


Preface

This is a teaching book for graduate University students of Chemistry and Physics, where
emphasis is placed on the Methods of Quantum Mechanics from an elementary point of
view as applied to the theoretical study of the electronic structure of atoms and molecules.
It can be considered mostly as a book of applied mathematics. The book is intended not
as a treatise covering all aspects of applications to Chemistry and to many problems in
Molecular Physics, rather to present in the simplest possible self-contained way the mathe-
matical machinery needed for a critical understanding of what is implied in the black boxes
of the software which is today currently in use by chemists in this area. In a sense, the book
aims to bridge the gap between the classic Coulson’s Valence, where applications of wave
mechanical principles to valence theory is presented in a fully non-mathematical way, and
McWeeny’s Methods of Molecular Quantum Mechanics, where recent advances in the ap-
plication of quantum mechanical methods to molecular problems are presented at research
level in a full mathematical way. Many examples and mathematical points are given as
Problems at the end of each Chapter, with a hint for their solution. Solutions are worked
out in detail in the last Section of each Chapter. The required background for students of
Chemistry and Physics is that of a few courses in mathematics and physics.

The central idea is that the majority of the applications in the field of electronic molec-
ular structure rests on the fundamental expansion theorem of Quantum Mechanics, where
a well-behaved mathematical function is expanded into an appropriate basis of regular
functions. The expansion coefficients arising from the quantum mechanical operators rep-
resenting physical observables are then obtained in terms of matrix elements, so giving to
matrix algebra a fundamental role in applications. Truncation of the expansion gives rise
to finite matrices with matrix algebra replacing solution of differential equations. The Ritz
version of Rayleigh’s variation theorem, where integrals replace derivatives, is then the
building stone of any practical orbital application, and molecular orbitals and valence bond
methods stem directly from it. The content is divided into 13 Chapters.

After an axiomatic introduction of the basic principles of Quantum Mechanics (Chap-
ter 1), where atomic units are introduced from the beginning to get maximum simplifica-
tion in the mathematical expressions, a Chapter is devoted to elementary matrix methods
(Chapter 2) with emphasis on the solution of eigenvalue and pseudoeigenvalue problems.
Chapters 3 and 4 contain, respectively, the application of the basic principles to the particle
in the box and the atomic 1-electron (or hydrogen-like) system. It is believed that these two
examples are exhaustive enough to explain in detail the general techniques of solution of
the exactly solvable Schroedinger eigenvalue equations. The methods described in Chap-
ter 4 can be used either for the free atom or the atom in a field (see Chapter 11), and allow
us to introduce from first principles the quantum numbers characterizing those particular
atomic orbitals (AOs) known as hydrogen-like orbitals. The Chapter ends with a general-
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ization to Slater (STO) and Gaussian (GTO) AOs which are mostly used today in quantum
chemical calculations.

The variation method is next introduced in Chapter 5 as the most powerful way of pro-
ceeding to working approximations, and simple atomic and molecular examples are dis-
cussed there in some detail, with a short outline of the method due to Wentzel–Kramers–
Brillouin (WKB). Simple Pauli spin methods for treating electrons and nuclei of spin 1/2
are given in Chapter 6 as a prerequisite to the following Chapter 7. Besides the simple
matrix approach, both Kotani and Löwdin methods are introduced to some extent.

In Chapter 7 the many-electron wavefunctions needed to deal properly with complex
quantum mechanical systems are discussed together with their reduction in terms of den-
sity functions and density matrices. All techniques described there are based on the Slater
method of writing antisymmetric wavefunctions in the form of determinants, the indepen-
dent particle model (IPM) being assumed to be central to the discussion of many-electron
systems. The Hartree–Fock (HF) method is then introduced as the middle step of a ladder
having Hall–Roothaan LCAO-MO-SCF methods below it up to semiempirical and Hückel
methods, and post-HF methods above it, from CI and MC-SCF to various many–body per-
turbation and variational techniques such as MP2 and M2-R12, up to recent CCSD-R12.
Some space is also devoted to non-orbital approaches, to a short outline of second quanti-
zation as alternative to the Slater method, and to the principles of functional density (FDT)
techniques.

Chapter 8 describes how symmetry can be used for simplifying molecular calculations
mostly using matrix methods inside elementary group theory. An outline of continuous and
symmetric groups completes the Chapter.

Chapter 9 contains a short introduction on the vector model and on how many-electron
wavefunctions of the correct angular symmetry can be derived for atoms, ending with an
explanation of the various coupling coefficients and symbols needed in more advanced
work on angular momentum.

The investigation of the chemical bond inside the orbital model, mostly through valence
bond (VB) methods, is presented in Chapter 10 with applications to a few simple organic
and inorganic molecules. Because of his historical and didactical importance, an unusual
space is devoted to the classical work by Pauling on conjugated and aromatic molecules,
including the meaning of the important word “resonance”, still today largely in use among
organic chemists. It is also shown there that useful information on electron and spin den-
sity distributions in hydrocarbons can be obtained in some cases without doing effective
energy calculations. Hybridization and its consequences on the study of directed valency
in polyatomic molecules is examined next, with a short outline of recent advances in the
theory allowing for ab-initio VB calculations.

Stationary Rayleigh–Schroedinger (RS) perturbation methods, the other fundamental
technique of approximation in Molecular Quantum Mechanics, are postponed until Chap-
ter 11, where emphasis is given to the Ritz variational approximations for second-order
energies in terms of linear pseudostates. Detailed applications are given in this Chapter on
the electric properties of atoms and molecules in view of their further use in the problem
of molecular interactions.

Chapter 12 is concerned with the application of RS and MS-MA (Murrell–Shaw–
Musher–Amos) perturbation methods to the direct study of atomic and molecular inter-
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actions over the entire range of intermolecular separations, from the region of the chemical
bond to that of the Van der Waals (VdW) bond. The study is first focused on the sim-
plest model systems H–H+ and H–H, with the Heitler–London theory of H2 considered
as a first-order perturbation theory including exchange, then extending the understanding
of the physical nature of the interaction between many-electron molecules using charge
density operators and density matrix techniques. The Chapter ends with a short discussion
of the VdW bond which occurs at long range between closed-shell atoms and molecules.

Lastly, as a preliminary to all energy computations in terms of orbitals having the cor-
rect radial behaviour, methods for the evaluation of molecular integrals over STOs are
considered in Chapter 13, where all 1- and 2-electron integrals over 1s STOs for the H–H
interaction are evaluated in an elementary way, including the difficult 2-centre 2-electron
exchange integral. An outline of the possible ways of calculation of the general 2-centre in-
tegrals and some consideration of the 3-centre nuclear attraction and the 4-centre 2-electron
integral over 1s STOs conclude this Chapter.

An extensive set of alphabetically ordered references is presented at the end, with par-
ticular attention to the fundamental contributions from all pioneers of the subject, mostly
on the side of Physics. Author index and Subject index complete the book.

Finally, I wish to thank the many persons who aided me to complete the book, in the
first place Dr. Camilla Costa for her suggestions and her essential help in preparing the
electronic files, next my young granddaughter Laura who patiently prepared the drawings
at the computer and my son Mario who revised them, up to Professors Michele Battezzati,
Giuseppe Figari and Gian Franco Musso for their useful discussions on many aspects of the
subject, and to all my former students over the many years of teaching in the Department
of Chemistry of the University of Genoa. Special thanks are due to my old friend and
Colleague Dr. Deryk Wynn Davies, who helped me by reading the manuscript and revising
my English. Of course, the responsibility of all contents and possible mistakes is mine, and
I will appreciate much all who contribute to detecting them.

Valerio Magnasco

Genoa, 30 May 2006
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1.1 THE ORBITAL MODEL

The forces keeping together electrons and nuclei in atoms and molecules are essentially
electrostatic in nature, and, at the microscopic level, satisfy the principles of quantum me-
chanics. Experimental evidence (Karplus and Porter, 1970) brings us to formulate a plan-
etary model of the atom (Rutherford1) made by a point-like nucleus (with a diameter of
0.01–0.001 pm) carrying the whole mass and the whole positive charge +Ze, surrounded
by electrons, each having a negative elementary charge −e and a mass about 2000 times
smaller than that of proton, carrying the whole negative charge −Ne of the atom (N = Z

for neutral atoms) distributed as a charge-cloud in an atomic volume with a diameter of
about 100 pm. The distribution of the electrons is apparent from the density contours

1Rutherford Ernest (Lord) 1871–1937, English physicist, Professor at the Universities of Montreal, Manchester,
Cambridge and London. 1908 Nobel Prize for Chemistry.
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2 1. Basic Principles of Quantum Mechanics

obtained from X-ray diffraction spectra of polycyclic hydrocarbons (Bacon, 1969). The
electron density in atoms can be described in terms of atomic orbitals (AOs), which are
one-electron functions ψ(r) depending on a single centre (the nucleus of the atom), while
electron density in molecules can be described in terms of molecular orbitals (MOs), many-
centre one-electron functions depending on the different nuclei of the molecule. This is the
basis for the so called orbital model, with which the majority of applications is concerned.

The physical meaning of ψ(r) is such that:

|ψ(r)|2dr = probability of finding in dr
the electron in state ψ(r)

(1)

provided we satisfy the normalization condition:

∫

dr|ψ(r)|2 = 1, (2)

where integration is extended over all space, and ψ∗ is the complex conjugate to ψ :
|ψ |2 = ψ∗ψ . This implies some physical restrictions on the form of the mathematical
functions ψ(r) (single valued, continuity of the function with its first derivatives, quadratic
integrability) that are obtained as permissible solutions of a variety of eigenvalue equations
which can be traced back to some space form of Schroedinger2 type differential equations.
For a single electron the equation can be written:

Ĥψ = Eψ, (3)

where Ĥ is the total energy operator (Hamilton3 or Hamiltonian operator), sum of the
kinetic energy and potential energy operators of the electron in the atom, and E is the
value assumed by the electron energy in state ψ .

For a deeper understanding of the physical foundations of the orbital model, we intro-
duce in the simplest way the basic principles of quantum mechanics (Margenau, 1961),
which is needed for a correct physical description of the subatomic world.

1.2 THE FUNDAMENTAL POSTULATES OF QUANTUM MECHANICS

The simplest formulation of quantum mechanical principles is in the form of three postu-
lates.

2Schroedinger Erwin 1887–1961, Austrian physicist, Professor at the Universities of Breslav, Zürich, Berlin,
Oxford and Dublin. 1933 Nobel Prize for Physics.

3Hamilton William Rowan (Sir) 1806–1865, Irish mathematical physicist, Professor of astronomy at the Uni-
versity of Dublin.



1.2 The Fundamental Postulates of Quantum Mechanics 3

1.2.1 Correspondence Between Observables and Operators

There is a correspondence between dynamical variables in classical physics (observables)
and linear Hermitian4 operators in quantum mechanics.

In coordinate space, the basic correspondence is:

x ⇒ x̂ = x· px ⇒ p̂x = h

2πi

∂

∂x
= −ih̄

∂

∂x
, (4)

where x is the position coordinate, px the x-component of the linear momentum, p̂x the
corresponding quantum mechanical operator, h̄ = h/2π the reduced Planck5 constant, and
i = √−1 the imaginary unit (i2 = −1). The like holds for the remaining y and z compo-
nents. The caret ˆ symbol will be henceforth used to denote operators.

Def. An operator is a rule (denoted by Â) that transforms a function into another func-
tion (e.g. Â = ∂/∂x, the first partial derivative; Â = ∂2/∂x2, the second partial derivative,
etc.). Âψ must hence be intended as a new function, as a whole, so that Âψ/ψ will never
be simplified by eliminating ψ ! We shall see later the properties of linear and Hermitian
operators.

In 3-dimensions:

p = ipx + jpy + kpz a vector (5)

p̂ = −ih̄∇ a vector operator
(a vector whose components are operators)

(6)

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
the gradient operator in
Cartesian coordinates.

(7)

Examples of further observables.

x-component of the kinetic energy T = p2
x

2m
⇒ T̂ = − h̄2

2m

∂2

∂x2
.

of a particle of mass m

In 3-dimensions:

T = 1

2m
(p2

x + p2
y + p2

z ) ⇒ T̂ = − h̄2

2m
∇2, (8)

where:

∇2 = ∇ · ∇ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(9)

4Hermite Charles 1822–1901, French mathematician, Professor at the Sorbonne, Member of the Académie des
Sciences.

5Planck Max 1858–1947, German physicist, Professor at the Universities of Kiel and Berlin. 1918 Nobel Prize
for Physics.



4 1. Basic Principles of Quantum Mechanics

is the Laplacian6 operator, and the dot stands for the scalar product.

Total energy ⇒ Total energy operator Ĥ = − h̄2

2m
∇2 + V, (10)

(Hamiltonian operator)

where V is the potential energy characterizing a given physical system. V is usually a
multiplicative operator function of the coordinates. We take a few examples.

(i) One-dimensional free particle.

V = 0 Ĥ = T̂ = p̂2
x

2m
= − h̄2

2m

d2

dx2
(11)

kinetic energy only.

(ii) One-dimensional harmonic oscillator.

V = kx2

2
Ĥ = − h̄2

2m

d2

dx2
+ kx2

2
, (12)

where k is the force constant.

(iii) Angular momentum of a particle of linear momentum p and vector position r.

L = r × p =
∣

∣

∣

∣

∣

∣

i j k
x y z

px py pz

∣

∣

∣

∣

∣

∣

= i(ypz − zpy) +j(zpx − xpz) +k(xpy − ypx)

Lx Ly Lz

(13)

L̂ = r × (−ih̄∇) = −ih̄

∣

∣

∣

∣

∣

∣

∣

∣

i j k
x y z

∂

∂x

∂

∂y

∂

∂z

∣

∣

∣

∣

∣

∣

∣

∣

= iL̂x + jL̂y + kL̂z (14)

L̂x = −ih̄(y ∂
∂z

− z ∂
∂y

) L̂y = −ih̄(z ∂
∂x

− x ∂
∂z

)

L̂z = −ih̄(x ∂
∂y

− y ∂
∂x

),
(15)

where the cross stands for the vector product of two vectors, and the cyclic permutation
(x → y → z) of indices should be noted. We then have for the square of the angular mo-
mentum operator in Cartesian coordinates:

L̂2 = L̂ · L̂ = L̂2
x + L̂2

y + L̂2
z. (16)

6De Laplace Pierre Simon 1749–1827, French mathematician and astronomer, Member of the Académie des
Sciences.
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In spherical coordinates (r, θ,φ) L̂2 can be related to the Laplacian operator:

L̂2 = −r2∇2 + r2∇2
r = −

{

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+ 1

sin2 θ

∂2

∂φ2

}

, (17)

where

∇2
r = 1

r2

∂

∂r

(

r2 ∂

∂r

)

= ∂2

∂r2
+ 2

r

∂

∂r
(18)

is the radial Laplacian. The operator in braces depends only on angles and is said the
Legendre7 operator (or Legendrian).

(iv) Particle of mass m and charge −e in an electromagnetic field of scalar potential
�(x,y, z) and vector potential A(x, y, z). The classical Hamiltonian is:

H = 1

2m

(

p + e

c
A
)2

− e� = 1

2m

(

p + e

c
A
)

·
(

p + e

c
A
)

− e�

= 1

2m

(

p2 + e

c
p · A + e

c
A · p + e2

c2
A2

)

− e�, (19)

where c is the velocity of light. The corresponding quantum mechanical operator can be
derived from this classical expression taking into consideration that the resulting operator
must be Hermitian:

Ĥ = 1

2m

(

−h̄2∇2 − i
h̄e

c
∇ · A − i

h̄e

c
A · ∇ + e2

c2
A2

)

− e�

= − h̄2

2m
∇2 − i

h̄e

2mc
(∇ · A) − i

h̄e

mc
A · ∇ + e2

2mc2
A2 − e�, (20)

where (∇ · A) (the divergence of A) does no longer operate on the function � , since:

(∇ · A)� = �(∇ · A) + A · ∇�. (21)

(v) The 1-electron atomic system (the hydrogen-like system).
It consists of a single electron moving in the field of +Ze nuclear charges (Z = 1 is the

hydrogen atom). In the SI system:

V = V (r) = Ze2

4πε0r
(22)

the Coulomb8 law of attraction of the electron by the nucleus.

7Legendre Adrien Marie 1752–1833, French mathematician, Professor at the École Militaire and the École
Polytechnique of Paris.

8Coulomb Charles Augustin 1736–1806, French physicist, Member of the Académie des Sciences.
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The Hamiltonian will be:

Ĥ = − h̄2

2m
∇2 − Ze2

4πε0r
. (23)

Because of the spherical symmetry of the atom, it is convenient to use spherical coordinates
(r, θ,ϕ), where ∇2 becomes:

∇2 = ∇2
r − L̂2

r2

= 1

r2

∂

∂r

(

r2 ∂

∂r

)

+ 1

r2

{

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+ 1

sin2 θ

∂2

∂ϕ2

}

. (24)

The advantage of using spherical coordinates lies in the fact that it allows to separate radial
from angular coordinates.

We notice that all of the previous formulae involve universal physical constants (e, h̄, m,
4πε0), whose value is well known. To simplify notation we introduce a system of atomic
units, defined by posing:

e = h̄ = m = 4πε0 = 1 atomic units. (25)

The relation between atomic units and physical constants will be examined later in Sec-
tion 1.5 of this Chapter.

The hydrogenic Hamiltonian in atomic units will simplify to:

Ĥ = −1

2
∇2 − Z

r
. (26)

Comparison with the previous formula makes immediately clear the great advantage of
using atomic units, as also the next two examples show.

(vi) The 2-electron atomic system.
In atomic units, the Hamiltonian will be:

Ĥ = 1

2
∇2

1 − 1

2
∇2

2 − Z

r1
− Z

r2
+ 1

r12
= ĥ1 + ĥ2 + 1

r12
, (27)

where ĥ = − 1
2∇2 − Z

r
is the hydrogen-like Hamiltonian (a 1-electron operator), and 1

r12
the 2-electron operator describing electron repulsion. For Z = 2 we have the He atom.

(vii) The hydrogen molecule H2.
R is the internuclear distance, r12 the interelectronic distance, the remaining ones the

electron-nucleus distances. The full Born-Oppenheimer Hamiltonian (Chapter 10) looks
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rather complicated:

Ĥ = − h̄2

2MA

∇2
A − h̄2

2MB

∇2
B

− h̄2

2m
∇2

1 − h̄2

2m
∇2

2 − e2

4πε0r1
− e2

4πε0r2

− e2

4πε0rB1
− e2

4πε0rA2
+ e2

4πε0r12
+ e2

4πε0R
(28)

but in atomic units the expression simplifies to:

Ĥ = − 1

2M
∇2

A − 1

2M
∇2

B − 1

2
∇2

1 − 1

2
∇2

2

− 1

r1
− 1

r2
− 1

rB1
− 1

rA2
+ 1

r12
+ 1

R

= − 1

2M
∇2

A − 1

2M
∇2

B + ĥA1 + ĥB2 + V, (29)

where:

M = Mx

m
is the proton mass in units of the electron mass

ĥx = −1

2
∇2 − 1

r
the Hamiltonian of each separate atom

V = − 1

rB1
− 1

rA2
+ 1

r12
+ 1

R
the interatomic potential.

We now turn to the second postulate of quantum mechanics.

1.2.2 State Function and Average Values of Observables

There is a state function (or wavefunction) � which describes in a probabilistic way the
dynamical state of a microscopic system. In coordinate space, � (generally, a complex
function) is a function of coordinate x and time t such that:

�(x, t)�∗(x, t)dx = probability at time t of finding in dx

the system in state �

(30)

provided � is normalized:
∫

dx�∗(x, t)�(x, t) = 1 (31)

the integration being extended over all space.
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As already said for the orbitals, � must be restricted by:

• Single-valuedness.
• Continuity conditions with its first derivatives.
• Square integrability, i.e. �(x, t) should vanish at infinity.

These are the conditions that must always be satisfied because a mathematical function
� must describe a physical probability. We shall call such a function a Q-class function
(function belonging to the L2 Hilbert9 space, normalizable or regular function).

As a consequence of the probabilistic meaning of � , the average (expectation) value of
the physical quantity A (with quantum mechanical operator Â), characterizing the system
in state � , is given by:

〈A〉 =
∫

dx�∗(x, t)Â�(x, t)
∫

dx�∗(x, t)�(x, t)
=

∫

dxÂ
�(x, t)�∗(x, t)

∫

dx�∗(x, t)�(x, t)
probability density function

, (32)

where the integration is extended over all space. Notice that Â acts always upon � and
not on �∗, and that it must be Hermitian. The state function is hence needed to evaluate
average values of physical observables, which are the only quantities that can be measured
by experiment.

1.2.3 Time Evolution of State Function

� is obtained by solving the time-dependent Schroedinger equation:

Ĥ� = ih̄�̇, (33)

where �̇ = ∂�/∂t . This is a partial differential equation in the position coordinate x and
the time t , which are treated on a different footing.

If Ĥ does not depend in an explicit way on t (stationary state), the variables can be
separated by posing:

�(x, t) = ψ(x)g(t) (34)

and we obtain:

Ĥψ

ψ
= − h̄

i

d lng

dt
= E. (35)

Since the left side of this equation depends only on x and the right on t , each side must be
equal to a constant E, known as separation constant. In this way, we obtain two separate
differential equations, one in x, the other in t :

9Hilbert David 1862–1943, German mathematician, Professor at the University of Göttingen.
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Ĥψ(x) = Eψ(x) (36)

d lng(t) = −i
E

h̄
dt. (37)

The latter equation can be immediately integrated to:

g(t) = g0 exp

(

−i
E

h̄
t

)

= g0 exp(−iωt)
E

h̄
= ω (38)

giving the time evolution of the stationary state (always the same).
From a mathematical standpoint, the Schroedinger equation (36) determining ψ(x) has

the form of an eigenvalue equation, namely that particular differential equation where the
operator acting upon the function gives the function itself (the eigenfunction of the opera-
tor) multiplied by a constant (the eigenvalue of the operator). When several eigenfunctions
belong to the same eigenvalue, we speak of degeneracy of the eigenvalue (for instance, the
first excited level of the H atom is 4 times degenerate, i.e. there are 4 different states belong-
ing to this eigenvalue, i.e. 2s, 2px , 2py , 2pz). We notice that, entering in both Schroedinger
equations, the energy observable (hence, the Hamiltonian operator) plays a peculiar role
among all physical observables of quantum mechanics.

We now look to the physical plausibility of our postulates by investigating the nature of
measurements at the subatomic level.

1.3 THE PHYSICAL PRINCIPLES OF QUANTUM MECHANICS

1.3.1 Wave–Particle Dualism

Experimental observation shows that electromagnetic waves present both a wave-like and
a particle-like character. For light and X-rays this is shown by interference and diffraction
phenomena on the one hand, and by the photo-electric and Compton10 effects on the other.
A typical matter particle such as the electron can give diffraction figures characteristic of a
wave-like nature.

We shall consider in some detail the Compton effect (1923), where a monochromatic
X-ray beam impinging on a substance is scattered in all directions with a wavelength that
increases with increasing the scattering angle. The photon of frequency ν impinging on the
particle along the the x-direction is scattered in the direction specified by the angle θ with
a frequency ν′. The conservation of linear momentum gives:

hν

c
= hν′

c
cos θ + px 0 = hν′

c
sin θ − py (39)

from which, squaring and adding the two components, assuming ν′ 
 ν:

10Compton Arthur Holly 1892–1962, U.S. physicist, 1927 Nobel Prize for Physics.
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p2 = h2ν2

c2
(1 − 2 cos θ + cos2 θ + sin2 θ)

≈ 2
h2ν2

c2
(1 − cos θ) = 2

h2

λ2
(1 − cos θ), (40)

where p2 = p2
x + p2

y is the squared momentum of the particle and we have used ν = c/λ.
On the other hand, conservation of the total energy gives:

hν = hν′ + p2

2m
hν′ < hν, (41)

where the particle, even at rest, acquires a kinetic energy given by the second term in the
equation. Hence we get for p2:

p2 = 2hm(ν − ν′) = 2hmc

(

1

λ
− 1

λ′

)

= 2hmc
λ′ − λ

λλ′

≈ 2hmc
λ′ − λ

λ2
. (42)

Equating to the previous expression for the momentum, we get immediately that the wave-
length shift is a function of the scattering angle θ given by:

�λ = λ′ − λ = h

mc
(1 − cos θ). (43)

The Compton effect shows hence that, as a result of photon-particle interaction, the wave-
length of the scattered photon increases with θ .

For the electron, the constant will be:

h

mc
= 6.626 × 10−34 J s

9.109 × 10−31 kg × 2.998 × 108 m s−1

= 2.426 × 10−12 m = 0.0243 Å.

The Compton effect shows that the photon is a particle of light, with a mass given by the
Einstein 11 relation:

m = E

c2
= hν

c2
= h

λc
= h

c
k, (44)

where k is the wavenumber, λ−1. So the photon mass depends on the spectral region as
shown in Table 1.1.

11Einstein Albert 1879–1955, German mathematical physicist, Professor at the Universities of Zürich, Berlin
and Princeton. 1921 Nobel Prize for Physics.
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Table 1.1.

Photon mass in different spectral regions

Region k (m−1) m (kg)

MW 102 2.2 × 10−40

IR 105 2.2 × 10−37

VIS 106 2.2 × 10−36

UV 107 2.2 × 10−35

X 1010 2.2 × 10−32

γ 1011 2.2 × 10−31

Table 1.2.

Properties of γ -rays from atomic sources

Isotope λ (m) k (m−1) E (MeV) m (10−31 kg)

298U 2.50 × 10−11 4.00 × 1010 5.08 × 10−2 0.88
7Be 2.60 × 10−12 3.85 × 1011 4.77 × 10−1 8.51
60Co 1.03 × 10−12 9.71 × 1011 1.20 × 100 21.4
22Na 9.70 × 10−13 1.03 × 1012 1.28 × 100 22.7
14N 1.90 × 10−13 5.26 × 1012 6.52 × 100 116

Recalling that:

m = h

c
k = 2.210 × 10−42 k (45)

for 1 eV we have:

k = E

hc
= 1.602 × 10−19 J

6.626 × 10−34 J s × 2.998 × 108 m s−1

= 8.065 × 105 m−1 (46)

and, for a MeV:

1 MeV = 106 eV = 8.065 × 1011 m−1. (47)

In Table 1.2 we give some properties of γ -rays obtained from different atomic sources.
We see from the Table that the isotope 7Be emits γ -rays having a mass comparable with

that of the electron, m = 9.109 × 10−31 kg.



12 1. Basic Principles of Quantum Mechanics

Just after the discovery of the Compton effect, in his famous thesis (1924, 1925) de
Broglie12 suggested the wave-like character of material particles, assuming that the rela-
tion:

p = hν

c
= h

λ
= hk, (48)

true for photons (particles of light), should equally be valid for particles (e.g. electrons,
particles of matter). In this way, a property of particles, the linear momentum, is propor-
tional through Planck’s constant to a property of waves, the wave number k. Any moving
microscopic body has associated a “wave”, whose wavelength is related to the momentum
by the relation above. This hypothesis was later verified by experiment studying the dif-
fraction pattern of electrons reflected from a nickel surface (Davisson and Germer, 1927)
and by the formation of diffraction rings from cathode rays diffused through thin films of
aluminium, gold and celluloid (Thomson, 1928).

1.3.2 Atomicity of Matter

A characteristic of atomic and molecular physics is the atomicity of matter (electron, −e;
proton, +e), energy (hν, Planck), linear momentum (h/λ), angular momentum (h̄, Bohr13).
This implies the peculiar character that any experimental measurement has in atomic
physics (i.e. on a microscopic scale), particularly its limits that become apparent in the
Heisenberg14 principle (1927) as a direct consequence of the interaction between the ex-
perimental apparatus and the object of measurement, which has a direct ineliminable effect
on the physical property that must be measured at the microscopic level.

• Heisenberg uncertainty principle.

Quantities that are canonically conjugate (in the sense of analytical mechanics) are related
by the uncertainty relations:

�x�px ∼ h �E�t ∼ h, (49)

where h is the Planck constant, �x the uncertainty in the x-coordinate of the position of
the particle, and �px the simultaneous uncertainty in the x-component of the linear mo-
mentum of the particle. In other words, the product of the uncertainties of two conjugate
dynamical variables (e.g. x and px ) is of the order of Planck’s constant, namely, the at-
tempt to attain the exact measure of the coordinate position along x (�x = 0) implies the
infinite uncertainty in the measure of the corresponding conjugate component of the linear
momentum (�px = ∞). In quantum mechanical terms we may say that:

xp̂x − p̂xx = [x, p̂x] �= 0, (50)

12de Broglie Louis Victor 1892–1987, French physicist, Professor at the University of Paris, Member of the
Académie des Sciences. 1929 Nobel Prize for Physics.
13Bohr Niels Heinrik David 1885–1962, Danish physicist, Professor at the University of Copenhagen. 1922

Nobel Prize for Physics.
14Heisenberg Werner 1901–1976, German physicist, Professor at the Universities of Leipzig and Göttingen.

1932 Nobel Prize for Physics.
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i.e. the commutator of the corresponding operators is different from zero (we say the two
operators do not commute). The Heisenberg principle does not hold for non-conjugate
components:

[x, p̂y] = 0, (51)

i.e. quantities whose commutator vanishes can be measured at the same time with arbitrary
accuracy. For a more general definition see Margenau (1961, pp. 46–47). The uncertainty
principle must be considered as a law of nature, and stems directly from the interaction be-
tween experiment and object at the microscopic level, as the following examples will show.

(i) Macroscopic body (the cannon ball).
Let us try to make an extremely accurate measurement of the position of this macroscopic
body, say 1 micron, �x = 10−6 m. This corresponds to an unmeasurably small uncertainty
in the corresponding value of the conjugate momentum:

�px = 6.626 × 10−34 J s

10−6 m
= 6.626 × 10−28 kg m s−1. (52)

(ii) Microscopic body (the electron in a field).
Consider an electron accelerated through a potential difference of 50 volts. Since 1 eV is
the energy acquired by an electron in a potential difference of 1 volt (Coulson, 1958):

1 eV = 1.602 177 × 10−19 J (53)

the kinetic energy acquired by the electron in the field will be:

T = p2

2m
= 50 eV = 8.011 × 10−18 J (54)

with the momentum:

p = √
2mT

= {2 × 9.109 × 10−31 kg × 8.011 × 10−18 kg m2 s−2}1/2

= 3.821 × 10−24 kg m s−1. (55)

For a specification of the electron within an atomic dimension (1 Å = 10−10 m), not a very
accurate requirement:

�x = 10−10 m

�px = 6.626 × 10−34 J s

10−10 m
= 6.626 × 10−24 kg m s−1

(56)

so that the uncertainty in the momentum exceeds its calculated magnitude!
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(iii) The Heisenberg γ -ray microscope.
It is a typical “gedanken experiment”, an experiment ideally devised by Heisenberg (1930)
to show the uncertainty principle for a couple of conjugated dynamical variables (e.g. x

and px ).
Suppose we want to determine the position and the linear momentum of an electron

impinged by a photon traveling along the x-direction. The optical axis of our microscope
tube will be along the perpendicular y-coordinate. The way of proceeding is much along
the same lines as for the Compton effect. The resolving power of our microscope is:

�x = λ

2 sin ε
, (57)

where 2ε is the angular aperture of the lens of our objective. To improve precision in
the determination of the electron position we must reduce �x, namely we must reduce the
wavelength λ or increase the frequency, i.e. the wave number k, of our inciding photon. We
saw in Table 1.2 that the weak γ -rays from the 7Be source have a photon mass comparable
to that of the electron. Hence, illuminating our microscope with a photon of this energy
we shall have the collision of particles of like mass, which will be scattered in different
directions. If θ is the scattering angle, the conservation of linear momentum along x gives:

hν

c
= hν′

c
cos θ + px (58)

px = h

c
(ν − ν′ cos θ) ≈ hν

c
(1 − cos θ)

= h

λ
(1 − cos θ). (59)

Because the scattered photon becomes observable, it must be scattered inside the micro-
scope tube, so that θ will be restricted to:

(

π

2
− ε

)

≤ θ ≤
(

π

2
+ ε

)

cos

(

π

2
− ε

)

≤ cos θ ≤ cos

(

π

2
+ ε

)

(60)

sin ε ≤ cos θ ≤ − sin ε
h

λ
(1 − sin ε) ≤ px ≤ h

λ
(1 + sin ε). (61)

The momentum of the electron, px , can hence be determined to within an uncertainty of:

�px = h

λ
2 sin ε (62)

from which follows Heisenberg’s uncertainty principle for the x-component.



1.3 The Physical Principles of Quantum Mechanics 15

On the other hand, the conservation of the linear momentum in the perpendicular
y-direction gives:

0 = hν′

c
sin θ − py (63)

py = hν′

c
sin θ ≈ hν

c
sin θ (64)

with:

cos ε ≤ sin θ ≤ cos ε. (65)

The only possible value for sin θ is now cos ε, and therefore the transverse component of
the momentum is exactly measurable:

py = h

λ
cos ε �py = 0. (66)

As already said, this is in agreement with the fact that Heisenberg uncertainty relation
does not hold for dynamical quantities that are not conjugate, and which are described by
commuting operators:

[x, p̂x] = ih̄ [x, p̂y] = 0. (67)

From this follows Dirac’s observation that the greatest possible specification of a given
physical system is to find the maximum set of commuting operators. In this case, it is pos-
sible to find a set of observables, such that simultaneous exact knowledge of all members
of the set is possible (Troup, 1968).

As a consequence of the uncertainty principle, the only possible description of the dy-
namical state of a microscopic system is a probabilistic one, as contrasted with the deter-
ministic description of classical mechanics. The problem is now to find the function which
describes such a probability.

1.3.3 Schroedinger Wave Equation

Schroedinger (1926) writes for a progressive wave the complex form:

� = A exp(iα) = A exp[2πi(kx − νt)], (68)

where A is the amplitude and α the phase of a monochromatic plane wave of wave num-
ber k and frequency ν which propagates along x.

Taking into account the relations of de Broglie and Planck:

k = p

h
, ν = E

h
(69)
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the phase of a matter wave can be written:

α = 1

h̄
(px − Et), (70)

so that the wave equation for a matter particle will be:

� = A exp

[

i

h̄
(px − Et)

]

= �(x, t) (71)

which defines � as a function of x and t , with constant values of p and E. Taking the
derivatives of � with respect to x and t , we have the correspondences:

∂�

∂x
= i

h̄
p� hence p

classical
variable

⇒ −ih̄
∂

∂x
= p̂

quantum mechanical
operator

(72)

∂�

∂t
= − i

h̄
E� hence E

total
energy

⇒ ih̄
∂

∂t
= Ĥ .

quantum mechanical
operator (Hamiltonian)

(73)

These two relations give the basic correspondences we have seen before between physical
variables (observables) in classical mechanics and linear Hermitian operators in quantum
mechanics. The last equation is nothing but the time-dependent Schroedinger equation
giving the time evolution of � , and can be written in the usual form:

Ĥ� = ih̄
∂�

∂t
. (74)

1.3.4 Born Interpretation

Born15 (Born, 1926) suggested that the intensity of de Broglie’s wave ∝ |�|2 should be
regarded as a probability density (probability per unit volume). In other words, Born’s
interpretation of de Broglie and Schroedinger waves is such that:

�(x, t)�∗(x, t)dx = |�(x, t)|2dx = probability of finding the particle
in the infinitesimal volume
element dx at the point x at time t.

(75)

For this interpretation being correct, it must be:

∫

dx�∗(x, t)�(x, t) = 1, (76)

15Born Max 1882–1970, German physicist, Professor at the Universities of Berlin, Frankfurt, Göttingen and
Edinburgh. 1954 Nobel Prize for Physics.
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where integration is over all space. For a correct definition of probability, � must be nor-
malized to 1. For a stationary state the probability does not depend on time. In fact:

|�(x, t)|2dx ∝ |ψ(x)|2|g0|2dx (77)

is constant on time.
We can conclude by saying that the wave-like character of particles is due to the fact

that the probability function ψ does satisfy a wave equation. This is the explanation of the
wave-particle duality which was at first so difficult to understand.

1.3.5 Measure of Observables

We must first introduce here few mathematical definitions on Q-class functions, which will
be specified later in detail in Section 1.4.

(i) The Dirac16 notation for the scalar product of two functions ϕ, ψ :
∫

dxϕ∗(x)ψ(x) = 〈ϕ|ψ〉. (78)

(ii) The concept of orthonormal set {ϕk(x)}, implying 〈ϕk|ϕk′ 〉 = δkk′ , where δkk′ is the
Kronecker delta (= 1 for k′ = k, = 0 for k′ �= k).

(iii) The expansion theorem for any function F(x):

F(x) =
∑

k

ϕk(x)Ck =
∑

k

|ϕk〉〈ϕk|F 〉, (79)

where {ϕk(x)} is any suitable set of orthonormal basis functions.

Now, let {Ak} and {ϕk(x)}, with 〈ϕk|ϕk′ 〉 = δkk′ , be the set of eigenvalues and eigenfunc-
tions of the Hermitian operator Â corresponding to the physical observable A. The average
value of A in state � is given by:

〈A〉 =
∫

dx�∗(x, t)Â�(x, t) = 〈�|Â�〉 (80)

provided the state function � is normalized:

〈�|�〉 = 1. (81)

• If � is an eigenstate of Â with eigenvalue Ak , then:

〈A〉 = Ak (82)

so that, doing a measure of A at the time t , we shall certainly obtain for the observable A

the value Ak .
16Dirac Paul Adrien Maurice 1902–1984, English physicist, Professor of mathematics at the University of Cam-

bridge. 1933 Nobel Prize for Physics.
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Figure 1.1 Definite value for the k-th eigenvalue.

• If � is not an eigenstate of Â, we can expand � into the complete set of the eigenstates
of Â, obtaining:

〈A〉 =
∑

k

∑

k′
C∗

k (t)Ck′(t)〈ϕk|Âϕk′ 〉 =
∑

k

|Ck(t)|2Ak (83)

so that, doing a measure of A at the time t , we shall have the probability Pk(t) = |Ck(t)|2
of observing for A the value Ak .

Probability distribution:

Pk(t) = |Ck(t)|2 = Ck(t)C
∗
k (t) (84)

Ck(t) = 〈ϕk|�〉, C∗
k (t) = 〈�|ϕk〉. (85)

(a) If at time t � is an eigenstate of Â:

� ≡ ϕk Ck(t) = 1 Ck′(t) = 0 for any k′ �= k (86)

we have a 100% probability of observing for A the value Ak :

(b) Otherwise, we can expand � into stationary states:

� =
∑

k′′
ak′′ exp(−iωk′′ t)ψk′′(x)

�∗ =
∑

k′
a∗
k′ exp(+iωk′ t)ψ∗

k′(x)

ωk = Ek

h̄

(87)

Pk(t) =
∑

k′

∑

k′′
a∗
k′ak′′ exp[−i(ωk′′ − ωk′)t]〈ψk′ |ϕk〉〈ϕk|ψk′′ 〉, (88)

where the last two integrals are space integrals. Then we have:
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Figure 1.2 Fluctuation in time of eigenvalue distribution.

Figure 1.3 Energy eigenvalue distribution.

• If A is an observable different from E, the probability Pk(t) fluctuates in time.
• If A = E (the total energy):

Â = Ĥ , ϕk(x) = ψk(x) 〈ψk|ψk′ 〉 = δkk′ (89)

Pk(t) =
∑

k′

∑

k′′
a∗
k′ak′′ exp[−i(ωk′′ − ωk′)]δkk′δkk′′ = |ak|2 (90)

since k′ = k′′ = k is the only surviving term. In this case, we obtain for the energy a
distribution constant in time:

〈Ĥ 〉 = E =
∑

k

|ak|2Ek, (91)

where Ek is the k-th energy eigenvalue (the energy level).

1.4 THE MATHEMATICS OF QUANTUM MECHANICS

The essential point for any application is the expansion theorem (Section 1.4.4), that allows
to reformulate the eigenvalue equations of the quantum mechanical Hermitian operators in



20 1. Basic Principles of Quantum Mechanics

terms of matrix representatives. Let us now introduce in some detail some mathematical
definitions regarding functions of the L2 Hilbert space (in short, normalizable or Q-class
functions), while greater space on matrices will be devoted to Chapter 2.

1.4.1 Dirac Notation and Sets of Normalizable Functions

(i) Function ϕ(x) = |ϕ〉 �⇒ ket (92)

Complex
conjugate

ϕ∗(x) = 〈ϕ| �⇒ bra (93)

Then the scalar product of ϕ∗ by ϕ can be written in the bracket form (a notation due to
Dirac):

∫

dxϕ∗(x)ϕ(x) = 〈ϕ|ϕ〉 ≥ 0. (94)

The bracket of a function with itself is a non-negative number. Dirac notation is useful as
a shorthand and is largely used in the Literature.

(ii) Normalization and orthogonality.
If:

∫

dxψ∗(x)ψ(x) =
∫

dx|ψ(x)|2 = 〈ψ |ψ〉 = 1 (95)

we say that ψ is normalized (to 1). If:

〈ψ |ψ〉 = A > 0, (96)

where A is said the norm of ψ , ψ can be normalized by multiplying it by N = A−1/2,
where N is called the normalization factor.

If:
∫

dxψ
′∗(x)ϕ′(x) = 〈ψ ′|ϕ′〉 = S(�= 0) (97)

with ψ ′, ϕ′ both normalized to 1, ϕ′ is not orthogonal to ψ ′, and their scalar product is said
to be the non-orthogonality integral. If 〈ψ ′|ϕ′〉 = 0, the functions are orthogonal. ϕ′ can be
orthogonalized to ψ ′ through the linear combination:

ϕ = ϕ′ − Sψ ′

as can be verified immediately. ϕ can then be normalized:

ϕ = (1 − S2)−1/2(ϕ′ − Sψ ′) (98)

giving what is known as Schmidt (unsymmetrical) orthogonalization.
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(iii) Schmidt orthogonalization.

〈ψ ′|ψ ′〉 = 〈ϕ′|ϕ′〉 = 1 〈ψ ′|ϕ′〉 = 〈ϕ′|ψ ′〉 = S �= 0.

We take the new set:

ψ = ψ ′

ϕ = Aϕ′ + Bψ ′,

where we impose on ϕ the orthogonality and normalization conditions:

〈ϕ|ψ〉 = 〈Aϕ′ + Bψ ′|ψ ′〉 = AS + B = 0

〈ϕ|ϕ〉 = 〈Aϕ′ + Bψ ′|Aϕ′ + Bψ ′〉 = A2 + B2 + 2ABS = 1.

We obtain the system:

⎧

⎪

⎨

⎪

⎩

AS + B = 0
B

A
= −S A �= 0

A2 + B2 + 2ABS = 1

A2
{

1 +
(

B

A

)2

+ 2

(

B

A

)

S

}

= A2(1 − S2) = 1

A = (1 − S2)−1/2, B = −S(1 − S2)−1/2

so that the Schmidt orthonormalized function will be:

ϕ = ϕ′ − Sψ ′
√

1 − S2
.

Schmidt orthogonalization of 3 and n functions is examined in Problems 1.9 and 1.10.

(iv) Set of orthonormal functions.
Let:

{ϕk(x)} = (ϕ1ϕ2 · · ·ϕk · · ·ϕi · · ·) (99)

be a set of functions. If:

〈ϕk|ϕi〉 = δki k, i = 1, 2, · · · (100)

the set is said orthonormal, and δki is the Kronecker delta.
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(v) Linear independence and basis sets.
A set of functions is said to be linearly independent if:

∑

k

ϕk(x)Ck = 0 with Ck = 0 for any k. (101)

A set of linearly independent functions gives a basis in the function space, where we can
expand any other function of that space into a linear combination of the basis functions.
We can easily show that the expansion is unique, simply trying to have two expansions in
the same basis with different coefficients:

∑

k

ϕk(x)Ck =
∑

k

ϕk(x)C′
k �⇒

∑

k

ϕk(x)(C′
k − Ck) = 0. (102)

But for linearly independent functions C′
k − Ck = 0 �⇒ C′

k = Ck and the expansion is
unique. Condition for linear independence is that:

det Mki �= 0, (103)

where M is the metric matrix with elements Mki = 〈ϕk|ϕi〉. A set of orthonormal functions
(Mki = δki) is therefore a linearly independent set.

1.4.2 Linear Operators

(i) Let ϕ = ϕ(x) be a regular function. A linear operator Â transforms ϕ(x) according to
the following definitions:

⎧

⎨

⎩

Â[ϕ1(x) + ϕ2(x)] = Âϕ1(x) + Âϕ2(x)

Â[aϕ(x)] = a[Âϕ(x)] a = complex constant.
(104)

Examples:

Â = ∂

∂x
�⇒ Âϕ = ∂ϕ

∂x
the first x-derivative

Â = ∂2

∂x2
�⇒ Âϕ = ∂2ϕ

∂x2
the second x-derivative.

Either ∂/∂x or ∂2/∂x2 are linear operators in as much as they satisfy the definitions above.
As an example of a non-linear operator, we can take { }2.

(ii) Sum and product of operators.
The algebraic sum of two operators is commutative:

(Â + B̂)ϕ(x) = Âϕ(x) + B̂ϕ(x)

= B̂ϕ(x) + Âϕ(x) = (B̂ + Â)ϕ(x). (105)
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In general, the product of two operators is not commutative:

Â(B̂ϕ(x)) = Âf (x) = g(x) (106)

B̂(Âϕ(x)) = B̂F (x) = G(x). (107)

If ÂB̂ = B̂Â we say that the two operators commute. The quantities:

ÂB̂ − B̂Â = [Â, B̂] ÂB̂ + B̂Â = [Â, B̂]+ (108)

are called the commutator and anticommutator of the operators Â, B̂ , respectively.

1.4.3 Hermitian Operators

They are linear operators satisfying the “turn-over” rule:

〈ψ |Âϕ〉 = 〈Âψ |ϕ〉
∫

dxψ∗(x)
(

Âϕ(x)
) =

∫

dx
(

Âψ(x)
)∗

ϕ(x)
(109)

where the ∗ means to take the complex conjugate. As an example:

ψ(x) = A(x) + iB(x) (ψ(x))∗ = A(x) − iB(x), (110)

where A(x) and B(x) are real functions.

• The Hermitian operators have the following properties:

(i) Real eigenvalues
(ii) Orthogonal (or orthogonalizable) eigenfunctions

(iii) Their eigenfunctions form a complete set.

The first two properties can be easily derived from the definition.

(i) 〈ϕ|Âϕ〉 = 〈Âϕ|ϕ〉 Def.
with:

Âϕ = Aϕ
(

Âϕ
)∗ = A∗ϕ∗ A = eigenvalue

〈ϕ|Âϕ〉 = A〈ϕ|ϕ〉 〈Âϕ|ϕ〉 = A∗〈ϕ|ϕ〉

and, by subtracting the first from the second equation:

0 = (A∗ − A)〈ϕ|ϕ〉 〈ϕ|ϕ〉 �= 0 �⇒ A∗ = A.

(ii) Âϕλ = Aλϕλ Âϕμ = Aμϕμ Aλ,Aμ are two eigenvalues.
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We have two cases:

• Aλ �= Aμ not degenerate eigenvalues

〈ϕλ|Âϕμ〉 = Aμ〈ϕλ|ϕμ〉

〈Âϕλ|ϕμ〉 = A∗
λ〈ϕλ|ϕμ〉 = Aλ〈ϕλ|ϕμ〉

and, by subtracting:

0 = (Aλ − Aμ)〈ϕλ|ϕμ〉 Aλ − Aμ �= 0 �⇒ 〈ϕλ|ϕμ〉 = 0

• Aλ = Aμ = A degenerate eigenvalue

Âϕλ = Aϕλ Âϕμ = Aϕμ.

We have now two linearly independent functions belonging to the same eigenvalue,
so that the demonstration above is no longer valid. But we can always orthogonalize
ϕμ to ϕλ (e.g. by the Schmidt method) without changing the eigenvalue.

(ϕλϕμ) �⇒ (ϕ′
λϕ

′
μ)

non-orthogonal set orthonormal set

⎧

⎪

⎨

⎪

⎩

ϕ′
λ = ϕλ

ϕ′
μ = ϕμ − Sϕλ√

1 − S2
S = 〈ϕλ|ϕμ〉 = 〈ϕμ|ϕλ〉 �= 0.

It can be verified immediately that:

Âϕ′
λ = Aϕ′

λ

Âϕ′
μ = Â

ϕμ − Sϕλ√
1 − S2

= Âϕμ − S(Âϕλ)√
1 − S2

= A
ϕμ − Sϕλ√

1 − S2
= Aϕ′

μ

so that the orthogonal set belongs to the same degenerate eigenvalue.
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It can be easily shown by partial integration (see Problems 1.11) that are Hermitian the
operators:

p̂x = −ih̄
∂

∂x
p̂ = −ih̄∇

p̂2
x = −h̄2 ∂2

∂x2
p̂2 = p̂ · p̂ = −h̄2∇2

T̂ = − h̄2

2m
∇2 Ĥ = T̂ + V̂

provided the potential energy V is Hermitian. In these expressions, ∇ = i ∂
∂x

+ j ∂
∂y

+ k ∂
∂z

is the gradient operator seen previously, and ∇2 = ∇ · ∇ the Laplacian operator. We can
show, instead, that the operators ∂

∂x
and ∇ are not Hermitian:

〈

ψ

∣

∣

∣

∣

∂ϕ

∂x

〉

= −
〈

∂ψ

∂x

∣

∣

∣

∣

ϕ

〉

〈ψ |∇ϕ〉 = −〈∇ψ |ϕ〉. (111)

Such operators are said to be anti-Hermitian.

