

�! � 2N þ 1 ð51Þ

where �! ¼ ð@!01=@zÞ�z is the frequency shift between two neighboring ions

(compare Fig. 17), and N is the angular frequency of the highest axial

vibrational mode. Together with expression (44) giving the distance between

two ions, �z, the requirement (51) leads to an estimate of the necessary field

gradient in the weak field limit:

@B

@z
� �h

2�B

4�"0m

e2

� �1=3

5=31 4:7N0:56 þ 0:5N1:56
� �

: ð52Þ

Thus, for example, N¼ 10 171Ybþ ions with 1 ¼ 100� 2� kHz require

@B=@z � 10T/m (Mintert and Wunderlich, 2001).
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The expression (52) for the required field gradient gives an order of

magnitude estimate that is necessary to assess whether the necessary

gradients are feasible. The exact magnitude of the field gradient has to be

determined individually for a given experimental situation in order to also

avoid possible interference from second order (in 
0) motional sideband

resonances. If, for example, 10 Yb+ ions are used, a constant gradient can

be chosen such that it leads to a frequency shift between neighboring ions of

8:81 (while equation (52) yields a gradient equivalent to a frequency shift

� 8:61). Then all second-order resonances are separated from the carrier

and the respective upper and lower sidebands by at least 0.2 1. Since the

distance between neighboring ions depends on the position of two ions in

the linear string, not all ions’ resonances will be centered in the desired

frequency gap for a constant field gradient. This can be corrected by a slight

variation of the gradient along the trap axis (which can be achieved when

current carrying coils are used). Note that the local variation of the field

gradient over the extent of the spatial wave function of an individual laser-

cooled ion would still essentially be zero. Simply increasing the field gradient

given in (52) by a factor 2 removes all possible coincidences of first-order

and second-order resonances. Resonances of order three or higher in the

effective Lamb–Dicke parameter 
0 possibly still coincide with the useful

ones. However their excitation will be suppressed by at least a factor ð
0Þ2
compared to the first-order resonances.

An example may illustrate how the required gradients can be generated:

Using a coil of 1mm diameter (approximately the size of the ion traps

employed for the experimental work described in this article) with 3 windings

and running a current of 3.3A through them produces a field gradient up

to 20T/m over the required distance. With additional coils the gradient can

be modeled to have a desired spatial dependence. With small permanent

magnets gradients of a few hundred T/m are easily generated.

FIG. 17. Schematic drawing of the resonances of qubits j and jþ 1 with some accompanying

sideband resonances. The angular frequency N corresponds to the Nth axial vibrational mode,

and the frequency separation between carrier resonances is denoted by �!.
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Coupling internal and external dynamics In the previous paragraphs it was

shown that a magnetic field gradient applied to a linear ion trap allows for

individual addressing of ions in frequency space. In order to create

entangled states between internal and motional degrees of freedom of one

particular ion it is obviously necessary to couple internal and external

dynamics. If this coupling is possible, then the qubit state of a particular ion

may be ‘‘written’’ into the vibrational motion of the ion string, and in

subsequent operations transferred to another qubit, or quantum dynamics

of one qubit conditioned on the state of another can be performed. At the

beginning of this section, the physical reason for coupling of internal and

external states was outlined, if laser light is used to drive an internal

resonance. If mw or rf radiation is used, the recoil on the ion upon

absorption or emission of a photon is not sufficient to excite motional states

of the ion (the LDP is vanishingly small). However, in the presence of a

magnetic field gradient motional quanta can nevertheless be created or

annihilated in conjunction with changing the internal state of an ion

(Mintert and Wunderlich, 2001). The physical origin of this effect will be

discussed in what follows.

Figure 18 displays two internal states of an ion and a phase space diagram

of a harmonic oscillator (an eigenmode of the ion string). The internal states

of the ion are, in the presence of an axial magnetic field gradient, Zeeman

shifted as a function of position along the axial direction. In Fig. 18 the

derivative of the Zeeman shift with respect to the magnetic field has a

different sign for the lower energy state j0i and the upper state j1i. The
position-dependent Zeeman shift gives rise to a force acting on the ion in

addition to the electrodynamic and Coulomb potentials such that its

equilibrium position is slightly different, depending on whether it is in state

FIG. 18. Illustration of the coupled system ‘qubit � harmonic oscillator’ in a trap with

magnetic field gradient. Internal qubit transitions lead to a displacement dz of the ion from its

initial equilibrium position and consequently to the excitation of vibrational motion.

In the formal description the usual Lamb–Dicke parameter is replaced by a new effective one

(see text).
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j0i or j1i. Consequently, if an electromagnetic field is applied to drive this

qubit resonance, a transition between the two states j0i and j1i will be
accompanied by a change of the equilibrium position of the ion,

d ðnjÞz ¼ � �h
@z!
ðjÞ
01

m2n
: ð53Þ

In the phase space diagram of the harmonic oscillator this gives rise to a

corresponding shift along the position coordinate together with a shift along

the momentum coordinate. (The latter, however, is negligibly small in the

microwave regime and is exaggerated in the sketch in Fig. 18). Thus, the

oscillator will be excited and oscillate about its new equilibrium position. In

Mintert and Wunderlich (2001) it is shown that the formal description of

this coupling between internal and external dynamics is identical to the one

used for the coupling induced by optical radiation (Eq. 46). The usual LDP

is replaced by an effective new parameter


0nje
i�j � 
nSnj þ i�nj: ð54Þ

When using mw radiation and appropriately choosing the trap

parameters secular axial frequency 1 and magnetic field gradient, then


nSnj � �nj and we have 
nj � �nj with

�nj � Snj

�d ðnjÞz

�zn
¼ Snj

�zn@z!
ðjÞ
01

n
: ð55Þ

The numerator on the rhs of Eq. (55) contains the spatial derivative of the

resonance frequency of qubit j times the extension �zn of the ground state

wave function of mode n, that is, the variation of the internal transition

frequency of qubit j when it is moved by a distance �z. Thus, the coupling

constant �nj is proportional to the ratio between this frequency variation and

the frequency of vibrational mode n. The strength of the coupling between

an ion’s internal dynamics and the motion of the ion string is different for

each ion j and depends on the vibrational mode n: Snj is a measure for how

much ion j participates in the motion of vibrational mode n.

All optical schemes devised for conditional quantum dynamics with

trapped ions can also be applied in the microwave regime, despite the

negligible recoil associated with this type of radiation. This includes, for

instance, the proposal presented in Cirac and Zoller (1995) that requires

cooling to the motional ground state, and the proposals reported in

VI] QUANTUM MEASUREMENTS 357



Sørensen and Mølmer (2000) and Jonathan and Plenio (2000) (the latter two

work also with ions in thermal motion).

Trapped ions as a N-qubit molecule The Hamiltonian describing a string of

trapped two-level ions in a trap with axial magnetic field gradient (without

additional radiation used to drive internal transitions) has been shown to

read (Wunderlich, 2001)

H ¼ �h

2

XN

j¼1
!jðz0, jÞ�z, j þ

XN

n¼1
�hnðaynanÞ �

�h

2

XN

i<j

Jij�z, i�z, j : ð56Þ

The first sum on the rhs of Eq. (56) represents the internal energy of the

collection of N ions. The qubit angular resonance of ion j at its equilibrium

position z0, j is !j. The second term sums the energy of N axial vibrational

modes. These first two terms represent the usual Hamiltonian for a string of

two-level ions confined in a harmonic potential (James, 1998). The new

spin–spin coupling term (last sum in Eq. 56) arises due to the presence of the

magnetic field gradient. Here,

Jij �
XN

n¼1
n�ni�nj : ð57Þ

The pairwise coupling (57) between qubits i and j is mediated by the

vibrational motion. Therefore, it contains terms quadratic in �, and the

coupling of qubit i and j to the vibrational motion has to be summed over all

modes.

As an example, Table 1 shows the spin–spin coupling constants between

10 171Ybþ ions confined in a linear trap (1 ¼ 100� 2� kHz) with a

magnetic field gradient of 25 T/m. The application of NMR-type quantum

logic operations to such an artificial molecule is facilitated by the fact that

individual qubit resonances are widely separated in frequency (in this

example the frequency ‘‘gap’’ between neighboring ions is about 1MHz) as

compared to typical NMR experiments (Vandersypen et al., 2001). In

addition, the coupling constants Jij have similar and nonzero values for all

pairs of spins.

In a ‘‘real’’ molecule different nuclear spins share binding electrons that

generate a magnetic field at the location of the nuclei, and the energy of a

nuclear spin exposed to the electrons’ magnetic field depends on the charge

distribution of the binding electrons. If a particular nuclear spin is flipped,

the interaction with the surrounding electrons will slightly change the

electrons’ charge distribution which in turn may affect the energy of other
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nuclear spins. This indirect spin–spin coupling is realized here in a different

way: the role of the electrons’ magnetic field is replaced by the vibrational

motion of the ions.

Usual ion trap schemes take advantage of motional sidebands that

accompany qubit transitions. Instead, the spin–spin coupling that arises in

a suitably modified trap may be directly used to implement conditional

dynamics using NMR methods. The collection of trapped ions can thus be

viewed as a N-qubit molecule with adjustable coupling constants

(Wunderlich, 2001). Making use of this spin–spin coupling does not involve

real excitation of vibrational motion. In this sense it is similar to a scheme

for conditional quantum dynamics that uses optical 2-photon transitions

detuned from vibrational resonances (Sorensen and Molmer, 2000), and,

thus should be tolerant against thermal motion of the ions.

C. COHERENT OPTICAL EXCITATION WITH BA
+

AND YB
+ IONS

This section is devoted to another possible, more ‘‘traditional’’ avenue

toward quantum computation with trapped ions: employing an optical

transition as a qubit. Since the relaxation rates of the states acting as a qubit

eventually limit the time available for coherent manipulation, the use of two

states connected via an electric dipole allowed transition is not a good

Table I

Spin–spin coupling constants Jij/ 2� in units of Hz for 10 171Ybþ ions in a linear trap

characterized by the angular frequency of the COM vibrational mode 1 ¼ 100� 2� kHz using

a static field gradient of 25T/m.

i Ji1 Ji2 Ji3 Ji4 Ji5 Ji6 Ji7 Ji8 Ji9

1

2 54.61

3 41.36 48.12

4 34.15 38.89 44.74

5 29.40 33.17 37.44 43.04

6 25.92 29.09 32.55 36.77 42.52

7 23.19 25.93 28.88 32.35 36.77 43.04

8 20.92 23.33 25.90 28.88 32.55 37.44 44.74

9 18.93 21.07 23.33 25.93 29.09 33.17 38.89 48.12

10 17.04 18.93 20.92 23.19 25.92 29.40 34.15 41.36 54.61
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choice. Therefore, the electronic ground state of an ion (usually one specific

Zeeman sublevel) and a metastable excited state have been chosen as qubit

states in various experiments (Appasamy et al., 1998; Roos et al., 1999;

Barton et al., 2000). Here, we report on experiments with Ba+ and 172Yb+

ions where the electric quadrupole (E2) resonance 2S1=2 �2 D5=2 serves as the

qubit.

C.1. Rabi oscillations on optical E2 resonance in Ba+

The lifetime of the metastable state 2D5=2 (�34 s) is long on the timescale of

typical coherent operations on this transition. Thus, the useful coherence

time for quantum logic operations with this qubit transition is essentially

limited (i) by the inverse emission bandwidth of laser light close to 1.76 mm

driving the E2 resonance, and (ii) by the stability of static magnetic fields

that lift the degeneracy of Zeeman states. Exciting sideband resonances of

this E2 transition allows for coupling of internal and external degrees of

freedom (compare Section VI.B).

Baþ-ions are confined in a 1-mm-diameter Paul trap and irradiated by

laser light at 493 nm (green light) for excitation of resonance fluorescence on

the 2S1=2 �2 P1=2 transition (compare Fig. 19). This laser is usually detuned

a few ten MHz below resonance for cooling the ions. Tunable light close to

493 nm is obtained by first generating light near 986 nm by a diode laser

(stabilized to a reference resonator), and then frequency doubling the

infrared light in a ring resonator containing a KNbO3 crystal as a nonlinear

element. A dye laser at 650 nm (red light) prevents optical pumping into the
2D3=2 level. The fluorescence signal is recorded by photon counting. A static

magnetic field defines the quantization axis and lifts the degeneracy of the

magnetic sublevels. The direction of propagation and the polarization of

both light beams (green and red) are set perpendicular to the magnetic field.

The power levels of the light fields are stabilized by electro-optic

modulators.

The attainable Rabi frequency on the optical E2 resonance S1=2–D5=2

near 1762 nm (having a spectral width of 5mHz) is limited by the available

intensity of the light exciting this transition, and by the emission bandwidth,

�! of the laser light. In addition, �! determines the coherence time of

the qubit. A color-center laser that delivered up to 150mW of light near

1762 nm with an effective emission bandwidth �! � 30� 2�kHz (1=e2 full
width of a Gaussian profile) was previously in use to excite this resonance

(Appasamy et al., 1998). The considerable effort that has to be devoted to

the preparation of suitable NaCl crystals, the necessity to always maintain

the laser medium at liquid nitrogen temperature, and the need for an Argon

ion laser that ensures the correct polarization of the color-centers, in
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addition to the pump laser at 1064 nm are but a few of the obstacles that

make such a laser a time consuming and not very economical instrument.

This laser was replaced by a continuous wave optical parametric oscillator

(Linos AG) emitting light in the required wavelength range. In order to

attain the desired long-term stability of the emission frequency, a highly

stable reference resonator suspended in ultra-high vacuum was used.

FIG. 19. (a) Relevant energy levels and transitions in 138Ba+. (b) Schematic drawing of

major experimental elements. OPO: Optical parametric oscillator; YAG: Nd:YAG laser; LD:

laser diode; DSP: Digital signal processing system allows for real time control of experimental

parameters; AOM: Acousto-optic modulators used as optical switches and for tuning of laser

light; PM: Photo multiplier tube, serves for detection of resonance fluorescence. All lasers are

frequency and intensity stabilized (not shown).
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Insensitivity against vibrations and variations in temperature and air

pressure is thus ensured (Leick, 2000).

Figure 20 shows Rabi oscillations on the carrier transition of the E2-

resonance in Ba+. Each data point is obtained by executing the following

sequence 600 times: (i) the infrared light driving the E2 transition is switched

on for a time � indicated on the abscissa in Fig. 20 while the green

light exciting the dipole resonance S1=2–P1=2 is turned off. (ii) Laser light

near 493 nm is turned on for 1ms, and scattered light is collected during

this time for state-selective detection. Either scattered photons will be

detected during the last step, indicating that the state of the ion is S1=2 at the

end of step ii (the registered number of photons is Poisson distributed

around a mean value of typically 10 counts). Or, if no photon counts are

registered, the ion was in state D5=2. Thus, a trajectory of ‘‘on’’ (resonance

fluorescence is observed) and ‘‘off ’’ (absence of resonance fluorescence)

events is recorded. A pair of ‘‘on’’–‘‘off ’’ events indicates a transition from

state S1=2 to state D5=2. The probability for absorption of an IR photon

is calculated by dividing the number of these excitation events by the

number of ‘‘on’’ events (total number of tries of excitation) in a trajectory.

The probability for emission is obtained analogously. In Fig. 20 absorption

and emission probability from one trajectory for a given time � have

been averaged to yield the transition probability between states S1=2 and
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FIG. 20. Rabi oscillations on the optical E2 transition S1/2-D5/2 in Ba+. A fit of the data

(solid line) yields a Rabi frequency of 71.4� 2�kHz and a transversal relaxation time of 100ms

(determined by the coherence time of the ir light used to drive the E2 resonance).
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D5=2. A fit of the data displayed in Fig. 20 yields a Rabi frequency

of 71:4� 2� kHz and a transversal relaxation time of 100 ms. Dephasing

is determined by the emission bandwidth of the IR laser which will be

further narrowed by improved frequency locking of the IR laser in future

experiments.

C.2. Lifetime measurement of the D5=2 state in Ba+

When using the metastable D5=2 state in Ba+ as one quantum state of a

qubit, or for the potential application of electrodynamically trapped Ba+ as

a frequency standard, it is useful to know the lifetime of this state. Ba+ is

also a promising candidate to measure parity nonconserving interactions

in atoms complementing high-energy experiments in search of new

physics beyond the standard model (Fortson, 1993; Geetha et al., 1998).

Comparison between results obtained from atomic structure theory and

experimentally determined values are thus important. Previous attempts

of determining the lifetime of the D5=2 state have yielded different values

in experiments with single and many ions, respectively (Plumelle et al., 1980,

Nagourney et al., 1986; Madej and Sankey, 1990). In recent experiments

on Ca+ it was found that the lifetime of the D5=2 state in this ion species

depended on the power of an additional laser used to repump the ion from

the metastable D3=2 state (Block et al., 1999).

We have determined the lifetime of the D5=2 state in Ba+ using the

quantum jump method. The resulting experimental lifetime is limited by

collisions with background gas to 21 s which agrees well with the results

reported in Madej and Sankey (1990). We did not find a dependence on the

power or detuning of the laser used to scatter resonant light on the S1=2–P1=2

transition or of the ‘‘repumper’’ from the D3=2 state.

C.3. Cooling of a pair of Ba+ ions

Cooling of the collective motion of several particles, not necessarily to the

motional ground state (Sørensen and Mølmer, 2000; Jonathan and Plenio,

2001) is prerequisite for implementing conditional quantum dynamics

with trapped ions. We have studied the collective vibrational motion of

two trapped 138Baþ ions cooled by laser light close to the resonances

corresponding to the S1=2–P1=2 (493 nm, green light) and P1=2–D3=2 (650 nm,

red light) transition, respectively.

When two ions are confined in a nearly spherically symmetric Paul trap,

and if they are sufficiently laser cooled, then we always observe them

crystallizing at the same locations. The crystallization at preferred locations

is explained by the slight asymmetry of the effective trapping potential, that

is, x 6¼ y 6¼ z, where x, y, z are the angular frequencies of the center-
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of-mass-mode of the secular motion in different spatial directions. The

Coulomb potential makes the ions repel each other, and the ion crystal

tends to align along the axis of weakest confinement by the electrodynamic

potential.

The potential along the z-direction is steeper than in the xy-plane.

Consequently, if cooled well enough, the ions stay in this plane. Since

y > x they are not free to rotate in the xy-plane, and instead would have to

surmount an azimuthal potential barrier at � ¼ �=2 (� ¼ arctanðy=xÞ) in

order to exchange places. However, if the vibrational energy of the relative

motion of the two ions in the ~yy-mode (Reiß et al., 2002) exceeds the

azimuthal barrier height, then the ions are free to rotate in the xy-plane.

Depending on the parameter settings (detuning and intensity) of the

cooling lasers, these different motional states corresponding to different

temperatures are indeed observed experimentally.

If, for instance, the intensity and frequency of the green laser is held fixed

and the red laser’s frequency is scanned, then a characteristic spectrum

displaying dark resonances is obtained (Fig. 21). Whenever the detuning

of the red laser, with respect to a resonance between a Zeeman level of

the D3=2 state and one of the P1=2 state equals the detuning of the green

laser with respect to a resonance between Zeeman levels of the P1=2

and S1=2 states, a coherent superposition of the Zeeman levels of S1=2
and D3=2 is created that does not couple to the light field anymore.

The appearance of four dark resonances is due to the selection rules for

dipole allowed transitions between Zeeman sublevels of the S1=2, P1=2, and

D3=2 electronic states when both light fields are linearly polarized

perpendicular to the magnetic field that defines the quantization axis.

Fitting such an excitation spectrum using the optical Bloch equations

allows for the determination of intensity and detuning of the laser light,

as well as of the strength of the applied magnetic field. Upon scanning the

red laser it is observed that ions take on different states of motion: either

they crystallize at fixed locations or they form a ring-shaped structure when

their thermal energy is sufficient to surmount the azimuthal potential

barrier.

Using the laser parameters determined from a fit of the excitation

spectrum, the expected temperature of the ions can be derived from detailed

numerical calculations of laser cooling taking into account the Zeeman

structure of the energy levels (Reiß et al., 2002). It turns out that the

transition from an ion crystal to the ring structure occurs at that detunings

of the red laser where theory predicts laser cooling to turn into heating. The

ions gain enough energy from scattering photons to surmount the azimuthal

potential barrier and appear as a ring on the spatially resolving photo

detector. The transition from cooling to heating occurs when the red laser is
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scanned across a dark resonance with increasing frequency: as soon as it is

blue detuned with respect to the closest dark resonance, the cooling rate

is reduced to zero and with further increasing laser frequency becomes

negative (that is, heating occurs). Increasing the laser’s frequency even more

means that the red laser is further blue detuned with respect to the dark

resonance that was just passed. At the same time, however, the next

resonance is approached relative to which the laser is red detuned and the

cooling rate increases again. It should be noted that Raman scattering

responsible for these processes occurs when both lasers are red detuned

relative to the main resonance.

Very good agreement is found between the theoretical prediction of the

transition of the ions’ motional state and experimental observations. In

addition, parameter regimes of the laser light irradiating the ions are

identified that imply most efficient laser cooling and are least susceptible

to drifts, fluctuations, and uncertainties in laser parameters. When applied

to cooling of a string of ions in a linear trap, the multidimensional

parameter space allows to identify regions where cooling is most efficient

for all vibrational modes. In particular, the magnetic field can be increased

for a larger separation of the dark resonances.

Cooling of different vibrational modes is also achieved with electro-

magnetically induced transparency (EIT) cooling (Morigi et al., 2000; Roos

et al., 2000). In that scheme, too, atomic resonances are shaped by two

laser fields such that most efficient cooling for as many vibrational modes

as possible is achieved.

C.4. Coherent excitation of an E2 resonance in 172Yb+

The electric quadrupole resonance S1=2 $ D5=2 in 172Yb+ with a natural

linewidth of 6� 2�Hz (Fawcett and Wilson, 1991) may be used as a qubit,

too. The relevant energy levels involved in the investigation of coherent

excitation of this transition are shown in Fig. 1. The E2-transition

is driven by light of a frequency-doubled diode laser at 411 nm. The

population of the S1=2 ground state is probed by exciting resonance

fluorescence on the strong monitor transition S1=2 $ P1=2. In addition to

spontaneous decay into the S1=2 ground state, the state D5=2 might decay

into the extremely long-lived level F7=2 (lifetime > 10 years (Roberts et al.,

1997)) with probability 0:81. The population trapped in the F7=2 state is

brought back into the S1=2 ground state via the jk-coupled (Cowan, 2001)

level D½5=2�5=2 by illuminating the ion continuously with laser light at

638 nm. The depopulation time depends on the laser intensity and is found

to be �638 ¼ ms in the limit of high intensity.
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An absorption spectrum of the E2 transition is obtained by scanning

the frequency of the light at 411 nm in steps of 40 kHz across the resonance

of a selected Zeeman component. At every frequency step a series of 500

pairs of driving pulses (�411 ¼ 5ms) and probing pulses (�369 ¼ 10ms)

is recorded resulting in a trajectory of ‘‘on’’ and ‘‘off ’’ observations.

The absorption probability on the jS1=2,mj ¼ 1=2i $ jD5=2,mj ¼ 1=2i
transition, determined in the same way as described in the previous section,

is plotted in Fig. 22 versus the detuning of the frequency of the light field at

411 nm.

The measured absorption probability on the carrier transition exceeds 0.9

verifying coherent excitation of the E2 resonance. The structure seen in

the carrier is due to Rabi oscillations (Balzer et al., 2000; Wunderlich et al.,

2001). From the width of the carrier resonance the Rabi frequency is

estimated to be � 110 kHz. A comparison of the experimental spectrum

with numerical simulations using optical Bloch equations shows that

the emission bandwidth of the laser field at 411 nm is less than 5Hz in 5ms.

Next to the carrier two sidebands are visible at 	750 kHz arising from

the ion’s axial secular motion in the pseudo harmonic potential of the

electrodynamic trap. The asymmetry in the absorption probability between

upper and lower sideband is due to sideband cooling on the E2 transition

(to be detailed elsewhere.)

FIG. 22. Absorption spectrum between the Zeeman states jS1=2;mj ¼ 1=2i $ jD5=2;
mj ¼ 1=2i (E2-transition). The absorption probability on resonance exceeds 0.9 which proves

coherent excitation. The sidebands at 	750 kHz next to the carrier are caused by the secular

motion of the ion.
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Employing optical E2 transitions, too, important steps toward quantum

information processing have been experimentally realized. Because of the

simple level structure of 138Ba+, and of the long lifetime of its metastable

D5=2 state, this ion is well suited for experiments where coherent optical

excitation is desired (for instance, in QIP).
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I. Scattering Processes

A. INTRODUCTION

Since the invention of the laser, physicists have been supplied with strong

sources of coherent radiation which are now available in the frequency
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range between the far infrared and, at present, up to the vacuum–ultraviolet

(VUV) and soft x-ray region. The investigations in the new field of laser

physics gradually shifted with the rapid development of better and more

powerful laser sources of very short pulse duration to their applications

in a growing variety of different branches of physical research. This was

motivated by the large number of hitherto unknown laser-induced

phenomena which emerged and by their importance for both basic insight

into atomic, molecular, and solid-state structures and for their practical

applications in a large number of different fields of research like

holography, fiber optics, tele-communications, material sciences, biology,

plasma physics, thermonuclear fusion, and so on.

Quite general the scattering and reaction processes which take place in a

powerful laser field can be divided into two main groups

(a) laser-assisted processes,

(b) laser-induced processes.

In the case (a) a basic process exists in the absence of the laser field and

it is modified by the simultaneous interaction with laser radiation. In

particular, both types of processes differ fundamentally by their reaction

rates at lower laser intensities where perturbation theory applies. In the first

case we find RN � INðQ= �hhkÞ2N and in the second RN � IN . Here N is the

order of nonlinearity, I the laser intensity, k the wave number of the laser

field, and Q some basic momentum transfer such that usually Q� �hhk.

Moreover, very often, processes of class (b) require a threshold value for N

to take place at all. Hence, the processes (a) require a much lower intensity

of the laser field than the processes (b) in order to obtain sufficiently

large rates RN for the laser-induced nonlinearities of the order N with the

emission or absorption of N laser quanta �hh!. In the case (a) the required

laser intensities turn out to be of the order of magnitude 108–1012 Wcm�2

and in the case (b) intensities between 1012–1016 Wcm�2 are required,

depending on the wavelength of the laser source employed. This was also the

reason why in the early days of laser development it was thought that

processes of class (a) would be more easily accessible to observation than

those of class (b).

In our early review [1], published about 18 years ago, several processes of

class (a) and (b) have been discussed. In particular, we investigated electron–

atom collisions in a laser field belonging to case (a), and multiphoton above-

threshold ionization (ATI), belonging to case (b). At that time ATI just

started to become a fascinating new field of research. Today the research

activities in ATI and the concomitant generation of higher harmonics

(HHG) of the laser frequency by an atomic system, interacting with a

powerful laser beam, have become the dominant field of multiphoton
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physics and there was an excellent collection of reviews on this subject edited

by Gavrila [2]. We also mention the two books by Delone and Krainov [3,4]

and by Eberly et al. [5]. In addition, there have been published recently

several other expert reviews by Eberly et al. [6], Mainfray and Manus [7],

Freeman and Bucksbaum [8], L’Huillier et al. [9], Ammosov et al. [10],

Shakeshaft [11], Balcou et al. [12], Reiss [13], Burnett et al. [14], Faisal et al.

[15], DiMauro and Agostini [16], Protopapas et al. [17], Joachain et al. [18],

Maquet et al. [19], Terao-Dunseath and Dunseath [20], and Becker et al.

[21]. Finally we mention the recent proceedings volumes edited by Evans

and Chin [22] and by Lambropoulos and Walther [23]. Consequently, our

present report will be devoted, in particular, to some of the above processes

at very high laser powers, as discussed for example by Mourou et al. [24],

in which case a relativistic treatment will be necessary since for laser powers

of the order of magnitude of 1018Wcm�2 and above, the ponderomotive

energy of an electron, of mass m, in the laser field, given by UP ¼ mc2 �2=4,
will become of the order of magnitude of the electron rest energy mc 2. In the

above formula we introduced the dimensionless intensity parameter �,
defined by � ¼ eE0=m!c where E0 is the laser field amplitude and ! its

frequency. Such high laser powers can nowadays be achieved by generating

very short radiation pulses that can yield either harmonic x-rays or laser

pulses in the attosecond regime [25–28].

In the following, we shall first perform an elementary classical

consideration of Thomson scattering and x-ray scattering in a laser field

which are prototypes of a laser-induced and a laser-assisted processes,

respectively. Then we shall go on to consider relativistically Compton

scattering in a laser field of extreme radiation power, such that UP � mc2.

Particular attention will be devoted to spin effects at such intensities.

Next we shall reconsider electron–atom scattering in a laser field of

moderate power and low frequency. This will be mainly done in order to

discuss some very new experimental results and their comparison with

presently available theoretical work and possible explanations of the experi-

mental findings. For more details on earlier work on this topic we refer to

our recent review [29]. A further section will then be devoted to a relativistic

treatment of free–free transitions at extremely high laser powers and we shall

discuss, in particular, angular asymmetries of the cross sections and their

respective electron energies that can be observed. Here too, the relevance of

the electron spin will be discussed. A rather long chapter will then be

devoted to a detailed discussion of above-threshold ionization, electron–ion

recombination, x-ray–atom scattering in a laser field, and harmonic genera-

tion.These processes are all strongly interrelated among eachother onaccount

of the unitarity of the S-matrix of scattering theory. Finally, we shall

demonstrate for some particular processes the modifications of the
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nonlinear cross sections or probabilities that can be induced by a powerful

bichromatic radiation field, usually of frequencies ! and r! (with r¼ 2, 3).

These modifications can be achieved by changing the amplitudes of the

two field components, E0 and EðrÞ0 , respectively, and their relative radiation

phase �. The investigation of the nonlinear probabilities of these processes

as a function of the amplitudes E0, EðrÞ0 and the phase � has been termed

coherent phase control. More details on this topic can be found in our recent

review [30].

B. CLASSICAL CONSIDERATIONS

B.1. Thomson scattering in a laser field

In the early days of laser research, many papers were devoted to the

scattering of strong radiation fields by free electrons beginning with the

pioneering work of Sen Gupta [31], Vachaspati [32], Gol’dman [33], Brown

and Kibble [34], Fried and Eberly [35] and others [36–38]. Summaries of

these works are reported in reviews by Eberly [36], Bunkin et al. [39], Mitter

[40], and McDonald [41]. Although the investigation of this process is of

fundamental interest for the understanding of quantum electrodynamics at

high radiation field intensities, the experimental verification of the predicted

nonlinear effects at intermediate laser field intensities is seriously hampered

by two basic facts which have impeded for a long time all experiments in this

direction, namely,

(a) the extreme smallness of the Thomson cross section, i.e., �Th � 7�
10�25 cm2 and

(b) the high intensity, of the order of magnitude 1016 � 1018 Wcm�2,
required to make the nonlinearities appreciable.

Therefore, only recently it was possible to perform experiments to verify

the predictions of the above relativistic calculations, since by now table-

top lasers have become available with a power output of 1018 Wcm�2 and

above [42, 43]. The essential difficulties encountered can be most easily

demonstrated by the following simple classical calculation which furnishes

a valuable low-frequency formula that will be repeatedly encountered in our

discussions later on. Consider for simplicity the motion of a nonrelativistic

electron of mass m and charge e in a radiation field described by the electric-

field strength in dipole approximation ~EEðtÞ ¼ E0~�� sin!t with ~�� being the

unit vector of linear polarization, E0 a real amplitude, and ! the frequency

of the field. We assume adiabatic decoupling of the field and particle at

t!�1 by a factor expð��jtjÞ, with �50, so that the Lorentz equation
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of motion and its integration read

d~vv

dt
¼ e

m
~EEðtÞ, ~vv ¼ ��c~�� cos!t, ~rr ¼ ��0~�� sin!t ð1Þ

where �0 ¼ �c=! is the amplitude of the classical electron oscillations in the

radiation field and � is the corresponding velocity amplitude measured

in units of the speed of light c. It was explicitly given above by � ¼
ðeE0=m!cÞ ¼ ðI=IcÞ1=2. This dimensionless parameter can also be used to

measure the field intensity I as the ratio �2 ¼ I=Ic where Ic ¼ � �hh!2=8�r20.
Here r0 ¼ e2=mc2 ¼ 2:82� 10�15 m is the classical electron radius and � ¼
e2= �hhc �1=137 is the fine structure constant. Ic is the critical intensity at

which �2 becomes equal to unity, thus turning the problem into a relativistic

one (compare Eq. (1)). Expressing the intensity of the laser field by �2 is

conveniently used in the treatment of laser-induced processes. The intensity

I ¼ hj ~SSji ¼ E20c=8� is the average ingoing flux of the radiation field.

Next we shall assume that the radiation field is sufficiently strong

and, therefore, the amplitude ~rrðtÞ of the electron oscillations becomes so

large that j~rrj0c=! ¼ �=2� and, consequently, the space dependence of

the radiation field has to be included in the expression for the electric field
~EEðtÞ of Eq. (1). This means we have to replace t by t� ~nn � ~rrðtÞ=c, ~nn being the

direction of propagation of the ingoing radiation field. As long as �2 � 1,

we may assume that the radiation emitted by the electron is determined

by the retarded acceleration ~vv0 ¼ d~vv=d�, where � ¼ t� j~rr0 � ~rrð�0Þj=c �
�0 þ ~nn0 � ~rrð�0Þ=c is the retarded time and we use the fact that usually for

the point of observation ~rr0 we have j~rr0j � j~rrj. Moreover, we have

introduced the average time of retardation �0 ¼ t� j~rr0j=c and ~nn0 is the unit

vector of the direction of emission of the scattered field. Therefore, with

the above substitutions and approximations the acceleration ~vv0ð�0Þ, correct
to first order in the retarded phase, takes the form

~vv 0 ¼ �0!2~�� 1þ 1

c
ð~nn0 � ~nnÞ � ~vvð�0Þ

� �
sin !�0 þ

1

c
ð~nn0 � ~nnÞ � ~rrð�0Þ

� �
¼
X1

N¼1
~vv 0N ð2Þ

with

~vv 0N ¼ ð�1ÞN�0N!2~��JN
~KK � ~��
k

 !
sinðN!�0Þ ð3Þ
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where ~KK ¼ ~kk0 � ~kk. The last formula follows from Eq. (1) after the insertion

of ~rrð�0Þ=c from (1), realizing that expð�i�0 ~KK � ~�� sin!�0Þ is the generating

function of the ordinary Bessel functions JN of integer order N. This finding

may be interpreted as the result of a laser-induced Doppler shift of the

scattered radiation which is periodically oscillating in time. From Eqs. (2)

and (3) we infer that the retarded acceleration of the electron in the

strong radiation field decomposes into incoherent accelerations ~vv 0N ,
which yield scattered radiation of frequencies !0 ¼ N! and wave vectors
~kk0 ¼ !0 ~nn0, with N51. Finally we calculate the differential scattering cross

sections d�N for the individual nonlinear processes of the order N from the

standard formula

d�N ¼
e2

4�c3I
h~vv02i sin2 � d� ¼ !0

!

� �2

J2
N�1ð�0 ~KK � ~��Þd�Th ð4Þ

where �hh ~KK ¼ �hhð ~kk0 � ~kkÞ is the momentum transfer and d�Th=d� ¼ r20 sin
2 � is

the differential Thomson cross section formula with � ¼ ffð~��, ~nn0Þ being the

angle of radiation emission. The exact formula for d�N has to be deduced

from a classical relativistic calculation [45–52]. This, however, yields little

difference in our order of magnitude estimates we shall pursue in the

following.

The Eq. (4), just derived, represents the low-frequency theorem of

nonlinear Thomson scattering in the presence of a strong radiation field.

It demonstrates the two basic features indicated at the beginning: (a)

�Th ¼ ð8�=3Þr20 � 7� 10�25 cm2, i.e. extreme smallness of the cross sections,

and (b) J2
N�1ðzÞ can only have its maximum values for jzj5N � 1, as can be

inferred from the diagrams shown in the book of Jahnke–Emde–Lösch [53].

This means that we must have �0 ~KK � ~�� at least of the order N � 1 and for

the maximum value of ~KK � ~�� � Nk we consequently have to require

� ¼ �0k51. Therefore, from �2 ¼ I=Ic it then follows that we must have

I5Ic which is roughly 1016�1018 Wcm�2 for frequencies in the range of

CO2 and Nd:YAG lasers. This means, however, according to Eq. (1) that

j~vv=cj ¼ � becomes equal to 1 and our nonrelativistic calculations break

down. Hence, our cross section formula Eq. (4) is valid only for �2 � 1 and

in this case we can expand the Bessel function JN�1ðzÞ into its power series

and keep only the first term of this expansion. Thus we obtain from Eq. (4)

d�N ¼
!0N
!

� �2 �0 ~KK � ~��
2

 !2ðN�1Þ

d�Th � r20N
4 I

Ic

� �N�1
2�2ðN�1Þ ð5Þ
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and the cross sections of these laser-induced processes are therefore

proportional to r20ðI=IcÞN�1. For moderate laser field intensities one will

consequently have to look for other processes, in which the conditions

for the observation of nonlinear phenomena may be considerably relaxed.

Since a metal contains a large number of quasi-free electrons of the order

of magnitude 1022�1023 cm�3, it is quite natural to consider the possibility

of generating harmonics of the laser field by shining laser light at grazing

incidence on a metal surface having the polarization vector ~�� sufficiently

close to the normal onto the surface, for under these conditions the

harmonic production is most efficient. In this way, even for moderate

intensities, the generation of harmonics by the quasi-free electrons of

the metal is possible although the process cannot be simply described by

Thomson scattering [54–57]. If the laser field is more powerful, then a

surface plasma becomes formed and the harmonic production will be even

more efficient [58–63]. Alternative methods of very high harmonic

generation in crystals are discussed in refs. [64–68].

B.2. Laser-assisted x-ray scattering

With the development of coherent VUV and x-ray sources it becomes of

interest to consider the scattering of high-frequency radiation by free or

bound electrons in the presence of a powerful laser field since such a

background field can modify considerably the basic process which also

exists in the absence of the laser radiation [69–71]. Hence, in contrast to

the process discussed before, such processes are coined laser-assisted.

In order to demonstrate the basic features of such a process, we perform the

following elementary classical calculation using the results of the foregoing

section.

If a classical high-frequency plane wave ~EE cos½!Xðt� ~nn � ~rr=cÞ� of unit field
amplitude expressed by the vector of linear polarization ~EE, direction of

propagation ~nn and of frequency !X is scattered by a free electron under

the simultaneous action of a low-frequency strong background field, as

described in the foregoing section, with !X � !, then the phase of

the absorbed and scattered x-ray field will be periodically modulated on

account of the electron oscillations of large amplitude in the intense laser

field. This will induce an oscillating Doppler-shift of the x-ray emission

of the electron and the spectrum of scattered radiation will have the

form !0X ¼ !X þN! with N being a positive or negative integer or zero.

Mathematically this fact will be expressed by the retarded electron

acceleration ~VV 0ð�0Þ ¼ ðe=mÞ~EE cosf!X½�0 � ð~nn0 � ~nnÞ � ~rrð�0Þ=c�g, where ~rrð�0Þ is

the amplitude of electron oscillations in the background field as given by

Eq. (1) taken at the average retarded time �0. Calculations similar to those
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indicated in Section I.B.1 thus yield the following differential cross sections

of x-ray scattering by a free electron and concomitant laser-induced

nonlinear scattering processes

d�N ¼ d�XThJ
2
Nð� ~QQ � ~��Þ: ð6Þ

Here, d�XTh is the Thomson cross section of x-ray scattering, and ~QQ ¼
�hhð ~KK 0 � ~KKÞ is now the momentum transfer in x-ray scattering with ~KK ¼ !X ~nn
and ~KK 0 ¼ !0X ~nn0, while % ¼ �0= �hh ¼ �c= �hh!. If we consider the low-frequency

limit of the laser field, then !0X � !X. We shall see that the Eq. (6) agrees

very well with the corresponding low-frequency result for electron–atom

scattering in a laser field. In order to recognize this similarity later on, we

artificially introduced in Eq. (6) Planck’s constant �hh. In fact, however, the

above x-ray scattering is of entirely classical origin like the Thomson

scattering process discussed before.

In contrast to Thomson scattering, discussed in Section I.B.1 under the

aspects of our two criteria (a) and (b), we find the present process of x-ray

scattering to have the great advantage of strongly enhanced probabilities for

the nonlinear scattering effects at intermediate laser beam intensities, since

the momentum transfer ~QQ in Eq. (6) is much larger in absolute magnitude

than the corresponding quantity in Eq. (4). So, from our condition to have

J2
NðzÞ appreciably large, namely jzj5N, according to Eq. (6) we must now

require � ~QQ � ~��5jNj. Taking ~QQjj~�� we thus obtain by analogy with our

condition (b) in Section I.B.1 �2 ¼ I=Ic5½ðN!=!XÞ2=4� sin2 �=2 (where � is

the scattering angle) and, consequently, for � � �=2 our condition reads

I=Ic5ðN!=!XÞ2. For a CO2 laser with �hh! ¼ 0:117 eV and x-ray quanta

�hh!X of the order of magnitude 1 keV we then obtain I5N2 � 10�8Ic, which
is equivalent to a laser beam intensity of about 108�1010 Wcm�2.
Therefore, with the advent of sufficiently powerful coherent VUV and

x-ray sources these nonlinear effects should become observable without

great difficulties. Finally, we observe that for sufficiently low laser intensities

we may again expand the Bessel function in Eq. (6) into its power series

to find the approximation

d�N � d�XTh
� ~QQ � ~��
2

 !2N

� r20
I

Ic

� �N ~QQ � ~��
�hhk

 !2N

: ð7Þ

Comparing this formula with Eq. (5), we recognize the difference between

a laser-induced and laser-assisted process at low intensities. The cross

sections of the laser-assisted process have an enhancement factor jQ=�hhkj2N .
The disadvantage of x-ray scattering in a laser field is still, however, the
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smallness of the Thomson cross section. Therefore we shall consider

in Sections I.D and I.E electron–atom scattering in a laser field

and in Section II.E x-ray–atom scattering in a laser field.

C. COMPTON SCATTERING

C.1. Preliminaries

As indicated in Section I.B, laser-induced Compton scattering was one of

the first nonlinear processes that was intensively investigated immediately

after the first lasers were brought into operation. Nice surveys of this early

work and discussions of the various questions raised at that time can be

found in the reviews of Eberly [36], Bunkin et al. [39], Mitter [40], and

Neville and Rohrlich [72]. However, a long time before the laser was

invented, Thomson and Compton scattering, induced by a classical

electromagnetic background field, was discussed in considerable detail by

Sen Gupta [31]. This early work was also reviewed by one of us [73] where

we reported that the first theoretical investigations of stimulated nonlinear

Thomson scattering can be found in papers that were written in the forming

years of the development of quantum mechanics in the 1920s. In the

early days of laser research, the attainable powers of laser radiation were

so low that the nonlinear effects predicted were not accessible to

observation. The first experiment in which the second harmonic of

nonlinear Compton scattering was observed is the one reported by Englert

and Rinehart [74]. Therefore, one of the present authors reconsidered

Compton scattering in an intense, linearly-polarized laser field in a

semi-relativistic approximation and he envisaged also the process of

laser-modified x-ray scattering in the relativistic regime [70,71], based on

arguments like those presented in Section I.B. At about the same time,

classical Thomson scattering in a powerful, linearly-polarized plane wave

radiation field was analyzed numerically to a considerable extent by

Puntajer and Leubner [46], while this process was considered analytically

several years before in great detail for linear as well as circular

laser polarization by Sarachik and Schappert [45]. With the advent of

very powerful laser sources in recent years, the predicted energy and

momentum shifts of an electron in a laser field became observable and

were analyzed carefully by Meyerhofer and co-workers [42–44]. Their

experimental results gave rise to renewed interest in the investigation

of relativistic Thomson scattering in an extremely powerful radiation

field by Hartemann and Kerman [75], and in a series of papers by

Salamin and Faisal [49–52]. The corresponding quantum mechanical

Compton process was reinvestigated by Narozhnyı̆ and Fofanov [38],
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describing the powerful laser pulse by a circularly polarized electro-

magnetic plane wave field. Finally, the old question why the quantum-

electrodynamic treatment of laser-induced processes, in which the

laser-dressing of the electron was treated by summing up Feynman

diagrams, as in the work of Fried and Eberly [35], does not yield laser-

induced energy and momentum shifts, while the classical description of the

laser field does, has been reconsidered by Eberly and Reiss [76] and more

recently by Körmendi and Farkas [77] who apparently find a reasonable

explanation for this discrepancy.

In the present section, we want to reanalyze laser-induced Compton

scattering in a very powerful radiation field in which the ponderomotive

energy UP of the electron in the field is of the order of magnitude of

the electron’s rest mass, UP ’ mc2, or even larger. Since most calculations

of this process, performed in the past, of which we became aware, were

performed for a classical, circularly-polarized electromagnetic plane-wave

field and mainly analytic formulae were presented, we shall consider here

Compton scattering for a linearly-polarized radiation field in which case

we expect a much richer and more complicated scattering spectrum.

Moreover, we want to find out whether at the high laser powers envisaged

above, of about 1018 Wcm�2 and beyond, spin effects are of importance or,

whether the treatment of nonlinear Compton scattering for a Klein–Gordon

particle or a Dirac particle lead essentially to the same results. We shall

consider various different scattering configurations in which the electrons

are moving at high speed initially, which historically was not the usual

assumption, and we shall permit the collision of the laser beam and the

electron beam at an arbitrary angle and investigate the angular dependence

of the cross sections of the scattered radiation of harmonics N!. Our

calculations will lead in the present case of linear laser polarization to

generalized Bessel functions of the form

BNðx, yÞ ¼
Xþ1

�¼�1
JN�2�ðxÞJ�ðyÞ. ð8Þ

The numerical evaluation of such functions has been analyzed some time

ago in the complex plane by Leubner [78] whose investigations were based

on earlier work by Bleistein and Ursell [79,80], by Nikishov and Ritus [81],

and by Reiss [82,83]. We used these considerations and designed a computer

program for the evaluation of the generalized Bessel functions BNðx, yÞ
for large values of the parameters x, y, and N.

In order to show that spin effects in the present processes should be rather

marginal, we shall perform the following quasi-classical consideration.
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We start from the Dirac equation, in its quadratic form, for a particle in

an electromagnetic field that can be found in Schiff’s book on quantum

mechanics [84] (using in this section units �hh ¼ c ¼ 1)

½ðE � e�Þ2 �m2� ¼ ½ð~pp� e ~AAÞ2 � e~��0 � ~BBþie~���~EE� ð9Þ

in which ~AA and � are the electromagnetic potentials while ~EE and ~BB are the

electric and magnetic field strengths, respectively. ~��0 and ~�� are Dirac’s

spin matrices. Considering an electromagnetic, linearly-polarized plane-

wave of frequency !, unit vector of polarization ~�� ¼ ~eey and direction of

propagation ~nn ¼ ~eex in the Coulomb gauge, ~AA ¼ A0~eey cos! t� xð Þ and

� ¼ 0, we can infer from Eq. (9) a semi-classical expression for the final

kinetic energy E0kin ¼ E0 �m of an electron placed into this field with

initial momentum ~pp along the y-axis. Since ~EE points along the y-axis, ~BB
will point into the z-direction. Therefore the magnetic term in Eq. (9)

can be replaced by �eA0!�
0
z sin!ðt� xÞ and the electric term by

ieA0!�y sin!ðt� xÞ. For �0z we can take in our quasi-classical calculation

the two values 	1, while �y couples in a matrix element the two large

components of a Dirac spinor with the two small components and therefore

we have to take 	ip=ðE þmÞ, where the initial energy is E ¼ Ekin þm.

Therefore we obtain from Eq. (9)

E0kin 1þE0kin
2m

� �
¼Ekin 1þEkin

2m

� �
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ekin 1þEkin

2m

� �
Up

s
cos!ðt�xÞ

þUp½1þ cos2!ðt�xÞ��
ffiffiffiffiffiffi
Up

m

r
! 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ekin

Ekinþ2m

r" #
sin!ðt�xÞ:

ð10Þ

From this expression we obtain the maximum electron kinetic energy

Emax
kin in the laser field with maximum spin contribution, if we choose the

radiation phase to be !ðt� xÞ ¼ �=4 or 3�=4 in which case sin!ðt� xÞ ¼
	1=

ffiffiffi
2
p

and cos 2!ðt� xÞ ¼ 0. With this choice we find

Emax
kin 1þ Emax

kin

2m

� �
¼ Ekin 1þ Ekin

2m

� �

þUp 	
!ffiffiffi
2
p

ffiffiffiffiffiffi
Up

m

r
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ekin

Ekin þ 2m

r" # ð11Þ
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where Ekin is the initial kinetic energy of the electron, entering the radiation

field. Up ¼ m�2=4 is the ponderomotive energy of the electron in the

laser field with � being the intensity parameter, defined in Section I.A.

The formula Eq. (11) immediately tells us that for laser field intensities in

the relativistic regime, i.e. for � ¼ 1 and thus UP ¼ m=4, the ratio between

laser-induced spin effects and laser-induced dynamical effects will be

2!=m ’ 10�6 for a Nd:YAG laser with ! ¼ 1:17 eV. Consequently, on

the basis of these quasi-classical considerations spin effects in relativistic

scattering process of electrons in a very powerful laser field should be

marginal. It is also interesting to remark that according to Eq. (10) the

contributions of the laser-induced spin effects and of the laser-induced

dynamical effects are out of phase by �=2 in their influence on the

total final energy of the electron in the field. Moreover, we recognize

that for relativistic initial electron kinetic energies, Ekin ’ m, the electric

spin term in Eq. (9) will contribute in the square brackets of the last term

of Eq. (11) a factor
ffiffiffiffiffiffiffiffi
1=3
p

, showing that also in the relativistic case the

magnetic spin term yields the dominant contribution. On the other hand,

for lower laser intensities we usually have UP � Ekin and �� 1 so that

in this case the relevant ratio is !�=2Ekin � 1 and therefore also in the

nonrelativistic regime spin effects are negligible. Our numerical results,

presented below and in Section I.E, will confirm the findings of these

heuristic considerations. A detailed analysis of spin effects in free or bound

electron-laser systems has recently been presented by Walser et al. [85,86]

and the relativistic quantum dynamics of a localized Dirac electron driven

by an intense laser-field pulse was considered by San Román et al. [87].

In a recent paper by Kirsebom et al. [88] it was shown experimentally

that the electron spin has a dramatic influence on the energy loss of

ultrarelativistic electrons in strong fields where the electric field strength

approaches the critical ‘‘Schwinger’’ field strength E
ðSÞ
0 ¼ m2c3=e �hh ¼

1:32� 1016 Vcm�1.
In the next section we shall first derive the generalized Compton

formula for scattering of a powerful laser beam by a Klein–Gordon particle

of spin 0 and we shall then consider the same process for a Dirac particle

of spin 1=2 [89]. In Section I.C.4 we shall present and discuss some

numerical results for various scattering geometries and combinations of

parameter values.

C.2. Scattering by a Klein–Gordon particle

The derivation of the scattering formula for a Klein–Gordon particle is

relatively simple and straightforward. We start by considering the exact

solution of the Klein–Gordon equation for a particle of mass m and charge
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e embedded in an electromagnetic plane wave of vector potential ~AAð�Þ in the

Coulomb gauge. Here, � ¼ t� ~nn � ~rr and ~nn is the direction of propagation of

the plane wave field. If the particle has initial energy E and momentum ~pp
and if adiabatic decoupling of the particle from the plane wave is assumed,

the corresponding Gordon solution [90], normalized to the volume V,

reads [91]

 ~pp ¼
1ffiffiffiffiffiffiffiffiffiffi
2EV
p exp �iðEt� ~pp � ~rr

� 	
f ð�Þ ð12Þ

with

f ð�Þ ¼ exp
i

E � ~pp � ~nn

Z �

�1
e~pp� ~AAð�0Þ � e2

2
~AA2ð�0Þ

� �
d�0

� �
: ð13Þ

Describing the powerful laser field by a monochromatic plane-wave of

amplitude A0, linear polarization ~��, frequency ! and wave vector ~kk ¼ k~nn,
represented by the vector potential

~AAð�Þ ¼ A0~�� cos!� ð14Þ

we obtain from Eqs. (12) and (13) the corresponding solution for the

initial particle state

 ~pp ¼
1ffiffiffiffiffiffiffiffiffiffi
2EV
p exp �iðEt� ~pp � ~rrÞ

h i

� exp iða sin!� � b sin 2!�Þ½ �:
ð15Þ

Here we have introduced the abbreviations

E ¼ E þ d, ~pp ¼ ~ppþ d ~nn, d ¼ m2�2=4

E � ~pp�~nn

a ¼ mð�=kÞ~pp:~��
E � ~pp�~nn , b ¼ m2�2=8!

E � ~pp�~nn , �2 ¼ eA0

m

� �2

: ð16Þ

The laser-dressed energy E and momentum ~pp fulfil the relation E
2 ¼

m2 þ ~pp
2

and correspond to an on-shell particle of effective mass

m ¼ mð1þ �2=2Þ1=2 [34]. The characteristic parameter, determining all the
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laser-induced nonlinear intensity effects, is given by �2 ¼ I=Ic where I is the
average intensity of the laser field and Ic ¼ �!2=8�r20 (� ¼ e2, r0 ¼ e2=m),

as discussed in Section I.B.1.

Writing down a corresponding wave function,  
~pp0
, for the scattered

particle of energy E 0 and momentum ~pp0 with appropriate coefficients a0, b0,
and d 0 in Eqs. (15) and (16), we can evaluate in lowest order of perturbation

theory the T-matrix element of nonlinear Compton scattering by a Klein–

Gordon particle, viz.

Tfi ¼ �i
Z

d ~rr dt ~pp0Hint ~pp ð17Þ

in which the interaction Hamiltonian Hint for a laser-dressed charged

Boson of spin 0, interacting with a quantized electromagnetic field ~AA0 in the

Coulomb gauge is given by [92]

Hint ¼ ie½ ~AA0ð�0Þ�r!� r � ~AA0ð�0Þ� þ 2e2 ~AA0ð�0Þ � ~AAð�Þ ð18Þ

where ~AAð�Þ represents the laser field, defined in Eq. (14), and the effective

vector potential ~AA0ð�0Þ of the spontaneously emitted photon of frequency !0,
wave vector ~kk0 and polarization ~��0 has to be evaluated from the quantized

field operator ~AA0, by considering the matrix element

1 ~kk0 j ~AA
0j0 ~kk0

D E
¼

ffiffiffiffiffiffiffiffiffi
2�

V!0

r
~��0eið!

0t� ~kk0:~rrÞ: ð19Þ

If we insert Eq. (19) into Eq. (18) and use the resulting expression in

Eq. (17) together with the appropriate Gordon solutions Eq. (15), we obtain

after Fourier decomposition of Tfi and integration over space and time

Tfi ¼
Xþ1

N¼�1
TN ,

TN ¼ ið2�Þ4 em

2V
ffiffiffiffiffiffiffiffi
E0E
p

ffiffiffiffiffiffiffiffiffi
2�

V!0

r
MN

� �ðE0 � E þ !0 �N!Þ�3 ~pp0 � ~ppþ ~kk0 �N ~kk
� �

ð20Þ
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in which the matrix elements MN are given by

MN ¼
~pp
0
þ ~pp

� �
� ~��0

m
BNðx, yÞ

� !

2m
ða0 þ aÞð~nn � ~��0Þ þ �ð~��0 � ~��Þ

h i

� ½BNþ1ðx, yÞ þ BN�1ðx, yÞ�

þ !
m
ðb0 þ bÞð~nn � ~��0Þ½BNþ2ðx, yÞ þ BN�2ðx, yÞ� ð21Þ

with the arguments x and y defined by

x ¼ a0 � a, y ¼ b� b0 ð22Þ

where a, b and, similarly, a0, b0 are given in Eq. (16) and the generalized

Bessel functions BNðx, yÞ are defined in Eq. (8).

The transition probability per unit space-time volume for nonlinear

Compton scattering of a Klein–Gordon particle with the absorption of

N laser photons !, can be evaluated by standard methods. We find

wN ¼
Z jTN j2

VT
V

ð2�Þ3
d ~kk0

V

ð2�Þ3
d ~pp
0

¼ e2m2

8�VE

Z jMN j2
E0!0

d� ~kk0
!02d!0�ðE 0 � E þ !0 �N!Þ

� d ~pp
0
�3ð~pp

0
� ~ppþ ~kk0 �N ~kkÞ: ð23Þ

In order to obtain the nonlinear differential cross sections d�N=d� ~kk0
, for

the general case where the electron beam and laser beam cross each other

under an arbitrary angle, we have to divide the expression, Eq. (23), by

the relative average flux j
�
elð jphÞ� of the ingoing electrons and photons.

This expression is found by adapting the Lorentz invariant form of the

relative particle flux of two-particle collisions, if one of the particles is

massless [1, 92]. The fluxes of electrons and photons can be obtained from

~jjel ¼
~pp

EV
¼ m

EV
~��, ~jjph ¼

1

!
h ~SSi ¼ A2

0!

8�
~nn ð24Þ
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and therefore the relative flux is given by

jrel ¼
A2

0!m

8�EV
ð1� ~nn � ~��Þ ð25Þ

Consequently, the nonlinear cross sections of the order N of laser-induced

Compton scattering by a Klein–Gordon particle will read

d�N
d� ~kk0

¼ r20
!0

!

� �
m

E0

� � jMN j2

�2 1� ~nn � ~��
� � ð26Þ

where r0 ¼ e2=m is the classical electron radius. Next we consider the energy

and momentum conservation relations, expressed by the �-functions in

Eq. (23). These can be squared and subtracted to yield

!0ðE 0 � ~pp
0
� ~nn0Þ ¼ N! E � ~pp � ~nn

� �
ð27Þ

and by substituting on the left hand side of Eq. (27) E
0
and ~pp

0
again from the

energy and momentum conservation relations in Eq. (23), we find for the

frequencies of scattered radiation the generalized Compton formula

!0 ¼
N! E � ~pp � ~nn

� �

E � ~pp � ~nn0 þ ðN!þ dÞ 1� ~nn � ~nn0
� � : ð28Þ

If the electron is initially at rest, E has to be replaced by m and ~pp ¼ 0,

while d reduces to UP ¼ m�2=4. In that case the Compton formula Eq. (28)

reads

!0 ¼ N!