1.4.4 Expansion Theorem: From Operators to Matrices

(i) Any normalizable (Q-class) function can be expanded exactly into the complete set of
the eigenfunctions of any Hermitian operator Â (Courant and Hilbert, 1953):

F(x) =
∑

k

ϕk(x)Ck Âϕk = Akϕk Â† = Â, (112)

where the expansion coefficients are given by:

Ck =
∫

dx′ϕ∗
k (x′)F (x′) = 〈ϕk|F 〉. (113)

Using Dirac notation, the complete expansion can be rewritten as:

|F 〉 =
∑

k

|ϕk〉〈ϕk|F 〉, (114)

where:
∑

k

|ϕk〉〈ϕk| =
∑

k

ϕk(x)ϕ∗
k (x′) = δ(x − x′) (115)

is the Dirac δ-function (a distribution, see Courant and Hilbert, 1962), having the property:

∫

dx′δ(x − x′)F (x′) = F(x). (116)
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Figure 1.4 Dirac δ as a spike selecting a given function value.

δ(x − x′), which can be recognized as the kernel of an integral operator, can be visual-
ized as an infinitely sharp Gaussian function selecting a given value of the function itself
(Figure 1.4).

If the set {ϕk(x)} of basis functions is not complete (as usually happens in practice),
equality (112) is no longer true, and truncation errors occur:

F(x) ∼=
∑

k

ϕk(x)Ck. (117)

(ii) From operators to matrices.
Using the expansion theorem we can pass from operators (which act on functions) to

matrices (which act on vectors). Let us limit ourselves to a finite dimension n of an ortho-
normal basis {ϕk(x)} k = 1,2, · · ·n. Then, if Â is any Hermitian operator:

Âϕi(x) =
∑

k

ϕk(x)Aki =
∑

k

|ϕk〉〈ϕk|Âϕi〉 (118)

where the expansion coefficients Aki are elements of the square matrix (order n):

Aki = 〈ϕk|Âϕi〉 =
∫

dx′ϕ∗
k (x′)

(

Âϕi(x
′)
)

(119)

{Aki} �⇒ A =

⎛

⎜

⎜

⎝

A11 A12 · · · A1n

A21 A22 · · · A2n

· · · · ·
An1 An2 · · · Ann

⎞

⎟

⎟

⎠

(120)

which is called the matrix representative of the operator Â in the basis {ϕk}. In this way,
the eigenvalue equations of quantum mechanics transform into eigenvalue equations for the
corresponding representative matrices. A complete set implies matrices of infinite order.

Even if we postpone to Chapter 2 a deeper analysis on finite matrices, it is important to
mention here that:
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• a matrix representative depends on the given basis, and
• changing the basis from {ϕ} to {ϕ′} through transformation with a unitary matrix U

changes the representative to:

ϕ′ = ϕU �⇒ A′ = U†AU, (121)

where:

A = ϕ†Âϕ (122)

and the † means “starring and transposing”. ϕ is the row vector of the original basis
functions, ϕ† the column of the corresponding complex conjugate functions, and the
notation ϕ†ϕ implies taking the scalar product of the basis vectors. The matrix form for
a Hermitian operator Â in a given basis {ϕ} is:

A† = A. (123)

1.4.5 ∇ Vector Operator and Its Properties

In Cartesian coordinates, the vector operator ∇ (the gradient) is defined as (Rutherford,
1962):

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
. (124)

• Let F(x, y, z) be a scalar function of the space point P . Then:

∇F = i
∂F

∂x
+ j

∂F

∂y
+ k

∂F

∂z
= gradF (125)

a vector, the gradient of F .
• Now, let F be a vector with components Fx , Fy , Fz. Then:

∇ · F = ∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z
= div F (126)

is the scalar product of ∇ by F, the divergence of F (a scalar). As a particular case:

∇ · ∇ = ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(127)

the scalar product of ∇ by itself, the Laplacian operator (a scalar).

∇ × F =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂

∂x

∂

∂y

∂

∂z

Fx Fy Fz

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= curl F (128)
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is the vector product of ∇ by F, the curl of F, a vector with components:

curlx F = ∂Fz

∂y
− ∂Fy

∂z

curly F = ∂Fx

∂z
− ∂Fz

∂x

curlz F = ∂Fy

∂x
− ∂Fx

∂y

(129)

so that:

∇ × F = i curlx F + j curly F + k curlz F. (130)

1.4.6 Systems of Orthogonal Coordinates

Any problem in mathematical physics is best solved in terms of a coordinate system re-
flecting the symmetry of the system. Orthogonal systems are those systems of coordinates
where the surfaces, whose intersections determine the position of a given point in space, do
intersect at right angles. Most useful (but not exhaustive) for our purposes are Cartesian,
spherical and spheroidal coordinates. We give the definition, the interval of variation of
each coordinate covering the whole space, and the elementary volume element dr.

• Cartesian coordinates: x, y, z

x, y, z ∈ (−∞,∞) (131)

dr = dxdydz. (132)

• Spherical coordinates: r, θ,ϕ

r(0,∞), θ(0,π), ϕ(0,2π) (133)

dr = r2dr sin θdθdϕ (134)

with (see Figure 1.5):

x = r sin θ sinϕ, y = r sin θ cosϕ, z = r cos θ (135)

x2 + y2 + z2 = r2 r = (x2 + y2 + z2)1/2 ≥ 0. (136)

• Spheroidal (prolate spheroidal or confocal elliptic) coordinates: μ,ν,ϕ

μ(1,∞), ν(−1,1), ϕ(0,2π) (137)
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Figure 1.5 Cartesian and spherical coordinate systems.

Figure 1.6 Cartesian and spheroidal coordinate systems.

dr =
(

R

2

)3

(μ2 − ν2) dμdνdϕ (138)

with (see Figure 1.6):

μ = rA + rB

R
, ν = rA − rB

R
, ϕ, (139)

where R is a fixed distance along the z-axis.

1.4.7 Generalized Coordinates

Let:

x = x(q1, q2, q3) y = y(q1, q2, q3) z = z(q1, q2, q3) (140)

be the functional relations connecting the Cartesian coordinates (x, y, z) to the generalized
coordinates (q1, q2, q3). Then (Eyring et al., 1944; Margenau and Murphy, 1956):

h2
i =

(

∂x

∂qi

)2

+
(

∂y

∂qi

)2

+
(

∂z

∂qi

)2

i = 1,2,3, (141)
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where:

h1h2h3 = |J | =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂x

∂q1

∂y

∂q1

∂z

∂q1

∂x

∂q2

∂y

∂q2

∂z

∂q2

∂x

∂q3

∂y

∂q3

∂z

∂q3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(142)

is the Jacobian17 determinant of the transformation. We notice that:

J 2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂x

∂q1

∂y

∂q1

∂z

∂q1

∂x

∂q2

∂y

∂q2

∂z

∂q2

∂x

∂q3

∂y

∂q3

∂z

∂q3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂x

∂q1

∂x

∂q2

∂x

∂q3

∂y

∂q1

∂y

∂q2

∂y

∂q3

∂z

∂q1

∂z

∂q2

∂z

∂q3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

h2
1 0 0

0 h2
2 0

0 0 h2
3

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (143)

where in the second determinant we have interchanged rows with columns, and the last
result is a consequence of the fact that the coordinate systems considered here are orthogo-
nal (so that all off-diagonal elements vanish). In generalized coordinates, the infinitesimal
volume element dr, the gradient ∇ and the Laplacian operator ∇2 are given by the sym-
metrical expressions:

dr = h1h2h3 dq1dq2dq3 (144)

∇ = e1
1

h1

∂

∂q1
+ e2

1

h2

∂

∂q2
+ e3

1

h3

∂

∂q3
(145)

∇2 = 1

h1h2h3

{

∂

∂q1

(

h2h3

h1

∂

∂q1

)

+ ∂

∂q2

(

h3h1

h2

∂

∂q2

)

+ ∂

∂q3

(

h1h2

h3

∂

∂q3

)}

. (146)

• Cartesian coordinates (x, y, z)

q1 = x q2 = y q3 = z hx = hy = hz = 1 (147)

17Jacobi Karl Gustav Jacob 1805–1851, German mathematician, Professor at the University of Königsberg.
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dr = dxdydz

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.

(148)

• Spherical coordinates (r, θ,ϕ)

q1 = r q2 = θ q3 = ϕ (149)

x = r sin θ cosϕ y = r sin θ sinϕ z = r cos θ (150)

∂x

∂r
= sin θ cosϕ

∂y

∂r
= sin θ sinϕ

∂z

∂r
= cos θ

∂x

∂θ
= r cos θ cosϕ

∂y

∂θ
= r cos θ sinϕ

∂z

∂θ
= −r sin θ

∂x

∂ϕ
= −r sin θ sinϕ

∂y

∂ϕ
= r sin θ cosϕ

∂z

∂ϕ
= 0.

(151)

Then:

h2
r = sin2 θ(cos2 ϕ + sin2 ϕ) + cos2 θ = sin2 θ + cos2 θ = 1

�⇒ hr = 1

h2
θ = r2 cos2 θ(cos2 ϕ + sin2 ϕ) + r2 sin2 θ = r2

�⇒ hθ = r

h2
ϕ = r2 sin2 θ(sin2 ϕ + cos2 ϕ) = r2 sin2 θ

�⇒ hϕ = r sin θ

dr = r2dr sin θdθdϕ = r2drd�, (152)

where we use � to denote the couple of angles θ,ϕ.

∇ = er

∂

∂r
+ eθ

1

r

∂

∂θ
+ eϕ

1

r sin θ

∂

∂ϕ
(153)

∇2 = 1

r2 sin θ

{

∂

∂r

(

r2 sin θ

1

∂

∂r

)

+ ∂

∂θ

(

r sin θ

r

∂

∂θ

)

+ ∂

∂ϕ

(

r

r sin θ

∂

∂ϕ

)}
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= 1

r2

∂

∂r

(

r2 ∂

∂r

)

+ 1

r2

{

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+ 1

sin2 θ

∂2

∂ϕ2

}

= ∇2
r − L̂2

r2
, (154)

where L̂2 is the square of the angular momentum operator (17). In spherical coordinates,
the radial component of ∇2:

∇2
r = 1

r2

∂

∂r

(

r2 ∂

∂r

)

= ∂2

∂r2
+ 2

r

∂

∂r
(155)

separates from its angular part (L̂2).
• Spheroidal coordinates (μ, ν,ϕ)

q1 = μ q2 = ν q3 = ϕ (156)

μ = rA + rB

R
ν = rA − rB

R
ϕ (157)

x = a
√

(μ2 − 1)(1 − ν2) cosϕ

y = a
√

(μ2 − 1)(1 − ν2) sinϕ

z = a(μν + 1)

(158)

a = R

2
(159)

∂x

∂μ
= aμ

√

1 − ν2

μ2 − 1
cosϕ

∂y

∂μ
= aμ

√

1 − ν2

μ2 − 1
sinϕ

∂z

∂μ
= aν

∂x

∂ν
= −aν

√

μ2 − 1

1 − ν2
cosϕ

∂y

∂ν
= −aν

√

μ2 − 1

1 − ν2
sinϕ

∂z

∂ν
= aμ

∂x

∂ϕ
= −a

√

(μ2 − 1)(1 − ν2) sinϕ
∂y

∂ϕ
= a

√

(μ2 − 1)(1 − ν2) cosϕ
∂z

∂ϕ
= 0.

(160)
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Hence, we have

h2
μ = a2

[

μ2
(

1 − ν2

μ2 − 1

)

(cos2 ϕ + sin2 ϕ) + ν2
]

= a2 μ2 − ν2

μ2 − 1

�⇒ hμ = a

√

μ2 − ν2

μ2 − 1

h2
ν = a2

[

ν2
(

μ2 − 1

1 − ν2

)

(cos2 ϕ + sin2 ϕ) + μ2
]

= a2 μ2 − ν2

1 − ν2

�⇒ hν = a

√

μ2 − ν2

1 − ν2

h2
ϕ = a2[(μ2 − 1)(1 − ν2)(sin2 ϕ + cos2 ϕ)] = a2(μ2 − 1)(1 − ν2)

�⇒ hϕ = a
√

(μ2 − 1)(1 − ν2)

dr = a3(μ2 − ν2) dμdνdϕ (161)

∇ = 1

a

{

eμ

√

μ2 − 1

μ2 − ν2

∂

∂μ
+ eν

√

1 − ν2

μ2 − ν2

∂

∂ν

+ eϕ

1
√

(μ2 − 1)(1 − ν2)

∂

∂ϕ

}

(162)

∇2 = 1

a2(μ2 − ν2)

{

∂

∂μ

[

(μ2 − 1)
∂

∂μ

]

+ ∂

∂ν

[

(1 − ν2)
∂

∂ν

]

+ μ2 − ν2

(μ2 − 1)(1 − ν2)

∂2

∂ϕ2

}

= 1

a2(μ2 − ν2)

{

∇2
μ + ∇2

ν + μ2 − ν2

(μ2 − 1)(1 − ν2)

∂2

∂ϕ2

}

, (163)

where:

∇2
μ = ∂

∂μ

[

(μ2 − 1)
∂

∂μ

]

= (μ2 − 1)
∂2

∂μ2
+ 2μ

∂

∂μ
(164)

∇2
ν = ∂

∂ν

[

(1 − ν2)
∂

∂ν

]

= (1 − ν2)
∂2

∂ν2
− 2ν

∂

∂ν
. (165)
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1.5 FUNDAMENTAL PHYSICAL CONSTANTS AND ATOMIC UNITS

The fundamental physical constants are continually revised. Recent SI values to ten figures
are (Mohr and Taylor, 2003):

Elementary charge e = 1.602 176 462 × 10−19 C

Proton mass mp = 1.672 621 58(1) × 10−27 kg

Electron mass m = 9.109 381 88(7) × 10−31 kg

Reduced Planck’s constant h̄ = 1.054 571 597 × 10−34 J s

Vacuum permittivity 4πε0 = 1.112 650 056 × 10−10 J−1 C2 m−1

Light velocity in vacuum c = 2.997 924 58 × 108 m s−1

Avogadro number NA = 6.022 141 99(5) × 1023 mol−1

Boltzmann constant k = 1.380 650 3(24) × 10−23 J K−1.

Atomic units (a.u.) are conveniently introduced when dealing with equations resulting for
atomic and molecular problems. They are obtained by posing:

• e = m = h̄ = 4πε0 = 1 (166)

so that the fundamental physical constants may be dropped from all equations where they
occur. At the end of a calculation in atomic units, the actual values can be obtained by
taking into account the SI values of the physical constants. The definition and the SI equiv-
alents of the most commonly used atomic units are:

Charge, e e = 1.602 176 462 × 10−19 C

Length, Bohr a0 = 4πε0
h̄2

me2
= 5.291 772 087 × 10−11 m

Energy, Hartree Eh = 1

4πε0

e2

a0
= 4.359 743 802 × 10−18 J

Time τ = h̄

Eh

= 2.418 884 331 × 10−17 s.

The atomic unit of length, a0, is the radius of the 1s orbit in the Bohr theory of the hydrogen
atom. The atomic unit of time, τ , is the time taken for an electron in the 1s orbit of hydrogen
to travel one Bohr radius.
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As far as the atomic unit of energy is concerned, we have for 1 mol:

NAEh = 2625.499 624 kJ mol−1 = 27.211 383 41 eV mol−1

= 219.474 631 4 × 103 cm−1 mol−1 = 315.774 655 5 × 103 K mol−1

with the submultiples:

10−3 Eh = mEh 10−6 Eh = μEh 10−9 Eh = nEh

milli micro nano

10−12 Eh = pEh 10−15 Eh = fEh 10−18 Eh = aEh.

pico femto atto

As an example, let us calculate the SI equivalent of 1 hartree to 7 significant figures:

Eh = 1

4πε0

e2

a0
= me4

(4πε0)2h̄2

= 9.109 382 × 10−31 × (1.602 176 × 10−19)4

(1.112 650 × 10−10)2 × (1.054 571 × 10−34)2

kg C4

J−2 C4 m−2 J2 s2

= 4.359 744 × 10−18 J.

1.6 PROBLEMS 1

1.1. Taking into account the relations between Cartesian and spherical coordinates, and
their inverse relations, calculate the derivatives of (r, θ,ϕ) with respect to (x, y, z).

Answer:

∂r

∂x
= x

r
= sin θ cosϕ

∂r

∂y
= y

r
= sin θ sinϕ

∂r

∂z
= z

r
= cos θ

∂θ

∂x
= cos θ cosϕ

r

∂θ

∂y
= cos θ sinϕ

r

∂θ

∂z
= − sin θ

r

∂ϕ

∂x
= − sinϕ

r sin θ

∂ϕ

∂y
= cosϕ

r sin θ

∂ϕ

∂z
= 0.

Hint:
The relations between the two coordinate systems are:

x = r sin θ cosϕ y = r sin θ sinϕ z = r cos θ

r = (x2 + y2 + z2)1/2 θ = cos−1(z/r) ϕ = tan−1(y/x).
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We must remember the rules of derivation of the inverse trigonometric functions for
u(x, y, z):

d cos−1 u

du
= −(1 − u2)−1/2 d tan−1 u

du
= (1 + u2)−1

and that:

∂

∂x
= ∂

∂r

∂r

∂x
+ ∂

∂θ

∂θ

∂x
+ ∂

∂ϕ

∂ϕ

∂x
etc.

1.2. Using the results of Problem 1.1, find the expression in spherical coordinates of the
three components L̂x, L̂y, L̂z of the angular momentum operator.

Answer:

L̂x = −i

(

− sinϕ
∂

∂θ
− cot θ cosϕ

∂

∂ϕ

)

L̂y = −i

(

cosϕ
∂

∂θ
− cot θ sinϕ

∂

∂ϕ

)

L̂z = −i
∂

∂ϕ
.

(167)

Hint:
Start from the expression of the components L̂x, L̂y, L̂z in Cartesian coordinates.

1.3. Using the results of Problem 1.2, find the expression of L̂2 (the square of the angular
momentum operator) in spherical coordinates.

Answer:

L̂2 = −
{

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+ 1

sin2 θ

∂2

∂ϕ2

}

= −
(

∂2

∂θ2
+ cot θ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2

)

. (168)

Hint:
Remember that:

L̂2 = L̂2
x + L̂2

y + L̂2
z

and that:

L̂2
x(fg) = L̂x[L̂x(fg)] = L̂x[g(L̂xf ) + f (L̂xg)] etc.,

where f,g are functions of angles θ,ϕ.
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1.4. Find the expression in spherical coordinates of the ladder operators L̂+ = L̂x + iL̂y

and L̂− = L̂x − iL̂y .

Answer:

L̂+ = exp(iϕ)

(

∂

∂θ
+ i cot θ

∂

∂ϕ

)

L̂− = exp(−iϕ)

(

− ∂
∂θ

+ i cot θ ∂
∂ϕ

)

.

(169)

Hint:
Use the expression of L̂x and L̂y in spherical coordinates as found in Problem 1.2.

1.5. Using Cartesian coordinates, find the relation connecting the Laplacian ∇2 to the
square of the angular momentum operator L̂2.

Answer:

∇2 = ∇2
r − L̂2

r2
, (170)

where ∇2
r is the radial Laplacian:

∇2
r = 1

r2

∂

∂r

(

r2 ∂

∂r

)

= ∂2

∂r2
+ 2

r

∂

∂r
. (171)

Hint:
Start from the expression of L̂2 in Cartesian coordinates:

L̂2 = L̂2
x + L̂2

y + L̂2
z

= −
{(

y
∂

∂z
− z

∂

∂y

)2

+
(

z
∂

∂x
− x

∂

∂z

)2

+
(

x
∂

∂y
− y

∂

∂x

)2}

and calculate the derivatives taking into account that:

∂

∂z
(fg) = g

(

∂f

∂z

)

+ f

(

∂g

∂z

)

etc.,

where f,g are arbitrary functions of (x, y, z). Furthermore, notice that:

r · ∇ = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
= r

∂

∂r

(r · ∇)2 =
(

r
∂

∂r

)(

r
∂

∂r

)

= r2 ∂2

∂r2
+ r

∂

∂r
.
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1.6. Find the commutators of the components L̂x, L̂y, L̂z of the angular momentum op-
erator L̂ with themselves and with L̂2.

Answer:

[

L̂x, L̂y

] = iL̂z

[

L̂y, L̂z

] = iL̂x

[

L̂z, L̂x

] = iL̂y (172)

that can be summarized as: L̂ × L̂ = iL̂

[

L̂2, L̂x

] = [

L̂2, L̂y

] = [

L̂2, L̂z

] = 0. (173)

We conclude that the three components of the angular momentum operator cannot be spec-
ified simultaneously, but we can exactly specify each individual component and the square
of the angular momentum.

Hint:
Use the expressions of L̂x, L̂y, L̂z in Cartesian coordinates.

1.7. Find the commutators of L̂z and L̂2 with the ladder operators L̂+ and L̂−.

Answer:

[

L̂z, L̂+
] = L̂+

[

L̂z, L̂−
] = −L̂− (174)

[

L̂2, L̂+
] = [

L̂2, L̂−
] = 0. (175)

Hint:
Use the commutators for the components of the angular momentum operator found in
Problem 1.6.

1.8. Find the expression of L̂2 in spherical coordinates using the corresponding expres-
sions of the ladder operators L̂+ and L̂−.

Answer:

L̂2 = −
(

∂2

∂θ2
+ cot θ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2

)

= −
{

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+ 1

sin2 θ

∂2

∂ϕ2

}

. (176)

Hint:
Find first the relations between L̂2 and L̂+, L̂−:

L̂2 = L̂2
x + L̂2

y + L̂2
z = L̂+L̂− − L̂z + L̂2

z = L̂−L̂+ + L̂z + L̂2
z. (177)
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Next use the expressions in spherical coordinates found in Problems 1.2 and 1.4.

1.9. Schmidt orthogonalize the three normalized non-orthogonal functions (χ ′
1χ

′
2χ

′
3).

Hint:
Orthogonalize first function χ ′

2 to χ ′
1, next χ ′

3 to the resulting orthogonalized ones.

1.10. Schmidt orthogonalize the set of normalized non-orthogonal functions {χ ′
μ} μ =

1,2,3, · · ·n.

Hint:
Use in a stepwise way the simple Schmidt procedure found for n = 1,2,3.

1.11. The Hermitian operators.

• 1-dimensional problems.

1.11.1. Show that:
〈

ϕ

∣

∣

∣

∣

dψ

dx

〉

= −
〈

dϕ

dx

∣

∣

∣

∣

ψ

〉

so that d/dx is anti-Hermitian.

1.11.2. Show that:
〈

ϕ

∣

∣

∣

∣

i
dψ

dx

〉

=
〈

i
dϕ

dx

∣

∣

∣

∣

ψ

〉

so that i d/dx is Hermitian.

1.11.3. Show that:

〈

ϕ

∣

∣

∣

∣

d2ψ

dx2

〉

=
〈

d2ϕ

dx2

∣

∣

∣

∣

ψ

〉

so that d2/dx2 is Hermitian.

• 3-dimensional problems.

Let ϕ(x, y, z) and ψ(x, y, z) be well-behaved functions of the three variables (x, y, z).

1.11.4. Show that:
〈

ϕ

∣

∣

∣

∣

i
∂ψ

∂x

〉

=
〈

i
∂ϕ

∂x

∣

∣

∣

∣

ψ

〉

so that i ∂/∂x is Hermitian.
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1.11.5. Show that:

〈

ϕ

∣

∣

∣

∣

∂2ψ

∂x2

〉

=
〈

∂2ϕ

∂x2

∣

∣

∣

∣

ψ

〉

so that ∂2/∂x2 is Hermitian.
Proceeding in a like way for the y, z-components, we can show that ∇2 = ∂2

∂x2 + ∂2

∂y2 +
∂2

∂z2 is Hermitian. Hence, T̂ = − h̄2

2m
∇2, the kinetic energy operator, is Hermitian.

Hint:
Make use of the partial integration. In fact:

d(uv) = udv + v du (178)

and, by integration:

∫

udv = uv −
∫

vdu, (179)

where:

u,v = finite factors du,dv = differential factors.

1.12. Find the relation between (x, y, z) and (μ, ν,ϕ).

Answer:

x = R

2

[

(μ2 − 1)(1 − ν2)
]1/2 cosϕ

y = R

2

[

(μ2 − 1)(1 − ν2)
]1/2 sinϕ

z = R

2
(μν + 1).

(158)

Hint:
Let P(x, y, z) be the point in the Cartesian coordinate system which corresponds to
P(μ,ν,ϕ) in spheroidal coordinates. Use the definitions of spheroidal and spherical coor-
dinates of point P , and the Carnot theorem for the angle θA = r̂Az.

1.13. Give a geometric derivation of the infinitesimal volume element dr in spherical
coordinates.

Hint:
Consider the circular sectors having an infinitesimal basis.
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1.7 SOLVED PROBLEMS

1.1. The inverse transformations are:

r = (x2 + y2 + z2)1/2 θ = cos−1
[

z(x2 + y2 + z2)−1/2]

︸ ︷︷ ︸

ϕ = tan−1 (yx−1)
︸ ︷︷ ︸

u u

∂r

∂x
= 1

2
(x2 + y2 + z2)−1/22x = x

r

∂r

∂y
= y

r

∂r

∂z
= z

r

∂θ

∂x
= −(1 − u2)−1/2 ∂u

∂x

= −[

1 − z2(x2 + y2 + z2)−1]−1/2
[

−1

2
z(x2 + y2 + z2)−3/22x

]

=
(

x2 + y2 + z2 − z2

x2 + y2 + z2

)−1/2

zx(x2 + y2 + z2)−3/2

= zx

(x2 + y2)1/2
(x2 + y2 + z2)−1

= r2 cos θ sin θ cosϕ

r sin θ
r−2 = cos θ cosϕ

r

∂θ

∂y
= −(1 − u2)−1/2 ∂u

∂y

= −[

1 − z2(x2 + y2 + z2)−1]−1/2
[

−1

2
z(x2 + y2 + z2)−3/22y

]

=
(

x2 + y2 + z2

x2 + y2

)1/2

yz(x2 + y2 + z2)−3/2

= cos θ sinϕ

r

∂θ

∂z
= −(1 − u2)−1/2 ∂u

∂z

= −[

1 − z2(x2 + y2 + z2)−1]−1/2
[

(x2 + y2 + z2)−1/2

− 1

2
z(x2 + y2 + z2)−3/22z

]

= −
(

x2 + y2 + z2

x2 + y2

)1/2

(x2 + y2 + z2)−1/2
(

x2 + y2 + z2 − z2

x2 + y2 + z2

)
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= − (x2 + y2)1/2

x2 + y2 + z2

= − sin θ

r

∂ϕ

∂x
= (1 + u2)−1 ∂u

∂x

= [

1 + (yx−1)2]−1
y(−x−2)

=
(

x2 + y2

x2

)−1(

− y

x2

)

= − y

x2 + y2

= − r sin θ sinϕ

r2 sin2 θ
= − sinϕ

r sin θ

∂ϕ

∂y
= (1 + u2)−1 ∂u

∂y
=

(

x2 + y2

x2

)−1

(x−1) = x

x2 + y2
= cosϕ

r sin θ

∂ϕ

∂z
= (1 + u2)−1 ∂u

∂z
= 0.

1.2.

L̂x = −i

(

y
∂

∂z
− z

∂

∂y

)

= −i

{

r sin θ sinϕ

(

∂

∂r

∂r

∂z
+ ∂

∂θ

∂θ

∂z
+ ∂

∂ϕ

∂ϕ

∂z

)

− r cos θ

(

∂

∂r

∂r

∂y
+ ∂

∂θ

∂θ

∂y
+ ∂

∂ϕ

∂ϕ

∂y

)}

= −i

{

r sin θ sinϕ

(

cos θ
∂

∂r
− sin θ

r

∂

∂θ

)

− r cos θ

(

sin θ sinϕ
∂

∂r
+ cos θ sinϕ

r

∂

∂θ
+ cosϕ

r sin θ

∂

∂ϕ

)}

= −i

(

− sin2 θ sinϕ
∂

∂θ
− cos2 θ sinϕ

∂

∂θ
− cot θ cosϕ

∂

∂ϕ

)

= −i

(

− sinϕ
∂

∂θ
− cot θ cosϕ

∂

∂ϕ

)

,
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where use was made of the results of Problem 1.1.

L̂y = −i

(

z
∂

∂x
− x

∂

∂z

)

= −i

{

r cos θ

(

∂

∂r

∂r

∂x
+ ∂

∂θ

∂θ

∂x
+ ∂

∂ϕ

∂ϕ

∂x

)

− r sin θ cosϕ

(

∂

∂r

∂r

∂z
+ ∂

∂θ

∂θ

∂z
+ ∂

∂ϕ

∂ϕ

∂z

)}

= −i

{

r cos θ

(

sin θ cosϕ
∂

∂r
+ cos θ cosϕ

r

∂

∂θ
− sinϕ

r sin θ

∂

∂ϕ

)

− r sin θ cosϕ

(

cos θ
∂

∂r
− sin θ

r

∂

∂θ

)}

= −i

(

cosϕ
∂

∂θ
− cot θ sinϕ

∂

∂ϕ

)

L̂z = −i

(

x
∂

∂y
− y

∂

∂x

)

= −i

{

r sin θ cosϕ

(

∂

∂r

∂r

∂y
+ ∂

∂θ

∂θ

∂y
+ ∂

∂ϕ

∂ϕ

∂y

)

− r sin θ sinϕ

(

∂

∂r

∂r

∂x
+ ∂

∂θ

∂θ

∂x
+ ∂

∂ϕ

∂ϕ

∂x

)}

= −ir sin θ

{

cosϕ

(

sin θ sinϕ
∂

∂r
+ cos θ sinϕ

r

∂

∂θ
+ cosϕ

r sin θ

∂

∂ϕ

)

− sinϕ

(

sin θ cosϕ
∂

∂r
+ cos θ cosϕ

r

∂

∂θ
− sinϕ

r sin θ

∂

∂ϕ

)}

= −i

{

(cos2 ϕ + sin2 ϕ)
∂

∂ϕ

}

= −i
∂

∂ϕ
.

1.3.

L̂2
x = −

(

sinϕ
∂

∂θ
+ cot θ cosϕ

∂

∂ϕ

)(

sinϕ
∂

∂θ
+ cot θ cosϕ

∂

∂ϕ

)

.

But:

∂

∂θ
cot θ = −1 − cot2 θ
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L̂2
x = −

{

sin2 ϕ
∂2

∂θ2
+ sinϕ cosϕ

∂

∂ϕ
(−1 − cot2 θ) + cot θ

∂

∂θ
cos2 ϕ

+ cot2 θ cos2 ϕ
∂2

∂ϕ2
− cot2 θ cosϕ sinϕ

∂

∂ϕ

}

L̂2
y = −

(

cosϕ
∂

∂θ
− cot θ sinϕ

∂

∂ϕ

)(

cosϕ
∂

∂θ
− cot θ sinϕ

∂

∂ϕ

)

= −
{

cos2 ϕ
∂2

∂θ2
− cosϕ sinϕ

∂

∂ϕ
(−1 − cot2 θ) + cot θ

∂

∂θ
sin2 ϕ

+ cot2 θ sin2 ϕ
∂2

∂ϕ2
+ cot2 θ sinϕ cosϕ

∂

∂ϕ

}

L̂2
z =

(

−i
∂

∂ϕ

)(

−i
∂

∂ϕ

)

= − ∂2

∂ϕ2

L̂2 = L̂2
x + L̂2

y + L̂2
z

= −
{

(sin2 ϕ + cos2 ϕ)
∂2

∂θ2
+ (cos2 ϕ + sin2 ϕ) cot θ

∂

∂θ

+ (cos2 ϕ + sin2 ϕ) cot2 θ
∂2

∂ϕ2
+ ∂2

∂ϕ2

}

= −
{

∂2

∂θ2
+ cot θ

∂

∂θ
+ (cot2 θ + 1)

∂2

∂ϕ2

}

= −
(

∂2

∂θ2
+ cot θ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2

)

= −
{

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+ 1

sin2 θ

∂2

∂ϕ2

}

.

1.4.

L̂+ = L̂x + iL̂y

= i

(

sinϕ
∂

∂θ
+ cot θ cosϕ

∂

∂ϕ

)

+
(

cosϕ
∂

∂θ
− cot θ sinϕ

∂

∂ϕ

)

= (cosϕ + i sinϕ)
∂

∂θ
+ i cot θ(cosϕ + i sinϕ)

∂

∂ϕ

= exp(iϕ)

(

∂

∂θ
+ i cot θ

∂

∂ϕ

)
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L̂− = L̂x − iL̂y

= i

(

sinϕ
∂

∂θ
+ cot θ cosϕ

∂

∂ϕ

)

−
(

cosϕ
∂

∂θ
− cot θ sinϕ

∂

∂ϕ

)

= −(cosϕ − i sinϕ)
∂

∂θ
+ i cot θ(cosϕ − i sinϕ)

∂

∂ϕ

= exp(−iϕ)

(

− ∂

∂θ
+ i cot θ

∂

∂ϕ

)

,

where use has been made of Euler’s formulae for imaginary exponentials:

exp(±iϕ) = cosϕ ± i sinϕ. (180)

As a further exercise, derive in an elementary way Euler’s formulae (hint: use series ex-
pansions for exponentials and trigonometric functions, see Problem 4.3).

1.5.

L̂2 = L̂2
x + L̂2

y + L̂2
z

= −
{(

y
∂

∂z
− z

∂

∂y

)(

y
∂

∂z
− z

∂

∂y

)

+
(

z
∂

∂x
− x

∂

∂z

)(

z
∂

∂x
− x

∂

∂z

)

+
(

x
∂

∂y
− y

∂

∂x

)(

x
∂

∂x
− y

∂

∂x

)}

(

y
∂

∂z
− z

∂

∂y

)(

y
∂

∂z
− z

∂

∂y

)

= y2 ∂2

∂z2
− y

∂

∂y
− yz

∂2

∂z∂y
− zy

∂2

∂y∂z
− z

∂

∂z
+ z2 ∂2

∂y2
.

By cyclic permutation of (x, y, z), we immediately obtain:

(

z
∂

∂x
− x

∂

∂z

)(

z
∂

∂x
− x

∂

∂z

)

= z2 ∂2

∂x2
− z

∂

∂z
− zx

∂2

∂x∂z
− xz

∂2

∂z∂x
− x

∂

∂x
+ x2 ∂2

∂z2
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(

x
∂

∂y
− y

∂

∂x

)(

x
∂

∂y
− y

∂

∂x

)

= x2 ∂2

∂y2
− x

∂

∂x
− xy

∂2

∂y∂x
− yx

∂2

∂x∂y
− y

∂

∂y
+ y2 ∂2

∂x2
.

By adding the three components altogether:

−L̂2 = x2
(

∂2

∂y2
+ ∂2

∂z2

)

+ y2
(

∂2

∂z2
+ ∂2

∂x2

)

+ z2
(

∂2

∂x2
+ ∂2

∂y2

)

+ · · ·

= x2∇2 + y2∇2 + z2∇2 − x2 ∂2

∂x2
− y2 ∂2

∂y2
− z2 ∂2

∂z2
+ · · ·

= r2∇2 −
(

x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)

−
{(

x2 ∂2

∂x2
+ x

∂

∂x

)

+ xy
∂2

∂x∂y
+ xz

∂2

∂x∂z

+ yx
∂2

∂y∂x
+

(

y2 ∂2

∂y2
+ y

∂

∂y

)

+ yz
∂2

∂y∂z

+ zx
∂2

∂z∂x
+ zy

∂2

∂z∂y
+

(

z2 ∂2

∂z2
+ z

∂

∂z

)}

= r2∇2 − (r · ∇) − (r · ∇)(r · ∇)

= r2∇2 − r
∂

∂r
−

(

r2 ∂2

∂r2
+ r

∂

∂r

)

= r2∇2 − r2
(

∂2

∂r2
+ 2

r

∂

∂r

)

= r2∇2 − r2∇2
r .

Hence:

∇2 = ∇2
r − L̂2

r2
.

1.6.

[L̂x, L̂y] = L̂xL̂y − L̂yL̂x

= −
(

y
∂

∂z
− z

∂

∂y

)(

z
∂

∂x
− x

∂

∂z

)

+
(

z
∂

∂x
− x

∂

∂z

)(

y
∂

∂z
− z

∂

∂y

)
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= −
(

y
∂

∂x
+ yz

∂2

∂z∂x
− xy

∂2

∂z2
− z2 ∂2

∂y∂x
+ zx

∂2

∂y∂z

)

+
(

yz
∂2

∂x∂z
− z2 ∂2

∂x∂y
− xy

∂2

∂z2
+ x

∂

∂y
+ zx

∂2

∂z∂y

)

= x
∂

∂y
− y

∂

∂x
= i

[

−i

(

x
∂

∂y
− y

∂

∂x

)]

= iL̂z.

By cyclic permutation of (x, y, z), it follows:

[L̂y, L̂z] = iL̂x [L̂z, L̂x] = iL̂y .

[L̂2, L̂x] = L̂2L̂x − L̂xL̂
2

= (L̂2
x + L̂2

y + L̂2
z)L̂x − L̂x(L̂

2
x + L̂2

y + L̂2
z)

= L̂yL̂yL̂x + L̂zL̂zL̂x − L̂xL̂yL̂y − L̂xL̂zL̂z.

By adding and subtracting appropriate terms:

[L̂2, L̂x] = L̂yL̂yL̂x − L̂yL̂xL̂y + L̂yL̂xL̂y

+ L̂zL̂zL̂x − L̂zL̂xL̂z + L̂zL̂xL̂z

− L̂xL̂yL̂y + L̂yL̂xL̂y − L̂yL̂xL̂y

− L̂xL̂zL̂z + L̂zL̂xL̂z − L̂zL̂xL̂z

= −L̂y[L̂x, L̂y] + L̂z[L̂z, L̂x]
− [L̂x, L̂y]L̂y + [L̂z, L̂x]L̂z

= −iL̂yL̂z + iL̂zL̂y − iL̂zL̂y + iL̂yL̂z = 0

so that L̂2 commutes with the L̂x -component. By cyclic permutation it follows immedi-
ately:

[L̂2, L̂x] = [L̂2, L̂y] = [L̂2, L̂z] = 0.

1.7.

[L̂z, L̂+] = L̂zL̂+ − L̂+L̂z

= L̂z (L̂x + iL̂y) − (L̂x + iL̂y)L̂z

= [L̂z, L̂x] − i[L̂y, L̂z] = iL̂y − i(iL̂x)

= L̂x + iL̂y = L̂+
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[L̂z, L̂−] = L̂zL̂− − L̂−L̂z

= L̂z(L̂x − iL̂y) − (L̂x − iL̂y)L̂z

= [L̂z, L̂x] + i[L̂y, L̂z] = iL̂y + i(iL̂x)

= −L̂x + iL̂y = −(L̂x − iL̂y) = −L̂−

[L̂2, L̂±] = 0

since L̂± is a linear combination of L̂x and L̂y , and L̂2 commutes with all components
of L̂.

1.8.

L̂+L̂− − L̂z + L̂2
z = (L̂x + iL̂y)(L̂x − iL̂y) − L̂z + L̂2

z

= (L̂2
x + L̂2

y + L̂2
z) − i[L̂x, L̂y] − L̂z

= (L̂2
x + L̂2

y + L̂2
z) − i(iL̂z) − L̂z

= L̂2
x + L̂2

y + L̂2
z

L̂−L̂+ + L̂z + L̂2
z = (L̂x − iL̂y)(L̂x + iL̂y) + L̂z + L̂2

z

= (L̂2
x + L̂2

y + L̂2
z) + i[L̂x, L̂y] + L̂z

= (L̂2
x + L̂2

y + L̂2
z) + i(iL̂z) + L̂z

= L̂2
x + L̂2

y + L̂2
z.

First of all remember that: ∂ cot θ
∂θ

= −1 − cot2 θ .
Then, using the results of Problems 1.2 and 1.4:

L̂+L̂− = exp(iϕ)

(

∂

∂θ
+ i cot θ

∂

∂ϕ

)

exp(−iϕ)

(

− ∂

∂θ
+ i cot θ

∂

∂ϕ

)

= exp(iϕ)

{

∂

∂θ

(

− exp(−iϕ)
∂

∂θ

)

+ ∂

∂θ

(

i cot θ exp(−iϕ)
∂

∂ϕ

)

+ i cot θ
∂

∂ϕ

(

− exp(−iϕ)
∂

∂θ

)

+ i cot θ
∂

∂ϕ

(

i cot θ exp(−iϕ)
∂

∂ϕ

)}

= exp(iϕ)

{

− exp(−iϕ)
∂2

∂θ2
+ i exp(−iϕ)

∂

∂ϕ
(−1 − cot2 θ)
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− exp(−iϕ) cot θ
∂

∂θ
− cot2 θ

(

exp(−iϕ)
∂2

∂ϕ2
− i exp(−iϕ)

∂

∂ϕ

)}

= − ∂2

∂θ2
− i(1 + cot2 θ)

∂

∂ϕ
− cot θ

∂

∂θ
− cot2 θ

∂2

∂ϕ2
+ i cot2 θ

∂

∂ϕ

L̂+L̂− − L̂z + L̂2
z = − ∂2

∂θ2
− cot θ

∂

∂θ
− cot2 θ

∂2

∂ϕ2
− i

∂

∂ϕ
+ i

∂

∂ϕ
− ∂2

∂ϕ2

= −
{

∂2

∂θ2
+ cot θ

∂

∂θ
+ (1 + cot2 θ)

∂2

∂ϕ2

}

= −
(

∂2

∂θ2
+ cot θ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2

)

= −
{

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+ 1

sin2 θ

∂2

∂ϕ2

}

.

1.9. Schmidt orthogonalization of three functions.
If (χ ′

1χ
′
2χ

′
3) is the set of three normalized but non-orthogonal functions having non-

orthogonalities S12, S13, S23, the normalized Schmidt-orthogonalized set (χ1χ2χ3) is given
by:

χ1 = χ ′
1

χ2 = N2(χ
′
2 − S12χ

′
1)

χ3 = N3(χ
′
3 − Aχ2 − Bχ1),

where:

N2 = (1 − S2
12)

−1/2

N3 =
(

1 − S2
12

(1 − S2
12)(1 − S2

13) − (S23 − S12S13)2

)1/2

A = N2(S23 − S12S13), B = S13.

The procedure is straightforward. We shall simply limit ourselves to check orthogonality
and normalization of the transformed functions.

(i) Checking orthogonality

〈χ1|χ2〉 = N2〈χ ′
1|χ ′

2 − S12χ
′
1〉 = N2(S12 − S12) = 0

〈χ1|χ3〉 = N3〈χ1|χ ′
3 − Aχ2 − Bχ1〉 = N3{〈χ ′

1|χ ′
3〉 − B} = N3(S13 − S13) = 0
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〈χ2|χ3〉 = N3〈χ2|χ ′
3 − Aχ2 − Bχ1〉 = N3{〈χ2|χ ′

3〉 − A}
= N3{N2〈χ ′

2 − S12χ
′
1|χ ′

3〉 − A}
= N2N3{(S23 − S12S13) − (S23 − S12S13)} = 0.

(ii) Checking normalization

〈χ2|χ2〉 = N2
2 〈χ ′

2 − S12χ
′
1|χ ′

2 − S12χ
′
1〉

= N2
2 (1 + S2

12 − 2S2
12) = N2

2 (1 − S2
12) = 1

〈χ3|χ3〉 = N2
3 〈χ ′

3 − Aχ2 − Bχ1|χ ′
3 − Aχ2 − Bχ1〉

= N2
3 {1 + A2 + B2 − 2A〈χ ′

3|χ2〉 − 2B〈χ ′
3|χ1〉}

= N2
3 {1 + A2 + B2 − 2AN2〈χ ′

3|χ ′
2 − S12χ

′
1〉 − 2BS13}

= N2
3 {1 + N2

2 (S23 − S12S13)
2 − S2

13 − 2N2
2 (S23 − S12S13)

2}
= N2

3 {(1 − S2
13) − (1 − S2

12)
−1(S23 − S12S13)

2}
= N2

3 (1 − S2
12)

−1{(1 − S2
12)(1 − S2

13) − (S23 − S12S13)
2} = 1.

1.10. The general Schmidt procedure is given by a triangular transformation which in-
volves building the χμs in a stepwise fashion. The recurrence relation expressing χμ, the
μ-th function of the orthonormalized set, in terms of χ ′

μ and χν (ν < μ), is given by (Morse
and Feshbach, 1953):

χμ = χ ′
μ −∑μ−1

ν=1 χνS
′
νμ

√

1 −∑μ−1
ν=1 S′2

νμ

μ = 2,3, · · ·n,

where:

S′
νμ = 〈χν |χ ′

μ〉, Sνμ = 〈χ ′
ν |χ ′

μ〉.

It can be shown that (i) orthogonalizing the power series xn in the interval (−1,1) we
obtain the Legendre polynomials Pn(x) (Hobson, 1965), while (ii) orthogonalizing over
the whole space the set of n Slater functions (Chapters 4 and 11):

χ ′
μ = N ′

μrμRlm(r)ψ0,

we obtain (Magnasco et al., 1992) the set of associated Laguerre polynomials of order
(2l + 2) introduced by Löwdin and Shull (1956). In the expression above N ′

μ is a nor-
malization factor, Rlm(r) a spherical tensor in real form, and ψ0 the 1s STO with orbital
exponent c = 1.
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1.11.1.
〈

ϕ

∣

∣

∣

∣

dψ

dx

〉

=
∫ ∞

−∞
dxϕ∗(x)

dψ(x)

dx

=
∫ ∞

−∞
ϕ∗(x) dψ(x)

u dv

= ϕ∗(x) ψ(x)
∣

∣

∞
−∞ −

∫ ∞

−∞
ψ(x) dϕ∗(x)

u v v du

= −
∫ ∞

−∞
dx

dϕ∗(x)

dx
ψ(x)

= −
∫ ∞

−∞
dx

(

dϕ(x)

dx

)∗
ψ(x)

= −
〈

dϕ

dx

∣

∣

∣

∣

ψ

〉

.

Notice that, if A(x) and B(x) are real functions:

ϕ(x) = A(x) + iB(x) ϕ∗(x) = A(x) − iB(x)

dϕ(x)

dx
= dA

dx
+ i

dB

dx

(

dϕ(x)

dx

)∗
= dA

dx
− i

dB

dx

dϕ∗(x)

dx
= dA

dx
− i

dB

dx

so that:

dϕ∗(x)

dx
=

(

dϕ(x)

dx

)∗
.

1.11.2.
〈

ϕ

∣

∣

∣

∣

i
dψ

dx

〉

=
∫ ∞

−∞
dxϕ∗(x)

(

i
dψ(x)

dx

)

=
∫ ∞

−∞
ϕ∗(x)d(iψ(x))

u dv
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= ϕ∗(x)(iψ(x))
∣

∣

∞
−∞ −

∫ ∞

−∞
(iψ(x))dϕ∗(x)

u v v du

= −
∫ ∞

−∞
dx

dϕ∗(x)

dx
(iψ(x))

=
∫ ∞

−∞
dx

(

i
dϕ(x)

dx

)∗
ψ(x)

=
〈

i
dϕ

dx

∣

∣

∣

∣

ψ

〉

.

1.11.3.

〈

ϕ

∣

∣

∣

∣

d2ψ

dx2

〉

=
∫ ∞

−∞
dxϕ∗(x)

d2ψ(x)

dx2

=
∫ ∞

−∞
ϕ∗(x) d

(

dψ(x)

dx

)

u dv

= ϕ∗(x)
dψ(x)

dx

∣

∣

∣

∣

∞

−∞
−

∫ ∞

−∞
dψ(x)

dx
dϕ∗(x)

u v v du

= −
∫ ∞

−∞
dx

dϕ∗(x)

dx

dψ(x)

dx

= −
∫ ∞

−∞
dx

(

dϕ(x)

dx

)∗
dψ(x)

dx

〈

d2ϕ

dx2

∣

∣

∣

∣

ψ

〉

=
∫ ∞

−∞
dx

(

d2ϕ(x)

dx2

)∗
ψ(x)

=
∫ ∞

−∞
dx

d2ϕ∗(x)

dx2
ψ(x)

=
∫ ∞

−∞
ψ(x) d

(

dϕ∗(x)

dx

)

u dv

= ψ(x)
dϕ∗(x)

dx

∣

∣

∣

∣

∞

−∞
−

∫ ∞

−∞
dϕ∗(x)

dx
dψ(x)

u v v du
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= −
∫ ∞

−∞
dx

(

dϕ(x)

dx

)∗
dψ(x)

dx

=
〈

ϕ

∣

∣

∣

∣

d2ψ

dx2

〉

.

Notice that in all such examples, the term uv
∣

∣

∞
−∞ vanishes for the Q-class properties of

functions ϕ(x),ψ(x) and their first derivatives.

1.11.4.
〈

ϕ

∣

∣

∣

∣

i
∂ψ

∂x

〉

=
∫ ∫ ∫ ∞

−∞
dx dy dzϕ∗(x, y, z)

(

i
∂ψ(x, y, z)

∂x

)

y,z

=
∫ ∫ ∫ ∞

−∞
dy dz ϕ∗ dx(iψ)y,z

u dv

=
∫ ∫ ∞

−∞
dy dz ϕ∗(x, y, z) (iψ(x, y, z))

∣

∣

x=∞
x=−∞

u v

surface integral

−
∫ ∫ ∫ ∞

−∞
dy dz(iψ(x, y, z))

(

∂ϕ∗(x, y, z)

∂x

)

y,z

dx

v du

volume integral

=
∫ ∫ ∫ ∞

−∞
dx dy dz

(

i
∂ϕ(x, y, z)

∂x

)∗

y,z

ψ(x, y, z)

=
〈

i
∂ϕ

∂x

∣

∣

∣

∣

ψ

〉

since the surface integral vanishes at infinity.

1.11.5.

〈

ϕ

∣

∣

∣

∣

∂2ψ

∂x2

〉

=
∫ ∫ ∫ ∞

−∞
dx dy dzϕ∗(x, y, z)

(

∂2ψ(x, y, z)

∂x2

)

y,z

=
∫ ∫ ∫ ∞

−∞
dy dz ϕ∗ dx

(

∂ψ

∂x

)

y,z

u dv
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=
∫ ∫ ∞

−∞
dy dz ϕ∗(x, y, z)

(

∂ψ(x, y, z)

∂x

)

y,z

∣

∣

∣

x=∞
x=−∞

u v

surface integral

−
∫ ∫ ∫ ∞

−∞
dy dz

(

∂ψ(x, y, z)

∂x

)

y,z

(

∂ϕ∗(x, y, z)

∂x

)

y,z

dx

v du

volume integral

= −
∫ ∫ ∫ ∞

−∞
dx dy dz

(

∂ϕ(x, y, z)

∂x

)∗

y,z

(

∂ψ(x, y, z)

∂x

)

y,z

〈

∂2ϕ

∂x2

∣

∣

∣

∣

ψ

〉

=
∫ ∫ ∫ ∞

−∞
dx dy dz

(

∂2ϕ(x, y, z)

∂x2

)∗

y,z

ψ(x, y, z)

=
∫ ∫ ∫ ∞

−∞
dy dz ψ dx

(

∂ϕ∗

∂x

)

y,z

u dv

=
∫ ∫ ∞

−∞
dy dz ψ(x, y, z)

(

∂ϕ∗(x, y, z)

∂x

)

y,z

∣

∣

∣

x=∞
x=−∞

u v

surface integral

−
∫ ∫ ∫ ∞

−∞
dy dz

(

∂ϕ∗(x, y, z)

∂x

)

y,z

(

∂ψ(x, y, z)

∂x

)

y,z

dx

v du

volume integral

= −
∫ ∫ ∫ ∞

−∞
dx dy dz

(

∂ϕ(x, y, z)

∂x

)∗

y,z

(

∂ψ(x, y, z)

∂x

)

y,z

=
〈

ϕ

∣

∣

∣

∣

∂2ψ

∂x2

〉

.

1.12. With reference to Figure 1.6, the spheroidal coordinates are:

μ = rA + rB

R
, ν = rA − rB

R
, ϕ
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with the inverse transformations:

rA = R

2
(μ + ν), rB = R

2
(μ − ν)

z = rA cos θA, x = rA sin θA cosϕ, y = rA sin θA sinϕ.

The Carnot theorem gives:

r2
B = r2

A + R2 − 2RrA cos θA

so that:

cos θA = r2
A − r2

B + R2

2RrA

=
(

R
2

)2[(μ + ν)2 − (μ − ν)2 + 4]
4
(

R
2

)2
(μ + ν)

= μ2 + ν2 + 2μν − μ2 − ν2 + 2μν + 4

4(μ + ν)

= μν + 1

μ + ν

sin θA =
(

1 − cos2 θA

)1/2

=
(

1 − (μν + 1)2

(μ + ν)2

)1/2

=
(

μ2 + ν2 + 2μν − μ2ν2 − 1 − 2μν

(μ + ν)2

)1/2

= [(μ2 − 1)(1 − ν2)]1/2

μ + ν
.

Therefore we obtain:

z = rA cos θA = R

2
(μ + ν)

μν + 1

μ + ν
= R

2
(μν + 1)

x = rA sin θA cosϕ = R

2
(μ + ν)

[(μ2 − 1)(1 − ν2)]1/2

μ + ν
cosϕ

= R

2

[

(μ2 − 1)(1 − ν2)
]1/2

cosϕ



56 1. Basic Principles of Quantum Mechanics

y = rA sin θA sinϕ = R

2
[(μ2 − 1)(1 − ν2)]1/2 sinϕ.

1.13. This result corresponds to the infinitesimal volume of a solid with a curved basis
(r2dr sin θdθdϕ) having infinitesimal sides (dr)(rdθ)(r sin θdϕ), as Figure 1.7 shows.

In fact, we have for the circular sectors with infinitesimal basis the results of Figure 1.8.
Since dθ is infinitesimal, the series expansion for sinx (x small) gives sinx ≈ x.

Figure 1.7 From Cartesian to spherical elementary volume.

Figure 1.8 Circular sectors with infinitesimal bases.
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2.1 INTRODUCTION

Matrices are particularly important for students of applied mathematics, hence for physics,
chemistry and engineering students who use mathematics for practical applications (Mar-
genau, 1961; Frazer et al., 1963; Hohn, 1964).

We want to stress here the following points.

1. Matrices offer a powerful compact algorithm which can be easily implemented on elec-
tronic calculators. With just a boldface symbol A we can represent a square matrix
either of order 2 (4 elements) or order 1000 (106 elements) or more. Matrix multiplica-
tion, too, is well suited for computers.

2. Matrices are related to the necessity of solving systems of linear algebraic equations and
of dealing in a compact notation with linear transformations from one set of variables
to another set. Their algebra is henceforth linear, and so particularly simple.

3. As already said in Chapter 1, matrices in quantum mechanics arise as representatives of
the (linear Hermitian) operators which describe the quantities that can be observed by
experiment. Given a set of basis functions, we can pass from the differential equations of
quantum mechanics to matrix equations which are governed by the algebra of matrices.

57
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2.2 ELEMENTS OF MATRIX ALGEBRA

2.2.1 Definitions

An array of numbers or functions ordered according to m-rows and n-columns is called a
matrix of order m × n and is denoted by A:

A
m×n

=
⎛

⎜

⎝

A11 A12 · · · A1n

A21 A22 · · · A2n

· · · · · · · · · · · ·
Am1 Am2 · · · Amn

⎞

⎟

⎠
. (1)

Short notation:

A = {Aij }, (2)

where Aij is a matrix element, with i = 1,2, . . .m row index, j = 1,2, . . . n column index.
A matrix is rectangular if m �= n, square if m = n. Elements with j = i are called diagonal
elements. A matrix containing only one row or one column is said to be a vector, a row
vector or a column vector, respectively. To any square matrix one can associate a determi-
nant, denoted by |Aij | or |A| = det A, whose elementary properties will be briefly recalled
later. The trace of a square matrix is the sum of the diagonal elements, tr A =∑

i Aii .

2.2.2 Properties of Matrices

1. Two matrices A and B are equal if they have the same order and Aij = Bij for any i, j .
2. Addition and subtraction of matrices (same order):

A ± B = C Cij = Aij ± Bij . (3)

Addition and subtraction of matrices are commutative and associative:

A ± B = ±B + A (4)

A + B + C = (A + B) + C = A + (B + C). (5)

3. Product of a matrix by a (complex) number c:

cA = C Cij = cAij . (6)

Each element of the matrix is multiplied by c.
4. Product of matrices rows by columns:

A
m×n

B
n×p

= C
m×p

Cij =
n
∑

α=1

AiαBαj . (7)
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The number of columns of A must be equal to the number of rows of B (the matrices
are then said conformable). In general, matrix multiplication is not commutative:

AB �= BA. (8)

If:

AB = BA (9)

A and B are said to commute. The difference:

AB − BA = [A,B] (10)

is said to be the commutator of A and B.
The product of more than two matrices is associative:

ABC = (AB)C = A(BC). (11)

Proof:

(ABC)ij =
∑

α

∑

β

AiαBαβCβj =
∑

β

(AB)iβCβj =
∑

α

Aiα(BC)αj .

It may sometimes be convenient to consider a matrix as made of elements that are
themselves matrices. In other words, matrices can be partitioned into submatrices for
which the rules of matrix algebra hold.

We end by recalling that a matrix is said to be of rank r if and only if it has at least
one non-singular square submatrix whose largest order is r .

2.2.3 Properties of Determinants

Let |A| be a determinant of order n (it contains n rows and n columns). We recall that if
Aij are numbers, the main difference between |A| and A is that |A| is a number (a scalar
quantity) whereas A is an operator (which transforms vectors). We now state without proof
some properties of determinants (Aitken, 1958).

1. Expansion of |A| according to the elements of a row or a column:

|A| =

∣

∣

∣

∣

∣

∣

∣

A11 A12 · · · A1n

A21 A22 · · · A2n

· · · · · · · · · · · ·
An1 An2 · · · Ann

∣

∣

∣

∣

∣

∣

∣

=
n
∑

j=1

Aijaij =
n
∑

i=1

Aijaij (12)

is the elementary expansion of |A| according to elements of the i-th row (i = fixed)
or the j -th column (j = fixed). If we denote by |Aij | the minor of |A|, a determinant
of order (n − 1) obtained from |A| by deleting row i and column j , we call aij =
(−1)i+j |Aij | the corresponding signed minor (or cofactor) of |A|. We notice that the
expansion of a determinant of order n gives n! terms.
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2. Expansion of |A| according to Cauchy:

|A| = Ahkahk −
∑

i

∑

j

AikAhjahk,ij i �= h, j �= k, (13)

where ahk (a determinant of order n−1) is the cofactor of Ahk and ahk,ij (a determinant
of order n − 2) the cofactor of Aij in ahk .

3. Expansion of |A| according to Laplace: it is an expansion of |A| according to minors
from a certain m rows and their cofactors from the remaining n − m rows, which was
first given by Laplace in 1772.

As a simple example, the Laplace expansion according to the first two and the last
two rows of a determinant of order 4 will be:

|A1B2C3D4| = |A1B2| · |C3D4| − |A1C2| · |B3D4|
+ |A1D2| · |B3C4| + |B1C2| · |A3D4|
− |B1D2| · |A3C4| + |C1D2| · |A3B4|, (14)

where the determinants have been denoted through the elements of their main diagonal.
4. Product of determinants: for two square matrices A and B (order n):

|AB| = |A| · |B| (15)

as can be shown using matrix partitioning to define suitable matrices of order 2n:

(

1 A
0 1

)(

A 0
−1 B

)

=
(

0 AB
−1 B

)

and the Laplace expansion of the resulting determinants according to the first n rows:

∣

∣

∣

∣

1 A
0 1

∣

∣

∣

∣

·
∣

∣

∣

∣

A 0
−1 B

∣

∣

∣

∣

=
∣

∣

∣

∣

0 AB
−1 B

∣

∣

∣

∣

1 · {|A| · |B|} = |AB|.

Similarly:

|ABC| = |A| · |BC| = |A| · |B| · |C| (16)

and so on.
5. Product of |A| by a (complex) number c:

c|A| (17)

only one row (or column) of |A| will be multiplied by the number c.
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6. Interchange of rows or columns: a determinant |A| changes sign upon interchanging
any two rows or columns. The determinant is unchanged upon interchanging all rows
and columns.

7. If all the elements of a row or column are zero, the determinant vanishes.
8. If two rows or two columns are identical, the determinant vanishes.

2.2.4 Special Matrices 1

1. The null matrix (square or rectangular) is a matrix whose elements are all zero:

0
m×n

=
⎛

⎜

⎝

0 0 · · · 0
0 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · 0

⎞

⎟

⎠
. (18)

For matrices of the same order:

0 + A = A + 0 = A, 0A = A0 = 0. (19)

2. The diagonal matrix is a square matrix which has non-zero elements only along the
diagonal1:

�
n×n

=
⎛

⎜

⎝

λ1 0 · · · 0
0 λ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · λn

⎞

⎟

⎠
λij = λiδij , (20)

where δij is the Kronecker delta.
3. A scalar matrix is a diagonal matrix whose diagonal elements are all equal to a number

λ:

� =
⎛

⎜

⎝

λ 0 · · · 0
0 λ · · · 0
· · · · · · · · · · · ·
0 0 · · · λ

⎞

⎟

⎠
= λ1. (21)

4. The identity matrix is a scalar matrix whose diagonal elements are all 1:

1
n×n

=
⎛

⎜

⎝

1 0 · · · 0
0 1 · · · 0
· · · · · · · · · · · ·
0 0 · · · 1

⎞

⎟

⎠
1ij = δij . (22)

For matrices of the same order:

A1 = 1A = A. (23)

1Take care that in Problems 2.15, 2.16, 2.17 we use λ as the ratio of coefficients.
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5. Consider now a square matrix A of order n:

A
n×n

= {Aij }. (24)

We can then construct from A the following matrices:

• B = A∗ Bij = A∗
ij complex conjugate. (25)

The complex conjugate is the matrix obtained by taking the complex conjugate (in
short, starring) of all elements of A.

• B = Ã Bij = Aji transpose. (26)
The transpose is the matrix obtained by interchanging rows by columns.

• B = A† = (˜A∗) Bij = A∗
ji adjoint. (27)

The adjoint is the matrix obtained by starring and transposing all elements of A.
• B = A−1 inverse. (28)

The inverse matrix is such that:

A−1A = AA−1 = 1.

A−1 exists provided A is non-singular, i.e.

det A = |A| �= 0. (29)

Between A and the transpose of the matrix of its cofactors (signed minors) ã there exists
the relation:

Aã = ãA = 1 · det A (30)

from which follows the elementary definition of the inverse matrix:

A−1 = (det A)−1ã Bij = (det A)−1ãij . (31)

Let A = (m × n) and B = (n × m) be rectangular matrices, then if:

A
m×n

B
n×m

= 1m (32)

B is said the right inverse,

B
n×m

A
m×n

= 1n (33)

B is said the left inverse of matrix A. For a square matrix (m = n), the right and left
inverse coincide and we are left with just a unique inverse A−1.

Notice that the operations symbolized by ∗, ˜, †, −1 are such that each of them
when performed twice restores the original matrix.
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6. Properties of products:

˜AB = B̃Ã (AB)† = B†A† (AB)−1 = B−1A−1, (34)

namely, the transpose of a matrix product is the product of the individual transposed
matrices with the reverse order of factors, and so on.

Proof:

AB = C Cij =
∑

α

AiαBαj

(˜C)ij = Cji =
∑

α

AjαBαi

(B̃Ã)ij =
∑

α

(B̃)iα(Ã)αj =
∑

α

BαiAjα

so that:

(C̃)ij = (B̃Ã)ij �⇒ C̃ = B̃Ã.

2.2.5 Special Matrices 2

1. Consider a square matrix A of order n. Then, if:

A = A∗ Ã A† (35)

A is said to be real, symmetric, Hermitian (or self-adjoint), respectively.
2. If:

A−1 = Ã A† (36)

A is said to be orthogonal or unitary, respectively.
A typical orthogonal matrix is the matrix describing rotation of an angle α around

an axis perpendicular to the plane where rotation occurs:

A(α) =
(

cosα sinα

− sinα cosα

)

˜A(α) =
(

cosα − sinα

sinα cosα

)

= A−1. (37)

In this case, matrix A(α) describes an anticlockwise (positive) rotation of α around the
z-axis, and it is immediately evident that det A = |A| = 1.

3. For Jacobian {∂ui/∂xj }, Hessian {∂2u/∂xi∂xj }, Wronskian {di−1uj/dxi−1} matrices
and their determinants the reader is referred to Aitken (1958, pp. 128–132).
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4. Further properties of trace.
As already said at the beginning of this Chapter, the trace of a square matrix A is the

sum of the elements of the main diagonal:

tr A =
n
∑

i=1

Aii. (38)

It has the remarkable property that the trace of a product of matrices is invariant (i.e.
does not change) under a cyclic permutation of its factors:

tr AB = tr BA
(39)

tr ABC = tr CAB = tr BCA

but:

tr ABC �= tr BAC.

2.3 MATRIX EIGENVALUE PROBLEM

2.3.1 Systems of Linear Equations

A system of linear inhomogeneous algebraic equations in the n unknowns c1, c2, . . ., cn:

⎧

⎪

⎨

⎪

⎩

A11c1 + A12c2 + · · · + A1ncn = b1
A21c1 + A22c2 + · · · + A2ncn = b2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
An1c1 + An2c2 + · · · + Anncn = bn

(40)

can be easily written in matrix form as:

A
n×n

c
n×1

= b
n×1

(41)

if we introduce the matrices:

A =
⎛

⎜

⎝

A11 A12 · · · A1n

A21 A22 · · · A2n

· · · · · · · · · · · ·
An1 An2 · · · Ann

⎞

⎟

⎠
square matrix of coefficients (42)

c =

⎛

⎜

⎜

⎝

c1
c2
...

cn

⎞

⎟

⎟

⎠

column vector
of unknowns

b =

⎛

⎜

⎜

⎝

b1
b2
...

bn

⎞

⎟

⎟

⎠

column vector of
inhomogeneous
terms

(43)
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and adopt matrix multiplication rules.
Matrix equation (41) can be interpreted as a linear transformation on the vectors c, which

are transformed into vectors b under the action of matrix A. If A−1 exists (det A �= 0), the
solution of the system of linear equations is:

c = A−1b (44)

which is nothing but the well-known Cramer’s rule. In fact, let us look for the sake of
simplicity to the case n = 2:

c1 = (det A)−1

∣

∣

∣

∣

b1 A12
b2 A22

∣

∣

∣

∣

= b1A22 − b2A12

det A

c2 = (det A)−1

∣

∣

∣

∣

A11 b1
A21 b2

∣

∣

∣

∣

= b2A11 − b1A21

det A

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

Cramer (45)

det A = |A| = A11A22 − A12A21 �= 0.

From the definition (31) for the inverse A−1 it follows:

A−1 = (det A)−1
˜

(

A22 −A21
−A12 A11

)

= (det A)−1
(

A22 −A12
−A21 A11

)

(46)

and therefore (44) gives:

c =
(

c1
c2

)

= (det A)−1
(

A22 −A12
−A21 A11

)(

b1
b2

)

= (det A)−1
(

A22b1 − A12b2
−A21b1 + A11b2

)

(47)

and the results of Cramer’s rule are recovered.

2.3.2 Eigenvalue Equation

Particular importance has the case where b is proportional to c through a number λ:

Ac = λc (48)

which is known as the eigenvalue equation for the square matrix A. If we write:

(A − λ1)c = 0, (49)

where (A − λ1) is called the characteristic matrix of A, we obtain a system of linear ho-
mogeneous algebraic equations in the unknowns c, which is known to have non-trivial
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solutions (i.e. solutions different from c1 = c2 = · · · = cn = 0) if and only if the determi-
nant of the coefficients vanishes:

det(A − λ1) =

∣

∣

∣

∣

∣

∣

∣

A11 − λ A12 · · · A1n

A21 A22 − λ · · · A2n

· · · · · · · · · · · ·
An1 An2 · · · Ann − λ

∣

∣

∣

∣

∣

∣

∣

= 0. (50)

Equation (50) is known as the characteristic equation (or, from astronomy, secular equa-
tion) of matrix A. Expanding the determinant we find a polynomial of degree n in λ called
the characteristic polynomial of A:

Pn(λ) = det(A − λ1) = a0 + a1λ + · · · + an−1λ
n−1 + anλ

n, (51)

the equation

Pn(λ) = 0 (52)

being an algebraic equation of degree n having n roots. If � is the diagonal matrix of the
eigenvalues, (52) can be written in the alternative way:

Pn(λ) = (λ1 − λ)(λ2 − λ) · · · (λn − λ) = 0 (53)

and, on comparing coefficients of the different powers of λ, we find:

a0 = λ1λ2 · · ·λn = det�, · · · , an−1 = (−1)n−1
∑

i

λi, an = (−1)n (54)

and, in general:

ak = (−1)k
n
∑

i=1

M
(n−k)
ii k ≤ n, (55)

where M
(n−k)
ii is the principal minor (i.e. along the diagonal) of order n − k of matrix �.

As already said, the secular equation Pn(λ) = 0 is an algebraic equation of degree n in
λ, which upon solution gives:

{

λ1, λ2, · · ·λn n roots (the eigenvalues of A)

c1, c2, · · · cn n column coefficients (the eigenvectors of A).
(56)

For a square matrix of order n, we obtain n eigenvalues λi and n eigenvectors ci (i =
1,2, · · · , n). The full eigenvalue problem can be treated in a compact way by introducing
two square matrices of order n:

�
n×n

=
⎛

⎜

⎝

λ1 0 · · · 0
0 λ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · λn

⎞

⎟

⎠
(57)
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C = (c1|c2| · · · |cn) =

⎛

⎜

⎜

⎝

c11
c21
...

cn1

∣

∣

∣

∣

∣

∣

∣

∣

c12
c22
...

cn2

∣

∣

∣

∣

∣

∣

∣

∣

· · ·
· · ·
· · ·
· · ·

∣

∣

∣

∣

∣

∣

∣

∣

c1n

c2n
...

cnn

⎞

⎟

⎟

⎠

, (58)

λ1 λ2 · · · λn

where � is the diagonal matrix collecting all the eigenvalues along the diagonal, and C
the row matrix of the eigenvectors (a square matrix on the whole), where each column
corresponds to a given eigenvalue (the column index). The full eigenvalue problem for the
square matrix A is hence given by the single matrix equation:

AC = C�, (59)

where each matrix is a square matrix of order n. Equation (59) replaces the n eigenvalue
equations (one for each eigenvalue):

Ac1 = λ1c1, Ac2 = λ2c2, · · · , Acn = λncn. (60)

If det C �= 0, C−1 exists, and the square matrix A is brought to diagonal form through the
similarity transformation with the complete matrix of its eigenvectors:

C−1AC = �. (61)

If A is Hermitian:

A = A† (62)

it is possible to show that the eigenvalues are real numbers and the eigenvectors are ortho-
normal, namely:

c†
μcν = δμν (63)

so that:

C†C = CC† = 1 �⇒ C−1 = C†. (64)

The complete matrix of the eigenvectors is now a unitary matrix, and therefore:

C†AC = � (65)

so that any Hermitian matrix A can be brought to diagonal form by a unitary transfor-
mation with the complete matrix of its eigenvectors. The name Hermitian arises from the
French mathematician Charles Hermite (1822–1901), who is also known for his Hermite
Polynomials which occur in the solution of the Schroedinger equation for the harmonic
oscillator (Eyring et al., 1944).
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2.3.3 Pseudoeigenvalue Equation

The eigenvalue equation (48) can be generalized to the case of a non-orthogonal metric
M = 1 + S (S �= 0 describes non-orthogonality):

Ac = λMc (66)

which is known as the pseudoeigenvalue equation for the Hermitian matrix A, giving the
pseudosecular equation:

|A − λM| = 0. (67)

The full pseudoeigenvalue equation is then:

AC = MC�, (68)

and the problem is to find a matrix of eigenvectors C such that matrices A and M are
simultaneously diagonalized, with M brought to identity:

C†AC = � C†MC = 1. (69)

It is worth noting that matrix C is no longer unitary. It is obvious from (69) that C′ =
M1/2C is unitary, so that the full pseudoeigenvalue equation is equivalent to the ordinary
eigenvalue equation:

A′C′ = C′�′ (70)

for the symmetrically transformed matrix:

A′ = M−1/2AM−1/2 (71)

having:

�′ = � C′ = M1/2C.

same eigenvalues transformed eigenvectors
(72)

This can be immediately proved upon multiplication by M−1/2 of both members of (68)
and noting that M−1/2M1/2 = 1.

If A = χ†Âχ is the matrix representative of the Hermitian operator Â in the non-
orthogonal basis χ (with metric M = χ†χ ), equation (70) can be interpreted as the full
eigenvalue equation for the operator Â in the Löwdin symmetrically orthogonalized set
(see Problem 2.9):

χ ′ = χM−1/2. (73)
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In fact, we have:

A′ = χ ′†Âχ ′ = M−1/2χ†ÂχM−1/2 = M−1/2AM−1/2 (74)

M′ = χ ′†χ ′ = M−1/2χ†χM−1/2 = M−1/2MM−1/2 = 1. (75)

It will be shown later in Chapter 5 that, for Â = Ĥ , � = E , the pseudoeigenvalue equation
(66) arises as necessary condition in the minimization of the total energy with respect to
variations in the linear coefficients in the Ritz method for a non-orthogonal basis set.

2.4 FUNCTIONS OF HERMITIAN MATRICES

2.4.1 Analytic Functions

For A = A†, from:

C†AC = � (76)

we obtain the reverse transformation:

A = C�C†. (77)

Similarly:

A2 = AA = (C�C†)(C�C†) = C�2C† (78)

An = AA · · ·A = C�nC†. (79)

In this way, we can define any analytic function (i.e. a function expressible as a power
series) of the Hermitian matrix A in the form:

F(A) = CF(�)C†, (80)

where F specifies the kind of function (inverse, square root, exponential, etc.).
Examples are:

A−1 = C�−1C†

A1/2 = C�1/2C†

provided A is positive definite (positive eigenvalues). In fact, it is easily proved that:

AA−1 = AC�−1C† = C��−1C† = CC† = 1

A−1A = C�−1C†A = C�−1�C† = CC† = 1
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(from: A† = A, �† = �, AC = C�, C†A = �C†)

A1/2A1/2 = C�1/2C†C�1/2C† = C�C† = A.

2.4.2 Canonical Form

Let us introduce the square matrix of order n:

Aμ
n×n

= cμ
n×1

c†
μ

1×n

(81)

as the projector corresponding to the eigenvalue λμ. The projectors have the properties:

AμAν = Aμδμν (ν = μ idempotency, ν �= μ mutual exclusivity) (82)

n
∑

μ=1

Aμ = 1 (completeness or resolution of the identity). (83)

Then:

A =
n
∑

μ=1

λμAμ (84)

is called the canonical form of the Hermitian matrix A. In fact, from the ν-th eigenvalue
equation for A, we obtain:

Acν = λνcν (85)

(

∑

μ

λμAμ

)

cν =
∑

μ

λμcμ c†
μcν
︸︷︷︸

=
∑

μ

λμcμδμν = λνcν. (86)

For a function F of the Hermitian matrix A:

F(A) =
n
∑

μ=1

F(λμ)Aμ (87)

is the canonical form for the analytic function F(A).

2.4.3 Lagrange Interpolation Formula

The interpolation formula due to Lagrange:

F(A) =
n
∑

μ=1

F(λμ)

∏

ν �=μ(A − λν1)
∏

ν �=μ(λμ − λν)
(88)
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makes it possible to calculate any analytic function of a square matrix A. It is not lim-
ited to symmetric matrices and, at variance with the canonical form, makes use only of
eigenvalues and positive powers (up to order n − 1) of A.

By comparing the canonical form of A with that of Lagrange interpolation, it is seen
that:

Aμ = cμc†
μ =

∏

ν �=μ(A − λν1)
∏

ν �=μ(λμ − λν)
(89)

so that the matrix corresponding to the μ-th projector can be expressed in terms of a poly-
nomial matrix of order n − 1 in A with numerical coefficients which depend only on the
eigenvalues of A. Now let A be a 2 × 2 symmetrical matrix A with eigenvalues λ1 and λ2
(see Problem 2.3):

A =
(

α1 β

β α2

)

.

Then:

F(A) = F(λ1)
A − λ21
λ1 − λ2

+ F(λ2)
A − λ11
λ2 − λ1

= F(λ1)(A − λ21) − F(λ2)(A − λ11)

λ1 − λ2
= p1 + qA (90)

with:

p = λ1F(λ2) − λ2F(λ1)

λ1 − λ2
q = F(λ1) − F(λ2)

λ1 − λ2
. (91)

2.4.4 Cayley–Hamilton Theorem

This theorem states that any square matrix A does satisfy its own characteristic equation:

Pn(A) = a01 + a1A + a2A2 + · · · + anAn = 0. (92)

An important application of this theorem concerns the possibility of calculating positive or
negative n-th powers of A in terms of linear combinations of 1, A, A2, · · ·, An−1.

Proof. We first observe that a matrix whose elements are polynomials of degree n in a
variable λ can always be written as a polynomial in λ with matrix coefficients. As an
example:

(

λ2 − 1 2λ − 2 0
2λ − 2 λ2 − 2λ + 1 0

0 0 λ2 − 5

)
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=
(−1 −2 0

−2 1 0
0 0 −5

)

+
(0 2 0

2 −2 0
0 0 0

)

λ +
(1 0 0

0 1 0
0 0 1

)

λ2.

Consider now the expression for the inverse of the characteristic matrix of A:

(A − λ1)( ˜a − λ1) = |A − λ1|1.

The transpose of the matrix of cofactors, ( ˜a − λ1), is a matrix whose elements are poly-
nomials of order (n − 1) in λ, namely:

( ˜a − λ1) = B = B0 + B1λ + B2λ
2 + · · · + Bn−1λ

n−1

so that

(A − λ1)(B0 + B1λ + B2λ
2 + · · · + Bn−1λ

n−1)

= (a0 + a1λ + a2λ
2 + · · · + an−1λ

n−1 + anλ
n)1

is an identity in λ. By identifying coefficients of different powers in λ:

λ0 AB0 = a01 1
λ AB1 − B0 = a11 A
λ2 AB2 − B1 = a21 A2

· · ·
λn−1 ABn−1 − Bn−2 = an−11 An−1

λn −Bn−1 = an1 An.

By multiplying each term on the left by 1, A, A2, · · ·, An−1, An, respectively, and adding,
we find the Cayley–Hamilton theorem (92).

2.5 PROBLEMS 2

2.1. Show that a Hermitian matrix A has real eigenvalues.

Answer:
If A† = A then �† = �.

Hint:
Use the μ-th eigenvalue equation for the Hermitian matrix A and its adjoint.

2.2. Show that a Hermitian matrix A has orthonormal eigenvectors, i.e. that C is unitary.

Answer:
If A† = A C†AC = � C†C = CC† = 1.
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Hint:
Use the full eigenvalue equation for matrix A and its adjoint considering that A† = A and
�† = �.

2.3. Solve the complete 2 × 2 eigenvalue problem for the Hermitian matrix:

A =
(

α1 β

β α2

)

,

where, for the time being, we shall assume that α1, α2, β are all real negative quantities
(as in the Hamiltonian matrix)2. Show that the complete matrix C of the eigenvectors is a
unitary matrix.

Answer:
Let

a =
(

	 + (α2 − α1)

2	

)1/2

, b =
(

	 − (α2 − α1)

2	

)1/2

	 = {(α2 − α1)
2 + 4β2}1/2 > 0.

Then:

2λ1 = (α1 + α2) − 	 c1 =
(

a

b

)

2λ2 = (α1 + α2) + 	 c2 =
(−b

a

)

so that:

C = (c1c2) =
(

a −b

b a

)

C†C = C†C = 1.

Hint:
Solve first the quadratic secular equation for A, next the system of homogeneous linear
equations for each eigenvalue in turn, taking into account the normalization condition for
the coefficients.

2.4. Show by actual calculation that the Hermitian matrix A is diagonalized by the unitary
transformation with the complete matrix of its eigenvectors.

2If all matrix elements are positive (as in the metric matrix), we must change b into −b in the expressions of
c1 and c2, which implies the interchanging of signs in the off-diagonal elements of the projectors A1 and A2.
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Answer:
C†AC = �.

Hint:
Use properties of a, b found in Problem 2.3.

2.5. Find the projectors for the Hermitian matrix A (α1, α2, β < 0) and verify its canonical
form.

Answer:

A1 =
(

a2 ab

ab b2

)

A2 =
(

b2 −ab

−ab a2

)

λ1A1 + λ2A2 = A.

Hint:
Follow the definitions and make use of the properties of a, b found in Problem 2.3.

2.6. Find the inverse of the Hermitian matrix A through its canonical form.

Answer:

A−1 = (det A)−1
(

α2 −β

−β α1

)

.

Hint:
Use:

A−1 = λ−1
1 A1 + λ−1

2 A2

and some results of Problems 2.3 and 2.5.

2.7. Find the square root of the Hermitian matrix A, provided it is positive definite (posi-
tive eigenvalues):

A =
(

α1 β

β α2

)

α1, α2, β > 0 λ1, λ2 > 0.

Answer:

A1/2 =
(

Aa2 + Bb2 −(A − B)ab

−(A − B)ab Ab2 + Ba2

)
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where (see Problem 2.3):

A = λ
1/2
1 , B = λ

1/2
2 , a =

(

	 + (α2 − α1)

2	

)1/2

,

b =
(

	 − (α2 − α1)

2	

)1/2

.

Hint:
Use the canonical form of matrix A taking into account previous footnote 2:

A1/2 = λ
1/2
1 A1 + λ

1/2
2 A2.

2.8. Find the inverse of the square root of the positive definite Hermitian matrix A:

A =
(

α1 β

β α2

)

α1, α2, β > 0 λ1, λ2 > 0.

Answer:

A−1/2 = 1

AB

(

Ab2 + Ba2 (A − B)ab

(A − B)ab Aa2 + Bb2

)

A,B defined in Problem 2.7.

Hint:
Use the canonical form of matrix A taking into account footnote 2:

A−1/2 = λ
−1/2
1 A1 + λ

−1/2
2 A2.

2.9. Show that if two Q-class functions χ1 and χ2 are normalized but not orthogonal,
with 〈χ1|χ2〉 = 〈χ2|χ1〉 = S, the functions can be orthogonalized by a Löwdin symmetrical
transformation.

Answer:
Let χ = (χ1χ2) be the row vector of the basis functions. Then the metric (the matrix of the
scalar products) is:

M = χ†χ =
(

1 S

S 1

)

a positive definite matrix with λ1, λ2 > 0. Then, the Löwdin symmetrically orthogonalized
set is given by:

χ ′ = χM−1/2.

Hint:
Construct the inverse of the square root of the positive definite metric matrix M as done in
Problem 2.8, taking α1 = α2 = 1, β = S.
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2.10. Find exp(A) and exp(−A).

Answer:

exp(A) =
(

a2 exp(λ1) + b2 exp(λ2) ab[exp(λ1) − exp(λ2)]
ab[exp(λ1) − exp(λ2)] b2 exp(λ1) + a2 exp(λ2)

)

exp(−A) =
(

a2 exp(−λ1) + b2 exp(−λ2) ab[exp(−λ1) − exp(−λ2)]
ab[exp(−λ1) − exp(−λ2)] b2 exp(−λ1) + a2 exp(−λ2)

)

,

where λ1, λ2 are the eigenvalues of A, and a, b are defined in Problem 2.7.

2.11. Find the inverse of matrix A according to the Lagrange formula.

Answer:

A−1 = (det A)−1
(

α2 −β

−β α1

)

.

Hint:
Calculate coefficients p,q for F = inverse.

2.12. Find the square root of the positive definite Hermitian matrix A according to the
Lagrange formula.

Answer:

A1/2 =
(

Aa2 + Bb2 −(A − B)ab

−(A − B)ab Ab2 + Ba2

)

,

where A,B,a, b were defined in Problem 2.7.

Hint:
Calculate coefficients p,q for F = (· · ·)1/2.

2.13. Find the square root for the unsymmetrical matrix:

A =
(

3 −4
1 −1

)

.

Answer:

A1/2 =
(

2 −2
1
2 0

)

or A1/2 =
(−2 2

− 1
2 0

)

.
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Hint:
Since matrix A cannot be diagonalized by the usual techniques (� is the identity matrix),
we must turn to solving the system of non-linear equations resulting from the definition:

A1/2A1/2 = A.

2.14. Find A−1 using the Cayley–Hamilton theorem.

2.15. Solve the complete 2 × 2 pseudoeigenvalue problem for the Hermitian matrices:

H =
(

α1 β

β α2

)

M =
(

1 S

S 1

)

,

where we assume that α1, α2, β < 0 and S > 0.

Answer:
Let:

A = −(1 − S2)−1/2(λ + S), B = (1 − S2)−1/2(1 + λS)

λ =
(

	 − (α2 − α1)

	 + (α2 − α1)

)1/2( |β − α1S|
|β − α2S|

)1/2

	 = {

(α2 − α1)
2 + 4(β − α1S)(β − α2S)

}1/2
> 0.

Then:

2(1 − S2)ε1 = (α1 + α2 − 2βS) − 	, c1 = (1 + λ2 + 2λS)−1/2
(

1
λ

)

2(1 − S2)ε2 = (α1 + α2 − 2βS) + 	, c2 = (1 + λ2 + 2λS)−1/2
(

A

B

)

so that:

C = (c1c2) = (1 + λ2 + 2λS)−1
(

1 A

λ B

)

.

Hint:
Same as for Problem 2.3, taking into account non-orthogonality.

2.16. Show by direct matrix multiplication that, for the 2 × 2 pseudoeigenvalue problem:

C†MC = 1

so that C′ = M1/2C is unitary.
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Hint:
Use results and properties found in Problem 2.15.

2.17. Show by direct matrix multiplication that, for the 2 × 2 pseudoeigenvalue prob-
lem, matrix H is brought to diagonal form through a transformation with the non-unitary
matrix C:

C†HC = E .

Hint:
Use results and properties found in Problem 2.15, and the fact that best λ diagonalizes the
matrix representative of the Hermitian operator Ĥ over the MO basis resulting from the
Ritz method.

2.6 SOLVED PROBLEMS

2.1. Real eigenvalues.
Consider the μ-th eigenvalue equation for the Hermitian matrix A:

Acμ = λμcμ.

Multiply both members on the left by the adjoint eigenvector c†
μ:

c†
μAcμ = λμc†

μcμ.

Taking the adjoint of both members:

c†
μA†cμ = λ∗

μc†
μcμ

namely, since A† = A:

c†
μAcμ = λ∗

μc†
μcμ.

Subtracting the corresponding equations, we obtain:

0 = (λ∗
μ − λμ)c†

μcμ

so that, since c†
μcμ �= 0,

λ∗
μ − λμ = 0 �⇒ λ∗

μ = λμ

and the eigenvalues are real.
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Since this is true for all eigenvalues of A, we thereby obtain:

�† = �.

If c†
μcμ = 1, the eigenvectors are normalized to 1.

2.2. Orthogonal eigenvectors.
Consider the complete eigenvalue equation for the Hermitian matrix A:

AC = C�.

Multiplying both members on the left by C−1, we obtain:

C−1AC = �.

Taking the adjoint of the last equation:

C†A†(C−1)† = �†

where, since A† = A and �† = �:

C†A(C−1)† = �.

Comparing with the previous equation for �, we see that:

C−1 = C†, C†C = CC† = 1

and C is a unitary matrix of orthonormal eigenvectors.

2.3. The complete 2 × 2 eigenvalue problem.
Let the Hermitian (symmetric) matrix A be:

A =
(

α1 β

β α2

)

,

where we assume that α1, α2, β < 0, as useful in applications (e.g. Hückel theory). We
construct the secular equation:

P2(λ) =
∣

∣

∣

∣

α1 − λ β

β α2 − λ

∣

∣

∣

∣

= (α1 − λ)(α2 − λ) − β2 = 0.

Solution of the resulting quadratic equation

λ2 − (α1 + α2)λ + (α1α2 − β2) = 0
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gives two real roots:

2λ1 = (α1 + α2) − 	 2λ2 = (α1 + α2) + 	

	 = {

(α2 − α1)
2 + 4β2}1/2

> 0

having the properties:

λ1 + λ2 = α1 + α2 λ2 − λ1 = 	 λ1λ2 = α1α2 − β2 = det A.

We now solve for the eigenvectors, by introducing each eigenvalue in turn in the original
system of linear homogeneous equations. We see that the solution of the system only gives
the ratio of the coefficients, so that we introduce the auxiliary condition of normalization
which will give normalized eigenvectors.

(i) First eigenvalue λ1.

{

(α1 − λ1)c1 + βc2 = 0

c2
1 + c2

2 = 1

(

c2

c1

)

1
= λ1 − α1

β
= −	 − (α2 − α1)

2β
= 	 − (α2 − α1)

2|β|

=
(

	 − (α2 − α1)

	 + (α2 − α1)

)1/2

> 0

since:

	2 = (α2 − α1)
2 + 4β2

4β2 = [	 − (α2 − α1)][	 + (α2 − α1)]
2|β| = {[	 − (α2 − α1)][	 + (α2 − α1)]}1/2.

From the normalization condition for the coefficients it follows:

c2
1

{

1 +
(

c2

c1

)2

1

}

= c2
1

2	

	 + (α2 − α1)
= 1.

Hence we have for the first eigenvector:

c11
↑

refers to the
first eigenvalue

=
(

	 + (α2 − α1)

2	

)1/2

, c21
↑

=
(

	 − (α2 − α1)

2	

)1/2

.
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(ii) Second eigenvalue λ2.
To get the eigenvector corresponding to the second eigenvalue, we simply interchange

1 → 2 into the homogeneous system:

{

(α2 − λ2)c2 + βc1 = 0

c2
1 + c2

2 = 1

(

c1

c2

)

2
= λ2 − α2

β
= 	 + (α1 − α2)

2β
= −	 + (α1 − α2)

2|β|

= −	 − (α2 − α1)

2|β| = −
(

	 − (α2 − α1)

	 + (α2 − α1)

)1/2

< 0

so that we have the important relation:

(

c1

c2

)

2
= −

(

c2

c1

)

1
.

From the normalization condition, we get:

c2
2

{

1 +
(

c1

c2

)2

2

}

= c2
2

2	

	 + (α2 − α1)
= 1

giving for the second eigenvector:

c22
↑

refers to the
second eigen-
value

=
(

	 + (α2 − α1)

2	

)1/2

, c12
↑

= −
(

	 − (α2 − α1)

2	

)1/2

.

Hence, the unitary matrix diagonalizing A will be:

C = (c1|c2) = (2	)−1/2
( [	 + (α2 − α1)]1/2

[	 − (α2 − α1)]1/2

∣

∣

∣

∣

−[	 − (α2 − α1)]1/2

[	 + (α2 − α1)]1/2

)

.

In short:

C =
(

a −b

b a

)

a =
(

	 + (α2 − α1)

2	

)1/2

, b =
(

	 − (α2 − α1)

2	

)1/2

.

We now verify that matrix C is unitary:

C†C =
(

a b

−b a

)(

a −b

b a

)

=
(

a2 + b2 0
0 b2 + a2

)

= 1
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since:

a2 + b2 = 	 + (α2 − α1)

2	
+ 	 − (α2 − α1)

2	
= 1

CC† =
(

a2 + b2 0
0 b2 + a2

)

= 1

so that C is a unitary matrix.
For α2 − α1 = 0, 	 = 2|β|, so that:

a = b = 1√
2

C =
( 1√

2
− 1√

2
1√
2

1√
2

)

, C† =
( 1√

2
1√
2

− 1√
2

1√
2

)

.

2.4. We must show by direct calculation that the Hermitian matrix A is diagonalized by
the unitary transformation with the complete matrix of its eigenvectors:

A =
(

α1 β

β α2

)

C =
(

a −b

b a

)

C† =
(

a b

−b a

)

.

Multiplication rows by columns gives:

C†AC =
(

a2α1 + b2α2 + 2abβ ab(α2 − α1) + (a2 − b2)β

ab(α2 − α1) + (a2 − b2)β b2α1 + a2α2 − 2abβ

)

.

We first notice that:

a2 = 	 + (α2 − α1)

2	
b2 = 	 − (α2 − α1)

2	

a2 + b2 = 1 a2 − b2 = α2 − α1

	

ab =
(

	2 − (α2 − α1)
2

4	2

)1/2

= |β|
	

= − β

	
.

Then we have for the matrix elements:
11-element:

a2α1 + b2α2 + 2abβ = 	 + (α2 − α1)

2	
α1 + 	 − (α2 − α1)

2	
α2 − 2β2

	

= 	(α1 + α2) + (α2 − α1)(α1 − α2) − 4β2

2	

= α1 + α2

2
− 	

2
= λ1.
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22-element:

b2α1 + a2α2 − 2abβ = 	 − (α2 − α1)

2	
α1 + 	 + (α2 − α1)

2	
α2 + 2β2

	

= 	(α1 + α2) − (α2 − α1)(α1 − α2) + 4β2

2	

= α1 + α2

2
+ 	

2
= λ2.

12-element = 21-element:

ab(α2 − α1) + (a2 − b2)β = − β

	
(α2 − α1) + α2 − α1

	
β = 0

so that

C†AC = � =
(

λ1 0
0 λ2

)

as it must be.

2.5. Projectors of A (α1, α2, β < 0)3 and its canonical form.
Using the results of Problem 2.3, the projectors are:

A1 = c1c†
1 =

(

a

b

)

(a b) =
(

a2 ab

ab b2

)

A2 = c2c†
2 =

(−b

a

)

(−b a) =
(

b2 −ab

−ab a2

)

.

We now verify the projector properties of A1 and A2:

A1A1 =
(

a2 ab

ab b2

)(

a2 ab

ab b2

)

=
(

a2(a2 + b2) ab(a2 + b2)

ab(a2 + b2) b2(a2 + b2)

)

= A1

A2A2 =
(

b2 −ab

−ab a2

)(

b2 −ab

−ab a2

)

=
(

b2(b2 + a2) −ab(b2 + a2)

−ab(b2 + a2) a2(b2 + a2)

)

= A2

A1A2 =
(

a2 ab

ab b2

)(

b2 −ab

−ab a2

)

=
(

a2(b2 − b2) −ab(a2 − a2)

ab(b2 − b2) b2(a2 − a2)

)

= 0

3We recall once more that, for α1, α2, β > 0, the signs of the off-diagonal elements of A1 and A2 must be
interchanged.
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A2A1 =
(

b2 −ab

−ab a2

)(

a2 ab

ab b2

)

=
(

b2(a2 − a2) ab(b2 − b2)

a2(ab − ab) a2(b2 − b2)

)

= 0

A1 + A2 =
(

a2 ab

ab b2

)

+
(

b2 −ab

−ab a2

)

=
(

a2 + b2 0
0 a2 + b2

)

= 1,

as it must be since, from Problem 2.3, a2 + b2 = 1.
We notice that det A1 = det A2 = 0, so that matrices A1 and A2 cannot be inverted. This

is a characteristic property of all projectors. Now:

λ1A1 + λ2A2 =
(

λ1a
2 λ1ab

λ1ab λ1b
2

)

+
(

λ2b
2 −λ2ab

−λ2ab λ2a
2

)

=
(

λ1a
2 + λ2b

2 −ab(λ2 − λ1)

−ab(λ2 − λ1) λ1b
2 + λ2a

2

)

11-element:

λ1a
2 + λ2b

2 = (α1 + α2) − 	

2

	 + (α2 − α1)

2	

+ (α1 + α2) + 	

2

	 − (α2 − α1)

2	

= 1

4	
{	(α1 + α2) − 	2 + (α2

2 − α2
1) − 	(α2 − α1)

+ 	(α1 + α2) + 	2 − (α2
2 − α2

1) − 	(α2 − α1)}

= 1

4
{2(α1 + α2) − 2(α2 − α1)} = α1

22-element:

λ1b
2 + λ2a

2 = (α1 + α2) − 	

2

	 − (α2 − α1)

2	

+ (α1 + α2) + 	

2

	 + (α2 − α1)

2	

= 1

4	
{	(α1 + α2) − 	2 − (α2

2 − α2
1) + 	(α2 − α1)

+ 	(α1 + α2) + 	2 + (α2
2 − α2

1) + 	(α2 − α1)}

= 1

4
{2(α1 + α2) + 2(α2 − α1)} = α2

12-element = 21-element:

−ab(λ2 − λ1) = β

	
	 = β.
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Hence:

λ1A1 + λ2A2 = A.

2.6. Inverse of A through its canonical form.

A−1 = λ−1
1 A1 + λ−1

2 A2 = 1

λ1λ2

(

a2λ2 + b2λ1 ab(λ2 − λ1)

ab(λ2 − λ1) a2λ1 + b2λ2

)

.

We use some results of Problems 2.3 and 2.5.
11-element:

a2λ2 + b2λ1

λ1λ2
= α2

det A

22-element:

a2λ1 + b2λ2

λ1λ2
= α1

det A

12-element = 21-element:

ab
λ2 − λ1

λ1λ2
= − β

	

	

det A
= − β

det A

so that:

A−1 = (det A)−1
(

α2 −β

−β α1

)

as obtained by the direct calculation of the inverse matrix. We can verify that:

AA−1 = (det A)−1
(

α1 β

β α2

)(

α2 −β

−β α1

)

= (det A)−1
(

α1α2 − β2 0
0 α1α2 − β2

)

= 1.

2.7. Find A1/2 if A is positive definite (λ1, λ2 > 0).
Since now α1, α2, β > 0, we must interchange the signs in the off-diagonal elements

of the projectors A1 and A2 of Problem 2.5. Hence, we get immediately for real positive
eigenvalues:

A1/2 = λ
1/2
1 A1 + λ

1/2
2 A2.

Put:

A = λ
1/2
1 B = λ

1/2
2
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A2 + B2 = λ1 + λ2 = α1 + α2 B2 − A2 = λ2 − λ1 = 	

A2B2 = λ1λ2 = α1α2 − β2 = det A.

Then:

A1/2 =
(

Aa2 + Bb2 −(A − B)ab

−(A − B)ab Ab2 + Ba2

)

which can be checked by taking:

A1/2A1/2 = A.

In fact, we have:
11-element:

(Aa2 + Bb2)2 + (A − B)2a2b2

= A2a4 + B2b4 + 2ABa2b2 + (A2 + B2 − 2AB)a2b2

= λ1

(

	 + (α2 − α1)

2	

)2

+ λ2

(

	 − (α2 − α1)

2	

)2

+ (λ1 + λ2)
β2

	2

= 1

4	2
{λ1[	2 + (α2 − α1)

2 + 2	(α2 − α1)]

+ λ2[	2 + (α2 − α1)
2 − 2	(α2 − α1)] + (λ1 + λ2)4β2}

= 1

4	2
{2	2(λ1 + λ2) − 2	(α2 − α1)(λ2 − λ1)}

= 1

2

{

(λ1 + λ2) − (λ2 − λ1)

	
(α2 − α1)

}

= 1

2
{(α1 + α2) − (α2 − α1)} = α1

22-element:

(Ab2 + Ba2)2 + (A − B)2a2b2

= A2b4 + B2a4 + 2ABa2b2 + (A2 + B2 − 2AB)a2b2

= λ1

(

	 − (α2 − α1)

2	

)2

+ λ2

(

	 + (α2 − α1)

2	

)2

+ (λ1 + λ2)
β2

	2

= 1

4	2
{λ1[	2 + (α2 − α1)

2 − 2	(α2 − α1)]

+ λ2[	2 + (α2 − α1)
2 + 2	(α2 − α1)] + (λ1 + λ2)4β2}
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= 1

4	2
{2	2(λ1 + λ2) + 2	(α2 − α1)(λ2 − λ1)}

= 1

2

{

(λ1 + λ2) + (λ2 − λ1)

	
(α2 − α1)

}

= 1

2
{(α1 + α2) + (α2 − α1)} = α2

12-element = 21-element:

−(A − B)ab[(Aa2 + Bb2) + (Ab2 + Ba2)]
= −(A − B)ab[(A + B)(a2 + b2)]
= ab(a2 + b2)(B2 − A2)

= β

	
· 1 · (λ2 − λ1) = β

	
· 	 = β.