1þ ðN!=mþUp=mÞð1� ~nn � ~nn0Þ
: ð29Þ

At very high laser powers with � ’ 1 and for a large number N of

absorbed laser photons, the frequencies !0 of the scattered photons will

strongly depend on the quantum-mechanical recoil effect, determined in the

denominator of Eq. (29) by the factor N �hh!=mc2, as well as on the classical

laser-induced drift motion of the electron, yielding in the denominator of

that frequency formula the contribution UP=mc2.
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C.3. Scattering by a Dirac particle

The treatment of laser-induced Compton scattering by a Dirac particle

of spin 1=2 can follow similar lines, as in our discussion in the

previous subsection for a particle of spin 0. We start from the Dirac

equation for an electron moving in an arbitrary electromagnetic plane

wave field

ði��@� � e��A� �mÞ ðxÞ ¼ 0 ð30Þ

where the vector potential A� has the general form

A� ¼ A�ðk � xÞ, A � k ¼ k � k ¼ 0: ð31Þ

We use the Einstein summation convention and notation, namely v�w� ¼
v � w, where � ¼ 0, 1, 2, 3. The solution of the above equation (Eq. (30)) was

derived by Volkov [93] and its explicit form can be found in the paper

by Denisov and Fedorov [94]. Assuming adiabatic decoupling along the

light-cone in the past between the particle and the field we obtain

 ðxÞ ¼ ½1þ 	��k��Aðk � xÞ�

� exp½�ip � x� i

Z k�x

�1
Sð�Þd��up

ð32Þ

where up is a free-particle solution of the equation ð��p� �mÞup ¼ 0 with

p� being a four-vector of energy and momentum. The constant 	 and the

function Sð�Þ can be evaluated and we find

Sð�Þ ¼ eAð�Þ � p
p � k � e2A2ð�Þ

2p � k , 	 ¼ e

2p � k : ð33Þ

After normalization to the volume V, the required Volkov solution for an

electron of initial four-momentum p� reads

 pðxÞ ¼
ffiffiffiffiffiffiffiffiffi
m

VEp

r
1� e��A�ðk � xÞ�k

2k � p

� �

� exp �ip � x� i

Z k�x

�1

eAð�Þ � p
p � k � e2A2ð�Þ

2p � k

� �
d�

� �
up: ð34Þ
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A similar solution,  p0ðxÞ, can be written down for the scattered electron of

four-momentum p0�.
The T-matrix element of laser-induced Compton scattering by a Dirac

particle can be easily evaluated, since the interaction Hamiltonian of this

process is determined by [92]

Hint ¼ e p0 ðxÞ�� pðxÞA0�ðxÞ: ð35Þ

Therefore, by choosing the appropriate Volkov solutions Eq. (34) for the

ingoing and the corresponding outgoing electron in Eq. (35) and by using

the effective vector potential A0�ðxÞ for the scattered photon, given by

Eq. (19) and taken in its covariant form, we obtain

Tfi ¼ �ie
m

V
ffiffiffiffiffiffiffiffiffiffiffiffi
EpEp0

p
ffiffiffiffiffiffiffiffiffi
2�

V!0

r Z
d4x

� up0 1þ e��A�ðk � xÞ��k�
2k � p0

� �
���0� 1� e��A�ðk � xÞ�k

2k � p

� �
up

� exp½iðp0 � pþ k0Þ � x�

� exp ie
p0

p0 � k�
p

p � k

� �
�
Z k�x

Að�Þd�
� �

� exp �ie2 1

2p0 � k�
1

2p � k

� �Z k�x
A2ð�Þd�

� �
: ð36Þ

By inserting the vector potential Eq. (31) of the laser field, used in its

covariant version, we can easily perform the Fourier decomposition of the

matrix element Eq. (36) and we obtain, as in the previous case,

Tfi ¼
Pþ1

N¼�1 TN where the transition matrix elements TN of the different

nonlinear processes of the order N have exactly the same structure as for

Compton scattering by a Klein–Gordon particle, shown in Eq. (20), except

that the matrix elements MN are different for the present process. The same

conclusion also holds for the differential cross section formula d�N=d� ~kk0 in

Eq. (26) and for the frequencies !0 of the scattered radiation in Eq. (28).

The above matrix elements MN are found in the present case to be

MN ¼ 2ðA � CÞBNðx, yÞ þ 2B½BNþ1ðx, yÞ þ BN�1ðx, yÞ�

� C½BNþ2ðx, yÞ þ BN�2ðx, yÞ� ð37Þ
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where the coefficients A, B, and C have the explicit form

A ¼ up0�
��0�up

B ¼ eA0

4
up0

�����
�n��

��0�
p0 � n � �

��0��
����

n

p � n

� �
up

C ¼ e2A2
0

8ð p0 � nÞð p � nÞ up
0 �����

�n��
��0��

����
n

� �
up ð38Þ

and the BNðx, yÞ are the generalized Bessel functions, defined in Eq. (8), with

the arguments x and y given in Eq. (22). In writing down these expressions,

we introduced the notation k� ¼ !n� where n� is a unit four vector. The

evaluation of the matrix elements A, B, and C in Eq. (38) do not need to

be done analytically, since these coefficients can be calculated, using

appropriate software. In evaluating the differential cross sections of

nonlinear Compton scattering for a Dirac particle, we have to be aware

of the two possible spin polarizations, s ¼ 	1=2, with respect to the z-axis of

the electron in its rest frame, taken before and after the scattering, leading to

cross sections with and without spin-flip during the nonlinear process. We

shall therefore denote the cross sections of these processes by d�ðs, s
0Þ

N =d� ~kk0

where in an abbreviated notation (s ¼ þ, s0 ¼ þ) and (s ¼ �, s0 ¼ �) will

refer to the cross sections with no spin-flip and, correspondingly,

(s ¼ þ, s0 ¼ �) and (s ¼ �, s0 ¼ þ) will denote the cross sections with

spin-flip.

C.4. Numerical examples

For the presentation of our numerical examples [89], we shall consider the

scattering geometry depicted in Fig. 1. The laser beam and the electron

beam are counter-propagating, as indicated by the arrows denoted by !
for the laser beam and by e� for the electron beam. The scattered radia-

tion of frequency !0, wave vector ~kk0, and linear polarization ~��0 is emitted

with an angle �0 and the linear polarizations ~�� and ~��0 are oriented in the

scattering plane. The scattering angle �0, defined as the angle between the

wave vectors ~kk and ~kk0, can vary between 0� and 360�.
In Fig. 2 we show the nonlinear differential cross sections d�N=d� ~kk0

as

a function of the scattering angle �0, evaluated from Eqs. (21) and (26) for

a Klein–Gordon particle. The data turn out to be identical with those

calculated for a Dirac particle, using for MN the expression Eqs. (37)

and (38), if spin-flip is not taken into account. The data are expressed in
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units of r20 where r0 is the classical electron radius. We used for the laser

frequency ! ¼ 1:54 eV of a Ti-sapphire laser and the intensity of the laser

beam is I ¼ 1022 Wcm�2. The data presented in the panels (a)–(f)

correspond respectively to the initial kinetic electron energies E �mc2

equal to 10, 103, 105, 106, 107, and finally 108 eV. The number of absorbed

laser photons is for all panels N ¼ 103. The numbers along the

circumferences of the circles in the panels (a)–(f) indicate the scattering

angles �0 in degrees. By inspecting these data, we observe that for such

intense laser fields the nonlinear Compton radiation is predominantly

emitted into the forward direction with respect to the direction of propa-

gation ~nn ¼ ~kk=k of the laser beam, as is also known to be the case for the

generation of harmonics. This is even true for electron kinetic energies of the

order of magnitude mc2, as shown in panel (d). However, if the electron

kinetic energy is increased still further, the scattering pattern becomes

reversed so that for highly relativistic electron energies of the order of

magnitude 100MeV the Compton radiation will be emitted into the

backward direction with respect to the direction of propagation ~nn of the laser
beam. Moreover, we find that with increasing electron energy the maximum

values of the differential cross sections drop down significantly as indicated

by the numbers inside the circles.

In Fig. 3 we present the cross sections of Compton scattering for a Dirac

particle as a function of the nonlinear order N for the large scattering angle

�0 ¼ 178�, the kinetic electron energy E �mc2 ¼ 107 eV, the laser frequency

! ¼ 1:54 eV and the laser power I ¼ 1022 Wcm�2. All data have the property

that for no spin-flip we find d�ðþ,þÞN ¼ d�ð�,�ÞN , as shown in panel (a) and

that for spin-flip d�ðþ,�ÞN ¼ d�ð�,þÞN , depicted in panel (b). Moreover, the

data for no spin-flip are evidently many orders of magnitude larger

than those for spin-flip. For much smaller intensities than I ¼ 1022 Wcm�2

the cross section data drop down to zero very rapidly. However, for inten-

sities I01022 Wcm�2 the scattering spectrum extends to very large values of

FIG. 1. Presents the scattering geometry considered. The wave vector ~kk of the laser beam, the

momentum ~pp of the counter-propagating electrons and the wave vector ~kk0 of the emitted

photons define the scattering plane. The polarization vectors ~�� of the laser radiation and ~��0 of
the emitted field are located in this plane.
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nonlinearity N and shows rapid oscillations. Nevertheless, the spin non-flip

process dominates over the spin-flip effects. The above oscillations of the

cross section data are general features that we have found for all parameter

values considered, stemming from the properties of the generalized Bessel

functions, Eq. (8). Moreover, it appears that the cross sections for a Klein–

Gordon particle are almost identical with those for a Dirac particle in the no

spin-flip case. This demonstrates that even for such huge laser field

intensities the spin effects are only marginally present and, therefore, from

the practical point of view, the dynamics of the scattering process is very

well described by the solutions of the Klein–Gordon equation.
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FIG. 2. Shows the differential cross sections d�N=d� ~kk0
evaluated for a Klein–Gordon particle

and the identical cross sections d�ðs;s
0Þ

N =d� ~kk0
for a Dirac particle with no spin-flip, i.e. either

ðs¼þ; s0¼þÞ or ðs ¼ �; s0¼�Þ. The data are measured in units of r20, where r0¼ 2:82� 10�15 m
is the classical electron radius. The scattering angle �0, defined in Fig. 1, is measured in degrees,

as indicated by the numbers along the circumferences of the circles in the panels (a)–(f). The

laser frequency is ! ¼ 1:54 eV, the radiation intensity I ¼ 1022 Wcm�2 and the number of

absorbed photonsN¼ 103. In the panels (a)–(f ) we consider increasing electron kinetic energies,

namely E�mc2=10, 103, 105, 106, 107, and 108 eV, respectively. Evidently, for most of the

electron energies considered the nonlinear Compton radiation is predominantly emitted into the

forward direction with respect to ~kk (or �0 ’ 0) and only for the highest electron energy of

100MeV in the panel (f ) the radiation is emitted mainly into the backward direction in the

vicinity of �0 ¼ 180� (see ref. [89]).
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C.5. Applications

Short-pulse x-ray sources are under development as important tools for

material, medical, and life sciences. Laser-Compton scattering was first used

for the generation of short-pulse x-rays in 1996 [95–97]. The advantages of

laser-Compton x-rays are that they have a tunable and semi-monochromatic

photon energy, good directivity and controllability with a femtosecond

pulse width. Various studies and projects have been proposed and

demonstrated to date [98–102].

D. FREE–FREE TRANSITIONS

D.1. Elementary considerations

To simplify the present discussion, we consider the nonrelativistic potential

scattering of electrons in a laser field. We assume that in the absence of the

field the electron has the initial momentum ~pp and the final momentum ~pp0

with corresponding energies E ¼ ~pp2=2m and E0 ¼ ~pp02=2m, respectively. The

laser field will be described, as in Section I.B.1, by the electric field in dipole

approximation ~EEðtÞ ¼ E0~�� sin!t yielding the classical electron oscillation

~rrðtÞ ¼ ��0~�� sin!t. As will be shown in greater detail, in such a field a free

electron plane wave exp½�iðEt� ~pp � ~rrÞ= �hh� suffers a similar phase oscillation

as we have observed in Section I.B.1 and thus the above plane wave will

change into exp½�iðEt� ~pp � ~rr� �0 ~pp � ~�� sin!tÞ= �hh�. Hence, during scattering of

FIG. 3. Depicts the Compton cross sections in units of r20 for a Dirac particle as a function of

the nonlinear order N. The scattering angle is taken as �0 ¼ 178�, the electron kinetic energy is

E �mc2 ¼ 107 eV, the laser frequency ! ¼ 1:54 eV, and the laser intensity I ¼ 1022 Wcm�2. For
all data presented, we find that d�ðþ;þÞN =d� ~kk0

¼ d�ð�;�ÞN =d� ~kk0
and, similarly, d�ðþ;�ÞN =d� ~kk0

¼
d�ð�;þÞN =d� ~kk0

. For much smaller laser intensities the cross sections drop down to zero

very rapidly, whereas for higher intensities the spectrum of cross sections extends to very large

N. Moreover, the cross section values for no spin-flip dominate by far over those for spin-flip by

about a factor of 107 and the data for no spin-flip are identical with those for a Klein–Gordon

particle (see ref. [89]).
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the electron by the potential, we will obtain a phase-modulation factor

similar to what we found in x-ray scattering, namely expð�i� ~QQ � ~�� sin!tÞ,
and consequently by analogy the differential scattering cross sections of

laser-assisted electron scattering will read

d�N ¼
p0

p
J2
Nð� ~QQ � ~��Þd�el: ð39Þ

Here d�el is the differential cross section of elastic electron scattering in the

absence of the field and ~QQ ¼ ~pp� ~pp0 is the momentum transfer during

scattering. The energy of the scattered electrons is given by E0 ¼ E þN �hh!
and thus p0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
2mE 0
p

. If N > 0 then N laser quanta are absorbed during the

scattering process and if N<0 then jNj quanta are emitted. Hence these

processes are occasionally called induced and inverse bremsstrahlung,

respectively or, generally speaking, they are named free–free transitions.

The reason for the above similarity between Thomson scattering and

electron scattering in a laser field simply stems from the fact that we may

understand electron scattering to emerge from laser-induced Thomson

scattering (or, more correctly, Compton scattering) by replacing the

spontaneously emitted radiation field by the exchange of virtual quanta

between the electron and the potential, observing that in Compton

scattering we have the momentum conserving relation �hhð ~kk� ~kk0Þ ¼
~pp0 � ~pp ¼ � ~QQ.

Contrary to Thomson and x-ray scattering, electron–atom scattering in

a laser field cannot be described classically in such a simple manner as

to yield the scattering formula Eq. (39). There are, moreover, other

fundamental differences which make the concomitant induced nonlinear

processes in electron scattering much more easily accessible to observation

in the laboratory, than in the case of Thomson or x-ray scattering. By

comparing the corresponding formulas Eqs. (4) and (6) with Eq. (39) we

find that:

(a) The average total cross section of elastic electron–atom scattering is of

the order of magnitude �el � Z2a2B where Z is the nuclear charge and

aB ¼ �hh2=me2 ¼ 0:53� 10�8 cm is the Bohr radius. Thus �el � 0:25Z2�
10�16 cm2 and consequently it is by a factor 109 larger than the Thomson

cross section for which we found 10�25 cm2.

(b) From the condition jzj5jNj, discussed in Sections I.B.1 and I.B.2, for

having J2
NðzÞ sufficiently large (i.e., appreciable nonlinear contribu-

tions), now follows the requirement to have � ~QQ � ~�� at least of the order

jNj. Taking at best ~QQ � ~�� � p0, this means �2 ¼ I=Ic5ðN �hh!Þ2=2mc2E0.
For a CO2 laser with �hh! ¼ 0:117 eV and electron kinetic energies of the
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order of 10 eV we thus find I510�9 N2Ic which is according to our

earlier estimates a moderate intensity of some 108 Wcm�2.

These facts indicate that induced and inverse bremsstrahlung are

sufficiently effective processes which show the way for directly observing

these nonlinear effects as has been successfully demonstrated and will be

discussed in some detail below. Of course, potential scattering is only a very

crude approximation and in a more precise investigation of electron–atom

scattering in a laser field also the structure of the atom will have to be taken

into account.

D.2. Nonrelativistic scattering

We consider a particle of charge e and mass m moving in a powerful

laser field. In this case the field can be described to a very good

approximation by a classical electromagnetic plane wave. For simplicity,

we assume the field to be monochromatic with frequency ! and to have

linear polarization ~��. Moreover, for nonrelativistic particles it is sufficient to

consider the dipole approximation. Hence, the vector potential can be taken

in the form

~AAðtÞ ¼ A0~�� cosð!tÞ, A0 ¼
cE0
!

, ð40Þ

where it is often more convenient to choose the electric field amplitude E0
instead of A0. In the field Eq. (40) the Schrödinger equation of the charged

particle reads

i �hh@t ¼
1

2m
�i �hhr � e

c
~AAðtÞ

h i2
 : ð41Þ

By means of the ansatz

 ~ppð~rr, tÞ ¼
1ffiffiffiffi
V
p exp � i

�hh
ðEt� ~pp � ~rrÞ

� �
f~ppðtÞ, ð42Þ

where V denotes the normalization volume, the exact solution for f~ppðtÞ
is found to be

f~ppðtÞ ¼ exp
i

�hh
~pp � ~��0 sinð!tÞ �eEEðtÞ
h i� �

, ð43Þ

396 D. B. Milošević and F. Ehlotzky [I



where it is implicitly assumed that for t!	1 the field adiabatically

decouples from the particle of momentum ~pp and energy E ¼ ~pp2=2m.

In Eq. (43) we find ~rrðtÞ ¼ ~��ðtÞ ¼ �~��0 sinð!tÞ to describe the classical

oscillations of the electron in the laser field and the amplitude ~��0 is

given by

1

�hh
~��0 ¼

�

�hhk
~�� ¼ �~��, � ¼ eE0

m!c
, k ¼ !

c
: ð44Þ

� is again the dimensionless intensity parameter, that determines the

strength of the laser–particle interaction and we may write

�2 ¼ eA0

mc2

� �2

¼ I

Ic
, Ic ¼

� �hh!2

8�r20
, ð45Þ

with � ¼ e2= �hhc � 1=137 being the fine structure constant and r0 ¼ e2=mc2 �
2:82� 10�15 m the classical electron radius. According to Eq. (45), Ic
denotes the critical laser intensity at which � becomes equal to one and

Ic decreases with decreasing laser frequency !. For a Nd:YAG laser

(�hh! ¼ 1:17 eV) Ic � 1018 Wcm�2 and for a CO2 laser ( �hh! ¼ 0:117 eV)
Ic � 1016 Wcm�2. It is important to point out that our nonrelativistic

theory in dipole approximation of the radiation field is valid only for

�2 � 1, which is fulfilled for most of the presently performed laser

experiments.

As we infer from Eq. (43), the coupling strength between particle and

laser field is determined by ~pp � ~��0= �hh and we therefore expect large nonlinear

effects in the laser field if

�5
�hhk

p
, ð46Þ

where for processes of class (a) usually �hhk=p� 1 and for processes of class

(b) �hhk=p41. Hence, as pointed out in Section I.B.2, processes (a) require

less laser intensity then processes (b).

Moreover, we find in Eq. (43) an expression eEEðtÞ which is determined by

eEEðtÞ ¼ 1

4
mc2�2 tþ sinð2!tÞ

2!

� �
: ð47Þ

Here the component oscillating in time with twice the laser frequency !
contributes in dipole approximation, if at all, comparatively little to the
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cross sections. The other term, however, turns out to be very important,

since it yields an overall Stark shift of the electron energies in the laser

field and it is given by � ¼ mc2�2=4. This energy shift, for example, is

of great interest in the discussion of multiphoton above-threshold

ionization. There it turns out that � is identical with the maximum of

the classical ponderomotive potential UP of a charged particle in a laser

pulse, namely

� ¼ UP ¼
1

4
mc2�2: ð48Þ

In our present discussion of electron–atom scattering in a laser field, the

energy term eEEðtÞ of Eq. (47) drops out in the dipole approximation as a

time-dependent phase factor. Hence, we may use in dipole approximation

instead of Eqs. (42) and (43)

 ~ppð~rr, tÞ ¼
1ffiffiffiffi
V
p exp � i

�hh
½ðEt� ~pp � ð~rrþ ~��0 sin!tÞ�

� �
: ð49Þ

This wave function can be used to immediately write down the correspond-

ing retarded Green’s function

GðþÞð~rr0, t0; ~rr, tÞ ¼ �ðt0 � tÞV
Z

d3p

ð2��hhÞ3
 ~ppð~rr0, t0Þ ~ppð~rr, tÞ

¼ �ðt0 � tÞ
Z

d3p

ð2��hhÞ3

� exp � i

�hh
½Eðt0 � tÞ � ~pp � ð~rr0 � ~rrÞ � ~pp � ~��0ðsin!t0 � sin!tÞ�

� �

ð50Þ

describing a charged particle that is propagating in the laser field. In

Eq. (50), �ðtÞ is the step function with �ðtÞ ¼ 1 for t > 0 and �ðtÞ ¼ 0 for

t < 0. The above nonrelativistic Gordon–Volkov solution has been

introduced by Keldysh [103].

In the pioneering work by Bunkin and Fedorov [104] the potential

scattering of electrons in a powerful laser field was considered in the

first Born approximation in Vð~rrÞ, describing the radiation field by a

monochromatic plane wave in the dipole approximation, Eq. (40). Represent-

ing the laser-dressed ingoing and outgoing electron by nonrelativistic
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Gordon–Volkov states Eq. (49), Bunkin and Fedorov found in the low

frequency limit [1]

d�N ¼ J2
Nð�~�� � ~QQÞd�

ðBÞ
el , � ¼ 1

�hh
j~��0j, ð51Þ

where d�ðBÞel is the differential cross section of elastic scattering in the first

Born approximation and JNðzÞ is an ordinary Bessel function of the

first kind of the integer order N, where N > 0 corresponds to stimulated

absorption of N laser quanta �hh!, and N < 0 describes the corresponding

emission. A simple rederivation has been presented by Bergou [105] and

further discussions are outlined in recent work by Pert [106]. Moreover,

the appearance of universal minima in differential cross sections for

potential scattering of comparatively high energy electrons in the presence

of a laser beam was discussed by Faisal [107] quite some time ago. More

details can be found in several books and reviews [108–115] and, in

particular, in the recent surveys [18, 29].

In the fundamental paper of Kroll and Watson [116], the formula (51) of

Bunkin and Fedorov [104] was generalized such as to include the

contributions of all higher order terms of the Born expansion in Vð~rrÞ as
well as to lowest order in �hh! the contributions of the laser field in the

intermediate states, as has been shown by Mittleman [117]. Using our

approximate Green’s function, GST, in the space-translated form [29]

G
ðþÞ
ST ð~rr0, t0; ~rr, tÞ ¼ �ðt0 � tÞ

Z
dE

2��hh
exp � i

�hh
½Eðt0 � tÞ

�

�~ppE � ~��0ðsin!t0 � sin!tÞ�
�
G
ðþÞ
E ð~rr0; ~rrÞ, ð52Þ

describing a charged particle propagating simultaneously in the potential

field Vð~rrÞ and in the radiation field Eq. (40), we can easily derive the

Kroll–Watson cross section formula for moderate field intensities by

straightforward application of scattering theory in the Furry-picture with

respect to the radiation field. The exact transition matrix element for our

process is thus given by

Tfi ¼ �
i

�hh

Z
dt d3r ~pp0 ð~rr, tÞVð~rrÞ 

ðþÞ
~pp
ð~rr, tÞ, ð53Þ

where  ðþÞ
~pp

obeys the equation

 ðþÞ
~pp
¼  ~pp þ GðþÞV ~pp, ð54Þ
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while  ~pp 0 is an outgoing and  ~pp an ingoing Gordon–Volkov state Eq.

(49) and GðþÞ is the exact retarded Green’s function. If we replace this

Green’s function by our space-translated approximation G
ðþÞ
ST (52), we find

from Eqs. (53) and (54)

Tfi ¼ �
i

�hh

Z
dt d3r ~pp0 ð~rr, tÞVð~rrÞ ~ppð~rr, tÞ

þ � i

�hh

� �2Z
dt0d3r0

Z
dt d3r ~pp0ð~rr

0, t0ÞVð~rr0Þ

� G
ðþÞ
ST ð~rr0, t0; ~rr, tÞVð~rrÞ ~ppð~rr, tÞ, ð55Þ

where the evaluation of the first integral above just yields the matrix

elements of the Bunkin–Fedorov formula, whereas the second integral can

be evaluated in the limiting cases considered below:

If the scattering amplitude in the absence of the radiation field is a smooth

function of the energy E, then one can expand the second integral, after

having performed the time-integration, in powers of �hh! retaining only the

linear terms and we arrive at the Kroll–Watson matrix elements

Tfi ¼
X

N

TKW
N ,

TKW
N ¼ �2�i�ðE0 � E �N�hh!Þf ð ~EE, ~QQÞJNð� ~QQ � ~��Þ, ð56Þ

where f ð ~EE, ~QQÞ is the on-shell matrix element without the laser field at

renormalized energy ~EE given by

~EE ¼ ð
~~pp~ppÞ2
2m

, ~~pp~pp ¼ ~pp� ~��, ~�� ¼ mcN �hhk

~QQ � ~��
~��, ð57Þ

and ~�� defines the laser-dependent renormalizing momentum. From Eq. (56)

we thus find the Kroll–Watson cross section formula

d�KW
N ¼ d�elð ~EE, ~QQÞJ2

Nð� ~QQ � ~��Þ : ð58Þ

For the relative order of magnitude of the momentum renormalization

we find

j ~��j
p
� jNj�hh!

4E sin2 �=2
,
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where � is the scattering angle, so that for a laser-assisted electron-scattering

experiment in which E � 10 eV and �hh! � 0:1 eV we find j ~��j=p �
0:25ðjNj= sin2 �=2Þ � 10�2. Hence ~�� is only a small momentum correction

for sufficiently large scattering angles.

With two statistical models, combined with convenient space–time

profiles of the laser pulse, Bivona et al. [118] were able to interpret in a

satisfactory manner the scattering data of the experiment by Weingartshofer

et al. [119–121]. As it turned out, the similarities of the electron scattering

spectra in relation to the two laser models indicate that they are largely

due to the effect of the spatial and temporal inhomogeneities of the laser

pulse. Similar conclusions were reached in the analysis by Weingartshofer

and Jung [122]. Although the above interpretation of the experiments

suggested that in fact free–free transitions have been observed, more exact

experiments and analysis of the field parameters were performed by

Wallbank et al. [123,124].

However, it is of interest to discuss the more recent experiments on

free–free transitions at small scattering angles performed by Wallbank and

Holmes [125–127]. These authors considered the scattering of electrons by

helium and argon atoms in a CO2-laser field of about 108Wcm�2 intensity at
a small scattering angle of 9�–10�. The electrons have initial energies

between 6.2 and 32 eV. Contrary to what has been found in previous

experiments at large scattering angles, discussed before, the nonlinear cross

section data measured cannot be interpreted by means of the Kroll–Watson

scattering formula Eq. (58), since these data are by many orders of

magnitude larger than the values predicted by Eq. (58). Wallbank and

Holmes suggested that laser-induced polarization of the target atoms may

be responsible for these discrepancies. In a series of papers by Rabadán et al.

[128], Geltman [129] and ourselves [130] it has been shown, however, that

these polarization effects are negligibly small for the experimental

conditions considered.

We tried to interpret the above experimental results by suggesting a

collective model of electron–atom scattering in a laser beam, taking

into account the high density of atoms in the target beam [131]. Though

this model quite nicely reproduced the experimental data, it was shown

by Dickinson [132] and Robicheaux [133] that by taking into account the

laser-dressing of the atomic target our collective effect becomes marginal.

A detailed investigation of the Kroll–Watson formula was presented by

Madsen and Taulbjerg [134] but their results did not agree with the above

experiments. The same authors [135] also considered laser-assisted electron–

atom resonance scattering and laser-induced resonance interference as

possible explanations of the above experiments by Wallbank and Holmes.

In a paper by Geltman [136] it was shown within the framework of
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perturbation theory that by a different choice of the scattering boundary

conditions, agreement between theory and experiment can be achieved.

This approach, however, is not very satisfactory. Then Rabadàn et al. [137]

have suggested that double scattering might be a possible mechanism to

interpret the experimental data and they appear to obtain a reasonable fit.

Finally Cionga et al. [138] have considered scattering at small angles for

hydrogen, taking into account the detailed interaction of the ingoing

electron with the atomic electron in the presence of the laser field using

the Floquet method. Although their results indicate effects close to the

observations of Wallbank and Holmes [125–127], their data are evaluated

for hydrogen and at much lower laser field intensities. On the other hand,

we were able to show that off-shell effects play no role at the electron

energies and laser intensities considered in the experiments by Wallbank

and Holmes, but we confirmed the conclusions of Rabadàn et al. [137] that

double scattering is a possible explanation [139]. Hence, all interpretations,

presented so far, are inconclusive and further work is necessary. This is

also true for the very recent experiments by Wallbank and Holmes [140]

in which free–free transitions are investigated for very slow electrons

such that E � �hh!, in which case no agreement with the Kroll–Watson

formula Eq. (58) can be expected. To interpret these experiments, Geltman

studied laser-assisted electron–helium scattering in the perturbative

regime for electron energies less or equal to 2.6 eV and CO2 laser intensities

less or equal to 106 Wcm�2 and presented results for one and two photon

processes in which case the absorption cross sections are larger than

those for emission. Large discrepancies between these perturbative results

and the predictions of the Kroll–Watson theory are found [141] as in his

foregoing paper.

In the most recent experiments by Wallbank and Holmes [142], the

scattering of low-energy electrons between 1 and 20 eV by helium in the

presence of a CO2-laser field of peak power 108 Wcm�2 is considered in

the scattering configuration of Fig. 4. In this configuration the momentum

transfer ~QQ ¼ ~ppi � ~ppf is perpendicular to the laser field polarization ~�� in

which case the Kroll–Watson scattering formula Eq. (58) yields vanishing

results. On the other hand, the experimental data shown in Fig. 5 for

electron energies of 8, 14, and 20 eV, respectively, and the absorption or

emission of 0, 1, and 2 laser photons are of considerable magnitude. These

data cannot be explained by double scattering [137,139] since in that case

the angular dependence of the scattering data calculated is rather flat,

as shown in Fig. 6 [139], while the experimental data of Fig. 5 show

considerable variations as a function of the scattering angle �. If one

considers free–free transitions in a laser field by including the contributions

of the second order Born-term [143], it is possible to obtain for the
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configuration of Fig. 4 nonvanishing scattering data. In that case the

integration over the intermediate states of the scattering matrix element

leads to a similar smearing out of ~QQ as in the case of double scattering

but the results are equally not well compatible with the experimental

data. The only calculation that has lead to increased scattering data for

the configuration in Fig. 4 is the one of Jarón and Kamiński [144] and

their results are shown in Fig. 7, although they have not considered larger

scattering angles as in Fig. 5. These authors demonstrate that off-shell

effects are important in order to obtain these results. They consider a static

scattering potential consisting of two parts, namely a short range

contribution for the atomic core and, in addition, they introduce the

Buckingham polarization potential [145] that leads to large off-shell effects.

The relevance of off-shell effects was confirmed by Madsen and Taulbjerg

[146,147]. On the other hand, in the investigations of Kylstra and Joachain

kk

G1

||i f
f

kk

G2

i
i

f
f

FIG. 4. The scattering geometry, denoted by G2, is considered in the recent experiments by

Wallbank and Holmes [142] for observing free–free transitions. The laser polarization ~�� is

chosen perpendicular to the momentum transfer ~QQ ¼ ~ppi � ~ppf in which case the Bunkin–Fedorov

and Kroll–Watson formulas yield vanishing cross sections. For the scattering geometry, called

G1, appreciable off-shell effects were found for free–free transitions in the most recent

investigation [150], not, however, for the geometry G2, in accordance with our previous

work [139].
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[148,149] no large off-shell effects were found. These authors solve the

Floquet–Lippmann–Schwinger equation, using a static potential derived

from the Hartree–Fock helium ground-state wave function, and they find

no large effects if they add a contribution from the Buckingham potential.

The above controversial results about the importance of off-shell effects has

finally led to another investigation by Garland et al. [150]. These authors

analyze free–free transitions for the two scattering configurations of Fig. 4

by comparing the results of exact Floquet calculations with those data they

obtain by using the impulse approximation and the Kroll–Watson

approximation. They find that in the case of the scattering configuration

G1 the off-shell effects can be considerable and can lead to an enhancement

of the cross section data in comparison with the predictions of the
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FIG. 5. The relative laser-assisted free–free signals expressed as percentages of the field–free

scattering signals over the first two microseconds of the laser pulse for scattering from helium at

incident electron energies of 8, 14, and 20 eV. Column A: zero photon; column B one-photon

absorption (�) and emission (œ); column C: two photon absorption (�) and emission (œ).

The lines drawn through the data points are simply cubic splines [142].
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Kroll–Watson formula Eq. (58). On the other hand, for the scattering

configuration G2 no appreciable off-shell enhancements of the cross sections

were obtained. Summarizing, the most recent experimental results of

Wallbank and Holmes [142], in particular for the scattering configuration

G2, shown in Fig. 4, are still awaiting a satisfactory interpretation. Further

details on the topic of electron–atom scattering at moderate laser field

intensities can be found in the reviews [29,18].

E. RELATIVISTIC SCATTERING

E.1. Introductory remarks

With the advent of very powerful laser sources, yielding intensities of

1018Wcm�2 and above, it has become important to consider laser-assisted

FIG. 6. The Kroll–Watson relative DCS, with double scattering effects included, for

scattering from argon in the perpendicular configuration ~�� ? ~QQ as a function of the scattering

angle � for different number of absorbed (full curves: L ¼ 1; 2) or emitted (dotted curves:

L ¼ �1; �2) photons and for incident electron energy 8 eV. The laser field parameters are

! ¼ 0:117 eV and I ¼ 1:5� 108 Wcm�2 [139].
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FIG. 7. Inelastic differential cross sections (in a.u.) for scattering of electrons as a function

of the absorbed (N > 0) or emitted (N < 0) laser photons for an initial energy of electrons

E~ppi ¼ 10 eV and for three laser intensities I ¼ 108 Wcm�2, I ¼ 4� 108 Wcm�2 and

I ¼ 109 Wcm�2. The electron–atom interaction is modeled by a square well potential of

depth V0 ¼ 0:5 a.u. and width a ¼ 10:0 a.u. The scattering geometry G1 refers to ~ppi k ~�� and is

not considered in the most recent experiment by Wallbank and Holmes [142], whereas G2

corresponds to �i ¼ 4:5�, ’i ¼ 180� and �f ¼ 4:5�, ’f ¼ 0�, where ’iðf Þ are the corresponding

azimuthal angles. In all cases the polarization vector ~�� is parallel to the z-axis. Stars correspond

to the low-frequency off-shell theory [144] and open circles to the Kroll–Watson formula. The

large discrepancies between these two approaches are remarkable, but the results for G2 are not

confirmed by the most recent calculations [150].
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and laser-induced processes relativistically [17,44]. Recently, Mott scattering

in a powerful, circularly polarized radiation field was reconsidered by

Szymanowski et al. [151] with reference to previous works [94,152–157].

We should also mention the detailed analysis of the laser-assisted relativistic

scattering problem by Milos̆ević and Krstić [158,159]. By evaluating

the nonlinear cross sections numerically, large relativistic corrections were

found by these authors if compared with the results of the Bunkin–Fedorov

[104] or Kroll–Watson [116] formulae. On the other hand, this work showed

that electron spin effects become essential only if the laser intensity is

such that the critical parameter � ¼ eE0=m!c comes close to unity. For

a Nd:YAG laser this value of � corresponds to a laser field intensity of the

order of magnitude mentioned above. For somewhat lower field intensities,

it was found in the above work that spin effects are negligible and instead

of using the Volkov solution of the Dirac equation [93] for describing

the laser-dressed electron one may safely use the Gordon solution [90] of

the Klein–Gordon equation. To simplify the calculations, Szymanowski

et al. [151] considered electron scattering in a powerful circularly polarized

laser field. The scattering process in this configuration is, however, not so

effective and rich in details as in the case of linear polarization. In the case of

linear polarization the electron will encounter more often the target during

the scattering process and one can expect on classical grounds that here

the collision process of electron–atom scattering in a laser field will, in the

relativistic case, be much more effective and richer in its angular and

polarization dependences. It is the purpose of the present section to analyze

these effects in more detail and to show that phenomena can be encountered

which are strong enough to be accessible to observation in the near

relativistic regime of laser-field intensities. We also compare the results of

the fully relativistic calculations with those of the nonrelativistic ones and

we shall analyze the relevance of electron spin effects for a linearly-polarized

radiation field at very high electron energies and laser powers such that the

kinetic energy of the scattered electron, E �mc2, and the ponderomotive

energy of the electron in the laser field, UP ¼ mc2�2=4, are of the order of

magnitude of the electron rest energy mc2.

In the early days of laser physics, laser-induced Compton scattering was

intensively investigated by many authors [36] (and reinvestigated very

recently [89]) and a laser-induced electron drift motion and consequently a

frequency shift of the Compton light was predicted (see Eq. (28)). This shift

is proportional to �2 and was very small for the available laser intensities at

that time. Controversy had arisen about the existence or nonexistence of this

frequency shift. One of the present authors was looking for a process that

would more easily permit to observe the effect of the laser-induced drift

motion of the electron. Considering in a semi-relativistic approximation
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potential scattering of electrons in a laser field, he found in the low-

frequency limit the following asymmetry in the total laser-assisted

differential scattering cross sections [160,161]

d�ð�Þ � d�ðþÞ

d�ð�Þ þ d�ðþÞ
’ �

2

2�
sin �, ð59Þ

where � is related to the electron drift velocity in the laser field by the

relation vd ¼ �2c. Correspondingly � ¼ v=c where v is the velocity of the

scattered electron. Finally, � is the scattering angle. The scattering

configuration considered leading to the above asymmetry relation is

depicted in Fig. 8. The scattering plane is determined by the vector ~��
of linear polarization of the laser beam and by the direction ~nn of its

propagation. The momentum ~pp of the ingoing electrons is oriented parallel

to ~�� and the momentum ~pp 0 of the outgoing electrons can be either in the

direction denoted by ð�Þ, having an angle �=2þ � with the direction ~nn, or in
the direction ðþÞ with an angle �=2� � with respect to ~nn. Even though the

laser-induced effect is here proportional to �2=� and not like the Compton

drift effect proportional to �2, at the time of writing the above paper laser

powers and thus �2 were still much too low and therefore the paper

remained of little interest. Since, however, nowadays the experimental

situation has drastically changed and the electron’s drift motion in a

powerful laser field has been verified experimentally [44], the above effect

may become accessible to experimental verification.

It is the purpose of the present analysis, to consider the above effects more

carefully without the limitations of the low-frequency approximation.

Considering laser powers of 1016 Wcm�2 and above, so that �2 ’ 10�2 � 1,

and taking scattered electrons between Ekin ’ 100 eV and ’ mc2 and hence

FIG. 8. Shows the scattering configuration considered for the numerical evaluation of d�ðþÞN

and d�ð�ÞN as well as of �E0=Ekin as a function of the scattering angle � (see ref. [166]).
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� ’ 10�2 up to ~ 1, we find �2=2� ’ 1. We shall therefore rederive in the

following the differential cross sections d�N=d� of induced and

inverse bremsstrahlung for a Klein–Gordon and Dirac particle and we

shall analyze numerically the asymmetry and spin effects that will turn

out to be much more complicated than the one described by the simple

formula Eq. (59).

E.2. Relativistic scattering of a Bose particle

Several years ago, one of the present authors studied relativistic potential

scattering in a laser field concentrating at that time on the low-frequency

problem [91]. In this paper the laser-dressed electron was described by the

Gordon solution [90] of the Klein–Gordon equation and the scattering

process was described in first-order Born approximation using as target a

screened Coulomb potential. Since in the present investigation we shall

consider electron scattering in the near relativistic and relativistic region of

the laser-field intensity and use electrons of � 100 eV kinetic energy, the

first-order Born approximation should be sufficiently accurate and we can

take over the main results from our above paper. We start with the exact

solution of the Klein–Gordon equation for a particle of mass m and charge e

moving in an electromagnetic plane wave field. This field is described by the

vector potential ~AAð�Þ ¼ A0~�� cos!� in the Coulomb gauge where � ¼ t� ~nn � ~xx
and ~nn is the direction of propagation of the field. We continue to use the

units �hh ¼ c ¼ 1. For a particle of initial energy E and momentum ~pp, the
normalized Gordon solution can be written in the form, introduced by

Eqs. (15) and (16) in Section I.C.2

 ~pp ¼ ð2EVÞ�1=2 exp½�iðEt� ~pp � ~rrÞ� exp½ia sin!� � b sin 2!�Þ� ð60Þ

with the abbreviations

E ¼ E þ d, ~pp ¼ ~ppþ d ~nn, d ¼ m2�2=4

E � ~pp � ~nn ,

a ¼ mð�=kÞ~pp � ~��
E � ~pp � ~nn , b ¼ m2�2=8!

E � ~pp � ~nn , �2 ¼ ðeA0=mÞ2:
ð61Þ

Similarly, we can find the wave function  ~pp0 which describes the scattered

electron of energy E0 and momentum ~pp0 with the corresponding coefficients

a0, b0, and d 0 like in Eq. (61). Then we find in first-order Born approximation
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the following matrix element for our scattering process

T ¼ �i
Z

d4x½�ið ~pp@t ~pp 0 �  

~pp 0@t ~ppÞ�Uð~rrÞ: ð62Þ

For the scattering potential Uð~rrÞ we take a screened Coulomb potential of

charge eZ and screening length ‘ and in our calculations later on we use

Z ¼ 1 and ‘ ¼ 1 a.u. If we introduce into Eq. (62) all the quantities defined

above, we find in a straightforward manner the differential cross sections

of the laser-induced nonlinear bremstrahlung processes to be [91]

d�N ¼
ðe2ZÞ2ðE0N þ EÞ2d�0

½ð~pp
0
� ~pp�N ~kkÞ2 þ ‘�2�2

p0N
pFN

M2
N , ð63Þ

where scattering takes place into the solid angle d�0 and the energy

conservation relation reads

E
0
N ¼ E þN!, p0N ¼ ðE

02
N �m2Þ1=2: ð64Þ

The factor FN that appears in the denominator of the cross section formula

Eq. (63) has the form

FN ¼ 1� d 0N
E0N � ~pp0N � ~nn

1� E0N
p02N

~pp0N � ~nn
� �

: ð65Þ

Moreover, the matrix elements MN are found to be

MN ¼ BNðx, yÞ �
!ða0 þ aÞ
2ðE 0 þ EÞ

½BNþ1ðx, yÞ þ BN�1ðx, yÞ�

þ !ðb
0 þ bÞ

E
0 þ E

½BNþ2ðx, yÞ þ BN�2ðx, yÞ�: ð66Þ

In this expression we again have introduced the following generalized Bessel

functions Eq. (8)

BNðx, yÞ ¼
Xþ1

�¼�1
JN�2�ðxÞJ�ðyÞ, ð67Þ
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in which the JN�2�ðxÞ and J�ðyÞ are ordinary Bessel functions of the first

kind. The coefficients x and y in these functions are defined by

x ¼ a0 � a, y ¼ b� b0, ð68Þ

where a and b and similarly a0 and b0 are defined in Eq. (61). From the

energy conservation relation equation (Eq. (64)) it becomes clear that all

primed quantities are depending on the order of nonlinearity N. In the case

of low intensities, �2 � 1, and small kinetic energies, i.e. ðE �mÞ=m� 1,

the Eq. (63) reduces to the nonrelativistic formula of Bunkin and Fedorov

[104] (see Eq. (51))

d�NR
N ¼

ð2r0ZÞ2m4d�0

~QQ2
N þ ‘�2

� �2
p0N
p
J2
Nð� ~QQN � ~��=!Þ, ð69Þ

where ~QQN ¼ ~pp� ~pp0N . The corresponding nonrelativistic energy conservation

relation reads E0kin ¼ Ekin þN!. To these formulae we shall refer later on

in our discussion of the numerical data obtained from the relativistic and

nonrelativistic theories, respectively.

Let us consider the energy conservation relation, expressed by the Eq. (64),

E
0

N ¼ E þN! and express E
0

N and E according to the definitions in Eq. (61)

by E
0
N þ d 0 and E þ d, respectively. Then, by introducing the explicit

expressions for d 0 and d, we find on account of p0=E 0 � 1 and p=E � 1

E
0

N ¼ E �m2�2

4

1

E0
1þ ~pp

0 � ~nn
E0

� �
� 1

E
1þ ~pp � ~nn

E

� �� �
þN!: ð70Þ

In the semi-relativistic limit [1] we may write in the denominators of this

expression E 0 ’ E ’ m and introduce the nonrelativistic kinetic energies

by the relations E0 ¼ mþ ~pp02=2m and E ¼ mþ ~pp2=2m. Then we obtain

the semi-relativistic energy relation

E
0

kin ¼ Ekin �
�2

4
ð~pp0 � ~ppÞ � ~nnþN!: ð71Þ

In the scattering configuration considered in Fig. 8, ~pp � ~nn ¼ 0. Denoting by

E
0ðþÞ
kin the kinetic energy of scattered electrons observed in the direction ðþÞ of

Fig. 8 and by E
0ð�Þ
kin the corresponding energy of electrons scattered in the

direction ð�Þ, we find the following asymmetry relation for the relative
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energy difference in the low-frequency limit

�E0kin
2Ekin

¼ �
2

2�
sin � ð72Þ

in analogy to the relation of Eq. (59) for the asymmetry in the nonlinear

cross sections. In the following section, we shall analyze numerically the

asymmetry relations Eqs. (59) and (72) more precisely, using the exact

cross section formula Eq. (63) and energy relation Eq. (64).

E.3. Asymmetries and angular windows

For the following considerations, we fix the screening length ‘ of the

scattering potential to ‘ ¼ 1 a.u. and the nuclear charge to Z ¼ 1. Then we

numerically evaluate the differential cross sections d�N=d�
0 from Eq. (63),

taking selected values of the laser field intensity I, the kinetic energy Ekin

of the ingoing electrons, the order N of nonlinearity of the scattering

process and for the fixed laser frequency !¼ 1.17 eV. As the results of these

calculations show, the elementary asymmetry relation Eq. (59) is in the

general case by no means fulfilled in this particular form, but instead this

asymmetry performs as a function of the scattering angle � in certain

angular regions more or less rapid oscillations and in other angular domains

there may even appear ‘‘dark windows’’ in which the scattering data are very

close to zero. Many years ago, such zeros of the differential cross sections

were analyzed for the first time and their possible experimental implications

discussed by Faisal [107] in the nonrelativistic regime. In this case they

have their origin in the zeros of the Bessel functions in Eq. (69) for

particular values of the arguments. In the present relativistic problem,

such dark windows show up when the momentum transfer is perpendicular

to the field polarization vector ~��, just like in the recent experiments by

Wallbank and Holmes [125–127, 142]. In the nonrelativistic scattering,

however, the ‘‘dark windows’’ appear for small scattering angles only, if

the Born approximation is considered. This is due to the applicability of

the low-frequency approximation in which the absolute values of the

ingoing and outgoing electron momenta are almost the same. In our case,

however, this is not valid any longer and therefore ‘‘dark windows’’ can also

show up for large scattering angles. We should also mention that such a

situation can only appear for those inverse bremsstrahlung processes in

which a certain number of laser photons becomes absorbed, while for the

induced bremsstrahlung with the emission of laser photons ‘‘dark windows’’

cannot be encountered at large scattering angles, for in this case the

momentum transfer can never be perpendicular to the laser polarization
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vector ~��, at least for the laser intensities considered here. The strength of the

asymmetries, their oscillations and the angular location and width of the

‘‘dark windows’’ turn out to depend strongly on the parameter values of I,

Ekin, and N. For particular configurations of I, Ekin, and N the asymmetries

can be considerable and we showed recently that they will be even more

pronounced at higher laser-field intensities [163]. Concerning the second

asymmetry relation Eq. (72) of the electron kinetic energies observed in

the directions ðþÞ and ð�Þ of Fig. 4 the situation is insofar better as

the deviation of the results, calculated from this semi-relativistic formula,

from the corresponding data evaluated from the exact energy conservation

relation Eq. (64) is less pronounced but still, depending on the values of I,

Ekin, and N, the deviations can be noticeable.

In Fig. 9 we show �E0=Ekin evaluated from Eq. (64) as a function of

the scattering angle � as a full line and compare it with those data obtained

from �E0kin=Ekin of Eq. (72) represented by a dashed line. The parameter

values used for this calculation are I ¼ 1015 Wcm�2, Ekin ¼ 200 eV, and

N ¼ 20. As one can see, the agreement of the data, evaluated from the two

formulae, is quite good. Correspondingly, we present in Fig. 10 the

differential cross sections d�ðþÞN =d� as a full line and d�ð�ÞN =d� as a dashed

line for the same parameter values of I, Ekin, and N as in Fig. 9 and we

recognize an appreciable asymmetry at small scattering angles up to about

�¼ 30�. On the other hand, a dark window shows up in the angular range

�¼ 10��25� where the cross sections are almost zero.

In Fig. 11 we present the cross-sectional asymmetry, obtained from the

cross section data for the directions ðþÞ and ð�Þ of Fig. 8, for the same

FIG. 9. Presents for comparison �E0=Ekin as a full line and the low-frequency approximation,

Eq. (72), as a dashed line as a function of the scattering angle �. The scattering parameter values

are in this case I ¼ 1015 Wcm�2, Ekin ¼ 200 eV and N ¼ 20. The agreement between both sets of

data is reasonable (see ref. [166]).
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parameter values as in Fig. 9 and for small scattering angles �. We see that

the differences in relation to the predictions of Eq. (59) are significant.

The asymmetry parameter defined in this equation approaches the values

þ1 or �1 in those cases where one of the cross sections (d�ðþÞ or d�ð�Þ) is
almost equal to zero. Since this happens very frequently for large scattering

angles �, the asymmetry parameter will therefore oscillate very rapidly

between �1 and þ1. This is the reason why we have limited the presentation

of our data to small scattering angles only.

FIG. 10. Shows d�ðþÞN (full line) and d�ð�ÞN (dashed line) as a function of � for the same

parameter values as in Fig. 9. We observe the appreciable scattering asymmetry at small angles �
up to about 30� and a dark window from 10� to 25�. The data are presented in atomic units a.u.

(see ref. [166]).

FIG. 11. Presents the cross-sectional asymmetry ðd�ð�Þ � d�ðþÞ=ðd�ð�Þ þ d�ðþÞÞ, evaluated

from Eq. (63) for the same parameter values as in Fig. 9. The discrepancies in relation to

Eq. (59), are considerable, although the low-frequency approximation should be applicable

(see ref. [166]).
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E.4. Cross section formula for a Dirac particle

In order to be able to determine the relevance of electron spin effects at high

electron energies and laser powers for the present process, we have also to

evaluate the nonlinear cross section formula for the potential scattering

of a Dirac electron of spin 1=2, embedded in a powerful electromagnetic

plane-wave field of linear polarization. This calculation can proceed in a

very similar manner as was done for a Klein–Gordon particle in Section

I.E.2. We start as in Section I.C.3 from the Dirac equation in an arbitrary

plane wave field

ði��@� � e��A� �mÞ ðxÞ ¼ 0, ð73Þ

where the vector potential A� has the general form

A� ¼ A�ðk � xÞ, A � k ¼ k � k ¼ 0 ð74Þ

and we obtain according to Section I.C.3 the required Volkov solution [93]

for an electron of initial four-momentum p to read

 pðxÞ ¼
ffiffiffiffiffiffiffiffiffi
m

VEp

r
1� e��A�ðk � xÞ�k

2k � p

� �

� exp �ip � x� i

Z k�x

0

eAð�Þ � p
p � k � e2A2ð�Þ

2p � k

� �
d�

� �
up:

ð75Þ

For considering Mott scattering in a powerful laser field in the first-order

Born approximation we have to evaluate the T-matrix element

Tfi ¼ �i
Z

dx  p0ðxÞ��U�ðxÞ p ð76Þ

where scattering takes place for an electron of initial four-momentum p to

a final momentum p0. In Eq. (76) we describe the ingoing and outgoing

electron by Volkov waves of the form Eq. (75) and we decompose this

matrix element into its Fourier components in space and time, using

the definition of the generalized Bessel functions Eq. (8). Then we find by

straightforward calculation

Tfi ¼ �i
m

V
ffiffiffiffiffiffiffiffi
E0E
p

X

N

Z
dt exp½iðE 0 � E �N!Þt�

�
Z

d~rrUð~rrÞ exp �ið~pp
0
� ~pp�N!~nnÞ � ~rr

h i
MN ,

ð77Þ

I] SCATTERING AND REACTION PROCESSES 415



where Uð~rrÞ is again a screened Coulomb potential of charge eZ and

screening length ‘ and the nonlinear matrix elements MN are given by

MN ¼ BN �uup0�
0up þ

eA0

4k � p0ðBNþ1 þ BN�1Þ �uup0����k��0up

� eA0

4k � pðBNþ1 þ BN�1Þ �uup0�0����k�up

� e2A2
0

8ðk � p0Þðk � pÞ BN þ
1

2
ðBNþ2 þ BN�2Þ

� �
�uup0�

���k
��

0����k
���up,

ð78Þ

in which we now assumed the plane-wave field to be monochromatic and

linearly polarized so that in the Coulomb gauge A� has the explicit form

A�ðk � xÞ ¼ A0�
� cosðk � xÞ, �� � ð0, ~��Þ, �2 ¼ �1, ~��2 ¼ 1: ð79Þ

Under these conditions, in the matrix element of Eq. (78) the arguments x

and y, defined in Eq. (68) of the generalized Bessel functions are determined

by the same parameters as those in Eq. (61) for a Klein–Gordon particle.

Since the Fourier transform Uð~qqÞ of the screened Coulomb potential in

Eq. (77) can be easily calculated, we are able to evaluate from the Eqs. (77)

and (78) the transition probability per unit time to read

wfi ¼ lim
T!1

jTfij2
T
¼
X

N

2�m2

V2E0E
jUð~pp

0
� ~pp�N!~nnÞ MN j2 �ðE

0 � E �N!Þ,

ð80Þ

where for the laser-dressed electron momenta and energies the same

notation is used as in Eq. (61) of Section I.E.2. From the transition

probabilities, Eq. (80), we can finally evaluate the differential cross sections

of the nonlinear scattering processes of the order N. We find

d�ðs, s
0Þ

N

d�0
¼ p0N

p

4ðmZ�Þ2
FN

jMN j2

½ð~pp
0
� ~pp�N ~kkÞ2 þ ‘�2�2

: ð81Þ

In Eq. (81), the indices s and s0 are labelling the spin polarizations of

the incoming and outgoing electrons and have the possible values þ or �.
These indices, 	, have the meaning that the spin polarization of an electron

in its rest frame has the values 	1=2 with respect to the z-axis. For an
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unpolarized beam of electrons, we should average over the initial and sum

over the final spin polarizations, viz.

d�N
d�0
¼ 1

2

X

s, s0¼	

d�ðs, s
0Þ

N

d�0
: ð82Þ

The energy conservation relation, that follows from Eq. (80), is the same as

in Eq. (64) for scattering of a Klein–Gordon particle and the same is true

for the generalized Bessel functions BN and their arguments, defined in the

Eqs. (8) and (68). Similarly, we obtain in calculating the phase space

the same function FN , defined in Eq. (65). The evaluation of the matrix

elements, appearing in the Eq. (78) and containing Dirac spinors and

�-matrices, is performed numerically, using appropriate software, and

therefore their explicit result will not be written down here. In the following

section, we shall present a comparison of the cross sections calculated

for scattering of a spin 0 or a spin 1=2 particle in a very powerful laser field

and we shall see that spin effects are marginal even at very high laser powers

and/or electron energies, which is similar to what we found for Compton

scattering in Section I.C.4. On the other hand, there are some interesting

phenomena observable at very powerful laser fields, as we shall discuss in

more detail below.

E.5. Analysis of spin effects at high laser powers

For the following numerical analysis of the differential cross sections

Eqs. (63), (81), and (82) for a linearly-polarized electromagnetic plane-wave

field we shall fix the screening length ‘ of the scattering potential as

before to ‘ ¼ 1 a.u. and take for the nuclear charge Z ¼ 1. As frequency

of the radiation field we shall consider ! ¼ 1:17 eV of a Nd:YAG laser.

We investigate the angular and intensity dependence of the differential cross

sections d�N=d�
0, given by the Eqs. (63), (81), and (82), for selected values

of the laser field intensity I, initial kinetic electron energy Ekin and order of

nonlinearity N. As it turns out, it is of particular interest to consider high-

energy electrons in the MeV range and, similarly, to choose radiation

powers for which the ponderomotive energy Up ¼ m�2=4 is of the order of

magnitude of the electron rest energy m.

In Fig. 12 we analyze the dependence of the differential cross sections,

either evaluated from Eq. (63) for a Klein–Gordon particle or from

Eqs. (81) and (82) for a Dirac particle. For presenting our data, we chose in

this figure the laser beam to propagate along the x-axis, i.e. ~nnjj~eex, and its

unit vector of linear polarization, ~��, to define the z-direction, or ~��jj~eez, which
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also determines our polar axis whereas the azimuthal angle ’ is measured

with respect to the x-axis in the (x, y)-plane. Our results are shown for

fixed polar angles of electron incidence (�, ’) and of scattering (�0, ’0) as a

function of the number N of absorbed or emitted laser photons !. Both
relativistic cross section formulae yield, in general, the same results. We

shall discuss deviations between the data for a particle of spin 0 and spin

1=2 further below. As it turns out, the cross sections are particularly large

for small scattering angles. Therefore the angles of electron incidence

with respect to the z-axis are chosen � ¼ 0� and ’ ¼ 0� and we consider

scattering at a very small angle with �0 ¼ 1� and ’0 ¼ 0�. The laser frequency
! will be the same as above and for the intensity we took I ¼ 1019 Wcm�2

while the initial kinetic electron energy we assumed to be Ekin ¼ E�
m ¼ 2m. In our present figure we show the evaluated differential cross

sections as a function of N in panel (a), which is demonstrating that these

cross sections (presented in atomic units, denoted by a.u.) are considerably

larger for photon absorption than for photon emission. A reasonable

estimate for the cutoff value N0 of the electron spectrum can be found from

the approximate formula N0 ¼ 	jxj 	 2jyj, where x and y are the two

arguments of the generalized Bessel functions, Eqs. (61) and (68). In our

present case, the numerical calculations for the data shown in panel (a) yield

the cutoff at N0 ’ 22352. For this case, the arguments x and y are found to

be x ’ �23238 and y ’ 126 so that jxj � 2jyj ’ 22986, which is in

reasonable agreement with the value of N0, given before. In panel (b) we

show the deviation of the relativistic energy conservation law, Eq. (64), from

the nonrelativistic energy relation E0kin ¼ Ekin þN!. This deviation repre-

sents an intensity-dependent energy excess. One can also show that the cross

FIG. 12. Presents for the parameters I ¼ 1019 Wcm�2 and Ekin ¼ 2m in panel (a) the

differential cross sections as a function of N60 for �0 ¼ 1�; ’0 ¼ 0� and electron incidence along

the polarization ~��. The cross sections are large for N � 0 and the cutoff is near N0 ¼ 22352.

Panel (b) demonstrates the deviation of the relativistic energy conservation law from the

nonrelativistic one (see ref. [163]).
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section data perform rapid oscillations as a function of the nonlinear order

N. Such rapid changes with an almost periodic sequence of maxima and

minima can be qualitatively well explained by analyzing the properties of the

generalized Bessel functions BN , defined in Eqs. (8) and (68). This analysis,

however, cannot be done analytically, due to the complicated dependence of

both arguments in Eq. (68), via the Eqs. (61) and (64), on the number N

of emitted or absorbed photons, but requires a numerical evaluation. This

result is very much different from the findings in non-relativistic potential

scattering in a laser field, since in the low-frequency limit the argument of

the Bessel functions JN in Eq. (69) becomes independent of N.

As we have indicated before, in the relativistic regime of electron kinetic

energies Ekin, being of the same order of magnitude as the electron

rest energy m, the scattering formulas for a Klein–Gordon particle and a

Dirac particle yield almost the same cross section values, in particular,

for close to forward scattering where the cross section data are largest.

On the other hand, the two expressions Eq. (63) and Eqs. (81) and (82) yield

significantly different values for the cross sections in the backward direction

where, however, the cross section values are particularly small. In order

to show this, we present in panel (a) of Fig. 13 a comparison of the

Klein–Gordon and Mott scattering data for the same scattering geometry

as before, i.e. with electrons impinging on the target along the z-axis

(� ¼ ’ ¼ 0�) and scattered by an angle �0 > 0� for ’0 ¼ 0� or scattered by an

angle �0 < 0� for ’0 ¼ 180�. The ingoing kinetic energy of the electron is

Ekin ¼ 1 MeV’ 2m and we consider the elastic case with N ¼ 0. As we

recognize, the cross section data (dashed line for Klein–Gordon particles

FIG. 13. Presents for the same scattering configuration and parameter values as in Fig. 12

and for elastic scattering, with N ¼ 0, in the left panel the differential cross sections of

Mott-scattering (solid line) and Klein–Gordon scattering (dashed line) as a function of �0. In the

right panel is shown the normalized difference �� of these cross sections. Apparently, spin

effects are visible only at large scattering angles (see ref. [163]).
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and solid line for Dirac particles) are almost identical except for backward

scattering. This can be seen even more clearly in panel (b) of Fig. 13,

where we present the normalized difference �� of these cross section data,

defined by

�� � jd�D=d�� d�KG=d�j
d�D=d�þ d�KG=d�

ð83Þ

which can have the values 0 
 �� 
 1. As this panel shows, for j�0j ’ 0� the
deviations between the cross section data for Dirac and Klein–Gordon

particles are very small and only gradually increase for j�0j approaching
backscattering at 180�.
The properties of the differential cross sections, presented in

Fig. 13, can be found in general for values of N 6¼ 0 and for relativistic

electron energies and laser intensities where Ekin and UP are in the MeV

energy range. The differences between the cross sections for a Dirac

and a Klein–Gordon particle will be significant only at large scattering

angles where we shall simultaneously find a dip in the final electron

energy E 0kin.
Finally, we can also investigate in some detail the dependence of the

nonlinear cross sections for a Dirac particle on the spin orientation and

spin-flip. The differential cross sections, evaluated from Eq. (81) for the

spin orientations (s ¼ þ, s0 ¼ þ) and for (s ¼ �, s0 ¼ �), turn out to be

identical and the same holds for the cross sections with spin-flip

(s ¼ þ, s0 ¼ �) and (s ¼ �, s0 ¼ þ). Moreover, we find that spin-flip leads

to cross sections which are by about one order of magnitude smaller

than the data for no flip and we also recognize differences in the angular

behavior. We may therefore conclude that the probabilities of changing

the spin orientation during scattering are in general very much smaller

than for no change of the spin orientation, at least for the highly relativistic

electron energies and laser intensities considered. More details on this topic

can be found in ref. [163].