Hence:

A1/2A1/2 = A

as it must be.
For α1 = α2 = α, a2 = b2 = ab = 1/2, and the square root matrix takes the simpler

form:

A1/2 =
⎛

⎜

⎝

A + B

2
−A − B

2

−A − B

2

A + B

2

⎞

⎟

⎠
.

2.8. Find A−1/2 if A is a positive definite non-singular matrix.

A−1/2 = λ
−1/2
1 A1 + λ

−1/2
2 A2

= 1

AB

(

Ab2 + Ba2 ab(A − B)

ab(A − B) Aa2 + Bb2

)

,

where A,B are taken from Problem 2.7 and a, b from Problems 2.3, 2.4, 2.5. The result
can be checked by taking:

A−1/2A1/2 = 1.

In fact, we have:
11-element = 22-element:

(Ab2 + Ba2)(Aa2 + Bb2) − (A − B)2a2b2
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= ABa4 + A2a2b2 + B2a2b2 + ABb4 − a2b2(A2 + B2 − 2AB)

= AB(a4 + b4 + 2a2b2) = AB(a2 + b2)2 = AB

12-element = 21-element:

−ab(A − B)[(Ab2 + Ba2) − (Ab2 + Ba2)] = 0.

Hence:

A−1/2A1/2 = 1

AB

(

AB 0
0 AB

)

= 1

as it must be.
For α1 = α2 = α, a2 = b2 = ab = 1/2, and the inverse square root takes the simpler

form:

A−1/2 = 1

AB

⎛

⎝

A + B

2

A − B

2
A − B

2

A + B

2

⎞

⎠=
⎛

⎜

⎝

B−1 + A−1

2

B−1 − A−1

2
B−1 − A−1

2

B−1 + A−1

2

⎞

⎟

⎠
.

For α = 1, β = S > 0:

A =
(

1 S

S 1

)

= M λ1 = 1 − S λ2 = 1 + S

M−1/2 =
⎛

⎜

⎝

(1 + S)−1/2 + (1 − S)−1/2

2

(1 + S)−1/2 − (1 − S)−1/2

2
(1 + S)−1/2 − (1 − S)−1/2

2

(1 + S)−1/2 + (1 − S)−1/2

2

⎞

⎟

⎠

which is known as matrix of Löwdin symmetrical orthogonalization.

2.9. Löwdin symmetrical orthogonalization.

If χ = (χ1χ2), χ† = (χ∗
1

χ∗
2

)

is a set of two normalized non-orthogonal basis functions:

〈χ1|χ1〉 = 〈χ2|χ2〉 = 1 〈χ1|χ2〉 = 〈χ2|χ1〉 = S

the metric of the basis will be the positive definite matrix:

M = χ†χ =
(

1 S

S 1

)

.

Then the Löwdin symmetrically orthogonalized set is:

χ ′ = χM−1/2
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as can be immediately proved. In fact, the metric in the new basis is:

M′ = χ ′†χ ′ = M−1/2χ†χM−1/2 = M−1/2MM−1/2 = 1

and the transformed functions are orthonormal. More in detail:

(χ ′
1χ

′
2) = (χ1χ2)

⎛

⎜

⎝

a + b

2

a − b

2
a − b

2

a + b

2

⎞

⎟

⎠

where we pose for simplicity:

a = (1 + S)−1/2, b = (1 − S)−1/2

a2 + b2 = 2(1 − S2)−1, a2 − b2 = −2S(1 − S2)−1.

Then, the explicit form of the transformed functions will be:

⎧

⎪

⎨

⎪

⎩

χ ′
1 = χ1

a + b

2
+ χ2

a − b

2

χ ′
2 = χ2

a + b

2
+ χ1

a − b

2

the reason for the name symmetrical orthogonalization becoming now apparent.
We can check in detail orthogonalization and normalization of the transformed func-

tions.

〈χ ′
1|χ ′

2〉 = 〈χ ′
2|χ ′

1〉

= a2 − b2

4
(1 + 1) + (a + b)2 + (a − b)2

4
S

= a2 − b2

2
+ S

a2 + b2

2
= − S

1 − S2
+ S

1 − S2
= 0

〈χ ′
1|χ ′

1〉 = 〈χ ′
2|χ ′

2〉

= (a + b)2 + (a − b)2

4
+ a2 − b2

2
S

= a2 + b2

2
+ S

a2 − b2

2
= 1

1 − S2
− S2

1 − S2
= 1.

2.10. Find exp(A) and exp(−A).

exp(A) = exp(λ1)A1 + exp(λ2)A2

=
(

a2 exp(λ1) + b2 exp(λ2) ab[exp(λ1) − exp(λ2)]
ab[exp(λ1) − exp(λ2)] b2 exp(λ1) + a2 exp(λ2)

)
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exp(−A) = exp(−λ1)A1 + exp(−λ2)A2

=
(

a2 exp(−λ1) + b2 exp(−λ2) ab[exp(−λ1) − exp(−λ2)]
ab[exp(−λ1) − exp(−λ2)] b2 exp(−λ1) + a2 exp(−λ2)

)

.

Using results for a, b from Problems 2.3, 2.4 we now verify that:

exp(A) · exp(−A) = 1.

11-element:

[

a2 exp(λ1) + b2 exp(λ2)
][

a2 exp(−λ1) + b2 exp(−λ2)
]

+ a2b2[exp(λ1) − exp(λ2)][exp(−λ1) − exp(−λ2)]
= a4 + a2b2 exp(λ2 − λ1) + a2b2 exp(λ1 − λ2) + b4

+ a2b2[1 − exp(λ1 − λ2) − exp(λ2 − λ1) + 1]
= a4 + b4 + 2a2b2 = (

a2 + b2)2 = 1

22-element:

a2b2[exp(λ1) − exp(λ2)][exp(−λ1) − exp(−λ2)]
+ [

b2 exp(λ1) + a2 exp(λ2)
][

b2 exp(−λ1) + a2 exp(−λ2)
]

= a2b2[1 − exp(λ2 − λ1) − exp(λ1 − λ2) + 1]
+ b4 + a2b2 exp(λ2 − λ1) + a2b2 exp(λ1 − λ2) + a4

= a4 + b4 + 2a2b2 = (

a2 + b2)2 = 1

12-element = 21-element:

[

a2 exp(λ1) + b2 exp(λ2)
]

ab[exp(−λ1) − exp(−λ2)]
+ ab[exp(λ1) − exp(λ2)]

[

b2 exp(−λ1) + a2 exp(−λ2)
]

= a3b + ab3 exp(λ2 − λ1) − a3b exp(λ1 − λ2) − ab3

+ ab3 − ab3 exp(λ2 − λ1) + a3b exp(λ1 − λ2) − a3b = 0.

If: α1 = α2 = 0, β = 1, 	 = 2, λ1 = −1, λ2 = 1, a2 = b2 = ab = 1/2

exp(A) =
⎛

⎝

exp(1) + exp(−1)

2
−exp(1) − exp(−1)

2

−exp(1) − exp(−1)

2

exp(1) + exp(−1)

2

⎞

⎠

=
(

cosh 1 − sinh 1
− sinh 1 cosh 1

)
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exp(−A) =
⎛

⎝

exp(1) + exp(−1)

2

exp(1) − exp(−1)

2
exp(1) − exp(−1)

2

exp(1) + exp(−1)

2

⎞

⎠

=
(

cosh 1 sinh 1
sinh 1 cosh 1

)

exp(A) · exp(−A) =
(

cosh2 1 − sinh2 1 0
0 cosh2 1 − sinh2 1

)

= 1

since (Abramowitz and Stegun, 1965):

cosh2 1 − sinh2 1 = 1.

2.11. Find the inverse of matrix A according to the Lagrange formula.
We recall that (equations (90), (91) and Problem 2.3):

F(A) = p1 + qA

p = λ1F(λ2) − λ2F(λ1)

λ1 − λ2
, q = F(λ1) − F(λ2)

λ1 − λ2
.

If F(A) = A−1:

p = λ1λ
−1
2 − λ2λ

−1
1

λ1 − λ2
= λ2

1 − λ2
2

λ1λ2(λ1 − λ2)
= λ1 + λ2

λ1λ2
= α1 + α2

det A

q = λ−1
1 − λ−1

2

λ1 − λ2
= λ2 − λ1

λ1λ2(λ1 − λ2)
= − 1

λ1λ2
= − 1

det A
.

Then:

A−1 = p1 + qA = (det A)−1
(

α1 + α2 − α1 −β

−β α1 + α2 − α2

)

= (det A)−1
(

α2 −β

−β α1

)

which is the inverse required.

2.12. Find A1/2 according to the Lagrange formula.
We use results of Problems 2.3 and 2.7:

p = λ1F(λ2) − λ2F(λ1)

λ1 − λ2
= Aλ2 − Bλ1
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q = F(λ1) − F(λ2)

λ1 − λ2
= B − A

	

A1/2 = p1 + qA

= 	−1
(

(Aλ2 − Bλ1) + (B − A)α1 (B − A)β

(B − A)β (Aλ2 − Bλ1) + (B − A)α2

)

= 	−1
(

B(α1 − λ1) − A(α1 − λ2) (B − A)β

(B − A)β B(α2 − λ1) − A(α2 − λ2)

)

11-element:

B(α1 − λ1) − A(α1 − λ2)

= B

(

α1 − α1 + α2 − 	

2

)

− A

(

α1 − α1 + α2 + 	

2

)

= 1

2
{B[	 − (α2 − α1)] + A[	 + (α2 − α1)]}

= 	

{

A

(

	 + (α2 − α1)

2	

)

+ B

(

	 − (α2 − α1)

2	

)}

= 	(Aa2 + Bb2)

22-element:

B(α2 − λ1) − A(α2 − λ2)

= B

(

α2 − α1 + α2 − 	

2

)

− A

(

α2 − α1 + α2 + 	

2

)

= 1

2
{B[	 + (α2 − α1)] + A[	 − (α2 − α1)]}

= 	

{

A

(

	 − (α2 − α1)

2	

)

+ B

(

	 + (α2 − α1)

2	

)}

= 	(Ab2 + Ba2)

12-element = 21-element:

(B − A)β = (B − A)(ab	) = 	{−(A − B)ab}

so that all elements of A1/2 are recovered upon multiplying by 	−1.

2.13. Find the square root of the unsymmetrical matrix:

A =
(

3 −4
1 −1

)

.
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The characteristic equation gives:

P2(λ) =
∣

∣

∣

∣

3 − λ −4
1 −1 − λ

∣

∣

∣

∣

= λ2 − 2λ + 1 = (λ − 1)2 = 0

so that λ = 1 is a twofold degenerate root, � = 1, and we cannot obtain two linearly
independent eigenvectors making an invertible matrix C which can diagonalize A. The
system of linear homogeneous equations determining the eigenvectors yields just a single
eigenvector:

{

(3 − 1)c1 − 4c2 = 0 2c2 = c1

c1 − 2c2 = 0 c2
1 + c2

2 = 1
c1 =

⎛

⎝

2√
5

1√
5

⎞

⎠

so that matrix A cannot be brought to diagonal form in the ordinary way. Even the Lagrange
formula cannot be used because of the degeneracy of the eigenvalues. To find the square
root of A we must therefore start from the definition:

A1/2 =
(

a b

c d

)

A1/2A1/2 =
(

a2 + bc b(a + d)

c(a + d) bc + d2

)

= A

obtaining the system of non-linear equations:

a2 + bc = 3 b(a + d) = −4 c(a + d) = 1 bc + d2 = −1
1 2 3 4

which can be solved by successive substitutions. Subtracting 1 and 4:

a2 − d2 = 4.

Dividing 2 by 3:

b = −4c,

and substituting in 4:

d2 − 4c2 = −1.

Then:

(a + d)(a − d) = 4 a + d = 1

c
(c �= 0)

and we are left with the system:
⎧

⎨

⎩

a + d = 1

c
a − d = 4c.
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Adding and subtracting, we obtain:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2a = 1

c
+ 4c = 1 + 4c2

c

2d = 1

c
− 4c = 1 − 4c2

c

giving:

a = 1 + 4c2

2c
, d = 1 − 4c2

2c
.

Upon substitution for d2 in one of the previous equations we are left with the apparent
quartic in c:

(

1 − 4c2

2c

)2

− 4c2 = −1 4c2 = 1

finally giving:

c = ±1

2
, b = ∓2, a = ±2, d = 0

so that we obtain the two possible solutions for A1/2:

A1/2 =
(

2 −2
1

2
0

)

or

( −2 2

−1

2
0

)

with c �= 0. The result can be checked by direct calculation of A1/2A1/2 = A.

2.14. A−1 by the Cayley–Hamilton theorem.
Matrix A satisfies its characteristic equation of degree n = 2:

P2(A) = a01 + a1A + a2A2 = 0,

where:

a0 = det A �= 0 a1 = −(α1 + α2) a2 = 1

so that, multiplying through by A−1, we obtain:

a0A−1 + a11 + a2A = 0
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A−1 = − 1

a0
(a11 + a2A)

= 1

a0

[(

α1 + α2 0
0 α1 + α2

)

+
(−α1 −β

−β −α2

)]

= (det A)−1
(

α2 −β

−β α1

)

as it must be.

2.15. The complete 2 × 2 pseudoeigenvalue problem.
Given the Hermitian matrices:

H =
(

α1 β

β α2

)

M =
(

1 S

S 1

)

α1, α2, β < 0 S > 0

the secular equation for the 2 × 2 pseudoeigenvalue problem:
∣

∣

∣

∣

α1 − ε β − εS

β − εS α2 − ε

∣

∣

∣

∣

= 0

gives the quadratic equation in ε:

(1 − S2)ε2 − (α1 + α2 − 2βS)ε + (α1α2 − β2) = 0

with the two real roots:

2(1 − S2)ε1 = (α1 + α2 − 2βS) − 	

2(1 − S2)ε2 = (α1 + α2 − 2βS) + 	

	 = {(α2 − α1)
2 + 4(β − α1S)(β − α2S)}1/2 > 0.

The roots have the properties:

(1 − S2)(ε1 + ε2) = α1 + α2 − 2βS

(1 − S2)(ε2 − ε1) = 	

(1 − S2)ε1ε2 = α1α2 − β2 = det A

which coincide with the results of Problem 2.3 when S = 0.

(i) First eigenvalue ε1

⎧

⎪

⎨

⎪

⎩

(α1 − ε1)c1 + (β − ε1S)c2 = 0

c2
1 + c2

2 + 2c1c2S = 1 �⇒ c2
1

{

1 +
(

c2

c1

)2

+ 2

(

c2

c1

)

S

}

= 1,
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where we call λ the ratio of coefficients:

(

c2

c1

)

1
= ε1 − α1

β − ε1S
= λ1 = λ.

Little calculation shows that:

ε1 − α1 = −[2(1 − S2)]−1{[	 − (α2 − α1)] + 2S(β − α1S)
}

β − ε1S = [2(1 − S2)]−1{(β − α1S) + (β − α2S) + S	
}

= [2(1 − S2)]−1{[2(β − α2S)] + S[	 + (α2 − α1)]
}

giving the ratio:

ε1 − α1

β − ε1S
= −[	 − (α2 − α1)] + S[2(β − α1S)]

[2(β − α2S)] + S[	 + (α2 − α1)] = −	 − (α2 − α1)

2(β − α2S)

where the last identity can be verified by direct multiplication using the definition of 	2:

[	 − (α2 − α1)][2(β − α2S)] + S[4(β − α1S)(β − α2S)]
= [	 − (α2 − α1)][2(β − α2S)] + S[	2 − (α2 − α1)

2].

We shall call λ the polarity parameter, since it gives the polarity of the bonding MO φ1,
constructed by linear combination of the non-orthogonal basis functions χ1 and χ2:

φ1 = χ1 + λχ2

(1 + λ2 + 2λS)1/2
S = 〈χ1|χ2〉 = 〈χ2|χ1〉.

The considerations above show that:

λ = 	 − (α2 − α1)

2|β − α2S| =
(

	 − (α2 − α1)

	 + (α2 − α1)

)1/2( |β − α1S|
|β − α2S|

)1/2

which coincides with the result of Problem 2.3 when S = 0.
The last square root expression for λ is readily found since:

λ = 	 − (α2 − α1)

2|β − α2S| = 	 − (α2 − α1)

{4(β − α1S)(β − α2S)}1/2

( |β − α1S|
|β − α2S|

)1/2

= 	 − (α2 − α1)

{	2 − (α2 − α1)2}1/2

( |β − α1S|
|β − α2S|

)1/2

=
(

	 − (α2 − α1)

	 + (α2 − α1)

)1/2( |β − α1S|
|β − α2S|

)1/2

.
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Hence we get for the eigenvector corresponding to the first eigenvalue:

c11
↑

refers to the
first eigenvalue

= (1 + λ2 + 2λS)−1/2, c21
↑

= λ(1 + λ2 + 2λS)−1/2.

For S = 0:

λ =
(

	 − (α2 − α1)

	 + (α2 − α1)

)1/2

1 + λ2 = 	 + (α2 − α1) + 	 − (α2 − α1)

	 + (α2 − α1)
= 2	

	 + (α2 − α1)

c11 =
(

	 + (α2 − α1)

2	

)1/2

, c21 =
(

	 − (α2 − α1)

2	

)1/2

as it must be.

(ii) Second eigenvalue ε2

Interchanging 1 → 2 into the homogeneous system:

⎧

⎪

⎨

⎪

⎩

(α2 − ε2)c2 + (β − ε2S)c1 = 0

c2
1 + c2

2 + 2c1c2S = 1 �⇒ c2
2

{

1 +
(

c1

c2

)2

+ 2

(

c1

c2

)

S

}

= 1

ε2 − α2 = [2(1 − S2)]−1{[	 − (α2 − α1)] − 2S(β − α2S)
}

β − ε2S = [2(1 − S2)]−1{(β − α1S) + (β − α2S) − S	
}

= [2(1 − S2)]−1{2(β − α1S) − S[	 + (α2 − α1)]
}

giving the ratio:

ε2 − α2

β − ε2S
= [	 − (α2 − α1)] − S[2(β − α2S)]

[2(β − α1S)] − S[	 + (α2 − α1)] = 	 − (α2 − α1)

2(β − α1S)

as can be shown by direct multiplication:

[	 − (α2 − α1)][2(β − α1S)] − S[4(β − α1S)(β − α2S)]
= [	 − (α2 − α1)][2(β − α1S)] − S[	2 − (α2 − α1)

2].
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Hence we get for λ2:

λ2 =
(

c1

c2

)

2
= ε2 − α2

β − ε2S
= 	 − (α2 − α1)

2(β − α1S)
= −	 − (α2 − α1)

2|β − α1S|

= −
(

	 − (α2 − α1)

	 + (α2 − α1)

)1/2( |β − α2S|
|β − α1S|

)1/2

which coincides with the result of Problem 2.3 when S = 0.
In LCAO theory, λ2 is the polarity parameter for the antibonding MO φ2:

φ2 = χ2 + λ2χ1

(1 + λ2
2 + 2λ2S)1/2

.

Using the previous result for λ1 = λ, we see that:

λ2 = −λ
|β − α2S|
|β − α1S| = − λ + S

1 + λS
= −λ

1 + λ−1S

1 + λS
,

where the last relation follows from the orthogonality relation between the MO’s. So, there
is only one independent variational parameter λ. Therefore, it follows:

1 + λ−1S

1 + λS
= |β − α2S|

|β − α1S|
showing that λ does satisfy the quadratic equation (compare Coulson, 1937b):

(β − α2S)λ2 − (α2 − α1)λ − (β − α1S) = 0

whose positive root:

λ = 	 − (α2 − α1)

2|β − α2S| =
(

	 − (α2 − α1)

	 + (α2 − α1)

)1/2( |β − α1S|
|β − α2S|

)1/2

> 0

does minimize ε1(λ) with respect to λ (the other root giving a maximum). From:

ε1 = 〈φ1|Ĥ |φ1〉 = (1 + λ2 + 2λS)−1(α1 + λ2α2 + 2λβ)

it is easily shown that:

dε1

dλ
= −2(1 + λ2 + 2λS)−2{(β − α2S)λ2 − (α2 − α1)λ − (β − α1S)

}

so that for λ > 0 satisfying the quadratic equation:

d2ε1

dλ2
= 2(1 + λ2 + 2λS)−2{(α2 − α1) − 2λ(β − α2S)

}
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= 2	(1 + λ2 + 2λS)−2 > 0

and ε1(λ) reaches there its absolute minimum.
The other (negative) root:

λ = −	 + (α2 − α1)

2|β − α2S|

when substituted in d2ε1
dλ2 at the stationary point gives:

d2ε1

dλ2
= −2	(1 + λ2 + 2λS)−2 < 0

so that, for this value of λ, ε1(λ) reaches its absolute maximum.
In conclusion, for the second eigenvector we have the alternative expressions:

c22
↑

refers to the
second eigen-
value

= (1 + λ2
2 + 2λ2S)−1/2 = {

(1 − S2)(1 + λ2 + 2λS)
}−1/2

(1 + λS)

c12
↑

= λ2(1 + λ2
2 + 2λ2S)−1/2 = −{(1 − S2)(1 + λ2 + 2λS)

}−1/2
(λ + S).

In terms of the independent parameter λ, the matrix collecting the eigenvectors of the
complete 2 × 2 pseudoeigenvalue problem will be:

C = (c1|c2) = (1 + λ2 + 2λS)−1/2
(

1 A

λ B

)

A = −(1 − S2)−1/2(λ + S), B = (1 − S2)−1/2(1 + λS).

2.16. Show that, for the 2 × 2 pseudoeigenvalue problem:

C†MC = 1.

Direct matrix multiplication gives:

(1 + λ2 + 2λS) C†MC

=
(

1 + λ2 + 2λS A(1 + λS) + B(λ + S)

A(1 + λS) + B(λ + S) A2 + B2 + 2ABS

)

.

Using results of Problem 2.15, we find:

A2 + B2 + 2ABS
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= (1 − S2)−1{(λ + S)2 + (1 + λS)2 − 2S(λ + S)(1 + λS)
}

= 1 + λ2 + 2λS

A(1 + λS) + B(λ + S)

= (1 − S2)−1/2{−(λ + S)(1 + λS) + (1 + λS)(λ + S)
}= 0

so that it is true that:

C†MC = 1.

2.17. Show that, for the 2 × 2 pseudoeigenvalue problem:

C†HC = E,

where E is the diagonal matrix of the eigenvalues.
Direct matrix multiplication gives:

(1 + λ2 + 2λS)C†AC

=
(

α1 + λ2α2 + 2λβ A(α1 + λβ) + B(β + λα2)

A(α1 + λβ) + B(β + λα2) A2α1 + B2α2 + 2ABβ

)

.

Using results of Problem 2.15, we have:

A2 = (1 − S2)−1(λ + S)2

B2 = (1 − S2)−1(1 + λS)2

AB = −(1 − S2)−1(λ + S)(1 + λS).

To avoid lengthy calculations, it is useful to recall here that matrix H is the representative
of the Hermitian operator Ĥ in the non-orthogonal basis (χ1χ2). The two orthogonal MOs
resulting in the LCAO approach are then given by:

φ1 = χ1 + λχ2

(1 + λ2 + 2λS)1/2

φ2 = (1 + λS)χ2 − (λ + S)χ1

[(1 − S2)(1 + λ2 + 2λS)]1/2

so that, for best λ, H will be diagonal in the optimized MO basis:

Hφ = φ†Ĥφ =
(

H11 H12
H21 H22

)

=
(

ε1 0
0 ε2

)
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H11 = 〈φ1|Ĥ |φ1〉
= (1 + λ2 + 2λS)−1(α1 + λ2α2 + 2λβ) = ε1

H22 = 〈φ2|Ĥ |φ2〉

= (1 + λS)2α2 + (λ + S)2α1 − 2(λ + S)(1 + λS)β

(1 − S2)(1 + λ2 + 2λS)

= B2α2 + A2α1 + 2ABβ = ε2

H12 = H21 = 〈φ1|Ĥ |φ2〉

= −(λ + S)α1 + λ(1 + λS)α2 + (1 − λ2)β

(1 − S2)1/2(1 + λ2 + 2λS)

= − (β − α2S)λ2 − (α2 − α1)λ − (β − α1S)

(1 − S2)1/2(1 + λ2 + 2λS)
= 0.

While the result for the off-diagonal terms is self-evident (the numerator vanishing since
best λ is a solution of the previous quadratic equation), the results for the diagonal ele-
ments can be checked through a straightforward but rather lengthy calculation using the
definitions of best λ and ε1, ε2.
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3.1 INTRODUCTION

There are only a few physical systems whose Schroedinger equation can be solved ex-
actly: the free particle, the particle in the box or tunneling across a barrier, certain kinds
of rotating bodies, the harmonic oscillator, the atomic 1-electron system, the molecular
1-electron 2-centre problem. The treatment of the first five systems can be found in many
textbooks (among others, Pauling and Wilson, 1935; Eyring et al., 1944; Schiff, 1955;
Kauzmann, 1957; Landau and Lifshitz, 1958; Levine, 2000), while the last one is a rather
difficult task (Bates et al., 1953; Peek, 1965; Byers Brown and Steiner, 1966). To acquaint
the reader with the application of the principles of Quantum Mechanics to exactly solvable
problems, we shall limit ourselves to examine in some detail, first, the particle in the box
and, next, the atomic 1-electron (or hydrogen-like) system. We believe that these two ex-
amples are exhaustive enough in explaining in detail the general techniques of solution of
the Schroedinger eigenvalue equation. In this Chapter, after short consideration of the free
particle in one and three dimensions, we shall focus attention mostly on the 1-dimensional
problem of a particle confined in a box. Excellent and more complete treatments can be
found in Schiff (1955) and Kauzmann (1957).

3.2 THE FREE PARTICLE IN ONE DIMENSION

Introducing the atomic units from the very beginning, the Schroedinger eigenvalue equa-
tion for a particle moving along a line x in a field-free space (V = 0) is:

−1

2

d2ψ

dx2
= Eψ (1)

103
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d2ψ

dx2
+ 2Eψ = 0 (2)

having the general integral in complex form:

ψ(x) = A exp(iαx) + B exp(−iαx), (3)

where A, B are two integration constants. Evaluating the second derivative and substituting
in (2), we obtain the characteristic equation1

−α2 + 2E = 0 ⇒ α = √
2E. (4)

Since there are no boundary conditions, except that the function ψ must be finite at
x = ±∞, the quantity

√
2E must be necessarily real so that E must be positive2. Since

no further restrictions are imposed on E, we conclude that the energy has a continuous
spectrum of eigenvalues, all positive values being allowed, and the energy is not quan-
tized.

Each component of ψ (the fundamental integrals) is separately eigenfunction of the
linear momentum operator p̂x = −i d

dx
with eigenvalue α or −α, respectively, the first de-

scribing a particle moving along +x with a definite value α = √

p2
x = √

2E of the momen-
tum, the second a particle moving along −x with the same absolute value of the momen-
tum. These quantities are the classical values of the momentum of a free particle having
energy E = p2

x/2.
Since the integral of |ψ |2 over all values of x between −∞ and ∞ is infinite, the func-

tion ψ cannot be normalized in the usual way. The problem of normalization of such a
wavefunction is rather complicated and will not be further pursued here (Pauling and Wil-
son, 1935, and references therein; Kauzmann, 1957).

Since the probability density of each component will be a constant independent of x,
we have equal probabilities of finding the particle at any value dx. This means that the
uncertainty in the position of the particle is infinite. This is in accord with Heisenberg’s
principle since �px = 0, as we have seen, so that:

�x�px ∼ h (5)

as it must be.

1Changing the sign of α simply means to interchange A with B . So, we can omit the ± signs in front to
√

2E

in equation (4).
2For E < 0, α = √−2|E| = i

√
2|E|, so that ψ(x) = A exp(−√

2|E|x) + B exp(
√

2|E|x), the first term of
which diverges at x = −∞, the second at x = ∞. The wavefunction (3) is hence oscillatory and, in real form, is
a combination of sine and cosine functions as in equation (40).
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3.3 THE 3-DIMENSIONAL BOX OF SIDES a, b, c

A box is a system whose potential energy is zero when the particle is within a closed region
and constant everywhere else. The potential energy is:

Vx = 0 0 < x < a, Vx elsewhere

Vy = 0 0 < y < b, Vy elsewhere

Vz = 0 0 < z < c, Vz elsewhere

(6)

where Vx , Vy , Vz are constant values, with:

Vx + Vy + Vz = V. (7)

The Schroedinger eigenvalue equation is then:

∇2ψ + 2(E − V ) = 0 (8)

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. (9)

If we choose:

ψ(x, y, z) = X(x)Y (y)Z(z) (10)

the partial differential equation in three variables is separable in Cartesian coordinates into
three equivalent 1-dimensional differential equations. In fact, we obtain upon substitution:

YZ
∂2X

∂x2
+ ZX

∂2Y

∂y2
+ XY

∂2Z

∂z2
+ 2(E − Vx − Vy − Vz)XYZ = 0 (11)

and, dividing throughout by XYZ:

1

X

∂2X

∂x2
+ 1

Y

∂2Y

∂y2
+ 2(E − Vx − Vy)= − 1

Z

∂2Z

∂z2
+ 2Vz =2Ez,

depends only on (x, y) depends only on z

(12)

where 2Ez is a first separation constant, giving:

d2Z

dz2
+ 2(Ez − Vz)Z = 0. (13)

Proceeding in a similar way:

1

X

∂2X

∂x2
+ 2(E − Ez − Vx) =− 1

Y

∂2Y

∂y2
+ 2Vy = 2Ey

depends only on x depends only on y

(14)
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2Ey being a second separation constant. Hence, we finally obtain:

d2Y

dy2
+ 2(Ey − Vy)Y = 0 (15)

d2X

dx2
+ 2(Ex − Vx)X = 0 (16)

provided we put:

E − Ez − Ey = Ex

E = Ex + Ey + Ez.
(17)

3.4 PARTICLE IN A 1-DIMENSIONAL BOX WITH IMPENETRABLE
WALLS

With reference to Figure 3.1 we now consider the particle confined in the 1-dimensional
box of side a with impenetrable walls, which means that outside the box the potential is
infinite, while in the box we assume V = Vx = 0.

(i) Outside the box (V = ∞).
In regions I and III, where V = ∞, it must be:

ψ(x) = 0 (18)

for all points, which means that the particle cannot be found outside the region 0 ≤
x ≤ a.

(ii) Inside the box (V = 0).
The Schroedinger equation is:

d2ψ

dx2
+ 2Eψ = 0 (19)

Figure 3.1 The three regions for the particle in the 1-dimensional box with impenetrable walls.
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which has the solution:

ψ = A exp(iαx) + B exp(−iαx), (20)

where A and B are integration constants. The value of the constant α is readily ob-
tained since:

ψ ′ = iα[A exp(iαx) − B exp(−iαx)], ψ ′′ = −α2ψ (21)

from which follows the characteristic equation:

α2 = 2E ⇒ α = √
2E, (22)

which is real since E > 0.
We must now impose upon ψ the boundary conditions arising from the fact that

we must join in a continuous way the solutions at the edge of the box, hence ψ(0) =
ψ(a) = 0.

First boundary condition:

ψ(0) = 0 A + B = 0 ⇒ B = −A (23)

ψ(x) = A[exp(iαx) − exp(−iαx)] = 2iA sinαx = C sinαx, (24)

where C is a normalization constant. Second boundary condition:

ψ(a) = 0 C sinαa = 0 ⇒ αa = nπ n = 1,2,3, · · · (25)

so that the argument of the trigonometric function is quantized, giving:

ψn(x) = C sinn
π

a
x C =

(

2

a

)1/2

. (26)

The positive energy spectrum is now quantized according to:

En = α2

2
= n2 π2

2a2
n = 1,2,3, · · · (27)

or, measuring the energy in units of ( π2

2a2 ):

En

π2/2a2
= n2. (28)

The energy levels and wavefunctions for the ground and the first two excited states
of the particle in a box with impenetrable walls are given in Figure 3.2 for C = 1. It
is seen that the functions have (n − 1) nodes, while only the functions having n =
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Figure 3.2 Energy levels (in units of π2/2a2) and wavefunctions for the first three lowest states of the particle
in a box with impenetrable walls (C = 1).

even are zero at x = a/2. All functions are normalized to unity and orthogonal to each
other.

In three dimensions, the corresponding results are:

ψ(x, y, z) = Xnx (x)Yny (y)Znz(z)

=
(

8

abc

)1/2

sinnx

π

a
x · sinny

π

b
y · sinnz

π

c
z

(29)

E = Ex + Ey + Ez = π2

2

(

n2
x

a2
+ n2

y

b2
+ n2

z

c2

)

. (30)

These results are of great importance in the theory of the perfect gas.

3.5 PARTICLE IN A 1-DIMENSIONAL BOX OF FINITE HEIGHT

With reference to Figure 3.3, we now consider the case of a particle confined in a box of
finite height V0, the potential being zero inside the box.

The Schroedinger equation is:

d2ψ

dx2
= 2(V0 − E)ψ (31)
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Figure 3.3 The three regions for the particle in the 1-dimensional box of finite height V0.

with the solution:

ψ(x) = A exp(iαx) + B exp(−iαx) (32)

with:

α2 = 2(E − V0), α = √

2(E − V0), (33)

where (E − V0) is the kinetic energy of the particle. Then:

ψ(x) = A exp
(

i
√

2(E − V0)x
) + B exp

(−i
√

2(E − V0)x
)

. (34)

For E > V0, we have the free particle case discussed in detail by Kauzmann (1957). For
E < V0, we have the bound particle case. In a classical description the particle does not
have enough energy to escape from the box, but its quantum description is different. We
have the following cases.

(i) Outside the box (regions I and III).
In this case (E < V0):

α = i
√

2(V0 − E) = iβ, β = √

2(V0 − E) > 0. (35)

The boundary conditions give:

ψI = AI exp(−βx) + BI exp(βx) − ∞ ≤ x < 0

ψI = BI exp(βx) since AI = 0
(36)

ψIII = AIII exp(−βx) + BIII exp(βx)

ψIII = AIII exp(−βx) since BIII = 0.
(37)

There is a finite probability of finding the particle outside the box, in a region where
the kinetic energy is negative (classically forbidden). As V0 → ∞, ψI and ψIII tend to
be zero everywhere.
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Figure 3.4 Wavefunction for the ground state in the bound region II. The particle has now a not negligible
probability of being found outside the box.

(ii) Inside the box (region II, where V = 0).
The particle is bound, being confined into the box. Then:

α = √
2E real ⇒ E = T > 0 (38)

ψII(x) = A exp(iαx) + B exp(−iαx) (39)

in complex form, or, in real form:

ψII(x) = A(cosαx + i sinαx) + B(cosαx − i sinαx)

= (A + B) cosαx + i(A − B) sinαx (40)

= C sinαx + D cosαx

or, introducing the amplitude AII and the phase ε:

ψII(x) = AII sin(αx + ε) (41)

since (see Chapter 4):

C = AII cos ε, D = AII sin ε. (42)

Therefore (Figure 3.4):

ψII(0) = AII sin ε, ψII(a) = AII sin(αa + ε) (43)

ψII is not zero either at x = 0 or x = a, and the particle can be found in a region outside
the box (quantum filtration).

To make further progress we must now introduce the continuity conditions for the func-
tion and its first derivative at the boundaries.
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For x = 0:

ψI(0) = ψII(0)

(

dψI

dx

)

0
=

(

dψII

dx

)

0
.

(44)

For x = a:

ψII(a) = ψIII(a)

(

dψII

dx

)

a

=
(

dψIII

dx

)

a

.
(45)

Let us calculate the first derivatives of the wavefunction:

dψI

dx
= βψI,

dψII

dx
= αAII cos(αx + ε),

dψIII

dx
= −βψIII. (46)

From the continuity conditions it follows then:

{

BI = AII sin ε AII sin(αa + ε) = AIII exp(−βa)

βBI = αAII cos ε αAII cos(αa + ε) = −βAIII exp(−βa)
(47)

tan ε = α

β
=

√

E

V0 − E
(48)

BI

AII
= sin ε = 1

cosecε
=

√

1

1 + cot2 ε
=

√

√

√

√

1

1 + β2

α2

= α
√

α2 + β2
=

√

E

V0
(49)

tan(αa + ε) = −α

β
. (50)

Now, since (Problem 3.1):

tan(x + y) = tanx + tany

1 − tanx tany
(51)

tan(αa + ε) = tanαa + tan ε

1 − tanαa · tan ε
= tanαa + α

β

1 − α
β

tanαa
= −α

β
, (52)

a formula which can be solved for tanαa giving:

tanαa = −α

β
+

(

α

β

)2

tanαa − α

β
(53)
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tanαa = − 2α
β

1 − (

α
β

)2
= 2αβ

α2 − β2
= 2

√
E(V0 − E)

2E − V0
. (54)

Therefore we obtain as quantization condition on the energy for the particle in a box of
finite height:

tan
√

2a2E = 2
√

E(V0 − E)

2E − V0
. (55)

Measuring E and V0 in units of 1/2a2, we get:

tan
√

E =
2
√

E
V0

(

1 − E
V0

)

2 E
V0

− 1
(56)

a trigonometric transcendental equation that can be solved numerically or graphically
(Kauzmann, 1957) by seeking the intersection of the curves

tan
√

E vs E and R(E) =
2
√

E
V0

(

1 − E
V0

)

2 E
V0

− 1
vs E.

The intersection points (for different values of V0) are the roots of the transcendental equa-
tion and, therefore, the permissible values for the eigenvalue E. We will content ourselves
here in seeing that for V0 very large (V0 → ∞):

tan
√

E = 0
√

E = nπ

E = n2 π2

2a2
n = 1,2,3, · · ·

(57)

the result found previously in Section 4. Schiff (1955) used translational symmetry argu-
ments for working out an elegant graphical solution for the energy levels, while the wave-
functions are seen to fall into two classes, being even or odd with respect to the interchange
of x into −x (Problem 3.3).

3.6 PROBLEMS 3

3.1. Prove the trigonometric identity:

tan(α + β) = tanα + tanβ

1 − tanα tanβ
.

Hint:
Use the elementary definition of the tangent and the addition formulae for sine and cosine
functions.
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3.2. Calculate the mean values 〈x〉 and 〈x2〉 for a particle in a box of side a with impene-
trable walls.

Answer:

〈x〉 = 〈ψ |x|ψ〉 = a

2

〈x2〉 = 〈ψ |x2|ψ〉 = a2

3

(

1 − 3

2π2n2

)

.

Hint:
Use the wavefunction ψn = C sinαx with αa = nπ (n = non-zero integer) and the formu-
lae for the corresponding definite integrals.

3.3. Prove by symmetry arguments (Schiff, 1955) that the wavefunctions of the particle
in the box with impenetrable walls fall into two classes, being even or odd with respect to
the interchange x → −x.

Answer:

ψe(x) = B cosn
π

a
x n = 1,3,5, · · ·

ψo(x) = A sinn
π

a
x n = 2,4,6, · · ·

both belonging to the same non-degenerate energy eigenvalue:

En = n2 π2

2a2
.

Hint:
Shift the origin of the coordinate system so as V (−x) = V (x) and apply the boundary
conditions.

3.7 SOLVED PROBLEMS

3.1. Using elementary trigonometric definitions and addition formulae we have:

tan(α + β) = sin(α + β)

cos(α + β)
= sinα cosβ + cosα sinβ

cosα cosβ − sinα sinβ

=
sinα cosβ+cosα sinβ

cosα cosβ

cosα cosβ−sinα sinβ
cosα cosβ

= tanα + tanβ

1 − tanα tanβ

that is the required trigonometric formula.
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3.2. The general indefinite integrals needed in this Problem can be taken from Gradshteyn
and Ryzhik’s (Gradshteyn and Ryzhik, 1980) Tables:

∫

dxx sin2 x = x2

4
− x

4
sin 2x − 1

8
cos 2x

∫

dxx2 sin2 x = x3

6
− x

4
cos 2x − 1

4

(

x2 − 1

2

)

sin 2x

as can be easily verified by derivation of the integrand.
We now make the change of variable:

αx = y, x = y

α
, dx = dy

α

x y

0 0
a αa

.

The definite integrals become:

∫ a

0
dxx sin2 αx = 1

α2

∫ αa

0
dyy sin2 y

= 1

α2

{

y2

4
− y

4
sin 2y − 1

8
cos 2y

∣

∣

∣

∣

αa

0

= 1

α2

{

(αa)2

4
− (αa)

4
sin 2αa − 1

8
cos 2αa + 1

8

}

and, for αa = nπ :

∫ a

0
dxx sin2 αx = 1

α2

{

(αa)2

4
− (αa)

4
sin 2πn − 1

8
cos 2πn + 1

8

}

= 1

α2

{

(αa)2

4
− 1

8
+ 1

8

}

= a2

4
.

Similarly:

∫ a

0
dxx2 sin2 αx = 1

α3

∫ αa

0
dyy2 sin2 y

= 1

α3

{

(αa)3

6
− (αa)

4
cos 2αa − 1

4

(

(αa)2 − 1

2

)

sin 2αa

}

and, for αa = nπ :

∫ a

0
dxx2 sin2 αx = 1

α3

{

(αa)3

6
− αa

4

}

= a3

6

(

1 − 3

2π2n2

)

.
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Figure 3.5 The new coordinate system for the particle in the box of side a with impenetrable walls.

Hence, we obtain:

〈x〉 = 〈ψ |x|ψ〉 = C2
∫ a

0
dxx sin2 αx

= C2 · a2

4
= 2

a
· a2

4
= a

2

〈x2〉 = 〈ψ |x2|ψ〉 = C2
∫ a

0
dxx2 sin2 αx

= C2 · a3

6

(

1 − 3

2π2n2

)

= a2

3

(

1 − 3

2π2n2

)

.

While the first result coincides with the classical average, the second differs from it by
the second term in parenthesis, which becomes zero for high values of the quantum num-
ber n. The quantum corrections are 0.152, 0.038, 0.017, · · ·, 0.0015 for n = 1,2,3, · · · ,10,
respectively. This is an example of the correspondence principle, according to which clas-
sical mechanics and quantum mechanics give the same result for systems in highly excited
quantum states.

3.3. With reference to Figure 3.5, we shift the origin of the coordinate system to x = a/2.
We have the solution in real form:

ψ(x) = A sinαx + B cosαx α = √
2E > 0.

We now apply the boundary conditions to the new situation. First boundary condition:

ψ

(

−a

2

)

= −A sin
αa

2
+ B cos

αa

2
= 0.
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Second boundary condition:

ψ

(

a

2

)

= A sin
αa

2
+ B cos

αa

2
= 0.

Since we do not want both A and B to be zero simultaneously (which would imply ψ = 0
everywhere), we must have:

A sin
αa

2
= 0, B cos

αa

2
= 0.

Hence, there are two classes of solutions:

A = 0, B �= 0 ⇒ cos
αa

2
= 0

B = 0, A �= 0 ⇒ sin
αa

2
= 0

both implying:

αa

2
= n

π

2
⇒ α = n

π

a

E = α2

2
= n2 π2

2a2
,

where n must be an odd integer for the first class and an even integer for the second class.
Hence, the two classes of solutions are:

ψe(x) = B cosn
π

a
x n = 1,3,5, · · ·

ψo(x) = A sinn
π

a
x n = 2,4,6, · · ·

where:

ψe(−x) = ψe(x) even function

ψo(−x) = −ψo(x) odd function.

It can be easily verified that these ψ satisfy the boundary conditions at the edges of the
box, and that at the middle of the box, where x = 0:

ψe(0) = B

ψo(0) = 0.

All even functions are non-zero at the new origin, all odd functions are zero there. All these
results are the consequence of the symmetry property of the potential in the new coordinate
system, since:

V (−x) = V (x)

namely, of the fact that the potential is symmetric about x = 0.
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4.1 INTRODUCTION

There are many reasons for choosing as our second example of exact solution of the
Schroedinger eigenvalue equation the 1-electron atomic problem, the so called hydrogen-
like system. Firstly, it is the only atomic case that can be solved exactly. The physically per-
missible solutions are the simplest example of atomic orbitals (AOs) and their properties.
Secondly, the mathematical techniques of solution of the pertinent differential equations
are typical of mathematical physics and completely general, and can also be applied to
the hydrogen atom in electric or magnetic fields, so giving the possibility of exact evalua-
tion of second-order properties such as electric polarizabilities or magnetic susceptibilities.
Thirdly, the physical constraints imposed on the mathematical solutions do explain in a
clear way the origin of quantum numbers, so justifying the rather mysterious assumptions
of the Bohr theory. Finally, the possibility of disposing of relatively simple solutions in
exact analytical form, is essential for checking unequivocally approximate solutions such
as those obtained by use of the powerful variation theorem, as we shall see later in this
book.

The hydrogen-like system consists of a single electron of mass m2 and charge −e at-
tracted at distance r by a nucleus of mass m1 and charge +Ze. It is a typical atomic

117
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Figure 4.1 The hydrogen-like system.

(1-centre) 1-electron problem covering a whole series of isoelectronic physical systems
depending on the value assumed by the nuclear charge Z: Z = 1,2,3,4, . . . gives rise,
respectively, to the H atom and the series of isoelectronic ions, He+, Li+2, Be+3, . . .

After separation of the motion of the centre-of-mass, we shall be mostly concerned with
the solution of the Schroedinger equation describing the motion of the electron relative
to the nucleus taken as origin of a system of internal coordinates. Upon introduction of
the system of atomic units (a.u.) to get rid of all repetitive physical constants, we shall
turn to express the resulting 3-dimensional partial differential equation in spherical coor-
dinates (r, θ,ϕ), which are appropriate to the spherical symmetry of the potential. This
allows us to separate radial from angular equations, which are typical of the square of
the angular momentum of the electron. In the separation procedure, which is customary
in all partial differential equations involving functions depending upon different variables,
we are faced with separation constants which originate quantum numbers. The physical
constraints imposed on the mathematical solutions, that are generally called the regular-
ity conditions of the resulting functions, yield Laguerre polynomials for the radial part
and Legendre polynomials for the angular part. The latter are well known in mathemat-
ical physics from the theory of potential. The complete solutions are the hydrogen-like
AOs, and are obtained by multiplying the solutions of each separate differential equa-
tion, ψnlm(r, θ,ϕ) = Rnl(r)Ylm(θ,ϕ), where Ylm are the spherical harmonics which are
of general importance in atomic problems, whereas Rnl is the radial part, peculiar to the
hydrogen-like orbitals only. Both radial and angular functions have a form which depends
on the three quantum numbers n, l,m, so that hydrogen-like AOs can be simply denoted by
specifying their values as the Dirac ket ψ = |nlm〉. The set of three quantum numbers also
specifies the eigenvalues, which give the possible observable values assumed by energy,
angular momentum and its z-component.

The Schroedinger equation for the hydrogen atom was also solved by Coulson and
Robinson (1958) using spheroidal coordinates with the nucleus at one focus. The rela-
tions between spheroidal, spherical and parabolic wavefunctions for the hydrogen atom
were also investigated by these authors, who shown that the two latter cases are re-
spectively obtained as limits as R → 0 and R → ∞. Battezzati and Magnasco (2003)
studied the behaviour of equations and solutions of the H+

2 problem at the limit of the
united atom He+. It was shown there that, since when R → 0, μ → 2r/R, ν → cos θ ,
the outer μ-equation goes into the correct radial equation for the hydrogen-like system
He+, with the separation constant A → −l(l + 1) and the parameter for the bound state
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(E < 0) σ + 1 = Zr/2p = √
2/2Z(−E)−1/2 → n, where n and l are the principal and

orbital quantum numbers of the hydrogen-like system with nuclear charge Z. However,
while the outer μ-solution X(μ) goes into the correct radial function R(r) ∝ e−2r as
R → 0, the inner ν-solution has an infinitesimal behaviour different from the hydrogen-
like �(cos θ) ∝ P m

l (cos θ), because the term −(ZA − ZB)Rν, characteristic of the H-like
system in spheroidal coordinates, is missing in the H+

2 case (where ZA = ZB = 1). In other
words, even if the differential equations become identical for R = 0, the inner ν-solution
for H+

2 and the He+ hydrogen-like �(cos θ) have a different behaviour for infinitesimal
R �= 0.

In Section 4.9, as alternative to the hydrogen-like AOs and mostly used today in atomic
and molecular calculations, we introduce Slater (STOs) and Gaussian (GTOs) atomic or-
bitals and some simple atomic integrals over them.

The Chapter ends with a set of problems, where we have collected many mathematical
details of the solution.

4.2 SEPARATION OF THE MOTION OF THE CENTRE-OF-MASS

To separate off the motion of the centre-of-mass (i.e., the translation of the system as a
whole), we do a transformation from the Cartesian coordinates (x1, y1, z1;x2, y2, z2) of the
two particles (nucleus + electron) to a new coordinate system specifying the coordinates
(X,Y,Z) of the centre-of-mass of the electron-nucleus system, and the internal coordinates
(x, y, z) describing the motion of the electron with respect to the nucleus taken as origin
of the new coordinate system.

If:

M = m1 + m2 (1)

is the total mass (essentially, that of the atomic nucleus),

m = m1m2

m1 + m2
= m2

1

1 + m2
m1

≈ m2 (2)

the reduced mass (essentially, the mass of the electron), the Hamiltonian of the two particle
system can be written in SI units (see Problem 4.1):

Ĥ = − h̄2

2M
∇2

X − h̄2

2m
∇2 + V, V = − 1

4πε0

Ze2

r
, (3)

where V is the Coulomb attraction of the electron by the nucleus. The corresponding
Schroedinger equation:

Ĥ� = W� (4)
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Figure 4.2 Transformation of the coordinate system.

can be separated by posing:

�(X,x) = �(X)ψ(x). (5)

In fact, we can write:

ψ

(

− h̄2

2M
∇2

X�

)

+ �

(

− h̄2

2m
∇2 + V

)

ψ = W�ψ. (6)

Dividing both members through by �ψ :

− h̄2

2M
∇2

X �

�
= W −

(

− h̄2

2m
∇2 + V

)

ψ

ψ
= EG.

independent
variables independent variables (x, y, z)

(X,Y,Z)

(7)

Since the l.h.s. of (7) depends only on (X,Y,Z), the r.h.s. only on (x, y, z), and the equality
must be true for all values of the independent variables, the expression itself must be equal
to a separation constant, say EG. Posing:

W = EG + E (8)

equation (4) separates into the two eigenvalue equations:

− h̄2

2M
∇2

X� = EG� (9)

(

− h̄2

2m
∇2 + V

)

ψ = Eψ (10)
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the first being the Schroedinger equation for a free particle of mass M describing the trans-
lational motion of the centre-of-mass, the second the Schroedinger equation for the motion
of the electron with respect to the nucleus.

We shall now consider in detail the solution of the latter equation, after introduction of
the atomic units, in terms of which equation (10) can be written:

(

−1

2
∇2 + V

)

ψ = Eψ. (11)

4.3 SEPARATION OF THE RADIAL EQUATION IN SPHERICAL
COORDINATES

Since:

r = (x2 + y2 + z2)1/2 ≥ 0 (12)

it is readily seen that the potential energy term V = −Z
r

assumes its simplest form in the
spherical coordinates:

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ. (13)

In these coordinates (see Chapter 1):

∇2 = ∇2
r − L̂

2

r2
(14)

∇2
r = 1

r2

∂

∂r

(

r2 ∂

∂r

)

= ∂2

∂r2
+ 2

r

∂

∂r
(15)

L̂
2 = −

{

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+ 1

sin2 θ

∂2

∂ϕ2

}

= −
(

∂2

∂θ2
+ cot θ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2

)

, (16)

where L̂
2

is the square of the angular momentum operator and ∇2
r the radial Laplacian.

The Schroedinger eigenvalue equation for the electron of the hydrogen-like system in
spherical coordinates is hence given as the partial differential equation in three variables:

[

−1

2
∇2

r + L̂
2

2r2
−
(

E + Z

r

)

]

ψ(r, θ,ϕ) = 0. (17)
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We now attempt to separate radial from angular part by posing:

ψ(r, θ,ϕ) = R(r)Y (θ,ϕ). (18)

Upon substitution in equation (17) we obtain:

Y

[

−1

2
∇2

r −
(

E + Z

r

)]

R = − R

2r2
L̂

2
Y (19)

2r2
[− 1

2∇2
r − (E + Z

r

)]

R

R
= − L̂

2
Y

Y
= −λ, (20)

where λ is a separation constant. We obtain the two separate differential equations:

[

−1

2
∇2

r +
(

λ

2r2
− Z

r

)]

R(r) = E R(r) (21)

L̂
2
Y(θ,ϕ) = λY (θ,ϕ) λ ≥ 0 (22)

the latter being the eigenvalue equation for the square of the angular momentum opera-
tor, the first the one-dimensional Schroedinger equation for the electron in the spherical
effective potential:

Veff(r) = λ

2r2
− Z

r
. (23)

Veff(r) is the resultant of the repulsive centrifugal potential λ

2r2 and the Coulomb poten-

tial −Z
r

, describing the attraction of the negatively charged electron by the nucleus of
charge +Z. The effective potential is purely radial, since it depends only on the distance
of the electron from the nucleus.

We recall that the modulus of the classical radial centrifugal force is given by:

F(r) = mv2

r
= (mvr)2

mr3
= L2

mr3
= λ

mr3
, (24)

where L2 is the square of the angular momentum having the constant positive value λ. We
shall see later in this Chapter that:

λ = l(l + 1) l = 0,1,2,3, · · · (n − 1). (25)

The force can be derived from the repulsive radial centrifugal potential:

F(r) = −dV (r)

dr
(26)
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Figure 4.3 Radial effective potential for the hydrogen-like system.

V (r) = λ

2mr2
λ ≥ 0. (27)

In fact:

F(r) = − λ

2m

d

dr
(r−2) = λ

mr3
. (28)

In atomic units, m = 1, and (27) recovers the expression obtained from the separation of
the differential equation.

4.4 SOLUTION OF THE RADIAL EQUATION

Introducing (25), the radial equation can be written as:

d2R

dr2
+ 2

r

dR

dr
+
[

2

(

E + Z

r

)

− l(l + 1)

r2

]

R = 0. (29)

By posing:

R(r) = P(r)

r
(30)

we obtain a differential equation where the first derivative is missing (Problem 4.2):

d2P

dr2
+
[

2

(

E + Z

r

)

− l(l + 1)

r2

]

P = 0. (31)
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We now study the asymptotic behaviour of P(r) in the two cases where the energy
parameter (eigenvalue) E is positive or negative.

(i) E > 0
√

2E = ω. (32)

If r → ∞, equation (31) becomes:

d2P

dr2
+ ω2P ≈ 0 (33)

P(r) = exp(αr),
dP

dr
= P ′ = αP,

d2P

dr2
= P ′′ = α2P (34)

which, upon substitution, gives the characteristic equation determining α:

α2 + ω2 = 0 �⇒ α = ±iω, (35)

where i is the imaginary unit (i2 = −1). Hence, we get the fundamental integrals:

P1(r) = exp(iωr), P2(r) = exp(−iωr) (36)

giving the complex form for the general integral:

P(r) = a exp(iωr) + b exp(−iωr), (37)

where a, b are two integration constants. The real form for the general integral is obtained
from:

P1 + P2

2
= cosωr, −i

P1 − P2

2
= sinωr, (38)

where use has been made of Euler’s formula for imaginary exponentials (Problem 4.3):

exp(±iα) = cosα ± i sinα. (39)

By replacing the two integration constants a, b by the amplitude A and the phase ε, the
real form for the general integral will be given as:

P(r) = a sinωr + b cosωr = A sin(ωr + ε) (40)

which shows that for E > 0 (not quantized energy corresponding to the spectrum of the
ionized atom) we obtain an oscillatory solution. By superposing different solutions we get
a wave packet corresponding to states of the ionized atom, having a continuous spectrum of
energy eigenvalues (all positive values of E are possible). This solution is interesting only
in completing the spectrum of the energy eigenvalues of the Hermitian operator Ĥ (E > 0,



4.4 Solution of the Radial Equation 125

Figure 4.4 Change of integration constants.

continuous part of the spectrum, wave packets; E < 0, discrete part of the spectrum, bound
states, as we shall see below).

(ii) E < 0. (41)

It is convenient to pose:

x = Z

n
r E = − Z2

2n2
, (42)

where we change variable from r to x, and express the negative eigenvalue in terms of the
square of a real positive parameter n, to be determined.

The equation in x simplifies to (Problem 4.4):

d2P

dx2
+
(

−1 + 2n

x
− l(l + 1)

x2

)

P = 0 0 ≤ x ≤ ∞. (43)

The asymptotic behaviour of the function P(x) in the two regions will be:

• x → ∞ (far from the nucleus)

d2P

dx2
≈ P P(x) = a exp(−x) + b exp(x) = a exp(−x), (44)

where a, b are integration constants, and b = 0 for the regularity of the function at
x = ∞.

• x → 0 (near to the nucleus)

d2P

dx2
≈ l(l + 1)

x2
P P(x) = Axl+1 + Bx−l = Axl+1, (45)

where A,B are integration constants, and B = 0 for the regularity of the function at
x = 0 (since l ≥ 0).
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This means that the complete solution P(x) must have the general form:

P(x) = exp(−x)xl+1 F(x), (46)

where F(x) is a function which has to be determined and must be regular over the whole
interval of x, including x = 0 and x = ∞. By taking first and second derivatives of P(x),
upon substitution in (43), we see that F(x) satisfies the differential equation (Problem 4.5):

x
d2F

dx2
+ [(2l + 2) − 2x]

dF

dx
+ 2 (n − l − 1)F = 0 (47)

which can be solved by the power series in x (Taylor):

F(x) =
∞
∑

k=0

ak xk

F ′(x) =
∞
∑

k=1

k ak xk−1

F ′′(x) =
∞
∑

k=2

k(k − 1) ak xk−2.

(48)

Upon substitution into the differential equation (47) we obtain an expansion in powers of x,
where the coefficients of the different powers must be identically zero:

Coefficient of xk :

k(k + 1) ak+1 + (2l + 2)(k + 1) ak+1 − 2k ak + 2(n − l − 1) ak = 0 (49)

thereby obtaining the 2-term recursion formula for the coefficients:

ak+1 = 2(k − n + l + 1)

(k + 1)(k + 2l + 2)
ak k = 0,1,2, · · · (50)

Since series (48) has infinite terms, we must now study the behaviour of the solution when
k → ∞, recalling that we must choose only regular solutions. Using the ratio test for the
series:

lim
k→∞

ak+1 xk+1

ak xk
= x lim

k→∞
ak+1

ak

≈ x lim
k→∞

2

k
(51)

we see that it has the same limit of the function exp(2x), so that:

∞
∑

k=0

ak xk ≈ exp(2x) (52)



4.4 Solution of the Radial Equation 127

P(x) = exp(−x)xl+1
∞
∑

k=0

ak xk ≈ exp(x)xl+1 (53)

which must be discarded since it diverges for x = ∞. For physically permissible solutions,
the series (48) must be truncated to a finite polynomial, so we must require that for:

ak �= 0, ak+1 = ak+2 = · · · = 0. (54)

For this to be true, it will be sufficient that the numerator of (50) will vanish, so giving the
condition:

k − n + l + 1 = 0 �⇒ kmax = n − l − 1, (55)

where kmax is the maximum order of the resulting polynomial. The physically acceptable
polynomial solution of the radial equation will hence be:

P(x) = exp(−x)xl+1
n−l−1
∑

k=0

ak xk (56)

which can be seen to correspond to the usual, sensibly more complicated, solution of equa-
tion (47) in terms of associated Laguerre1 polynomials (Eyring et al., 1944; Abramowitz
and Stegun, 1965). Equation (55) determines our so far unknown parameter n:

n = k + l + 1 �⇒ n = l + 1, l + 2, · · · �⇒ n ≥ (l + 1) (57)

which is the famous relation between principal and angular quantum numbers n, l.
Going back to our original function R(x), equation (30), we finally get for our radial

function (x = Z
n

r):

Rnl(x) = exp(−x)xl
n−l−1
∑

k=0

ak xk n = 1,2,3, · · · l = 0,1,2, · · · (n − 1)

(58)

with the coefficients determined by the recursion relation (50), the corresponding energy
eigenvalue being:

En = − Z2

2n2
. (59)

Equation (59) can be recognized as the expression in atomic units for the energy levels of
the Bohr hydrogen-like atom.

1Laguerre Edmond-Nicolas 1834–1866, French mathematician, artillery officer, Member of the Académie des
Sciences.
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The un-normalized expressions for the first few radial states have been derived and plot-
ted against x in Problem 4.6, and tested as correct solutions of the corresponding differ-
ential equation in Problem 4.7. We notice that the radial functions Rnl(x) depend on the
quantum numbers n, l and have (n − l − 1) nodes (the roots of the polynomial).

4.5 SOLUTION OF THE ANGULAR EQUATION

Now we turn to equation (22):

L̂
2
Y(θ,ϕ) = λY (θ,ϕ) (22)

(

∂2

∂θ2
+ cot θ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2
+ λ

)

Y(θ,ϕ) = 0 (60)

which is the equation for the square of the angular momentum operator L̂
2
. We try to

separate the two angular variables θ,ϕ by posing:

Y(θ,ϕ) = �(θ)�(ϕ) (61)

�

(

∂2�

∂θ2
+ cot θ

∂�

∂θ
+ λ

)

� = − �

sin2 θ

∂2�

∂ϕ2
. (62)

Multiplying both members through by sin2 θ

��
, we obtain:

1

�

(

sin2 θ
d2�

dθ2
+ sin2 θ cot θ

d�

dθ

)

+ λ sin2 θ = − 1

�

d2�

dϕ2
= m2, (63)

where m2 is a new separation constant. Equation (22) has hence been separated in two
ordinary differential equations:

d2�

dϕ2
+ m2� = 0 (64)

d2�

dθ2
+ cot θ

d�

dθ
+
(

λ − m2

sin2 θ

)

� = 0. (65)

4.5.1 Solution of the �-Equation

Equation (64) has the evident normalized solution in complex form:

�m(ϕ) = 1√
2π

exp(imϕ) m = 0,±1,±2, · · · (66)
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The regularity condition requires �(ϕ) to be singly-valued:

�(ϕ + 2π) = �(ϕ)

exp[im(ϕ + 2π)] = exp(imϕ)

exp(i2πm) = 1 cos 2πm + i sin 2πm = 1

cos 2πm = 1 �⇒ m = 0,±1,±2, · · · integer.

(67)

4.5.2 Solution of the �-Equation

If we put:

x = cos θ − 1 ≤ x ≤ 1 (68)

we obtain the differential equation in x (Problem 4.8):

(1 − x2)
d2�

dx2
− 2x

d�

dx
+
(

λ − m2

1 − x2

)

� = 0 (69)

which shows regular singularities at |x| = 1.
The asymptotic behaviour of the function �(x) at |x| = 1 can be obtained by considering

the approximate equation:

(1 − x2)
d2�

dx2
− 2x

d�

dx
≈ m2

1 − x2
�. (70)

It can be easily shown (Problem 4.9) that the solution of this asymptotic equation is:

�(x) = (1 − x2)
m
2 m = |m| ≥ 0 (71)

which is regular for |x| = 1. The complete solution �(x) must hence have the form:

�(x) = (1 − x2)
m
2 G(x), (72)

where G(x) has to be determined, with its regularity conditions, over the whole interval
|x| ≤ 1. The differential equation for G(x) is (Problem 4.10):

(1 − x2)
d2G

dx2
− 2(m + 1)x

dG

dx
+ [λ − m(m + 1)]G = 0. (73)
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For λ = l(l+1) (l ≥ 0 integer) this is nothing but the differential equation for the associated
Legendre functions P m

l (x), well known to mathematical physicists in potential theory. We
will try again the power series solution for G(x) using the expansion:

G(x) =
∞
∑

k=0

ak xk

G′(x) =
∞
∑

k=1

k ak xk−1

G′′(x) =
∞
∑

k=2

k(k − 1) ak xk−2.

(74)

Proceeding as for the radial solution, we substitute expansions (74) in (73), thereby obtain-
ing:

∑

k

k(k − 1) ak xk−2 −
∑

k

k(k − 1) ak xk − 2(m + 1)
∑

k

kak xk

+ (λ − m(m + 1))
∑

k

ak xk = 0, (75)

where:

Coefficient of xk :

(k + 1)(k + 2) ak+2 − (k − 1)k ak − 2(m + 1)k ak + (λ − m(m + 1)) ak = 0 ,

(76)

so that we obtain the 2-term recursion formula for the coefficients:

ak+2 = (k + m)(k + m + 1) − λ

(k + 1)(k + 2)
ak k = 0,1,2, · · · (77)

According to this recursion formula, we shall obtain this time an even series (k =
0,2,4, · · ·) and an odd series (k = 1,3,5, · · ·), which are characteristic of trigonometric
functions. We have now to study the convergence of the series (74) when k → ∞. The ra-
tio test shows that this series has the same asymptotic behaviour of the geometrical series
of reason x2:

S =
∞
∑

k=0

xk (78)
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with:

Sn = 1 + x + x2 + · · · + xn−1 = 1 − xn

1 − x
. (79)

Now, limn→∞ Sn does exist if |x| < 1, but the series will diverge at |x| = 1, since:

lim
n→∞ Sn = 1

1 − x
. (80)

Going back to our series (74), the ratio test says that:

lim
k→∞

ak+2 xk+2

ak xk
= x2 lim

k→∞
ak+2

ak

= x2 (81)

so that:

for |x| < 1 the series is absolutely convergent

for |x| = 1 the series is divergent.

To get a physically acceptable solution of equation (69) even for |x| = 1, the series must
reduce to a polynomial, so that:

ak �= 0, ak+2 = ak+4 = · · · = 0 (82)

and we obtain the relation:

(k + m)(k + m + 1) − λ = 0 (83)

λ = (k + m)(k + m + 1) k,m = 0,1,2, · · · (84)

Put:

k + m = l a non-negative integer (l ≥ 0) (85)

l = m, m + 1, m + 2, · · · (86)

l ≥ |m| − l ≤ m ≤ l (87)

and we recover the remaining relation between angular quantum numbers l and m.

Hence we get for the eigenvalue of L̂
2
:

λ = l(l + 1) (88)

l = 0,1,2,3, · · · (n − 1) (89)
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m = 0,±1,±2, · · · ± l (2l + 1) values of m. (90)

The infinite series (74) reduces to a polynomial whose degree is at most:

kmax = l − m (≥ 0) (91)

giving as complete solution for the angular equation:

�lm(x) = (1 − x2)
m
2

·

⎧

⎪

⎨

⎪

⎩

l−m
2
∑

k=0

a2k x2k +
l−m−1

2
∑

k=0

a2k+1 x2k+1

⎫

⎪

⎬

⎪

⎭

,

even polynomial odd polynomial
(l − m) = even (l − m) = odd

(92)

where we still use m = |m| for short. The recursion relation for the coefficients is then:

ak+2 = (k + m)(k + m + 1) − l(l + 1)

(k + 1)(k + 2)
ak k = 0,1,2, · · · (93)

The explicit expressions for the first few angular functions �lm(x) have been derived in
Problem 4.11, and tested as correct solutions of the differential equation (69) in Problem
4.12. Our simple polynomial solution �(x) gives a result which is seen to differ from the
conventional associated Legendre polynomials P m

l (x) (Problem 4.13) by a constant factor
irrelevant from the standpoint of the differential equation. If [· · ·] stands for “integer part
of”, we can state that:

P m
l (x) = (−1)

m+
[

l+m
2

]

�lm(x), (94)

where it must be noted that P m
l (x) is normalized to 2

2l+1
(l+m)!
(l−m)! and not to 1.

Some of the constant factors occurring between �lm and P m
l are given in Problem 4.14.

4.6 HYDROGEN-LIKE ORBITALS, EIGENVALUES AND QUANTUM
NUMBERS

Let us summarize the results obtained so far. The Schroedinger equation for the hydrogen-
like system in atomic units:

(

−1

2
∇2 − Z

r

)

ψ = E ψ (11)
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has been separated in spherical coordinates into a radial and an angular eigenvalue equa-
tion:

[

−1

2
∇2

r +
(

λ

2r2
− Z

r

)]

R(r) = E R(r) (21)

L̂
2
Y(θ,ϕ) = λY (θ,ϕ) (22)

having eigenvalues:

En = − Z2

2n2
n = 1,2,3, · · · (59)

λ = l(l + 1) l = 0,1,2, · · · (n − 1) (88)

and eigenfunctions (hydrogen-like AOs):

ψnlm(r, θ,ϕ) = Rnl(r)Ylm(θ,ϕ) = |nlm〉. (95)

Hydrogen-like AOs depend on the three quantum numbers (n, l,m) characterizing the
quantum states that the electron can assume in absence of external perturbations (n = 1,
l = m = 0 is the spherical ground state, all others being excited states). The radial part
R(r) depends on n, l, the angular part Y(θ,ϕ) depends on l,m. We want to underline once
more that the radial polynomial solution (a polynomial in x = Z

n
r of degree n − l − 1)

is characteristic only of hydrogen-like AOs, while the angular part in complex form (the
functions Y are known as spherical harmonics) has the same form for all AOs, even not
hydrogen-like.

Other definitions used for the angular part are (Brink and Satchler, 1993; Stone, 1996):

Clm(θ,ϕ) = Clm(r̂) =
√

4π

2l + 1
Ylm(r̂) (96)

known as modified spherical harmonic,

Rlm(r) = rlClm(r̂), Ilm(r) = r−l−1Clm(r̂) (97)

regular and irregular solid spherical harmonics, respectively.
It is important to notice that AOs in complex form are also eigenfunctions of the operator

L̂z (z-component of the angular momentum operator L̂) with eigenvalue m. In fact, in
spherical coordinates:

L̂z = −i
∂

∂ϕ
L̂zψ = mψ (98)

ψ = RY = R��
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� ∝ exp(imϕ) travelling waves eigenfunctions of L̂
2

and L̂z

L̂zψ = (R�) L̂z� = −i(R�)
∂�

∂ϕ
= m(R��) = mψ.

�-functions in complex form are usually given with the so called Condon–Shortley phase
(Condon and Shortley, 1963; Brink and Satchler, 1993):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�+m = (−1)m
exp(imϕ)√

2π
m > 0

�−m = exp(−imϕ)√
2π

= (−1)m�∗+m.

(99)

In valence theory it is customary to use real �s, involving trigonometric functions, which

are still eigenfunctions of L̂
2

but no longer of L̂z. Real �s are related to complex �s by the
unitary transformation:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�c
m = cosmϕ√

π
= (−1)m �+m + �−m√

2

�s
m = sinmϕ√

π
= −i

(−1)m �+m − �−m√
2

.

(100)

Real �s are eigenfunctions of L̂
2

only and can be visualized as standing waves. The inverse
transformation (from real to complex form) is given by:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�+m = (−1)m
�c

m + i�s
m√

2

�−m = �c
m − i�s

m√
2

.

(101)

These transformations can be immediately verified by recalling Euler’s formula (39) for
imaginary exponentials. In matrix form:

(�c
m �s

m) = (�+m �−m)

⎛

⎜

⎜

⎝

(−1)m
1√
2

(−1)m
−i√

2
1√
2

i√
2

⎞

⎟

⎟

⎠

U

(102)

with the inverse transformation (U−1 = U†):

(�+m �−m) = (�c
m �s

m)

⎛

⎜

⎜

⎝

(−1)m
1√
2

1√
2

(−1)m
i√
2

−i√
2

⎞

⎟

⎟

⎠

. (103)
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The unitary transformation preserves normalization, so that:

�c
m = cosmϕ√

π
�s

m = sinmϕ√
π

m > 0

�+m = (−1)m
exp(imϕ)√

2π
�−m = exp(−imϕ)√

2π
= (−1)m �∗+m.

(104)

All � functions, either real or complex, are normalized to 1 and mutually orthogonal.
Spherical harmonics in real form are also known as tesseral harmonics (Mac Robert, 1947),
and are given in un-normalized form as:

Yl0, Y c
lm ∼ �lm cosmϕ, Y s

lm ∼ �lm sinmϕ (m > 0). (105)

The first few (un-normalized) hydrogen-like AOs in real form are hence simply given by:

1s ∝ exp(−cr) (c = Z)

2s ∝ exp(−cr)(1 − cr) (2c = Z)

2pz ∝ exp(−cr) z

2px ∝ exp(−cr) x

2py ∝ exp(−cr) y

3s ∝ exp(−cr)

(

1 − 2cr + 2

3
c2r2

)

(3c = Z)

3pz ∝ exp(−cr)

(

1 − 1

2
cr

)

z

3px ∝ exp(−cr)

(

1 − 1

2
cr

)

x

3py ∝ exp(−cr)

(

1 − 1

2
cr

)

y

3dz2 ∝ exp(−cr)
3z2 − r2

2
3dzx ∝ exp(−cr) zx

3dyz ∝ exp(−cr) yz

3dx2−y2 ∝ exp(−cr)(x2 − y2)

3dxy ∝ exp(−cr) xy,

(106)

where x, y, z are given by equations (13). We see that our AOs have the same transforma-
tion properties of (x, y, z)-coordinates or of their combinations.
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Hydrogen-like AOs in their complex form simultaneously satisfy the following three eigen-
value equations:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Ĥψnlm = En ψnlm

L̂
2
ψnlm = l(l + 1)ψnlm

L̂zψnlm = mψnlm,

(107)

where:

n = 1,2,3, · · · principal quantum number

l = 0,1,2,3, · · · (n − 1) angular (orbital) quantum number

m = 0,±1,±2, · · · ± l magnetic quantum number.

(108)

• Comments

1. For the 1-electron atom the energy eigenvalues depend only on n. For the many-electron
atom, orbital energies do depend on n and l.

2. Each ψnlm AO is at a time eigenfunction of three different operators (Ĥ , L̂
2
, L̂z). A fun-

damental theorem of Quantum Mechanics (Eyring et al., 1944) then says that the three
operators do commute with each other:

[Ĥ , L̂
2] = [Ĥ , L̂z] = [L̂2

, L̂z] = 0 (109)

what physically means that, in state ψnlm, energy, total angular momentum, and z-
component of angular momentum, all have a definite value: in other words, we can
measure each of these physical quantities with arbitrary precision, without altering the
remaining two. Quantities commuting with the Hamiltonian are said to be constants
of the motion. Quantities whose operators do not commute cannot be measured at the
same time with arbitrary precision, because of Heisenberg’s uncertainty principle (e.g.,
x, p̂x or y, p̂y or z, p̂z; L̂x, L̂y or L̂y, L̂z or L̂z, L̂x ).

3. Since energy eigenvalues do depend only on n, the energy levels of the 1-electron atom
are strongly degenerate, the number g of different eigenstates for a given value of n

being:

g =
n−1
∑

l=0

(2l + 1) = n + 2
n−1
∑

l=0

l = n + 2
n(n − 1)

2
= n2. (110)

4. The first states of the 1-electron atom are given in Table 4.1, while in Figure 4.5 is the
diagram of the corresponding energy levels (orbital energies).
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Table 4.1.

First states of the hydrogen-like electron

n l m En |nlm〉

1 0 0 E1 |100〉 1s

2 0 0 E2 |200〉 2s

1
1
1

1
0

−1

|211〉
|210〉
|211̄〉

⎤

⎥

⎦
2p

3 0 0 E3 |300〉 3s

1
1
1

1
0

−1

|311〉
|310〉
|311̄〉

⎤

⎥

⎦
3p

2
2
2
2
2

2
1
0

−1
−2

|322〉
|321〉
|320〉
|311̄〉
|322̄〉

⎤

⎥

⎥

⎥

⎥

⎥

⎦

3d

. . .

5. Electron density distribution.
We recall from first principles that:

|ψnlm(r)|2 dr = [Rnl(r)]2 |Ylm(θ,ϕ)|2dϕ sin θdθ r2dr

= |Ylm(�)|2d� · [Rnl(r)]2 r2dr

= probability of finding in dr the electron in state ψnlm. (111)

Here � is a shorthand for θ,ϕ. Upon integration over all angles, we find the radial
probability, i.e. the probability of finding the electron in a spherical shell of thickness
dr , independently of angles θ,ϕ. If the spherical harmonics Ylm are normalized to 1,
we are left with:

∫

�

d� |Ylm(�)|2 · [Rnl(r)]2 r2dr = [Rnl(r)]2 r2dr = Pnl(r)dr, (112)

where:

Pnl(r) = [Rnl(r)]2 r2 (113)

is the radial probability density.
Figure 4.6 gives the radial probability densities for the first few states of the H atom

(Z = 1).
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Figure 4.5 Diagram of orbital energies for the hydrogen-like atom compared to that of the many-electron atom
(not in scale).

Figure 4.6 Radial probability densities for the H atom.

4.7 PROPERTIES OF GROUND AND EXCITED STATES

4.7.1 1s Ground State

The normalized hydrogen-like AO for the 1s ground state is:

ψ1s = |100〉 = 1s =
(

c3

π

)1/2

exp(−cr) c = Z. (114)
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Figure 4.7 Radial probability density for H(1s).

1. Radial probability density of state 1s.

P(r) = exp(−2cr) r2

dP (r)

dr
= exp(−2cr)(2r − 2cr2)

d2P(r)

dr2
= exp(−2cr)(2 − 8cr + 4c2r2).

2. Find the value of r for which we have the maximum probability density.

dP

dr
= 0 �⇒ cr = 1 �⇒ r = 1

c

(

d2P

dr2

)

cr=1
= exp(−2)(2 − 8 + 4) = −2 exp(−2) < 0.

Since the second derivative is negative, cr = 1 is a true maximum. For the H atom,
c = Z = 1, rmax = 1 which is the Bohr radius.

3. Average distance of the 1s-electron from the nucleus.

〈r〉1s = 〈1s|r|1s〉 = c3

π
· 4π

∫ ∞

0
dr r2 · r exp(−2cr) = 3

2c
.

In the H-atom ground state, the probability density has a maximum for a0 = 1 (Bohr
radius), while the average electron radius is larger, 1.5a0. The radial probability density
for H(1s) is plotted against r in Figure 4.7.
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4.7.2 Excited 2p State

The normalized hydrogen-like excited 2p state is:

ψ2pz = |210〉 =
(

c5

π

)1/2

exp(−cr)r cos θ 2c = Z. (115)

1. Radial probability density of state 2p.

P(r) = exp(−2cr) r4

dP

dr
= exp(−2cr)(4r3 − 2cr4)

d2P

dr2
= exp(−2cr)(12r2 − 16cr3 + 4c2r4)

dP

dr
= 0 �⇒ cr = 2 �⇒ r = 2

c
.

For the H atom, 2c = Z = 1, rmax = 4, so that the greatest probability of finding the
electron in state 2p is at r = 4a0, i.e. 4 times larger than the ground state value.

2. Average distance of the 2p electron from the nucleus.

〈r〉2p = 〈2p|r|2p〉 = c5

π
· 2π

∫ 1

−1
dx x2

∫ ∞

0
dr r2 · r · exp(−2cr) r2

= 2c5 · 2

3

∫ ∞

0
drr5 exp(−2cr) = 4

3
c5 · 5!

(2c)6
= 5

2c
,

where we have put, as usual, cos θ = x in the integral over θ .
In the H atom, the average distance from the nucleus of the electron in the excited

2p state is 5a0, larger than the most probable distance, 4a0 (Figure 4.8).

Figure 4.8 Radial probability density for H(2p).



4.8 Expectation Values for Ground and First Excited States 141

4.8 EXPECTATION VALUES FOR GROUND AND FIRST EXCITED
STATES

Some expectation values (in atomic units) for ground and excited states of the hydrogen-
like atom have been collected in Table 4.2.

• Comments

1. In the ground state, the average distance of the electron from the nucleus is greater than
its most probable distance ( = 1/Z).

2. In the excited states, the average distance of the electron from the nucleus is greater
than that of the ground state.

3. On the average, the electron is nearer to the nucleus in the 2p rather than in the 2s state.
4. Increasing Z, the electron is nearer to the nucleus for any state.
5. Diamagnetic susceptibility is proportional to 〈r2〉. In the excited states it is hence much

greater than in the ground state (e.g., in the 2p state it is ten times larger than in the 1s

state).
6. Nuclear attraction is proportional to the nuclear charge, and in the ground state it is four

times larger than in the first excited state.
7. Average kinetic energy is repulsive, and in the ground state it is four times larger than

in the first excited state.
8. The virial theorem holds:

E = −〈T 〉 = 1

2
〈V 〉.

9. We notice that while average values of positive powers of r are different for excited
states of different symmetry, the average value of the reciprocal of the distance of the
electron from the nucleus is the same for states 2s and 2p. This is due to the fact
that 〈r−1〉 appears in the potential energy expression, whose average value is related
to total energy through the virial theorem 8, and the total energy is degenerate for
n = 2 (i.e. different states have the same energy, hence the same average nuclear at-
traction).

Table 4.2.

Some expectation values (a.u.) for the H atom

State 〈r〉 〈r2〉 〈r−1〉 〈V 〉 〈T 〉 E

1s = |100〉 3

2Z

3

Z2
Z −Z2 Z2

2
−Z2

2

2s = |200〉 6

Z

42

Z2

Z

4
−Z2

4

Z2

8
−Z2

8

2p = |210〉 5

Z

30

Z2

Z

4
−Z2

4

Z2

8
−Z2

8
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10. On the average, nuclear attraction overcomes repulsion due to kinetic energy (in a ratio
determined by the virial theorem), and the electron is bound either in the ground state
or in the first 2s and 2p excited states.

4.9 SLATER AND GAUSSIAN ATOMIC ORBITALS

The great majority of quantum chemical calculations on atoms and molecules is based
on the use of a basis of atomic orbitals (AOs) which have a radial dependence which is
different from that of the hydrogenic AOs we have seen so far. They can be distinguished
in two classes according if their decay with the radial variable r is exponential (Slater-type
orbitals, STOs) or Gaussian (Gaussian-type orbitals, GTOs). We now give some general
definitions of both kinds of AOs and some simple atomic (1-centre) 1-electron integrals
which will be needed in the next Chapter.

4.9.1 Slater Orbitals (STOs)

STOs were introduced long ago by Slater (1930) and Zener (1930), and extensively used
by Roothaan (1951b) in developing his fundamental work on molecular integrals. Slater
showed that for many purposes only the term with the highest power of r in the hydrogen-
like Rnl(r) is of importance for practical calculations. Zener suggested replacing the hydro-
genic orbital exponent c = Z/n by an effective nuclear charge (Z−s) seen by the electron,
and which is less than the true nuclear charge Z by a quantity s called the screening con-
stant. This gives AOs which are more diffuse than the original hydrogen-like AOs. The
Zener approach has today been replaced by the variational determination of the orbital ex-
ponents c, as we shall see in the next Chapter. One of the major difficulties of STOs is that
the excited STOs within a given angular symmetry are no longer orthogonal to their lowest
terms. As we shall see, this is particularly troublesome for ns orbitals (n > 1), which lack
the cusp which is characteristic of all s orbitals. Furthermore, multicentre integrals over
STOs are difficult to evaluate.

Retaining only the highest (n− l −1) power of r in the polynomial (58) defining Rnl(r),
the dependence on l is lost and we obtain for the general STO in real form:

χnlm(r, θ,ϕ) = |nlm〉 = Nrn−1 exp(−cr)Y
c,s
lm (θ,ϕ) = Rn(r)Y

c,s
lm (θ,ϕ),

(116)

where N is a normalization factor. Here:

Rn(r) = Nnr
n−1 exp(−cr) (c > 0) (117)

is the normalized radial part,

Y
c,s
lm (θ,ϕ) = N�P m

l (x)

{

cosmϕ

sinmϕ
m ≥ 0 (118)
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the normalized angular part in real form. As usual, we use � to denote the couple of
angular variables θ,ϕ.

Separate normalization of radial and angular part gives:

Nn =
(

(2c)2n+1

(2n)!
)1/2

, N� =
(

2l + 1

2π(1 + δ0m)

(l − m)!
(l + m)!

)1/2

(119)

so that the overall normalization factor for the general STO (116) will be:

N = NnN� =
[

(2c)2n+1

(2n)! · 1

π(1 + δ0m)
· 2l + 1

2

(l − m)!
(l + m)!

]1/2

. (120)

We must remember that:
∫ ∞

0
dr rn exp(−ar) = n!

an+1
(121)

with n = non-negative integer and a = real positive;

∫ 2π

0
dϕ

cos2 mϕ

sin2 mϕ
= π(1 + δ0m) (122)

∫ 1

−1
dx [P m

l (x)]2 = 2

2l + 1

(l + m)!
(l − m)! m = |m| ≥ 0. (123)

The off-diagonal matrix element over STOs of the atomic 1-electron hydrogenic Hamil-
tonian is:

hχ ′χ =
〈

R′Y ′
∣

∣

∣

∣

−1

2
∇2 − Z

r

∣

∣

∣

∣

RY

〉

= Sn′l′m′,nlm

{

l(l + 1) − n(n − 1)

(n + n′)(n + n′ − 1)

(c + c′)2

2

+ (nc − Z)
c + c′

n + n′ − c2

2

}

, (124)

where Sn′l′m′,nlm is the non-orthogonality integral given by:

Sn′l′m′,nlm = 〈n′l′m′|nlm〉

= δll′ δmm′
(n + n′)!√
(2n)! (2n′)!

( c

c′
)n−n′

2
(

2(cc′)1/2

c + c′

)n+n′+1

. (125)
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The diagonal element of the Hamiltonian is:

hχχ =
〈

RY

∣

∣

∣

∣

−1

2
∇2 − Z

r

∣

∣

∣

∣

RY

〉

= c2

2

n + 2l(l + 1)

n(2n − 1)
− Zc

n
. (126)

For c = Z
n

(hydrogenic AOs):

hχχ = − Z2

2n2

4n2 − 3n − 2l(l + 1)

n(2n − 1)
, (127)

where the last factor on the right is 1 only for the lowest AOs of each symmetry (l =
0,1,2, · · ·), since in this case STOs and hydrogenic AOs coincide.

4.9.2 Gaussian Orbitals (GTOs)

Gaussian orbitals (GTOs) are largely used today in atomic and molecular computations
because of their greater simplicity in computing multicentre molecular integrals. GTOs
were originally introduced by Boys (1950) and McWeeny (1950) mostly for computational
reasons. In today molecular calculations it is customary to fit STOs in terms of GTOs,
which requires rather lengthy expansions (see the variety of Pople’s bases in Chapter 7),
or to minimize the deviation between STOs and GTOs as done by Huzinaga (1965). Some
failures of GTOs with respect to STOs are discussed briefly in the next Chapter.
The most common Gaussian orbitals are given in the form of spherical or Cartesian func-
tions. We shall give here some formulae which are of interest to us, while for details the
reader is referred to elsewhere (Cook, 1974; Saunders, 1975, 1983).

(i) Spherical Gaussians.
For spherical GTOs it will be sufficient to consider the radial part of the orbital, since

the angular part is the same as that for STOs.

Rn(r) = Nnr
n−1 exp(−cr2) (c > 0) (128)

Nn =
(

2n+1(2c)n+ 1
2

(2n − 1)!!√π

)1/2

, (129)

where:

(2n − 1)!! = (2n − 1)(2n − 3) · · ·3 · 1 = (2n)!
2nn! = (2n)!

(2n)!!
(−1)!! = 0!! = 1

(130)

is the double factorial.
The normalization factor (129) is easily derived from the general integral:

∫ ∞

0
dr rn exp(−ar2) = (n − 1)!!

(2a)
n+1

2

σ(n), (131)
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where:

σ(n) =
√

π

2
for n = even, σ(n) = 1 for n = odd. (132)

The normalized spherical Gaussian orbital will then be written as:

|nlm〉 = G(nlm, c) = Nrn−1 exp(−cr2)Y
c,s
lm (θ,ϕ), (133)

where the normalization factor is:

N = NnN� (134)

with Nn given by (129) and N� by (119).
The general matrix element of the atomic 1-electron hydrogenic Hamiltonian is:

hG′G =
〈

G′(n′l′m′, c′)
∣

∣

∣

∣

−1

2
∇2 − Z

r

∣

∣

∣

∣

G(nlm, c)

〉

= δll′ δmm′
(2c + 2c′)−1

√
(2n − 1)!! (2n′ − 1)!!

×
[

2

π

(

c

c′

)n−n′
2
(

2(cc′)1/2

c + c′

)n+n′+1]1/2

× {[2 (l(l + 1) − n(n − 1)) (n + n′ − 3)!! (c + c′)2

+ 2(2n + 1)(n + n′ − 1)!! c(c + c′)

− 2(n + n′ + 1)!! c2]σ(n + n′)

− 2
√

2Z(n + n′ − 2)!! (c + c′)3/2σ(n + n′ − 1)
}

(135)

a rather complicated unsymmetrical formula, with the diagonal element (c′ = c):

hGG =
〈

G(nlm, c)

∣

∣

∣

∣

−1

2
∇2 − Z

r

∣

∣

∣

∣

G(nlm, c)

〉

= 1√
2π

c

(2n − 1)!!
{

[4 (l(l + 1) − n(n − 1)) (2n − 3)!!

+ (2n + 1)!!]
√

π

2
− 4Z(2n − 2)!! c−1/2

}

. (136)
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For spherical GTOs there is no longer proportionality between matrix elements of the
atomic 1-electron hydrogenic Hamiltonian ĥ and non-orthogonality integral S.

For 1s spherical GTOs with different orbital exponents formula (135) gives:

n = n′ = 1 l = m = 0

hG′G = 〈G(100, c′)| ĥ |G(100, c)〉

=
√

23 · 32 (cc′)7/2

(c + c′)5
− Z

√

25(cc′)3/2

(c + c′)2π
(137)

and, if c′ = c:

hGG =
〈

G(100, c)

∣

∣

∣

∣

−1

2
∇2 − Z

r

∣

∣

∣

∣

G(100, c)

〉

= 3

2
c − Z

(

8c

π

)1/2

. (138)

(ii) Cartesian Gaussians.
Un-normalized Cartesian Gaussians are best written as:

Guvw(c) = xuyvzw exp(−cr2) = xuyvzw exp
[−c(x2 + y2 + z2)

]

, (139)

where u,v,w are non-negative integers, the non-orthogonality integral between GTOs be-
ing:

Su′v′w′,uvw = 〈G′
u′v′w′(c′)|Guvw(c)〉

= (2U − 1)!! (2V − 1)!! (2W − 1)!!
(2c + 2c′)U+V +W

(

π

c + c′

)3/2

, (140)

where:

2U = u + u′, 2V = v + v′, 2W = w + w′. (141)

The normalization factor of GTO (139) is then:

N =
[

(4c)U+V +W

(2U − 1)!! (2V − 1)!! (2W − 1)!!
(

2c

π

)3/2
]1/2

. (142)
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4.10 PROBLEMS 4

4.1. Find the transformation for the two-particle Hamiltonian from Cartesian to centre-of-
mass and internal coordinates.

Answer:

Ĥ = − h̄2

2M
∇2

X − h̄2

2m
∇2 − 1

4πε0

Ze2

r
, (3)

where: M = m1 + m2 is the total mass, m = m1m2
m1+m2

the reduced mass of the nucleus +
electron system, ∇2

X and ∇2 the Laplacian operators in the centre-of mass (X,Y,Z) and
internal (x, y, z) coordinate systems.

Hint:
Find the relations between the Cartesian coordinates (x1, y1, z1; x2, y2, z2) of the two parti-
cles and the coordinates (X,Y,Z) of the centre-of-mass and (x, y, z) of the electron relative
to the nucleus.

4.2. Find the differential equation for P(r).

Answer:

d2P

dr2
+
[

2

(

E + Z

r

)

− l (l + 1)

r2

]

P = 0. (31)

Hint:
From R(r) = r−1P(r), evaluate first and second derivatives of R(r) with respect to r , then
substitute into the differential equation (29).

4.3. Give an elementary derivation of Euler’s formula.

Answer:

exp(iα) = cosα + i sinα.

Hint:
Use series expansions for exponential and trigonometric functions.

4.4. Find the differential equation for P(x).

Answer:

d2P

dx2
+
(

−1 + 2n

x
− l(l + 1)

x2

)

P = 0. (43)
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Hint:
Change variable to x = Z

n
r , pose E = − Z2

2n2 < 0, and evaluate first and second deriva-

tives of P(r), recalling that d
dr

= d
dx

dx
dr

, d2

dr2 = d
dx

(

d
dx

dx
dr

) (

dx
dr

)

.

4.5. Find the differential equation satisfied by F(x).

Answer:

x
d2F

dx2
+ [(2l + 2) − 2x]

dF

dx
+ 2(n − l − 1)F = 0. (47)

Hint:
Evaluate first and second derivatives of (46).

4.6. Find the radial functions Rnl(x) of the hydrogen-like system up to n = 3 and l = 2,
and draw the corresponding plots of Rnl against x.

Answer:

R10 = exp(−x)a0 R20 = exp(−x)(1 − x)a0

R30 = exp(−x)

(

1 − 2x + 2

3
x2
)

a0

R21 = exp(−x)xa0 R31 = exp(−x)x

(

1 − 1

2
x

)

a0

R32 = exp(−x)x2a0.

Hint:
Use equation (58) for the different values of the principal quantum number n and the
angular quantum number l.

4.7. Verify that the first few radial solutions Rnl(x) for n = 1,2 and l = 0,1 do satisfy the
corresponding differential equation in x.

4.8. Find the differential equation for �(x).

Answer:

(1 − x2)
d2�

dx2
− 2x

d�

dx
+
(

λ − m2

1 − x2

)

� = 0. (69)
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Hint:
Evaluate first and second derivatives of �(x), by recalling that d

dθ
= d

dx
dx
dθ

, and d2

dθ2 =
d
dx

(

d
dx

dx
dθ

) (

dx
dθ

)

.

4.9. Verify the asymptotic solution for �(x).

Answer:

�(x) = (1 − x2)
m
2 m = |m| ≥ 0. (71)

Hint:
Evaluate first and second derivatives of �(x), then substitute into the differential equa-
tion (70).

4.10. Find the differential equation for G(x).

Answer:

(1 − x2)
d2G

dx2
− 2(m + 1)x

dG

dx
+ (λ − m(m + 1))G = 0. (73)

Hint:
Evaluate first and second derivatives of �(x) in equation (72).

4.11. Find the angular functions �lm(x) up to l = m = 3.

Answer:

�00 = a0 �10 = x a1 �20 = (1 − 3x2)a0 �30 = (x − 5
3 x3

)

a1

�11 = (1 − x2)1/2a0 �21 = (1 − x2)1/2x a1

�31 = (1 − x2)1/2(1 − 5x2)a0

�22 = (1 − x2)a0 �32 = (1 − x2)x a1

�33 = (1 − x2)3/2a0.

Hint:
Use equations (92) and (93) for the different values of the angular quantum numbers l and
m = |m|.

4.12. Verify that the first few angular functions �lm(x) for l = 1,2 and m = 0,1,2 do
satisfy the differential equation (69) with λ = l(l + 1).
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4.13. Find the first few Legendre and associated Legendre polynomials.

Hint:
Start from the definitions of Legendre (m = 0) and associated Legendre (m �= 0) polyno-
mials P m

l (x).

4.14. Find the corresponding factors between �lm(x) and P m
l (x) for �20, �30 and �21.

Answer:

l = 2, m = 0 a0 = −1

2

l = 3, m = 0 a1 = −3

2
l = 2, m = 1 a1 = 3.

Hint:
Use equation (94) and the normalization condition.

4.11 SOLVED PROBLEMS

4.1. The transformation for the two-particle system is:

(x1, y1, z1; x2, y2, z2) −→ (X,Y,Z; x, y, z),

where the first set on the r.h.s. denotes centre-of-mass coordinates, and the second gives
the Cartesian coordinates of the electron with respect to the nucleus taken as origin of the
second coordinate system. We have further:

M = m1 + m2 total mass of the system

m = m1m2

m1 + m2
reduced mass of the system.

For the x-component we can write:

x = x2 − x1 MX = m1x1 + m2x2.

The inverse transformations are hence derived from the inhomogeneous system:

{

m1x1 + m2x2 = MX

−x1 + x2 = x
D =

∣

∣

∣

∣

∣

m1 m2

−1 1

∣

∣

∣

∣

∣

= m1 + m2 = M,
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where D is the determinant of the coefficients. Solutions are obtained by use of Cramer’s
rule:

x1 = 1

M

∣

∣

∣

∣

∣

MX m2

x 1

∣

∣

∣

∣

∣

= X − m2

M
x

x2 = 1

M

∣

∣

∣

∣

∣

m1 MX

−1 x

∣

∣

∣

∣

∣

= X + m1

M
x.

Then:

T = m1

2
ẋ2

1 + m2

2
ẋ2

2 = m1

2

(

Ẋ − m2

M
ẋ
)2 + m2

2

(

Ẋ + m1

M
ẋ
)2

= m1 + m2

2
Ẋ2 + m1m2(m1 + m2)

2M2
ẋ2 = M

2
Ẋ2 + m

2
ẋ2.

The same is true for the remaining y and z-components, so that the classical kinetic energy
in the r.h.s. system of coordinates will be:

T = M

2

(

Ẋ2 + Ẏ 2 + Ż2)+ m

2

(

ẋ2 + ẏ2 + ż2)= 1

2M
P 2

X + 1

2m
p2

which is the kinetic energy of a particle of mass M placed in the centre-of-mass plus the
kinetic energy of a particle of mass m in internal coordinates.

Introducing the momentum operators:

P̂ = − i h̄∇X, p̂ = − i h̄∇

we obtain for the Hamiltonian operator of the two-particle nucleus+electron system:

Ĥ = − h̄2

2M
∇2

X − h̄2

2m
∇2 − 1

4πε0

Ze2

r
,

where the last term is the Coulomb attraction of the electron by the nucleus in SI units.

4.2. The differential equation for P(r).

We put:

R(r) = r−1P(r).
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We take first and second derivatives of R(r):

dR

dr
= r−1 dP

dr
− r−2P = R′

d2R

dr2
= r−1 d2P

dr2
− r−2 dP

dr
− r−2 dP

dr
+ 2r−3P

= r−1 d2P

dr2
− 2r−2 dP

dr
+ 2r−3P = R′′.

Therefore, substituting into equation (29):

R′′ + 2r−1R′ +
[

2

(

E + Z

r

)

− l (l + 1)

r2

]

R = 0

we obtain:

r−1P ′′ − 2r−2P ′ + 2r−3P + 2r−2P ′ − 2r−3P

+
[

2

(

E + Z

r

)

− l (l + 1)

r2

]

r−1P = 0

P ′′ +
[

2

(

E + Z

r

)

− l (l + 1)

r2

]

P = 0

which is the required equation (31).