E.6. Concluding remarks

In conclusion, we have considered in the present section potential scattering

of electrons in a powerful laser field in the semi-relativistic and relativistic

regions. We compared, on the basis of the scattering configuration of Fig. 8,

the differential cross section data in the directions ðþÞ and ð�Þ and found

considerable asymmetries that, however, do not follow the elementary

asymmetry relation Eq. (59) of the low frequency limit. Characteristic ‘‘dark
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windows’’ in the scattering cross sections were observed for certain regions

of the scattering angle � and rapid oscillations of the scattering data were

found in other angular domains. Moreover, a similar asymmetry relation

as Eq. (59) was derived for the relative energy change �E0kin=Ekin in the

semi-relativistic limit, Eq. (72), and the numerical data obtained from

it were compared with the exact results for �E0=Ekin evaluated from the

relativistic energy conservation relation, Eq. (64). Here the results of the

semi-relativistic calculations agreed reasonably well with the exact calcula-

tions. Moreover, we have shown that even for moderate laser field

intensities of some 1015 Wcm�2, still far below the critical intensity

Ic ’ 1018 Wcm�2, for certain scattering geometries considerable differences

are found between the predictions of the relativistic and nonrelativistic

scattering formulas and energy conservation relations. These discrepancies

originate in the space-dependence of the radiation field. This indicates that

the use of nonrelativistic calculations for the description of laser-induced

and laser-assisted processes may break down at much lower laser intensities

than commonly expected. In particular, the use of the dipole approximation

for the laser intensities considered above may become questionable.

Further details of the above investigations can be found in our very recent

work on this topic [164–166].

As our numerical analysis of the spin effects has shown, these effects on

the differential cross sections d�N=d�
0 with the emission or absorption of N

laser photons, are in general marginal in the present process, in particular,

for scattering in close to forward direction. Small spin effects by spin-flip

can be observed at large scattering angles where, however, the cross sections

are very small. Even in this case, the data with spin-flip are by orders

of magnitude smaller than those with no flip. In this latter case, the cross

sections for a Dirac particle are almost identical with those for a Klein–

Gordon particle over the whole range of scattering angles. Of particular

interest, as in our previous investigations of this scattering problem at lower

laser field intensities, is a scattering configuration in which the electrons

impinge on the target in the direction of the laser polarization ~�� and the

scattering plane is determined by the direction of propagation ~nn of the laser

field and its polarization ~��, as shown in Fig. 8. We expect, on the basis of the

results of our investigation, for laser powers (measured by the ponder-

omotive energy) and for electron energies in the MeV range, being

equivalent to energies of the electron’s rest mass, that similar conclusions

can also be drawn for other fundamental scattering processes, namely that

spin effects are in general marginal for laser-induced or laser-assisted

processes even at very high laser powers. These conclusions were confirmed

by our recent investigations of Compton scattering at very high laser powers

[89], about which we reported in Section I.C.
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II. Reactions

A. HISTORICAL OVERVIEW

If we consider a laser source, like a Nd:YAG laser with quanta of energy

�hh! ¼ 1:17 eV, then in general the simultaneous absorption of several photons

will be required to ionize an atom whose ionization energy Iio � �hh!. Thus,
the atom poses a certain threshold beyond which multiphoton ionization

is possible. With increasing power of the laser sources available, it turned

out, however, that the ionized electron can also absorb photons beyond a

certain threshold value N0 �hh! and a whole spectrum of above-threshold

ionization (ATI) peaks can be observed [167,168]. This ATI, in particular of

noble gases, has been predicted many years ago by Keldysh [103] who

performed a simple model calculation which we shall present in a slightly

modified form below. The same model has been reinvestigated later on

by Faisal [169] and by Reiss [83]. Hence, this model has been termed the

KFR-model. In the following we shall analyze ATI on the basis of the KFR-

model in the one-electron approximation, although this model only

describes the basic features of this process correctly but not the finer details.

In this model it is assumed that initially the electron to be ionized is in the

ground state 	0ð~rr, tÞ ¼ u0ð~rrÞ expð�iE0t= �hhÞ of the atomic system where the

Coulomb field strength Ec is much larger than the laser field strength E0
so that the laser field can be considered as a perturbation. Then, in lowest

order of perturbation theory, the electron becomes virtually scattered by the

atomic potential VðrÞ ¼ �Ze2=r and turns into a free particle embedded

in the laser field which yields to ionization. During ionization the laser

field strength is now much larger than the Coulomb field so that it can

be considered as a perturbation. In this way one may envisage ATI as a

‘‘single-armed’’ potential scattering of electrons in a laser field. It is

therefore not surprising that most of the theoretical methods developed for

investigating free–free transitions are equally useful in the detailed treatment

of ATI and vice versa. The ionized electron will be described by a similar

laser-modulated plane-wave as we used for the free–free transitions in

Section I.D. Thus the T-matrix element of ATI will read in the KFR-model

T ¼ � i

�hh

Z
d~rrdt exp½ði= �hhÞðEtþ �t� ~pp � ~rr� �0 ~pp � ~�� sin!tÞ�

� VðrÞu0ð~rrÞ expð�iE0t= �hhÞ ð84Þ

where the electron suffers in the powerful laser field a Stark shift � which is

equal to the ponderomotive energy UP of the electron. This is defined as the
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average kinetic energy of the electron in the field which is equivalent to

the energy of its quiver motion. Hence we obtain from Eq. (1) � ¼ UP ¼
mh~vv2i=2 ¼ mc2�2=4. For the ground state of the atom we use for simplicity

the wave function of a hydrogen-like atom, i.e., u0ð~rrÞ ¼ ð4�Þ�1=2�
ðZ=aBÞ3=2 expð�Zr=aBÞ, where Z is the nuclear charge and aB the Bohr

radius. The evaluation of the T-matrix element (84) is then straightforward

and yields

T ¼
X

N

TN , TN ¼ �
8�iZe2

ðZ=aBÞ2 þ ðp= �hhÞ2
Z

aB

� �3=2

� JNð�~pp � ~��Þ�ðE þUP þ Iio �N �hh!Þ ð85Þ

from which we evaluate the differential cross sections of above threshold

ionization to be given by

d�N
d�
¼ r20

32Zpc

�2 �hh!½1þ ðpaB=Z �hhÞ2�2
J2
Nð�~pp � ~��Þ ð86Þ

where, as before, r0 is the classical electron radius while % ¼ �c=�hh!. The
kinetic energy of the ionized electron is determined by the energy con-

servation relation found from Eq. (85) to be given by E ¼ N �hh!� Iio �UP

where Iio ¼ �E0 is equal to the ionization energy. As we can see, the

threshold condition for ionization is given by N0 �hh!5Iio þUP. Thus we may

write N ¼ N0 þ S where S50 counts the order of the above-threshold

ionization peaks. For the corresponding electron momenta we find

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðN �hh!� Iio �UPÞ

p
. With increasing intensity of the laser field, the

number N0 of photons required to yield ionization will increase, since

the ponderomotive energy UP is a linear function of the intensity I and

thus raises the ionization limit. Near the ionization threshold the energy of

the ionized electron will be E4 �hh! and thus pc=�hh!4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mc2= �hh!

p
� 103 for

a Nd:YAG laser. If we want to have the cross sections near threshold

sufficiently large, i.e., J2
Nð�pc= �hh!Þ of appreciable magnitude, we will have

to require N0 � �pc= �hh!. Therefore, with our above estimate, we must

have � � 10�3N0. For xenon as target atom, with Iio ¼ 12:13 eV, we need

N0 ¼ 12 and consequently we must take � � 10�2 which corresponds to a

laser-field intensity of about 1014 Wcm�2.
In this case the prefactor of Eq. (86) becomes 32r20Z � 107 so that this

factor has roughly the value a2B. Thus, in this idealized case, the cross section

turns out to be approximately of the same order of magnitude as the cross

section of elastic electron–atom scattering in Section I.D. However, in order
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to achieve this, a considerable higher laser field intensity is required than

was necessary to observe free–free transitions. At lower laser-field intensities

we can again expand the Bessel function into its power series keeping only

the first term of the expansion. In this case we find from Eq. (86)

d�N
d�
¼ 32r20Z

22N
I

Ic

� �N�1
pc

�hh!

� �2Nþ1
ð~nn � ~��Þ2N ð87Þ

where ~nn is the direction of emission of the ionized electron and I=Ic ¼ �2.

However, these cross section values are considerably enhanced near

threshold due to the action of the Coulomb field of the residual ion on

the ionized electron [170].

Turning next to higher harmonic generation (HHG), we perform the

following simple calculation. In the presence of a strong laser field the

wave function of an atom becomes a periodic function of time 	ð~rr, tÞ ¼
	ð~rr, tþ TÞ where T ¼ 2�=! is the period of the laser field. Thus we may

expand this wave function into its Fourier components and evaluate the

dipole matrix elements to obtain

h	ðtÞj ~ddj	ðtÞi ¼
Z

d~rrdt	ð~rr, tÞ ~dd	ð~rr, tÞ

¼
X

m, n

~ddm, n exp½�iðm� nÞ!t�

¼
X

M

~ddN exp½�ið2M þ 1Þ!t�:

ð88Þ

Consequently, we obtain dipole elements ~ddN ¼ ~dd2Mþ1 corresponding to the

emission of harmonics of frequencies !0 ¼ N! with N ¼ 2M þ 1 where

M ¼ 1, 2, 3, . . . The reason why only odd harmonics are generated is related

to the spherical symmetry of the atomic ground state which has parity

P ¼ 1. Since during the harmonic generation the atom becomes excited by

absorbing N photons from the laser beam and then returns to the ground

state by emitting a harmonic quantum, the parity of the total system

must remain unchanged during the process. But the parity of the absorbed

photons is P ¼ ð�1ÞN and the parity of the emitted photon P ¼ �1 and

consequently parity conservation requires that ð�1ÞN ¼ �1 (since the parity

of the ground state remains unchanged) from which the above restriction

to odd harmonics follows. This is contrary to what happens in the case

of harmonic generation at a solid surface, discussed previously, where

there is no spherical symmetry of the system. Using the fact that ~ddN ¼ �e~rrN
and that the corresponding classical acceleration ~vv0N ¼ �!2

N~rr we may

424 D. B. Milošević and F. Ehlotzky [II



employ Thomson’s cross section formula Eq. (4), adapted to our problem,

to evaluate the cross sections of the generated harmonics. We thus find

d�N
d�
¼ !04

4�c3I

� �
j ~ddN j2 sin2 � ¼

8N4

�2

� �
�hh!

2mc2

� �2
�2j~rrN j2ð~��0 � ~��Þ2 ð89Þ

where ~��0 is the vector of linear polarization of the harmonic field and we

have used the identity sin� ¼ ~nn0 � ~�� ¼ cos � ¼ ~�� � ~��0. � ¼ e2=�hhc is the fine

structure constant. From our elementary results on laser-induced Thomson

scattering in Section I.B.1 and on account of some considerations on

harmonic generation, using time-dependent perturbation theory, we

conclude that in the perturbative regime j~rrN j is of the order of magnitude

½��ðmc2=�hh!Þ�NaB so that we obtain from Eq. (89) the approximation

�N �
16�

3
N4 I

Ic

� �N�1
�2ðNþ1Þ

mc2

�hh!

� �2ðN�1Þ
a2B: ð90Þ

Considering the production of the third harmonic by irradiating an atom

with a Nd:YAG laser pulse of an intensity of 1014 Wcm�2 for which

I=Ic � 10�4, we then find from Eq. (90) �3 � a2B. Hence, under these condi-

tions, the cross sections of harmonic generation are of about the same order

of magnitude as those for free–free transitions, considered in Section I.D,

but the laser power required is considerably higher. Hence free–free

transitions have the favorable property of requiring comparatively low laser

power for observing the laser-induced nonlinearities. This is also the reason

why rather early a considerable number of investigations has been devoted

to this process quite a long time before ATI and HHG were considered.

A considerable amount of insight into the above processes can be gained

by the following simple semi-classical considerations, suggested in various

forms by several authors [171–173]. In this so-called ‘‘three-step model’’

the first step describes the ionization of an atomic electron, while the

second step regards the propagation of the free electron in the laser field.

The third step considers the collision between the electron, driven back by

the laser field, and the atomic core, whereupon the electron either

recombines, emitting a harmonic photon, or rescatters at the atomic core

to gain in the laser field further energy by absorbing additional photons

in the ATI process (see, for example, the reviews [174,175]). This model

is schematically presented in Fig. 14 for the HHG process. In this figure, the

above-mentioned steps are denoted by the numbers 1, 2, and 3, respectively.

The atom, having the ionization energy Iio, is in its ground state when the

laser field is switched on. The atomic potential becomes lowered by the
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superposition of the Coulomb field and the laser field so that the atom

can be ionized either by tunneling or by multiphoton ionization. The

atomic electron is born at the point ~rrðt0Þ with the velocity ~vv0 where both are

usually assumed to be zero (i.e. the electron has absorbed the minimum

number N0 of photons required for ionization). The free electron now

propagates in the laser field and aquires an energy Ek. When the electron has

come back to the origin (~rrðt1Þ ¼ ~rrðt0Þ), it can recombine, emitting a harmonic

photon of energy �hh!0 ¼ Iio þ Ek. The observed HHG spectrum forms an

extended plateau which consists of many harmonics with comparable

intensities. The maximum kinetic energy which the ionized electron can

acquire in a linearly-polarized laser field, will be shown below to be

Ek ¼ 3UP (or more precisely 3:17UP) where UP is the ponderomotive

energy, defined before.

Before presenting a classical analysis of the above cutoff law of

harmonics, �hh!0max ¼ Iio þ 3:17UP, we shall discuss a simple derivation of

the parameter �, introduced by Keldysh [103]. This parameter permits

to characterize the difference between tunneling and multiphoton ioni-

zation. The Keldysh parameter can be defined by the ratio � ¼ �=T . Here �
is the time required by the atomic electron to tunnel through the potential

barrier, formed at a certain instant of time t by the overlap of the atomic

FIG. 14. Schematic presentation of high-harmonic generation according to the three-step

model. The laser field is linearly polarized along the z-axis. The numbers 1, 2, and 3 denote the

steps of the three-step model. The E-axis denotes the electron energy coordinate. See the text for

more detailed explanation.
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Coulomb potential VcðrÞ and the electric dipole potential VLðz, tÞ ¼
�ezE0 sin!t of the laser field (see Fig. 14), whereas T ¼ 2�=! is the

period of the radiation field oscillations. If � � 1, then the ionization took

place quasi-instantaneously by tunneling of the electron through the

potenial at a particular instant of time t, whereas for � � 1 the laser field

performs during ionization many oscillations and therefore multiphoton

ionization will prevail. A more convenient definition of the Keldysh

parameter is to consider the expression � ¼ �!. In order to obtain the

maximum average value of the tunnel time �, we consider the corresponding
maximum value of the tunnel length l ¼ v�� which, by inspecting the Fig. 14,
is determined by the relation Iio ¼ elE0=2, since we have to consider the

average over one period, hsin2 !ti ¼ 1=2, of the oscillatory electric dipole

potential. If, on the other hand, we assume that, on account of Bohr’s

correspondence principle and the virial theorem, the tunnel velocity v� is

equal to the electron velocity on the first Bohr orbit v� ¼ v0 ¼ �c, where
� ¼ e2= �hhc is the fine structure constant, then we find from the foregoing two

relations � ¼ l=v� ¼ 2Iio=eE0�c and consequently the Keldysh parameter can

be expressed in the form [103]

� ¼ �! ¼
ffiffiffiffiffiffiffiffiffi
Iio

2UP

r
: ð91Þ

In order to present a classical analysis of the energies which an ionized

electron can gain, moving after ionization freely in the laser field, we

perform the following simple calculation, based on considerations on the

energy spectrum of electrons obtained from Rydberg atoms placed into a

microwave field [176,177]. With reference to our Fig. 14, we shall assume

that at the instant of ionization t ¼ t0 the ionized electron has the initial

velocity ~vv0 ¼ 0. Neglecting the interaction with the residual ion, the electron

follows for t � t0 the classical Lorentz equation of motion, neglecting in

dipole approximation the magnetic term ðe=cÞð~vv� ~BBÞ

d~vv

dt
¼ eE0

m
~�� sin!t ð92Þ

and after integration with the above initial condition we find

~vv ¼ ��c~��ðcos!t� cos!t0Þ ð93Þ

from which we evaluate the kinetic energy Ekin of the ionized electron

averaged over one period of the laser field

hEkini ¼
m

2
h~vv2i ¼ UPð1þ 2 cos2 !t0Þ: ð94Þ
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Hence the kinetic energy of the ionized electron will lie within the limits

UP 
 Ekin 
 3UP, ð95Þ

as in fact was experimentally observed for the energy spectrum of electrons

obtained by the ionization of Rydberg atoms in a microwave field [178,179].

Applying the result Eq. (95) to the ionization of an atom in a laser field,

we immediately conclude, if the ionized electron recombines with the

residual ion (following the three-step model discussed above) that the

maximum photon energy of HHG will be given by

�hh!max ¼ Iio þ 3UP, ð96Þ

where the more precise cutoff law for HHG, Iio þ 3:17UP, can also be

obtained classically by calculating, instead of the average kinetic energy, the

maximum kinetic energy of the electron with the additional condition

(constraint) that the electron returns to the atomic core. The factor 3:17 is

obtained as the solution of a nonlinear equation that is obtained in this

way (see ref. [21] and references therein). More precise quantum mechanical

calculations yield in addition a prefactor in front of the ionization potential

Iio so that the cutoff law reads �hh!max ¼ 1:32Iio þ 3:17UP [180,181].

Instead of recombining and emitting harmonic photons, the ionized

electron can also rescatter at its ionic core thereby picking up further

photons from the laser field thanks to free–free transitions. In this way an

extended plateau of ATI peaks becomes generated as we shall discuss in

more detail in the next section. The maximum energy that can be gained by

the ionized electron in this way can also be evaluated, using our above

simple classical calculation [170]. Since according to Eq. (95) the average

energy acquired by the electron during the second step of the ionization

process is Ekin ¼ 2UP, we can reconsider the Eq. (95) and solve it with the

initial condition ~vvðt0Þ ¼ ~vv0. In this way we find for the average kinetic energy

hEkini gained by the electron in the laser field during the rescattering process

hEkini ¼ UP½1þ 2 cos2 !t0� þ
1

2
m~vv20 � 2

ffiffiffiffiffiffiffiffiffiffi
mUP

p
~vv0 � ~�� cos!t0: ð97Þ

If we then choose for the initial electron velocity at the rescattering process,

~vv0 ¼ �2ð
ffiffiffiffiffiffiffi
UP

p
=mÞ~��, assuming that 1

2
m~vv20 ¼ 2UP, then we find from Eq. (97)

for the maximum kinetic energy of the electron after rescattering

hEkini ¼ 3UP þ 2UP þ 4UP ¼ 9UP ð98Þ
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and this is the energy at which the sidelobes in the angular distributions

of the ionized electrons are observed [174]. If, however, the electrons are

rescattered with the initial energy 3UP, then the maximum energy the

electrons can acquire in the laser field during rescattering will follow from

Eq. (97) to be

hEkini ¼ 3UP þ 3UP þ 2
ffiffiffi
6
p

UP � 11UP ð99Þ

which quite well agrees with the cutoff energy of the plateau found

experimentally [174]. Also here, as in the case of the cutoff law for HHG,

a more precise cutoff energy can be evaluated by maximizing the average

electron energy with the condition that the electron rescatters at the

atomic core. To this end, one solves the system of equations ~rrðt1Þ ¼ 0 and

@hEkini=@to ¼ 0 where to and t1 are the instant of ionization and the instant

of rescattering, respectively. In this way we obtain for the maximum energy

of the rescattered electrons hEkinimax ¼ 10:007UP (see ref. [21] and

references therein).

Finally, the reader might think that by going to increasingly higher laser

powers, such that a relativistic treatment of ATI and HHG will become

important, we should be able to achieve very much higher harmonic

frequencies and, similarly, a more extended plateau of ATI peaks.

Unfortunately, this is not true as the following simple classical calculation

will show. For higher laser powers we have to add in the Lorentz equation

of motion Eq. (92) the magnetic term ðe=cÞð~vv� ~BBÞ. But for a plane-wave

field ~BB ¼ ~nn� ~EE, where ~nn is the direction of propagation of the plane wave,

and in an iterative solution of the Lorentz equation we may introduce into

the above magnetic term for ~vv the approximation ~vv ¼ ��c~�� cos!t. Then the

Lorentz equation can be written in the form

d~vv

dt
¼ eE0

m
f~�� sin!t� �½~��� ð~nn� ~��Þ� cos!t sin!tg ð100Þ

and its integration yields with the initial condition ~vvðt0 ¼ 0Þ ¼ 0

~vv ¼ ��cf~�� cos!tþ ð�=4Þ~nnð1� cos 2!tÞg ð101Þ

from which follows that the ionized electron experiences in addition to its

oscillatory motion in the direction of laser polarization ~��, driving the

electron back to the residual ion, also a drift motion in the direction ~nn of

laser-field propagation, perpendicular to the direction ~��. Therefore, with
increasing laser-field intensity, the electron will not come back so easily to

the ion to either recombine, emitting a harmonic photon, or to rescatter at

II] SCATTERING AND REACTION PROCESSES 429



the ion to lead to an extended plateau of ATI peaks. This conclusion is

confirmed quantum mechanically and we shall therefore restrict our

considerations below to laser field intensities for which �2 � 1 such that

nonrelativistic calculations are adequate and the laser field can be treated in

the dipole approximation. There are, however, exceptions where relativistic

calculations for very high laser powers become of interest, namely, if ATI,

HHG and related processes are considered for highly charged ions.

This topic has been investigated in some detail by Keitel and coworkers

[182–189] in whose papers further references can be found but we shall not

go into details here. Very short and ultra-intense laser pulses of some

1021 Wcm�2, interacting with highly charged ions, can also be used to

generate electrons with kinetic energy in the GeV range. Discussions and

references on this topic can be found in refs. [190–192].

Additional information can be obtained from the books and reviews

[2, 3, 6–18, 21–24]. Since ATI and HHG are presently the main subjects of

investigation in the regime of high laser powers, we shall discuss the various

interesting features of these processes in more detail in the following. Our

considerations and calculations will be based on the S-matrix approach for

evaluating the required transition probabilities. In the domain of high laser

powers various approximations can be made to achieve this goal, at least

in an approximate way, thanks to the fact that in many cases the atomic

binding effects can be neglected or approximated by some effective

potential. Moreover, we shall concentrate in the present work on the single

active electron approximation of an atomic species. Only recently double

ionization of atoms at high laser powers has been observed. We shall not

discuss this research topic further in detail in the present review but we refer

to recent work [189, 193] for further references.

B. ABOVE-THRESHOLD IONIZATION

B.1. Introductory remarks

As we have seen before, above-threshold ionization (ATI) is a process in

which more photons are absorbed than is necessary for ionization. In this

case, the photoelectron energy spectrum consists of a series of peaks

separated by the photon energy. Since the detection of ATI [167] there

has been considerable progress in understanding this process. Reviews

concerning ATI can be found in the books by Mittleman [109] and Delone

and Krainov [3,4] or in the articles [16, 194, 195]. Recently, it became evident

that the ATI process is considerably more complex than has been assumed.

The experimental findings [196–203] and theoretical analysis [204] have

shown new features of the ATI process, such as the appearance of a plateau
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in the ATI spectrum with a cutoff around 10UP, and the sidelobes (or rings

as some authors call them). Therefore, it was necessary to improve the

existing theories in order to explain these features.

The main theoretical approaches can be divided into two groups (for an

overview see ref. [205]). The first [206–213] is rather complicated, requiring

a large amount of computation time either for Floquet calculations or

direct integration of the time-dependent Schrödinger equation. The origin

of the second group is found in the theory of ionization in strong

electromagnetic fields which was formulated by Keldysh [103] in 1964.

Many authors have presented modifications of this theory which is now

known as the Keldysh–Faisal–Reiss (KFR) model [83,103,169,214] or

strong-field approximation (SFA) [194, 205]. Essentially, the KFR model is

determined by the zeroth-order term of an expansion of the S-matrix in

terms of the atomic potential V, while the interaction with the laser field

is implicitly taken care of to all orders by the Gordon–Volkov wave

that describes the outgoing electron in the laser field (see Eq. (84)). An

improvement of the KFR theory can be obtained by taking into account the

Coulomb effects of the residual ion. This was first done by replacing the

Gordon–Volkov wave by the Coulomb–Volkov wave, and later on by using

an improved version of the Coulomb–Volkov wave [170, 215–218].

Unfortunately, even by using this improved KFR model, it was not

possible to explain the appearance of the experimentally observed second

plateau of ATI peaks due to the rescattering process. Therefore, it becomes

clear that the higher-order terms of the S-matrix expansion should be taken

into account in order to explain the experimental findings. Such corrections

have to take care of the rescattering of the ionized electron at the atomic core.

As it turns out, the rescattering effects can be modeled by a short-range

potential. In ref. [219] a separable short-range potential was used, while in

refs. [174, 220–223] a zero-range potential model was considered. Finally, in

our work [224] a more realistic screened Coulomb potential was considered.

In all these investigations the second plateau was predicted and in ref. [223]

the height of the plateau was controlled by changing the screening

parameter. In the present section on ATI we shall present our model which

includes both the Coulomb and the rescattering effects [225].

B.2. The S-matrix theory

Our starting point is the S-matrix (using throughout the atomic system of

units)

Sfi ¼ i lim
t0!1

lim
t!�1

h�outðt0ÞjGðt0, tÞj�inðtÞi, ð102Þ
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where the in- and out-states depend on the boundary conditions, and G is

the total Green’s operator which satisfies the Lippmann–Schwinger equation

Gðt, t0Þ ¼ Gxðt, t0Þ þ
Z

dt00Gðt, t00ÞVxGxðt00, t0Þ: ð103Þ

G and Gx satisfy the time-dependent Schrödinger equation with the total

Hamiltonian H ¼ Hx þ Vx and the Hamiltonian Hx, respectively. In the

case of ionization, our in-state is a solution of the Schrödinger equation with

the atomic binding potential V. This solution is outside the laser field

and propagates under the influence of the Green’s operator Gv. The final

state at time t satisfies

h�ð�Þf ðtÞj ¼ ih�outð1ÞjGðþÞð1, tÞ: ð104Þ

Using this and the orthogonality of the in- and out-states, we obtain by

substituting Eq. (103) into Eq. (102) and by choosing Vx ¼ HL (where HL

is the interaction Hamiltonian with the laser field)

Sfi ¼ �i
Z 1

�1
dth�ð�Þf ðtÞjHLðtÞj�inðtÞi: ð105Þ

This is one of the possible forms of the photoionization S-matrix element

[109, 205]. We now assume that the potential V contains, besides the

long-range Coulomb part Vc, a short-range part Vs, i.e., V ¼ Vc þ Vs.

This short-range part becomes effective when the ionized electron rescatters

at the atomic core (therefore it is not always present and may be considered

as time-dependent). If we now insert Eq. (104) into Eq. (105) and use

Eq. (103), by putting Vx ¼ Vs, we find

Sfi ¼
Z 1

�1
dth�outð1Þj½Gxð1, tÞ

þ
Z

dt0Gð1, t0ÞVsGxðt0, tÞ�HLðtÞj�inðtÞi: ð106Þ

Introducing the states �
ð�Þ
f , x which propagate under the influence of the

Hamiltonian Hx ¼ ~pp2=2þHL þ Vc, and obey Eq. (104) with G replaced

by Gx, we obtain

Sfi ¼ S
ð0Þ
fi þ S

ð1Þ
fi þ � � � , ð107Þ
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S
ð0Þ
fi ¼ �i

Z 1

�1
dth�ð�Þf ,xðtÞjHLðtÞj�inðtÞi, ð108Þ

S
ð1Þ
fi ¼ �i

Z 1

�1
dt

Z 1

t

dt0h�ð�Þf , xðt
0ÞjVsGxðt0, tÞHLðtÞj�inðtÞi: ð109Þ

The physical interpretation of the results, Eqs. (106)–(109), is the following.

Due to the interaction with the laser field HL, the electron is ionized from

the in-state. After ionization, the electron propagates in the laser field and

it also feels the long-range Coulomb field. It can then leave these fields

and become observed experimentally (this corresponds to the term S
ð0Þ
fi

considered in [170, 215–218, 291]). However, it can happen that during the

propagation of the ionized electron in the field it comes back to the atomic

core and scatters at the short-range part of the ionic potential (while the

long-range part was already included in �
ð�Þ
f , x and Gx). After rescattering,

the electron propagates out of the fields and can be observed. Of course,

both contributions of Eqs. (108) and (109) interfere quantum-mechanically,

as is evident from Eq. (107). We rewrite the integrals in Eq. (109) in a more

convenient form. Using the identity
R1
�1 dt

R1
t

dt0½� � �� ¼
R1
�1 dt0

R t0
�1 dt½� � ��,

after the substitutions t00 ¼ t0, � ¼ t00 � t, and writing t instead of t00 in the

final expression, we obtain

S
ð0Þ
fi þ S

ð1Þ
fi ¼ �i

Z 1

�1
dth�ð�Þf , xðtÞjfHLðtÞj�inðtÞi

þ
Z 1

0

d�VsGxðt, t� �ÞHLðt� �Þj�inðt� �Þig:
ð110Þ

The time � is usually called the return or travel time because the electron is

ionized at the moment t� � and it rescatters after the time interval � at the
atomic core at the moment t. For the initial state we can write j�inðtÞi ¼
j 0i expðiIiotÞ, where j 0i and Iio are the atomic ground state and its

ionization energy, respectively. Because �
ð�Þ
f , x is the scattered wave which

propagates under the influence of both, the laser field and the Coulomb

field, we shall approximate it by the improved Coulomb–Volkov state

ansatz [170, 215–218, 224–230, 291]

j�ð�Þ
~kkf , x
ðtÞi ¼





 
ð�Þ
~kkfþ ~AAðtÞ

�
expf�i ½ ~kkf � ~��ðtÞ þ UðtÞ þ E ~kkf

t�g, ð111Þ

where ~AAðtÞ and ~EEðtÞ ¼ �@ ~AAðtÞ=@t are the vector potential of the laser

field and its electric field vector, respectively, and ~��ðtÞ ¼
R t

dt0 ~AAðt0Þ,
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UðtÞ ¼ ð1=2Þ
R t

dt0 ~AA2ðt0Þ. j ð�Þ
~kk
i is the Coulomb wave vector

 ð�Þ
~kk
ð~rrÞ ¼ ð2�Þ�3=2 exp½�=ð2kÞ��ð1þ i=kÞ

� expði ~kk � ~rrÞ1 F1½�i=k, 1, � iðkrþ ~kk � ~rrÞ�: ð112Þ

Our next approximation is to replace the intermediate Green’s propagator

Gx by the Gordon–Volkov Green’s operator, which is the usual approxi-

mation within the Strong-Field-Approximation (SFA). The Gordon–Volkov

Green’s operator reads

GLðt, t0Þ ¼ �i�ðt� t0Þ
Z

d ~kkj� ~kkðtÞih� ~kkðt
0Þj, ð113Þ

where in the length gauge, in which HLðtÞ ¼ ~rr � ~EEðtÞ, the Gordon–Volkov

state vectors are

j� ~kkðtÞi ¼ j ~kkþ ~AAðtÞi expf�i½ ~kk � ~��ðtÞ þ UðtÞ þ E ~kk
t�g: ð114Þ

Introducing Eqs. (111)–(114) into Eq. (110) we obtain

S
ð0Þ
fi þ S

ð1Þ
fi ¼ �i

Z 1

�1
dt exp i ~kkf � ~��ðtÞ þ UðtÞ þ ðE ~kkf

þ IioÞt
h in o

�  ð�Þ
~kkfþ ~AAðtÞ

j~rr � ~EEðtÞj 0

� �
� i

Z
d ~kk  ð�Þ

~kkfþ ~AAðtÞ
jVsj ~kkþ ~AAðtÞ

� ��

�
Z 1

0

d� ~kkþ ~AAðt� �Þj~rr � ~EEðt� �Þj 0

D E

� exp �iSð ~kk; t, �Þ
h i)

, ð115Þ

where

Sð ~kk; t, �Þ ¼
Z t

t��
dt0fð1=2Þ½ ~kkþ ~AAðt0Þ�2 þ Iiog

¼ ðE ~kk
þ IioÞ� þ ~kk � ½~��ðtÞ � ~��ðt� �Þ� þ UðtÞ � Uðt� �Þ ð116Þ

is the semiclassical action which we introduced in analogy to previous work

[174, 181, 219, 233], in which the process of harmonic generation was
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considered. The integral over the momenta in Eq. (115) can be performed

using the saddle-point method, with the result [233]

Z
d ~kk hð ~kk; t, �Þ exp½�iSð ~kk; t, �Þ� ¼ 2�

i�

� �3=2

exp½�iSð ~kk; t, �Þ� 1� i

2�

@2

@ ~kk2
þ � � �

� �
hð ~kk; t, �Þ j ~kk¼ ~kks ,

ð117Þ

where we denoted with h the product of the matrix elements which appear

under the integral over ~kk in Eq. (115), and

~kks ¼ �
1

�

Z t

t��
dt0 ~AAðt0Þ ¼ 1

�
½~��ðt� �Þ � ~��ðtÞ� ð118Þ

is the solution of the equation ~rr ~kkSð ~kk; t, �Þ ¼ 0. If we do not use the atomic

units, then the corrections in Eq. (117) are of the order ð�hh=�Þm, where �hh is

Planck’s constant divided by 2� and m ¼ 1, 2, . . . . In this sense our

expansion is a time-dependent Wentzel–Kramers–Brillouin approximation

(see, for example, ref. [234]). The factor ��m corresponds to the spreading of

the wave packet. Obviously, for large return times, which are needed in the

case of higher energies of rescattering, these terms can be neglected.

Retaining only the zeroth-order term in Eq. (117), we obtain

Sfi ¼ �i
Z 1

�1
dt exp½iðE ~kkf

þ Iio þUPÞt� T fið’Þ

¼ �2�i
X

N

�ðE ~kkf
þ Iio þUP �N!ÞTfiðNÞ,

ð119Þ

where

T fið’Þ ¼ expfi½ ~kkf � ~��ð’Þ þ U1ð’Þ�g  ð�Þ
~kkfþ ~AAð’Þ

j~rr � ~EEð’Þj 0

� ��

� i

Z 1

0

d�
2�

i�

� �3=2

 ð�Þ
~kkfþ ~AAð’Þ

jVsj ~kks þ ~AAð’Þ
� �

� h ~kks þ ~AAð’0Þj~rr � ~EEð’0Þj 0i exp½�iSð ~kks; ’,!�Þ�
o
,

ð120Þ

and UðtÞ ¼ U1ð’Þ þUPt, ’ ¼ !t, ’0 ¼ ’� !�. T fið’Þ is a 2�=!-periodic
function of t, which can be expanded into a Fourier series

T fið’Þ ¼
X1

N¼�1
TfiðNÞ expð�iN’Þ, TfiðNÞ ¼

Z 2�

0

d’

2�
T fið’Þ expðiN’Þ: ð121Þ
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TfiðNÞ is the T-matrix element for ionization with the absorption of N

photons. The corresponding differential ionization rate of the order N is

wfiðN, �Þ ¼ 2�kf jTfiðNÞj2, ð122Þ

where kf ¼ ð2E ~kkf
Þ1=2 satisfies the energy conserving condition E ~kkf

¼ N!�
Iio �UP, and � is the angle between ~kkf and the laser-field polarization vector

~��. The matrix elements in Eq. (120) have simple analytic form [235], so that

the differential ionization rates can be easily computed by performing the

integration over the return time � and by using the fast Fourier transform

method.

Below, we shall present some results for a monochromatic, linearly-

polarized laser field. Our target will be a hydrogen atom in its ground state

( 0ð~rrÞ ¼ ��1=2 expð�rÞ and Iio ¼ 0:5 a.u.) and for the short-range potential

we take Vs ¼ � expð�rÞ=r, i.e. a potential of the Yukawa type. It should be

stressed that the theory presented is quite general and can also be applied to

ATI in a bichromatic laser field [236] and to the inert gases. Ground-state

wave functions of inert gases can be found in ref. [237], while the short-range

potential can be modeled by the Slater potential [238, 239] or by a potential

of the form �ðaþ b=rÞ expð��rÞ [240]. The short-range potential could

also be computed directly by using the formula [241] Vð~rrÞ ¼
R
d~rr0j þð~rr0Þj2=

j~rr� ~rr0j � Z=r, where the first term is the interaction of the ionized electron

with the electron core cloud and Z is the nuclear charge. For example, for

helium we have Z ¼ 2 and the ground-state wave function of a Heþ ion is

 þ1s ¼ ð8=�Þ
1=2 expð�2rÞ so thatVð~rrÞ ¼ �1=r� ð2þ 1=rÞ expð�4rÞ. Therefore,

the desired short-range potential in the case of helium is Vsð~rrÞ ¼ �ð2þ 1=rÞ�
expð�4rÞ and all our matrix elements can be easily obtained using this result

and the ground-state wave function of helium [235]. Without going into

these more complex considerations, we shall show here that all the main

features of the earlier experiment [201] can be reproduced by only

considering the hydrogen atom and the Yukawa-type short-range potential.

B.3. Numerical examples

In Fig. 15 we present the differential ionization rates as a function of the

kinetic energy of the outgoing electron in units of UP for the laser field

parameters used in the experiment by Walker et al. [201], i.e., the laser-field

frequency ! ¼ 1:58 eV and the intensity I ¼ 1015 Wcm�2. The short-range

part of the core potential is VsðrÞ ¼ � expð�rÞ=r. The upper curve represents
the results of the present model which includes both, rescattering and

Coulomb effects, while the lower curve corresponds to a model which

includes rescattering effects only. Both curves are for � ¼ 0�. In the model

436 D. B. Milošević and F. Ehlotzky [II



which only includes the rescattering effects [225], it is assumed that the

atomic potential is of short range, i.e., VðrÞ ¼ � expð�rÞ=r. In this case, the

first two terms of the S-matrix can be combined to give a term of the form

VGLV , while the final state is a Gordon–Volkov wave, instead of a modified

Coulomb–Volkov wave [224]. In Fig. 15 one can see that the Coulomb

effects increase the rates by two orders of magnitude and make the first

plateau more pronounced. This plateau corresponds to the direct ionization

process (with no rescattering) and the present results agree with the previous

findings, in which the Coulomb effects were considered without rescattering

[215–218]. In both cases, the second plateau has a sharp cutoff at 10UP

which agrees with the classical considerations of rescattering [218, 242, 243].

This value can also be obtained from a semiclassical analysis of Eq. (120)

FIG. 15. Differential ionization rates for the hydrogen atom as functions of the kinetic energy

E ~kkf
of the ionized electron scaled to the ponderomotive potential UP, for the laser field

frequency ! ¼ 1:58 eV and intensity I ¼ 1015 Wcm�2. The short-range part of the core potential
is Vsð~rrÞ ¼ � expð�rÞ=r: The lower curve is obtained by using the model in which the Coulomb

effects are not included, while in the upper curve both are taken into account, the Coulomb and

rescattering effects. The data in both curves are for the angle � ¼ 0� between the polarization

vector ~�� of the laser and the momentum of the ionized electron. The rounded tops (dotted line)

refer to the angles � ¼ 20�, 30�, and 40�, as indicated in the figure. For each angle, only the last

rounded top (at the cutoff) is presented so that the spectrum for � ¼ 0� is more easily seen,

for otherwise too many interfering curves for the different angles would be superimposed

(see ref. [225]).
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in the limit Iio! 0. The energy of 10UP corresponds to N ¼ 409 absorbed

photons, so that the process is highly nonlinear. The cutoff position depends

on the angle � of electron emission. In Fig. 15 the cutoff regions of the

ionization rates for angles �¼ 20�, 30�, and 40� are also presented. One

can see that the cutoff energy decreases with the increase of �, which

is in agreement with the experimental [201] and theoretical [174, 220–

225, 236, 242, 243] findings. The shapes of the second plateau of the

ionization rates with and without the Coulomb effects are qualitatively

similar, except that the rates which include the Coulomb effects are

considerably higher. The plateau consists of a sequence of rounded tops and

sharp suppressions similar to what is found for the spectra of high-order

harmonic generation [181, 233]. This can be ascribed to the interference of

tunneling trajectories [222, 223] (see also the last reference in ref. [221]).

These sharp suppressions were recently observed experimentally [201] and

cannot be explained within the semiclassical rescattering model presented in

that same paper. It is important that the last rounded top that corresponds

to the cutoff is the largest of all. Using this fact, we can explain the

appearance of the sidelobes in the high-energy parts of the spectra. Namely,

the sidelobes for the angle � correspond to the last rounded top of the

photoelectron spectrum for the same angle. Therefore, according to Fig. 15,

the last rounded top for �¼ 20� is at 9UP, while for �¼ 30� it is at 8UP. This

is in agreement with the data in Fig. 16, where the angular distributions of

the rates for fixed E ~kkf
¼ 9UP, 8UP, 7:3UP, and 6:6UP are presented. The

sidelobes for E ~kkf
¼ 9UP and 8UP are just at �¼ 20� and 30�, respectively.

With the decrease of E ~kkf
the angular distributions become more complicated

but the sidelobe structures are still evident. For E ~kkf
¼ 7:3UP and E ~kkf

¼ 6:6UP

we have sidelobes at 35� and 40�, respectively. The presented results

also agree with the following symmetry of the T-matrix: TfiðN,�� �Þ ¼
ð�1ÞNTfiðN, �Þ. From our analysis, we can conclude that by using a

generalization of the KFR model, which includes both the Coulomb and the

rescattering effects, we were able to explain the more recent experimental

results, i.e., the second plateau and the sidelobes in the photoelectron

spectra. We were also able to predict the right position of the sidelobes.

The advantage of our model is that it can be easily applied to more

complicated systems than the hydrogen atom. For example, the inert gases

can be modeled by choosing the initial wave functions from ref. [237] and

the core potentials from refs. [236, 237].

B.4. More recent developments

The strong species dependence of the high-order photoelectron production

in alkali metal atoms was discussed by Gaarde et al. [244], presenting a
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theoretical and experimental study of these atoms interacting with intense,

mid-infrared radiation. The strength of this process shows an unexpected

strong species dependence that can be explained via the difference in the

cross section for electron–ion scattering from the different atoms. This

permits to directly relate the high-energy portion of the photoelectron

spectrum to specific features of the electron–ion potential. This dependence

we have anticipated in our discussions at the end of Subsection II.B.2.

FIG. 16. For the same laser field and short-range potential parameters, as in Fig. 15, the

sidelobe structures of the ATI spectra of high-energy electrons are shown. The differential

rates wfiðN; �Þ are presented as functions of the polar angle � (in degrees) for fixed values

of N that correspond to E ~kkf
¼ 9UP (upper left subplot), 8UP (upper right subplot), 7:3UP (lower

left subplot), and 6:6UP (lower right subplot). The rates are in units 10�10 a.u., and the data are

normalized to their maximum value in each subplot separately. For example, the maximum rate

for E ~kkf
¼ 9UP is 1:0792� 10�10 a.u. (see ref. [225]).
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The interplay between different electronic quantum trajectories in ATI by

an elliptically-polarized laser field has been analyzed experimentally and

theoretically by Paulus et al. [245] as a generalization of the results of earlier

investigations for a linearly-polarized field [222, 223]. The data show a

second plateau at a specific angle with respect to the large component of

the laser field and can be explained by the strong-field rescattering

approximation. Another investigation by these authors [246] was concerned

with the channel-closing-induced resonances in the ATI plateau. Appar-

ently, multiphoton resonances with ponderomotively upshifted Rydberg

states have dramatic effects on the plateau of high-order ATI. Certain

groups of the ATI peaks are significantly enhanced. For short pulses and

intense laser fields, individual Rydberg states lose their physical significance.

Under these conditions, thanks to the experimental and theoretical

investigations of the dependence of the photoelectron spectra on the laser

field, these authors propose that the observed effects can be largely

understood in terms of channel closings that are characteristic of a short-

range model potential of rescattering (see the recent review article [21] and

references therein). Borca et al. [247] considered the same threshold-related

enhancement of the high-energy plateau in ATI. In particular, they

demonstrated the enhancement of the above-threshold detachment spectra

at channel closing and explained this by the effect of the well-known

threshold anomalies of general scattering theory.

The relevance of Coulomb effects, that we have discussed at various

places in this review, was considered recently by Duchateau et al. [248, 249]

by investigating the ionization of atoms by intense and ultrashort laser

pulses. They present a nonperturbative approach, based on the Coulomb–

Volkov-type of states, suggested many years ago by Jain and Tzoar [250],

which is able to predict both angular and energy distributions of ejected

electrons when atoms interact with a very short and intense laser pulse. It

is shown that, for atomic hydrogen targets, this theory makes accurate

predictions as long as the interaction time does not allow more than two

optical cycles. This was found by comparison with an ‘‘exact’’ treatment of

the problem. Taking into account the long-range ionic Coulomb field, the

ATI of rare-gas atoms was analyzed experimentally and theoretically for

200 fs, 800 nm Ti:sapphire laser pulses by Larochelle et al. [251] who found

that by comparing the experimental curves for the ion yield as a function of

the laser intensity with a theory by Perelomov et al. and Krainov [252–255],

a rather good overlap between experimental and theoretical results can be

achieved. We should mention, however, that considerable doubts have

been raised concerning the validity of the above Coulomb–Volkov wave at

high laser-field strength E0 [256, 257]. The necessity of a careful analysis of

gauge invariance in the interaction between atoms and few-cycle laser pulses
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was recently stressed by Madsen [258]. For few-cycle laser pulses the effects

of the leading and of the trailing edge of the pulse on the ATI spectrum

are crucial. In practice, the shape of the envelope can be parametrized by the

pulse length and the ‘‘absolute phase’’, that is, the phase difference between

the maximum of the envelope and a maximum of the carrier-wave electric

field. The effect of the absolute phase is a pronounced backward–forward

asymmetry of the ATI yields in two opposite directions. This was recently

observed in a ‘‘stereo’’ ATI experiment [259] and explained theoretically by

using a generalization of the KFR model [260].

In our present work, the main approach of solving the laser-assisted

and laser-induced processes is the S-matrix theory. There are, however,

several other methods that have been successfully used, like the Floquet

approximation, described in some detail in the recent review by Joachain

et al. [18]. This theory is applicable for a laser pulse that can be described

by a harmonic wave train of infinite extent. A more flexible method that

has become applicable thanks to the development of fast computers is the

direct numerical solution of the time-dependent Schrödinger equation. This

method can be applied to laser pulses consisting of a few radiation cycles

as they have become available recently in the course of the development

of femto- and atto-second physics. But, even nowadays, this numerical

methods usually require a considerable computer time. In the domain of

ATI, this method has been applied recently by Muller et al. [261, 262] to

investigate the bunching and focusing of tunneling wave packets in high-

order ATI and to the tunneling excitation to resonant states in helium as

the main source of ‘‘superponderomotive’’ photoelectrons in the tunneling

regime. On the whole, the tunneling theory of Ammosov, Delone, and

Krainov (ADK) [263] has turned out to be very successful in interpreting

ATI data at high laser-field intensities at which the Keldysh parameter

� � 1. A review of this approach has recently been presented by Delone and

Krainov [264]. The method has been applied by McNaught et al. [265] to

investigate the photoelectron initial conditions for tunneling ionization in

a powerful linearly-polarized laser field in the long-pulse tunneling limit.

The method has also been applied successfully by several authors to the ATI

process in the tunneling limit [266–271]. The above-barrier ionization

regime, i.e., the regime of ionization in which the barrier of the Coulomb

potential becomes suppressed by the electric field and the electron escapes

directly from the potential well without tunneling, was recently considered

by Scrinzi et al. [272].

Although we indicated in the introductory Section II.B.1 of this chapter

that at relativistically high laser powers, where the dipole approximation for

describing the laser pulse breaks down, the ATI yields after rescattering will

decrease thanks to the sideways motion of the ionized electrons, it has
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become of interest to investigate certain features of this relativistic process

in more detail. In the work of Ortner [273], the relativistic photoelectron

spectra in the ionization of atoms by elliptically-polarized laser light have

been evaluated in the tunneling limit using the relativistic version of the

Landau–Dykhne formula and have been compared with recent calculations

by Krainov [274]. A relativistic theory of ATI of hydrogen-like atoms

in ultrastrong laser fields was presented recently by Avetissian et al. [275]

but unfortunately there are no numerical data presented which would lead

to some insight into the relativistic effects. Finally, we mention a similar

analysis by Taı̈eb et al. [276] in which a comparison is made between the

results obtained by the ADK theory, mentioned before, and the numerical

solution of the time-dependent Schrödinger equation.

Another interesting approach to the investigation of ATI and HHG has

recently been formulated by Roy and Chu [277]. These authors suggest

a quantum-fluid-dynamic treatment of strong-field processes applied to

the study of ATI and HHG of helium and neon. They explore the feasibility

of extending the quantum-fluid dynamics method for the quantitative

investigation of nonlinear optical processes of many-electron quantum

systems in intense laser fields. Through the amalgamation of the quantum-

fluid dynamics and density-functional theory, a single time-dependent

hydrodynamical equation of motion can be derived. This equation has

the form of a generalized nonlinear Schrödinger equation but includes the

many-body effects through a local time-dependent exchange-correlation

potential. The time-dependent generalized pseudospectral method is

extended to the solution of the generalized nonlinear Schrödinger equation

in spherical coordinates, allowing nonuniform spacial discretization and

efficient, accurate solution of the hydrodynamical density and wave func-

tion in space and time. The procedure is applied to the study of multiphoton

ionization and HHG of He and Ne atoms in intense laser fields. Excellent

agreement with other recent self-interaction-free time-dependent density-

functional theory calculations is obtained for He, while for Ne, good

agreement is achieved. The method offers a conceptually appealing and

computationally practical approach for nonperturbative treatment of

strong-field processes of many-electron systems beyond the time-dependent

Hartree–Fock level.

C. ELECTRON–ION RECOMBINATION

C.1. Introductory remarks

Presently much work is devoted to the generation of x-ray fields whose

frequencies are in the ‘‘water window’’ [278, 279]. One of the processes,
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which is very promising to reach this goal, is the laser heating of plasmas.

Here high-frequency radiation becomes emitted which has its origin in

the following three main processes: (i) higher harmonic generation (HHG to

be discussed in Section II.F), (ii) laser-induced bremsstrahlung (discussed

in Sections I.D and I.E), and (iii) laser-assisted electron–ion recombination.

As we saw, the first of these processes yields maximum frequencies given

by �hh!max ¼ 1:32 Iio þ 3:17UP where Iio is the ionization energy of the

atom and UP ¼ mc2�2=4, the ponderomotive- (or quiver-) energy of an

electron in the laser field, which is proportional to the field intensity

I. Presently, these frequencies are usually not enough to reach directly

into the water window [17, 280]. The second process leads to the heating

of the plasma, thanks to inverse bremsstrahlung at high laser power,

discussed in Section I.E, by which energetic electrons are created and

high frequency spontaneous bremsstrahlung is produced in electron–ion

collisions [29]. Finally, during the laser-stimulated electron–ion recombina-

tion high-frequency radiation of maximum energy �hh!max ¼ E~pp þ Iio þUPþ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E~ppUP

p
can be generated where E~pp is the initial kinetic energy of the

recombining electron. In the absence of a laser field, the process of electron–

ion recombination has been investigated in great detail in the past [281].

The laser-stimulated recombination process (LSR) will be analyzed in

greater detail in the present section with reference to our previous work

[282] and similar considerations on this topic by Kuchiev and Ostrovsky

[283]. Since we are interested to obtain in this process sufficiently high

radiation frequencies, our above formula for !max indicates that for a

given laser field intensity I the high-energy electrons generated by the

laser heating of the plasma will correspondingly yield the desired

high radiation frequencies. Therefore the inverse form of the Keldysh–

Faisal–Reiss (KFR) model [83, 103, 169] should be very suitable to evaluate

the laser-stimulated recombination probabilities. Moreover, we shall

show that even at initial electron kinetic energies in the 100 eV range the

Coulomb effect of an ion on the recombining electron is considerable

and we shall therefore consider a Coulomb-modified version of the KFR

model [170].

We shall first present the inverse form of the KFR theory applied to

the LSR process and we shall formulate its modification for including

the Coulomb effects of the ion in the recombination process. Then we

shall discuss a number of specific applications of our theory and we

shall analyze our recombination spectra. Finally, we shall summarize

our results and present some concluding remarks, in particular, on the

possibility of rescattering in electron–ion recombination in a powerful

laser field.
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C.2. Theory of laser-stimulated recombination (LSR)

The differential power spectrum We consider the process of recombination

of electrons with ions in the presence of a strong laser beam, described by

a vector potential ~AALðtÞ in the dipole approximation. During the action

of the laser field the emission of x-ray photons of frequency !X , wave vector

kX ~nn and linear polarization ~��X takes place. We continue to work in units

�hh ¼ c ¼ 1. The Hamiltonian in the length gauge which describes such a

process is of the form

ĤHðtÞ ¼ ĤHat � e~EELðtÞ � ~̂rr~rr� e
b~EE~EEX ð~̂rr~rr, tÞ � ~̂rr~rr, ð123Þ

in which ĤHat is the radiation-free atomic Hamiltonian,

ĤHat ¼
1

2m
~̂pp~pp
2 þ V̂V : ð124Þ

Moreover, ~EELðtÞ is the electric-field of the laser beam in the dipole

approximation, and
b~EE~EEX ð~̂rr~rr, tÞ is the electric field operator of the x-ray

radiation. In our analysis the laser field is treated classically, whereas

the spontaneously emitted x-ray radiation is described quantum-

mechanically. For a one-mode x-ray radiation the electric field operator is

equal to

b~EE~EEX ð~̂rr~rr, tÞ ¼ i

ffiffiffiffiffiffiffi
!X

2V

r
~��X ðâaXe�i!X tþikX ~nn�~̂rr~rr � âa

y
Xe

i!X t�ikX ~nn�~̂rr~rrÞ, ð125Þ

where ~��X is the polarization vector, âaX and âa
y
X are the annihilation and

creation operators, ~nn is the direction of propagation of the x-ray radiation

of frequency !X , and finally V is the quantization volume of the radiation

field. For the recombination processes the initial state is equal to j ðþÞ
~pp
ðtÞ; 0i,

i.e., it is the vacuum state for x-ray radiation and a scattering state of

the electron in the laser field of energy E~pp. On the other hand, the final

state equals to j  0ðtÞ; 1i, i.e., it is a one-photon state for the x-ray and for

the electron a bound state in the laser field with binding energy E0 ¼ �Iio.
Applying Fermi’s golden rule, we find the probability of emitting an x-ray

photon by an electron, recombining from a scattering state of momentum ~pp
into a quasi-bound state, to be equal to

Pð~nn, ~ppÞ ¼
Z

dth 0ðtÞ; 1� e
b~EE~EEX ð~̂rr~rr, tÞ � ~̂rr~rr j  ðþÞ~pp ðtÞ; 0ij

2










: ð126Þ
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After simple algebraic manipulations we arrive at the probability rate

(� ¼ e2 is the fine structure constant)

wð~nn, ~ppÞ ¼ ð2�Þ2�!X

V
�ðE0 � E~pp �UP � n �hh!L þ �hh!X Þ

� !L

2�

Z 2�=!L

0

dt  0ðtÞ e�i!X tþikX ~nn�~̂rr~rr~��X � ~̂rr~rr








 ðþÞ~pp ðtÞ
D E










2

: ð127Þ

In deriving this formula, we have assumed that the imaginary part of

the quasi-energy for the final quasi-bound state is much smaller than

the laser-photon energy !L, and that the laser field is described by a

monochromatic plane wave.

For scattering states, normalized to a plane-wave expði~pp � ~rrÞ, the density

of electron states is equal to

d3p

ð2�Þ3
¼ mp

ð2�Þ3
dE~ppd�~pp, ð128Þ

whereas for the density of states of the x-ray radiation quantized in a volume

V we have

d3kX

ð2�Þ3
V ¼ V!2

X

ð2�Þ3
d!Xd�~nn: ð129Þ

Hence, the total probability rate for emission of x-ray photons by electrons

of arbitrary momenta equals

w ¼
Z

d3p

ð2�Þ3
d3kX

ð2�Þ3
Vwð~nn, ~ppÞ, ð130Þ

whereas for the total power of emitted x-rays we obtain

P ¼
Z

d3p

ð2�Þ3
d3kX

ð2�Þ3
V !Xwð~nn, ~ppÞ

¼
Z

dE~ppd�~ppd!Xd�~nnSð!X , ~nn, ~ppÞ�ðE0 � E~pp �UP � n!L þ !X Þ, ð131Þ

in which the so-called differential power spectrum is given by

Sð!X , ~nn, ~ppÞ ¼
�!4

Xmp

ð2�Þ4
!L

2�

Z 2�=!L

0

dt  0ðtÞ e�i!X tþikX ~nn�~̂rr~rr~��X � ~̂rr~rr








 ðþÞ~pp ðtÞ
D E










2

: ð132Þ
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The above formulae have been derived in the length gauge. In the velocity

gauge the Hamiltonian reads,

ĤHðvÞðtÞ ¼ 1

2m
ð ~̂pp~pp� e ~AALðtÞ � e ~̂AA~AAX ð~̂rr~rr, tÞÞ2 þ V̂V , ð133Þ

where the superscript ðvÞ means that the corresponding quantity is expressed

in the velocity gauge. We note that this form of the Hamiltonian is correct

provided that the electron energy is nonrelativistic and the laser field

intensity is not too large, i.e. UP � m (or �2 � 1). The Hamiltonian in

the length gauge can be derived from the above Hamiltonian provided that

the wavelength of x-ray radiation is much larger than the size of an atom.

However, the reason for using the length gauge is based on our

consideration that the approximations for the exact initial and final states

of electrons in a laser field, we shall use below, appears to be more justified

in this gauge. In particular, in this gauge and for not too intense laser fields

the exact quasi-bound ground state of an electron can be approximated

reasonably well by the ground state in the absense of the laser field, as it was

done in the original model, proposed by Keldysh [103].

Following the same steps as before, we arrive at the corresponding

expression for the differential power spectrum

SðvÞð!X , ~nn, ~ppÞ ¼
�!2

Xp

ð2�Þ4m
!L

2�

Z 2�=!L

0

dt  ðvÞ0 ðtÞ ei!X t�ikX ~nn�~̂rr~rr





D





� ~�X�X � ~̂pp~pp� e ~AALðtÞ
� �


 ðþÞðvÞ~pp

ðtÞ
E



2

: ð134Þ

Since

 ðþÞ
~pp
ð~rr, tÞ ¼ expðie ~AALðtÞ � ~rrÞ ðþÞðvÞ~pp

ð~rr, tÞ ð135Þ

and a similar expression is valid for  ðvÞ0 ð~rr, tÞ, we conclude that both these

differential power spectra, Eqs. (132) and (134) coincide, provided that

the x-ray wavelength is larger than the size of the atom. If, however, the

wavelength of the generated x-rays is comparable or smaller than the atomic

size we should rather apply the formula in the velocity gauge. We also stress

that this gauge-invariance becomes broken, if we make approximations for

the initial and final states of the electron moving in both the laser field and

the static potential of the ion.
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In our further discussions, we shall deal with such incident electron

energies and laser field intensities to permit the use of the formulas in the

Eqs. (131) and (132) in the length gauge.