4.3. Euler’s formula.

We use the series expansions for exp(iα), cosα, sinα:

exp(iα) = 1 + i α + (i α)2

2! + (i α)3

3! + (i α)4

4! + · · ·

= 1 + i α − α2

2! − i
α3

3! + α4

4! + · · ·

=
(

1 − α2

2! + α4

4! + · · ·
)

+ i

(

α − α3

3! + α5

5! + · · ·
)

= cosα + i sinα.

4.4. Differential equation for P(x).

The differential equation (31):

d2P

dr2
+
[

2

(

E + Z

r

)

− l (l + 1)

r2

]

P = 0
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can be simplified by posing:

x = Z

n
r

dx

dr
= Z

n
= constant.

Then:

d

dr
= d

dx

dx

dr
= Z

n

d

dx

d2

dr2
= d

dx

(

d

dx

dx

dr

)(

dx

dr

)

=
(

dx

dr

)2
d2

dx2
= Z2

n2

d2

dx2
.

Substituting we find the differential equation in x:

Z2

n2

d2P(x)

dx2
+
[

2E + Z2

n2
· 2n

x
− Z2

n2

l(l + 1)

x2

]

P(x) = 0.

By posing 2E = −Z2

n2 < 0, we obtain:

Z2

n2

d2P(x)

dx2
+
[

−Z2

n2
+ Z2

n2
· 2n

x
− Z2

n2

l(l + 1)

x2

]

P(x) = 0

so that we can finally obtain equation (43):

d2P

dx2
+
[

−1 + 2n

x
− l(l + 1)

x2

]

P = 0.

4.5. Differential equation for F(x).

We calculate first and second derivatives of equation (46):

P(x) = exp(−x)xl+1 F(x)

P ′(x) = exp(−x){xl+1 F ′ + [(l + 1)xl − xl+1]F }

P ′′(x) = exp(−x){xl+1 F ′′ + [(2l + 2)xl − 2xl+1]F ′

+ [xl+1 − (2l + 2)xl + l(l + 1)xl−1]F }.

Substituting into differential equation (43) and eliminating exp(−x)xl , we find:

x F ′′ + [(2l + 2) − 2x]F ′ + 2 (n − l − 1)F = 0

which is the required equation (47).
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Figure 4.9 Plots of the first Rnl(x) radial functions.

4.6. First radial functions for the hydrogen-like atom.

Equation (58) gives for the different values of n and l:

n = 1, l = 0 R10 = exp(−x)a0

n = 2, l = 0 a1 = −a0 R20 = exp(−x)(a0 + a1x)

= exp(−x)(1 − x)a0

n = 3, l = 0 a1 = −2a0, a2 = −1

3
a1 = 2

3
a0

R30 = exp(−x)(a0 + a1x + a2x
2) = exp(−x)

(

1 − 2x + 2

3
x2
)

a0

which are the radial functions for ns, and a0 is a normalization factor.

n = 2, l = 1 R21 = exp(−x)x a0

n = 3, l = 1 a1 = −1

2
a0

R31 = exp(−x)x(a0 + a1x) = exp(−x)x

(

1 − 1

2
x

)

a0
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which are the radial functions for np.

n = 3, l = 2 R32 = exp(−x)x2a0 3d function.

We notice that all ns functions are characterized by a cusp at the origin.

4.7. Using x = Z
n

r and E = − Z2

2n2 , equation (29) transforms to:

d2R

dx2
+ 2

x

dR

dx
+
[

−1 + 2n

x
− l (l + 1)

x2

]

R = 0.

It will then be sufficient to evaluate first and second derivatives of un-normalized R10, R20
and R21 found in Problem 4.6 and substitute into the differential equation above.

4.7.1 n = 1, l = 0

R10 = exp(−x) R′ = − exp(−x) R′′ = exp(−x).

Substituting into the differential equation and getting rid of exp(−x):

1 − 2

x
+
(

−1 + 2

x

)

= 0.

4.7.2 n = 2, l = 0

R20 = exp(−x)(1 − x) R′ = exp(−x)(−2 + x) R′′ = exp(−x)(3 − x)

(3 − x) + 2

x
(−2 + x) +

(

−1 + 4

x

)

(1 − x)

= (3 − x) +
(

− 4

x
+ 2

)

+
(

−1 + 4

x
+ x − 4

)

= 0.

4.7.3 n = 2, l = 1

R21 = exp(−x)x R′ = exp(−x)(1 − x) R′′ = exp(−x)(−2 + x)

(−2 + x) + 2

x
(1 − x) +

(

−1 + 4

x
− 2

x2

)

x

= (−2 + x) +
(

2

x
− 2

)

+
(

−x + 4 − 2

x

)

= 0.

4.8. Differential equation for �(x).

The differential equation (65) for �(θ):

d2�

dθ2
+ cot θ

d�

dθ
+
(

λ − m2

sin2 θ

)

� = 0
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is usually transformed into an equation for �(x) by posing:

x = cos θ �(θ) → �(x)
dx

dθ
= −(1 − x2)1/2 − 1 ≤ x ≤ 1.

Now:

d

dθ
= d

dx

dx

dθ
= −(1 − x2)1/2 d

dx

d2

dθ2
= d

dx

(

d

dx

dx

dθ

)(

dx

dθ

)

= −(1 − x2)1/2
{(

dx

dθ

)

d2

dx2
+ d

dx

[

d

dx

(

−(1 − x2)1/2
)

]}

= −(1 − x2)1/2
{

−(1 − x2)1/2 d2

dx2
− 1

2
(1 − x2)−1/2(−2x)

d

dx

}

= (1 − x2)
d2

dx2
− x

d

dx
.

Hence equation (65) becomes:

(1 − x2)
d2�

dx2
− x

d�

dx
+ x(1 − x2)−1/2

{

−(1 − x2)1/2 d

dx

}

�

+
(

λ − m2

1 − x2

)

� = 0

so finally giving:

(1 − x2)
d2�

dx2
− 2x

d�

dx
+
(

λ − m2

1 − x2

)

� = 0

which is the required equation (69). We notice that x = ±1 are regular singular points of
the differential equation.

We open here a short digression on singular points (Ince, 1963). Given the ordinary
second-order differential equation:

P(x)y′′ + Q(x)y′ + R(x)y = 0 ,

if x − x0 is a factor of P(x) but not of Q(x) and R(x), x − x0 is said to be a singular point
(or singularity) of the equation. If it is possible to reduce the differential equation to the
form:

(x − x0)
2P1(x) y′′ + (x − x0)Q1(x) y′ + R1(x) y = 0
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with P1(x0) �= 0 and P1(x), Q1(x), R1(x) finite for x = x0, then we can write:

y = (x − x0)
α F (x) = (x − x0)

α
∞
∑

k=0

ak (x − x0)
k,

where x − x0 is now a regular singularity, and F(x) can be expanded as a Taylor series in
x − x0. To determine α, we calculate first and second derivatives of y, substitute into the
differential equation, and equating to zero the coefficient of (x − x0)

α (k = 0) we are left
with the so called indicial equation:

α(α − 1)P1(x) + α Q1(x) + R1(x) = 0

which for x = x0 gives the quadratic equation in α:

P1(x0)α2 − {P1(x0) − Q1(x0)}α + R1(x0) = 0

whose roots give the two possible values of α.

4.9. Asymptotic solution for �(x).

It can be easily seen that the asymptotic equation for �(x):

(1 − x2)�′′ − 2x �′ ≈ m2

1 − x2
�, (70)

where |x| = 1 is a regular singularity, has a solution:

�(x) = (1 − x2)
m
2 m = |m| > 0

which is finite for |x| = 1. Taking first and second derivatives of �(x):

�′(x) = m

2
(1 − x2)

m
2 −1(−2x) = − mx

1 − x2
�

�′′(x) = −m(1 − x2)
m
2 −1 − mx

(

m

2
− 1

)

(1 − x2)
m
2 −2(−2x)

= m2x2 − mx2 − m

(1 − x2)2
�

so that:

−2x�′ = 2mx2

1 − x2
� (1 − x2)�′′ = m2x2 − mx2 − m

1 − x2
�.

Substituting into (70) and simplifying, we find:

m2x2 + mx2 − m ≈ m2

which is true for |x| = 1.
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4.10. Differential equation for G(x).

From:

�(x) = (1 − x2)
m
2 G(x) (72)

taking first and second derivatives of �(x):

�′ = m

2
(1 − x2)

m
2 −1(−2x)G + (1 − x2)

m
2 G′

= (1 − x2)
m
2
{

G′ − mx(1 − x2)−1G
}

�′′ = m

2
(1 − x2)

m
2 −1(−2x)

{

G′ − mx(1 − x2)−1G
}

+(1 − x2)
m
2
{

G′′ − m(1 − x2)−1G

−mx
[−(1 − x2)−2(−2x)

]

G − mx(1 − x2)−1G′}

= (1 − x2)
m
2
{

G′′ − 2mx(1 − x2)−1G′

+ (m2x2 − mx2 − m)(1 − x2)−2G
}

.

Substituting into (69) and dividing through by (1 − x2)
m
2 , we obtain:

(1 − x2)G′′ − 2mxG′ + (m2x2 − mx2 − m)(1 − x2)−1G from �′′

−2xG′ + 2mx2(1 − x2)−1G from �′

+{λ − m2(1 − x2)−1
}

G from �

= (1 − x2)G′′ − 2(m + 1)xG′

+ {λ − (1 − x2)−1(m2 − 2mx2 − m2x2 + mx2 + m)
}

G

= (1 − x2)G′′ − 2(m + 1)xG′ + {λ − m(m + 1)}G = 0

which is the required equation (73).

4.11. Angular functions �lm(x) up to l = m = 3.

We use equations (92) and (93) of our polynomial method for the different values of
l,m = |m|.
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l = 0, m = 0 l − m = 0 �00 = a0 a0 = 1

l = 1, m = 0 l − m = 1 �10 ∼ xa1 ∼ cos θ a1 = 1

l = 2, m = 0 l − m = 2 a2 = −2 · 3

1 · 2
a0 = −3a0

�20 = a0 + a2x
2 = (1 − 3x2)a0 a0 = −1

2

l = 3, m = 0 l − m = 3 a3 = 1 · 2 − 3 · 4

2 · 3
a1 = −5

3
a1

�30 = a1x + a3x
3 =

(

x − 5

3
x3
)

a1 a1 = −3

2
l = 1, m = 1 l − m = 0 �11 = (1 − x2)1/2a0 ∼ sin θ a0 = 1

l = 2, m = 1 l − m = 1 �21 = (1 − x2)1/2xa1

∼ sin θ cos θ

a1 = 3

l = 3, m = 1 l − m = 2 a2 = 1 · 2 − 3 · 4

1 · 2
a0 = −5a0

�31 = (1 − x2)1/2(a0 + a2x
2) = (1 − x2)1/2(1 − 5x2)a0 a0 = −3

2

l = 2, m = 2 l − m = 0 �22 = (1 − x2)a0 ∼ sin2 θ a0 = 3

l = 3, m = 2 l − m = 1 �32 = (1 − x2)xa1 a1 = 15

l = 3, m = 3 l − m = 0 �33 = (1 − x2)3/2a0 ∼ sin3 θ a0 = 15

The values of a0 and a1 are the factors giving identity between �lm(x) and P m
l (x).

4.12. We can easily verify by direct substitution that �00, �10, �20 and �11 do satisfy
the differential equation (69) with λ = l(l + 1):

(1 − x2)
d2�

dx2
− 2x

d�

dx
+
(

l(l + 1) − m2

1 − x2

)

� = 0. (69)

We evaluate first and second derivatives of the un-normalized �-functions found in Prob-
lem 4.11.

4.12.1 l = 0, m = 0

�00 = a0 �′ = �′′ = 0

will evidently satisfy equation (69).
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4.12.2 l = 1, m = 0

�10 = x �′ = 1 �′′ = 0 − 2x + 2x = 0.

4.12.3 l = 2, m = 0

�20 = 1 − 3x2 �′ = −6x �′′ = −6

−6(1 − x2) + 12x2 + 6(1 − 3x2) = 0.

4.12.4 l = 1, m = 1

�11 = (1 − x2)1/2 �′ = −x(1 − x2)−1/2 �′′ = −(1 − x2)−3/2

− (1 − x2)−1/2 + 2x2(1 − x2)−1/2 +
(

2 − 1

1 − x2

)

(1 − x2)1/2

= (1 − x2)−1/2(−1 + 2x2) + (1 − 2x2)(1 − x2)−1/2 = 0.

4.13. Legendre polynomials.

We start from the definitions (Hobson, 1965):

Pl(x) = 1

2l l!
dl

dxl

(

x2 − 1
)l

(143)

P m
l (x) = (1 − x2)

m
2

dm

dxm
Pl(x) (144)

where:

x = cos θ m = |m| ≥ 0 l − m ≥ 0.

Equation (143) is the definition of the Legendre polynomial (degree l) and (144) of the
associated Legendre polynomial (degree l and order m). Associated Legendre polynomials
are orthogonal in the interval −1 ≤ x ≤ 1 and normalized to:

∫ 1

−1
dx P m

l (x)P m′
l′ (x) = δll′ δmm′

2

2l + 1

(l + m)!
(l − m)! . (145)
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4.13.1 First few Legendre polynomials up to l = 5.

P0 = 1 P1 = x P2 = 3x2 − 1

2
P3 = 5x3 − 3x

2

P4 = 35x4 − 30x2 + 3

8
P5 = 63x5 − 70x3 + 15x

8

⎫

⎪

⎪

⎬

⎪

⎪

⎭

m = 0.

4.13.2 First few associated Legendre polynomials up to l = m = 5.

P 1
1 = (1 − x2)1/2 P 1

2 = (1 − x2)1/23x P 1
3 = (1 − x2)1/2 3

2
(5x2 − 1)

P 1
4 = (1 − x2)1/2 5

2
(7x3 − 3x) P 1

5 = (1 − x2)1/2 15

8
(21x4 − 14x2 + 1)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

m = 1

P 2
2 = (1 − x2)3 P 2

3 = (1 − x2)15x P 2
4 = (1 − x2)

15

2
(7x2 − 1)

P 2
5 = (1 − x2)

105

2
(3x3 − x)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

m = 2

P 3
3 = (1 − x2)3/215 P 3

4 = (1 − x2)3/2105x

P 3
5 = (1 − x2)3/2 105

2
(9x2 − 1)

⎫

⎪

⎬

⎪

⎭

m = 3

P 4
4 = (1 − x2)2105 P 4

5 = (1 − x2)2945x
}

m = 4

P 5
5 = (1 − x2)5/2945

}

m = 5.

4.14. Corresponding factors between �lm(x) and P m
l (x) for �20, �30 and �21. Using

equations (94) and (145) we find:

4.14.1 �20 = (1 − 3x2)a0 a0 = −1

2

〈�20|�20〉 = a2
0

∫ 1

−1
dx
(

1 − 3x2)2 = a2
0

∫ 1

−1
dx
(

1 − 6x2 + 9x4)

= a2
0

(

2 − 6 · 2

3
+ 9 · 2

5

)

= 2a2
0

(

9

5
− 1

)

= 8

5
a2

0 = 2

5

4a2
0 = 1 �⇒ a0 = 1

2
,

where we have taken into account the phase factor arising from (94).
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4.14.2 �30 =
(

x − 5

3
x3
)

a1 a1 = −3

2

〈�30|�30〉 = 1

9
a2

1

∫ 1

−1
dx
(

3x − 5x3
)2 = 1

9
a2

1

∫ 1

−1
dx
(

9x2 − 30x4 + 25x6
)

= 1

9
a2

1

(

9 · 2

3
− 30 · 2

5
+ 25 · 2

7

)

= 2

9
a2

1

(

25

7
− 3

)

= 8

7 · 9
a2

1

= 2

7
4

9
a2

1 = 1 �⇒ a1 = 3

2
.

4.14.3 �21 = (1 − x2)1/2xa1 a1 = 3

〈�21|�21〉 = a2
1

∫ 1

−1
dx(1 − x2)x2 = a2

1

∫ 1

−1
dx
(

x2 − x4
)

= a2
1

(

2

3
− 2

5

)

= 4

3 · 5
a2

1 = 2

5
· 3! = 3 · 4

5
1

9
a2

1 = 1 �⇒ a1 = 3.
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5.1 INTRODUCTION

At the beginning of Chapter 3 we have seen that the Schroedinger equation can be solved
exactly only for a few physical systems, and we have studied in detail the case of the par-
ticle in a box and of the hydrogen-like system. For other applications, we must resort to
methods which enable us to evaluate approximations to the energy of some states of the
system. They are essentially two: (i) the variation method due to Rayleigh, and (ii) the per-
turbation method introduced by Schroedinger and known as Rayleigh–Schroedinger (RS)
perturbation theory. While we postpone discussion of RS perturbation theory until Chap-
ters 11 and 12, where we shall find it particularly adapted to deal with the problem of elec-
tric properties of molecules and intermolecular forces, we shall be mostly concerned here
with the variation method, which is extremely powerful in finding bounds to the energy

163



164 5. The Variation Method

of ground and excited states of atomic and molecular systems. In Section 7 of this Chap-
ter we shall briefly outline (iii) the principles of the so called Wentzel–Kramers–Brillouin
method, which is mostly of interest in establishing in a direct way the connection between
classical and quantum mechanics.

5.2 THE VARIATION METHOD

It is based on variational principles due to Rayleigh and allows us to find variational ap-
proximations to energy and wavefunction of ground and excited states of the system.

5.2.1 Variational Principles

Let ϕ be a normalizable (Q-class) trial (or variational) function. The ϕ-dependent func-
tional:

ε[ϕ] = 〈ϕ|Ĥ |ϕ〉
〈ϕ|ϕ〉 , (1)

where Ĥ is the Hamiltonian of the system, is called the Rayleigh ratio. Then:

ε[ϕ] ≥ E0 (2)

is the Rayleigh variational principle for the ground state, E0 being the true ground state
energy of the system;

ε[ϕ] ≥ E1 provided 〈ψ0|ϕ〉 = 0 (3)

is the Rayleigh variational principle for the first excited state (orthogonal to the true ground
state ψ0), E1 being the true energy of the first excited state, and so on. So, evaluation of
the integrals in (1) under suitable constraints gives upper bounds to the energy of ground
and excited states. Inequalities (2) and (3) can be easily proved by a formal expansion of
the trial function ϕ into eigenstates {ψk} of Ĥ .

(i) ϕ =
∑

k

ψkCk Ck = 〈ψk|ϕ〉 (4)

with:

Ĥψk = Ekψk 〈ψk|ψk′ 〉 = δkk′ . (5)

Then:

ε − E0 = 〈ϕ|Ĥ − E0|ϕ〉 =
∑

k

∑

k′
C∗

k Ck′ 〈ψk|Ĥ − E0|ψk′ 〉

=
∑

k

∑

k′
C∗

k Ck′(Ek′ − E0)δkk′ =
∑

k

|Ck|2(Ek − E0) ≥ 0 (6)
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which proves inequality (2).
(ii) ϕ =

∑

k

ψkCk = ψ0〈ψ0|ϕ〉 +
∑

k

′
ψkCk =

∑

k

′
ψkCk, (7)

where the dash means that we must exclude from the expansion the term with k = 0.
Then:

ε − E1 = 〈ϕ|Ĥ − E1|ϕ〉 =
∑

k

′ ∑

k′

′
C∗

k Ck′ 〈ψk|Ĥ − E1|ψk′ 〉

=
∑

k

′ ∑

k′

′
C∗

k Ck′(Ek′ − E1)δkk′ =
∑

k

′ |Ck|2(Ek − E1) ≥ 0 (8)

which proves inequality (3).

5.2.2 Properties of the Variational Solutions

(i) If:

ϕ = ψ0 ε[ϕ] = E0 (9)

and the equality sign holds (the true lowest eigenvalue of Ĥ ).
(ii) If:

ϕ = ψ0 + δ (10)

namely, if the variational function differs from the true ψ0 by a small first-order func-
tion δ, then:

ε − E0 = 〈δ|Ĥ − E0|δ〉 = O(δ2) ≥ 0, (11)

that is the variational energy differs from the true energy by a second-order quantity.
In fact:

ε − E0 = 〈ϕ|Ĥ − E0|ϕ〉 = 〈ψ0 + δ|Ĥ − E0|ψ0 + δ〉
= 〈ψ0|Ĥ − E0|ψ0〉 + 2〈δ|Ĥ − E0|ψ0〉 + 〈δ|Ĥ − E0|δ〉
= 〈δ|Ĥ − E0|δ〉 = O(δ2) ≥ 0 (12)

which means that, in variational approximations, energy is better approximated than
function.

(iii) Being based on the average value of the energy, the variational method privileges the
space regions near to the nucleus, where the potential energy is larger (r small). Use
of variationally optimized wavefunctions can give poor results for operators different
from Ĥ (like the dipole moment operator μ = er, which takes large values far from
the nucleus).
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Figure 5.1 Energy upper bounds to ground and excited states.

5.2.3 Variational Approximations

The functional ε[ϕ] gives an upper bound to E0 or E1 (Figure 5.1). The variation method
consists in applying the Rayleigh variational principles to the determination of approxima-
tions to the energy and the wavefunction. Even if in some cases (see Problems 5.1 and 5.2)
it is possible to get bounds to the true energy simply by imposing the boundary conditions
on the variational wavefunction, usually we shall introduce in the trial function ϕ a number
of variational parameters {c} and minimize the energy ε with respect to these parameters:

ε[ϕ] = 〈ϕ|Ĥ |ϕ〉
〈ϕ|ϕ〉

∫

dxϕ∗(x; c)Ĥϕ(x; c)
∫

dxϕ∗(x; c)ϕ(x; c) = ε(c). (13)

In this way, by evaluating the integrals in (13), the functional of ϕ is changed into an
ordinary function of the variational parameters {c}. For a single parameter, we have a plot
like that given in Figure 5.2, εmin = ε(cmin) being then the best variational approximation
arising from the given form of the trial function ϕ(c). The best value of the parameter c

(hence, of ε and ϕ) is found by minimizing the variational energy, i.e. by solving the equa-
tion arising as necessary condition for the minimum of ε:

∂ε

∂c
= 0 �⇒ cmin, provided

(

∂2ε

∂c2

)

cmin

> 0. (14)

Increasing the number of variational parameters increases the flexibility of the variational
wavefunction, and so increases the accuracy of the variational approximation.
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Figure 5.2 Schematic plot of the variational energy around the minimum.

5.2.4 Basis Functions and Variational Parameters

In molecular theory the variational wavefunctions are usually expressed in terms of a ba-
sis of atomic orbitals (STOs or GTOs, see Section 4.9 of the previous Chapter), possibly
orthonormal or anyway orthogonalizable by the Schmidt method:

χnlm(r,�) = Rn(r)Ylm(�), (15)

where the radial part is:

Rn(r) ∝ rn−1 exp(−cr)
STO

or rn−1 exp(−cr2)
GTO

c > 0. (16)

Flexibility in the variational wavefunction is introduced through the so called variational
parameters, which can be of two types:

variational
parameters

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

non-linear
(orbital exponents)

linear
(coefficients of the
linear combination)

�⇒ Ritz method
. (17)

The Ritz method is more systematic and yields typical secular equations which can be
solved by standard matrix techniques (see Chapter 2), while careful optimization of non-
linear parameters is more difficult (see Problem 5.5 for the simple Ransil method applied
to the case of a single parameter).
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Table 5.1.

Variational approximations to the ground state of the hydrogen-like system

ϕ 〈r〉ϕ ε(c) cmin εmin

1. exp(−cr)
3

2c

c2

2
− Zc Z −Z2

2

2. exp(−cr)r
5

2c

c2

6
− Zc

2

3

2
Z − 3

8
Z2

3. exp(−cr2)

(

2

πc

)1/2 3

2
c − Z

(

8c

π

)1/2 8

9π
Z2 − 4

3π
Z2

5.3 NON-LINEAR PARAMETERS

We shall now apply the variational techniques for finding approximations to energy and
wavefunctions of ground and excited states of the hydrogen-like system, for which ex-
act solutions were found in Chapter 4. This allows us to compare the results with the true
solutions, unequivocally judging for the accuracy of the numerical results. We start by con-
sidering approximate functions of non-linear parameters. Short applications to ground and
excited states of the harmonic oscillator will be given later in this Chapter as Problems 5.3
and 5.4.

5.3.1 The 1s Ground State of the Hydrogenic System

We look for the best variational energy and average distance of the electron from the nu-
cleus for the ground state of the hydrogenic system arising from the three (un-normalized)
variational functions depending on the single non-linear parameter c.

1. ϕ = exp(−cr) 1s-STO

2. ϕ = exp(−cr)r 2s-STO

3. ϕ = exp(−cr2) 1s-GTO

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (18)

where c > 0 is the adjustable orbital exponent. The necessary integrals are easily obtained
from the general formulae given in Chapter 4, and we obtain variational approximations to
the ground state of the hydrogen-like system (Table 5.1).

Putting Z = 1 we find the following numerical values for the H atom (Table 5.2).
Function 1 gives for c = 1 the exact value for either the energy eigenvalue or the average

distance of the electron from the nucleus (the function ϕ1 is the exact eigenfunction, the
energy corresponding to the equality sign in Rayleigh principle (2)). The reasons of the
poor behavior at the origin of functions 2 (ϕ = 0) and 3 (dϕ/dr = 0) become apparent
from the plot (Figure 5.3) giving the dependence of the three (normalized) functions on the
radial variable r . The numerical values were taken from Table 5.3 (functions 2 and 3 lack
of the requested cusp at the origin). It is important to notice how function 2G improves by
about 12% the energy eigenvalue but not at all the eigenfunction (next paragraph).
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Table 5.2.

Variational approximations to the H-atom ground state

ϕ cmin ε(c)/Eh 〈r〉ϕ/a0

1. exp(−cr) 1 −0.5 1.5

2. exp(−cr)r 1.5 −0.375 1.67

3. exp(−cr2) = 1G 0.2829 −0.4244 1.5

4. 2Ga
{

a = 1.3296
b = 0.2014

−0.4858 1.48

a2G = A exp(−ar2) + B exp(−br2) with: A = 0.2425,B = 0.1759.

Table 5.3.

Radial dependence of the three (normalized) variational functions

r/a0 ϕ1 = exp(−r)√
π

ϕ2 =
(

(1.5)5

3π

)1/2
exp(−1.5r)r ϕ3 =

(

0.5658

π

)3/4
exp(−0.2829r2)

0 0.564 0 0.276
0.25 0.439 0.154 0.272
0.5 0.342 0.212 0.258
0.75 0.267 0.219 0.236
1 0.208 0.200 0.208
2 0.0763 0.0893 0.0892
3 0.0281 0.0299 0.0217
4 0.0103 0.0089 0.0030
5 0.0038 0.0025 0.0002

Comments. ϕ1 is the point-by-point exact function. ϕ2 is zero at the origin, has a maxi-
mum of 0.220 at r = 0.67a0, being always smaller than ϕ1 in the region 0.25–1a0, greater
in 2–3a0, then decreases. ϕ3 has a zero derivative at the origin, changes slowly at small
values of r being always smaller than ϕ1, coincides with ϕ1 at r = 1a0, then decreases
rapidly with r .

• Gaussian bases

A more detailed comparison of different N-GTO approximations (Van Duijneveldt,
1971) to the exact 1s results for the H-atom ground state is given in Table 5.4 for dif-
ferent values of N . In the first column is the number N of optimized 1s GTOs, in the
second the overlap with the exact 1s eigenfunction, in the third the error in the eigenvalue

ε = εNG − E0, in the last column the quadratic average error (the variance) defined as
〈(Ĥ − ε)ϕ|(Ĥ − ε)ϕ〉 = 〈Ĥϕ|Ĥϕ〉 − ε2.

We may see from the Table 5.4 that, in going from N = 4 to N = 10, the error 
ε

reduces by a factor 1000 (from about 1mEh to 1μEh), whereas the quadratic error (last
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Figure 5.3 Plot of the (normalized) variational 1s functions against r .

Table 5.4.

Errors arising from optimized Gaussian 1s functions

N 〈ψ0|ϕ〉 
ε/10−3Eh 〈Ĥϕ|Ĥϕ〉 − ε2/E2
h

1 0.9782 75.58 0.2912
2 0.9966 14.19 0.2857
3 0.9994 3.02 0.2032
4 0.9998 0.72 0.1347
5 0.99997 0.19 0.0887

10 0.9999999 0.001 = 1μEh 0.0134

column) reduces by just 10 times. This means that the Van Duijneveldt NG is still point-
by-point very different from the true ψ0, even for large values of N . As already observed,
this is due to the lack of cusp in the 1s GTO, which persists even increasing the number
of GTOs. To remove this error, Klopper and Kutzelnigg (KK) (1986) have suggested to
represent the 1s H orbital by means of a linear combination of n Gaussian functions having
different and systematically increasing principal quantum numbers: 1s, 2s, 3s, . . . , even
with a single orbital exponent. Then:

ϕ = exp(−cr2)(1 + c1r + c2r
2 + · · ·) (19)

dϕ

dc
= exp(−cr2)[c1 + 2c2r + · · · − 2cr(1 + c1r + · · ·)] (20)
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Table 5.5.

Comparison of different Gaussian functions with cusped Gaussians

ϕ Variational
parameters


ε/10−9Eh 〈Ĥϕ|Ĥϕ〉 − ε2/E2
h

Linear/Non-linear
VDa 10/10 755.3 1.3 × 10−2

WMb 32/2 0.2 3.2 × 10−4

K10c 10/1 (c = 0.11181) 216.2 7.8 × 10−6

K15c 15/1 (c = 0.08761) 0.0 3.4 × 10−9

aVan Duijneveldt (1971) (VD).
bWheatley and Meath (1993) (WM).
cMagnasco et al. (1995) (KN).

lim
r→0

dϕ

dc
= c1 �= 0 (21)

and ϕ can now account for the cusp at r = 0. In Table 5.5 we have collected some results
obtained from different Gaussian functions.

KN denotes Kutzelnigg-like “cusped” GTOs with a single orbital exponent. We may
notice the improvement in the variance already obtained by K10 (which has the same
number of linear parameters as VD, but only one optimized non-linear parameter). The
“cusped” K15, still with a single non-linear parameter for a basis set whose dimensions
are about half of those of the “uncusped” WM, is seen to give an ε value exact to ten
decimal figures and a variance exceedingly small. This means that K15 with c = 0.08761
is practically point-by-point coincident with the exact 1s eigenfunction.

5.3.2 The First 2s, 2p Excited States of the Hydrogenic System

We now look for the best variational approximations to the first excited state of the
hydrogen-like atom using STOs of the appropriate symmetry.

(i) Excited 2s state.
The spherical function s = ( c5

3π
)1/2r exp(−cr) (normalized and nodeless 2s STO) cannot

be used as such in a variational calculation for state 2s (the first excited state having the
same spherical symmetry of the ground state ψ0 = 1s) since it is not orthogonal to ψ0. We
have already seen that optimizing such a function with respect to the orbital exponent c, we
find a poor approximation to the true energy of the ground state. A convenient variational
function for the first excited state of spherical symmetry will hence be obtained by Schmidt
orthogonalizing s against ψ0:

ϕ = s − Sψ0√
1 − S2

〈ψ0|ϕ〉 = 0, (22)
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where S = 〈ψ0|s〉 �= 0. The variation theorem for excited states of the same symmetry can
now be applied and gives:

εϕ =
〈

ϕ

∣

∣

∣

∣

−1

2
∇2 − Z

r

∣

∣

∣

∣

ϕ

〉

= (1 − S2)−1(hss + S2hψ0ψ0 − 2Shsψ0)

= hss + S2(hψ0ψ0 + hss) − 2Shsψ0

1 − S2

= hss + Epn ≥ E2s , (23)

where the term:

Epn = S2(hψ0ψ0 + hss) − 2Shsψ0

1 − S2
> 0 (24)

which arises from the non-orthogonality between s and ψ0 (S �= 0), gives a repulsive con-
tribution avoiding the excited 2s electron to collapse onto the inner 1s state. We call this
term penetration energy correction, and we shall see that it is of great importance whenever
problems of non-orthogonality or overlap arise for interacting systems. We see from (23)
that the variational energy εϕ differs from hss just by this correction term (which is always
repulsive, i.e. positive). We can evaluate the necessary integrals with the formulae given in
Chapter 4, and we find:

hψ0ψ0 = c2
0

2
− Zc0 hss = c2

6
− Zc

2

hsψ0 = S

3

[

(c0 − Z)(c0 + c) − 3

2
c2

0

]

S = √
3

c

c0 + c

(

2(c0c)
1/2

c0 + c

)3

. (25)

All matrix elements can now be evaluated as functions of the variational parameter c as-
suming c0 = Z = 1. The results (atomic units) are collected in Table 5.6 and plotted against
c in Figure 5.4.

The variational optimization of c by the Ransil method (Problem 5.5) yields c = 0.4222
(Z = 1), and the energy upper bound:

εϕ = −0.1234Eh (26)

which is within 98.7% of the exact value (−0.125Eh). For c = 0.5 (unoptimized orbital
exponent in the STO, corresponding to the hydrogenic value c = Z/n), the Schmidt or-
thogonalized STO (22) gives the fair value εϕ = −0.1192Eh, which is still within 95% of
the correct value. This clearly illustrates the importance of orthogonalization in establish-
ing correct upper bounds to the variational energy of the excited states.
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Table 5.6.

Variational results (Eh) for H(2s)

c hss Epn εϕ

0.2 −0.0933 0.0059 −0.0874
0.3 −0.1350 0.0221 −0.1129
0.4 −0.1733 0.0502 −0.1231
0.5 −0.2083 0.08915 −0.1192
0.6 −0.24 0.1385 −0.1015
0.7 −0.2683 0.1994 −0.0689
0.8 −0.2933 0.2750 −0.01835

Figure 5.4 Variational energy components for H(2s) plotted vs c.

(ii) Excited 2p state.
As a variational function of the appropriate symmetry we take the normalized 2pz-STO:
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ϕ =
(

c5

π

)1/2

exp(−cr)r cos θ, (27)

which is now orthogonal to ψ0 by symmetry:

〈ψ0|ϕ〉 = 0. (28)

Using the formulae of Chapter 4 for the necessary integrals we find:

ε(c) =
〈

ϕ

∣

∣

∣

∣

− 1

2
∇2 − Z

r

∣

∣

∣

∣

ϕ

〉

= 1

2

(

c2 − Zc
)

(29)

dε

dc
= c − Z

2
= 0 �⇒ c = Z

2

(

d2ε

dc2

)

c= Z
2

= 1 > 0 (30)

εmin = 1

2

(

Z2

4
− Z2

2

)

= −Z2

8
(31)

as it must be. The optimization of the orbital exponent c gives in this case the exact answer
(Z = 1 for the H atom).

5.3.3 The 1s2 Ground State of the He-Like System

The 2-electron He-like atom (Figure 5.5) has the Hamiltonian (atomic units):

Ĥ (1,2) = ĥ1 + ĥ2 + 1

r12

ĥ = −1

2
∇2 − Z

r
1-electron hydrogenic Hamiltonian (32)

1

r12
electron repulsion (2-electron operator),

Figure 5.5 The atomic 2-electron system.
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where, for different values of the nuclear charge Z:

Z = 1, 2, 3, 4, · · ·
H− He Li+ Be2+ (33)

we have the isoelectronic series of the atomic 2-electron system.
If we could not to take into account electronic repulsion, the 2-electron Schroedinger

equation would be separable into two 1-electron hydrogenic equations, one for each elec-
tron, by posing:

ϕ(1,2) = ϕ1ϕ2. (34)

Then:

Ĥ (1,2)ϕ(1,2) = Eϕ(1,2) (35)

(ĥ1ϕ1)ϕ2 + ϕ1(ĥ2ϕ2) = Eϕ1ϕ2

ĥ1ϕ1

ϕ1
depends

only on 1

= E − ĥ2ϕ2

ϕ2
depends

only on 2

= ε1 separation constant (36)

giving:

ĥ1ϕ1 = ε1ϕ1 ĥ2ϕ2 = ε2ϕ2 ε2 = E − ε1. (37)

The presence of the electron repulsion term in the complete Hamiltonian (32) gives, how-
ever, a non-separable 2-electron Schroedinger equation (35), which does not admit an exact
solution. Approximations can however be found using the variational method, the simplest
being by choosing as trial function the product (34) of two 1s STOs, one for each electron,
containing just a simple variational parameter c (the orbital exponent):

ϕ(1,2) = ϕ1(1)ϕ2(2) = N exp(−cr1) · exp(−cr2), (38)

where:

N = c3

π
(39)

is a normalization factor. Then:

ε(c) =
〈

ϕ1ϕ2

∣

∣

∣

∣

ĥ1 + ĥ2 + 1

r12

∣

∣

∣

∣

ϕ1ϕ2

〉

= 2h1s1s + (1s2|1s2)

= 2

(

c2

2
− Zc

)

+ 5

8
c = c2 − 2

(

Z − 5

16

)

c, (40)
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where the new 2-electron repulsion integral in charge density notation (1s2|1s2) is calcu-
lated in Section 5 of Chapter 13. We then get as stationarity condition:

dε

dc
= 2c − 2

(

Z − 5

16

)

= 0 (41)

giving:

cmin = Z − 5

16
. (42)

The optimized orbital exponent is the nuclear charge Z diminished by the quantity s =
5/16, the screening constant (Zener) arising from the effect of the second electron. For the
best energy we find:

εmin = ε

(

cmin = Z − 5

16

)

= −
(

Z − 5

16

)2

(43)

and, for Z = 2 (He atom):

εmin = −2.847 65Eh (44)

which is within 98% of the correct value −2.903 72Eh (Pekeris, 1958). The hydrogenic
approximation (without the screening effect) with c = Z = 2 would give:

ε(c = 2) = −2.75Eh (45)

which is within 95% of the correct value. This justifies the hypothesis of the screening
effect suggested by Zener (1930) in proposing reasonable, but not variational, values for
the screening constant s (Chapter 4).

It is worth noting that the effective potential for electron 1 in presence of the second
electron is:

Veff(r) = −Z

r
+ J1s(r) = −Zeff

r
, (46)

where the first term is the bare nuclear attraction and the second the electrostatic repulsive
potential at r due to the second electron (Section 4 of Chapter 13). The effective nuclear
charge felt by the electron is then given by:

Zeff(r) = (Z − 1) + exp(−2cr)(1 + cr). (47)

Hence:

(i) r = small (electron near to the nucleus)

exp(−2cr) ≈ 1 − 2cr, Zeff ≈ Z. (48)
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Table 5.7.

Errors in energy and ionization potential for He (Z = 2)

Approximation % error in ε % error in I

c = Z = 2 5 11
(hydrogen-like)

c = 1.6875 2 6
(1 non-linear parameter)

c1 = 2.183, c2 = 1.188 1 3
(2 non-linear parameters)

For r → 0 the electron sees the whole (unscreened) nuclear charge Z.
(ii) r = large (electron far from the nucleus)

exp(−2cr) ≈ 0, Zeff ≈ Z − 1. (49)

For r → ∞ the electron sees the nuclear charge as it was fully screened by the other
electron acting as a point-like negative charge. Therefore, Zeff depends on r , being Z near
to the nucleus and (Z − 1) far from it. The variation theorem averages between these two
cases, with a larger weight for the regions near to the nucleus (hence, Zeff ≈ 1.7 closer to
2 rather than to 1).

Using different orbital exponents for different electrons and symmetrizing the resulting
function:

ϕ(1,2) = N [exp(−c1r1) · exp(−c2r2) + exp(−c2r1) · exp(−c1r2)] (50)

Eckart (1930) has obtained a sensibly better variational value for the energy, the value for
He being ε = −2.875 66Eh (c1 = 2.18, c2 = 1.19), which differs by 1% from the accu-
rate Pekeris value. This is due to the “splitting” of the spherical shells of the electrons,
which introduces some radial correlation into the wavefunction. The physics of the prob-
lem does suggest how to improve the wavefunction. Details of the calculation are given
in Problem 5.6. By increasing the flexibility of the variational wavefunction we improve
the accuracy of the variational result. Comparison with experimental results is possible
through the calculation of the first ionization potential I . For He:

I = ε(He+) − ε(He) = −2 − ε(He). (51)

Accurate values for the ground state He atom are ε = −2.903 72Eh and I = 0.903 72Eh =
24.6 eV. The errors resulting for different variational wavefunctions are collected in Ta-
ble 5.7 for He.

The greater error in I is due to the fact that the ionization potential is smaller in absolute
value than the corresponding energy.
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5.4 LINEAR PARAMETERS AND THE RITZ METHOD

We now consider the variational approximation due to Ritz (Pauling and Wilson, 1935)
consisting in the linear combination of a basis of given functions, where flexibility is in-
troduced in the wavefunction by the coefficients of the linear combination. This method is
more systematic than that involving non-linear parameters, and optimization of the linear
coefficients yields now to secular equations whose roots are upper bounds to ground and
excited states of the system. Molecular orbital (MO) and valence bond (VB) approxima-
tions are typical applications of the Ritz method in valence theory, where the variational
wavefunction is expressed in terms of a given basis of AOs or VB structures, respectively.
As we shall see, the Ritz method is intimately connected with the problem of matrix diag-
onalization of Chapter 2.

5.4.1 Orthonormal Basis

(i) We start by considering the Rayleigh ratio (2) written in the form:

ε = HM−1, (2)

where:

H = 〈ϕ|Ĥ |ϕ〉, M = 〈ϕ|ϕ〉. (52)

We introduce a basis of N orthonormal functions χ written as a row vector and a
column of N variational coefficients c:

ϕ = χc (53)

χ = (χ1χ2 · · ·χN) c =

⎛

⎜

⎜

⎜

⎝

c1
c2
...

cN

⎞

⎟

⎟

⎟

⎠

. (54)

Then:

H = c†χ†Ĥχc = c†Hc, (55)

where H is the Hermitian matrix representative of the Hamiltonian operator in the χ

basis, with elements:

Hμν = 〈χμ|Ĥ |χν〉, (56)

and M the metric of the χ basis, the identity matrix for an orthonormal set:

M = c†χ†χc = c†Mc = c†1c (57)
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Mμν = 〈χμ|χν〉 = δμν. (58)

(ii) An infinitesimal first variation in the linear coefficients will induce an infinitesimal
variation in the energy functional given by:

δε = δH · M−1 − H · M−1−1δM = M−1(δH − εδM), (59)

where, to first order in δc:

δH = δc†Hc + c†Hδc (60)

δM = δc†1c + c†1δc (61)

δc being a column of infinitesimal variations of the coefficients. The stationarity con-
dition for the functional ε[ϕ] against arbitrary infinitesimal changes in the coefficients
will be:

δε = 0 �⇒ δH − εδM = 0. (62)

In terms of matrices H, 1 we can write:

δc†(H − ε1)c + c†(H − ε1)δc = 0. (63)

Since H† = H (Hermitian), the second term in (63) is the complex conjugate of the
first, so that the condition of stationarity for ε takes the matrix form (δc† = arbitrary):

(H − ε1)c = 0 Hc = εc (64)

which is nothing but the eigenvalue equation for matrix H. The homogeneous system
(64) of N algebraic linear equations in the N unknowns c (the variational coefficients)
has hence acceptable solutions if and only if:

|H − ε1| = 0, (65)

namely only for those ε values which are solutions of an algebraic equation of degree
N in ε, having the N (real) ordered roots:

ε1 ≤ ε2 ≤ · · · ≤ εN eigenvalues (66)

c1, c2, · · · , cN eigenvectors (67)

ϕ1, ϕ2, · · · , ϕN eigenfunctions (pseudostates). (68)

As shown in Chapter 2 (explicitly for the case N = 2), the eigenvectors are obtained
by the ordered substitution of each eigenvalue εμ in turn into the homogeneous system
(64), then solving the system with respect to cμ under the normalization condition
c†
μcμ = 1.
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(iii) To find the linear combination of the orthonormal basis functions which minimizes
the variational energy is therefore equivalent to solve the eigenvalue equation (64) for
the H matrix or, as it is usually said, to diagonalize H. In fact, the complete set of
eigenvalues and eigenvectors of matrix H is given by the full eigenvalue matrix:

HC = CE, (69)

where C is now the square matrix of the complete eigenvectors (the row matrix of the
single column eigenvectors):

C = (c1|c2| · · · |cN) =

⎛

⎜

⎜

⎜

⎝

c11
c21
...

cN1

∣

∣

∣

∣

∣

∣

∣

∣

∣

c12
c22
...

cN2

∣

∣

∣

∣

∣

∣

∣

∣

∣

· · ·
· · ·
· · ·
· · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

c1N

c2N

...

cNN

⎞

⎟

⎟

⎟

⎠

(70)

and E the diagonal matrix collecting the N eigenvalues:

E =
⎛

⎜

⎝

ε1 0 · · · 0
0 ε2 · · · 0
· · · · · · · · · · · ·
0 0 · · · εN

⎞

⎟

⎠
. (71)

Since matrix C is unitary:

CC† = C†C = 1 �⇒ C−1 = C†, (72)

the Hermitian matrix H can be brought to diagonal form through the unitary transfor-
mation with the complete matrix of its eigenvectors:

C†HC = E . (73)

The inverse transformation:

H = CEC† (74)

allows us to express H in terms of its eigenvalues and eigenvectors and will be useful
in what follows.

(iv) Let us now consider the second variation of the functional ε:

δ2H = δ2c†Hc + c†Hδ2c + 2δc†Hδc (75)

δ2M = δ2c†1c + c†1δ2c + 2δc†1δc, (76)

where δ2c is a column of infinitesimal second variations of the coefficients, so that:

δ2ε = M−1(δ2H − εδ2M − δε · δM) − M−2δM(δH − εδM)

δ2ε = M−1(δ2H − εδ2M)

(77)
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since δε = 0 and δH − εδM = 0 at the stationary point. In matrix form:

δ2ε = M−1[δ2c†(H − ε1)c + c†(H − ε1)δ2c + 2δc†(H − ε1)δc]

δ2ε = 2M−1δc†(H − ε1)δc = 2M−1δc†C(E − ε1)C†δc,
(78)

where use has been made of equation (74). By posing:

C†
N×N

δc
N×1

= δc′
N×1

δc†
1×N

C
N×N

= δc′†
1×N

, (79)

where δc′ is a new column of variations, the second variation in ε can be written as:

δ2ε = 2M−1δc′†(E − ε1)δc′ (80)

and, in components:

δ2ε = 2M−1
∑

μ,ν

δc′†
μ (εμν − εδμν)δc

′
ν

= 2M−1
∑

μ,ν

δc′†
μ (εμ − ε)δμνδc

′
ν

= 2M−1
∑

μ

|δc′
μ|2(εμ − ε). (81)

There follows that for the lowest eigenvalue ε1 of H δ2ε is positive, and δε = 0 cor-
responds to a true minimum in the energy:

(δ2ε)ε=ε1 = 2M−1
N
∑

μ=1

|δc′
μ|2(εμ − ε1) > 0. (82)

We can do the same for all the remaining eigenvalues of H, so that we conclude by
saying that all the ordered roots of the secular equation (65) give true minima for the
variational energy ordered in a crescent way.

(v) McDonald (1933, 1934) has further shown the important result that each eigenvalue
εμ gives an upper bound to the corresponding true eigenvalue Eμ of the Hamiltonian
Ĥ :

ε1 ≥ E1, ε2 ≥ E2, · · · , εN ≥ EN. (83)

McDonald’s theorem does not include the case of degenerate eigenvalues. Davies
(1960) has discussed the problem of the separation of degenerate eigenvalues in vari-
ational calculations. He showed that the occurrence of degenerate eigenvalues does
not prevent the determination of upper bounds to exact eigenvalues in physical prob-
lems.
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5.4.2 Non-Orthogonal Basis

Let us now consider the case (Chapter 2, Section 2.3.3) where the basis functions χ ′ are
normalized but not orthogonal with metric:

M′ = χ ′†χ ′ = 1 + S S �= 0, (84)

where S is a traceless matrix of non-orthogonalities. Minimization of the functional ε with
respect to the linear parameters c′ yields now to:

(H′ − εM′)c′ = 0 H′c′ = εM′c′, (85)

where the latter is known as the pseudoeigenvalue equation for the Hermitian matrix H′.
The rather more complicated pseudosecular equation is now:

|H′ − εM′| = 0. (86)

The problem is best dealt with by doing a simultaneous diagonalization of matrices H′ and
M′ with a linear invertible (not unitary) transformation with a matrix V:

V†H′V = E E =
⎛

⎜

⎝

ε1 0 · · · 0
0 ε2 · · · 0
· · · · · · · · · · · ·
0 0 · · · εN

⎞

⎟

⎠
(87)

V†M′V = 1 1 =
⎛

⎜

⎝

1 0 · · · 0
0 1 · · · 0
· · · · · · · · · · · ·
0 0 · · · 1

⎞

⎟

⎠
. (88)

To do this, we first orthogonalize basis χ ′ through matrix T (Schmidt or Löwdin):

χ = χ ′T, (89)

then transform matrices H′ and M′ to the orthonormal basis χ :

Hχ = T†H′T, Mχ = T†M′T = 1, (90)

finally solving the ordinary eigenvalue equation for Hχ :

|Hχ − ε1| = 0. (91)

The complete matrix of the eigenvectors C is now unitary, and matrix V is given by:

V = TC. (92)
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The functions obtained by the transformation:

ψ = χC CC† = C†C = 1 (93)

are known as pseudostates.

5.5 ATOMIC APPLICATIONS OF THE RITZ METHOD

In the following, we shall apply the Ritz method to the study of the first excited states of
the He-like atom, (i) the 1s2s state of spherical symmetry, and (ii) the 1s2p state.