The Coulomb–Volkov model According to our above discussion, in the

electric-field gauge the differential power spectrum of high-energy photons

radiated into the solid angle d�~nn is given by the following formula [282]

Sð!X , ~nn, ~ppÞ ¼
�!4

Xp

ð2�Þ4
!L

2�

Z 2�=!L

0

dt IðtÞ











2

, ð136Þ

where

IðtÞ ¼
Z

d~rr 0ð~rr, tÞ ~��X � ~rr eið!X t�kX ~nn�~rrÞ  ðþÞ
~pp
ð~rr, tÞ: ð137Þ

Here  0ð~rr, tÞ is the wave function of the final quasi-bound state of the

electron in the laser field and  ðþÞ
~pp
ð~rr, tÞ is the scattering state of the electron

in both, the laser field and the static binding potential of the ion. We shall

further assume that  0ð~rr, tÞ can be approximated by the wave function of

the ground state of the electron without the laser field, which for hydrogen

takes the form

 0ð~rr, tÞ ¼
ffiffiffiffiffi
�3

�

r
e�iE0te��r, ð138Þ

with � ¼ 1 and E0 ¼ �0:5 a.u., and that  ðþÞ
~pp
ð~rr, tÞ can be represented by the

Coulomb–Volkov solution [29,170]

 ðþÞ
~pp
ð~rr, tÞ � exp �iE~ppt� i~��LðtÞ � ~pp�

i

2m

Z t

e2 ~AA2
LðtÞ dt

� �
u
ðþÞ
~pp�e ~AALðtÞ

ð~rrÞ, ð139Þ

where u
ðþÞ
~pp
ð~rrÞ is the Coulomb scattering state without the laser field. The laser

field will be described by the vector potential ~AALðtÞ ¼ ~AA0 cos!Lt. Hence, in

Eq. (139), ~��LðtÞ ¼ ~��0 sin!Lt with ~��0 ¼ �e ~AA0=!L. The first approximation,

Eq. (138), is commonly applied in the KFR models [83,103,169], whereas the

second one, Eq. (139), is justified for the high-energy electrons, considered

here [116, 157].
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C.3. Numerical examples

For all the numerical data presented below, we chose the following

geometry. The reference surface (which may be the surface of a solid target)

will be taken parallel to the (x, y)-plane and both the laser field and the x-ray

will propagate in the x-direction, whereas the polarization vectors of both

radiations will be perpendicular to the reference plane, i.e. pointing in the z-

direction. The incident electrons will come from above, i.e. their polar angles

�~pp will lie in the range ½�,�=2� and the corresponding azimuth ’~pp can acquire

any value in the interval ½0, 2��. For the presentation of the numerical data,

we shall choose two types of laser sources, a Ti:Sapphire laser with

wavelength �L ¼ 800 nm and photon energy !L ¼ 1:5498 eV, or a Nd:YAG

laser with wavelength �L ¼ 1064 nm and !L ¼ 1:17 eV.
In Fig. 17 we compare the two power spectra of generated x-ray radiation

obtained for a Ti : sapphire laser of power 1014 Wcm�2 by either using the

Coulomb–Volkov or the KFR model. We see that for relatively small

electron kinetic energies of 162:5 eV the differences between the results of

the two models are quite significant, in particular, at the two maxima near

the endpoints of the spectra, where the Coulomb–Volkov model yields

a 2–3 times smaller power spectrum than the KFR model. This is in

contradiction to what was found for the ionization process [284] where the

FIG. 17. For a Ti : Sapphire laser of power 1014 Wcm�2 and perpendicular incidence of

electrons of energy E~pp ¼ 5:974 a.u. ¼ 162:5 eV comparison is made between the power spectra

predicted by the KFR (dashed line) and Coulomb–Volkov model (full line). Apparently, the

KFR model overestimates the x-ray yields for the low electron energy considered, in particular,

near the endpoints of the x-ray spectrum. However, the positions of the maxima of the spectrum

coincide for both models. This latter finding shows that the KFR model can be used for a

qualitative understanding of x-ray generation by laser-assisted recombination (see ref. [285]).
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Coulomb–Volkov model was found to predict larger ionization rates. The

discrepancies between the predictions of the above two models are decreas-

ing with increasing energy of the ingoing electrons. Therefore one can use

the KFR model for the analysis of the power spectrum of generated x-ray

radiation at higher incident electron energies. In this way, we were able to

estimate qualitatively the region of x-ray frequencies for which the power

spectrum is significant (see the Eq. (142) below). At the end of this section

we shall present a classical explanation for the range of x-ray frequencies

!X that can be obtained in laser-assisted electron–ion recombination.

In Figs. 18 and 19 we present the power spectra, evaluated for a

Ti:sapphire laser and for the intensities 1014 and 1015 Wcm�2, respectively,
using both, logarithmic and linear scales for presenting the data. Here a

much larger electron kinetic energy of E~pp ¼ 59:76 a.u. ’ 1:62 keV was

considered. Since in these two figures the electron energy is about 10 times

larger than before, we only present the results for the power spectra

evaluated from the Coulomb–Volkov model, since the results obtained from

the KFR model are qualitatively the same. We recognize that the region of

x-ray frequencies for which the power spectrum significantly differs from

zero spreads out with increasing laser intensity and electron kinetic energy in

agreement with the Eq. (142), presented below.

Our above findings concerning the spectrum of x-ray photons suggest a

classical explanation for the position of its boundaries. An electron moving

towards the solid surface and considered to be placed into a laser field, has

the total classical energy given by

E~ppðtÞ ¼
1

2m
½~pp� e ~AALðtÞ�2 ð140Þ

where it is assumed that initially the electron has the kinetic energy

E~pp ¼ ~pp2=2m. Whenever the above energy reaches its maximum or minimum

value, it will be directly converted into an x-ray photon during the

recombination process with zero laser photons exchanged. This means that

the upper and lower bounds of the plateau in the Figs. 17, 18, and 19 are

in general given by the formula

!max =min ¼ max =min Iio þ
1

2m
½~pp� e ~AALðtÞ�2

� �
: ð141Þ

In the case of our choice for the geometry, in which ~pp is parallel to ~AAL, with
~AALðtÞ ¼ ~AA0 cos!Lt, these bounds of the plateau turn out to be

!max =min ¼ Iio þ 2UP þ E~pp 	 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2UPE~pp

q
ð142Þ
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in which þ refers to !max and � to !min. These classical limits represent a

good estimate for the position and the width of the plateau even for small

initial electron energy. This fact is clearly illustrated by the data shown in

the Fig. 20.

Thus, on the basis of our work [282], and of similar investigations by

Kuchiev and Ostrovsky [283], we have considered electron–ion recombina-

tion in the presence of a powerful laser field and we have evaluated the

spectrum of x-rays that can be generated by this process. In particular, we

FIG. 18. Presents the power spectrum evaluated from the Coulomb–Volkov model on a

logarithmic scale on the top, and on a linear scale on the bottom of the figure for the same laser

frequency and intensity as in Fig. 17 but for a larger energy of impinging electrons of

E~pp ¼ 59:76 a.u. ¼ 1:62 keV. At this energy, the KFR model yields similar results. We recognize

the spreading of the x-ray spectrum with increasing electron energy by comparing the present

results with the data in Fig. 17 (see ref. [285]).
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presented the derivation of an explicit expression for the differential

power spectrum of the emitted radiation. In doing so, we compared the

corresponding results obtained by using either the length- or the velocity-

gauge and stressed the limits of validity of the formulas derived for the

power spectrum. We also investigated for comparison the stimulated

recombination process in the framework of the inverse KFRmodel, by either

taking into account the Coulomb effects of the ionic target on the ingoing

laser-dressed electron or by neglecting this effect using for the ingoing

electron a Gordon–Volkov solution, Eq. (60), in the nonrelativistic limit

and in the dipole-approximation. The Coulomb effects were found to be

considerable even at higher electron kinetic energies. We evaluated on the

FIG. 19. Shows the same as in Fig. 17, except for a higher laser intensity of 1015 Wcm�2, and
indicates the spreading of the spectrum with increasing electron energy and laser intensity

(compare Figs. 17 and 18) (see ref. [284]).
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basis of our model the power spectra for different laser frequencies and

ingoing electron energies and estimated their orders of magnitude for the

generated discrete x-ray spectrum. We also determined the dominant

frequency range of this x-ray field and evaluated the laser intensity

dependence of the rates of electron–ion recombination. Finally, we showed

by means of a simple classical analysis of the electron energy in a time-

dependent radiation field, how the domain of generated x-ray frequencies

can be understood in an elementary classical way. In conclusion, we

estimated that the energy conversion efficiency of x-ray radiation of about

20UP will be of the order of magnitude 10�11. Further details can be found

in our very recent work [285–287]. Plasma aspects of the LSR process were

recently considered by Leone et al. [288].

C.4. Rescattering

As it turns out, the study of the laser-assisted electron–ion recombination

that includes the scattering of the electron at the ion prior to its

recombination is important due to the two following main reasons.

FIG. 20. Compares in the (E~pp; !X )-plane the x-ray spectrum evaluated from the Coulomb–

Volkov model and the classical predictions of the Eq. (142) as a function of the incident electron

energy for a fixed laser-intensity of 1014 Wcm�2 of a Nd:YAG laser. The limits of the quantum-

mechanical x-ray spectrum are well reproduced by the classical considerations, using Eq. 142

(see ref. [285]).

452 D. B. Milošević and F. Ehlotzky [II



(i) The laser-assisted electron–ion recombination could be another potential

source for generating coherent soft x-rays and thus further informations

about this process will be useful in achieving this goal. We have shown

[289, 290] that the recombination process is more important for lower

incident electron energies and that for a given high-intensity laser field the

total power of the emitted x-rays as a function of the incident electron

energy has its maximum if the incident electron energy is equal to a few

times the ponderomotive energy. (ii) In our opinion, however, the more

important reason for this investigation, was the existing complementarity

between the recombination process (including rescattering, abbreviated

as the SLSR process) and the well-known HHG and high-order ATI.

In fact, all of them can be explained by using the three-step model.

This implies the use of a similar theoretical formalism that is based on the

S-matrix theory and on the semiclassical saddle-point solutions, discussed

in Sections II.E and II.F. Equivalently, it can also be formulated by using

the Feynman path integrals [291]. An important difference is, however,

that HHG and high-order ATI are genuinely tunneling phenomena, whereas

our SLSR process has in its initial state a free electron with a positive

energy. Therefore, we have only complex solutions of the saddle-point

equations for HHG and high-order ATI, while for SLSR also real solutions

are possible. Using these real solutions, we were able to derive two cutoff

laws for SLSR. One concerns the maximum incident electron energy

for which the SLSR process is ‘‘classically’’ still possible. It is the same

10:007UP cutoff law as that for the maximum outgoing electron energy

in high-order ATI [196–201, 218–225, 242]. The second cutoff law deter-

mines the maximum energy of the emitted soft x-rays in SLSR, and it is the

same Iio þ 3:17UP cutoff law as for HHG. However, the SLSR saddle-point

equations have also complex solutions. Their contribution becomes

important for short electron travel times. Therefore, the 10:007UP cutoff

law is only classically valid but it is not a real limitation on the values of the

incident electron energy, as is confirmed by our numerical calculations.

Concerning the cutoff law for the high-energy photons, our results show

[289] that it is given by the formula �hh!X , max ¼ Iio þmaxf3:17UP,E~ppþ
2UP þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E~ppUP

p
g. The second term in this curly brackets is identical to what

is found for the direct LSR cutoff law, as shown in by Eq. (142). For SLSR

it corresponds to the complex solutions mentioned before. It is important

that the probabilities of SLSR that belong to these solutions and for short

travel times are much higher than expected. Namely, the ratio of the rates of

the direct and the rescattering process (for high-order ATI, for example) is

usually about 106–107. We have shown, however, that in the present

problem this ratio is only 10–100 or even less. We want to point out, that

one possible explanation for this result is that the backscattered electron
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recombines with a high probability immediately after the scattering event

has taken place and when it is still in the vicinity of the nucleus. One can

speculate whether in the case where the direct recombination process is not

allowed (due to selection rules, for example) or is highly suppressed, SLSR

presents a new channel for the energy transfer of the incoming electrons to

the high-energy photons. The short-travel-time transfer mechanism is not

characteristic of SLSR only. For the short travel times additional complex

solutions (in comparison to those presented in ref. [292]) of the saddle-point

equations for HHG exist, the contribution of which to the low-energy part

of the spectrum is important. We expect a similar behavior in the case of

high-order ATI. For HHG it can be connected to the so-called nontunneling

harmonics [293, 294].

D. X-RAY–ATOM IONIZATION

D.1. Introductory remarks

Laser field induced transitions of an electron from one continuum state to

another (free–free transitions) are of special interest because in such

processes the absorption or emission of different number of photons can

occur with comparable probability and the laser-field–matter interaction

should be treated nonperturbatively. The first observation of the free–free

transitions was reported by Weingartshofer et al. in experiments on laser

field assisted electron–atom scattering [119]. Later on such transitions were

observed in single and two-color above-threshold ionization [8, 295] and in

laser-assisted Auger decay [296]. More recently, free–free transitions were

studied through the observation of the laser-assisted photoelectric effect

[297]. In this experiment soft x-ray pulses (generated as high-order

harmonics of a Ti:sapphire laser) are used for ionization of helium atoms.

The modifications of the photoelectron spectra are induced by the

fundamental laser field pulse. In comparison with the photoelectron

spectrum in the absence of the laser-field, one observes the following two

modifications: (i) absorption and emission of laser photons during

ionization gives rise to sidebands in the spectrum and (ii) the spectrum is

shifted to a lower energy as a result of a laser-field-induced increase of the

binding energy of the ionized atoms.

Before this first observation of the laser-assisted x-ray photoionization

such processes were considered theoretically by several authors [69–71],

[298–319]. In these papers the interaction between the atom and the weak

high-frequency field (soft x-ray field which causes the ionization) is

treated perturbatively to first order. For the soft x-rays the dipole

approximation is also valid [320]. As concerns the interaction with the
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strong low-frequency laser field, the approaches of these works are different.

In the paper by Cionga et al. [319], the dressing of the atomic states by the

laser field is taken into account. In [69–71, 298–301, 303–305, 307, 312] the

outgoing electrons were described by the Gordon–Volkov waves, while in

[306, 313–317, 319] more adequate Coulomb–Volkov waves were used. In

[310, 311, 318] the low-frequency approximation was considered. It should

also be noted that, according to the gauge-invariance requirements, some

of the work mentioned is not reliable (see the reference in [314–316]).

The process of laser-assisted x-ray photoionization has recently attracted

much attention due to the possibility of investigating the relative phase of

harmonics generated by a strong laser field [321] or to measure the

XUV pulse duration [322–324] that can be important for attosecond

physics [25, 28].

In the next section we present a theory of photoionization of hydrogen by

a high-frequency laser field in the presence of a low-frequency laser field

[321]. Numerical results are then presented and compared with the results of

other authors. In this section we use atomic units ( �hh ¼ e ¼ m ¼ 1).

D.2. S-matrix theory

The S-matrix element for laser-assisted processes with the emission

or absorption of one x-ray photon, in the ~rr � ~EE gauge, is

Sfi ¼ �i
Z 1

�1
dt �f ðtÞj~rr � ~EEX ðtÞj�iðtÞ
D E

¼ S
ðþÞ
fi þ S

ð�Þ
fi , ð143Þ

where the electric-field vector of the x-ray is ~EEX ðtÞ ¼ E0X ~��X sin!X t, E0X ¼
I
1=2
X , and !X , IX , and ~��X are its frequency, intensity, and unit vector of

polarization, respectively. The component S
ð�Þ
fi / �ð1=2iÞ expð�i!X tÞ

belongs to the photoionization process we are considering. The initial and

final state vectors j�jðtÞi, j ¼ i, f , satisfy the Schrödinger equation

i
@

@t
� ~pp

2

2
� V � ~rr � ~EEðtÞ

� �
j�jðtÞi ¼ 0, j ¼ i, f , ð144Þ

where V ¼ �1=r is the Coulomb potential and the electric-field vector ~EEðtÞ,
in our case of a linearly-polarized laser field, is given by

~EEðtÞ ¼ E0~�� sin!t, E0 ¼ I1=2: ð145Þ
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The initial state j�iðtÞi describes the laser-modified atomic ground state of

hydrogen which, in the first order of time-dependent perturbation theory,

has the form ([326–328] and references therein)

j�iðtÞi ¼ j�0ð!tÞi expðiIiotÞ,
j�0ð’Þi ¼ f1� ði=2ÞE0½GcðE0 � !Þei’ � GcðE0 þ !Þe�i’�~rr � ~��gj 0i: ð146Þ

GcðEÞ is the time-independent Coulomb Green function, Iio ¼ 0:5 a.u. is the

ionization energy, and  0ð~rrÞ ¼ ��1=2 expð�rÞ is the wave function of

the ground state of the hydrogen atom. The final state j�f ðtÞi represents
the laser-modified continuum state of the hydrogen atom. This state can

also be approximated by a perturbative solution, similar to Eq. (146)

[327, 329], but instead we shall approximate j�f ðtÞi by the improved

Coulomb–Volkov wave [170, 226, 230–232]

j�f ðtÞi � j � ~kkf
ðtÞi ¼ j ~kkfþ ~AAð!tÞ

i expf�i½ ~kkf � ~��ð!tÞ þ UðtÞ þ E ~kkf
t�g: ð147Þ

Here E ~kkf
¼ ~kk2f =2 is the kinetic energy of the outgoing electron and ~AAð’Þ,

with ’ ¼ !t, represents the vector potential of the laser field with
~EEðtÞ ¼ �@ ~AAð!tÞ=@t, where

~AAð’Þ ¼ A0~�� cos ’ ð148Þ

and for the parameters in Eq. (147) we find

~��ð’Þ ¼
Z t

dt0 ~AAð!t0Þ ¼ �0~�� sin ’, �0 ¼
A0

!
¼ E0
!2

, ð149Þ

UðtÞ ¼ ð1=2Þ
Z t

dt0 ~AA2ð!t0Þ ¼ UPtþ U1ð!tÞ,

UP ¼
A2

0

4
, U1ð!tÞ ¼

UP

2!
sin 2!t, ð150Þ

while j ~kk
i is the Coulomb wave vector in the absence of the laser field

 ~kk
ð~rrÞ ¼ ð2�Þ�3=2 exp �

2k

� �
�ð1þ i=kÞ expði ~kk � ~rrÞ

� 1F1½�i=k, 1, � iðkrþ ~kk � ~rrÞ�: ð151Þ
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Introducing the Eqs. (146) and (147) into Eq. (143) we obtain

S
ð�Þ
fi ¼

E0X
2

Z 1

�1
dt f ð!tÞ exp½iðE ~kkf

� !X þ Iio þUPÞ t�, ð152Þ

where

f ð’Þ ¼  ~kkfþ ~AAð’Þ
j~rr � ~��X j�0ð’Þ

D E
expfi½ ~kkf � ~��ð’Þ þ U1ð’Þ�g ð153Þ

is a 2�=!-periodic function of t which can be expanded into a Fourier series

f ð’Þ ¼
X1

N¼�1
fN expð�iN’Þ, fN ¼

Z 2�

0

d’

2�
f ð’Þ expðiN’Þ, ð154Þ

so that we obtain

S
ð�Þ
fi ¼ �2�i

X

N

�ðE ~kkf
þ Iio þUP � !X �N!ÞTfiðNÞ, ð155Þ

where TfiðNÞ ¼ ði=2ÞEX fN is the T-matrix element for the exchange of N

laser photons (in addition to the absorption of one x-ray photon). The

processes with N < 0 correspond to stimulated emission, while the processes

with N > 0 correspond to the absorption of N photons. The matrix elements

which appear in f ð’Þ can be computed analytically. For the evaluation of

these matrix elements with the time-independent Coulomb Green functions

its Sturmian representation can be used, but in the present case one can

show [327] that the closure approximation with the mean energy �EE0 ¼ 4=9
a.u. gives satisfactory results. Therefore we are left with one numerical

integration over ’ which can be easily done. From the energy conserving

condition E ~kkf
¼ !X þN!� Iio �UP, we infer that the laser field induces

an increase of the binding energy by UP, as found experimentally [297].

The differential cross section (DCS) with the exchange of N laser photons,

normalized to the flux of incident x-ray photons, is defined by [320]

d�ðNÞ
d�

¼ 2�
!X

IX
kf ðNÞ jTfiðNÞj2, ð156Þ

where kf ðNÞ ¼ ð2E ~kkf
Þ1=2 is determined by the energy-conserving condition.

The total cross section (TCS) for the exchange of N photons is

�ðNÞ ¼
Z

d�
d�ðNÞ
d�

: ð157Þ
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Denoting by N0 the smallest negative integer for which ~kk2f is still positive,

we obtain for the TCS (summed over all N)

�tot ¼
X1

N¼N0

�ðNÞ: ð158Þ

D.3. Numerical examples

In our paper [325] we compared our results for the x-ray photoionization

cross sections in the presence of a monochromatic laser field with the

results of other work [313, 319, 329]. In the paper by Leone et al. [313]

the initial state was the ground state of the hydrogen atom and the final

state was the Coulomb–Volkov wave with an extra gauge factor: j�f ðtÞi ¼
exp½ i ~AAð!tÞ � ~rr �j ~kkf

iexpf�i½ ~kkf � ~��ð!tÞ þ UðtÞ þ E ~kkf
t�g.Theagreementbetween

their calculations and ours is good for low laser field intensities. For the

higher intensities we have noticed some differences. As an example,

we present in Fig. 21 the TCS as a function of the number N of the

exchanged photons for ! ¼ 1:17 eV, !X ¼ 50 eV, and I ¼ 5� 1012 Wcm�2.
These results correspond to the results shown in figure 5 of ref. [313]. In our

figure, filled circles refer to the �ðNÞ defined without the factor kf (as it was

done in ref. [313] and where it was shown that this factor comes from the

density of the final states). We notice that for jNj < 8, the sidebands corre-

sponding to the stimulated emission processes are larger than those found for

absorption. This fact is more pronounced in our case than in ref. [313]. For

higher intensities and frequencies these differences become more important

and they are significantly close to the threshold value N ¼ N0. For illustrat-

ing this, we have evaluated the TCS �ðNÞ as a function of the photoelectron

energy for ! ¼ 1:55 eV, !X ¼ 13!, and: (a) I ¼ 5� 1011 Wcm�2, (b) I ¼
3� 1012 Wcm�2, and (c) I ¼ 1:75� 1013 Wcm�2. The results obtained are

similar to those of figure 2 in the paper by Véniard et al. [329]. In ref. [329]

the photoelectron spectra were obtained via the numerical solution of the

time-dependent Schrödinger equation for a hydrogen atom in the presence

of both fields. The authors claim that they verified that their results are quite

different from the results of Leone et al. [313]. This indicates that the

approach of Leone et al. is not applicable for the laser field parameters

considered in ref. [329]. But, as our data [325] show, our method gives

quite satisfactory results. The only difference between the work of Véniard

et al. [329] and our results appear close to threshold, where our ionization

peaks are slightly suppressed. This difference has to be expected, because

for small values of E ~kkf
the influence of the bound states of atomic hydrogen
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becomes important. This influence, however, is not taken into account if

we use our improved Coulomb–Volkov waves. All other features of the

photoelectron spectra, presented in the work of Véniard et al. [329], were

recovered.

E. X-RAY–ATOM SCATTERING

E.1. Preliminaries

As we have seen before, the investigation of atomic processes in the

simultaneous presence of strong laser fields and soft x-ray pulses are

presently attracting considerable interests, both experimentally and theo-

retically. This is connected with the possibility of an efficient generation

of high-order harmonics of the driving laser field. The latest reports

[330, 331] show that it is possible to generate harmonic photons of the

energy 460 eV. The observation of the laser-assisted photoelectric effect

[297] was just possible by using soft x-ray pulses generated as high-order
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FIG. 21. The TCS (in a.u.) for the x-ray photoionization process in the presence of a linearly-

polarized laser field as a function of the number N of exchanged photons for ! ¼ 1:17 eV,
!X ¼ 50 eV, and I ¼ 5� 1012 Wcm�2. Filled circles refer to the data for �ðNÞ defined without

the factor kf (see ref. [325]).
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harmonics. There are also other schemes on which soft x-ray lasers can

operate (see refs. [332, 333] and references therein). There are only a small

number of theoretical contributions to this field (see, for example, our work

[325] on x-ray photoionization of hydrogen in the presence of a bichromatic

laser field, and references therein). In the present section, we shall consider

x-ray–atom scattering in the presence of a laser field. The number of

publications devoted to this process is even less than those investigations,

considering the laser-assisted x-ray photoionization, we have considered

before.

The elements of the x-ray scattering in the absence of a laser field can

be found in the textbooks by Heitler [334] and by Loudon [335].

The differential cross-section (DCS) for light scattering is expressed in the

quantum-mechanical scattering theory by the Kramers–Heisenberg for-

mula, which includes both elastic Rayleigh scattering and inelastic Raman

scattering. If the photon energy �hh! ~KK
of the x-ray is much larger than the

atomic excitation energy (but still small enough so that the dipole

approximation is valid [335]), then the DCS of elastic scattering process is

described by the Thomson scattering formula ðd�=d�ÞTh ¼ Z2r20ð~�� ~KK � ~�� ~KK 0 Þ
2,

where r0 ¼ 2:82� 10�15 m is the classical electron radius, Z denotes the

number of electrons in the atom, and ~�� ~KK and ~�� ~KK 0 are the unit polarization

vectors of the incident and scattered x-ray photons, respectively. In the

opposite case, where �hh! ~KK
is much smaller than the atomic excitation energy

(which we shall not consider here), the elastic DCS is proportional to !4
~KK
.

The intermediate case was analyzed numerically for scattering by hydrogen

in Gavrila’s work [336]. There are a lot of investigations in which x-ray

scattering by bound systems is considered in the absence of the laser

field, of which we mention an early work by Levinger [337] and more

recent work [338,339] on inelastic x-ray scattering (see also the references

in ref. [339]). According to our knowledge, besides the references on x-ray

photoionization mentioned in ref. [325], x-ray scattering in the presence of

a laser field was considered only in earlier work by one of the present authors

[69, 301, 302, 340] and in more recent work by Kálmán [314, 315, 341].

The latter work is devoted to the laser-assisted inelastic x-ray scattering as a

tool for determining the length of ultrafast x-ray pulses and is of no interest

for our present problem. For the laser-assisted x-ray scattering in the

context of electron–atom collisions in a laser field, see the recent review

article [29].

We shall first present the S-matrix theory of laser-assisted x-ray atom

scattering. Then we introduce some approximations, explain their range of

validity and define the T-matrices. This is followed by the derivation of

an expression for the DCS for laser-assisted x-ray atom scattering and we

apply the time-dependent WBK approximation to our problem and present
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our final expression for the DCS of laser-assisted x-ray scattering by

hydrogen atoms. The next subsection is devoted to the saddle-point method

analysis of the x-ray spectra and the numerical results for a monochromatic

linearly-polarized laser field are finally presented. This is followed by some

concluding remarks. We use SI units and for a better visualization of the

order of magnitude of the data obtained, we express the DCS in units of the

Thomson DCS and this is for hydrogen atoms and for parallel scattering

geometry equal to r20.

E.2. The S-matrix approach

In order to derive an expression for the DCS of laser-assisted x-ray atom

scattering, we start from a general form of the S-matrix

Sfi ¼ i �hh lim
t0!1

lim
t!�1

h�outðt0ÞjGðt0, tÞj�inðtÞi: ð159Þ

In the Eq. (159), G is the total Green’s operator which corresponds to the

total Hamiltonian

H ¼ H0 þ e~rr � ~EEXðtÞ, H0 ¼
~pp2

2m
þ V þ e~rr � ~EEðtÞ, ð160Þ

where e~rr � ~EEXðtÞ describes the interaction of the atom with the x-ray field

(using the length gauge and the dipole approximation), e~rr � ~EEðtÞ represents the
laser-atom interaction, also in the length gauge, andV is the atomic potential.

We shall treat the laser field classically, so that in the case of a linearly-

polarized and monochromatic field the laser electric-field vector ~EEðtÞ, having
the unit polarization vector ~��, the frequency ! and the intensity I, is given by

~EEðtÞ ¼ E0~�� sin!t, I ¼ 1

2
"0cE20: ð161Þ

In order to distinguish the x-ray field from the laser field, we shall treat

the x-ray radiation as quantized, i.e., according to ref. [335], we define

~EEXðtÞ ¼ ~EE
ðþÞ
X ðtÞ þ ~EE

ð�Þ
X ðtÞ,

~EE
ðþÞ
X ðtÞ ¼ i

X

~KK

�hh! ~KK

2"0V

� �1=2

~�� ~KKa ~KKe
�i! ~KK

t,

~EE
ð�Þ
X ðtÞ ¼ �i

X

~KK

�hh! ~KK

2"0V

� �1=2

~�� ~KK âa
y
~KK
ei! ~KK

t, ð162Þ
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where a ~KK and âa
y
~KK
are the annihilation and creation operators of the x-ray

field photons corresponding to the wave vectors ~KK , frequencies ! ~KK
, and unit

polarization vectors ~�� ~KK . V ¼ L3 is the quantization volume. We consider

the scattering of an x-ray photon with the initial wave vector ~KK and energy

�hh! ~KK
into a final state with the wave vector ~KK 0 and energy �hh! ~KK 0

. If we denote

the initial and the final atomic state vectors and ionization energies by j 0i
and Iio, respectively, then the in- and out-states, which appear in Eq. (159),

can be written as

j�inðtÞi ¼ j 0ieiIiot= �hhj1 ~KKij0 ~KK 0i, j�outðtÞi ¼ j 0ieiIiot= �hhj0 ~KK ij1 ~KK 0i: ð163Þ

The total Green’s operator satisfies the Lippmann–Schwinger equation

Gðt, t0Þ ¼ G0ðt, t0Þ þ
Z

dt00Gðt, t00Þ e~rr � ~EEXðt00ÞG0ðt00, t0Þ, ð164Þ

where the Green’s operator G0 of the Hamiltonian H0 operates in the vector

space of x-ray photons as a unit operator. Introducing Eq. (164) into

Eq. (159) and taking into account that the total Green’s operator, by

acting on the out-state, yields a total final state at the time t of the form,

h�f ðtÞj ¼ i �hhh�outð1ÞjGð1, tÞ, while the operator G0 only acts on the atomic

part of the in-state as i �hhG0ðt, �1Þj 0i expðiIiot= �hhÞ ¼ j iðtÞi, we obtain

ðS � 1Þfi ¼ �
i

�hh

Z 1

�1
dth�f ðtÞj e~rr � ~EEXðtÞj iðtÞij1 ~KK ij0 ~KK 0i: ð165Þ

By applying once more Eq. (164), we find for the final state

h�f ðtÞj ¼ i�hhh�outð1Þj½G0ð1, tÞ þ
Z

dt0G0ð1, t0Þ e~rr � ~EEXðt0ÞGðt0, tÞ�: ð166Þ

Substituting Eq. (166) into Eq. (165) and taking into account that h0 ~KK jh1 ~KK 0 j
~EEXðtÞj1 ~KKij0 ~KK 0i ¼ ~00 and that h�outð1ÞjG0ð1, tÞ ¼ ð�i= �hhÞh f ðtÞj h0 ~KK jh1 ~KK 0 j, we
obtain

ðS � 1Þfi ¼ �
i

�hh

Z 1

�1
dt

Z
dt0h f ðt0Þjh0 ~KK jh1 ~KK 0 je~rr � ~EEXðt

0Þ

� Gðt0, tÞ e~rr � ~EEXðtÞ j  iðtÞij1 ~KKij 0 ~KK 0i: ð167Þ
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E.3. Approximations and the T-matrices

By now the only simplifications we used were the nonrelativistic and the

dipole approximation. They are satisfied for x-ray photon energies less than

100 eV, which we are considering [335]. Supposing that the x-ray field is

not too strong, we obtain from Eq. (164) Gðt, t0Þ � G0ðt, t0Þ. In this case, the

remaining matrix elements in the vector space of the x-ray photons give the

following result for the S-matrix

ðS � 1Þfi ¼ �
i

�hh

�hhe2

2"0V
ð! ~KK

! ~KK 0
Þ1=2

Z 1

�1
dt

Z
dt0
�
h f ðt0Þj~rr � ~�� ~KKG0ðt0, tÞ

� ~rr � ~�� ~KK 0 j iðtÞie�i! ~KK
t0þi! ~KK 0

t

þ h f ðt0Þj~rr � ~�� ~KK 0G0ðt0, tÞ~rr � ~�� ~KK j iðtÞiei! ~KK 0
t0�i! ~KK

t

�
: ð168Þ

Our next approximation is to neglect the laser field dressing of the initial

and final states, i.e., the substitution j jðtÞi � j 0i expðiIiot= �hhÞ, j ¼ i, f . This

approximation is valid for laser field intensities much less than the atomic

unit of intensity IA ¼ 3:51� 1016 Wcm�2, which is satisfied in our case.

Furthermore, we have shown in ref. [325] that the first-order corrections,

obtained for these wavefunctions from the time-dependent perturbation

theory, give only small contributions to the DCS of photoionization

processes. Using these approximations and transforming the integrals over

the times in Eq. (168) by means of the identity
R1
�1 dt

R1
t

dt0f ðt0, tÞ ¼R1
�1 dt0

R t0
�1 dtf ðt0, tÞ, upon introducing the new variables t00 ¼ t0, � ¼ t0 � t,

and after writing t instead of t00 in the final expression, we obtain

ðS � 1Þfi ¼ �
i

�hh

�hhe2

2"0V
ð! ~KK

! ~KK 0
Þ1=2

Z 1

�1
dt

Z 1

0

d�e�iIiot= �hhh 0j
�
~rr � ~�� ~KKe

�i! ~KK
tG0ðt, t� �Þ~rr � ~�� ~KK 0e

i! ~KK 0
ðt��Þ

þ ~rr � ~�� ~KK 0e
i! ~KK 0

t
G0ðt, t� �Þ~rr � ~�� ~KKe

�i! ~KK
ðt��Þ

�
j 0ieiIioðt��Þ=�hh: ð169Þ

Our next approximation is to neglect in Eq. (169) the influence of the

Coulomb field on the intermediate propagator, i.e., to replace the Green’s

operator G0 by the Gordon–Volkov Green’s operator

G0ðt, t� �Þ � �
i

�hh

Z
d ~qqj�~qqðtÞih�~qqðt� �Þj, ð170Þ
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where the Gordon–Volkov state vectors in the length gauge are [with
~EEðtÞ ¼ �@ ~AAðtÞ=@t, e ¼ jej]

j�~qqðtÞi ¼ j~qqþ
e

�hh
~AAðtÞi expf�i½~qq � ~��ðtÞ þ ðUðtÞ þ E~qqtÞ= �hh�g, ð171Þ

with

~��ðtÞ ¼ e

m

Z t

dt0 ~AAðt0Þ, UðtÞ ¼ e2

2m

Z t

dt0 ~AA2ðt0Þ ¼ U1ðtÞ þUPt, ð172Þ

where UP ¼ e2A2
0=4m is the ponderomotive potential, E~qq ¼ �hh2 ~qq2=2m, and

A0 ¼ E0=!. This approximation was successfully used in the analysis of

high-order harmonics generation [181, 233] and above-threshold ionization

[224, 342]. Corrections to this approximation can be obtained by replacing

the Gordon–Volkov waves by the Coulomb–Volkov waves or by the

laser-field modified Coulomb–Volkov waves, but we shall not consider this

here (see ref. [325] and references therein). The quasi-classical action which

corresponds to the propagation from the atomic ground state at time t� �
to the ground state at time t is

Sð~qq; t, �Þ ¼
Z t

t��
dt0

�hh2

2m
½~qqþ e

�hh
~AAðt0Þ�2 þ Iio

� �

¼ ðE~qq þ Iio þUpÞ� þ �hh~qq � ½~��ðtÞ � ~��ðt� �Þ� þ U1ðtÞ � U1ðt� �Þ:
ð173Þ

Both matrix elements which appear in Eq. (169) contain the factor

exp½�ið! ~KK
� ! ~KK 0

Þt�. Taking into account that ~EEðtÞ, ~AAðtÞ, ~��ðtÞ, U1ðtÞ, and

Sð~qq; t, �Þ are 2�=!-periodic functions of t, the remaining part of the two

matrix elements mentioned above can be written in the form C ~KK, ~KK 0
T ð	Þ

~KK , ~KK 0
ð’Þ,

with C ~KK , ~KK 0
¼ ð �hhe2=2"0VÞð! ~KK

! ~KK 0
Þ1=2, and ’ ¼ !t, while

T ð	Þ
~KK, ~KK 0
ð’Þ ¼

Z 1

0

d�

Z
d ~qqh 0j~rr � ~�� ~KK j~qqþ

e

�hh
~AAðtÞi

� ~qqþ e

�hh
~AAðt� �Þj~rr � ~�� ~KK 0 j 0

D E
expf�i½Sð~qq; t, �Þ=�hh	 ! ~KK 0

��g, ð174Þ

so that

ðS � 1Þfi ¼ ð�i= �hhÞ2C ~KK, ~KK 0

Z 1

�1
dt T ðþÞ

~KK , ~KK 0
ð’Þ þ T ð�Þ

~KK 0, ~KK
ð’Þ

h i
exp½�ið! ~KK

� ! ~KK 0
Þt�:

ð175Þ
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By expanding the matrix elements T ð	Þ
~KK , ~KK 0
ð’Þ into a Fourier series

T ð	Þ
~KK, ~KK 0
ð’Þ ¼

X1

N¼�1
T
ð	Þ
~KK , ~KK 0
ðNÞ expð�iN’Þ,

T
ð	Þ
~KK , ~KK 0
ðNÞ ¼

Z 2�

0

d’

2�
T ð	Þ

~KK, ~KK 0
ð’Þ expðiN’Þ,

ð176Þ

we obtain

ðS � 1Þfi ¼ ð�i= �hhÞ2C ~KK, ~KK 0
2�
X

n

�ð! ~KK 0
� ! ~KK

�N!ÞTfiðNÞ,

TfiðNÞ ¼ T
ðþÞ
~KK , ~KK 0
ðNÞ þ T

ð�Þ
~KK 0, ~KK
ðNÞ: ð177Þ

The physical meaning of the two T-matrix elements in Eq. (177) is the

following. The matrix element T
ð�Þ
~KK 0, ~KK
ðNÞ corresponds to the processes in

which an x-ray photon of the wave vector ~KK and energy �hh! ~KK
is absorbed

first. The atom becomes ionized and the electron propagates under the

influence of the laser field only during the time interval from t� � to t when

it comes back to the atomic core (i.e., the return time �). At this instant the

electron recombines, exchanging N photons with the laser field and emitting

an x-ray photon of the wave vector ~KK 0 and of the energy �hh! ~KK 0
¼ �hh! ~KK

þ n �hh!.
For the matrix element T

ðþÞ
~KK , ~KK 0
ðnÞ we have first the emission of the x-ray

photon with the wave vector ~KK 0 and the energy �hh! ~KK 0
, then the electron

propagation and, finally, the absorption (or emission) of N photons of the

laser field and the absorption of one x-ray photon of the wave vector ~KK and

the energy �hh! ~KK
.

E.4. Differential cross-section

The rate (probability per unit time) of emission of x-ray photons of

frequencies within the interval ð! ~KK 0
� ",! ~KK 0

þ "Þ and with the polarization

~�� ~KK 0 into a solid angle d�
~̂KK 0~KK 0
is [335]

wfid� ~̂KK~KK
0 ¼

1

Tp

V

ð2�cÞ3
d�

~̂KK 0~KK 0

Z !K 0þ"

!K 0�"
d! ~KK

! ~KK
2jðS � 1Þfij2, ð178Þ

where Tp is the laser pulse duration time and the connection
P

~KK
!

V=ð2�Þ3
R
d ~KK ¼ V=ð2�cÞ3

R
d! ~KK

!2
~KK

R
d�

~̂KK~KK
was used. " is considered small

enough so that !2
~KK
jðS � 1Þfij2 is almost constant over the interval of

integration. The duration time of x-ray pulses generated in high-order
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harmonic generation processes is usually shorter than the duration of the

laser field pulse. Hence one can assume that the x-ray scattering process

happens at some instant ts 2 ½0,Tp�. According to Eq. (177), we obtain for

the absolute square of the S-matrix element

jðS � 1Þfij2 ¼
2�

�hh2
C ~KK , ~KK 0

� �2X

N

TfiðNÞ�ð! ~KK 0
� ! ~KK

�N!Þ

�
X

N
0
TfiðN 0Þ�ð! ~KK 0

� ! ~KK
�N 0!Þ

¼ Tp

2�

2�

�hh2
C ~KK , ~KK 0

� �2X

N

jTfiðNÞj2�ð! ~KK 0
� ! ~KK

�N!Þ, ð179Þ

where we used the relation 2��ð0Þ ¼ Tp (for Tp!1). The differential cross

section can be obtained by dividing the emission rate wfiðNÞ by the incident

x-ray photon flux j ~KK ¼ c=V . Taking into account the quantity C ~KK , ~KK 0
, defined

above Eq. (174), we obtain

d�ðNÞ
d�

~̂KK 0~KK 0

¼ e2

4�"0�hh

� �1=2

KK 03jTfiðNÞj2, ! ~KK 0
¼ ! ~KK

þN!, ð180Þ

where K ¼ ! ~KK
=c, K 0 ¼ ! ~KK 0

=c, and the energy-conserving condition �hh! ~KK 0
¼

�hh! ~KK
þN�hh! comes from the argument of the �-function. This is our final

result for the DCS of x-ray atom scattering with the absorption (N > 0) or

emission ðN < 0Þ of N laser photons.

E.5. Time-dependent WBK approximation

In order to evaluate the DCS we have to compute the T-matrices which

are the Fourier components of the matrix elements T ð	Þ
~KK , ~KK 0
ð’Þ, defined by

Eq. (174). The three-dimensional integral over the intermediate electron

momenta �hh~qq can be computed using the saddle-point method. This can

be done in a similar way as shown in ref. [233]. Denoting the subintegral

matrix elements by hð~qq; t, �Þ, we obtain with ~pp ¼ �hh~qq the result

�hh3
Z

d ~qq hð~qq; t, �Þ exp½�iSð~qq; t, �Þ= �hh�

¼ 2�m �hh

i�

� �3=2

exp½�iSð~qqs; t, �Þ= �hh� 1� i
m �hh

2�

@2

�hh2@~qq2
þ � � �

� �

� hð~qq; t, �Þ j~qq¼~qqsðt, �Þ, ð181Þ
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where the stationary momentum �hh~qqs, given by

�hh~qqsðt, �Þ ¼ �
e

�

Z t

t��
dt0 ~AAðt0Þ ¼ m

�
½~��ðt� �Þ � ~��ðtÞ�, ð182Þ

is the solution of the equation ~rr~qqSð~qq; t, �Þ ¼ 0. The result in Eq. (181) is

a particular version of the time-dependent WBK approximation [234].

We have shown in the context of high-order harmonic generation and above-

threshold ionization within the strong-field approximation [224, 233, 342]

that satisfactory results can be obtained by keeping only the zeroth-order

term of the expansion of the form Eq. (181). For the processes mentioned

before, the number N of the exchanged photons is large. It will be worth-

while to check whether this approximation is also applicable for relatively

small N which we shall consider here. In order to verify this, we computed

the first-order correction (the term with @2=@~qq2) and found that the

above approximation is satisfactory for jNj > 2. This is an unexpected result

which shows that the above approximation, Eq. (181), has a wider range of

applicability than it was expected previously. The matrix elements which

appear in T ð	Þ
~KK, ~KK 0
ð’Þ are of the form (for a hydrogen atom in its ground

state j 0i)

h~qqj~�� ~KK � ~rrj 0i ¼ �i
27=2 ~qq � ~�� ~KK

�a5=2B ð~qq2 þ a�2B Þ
3
, ð183Þ

where aB is the Bohr radius. In the case of a linearly-polarized laser field

we have ~qq ¼ ~qqs k ~��, so that the DCS contains the factor ð~�� � ~�� ~KK Þ
2ð~�� � ~�� ~KK 0 Þ

2.

This factor has its maximum (equal to 1) for parallel geometry: ~�� k ~�� ~KK k ~�� ~KK 0 .
In order to simplify the situation, we shall therefore present numerical

results for this geometry only.

Our final result for the DCS, used for evaluating numerical result, is

given by Eq. (180) in which

TfiðNÞ ¼ T
ðþÞ
~KK, ~KK 0
ðNÞ þ T

ð�Þ
~KK 0, ~KK
ðNÞ, T ð	Þ

~KK, ~KK 0
ðNÞ ¼

Z 2�

0

d’

2�
T ð	Þ

~KK , ~KK 0
ð’Þ expðiN’Þ,

ð184Þ

where the T ð	Þ
~KK , ~KK 0
ð’Þ are given by Eq. (174). According to Eq. (183), the

zeroth-order term of the WBK expansion Eq. (181) yields for the parallel
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geometry

T ð	Þð0Þ
~KK, ~KK 0
ð’Þ ¼ � 2�m

i �hh

� �3=2
27

�2a5B

Z 1

0

d�

�3=2
expf�i½Sð~qqs; t, �Þ 	 �hh! ~KK 0

��= �hhg

� ½qs þ e= �hhAðtÞ�½qs þ e= �hhAðt� �Þ�
f½qs þ e= �hhAðtÞ�2 þ a�2B g3f½qs þ e= �hhAðt� �Þ�2 þ a�2B g3

, ð185Þ

where S and ~qqs � qs~�� are given by Eqs. (173) and (182), respectively, and
~AAðtÞ � AðtÞ~��.

E.6. Saddle-point method analysis of the x-ray spectra

According to Eqs. (177) and (180) the DCS for scattering in a laser field is

determined by the T-matrix TfiðNÞ ¼ T
ðþÞ
~KK , ~KK 0
ðNÞ þ T

ð�Þ
~KK 0, ~KK
ðNÞ. The matrix

elements T
ð	Þ
~KK, ~KK 0
ðNÞ can be evaluated by computing the five-dimensional

integral over the time t, the return time �, and the intermediate electron

momenta ~qq. We have shown in the previous section that the three-

dimensional integral over the intermediate electron momenta can be

replaced by an infinite sum of matrix elements. The resulting integrals

can also be analyzed by applying the saddle-point method. The behavior

of all these matrix elements is mainly determined by the factors

which appear in the exponent. According to Eqs. (174)–(176) and (181)

we have

T
ð	Þ
~KK, ~KK 0
ðNÞ /

Z
dt

Z
d� ��3=2 hð~qqs; t, �Þ expf�i½Sð~qqs; t, �Þ= �hh	 ! ~KK 0

� �N!t�g:

ð186Þ

By applying the saddle-point method to the integral over the time t we

obtain the condition @S=@t ¼ N �hh!, which can be written in the form

~��
2ðtÞ
2m
� ~��

2ðt� �Þ
2m

¼ N �hh!, ð187Þ

where ~��ðt0Þ ¼ �hh~qqsðt0, �Þ þ e ~AAðt0Þ is the momentum of the electron in the

laser field at time t0. The second condition can be obtained by applying

the saddle-point method to the integral over �. This condition depends

on the T-matrix element which we are considering and we obtain,
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respectively

for T
ðþÞ
~KK, ~KK 0
ðNÞ : ~��

2ðt� �Þ
2m

¼ ��hh! ~KK 0
� Iio,

for T
ð�Þ
~KK 0, ~KK
ðNÞ : ~��

2ðt� �Þ
2m

¼ þ�hh! ~KK
� Iio: ð188Þ

The right-hand side of the first of the above equations is always negative,

so that the solutions for t and � are complex. A similar condition was

obtained in the context of the analysis of the cutoff law in high-order

harmonic generation [181, 233]. The more interesting is the second condition

of Eq. (188), because for �hh! ~KK
� Iio it corresponds to real times t and �.

By considering numerical examples, we shall show in the next section that

this term essentially determines the behavior of the final x-ray spectra.

The matrix element T
ð�Þ
~KK 0, ~KK
ðNÞ corresponds to a process in which an x-ray

photon is absorbed first. For �hh! ~KK
� Iio the electron can really be ionized

and it has the energy ~��2ðt� �Þ=2m in the laser field at the instant t� �. Then
this electron moves under the influence of the laser field only. At some time t

it comes close to the atomic core and can be recaptured by the nucleus.

The recombination process is the most probable one for low electron

energies, i.e., for ~��
2ðtÞ=2m � 0. Introducing this condition into Eq. (187) we

obtain ~��
2ðt� �Þ=2m ¼ �N �hh!, which, in combination with the second

condition in Eq. (188), yields

N �hh! ¼ Iio � �hh! ~KK
: ð189Þ

Therefore we obtain a simple linear dependence which connects the

number N of absorbed (or emitted) photons of the laser field, the atomic

ionization potential Iio, and the energy of the incident x-ray photon �hh! ~KK
.

Besides this condition, we should take into account the energy conserving

condition �hh! ~KK 0
¼ �hh! ~KK

þN �hh! � 0, which determines the cutoff of the

spectrum at large negative values of N. Moreover we have to observe that,

according to symmetry and parity considerations of the matrix elements

the number N of the exchanged photons must be even. As we shall show

in the next section, the x-ray spectrum is mainly determined by these

conditions. The condition Eq. (189), and consequently the values of N which

characterize the spectrum, do not depend on the intensity of the laser-field.

We shall see that the DCS increase with the increase of the laser

field intensity, but the general shape of the spectrum is determined by the

simple condition Eq. (189).
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E.7. Numerical results

First we shall check whether our time-dependent WBK approximation gives

reasonable results. In Fig. 22 we present for two values of the laser-field

intensity our data for the DCS (in units of r20) of laser-assisted x-ray atom

scattering as functions of the number N of photons exchanged with the laser

field. The triangles and squares refer to the results obtained with the zeroth-

and the first-order term of the WBK expansion Eq. (181), while the dotted

and the dashed line correspond to the use of the zeroth-order term only.

As we can see, for jNj > 2 the zeroth-order approximation gives satisfactory

results. Moreover, the results presented in Fig. 22 show the typical behavior

of the x-ray spectra which we obtained in this calculation. First of all, only an

even number of laser photons is absorbed or emitted. Second, forN ¼ 0, 	 2

the spectrum has a pronounced maximum and then there is a rapid drop

at N ¼ 	4. Beyond that there is a plateau which is quite different for

the positive and the negative values of N. The height of the plateau is

determined by the laser-field intensity. The plateau for positive N is small

FIG. 22. The DCS of x-ray scattering in units of r20 (r0 ¼ 2:82� 10�15 m is the classical

electron radius) as function of the number N of absorbed (or emitted) laser field photons for

two values of the laser field intensity: I ¼ 5� 1013 Wcm�2 (squares and dotted curve) and

I ¼ 1014 Wcm�2 (triangles and dashed curve). The laser field is linearly polarized and

monochromatic with the photon energy �hh! ¼ 1:17 eV. The energy of the incident x-ray photons

is �hh! ~KK
¼ 50 eV. The results presented by the dotted and dashed curves are obtained by using the

zeroth-order term of the WBK approximation (see the text), while the triangles and squares

refer to the results obtained by taking into account the first-order correction (see ref. [343]).
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(almost negligible) in comparison with the plateau for the negative values of

N. In Fig. 23 we analyze the contributions of the matrix elements T
ðþÞ
~KK , ~KK 0
ðNÞ

andT
ð�Þ
~KK 0, ~KK
ðNÞ to theDCS.The results denoted by ‘‘a’’ correspond to thematrix

elements T
ð�Þ
~KK 0, ~KK
ðNÞ and refer to the processes in which an x-ray photon is

absorbed first, while the results denoted by ‘‘e’’ belong to the elements

T
ðþÞ
~KK , ~KK 0
ðNÞ and refer to the processes in which we have first the emission of an

x-ray photon. We see that the ‘e’-spectrum is symmetric with respect to

N ¼ 0, while the ‘a’-spectrum has a broad plateau for the negative values of

N. Therefore, the x-ray spectra are mainly determined by those processes in

which the x-ray photon is absorbed first and which is in accordance with our

analysis presented in the previous section. For the results shown in Figs. 22

and 23 the incident x-ray photon energy was taken to be �hh! ~KK
¼ 50 eV

and the laser field photon energy was chosen �hh! ¼ 1:17 eV, while the

laser field intensities were I ¼ 5� 1013 Wcm�2, I ¼ 6� 1013 Wcm�2, and
I ¼ 1014 Wcm�2.

E.8. Concluding remarks

Only little work was so far devoted to x-ray–atom scattering in the presence

of a laser field. We presented above our S-matrix theory of this process that

FIG. 23. The DCS of x-ray scattering in the presence of a laser field presented in the same

way as in Fig. 22. The curves denoted by 6 and 10 refer to the laser field intensities

I ¼ 6� 1013 Wcm�2 and I ¼ 1014 Wcm�2, respectively. The results obtained by using only the

matrix element that belongs to the process in which an x-ray photon is absorbed first, are

denoted by the letter ‘‘a’’, while the letter ‘‘e’’ refer to the process in which there is first the

emission of an x-ray photon (see ref. [343]).
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leads, after suitable approximations, to a relatively simple expression for

the DCS, Eq. (180). The T-matrix element, contained in this expression,

consists of two terms that can be explained in terms of two Feynman

diagrams: one corresponds to the processes in which the x-ray photon

is absorbed first, while in the other one the x-ray photon is emitted first.

The intermediate propagator between the points of absorption and the

emission of the x-ray photons is dressed by the laser field so that thanks

to parity conservation in x-ray–atom scattering in a laser field only an even

number of laser-field photons can be absorbed or emitted. We showed that

the expression obtained for the DCS can be further simplified by applying

a particular version of the time-dependent WBK approximation. This

method was developed within the strong-field approximation for high-order

harmonics generation [181, 233] and above-threshold ionization [224, 342]

and is assumed to be applicable in those cases where the number N of

exchanged photons is large. Contrary to this assumption, we showed here

that this method also works well for relatively low laser-field intensities

and for small values of N. A further result of our application of the

saddle-point method leads to the conclusion that the x-ray spectra are

mainly determined by those processes in which the x-ray photon is absorbed

first. In this case, the atom becomes ionized and the electron moves quasi-

freely in the laser field. If its energy is small enough when it comes close

to the atomic core, it can be recaptured and an x-ray photon is emitted.

We demonstrated that this process is most probable when the number of

the exchanged photons satisfies the condition Eq. (189), N �hh! ¼ Iio � �hh! ~KK
.

For �hh! ~KK
> Iio mostly an even number of photons is emitted into the laser

field, and the energies of the scattered x-rays �hh! ~KK 0
¼ �hh! ~KK

þN �hh!, is thus

smaller than the energy of the incident x-ray.

The above problem of x-ray–atom scattering in a monochromatic laser

field was considered by the present authors in ref. [343], while the more

general scattering process in a bichromatic field was investigated in ref.

[344], emphasizing the coherent phase control of x-ray–atom scattering. The

high-energy plateau of scattered x-ray photons, that is induced by the

presence of a static electric field in the laser-assisted x-ray–atom scattering

process, was analyzed in ref. [345]. In this investigation it was found that by

adding a static electric field, the dynamics of the process becomes changed

in the intermediate states, giving rise to an extended plateau of scattered

x-rays of photon energies �hh! ~KK 0
¼ �hh! ~KK

þN �hh! with N > 0. This leads to a

substantial increase of the energies of the scattered x-rays which thus can

reach into the frequency domain of the ‘‘water window’’ [346]. Finally, in

ref. [347] Milos̆ević and Starace investigated the intensity-dependence of the

plateau structure in the laser-assisted x-ray–atom scattering process,

considering the two cases: with and without a static electric field. Using
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the ‘‘three-step model’’ of HHG and some semiclassical arguments, the

connection between the laser-assisted x-ray–atom scattering process and

HHG was established, and additional plateaus in the x-ray spectra were

observed and analyzed.

F. GENERATION OF HARMONICS

F.1. Introduction

The generation of higher harmonics, besides the above-threshold ionization

in laser–atom interactions, can also be understood on the basis of general

scattering theory. From the unitarity of the scattering operator, SþS ¼ 1,

and the definition of the transition operator, S ¼ 1� 2�iT , we obtain the

relation T � Tþ ¼ �2�iTþT . Now we apply this relation to atomic

interactions with the radiation field, denoting by " the powers of interaction.
Then we can make the formal expansion T ¼ T0 þ "T1 þ "2T2 þ � � � and
insert it into the above relation. Considering now second order processes

in " and taking the same initial and final atomic state jgi, we obtain

2ImhgjT2jgi ¼ �2�
X

n

jhnjT1jgij2: ð190Þ

Hence to every photon absorption process by an atomic system will

correspond a dispersive photon scattering process and vice versa. General-

izing Eq. (190) to multiphoton processes, we expect that higher harmonic

generation will be concomitant with multiphoton ionization.

High-harmonic generation (HHG) is one of the major topics of intense-

field laser–atom physics [9, 17, 18, 21, 26, 174, 175, 280, 348–350]. When an

atomic gas (or any nonlinear medium) is irradiated by a short intense laser

pulse the atoms emit coherent radiation at frequencies that are multiples of

the laser field frequency !. The generation efficiency of these harmonics is

characterized by a rapid drop at low orders, followed by a broad plateau

with approximately constant efficiency and a sharp cutoff. The plateau

was experimentally observed at the end of the 1980s [351, 352]. The emitted

high-harmonic photon energy in more recent experiments reaches several

hundred eV, i.e., the harmonic order is above 300 [330, 331, 353, 354]

(in ref. [350] the XUV spectrum is presented that extends beyond 500 eV,

i.e., to the short-wavelength edge of the water window at 2.3 nm, the K-edge

of oxygen). For a linearly-polarized laser field with the electric field vector ~EEL
and the frequency !, the cutoff corresponds to the emitted high-harmonic

photon energy Nmax �hh! � jE0j þ 3:17UP, where jE0j ¼ Iio is the atomic

ionization energy and UP ¼ he~EELi2=ð2m!2Þ is the ponderomotive energy of

II] SCATTERING AND REACTION PROCESSES 473



the electron. The harmonics with the photon energies higher than Nmax �hh!
are produced with an exponentially diminishing efficiency thus becoming

rapidly indistinguishable from the background. The HHG process is entirely

nonlinear and nonperturbative. It can be explained by using the three-step

quasiclassical model [172, 173, 355], as discussed in the historical overview

in Section II.A. According to this model, the atom is ionized by a tunneling

process (step 1). The escaped electron is driven by the field and returns to

the atomic core (step 2), emitting a harmonic photon during the transition

back to the ground state (step 3). The maximum kinetic energy acquired

by a free electron in a linearly-polarized laser field when it returns to the

nucleus is 3:17UP, which explains the cutoff energy of the emitted harmonic

photons. Both the classical [172, 173, 355] and quantum [180, 181, 356, 357]

calculations have confirmed this model. A schematic diagram of the three-

step model is presented in Fig. 14, while an example of the spectrum,

calculated using the S-matrix method which will be presented below, is

shown in Fig. 24.

In the present section we shall concentrate on the microscopic single-atom

theory of HHG that describes the response of an atom to the fundamental

FIG. 24. Harmonic emission rate as a function of the harmonic order N for HHG by He

atoms (ionization energy Iio ¼ 24:588 eV) with a linearly polarized Ti:Sapphire laser

(wavelength 800 nm) having the intensity I ¼ 1015 Wcm�2. The results are obtained by using

the semi-analytical approach, described in the text. The plateau and the cutoff regions of the

spectrum are marked in the figure. According to refs. [181, 358] the cutoff is at Nmax �hh! ¼ 1:325
jE0j þ 3:173UP, which is in excellent agreement with the results presented (Nmax ¼ 143).
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laser field. A complete theory should also include the macroscopic response

of the system and the coherent emission of all the atoms in the laser focus.

HHG can only be observed by an ensemble of atoms that introduces

phase matching. In this case, one has to solve Maxwell’s equations for the

fundamental field and the harmonic field, with the single-atom harmonic

field as the source term. This is the so-called propagation theory [175], which

we shall not consider here. The problem of the single-atom response can be

solved by using different approaches. The classical phase space averaging

method was considered in [359–361]. The characteristics of the high-

harmonic spectra were also reproduced by using a simple two-level model,

implying that these characteristics are common to strongly driven nonlinear

systems (see ref. [362] for the first analysis and refs. [363, 364] for more

recent contributions). Numerical methods based on the Floquet theory were

presented in ref. [365] (see also the review article [18]). The method of direct

integration of the three-dimensional time-dependent Schrödinger equation

was initiated by Kulander [366]. This method was developed further by

using different codes (see, for example, the references in the review

articles [17, 175]). The above-mentioned numerical methods are within

the single-active-electron approximation. According to a review article on

two-electron atoms in strong fields by Lambropoulos et al. [367] and the

recent Focus issue on laser-induced multiple ionization [368], HHG

is basically a single electron phenomenon described quite well by the

single-active-electron models. The correlation effects play little role in HHG

for visible and near infrared light, while for higher laser frequencies they

can be of importance (see references in ref. [369], where HHG with two

active electrons was considered). Within the fully numerical approaches, but

beyond the single-active-electron approximation, a variant of the time-

dependent density functional theory was shown to be very useful [370,371].

The quantum-fluid-dynamics approach to HHG was explored in ref. [277].

A hydrodynamics model and a variant of the Thomas–Fermi model was

used in ref. [372] to investigate the response of a multi-electron atom to an

intense radiation field at high photon energies up to 40 eV. The limitations

of the fully numerical approaches are that they are quite memory and time

consuming. For more complicated cases, such as elliptically-polarized

and bichromatic laser fields, the presence of static fields, relativistically-

strong laser field, etc., semi-analytical methods are more useful.

The semi-analytical approaches to HHG based on the strong-field

approximation (SFA) were developed in [180, 181, 356, 357]: the harmonic

spectrum is obtained as the Fourier transform of the real time-dependent

effective-dipole matrix element ~ddedðtÞ ¼ h�ðþÞðtÞje~rrj�ðþÞðtÞi, where j�ðþÞðtÞi
is the wave vector which describes the electron in presence of both the laser

field and the atomic potential. This real effective-dipole expectation value is
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required as the source term for the integration of the Maxwell equations.

However, if just the harmonic emission of a single atom is considered, then

the S-matrix element, instead of the effective-dipole matrix element, is the

useful quantity. The S-matrix formulation of the atomic processes in the

laser field can be found in ref. [109]. We shall use the S-matrix theory that

we have employed in previous sections. Instead of using ~ddedðtÞ, we calculate
in the S-matrix approach the complex quantity ~ddsmðtÞ ¼ h�ð�ÞðtÞje~rrj�ðþÞðtÞi,
where the wave vectors j�ðþÞðtÞi and j�ð�ÞðtÞi evolve from the initial and

final state, respectively, under the action of the corresponding total Green’s

operators GðþÞ and Gð�Þ. The first attempt to apply the S-matrix theory to

HHG was made in ref. [373]. In ref. [374] the difference between the

S-matrix approach and the effective-dipolemethod was discussed. Besides the

effective-dipole vs. the S-matrix method, the semi-analytical approaches to

HHG can also be distinguished, depending on how one treats the laser field

and the harmonic field, either classically or quantum-electrodynamically

(i.e., using the photon creation and annihilation operators). Usually, both

fields are treated classically (see refs. [180,181] for the effective-dipole

approach and [375, 376] for a method similar to the S-matrix approach that

leads to the complex time-dependent dipole matrix element). In the refs.

[377–380] both fields were treated quantum-electrodynamically, and the

HHG problem was analyzed as a time-independent scattering process.

However, by appropriate transformations one can introduce the time

dependence into this approach that permits the interpretation in terms of the

three-step model [381]. In our review, we shall use a mixed representation in

which the laser field is considered as classical, while the harmonic field is

treated by quantum electrodynamics. This approach is justified since the

quantum-electrodynamical treatment of the electromagnetic field, taken in

the laser-field approximation (i.e., for a large number of photons in the field

mode), is equivalent to the classical treatment [109]. By means of this

approach, we shall formulate a general S-matrix theory for the HHG process.

This method was similar to our S-matrix theory for laser-assisted x-ray–

atom scattering [343] developed in Section II.E. More recently, a similar

approach was presented in refs. [382, 383].

In refs. [384–386] it was shown within the quasi-stationary quasi-energy

approach that we have to use instead of the time-dependent effective-dipole

matrix element the expression ~dddual ¼ h�ðþÞdualðtÞje~rrj�ðþÞðtÞi, where �
ðþÞ
dualðtÞ

is the dual state that corresponds to the state �ðþÞðtÞ. The dual quasi-

stationary states were introduced in order to achieve the proper normaliza-

tion condition. The results of the dual-space method coincide (within some

approximations) with those of the S-matrix method. An advantage of

the S-matrix calculation is that in this approach the initial and final states

do not need to be the same.
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Instead of computing the time-dependent dipole, one can calculate the

time-dependent acceleration ~aaðtÞ ¼ h�ðþÞðtÞje €~rr~rr j�ðþÞðtÞi. This method allows

to avoid some computational difficulties. The Fourier transforms of ~aaðtÞ and
~ddðtÞ are simply related by the formula FNð~aaÞ ¼ ðN!Þ2FNð ~ddÞ [362, 387, 388].

F.2. S-matrix theory of high-harmonic generation

We shall start with a general form of the S-matrix [92] (in SI units)

Sfi ¼ i �hh lim
t0!1

lim
t!�1

h�outðt0ÞjGðþÞðt0, tÞj�inðtÞi, ð191Þ

where the total Green’s operator G corresponds to the Hamiltonian

HðtÞ ¼ H0ðtÞ þ e~rr � ~EEHðtÞ, H0ðtÞ ¼
~pp2

2m
þ VA þHLðtÞ: ð192Þ

Here VA is the atomic potential, while e~rr � ~EEHðtÞ and HLðtÞ ¼ e~rr � ~EELðtÞ
represent the interactions of the atom with the high-harmonic field and the

laser field, respectively (in the length gauge; e ¼ jej). In order to distinguish

the high-harmonic radiation field from the (classical) laser field, we treat

it as a quantized field, i.e., according to ref. [335], we define

~EEHðtÞ ¼
X

~KK

c ~KK a
y
~KK
eið! ~KK

t� ~KK � ~RRÞ~��~KK � a ~KKe
�ið! ~KK

t� ~KK� ~RRÞ~�� ~KK

h i
, ð193Þ

where c ~KK ¼ �i �hh! ~KK
=ð2"0VÞ

� 	1=2
, and a ~KK and a

y
~KK
are the annihilation and

creation operators of the high-harmonic photon, having the wave vector ~KK ,

frequency ! ~KK
, and complex unit polarization vector ~�� ~KK . V is the quanti-

zation volume and ~RR is the coordinate of the center of mass of the atom.

The interaction with the laser field is turned off for the in and out states,

so that

j�inðtÞi ¼ j 0iðtÞij0 ~KKi, j�outðtÞi ¼ j 0f ðtÞij1 ~KK i, ð194Þ

where j 0jðtÞi ¼ j 0ji expð�iE0jt= �hhÞ, j ¼ i, f , and the ket vectors j0 ~KKi
and j1 ~KKi refer to no high-harmonic photon in the initial state and to one

high-harmonic photon in the final state, respectively. The atomic state

vectors j 0ji and energies E0j satisfy the stationary Schrödinger equation

½~pp2=2m þVA�j 0ji ¼ E0jj 0ji. The total Green’s operator satisfies the
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Lippmann–Schwinger equation

GðþÞðt, t0Þ ¼ G
ðþÞ
0 ðt, t0Þ þ

Z
dt00GðþÞðt, t00Þ e~rr � ~EEHðt00ÞGðþÞ0 ðt00, t0Þ, ð195Þ

where the Green’s operator G
ðþÞ
0 belongs to the Hamiltonian H0 and

operates in the vector space of high-harmonic photons as a unit operator.

Introducing Eq. (195) into Eq. (191), we obtain

Sfi ¼ i �hh lim
t0!1

lim
t!�1

h 0f ðt0Þj
Z

dt00h1 ~KK jG
ðþÞðt0, t00Þj1 ~KKi

� c ~KKe~rr � ~��

~KK
e
ið! ~KK

t00� ~KK� ~RRÞ
G
ðþÞ
0 ðt00, tÞj 0iðtÞi: ð196Þ

Using Eq. (195) we find h1 ~KK jG
ðþÞðt0, t00Þj1 ~KK i ¼ G

ðþÞ
0 ðt0, t00Þ½1þOðH2

HÞ�, where
OðH2

HÞ denotes the second-order terms in the interaction with the high-

harmonic field, that we shall neglect. We should mention that if

we consider only the interaction for the emission of high-harmonics [i.e.,

the term with a
y
~KK

in Eq. (193)], then the relation h1 ~KK jG
ðþÞj1 ~KKi ¼ G

ðþÞ
0

is exact, since h1 ~KK jða
y
~KK
Þnj1 ~KKi ¼ �n, 0. The S-matrix element Eq. (196) can be

further transformed, using the relations

i �hh lim
t0!1
h 0f ðt0ÞjGðþÞ0 ðt0, t00Þ ¼ h�

ð�Þ
f ðt

00Þj,

i �hh lim
t!�1

G
ðþÞ
0 ðt00, tÞj 0iðtÞi ¼ j�ðþÞi ðt00Þi, ð197Þ

where the states j�ð	Þj ðtÞi, j ¼ i, f , satisfy the time-dependent Schrödinger

equation for the Hamiltonian H0ðtÞ:

i �hh
@

@t
�H0ðtÞ

� �
j�ð	Þj ðtÞi ¼ 0: ð198Þ

From Eqs. (196) and (197) we find

Sfi ¼ �
i

�hh
c ~KK

Z 1

�1
dt eið! ~KK

t� ~KK� ~RRÞ ~��~KK �
~ddfiðtÞ, ð199Þ

where ~ddfiðtÞ is the time-dependent dipole matrix element between the initial

and final laser-field dressed atomic states:

~ddfiðtÞ ¼ �
ð�Þ
f ðtÞ





e~rr




�
ðþÞ
i ðtÞ

� �
: ð200Þ
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Equations (199) and (200) represent a general form of the S-matrix element

for the emission of one high-harmonic photon of frequency ! ~KK
, wave vector

~KK , and polarization ~�� ~KK . The fact that the S-matrix element depends on the

atomic position ~RR can be used to develop a kind of macroscopic theory,

which is different from the propagation theory based on the Maxwell

equations, mentioned in the introduction. One can sum over the atoms

within the interaction volume and use the continuous-medium approxima-

tion [389, 390].

If the fundamental laser field with the frequency ! is T ¼ 2�=!-periodic
and the pulse envelope is constant, then H0ðtþ TÞ ¼ H0ðtÞ and it is possible

to introduce the T matrix by the relation

Sfi ¼ �2�i
X

N

�ð �hh! ~KK
þ E0f � E0i �N �hh!Þc ~KKTfiðNÞ, ð201Þ

where

TfiðNÞ ¼
Z T

0

dt

T
e
i! ~KK

t ~��~KK �
~ddfiðtÞ � ~��~KK � F ð

~ddfiÞ ð202Þ

is the corresponding T-matrix element and F denotes the Fourier transform.

Using the standard procedure, we obtain for the rate of emission of a

harmonic photon, having the frequency ! ~KK
and the polarization ~�� ~KK , into a

solid angle d ~nn ~KK

wfið! ~KK
, ~�� ~KK Þ ¼

!3
~KK

8�2"0 �hhc3
TfiðNÞ


 

2, �hh! ~KK

þ E0f ¼ N �hh!þ E0i: ð203Þ

Our final result is given by Eqs. (202) and (203), where the wave vectors

j�ð	Þj ðtÞi satisfy the Eqs. (197) and (198) together with Eq. (192). The power

irradiated into the solid angle d ~nn ~KK is then �hh! ~KK
wfið! ~KK

, ~�� ~KK Þ.

F.3. Time-dependent dipole matrix element and the

strong-field approximation

In this section we shall analyze the time-dependent dipole matrix

element ~ddfiðtÞ. Our starting point is Eq. (200) with Eq. (198). The wave

vectors j�ð	Þj ðtÞi ( j ¼ i, f ) satisfy

j�ð	Þj ðtÞi ¼ j 0jðtÞi þ
Z

dt0Gð	Þ0 ðt, t0ÞHLðt0Þj 0jðt0Þi, ð204Þ
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where the first term on the right-hand side is the solution of the

homogeneous (field-free) equation. Introducing Eq. (204) into Eq. (200),

we obtain

~ddsmðtÞ � ~ddfiðtÞ ¼ h 0f ðtÞj e~rr j 0iðtÞi þ ~ddaðtÞ þ ~ddeðtÞ þ ~ddccðtÞ, ð205Þ

where

~ddaðtÞ ¼ h 0f ðtÞje~rr
Z

dt0GðþÞ0 ðt, t0ÞHLðt0Þj 0iðt0Þi, ð206Þ

~ddeðtÞ ¼
Z

dt0h 0f ðt0ÞjHLðt0ÞGðþÞ0 ðt0, tÞe~rrj 0iðtÞi, ð207Þ

~ddccðtÞ ¼
Z

dt0
Z

dt00h 0f ðt0ÞjHLðt0ÞGðþÞ0 ðt0, tÞe~rrG
ðþÞ
0 ðt, t00ÞHLðt00Þj 0iðt00Þi: ð208Þ

The above four terms, Eqs. (205)–(208), can be understood in terms of

Feynman diagrams: the vertex (e~rr ) for the emission of a high-harmonic

photon is inserted in all possible ways. For equal initial and final states,

the term h 0f ðtÞj e~rr j 0iðtÞi is equal to zero for any spherically-symmetric

potential. The term ~ddaðtÞ describes a process in which we first have the

laser–atom interaction at the time t0 when photons are absorbed from the

laser field (the index ‘‘a’’ stands for ‘‘absorbed’’). After that the system

propagates until the instant t, where a high-harmonic photon is emitted

during the transition to the final state j 0f ðtÞi. This term corresponds to the

three-step model, described in the introduction. The term ~ddeðtÞ belongs to

the time-reversed version of the ‘‘a’’ process, described above (it is denoted

with ‘‘e’’ because a harmonic photon is emitted first). Finally, the term ~ddccðtÞ
describes a process which consists of five steps: laser–atom interaction at

the time t00, propagation during the time interval from t00 to t, emission of

the high-harmonic photon at the time t, propagation from the time t to the

time t0, and, finally, a laser–atom interaction at the time t0, accompanied

by the transition to the final state. It is denoted by ‘‘cc’’ because the

harmonic photon is emitted between the two propagations that mainly

include continuum states (the ‘‘continuum–continuum’’ transition). We

shall continue to analyze the result Eq. (205) by employing the SFA

[83, 103, 169, 214]. We assume that in the intermediate states the atomic

interaction VA can be neglected in comparison with the interaction with

the laser field HLðtÞ, so that the Green’s operator G0 can be approximated

by the Gordon–Volkov Green’s operator GL [343, 374]. By expressing GL
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through the Gordon–Volkov wave vectors in the length gauge, Eq. (171),

we find

~ddaðtÞ � �
i

�hh

Z
d3 ~qq h 0f je~rrj~qqþ

e

�hh
~AAðtÞi

�
Z t

�1
dt0 exp

i

�hh
Sð~qq; t, t0Þ

� �
h~qqþ e

�hh
~AAðt0ÞjHLðt0Þj 0ii, ð209Þ

where

Sð~qq; t, t0Þ ¼ E0f t�
Z t

t0
dt00

�hh2

2m
~qqþ e

�hh
~AAðt00Þ

h i2
�E0it

0, ð210Þ

with ~EEðtÞ ¼ �@ ~AAðtÞ=@t. The three-dimensional integral over the intermediate

electron momenta �hh~qq can be represented by a series [233]

�hh3
Z

d3 ~qqMð~qq; t, t0Þ exp i

�hh
Sð~qq; t, t0Þ

� �
¼ 2�m �hh

iðt� t0Þ

� �3=2

� exp
i

�hh
Sð~qqs; t, t0Þ

� �
1� i

m �hh

2ðt� t0Þ
@2

�hh2@~qq2
þ � � �

� �
Mð~qq; t, t0Þ j~qq¼~qqsðt, t0Þ,

ð211Þ

where M denotes the product of the matrix elements in Eq. (209). Using

m~��ðtÞ ¼ e
R t

dt0 ~AAðt0Þ, the stationary momentum �hh~qqs is defined by

�hh~qqsðt, t0Þ ¼ �
e

t� t0

Z t

t0
dt00 ~AAðt00Þ ¼ m

t� t0
½~��ðt0Þ � ~��ðtÞ�, ð212Þ

and is the solution of the equation ~rr~qqSð~qq; t, t0Þ ¼ ~00. The higher order terms

in Eq. (211) can be neglected in the semi-classical approximation (which is an

expansion in powers of �hh). For some models this integral can be solved

exactly. Similar expressions can be derived for Eqs. (207) and (208). The

matrix elements ~ddaðtÞ and ~ddeðtÞ can be evaluated by numerical integration

over a new variable of integration �. After the substitutions t0 ¼ t� � in

Eq. (206) and t0 ¼ tþ � in Eq. (207), we obtain

~ddaðtÞ � �
i

�hh

2�m

i �hh

� �3=2Z 1

0

d�

�3=2
exp

i

�hh
Sð~qq; t, t� �Þ

� �
1� i

m

2 �hh�

@2

@~qq2
þ � � �

� �

�  0f





e~rr




~qqþ

e

�hh
~AAðtÞ

� �
~qqþ e

�hh
~AAðt� �Þ





HLðt� �Þ




 0i

� �
j~qq¼~qqsðt, t��Þ, ð213Þ
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and

~ddeðtÞ � �
i

�hh

2�m

i �hh

� �3=2Z 1

0

d�

�3=2
exp

i

�hh
Sð~qq; tþ �, tÞ

� �
1� i

m

2 �hh�

@2

@~qq2
þ � � �

� �

�  0f




HLðtþ �Þ



~qqþ e

�hh
~AAðtþ �Þ

D E
~qqþ e

�hh
~AAðtÞ




 e~rr



 0i

D E
j~qq¼~qqsðtþ�, tÞ:

ð214Þ

A similar, but longer derivation for the matrix element ~ddccðtÞ leads to the

following double integral over the variables � ¼ t0 � t and �0 ¼ t� t00

~ddccðtÞ �
�i
�hh

� �2
2�m

i �hh

� �3=2Z 1

0

d�

Z 1

0

d�0 � þ �0ð Þ�3=2exp i

�hh
Sð~qq; tþ �, t� �0Þ

� �

� 1� i
m

2�hhð� þ �0Þ
@2

@~qq2
þ � � �

� �
h 0f jHLðtþ �Þj~qqþ

e

�hh
~AAðtþ �Þi

� ~��ðtÞ � ~��ðt� �0Þ þ �hh

m
~qq�0 þ i

@

@~qq

� �

� h~qqþ e

�hh
~AAðt� �0ÞjHLðt� �0Þj 0ii j~qq¼~qqsðtþ�, t��0Þ: ð215Þ

There is another way of expressing the time-dependent dipole matrix

element. Within the SFA, the sum of ~ddaðtÞ and ~ddeðtÞ can be rewritten as

Z
dt0h 0f ðt0ÞjVAG

ðþÞ
L ðt0, tÞe~rr j 0iðtÞi þ

Z
dt0h 0f ðtÞj e~rrGðþÞL ðt, t0ÞVAj 0iðt0Þi:

ð216Þ

Similarly, the ‘‘continuum–continuum’’ coupling term ~ddccðtÞ can be rewritten

as the sum of three terms, the first two of which cancel the terms in Eq. (216),

while the remaining one gives

~ddaðtÞ þ ~ddeðtÞ þ ~ddccðtÞ �
Z

dt0
Z

dt00h 0f ðt0ÞjVAG
ðþÞ
L ðt0, tÞ

� e~rr GðþÞL ðt, t00ÞVAj 0iðt00Þi: ð217Þ
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This result can be transformed with (� ¼ t0 � t, �0 ¼ t� t00) into

~ddaðtÞ þ ~ddeðtÞ þ ~ddccðtÞ �
�i
�hh

� �2
2�m

i �hh

� �3=2Z 1

0

d�

Z 1

0

d�0 � þ �0ð Þ�3=2

� exp
i

�hh
Sð~qq; tþ �, t� �0Þ

� �

� 1� i
m

2�hhð� þ �0Þ
@2

@~qq2
þ � � �

� �
h 0f jVAj~qqþ

e

�hh
~AAðtþ �Þi

� ~��ðtÞ � ~��ðt� �0Þ þ �hh

m
~qq�0 þ i

@

@~qq

� �

� h~qqþ e

�hh
~AAðt� �0ÞjVAj 0iij~qq¼~qqsðtþ�, t��0Þ: ð218Þ

In the case of a zero-range potential, the matrix element in the momentum

space is

h~qqjVAj 1si ¼ 2�ð Þ�3=2
Z

d~rre�i~qq�~rr
2�

m	
�ð~rr Þ @

@r
r
	

2�

� �1=2e�	r
r
¼ � 	

1=2

2�m
, ð219Þ

so that the matrix elements are constant and all the derivatives over ~qq in

Eq. (218) are equal to zero. By putting ~qq ¼ ~qqsðtþ �, t� �0Þ, the last square

brackets in Eq. (218) reduce to

~��ðtÞ � � ~��ðt� �0Þ þ �0 ~��ðtþ �Þ
� 	

=ð� þ �0Þ

which, for f ¼ i, is equivalent to the result of ref. [374]. In atomic units

e ¼ �hh ¼ m ¼ 1, and for jE0j ¼ 	2=2, the right-hand side of Eq. (218)

simplifies to yield

� jE0j
�

� �1=2Z 1

0

d�

Z 1

0

d�0 ~��ðtÞ � ~��ðtþ �Þ � �~qqs
� 	

½ið� þ �0Þ�3=2
exp

i

�hh
Sð~qqs; tþ �, t� �0Þ

� �
,

ð220Þ

where ~qqs � ~qqsðtþ �, t� �0Þ is given by Eq. (212). After the expansion of the

exponential into a series of the Bessel functions, Eq. (220) reduces to a single

integral (see, for example, ref. [357]). However, our calculations [382]

show that the main contribution to our time-dependent dipole matrix

element, Eq. (205), comes from the two parts: ~ddsmðtÞ � ~ddaðtÞ þ ~ddeðtÞ, which
are much easier to evaluate. One example of the results obtained for the

emission rates, using this method, is presented in Fig. 24. In the effective-

dipole approach [180,181], the corresponding time-dependent dipole matrix
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element can be written as: ~ddedðtÞ ¼ ~ddaðtÞ þ ~dda ðtÞ ¼ 2 ~ddR
a ðtÞ, where ~ddR ( ~ddI)

denote the real (imaginary) parts of ~dd. The corresponding T-matrix

elements, Eq. (203), are: TN, sm ¼ ~��~KK � Fð
~dda þ ~ddeÞ and TN, ed ¼ ~��

~KK
� F ð2 ~ddR

a Þ.
Our numerical calculations have shown that for high-harmonics we obtain:

Fð ~ddR
a Þ � iFð ~ddI

aÞ and Fð ~ddR
e Þ � �iFð ~ddI

eÞ, so that Fð ~dda þ ~ddeÞ � 2Fð ~ddR
a Þ and

TN, sm � TN, ed. Therefore, for N � 1, the harmonic emission rates,

Eq. (203), obtained by means of the S-matrix approach, are approximately

equal to those evaluated by means of the effective-dipole approach. This

explains why the results of refs. [180, 181, 357] were such good approxima-

tions. For example, for the results presented in Fig. 24 the maximum relative

difference between the S-matrix and the effective-dipole results was found to

be 17% for n¼ 5, while for n > 17 it was less than 1%. Another consequence

of the above results is that the contribution of the matrix element ~ddeðtÞ to the

high-harmonic emission can be neglected (for an explicit comparison see

Fig. 2 in ref. [343] and ref. [382]).

F.4. New developments and applications

The HHG process can be considered as a photon–atom scattering process

with the absorption of N laser photons having wavevectors ~kk! and the

emission of a high-harmonic photon with the wavevector ~KK and the

frequency ! ~KK
¼ N!. The change of the atomic momentum is then

�hh� ~KKa ¼ �hhðN ~kk! � ~KKÞ. For Na atoms the emission of the high harmonic in

the direction ~KK ¼ N ~kk! (forward scattering) results from coherent contribu-

tion of different atoms and increases as N2
a , whereas the emission in other

directions increases linearly with Na. Hence, the generated harmonics are

coherent with a very narrow angular distribution. The energy of the emitted

high-harmonic photons is up to several hundred times higher than the

energy of the photons of the driving field. Also, the harmonic pulse duration

is shorter than the duration of the driving laser pulse. Therefore, in the

process of HHG one obtains high-frequency coherent radiation of

unprecedented spatial and temporal characteristics with great potentials

for various applications.

For applications it is necessary to control the harmonic emission and to

increase the intensity of the emitted harmonics. A concept of quantum

orbits, considered recently in a review article by Becker et al. [21], has

shown to be extremely useful in this context. This concept is based on the

saddle-point-method approximation to the five-dimensional integral that

appears in the S-matrix element; namely the three-dimensional integration

over the intermediate electron momenta ~qq, Eq. (209), one integration over

the ionization time t0, Eq. (209), and one integration over the recombination

time, i.e., the harmonic emission time t, Eq. (199). Without going into detail
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here, we only mention that the corresponding T-matrix element can be

expressed as

TN /
X

s

Ms det
@2Ss

@qk@ql

� �� ��1=2
exp

i

�hh
Ss

� �
, ð221Þ

where the quasi-classical action Ss � Sð~qqs, ts, t0sÞ þN!ts is evaluated at the

saddle points qi ði ¼ 1, . . . , 5Þ that comprises the five variables ~qqs �
ðq1s, q2s, q3sÞ, ts, and t0s. The summation in Eq. (221) runs over an

appropriate subset of the saddle points ð~qqs, ts, t0sÞ, which are the solutions

of equations that express the energy conservation at times t0 and t and,

moreover, the condition that the electron returns to its starting point

~rrðtÞ ¼ ~rrðt0Þ. This leads to a generalization of the three-step model. Due to the

tunneling nature of the first step of this process the solutions of these

equations are complex. Projecting these solutions onto the real plane, one

obtains the real-space electron trajectories (quantum orbits) which are very

useful for a physical understanding of the process. This method is closely

related to the Feynman path integral approach to quantum mechanics

(see [291] and references therein).

The practical importance of the result of Eq. (221) is that only a few

complex solutions (the shortest trajectories) give the main contribution, so

that the numerical calculations are very fast. For a linearly-polarized laser

field this method was first considered in [180, 181, 391]. The method is

more useful for more complicated fields. For an elliptically-polarized field

the quantum orbits yield a vivid generalization of the three-step model

[291, 292, 358]. The results for a bichromatic, linearly-polarized laser field

were presented in [392]. A particularly interesting case is, to consider a

two-color bicircular field [393–396]. Using the concept of quantum-orbits,

it was possible to explain the experimentally observed (see ref. [397]) high

efficiency of HHG by such a field configuration. Further examples of the

usefulness of the formalism of quantum-orbits are those problems in which

there is a laser field and an additional static electric field [345, 347] or a laser

field and an additional magnetic field [346, 398, 399]. The concept of

quantum orbits was also successfully applied to calculate and explain

the characteristics of HHG by a relativistically strong laser field [400, 401].

In that case, the most pronounced effects observed are the multiplateau

structure of the high-harmonic spectrum, similar to the one observed for an

elliptically polarized laser field, and the suppression of the ultrahigh-order

harmonic generation due to the magnetic-field-induced drift motion of

the electron on its orbit. Very similar effects were also observed in the

investigations [402, 403]. The resonance-like enhancement of the harmonics

in the first part of the plateau [407, 408] has also been explained by using
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the formalism of quantum-orbits [407, 408]. This effect is connected with

the closing of channels. The enhancements can be traced to multiphoton

resonances due to the ponderomotively upshifted continuum threshold.

In this case, the contributions of the quantum orbits add constructively

and many more orbits have to be taken into account. On the contrary, only

few orbits give satisfactory results for the harmonics in the central part and in

the region at the end of the plateau. The resonant enhancement of low order

harmonics, generated in argon with a KrF laser source was considered in ref.

[386]. More recently, the threshold-related effects and enhancement in HHG

were considered in some detail by Borca et al. [409]. For an early reference

about the impact of channel closing on HHG we refer to the work of Becker

et al. [410], in which the interplay between the above-threshold multiphoton

detachment and HHG was considered. Namely, owing to conservation of

probability, as expressed by the unitarity of the S-matrix, the opening or

closing of a new inelastic channel affects the remaining channels. Therefore,

pronounced cusps appear in the high-harmonic emission rates at intensities

where a particular above-threshold multiphoton detachment channel closes.

Most recently Milosevic and Becker [411] have explained the enhancement

of HHG near channel closings by the constructive interference of a large

number of quantum orbits. The enhancements exactly at the channel

closings are extremely narrow and build up by the constructive interference

of a very large number of quantum orbits. Additional broader enhancements

occur slightly below channel closings and they are generated by the interplay

of a medium number of orbits.

In ref. [412] the intra-atomic phase matching of HHG was proposed. The

laser pulse shape is optimized so that a particular harmonic is enhanced.

This ‘‘coherent control’’ is realized by the constructive interference of the

contributions from different quantum orbits. A similar coherent control

by means of a genetic algorithm optimization of the laser-pulse shape and

intra-atomic phase matching was presented in ref. [413] (the different

wave packets, calculated by numerical solutions of the time-dependent

Schrödinger equation, instead of using the quantum orbits, are considered).

The genetic algorithm was used to theoretically maximize the harmonic

pulse energy, minimize the pulse duration or optimize the temporal

coherence in [414, 415]. The feedback control of the phase of the laser

pulse has recently enabled to experimentally realize the selective enhance-

ment of a particular harmonic [416]. The self phase matching of very high

harmonics (soft x-ray regime) was also explained in terms of the quasi-

classical action [417]. For coherent control of HHG with chirped laser pulses

see, for example, ref. [418].

The temporal behavior of HHG can be explained using both the three-

step model and the intensity-dependent phase of the field-induced atomic
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dipole [391, 394, 419]. The atomic dipole can be analyzed in terms of the

quantum orbits. For a linearly polarized driving field the main contribution

to any particular harmonic in the plateau comes from two different

quantum orbits. In ref. [419] it was shown that, by judicious manipulation of

the spatial and temporal profile of the driving laser pulse, it is possible

to favor the contribution of one or the other orbit to the harmonics emitted

by the atoms of an ensemble, and to obtain a train of attosecond pulses

of linearly-polarized harmonics. Selection of high-order harmonics from

quantum paths by controlling the phase-matching condition was also

demonstrated [420–422]. On the other hand, in the investigations [393,394]

it was shown that for a two-color bicircular field only one orbit contributes

significantly to the harmonic spectrum in the plateau region, so that no

collective effects are necessary to extract an attosecond pulse train. As a

quantitative measure for the amount of phase locking of a group of

subsequent harmonics, considered in ref. [394], the following ratio R of the

coherent over the incoherent sum of harmonic intensities was introduced

RðtÞ ¼
P

N2G ENðtÞ


 

2
P

N2G ENðtÞ


 

2 , ENðtÞ ¼ N2TN expð�iN!tÞ, ð222Þ

where TN is the T-matrix element of the effective-dipole approach. In Fig. 25

we present this ratio for the group G of the harmonics between N ¼ 91 and

N ¼ 121 (16 odd harmonics), for the parameters of Fig. 24. One can see in

this figure a train of attosecond pulses of the duration of 72 as.

Up to now we concentrated on the three-step or quantum-orbit physical

model of HHG. As we have seen, the control of the plateau and of the

cutoff of the harmonics can be achieved by manipulating the driving laser

pulse in the intermediate (the second) step of the process. However, there

are some situations in which this method fails and the influence of the atomic

(ionic) potential becomes crucial. For example, the appearance of hyper-

Raman lines can be explained by using the model of a two-level atom [363]. A

possible enhancement of HHG by employing a gas that possesses permanent

dipole moments, was presented in [423]. HHG that is obtained from the

coherent superposition of the ground state and an excited atomic state

was analyzed in [424, 425]. In ref. [426] HHG from a confined atom was

proposed. By choosing the confinement parameters of a parabolic potential,

the cutoff harmonic energy can be increased by 50%. This method leads to

results that are similar to those obtained from the parallel-magnetic-field

confinement scheme of refs. [346, 398, 399]. HHG for a configuration

in which the static magnetic field is perpendicular to the laser polarization

direction was considered in [427]. Increasing the efficiency of high-order

harmonic generation using counterpropagating laser pulses was also
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suggested [428]. More recently, HHG by multiply charged ions, such as O7þ,
exposed to laser fields of the order of 1018 Wcm�2 at 248 nm was investigated

theoretically. Nontunneling high-order harmonics were found that exhibit

plateau and cutoff features [293,294]. A classical ‘‘surfing’’ mechanism for

the generation of these harmonics was proposed. The electron gains its

energy from the laser field by riding on an effective potential saddle, in a

similar way as a surfer rides on a water wave. The gained energy is later on

released as high-harmonic photon energy. In ref. [294] the influence of

different shapes of the ionic potential on nontunneling HHG was

investigated and the appearance of interesting hump-shaped plateau

characteristics, hyper-Raman lines, etc., were explained.

Most of the considerations presented above are applicable to HHG from

atoms or ions. However, also different media for HHG were proposed.

Experimental studies of HHG in molecular gases (see [429, 430] and

references therein) have shown harmonic spectra very similar to those

obtained in atomic gases. Theoretical investigations of HHG by molecular

ions such as Hþ2 were first presented in refs. [431, 432]. Due to the

phenomenon of charge resonance enhanced ionization, HHG in molecular

FIG. 25. The ratio R of the coherent over the incoherent sum of the harmonic intensities as a

function of the time during one optical cycle in the case of HHG by He atoms (Iio ¼ 24:588 eV)
with a linearly-polarized Ti:Sapphire laser (wavelength 800 nm) having the intensity

I ¼ 1015 Wcm�2 (see Fig. 24). The results are for a group of 16 plateau harmonics, between

the 91st and the 121st. The FWHM is 72 attoseconds.
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ions should also be enhanced. Moreover, in such extended systems the

(re)collision of electrons with neighboring ions can produce high harmonics

well beyond the Iio þ 3:17UP cutoff law (see refs. [433–435] and references

therein). For more complex systems, the electron dynamics is enriched by

the higher number of degrees of freedom so that new mechanisms can

contribute to HHG. HHG from a linear chain of atoms was suggested in ref.

[436]. In refs. [437, 438] experimental work was performed to study how the

generation of HHG depends on the molecular orientation. The numerical

solution of the time-dependent Schrödinger equation is used in ref. [439] in

order to find the maxima and minima, due to intramolecular interferences,

in the dependence of the harmonic emission rates on the internuclear

distance and on the orientation of the molecules. For the HHG in cyclic

organic molecules we refer to refs. [440–442] and to the references therein.

HHG by molecules having discrete rotational symmetry (for example,

benzene) interacting with circularly polarized laser light [443, 444] shows

interesting dynamical symmetries and therefore satisfies certain selection

rules [445, 446]. Such rules can also be applied to HHG by thin crystals

[445]. As a medium for HHG carbon nanotubes were suggested in [447–449].

A comprehensive report on the laser–cluster interactions can be found in ref.

[450]. HHG in atomic clusters was analyzed in refs. [451–456]. Although

HHG at solid surfaces was observed earlier than HHG in gases, the method

is still less developed. In ref. [457] harmonics up to the 11th order, and

in refs. [458, 459], harmonics up to the 46th order were observed in the

interaction of nanosecond CO2 laser pulses with solid targets. More

recently, harmonics up to the 75th order were observed during the

interaction of 2.5 ps (1053 nm) laser pulses with solid targets [460]. The

harmonics generated at high driving laser intensities are found to be emitted

isotropically, which is not a very attractive characteristic for practical

applications. For more details about HHG at solid surfaces see, for

example, the review article [461]. From the experimental point of view, the

solid targets are stable and easy to handle. However, from the theoretical

point of view, the presence of the collective effects make the study of HHG

at solid surfaces a formidable task. The two main approaches to the

modeling of these complex systems are the solutions of the hydrodynamical

equations and the solutions of the many particle equations. Among the

latter schemes one of the most successful methods is the particle-in-cell

(PIC) simulation [462]. For references to the quantum calculations see, for

example, [463]. There is also a more recent experimental paper [464] and

references therein about a simple physical model of an oscillating plasma

mirror that explains the main mechanism of HHG by radiation reflection

from solid targets. In ref. [465] HHG in stimulated bremsstrahlung by a very

short and intense laser–crystal interaction is proposed.
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During the last few years there was considerable progress in the

development of high-intensity sources of radiation in vacuum and extreme

ultraviolet (VUV-XUV) and soft x-ray regions, such as x-ray lasers,

synchrotron radiation sources, free-electron lasers, and high-order harmonic

sources. Among these sources, high-harmonic radiation has the advantage

of being simple and easily produced by table-top devices. Only HHG

provides the ultrashort pulses of high intensity in this spectral region.

Therefore, the applications of high-harmonic sources of radiation are

numerous. We mention here the nonlinear processes in the XUV range,

such as the two- and three-photon ionization of rare gases [466, 467], the

time-resolved x-ray spectroscopy of solid-state and molecular dynamics on

a sub-100-fs timescale [468], and the extreme ultraviolet interferometry

measurements [469, 470]. One of the most important applications of HHG is

the attosecond physics. A. Zewail received the 1999 Nobel prize in chemistry

for showing that it is possible with ultrafast laser techniques to see how

the atoms in molecules move during a chemical reaction [471]. Attosecond

pulses will be to atomic physics what femtosecond pulses are to chemistry.

We have already seen in Fig. 25 how an attosecond pulse train can be

generated by phase locking of several high harmonics. In a recent review

article [26] more details and references about the generation of ultrashort

pulses can be found. In refs. [472, 473] the first observation of attosecond

light localization in HHG was claimed, but this is not generally accepted

[474, 475]. These results can be considered as an experimental demonstration

that high-order harmonics can be a source of trains of attosecond XUV

pulses. This is similar to what was done in ref. [321], where a method was

presented to measure the relative phase of the harmonics. The generation of

isolated soft x-ray pulses was analyzed in ref. [25] and numerically

characterized in ref. [476]. Finally, in refs. [28, 477] the first experimental

observations of single harmonic pulses with the duration of 650	 150

attoseconds was demonstrated. According to remarks by Yaron Silberberg

in an accompanying News and Views article in Nature, this ‘‘might be the

dawn of attophysics’’.

III. Coherent Control

A. THE FUNDAMENTAL IDEA

A.1. Introduction

Controlling the yield of molecular reactions by means of lasers has been a

longstanding goal in chemical dynamics. Early laser-based attempts at
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control relied either on the frequency resolution of lasers to locate a

frequency which maximizes the yield, or on the use of high-power lasers to

alter the dynamics. Both methods suffer from severe drawbacks; the former

depends on the chance existence of a favorable branching ratio and the

latter requires extremely high powers which make it impracticable. In

addition, both of these methods are passive in the sense that the yield

is primarily determined by molecular properties and cannot be controlled by

experimental design.

About 16 years ago, it was suggested in a series of pioneering papers by

Shapiro, Brumer and coworkers [478–480] to actively manipulate chemical

reactions by applying a bichromatic laser field of frequencies ! and 3! and

by varying the relative phase ’ and amplitudes E of the two fields. The

theoretical approach of these authors to actively control the yield of a

chemical reaction is based on the following general idea. Suppose that

we invoke two simultaneous coherent paths a and b to get to the reaction

products. Under these circumstances the probability P of producing

products is given by

P ¼ jAaj2 þ ðAaA

b þ AaAbÞ þ jAbj2: ð223Þ

Here Ai is the probability amplitude of obtaining products through path i,

so that jAaj2 and jAbj2 are the probabilities for independently obtaining

products from path a and path b. The second term, the crossed term, can be

positive or negative and arises from the quantum interference between the

two paths. If both paths a and b lead to more than one product channel

then the branching ratio Rqq
0 for channel q and q0 is of the form

Rqq0 ¼ Pq=Pq0 ð224Þ

where now in Eq. (223) the amplitudes are A
q
i and A

q0

i (i ¼ a, b), respectively.

To have active control over the product distribution means that one can

experimentally manipulate the magnitude of the numerator or denominator

of Eq. (224). Thus, if one can design an experimental scenario such that

by varying laboratory parameters one varies the sign and magnitude of

the cross term, then one gets control over the product distributions and

product yields. The above authors termed this overall approach, which relies

upon coherence and the use of interference between a minimum of two path,

coherent radiative control. Alternative methods, based upon time-dependent

wave packet approaches, have been developed by others to which we shall

return later.
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To be more specific, we consider a molecule, initially in a state jEii of
energy Ei, that is subjected to two electric fields given by

~EEðtÞ ¼ ~EE1 cosð!1tþ ~kk1 � ~RRþ �1Þ þ ~EE3 cosð!3tþ ~kk3 � ~RRþ �3Þ ð225Þ

Here !3 ¼ 3!1 and both fields are taken to have the same directions of linear

polarization and directions of propagation with ~kk3 ¼ 3 ~kk1. Then, as

discussed above, the probability PðE, q;EiÞ of producing a molecular

reaction product with energy E along the channel q from a state jEii is given
by the probabilities P1ðE, q;EiÞ and P3ðE, q;EiÞ due to the !1 and !3

excitations, plus a cross term P13ðE, q;EiÞ due to the interference between

the two excitations, thus

PðE, q;EiÞ ¼ P3ðE, q;EiÞ þ P13ðE, q;EiÞ þ P1ðE, q;EiÞ ð226Þ

Evaluating the corresponding probabilities in the weak radiation field limit

by time-dependent perturbation theory [480], where in the case of excitation

by the !1 component of Eq. (225) application of third-order perturbation

theory is required to get to the final state jEi, we only need to consider first-

order perturbation to arrive at the same final state jEi using the !3

component of Eq. (225). Thus we get for the branching ratio Rqq0 for

channels q and q0

Rqq0 ¼
F
ðqÞ
3 � 2x cos �3 � 3�1 þ �ðqÞ13

� �
jF ðqÞ13 j þ x2E40F

ðqÞ
1

F
ðq0Þ
3 � 2x cos �3 � 3�1 þ �ðq

0Þ
13

� �
jF ðq0Þ13 j þ x2E40F

ðq0Þ
1

ð227Þ

where a normalized field amplitude E0 and field amplitude ratio x have

been introduced [495]. The experimental control over Rqq0 is therefore

obtained by varying the difference � ¼ �3 � 3�1 and the parameter x. The

former is the phase difference between the !3 and the !1 laser fields and the

latter incorporates the ratio of the two laser amplitudes. Since ‘‘tripling’’ is

a common method to produce !3 from !1, of fixed relative phase,

the subsequent variation of the phase of one of these beams provides a

straightforward method of altering �. A summary of the method and its

application to photodissociation reactions can be found in reviews by

Shapiro and Brumer [481, 482]. Early experiments are reported by Lu et al.

[483] and Zhu et al. [484] and a more recent summary can be found in the

report by Gordon and Rice [485]. A large theoretical and experimental

body of work, using the above method of influencing molecular properties

and reactions, has accumulated by now. In particular, the method has been
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extended to the use of powerful bichromatic laser fields thus going beyond

the application of perturbation theory. A sufficient amount of references

on these works can be found in the papers by Charron et al. [486] on

photodissociation, by Thompson et al. [487] and Bandrauk and Chelk-

owski [488] on dissociative ionization, by Bandrauk et al. [489] on

harmonic generation, by Dion et al. [490] on molecular orientation, by

McCullough et al. [491] on the coherent control of refractive indices and

by Shapiro et al. [492] on the control of asymmetric synthesis with

achiral light.

Although we shall in our review mainly devote our attention to the

application of coherent phase control (CPC), outlined above, to various

atomic phenomena, we should also mention here other laser schemes

that have been designed recently to tailor atomic and molecular processes.

As suggested by Tannor and Rice [493] and improved by Kosloff et al. [494],

the selectivity of molecular product formation can be induced by shaping

and spacing pump and dump laser pulses. This pump–dump scheme for

controlling the selectivity of product formation in a chemical reaction can be

improved by developing a method for optimizing the field of a particular

product with respect to the shapes of the pump and dump pulses. An even

simpler scheme involves a series of identical laser pulses. By varying the

delay time between two pump pulses with an accuracy better than the

vibrational period, and probing the excited state population with a third

pulse, Zewail and coworkers have shown that they could control selectively

the wave packet motion in the B state of I2 [495]. More details of this

method and its improvements can be found in the works of Blanchet et al.

[496], Kohler et al. [497], and Lozovoy et al. [498] and references

cited therein. A comprehensive review on wave packet dynamics and its

application to physics and chemistry in femto-time is presented in the papers

by Garraway and Suominen [499, 500] and Ficek and Freedhoff [501]

discuss spectroscopy in polychromatic fields. Coherent control by single

phase shaped femtosecond laser pulses is discussed, for example, by Assion

et al. [502] and by Meshulach and Silberberg [503]. Finally, in the work of

Bardeen et al. [504] feedback quantum control, where the sample ‘‘teaches’’

a computer-controlled arbitrary lightform generator to find the optimal

light field, is experimentally demonstrated for a molecular system. Further

details on the above control schemes can be obtained from an article

by Manz [505] and an earlier review by Warren et al. [506].

A.2. A simple classical example of CPC

In order to demonstrate how a laser-induced nonlinear process can be

effectively controlled by changing the relative phase of the stimulating
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bichromatic radiation field, we consider the following simple classical

radiation problem that will be a generalization of the process discussed in

Section I.B.2. If a classical high-frequency plane wave

~EExðtÞ ¼ ~��x cos!xðt� ~nn�~rr=cÞ ð228Þ

of unit field amplitude, expressed by the vector of linear polarization ~��x,
direction of propagation ~nn, and frequency !x is scattered by a free electron

under the simultaneous action of a strong bichromatic, low-frequency

background field

~EEðtÞ ¼ E0~�� ½sin!tþ sinð2!tþ �Þ� ð229Þ

with !x � ! and equal field amplitude E0 and linear polarization ~��, then the

phase of the absorbed and scattered x-ray field will be periodically

modulated on account of the large amplitude electron oscillations in the

intense background field. This will induce an oscillating Doppler shift of

the x-ray emission of the electron and the spectrum of scattered radiation

will have the form !0x ¼ !x þN! with N being a positive or negative integer

or zero. Mathematically this fact will be expressed by the retarded electron

acceleration

~VV 0ð�0Þ ¼
e

m
~��x cos!x½�0 � ð~nn0 � ~nnÞ � ~rrð�0Þ=c� ð230Þ

where ~rrð�0Þ is the amplitude of electron oscillations in the background field

given by

~rrð�0Þ ¼ ��0~�� ½sin!�0 þ
1

4
sinð2!�0 þ �Þ� ð231Þ

taken at the average retarded time �0. �0 ¼ �c=! is the amplitude of the

classical electron oscillations in the background field and � is the corres-

ponding velocity amplitude measured in units of the speed of light c. It

is explicitly given by � ¼ eE0=m!c and we have discussed the relevance of

this parameter at several places in this review before. By inserting Eq. (231)

into Eq. (230) and then making a Fourier decomposition of the retarded

acceleration into its infinite number of harmonic components, we can

evaluate the differential cross sections of x-ray scattering by a free electron

and the concomitant nonlinear scattering processes induced by the

494 D. B. Milošević and F. Ehlotzky [III



bichromatic background field. We get

d�N
d�
¼ d�xTh

d�
BNða, b;�Þ


 

2: ð232Þ

Here, d�xTh=d� is the Thomson cross section of x-ray scattering and

BNða, b;�Þ is a generalized, phase-dependent Bessel function of the integer

order N defined by

BNða, b;�Þ ¼
Xþ1

�¼�1
JN�2�ðaÞJ�ðbÞe�i�� ð233Þ

where the J� are ordinary Bessel functions of the integer order �. The

generalized Bessel functions Eq. (233) can be obtained by expanding its

generating function into a Fourier series, viz.

expfi½a sin!tþ b sinð2!tþ �Þ�g ¼
Xþ1

N¼�1
BNða, b;�Þ expðiN!tÞ: ð234Þ

Here the various different Fourier components of the expansions of the two

exponentials on the left-hand side of Eq. (234) into ordinary Bessel

functions J�, yielding the same final harmonic frequency N!, may be

considered in this classical problem as the infinite number of different phase-

dependent ‘‘reaction channels’’ contributing to the cross sections Eq. (232).

The arguments a and b are given in the present case by

a ¼ �0ð ~KK� ~KK 0Þ � ~��, b ¼ a=4 ð235Þ

with ~KK 0 � ~KK being the ‘‘wave vector transfer’’ in x-ray scattering where
~KK ¼ !x ~nn and ~KK 0 ¼ !0x ~nn0, while ~nn and ~nn0 are the directions of propagation of

the ingoing and scattered x-ray fields. We shall see in the next chapter that

formula Eq. (232) agrees very well with the corresponding low-frequency

result of electron–atom scattering in a bichromatic low frequency laser field

of frequencies ! and 2! and a relative phase �. From Eq. (234) it is quite

clear that for a fixed value of a the cross sections Eq. (232) will strongly

depend on the relative phase � of the two field component in Eq. (229).

B. EXAMPLES OF APPLICATION

Since the investigations of atomic phenomena in bichromatic laser fields

have been discussed in considerable detail in our recent review [30], we shall
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concentrate in the present chapter on the presentation of our theoretical

results on the following three topics which are presently of particular

interest. We shall consider above-threshold ionization, electron–ion

recombination and higher harmonic generation in a bichromatic laser

field of frequencies ! and r! (r ¼ 2, 3) and we shall discuss the coherent

control of the transition probabilities as a function of the relative phase �
of the two fields.

B.1. ATI in a bichromatic field

In the present section, we compute and discuss the electron energy spectra

for a bichromatic laser field of linear polarization, frequencies ! and 2!, and
relative phase �¼ 0. We find that the plateau for the backward (� ¼ 180�)
emission of electrons extends up to 21UP1

, where UP1
is the ponderomotive

energy of the first laser field component assuming equal intensities of

both components. There are no such high energy electrons for � ¼ 0�, in
contrast to the symmetry �$ 180� � �, valid in the monochromatic case. In

the bichromatic case the ionization rates possess the more general symmetry

properties ð�, �Þ $ ð�þ �, 180� � �Þ. Therefore, for �¼� we predict the

emission of the high-energy electrons in the forward direction (� ¼ 0�).
In a bichromatic field the sidelobe stuctures are strongly influenced by

quantum-mechanical interference effects. We also explore the �-dependence
of the ionization rates for different relative phases � and for these energies

which correspond to the classical cutoff law.

S-matrix formulation The general approach for treating the present

problem can be found in [236] and will be the same as in our discussion

of ATI for a monochromatic laser field in Section II.B.2. Therefore we can

take over the basic results from this section and use as starting point of our

calculations for the following formulas. The S-matrix element of our

problem will be given by

Sfi ¼ �i
Z 1

�1
dt exp½iðE ~kkf

þ Iio þUPÞt� T fið’Þ

¼ �2�i
X

N

�ðE ~kkf
þ Iio þUP �N!Þ TfiðNÞ, ð236Þ

where Iio ¼ �E0 is the ionization energy of the atom in its ground

state while E ~kkf
and ~kkf are the final energy and momentum of the ionized

electron, respectively. For the bichromatic field of frequencies ! and

2! and equal linear polarization ~�� that we shall consider, we have ~��ðtÞ ¼
~�� ½�0 sin!tþ �02 sinð2!tþ �Þ� and, if both field components Ej ( j ¼ 1, 2)
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have equal intensity, we find �02 ¼ �0=4. For the matrix element T fið’Þ we
obtain

T fið’Þ ¼ expfi ½ ~kkf � ~��ð’Þ þ U1ð’Þ�g
(
 ð�Þ
~kkfþ ~AAð’Þ




~rr � ~EEð’Þ



 0

� �
� i

Z 1

0

d�
2�

i�

� �3=2

�  ð�Þ
~kkfþ ~AAð’Þ




Vs




 ~kks þ ~AAð’Þ
� �

~kks þ ~AAð’0Þ



~rr � ~EEð’0Þ




 0

D E

� exp½�iSð ~kks;’,!�Þ�
)
, ð237Þ

where the evaluation of Sð ~kks; ’,!�Þ was discussed in Section II.B.2 and

UðtÞ ¼ U1ð’Þ þUPt, with ’ ¼ !t, ’0 ¼ ’� !�. The function U1ð’Þ is

explicitly given by

U1ð’Þ ¼
1

4!
2UP1

sin 2’þUP2
sinð4’þ 2�Þ

�

þ 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UP1

UP2

p
½sinð’þ �Þ þ 1

3
sinð2’þ �Þ�g

ð238Þ

where UP1
and UP2

are the ponderomotive energies of the two field

components, separately and UP ¼ UP1
þUP2

is the total ponderomotive

energy of the two fields with UPj
¼ E2j =4ð j!Þ2 ( j ¼ 1, 2). T fið’Þ is a 2�=!-

periodic function of t, which can be expanded into a Fourier series

T fið’Þ ¼
X1

N¼�1
TfiðNÞ expð�iN’Þ, TfiðNÞ ¼

Z 2�

0

d’

2�
T fið’Þ expðiN’Þ: ð239Þ

TfiðNÞ is the T-matrix element for ionization with the absorption of N

photons. The corresponding differential ionization rate of the order N is

wfiðN, �Þ ¼ 2�kf jTfiðNÞj2, ð240Þ

where kf ¼ ð2E ~kkf
Þ1=2 satisfies the energy conserving condition E ~kkf

¼
N!� Iio �UP, and � is the angle between ~kkf and the laser-field polarization

vector ~��. The matrix elements in Eq. (236) have a simple analytic form, so

that the differential ionization rates can be easily computed by performing

the integration over the return time � and by using the fast Fourier

transform method, as discussed in detail in Section II.B.2.
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Numerical results In this section we present our results for a bichromatic

linearly-polarized laser field of frequencies ! and 2!. The electric-field vector

of our field is ~EEðtÞ ¼ I1=2~�� ½sin!tþ sinð2!tþ �Þ� where I is the laser-field

intensity (taken to be equal for both components) and � is the phase

difference between the two laser-field components. In this case, the total

ponderomotive energy is UP ¼ UP1
þUP2

¼ ð5=4ÞUP1
, where Up1 ¼ I=4!2.

As target we consider a hydrogen atom in its ground state and for the short-

range potential we chose the Yukawa-type potential Vs ¼ � expð�rÞ=r. It
should be stressed that our theory is quite general and can also be applied to

inert gases by employing an appropriate effective ion potential V ¼ Vc þ Vs.

For the strong laser fields we are considering (I � 1015 Wcm�2) there are no
experimental data available for ATI in a bichromatic laser field. There

exist experimental results for a lower field intensity (� 1013 Wcm�2) by

Schumacher and Bucksbaum [507]. In an earlier paper [218], we compared

their data with our results obtained from a modified KFR model, but

without taking into account the rescattering effects. The second plateau in

the photoelectron energy spectrum that originates in the rescattering process

in the case of ionization by a bichromatic laser field, was not yet observed.

In the same paper [218], mentioned before, (see also refs. [173, 242, 243]) we

showed on the basis of classical considerations that the second plateau can

extend to almost 21UP1
. Here we demonstrate in our quantum-mechanical

calculation that the cutoff for certain values of � and � can really be at

21UP1
. Concerning the sidelobes, we should notice that in a bichromatic

laser field of frequencies ! and 2! and relative phase � the symmetry

180� � �$ � becomes broken. Therefore, in the present case the sidelobes

found in Fig. 16 for a monochromatic field will not possess this symmetry

any longer. In the bichromatic field instead, the differential ionization

rates obey now the symmetry relation ð�þ �, 180� � �Þ $ ð�, �Þ. This can be

shown explicitly by considering the T-matrix elements in Eqs. (237) and

(239) which satisfy the symmetry relations

TfiðN,�þ �, 180� � �Þ ¼ ð�1Þn Tfiðn,�, �Þ: ð241Þ

According to this relation, the rates for the backward direction (� ¼ 180�)
and �¼ 0 are the same as the rates for forward direction (� ¼ 0�) and �¼�.
In Fig. 26 we show the differential ionization rates as functions of E ~kkf

=UP1

for different values of the angle � of electron emission and for the

relative phase �¼ 0. The direct ionization rates (computed from S
ð0Þ
fi )

and the ionization rates which include rescattering, described by

S
ð0Þ
fi þ S

ð1Þ
fi , are shown separately. For � ¼ 180� the direct rates are

represented by a dotted line, while the rates which include rescattering are
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shown by a continuous curve. For � ¼ 90� only the direct rates are plotted,

while for � ¼ 0� the direct rates are depicted as a continuous line. The rates

which include rescattering for � ¼ 0� are represented by a dashed curve. As

follows from this figure, the direct ionization rates contribute to the first

plateau only, while the second plateau starts at the cutoff of the direct rates

and represents the rescattering effects. The positions of the cutoff strongly

depend on the angle �. The maximum outgoing electron energy, both for the

first and the second plateau, is found at � ¼ 180�. The cutoff of the first

plateau is near 5UP1
which agrees with the results of [218]. The cutoff of the

second plateau is at 20.6 UP1
as predicted by the results of a classical

consideration of rescattering. The maximum outgoing electron energies for

smaller � are much lower than for � ¼ 180�. These energies also increase

with the decrease of � from 90� to � ¼ 0�. The main conclusion drawn from

Fig. 26 is that for �¼ 0 the backward emission of electrons is dominant and

that in this direction we obtain many more high-energy electrons. According

to the symmetry relation (241) this situation will be reversed for �¼�.

FIG. 26. Differential ionization rates presented in a similar way as in Fig. 15, but for a

bichromatic field of frequencies ! ¼ 1:58 eV and 2!, the relative phase �¼ 0, and equal

intensity of both components. The direct ionization rates and the ionization rates which include

rescattering are shown separately. For � ¼ 180� the direct rates are shown by a dotted line,

while the rates which include rescattering are presented by a continuous curve. For � ¼ 90� only
the rates of direct ionization are shown, while for � ¼ 0� the direct rates are depicted by a

continuous line. The rates at � ¼ 0�, which include rescattering, are presented as a dashed curve

(see ref. [236]).
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In Fig. 27 we show polar plots similar to those presented in Fig. 16, but

for a bichromatic linearly polarized laser field of frequencies ! and 2!, for
the relative phase �¼ 0, and for E ~kkf

¼ 8UP1
, 9UP1

, 12UP1
, 16UP1

, 20UP1
,

and 21UP1
. The plots in Fig. 27 do not possess the symmetry �$ 180� � �

as in Fig. 16 for a monochromatic field. For E ~kkf
¼ 8Up1 , we can notice

sidelobes at �¼ 20� in addition to the emissions in forward and backward

direction. These sidelobes are similar to those seen in the monochromatic

case. Moreover, there are also smaller sidelobes for � > 120�. The behavior

of the ionization rates for larger angles is different from those for smaller

angles and different from the monochromatic case. They are characterized

by rapid oscillations, very similar to previous findings [508, 509], and

one can ascribe these oscillations to the behavior of the generalized

Bessel functions, Eq. (233), with a large second argument. With increasing

E ~kkf
, this effect becomes dominant. For E ~kkf

¼ 9UP1
there are no more

sidelobes for small angles �. We only have emission of electrons in a

small angular range near the forward direction and at � > 123�. The rates

have maxima at 126:3�, 132:3�, and 141:1�. For E ~kkf
¼ 12UP1

we only have

emission of electrons at � > 132�. On top of a background of oscillatory

sidelobes, are those the most prominent ones at 152� and 136�. For

E ~kkf
¼ 16Up1 the angular interval of electron emission becomes narrower

(145��180�). The sidelobes are now at 150� and 170�. For E ~kkf
¼ 20Up1

we only obtain clear sidelobes at 170�. There are no more rapid oscillations

of the rates as a function of �. This shows that the origin of these oscillations

can be found in the interferences of different electron trajectories. Namely,

only a small number of trajectories can contribute to such large E ~kkf
and

thus the interference effects are suppressed. Finally, for E ~kkf
¼ 21Up1 we

only find emission of electrons into a small range around the backward

direction.