5.5.1 The First 1s2s Excited State of the He-Like System

The 2-electron basis functions are:

χ1 = 1s12s2, χ2 = 2s11s2 (94)

which are orthonormal if the 1-electron basis (1s2s) is orthonormal, what we assume. The
secular equation is then:

∣

∣

∣

∣

∣

H11 − ε H12

H12 H22 − ε

∣

∣

∣

∣

∣

= 0 (95)

with the matrix elements (electrons in dictionary order):

H11 =
〈

1
1s

2
2s

∣

∣

∣

∣

ĥ1 + ĥ2 + 1

r12

∣

∣

∣

∣

1
1s

2
2s

〉

= h1s1s + h2s2s + (1s2|2s2)

= E0 + J = H22 (96)

H12 = H21 =
〈

1
1s

2
2s

∣

∣

∣

∣

ĥ1 + ĥ2 + 1

r12

∣

∣

∣

∣

1
2s

2
1s

〉

=
〈

1
1s

2
2s

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

1
2s

2
1s

〉

= (1s2s|1s2s) = K, (97)

where:

E0 = h1s1s + h2s2s (98)

is the 1-electron energy,

J = (1s2|2s2) (99)

the 2-electron Coulomb integral, and

K = (1s2s|1s2s) (100)
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Figure 5.6 Schematic diagram of the energy levels for the excited S (1s2s) state of the He-like atom.

the 2-electron exchange integral, both given in charge density notation (see Chapter 13).
Roots are:

ε+ = H11 + H12 = E0 + J + K (101)

ε− = H11 − H12 = E0 + J − K, (102)

with the corresponding eigenfunctions:

ϕ+ = 1√
2
(1s2s + 2s1s) (103)

ϕ− = 1√
2
(1s2s − 2s1s) (104)

which are, respectively, symmetric and antisymmetric in the electron interchange.
The schematic diagram of the energy levels for the 1s2s state is given in Figure 5.6.
Electron repulsion couples the two physically identical states 1s2s and 2s1s (through

the off-diagonal term H12), removing the double degeneracy of the atomic level H11 =
H22 = E0 + J , and originates two distinct levels (a doublet) whose splitting is 2K . So,
the experimental measurement of the splitting gives directly the value of the exchange
integral K .

We notice that the (unoptimized) hydrogenic AOs give a wrong order of the excited
levels because they overestimate electron repulsion. Using as 2s the function:

2s = (1 − S2)−1/2(s − Sk) S = 〈k|s〉 (105)

s =
(

c5
s

3π

)1/2

exp(−csr)r (106)

k =
(

c3
0

π

)1/2

exp(−c0r), (107)
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variational optimization of ε+ against cs (for c0 = 1.6875)1 gives:

cs = 0.4822 (108)

ε+ = −2.09374Eh ε− = −2.12168Eh (109)

with excitation energies (from the ground state) which are within 99.7% of the experimen-
tally observed values (Moore, 1949):


ε 0.7539 0.7260

Exptl. 0.7560 0.7282
(110)

and a splitting (2K) which is within 95.5% of the experiment:

2K 0.0279

Exptl. 0.0292.
(111)

Optimization of the orbital exponent of the orthogonalized 2s function gives not only the
correct order of the atomic levels, but also results that are quantitatively satisfactory in
view of the simplicity of our variational approximation. Notice that the best value of cs is
less than half of the hydrogenic value c = Z/n = 1, so that electron repulsion is strongly
reduced.

5.5.2 The First 1s2p Excited State of the He-Like System

Because of space degeneracy there are now six states belonging to the 1s2p configuration:

1s2pz, 2pz1s, 1s2px, 2px1s, 1s2py, 2py1s

1 2 3 4 5 6
(112)

giving a basis of 6 functions. Functions belonging to different (x, y, z) components are
orthogonal and not interacting with respect to Ĥ by symmetry. Functions belonging to the
same symmetry can interact through electron repulsion. All functions are also orthogonal
and not interacting with respect to all S states.

1We optimize the root having the same symmetry of the ground state.
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The 6 × 6 secular equation has a block-diagonal form and factorizes into three 2 × 2
secular equations each corresponding to a given coordinate axis (x, y, z):

H11 − ε H12

H12 H22 − ε
∼ z 0

H33 − ε H34

H34 H44 − ε
∼ x = 0

0 H55 − ε H56

H56 H66 − ε
∼ y

. (113)

So, it will be sufficient to consider the 2 × 2 secular equation:

∣

∣

∣

∣

∣

H11 − ε H12

H12 H22 − ε

∣

∣

∣

∣

∣

= 0 (114)

whose roots are spatially triply degenerate (a degeneracy that can only be removed by
including spin). Matrix elements are:

H11 = H22 = h1s1s + h2p2p + (1s2|2p2) = E′
0 + J ′ (115)

H12 = H21 = (1s2p|1s2p) = K ′, (116)

with the triply degenerate roots:

ε+ = H11 + H12 = E′
0 + J ′ + K ′ (117)

ε− = H11 − H12 = E′
0 + J ′ − K ′, (118)

and the corresponding eigenfunctions:

ϕ+ = 1√
2
(1s2p + 2p1s) (119)

ϕ− = 1√
2
(1s2p − 2p1s) (120)

which are, respectively, symmetric and antisymmetric in the electron interchange (2p =
2pz,2px,2py ).

The schematic diagram of the energy levels for the 1s2p state is qualitatively similar to
that given in Figure 5.6, but now each level is triply degenerate.
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Table 5.8.

Variational calculation of ground and excited states in He

Electron
configuration

1s2 1s2s 1s2s 1s2p 1s2p

State 11S 23S 21S 23P 21P

ε/Eh −2.847 65 −2.121 68 −2.093 74 −2.082 26 −2.072 37

ε/Eh 0 0.7260 0.7539 0.7654 0.7753
Exptl. 0.7282 0.7560 0.7703 0.7796
% error 99.7 99.7 99.4 99.4
2K/10−3Eh 27.94 9.89
Exptl. 29.26 9.33
Orbital exponents c0 cs cp

c/a−1
0 (optimized) 1.6875 0.4822 0.4761

Hydrogenic 2 1 1

Using a variational function 2p = (
c5
p

π
)1/2 exp(−cpr)r cos θ , orthogonal by symmetry to

k = 1s, optimization of ε+ against the non-linear parameter cp gives:

cp = 0.4761 (121)

ε+ = −2.072 37Eh ε− = −2.082 26Eh (122)

with excitation energies (from the ground state) which are within 99.4% of the experimen-
tally observed values (Moore, 1949):


ε 0.7753 0.7654

Exptl. 0.7796 0.7703
(123)

and a splitting (2K ′) which is 6% larger than experiment:

2K ′ 0.0099

Exptl. 0.0093.
(124)

All these results are collected in Table 5.8.
We can notice the satisfactory agreement with the experimental results for the calculated

excitation energies 
ε and, also, for the splittings 2K and 2K ′, which are much more
difficult to evaluate. The variational orbital exponents give AOs which are sensibly more
diffuse than the hydrogenic ones.
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Table 5.9.

Variational calculation of ground and excited 1s2s and 1s2p states in He using hydrogenic AOs

Electron
configuration

1s2 1s2s 1s2p 1s2s 1s2p

State 11S 3S 3P 1S 1P

ε/Eh −2.75 −2.124 14 −2.048 54 −2.036 35 −1.980 26

ε/Eh 0 0.6259 0.7015 0.7136 0.7697

K/10−3Eh 87.79 68.28

5.5.3 Results for Hydrogenic AOs

Using the normalized hydrogenic AOs:

1s =
(

c3
0

π

)1/2

exp(−c0r) ≡ ψ0 c0 = Z (125)

2s =
(

c3

π

)1/2

exp(−cr)(1 − cr) = k − √
3s 2c = Z, (126)

where k and s are STOs with identical orbital exponents c:

k =
(

c3

π

)1/2

exp(−cr), s =
(

c5

3π

)1/2

exp(−cr)r,

S = 〈k|s〉 =
√

3

2
(127)

the resulting order of levels is wrong and the splittings are much too large. Table 5.9 collects
the results of such calculations.

We observe the inversion in the order of the levels 1s2p(3P) and 1s2s(1S), the excita-
tion energies are too small, the splittings too large, more than 3 and 7 times, respectively.
As we have already said, this is due to the overestimation of the electronic repulsion due to
the sensible overestimation of the hydrogenic orbital exponents (c = 1 instead of ≈ 0.5).

5.6 MOLECULAR APPLICATIONS OF THE RITZ METHOD

The Ritz method will now be applied to the study of the ground and first excited state of
the hydrogen molecule-ion H+

2 .
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Figure 5.7 Interparticle distances in the H+
2 molecular ion

5.6.1 The Ground and First Excited State of the H+
2 Molecular Ion

The electron is at point P, in A,B are the two protons a fixed distance R apart. In atomic
units, the 1-electron molecular Hamiltonian of H+

2 will be:

Ĥ = ĥ + 1

R
=

(

−1

2
∇2 − 1

rA
− 1

rB

)

+ 1

R
. (128)

As a first approximation to the variational wavefunction we choose the 1-electron mole-
cular orbital (MO) arising from the linear combination of the two 1s AOs centred at A and
B, respectively:

ϕ = ac1 + bc2 (129)

a = 1sA = 1√
π

exp(−rA), b = 1sB = 1√
π

exp(−rB) (130)

〈a|a〉 = 〈b|b〉 = 1 〈a|b〉 = 〈b|a〉 = S, (131)

where S is the overlap between the AOs. At variance with the atomic cases considered
so far, we observe that the two AOs onto different centres are non-orthogonal. The Ritz
method for two non-orthogonal functions gives the 2 × 2 pseudosecular equation:

∣

∣

∣

∣

∣

Haa − ε Hab − εS

Hab − εS Hbb − ε

∣

∣

∣

∣

∣

= 0. (132)

Because of the nuclear symmetry we must have:

Haa = Hbb, Hba = Hab (133)
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so that expansion of the secular determinant gives:

(Haa − ε)2 = (Hab − εS)2

Haa − ε = ±(Hab − εS) (134)

with the two roots:

ε+ = Haa + Hab

1 + S
= Haa + Hba − SHaa

1 + S
(135)

ε− = Haa − Hab

1 − S
= Haa − Hba − SHaa

1 − S
(136)

the first corresponding to the ground state, the second to the first excited state of the H+
2

molecular ion.
We now evaluate the best value for the coefficients of the linear combination for the

ground state. From the homogeneous system, we have for the first eigenvalue:

ε+ = Haa + Hba

1 + S
(135)

⎧

⎪

⎨

⎪

⎩

(

Haa − Haa + Hba

1 + S

)

c1 +
(

Hba − Haa + Hba

1 + S
S

)

c2 = 0

c2
1 + c2

2 + 2c1c2S = 1,

(137)

where the last equation is the normalization condition for non-orthogonal AOs. We obtain:

(

c2

c1

)

+
= λ+ = −Haa + SHaa − Haa − Hba

1 + S

1 + S

Hba + SHba − HaaS − SHba

= Hba − SHaa

Hba − SHaa

= 1 (138)

c2
1

[

1 +
(

c2

c1

)2

+
+ 2

(

c2

c1

)

+
S

]

= 1 �⇒ c1 = c2 = (2 + 2S)−1/2 (139)

giving the bonding MO:

ϕ+ = a + b√
2 + 2S

. (140)

Proceeding likely, we have for the remaining root:

(

c1

c2

)

−
= λ− = −Hba − SHaa

Hba − SHaa

= −1 (141)
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c2 = (2 − 2S)−1/2, c1 = −(2 − 2S)−1/2, (142)

giving the antibonding MO:

ϕ− = b − a√
2 − 2S

. (143)

We notice that, while ϕ+ has no nodes, ϕ− has a nodal plane occurring at the midpoint
of AB (it is like a 2pz AO). We notice, too, that in both cases the LCAO coefficients are
completely determined by symmetry.

We now evaluate the matrix elements of Ĥ over the two basis functions:

Haa =
〈

a

∣

∣

∣

∣

ĥ + 1

R

∣

∣

∣

∣

a

〉

= haa + 1

R
=

〈

a

∣

∣

∣

∣

−1

2
∇2 − 1

rA
− 1

rB

∣

∣

∣

∣

a

〉

+ 1

R

= EA + (a2| − r−1
B ) + 1

R
, (144)

where:

EA =
〈

a

∣

∣

∣

∣

−1

2
∇2 − 1

rA

∣

∣

∣

∣

a

〉

(145)

is the energy of the isolated A atom (= −1/2Eh), and we have used the charge density
notation:

〈

a

∣

∣

∣

∣

− 1

rB

∣

∣

∣

∣

a

〉

= (a2| − r−1
B ), (146)

the attraction by the B-nucleus of the electron described by the density a2 centred on A.
In the same way:

Hba =
〈

b

∣

∣

∣

∣

ĥ + 1

R

∣

∣

∣

∣

a

〉

= hba + 1

R
S =

〈

b

∣

∣

∣

∣

−1

2
∇2 − 1

rA
− 1

rB

∣

∣

∣

∣

a

〉

+ 1

R
S

= EAS + (ab| − r−1
B ) + 1

R
S. (147)

We therefore obtain for the ground state:

ε+ = Haa + Hba − SHaa

1 + S

= EA +
{

(a2| − r−1
B ) + 1

R

}

+ (ab| − r−1
B ) − S(a2| − r−1

B )

1 + S
, (148)

and for the first excited state:

ε− = Haa − Hba − SHaa

1 − S
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= EA +
{

(a2| − r−1
B ) + 1

R

}

− (ab| − r−1
B ) − S(a2| − r−1

B )

1 − S
. (149)

5.6.2 The Interaction Energy and Its Components

Even if the matter will be discussed to a greater extent in Chapter 12, we see from equations
(148) and (149) that the interaction energy, defined as the difference between ε+ (or ε−)
and the energy EA of the isolated H atom, can be written as:


E(2�+
g ) = ε+ − EA = 
Ecb + 
Eexch−ov(2�+

g ) (150)


E(2�+
u ) = ε− − EA = 
Ecb + 
Eexch−ov(2�+

u ). (151)

The interaction energy is seen to depend on the electronic states of H+
2 , naturally result-

ing from the sum of the two components:


Ecb = (a2| − r−1
B ) + 1

R
, (152)

the semiclassical electrostatic energy (which is the same for the two states), and:


Eexch−ov(2�+
g ) = (ab − Sa2| − r−1

B )

1 + S
(153)


Eexch−ov(2�+
u ) = − (ab − Sa2| − r−1

B )

1 − S
(154)

the quantum mechanical components arising from the exchange-overlap density (ab −
Sa2), which has the property:

∫

dr
[

a(r)b(r) − Sa2(r)
] = S − S = 0. (155)

As can be seen from (153) and (154), at variance with 
Ecb, 
Eexch−ov depends on the
symmetry of the wavefunction and is different for ground (attractive) and excited state (re-
pulsive). These components and their corrections occurring in higher orders of perturbation
theory will be examined in detail in Chapter 12.

The 1-electron 2-centre integrals occurring in the present calculation are evaluated in
Chapter 13. For completeness, however, we give here their analytic form as a function of
the internuclear distance R (c0 = 1):

S = (ab|1) = exp(−R)

(

1 + R + R2

3

)

(156)

(ab|r−1
B ) = exp(−R)(1 + R) (157)
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(a2|r−1
B ) = 1

R
− exp(−2R)

R
(1 + R). (158)

Their values to 7 significant figures have been collected in Table 5.10 as a function of R.
Even if in molecular computations the energy is usually evaluated in terms of molec-

ular integrals (Chapter 13), in this simple case it is easily possible to obtain the analytic
expressions for the components of the interaction energy as a function of R as:


Ecb = exp(−2R)

R
(1 + R) (159)


Eexch−ov(2�+
g ) = (1 + S)−1

{

exp(−R)

R

(

1 − 2

3
R2

)

− exp(−3R)

R

(

1 + 2R + 4

3
R2 + 1

3
R3

)}

. (160)

These expressions allow us for the direct calculation of the interaction energy in H+
2 , avoid-

ing the “round-off errors” which increase with increasing R (see the difference between
R−1 and (a2|r−1

B ), which differ by charge-overlap terms, in Table 5.10).
Table 5.11 gives the calculated interaction energy and its components (10−3Eh) for the

ground state H+
2 (2�+

g ), while Table 5.12 gives the same quantities for the excited state

Table 5.10.

Numerical values of the 2-centre integrals (c0 = 1) occurring in the H+
2 calculation as a function of R (energy

integrals in Eh)

R/a0 R−1 S (a2|r−1
B

) (ab|r−1
B

)

1.0 1 8.583 854 × 10−1 7.293 294 × 10−1 7.357 589 × 10−1

1.2 8.333 333 × 10−1 8.072 005 × 10−1 6.670 171 × 10−1 6.626 273 × 10−1

1.4 7.142 857 × 10−1 7.529 427 × 10−1 6.100 399 × 10−1 5.918 327 × 10−1

1.6 6.250 × 10−1 6.972 160 × 10−1 5.587 614 × 10−1 5.249 309 × 10−1

1.8 5.555 556 × 10−1 6.413 597 × 10−1 5.130 520 × 10−1 4.628 369 × 10−1

2.0 5.0 × 10−1 5.864 529 × 10−1 4.725 265 × 10−1 4.060 059 × 10−1

2.5 4.0 × 10−1 4.583 079 × 10−1 3.905 669 × 10−1 2.872 975 × 10−1

3.0 3.333 333 × 10−1 3.485 095 × 10−1 3.300 283 × 10−1 1.991 483 × 10−1

3.5 2.857 143 × 10−1 2.591 942 × 10−1 2.845 419 × 10−1 1.358 882 × 10−1

4.0 2.5 × 10−1 1.892 616 × 10−1 2.495 807 × 10−1 9.157 819 × 10−2

4.5 2.222 222 × 10−1 1.360 852 × 10−1 2.220 714 × 10−1 6.109 948 × 10−2

5.0 2.0 × 10−1 9.657 724 × 10−2 1.999 455 × 10−1 4.042 768 × 10−2

5.5 1.818 182 × 10−1 6.777 229 × 10−2 1.817 984 × 10−1 2.656 401 × 10−2

6.0 1.666 667 × 10−1 4.709 629 × 10−2 1.666 595 × 10−1 1.735 127 × 10−2

7.0 1.428 571 × 10−1 2.218 913 × 10−2 1.428 562 × 10−1 7.295 056 × 10−3

8.0 1.25 × 10−1 1.017 570 × 10−2 1.249 999 × 10−1 3.019 164 × 10−3
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Table 5.11.

2�+
g ground state of H+

2 . Interaction energy and its components (10−3Eh) for the simple MO wavefunction
(c0 = 1)

R/a0 
Ecb 
Eexch−ov(2�+
g ) 
E(2�+

g ) Accuratea

1.0 270.67 −59.037 211.634 48.21
1.2 166.31 −68.731 97.579
1.4 104.25 −75.591 28.659
1.6 66.239 −79.750 −13.511
1.8 42.504 −81.509 −39.005
2.0 27.473 −81.245 −53.772 −102.63
2.5 9.4331 −74.2625 −64.829 −93.82
3.0 3.3050 −62.388 −59.083 −77.56
3.5 1.1724 −49.346 −48.174 −60.85
4.0 4.193 × 10−1 −37.285 −36.866 −46.08
4.5 1.508 × 10−1 −27.180 −27.029 −33.94
5.0 5.448 × 10−2 −19.258 −19.204 −24.42
5.5 1.974 × 10−2 −13.339 −13.319 −17.23
6.0 7.168 × 10−3 −9.075 −9.068 −11.97
7.0 9.503 × 10−4 −4.036 −4.035 −5.59
8.0 1.266 × 10−4 −1.730 −1.729 −2.57

aPeek (1965).

(2�+
u ). Figure 5.8 gives the plots vs R of the interaction energies 
E(10−3Eh) for the

two electronic states.
Comments to Tables 5.11 and 5.12 are as follows:

(i) 2�+
g ground state.

While 
Ecb is always repulsive (classically it is not possible to form any chemical
bond between H and H+), the quantum mechanical component 
Eexch−ov(2�+

g ) is
always attractive (going to zero as R → 0) and appears as the main factor determining
the formation of the 1-electron bond in H+

2 . 
Eexch−ov has its minimum near to R =
2a0, the distance of the chemical bond. The minimum in the potential energy curve for
ground state H+

2 occurs near R = 2.5a0, i.e. for a value of R which is about 25% larger
than the experimental value (2a0). The true minimum of the simple MO wavefunction
of Table 5.11 occurs at Re = 2.493a0 and is 
E = −64.84 × 10−3Eh. Even if the
simple MO wavefunction of Table 5.11 gives a qualitatively correct behavior of the
potential energy curve for ground state H+

2 , the quantitative error is still very large, the
calculated bond energy at R = 2a0 being no more than 52% of the correct value.

(ii) 2�+
u excited state.
The components of 
E are now both repulsive (Table 5.12) and, to this level of

approximation (rigid AOs), the excited 2�+
u state is repulsive (a scattering state). The

polarization of the H atom by the proton H+ (see Chapter 12) yields at large distances
(R = 12.5a0) a weak Van der Waals bond with 
E = −60.8×10−6Eh. It is interesting



5.6 Molecular Applications of the Ritz Method 195

Table 5.12.

2�+
u excited state of H+

2 . Interaction energy and its components (10−3Eh) for the simple MO wavefunction
(c0 = 1)

R/a0 
Eexch−ov(2�+
u ) 
E(2�+

u ) Accuratea

1.0 774.73 1045.4 935.19
1.2 644.25 810.56
1.4 536.34 640.59
1.6 447.03 513.27
1.8 373.04 415.54
2.0 311.67 339.15 332.47
2.5 199.92 209.36 207.93
3.0 129.14 132.44 131.91
3.5 83.877 85.049 84.50
4.0 54.693 55.112 54.45
4.5 35.743 35.894 35.17
5.0 23.375 23.430 22.71
5.5 15.279 15.298 14.62
6.0 9.972 9.979 9.36
7.0 4.219 4.220 3.73
8.0 1.765 1.765 1.40

aPeek (1965).

to note (Figure 5.8) that the simple MO results for the excited state are much in better
agreement with the accurate Peek values than those of the ground state.

Systematically improving the quality of the basic AOs gives the improved results col-
lected in Table 5.13.

We make few comments on the nature of the basic AOs.

1. The undistorted H atom AOs (c0 = 1) do not allow to find the correct bond length (the
bond is 25% too long, since bond energy is insufficient).

2. Optimization of the orbital exponent c0 in the 1s STO functions allows us to introduce
a great part of the spherical distortion (polarization) of the H atom by the proton H+:
the bond length Re is now correct and the bond energy 
E improved by over 30%.

3. Dipole distortion of 1s (sp hybridization) improves 
E by a further 13%, giving a
result within 2% of the accurate value (Peek, 1965).

4. Use of a 2-centre AO (GZ, see the Eckart split-shell for He) allows us to reproduce
nearly entirely the polarization of the H atom by the proton H+, with a result which
is now within 0.2% of the accurate value. The 2-centre GZ orbital is tantamount to in-
cluding in the basis functions onto A all polarization functions with l = 0,1,2,3,4, . . .

(spherical, dipole, quadrupole, octupole, hexadecapole, . . .). GZ is the simplest varia-
tional function containing two optimizable non-linear parameters.
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Figure 5.8 Plot of the MO interaction energies 
E vs R for the two states of H+
2 (c0 = 1). The black points

are the accurate results by Peek (1965).

Table 5.13.

2�+
g ground state of H+

2 . Effect of improving the basic AO a in the MO wavefunction on the bond energy 
E

at R = 2a0, and residual error with respect to the accurate value

a Basic AO 
E/10−3Eh Residual
error/10−3Eh

1. 1sA ∝ exp(−rA) H 1sa −53.77 48.86
(c0 = 1)

2. 1sA ∝ exp(−c0rA) STO 1sb −86.51 16.12
(c0 = 1.2387) (optimized)

3. 1sA + λ2pσA Dipole polarized −100.36 2.27
(c0 = 1.2458, AO (sp hybrid)c

cp = 1.4824,
λ = 0.1380)

4. exp(−αrA − βrB) 2-centre GZ −102.44 0.19
(α = 1.1365, AOd

β = 0.2174)

5. Accurate e −102.63 0

aPauling (1928).
bFinkelstein and Horowitz (1928).
cDickinson (1933).
d Guillemin and Zener (1929) (GZ).
ePeek (1965).
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5.7 THE WENTZEL–KRAMERS–BRILLOUIN (WKB) METHOD

The following considerations are mostly taken from Pauling and Wilson (1935). In the
development of quantum mechanics, the Bohr–Sommerfeld quantization rules of the old
quantum theory (not considered in this book) give a connection between classical and quan-
tum mechanics. The Wentzel–Kramers–Brillouin (WKB) method gives an approximate
treatment of the Schroedinger wave equation that shows its connection with the quantiza-
tion rules. It is based on an asymptotic expansion of the wavefunction in powers of h̄ which
is useful for finding approximate solutions to quantum mechanical problems whose wave
equation can be separated into one or more total differential equations each involving a sin-
gle independent variable. The first term of the expansion then gives the classical result, the
second term the old quantum theory result, the higher order terms introducing the effects
characteristic of the new quantum mechanics (based on the famous Erwin Schroedinger
(1926) paper entitled “Quantizierung als Eigenwertproblem”).

It can be easily verified that a solution ψ(x) of the one-dimensional Schroedinger equa-
tion:

1

ψ

d2ψ

dx2
= −2m

h̄2
(E − V ) (161)

can be written in the form:

ψ(x) ∝ exp

[

i

h̄

∫

ydx

]

, (162)

where:

y(x) = −ih̄

(

1

ψ

dψ

dx

)

= −ih̄
d lnψ

dx
. (163)

We remark that in equation (161):

E − V = T = p2

2m
(164)

is the kinetic energy of the particle. Then:

dy

dx
= −ih̄

{

dψ

dx

(

−ψ−2 dψ

dx

)

+ ψ−1 d2ψ

dx2

}

= −ih̄

{

1

h̄2

(

−ih̄
1

ψ

dψ

dx

)2

+ 1

ψ

d2ψ

dx2

}

= −ih̄

{

y2

h̄2
− 2m

h̄2
(E − V )

}

= − i

h̄

{

y2 − 2m(E − V )
}

. (165)
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Multiplying both members of (165) by (−ih̄) we get the basic WKB equation:

−ih̄
dy

dx
= p2 − y2, (166)

where:

p = ±√

2m(E − V ) = ±√
2mT (167)

is the classical momentum of the particle. From a mathematical standpoint, the basic WKB
equation (166) is a Riccati first-order differential equation (Ince, 1963).

We now expand y(x) into powers of (−ih̄):

y(x) = y0 + (−ih̄)y1 + (−ih̄)2y2 + · · · (168)

dy

dx
= dy0

dx
+ (−ih̄)

dy1

dx
+ (−ih̄)2 dy2

dx
+ · · · , (169)

where we must remark that (168) is a semiconvergent or asymptotic expansion (Erdèlyi,
1956), accurate far from the “turning points” where E = V . Then:

(−ih̄)
dy0

dx
+ (−ih̄)2 dy1

dx
+ (−ih̄)3 dy2

dx
+ · · ·

= p2 − {

y0 + (−ih̄)y1 + (−ih̄)2y2 + (−ih̄)3y3 + · · ·}2

= p2 − y2
0 − (−ih̄)2y2

1 − 2(−ih̄)y0y1 − 2(−ih̄)2y0y2

− 2(−ih̄)3y1y2 − 2(−ih̄)3y0y3 + · · · (170)

and, collecting terms corresponding to same power of (−ih̄)n:

(−ih̄)0 p2 − y2
0 = 0 (171)

(−ih̄)
dy0

dx
+ 2y0y1 = 0 (172)

(−ih̄)2 dy1

dx
+ y2

1 + 2y0y2 = 0 (173)

(−ih̄)3 dy2

dx
+ 2y1y2 + 2y0y3 = 0 (174)

· · ·

Therefore we obtain the equations determining the various coefficients of the expansion
(168):

y0 = p = ±√

2m(E − V ) = ±√
2mT (175)
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y1 = −1

2

1

y0

dy0

dx
= −1

2

1

p

dp

dx
= −1

2

d lnp

dx
(176)

y2 = − 1

2y0

(

y2
1 + dy1

dx

)

(177)

· · ·

Equation (175) is the classical result expressing the momentum of the particle, (176) gives
the first quantum correction, (177) the second correction, and so on. In terms of the poten-
tial energy V (characterizing the system) and its first and second derivatives, V ′ and V ′′,
we can write (see Problem 5.7):

y1 = V ′

4(E − V )
(178)

y2 = 1

32
(2m)−1/2(E − V )−5/2{5(V ′)2 + 4(E − V )V ′′}. (179)

Now:

exp

[∫

y0dx

]

= exp

[∫

√

2m(E − V )dx

]

(180)

∫

y1dx =
∫

dx
V ′

4(E − V )
= −1

4

∫

d(E − V )

E − V

= −1

4

∫

d ln(E − V ) = ln(E − V )−1/4 (181)

exp

[∫

y1dx

]

= exp
[

ln(E − V )−1/4] = (E − V )−1/4, (182)

giving as the first 2-term approximation:

exp

[∫

ydx

]

∼= exp

[∫

y0dx

]

· exp

[∫

y1dx

]

= (E − V )−1/4 exp

[∫

√

2m(E − V )dx

]

(183)

ψ(x) ∝ exp

[

i

h̄

∫

ydx

]

∼= N(E − V )−1/4 exp

[

i

h̄

∫

√

2m(E − V )dx

]

(184)
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with the probability distribution:

|ψ |2 = N2(E − V )−1/2 ≈ constant × 1

p
(185)

that coincides with the classical result.
Quantization will result when we try to extend the wavefunction into the region where

E < V (imaginary kinetic energy). The restriction imposed on E demands that:

∮

ydx = nh n = 0,1,2, · · · , (186)

where the cyclic integral (the action integral) can be calculated only for conditionally pe-
riodic systems, and n is a positive integer.

If we insert in (186) the first term of the series (168) for y, y = y0 = p, we obtain the
condition of the old quantum theory:

∮

pdx = nh n = 0,1,2, · · · (187)

while the second term introduces the half-quantum numbers characteristic of the new quan-
tum theory:

−ih̄

∮

y1dx = −h

2
(188)

∮

(y0 − ih̄y1)dx =
∮

pdx − h

2
= nh (189)

so that:
∮

pdx =
(

n + 1

2

)

h (190)

to the second approximation.
In deriving (188) use has been made of the contour integration techniques in the complex

plane (Problem 5.8).

5.8 PROBLEMS 5

5.1. Find a simple variational approximation to the ground state of the particle in a box of
side a with impenetrable walls.

Answer:

ϕ = Nx(a − x)
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εϕ = 5

a2
.

Hint:
Use a trial function satisfying the boundary conditions.

5.2. Find a variational approximation to the first excited state of the particle in a box of
side a with impenetrable walls.

Answer:

ϕ = Nx(a − x)

(

a

2
− x

)

εϕ = 21

a2
.

Hint:
Follow the same suggestions of Problem 5.1.

5.3. Find a simple variational approximation to the ground state of the 1-dimensional
harmonic oscillator.

Answer:

ϕ = N exp(−cx2)

ε(c) = c

2
+ k

8
c−1,

where k is the force constant. Optimization of the orbital exponent in ϕ gives as best
variational values:

cmin = 1

2

√
k

εmin = 1

2

√
k.

Hint:
Evaluate all necessary integrals over the Gaussian functions using the general formulae
given in Section 9.2 of Chapter 4.

5.4. Find a variational approximation to the first excited state of the 1-dimensional har-
monic oscillator.
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Answer:

ϕ = Nx exp(−cx2), 〈ψ0|ϕ〉 = 0

ε(c) = c

2
c + 3

8
kc−1.

Optimization of the orbital exponent c gives as best variational values:

cmin = 1

2

√
k

εmin = 3

2

√
k.

Hint:
Follow the suggestions of Problem 5.3.

5.5. Find a simple method allowing to minimize the energy as a function of a single
variable parameter c.

Answer:
The Ransil method.

Hint:
Expand the function ε(c) in powers of c according to Taylor.

5.6. Perform Eckart’s calculation for He(1s2) and find the best variational values for en-
ergy and orbital exponents.

Answer:

ε = −2.875 661Eh

c1 = 2.183 171, c2 = 1.188 531.

Hint:

Evaluate the necessary matrix elements and integrals, transform to variables x = c1 + c2

2
and S = x−3(c1c2)

3/2, find the relation between x and S, then optimize ε against the single
parameter S using Ransil’s method.

5.7. Find the expressions of y1 and y2 in the series expansion of the action y(x).

Answer:

y1 = V ′

4(E − V )
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y2 = − 1

32
(2m)−1/2(E − V )−5/2{5(V ′)2 + 4(E − V )V ′′}.

where:

V ′ = dV

dx
, V ′′ = d2V

dx2
.

Hint:
Integrate the differential equations (176) and (177).

5.8. Evaluate the phase integral (188).

Answer:

−ih̄

∮

y1dx = −h

2

where h is the Planck constant.

Hint:
Use contour integration in the complex plane.

5.9 SOLVED PROBLEMS

5.1. Variational approximation to the ground state of the particle in a box of side a.
We see that the simple function:

ϕ = Nx(a − x) = N(ax − x2)

is a correct variational wavefunction not containing any adjustable parameter but satisfying
the boundary conditions of the problem at x = 0 and x = a (ϕ = 0).

Normalization factor:

〈ϕ|ϕ〉 = N2
∫ a

0
dx(ax − x2)2 = N2 a5

30
= 1 ⇒ N =

(

30

a5

)1/2

.

Derivatives evaluation:

dϕ

dx
= N(a − 2x),

d2ϕ

dx2
= −2N

〈

ϕ

∣

∣

∣

∣

d2ϕ

dx2

〉

= −2N2
∫ a

0
dx(ax − x2) = −10

a2
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thereby giving:

εϕ = 〈T 〉ϕ =
〈

ϕ

∣

∣

∣

∣

−1

2

d2ϕ

dx2

∣

∣

∣

∣

ϕ

〉

= 5

a2
.

Since the exact value for the ground state is (Chapter 3):

E1 = π2

2a2
= 4.934802

1

a2

the variational result exceeds the correct value by 1.32%.

5.2. Variational approximation to the first excited state of the particle in a box of side a.
In this case, we must construct a variational function satisfying the boundary conditions

at x = 0, x = a/2 and x = a (ϕ = 0) and orthogonal to the ground state function. A trial
function satisfying all these conditions is:

ϕ = Nx(a − x)

(

a

2
− x

)

= N

2
(a2x − 3ax2 + 2x3).

It can be easily shown that such a function is orthogonal to either ϕ1 or to the true ground
state ψ1. This is easily shown for ϕ1, since:

〈ϕ1|ϕ〉 ∝ 〈ax − x2|a2x − 3ax2 + 2x3〉
=

∫ a

0
dx(a3x2 − 4a2x3 + 5ax4 − 2x5)

= a6
(

1

3
− 1 + 1 − 2

6

)

= 0,

while a little longer calculation shows that the chosen variational wavefunction for the first
excited state is orthogonal to the true ground state wavefunction ψ1 ∝ sinαx with α = π/a

for n = 1. The skill student may do this calculation by himself using the general integral
(Gradshteyn and Ryzhik, 1980, p. 183):

∫

dxxn sinαx = −
n

∑

k=0

k!
(

n

k

)

xn−k

αk+1
cos

(

αx + k
π

2

)

.

Turning to our starting function ϕ, we now evaluate all necessary integrals.
Normalization factor:

〈ϕ|ϕ〉 = N2

4

∫ a

0
dxx2(a2 − 3ax + 2x2)2

= N2

4

∫ a

0
dx(a4x2 − 6a3x3 + 13a2x4 − 12ax5 + 4x6)
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= N2 a7

4

(

1

3
− 3

2
+ 13

5
− 2 + 4

7

)

= N2 a7

840
= 1 ⇒ N =

(

840

a7

)1/2

.

Derivatives evaluation:

dϕ

dx
= N

2
(a2 − 6ax + 6x2)

d2ϕ

dx2
= 3N(−a + 2x)

〈

ϕ

∣

∣

∣

∣

d2ϕ

dx2

〉

= 3

2
N2

∫ a

0
dx(−a3x + 5a2x2 − 8ax3 + 4x4) = −42

a2

thereby giving:

εϕ = 〈T 〉ϕ =
〈

ϕ

∣

∣

∣

∣

−1

2

d2ϕ

dx2

∣

∣

∣

∣

ϕ

〉

= 21

a2
.

Since the exact value for the first excited state is:

E2 = 4
π2

2a2
= 2π2

a2
= 19.739209

1

a2

the variational result exceeds by 6.4% the exact value.
So, the approximation is worst than that for the ground state, but it must not be forgotten

that ϕ has no variational parameters in it.

The following two problems illustrate the equality sign in equations (2) and (3) of Sec-
tion 5.2.1 in the case of the first two states of the harmonic oscillator, which we have not
treated in this book, but of which good account is given, for instance in Eyring et al. (1944).
We summarize here the main exact results for comparison.

a = β

2
, 2a = β = √

k k = force constant

ψ0(x) =
(

2a

π

)1/4

exp(−ax2) =
(

β

π

)1/4

exp(−β

2
x2), E0 = 1

2
β = 1

2

√
k

ψ1(x) =
(

4a

√

2a

π

)1/2

x exp(−ax2) =
(

2β

√

β

π

)1/2

x exp

(

−β

2
x2

)

E1 = 3

2
β = 3

2

√
k.

5.3. Variational calculation for the ground state of the harmonic oscillator in one dimen-
sion.
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As a convenient variational function, satisfying all regularity conditions, we choose the
Gaussian:

ϕ = N exp(−cx2),

where c > 0 is a non-linear variation parameter. Using the general integral over Gaussian
functions given by equations (131) and (132) of Chapter 4, the following results are easily
obtained.

Normalization factor:

〈ϕ|ϕ〉 = N2
∫ ∞

−∞
dx exp(−2cx2) = 2N2

∫ ∞

0
dx exp(−2cx2)

= N2
(

π

2c

)1/2

= 1 ⇒ N =
(

2c

π

)1/4

.

Average kinetic energy:

dϕ

dx
= N exp(−cx2)(−2cx),

d2ϕ

dx2
= −2c(1 − 2cx2)ϕ

〈ϕ|x2|ϕ〉 = N2
∫ ∞

−∞
dxx2 exp(−2cx2) = 2N2

∫ ∞

0
dxx2 exp(−2cx2)

= 2N2 1

8c

(

π

2c

)1/2

= 2

(

2c

π

)1/2 1

8c

(

π

2c

)1/2

= 1

4c

〈

ϕ

∣

∣

∣

∣

d2ϕ

dx2

〉

= −2c〈ϕ|1 − 2cx2|ϕ〉

= −2c
{

1 − 2c〈ϕ|x2|ϕ〉} = −2c

(

1 − 2c
1

4c

)

= −c

〈T 〉 =
〈

ϕ

∣

∣

∣

∣

−1

2

d2ϕ

dx2

∣

∣

∣

∣

ϕ

〉

= c

2
.

Average potential energy:

〈V 〉 =
〈

ϕ

∣

∣

∣

∣

kx2

2

∣

∣

∣

∣

ϕ

〉

= k

2

1

4c
= k

8c
.

Total energy:

ε(c) = 〈T 〉 + 〈V 〉 = c

2
+ k

8
c−1
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dε

dc
= 1

2
− k

8
c−2 = 0 ⇒ c2 = k

4
⇒ cmin =

√
k

2

d2ε

dc2
= k

4
c−3

(

d2ε

dc2

)

c=
√

k
2

= 2√
k

> 0

ensuring the existence of a true minimum. Therefore:

εmin =
√

k

4
+ k

8

2√
k

= 2

√
k

4
=

√
k

2
= E0

ϕbest = N exp

(

−
√

k

2
x2

)

=
(

β

π

)1/4

exp

(

−β

2
x2

)

= ψ0

which are, respectively, the exact energy and wavefunction for the ground state. So, in this
case, the equality sign holds in the variation principle for the ground state.

5.4. Variational calculation for the first excited state of the harmonic oscillator in one
dimension.

We choose the function:

ϕ = Nx exp(−cx2),

where c > 0 is the non-linear variation parameter. This function satisfies the regularity
conditions and is orthogonal to ψ0 by symmetry:

〈ψ0|ϕ〉 ∝ 〈even function|odd function〉 = 0

as can be easily verified. In fact, consider the integral:

∫ ∞

−∞
dxx exp(−2cx2) =

∫ 0

−∞
dxx exp(−2cx2) +

∫ ∞

0
dxx exp(−2cx2).

In the first integral of the right-hand-side, change x → −x obtaining:

∫ 0

−∞
dxx exp(−2cx2) =

∫ 0

∞
dxx exp(−2cx2) = −

∫ ∞

0
dxx exp(−2cx2)

so that:

∫ ∞

−∞
dxx exp(−2cx2) = −

∫ ∞

0
dxx exp(−2cx2) +

∫ ∞

0
dxx exp(−2cx2) = 0.

We then easily obtain the following results.
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Normalization factor:

〈ϕ|ϕ〉 = N2
∫ ∞

−∞
dxx2 exp(−2cx2) = 2N2

∫ ∞

0
dxx2 exp(−2cx2)

= 2N2 1

8c

(

π

2c

)1/2

= N2 1

4c

(

π

2c

)1/2

= 1 ⇒ N =
(

4c

√

2c

π

)1/2

.

Average kinetic energy:

dϕ

dx
= N exp(−cx2)(1 − 2cx2),

d2ϕ

dx2
= −2c(3 − 2cx2)ϕ

〈ϕ|x2|ϕ〉 = 2N2
∫ ∞

0
dxx4 exp(−2cx2)

= 2N2 3

25c2

(

π

2c

)1/2

= 4c

(

2c

π

)1/2 3

16c2

(

π

2c

)1/2

= 3

4c

〈

ϕ

∣

∣

∣

∣

d2ϕ

dx2

〉

= −2c〈ϕ|3 − 2cx2|ϕ〉

= −2c
{

3 − 2c〈ϕ|x2|ϕ〉} = −2c

(

3 − 2c
3

4c

)

= −3c

〈T 〉 =
〈

ϕ

∣

∣

∣

∣

−1

2

d2ϕ

dx2

∣

∣

∣

∣

ϕ

〉

= 3

2
c.

Average potential energy:

〈V 〉 =
〈

ϕ

∣

∣

∣

∣

kx2

2

∣

∣

∣

∣

ϕ

〉

= k

2

3

4c
= 3

k

8c
.

Total energy:

ε(c) = 〈T 〉 + 〈V 〉 = 3

2
c + 3

8
kc−1

dε

dc
= 3

2
− 3

8
kc−2 = 0 ⇒ c2 = k

4
⇒ cmin =

√
k

2

d2ε

dc2
= 3

4
kc−3

(

d2ε

dc2

)

c=
√

k
2

= 6√
k

> 0
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ensuring the existence of a true minimum. Therefore:

εmin = 3

2

√
k

2
+ 3

8
k

2√
k

= 2
3

4

√
k = 3

2

√
k = E1

ϕbest = Nx exp

(

−
√

k

2
x2

)

=
(

2β

√

β

π

)1/2

x exp(−β

2
x2) = ψ1

so that the best variational results coincide with the exact results for energy and first excited
wavefunction. In this case, again, the equality sign holds in the variation principle for the
first excited state.

5.5. The Ransil method.
Ransil (1960a) suggested an elementary method that allows for the 3-point numerical

minimization of a function having a parabolic behaviour near the minimum. By restricting
ourselves to a function of a single parameter c, we expand ε(c) around c0 in the Taylor
power series:

ε(c) = ε(c0) +
(

dε

dc

)

c0


c + 1

2

(

d2ε

dc2

)

c0

(
c)2 + · · · ,

where:


c = c − c0

with c0 a convenient starting point (better near to the minimum). At the minimum point we
must have:

dε

d
c
=

(

dε

dc

)

c0

+
(

d2ε

dc2

)

c0


c = 0

so that the first correction will be:


c = −
(

dε
dc

)

c0
(

d2ε

dc2

)

c0

.

By choosing as a new starting point c0 + 
c, the process can be iterated until a predeter-
mined threshold is reached. This usually happens provided the iteration process converges
if the starting point c0 is well chosen. First and second derivatives can be evaluated numer-
ically starting from the definitions:

(

dε

dc

)

c0

= ε(c0 + 
c) − ε(c0 − 
c)

2
c
(191)
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(

d2ε

dc2

)

c0

= ε(c0 + 
c) + ε(c0 − 
c) − 2ε(c0)

(
c)2
. (192)

As a starting increment it is convenient to choose a small value for 
c, say 
c = 0.01.
For convenience, the second derivative is evaluated from the incremental ratio of the first
derivatives taken in c0 + 
c

2 and c0 − 
c
2 , respectively:

(

dε

dc

)

c0+
c
2

= ε
(

c0 + 
c
2 + 
c

2

)− ε
(

c0 + 
c
2 − 
c

2

)

2 · 
c
2

= ε(c0 + 
c) − ε(c0)


c
.

Similarly:

(

dε

dc

)

c0−
c
2

= ε(c0) − ε(c0 − 
c)


c

so that:

(

d2ε

dc2

)

c0

=
(

dε
dc

)

c0+
c
2

− (

dε
dc

)

c0−
c
2


c

= ε(c0 + 
c) + ε(c0 − 
c) − 2ε(c0)

(
c)2

which is the result given in (192).

5.6. Eckart’s calculation on He.
Eckart’ split-shell approach to the ground state of the He-like atom was revisited by Fi-

gari (1991), who introduces a variable transformation allowing to optimize the variational
energy with respect to just the non-orthogonality integral S between ϕ1 and ϕ2. Let:

ϕ1 =
(

c3
1

π

)1/2

exp(−c1r), ϕ2 =
(

c3
2

π

)1/2

exp(−c2r)

be the normalized 1s STOs having the non-orthogonality integral:

S = 〈ϕ1|ϕ2〉 =
(

2(c1c2)
1/2

c1 + c2

)3

.

The symmetrized 2-electron trial function containing two non-linear variational parameters
(an atomic “split-shell” function) in its normalized form is:

ϕ(1,2) = N [ϕ1(1)ϕ2(2) + ϕ2(1)ϕ1(2)]

N = (2 + 2S2)−1/2
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and is reminiscent of the Heitler–London wavefunction for ground state H2, the corre-
sponding molecular “split-shell” function.

After integration, the energy functional ε[ϕ] becomes a function of c1 and c2:

ε[ϕ] =
〈

ϕ

∣

∣

∣

∣

ĥ1 + ĥ2 + 1

r12

∣

∣

∣

∣

ϕ

〉

= h11 + h22 + 2Sh12 + (ϕ2
1 |ϕ2

2) + (ϕ1ϕ2|ϕ1ϕ2)

1 + S2
= ε(c1, c2)

since all matrix elements depend on c1 and c2:

h11 = c2
1

2
− Zc1, h22 = c2

2

2
− Zc2, h12 = S

2

[

c1c2 − Z(c1 + c2)
]

(ϕ2
1 |ϕ2

2) = c1c2

c1 + c2

{

1 + c1c2

(c1 + c2)2

}

, (ϕ1ϕ2|ϕ1ϕ2) = 20
(c1c2)

3

(c1 + c2)5
.

Transforming from variables c1, c2 to the new variables x, S defined as:

x = c1 + c2

2
, S = x−3(c1c2)

3/2

the variational energy becomes:

ε(x,S) = −2Zx + S2/3x2

+ 2(1 − S2/3)x2 + ( 1
2S2/3 + 1

8S4/3 + 5
8S2

)

x

1 + S2
.

The stationarity condition of ε against x:

(

∂ε

∂x

)

S

= −2Z + 2S2/3x + 4(1 − S2/3)x + ( 1
2S2/3 + 1

8S4/3 + 5
8S2

)

x

1 + S2
= 0

gives:

x = Z − 1
4S2/3 − 1

16S4/3 + (

Z − 5
16

)

S2

2 − S2/3 + S8/3
,

a relation which allows us to optimize ε with respect to the single variable S. For any given
value of S in the range 0 ≤ S ≤ 1, the best x is obtained from the relation above. For S = 1,
c1 = c2 and x = Z−5/16, the well known variational result for the single orbital exponent.
When ε has been minimized with respect to S (e.g. by the Ransil method of Problem 5.5),
from the relations:

c1 + c2 = 2x c1c2 = x2S2/3,
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the best values of the orbital exponents c1 and c2 are obtained by the inverse relations:

c1 = x
{

1 + (

1 − S2/3)1/2}
, c2 = x

{

1 − (

1 − S2/3)1/2}
.

The best value of ε:

ε = −2.875 661 331Eh

is obtained for:

S = 0.872 348 108, x = 1.685 850 852

giving as best values for the orbital exponents of the optimized Eckart function:

c1 = 2.183 170 865, c2 = 1.188 530 839.

The “splitting” of the orbital exponents from their average value x = 1.6858 (not far from
the best value for the single orbital exponent, 1.6875) accounts for some “radial” correla-
tion (l = 0) between the electrons, yielding a lowering in the electronic energy of about
28 × 10−3Eh. Improvement upon Eckart result might be obtained by further introducing
the “angular” correlation (l �= 0) between the electrons, i.e. using Eckart-like wavefunc-
tions involving p,d,f, g, · · · optimized orbitals.