Classical consideration In previous investigations [218] (see also refs.

[242, 243]), we performed classical considerations of the rescattering effects

in a bichromatic laser field. According to the rescattering model, the

electron is born at time t0 with the initial momentum ~pp0 and moves under

the influence of the laser field. Solving the Lorentz equation of motion for

the electron momentum and assuming that the electron scatters elastically at

the atomic core at some instant t1, we can obtain an expression for the cycle

averaged kinetic energy hEki of this electron which depends on ~pp0, t0, and t1.

For a fixed ~pp0 (chosen to be zero), the times t0 and t1 for which hEki has its
maximum can be evaluated by solving the system of equations ~rrðt1Þ ¼ ~00
(i.e. that the electron is at the nucleus at the time t1) and @hEki=@t0 ¼ 0.

Solving numerically this system of equations, we obtained hEkimax as a

function of the relative phase �. This yields the maximum value 20:9UP1
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FIG. 27. The sidelobe structure of the ATI spectra are presented in similar fashion as in Fig. 16 for a single frequency !, but for the bichromatic

laser field parameters of Fig. 26. The outgoing electron energies are E ~kkf
¼ 8UP1

(upper left plot), 12UP1
(upper right plot), 16UP1

(lower left plot),

and 20UP1
(lower right plot) (see ref. [236]).
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close to �¼ 0 and �¼� and the minimum value 17:3UP1
for � ¼ �=2. Thus

we find a classical cutoff law as a function of �. In order to check to

which angles � of electron emission these hEkimaxð�Þ would correspond,

we computed by means of our quantum-mechanical approach, presented

before, the �-dependence of the ionization rates for each ‘‘classical’’ pair of

parameters chosen (i.e. hEkimax, �), for values of � in the interval ½0,��, using
steps of �=10. The results can be presented graphically and one notices that

for � < �=2 the electrons are mostly emitted in the backward directions,

while for � > �=2 the situation is opposite, i.e., the emission in forward

direction is dominant. One also finds that the results for �¼ 0 and �¼�
satisfy the symmetry relation of the ionization rates wfið0, 180� � �Þ ¼
wfið�, �Þ which is in accord with Eq. (241). There is no symmetry

�$ 180� � � for other pairs of curves.
Conclusions Summarizing, we predict in the case of a bichromatic laser

field interesting effects that should be accessible to observation. Namely, we

obtained an extended second plateau for the emission of electrons in the

backward direction (� ¼ 180�) for the relative phase �¼ 0. According to

the symmetry relation, Eq. (241), this plateau is expected for electrons

emitted in the forward direction (� ¼ 180�) if �¼�. The sidelobe structures
in the bichromatic case are more complicated, especially for large angles �
of electron emission. After the cutoff energy at � ¼ 0�, which is � 9UP1

,

there are no further electrons emitted at small angles close to forward

direction, instead electrons are only emitted in a broad angular interval

around the backward direction. With increasing energy of the outgoing

electrons, these angular intervals become narrower and at the cutoff energy

at 21UP1
the electrons are only emitted in the backward direction

(� ¼ 180�).

B.2. CPC in electron–ion recombination

With refererence to our recent work [287], we consider electron–ion

recombination in a powerful bichromatic laser field of frequencies !L and

3!L and investigate the dependence of the recombination probabilities on

the relative phase � of the two field components. More recently, the case of

recombination in a bichromatic field of the frequency components !L and

2!L was considered in ref. [290]. During this process a certain number of

laser photons can be absorbed or emitted yielding a spectrum of harmonics

of the form �hh!X ¼ E~pp þN �hh!L þ Iio þUtot
P where E~pp is the initial electron

energy, N the number of emitted or absorbed laser photons �hh!L, Iio the

ionization energy, and Utot
P the total ponderomotive energy of the

bichromatic laser field. This process is of interest for the generation of

high-frequency fields during the laser heating of plasmas, as we discussed in
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Section II.C. We shall evaluate the nonlinear recombination probabilities as

a function of the relative phase � of the two field components using the

inverse form of the Keldysh–Faisal–Reiss model, taking also into account

in an approximate way the Coulomb effects of the ion on the recombining

electron. We shall moreover compare our quantum-mechanical results with

those obtained from a classical theory of recombination, developed recently,

based on Bohr’s correspondence principle of quantum mechanics.

Quantum theoretical formulation We consider the recombination of

electrons with ions in the presence of a strong bichromatic laser beam,

described by the vector potential

~AALðtÞ ¼ ~AA01 cos!Ltþ ~AA03 cosð3!Ltþ �Þ ð242Þ

in the dipole approximation and we assume that both field components

have the same direction of linear polarization. In the presence of the laser

field, x-ray photons of frequency !X , wave vector kX ~nn, and linear

polarization ~�� are emitted. In the length gauge, the Hamiltonian describing

this process reads

ĤHðtÞ ¼ ĤHat þ ĤHrad � e ~EELðtÞ � ~rr� e ~EEX ð~rr, tÞ � ~rr, ð243Þ

in which ĤHat is the atomic Hamiltonian in the absence of the fields and ĤHrad

is the Hamiltonian of the two free radiation fields. ~EELðtÞ describes the

electric field of the laser beam in the dipole approximation and ~EEX ð~rr, tÞ is
the electric-field operator of the x-ray radiation. It will be permitted to use

in Eq. (243) for the electron laser field coupling as well as for the electron

x-ray field coupling the dipole interaction, as long as the wavelength of both

fields will be larger than the Bohr radius. We treat the laser field classically

while the spontaneously emitted x-ray is described quantum-mechanically.

For our recombination process, the initial state is j  ðþÞ
~pp
ðtÞ; 0i, namely the

vacuum state for x-ray radiation and a scattering state for an electron in the

laser field. On the other hand, the final state equals j  0ðtÞ; 1i, is describing a
one-photon state for x-rays and a bound state of an electron in the laser

field. Using Fermi’s golden rule, we find for the probability of emitting a

single x-ray photon by an electron recombining from a scattering state of

momentum ~pp into a quasi-bound state to be

Pð~nn, ~pp Þ ¼ 1

�hh

Z
dth 0ðtÞ; 1j � e ~EEX ð~rr, tÞ � ~rr j  ðþÞ~pp ðtÞ; 0i











2

ð244Þ
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and straightforward calculations lead then to the total power of emitted

x-rays to be

P ¼
Z

d3p

ð2��hhÞ3
d3kX

ð2�Þ3
V �hh!Xwð~nn, ~ppÞ

¼
Z

dE~pp d�~pp d!X d�~nn Sð!X , ~nn, ~pp Þ

� �ðE0 � E~pp �Utot
P �N �hh!L þ �hh!X Þ, ð245Þ

in which the differential power spectrum is defined by

Sð!X , ~nn, ~pp Þ ¼
�!4

Xmp

ð2�Þ4�hhc2

� !L

2�

Z 2�=!L

0

dth 0ðtÞ je�i!X tþið!X=cÞ~nn�~rr ~"" � ~rr j  ðþÞ
~pp
ðtÞi











2

: ð246Þ

Our discussions below will be based on this quantity. We approximate

 0ð~rr, tÞ by the ground-state wave function of hydrogen without the laser

field and we replace  ðþÞ
~pp
ð~rr, tÞ by our Coulomb–Volkov solution [29]. For the

laser field, Eq. (242), we use in our approximation for  ðþÞ
~pp
ð~rr, tÞ, represented

by a Coulomb–Volkov wave, ~��LðtÞ ¼ ~��01 sin!Ltþ ~��03 sinð3!Ltþ �Þ with
~��0j ¼ �e ~AA0j=jm!L ( j ¼ 1, 3). Our above calculations are entirely performed

in the length gauge, as was originally done for ATI by Keldysh [103]. The

Coulomb–Volkov solution used here, gives more reliable results than the one

originally suggested by Jain and Tzoar [250] many years ago (using the

velocity gauge). A comparison of the two Coulomb–Volkov approximations

was made in ref. [170].

Classical formulation Based on Bohr’s correspondence principle, we shall

outline in this section some classical considerations on the power spectrum

of x-rays emitted during the recombination of electrons with ions in the

presence of a strong laser field. We have shown [282] that the power

spectrum of x-rays, evaluated for a single laser frequency, can be estimated

from the quantum-mechanical calculations to have the shape of a plateau

of the width 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2UPE~pp

p
and the maximum/minimum energy of the emitted

x-ray quanta can be found to be �hh!max =min ¼ E~pp þ Iio þUP 	 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2UPE~pp

p
.

We also demonstrated in another work [510], that a similar result can be

obtained by analyzing a simple classical model for x-ray generation during

the recombination process. However, for a single laser frequency this

classical model apparently describes the shape of the power spectrum as well
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as the position of its extrema more closely to the quantum-mechanical

results than the above-made estimate. In the classical model the limits of

the x-ray spectrum for a single laser frequency are found to be given by

�hh!max =min ¼ E~pp þ Iio þ 2UP 	 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2UPE~pp

p
and hence this calculation yields an

x-ray spectrum which is shifted by a factor UP in comparison with the above

estimate. We shall therefore also apply this classical model to recombination

in a bichromatic field and compare the results of the quantum mechanical

and classical models.

We consider the energy of a classical electron moving in a laser field in

dipole approximation

EðtÞ ¼ 1

2m
ð ~pp� e ~AALðtÞÞ2, ð247Þ

where ~pp is the momentum of the electron’s translational motion and ~AALðtÞ is
in the present case the vector potential, Eq. (242). If at time t an electron is

captured by an ion in the field, Eq. (242), then the energy of the emitted

x-ray photon will be �hh!X ðtÞ ¼ Iio þ EðtÞ. Hereby we assumed that the total

kinetic electron energy was converted into an x-ray photon and that other

processes, involving some laser photons, are much less probable. Moreover,

we assume that the intensity of the emitted x-rays of energies in the interval

½!X ,!X þ d!X � is proportional to the time during which a ‘‘classical’’

electron in the laser field Eq. (242) has energies in the interval

½EðtÞ,EðtÞ þ �hhd!X �. Hence, the classical power spectrum of x-ray radiation

Scð!X , ~nn, ~ppÞ will be proportional to the probability density of finding an

electron with an instant energy EðtÞ ¼ �hh!X ðtÞ � Iio. This classical probability

density can be evaluated to be [510]

�cð!X Þ ¼
!L

2�

X

tð!X Þ

1

j!0X ðtð!X ÞÞj
, ð248Þ

where the prime denotes the derivative with respect to time and the values of

tð!X Þ are the solutions of the equation

�hh!X ¼ Iio þ
1

2m
~pp� e ~AA01 cos!Lt� e ~AA03 cosð3!Ltþ �Þ
h i2

: ð249Þ

The probability density Eq. (248) has been normalized to one, viz.

Z !max

!min

�cð!X Þd!X ¼ 1, ð250Þ
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with !min and !max being the classical minimum and maximum frequencies

of generated x-rays.

We also took the electron momentum to point parallel to the polarization

vectors of the bichromatic field, i.e. ~pp jj ~AA01jj ~AA03, corresponding to the most

favorable geometry, as discussed in ref. [282]. For this geometry, the

possible energies of x-ray photons �hh!X lie within the range ½!min,!max�,
where in general the minimum and maximum frequencies have to be found

numerically for our bichromatic field Eq. (242) using the extremum

condition !0X ðtÞ ¼ 0 to be derived from Eq. (249) which in general cannot

be solved analytically, except for the two values ’ ¼ 0 and �. In this case we

obtain

�hh!max =min ¼ Iio þ E~pp 	 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2UP1

E~pp

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2UP3

E~pp

q� �
þ 2

ffiffiffiffiffiffiffiffi
UP1

p
þ

ffiffiffiffiffiffiffiffi
UP3

p� �2
,

where UPi
¼ e2A2

0i=4m (i ¼ 1, 3).

The above classical model predicts that for a given value of the electron

momentum the power spectrum of x-ray radiation is limited to the range

½!min,!max�. Since the classical probability density �cð!X Þ is infinite at the

endpoints of the interval ½!min,!max�, we have to consider a realistic

experiment in which the intensity of x-ray radiation is measured within a

certain interval ½!X ,!X þ d!X � due to the finite experimental resolution.

Therefore, the density �cð!X Þ has to be averaged over a frequency range in

the vicinity of !X . This leads to a finite and continuous classical probability

density for the generation of x-rays. Assuming that the experimental

apparatus counts all photons within the interval ½!X � �,!X þ ��, the

averaged probability density becomes

���cð!X Þ ¼
1

2�

Z !Xþ�

!X��
d!�cð!Þ: ð251Þ

The averaged classical probability density ���cð!X Þ is then a continuous

function of !X , while the quantum-mechanical formula Eq. (245) predicts

that the x-ray frequencies can only differ by multiples of the laser frequency

!L. In order to compare the predictions of the classical and quantum

models, we have to discretize the classical probability density. The most

natural discretization prescription turns out to be

�ppcð!X Þ ¼
Z !Xþð1=2Þ!L

!X�ð1=2Þ!L

d! ���cð!Þ � !L ���cð!X Þ, ð252Þ
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yielding the probability that during the process of recombination a photon

of energy within the interval ½!X � ð1=2Þ!L,!X þ ð1=2Þ!L� is emitted. This

classical result has to be compared with the corresponding averaged

quantum probability �ppqð!X Þ. This probability is proportional to the power

spectrum Sð!X , ~nn, ~pp Þ of x-ray radiation, given by Eq. (246), where the total

probability of emission of any x-ray photon is equal to one. Also in the

quantum mechanical case we have to account for the finite resolution of

the experimental apparatus and therefore �ppqð!X Þ will be proportional to the

power spectrum Sð!X , ~nn, ~pp Þ, averaged like the classical probability

distribution, namely

�ppqð!X Þ ¼ N
X

!X�� 4 ! 4 !Xþ�
Sð!, ~nn, ~ppÞ, ð253Þ

where N is a normalization factor, determined from the condition

X

!X

�ppqð!X Þ ¼ 1: ð254Þ

Our numerical examples will be expressed in atomic units, if not stated

otherwise.

Numerical examples The numerical examples will demonstrate the validity

of our classical model of recombination, based on Bohr’s correspondence

principle. It is applied in the present problem to the recombination in

a bichromatic field, Eq. (242), of frequencies !L and 3!L and we consider

a Ti:sapphire laser of frequency !L ¼ 1:5498 eV. We assume that the resolu-

tion of the experimental apparatus that measures the energy of the emitted

x-ray photons is either 2� ¼ 10!L or 2� ¼ 20!L. These are reasonable values

for the energetic x-ray radiation generated by the recombination of ingoing

electrons of kinetic energies of about E~pp ’ 56 a.u. and laser intensities

between I ¼ 1013 and 1014 Wcm�2. In the following figures we compare the

classical and quantum mechanical recombination probabilities �ppcð!X Þ and
�ppqð!X Þ, respectively. We show for comparison the corresponding differential

power spectrum, Sð!, ~nn, ~ppÞ, for the above laser-field parameters and electron

energies as a function of the relative phase ’ of the two field components.

As anticipated from the results of our earlier work [510] for a single

laser frequency !L, the exact quantum mechanical results are smoothed

out by the averaging procedure, but also in the bichromatic case the most

important finding is that the shapes of the classical and quantum-

mechanical probability distributions are almost identical. It may well be
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that for smaller laser-field frequencies, where the correspondence principle

should be more reliable, the agreement will be even better.

In Fig. 28 we assume the same intensity I1 ¼ I3 ¼ 1014 Wcm�2 for both

radiation-field components and we show for the rather high electron kinetic

energy Ep ¼ 56:213 a.u. in the upper two frames the power spectra Eq. (246)

for ’ ¼ 0� on the left hand side and for ’ ¼ 45� on the right hand side. We

immediately recognize that the dominant x-ray frequencies of the laser-

assisted recombination spectrum can be manipulated by varying the relative

phase ’ of the two laser field components. Moreover, we conclude that

recombination in a bichromatic field can be used to promote particular

x-ray frequencies to become dominant in the recombination spectrum.

Furthermore, we plotted in the lower two frames the time-dependence of

!X ¼ Iio þ ð1=2mÞð~pp� e ~AALðtÞÞ2 (in units �hh ¼ c ¼ 1) and we recognize that

FIG. 28. Compares the power spectrum, Eq. (246), and the time-dependence of

!X ¼ Iio þ ð1=2mÞð~pp� ðe=cÞ ~AALðtÞÞ2. The position of the dominant peaks of the quantum-

mechanical spectrum is classically properly predicted by the condition !0X ðtÞ ’ 0 demonstrating

the usefulness of the classical model. The left frames refer to � ¼ 0� and the right ones to

� ¼ 45�. The other parameters are !L ¼ 1:5498 eV, I1 ¼ I3 ¼ 1014 Wcm�2, E~pp ¼ 56:213 a.u.

(see ref. [166]).
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the endpoints of the x-ray spectrum are, by comparison with the upper

frames, correctly determined by the condition !0X ðtÞ ’ 0. This demonstrates

again the usefulness of the classical considerations to obtain in the present

case insight into the extent of the recombination spectrum in a bichromatic

laser field.

In Fig. 29 we compare the contour plots of the averaged recombination

probabilities for the quantum case in the left frame and the classical case

in the right frame. The laser and electron parameters are the same as in Fig.

28. In both cases the resolution was chosen to be 2� ¼ !L. The maxima of

the plotted quantum-mechanical and classical probabilities agree very well

with each other although the oscillations of the quantum mechanical

probability distribution are a clear indication of the interferences between

different quantum path which are not present in the classical case. In both

frames, however, the ’-dependence of the recombination probabilities is

very similar in shape and extent. The more powerful second field component

leads to a much more pronounced ’-dependence of the spectra and very

sharp maxima of the recombination probabilities at characteristic x-ray

frequencies !X ð’Þ.
Conclusions Summarizing, we have discussed an example of the predictive

power of our classical model of electron–ion recombination in a laser field.

We saw that even the phase-dependences and peak structures of the

recombination spectra in a bichromatic field are well described by this
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FIG. 29. Presents a comparison of the contour plots of the averaged quantum mechanical

(left) and classical (right) recombination probabilities. Both probabilities have their maxima at

the same positions but the quantum mechanical probabilities show oscillations due to

interferences of quantum mechanical origin. In both cases the resolution 2� ¼ !L was chosen.

The other parameters are the same as in Fig. 28, except that 0� 
 � 
 360�. Thanks to the equal

intensity of both radiation components, the similarity of the �-dependence of the dominant

peak structure of the quantum mechanical and classical probabilities becomes more evident

(see ref. [166]).
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model. We should emphasize, however, that our classical model cannot be

used to estimate the absolute values of the recombination probabilities of

the spectrum. This can only be done by a quantum mechanical calculation.

As we pointed out earlier [510], the classical model can also not predict the

rapid oscillations of the power distribution in the inner part of the frequency

spectrum. While the classical distribution only shows some characteristic

peaks, the quantum distribution contains additional rapid oscillations

which originate in quantum interferences. These stem from the summation

of the quantum mechanical probability amplitudes, referring to different

quantum paths, but leading to the same final state. The very good agree-

ment between the classical and quantum distributions for the main features

of the spectrum in the case of a bichromatic field suggests that for the

main peaks there will be only one dominant quantum path, namely the direct

emission of an x-ray photon during the recombination process. The

successful application of Bohr’s correspondence principle to recombination

in a bichromatic laser field is another example for the successful application

of classical considerations to laser-induced phenomena as was done

previously for HHG and ATI by Corkum [173] and Kulander et al. [172],

and for potential scattering by Rabadán et al. [511, 512].

B.3. HHG by bichromatic fields

Over the past decade HHG in laser-irradiated atomic gases has been

extensively studied [17,175], as already discussed in Section II.F. Many

efforts were made in order to control HHG, especially due to the potentially

important applications of the coherent soft x-rays that might be produced

via HHG [331]. It is known that the harmonic output can be manipulated

by changing the driving field or altering the medium which generates

harmonics. For example, a bichromatic driving laser field provides two

additional parameters for the control of HHG, the relative intensity and the

relative phase of the fields [233, 513–515]. Polarization of the laser field

[213, 515–518], as well as the shape of the laser pulse [519, 520], are also

parameters useful for such control. For ultra-short pulses, the initial phase

of the laser field has a significant influence on the HHG process [354, 355].

The HHG process can also be controlled by adding a static electric field

[521–523] or a static magnetic field [398, 524–526] to the driving laser field.

The usual media used in HHG are atomic gases, but HHG has also been

examined for ions [527], molecular gases [433] and atomic clusters [528].

In addition, control of HHG was explored theoretically for the case in which

the initial state is prepared as a coherent superposition of states [424, 425].

Theoretical approach We consider the generation of harmonics by

irradiating atoms with a powerful laser field described by an electromagnetic
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plane wave in the dipole approximation with the electric field vector

defined by

~EEðtÞ ¼ ~��EðtÞ ¼ ~��
X

j

E0j cosðj!tþ �jÞ, ð255Þ

where ~�� is a unit vector of linear polarization oriented in the z-direction and

�j and E0j ( j ¼ 1, 2 or j ¼ 1, 3) are the phases and amplitudes of the driving

fields. The rate of emission of a harmonic photon of frequency N!
and polarization ~�� into the solid angle d� is determined by the expression

(see Eq. (203) with Eqs. (202) and (205)–(208) in Section II.F, for f ¼ i

and in atomic units)

wN ¼
1

2�

N!

c

� �3

DNj j2, ð256Þ

with DN being the Nth harmonic strength

DN ¼
Z T

0

dt

T
dðtÞ expðiN!tÞ, ð257Þ

where dðtÞ is the time-dependent dipole matrix element. The corresponding

intensity of the harmonics is jDN j2 and their power is N!wN . Using the

strong-field approximation, discussed in greater detail in Sections II.E and

II.F, and neglecting the continuum–continuum coupling, the time-depen-

dent dipole matrix element can be approximated by dðtÞ � daðtÞ þ deðtÞ �
daðtÞ þ da ðtÞ, where according to Eq. (213) in Section II.F.3

daðtÞ � �i
Z 1

0

d�
2�

i�

� �3=2

Eðt� �Þh 0jzjqs þ AðtÞihqs þ Aðt� �Þjzj 0ieiSs

ð258Þ

with

qs ¼
1

�
½�ðt� �Þ � �ðtÞ�, ð259Þ

Ss � Sðqs; t, t� �Þ ¼
Z t��

t

dt0
1

2
qs þ Aðt0Þ½ �2þIio

� �

¼ ½�ðt� �Þ � �ðtÞ�qs þUðt� �Þ �UðtÞ � Iio þ
q2s
2

� �
�, ð260Þ
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and

�ðtÞ ¼
Z t

dt0Aðt0Þ, UðtÞ ¼ 1

2

Z t

dt0A2ðt0Þ: ð261Þ

The integral over the return time � can be calculated by numerical

integration and the harmonic strength Eq. (257) can then be evaluated by

means of the fast Fourier transform method in a very similar fashion

as explained in Sections II.E and II.F.

Numerical examples First we present data that were evaluated in the work

of Milos̆ević and Piraux [233], who investigated HHG in a bichromatic

elliptically polarized laser field. In their work, the strong-field approxima-

tion of HHG, developed by Lewenstein et al. [181], was generalized to

the case of a bichromatic elliptically polarized radiation field. Numerical

results for a linearly polarized laser field were presented and analyzed

for different laser field frequencies, intensities and relative phases. The

harmonic intensities turn out to be many orders of magnitude higher in

the bichromatic case than in the monochromatic one. The plateau height

can be controlled by changing the relative phase of the fields. A qualitative

agreement of their results with the experiments [397, 529] was found by

these authors. As a representative example for the CPC effects we depict

in Fig. 30 their results for a linearly polarized bichromatic field

of frequencies !¼ 1 eV and 3! and field amplitudes E01 and E03 ¼ 3E01.
The ionization energy and the laser intensity were Iio ¼ 13:6 eV and

I01 ¼ E201 ¼ 7� 1013 Wcm�2, respectively. In the figure presented, different

values of the relative phase � ¼ �2 � �1 are considered.

In Fig. 31 we present some more recent data on the harmonic spectra

generated by a linearly polarized bichromatic laser field of frequencies ! and

2! with the electric field vector given by EðtÞ ¼ E01 sin!tþ E02 sinð2!tþ �Þ
where the field amplitudes are given by E01 ¼ 0:1 a.u. and E02 ¼ 0:32 E01.
The results shown are for the relative phases �¼ 0 and �¼ 0.2�. The laser

frequency is chosen in this case ! ¼ 0:057 a.u. and the ionization energy of

the target atom is Iio ¼ 0:58 a.u. The results presented in this figure show

two plateaus of generated harmonics and two cutoffs. For both relative

phases the higher cutoff energy is at 63!. At this cutoff, the harmonic

intensity for �¼ 0 is by one order of magnitude higher than the

corresponding intensity for �¼ 0.2�. In the shorter plateaus we find much

higher harmonic intensities than in the longer plateaus and they have their

cutoffs at 47! and 43! for �¼ 0 and �¼ 0.2�, respectively. All these

features of the spectra presented can be explained by using two pairs of
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quantum orbits which are the solutions of the corresponding saddle-point

equations [392].

Conclusions As it was shown, both theoretically and experimentally, it is

possible to control HHG by employing a bichromatic radiation field of

harmonic frequencies ! and s! (usually, s ¼ 2, 3). A considerable number

of investigations of HHG in a bichromatic field have been performed

to which we refer the reader for further details [233, 392, 515, 530–534].

FIG. 30. Shows the harmonic intensity as a function of the harmonic order N for the

Gaussian model [181], for the !–3! bichromatic laser field (255). The parameters are

Iio ¼ 13:6 eV, ! ¼ 1 eV, I01 ¼ 7� 1013 Wcm�2, and the data presented are for different values

of the relative phase � ¼ �2 � �1: (a) � ¼ f0; 3�=2; �=2g and (b) � ¼ f�; �=3; 2�=3g. From these

figures we can infer that both, the height of the plateau and the position of the cutoff change

with the change of � (see ref. [233]).
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As the numerical analysis has shown [232, 392], we arrive at the following

conclusions: (i) The harmonic intensities can be much larger in the

bichromatic case. (ii) In the bichromatic case, the plateau of harmonics is

not constant as in the monochromatic case, but has its own structure.

Moreover, two plateaus in the harmonic spectrum are developed, a shorter

and a longer one. The intensity of the harmonics in the shorter plateau

is higher. (iii) The cutoff positions as well as the plateau heights can be

controlled by changing the relative phase. (iv) In the !–2! case there

are both, even and odd harmonics generated and they have the same

intensity. (v) The phase of the induced atomic dipole moment exhibits

a quasilinear dependence on the ponderomotive energy, similar to the

monochromatic case, but it has a lower slope. (vi) The behavior of the

harmonic intensity as a function of the relative phase does not depend

on the chosen atomic potential. Finally, the qualitative predictions of

the theory are in agreement with experiments, but a quantitative analysis

requires to take into account phase matching and propagation effects, as

pointed out in Section II.F.

FIG. 31. Presents the harmonic power as a function of the harmonic order N, generated by a

linearly polarized bichromatic laser field of frequencies !1 and 2!1 with the field amplitudes

E01 ¼ 0:1 a.u. and E02 ¼ 0:32 E01 for the laser frequency ! ¼ 0:057 a.u., while the ioniza-

tion potential is Iio ¼ 0:58 a.u. The relative phases are �¼ 0 (circles) and � ¼ �=2
(triangles). Even harmonics are marked by open symbols, while odd harmonics are shown

as filled symbols.
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IV. Final Comments

In the present work, we have given an overview on various scattering and

reaction processes taking place in a powerful laser field. These processes can

be either laser-induced or laser-assisted. In the latter case a fundamental

process exists in the absence of the laser field. We have concentrated in our

discussions on laser interactions with atomic systems, though occasionally

we also mentioned the corresponding molecular phenomena. In the case

of molecules, the additional freedoms of motion lead in the presence of a

laser field to a variety of more complicated effects, but the treatment of these

processes also causes more computational difficulties. Our general approach

to solving the problems considered, was adapted from the S-matrix

theory, originally conceived for the solution of problems of quantum

electrodynamics. This method turns out to be very efficient in the present

case of treating atomic processes in powerful laser fields, since at high laser

field intensities a number of approximations can be made, in particular,

the ‘‘quasi-free’’ electron approximation in which it is assumed that an

ionized or scattered electron is interacting with the laser field only, while

the atomic binding effects can be neglected to a very large extent. Moreover,

the unitarity of the S-matrix presents an intuitive link between various

different laser-induced processes like, for example, the connection between

ATI and HHG. Another approximation turns out to be very useful and, in

many cases, leads to sufficiently good results. That is, to assume that there

is only one single electron in the atomic system interacting with the laser

field at a particular instant of time. Of course, this approximation is not

always valid and more recently a number of experiments have shown where

this approximation breaks down. We shall not go, however, into a detailed

discussion of these phenomena, but we shall mention some experimental

and theoretical work performed recently.

As we indicated, the dynamics of an atom in an intense laser field can be

described in general quite accurately within the assumption of just one single

active electron [535]. Experiments several years ago proved, however, that

this is certainly not always the case for the laser-induced double ionization

of atoms [536–539]. In fact, these experiments demonstrated that the yield of

double ionization can be many orders of magnitude higher than predicted

within a theory using one active electron at a time. Subsequently, several

theories were put forward to understand the underlying physics of this

nonsequential process. They were referred to as the shake-off [540], the

recollision [173] and the collective-tunneling [541, 542] mechanisms. More

insight into the dominating mechanism was most recently gained by the

experiments of two groups [543–547] which involved very sensitive
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measurements of the momentum distributions of doubly charged ions

with the help of the COLTRIMS (cold target recoil-ion momentum

spectroscopy) technique [548, 549]. The data have shown uniformly that

one of the two electrons first tunnel alone through the Coulomb barrier,

then return after the change of phase in the linearly-polarized laser field

towards the ionic core and finally ionize the second electron via momentum

transfer during the recollision process. We also mention some further

recent experimental results [550–553]. The experimental development

was accompanied by many supporting calculations of the correlated

two-electron dynamics, including S-matrix theories [554–561], classical

relativistic calculations [562], that were used in order to confirm the

observed suppression of double ionization due to the magnetic field induced

electron drift motion, semi-classical model calculations [563–567] and in

most cases time-dependent numerical integration of the corresponding

Schrödinger equation [568–587]. The corresponding problem at

relativistic laser field intensities was also considered recently [189]. In the

investigations mentioned and in the review by Lambropoulos et al. [367] and

in the recent Focus issue [368] the interested reader will find more detailed

information.
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154. Bergou, J., and Varró, S. (1980). J. Phys. A 13, 2823.

155. Faisal, F.H.M., and Rado_zzycki, T. (1993). Phys. Rev. A 47, 4464.

156. Morales, F., Ferrante, G., and Daniele, R. (1997). Nuovo Cimento 19 D, 23.
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165. Panek, P., Kamiński, J.Z., and Ehlotzky, F. (2000). Can. J. Phys. 77, 591.
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287. Jaroń, A., Kamiński, J.Z., and Ehlotzky, F. (2001). J. Phys. B 34, 1221.

288. Leone, C., Bivona, S., Burlon, R., and Ferrante, G. (2003). Laser Phys. (to be published).
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314. Kálmán, P. (1989). Phys. Rev. A 39, 2428.
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342. Milos̆ević, D.B., and Ehlotzky, F. (1999). Laser Phys. 9, 149.
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347. Milos̆ević, D.B., and Starace, A.F. (1999). Phys. Rev. A 60, 3943.

348. Piraux, B., L’Huillier, A., and Rza_zzewski, K. (eds.). (1993). ‘‘Super-Intense Laser-Atom

Physics. Vol. 316 of NATO Advanced Studies Institute, Series B: Physics.’’ Plenum,

New York.

349. Fedorov, M.V. (1997). ‘‘Atomic and free electrons in a strong light field.’’ World

Scientific, Singapore.

350. Spielmann, Ch., Kan, C., Burnett, N.H., Brabec, T., Geissler, M., Scrinzi, A.,
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Hergott, J.-F., Merdji, H., and Carré, B. (1999). Phys. Rev. Lett. 83, 5483.
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509. Milos̆ević, D.B. (1996). J. Phys. B 29, 875.

510. Jaroń, A., Kamiński, J.Z., and Ehlotzky, F. (2001). Phys. Rev. A 63, 055401.

511. Rabadán, I., Méndez, L., and Dickinson, A.S. (1994). J. Phys. B 27, 2089.

512. Rabadán, I., Méndez, L., and Dickinson, A.S. (1996). J. Phys. B 29, 163.

513. Long, S., Becker, W., and McIver, J.K. (1995). Phys. Rev. A 52, 2262.

514. Figueira de Morrison Faria, C., Becker, W., Dörr, M., and Sandner, W. (1999). Laser

Phys. 9, 388.

515. Gaarde, M.B., L’Huillier, A., and Lewenstein, M. (1996). Phys. Rev. A 54, 4236.

516. Ivanov, M., Corkum, P.B., Zuo, T., and Bandrauk, A. (1995). Phys. Rev. Lett. 74, 2933.
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and Spielberger, L. (1997). J. Phys. B 30, 2917.

550. Witzel, B., Papadogiannis, N.A., and Charalambidis, D. (2000). Phys. Rev. Lett. 85, 2268.

551. Lafon, R., Chaloupka, J.L., Sheehy, B., Paul, P.M., Agostini, P., Kulander, K.C., and

DiMauro, L.F. (2001). Phys. Rev. Lett. 86, 2762.

552. Feuerstein, B., Moshammer, R., Fischer, D., Dorn, A., Schröter, C.D., Deipenwisch, J.,
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I. Introduction

The translationally energetic atoms, sometimes called hot/fast/energetic

atoms, can be produced in the planetary atmospheres, interstellar medium

and in the laboratory, both in ground and excited electronic states. In the

terrestrial atmosphere, hot O, H, and N atoms are produced in the

mesosphere and the lower thermosphere by different processes like

dissociative recombination, collisional quenching, photodissociation, and
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photoelectron-impact dissociation. In the stratosphere, hot oxygen atoms

are produced by photodissociation of ozone. In the interstellar medium, the

interaction of stellar UV radiation with ice mixtures, especially nonpolar ice

mixtures, leads to photolysis. As a result, hot atoms are liberated. The role

of hot atoms in the terrestrial atmosphere could be understood only through

the combined effort from different areas of activity. This includes quantum

chemical calculations of potential energy surfaces and reaction dynamics,

measurements of various branching ratios and cross sections, numerical as

well as experimental simulation of the thermalization, in situ measurements

of the velocity distribution of various species with specific internal energies,

and modeling of the atmospheric processes.

The field of collision studies of fast atoms with other atoms/molecules is

still in infancy. Though specific atom – molecule reactive scatterings have

been investigated from the point of view of chemical dynamics at low

energies, not much experimental and theoretical work on fast atom

collisions relevant to atmospheric processes has been taken up, probably

because of lack of thrill and proper motivation. Interest in the subject grew

tremendously when it was realized that the optical ‘‘shuttle glow’’

phenomenon in the low-earth orbit was due to recombination of ground

state hot O atoms (�5 eV energy) in the thermosphere with surface-adsorbed

(surface of the space vehicle) nitric oxide leading to formation of nitrogen

dioxide in the excited state (Swenson et al., 1985a,b; Orient et al., 1992).

Also, the infrared emissions from excited nitric oxide were detected during

an experiment onboard space shuttle (Ahmadjian et al., 1992; Zhou et al.,

1992) and it was suggested (Oakes et al., 1994) by laboratory simulation

experiments that these emissions were due to the reaction of energetic O

atoms (8 km s�1) with molecular nitrogen. Also, cross section measurements

in the laboratory for reactions of energetic oxygen atoms with CO, CO2, and

CH4 (Upschulte et al., 1992) and energetic nitrogen atoms with molecular

oxygen (Caledonia et al., 2000) have given a tremendous boost to this

relatively new field. It has now been realized that the energetic atoms could

play an important role in the chemical and heat balance of the terrestrial

atmosphere through reactive collisions as well as thermalization with

ambient/bath gases (Gorecki and Hanazaki, 1994 and references therein;

Balakrishnan et al., 1999, 2000 and references therein). The cross sections

for energy relaxation and electronic quenching of hot O(1D) atoms in

collision with O2 and N2 have recently been measured (Taniguchi et al., 2000

and references therein) using time-resolved Doppler spectroscopy. In the

laboratory, the energetic neutral atom beams of well-defined quantum states

can now be produced by accelerating the species as negative or positive ions

and neutralizing them using appropriate collision techniques. Also, the

accelerated species can be produced directly in the laboratory through a

534 Vijay Kumar and E. Krishnakumar [I



momentum-transfer step such as in a seeded supersonic beam, or in a

plasma-ball explosion (Chutjian and Orient, 1996). The field of gas-phase

collisions of fast atoms has suddenly opened up because beam–beam

collision experiments are now possible and can be carried out with relatively

greater ease.

The review article consists of seven sections. The subject is introduced in

this section and the neutral terrestrial atmosphere and the day and nighttime

ionosphere are discussed briefly in Section II. A detailed discussion on

sources and sinks of hot oxygen and nitrogen atoms in the Earth’s

atmosphere is taken up in Sections III and IV. Thermalization of hot atoms

in collision with ambient/bath gases is discussed in Section V taking into

account, translational energy/velocity relaxation, electron quenching of hot

atoms and inelastic excitation of product molecules. The computation of

elastic cross sections and inelastic cross sections for the above processes and

the corresponding Boltzmann kernels for thermalization are discussed in

detail. The latest experiments to measure such cross sections are also

included. Shuttle glow in the optical as well as infrared regions is discussed

in Section VI along with the probable emission mechanisms. The section

also contains description of the laboratory experiments to simulate the two

types of glows and measurement of excitation cross sections for reactions of

fast atoms in collision with ambient gases responsible for producing the

glow. Finally, the problem of large NO density measured at an altitude of

105 km, which has so far not been accounted by the latest photochemical

models even after including the hot nitrogen chemistry with an energy-

dependent thermalization cross section, is discussed in Section VII.

II. Terrestrial Neutral Atmosphere and Ionosphere

Before the discussion on hot atoms and their chemistry in the terrestrial

atmosphere, it is desirable to review the neutral atmosphere and also, the

daytime and nighttime ionosphere. In Fig. 1 are shown the variations in the

number density of the neutral constituents like O, O2, N2, Ar, H, He, and

total as a function of altitude up to 1000 km (Carrigan and Skrivanek,

1974). Widely used neutral atmosphere models by Jacchia (1972, 1977) and

Hedin (1987) give similar results under different geophysical conditions. For

most practical applications, the neutral atmosphere would be considered to

consist mainly of atomic oxygen with traces of molecular oxygen, molecular

nitrogen, and atomic hydrogen at altitudes above about 200/250 km. Atomic

hydrogen, though, dominates occasionally above 500 km for low exospheric

temperatures. Other minor constituents present above 200/250 km are

nitric oxide, atomic nitrogen, and argon. Temperature in the terrestrial
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atmosphere varies approximately exponentially from about 100K at 100 km

to 500–1000K at 1000 km, depending up on latitude, local time, and solar

cycle index. It may even go to as high as 2000K at 1000 km during high

levels of geomagnetic activity.

Another important parameter in the study of hot atoms is the terrestrial

ionosphere. On the sun-lit side of the earth, X-rays and extreme ultraviolet

radiation penetrate the neutral atmosphere leading to direct and dissociative

ionization of the molecules. The whole process gives rise to photoelectrons,

atomic and molecular ions. Figure 2a shows ion composition measured

using a mass spectrometer (Johnson, 1966) above 100 km together with

electron densities. The F-region above 150 km consists of atomic ions Oþ

and Nþ, which are dominant throughout most of the region, but at high

altitudes, Hþ and Heþ are more abundant. Molecular ions (NOþ and Oþ2 )
are the most important ions in the 100–150 km region. Although the mass

spectrometric data (Fig. 2a) are quite old, models developed in the later part

of 1990s using the best available chemical mechanisms and kinetic data

reproduce the observations quite well. Figure 2b shows the predictions

of a model developed in connection with European Incoherent SCATter

(EISCAT) studies (Diloy et al., 1996). Peaks in the electron concentrations

are, in general, associated with different ion populations, Oþ2 in the E region

and Oþ in the F region. Between these two peaks, NOþ is the major ion

having a maximum concentration at 180 km. Oþ begins to dominate above

190 km. Above the F region peak, Nþ becomes an important minor ion;

the ratio of [Nþ]/[Oþ] is about 5% at 1000 km. The concentration of Hþ

according to the above model, is about 1% that of Oþ at 1000 km.

FIG. 1. Neutral atmosphere density profiles for average geophysical conditions on the

dayside (Carrigan and Skrivanek, 1974).
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The ion and electron density profiles for quiescent nighttime conditions

near solar maximum (Fig. 3) have been reported in the International

Reference Ionosphere by Rawer et al. (1978). The nighttime ionosphere is,

mainly, possible because solar radiation at 58.4 and 121.6 nm from dayside

gets resonantly scattered into the night side from extended helium and

hydrogen geocorona respectively. The 58.4 nm radiation is energetic enough

to ionize most of the neutral species where as the radiation at 121.6 nm can

ionize only NOmolecules. The Nþ2 densities are too small to appear in Fig. 3.

The attenuation of solar radiation takes place at all heights of the

terrestrial atmosphere. The extent of attenuation depends upon the

FIG. 2. Ion distributions during daytime: (a) mass spectrometer measurements at solar

minimum (Johnson, 1966); (b) modeling for a quiet ionosphere (Diloy et al., 1996).
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photoabsorption cross sections of atoms and molecules and their number

densities at those altitudes. The different wavelength regions of the solar

spectrum are therefore filtered out at different heights. Molecular oxygen

filters out solar ultraviolet radiation at wavelengths between 100 and 200 nm

at altitudes between 50 and 110 km, whereas ozone filters the radiation

(�200 �300 nm) in the stratosphere.

III. Sources of Hot Atoms

A. HOT OXYGEN ATOMS

The hot oxygen atoms are formed in the Earth’s atmosphere by various

physical and chemical processes discussed below.

Photodissociation of molecular oxygen and ozone. Photodissociation of

molecular oxygen by solar ultraviolet radiation is one of the foremost

processes leading to the production of hot oxygen atoms at mesospheric and

thermospheric heights. These hot atoms are produced not only in the

ground state 3P, but also in 1D and 1S states by,

O2 þ h! Oð3PÞ þOð3P, 1D, 1SÞ ð1Þ

The potential energy curves of molecular oxygen (Fig. 4) show that one of

the two atomic fragments produced in the B state because of photoabsorp-

tion of molecules in the ground X state is, in fact, itself excited. The

FIG. 3. The altitude profiles of ion and electron densities for quiescent nighttime conditions

near solar maximum (Rawer et al., 1978).
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convergence limit has been observed to be at 175 nm, which corresponds to

the formation of one ground state (3P) and one excited (1D) atom. The

A X absorption is weak because it is forbidden for an electric dipole

transition, and dissociation into two ground state atoms occurs for photon

energies corresponding to its convergence limit. Above the convergence

limit, the photoabsorption leads to the formation of energetic atoms with

continuous distribution of kinetic energies. Thus, translationally ‘‘hot’’

O(3P) and O(1D) atoms are produced. Similar explanation could be given

for the production of hot O(1S) atoms when the photoabsorption to another

higher electronic state of O2 takes place leading to dissociation into O(3P)

and O(1S) or O(1D) and O(1S) atoms.

In the stratosphere, the photodissociation of ozone leads to the formation

of O(3P) along with O2(X
3��g , A

3
�þu , B

3
��u ) states or O(1D) along with

O2(
1
�g,

1
�þg ) states, depending on the photon energy. The O atoms

produced may be translationally hot for the incident photon energies larger

than the dissociation limit. For example, at 250 nm in the process leading

to the formation of O(1D) and O2(
1
�g), the excess energy is about

22 kcalmol�1. The resultant translation energy of O(1D) atom is about

15 kcalmol�1in the space-fixed frame.

Dissociative recombination. It was initially suggested (Rohrbaugh and

Nisbet, 1973) that hot oxygen atoms in the F region of the terrestrial

ionosphere could be produced by dissociative recombination of Oþ2 and

FIG. 4. Potential energy curves for some of the low-lying states of molecular oxygen. The

dashed curve (5�u) is representative of several repulsive states that correlate with the

O(3P)þO(3P) limit and cause the predissociation of the B3
��u state (Wayne, 2000).
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NOþ with thermal electrons. This is, now, known to be one of the major

processes for producing hot oxygen atoms in the daytime and probably the

foremost process for nighttime production. In the case of Oþ2 , the following
processes release substantial energy to be shared equally between the atoms

as kinetic energy:

Oþ2 þ e! Oð3PÞ þOð3PÞ þ 6:95 eV ð2Þ

Oþ2 þ e! Oð3PÞ þOð1DÞ þ 4:98 eV ð3Þ

! Oð1DÞ þOð1DÞ þ 3:06 eV ð4Þ

! Oð1DÞ þOð1SÞ þ 0:79 eV ð5Þ

Assuming that the Oþ2 ions are in the ground vibrational level, the

branching ratios for different reactions (2), (3), (4), and (5) have been

reported to be 0.22:0.42:0.31:0.05 in an ion storage ring measurement (Kella

et al., 1997). In the case of NOþ, the reactions,

NOþ þ e! Nð2DÞ þOð3PÞ þ 0:38eV ð6Þ

! Nð4SÞ þOð3PÞ þ 2:75eV ð7Þ

produce O atoms with energies of 0.18 and 1.28 eV respectively.

Exothermic chemical reactions. The third process to produce hot O atoms

is exothermic chemical reactions. A set of 27 such reactions have been

identified (Richards et al., 1994; Hickey et al., 1995) leading to the

formation of hot O(3P) and O(1D) atoms. Most of these reactions were not

considered earlier because they involve metastable species whose importance

was established only through the Atmospheric Explorer (AE) programme

(Torr and Torr, 1982). Metastable species contain electronic energy, which

can be transferred to translational energy in quenching process. The

metastable N(2D) produced very efficiently in the thermosphere through

photodissociation has an electronic energy of 2.4 eV. When N(2D) is

quenched by atomic oxygen, the electronic energy is made available as

translational energy for the two product atoms, N(4S) and O which would

then both be hot. The importance of the new chemical sources for hot

oxygen geocorona, has been discussed in detail by Gérard et al. (1995).

Experimental evidence for the existence of hot oxygen in the thermo-

sphere, was first presented by Yee et al. (1980) who made indirect
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observations of hot O atoms from twilight measurements of Oþ emission at

732 nm. A number density of 105 to 106 cm�3 at an altitude of 550 km, was

reported with a temperature of 4000K or higher. Further experimental

evidence was supplied by Hedin (1989), who inferred densities of 1 to

3� 105 cm�3 at 550 km based on differences between models on satellite

drag and mass spectrometer measurements and 5� 105 to 2� 106 cm�3

at 1100 km from a limited number of Dynamics Explorer (DE) mass

spectrometer measurements. In another experiment during September 1988,

the Berkley EUV airglow rocket spectrometer (BEARS) made high-

resolution measurements of atomic oxygen day glow emissions at 135.6,

130.4, 102.7, and 98.9 nm between 150 and 960 km (Cotton et al., 1993a).

It was found that the modeled 130.4 and 98.9 nm emissions underestimated

the measured intensities. Later on, Cotton et al. (1993b) reanalyzed the data

incorporating the effects of non-LTE on the 3P2,1,0 sublevel populations and

a hot O component in the upper thermosphere and lower exosphere was

added to investigate the effects on the modeled emissions. A comparison of

the new results with those using a standard LTE model shows that hot O

geocorona has a peak intensity of 106 cm�3 at 550 km and a temperature of

4000K as shown in Fig. 5. The figure also shows the mass spectrometer/

incoherent scatter (MSIS) model O densities. A more recent analysis

(Hubert et al., 1999) has shown that the calculated intensity increase

associated with the perturbation of the Doppler profile by the presence of

hot O(3P) atoms is insufficient to account for the above sounding rocket

FIG. 5. Density profile for hot oxygen atom corresponding to a translational temperature of

4000K (dotted line) along with MSIS-86 O-densities (solid curve) (Cotton et al., 1993b.

Reproduced by permission of American Geophysical Union).
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data. Reports on the observation of hot metastable O(1D) and O(1S) atoms

and various models on the hot oxygen geocorona could be found in Hubert

et al. (2001 and references therein).

B. HOT NITROGEN ATOMS

Hot nitrogen atoms can be produced in the daytime thermosphere by

photon and electron-impact dissociation and ion-chemical processes. The

nitrogen atoms, thus, produced in various electronically excited states

(principally 2D and 2P) as well as in the ground state (4S) are characterized

by thermal energy excess (Zipf and McLaughlin, 1978). The sources of hot

nitrogen atoms are discussed below.

. Photodissociation of N2 by solar photons (80–100 nm),

N2 þ h! Nð4SÞ þNð4S, 2D, 2PÞ ð8Þ

This yields translationally excited N(4S) atoms with kinetic energies

varying from 0.1 to 1.26 eV (Hudson and Carter, 1969). The branching ratio

between hot N(4S) and N(2D) atoms in the above reaction is usually

assumed to be 0.5 : 0.5, with negligible contribution to N(2P).

. Electron-impact dissociation of N2, is another source of N(4S) atoms in

the daytime atmosphere:

N2 þ e! Nð4SÞ þNð4S, 2D, 2PÞ þ e ð9Þ

. Other important sources of hot N(4S) atoms include the recombination,

charge transfer and quenching reactions of the type

NOþ þ e! Nð4SÞ þOþ 2:75eV ð10Þ

Oþ þN2! NOþ þNð4SÞ þ 1:09 eV ð11Þ

Nþ þO! Oþ þNð4SÞ þ 0:93 eV ð12Þ

Nð2DÞ þO! OþNð4SÞ þ 2:38 eV ð13Þ

In the last reaction, N(2D) deactivation by atomic oxygen forms N(4S) hot

atoms with a kinetic energy of about 1.27 eV (Shematovich et al., 1991).
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Some of the nocturnal sources of energetic nitrogen atoms in the

thermosphere are given below:

(a) Solar radiation at 58.4 nm (He I line) from the dayside gets resonantly

scattered into the night side by helium atoms in the extended helium

geocorona. This radiation is energetic enough to ionize oxygen atoms. The

Oþ ions so formed, then, react with N2 (reaction 11) to produce hot N(4S)

atoms with kinetic energies up to 0.74 eV with a temperature-dependent rate

coefficient k1¼ [1.553� 0.592(T/300)þ 0.086(T/300)2]�10�12 cm3 s�1 (Ro-

ble et al., 1987). Some Oþ ions are also produced by charge exchange

reaction between oxygen atoms present in the night side atmosphere with

Hþ ions transported from the dayside.

(b) The resonantly scattered solar Lyman alpha (H I) radiation at

121.6 nm in the extended dayside hydrogen geocorona enters the night side

and photoionizes NO molecules to produce NOþ ions. These ions, in turn,

undergo dissociative recombination (reaction 10) with a rate coefficient

k¼ 9.2� 10�8 (Te/300)
�0.85 cm3 s�1 where Te is the electron temperature.

Another dissociative recombination process

NOþ þ e! Nð2DÞ þOþ 0:38 eV ð14Þ

with a rate coefficient k¼ 3.3� 10�7(Te/300)
�0.85 cm3 s�1 gives rise to non-

thermal nitrogen atoms in the excited state. The rate coefficients for all the

above three reactions were reported by Roble et al. (1987).

(c) Following reaction (14), N(2D) reacts with O(3P) to form hot N(4S)

atoms at nighttime,

Nð2DÞ þOð3PÞ ! Nð4SÞ þOð3PÞ þ 2:38 eV ð13Þ

Nð2DÞ þOð3PÞ ! Nð4SÞ þOð1DÞ þ 0:41 eV ð15Þ

The second reaction is strongly favored (Bates, 1989).

IV. Sinks of Hot Atoms

A. HOT OXYGEN ATOMS

The main sink for energetic O(3P) atoms in the upper atmosphere is the

chemical reaction

Oð3PÞ þN2! NOðv, jÞ þN ð16Þ
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with reaction endothermicity of 3.26 eV. Hot O(3P) atoms also undergo

elastic collisions with other ambient/bath gases like N2, O2, and O. The

O(3P) atoms slowed down by this process involve the transfer of momenta

among the colliding partners without introducing any change in their

internal states. However, inelastic collisions with molecules in the ambient

gas lead to rotational and vibrational excitation of the molecules.

The translationally hot O(1D) atoms are dominantly removed by three

processes: thermalization (translational relaxation) with the bath gas,

Fast Oð1DÞ þ ½N2, O2, O� ! Slow Oð1DÞ þ ½N2, O2, O� ð17Þ

collisional deactivation or quenching,

Fast Oð1DÞ þ ½N2, O2, O� ! Fast Oð3PÞ þ ½N2, O2, O� ð18Þ

and the spontaneous radiation transition,

Fast Oð1DÞ ! Fast Oð3PÞ þ h ð19Þ

The rate for reaction (19) is described by an Einstein coefficient equal to

0.0056 s�1 (Baluja and Zeippen, 1988).

The main sink for hot oxygen atoms in the stratosphere is through their

reactions with H2O, CH4, N2O, and O3. These are all very important

reactions from the point of view of stratospheric chemistry (Wayne, 2000).

B. HOT NITROGEN ATOMS

The main sink for hot N(4S) atoms is the chemical reaction

Nð4SÞ þO2! NOþO ð20Þ

This is an important source of thermospheric nitric oxide. In addition, the

hot nitrogen atoms are thermalized by elastic and inelastic collisions with

the ambient/bath gases N2, O2, and O. For hot N(2D) atoms, in addition to

translational energy degradation, electronic quenching, like reactions (13)

and (15) acts as a sink.
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V. Thermalization of Hot Atoms in Collision with Bath Gases

The hot atoms, produced in the upper atmosphere, are removed

by thermalization. The process includes translational energy or velocity

relaxation and electronic quenching of hot atoms in collision with ambient/

bath gases. In the case of hot atoms, say O(1D) atoms, the velocity

relaxation reaction

Fast Oð1DÞ þ ½N2, O2, or O� ! Slow Oð1DÞ þ ½N2, O2, or O� ð17Þ

amounts to slowing down of the hot atoms by any of the bath gases. This

is an elastic process in which there is a transfer of momenta among the

colliding partners but there is no change in their internal state. There could

also be inelastic collisions in which the kinetic energy of the atom is

transferred to the rotational and vibrational motion of the bath gas

molecules. The electronic quenching reaction of the type

Oð1DÞ þ ½N2, O2� ! Oð3PjÞ þ ½N2, O2� ð18Þ

is an inelastic process in which the electronic energy of the atom

is transferred to the translational energy of the products and/or the ro-

vibrational energy of the molecules. These elastic and inelastic processes are

important aspects of thermalization of the hot atoms. A detailed discussion

of the experimental and theoretical work on this is given below.

A. THEORETICAL APPROACH

A.1. Elastic Collisions

When an atom or molecule with relatively large but narrow velocity

distribution is placed in a bath gas of molecules maintained at some

equilibrium temperature, the velocity distribution relaxes to a Maxwell–

Boltzmann distribution. Any anisotropy in the initial spatial distribution

also becomes an isotropic one. This phenomenon is applicable, not only to

hot atoms, but also to other collision phenomena involving electrons, ions,

or neutrons (Shizgal and Blackmore, 1983, and references therein).

Assuming only two-body collisions, the time-dependent velocity distribution

is a solution to the Boltzmann integro-differential equation. This nonlinear

equation could be linearized when the nonequilibrium component has no

internal degrees of freedom and its number density is much smaller than that

of the bath gas. In the case of hot O(1D) atoms in the upper atmosphere,
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Shizgal and Blackmore (1983) solved numerically the Boltzmann equation

for an initially non-Maxwellian anisotropic velocity distribution dispersed in

a thermal bath. The eigen values of the collision operator depend upon the

mass ratio (R¼Mb/M) of the two components and the elastic scattering

cross sections. Here, Mb is the mass of the ambient/bath gas colliding

component and M is the mass of the hot target atom. For R� 1, that is,

when the bath gas is lighter than the hot target atom, the degradation of the

speed is faster than the degradation of the angular anisotropy. For R� 1,

that is, when the bath gas is heavier than the hot target atom, the angular

distribution becomes isotropic before appreciable velocity relaxation is

achieved. Most of the work done in the past used the hard-sphere model.

The hard-sphere approximation facilitates the evaluation of the differential

cross section or collision kernel of the Boltzmann equation, but it ignores

the energy and angular dependence of the cross sections (Anderson

and Schuler, 1974; Shizgal and Blackmore, 1986) as well as the long-range

interactions, which may lead to significant errors in the evaluation of

the collision kernel. For energies below a few electron volts, where the

Van der Waal’s forces play an important role in the momentum and energy

transfer, the collision cross sections show strong energy and angular

dependence (Yee and Dlagarno, 1985, 1986). Kharchenko et al. (1998)

and Balakrishnan et al. (1998a,b, 1999) constructed a procedure to calculate

the parameters to describe translational relaxation of the energetic

atoms in a bath gas. The procedure constructed by them is briefly described

below.

The rate of energy/velocity relaxation of an energetic atom initially at an

energy E and a final energy E 0 (both in the laboratory frame) in collision

with an ambient/bath gas atom or molecule is given by the collision kernel,

B E 0jEð Þ, of the Boltzmann equation. In an isotropic bath gas whose density

is much higher than the density of the hot atoms, the energy distribution

f (E, t) of the projectile is related to the kernel of the Boltzmann equation

(Kharchenko et al., 1998) by

@

@t
f E,tð Þ ¼

Z
B E0jEð Þf E 0,tð Þ dE0 � f E,tð Þ

Z
B E0jEð Þ dE0

� � Eð Þ f E,tð Þ þ S E,tð Þ ð21Þ

where S(E, t) is the rate of production of fast atoms at energy E and �(E) is
the rate of the sink reactions that remove them. An analytical expression for

B(E 0/E) has been derived taking into account the rate of binary collisions

that change the momenta of the colliding partners from p, pb to p0, pb
0 in

the laboratory frame (Kharchenko et al., 1998); the subscript b refers to the
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bath gas. The rate of binary collisions is obtained from the doubly

differential cross section, d2� /d�d",

W p0, pbj p, pbð Þ ¼ j p� ðM=MbÞpbj
j p0 � ðM=MbÞp0bj

1

�2

d2�

d�d"
� p0 þ p0b � p� pb
� �

ð22Þ

where the laboratory frame momenta p, pb and p0, pb
0 are related to the

initial and final relative energies " and "0. � is the center of mass scattering

angle and � is the reduced mass of the atom and the bath gas molecule. The

energy relaxation kernel is given by the integral of the rate of binary

collisions with the bath gas, which transforms the magnitude of the

projectile momentum p¼ (2ME)1/2 to p0¼ (2ME0)1/2:

B E 0jEð Þ ¼ NbM
3=2

2
ffiffiffi
2
p
��2

ffiffiffiffiffi
E0
p Z ffiffiffiffi

"

"0

r
d2� ","0, cos�ð Þ

d�d"0
� pbð Þ dpb d�p d�p0 ð23Þ

where �p and �p0 are the solid angles of the initial and final momenta in the

laboratory frame for fixed values of p and p0; Nb is the density of the bath

gas; �(pb) is the distribution function of the bath gas at the bath

temperature; � is the scattering angle between the initial and final momenta.

From the kernel B(E 0|E), Kharchenko et al. have calculated a few important

parameters which are given below. The average rate of energy loss is given by

� Eð Þ ¼
Z 1

0

B E 0jEð Þ E � E 0ð Þ dE 0 ð24Þ

whereas the frequency of the thermalizing collision is

! Eð Þ ¼
Z 1

0

B E 0jEð Þ dE 0 ð25Þ

The inverse of !(E) is the mean time spent by the projectile between

successive collisions. The ratio �(E)/!(E) is the mean energy loss of the

projectile atom per collision and is given by

�EðEÞ ¼ �ðEÞ=!ðEÞ ¼
R1
0

B E0jEð Þ E � E0ð ÞR1
0

B E0jEð Þ dE0
ð26Þ
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Using dE/dt¼� �(E), the characteristic time of energy loss of the

projectile atom from an initial energy E0 to a final energy E is obtained as

t Eð Þ ¼
Z E0

E

dE0

� E 0ð Þ ð27Þ

A small time increment dt ¼ dn=! Eð Þ gives

dE=dt ¼ dE=dn:!ðEÞ ¼ ��ðEÞ

or dE=dn ¼ ��ðEÞ=!ðEÞ ¼ ��EðEÞ ð28Þ

where n is the total number of collisions. From (28), one can compute the

number of collisions required to slow down the fast atoms with initial energy

E0 to a final energy E:

nðE,E0Þ ¼
Z E0

E

½1=�EðE 0Þ� dE0 ð29Þ

The integral elastic cross sections and the corresponding doubly

differential cross sections have to be calculated precisely to evaluate the

Boltzmann kernel. Calculations for such cross sections in the case of heavier

systems like NþN2, NþO2, OþN2, and OþO2 are computationally

prohibitive due to the large number of ro-vibrational levels to be included

in the close-coupling calculation and due to the difficulty in obtaining

accurate potential energy surfaces. An approximate quantum mechanical

scheme based on sudden approximation of rotational motion, was used by

Balakrishnan et al. (1998a). The infinite order sudden approximation

(IOSA) calculations have been extensively applied to atom–diatom non-

reactive and reactive scattering processes. The IOSA has been found to be

appropriate for collisions between a heavy molecule and a light hot atom for

which at higher energies, the basic assumptions behind the approximation

are satisfied. In the present case, the calculations involve solving

the vibrationally close-coupled radial Schrödinger equation for a number

of orientation angles chosen as Gauss–Légendre quadrature points. By

averaging over the angle dependence of the S-matrix elements, the

orientation-averaged IOSA integral cross sections for state-to-state

vibrational transitions are obtained:

�v,v0 ¼
�

k2v

� �X1

l¼0
2l þ 1ð Þ

Z 1

�1
Sl
v,v0 kv,�ð Þ









2

d cos � ð30Þ
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where " is the kinetic energy and kv is the momentum for the incoming

channel wavefunction and v and v0 are the initial and final vibrational levels.

Morse oscillator wavefunctions with an appropriate quadrature rule were

used to obtain the matrix elements Sl
vv0 of the interaction potential. The two

lowest vibrational levels of the molecule were included in the coupled

equations. A London–Eyring–Polanyi–Sato potential energy surface with

an additional attractive term of the form R�6 (Laganá and Garcia, 1994)

was used to describe the potential energy surface of the hot atomþ bath

molecule system. Though the potential energy surface was, in general, not

accurate to describe all aspects of hot atomþ bath molecule collisions, it is

believed that its features were realistic enough to provide useful description

of hot atom thermalization.

The results obtained from the computations of elastic cross sections for

specific hot atom–bath molecule collisions by the method discussed above

are shown in Fig. 6. In general, the integral values for the elastic cross

sections in all the four cases shown have relatively large values at low

energies, with a rather steep drop as the energy is increased. The calculations

also show interesting contrast with change in the collision partners.

For example, as the bath gas is changed from N2 to O2 for the case of

hot N(4S) atoms, there is a very perceptible difference in the rate at which

the cross sections change between 0 and 0.5 eV, leading to more than a

factor of two difference in the cross sections at higher energies. A similar

contrasting behavior could be seen for the case of O(3P) and N(4S) atoms,

both in their electronic ground states, colliding with the same bath gas N2.

The figure also provides a comparison between the situations where the hot

FIG. 6. Integral elastic cross sections for N(4S)þN2 (solid line: Balakrishnan et al., 1998a),

O(3P)þN2 (dashed line: Balakrishnan et al., 1998b), O(1D)þN2 (dotted line: Balakrishnan

et al., 1999, extrapolated between 2 and 3 eV), and N(4S)þO2 (dash-dotted line: Balakrishnan

et al., 2000) as a function of center-of-mass kinetic energy.
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atom is in the ground state (O 3P) in one case and in an excited state (O 1D)

in the other with the same bath gas, N2. The calculations also show

relatively larger cross sections at very low energies, when the atom (O 1D)

is in an excited state, as compared to that in which the atom is in the ground

state. The results of these calculations (Balakrishnan et al., 1998a,b,

and 1999) could be contrasted with those of Shematovich et al. (1999) who

used a hard-sphere collision model for the case of O(1D) in the terrestrial

atmosphere to get an energy independent cross section of 3.0� 10�15 cm2.

In Fig. 7 are shown the Boltzmann kernels in units of eV�1 s�1 for elastic
collisions in two cases of interest. The Boltzmann kernel for the energy

relaxation for O(1D)þN2 collisions is shown in Fig. 7a for the bath gas

density of 3.6� 1016 cm�3 and bath temperature of 298K which corresponds

to an altitude of about 50 km in the terrestrial atmosphere where fast O(1D)

is produced by the photodissociation of O3 and is an important player in the

stratospheric chemistry. Shown in Fig. 7b is the Boltzmann kernel for elastic

N(4S)þN2 collisions for the bath density of 2.743� 109 cm�3 and the bath

temperature of 844K characteristic of the upper atmosphere at 200 km

altitude. Similar calculations for the O(3P)þN2 collisions have been carried

out for thermospheric conditions (Balakrishnan et al., 1998b). All the

Boltzmann kernels are highly anisotropic as the elastic cross sections

are dominated by small angle scattering involving small energy losses. The

results on translational energy degradation obtained from these calculations

are compared with experimental data later.

A.2. Inelastic collisions

Just like the computation of elastic cross sections for studying the energy/

velocity relaxation of hot atoms, the inelastic cross sections for the

rotational and vibrational excitation of product molecules have to be

calculated precisely to evaluate the corresponding Boltzmann kernel. Thus,

the evaluation of the doubly differential cross sections and the integral

cross sections is a formidable computational problem. To overcome this

difficulty, the semi-classical approach has been employed by Balakrishnan

et al. (1998a and references therein). In this approach, the degrees of

freedom for which the quantum effects are most important, are

treated quantum mechanically and the remaining are treated classically.

Balakrishnan et al. have employed a classical mechanical description for the

rotational and relative translational motion of the system and a quantum

mechanical treatment for the vibrational motion. The quantum and classical

dynamics are solved self-consistently, and transition probabilities to

open vibrational levels are obtained by projecting the final wavefunction

onto different vibrational states of the bath molecule. Performing the
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computations for a range of impact parameters and averaging over an

ensemble of trajectories with different initial conditions for the classical

variables, the energy transfer cross sections for a (v, v0) transition have been

computed as,

�v,v0 "ð Þ ¼ 2�

Z
Pv,v0 bð Þb db ð31Þ

where bmax is the maximum value of the impact parameter, b. The integral is

evaluated by Monte Carlo method. The corresponding doubly differential

cross section evaluated in a similar way by Balakrishnan et al. provides

information regarding the dynamics including final angular and relative

translational energy distributions of the scattered products.

In Fig. 8 is shown the inelastic Boltzmann kernel in units of eV�1 s�1 for
N(4S)þN2 collisions for the bath gas N2 density of 2.743� 109 cm�3 and

bath temperature of 844K. It is markedly anisotropic as compared to the

FIG. 7. Boltzmann kernels for thermalization by elastic collisions: (a) O(1D)þN2 collisions

for a bath temperature of 298K and an N2 density of 3.6� 1016 cm�3 (Reprinted with

permission from Balakrishnan et al., 1999. Copyright 1999 American Chemical Society); (b)

N(4S)þN2 collisions for an N2 density of 2.743� 109 cm�3 and temperature of 844K

(Balakrishnan et al., 1998a).
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hard-sphere model and slightly less localized than its elastic counterpart

because of additional energy loss in internal excitation of the molecule.

Similar behavior has been seen in the case of O(3P)þN2 collisions

(Balakrishnan et al., 1998b).

The computed elastic and inelastic Boltzmann kernels can be used to

derive the average rate of energy loss as well as the frequency of the

thermalizing collisions. In Fig. 9a and b are shown the average rates of

energy loss of fast O(3P) and N(4S) atoms respectively as a function of their

initial energy in the laboratory frame for both elastic and inelastic

O(3P)þN2 and N(4S)þN2 collisions. The average rate of energy loss for

O(3P) atoms is larger than that for N(4S) atoms for both elastic and inelastic

collisions. Also, in the case of both the fast atoms, the average rate of energy

loss is much higher for elastic collisions than that for inelastic collisions.

The frequency of thermalizing collisions for both elastic and inelastic

N(4S)þN2 encounters is shown in Fig. 10 as a function of the initial energy

of the hot atoms in the laboratory frame. Its inverse is the time between

thermalizing collisions. The main contribution of frequency to the elastic

part arises from small angle scattering but such collisions are not very

effective in energy transfer. For this reason, even though the frequency of

elastic collisions is two times larger than that for inelastic collisions

(Fig. 10), the latter contribute importantly to the slowing down of hot atoms

and thus are only slightly less effective than elastic collisions as illustrated

in Fig. 9b.

FIG. 8. Boltzmann kernel for inelastic N(4S)þN2 collisions for a N2 density of

2.743� 109 cm�3 and temperature of 844K (Balakrishnan et al., 1998a).
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B. EXPERIMENTAL APPROACH

Not enough experimental work has been carried out so far to study the

translational relaxation of hot atoms. The major difficulty in carrying out

the experiments is the preparation and energy measurement of the neutral

particles as well as their detection. Unlike charged particles, which could be

accelerated and detected using conventional detectors like Faraday cup or

FIG. 9. Average rates of energy loss of fast O(3P) and N(4S) atoms as a function of their

initial translational energy in the laboratory frame for (a) elastic and inelastic O(3P)þN2

(Balakrishnan et al., 1998b. Reproduced by permission of American Geophysical Union) and

(b) N(4S)þN2 collisions (Balakrishnan et al., 1998a).

FIG. 10. Frequency of thermalizing collisions for both elastic and inelastic N(4S)þN2

encounters derived from the corresponding kernels as a function of N atom energy in the

laboratory frame (Balakrishnan et al., 1998a).
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channel electron multipliers, special spectroscopic techniques have to be used

for the detection of neutral atoms. Also, preparing the atoms with specific

energies and measuring their energies after collisions call for innovative

experimental techniques like photodissociation followed by Doppler profile

measurements. Park et al. (1989) investigated the relaxation of hot H atoms

produced in the photodissociation ofH2S by 193 nm laser photons in collision

with helium, argon, krypton, xenon, molecular nitrogen, and molecular

oxygen by measuring the Doppler profiles of Lyman alpha line in their

time-resolved Doppler spectroscopy experiment. Mass of the H atoms being

small compared to all collision partners, it was found that the spatial

anisotropy was relaxed in a single collision whereas the velocity relaxation

was achieved much more slowly. The relaxation processes of the hot I(2P1/2)

atoms produced in the photodissociation of n-C3F7I at 226 nm in collision

with parent molecule/helium were reported by Cline et al. (1990). In the case

of collisions of I(2P1/2) with n-C3F7I, the angular isotropy was found to

degrade 2.5 times faster than the velocity degradation where as for iodine–

helium collisions, the angular isotropy and the velocity relaxation occurred

on the same timescale. Nan and Houston (1992) monitored the velocity

relaxation of hot S(1D) atoms by helium, neon, and xenon. Relaxation

processes of translationally hot O(1D) by collisions with rare gases, N2, and

O2 have been studied experimentally by Matsumi et al. (1994), Matsumi and

Chowdhury (1996) and Taniguchi et al. (2000). Similar experiments on hot

O(3P) and N(4S) are yet to be done. The experimental work of Matsumi and

his group would be discussed below in detail.

The experimental setup reported by Matsumi et al. (1994) is shown in Fig.

11. The hot O(1D) atoms were generated by photodissociation of O2 and

N2O with linearly polarized laser light of 157 nm and 193 nm from excimer

laser operated in the F2 and ArF modes respectively. The average

translational energies of these hot atoms in the laboratory frame produced

by the reactions

O2 þ hð157 nmÞ ! Oð1DÞ þOð3PjÞ ð32Þ

N2Oþ hð193 nmÞ ! Oð1DÞ þN2ðv, JÞ ð33Þ

were 9.8 kcalmol�1 and 18.2 kcalmol�1, which correspond to 0.425 eV and

0.79 eV respectively. The velocity distribution of O(1D) was determined

from the Doppler profiles measured by VUV laser-induced fluorescence

(LIF) of O(3s1Do 2p1D) centered at 115.215 nm. The observation

direction of the LIF was kept perpendicular to both the photolysis and

the probe laser beams and also perpendicular to the polarization of the

electric vector of the VUV probe laser. The probe efficiency using this
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detection technique is independent of the polarization anisotropy for the

electronic angular momentum of O(1D), even if it is produced by the

photodissociation process (Springsteen et al., 1993). The resonance

frequency of O(1D) atom exhibits a Doppler shift of �¼ o(!/c), where
!¼ v.kp is the component of the atom’s velocity v along the unit vector kp in

the direction of propagation of the probe laser and o is the center frequency
of the atomic transition. The probe laser beam propagated perpendicular to

the direction of the dissociation laser beam, kd. The probe VUV laser light at

115.215 nm was generated by a four-wave sum mixing (2!1þ!2) technique

using the two-photon resonance at the 6s6d1D2 state of mercury (Hilbig and

Wallenstein, 1983). The !1 wavelength at 280.3 nm was generated by

frequency doubling the dye-laser output in a KDP crystal, and the !2

wavelength was 647.0 nm. Both the dye lasers were pumped by a XeCl

excimer laser at 308 nm. The intensity of the VUV light was monitored by

the photoion current in a NO gas cell with LiF window.

In order to study the electronic quenching of O(1D) by the bath gases,

the population of O(3Pj) atoms produced by the quenching process was

monitored using the probe-laser system arranged to observe the VUV–LIF

of the 3s3S0� 2p3Pj transition at 130.22 nm for j¼ 2, 130.48 nm for j¼ 1, and

130.60 nm for j¼ 0. The VUV laser photon wavelength around 130 nm was

generated by four-wave difference mixing (2!1�!2) in krypton gas using

two dye lasers pumped by the XeCl excimer laser.

FIG. 11. The experimental setup to study the velocity relaxation of hot O(1D) atoms

by collisions with bath gases (Matsumi et al., 1994).
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Doppler profiles of the laser excitation spectra at 115.215 nm for O(1D) at

various delay times (t¼ 50–1000 ns) between the dissociation laser and the

probe laser provided the time evolution of the energy distribution of the

atoms. Typical profiles of hot O(1D) atoms having 0.79 eV initial energy at

various delay times with bath gases N2 and O2 are shown in Fig. 12 for two

geometrical configurations, kp kEd and kp?Ed where Ed is the polarization

vector of the dissociation laser. Doppler spectra at t¼ 0 have wide widths

and different shapes between the two configurations indicating large

translational energy and strong anisotropy of the photodissociation process.

At long delay times, the Doppler profiles become close to those of

thermalized atoms.

Following the analysis procedure described by Matsumi et al. (1994), the

velocity distributions of the atoms were computed from the Doppler profiles

at different delay times to obtain the degradation of the average

translational energy as a function of time. The degradation of the average

energy of O(1D) with time as compared to initial energy for N2 as the bath

gas is shown in Fig. 13a along with the theoretical values of Balakrishnan

et al. (1999). Figure 13b shows the translational energy degradation of

O(1D) atoms for bath gas O2 along with the theoretical results using the

hard-sphere collision model. Comparison of the experimental results with

the computationally obtained data shows a good agreement indicating that

the energy losses arise prominently from elastic scattering, with small

contribution from inelastic rotational and vibrational excitation.

FIG. 12. Doppler profiles for O(1D) at various delay times between the photodissociation and

probe laser pulses. The hot O(1D) atoms produced by photodissociation have energy of 0.79 eV.

(a) Bath gas: N2 (Matsumi and Chowdhury, 1996); (b) Bath gas: O2 (Reprinted with permission

from Taniguchi et al., 2000. Copyright 2000 American Chemical Society).
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C. QUENCHING AND THERMALIZATION OF O(1D)

Apart from the translational energy degradation through elastic and

inelastic collisions, the quenching of electronically excited hot atoms play

an important role in the terrestrial atmosphere. The cross sections for these

three processes, i.e., elastic scattering, inelastic scattering with vibrational

excitation of the bath gas molecules, and quenching of the electronically

excited atoms are strongly dependent on the collision energy and they also

do not vary in the same direction with energy. The energy dependence of the

cross sections and the fact that all these processes occur in parallel, may

have significant effects in the overall chemistry of the atmosphere. This may

be particularly applicable to the upper stratosphere where 90% of the

oxygen atoms are produced in the O(1D) state with considerable kinetic

energy by the photodissociation of O3. The reactions of O(1D) with H2O

to form OH, with N2O to form NO, or N2 and O2 and with HCl to form

OHþCl or ClOþH are important in atmospheric chemistry (Wayne, 2000),

though these reactions by themselves are not major sinks for O(1D). If the

translational relaxation rate is not fast enough compared with the electronic

quenching rate, there will be large number of translationally hot O(1D)

atoms in the stratosphere in a steady-state condition and the above reactions

of O(1D) will take place under nonequilibrated conditions.

FIG. 13. The translational energy degradation of O(1D) atoms in collision with N2 and O2 as

a function of delay time. (a) Bath gas N2: Squares (Matsumi and Chowdhury, 1996) and solid

line (Balakrishnan et al., 1999) for 0.425 eV initial energy; triangles (Matsumi and Chowdhury,

1996) and dotted line (Balakrishnan et al., 1999) for 0.79 eV initial energy. (b) Bath gas O2:

circles (experimental data) and solid line (hard sphere model) for 0.79 eV initial energy

(Taniguchi et al., 2000).
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As discussed earlier, the translational relaxation occurs through both

elastic and inelastic collisions:

Fast Oð1DÞ þ ½N2, O2� ! Slow Oð1DÞ þ ½N2, O2� ð17aÞ

Fast Oð1DÞ þ ½N2, O2� ! Slow Oð1DÞ þ ½N2ðv, JÞ, O2ðv, JÞ� ð17bÞ

And the quenching through the reactions:

Oð1DÞ þN2ðX1�þg Þ ! Oð3PjÞ þN2ðX1�þg , v, JÞ ð18aÞ

Oð1DÞ þO2ðX3��g Þ ! Oð3PjÞ þO2ðb1�þg , 1�g, X3��g , v, JÞ ð18bÞ

The reaction (18a) could lead to ro-vibrational excitation of N2 and

reaction (18b) could lead to the formation of O2(b
1
�þg ) and O2(

1
�g) as they

are energetically accessible. DeMore et al. (1997) suggest the branching ratio

for the formation of O2(b
1
�þg ) to be 0.8	 0.2. This process is supposed to

be a major source of O2(b
1
�þg ) in the atmosphere. The recommended

(DeMore et al., 1997) rate constants of the electronic quenching processes at

298K are 2.6� 10�11 cm3 molecule�1 s�1 for (18a) and 4.0� 10�11 cm3

molecule�1 s�1 for (18b). The temperature dependence of these reactions

have been measured by Streit et al. (1976) in the range of 104–354K. The

quenching process is exothermic by 1.97 eV and using Doppler spectros-

copy, Matsumi et al. (1994) found that about 30% of this energy was

released into the ro-vibrational excitation of N2 for reaction (18a). They also

measured the branching ratios among the fine structure levels of the product

O(3Pj) atoms.

Along with the translational energy degradation measurements of O(1D),

Matsumi and Chowdhury (1996) and Taniguchi et al. (2000) studied the

electronic quenching processes (18a) and (18b) respectively using the

experiment described earlier. To observe the quenching process, they

monitored the increase in the population of O(3Pj) levels by LIF as a

function of delay time after the formation of O(1D) through photodissocia-

tion. The O(3Pj) population was found to saturate within 12–15 ms at the

bath gas pressures of 0.3 Torr and an initial O(1D) energy of 0.79 eV. The

relative concentrations of O(3Pj) are shown in Fig. 14a as a function of delay

time for the reaction (18a) with N2 pressures at 1.00 and at 0.30 Torr. The

horizontal scale has been made equivalent for the two N2 pressures through

proper normalization. Similar results are shown in Fig. 14b for the reaction

(18b) at the O2 pressure of 0.3 Torr. The smooth curves in Fig. 14a and b
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show the results of the simulation in which both velocity relaxation and

reactive removal of O(1D) atoms in collision with N2 and O2 are taken into

account. The reaction cross sections of the electronic quenching processes

(18a) and (18b), �r, were taken as a fitting parameter. The best fit values

of �r for reactions (18a) and (18b) were found to be (0.7	 0.1) Å2 and

(3.3	 0.7) Å2 respectively. Matsumi and Chowdhury (1996) also found that

when the initial translational energy of O(1D) is 0.425 eV, about 40% of the

O(1D) atoms are electronically quenched before the entire thermalization

of the hot atoms takes place with N2 as the bath gas, indicating that the

translational relaxation rate of O(1D) by collisions with N2 is not fast

enough compared with the electronic quenching by N2. A numerical

simulation of the stratospheric conditions using the experimental data

pointed to a steady-state distribution of the O(1D) translational energy in

the upper stratosphere which is superthermal and that the populations at

high translational energies are higher than that estimated from an

equilibrated condition with the ambient air. They concluded that in the

studies of reaction rates or product branching ratios in stratospheric

reactions of H2O, N2O, and HCl with O(1D), the contributions of

superthermal distributions should be taken into account. This was

supported by the measurements of Taniguchi et al. (2000) using O2 as the

bath gas.

For the quenching process (18a), the entrance channel potential has

singlet spin-multiplicity, whereas the exit channel has triplet. Therefore the

FIG. 14. The concentrations of O(3Pj) formed by quenching of O(1D) as a function of delay

time. (a) Quenching by N2 at 1Torr (filled circles) and 0.30Torr (open circles) (Matsumi and

Chowdhury, 1996). (b) Quenching by O2 at 0.3 Torr with N2O pressure 1% (open circles) and

8% (filled circles) of O2 (Reprinted with permission from Taniguchi et al., 2000. Copyright 2000

American Chemical Society). Smooth curves are the result of simulation with reaction cross

section (see text). The concentrations of O(3Pj) at a given time are normalized with that at large

enough delay time (20ms) by which there is complete quenching.
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quenching process by N2 is spin-forbidden. The singlet and triplet

potential surfaces could be connected only through a spin–orbit interaction,

which is weak since the N2O complex is made of light atoms. Thus

the transition probability between the two surfaces would be small.

However, the strongly attractive entrance potential for the reaction results

in long lifetimes of the singlet complex of N2O. The trajectories of

the collision complex on the singlet surface cross the seams to the triplet

surface many times during their lifetimes. This mechanism has been

proposed to explain the relatively fast rate of the quenching of O(1D) by

N2 (Tully, 1974). At higher collision energies, the lifetime of the

N2O complex becomes shorter leading to less chance for crossing the

seams between the singlet and triplet surfaces and the subsequent reduction

in the quenching probability with increase in collision energy (Zahr

et al., 1975).

The ab initio molecular orbital (MO) and surface-hopping trajectory

calculations by Tachikawa et al. (1995) showed that the quenching

probability decreases with increasing collision energy and the electronic to

ro-vibrational energy transfer occurs efficiently via an intermediate N2O

complex on the singlet surface. This energy dependence of the quenching

process is consistent with the experimental results of Matsumi and

Chowdhury (1996) and earlier calculations of Zahr et al. (1975). The

calculations by Tachikawa et al. (1997) using ab initio MO and classical

trajectory calculations suggest that the cross section for the translational

energy transfer process increases with increasing collision energy. Accord-

ing to their calculations, the translational relaxation dominates at high

collision energies. At a collision energy of 10 kcalmol�1, the probability

of translational energy transfer is 0.916 as compared to the remaining

0.084 for electronic quenching. As the collision energy is decreased to

5 kcalmol�1, the quenching probability increases to 0.432 and tends

to dominate at lower collision energies. Based on these results Tachikawa

et al. (1997) proposed that after the formation by photodissociation of

O3 in the upper stratosphere, the fast O(1D) atoms get thermalized

through translational energy loss followed by electronic quenching.

However, this model does not take into account the cross sections for

momentum transfer by elastic collisions. These are more than two orders

of magnitude higher than the inelastic and quenching cross sections even

at high energies and increase very sharply below 10 kcalmol�1 as the

energy decreases (Balakrishnan et al., 1999). Considering the dominance

of the elastic cross sections over the inelastic one, it may appear surprising

that almost half of the O(1D) atoms are electronically quenched before

entire thermalization as observed in the experiments of Matsumi and

Chowdhury (1996). A qualitative explanation for this may lie in the fact
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that as the collision energy decreases, the energy transfer per collision

decreases in the case of elastic collisions. In the case of quenching,

each collision releases relatively large energy (as much as 45 kcalmol�1)
into the translational motion, which needs to be thermalized further

through elastic collisions. In this context it is important to note that

although Matsumi and Chowdhury (1996) have presented a simulation

on the energy distribution of O(1D) atoms in the stratosphere, detailed

calculations using accurate energy-dependent cross sections are yet to be

carried out.

As mentioned above, Taniguchi et al. (2000) obtained a quenching cross

section of (3.3	 0.7) Å2 for the quenching by O2 as compared with

(0.7	 0.1) Å2 by N2 at the same collision energy of (8.7	 6) kcalmol�1.
However, the cross section for the case of O2 at this energy is slightly small

as compared with that at room temperature. This is consistent with the

temperature dependence of the quenching rate constant by O2,

k(T )¼ 3.2� 10�11 exp[(70	 100)/RT ] (DeMore et al., 1997) which shows

a small negative or no activation energy. The small decrease in cross section

with energy suggests that the entrance potential of the O(1D)þO2(X
3
�g
�)

is attractive and has no barrier for the reaction pathway. The potential

energy surfaces for both the entrance channel and the dominant exit channel

leading to the product O(3Pj)þO2(b
1
�g
þ) of the reaction, correlate to the

triplet states of the O3 molecule. Thus unlike the case of N2, the quenching

reaction by O2 is spin-allowed and the transition probability at the seams

between the two potential energy surfaces is expected to be large. As a result,

the reaction probability may become independent of the lifetime of the

collision complex. Taniguchi et al. (2000) explain the small variation of

the quenching cross section with energy for reaction (18b) in terms of the

addition of the centrifugal term to the attractive entrance potential. Unlike

the case of N2, no detailed molecular orbital calculations have been carried

out for the quenching by O2 as it involves potential energy surfaces of high-

lying states of O3. Banichevich et al. (1993) have calculated low-lying

potential energy surfaces that correlate to O(3P)þO2(X
3
�g
�) and

O(3P)þO2(
1
�g). The triplet potential energy surface corresponding to the

dominant exit channel, O(3Pj)þO2(b
1
�g
þ) has not been calculated.

However, using a collinear O–O2 geometry, Miura et al. (2002) calculated

the collision energy dependence of the quenching probability for this

reaction. They found that the ratio of probabilities for quenching reaction at

higher energies to that at 298K is close to unity. This is in fair agreement

with the result of Taniguchi et al. (2000). Miura et al. (2002) also reported

that the nonadiabatic transitions occurring at the large O–O2 separation in

the almost flat region of the potential energy surfaces is the major

contributor to the quenching by O2.
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VI. Hot Atoms and Space Vehicle Glow

The space shuttle and small satellites orbit around the earth between 100

and 1000 km with an orbital velocity of about 7.8 km s�1. The resultant

impact energy of the particles near the forward (or ram) surface of the

spacecraft could reach values in excess of 5 eV, varying from 5.1 eV for O,

4.5 eV for N, and 10.2 eV for O2. In addition, the atoms and molecules

scattered from the ram direction would also gain energies in this range and

could react with the ambient species. The collisions at such high energies

have been found to give rise to the space vehicle glow.

The vehicle glow was suspected to be present on several rocket flights in

the early seventies but went essentially undetected until the late seventies

and early eighties. The glow was observed on satellites like AE-C, AE-E,

and DE-B (Torr et al., 1977) as well as on large space shuttles (Banks et al.,

1983). The satellite glow was dominated by discrete molecular band

emissions from VUV to red, whereas the shuttle ram glow consisted of

emissions both in the visible and infrared regions. In the visible region, the

glow emitted a continuum extending from 420 to 800 nm having a broad

peak intensity around 690 nm. The shuttle glow in the infrared region

consisted of a few bands from 2.7 to 5.8 mm. The vehicle glow posed an

across-the-board threat through contamination to the low-latitude optical

sensor systems aboard satellites and space shuttles.

The satellite glow was observed to be maximum on surfaces facing into

the velocity vector. Also, the intensity of glow decayed exponentially with

altitude. The scale height was found to be about 35 km and the glow was

found to extend well away from the satellite. Also, the glow was found to

increase in brightness toward the red with a scale length of roughly 1–10m.

This implied that the emitters were long-lived species. Yee and Abreu (1983)

found a strong correlation between ram emission intensity and altitude.

It was found that at altitudes above 160 km, the brightness followed the

atomic oxygen scale height. The most probable emission mechanism for the

above glow came from Slanger (1983). He suggested that at these altitudes

oxygen atoms could be impacting the surface of the satellite with as much as

5 eV energy and the interaction between these atoms and water adsorbed on

the vehicle surface material led to the production of OH in the excited state.

The de-excitation of OH* produced Meinel bands from 656.3 nm (6-1 band)

to 732 nm (8-3 band).

We confine the discussion on the satellite glow to the above. However, the

shuttle ram glow and its probable emission mechanisms in the optical and

infrared regions are described below. The latest laboratory simulation

experiments to test the proposed mechanisms are also discussed.

562 Vijay Kumar and E. Krishnakumar [VI



A. SHUTTLE RAM GLOW IN THE VISIBLE REGION

The first glow observations on shuttle in the optical region, were reported on

STS-3 by Banks et al. (1983) followed by emissions observed from shuttle

missions STS-4 and 5, STS-8 and 9, 41-D, 41-G, 51-D, and 61-C (Garrett

et al., 1988 and references therein) and STS-38 (Viereck et al., 1992). These

were observed using, either the orbiter television camera, a still camera or

a grating in front of a photographic camera. On mission 41-D, the optical

detection experiment was significantly upgraded with a special glow

spectrometer. This spectrometer could be operated in three modes viz.

image intensifier mode, grating-produced objective spectrum-slitless spec-

trum mode, and high-resolution spectrographic mode (3.4 nm resolution)

with a slit to exclude contamination from the scattered airglow (Mende and

Swenson, 1985). Results from the above instrument are shown in Fig. 15.

The spectrum peaks at 680 nm and no distinct spectral features such as

molecular band spectra were observed, indicating a continuum at 3.4 nm

resolution of the 41-D instrument.

A few additional features of the measurements on the shuttle glow on

different shuttle surfaces are given below:

. The scale length of the glowing layer in the ram direction is estimated at

20 cm above the large flat surfaces on the shuttle or perhaps 6 cm above

rms. This is consistent with an effective radiative lifetime of emitting

molecules, of about 0.6–0.7ms for a mean emitter velocity of 0.3 km s�1.
. The intensity of glow varies from material to material with black

chemglaze (carbon-filled, urethane-base paint) and Z-302 (overcoated

FIG. 15. Shuttle ram glow intensity (normalized at the peak) as observed on STS-41D as a

function of emission wavelength. Bottom plot – film intensity after making correction for the

film response; top plot – spectrum further corrected for the instrument response (Mende and

Swenson, 1985. Reproduced by permission of American Geophysical Union).
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with silicone) being the brightest followed by MgF2. The glow intensity

for polyurethane has been found to be the least intense. The scale length,

however, was found to be similar in the case of each sample.

. The angular variation of intensity with ram angle is closer to cos(’) with
respect to the angle of attack, ’.

. There is a strong exponential correlation between the surface glow

intensity and the surface temperature. The intensity has been observed

to decrease with increasing temperature (Swenson et al., 1986).

A.1. Emission mechanism

Out of the many mechanisms proposed to explain the shuttle ram glow, the

NO2 recombination process is the leading contender. The source of NO2 is

the formation of NO by the Langmuir–Hinshelwood mechanism mediated

by a surface (Gasser, 1985; von Zahn and Murad, 1986) followed by a few

more chemical reactions. Basic steps in the surface recombination process

are illustrated in Fig. 16. The surface recombination of atmospheric OI and

FIG. 16. Schematic of chemical processes that result in the NO2 continuum emission believed

to be responsible for shuttle ram glow (Swenson et al., 1985b).
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NI is assumed to yield NO(B2�) as suggested by Torr et al. (1977). The NO

in the excited state gets deactivated to NO(X2�1/2, 3/2) ground state still

remaining on the surface of the space shuttle. A portion of NO escapes the

surface. Assuming that the escaping NO is NO(B2�), then one might

observe the �, �, . . . band emissions corresponding to B2� ! X2�1/2, 3/2

transitions. These emissions are supposed to be near the spacecraft skin.

Such emissions, under similar conditions, have been observed in

the laboratory experiments (Kofsky and Barrett, 1986). The other portion

of the deactivated NO(X2�1/2, 3/2) which is still remaining on the surface can

react with ambient OI atoms (having about 5 eV energy) to form NO2(Ã
2B1)

which escapes the surface as a gas. The deactivation of NO2(
2B1) to its

ground electronic state, NO2(X
2A1), gives rise to the continuum emission.

If the recombined NO2 retains 25% of the kinetic energy of the energetic

ram O, the thickness of the shuttle glow layer can be explained by the above

NO2 continuum (Swenson et al., 1985a).

It was pointed out by Green and Murad (1986) that the shuttle glow

intensity as suggested in the above mechanism should scale as [O]2 i.e. one

O atom to form NO and a second one to form NO2. But the actual

observations of the shuttle glow show that the intensity scales as [O] as

reported by Dalgarno et al. (1985) and Slanger (1983). The latter

observation might be explained by noting that the NO2 emission will not

vary as [O]2 if the NþO saturates on the surface at a given temperature as

postulated by Swenson et al. (1986). If the NþO creation goes faster than

the removal but the saturation is maintained, the emission rate will be

proportional to [O].

A.2. Laboratory simulation

A fast neutral beam technique has been developed to produce atomic

oxygen at variable hyper-thermal energies (1–100 eV) by Orient et al. (1990,

1992) to study some of those surface-catalyzed reactions in the laboratory,

which may be responsible for the chemiluminescent shuttle glow.

A schematic diagram of the experimental setup is shown in Fig. 17. The

magnetically confined electrons generated by a spiral-wound tungsten

filament F are extracted at high energy and then decelerated to a final

energy of 8 eV at the gas nozzle G. The electrons are allowed to react with

the NO molecules effusing from G and dissociatively attach to form O�(2P)
ions. The confined ions and electrons are then accelerated to the desired

final energy. The slower ions are separated from the faster electrons using a

trochoidal deflector, T1. The electrons are trapped in a Faraday cup and the

negative ions, O�(2P), are photodetached using emissions from a 20-W
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argon-ion laser in a multiple-pass mirror assembly (M) to form exclusively

O(3P) atoms at desired energies. The detachment efficiency is about 15%.

Finally, the O beam is directed and the undetached O� beam is reflected by

negatively biasing the target. The magnetic confinement of the charged

particles is carried out, by placing the complete system in a uniform, high-

intensity (6T) solenoidal magnetic field. The O-atom flux as obtained from

the decrease in O� flux with laser on is estimated to be � 1013 atoms

cm�2 s�1. The targets were specially prepared with careful cleaning and

cooled to temperatures in the range 240–340K that could be varied

accurately. A small gas jet of NO directed on to the target surfaces con-

tinuously. The chemiluminescence produced in the experiment was dispersed

by a double-grating monochromator and detected using a photomulti-

plier tube.

Chemiluminescent spectra at a resolution of 10 nm and a temperature of

240K obtained in this experiment with bombardment of 5 eV O(3P) atoms

on NO adsorbed on MgF2, Ni and Ti surfaces are shown in Fig. 18. The gap

in the spectra above 400 nm was necessitated by the huge background light

from the high-intensity laser used for detachment of O�. The temperature of

the target surface was varied and the recombination intensity was monitored

at a particular wavelength. This way, the activation energy, Ea, for

desorption of NO precursor from the surface could be obtained. Ea was then

FIG. 17. Schematic diagram of the energetic oxygen atom source. Also shown in the figure is

the system to detect chemiluminescence for NO-adsorbed surfaces bombarded with hot oxygen

atoms (Orient et al., 1992. Copyright (1992) by the American Physical Society).
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measured at 70 other wavelengths in the range 300–850 nm. The following

conclusions were drawn from the above measurements (Orient et al., 1992):

. The MgF2 surface has the greatest tendency to chemiluminescence,

followed by nickel and titanium.

. The chemiluminescence spectra are similar for the three surfaces with

minor variations probably due to differences in the vibrational excitation

of the excited electronic states.

. All three materials exhibit greater tendency to glow at lower temperatures.

This is because of greater packing density of surface-adsorbed NO at lower

temperature for each surface. As one warms the surface, more NO is lost

by desorption, and hence the chemiluminescence diminishes.

. The activation energies of NO desorption are similar (about 0.12 eV) for

the three surfaces. This indicates that the desorption is dominated by the

release of a NO dimer or monomer physisorbed on the surface.

. The activation energy for each surface is independent of the emission

wavelength. Hence, the same species is emitting throughout the

wavelength range.

Comparison of chemiluminescence spectra reported by Orient et al. (1992)

with the glow spectrum measured on space shuttle STS-38 (Viereck et al.,

1992) is given in Fig. 19. There seems to be a reasonable agreement between

the spectra at wavelengths less than � 640 nm. At longer wavelengths, the

shuttle-observed intensity is much larger. This could be because of different

coating materials used on the shuttle surface. In general, most of the shuttle

surfaces are coated with additional materials (CO, H2O, hydrazine etc.),

which may have their glow at wavelengths larger than 640 nm. But in the

FIG. 18. Chemiluminescence spectra produced in collision of 5 eV oxygen atoms with NO-

adsorbed MgF2, Ni, and Ti surfaces at 240K and the spectral resolution of 10 nm. The region

between the dashed lines corresponds to the strong detaching laser wavelengths (Orient et al.,

1992. Copyright (1992) by the American Physical Society).
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case of shuttle STS-38 (Viereck et al., 1992), the surface viewed was shuttle

tile, which is a porous, ceramic material and may have different emission

characteristics of NO2.
It is interesting to note that MgF2 was also found to be the bright emitter

when used in low-Earth-orbit (LEO) aboard shuttle 41-D (Mende et al.,

1986). Also, Swenson et al. (1986) estimated shuttle glow intensities and

surface temperatures of various spacecrafts and derived an analogous

‘‘orbital’’Arrheniusplotwhichgaveanactivationenergy,Ea¼ (0.14	 0.2) eV.

The laboratory measurements of Orient et al. (1992) are in good agreement

with this, indicating that the same phenomenon was being observed both in

LEO and the laboratory.

Taking the emitting species to be electronically excited NO2, one can

examine the energy balance in the process of chemiluminescence and

calculate the threshold O-atom energy for the glow process (Orient et al.,

1992). The energy balance equation is given by

Tc.m.þD(NO–O)¼EphotþTexitþEa (34)

where Tc.m. is the center-of-mass energy of the O-atom beam; D(NO–O) is

the bond energy of NO2 (3.11 eV); Ephot is the maximum photon energy

released (4.13 eV corresponding to 300 nm); Ea is the activation energy

for desorption of the precursor (0.12 eV); Texit is the kinetic energy of NO2
as it leaves the surface and is about 1.5 eV as given by Swenson et al.

FIG. 19. Comparison of the glow spectrum (solid circles) produced in the laboratory by the

collision of fast O atoms on NO adsorbed on a surface (Orient et al., 1992) with the shuttle glow

measurements (smooth curve) reported by Viereck et al. (1992). The two data are normalized

at 650 nm (Copyright (1992) by the American Physical Society).
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(1985a). From these values, one calculates the minimum required energy

for the glow process for the O-atom beam, which comes out to be

Tc.m.� 2.6 eV. This is almost consistent with a value of about 3 eV observed

by Orient et al. (1992). The difference in energy may be due to O-atom

energy lost to surface heating, which has not been taken into account in the

above equation. Based on the experiments by Orient et al., it may be

concluded that the shuttle glow in the visible region is due to the collision

of fast O atoms with NO adsorbed on the surface forming NO2 which emits

the radiation.

B. SHUTTLE RAM GLOW IN THE INFRARED REGION

The infrared shuttle glow has been observed in the spectral region from 0.7

to 5.8 mm in a few different experiments on board the STS-39 space shuttle

‘Discovery’, which was launched on April 28, 1991 into a 260-km altitude

circular orbit at an inclination of 57 deg for an eight-day mission. The

experiments were different variations of Spacecraft Kinetic Infrared Test

(SKIRT) and Cryogenic Infrared Radiance Instrumentation for Shuttle

(CIRRIS-1A), which were operated both during ‘non-glow’ and ‘glow’

measurement times (Ahmadjian et al., 1990, 1992; Zhou et al., 1992). In the

‘non-glow’ measurement times, the experiments were operated to have an

extensive infrared database on the in situ orbiter environment whereas

‘glow’ time measurements were carried out to provide near-field sources of

infrared emissions.

SKIRT consisted of two separate payloads, designated as SKIRT CVF

(circular variable filter) and SKIRT GLOS (gaseous luminosity/optical

surfaces). SKIRT GLOS contained six radiometer assemblies covering the

large wavelength region in 42 band passes where as SKIRT CVF featured

an infrared circular variable filter spectrometer and a long wavelength

radiometer, both sharing common collection optics and were cooled with

solid nitrogen. The spectrometer covered the wavelength region from 0.7

to 5.4 mm at about 3% spectral resolution using In:Sb detector whereas

the radiometer had a Hg:Cd:Te detector, which sampled the wave-

length interval from 9.9 to 10.4 mm. The CIRRIS-1A experiment consisted

of a primary infrared sensor and a number of secondary sensors and

subsystems. The main sensor was a cryogenic infrared interferometer/filter

radiometer covering 2.5–25 mm spectral range. The Si:As detectors of

various sizes were cooled with super-critical helium to temperatures of

about 10K.

In Fig. 20a is shown the spectrum of space shuttle glow measured with

SKIRT CVF sensor pointing into the ram direction while looking above the
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horizon, whereas Fig. 20b gives a glow spectrum taken during a thruster

firing showing different spectral features and an increase in overall intensity.

At the time of measurement, there were no thruster firings, water dumps,

flash evaporators, and other contamination-generating activities. The glow

spectra predicted to be in the fundamental, NO(v)!NO(v�1)þ h (5–6 mm)

and overtone, NO(v)!NO(v�2)þ h (2.5–3 mm) bands, were observed

along with NOþ band. The emission features observed on shuttle STS-39 at

260 km (Ahmadjian et al., 1992) were assigned as:

2.7 mm NO Overtone Intense

5.3 mm NO Fundamental Very Intense

4.3 mm NOþ Fundamental Intense

1.4 mm OH Overtone Weak

2.8 mm OH Fundamental Weak and unresolved

4.6 mm CO Fundamental Unresolved

The shuttle glow radiances are of the order of 10�9Wcm�2 sr�1mm�1.
Spectra during the day are twice as intense as those taken at night. This is

consistent with the enhancement in concentrations of the assumed reaction

precursors, O for NO and Oþ for NOþ during the day.

The NO fundamental band has only been shown partly in Fig. 20a. But

CIRRIS-1A interferometer on board STS-39 reported a high level of NO

FIG. 20. (a) Signal-averaged spectrum of quiescent shuttle glow; (b) Spectrum of shuttle glow

during a thruster firing (Ahmadjian et al., 1992).

570 Vijay Kumar and E. Krishnakumar [VI



emissions observed at a tangent height of 267 km (Zhou et al., 1992). The

radiation intensity at this altitude in the 5.3 mm NO band was reported

to be � 1.6� 10�9Wcm�2 sr�1 mm�1 in line with the SKIRT observations.

The CIRRIS data exhibits the additional fundamental band emission

between 5.4 and 5.8 mm.

B.1. Emission mechanism

The radiation intensity reported in SKIRT and CIRRIS experiments for

NO and NOþ bands is quite significant. Also, these emissions have been

observed at altitudes between 260 and 270 km. At these high altitudes, such

intense atmospheric NO/NOþ emissions cannot be anticipated. It is,

therefore, suggested (Green et al., 1986) that there is a near-field source

for these radiations.

The principal reaction of interest with energetic O atoms with N2

produces vibrationally excited NO, i.e.,

OþN2 ! NO(v,J)þN �H300¼ 3.26 eV (35)

where �H300 is the amount of enthalpy, at room temperature, released by

the reaction. The above reaction is endothermic for center-of-mass energies

less than 3.26 eV, which coincidentally corresponds to an O-atom velocity

of 8 km s�1. Green et al. (1986) have modeled various chemiluminiscent

processes that could occur above shuttle surfaces. They have pointed out

that the above reaction could provide a significant source of infrared

emissions. Also, the NO so created can react on the surface to produce

vibrationally excited NO (Kofsky and Barrett, 1985).

The NOþ fundamental emission at 4.3 mm as assigned by Ahmadjian et al.

(1992) arises from the interaction of fast Oþ with N2 i.e.

OþþN2 ! NOþ(v,J)þN (36)

The above reaction is almost inefficient at thermal energies but the cross

section of reaction increases rapidly at fast ion center-of-mass energies

larger than 0.33 eV (Upschulte et al., 1992).

B.2. Laboratory simulation

Simulation experiments of infrared shuttle glow and measurement of cross

sections for the reactions involving hot oxygen atoms and energetic oxygen

ions with N2, CO, CO2, CH4 has been carried out using a novel fast oxygen

atom/ion source initially developed by Caledonia et al. (1987). The details of
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the experimental approach, which used a laser-surface ‘‘blow-off ’’ scheme

to produce the fast atoms have been discussed by Upschulte et al. (1992),

Upschulte and Caledonia (1992), and Oakes et al. (1994). A 12-J per pulse

CO2 laser (Fig. 21) was used to heat and partially dissociate pure molecular

oxygen. About one-third of the CO2 laser energy was delivered in an initial

200 ns gain-switched spike, which induced a plasma break down in the

high-pressure region of the throat via inverse Bremsstrahlung absorption

mechanism. The resulting plasma, heated to about 24,000K by a laser-

supported detonation wave, absorbed the remaining energy in the remaining

time of 2 ms laser pulse. The rapidly expanding plasma continued to

dissociate the remaining molecular oxygen in the nozzle. During the

expansion, the directed kinetic energy increased as the gas temperature and

density dropped. The nozzle limited the expansion to favor electron–ion

recombination while largely inhibiting the recombination of oxygen atoms

into molecules. Consequently, a cold, high-energy, large area beam of

atomic oxygen flowed out of the nozzle.

The atomic oxygen beam velocity was measured by determining the time

delay of the radiation produced by Oþþ e recombination on two, filtered

photomultiplier tube radiometers separated by a fixed distance downstream

of the nozzle exit. A mass flow meter was used to measure the oxygen input

and a piezoelectric transducer was used to measure the temporal profile of

the cold gas pulse. A mass spectrometer with a crossed beam ionizer was

used to measure the beam composition. The reacting gas, molecular

nitrogen, was introduced from another pulsed molecular beam valve located

on the top of the beam interaction chamber.

FIG. 21. Schematic diagram of the experimental system (Upschulte et al., 1992; Upschulte

and Caledonia, 1992; Oakes et al., 1994) for carrying out reactions between hot atoms and

molecules.
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The temporally resolved measurements with 0.05 mm spectral resolution

were made using a continuous variable filter (CVF) radiometer consisting of

a three-segment 90� filter wheel, a pair of f/1.5 off-axis parabolic reflectors

and an In-Sb detector. A second radiometer consisting of interference filters

and an In-Sb detector views the whole of the interaction region of the

crossed beams and was used to normalize the CVF spectra and to obtain

lower-resolution, band-pass-filtered spectra.

The spectrum obtained by Oakes et al. (1994) for reaction (35) using the

above experiment is shown in Fig. 22 along with the spectrum obtained

using CIRRIS-1A interferometer on board STS-39 at a tangent height of

267 km by Zhou et al. (1992), both corresponding to the NO fundamental

band. The laboratory spectrum was taken at a resolution of 0.08 mm and an

oxygen atom velocity of 12 km s�1. The data of Oakes et al. (1994) did not

extend beyond 5.4 mm due to the negligibly small response function of the

infrared detector used by them. That the NO was created rotationally hot in

the laboratory experiment is evident from the finite intensity below 5.1 mm,

which is the lower limit at room temperature. The comparison between the

laboratory and flight data in the 5.0–5.4 mm spectral region appears to be

quite good.

Using fast Oþ beam Upschulte et al. (1992) identified the observed

emission in the 4–5 mm region in the shuttle glow (Fig. 20) as due to the

reaction (36). They measured the cross section value to be �3.2� 10�16 cm2

at the laboratory energy of 5 eV for this reaction, which is in agreement with

FIG. 22. Comparison of laboratory observations of infrared emission from the reaction of

fast oxygen atoms with N2 (solid line: Oakes et al., 1994) and flight measurements performed

with CIRRIS-1A instrument on STS-39 at a tangent height of 267 km (broken line: Zhou et al.,

1992). (Reproduced by permission of American Geophysical Union).
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the value of 3� 10�16 cm2 reported by Burley et al. (1987). The

measurement of cross sections for some other important reactions with

hot atoms is discussed below.

B.3. Measurement of excitation cross sections

The excitation cross sections involving the collision of fast O and N atoms

with molecules have been measured (Upschulte and Caledonia, 1992; Oakes

et al., 1994; Caledonia et al., 2000). The cross section could be written as

(Upschulte and Caledonia, 1992)

� ¼ J

AC0NT

ð37Þ

where J represents the peak radiance of the entire interaction volume and A

is the Einstein coefficient of the radiative transition. C0 and NT would be

defined later during the discussion leading to the calculation of J. All the

emission intensity data is first converted into irradiance units using standard

black body calibration procedures, taking into account filter and atmo-

spheric transmission efficiencies. The gas targets are optically thin and the

detector irradiances are, therefore, readily converted into the total photon

emission rate within the field of view (FOV)

J ¼
Z

FOV

NAdV ð38Þ

where N* is the local concentration of the excited state and the integral is

over the radiating volume within the field of view. At the end of the pulse,

the local excited state concentration at any point in the gaseous target is

given by

N ¼
Z

�

�V ½HA�½TM� dt ð39Þ

Here V is the beam velocity of the interacting hot atoms, [HA] and [TM]

are the local hot atom and target molecule density, respectively, and the

integration is over the pulse time. The target beam intensity is steady over

the time of the pulse and thus, the density of the local target molecule is

independent of time. Therefore

N ¼ �½TM�
Z

V ½HA� dt ð40Þ
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The integral in the above equation is equivalent to C0, the local line density

of hot atoms in the pulse. Thus

N ¼ �½TM�C0 ð41Þ

In terms of J, the number of photons per second,

J ¼ A�C0

Z

FOV

½TM� dV ð42Þ

where C0 has been assumed to be constant over the interaction volume. If

the experimental conditions are so chosen that the hot atom beam is larger

than the target beam, the volume integral of the target beam density falls out

of the gas dynamics and

Z
½TM� dV � dm

dt
�H

1

Umax

ð43Þ

where dm/dt is the measured mass flow rate through the target beam orifice,

Umax is the maximum attainable molecular beam velocity and �H is the

height/length of the target beam, which is impacted by the hot atom beam

within the field of view. For the sake of convenience, the whole integral in

the above equation can be written as NT as given in Eq. (37).

The results of the measurement of excitation cross sections for some

important reactions between hot atoms and molecular targets are discussed

below.

Fast O-atoms with molecular nitrogen. The excitation cross sections for

the reaction,

O(Hot)þN2 ! NO(v, J)þN (35)

have been measured by Oakes et al. (1994) as a function of O-atom velocity

ranging from 8 to 12 km s�1 for both the fundamental (5.0–5.4 mm) and

overtone (2.5–3.0 mm) NO bands. Since each vibrational transition has a

distinct Einstein coefficient and since it is not known as to which vibrational

states are radiating within the monitored band passes, only effective cross

section values have been obtained under the assumption that all radiation

arises from v(1)!v(0) and v(2)!v(0) for the fundamental and overtone

bands respectively. The excitation cross sections are shown in Fig. 23 as a

function of hot atom velocity. The effective Einstein coefficients for the

fundamental and overtone band emissions have been taken as 13 and 1 s�1
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respectively. The cross sections (Fig. 23) begin to rise significantly beyond

10 km s�1 O-atom velocity. Also, the overtone cross sections are larger in

value than those of the fundamental at all O-atom velocities, thereby

suggesting that higher vibrational states are dominantly formed in the

process. It may be noted here that the data for the overtone band pass at

8 km s�1 are an upper bound corresponding to signal-to-noise ratio of 1.

Fast O atoms with CO, CO2, and CH4. The values of excitation cross

sections measured by Upschulte and Caledonia (1992) for reactions

involving hot O atoms at 8 km s�1 with CO, CO2, and CH4 are given in

table I. It appears that no other experimental or theoretical data exist on

these reaction cross sections.

FIG. 23. Effective excitation cross sections for the reaction OþN2 ! NO(v, J)þN as a

function of O-atom velocity (Oakes et al., 1994. Reproduced by permission of American

Geophysical Union). Squares: 2.5–3.0mm emission band (Einstein coefficient A¼ 1 s�1).

Circles: 5–5.4mm emission band (Einstein coefficient A¼ 13 s�1) The upper bound value

obtained at 8 km s�1 has also been defined in the text.

Table I

Cross Sections for Collisional Excitation of O Atoms (8 km s�1)

with CO, CO2, and CH4 (Upschulte and Caledonia, 1992).

Reaction Cross Section (cm2)

OþCO ! CO*(v)þO 7.3� 10�17

OþCO2 ! CO2*(3)þO 3.7� 10�18

OþCO2 ! CO*(v)þO2 6.4� 10�17

OþCH4 ! CH4*(3)þO 5.0� 10�19

OþCH4 ! CH3þOH((v) <5� 10�19
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Fast N atoms with O2. The reaction between the ground state nitrogen

atoms at thermal energies and oxygen molecules

N(4S)þO2 ! NO(v, J)þO (44)

is exothermic by 1.38 eV (31.82 kcalmol�1). This plus the activation energy

of 7–8 kcalmol�1 (Clyne and Thrush, 1961) released in this reaction is

sufficient to populate v¼ 0 through 7 of NO at room temperature. There

have been four measurements (Whitson et al., 1976; Rahbee and Gibson,

1981; Herm et al., 1983; Winkler et al., 1986) and a few theoretical studies

(Duff et al., 1994; Gilbert et al., 1995) under thermal conditions to obtain

vibrational product distribution of this reaction. This reaction with hot

atoms has been observed in the terrestrial upper atmosphere (Sharma et al.,

1993). The only measurement to study the above reaction at high collision

energies has been carried out by Caledonia et al. (2000). They determined

the distribution of vibrationally excited ground state of NO and the

vibrational state-specific excitation cross sections using fast N(4S) atoms of

velocity 8 km s�1. The state-specific excitation cross section values are given

in Fig. 24 as determined from NO fundamental band emission data. Also

given in the figure are classical trajectory predictions (Duff et al., 1994;

Duff, 1997) and quasiclassical trajectory calculations by Ramachandran

et al. (2000). There is good agreement between the experimental reaction

cross sections for production of NO(v¼ 1 to 7) and the results of Duff

(1997). However, the results of Ramachandran et al. (2000) are system-

atically higher by a factor of � (Ramachandran, 2002).

FIG. 24. Cross sections for the production of NO in different vibrational levels by the

collision of N(4S) on O2. � – Experimental data (Caledonia et al., 2000); œ – Calculations

(Duff 1997); �–Calculations (Ramachandran et al., 2000). The data by Ramachandran et al.

have been divided by a factor of �.
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VII. Large NO Densities at 105 km

Nitric oxide plays a critical role in the cooling of terrestrial atmosphere

above 70 km. It is also one of the important catalytic destroyers of ozone in

the stratosphere. Large NO densities of �108 cm�3 have been measured at

an altitude of �105 km. These values have been obtained from infrared and

ultraviolet observations in different experiments aboard rockets, satellites,

and space shuttles and from microwave measurements using ground-based

millimeter wave telescopes. The reactions of N(2D) and N(4S) with O2 are

important sources of NO. The latest photochemical models have

incorporated soft x-ray fluxes, new reaction sources, the new value of yield

for N(2D)þO reaction as obtained in the latest laboratory measurements

and over and above, the hot nitrogen chemistry with an energy-dependent

thermalization cross sections. But all these efforts have failed to explain the

high abundance of nitric oxide at 105 km. Though this still remains an open

problem, we discuss in this section an aspect of the hot N atom chemistry,

which has been subjected to detailed analysis as a source of NO.

The first measurement of the NO densities were carried out by Barth

(1964) using an ultraviolet spectrometer on a sounding rocket by observing

the resonant fluorescence of NO(1,0) �-band near 215 nm. Subsequent

rocket flights by Thomas (1978), McCoy (1983), and Cleary (1986) and

experiments on satellites (OGO 4, AE C and D, and Solar Mission Explorer,

SME) also observed the (1,0) �-band to obtain NO densities (Barth et al.,

1973, 1998; Rusch, 1973; Barth, 1992). All this data underestimated the

amount of NO due to the neglect of self-absorption in the calculation of NO

�-band emission rate. However, Epavier and Barth (1992) and Stevens

(1995) have estimated the self-absorption correction and as a result, an

increase in the peak NO densities by a factor of 2–3 was reported as

compared to the results where self-absorption was not taken into account.

The first microwave detection of the atmospheric NO (Clancy and Rusch,

1992) was carried out through ground-based observations of 1.2 mm

(250.796GHz) line emission using National Radio Astronomy Observatory

millimeter wave telescope (Kitt Peak, Arizona). The values derived in this

experiment for column density above 70 km and number density at an

altitude of 110	 10 km are � 5� 1014 cm�2 and � 3� 108 cm�3 respectively.

The nitric oxide density measurements have also been carried out using the

5.3 mm solar occultation spectral data obtained by Atmospheric Trace

Molecule Spectroscopy (ATMOS)/Atmospheric Laboratory for Applica-

tions and Science (ATLAS 1). The ATMOS observations were made in

April and May, 1985 (Barth et al., 1996) and the ATMOS/ATLAS1

observations during shuttle mission (March–April 1992) in the latitude
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range 38�N–58�S (Krishna Kumar et al., 1995). These measurements yielded

peak NO densities of � 108 cm�3 at 105	2 .5 km.

No reliable atmospheric model has succeeded in predicting the observed

NO densities at these heights. This has stimulated a great deal of theoretical

work (Gérard et al., 1997; Balakrishnan et al., 2000 and references therein).

One of the additional sources proposed to account for the observations has

been the reaction of hot N(4S) atoms with O2. Though this reaction is

exothermic by 1.38 eV, the reaction is slow at room temperature due its

activation energy of 0.3 eV and energetic N(4S) atoms are needed for this

reaction to proceed efficiently. The presence of nonthermal distribution of

N(4S) despite the thermalization by the ambient bath gases and the reaction

of this nonthermal distribution with O2 to contribute to the NO production

has been suggested (Solomon, 1983; Gérard et al., 1991; Lie-Svendsen et al.,

1991). Most of the calculations carried out for the energy distribution

function of N(4S) do not incorporate the full energy and angular dependence

of the elastic and inelastic cross sections with the bath gases. Often, the cross

sections were assumed to be independent of energy, with an isotropic

distribution in the scattering angle, the so-called hard-sphere approximation

(Sharma et al., 1996 and references therein). Later, Sharma et al. (1998)

computed the energy distribution function of hot N(4S) atoms at an altitude

of 110 km using energy and angle-dependent cross sections for collisions

with O and N2 obtained from quasiclassical trajectory calculations. It was

assumed by them that both elastic and inelastic NþO2 collisions have the

same effect as for NþN2 collisions. Recently, Swaminathan et al. (1998)

presented an updated version of photochemical model of NO in the lower

thermosphere which incorporated solar soft x-rays as an additional source

of hot N(4S) atoms. The NO densities predicted by them are still

significantly less than those observed in rocket, satellite, and space shuttle

measurements. However, while accounting for the contribution of hot N(4S)

atoms to the production of nitric oxide, Swaminathan et al. used

cross sections derived from classical calculations (Gérard et al., 1997)

which did not take care of the angular distribution of the scattering event.

In this context, Balakrishnan et al. (2000) have made a critical evaluation

of the reaction hot N(4S)þO2 as a possible source of NO in the upper

atmosphere.

Balakrishnan et al. (2000) used a quantum-mechanical approach to show

that NþO2 elastic collision cross sections have a different energy and

angular dependence than those for NþN2 collisions. A comparison of the

integral elastic cross sections for these two collisions could be found in

Section V and Fig. 6. The energy as well as angular anisotropy of the elastic

and inelastic collision cross sections for collisions of hot N(4S) atoms with

O, N2, and O2 were included the construction of the Boltzmann kernel
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which determine the rate of energy relaxation. Subsequently, the energy

distribution function, f(E,T), under steady-state conditions with the

weighted sum of the energy relaxation kernels for collisions with bath gases

were obtained. The f(E,T) for 90, 105, 130, and 150 km altitudes, are shown

in Fig. 25. These are similar to the Maxwellian distribution at low energies

but are significantly different at higher energies having a pronounced non-

thermal tail. Using the Maxwellian and the non-thermal energy distribution

functions, the differential rate coefficients for N(4S)þO2 reaction were

calculated as a function of translational energy of N(4S) atoms. The rate

coefficients at different hot atom energies are shown in Fig. 26 for the

altitudes of 110 and 130 km, which correspond to thermospheric tempera-

tures of 270 and 595K respectively. At 110 km, the major contribution to

the rate coefficient arises from the non-thermal part, whereas at 130 km, the

contribution from the nonthermal part is relatively small. Using the average

mid-latitude daytime number densities of N(2D) and N(4S) given by

Swaminathan et al. (1998), the relative contribution to the formation of NO

by these two states of N were calculated. Based on these, Balakrishnan et al.

(2000) found that at altitudes below 130 km, where the nonthermal N(4S)

atoms contribute more than their thermal counterparts, the overall

contribution from the N(4S) is considerably smaller than that due to the

FIG. 25. Energy distribution function of N(4S) atoms in the thermosphere at 90, 105, 130, and

150 km (Balakrishnan et al., 2000. Reproduced by permission of American Geophysical Union).

The solid curves are computed non-thermal energy distribution functions and the dashed curves

are the Maxwellians at the ambient temperatures.
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N(2D), thus indicating that inclusion of the contribution due to hot N(4S)

atoms will not explain the observed large abundance of NO at 105–110 km

altitude.
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theory, 92–113

Electron energy, 100, 105

and the Vogt-Wannier model, 106–8,

109, 112

Electronic quantum numbers, 88

Electron scattering

CO2, 154–7, 179–80

CS2, 158–60

difluoroethenes, 136–8

N2O molecule, 160–2, 180

SF6 and CCl4, 144

Electron scavengers, 139

Energy

binding energy, cluster

carbon dioxide, 174, 177, 179

nitrous oxide, 171–2, 173, 179

oxygen, 165

collision energy, and measurements,

115

electron, 100, 105, 106–8, 109, 112

and themetastability of SF�6 anion, 148

resolution, 117–18, 120, 123

in resonance formation, 87–91, 92

in the R-matrix theory, 94, 95–6

of scattered electrons, 113–15

and the Vogt-Wannier model, 109–10,

112

see also Potential curves

Energy analysis, 113, 115

Energy widths, 113, 114, 115, 116, 120

and anion cluster formation, 163

case studies, 123

future work, 195

ERT (effective range theory), 94, 147

EVW (extended Vogt-Wannier) models,

110–13

Feshbach projection operator

technique, 101

Feshbach resonances

R-matrix theory for, 96, 97, 98

see also VFRs (vibrational Feshbach

resonances)

Fluorinated hydrocarbons, 189–90

Fluorine, electron attachment, 141–4,

193

Franck-Condon factors, chlorine

electron attachment, 142, 143

Franck-Condon overlap, 111–12

Franck-Condon region, 88–9

Gaseous environments, electron

collisions in, 85–7

Halogenated methanes

LPA method for, 135

see also CCl4; CFCl3; Methyl halides

Halogens, dissociative electron

attachment, 141–4

HBr, 124, 125, 126–7

HCl, 124, 125–6

HF, 98, 99, 100, 124, 127, 157

HI cross-sections, 125

HX see Hydrogen halides (HX)

Hydrocarbons and positron

annihilation, 189–90, 191

Hydrogen halides (HX), 123–8, 193

see also HF

Inelastic collisions/processes, 92, 115

and autoscavenging, 165

and collective plasmon resonances,

194
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Inelastic collisions/processes continued

R-matrix theory for, 93, 97

threshold law, 94

Vogt-Wannier model, 106–13

Inelastic cross-sections, 115

carbon disulfide, 158, 159, 160

methyl halides, 134

nitrous oxide, 161

Inelastic scattering

carbon dioxide molecules, 177–8

detecting, 113–14, 115

methyl halides, 134

and molecular clusters, 163

Internuclear separations, 88–9, 91

Intramolecular vibrational redistribu-

tion (IVR), 89, 147

Ions see Negative ions

IR active vibrations, 138

IVR (intramolecular vibrational redis-

tribution), 89, 147

Klots formula, 106, 111, 145

Langevin cross-section, 107, 108

Laser photoelectron attachment see

LPA

Lasers, 195–6

LCP theory, 111–12

Lifetimes of resonance states, 92

Local approximations, resonance

mechanism, 101

Local complex potential (LCP), 111–12

Local theory, limitations of, 106

Long range interactions, 97–8, 103, 104

dipolar, hydrogen halides, 124

Vogt-Wannier model, 109

Low-lying unoccupied molecular

orbitals (LUMO), 87

LPA (laser photoelectron attachment),

118, 119–20, 121–2

and DA cross-sections, CCl4, 149, 150

on halogenated methanes, 135

SF6 and CCl4, 145–6, 147

LUMO (Low-lying unoccupied

molecular orbitals), 87

Magnetic angle-changing devices, 115

Mass spectra, 174, 175, 178, 181, 182

Metal clusters, 194

Methyl bromide (CH3Br), 128, 129,

130, 131, 132–3

Methyl chloride (CH3Cl), 99, 100,

128, 129–32

Methyl halides, 128–36, 193

see also Halogenated methanes;

Methyl chloride; Methyl iodide

Methyl iodide (CH3I), 128, 129, 130,

131, 132, 133, 135, 194

cross-sections, 111–13, 134

VFRs, 134, 183, 186

Methyl iodide clusters, 186–8

Modes, phonon, 194

Molecular clusters, 162–88, 194

Molecules, 195

nonpolar molecules, 139–62

polar molecules, 123–38

Multichannel R-matrix theory,

93–106

N2O (nitrous oxide), 160–2, 180

Na2 see Sodium molecules

NDA (non-dissociative attachment),

88, 89, 194

Near-threshold resonances, 96–7

Negative ions, 87, 88

solvation effects, 164

see also Anions; Resonances; TNI

Negative-ion states, 92, 141

Nitrous oxide clusters, 162, 168–73,

176, 179

Nitrous oxide (N2O), 160–2, 180

Non-dissociative attachment (NDA),

88, 89, 194

Nonlocal complex potential theory,

106, 124

Nonlocal energy-dependent operators,

101

Nonlocal resonance theory, 125–6,

127

Nonlocal theory, 111, 112

Nonpolar molecules, 139–62
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Nuclear-excited Feshbach resonances,

91, 97

Nuclei during resonance lifetimes, 87–8

OCS (Carbonyl sulfide), 180, 186

OPG (optical parametric generators),

196

OPO (optical parametric oscillators),

196

Orientation and electron collisions, 92

Oxygen clusters, 162, 164, 165–9, 194

Ozone, 194

P electrons, photodetachment, 94–5

Perfluoromethyl chloride (CFCl3), 111,

135

Phase shift, s-wave, 87

Phonon modes, 194

Photodetachment, electron, 94–5

Photoelectrons, 116–17, 120

see also LPA (laser photoelectron

attachment)

Photoemission, future work on, 195

Photoionization, studies with, 116–17,

118–20

�* antibonding orbitals, 136

Polarizability, 106–7, 110, 111

C60, 152

carbon dioxide, 179

carbon disulfide, 158, 160

nitrous oxide, 160, 179

see also Dipoles

Polarization, 139, 187–8, 191

Polar molecules, collisions with, 123–38

Positron annihilation, 188–92, 195

Positronium (Ps), 189, 190, 191–2

Potassium clusters, electron capture by,

194

Potential curves, 88–90, 91, 104, 105

chlorine electron attachment, 142, 143

CO2 and CO�2 , 156–7
HX�, 126

methyl halides, 130–2

nitrous oxide, 172, 173

sodium electron attachment, 139–40

Projection operator approach, 101, 102

P-waves, 94

C60, 152, 153, 154

chlorine, 142

fluorine, 142, 193

Quadrupole moments, 139, 144, 158, 180

Quantum numbers, 88

Ramsauer-Townsend minimum, 87

Rate coefficient, free electron attach-

ment, 150–2

Reaction sphere, 93, 97

Reactive attachment channel, 144, 149

Resolution, 86, 117–18, 120, 123

Resonance energy, 87

Resonance and threshold phenomena,

85–92

case studies, 123–92

clusters, 164, 169, 175–7, 178, 194

experimental aspects, 113–23

mechanisms, 100–1, 109, 111

positron-molecule collisions, 188–9,

190

theory, 92–113

see also TNI; VFRs

RET (Rydberg electron transfer), 164–5,

171, 175

R-matrix theory, 92–106

chlorine electron attachment, 142–4,

193

DA

hydrogen halides, 124–5

methyl halides, 129

methyl iodide (CH3I), 111–12, 194

electron collisions, perfluoromethyl

chloride (CFCl3), 135

halogenated methanes, 135–6

methyl halides, 129–34

VE, hydrogen halides, 124–5

Rotating dipole, 98–100

Rotational quantum numbers, 88

Rydberg electron transfer (RET), 164–5,

171, 175

Rydberg orbits, electrons from, 122–3
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Scattering, 87, 88

carbon dioxide molecules, 177–8

clusters, 163, 194

electron

from difluoroethenes, 136–8

nitrous oxide (N2O) molecule,

160–2, 180

R-matrix theory, dipolar interaction,

97–8

Scattering cross-sections, 113–17

CCl4, 147, 149–50

methyl halides, 134

SF6, 147

see also Cross-sections

S electrons, photodetachment, 94

Self-scavenging, 165

SF6, 139, 144–52

SF�6 formation of, 121

Short-range interactions, 93–7

Sodium clusters, electron capture by, 194

Sodium molecules, electron attachment,

139–41

Solid state surfaces, photoemission

from, 195

Solvation effects, 163–4, 186–7, 188

Split time propagation method, 194

STIRAP method, 196

Supersonic beams, measurements with,

121

S-waves, 87, 90, 94–5

C60, 153, 154

CCl4, 144–5, 146, 150

cluster formation, 164, 169, 175

carbonyl sulfide, 181

halogenated methanes, 135–6

SF6, 144–5, 146

Vogt-Wannier model, 106–7

Temperature, rate coefficient and, 151–2

Temporary negative ions see TNI

Threshold cusps, 95–6

Threshold laws, 94, 97, 99, 109

see also Wigner law

Threshold peaks for hydrogen halides,

124

Threshold phenomena see Resonance

and threshold phenomena

Threshold Photoelectron Spectroscopy

for Attachment see TPSA

TNI (temporary negative ions), 86, 87,

88, 89

and molecular clusters, 163

see also Negative ions; Resonances

TPSA (Threshold Photoelectron

Spectroscopy for Attachment),

117–18, 119, 121, 122

SF6 and CCl4, 144, 146

Transmission spectra, threshold

structures, 124

Trochoidal electron monochromators

(TEM), 113

VE (vibrational excitation), 87, 88, 89,

90, 92, 100

carbon dioxide, 154–5, 194

chlorine electron attachment, 143–4,

193

and DA cusps, 96, 103

Feshbach projection operator

technique for, 101

hydrogen halides, 124, 125–8, 193

methyl halides, 128

VFRs (vibrational Feshbach

resonances), 90, 91, 92, 97,

103, 104–6, 112, 192

carbon dioxide, 155–6, 157

carbon dioxide clusters, 175–7, 178,

179, 180

carbonyl sulfide clusters, 181, 183

halogenated methanes, 135

hydrogen halides, 124, 126, 127–8

methyl halides, 129, 130, 132–4

methyl iodide (CH3I), 134, 183, 186

nitrous oxide, 161–2

nitrous oxide clusters, 169–70,

171–2

polyatomic molecules, 193

in positron-molecule systems, 190,

191, 195

see also Feshbach resonances
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Vibrational dynamics, 92, 194

multichannel R-matrix theory, 100–6

Vibrational excitation see VE

Vibrational quantum numbers, 88

Vibrational resonances

and positron annihilation, 92

see also VFRs (vibrational Feshbach

resonances)

Virtual states, 96–7, 99, 113

carbon dioxide, 155, 156, 157

in positron-molecule collisions,

189–90

Vogt-Wannier model (VW), 106–13

C60, 153, 154

CCl4, 144, 145, 146, 148, 149, 150

SF6, 144, 145, 146, 148

VUV radiation, 116, 117, 192

in measurements, 118, 119

VW see Vogt-Wannier model

Water clusters, zero energy resonances,

164

Water molecules, dipole moments, 98

Wave-packet propagation method, 193

Weakly bound states, positron-molecule

collisions and, 189–90

Wigner-Baz’ cusp, 95, 129

Wigner cusps, 90

Wigner law, 94, 95, 99

Zero energy resonances, 164–5, 192

carbon dioxide clusters, 175, 178

carbonyl sulfide clusters, 181

nitrous oxide clusters, 169, 171

oxygen clusters, 164, 166–8, 194

Chapter 3

A coefficients/parameters, 231, 232,

233, 282

and de-excitation, 234

reduction of, 288–9

Alignment, 220–1

generalized irreducible anisotropy

tensors, 222, 255, 282

see also Angular distribution/

dependency

Amplitudes, 218, 222

strontium experiments, 279, 280, 281

Angular distribution/dependency,

218–2, 254–6

C coefficients, 238

fluorescence photons, 221, 233, 234,

236–7

general equations, 282

generalized irreducible anisotropy

parameters, 264, 267

J0¼ 0! J¼ 1/2 transitions, 267, 268

photoelectrons, 218–2, 225, 226, 230

B coefficients contain, 234

calcium, 219, 220

and coordinate frame, 236

strontium, 277

Angular momentum, 225, 228, 231

Anisotropy parameters see A

coefficients/parameters;

B coefficients/parameters; C

coefficients

Anisotropy tensor parameters, 283

see also Generalized irreducible

anisotropy tensors

Argon, 220–2

Atomic collisions, complete, 218, 219,

272–3, 281

Auger emissions, 219, 220, 244

Autoionization resonances, 277–80, 281

B coefficients/parameters, 226,

233, 234

contraction of, 227–8, 286–8

definition, 225

� parameter, 221–2, 251, 274, 275, 276,

277–8

Branching ratios, 277–9, 280–1

Cadmium ions, alignment studies, 221

Calcium, 219–20, 273–6

Cartesian coordinates, spin polarization

vector, 254, 258–60, 282–3

J0¼ 0! J¼ 1/2 transitions, 269–70
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C coefficients, 229–30, 252, 253–4, 282

special cases

undetected electron spin, 246–8

undetected photoelectron, 245–6

unobserved ion state, 249–52

unobserved photoelectron spin,

242–4

unpolarized target/isotropic charge,

240–2, 265, 266, 271

symmetries of, 237–9

Circular polarized light, dichroism and,

219

Closed shell atoms, 222

Coincidence experiments, 223–4, 272–3

on calcium atoms, 273–6

on strontium atoms, 276–81

Complete/perfect atomic collisions, 218,

219, 281

Complete/perfect photoionization,

218–9, 222, 272–3, 281

Complete scattering experiments, 222–3,

272, 282

Coordinate frames, 235–7, 238, 282

Cross-sections, 272, 273–4, 275, 277

De-excitation, 223, 224, 231, 234

Density matrices, 222, 223, 224, 225, 281

Dipole amplitudes, 218, 279

see also Amplitudes

Dipole approximation, 233, 284

and A coefficient reduction, 288

and quantum number restrictions,

228, 230

Dipole matrix elements, 227, 283–5

Dynamics, 244, 245

fluorescence, and A coefficients, 231,

282

ionization, and B parameters, 230,

231, 234

photoelectrons, and C coefficients,

282

Electrons see Photoelectrons

Energy, electron, measuring, 218

Excited states, 223, 224

calcium, 273, 274

strontium, 276, 277, 278

Experimental setups, photoionization,

240–54

Fluorescence photon/radiation, 223,

224, 230–5

and A coefficients, 231, 282

angular dependency/distribution,

222, 234, 235–7, 252, 254

calcium photoionization, 273–6

generalized irreducible anisotropy

parameters, 264, 267

intensity, 256

polarization, 228, 234, 257

angular distribution, 222, 252

J0¼ 0!J¼ 1/2 transitions, 267,

268, 269

measurements, 274, 275, 276

non-coincident, 258, 269, 275,

276, 282

Stokes parameters, 254

Generalized anisotropy parameters

ideal transition, J0¼ 0! J¼ 1/2

transitions, 266–7

normalization of, experimental

setups, 252–4

Generalized irreducible anisotropy

parameters, 253, 264–5, 267

Generalized irreducible anisotropy

tensors, 222, 255, 282

see also Anisotropy tensor parameters

Generalized product tensors, 249

Ideal transitions, J0¼ 0! J¼ 1/2

transitions, 263–72

Initial state, 222

Inner shell photoionization, 223, 224

Intensity, 253, 255–6, 268, 282

measuring, 218

Ionic states, 223, 224, 244–6

and anisotropy parameters, 232, 233

calcium, 273, 274, 275

for J0¼ 0! J¼ 1/2 transitions, 266
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statistical tensorial sets, 225, 228

strontium, 276, 278

Ionization dynamics, 222, 228, 231

see also Photoionization

Ion state, unobserved, experimental

setup, 248–52, 282

Iron, dichroism and, 219

Irreducible anisotropy parameters, 263

Irreducible product tensors, 228, 229, 249

undetected photoelectron, 245

unobserved photoelectron spin, 242–3

Irreducible statistical product tensors,

228, 235

see also Product tensors

Irreducible tensors, 226, 232

Isotropic charge cloud, 240–2, 265, 266

J0¼ 0! J¼ 1/2 transitions, 263–72, 283

Krypton, 220, 221

Length form, dipole matrix element, 284

LS coupling, 276, 280

Magnesium, photoionization of, 219

Magnetic circular dichroism (MCD), 219

Magnetic components, 231, 261, 264–5,

267

Magnetic quantum numbers, 225, 231,

233

MCD (magnetic circular dichroism), 219

Non-coincident experiments, 244, 245,

282

polarization, fluorescence radiation,

258, 269, 282

calcium, 275, 276

spin polarization, photoelectron, 260,

269–70, 282

Normalization

photoelectrons, 254

for strontium experiments, 278

Normalization of generalized anisotropy

parameters, experimental setups,

252–4

Normalization parameters, 233, 252, 282

fluorescence polarization, 268, 269

Orientation

generalized irreducible anisotropy

parameters of, 253

generalized irreducible anisotropy

tensors, 222, 255, 282

see also Angular distribution/

dependency

Parity conservation, 228

Perfect collisions see Complete/perfect

atomic collisions; Complete/

perfect photoionization

Phase differences, 218, 219, 222, 281

Photoelectric effect, discovery, 218

Photoelectrons

angular dependency, 225, 226, 230

and coordinate frame, 236

angular distribution parameter, 251

dynamics of, and C coefficients, 282

intensity, 255–6

spin polarization see Spin polarization

statistical tensorial sets for, 225, 228

see also Photoionization

Photoelectron spectroscopy, 218

Photoionization, 218, 220, 223, 224

� parameter, 251

calcium experiments, 273–6

complete, 218–9, 222, 272–3, 281

primary, 225–30, 281

special cases

undetected photoelectron, 244–6,

282

undetected photoelectron spin,

246–8, 282

unobserved ion state, 248–52

strontium experiments, 271–81

Photon induced fluorescence spectros-

copy, 221

Photons

spin, 260–1

see also Fluorescence photon/

radiation
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Polarization, 228, 234, 254–63

and the B parameter derivation, 228

generalized irreducible anisotropy

parameters, 264, 267

J0¼ 0! J¼ 1/2 transitions, 267,

268, 269

measurements, 274, 275, 276

non-coincident, 258, 269, 275, 276,

282

spin see Spin polarization

Stokes parameters, 224, 254, 283

tensors, 260–3, 264–5, 267, 270–2

Polarized atoms, 219, 228

Polarized iron, dichroism and, 219

Polarized light, 219

Polarized synchrotron radiation,

assumptions about, 228

Product tensors, 228–9

see also Tensors

Propensity rules, 220

Quantum defect theory, 221

Quantum mechanical descriptions,

218

Quantum numbers, 228, 230, 231

magnetic, 225, 231, 233

Radiation fields, 230

see also Fluorescence photon/

radiation; Synchrotron radiation

Random phase approximation

calculations, 220

Rare gases, 219, 220–1, 265

Reaction planes, 235–7, 238, 259

Relative parameters, 222, 282

fluorescence radiation polarization,

257, 258

photoelectron intensity, 255

and spin polarization vectors, 259

and tensor polarization, 262

Relativistic random phase

approximation, 221

Rotation matrices, 234

and coordinate frame choice, 236–7

Rydberg state, 223

Scattering experiments, complete,

222–3, 272, 282

Selection rules, 222, 228, 230, 265, 282

fluorescence radiation emission, 231

normalization of generalized

anisotropy parameters, 253

normalization parameter, 252

special cases

isotropic charge cloud, 241

undetected photoelectron, 245, 246

unobserved ion state, 249, 250, 251

unobserved photoelectron spin,

243, 246, 248

unpolarized atoms, 246, 248

unpolarized target, 241

Spectroscopy, 218, 220, 221

Spin and angle resolved electron

spectroscopy, 220

Spin-flip transitions, 220

Spin polarization, 219, 220, 234, 258–60

angular distribution, 222, 252

and the B parameter derivation, 228

experiments, 242–4, 246–8, 282

non-coincident, 260, 269–70, 283

general equations, 282

generalized irreducible anisotropy

parameters, 264, 267

undetected, experimental setups,

246–8, 282

Spin polarization vectors, 222, 254,

258–60, 282–3

J0¼ 0! J¼ 1/2 transitions, 269–70

State multipoles, 230–1, 233–4

and spin polarization, 254

and Stokes parameters, relation,

225–6

and tensor polarization, 261

unpolarized target, 240

Statistical tensor methods, 222, 225, 281

see also Tensors

Stokes parameters, 222, 283

fluorescence polarization, 254, 257,

268, 269

non-coincident experiment, 258, 269,

282
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synchrotron radiation photon, 224,

225–6

Strontium atoms, 273, 274, 276–81

Symmetry

of the C coefficients, 237–9, 282

see also � parameter

Synchrotron radiation, 221, 222, 223,

224, 225–6

in the B parameter derivation, 228

Tensors, 222, 225, 260–3, 281

generalized irreducible anisotropy

parameters, 264–5, 267

generalized product tensors, 249

irreducible product tensors, 228,

229, 249

undetected photoelectron, 245

unobserved photoelectron spin,

242–3

irreducible statistical product tensors,

228, 235

irreducible tensors, 226, 232

J0¼ 0! J¼ 1/2 transitions, 270–2

polarization, 260–3, 264–5, 267, 270–2

polarization parameters, 222, 283

product tensors, 228–9

T-matrix of photoionization, 283–4

Transition matrices, 226, 227, 228, 283–5

fluorescence, 231, 288

Transitions, J0¼ 0! J¼ 1/2, 263–72,

283

Undetected electron spin, experimental

setup for, 246–8, 282

Undetected photoelectron, experimental

setup for, 244–6, 282

Unobserved ion state, experimental

setup for, 248–52, 282

Unobserved photoelectron spin,

experimental setup for, 242–4,

282

Unpolarized atoms, experimental setup

for, 240–2, 246–8

Unpolarized photon beam, tensors

needed for, 254

Unpolarized target, experimental setup

for, 240–2, 282

Valence shell photoionization, 220

Vectors, spin polarization, 222, 254,

258–60, 282–3

non-coincident experiments, 260,

269–70

Velocity form, dipole matrix element, 284

Wigner-Eckart theorem, 233, 285, 288

Xenon, 220, 221

Zero-order generalized tensors, 252–3

Zinc ions, alignment tensor values, 221

Chapter 4

Addressing see Individual addressing

Algorithms, 336–43, 344, 345

Anti-unitary operation, 334

Anti-Zeno effect, experiment on, 322

Atomic COM (centre-of-mass) wave

function, 307, 308

Atoms

interference patterns, 307–10

trapped, and the quantum Zeno effect,

322–3

Baþ ions, 359–68

Back action in quantum measurements,

318–9

Bayes rule, 337, 338

Beþ ions, hyperfine states, 320–1

Beam splitters, ions as, 325

Bloch equations, 321

Bloch spheres, 339–40, 341, 342

Bloch vectors, quantum channel, 347,

348

Bus-qubit, 298

Cat, Schrödinger’s, 295, 306

Cavity QED experiments, 295, 306–7,

308–10

Index 599



Coherence time, 352, 360

hyperfine qubit, 171Ybþ, 298, 345

Coherent optical excitation, 359–68

Coherent superposition of quantum

states, 346

Computing see Quantum computing

Conditional quantum dynamics

and cooling particles, 363

linear ion traps, 351, 358, 359

for QIP, 298, 299, 345

Cooling, particle, 300, 363–6

Cost functions, 328, 337, 339

Coupling, 351–2, 356–58, 360

spin-spin coupling, 299, 346, 358–9

Coupling constants, choosing, 299–300

Crystallization, trapped ion, 363–4

D5/2 state, lifetime measurement Baþ,

363

Debugging algorithms, 336

Decoding quantum channels, 335–6

Decoherence, 303, 304, 306

and error correction, 350

in experiments, 341

light-induced, quantum channels,

348–9

and measurements, 305–11, 312

and phase damping channels, 347

Density matrices, 311, 347

in quantum Zeno experiments,

326, 327

Dephasing members of ensembles, 319

Depolarization by quantum channels,

347–8

Detuning lasers, 364, 365

E2 resonance

in 172Ybþ, 366–8

in Baþ, 360–3

E2 transition, 300

Eigenfunctions in measurements, 306

Eigenstates, 305, 311, 313, 314

and repeated measurements,

315–8

Eigenvalues, 311, 312, 313, 344

Einstein, Albert, and quantum

mechanics, 294

Electromagnetically induced

transparency (EIT), 366

Electron interference patterns, 307

Encryption, 343–4

Energy levels, hyperfine, 353–4

Ensembles, large, quantum state

estimation of, 334

Entangled states, 294–6, 305, 309–10,

336, 356

Entropy, 335

see also Shannon information

EPR program, 333

Error correction, 298, 347, 350

Excitation spectra, 364, 365

Factoring large numbers, 343–4

Fidelity in quantum state estimation,

333, 334, 336, 343

self-learning algorithms, 336, 337–9,

341–2, 343

Fractionated �-pulse, 327–9
Frequency

in ion traps, 353–4, 356, 357–8

and particle cooling, 364–6

Frequency space, 351, 356

Frequency standards, trapped ions for,

294, 363

Gates, 334, 345

Gedanken experiments, 294, 295, 306,

307–9

negative result measurement, 314

Ground states, 300, 301–4, 360, 366

Hamiltonians, 305, 315

ion in a field interaction, 351

light/ion interaction, 327–8

microwave/ion interaction, 352–3

in quantum computing, 344

string of trapped two-level ions, 358

Harmonic oscillation, ion trap, 351,

356, 357

Heisenberg’s uncertainty principle, 307
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Hyperfine levels, 353–4

Ybþ trapped ions, ground state, 297

Hyperfine qubits, 171Ybþ, 298, 345

Hyperfine states, 320–1
171Ybþ, 300

Hyperfine transitions
171Ybþ, 301–4

with microwaves, 328, 345–6

quantum Zeno experiment, 324–32

Impeded quantum evolution, 315–32

see also Quantum Zeno effect

Individual addressing, 299, 351, 352,

353–6

Individual quantum systems,

measurements on, 311–15

Initial states in quantum measurements,

313

Interference patterns, 307–10

Interferometers, 309, 322, 336

Internal and external degrees of

freedom, 360

Internal and external dynamics,

coupling, 351–2, 356–8

Ions, trapped see Trapped ions

Kopenhagen interpretation, 306

Lamb-Dicke parameters (LDP), 353,

355, 357

Large ensembles, quantum state

estimation of, 334

Lasers

detuning lasers, 364, 365

and metastable lifetime

measurement, 363

for optical transitions, as qubits,

360–1, 362, 366–7

for particle cooling, 300, 363–6

Lifetime measurements, 359, 363

Light fields cooling particles and, 300

Light (UV), quantum Zeno experiments

and, 325–6, 328

Linear traps, 298–9, 350–9

see also Trapped atoms; Trapped ions

Localized quantum systems, 294

Local physical interaction, 307, 313–15,

318

LOCC scheme (performing local opera-

tions with exchange of classical

information), 342–3

Mach-Zehnder interferometers, 309,

322, 336

Macroscopic apparatus, superposition

and, 295, 305–6

Macroscopic environment, ion correla-

tion and, 326–7

Magnetic field gradient, 352, 353–7, 358

Measurement apparatus, superposition

and, 295, 305–6

Measurements

and decoherence, 305–11

entangled states in, 295–6

on individual quantum systems,

311–15

and quantum Zeno effect, 315–22

and self-learning, 336–43

sequential, quantum state estimation,

332–43

Memory, quantum, 347

Metastable states as qubits, 300, 360, 363

Meters, quantum state, 295

Microwaves (mw), 299

hyperfine transitions, 301–4, 320,

345–6

for individual addressing, 299

and linear ion traps, 352–3, 357–8

long coherence times, 352

and preparation of specific quantum

states, 340–1

in quantum Zeno experiments, 328–9

Negative result measurement, 313–15,

318

NMR (nuclear magnetic resonance),

299, 345, 346, 352, 358, 359

Noise and quantum channels, 347, 349

Non-factorizing measurement operators,

333
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NOT (U-NOT) operation, quantum

mechanical, 334

N-qubit molecules, trapped ions as,

358–9

Nuclear magnetic resonance see NMR

Optical cooling, 294

Optical excitation, coherent, 359–68

Optical QIP, 299

Optical quantum Zeno effect, 322

Optical radiation

addressing ions, in ion traps, 351

in QIP, 298–9

Optical transitions

quantum Zeno experiment, 323–4

as qubits, 359–68

Optimal and minimal strategy, 333

Pauli quantum channels, 348

Paul traps, 294, 350, 360

Phase damping channels, 347, 348, 349

Photomultipliers, 325, 326

Photons, quantum Zeno effects and,

322, 325, 326, 327, 329

�-pulses, 328–30
Polarization rotating quantum channels,

348

Positive operator valued measurements

(POVMs), 333

Probes, 329, 330

quantum, 295–6, 305–7, 310–11

Projection postulate, 311, 312, 321

QIP (quantum information processing),

297–300, 332, 345–6, 350, 368

see also Quantum communication and

information; Quantum

computing

Quantum channels, 297–8, 335–6,

345

realization of, 346–68

Quantum communication and

information, 297, 335, 343–6

quantum channels, 297–8, 345

quantum states, 296, 332

see also QIP (quantum information

processing)

Quantum complementary, gedanken

experiments on, 307

Quantum computing, 343–5, 350

qubits for, 303, 304, 347, 359–60

see also QIP (quantum information

processing)

Quantum evolution see Impeded quan-

tum evolution

Quantum information processing see

QIP

Quantum jump techniques, 321, 363

Quantum logic operations, 346, 358, 360

Quantum measurements

back action in, 318–9

elements of, 305–15

Quantum memory, 347

Quantum nondemolition measurements,

318

Quantum probes, 295–6, 305–7, 310–11

Quantum states, 294, 298, 346

determination, 296–7

sequential measurements, 332–43

two-state see Qubits

Quantum systems, 294

measurements, 305–18

Quantum uncertainty, 313

see also Uncertainty

Quantum Zeno effect, 315–33

see also Impeded quantum evolution

Quantum Zeno paradox, 296, 317–18,

323

demonstration, 328–32

Quasi instantaneous disappearance of

superpositions, 312

Quasi instantaneous time evolutions,

306

Qubits (two-state systems), 296–7, 298,

300, 301

choosing states, 353–4

individual addressing, 299, 353–6

and linear ion traps, 351, 353–59

optical transitions for, 359–68

and quantum channels, 346–8
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in quantum computing, 332, 344, 345

single-qubit operations, 303, 304

quantum state estimation, 332–43

Rabi oscillations, 303, 304

on optical E2 resonance in 172Ybþ,

367

on optical E2 resonance in Baþ, 360–3

Radio frequency, individual addressing

with, 299

Ramsey fringes, 303, 304

RSA procedure, 343, 344

S1/2 ground-state hyperfine doublet,

301

Schrödinger, E., 294–5, 305–6

Self-learning measurements, 336–43, 345

Sequential measurements, quantum

state, 332–43

Shannon information, 332–3, 335, 339

Shor algorithm, factoring large numbers

with, 344

Spin resonance, 300–4, 352–9

Spin-spin coupling, 299, 346, 358–9

State-selective detection, 325–8, 362

Statistical mixtures/ensembles, 307,

308, 310

Statistics

and quantum mechanics, 294, 311

of sequences of equal results, 330–2

Stern-Gerlach apparatus, 313

Superconducting quantum interference

devices, 295

Superposition, coherent, of quantum

states, 346

Superposition states, 295, 305–7

in quantum computing, 345

Survival probability, 316–17, 323,

330, 331

Target function definition, 334–5

Temperature of ions, 364

Time dependence in quantum

mechanics, 318

Time evolution, 306, 318, 322, 325

Transition probability, measuring, 320,

321–2

Trapped atoms, quantum Zeno effect

and, 322–3

Trapped ions

Beþ ions, 320

linear traps, 298–9, 350–9

as N-qubit molecules, 358–9

and optical transitions, as qubits,

359–68

and QIP, 297, 345–6

for quantum measurements, 293–373

see also Ybþ ions

Tunnelling, quantum Zeno effect and,

322–3

Uncertainty, 307, 313, 332–3

and specific quantum state

preparation, 340–1

Unstable systems, quantum Zeno effect

and, 322

Von Neumann entropy, 335

Von Neumann, John, 306

Wave functions

atomic COM wave function, 307, 308

experimental determination, 312

and measurements, projection

postulate, 311

Welcher weg detectors, 307, 308–9, 310

Ybþ ions, 296, 300–1, 359–60
171Ybþ ions, 297, 300

hyperfine transitions, 301–4, 324–32

and quantum channels, 348, 351–2,

355

quantum computing potential, 345

qubits, 298, 345

spin-spin coupling constants, 358–9
172Ybþ, 300

coherent excitation, E2 resonance,

366–8

and quantum Zeno experiments,

323–4
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Zeeman levels, 364, 367

Zeeman shifts, 352, 353, 356

Zeno effect, 296

see also Quantum Zeno effect;

Quantum Zeno paradox

Zeno of Elea, 315

Chapter 5

Above threshold ionization see ATI

Above threshold multiphoton

detachment, channel closing

and HHG, 486

ADK theory, 441, 442

Alkali metal atoms, photoelectrons

from, 438–9

Angular dependence

relativistic scattering, 412–14

spin effects, 417–20

see also Scattering angles

Approximations, 515

Born approximation, 398, 399,

409–10, 415

dipole see Dipole approximation

one active electron approximation,

515

SFA see Strong field approximation

time-dependent WBK approximation,

466–8, 470

Wentzel-Kramers-Brillouin

approximation, 435

Asymmetry relations, 408, 411–14,

420–1

ATI (above threshold ionization),

374–5, 422, 430–42

in a bichromatic field, 496–2

high-order, and SLSR process, 453

multiphoton, energy shift in, 398

three-step model, 425, 428–9

Atoms/atomic systems, 493, 515

and HHG, 488, 510

ionization, 422, 425–6

x-ray-atom ionization, 454–9

x-ray-atom scattering, 459–73

see also Electron-atom scattering

Attosecond physics, 487, 488, 490

Bessel functions, 412

and ATI, 424, 500

generalized, 382, 387, 391, 393,

410–11, 415–16, 417, 418

analysis, for cross section

oscillations, 419

and ATI, bichromatic field, 500

x-ray scattering, 495

x-ray scattering, 380, 495

Bichromatic fields, 375–76

applications, 491, 495–514

ATI, 496–502

in coherent control, 493

HHG, 510–14

and x-ray scattering, 493–5

Binding energy, increase in,

454, 457

Bohr’s correspondence principle,

507, 510

Born approximation, 398, 399,

409–10, 415

Bose particles, relativistic scattering,

409–12

branching ratios, 491, 492

Bremsstrahlung, 395, 396, 410–11,

412, 443

see also Free-free transitions

Channel closing, 440, 486

Charged particles

in electromagnetic plane-wave

field, 396–7

see also Electrons

Chemical reactions, yield of, 490–1

Classical model

ATI, bichromatic fields, 500, 502

and electron-ion recombination,

506–10

scattering processes, 376–81

Coherent control, 490–514

in HHG, 486

Coherent phase control see CPC

Compton drift effect, 408

Compton process, quantum

mechanical, 381–2
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Compton scattering, 381–94, 407

by Klein-Gordon particles,

384–88

Coulomb effects

and ATI, 431, 436, 437, 438, 440

for LSR, 443, 447, 451

Coulomb-Volkov model, electron-ion

recombination and, 447, 448–50,

451, 452, 504

Coulomb-Volkov waves

and ATI, 431, 440–1

x-ray photoionization, 455, 456,

458, 459

x-ray scattering, 464

CPC (coherent phase control), 376

in electron-ion recombination,

502–10

simple classical example, 493–5

see also Coherent control

Cross sections, 378–9, 380

above threshold ionization, 423–4

bremsstrahlung processes, 410–11,

412, 413–14

Compton scattering, 387, 388, 390,

391–2, 393, 394

electron-atom scattering, 395,

399–400, 405, 406

first Born approximation, 399

generated harmonics, 425

for light scattering, 460

potential scattering, 399–400, 407–8

relativistic, 420–1

spin effects, 416–20, 421

Thomson scattering, 376, 377, 378

x-ray photoionization, 457–8, 459

x-ray scattering, 380, 461–67, 470–1,

472, 494–5

Cutoff

ATI, 429, 431, 437–8

bichromatic field, 498, 499, 502

harmonics, 426, 473, 474

HHG, 428, 487, 488, 489

bichromatic field, 512, 513, 517

SLSR, 453

x-ray-atom scattering, 469

Dark windows (zero scattering), 412–13,

420–1

DCS see Cross sections

Differential ionization rates, 436, 439

ATI, 436–7, 498–9

Differential power spectrum, 444–7, 451,

504, 507

Dipole approximation, 421, 441

ATI and HHG, 430

electron-atom scattering, 398

electron-ion recombination, 444, 503

x-ray photoionization, 454–5

x-ray scattering, 461, 463

Dipole matrix element, time-dependent,

475–6, 479–84

Dirac equation, 383, 389, 415

Dirac particles, 384

cross sections, 391–2, 393, 394,

415–18, 419–20, 421

scattering by, 389–91

Double ionization, 430, 515–16

Double scattering, 402

Effective-dipole approach, 475–6, 484

see also Time-dependent dipole matrix

element

Elastic scattering, 399, 460

Rayleigh, light scattering, 460

Electromagnetic plane-wave, 385, 389,

396

Electron-atom scattering, 375, 395, 398,

401–2, 406

free-free transitions, 454

relativistic case, 407

see also Free-free transitions;

Potential scattering

Electron drift motion, 407–8

Electronic quantum trajectories, 440

Electron-ion recombination, 442–54,

502–10

Electrons

and ATI, 425, 428–30, 431

bichromatic field, 496–502

and electron-ion recombination,

449–50, 452, 453, 505
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Electrons continued

in a field, 505

KFR-model, 423

in laser fields, 383–4, 407, 426, 427–8

ponderomotive energy, 375, 382

quasi-free electron approximation,

515

relativistic quantum dynamics of, 375,

384

scattering, 394–405, 411–12, 413

Compton scattering, 389–91, 392

of radiation fields, 376–9

scattering angles, 392, 393

x-ray-atom scattering, 465, 469

x-ray scattering, 379–80, 494–5

spin effects, 407

Stark shift of, 398, 422

in the three stage model, 474

tunnelling, 426–7

Energy

and ATI, 428–9, 496, 498–502

conservation, 388, 411, 413, 417

relativistic, 410, 418, 421

and x-ray-atom scattering, 466, 469

electrons, 423

and electron-ion recombination,

449–50, 452, 453, 505

KFR model, 423

in laser fields, 383–4, 407, 426,

427–8

scattering, 411–12, 413

scattering angles, 392, 393

Stark shift, 398, 422

in the three stage model, 474

in HHG, 474

of high-harmonic photons, 473, 474

of photons/radiation, from

recombination, 443, 453,

505–6, 507

ponderomotive, 375, 382, 423

semi-relativistic treatment, 421

Feedback quantum control, 493

Feynman path integrals, 453

Floquet theory, 431, 441, 475

Free-free transitions, 394–405, 422,

425, 454

Frequency

in Compton scattering, 388, 390, 407

of generated x-rays, 449–50, 452, 506,

508

maximum, for HHG, 428, 443

see also Low frequency

Gases, HHG and, 488, 510

Geometry

electron-ion recombination, 448

scattering, 391, 392, 403, 406

Gordon solution, 385, 407, 409

Gordon-Volkov states/waves, 398–9,

400

ATI, 431, 434, 437

HHG, 480, 481

x-ray photoionization, 454

x-ray scattering, 463–5

Hamiltonians, 386

Compton scattering, 390

electron-ion recombination, 444, 446,

503

S-matrix theory, 432, 477

x-ray scattering, 461, 462

Harmonic generation, 379, 424, 459–60,

473–90

see also HHG (higher harmonic gen-

eration)

Helium, 436, 442, 474

HHG (higher harmonic generation),

374–5, 424–26, 473–90

by bichromatic fields, 510–14

and laser heating of plasmas, 443

maximum photon energy, 428

quantum-fluid dynamics method, 442

and SLSR process, 453

see also Harmonic generation

Hydrogen photoionization, 455–8, 460

Inelastic scattering, 460

Inert gases see Noble gases

Initial particle state solution, 385
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Intensity

harmonic

attosecond pulses, 487, 488

bichromatic field, 512, 513, 514

laser, 379, 397, 421

for electron-atom scattering,

395–96

laser field see Laser field intensity

and laser process types, 374, 397

and perturbation theory, 374

Intensity parameter (m), 375, 377

m2, 385–6, 407

Interference

and ATI sidelobes, 496, 500

quantum, 491, 492, 496, 509, 510

Intra-atomic phase matching in HHG,

486

Ionization, 422, 425–6, 431

double, 430, 515–6

x-ray-atom ionization, 454–9

see also ATI (above threshold ioniza-

tion)

Ions, 430, 488–9, 510

see also Electron-ion recombination

Keldysh-Faisal-Reiss model see

KFR-model

Keldysh parameter, 426–7

KFR-model

and ATI, 422, 431–38

and electron-ion recombination,

448–9, 503

and LSR, 443, 447, 451

Kinetic energy, electron

ATI, rescattered electrons, 428–9

classical, in a field, 505

and electron-ion recombination,

449–50, 452, 505

ionized electrons, 423

KFR-model, 423

in laser fields, 383–4, 407

linearly polarized, 426, 427–8

and scattering, 411–12, 413

and scattering angles, 392, 393

in the three stage model, 474

Klein-Gordon equation, 384–5, 393,

407, 409

Klein-Gordon particles, 384–8

cross sections, 391–2, 393, 417–8,

419–20, 421

Kramers-Heisenberg formula, 460

Kroll-Watson formula, 399–400, 401,

402, 407

Laser-assisted processes, 374, 380, 515

electron-ion recombination,

rescattering, 452–4

intensity required for, 374, 397

photoelectric effect, 454, 459–60

relativistic, 406–7

x-ray photoionization, 454–59

x-ray scattering as, 375, 379, 459–73

Laser field intensity, 421

for ATI and HHG, 429–30, 510

as m2, 377

and nonlinear effects, 376, 379

Laser fields

coherent control, 490–514

reactions, 422–90

scattering processes, 373–421

nonrelativistic, 394–405

relativistic scattering in, 405–21

Laser-induced processes, 374, 379, 515

bremsstrahlung, 410–11, 412, 443

Compton scattering, 381, 382, 394,

407

by Dirac particles, 389–91

by Klein-Gordon particles, 384–8

intensity for, 374, 377, 380, 397

nonlinear, 385–6, 425, 493–5

bremsstrahlung, 410–11, 412

quantum electrodynamic treatment

of, 382

relativistic, 407

Thomson scattering as prototype of,

375

Laser-stimulated recombination see LSR

Light scattering cross sections, 460

Localized Dirac electron, relativistic

quantum dynamics of, 384
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Low frequency, 408, 409, 411–12,

419, 420

theorem of nonlinear Thomson

scattering, 378

LSR (laser-stimulated recombination),

443, 444–7

see also SLSR process

Metals, very high harmonic generation

and, 379

Microscopic single-atom theory of

HHG, 474–5

Molecules

HHG with, 488–9, 510

laser interactions with, 515

Momentum, 388, 395, 400–1, 412–13

Mott scattering, 407, 415, 419

Multiphoton ionization, 426–7, 473

m see Intensity parameter (m)

Noble/inert/rare gases

and ATI, 422, 423, 436, 440, 442,

486, 498

see also Helium

Nonlinear effects/processes

and bichromatic radiation field

control, 493–5

bremsstrahlung, 410–11, 412

cross sections, 375–6, 378

bremsstrahlung, 410–11, 412

Compton scattering, 381, 388,

390, 391

Dirac particles, 391–2, 393

for electron and laser beam

crossing, 387

for Klein-Gordon particle, 391–2,

393

and spin polarization, 416–7

x-ray scattering, 380

and field intensity, 376, 379

large, value of m for, 397

m2 as characteristic parameter, 385–6

scattering effects, 378, 380, 416–7

Nonrelativistic scattering, 396–405

Nontunnelling HHG, 488

Off-shell effects, 402, 403–5, 406

One active electron approximation, 515

Order of nonlinearity, 374

Organic molecules, HHG in, 489

Oscillating Doppler shift, 494

Parity conservation, 424, 472

Peaks, ATI, 422, 423, 430, 440

see also Plateau

Perturbation theory, 374, 402

and coherent control, 492

in harmonic generation, 425

and KFR-model for ATI, 422

Phase, 376

of bichromatic radiation field, 493–5

and coherent control, 376, 492

and control of HHG, 510

and electron scattering, 494

Phase locking lasers for attosecond

pulses, 487, 488, 490

Phase space averaging method, 475

Photoelectric effect, 438–9, 454, 459–60

Photoionization, 454–9, 460

Photons

Compton scattered, frequencies,

388, 390

in electron-ion recombination,

444–52, 505, 506, 507, 508, 510

in HHG, 473, 474, 480, 484, 511

and laser field induced transitions,

454

in scattering theory, 473

in three stage model, 474, 480

and x-ray-atom scattering, 462, 463,

465, 467, 469, 470–1, 472

and x-ray photoionization, 457, 458

Plasmas, laser heating of, 443, 502–3

Plateau

ATI, 428, 429–31, 437, 440

bichromatic field, 496, 498, 499

second plateau of, 431, 437,

438, 499

HHG, 473, 474, 485, 486, 487, 488

bichromatic field, 512, 513, 514

Polarization, HHG control and, 510
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Ponderomotive energy, 375, 382, 398,

407, 423

Potential scattering, 394–405, 409,

415–17

ATI as, 422

semi-relativistic, 407–8

Power, x-ray, 444–7, 448–50, 451, 504–5,

506, 507, 508

Product distribution, active control

over, 491

Propagation theory, 473

Pump and dump laser pulses, 493

Quantum electrodynamic treatments,

382, 476

Quantum-fluid dynamics approach, 442,

475

Quantum mechanics

Compton process, 381–2

in electron-ion recombination, 503–4,

506–07, 508–9, 510

and interference, 491, 492, 496, 509,

510

relativistic quantum dynamics, of

localized Dirac particle, 384

Quantum orbits, HHG and, 484–5,

486–7, 512–13

Quasi-free electron approximation, 515

Radiation

high-harmonic sources of, 490

scattering by electrons, 376–9

see also Bichromatic fields; Photons;

X-rays

Rare-gases see Noble gases

Reactions

control of, 490–1, 493

electron-ion recombination, 442–54

in laser fields, 422–90

Real-space electron trajectories, 484–5

see also Quantum orbits

Recombination

electron-ion recombination, 442–54,

502–10

LSR, 443, 444–51

SLSR, 453–4

in x-ray-atom scattering, 469

Relative flux, particle, 387–8

Relativistic laser fields, 484, 516

Relativistic scattering, 381, 405–21

Relativistic treatment, 375

ATI, 429–30, 441–2

HHG, 429–30

Rescattering

and ATI, 425, 428–30, 431, 438

bichromatic fields, 500, 502

differential ionization rates, 436–37,

498–9

short-range potential, 431, 432–3,

440

and electron-ion recombination,

452–4

Saddle-point analysis

and HHG, 484–5

bichromatic fields, 513

of x-ray spectra, 468–9

Scattering, 373–421, 473

x-ray-atom scattering, 459–73

Scattering angles, 392, 393

asymmetry, 413–14

and dark windows (zero scattering),

412

and kinetic energy, 392, 393, 413

spin effects, 418

see also Angular dependence

Scattering geometry, 391, 392, 403, 406

Schrödinger equations, 396, 431, 441,

442, 475

Schwinger field strength, electron spin

and, 384

Semi-analytical approaches, HHG, 475,

476

SFA see Strong field approximation

Short-pulse x-ray sources, applications

of, 394

Short-range potential, ATI, 431, 432–3,

436, 437

bichromatic fields, 498

and channel closing, 440
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Sidebands, x-ray photoionization,

454, 458

Sidelobes (rings), 431, 438, 439

bichromatic fields, 496, 498, 500,

501, 502

Single active electron approximation,

430, 475

SLSR process, 453–4

S-matrix, 375, 431, 453, 515

ATI, 431–6

bichromatic field, 496–7

double ionization, 516

high-harmonics, 474, 476, 477–9, 484

x-ray photoionization, 455–58

x-ray scattering, 461–4

Solid surfaces, HHG at, 489

Spin, 382–4, 393, 407, 417–20, 421

and potential scattering, 415–7

Spin-flip, 391, 392–3, 394, 420, 421

Spin orientation, 391, 420

Spin polarization, 391

Stark shift, 398, 422

Strong field approximation (SFA), 431

HHG, 442, 475, 479–84, 511, 512

Surfing mechanism, nontunnelling

HHG and, 488

Symmetry relations, ATI, 498, 499, 502

TCS (total cross sections), 457–8, 459

Thomson cross section, 380, 495

Thomson scattering, 375, 376–9, 381,

460

Three-step model, 425–26, 428, 453, 473

generalization, 485

for HHG, 453, 474, 476, 480, 487

Threshold, ionization, 422, 423

see also ATI (above threshold ioniza-

tion)

Time-dependent dipole matrix element,

475–6, 479–84, 511

see also Effective-dipole approach

Time-dependent WBK approximation,

466–8, 470

Total cross sections (TCS), 457–8, 459

Tunnelling, 441

and ATI, 453

and HHG, 453, 474

and multiphoton ionization, 426–7

Virtual quanta, exchange of, 395

Volkov solution, 389, 415

Water window, 442, 443, 472, 473

Wave packet dynamics, 493

Wave vector transfer, 495

WBK approximation, time-dependent,

466–8, 470

Wentzel-Kramers-Brillouin

approximation, 435

X-ray-atom ionization, 454–59

X-ray-atom scattering, 459–73

X-ray field generation, 442–3

X-ray photoionization, 454–59, 460

X-rays

emission, 444–52, 505, 506, 507, 508,

510

frequency, 449–50, 452, 506, 508

maximum energy, 453

oscillating Doppler shift of, 494

power spectra, 448–50, 451, 504–5

short-pulse, applications, 394

spectra, 448–52, 468–9, 470–1, 472

X-ray scattering, 375, 379–81, 460, 494–5

XUV pulse duration measurements, 455

Yield, molecular reaction, 490–1

Chapter 6

Accelerated species, laboratory produc-

tion, 534

Activation energy, 567, 568

Altitude

and hot N(4S), 580

and NO densities, 578–9, 580

profiles, 536, 537, 538, 541

Ambient/bath gases, 544

and thermalization, 534, 545–61

Argon, 535, 536
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Atmosphere, 535–8

hot atoms in, 533–5, 538–43

thermalization, 545–61

large NO densities in, 578–81

and space vehicle glow, 562–77

Bath gases see Ambient/bath gases

Boltzmann equation, 546

Branching ratios, 540, 542

Carbon dioxide (CO2), fast O atoms

and, 576

Carbon monoxide (CO), 570, 576

Charge transfer reactions, 542

Chemiluminescence, 565, 566–8

see also Shuttle glow

CIRRIS-1A (Cryogenic Infrared

Radiance Instrumentation for

Shuttle, 569, 570–1

Collisional deactivation, 544

see also Quenching

Collision energy, quenching and, 557,

560–1

Collisions, 534–5, 545–61

Continuum emission, shuttle glow,

562, 563, 565

Cross sections, 534

elastic, 548–50, 560

N and O2, 579

energy and angular dependence, 546

excitation, 574–77

hard-sphere approximation, 546

hot atom-bath molecule collisions,

548–9

inelastic collisions, 551

quenching, 557, 559, 560–1

shuttle glow, 571, 573–7

translational energy transfer, 560

velocity relaxation, 548

Deactivation see Collisional

deactivation

Density measurements, 541

Differential rate coefficients, O2 reaction,

580–1

Dissociative recombination, 539–40, 543

see also Recombination

Doppler profile measurements, 554, 556

Elastic cross sections, 548–50, 560

N and O2, 579

Elastic processes

scattering, and hot O(1D) atoms, 556

thermalization, 544, 545–50, 552,

553, 560–1

velocity relaxation, O(1D) atoms, 545

Electronic quenching, 544, 545

O(1D), 545, 555, 558

Electron-impact dissociation

of N2, 542

Electrons, 536, 537, 538, 540

Emission mechanism, shuttle ram glow,

564–5, 571

Energetic neutral atom beams,

laboratory production, 534

Energy

activation energy, shuttle glow, 567,

568

degradation, hot O(1D) atoms,

experimental results, 556, 557

dependence, and elastic cross sections,

N and O2, 579

and differential rate coefficients, for

O2, reaction with N(4S), forms

NO, 580–1

of neutral particles, measurement,

554

and quenching, 557, 560–1

relaxation processes, 554, 556–7

and space vehicles, 562, 568–9

in thermalization, 545, 546–50,

552, 553

Energy distribution function,

hot N(4S), 580

Energy relaxation, 546–7, 550, 580

Exothermic chemical reactions, 540–2

F region, 536, 539–40

Frequency, thermalizing collision, 552,

553
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Geocorona, 540, 541–2, 543

Hard-sphere approximation, 546, 550

Helium, 535, 536, 543

Hot atoms, 533–5

sinks of, 543–5

sources of, 538–43

and space vehicle glow, 562–77

thermalization, 545–61

Hydrogen, 535, 536, 543, 554

Inelastic processes

collisions, 544, 550–3

electronic quenching, O(1D) atoms,

545

Infrared region, 534, 562, 569–77

Intensity

shuttle ram glow, 563–4, 571

space vehicle glow, 562

Interstellar media, photolysis in, 534

Ionization, atmospheric, 536

Ionosphere, 535–38, 539–40

Ions, atmospheric, 536, 537, 538

Kernels, 546, 547, 548, 550, 551–2

for hot N(4S), 579–80

Langmuir-Hinshelwood mechanism,

NO from, 564

Maxwell-Boltzmann distributions, 545

Methane (CH4), 544, 576

MgF2 surfaces, 566, 567, 568

Neutral atmosphere and ionosphere,

535–8

Neutral particles, preparation,

detection and measurement,

553–4

Nickel surfaces, 566, 567

Nighttime conditions, 537, 538

NI recombination, shuttle ram glow

and, 564–5

Nitric oxide (NO), 577

densities at 105 km, 578–81

from N(4S) and O2 reaction, 544,

578, 579, 580–1

in the neutral atmosphere, 535

NOþ, 536, 538, 543

F region, dissociative

recombination in, 539–40

and shuttle glow, 570, 571

and shuttle ram glow, 534, 564–5,

566–7, 569, 570–1, 573

Nitrogen, 535, 536

as a bath gas, 549–50, 551, 552,

558–9

excitation cross section, 574, 575–6,

577

hot/fast atoms, 542–3, 544, 577

Nþ in the atmosphere, 536

N(2D), 540, 542, 544

and atmospheric NO, 578, 580–1

N(4S), 542, 543, 544

and bath gas collisions, 549, 550,

551, 552, 553

and O2, 544, 577, 578, 579, 580–1

and O(1D), quenching, 560, 561

photodissociation, 542

and quenching, 558

and shuttle glow, 571, 572–3

Nitrogen dioxide (NO2), shuttle ram

glow and, 534, 564–5, 568–9

OH, shuttle glow and, 570

OI recombination, shuttle glow and,

564–5

Oxygen, 538–42, 543–4

as a bath gas, 549, 556, 558–9, 561

excitation cross sections

and fast N atoms, 577

single atoms, 574, 575–9

laboratory production, single atoms,

565–66, 572

in the neutral atmosphere, 535, 536

Oþ, 543

in the atmosphere, 536, 538

and shuttle glow, 570, 571, 573

O(1D), 544, 557

formation, 538–9, 540, 557, 560
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quenching, 555, 557–61

relaxation, 545, 550, 551, 554–5

O(1S), formation, 538–9

O2
þ, 536, 538, 539–40

O(3P), 538–9, 540, 558–9

average rates of energy loss, 552, 553

and bath gas collisions, 549–50

main sink for, 543–4

reaction with N(4S), 544, 578, 579,

580–1

and shuttle glow, 534, 564–6, 568–9

infrared region, 570, 571, 572–3

and space vehicle glow, 534, 562

Ozone (O3), 539, 544, 578

in the stratosphere, 534, 538, 550,

557, 560

Photodissociation, 554, 556

nitrogen, 542–3

oxygen, 538–9

ozone, 534, 539, 550, 557

Photoelectrons, atmospheric, 536

Potential energy curves, molecular

oxygen, 538–9

Potential energy surfaces, 548, 549, 561

Quenching, 540, 542, 544, 557–61

see also Electronic quenching

Radiation transition, spontaneous, 544

Recombination, 539–40, 542, 543

NO2, and shuttle ram glow, 564–5

Ro-vibrational energy/excitation, 544,

545, 550, 558

Satellite glow, 562

Scale length, shuttle ram glow, 563–4

Semi-classical approach, 550

Shuttle glow, 534, 562

infrared region, 569–77

visible region, 534, 563–69

Sinks of hot atoms, 543–5

SKIRT (Spacecraft Kinetic Infrared

Test), 569

Solar photons/radiation, 537–8, 542, 543

Space vehicle glow, 562–77

Spectra

chemiluminescence, 566–8

shuttle glow, 568, 569–70, 573

Spin and quenching, 559–60, 561

Spontaneous radiation transition, 544

Stratosphere, 534

hot oxygen atoms in, 544, 557, 559,

560, 561

ozone in, 538, 539, 550, 557

Temperature

in the atmosphere, 535–36

and shuttle glow, 564, 567

Thermalization, 534, 544, 545–61

Thermosphere, 534, 540–1, 542–5

NO (nitric oxide) in, 544, 579

Titanium surfaces, 566, 567

Translational energy, transfer to,

540, 545

Translational relaxation, 544, 545, 546

domination, at high energies, 560

experimental work, 553

O(1D), 556, 557–8, 559

see also Thermalization; Velocity

relaxation

Ultraviolet radiation, 536, 538–9

Velocity distributions, 545, 554, 556

Velocity relaxation, 545, 546–7, 554–5

see also Thermalization; Translational

relaxation

Visible region, shuttle glow in, 562,

563–69

X-rays, atmospheric ionization and, 536
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