5.7. Coefficients y1 and y2 in the WKB series expansion of y(x).
Equation (175) for the momentum p gives (apart from the signs in front)

lnp = 1

2
ln(2mE − 2mV )

d lnp

dx
= 1

2

−2mV ′

2mE − 2mV
= − V ′

2(E − V )

so that equation (176) gives for y1:

y1 = −1

2

d lnp

dx
= V ′

4(E − V )

which is the required equation (178). Then:

(y1)
2 = 1

16
(V ′)2(E − V )−2

dy1

dx
= 1

4
V ′′(E − V )−1 − 1

4
V ′(E − V )−2(−V ′)

= 1

4
(E − V )−2{(V ′)2 + (E − V )V ′′},
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and, from equation (177):

y2 = − 1

2p

{

1

16
(E − V )−2(V ′)2

+ 1

4
(E − V )−2(V ′)2 + 1

4
(E − V )−1V ′′

}

= − 1

2p
(E − V )−2

{

5

16
(V ′)2 + 1

4
(E − V )(V ′′)

}

= − 1

32p
(E − V )−2{5(V ′)2 + 4(E − V )(V ′′)

}

,

which, upon substituting:

p−1 = {2m(E − V )}−1/2 = (2m)−1/2(E − V )−1/2

gives the required equation (179).

5.8. The cyclic integral.
As far as integral (188) is concerned, we notice that from (178):

∮

y1dx =
∮

dx
V ′

4(E − V )
= −1

4

∮

d(E − V )

E − V
.

Introduce now the complex plane of Figure 5.9, and pose the complex variable:

E − V = z = ρ exp(iϕ).

Figure 5.9 Integration path for the complex variable z.
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Then:

dz = iρ exp(iϕ)dϕ

giving:

∮

dz

z
=

∮

iρ exp(iϕ)dϕ

ρ exp(iϕ)
= i

∮

dϕ = 2πi,

so that:
∮

y1dx = −1

4
· 2

∮

dz

z
= −iπ.

Hence, we finally obtain:

−ih̄

∮

y1dx = −ih̄(−iπ) = −h

2

which is the required result (188).
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6.1 INTRODUCTION

The three quantum numbers we found in Chapter 3 from the exact solution of the 1-electron
atomic problem are not enough for a complete physical description of the electron states.
The lines observed in the atomic spectrum of hydrogen under high resolution show a fine
structure which cannot be explained in terms of the simple theory we have presented so
far. It is observed that in a magnetic field even the non-degenerate 1s ground state of the H
atom splits into two lines whose separation is many orders of magnitude smaller than that
of the spectroscopic lines arising from the optical transitions from ground to excited states.
The explanation of this fact was first given by Uhlenbeck and Goudsmit (1925, 1926) and
then formalized by Pauli (1926) in terms of a new property of the electron, its intrinsic
angular momentum or electron spin.

After a short introduction of the Zeeman effect for a non-degenerate 1-electron level
giving a physical basis to the Pauli hypothesis of the two-state electron spin, we shall
formally develop the theory of 1-electron and 2-electron spin, giving an indication on how
to proceed in treating the many-electron problem. It will be seen in the next Chapter that
the latter is connected to the permutational symmetry of the many-electron wavefunction.
We shall treat explicitly spin states alone, since the formalism derived is in one-to-one
correspondence with that of the spin-orbitals needed for the correct description of many-
electron wavefunctions in the Slater method (Chapter 7).

Connection of spin with the properties of the symmetric group of N ! permutations will
be briefly mentioned in Chapter 8, devised to symmetry and group theory. As a last point,
we stress that all we can say for electron spin 1/2 is equally valid for nuclei of spin 1/2,
like 1H and 13C.

215
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6.2 ELECTRON SPIN ACCORDING TO PAULI AND THE ZEEMAN
EFFECT

In the absence of a magnetic field the 1s ground state of the H atom shows a twofold
spin degeneracy. A magnetic field removes this degeneracy, and for a field of 1 Tesla (104

Gauss) the Zeeman splitting is about 105 times smaller than the separation observed be-
tween the first orbital levels (Figure 6.1). We recall that transitions between stationary
energy levels produce the spectral lines observed for atoms.

The orbital magnetic moment μL of an electron of charge −e/c (in electromagnetic
units) moving in a circular orbit of radius r with tangential velocity v is elementarily given
by:

μL = involved surface × current intensity circulating in the orbit

= πr2 × −e/c

2πr
v

= − e

2mc
(mvr) = − e

2mc
L, (1)

where L is the value of the orbital angular momentum. Since according to quantum me-
chanics the permissible values of L are h̄

√
l(l + 1), the corresponding quantum mechanical

operator will be:

μ̂L = − eh̄

2mc
L̂ = −βeL̂, (2)

where:

L̂ = iL̂x + jL̂y + kL̂z (3)

is the orbital angular momentum vector operator, and:

βe = eh̄

2mc
= 9.274 015 × 10−24 J

Tesla
(4)

Figure 6.1 Zeeman splitting for the ground state H atom in a magnetic field of 1 Tesla (not in scale).
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the Bohr magneton (the unit of magnetic moment). We assume for the spin magnetic mo-
ment:

μ̂S = −geβeŜ, (5)

where:

Ŝ = iŜx + jŜy + kŜz (6)

is the electron spin vector operator, and ge ≈ 2 the intrinsic electron g-factor1, the so called
spin anomaly. In the atomic LS-coupling gJ is the Landé g-factor and is given by (Eyring
et al., 1944; Herzberg, 1944):

gJ = 3

2
+ S(S + 1) − L(L + 1)

2J (J + 1)
. (7)

For the simple s-electron, L = 0, S = 1/2, J = L + S = 1/2 and gJ = 2.
The electron with spin in the uniform magnetic field B (Bx = By = 0, Bz = B) acquires

the potential energy:

V = −μ̂S · B = geβeBŜz. (8)

so that the total Hamiltonian (including spin) will be:

ĥ(r, s) = ĥ0(r) + geβeBŜz. (9)

From now on, we shall use r to denote a space variable, s the formal spin variable, x =
rs the space-spin variable. Pauli (1926) postulates for the electron the existence of two
(orthonormal) spin states α, β:

〈α|α〉 = 〈β|β〉 = 1 〈α|β〉 = 〈β|α〉 = 0, (10)

where in terms of the formal spin variable s we assume:

〈α|β〉 =
∫

dsα∗(s)β(s). (11)

α, β are assumed to satisfy the eigenvalue equation for the z-component of spin, Ŝz:

Ŝzα = 1

2
α, Ŝzβ = −1

2
β. (12)

1ge = 2 (Dirac), but, according to quantum-electrodynamics, ge = 2.002 342 (Schwinger, 1948). There is also
the g-factor in molecular ESR and the g-tensor in solid state ESR, etc. (Atkins, 1983).
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Generally speaking, instead of the space orbital χλ(r) we must consider the two spin-
orbitals (SOs):

ψλ(x) = ψλ(r, s) = χλ(r)α(s) (13)

ψλ(x) = ψλ(r, s) = χλ(r)β(s) (14)

which satisfy the eigenvalue equations:

ĥ0ψλ = ελψλ ĥ0ψλ = ελψλ (15)

Ŝzψλ = 1

2
ψλ Ŝzψλ = −1

2
ψλ (16)

so that, in absence of magnetic field, the energy eigenvalue ελ is twofold degenerate.
The energy of the electron in presence of the magnetic field B (Zeeman effect) is readily

evaluated by the Ritz method by considering the matrix representative of the Hamiltonian
ĥ(r, s) over the two spin-orbital functions (ψλψλ):

h =
(

h11 h12
h21 h22

)

, (17)

where:

h11 = 〈ψλ|ĥ|ψλ〉 = 〈χλα|ĥ0 + geβeBŜz|χλα〉 = ελ + 1

2
geβeB (18)

h22 = 〈ψλ|ĥ|ψλ〉 = 〈χλβ|ĥ0 + geβeBŜz|χλβ〉 = ελ − 1

2
geβeB (19)

and

h12 = h21 = 0 (20)

because the spin-orbitals are orthogonal. Hence, matrix h is already diagonal and the sec-
ular equation:

∣

∣

∣

∣

h11 − ε 0
0 h22 − ε

∣

∣

∣

∣

= 0 (21)

has the roots:

ε1 = h11 = ελ + 1

2
geβeB (22)

ε2 = h22 = ελ − 1

2
geβeB, (23)
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Figure 6.2 Zeeman splitting for a twofold degenerate level and origin of an ESR line.

giving a Zeeman splitting linear in the field B:

	ε = ε1 − ε2 = geβeB. (24)

Since:

	ε = hν (25)

by the Planck law, transition between these two states is allowed by magnetic dipole ra-
diation (Dixon, 1965), provided the magnetic vector of the electromagnetic wave has a
component perpendicular to the static magnetic field (magnetic transition moment �= 0).
The electron spin can hence be re-oriented by a photon of energy:

hν = geβeB (26)

a process which is known as electron spin resonance (ESR). The frequency of the transition
is proportional to B and, for a free electron, the constant of proportionality is:

geβe

h
∼= 2.8 × 106 sec−1 Gauss−1 = 2.8 MHz Gauss−1. (27)

For a nucleus of spin I = 1/2, the nuclear spin functions α, β satisfy to:

Îzα = 1

2
α Îzβ = −1

2
β (28)

and the nuclear spin Hamiltonian is:

ĥN = −gNβNBÎz, (29)

where for 1H:

βN = eh̄

2mP c
= 1

1836

eh̄

2mc
= 1

1836
βe (30)

is the nuclear magneton, and gN = 5.585. The theory of the Zeeman effect reverses now
the levels originating the splitting (state α being now the lowest), so that:

ε2 − ε1 = gNβNB = hν. (31)
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Magnetic dipole radiation gives now a transition whose frequency is still proportional
to B , with a proportionality constant gNβN/h which is about 4.258 kHz Gauss−1 for 1H,
and 1.070 kHz Gauss−1 for 13C. Usually resonance is reached, for a given frequency, by
varying the strength of the external field B . The process is known as nuclear magnetic
resonance (NMR), mostly based on 1H or 13C. High resolution studies show hyperfine
structure due to the coupling of nuclear spin. It is interesting to notice that, for a field of
1 Tesla = 104 Gauss, (i) the frequency of an ESR absorption is about ν ≈ 2.8 × 1010 Hz,
corresponding to a wave length of:

λ = c

ν
≈ 1 cm = 108 Å,

while (ii) the frequency of a proton NMR absorption is about ν ≈ 4.3 × 107 Hz, corre-
sponding to a wave length of:

λ = c

ν
≈ 700 cm = 7 × 1010 Å,

so that either absorptions occur in the radiofrequency region (λ > 1 cm, ν < 3 × 1010 Hz).

6.3 THEORY OF 1-ELECTRON SPIN

Even if the Pauli postulate of the existence of two spin states α, β is sufficient to explain the
origin of the linear Zeeman splitting, we do not know anything as yet about the components
Ŝx and Ŝy of Ŝ. The equations pertaining to Ŝx and Ŝy are the consequence (i) of the
commutation properties of the spin operators, which we take in analogy to those of the
orbital angular momentum operator, and (ii) of the fact that the spin ladder for the single
electron has only two steps. Assuming the magnetic field along z, we shall find that the
components of the spin angular momentum operator do satisfy the following equations (in
atomic units):

Ŝxα = 1

2
β Ŝyα = 1

2
iβ Ŝzα = 1

2
α

Ŝxβ = 1

2
α Ŝyβ = −1

2
iα Ŝzβ = −1

2
β,

(32)

where i is the imaginary unit (i2 = −1). Equations (32) are known as Pauli equations for
spin 1/2. So, for Ŝz we have eigenvalue equations but the remaining components have the
effect of permuting state α with state β after multiplication by suitable constants.

Under these assumptions, we can now easily show that the spin states α, β have the
same eigenvalue 3

4 with respect to Ŝ2:

Ŝ2α = 1

2

(

1

2
+ 1

)

α Ŝ2β = 1

2

(

1

2
+ 1

)

β (33)
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with S = 1
2 . In fact if:

Ŝ2 = Ŝ · Ŝ = (iŜx + jŜy + kŜz) · (iŜx + jŜy + kŜz)

= Ŝ2
x + Ŝ2

y + Ŝ2
z (34)

is the operator for the square of the spin angular momentum, repeated application of (32)
immediately gives:

Ŝ2α = Ŝ2
xα + Ŝ2

yα + Ŝ2
z α = Ŝx(Ŝxα) + Ŝy(Ŝyα) + Ŝz(Ŝzα)

= Ŝx

(

1

2
β

)

+ Ŝy

(

1

2
iβ

)

+ Ŝz

(

1

2
α

)

= 1

2

(

1

2
α

)

+ 1

2
i

(

−1

2
iα

)

+ 1

2

(

1

2
α

)

=
(

1

4
+ 1

4
+ 1

4

)

α = 3

4
α = 1

2

(

1

2
+ 1

)

α (35)

and similarly for Ŝ2β . Spin states α, β have hence the same eigenvalue with respect to
Ŝ2 (they belong to the doublet S = 1/2, with spin multiplicity 2S + 1 = 2) and opposed
eigenvalue with respect to Ŝz (MS = 1/2, MS = −1/2).

• Spin ladder operators.

The spin ladder operators:

Ŝ+ = Ŝx + iŜy Ŝ− = Ŝx − iŜy (36)

have the same commutation properties of the orbital angular momentum operators (Chap-
ters 1 and 9).

Pauli equations for spin 1/2 can be immediately derived from the fact that the ladder for
the single electron has two steps only (the states α and β , postulated from experimental
evidence):

Ŝ+α = 0 Ŝ−α = β

(top)
(37)

Ŝ+β = α Ŝ−β = 0
(bottom)

. (38)

Then:

(Ŝ+ + Ŝ−)α = β (Ŝx + iŜy + Ŝx − iŜy)α = β 	⇒ Ŝxα = 1

2
β

(Ŝ+ − Ŝ−)α = −β (Ŝx + iŜy − Ŝx + iŜy)α = −β 	⇒ Ŝyα = 1

2
iβ

(39)
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(Ŝ+ + Ŝ−)β = α (Ŝx + iŜy + Ŝx − iŜy)β = α 	⇒ Ŝxβ = 1

2
α

(Ŝ+ − Ŝ−)β = α (Ŝx + iŜy − Ŝx + iŜy)β = α 	⇒ Ŝyβ = −1

2
iα,

(40)

and we recover Pauli’s equations for the components Ŝx and Ŝy for spin 1/2.

• Commutation properties of spin operators.

It is easily seen that:

[Ŝx, Ŝy]α = Ŝx Ŝyα − Ŝy Ŝxα

= Ŝx

(

1

2
iβ

)

− Ŝy

(

1

2
β

)

= 1

2
i

(

1

2
α

)

− 1

2

(

−1

2
iα

)

=
(

1

4
+ 1

4

)

iα = 1

2
iα = iŜzα

so that:

[Ŝx, Ŝy] = iŜz. (41)

Likely, it is found:

[Ŝy, Ŝz] = iŜx (42)

[Ŝz, Ŝx] = iŜy . (43)

For the ladder operators:

[Ŝz, Ŝ+] = ŜzŜ+ − Ŝ+Ŝz = Ŝz(Ŝx + iŜy) − (Ŝx + iŜy)Ŝz

= [Ŝz, Ŝx] − i[Ŝy, Ŝz] = iŜy − i(iŜx) = Ŝx + iŜy = Ŝ+ (44)

[Ŝz, Ŝ−] = ŜzŜ− − Ŝ−Ŝz = Ŝz(Ŝx − iŜy) − (Ŝx − iŜy)Ŝz

= [Ŝz, Ŝx] + i[Ŝy, Ŝz] = iŜy + i(iŜx) = −(Ŝx − iŜy) = −Ŝ− (45)

and, for the square of the spin operator:

[Ŝ2, Ŝx]α = (Ŝ2Ŝx − Ŝx Ŝ
2)α

= Ŝ2
(

1

2
β

)

− Ŝx

(

3

4
α

)

= 1

2
· 3

4
β − 3

4
· 1

2
β = 0 (46)

so that Ŝ2 commutes with Ŝx , Ŝy , Ŝz.
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Summarizing all these results, we have the commutation rules for spin operators:

[Ŝx, Ŝy] = iŜz [Ŝy, Ŝz] = iŜx [Ŝz, Ŝx] = iŜy

[Ŝz, Ŝ+] = Ŝ+ [Ŝz, Ŝ−] = −Ŝ−

[Ŝ2, Ŝx] = [Ŝ2, Ŝy] = [Ŝ2, Ŝz] = 0

[Ŝ2, Ŝ±] = 0.

(47)

• Properties of spin ladder operators

Let us now study the effect of the spin ladder operators on a spin function η(MS) be-
longing to the step MS of the ladder specified by S:

Ŝzη(MS) = MSη(MS) Ŝ2η(MS) = S(S + 1)η(MS). (48)

Ŝz

(

Ŝ+η(MS)
) = Ŝ+

(

Ŝzη(MS)
)+ (Ŝ+η(MS)

)

= (MS + 1
)(

Ŝ+η(MS)
)∝ η

(

MS + 1
)

(49)

Ŝz

(

Ŝ−η(MS)
) = Ŝ−

(

Ŝzη(MS)
)− (Ŝ−η(MS)

)

= (MS − 1)
(

Ŝ−η(MS)
)∝ η(MS − 1) (50)

while:

Ŝ2(Ŝ±η(MS)
)= Ŝ±

(

Ŝ2η(MS)
)= S(S + 1)

(

Ŝ±η(MS)
)

(51)

so that it is evident the step-up effect of Ŝ+η(MS) and the step-down effect of Ŝ−η(MS)

within the same ladder (specified by S).
We can now normalize the function Ŝ+η(MS). We recall that:

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z

= Ŝ−Ŝ+ + Ŝz(Ŝz + 1) = Ŝ+Ŝ− + Ŝz(Ŝz − 1). (52)

Then, assuming η(MS) normalized to 1:

Ŝ+η(MS) = Nη(MS + 1) (53)

〈η(MS)|Ŝ2|η(MS)〉 = 〈η(MS)|Ŝ−Ŝ+ + Ŝz(Ŝz + 1)|η(MS)〉
= 〈Ŝ+η(MS)|Ŝ+η(MS)〉 + MS(MS + 1)〈η(MS)|η(MS)〉
= S(S + 1)〈η(MS)|η(MS)〉 (54)
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and we finally obtain:

〈Ŝ+η(MS)|Ŝ+η(MS)〉 = [S(S + 1) − MS(MS + 1)]〈η(MS)|η(MS)〉
= N2〈η(MS+1)|η(MS+1)〉. (55)

Since:

〈η(MS)|η(MS)〉 = 〈η(MS+1)|η(MS+1)〉 = 1 (56)

it follows that:

N2 = S(S + 1) − MS(MS + 1)

N = [S(S + 1) − MS(MS + 1)]1/2. (57)

Taking into account normalization, the complete expressions of the spin functions Ŝ±η

are hence the following:

Ŝ+η(MS) = [S(S + 1) − MS(MS + 1)]1/2η(MS + 1) step-up

Ŝ−η(MS) = [S(S + 1) − MS(MS − 1)]1/2η(MS − 1) step-down.
(58)

Examples.

(i) On the top of the ladder:

Ŝ+η 1
2

=
[

1

2

(

1

2
+ 1

)

− 1

2

(

1

2
+ 1

)]1/2

η 3
2

= 0

Ŝ+η− 1
2

=
[

1

2

(

1

2
+ 1

)

−
(

−1

2

)(

−1

2
+ 1

)]1/2

η 1
2

= η 1
2

(59)

(ii) On the bottom of the ladder:

Ŝ−η 1
2

=
[

1

2

(

1

2
+ 1

)

− 1

2

(

1

2
− 1

)]1/2

η− 1
2

= η− 1
2

Ŝ−η− 1
2

=
[

1

2

(

1

2
+ 1

)

−
(

−1

2

)(

−1

2
− 1

)]1/2

η− 3
2

= 0.

(60)

In this way, the results obtained from the commutation rules confirm the results intuitively
assumed for the two-step ladder.
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6.4 MATRIX REPRESENTATION OF SPIN OPERATORS

If we represent the basis of the two spin states as the row matrix:

η = (αβ) (61)

the Pauli spin operators are given by the 2 × 2 matrix representatives:

Sx =
(

0 1
2

1
2 0

)

Sy =
(

0 − 1
2 i

1
2 i 0

)

Sz =
( 1

2 0
0 − 1

2

)

(62)

which are the 2 × 2 Pauli matrices for spin 1/2. In fact:

Sx = η†Ŝxη =
(

α∗
β∗
)

(Ŝxα Ŝxβ) =
( 〈α|Ŝx |α〉 〈α|Ŝx |β〉

〈β|Ŝx |α〉 〈β|Ŝx |β〉
)

=
( 1

2 〈α|β〉 1
2 〈α|α〉

1
2 〈β|β〉 1

2 〈β|α〉
)

=
(

0 1
2

1
2 0

)

(63)

and so on.
In this matrix representation, state α is represented by the column

(1
0

) = α, state β by

the column
(0

1

)= β . Then:

Sx

(

1
0

)

=
(

0 1
2

1
2 0

)(

1
0

)

=
(

0
1
2

)

= 1

2

(

0
1

)

Sx

(

0
1

)

=
(

0 1
2

1
2 0

)(

0
1

)

=
( 1

2
0

)

= 1

2

(

1
0

)
(64)

Sy

(

1
0

)

= 1

2
i

(

0
1

)

Sy

(

0
1

)

= −1

2
i

(

1
0

)

(65)

Sz

(

1
0

)

= 1

2

(

1
0

)

Sz

(

0
1

)

= −1

2

(

0
1

)

(66)

as it must be.
For the matrix representatives of the ladder operators we have:

S+ = Sx + iSy =
(

0 1
2

1
2 0

)

+ i

(

0 − 1
2 i

1
2 i 0

)

=
(

0 1
2

1
2 0

)

+
(

0 1
2

− 1
2 0

)

=
(

0 1
0 0

)

(67)

S− = Sx − iSy =
(

0 0
1 0

)

(68)
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so that:

S+α =
(

0 1
0 0

)(

1
0

)

=
(

0
0

)

S+β =
(

0 1
0 0

)(

0
1

)

=
(

1
0

)

= α

top (69)

S−α =
(

0 0
1 0

)(

1
0

)

=
(

0
1

)

= β

S−β =
(

0 0
1 0

)(

0
1

)

=
(

0
0

)
bottom (70)

as it must be.
We can now give the commutation relations in matrix form.

[Sx,Sy] = SxSy − SySx

=
(

0 1
2

1
2 0

)(

0 − 1
2 i

1
2 i 0

)

−
(

0 − 1
2 i

1
2 i 0

)(

0 1
2

1
2 0

)

=
( 1

4 i 0
0 − 1

4 i

)

−
(− 1

4 i 0
0 1

4 i

)

=
( 1

2 i 0
0 − 1

2 i

)

= iSz (71)

and, likely:

[Sy,Sz] = iSx (72)

[Sz,Sx] = iSy. (73)

Furthermore:

S2 = S2
x + S2

y + S2
z

=
(

0 1
2

1
2 0

)(

0 1
2

1
2 0

)

+
(

0 − 1
2 i

1
2 i 0

)(

0 − 1
2 i

1
2 i 0

)

+
( 1

2 0
0 − 1

2

)( 1
2 0
0 − 1

2

)

=
( 1

4 0
0 1

4

)

+
( 1

4 0
0 1

4

)

+
( 1

4 0
0 1

4

)

= 3

4
1 (74)

so that:

[S2,Sx] = [S2,Sy] = [S2,Sz] = 0. (75)
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6.5 THEORY OF 2-ELECTRON SPIN

For N = 2 we have 22 = 4 spin product functions, out of which we must construct suitable
spin eigenstates. Taking electrons always in dictionary order, the product functions are:

αα,αβ,βα,ββ. (76)

We now look at the behaviour of these products under the action of operators Ŝz and Ŝ2.

(i) Ŝz = Ŝz1 + Ŝz2 (77)

Ŝz(α1α2) = (Ŝz1α1)α2 + α1(Ŝz2α2) =
(

1

2
+ 1

2

)

α1α2 MS = 1

Ŝz(α1β2) = (Ŝz1α1)β2 + α1(Ŝz2β2) =
(

1

2
− 1

2

)

α1β2 MS = 0

so that the product functions are eigenstates of Ŝz with eigenvalues:

MS =
α1α2 α1β2 β1α2 β1β2

1 0 0 −1 , (78)

where:

MS = Nα − Nβ

2
Nα + Nβ = N, (79)

Nα being the number of electrons with spin α, Nβ that of electrons with spin β , and N the
total number of electrons.

(ii) Ŝ2 = Ŝ · Ŝ = (Ŝ1 + Ŝ2) · (Ŝ1 + Ŝ2) = Ŝ2
1 + Ŝ2

2 + 2Ŝ1 · Ŝ2, (80)

where Ŝ2
1 and Ŝ2

2 are 1-electron spin operators, while Ŝ1 · Ŝ2 is a 2-electron spin operator.
We have for the scalar product:

Ŝ1 · Ŝ2 = (iŜx1 + jŜy1 + kŜz1) · (iŜx2 + jŜy2 + kŜz2)

= Ŝx1Ŝx2 + Ŝy1Ŝy2 + Ŝz1Ŝz2 (81)

so that:

(Ŝ1 · Ŝ2)α1β2 = (Ŝx1α1)(Ŝx2β2) + (Ŝy1α1)(Ŝy2β2) + (Ŝz1α1)(Ŝz2β2)

=
(

1

2
β1

)(

1

2
α2

)

+
(

1

2
iβ1

)(

−1

2
iα2

)

+
(

−1

2
β2

)

=
(

1

4
+ 1

4

)

β1α2 − 1

4
α1β2 (82)
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Ŝ2α1β2 = (Ŝ2
1α1)β2 + α1(Ŝ

2
2β2) + 2(Ŝ1 · Ŝ2)α1β2

=
(

3

4
+ 3

4
− 2

4

)

α1β2 + 2

(

1

4
+ 1

4

)

β1α2 = α1β2 + β1α2. (83)

We hence obtain:

Ŝ2 = Î + P̂12, (84)

where P̂12 is an operator which interchanges spin coordinates only, or, leaving electrons
in dictionary order, interchanges spin state α with spin state β . Formula (84) is known as
Dirac’s formula, and allows us to express Ŝ2 in terms of the identity operator Î and the spin
permutation operator P̂12. To find the eigenstates of Ŝ2 we must construct and diagonalize
its matrix representative over the basis of the four product functions. Then:

Ŝ2αα = 2αα Ŝ2αβ = αβ + βα Ŝ2βα = βα + αβ Ŝ2ββ = 2ββ

(85)

so that we have the matrix elements:

〈αα|Ŝ2|αα〉 = 2 〈αα|Ŝ2|αβ〉 = 0 〈αα|Ŝ2|βα〉 = 0 〈αα|Ŝ2|ββ〉 = 0
〈αβ|Ŝ2|αα〉 = 0 〈αβ|Ŝ2|αβ〉 = 1 〈αβ|Ŝ2|βα〉 = 1 〈αβ|Ŝ2|ββ〉 = 0
〈βα|Ŝ2|αα〉 = 0 〈βα|Ŝ2|αβ〉 = 1 〈βα|Ŝ2|βα〉 = 1 〈βα|Ŝ2|ββ〉 = 0
〈ββ|Ŝ2|αα〉 = 0 〈ββ|Ŝ2|αβ〉 = 0 〈ββ|Ŝ2|βα〉 = 0 〈ββ|Ŝ2|ββ〉 = 2,

giving the 4 × 4 Hermitian matrix S2 whose eigenvalues are λ = S(S + 1) in the block
diagonal form:

S2 =

⎛

⎜

⎜

⎜

⎜

⎝

2 0 0 0

0 1 1 0
0 1 1 0

0 0 0 2

⎞

⎟

⎟

⎟

⎟

⎠

. (86)

It will be sufficient to diagonalize the inner 2 × 2 block with the secular equation:
∣

∣

∣

∣

x 1
1 x

∣

∣

∣

∣

= 0 x = 1 − λ (87)

having the roots:

x = ±1. (88)

Hence, we obtain for the eigenvalues:

λ = 1 − 1 = 0 	⇒ S = 0 (singlet) (89)
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λ = 1 + 1 = 2 	⇒ S = 1 (triplet). (90)

We now evaluate the eigenvectors.

• Eigenvalue x = 1 (singlet)

⎧

⎨

⎩

c1 + c2 = 0 c2 = −c1

c2
1 + c2

2 = 1 2c2
1 = 1 	⇒ c1 = 1√

2
, c2 = − 1√

2

(91)

• Eigenvalue x = −1 (triplet)

⎧

⎨

⎩

−c1 + c2 = 0 c2 = c1

c2
1 + c2

2 = 1 2c2
1 = 1 	⇒ c1 = c2 = 1√

2
.

(92)

The spin eigenstates for N = 2 are therefore:

Eigenstates η S MS

αα 1 1 Symmetric spin
1√
2
(αβ + βα) 1 0 eigenfunctions with

ββ 1 −1 2S + 1 = 3 (triplet)

(93)

Antisymmetric spin
1√
2
(αβ − βα) 0 0 eigenfunction with

2S + 1 = 1 (singlet)
(94)

At variance with the simple product functions (76), we see that the spin eigenfunctions have
a definite symmetry (symmetric or antisymmetric) with respect to electron interchange.

6.6 THEORY OF N -ELECTRON SPIN

If N = Nα + Nβ is the total number of electrons (or spin) with Nα the number of
α-electrons, Nβ the number of β-electrons, we shall have 2N product functions like
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(· · ·ακ · · ·βλ · · ·), where the notation means that electron κ is in spin state α and electron
λ in spin state β . We again look for the action of Ŝz and Ŝ2 on these product functions.

(i) Ŝz =
N
∑

κ=1

Ŝzκ (95)

Ŝz(· · ·ακ · · ·) =
N
∑

λ=1

Ŝzλ(· · ·ακ · · ·) =
N
∑

λ=1

msλ(· · ·ακ · · ·) = MS(· · ·ακ · · ·),
(96)

where:

MS =
N
∑

λ=1

msλ = Nα − Nβ

2
. (97)

All product functions are eigenstates of Ŝz with eigenvalue MS .

(ii) Ŝ2 = (Ŝ1 + Ŝ2 + · · · + ŜN) · (Ŝ1 + Ŝ2 + · · · + ŜN)

=
N
∑

κ=1

Ŝ2
κ + 2

∑

κ<λ

Ŝκ · Ŝλ, (98)

where the first single sum of 1-electron operators has N terms, the second double sum of
2-electron operators N(N − 1)/2 terms, the number of distinct pairs. Now:

Ŝ2
κ (· · ·ακ · · ·βλ · · ·) = 3

4
(· · ·ακ · · ·βλ · · ·) (99)

(Ŝxκ Ŝxλ + Ŝyκ Ŝyλ + Ŝzκ Ŝzλ)(· · ·ακ · · ·βλ · · ·)

=
(

−1

4
Î + 2

1

4
P̂κλ

)

(· · ·ακ · · ·βλ · · ·). (100)

Adding all contributions altogether we get:

Ŝ2(· · ·ακ · · ·βλ · · ·)

=
{(

3

4
+ 3

4
+ · · · + 3

4

)

N -times

Î −
(

2

4
+ 2

4
+ · · · + 2

4

)

N(N−1)
2 -times

Î

+
∑

κ<λ

P̂κλ

}

(· · ·ακ · · ·βλ · · ·) (101)
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namely, since the result is independent of (· · ·ακ · · ·βλ · · ·):

Ŝ2 = 3

4
NÎ − 2

4

N(N − 1)

2
Î +

∑

κ<λ

P̂κλ (102)

Ŝ2 = N

4
(4 − N)Î +

∑

κ<λ

P̂κλ (103)

which is the Dirac formula (1929; see also Löwdin, 1955a) for the N -electron system.
Using this formula it is possible to calculate in a simple way the effect of Ŝ2 on a many-
electron wavefunction, even if, at least in an elementary way, the spin-part is not separable
from the space part as it happens for N � 3. We can then construct the matrix S2 over
the basis of the N -electron product functions, whose diagonalization gives the eigenvalues
S(S + 1) and the correct linear combinations of product functions (eigenvectors), which
are the eigenstates of Ŝ2 for the different eigenvalues. These eigenstates of Ŝ2 are states of
definite total spin S satisfying simultaneously the two eigenvalue equations:

Ŝ2η = S(S + 1)η Ŝzη = MSη, (104)

where:

S = 0,1,2, · · · N

2
for N = even (105)

S = 1

2
,

3

2
,

5

2
, · · · N

2
for N = odd (106)

MS = Nα − Nβ

2
. (107)

In terms of the spin multiplicity 2S + 1, i.e. the number of linearly independent spin eigen-
states of given S, we have:

N = even ⇒ singlets, triplets, quintets, . . . (108)

N = odd ⇒ doublets, quartets, sextets, . . . (109)

We notice that the product functions involving all α or β spin are already eigenstates
of Ŝ2 with eigenvalue S = |MS |. The total number f N

S of linearly independent spin eigen-
states of given S, MS does depend only on S and is given by:

(i) The Wigner formula

f N
S =

(

N
N
2 − S

)

−
(

N
N
2 − S − 1

)

= (2S + 1)N !
(N

2 − S)!(N
2 + S + 1)!

(110)
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Figure 6.3 Kotani branching diagram.

or (ii) The Kotani branching diagram (Figure 6.3).
The numbers on the intersection points of the Kotani branching diagram are the number

f N
S of linearly independent spin states of given S for each value of N . It is true that:

f N
S = f N−1

S+ 1
2

+ f N−1
S− 1

2
, (111)

and that, adding by columns:

∑

S

(2S + 1)f N
S = 2N. (112)

Examples.

(i) N = 3 23 = 8 spin states

1 quartet

(

S = 3

2

)

+ 2 doublets

(

S = 1

2

)

4 + 4 = 8

(113)

(ii) N = 4 24 = 16 spin states

1 quintet(S = 2) + 3 triplets(S = 1) + 2 singlets(S = 0)

5 + 9 + 2 = 16

(114)
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(iii) N = 5 25 = 32 spin states

1 sextet

(

S = 5

2

)

+ 4 quartets

(

S = 3

2

)

+ 5 doublets

(

S = 1

2

)

6 + 16 + 10 = 32

(115)

6.7 THE KOTANI SYNTHETIC METHOD

Kotani (Kotani et al., 1963) has proposed a synthetic method to construct the N -electron
spin eigenfunctions, starting from the spin functions for the single electron (η = α for
MS = 1

2 , η = β for MS = − 1
2 ) and building-up the N -electron function by coupling the

spins successively according to the usual rules for angular momenta in quantum mechanics
(Chapter 9) with reference to the branching diagram. The vector coupling formula, with the
adoption of standard phases, for the spin eigenfunction of N electrons can be written as:

ηN
SMS ;k = −

√

S − MS + 1

2S + 2
ηN−1

S+ 1
2 ,MS− 1

2 ;k(s1, s2, · · · , sN−1)α(sN)

+
√

S + MS + 1

2S + 2
ηN−1

S+ 1
2 ,MS+ 1

2 ;k(s1, s2, · · · , sN−1)β(sN) (116)

ηN
SMS ;k =

√

S + MS

2S
ηN−1

S− 1
2 ,MS− 1

2 ;k(s1, s2, · · · , sN−1)α(sN)

+
√

S − MS

2S
ηN−1

S− 1
2 ,MS+ 1

2 ;k(s1, s2, · · · , sN−1)β(sN), (117)

where we have omitted for short the arguments in ηN . The coefficients in equations (116)
and (117) are the appropriate Clebsch–Gordan coefficients (Brink and Satchler, 1993). The
index k on each function ηN

SMS ;k must be interpreted as a series of partial resultant spins:

k = (S1S2 . . . Sμ . . . SN−1), (118)

where Sμ is the resultant spin of the function after coupling μ electrons. S1 is, of course,
always equal to 1

2 , while there is no need to specify SN since this is just the total resultant
spin S. The spin eigenfunctions obtained in this way are known as Young–Yamanouchi or
Kotani basis, or “standard” functions. They have a permutational symmetry that follows
directly from their definitions by equations (116) and (117), but we shall not examine this
aspect here (see Gerratt, 1971). The considerations of this Section will be of importance
in presenting some recent formulations of valence bond (VB) theories (Chapter 10), where
space and spin parts of the wavefunction are sometimes treated separately according to a
suggestion by Wigner (1959).
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6.8 LÖWDIN SPIN PROJECTION OPERATORS

An analytic method for constructing spin eigenfunctions of given S by acting on product
functions with suitable projection operators was proposed by Löwdin (1959). It is based
on the successive annihilation of each unwanted component in the expansion of the spin
product η in eigenstates of Ŝ2:

η =
∑

SMS

ηSMS
CSMS

. (119)

From:

Ŝ2ηSMS
= S(S + 1)ηSMS

(120)

it follows:

[Ŝ2 − S(S + 1)Î ]ηSMS
= 0 (121)

so that the operator Ôk = [Ŝ2 − S(S + 1)Î ] acts as an annihilator for the component of
total spin k = S. Mathematically speaking, Ôk has the property of resolving an arbitrary
vector η into its component along the k-axis, in other words it is a “projection operator
(or projector)” which satisfies the three characteristic properties of idempotency, mutual
exclusivity, and completeness:

ÔkÔl = Ôkδkl

∑

k

Ôk = Î . (122)

The last expression is known in mathematics as the “resolution of the identity” for a finite
Hilbert space. For N -electron spin, the Löwdin spin projector must be generalized to:

Ôk =
∏

S( �=k)

Ŝ2 − S(S + 1)

k(k + 1) − S(S + 1)
, (123)

where Ôk removes from the product functions all spin components except that having
S = k, and the denominator has been chosen merely for reasons of convenience.

These properties are easily verified for N = 2. The possible spin states have S = 0,1
and we have a singlet and a triplet. Löwdin projectors are:

Ô0 = Ŝ2 − 1(1 + 1)

−1(1 + 1)
= 2 − Ŝ2

2
= 2 − (Î + P̂12)

2
= Î − P̂12

2

(annihilates the triplet component)

(124)

Ô1 = Ŝ2 − 0(0 + 1)

1(1 + 1) − 0(0 + 1)
= Î + P̂12

2
.

(annihilates the singlet component)

(125)
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Then:

(i) For the singlet:

Ô0αβ = Î − P̂12

2
αβ = αβ − βα

2
(126)

the (un-normalized) antisymmetrical function.
(ii) For the triplet:

Ô1αβ = Î + P̂12

2
αβ = αβ + βα

2
(127)

the (un-normalized) symmetrical function, as it must be. Furthermore:
(iii) Idempotency:

Ô2
0 = Î − P̂12

2
· Î − P̂12

2
= Î − 2P̂12 + P̂ 2

12

4
= Î − P̂12

2
= Ô0 (128)

Ô2
1 = Î + P̂12

2
· Î + P̂12

2
= Î + 2P̂12 + P̂ 2

12

4
= Î + P̂12

2
= Ô1. (129)

(iv) Mutual exclusivity:

Ô0Ô1 = Î − P̂12

2
· Î + P̂12

2
= Î − P̂ 2

12

4
= Î − Î

4
= 0. (130)

(v) Completeness (resolution of the identity):

Ô0 + Ô1 = Î − P̂12

2
+ Î + P̂12

2
= Î . (131)

For N = 3, we have S = 1/2 (twice, two doublets), S = 3/2 (one quartet), and Löwdin
un-normalized projectors are:

Ô 1
2

∝ Ŝ2 − 15

4
Î (removes the quartet component) (132)

Ô 3
2

∝ Ŝ2 − 3

4
Î (removes the doublet component). (133)

The two doublets are recovered by acting with Ô 1
2

on at least two different spin products
and removing possible linear dependences through Schmidt orthogonalization.



236 6. The Electron Spin

6.9 PROBLEMS 6

6.1. Find the spin eigenstates for N = 3 using the matrix method.

Answer:

MS S

η1 = 1√
6
(ααβ + αβα − 2βαα)

η2 = 1√
6
(ββα + βαβ − 2αββ)

1

2

−1

2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

1

2
First doublet

η3 = 1√
2
(ααβ − αβα)

η4 = 1√
2
(ββα − βαβ)

1

2

−1

2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

1

2
Second doublet

η5 = ααα

η6 = 1√
3
(ααβ + αβα + βαα)

η7 = 1√
3
(ββα + βαβ + αββ)

η8 = βββ

3

2
1

2

−1

2

−3

2

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

3

2
Quartet

Hint:
Construct the representative S2 over the eight product functions and solve the related eigen-
value problem.

6.2. Solve the N = 3 spin problem by use of the Löwdin projection operators method.

Answer:
Same as in Problem 6.1.

Hint:
Use spin projectors Ô 1

2
and Ô 3

2
on suitable product functions and normalize the results for

linearly independent functions.

6.3. Solve the spin problem for N = 4.
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Answer:

MS S

η1 = 1

2
(αβαβ − βααβ + βαβα − αββα)

η2 = 1√
12

(2ααββ − αβαβ − βααβ + 2ββαα

− βαβα − αββα)

0

0

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

0 Two singlets

η3 = 1

2
(αααβ + ααβα − αβαα − βααα)

η4 = 1√
2
(αβαβ − βαβα)

η5 = 1

2
(βββα + ββαβ − βαββ − αβββ)

1

0

−1

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

1 First triplet

η6 = 1√
2
(αααβ − ααβα)

η7 = 1√
2
(ααββ − ββαα)

η8 = 1√
2
(βββα − ββαβ)

1

0

−1

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

1 Second triplet

η9 = 1√
2
(αβαα − βααα)

η10 = 1√
2
(βααβ − αββα)

η11 = 1√
2
(βαββ − αβββ)

1

0

−1

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

1 Third triplet

η12 = αααα

η13 = 1

2
(αααβ + ααβα + αβαα + βααα)

η14 = 1√
6
(ααββ + αβαβ + βααβ + ββαα

+ βαβα + αββα)

η15 = 1

2
(βββα + ββαβ + βαββ + αβββ)

η16 = ββββ

2

1

0

−1

−2

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

2 Quintet
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Hint:
Use Löwdin spin projectors Ô0, Ô1 and Ô2 for N = 4, and normalize the resulting linearly
independent functions.

6.4. Construct the Kotani standard spin functions for N = 3 and S = MS = 1
2 .

Answer:

η′
1 = 1√

6
(2ααβ − αβα − βαα)

η′
3 = 1√

2
(αβα − βαα)

Hint:
Construct the two coupling schemes for N = 3 and S = 1

2 , then use Kotani’s formulae
(116) for k1 = ( 1

2 1) and (117) for k2 = ( 1
2 0).

6.5. Find the orthogonal transformation U connecting Löwdin and Kotani spin eigenfunc-
tions for N = 3 and S = MS = 1

2 .

Answer:

U =
( 1

2

√
3

2√
3

2 − 1
2

)

.

Hint:
Write the orthogonal transformation and determine the coefficients by simple inspection.

6.6. Construct the Kotani standard spin functions for N = 3 and S = MS = 1
2 by an

elementary way.

Answer:
The same of Problem 6.4.

Hint:
Couple first the triplet functions with N = 2 to α3 and β3, then choose that linear combi-
nation of the two functions having MS = 1

2 which gives S = 1
2 . Do the same by coupling

next the singlet function with N = 2 to α3 and β3.

6.7. Find the two singlets (S = MS = 0) for N = 4 using the elementary way of the
preceding Problem.

Answer:

η′
1 = 1√

12
(2ααββ − αβαβ − βααβ + 2ββαα − βαβα − αββα)
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η′
2 = 1

2
(αβαβ − βααβ + βαβα − αββα)

Hint:
Construct the spin coupling schemes for N = 4, then use the elementary algebraic tech-
nique described in Problem 6.6 for the case S = 0.

6.10 SOLVED PROBLEMS

6.1. Spin eigenstates for N = 3 by the matrix method.
We have the eight product functions:

MS =
ααα, ααβ, αβα, βαα, ββα, βαβ, αββ, βββ

3

2
,

1

2
,

1

2
,

1

2
, −1

2
, −1

2
, −1

2
, −3

2

Ŝ2 = 3

4
Î + P̂12 + P̂13 + P̂23.

Then, limiting ourselves to MS > 0:

Ŝ2ααα =
(

3

4
+ 3

)

ααα = 15

4
ααα

Ŝ2ααβ = 7

4
ααβ + αβα + βαα

Ŝ2αβα = ααβ + 7

4
αβα + βαα

Ŝ2βαα = ααβ + αβα + 7

4
βαα

giving for S2 the block-diagonal form:

S2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

15
4 0 0 0

0 7
4 1 1

0 1 7
4 1

0 1 1 7
4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

λ = S(S + 1).

The secular equation for the right lower block:
∣

∣

∣

∣

∣

∣

x 1 1
1 x 1
1 1 x

∣

∣

∣

∣

∣

∣

= 0 x = 7

4
− λ
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factorizes to:

(x − 1)(x2 + x − 2) = (x − 1)2(x + 2) = 0

having the roots:

x = 1 twice

x = −2.

We then obtain for the eigenvalues:

λ = 7

4
− 4

4
= 3

4
	⇒ S = 1

2
twice (two doublets)

λ = 7

4
+ 8

4
= 15

4
	⇒ S = 3

2
single (one quartet).

We now evaluate the eigenvectors.

• Eigenvalue x = 1

{

c1 + c2 + c3 = 0

c2
1 + c2

2 + c2
3 = 1.

We have 2 equations and 3 unknowns, so that one of the unknowns can be chosen in an
arbitrary way.

(i) First assumption:

• c2 = c1 2c1 + c3 = 0 c3 = −2c1

2c2
1 + 4c2

1 = 1 6c2
1 = 1 	⇒ c1 = c2 = 1√

6
, c3 = − 2√

6

η1 = 1√
6
(ααβ + αβα − 2βαα) first doublet

• c3 = 0 c2 = −c1

2c2
1 = 1 	⇒ c1 = 1√

2
, c2 = − 1√

2

η3 = 1√
2
(ααβ − αβα) second doublet

Since 〈η1|η3〉 = 0 the two functions are linearly independent.
(ii) Different choice for the arbitrary unknown:
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• c1 = 0 c3 = −c2 2c2
2 = 1 	⇒ c2 = 1√

2
, c3 = − 1√

2

η′
1 = 1√

2
(αβα − βαα)

• c3 = 0 c2 = −c1 2c2
1 = 1 	⇒ c1 = 1√

2
, c2 = − 1√

2

η3 = 1√
2
(ααβ − αβα).

Since:

〈η′
1|η3〉 = −1

2
= S (�= 0)

the functions are not linearly independent. We can however orthogonalize η′
1 to η3 by the

Schmidt method, obtaining:

η′
3 = 1√

2
(ααβ − αβα) = η3

η′′
1 = η′

1 − Sη3√
1 − S2

= 2√
3

· 1

2
√

2
(2αβα − 2βαα + ααβ − αβα)

= 1√
6
(ααβ + αβα − 2βαα) = η1

which is the linearly independent function of the first doublet we have found before.

• Eigenvalue x = −2

We have the system:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−2c1 + c2 + c3 = 0

c1 − 2c2 + c3 = 0

c1 + c2 − 2c3 = 0

c2
1 + c2

2 + c2
3 = 1

Subtracting equation 2 from equation 1 gives:

−3c1 + 3c2 = 0 c2 = c1
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while, from equation 3:

2c1 − 2c3 = 0 c3 = c1

3c2
1 = 1 	⇒ c1 = c2 = c3 = 1√

3

so that we have:

η6 = 1√
3
(ααβ + αβα + βαα)

which is the quartet function with MS = 1/2.
The remaining spin eigenstates are readily found by interchanging α ↔ β in the previous

functions, while ααα and βββ are already eigenstates belonging to S = 3/2 with MS =
±3/2, respectively.

6.2. Spin eigenstates for N = 3 by the Löwdin projector method.
For our present purposes it will be sufficient to use Löwdin projectors for N = 3 in the

form given by (132) and (133). Acting with Ô 1
2

on the product function βαα we obtain:

Ô 1
2
βαα =

(

Ŝ2 − 15

4
Î

)

βαα =
(

3

4
+ 4

4
− 15

4

)

βαα + αβα + ααβ

= ααβ + αβα − 2βαα

that normalized gives:

η1 = 1√
6
(ααβ + αβα − 2βαα)

which is the component with MS = 1/2 of the first doublet S = 1/2. For the second doublet
we may act with Ô 1

2
on another product, say αβα:

Ô 1
2
αβα =

(

3

4
+ 4

4
− 15

4

)

αβα + βαα + ααβ

= ααβ − 2αβα + βαα

giving the normalized function:

η = 1√
6
(ααβ − 2αβα + βαα).

This function however does depend linearly on η1 since:

〈η1|η〉 = 1

6
(1 − 2 − 2) = −1

2
= S(�= 0).



6.10 Solved Problems 243

By Schmidt orthogonalization of η against η1 we obtain:

η′ = η − Sη1√
1 − S2

= 2√
3

· 1

2
√

6
(2ααβ − 4αβα + 2βαα + ααβ + αβα − 2βαα)

= 1√
2
(ααβ − αβα) ≡ η3

which is the correct component with MS = 1/2 of the second doublet.
To get the quartet function (S = 3/2) belonging to MS = 1/2, we act with the projector

(133) on the same product function βαα:

Ô 3
2
βαα =

(

Ŝ2 − 3

4
Î

)

βαα =
(

3

4
− 3

4
+ 4

4

)

βαα + αβα + ααβ

= ααβ + αβα + βαα

and normalization gives:

η6 = 1√
3
(ααβ + αβα + βαα)

the correct spin eigenfunction with S = 3/2, MS = 1/2. By the interchange α ↔ β all
remaining spin eigenfunctions of the N = 3 problem are immediately derived.

6.3. The spin problem for N = 4.
Because of its length we shall not treat the problem of N = 4 completely, but shall

limit ourselves to consideration of the spin states having MS = 0 as a further example of
application of Löwdin projection technique. For N = 4 the possible spin states are 24 = 16
with f 4

0 = 2 (singlets), f 4
1 = 3 (triplets), f 4

2 = 1 (quintet) as can be seen from the Wigner
formula or from the Kotani branching diagram. The 16 product functions are:

MS

αααα 2

αααβ,ααβα,αβαα,βααα 1

ααββ,αβαβ,βααβ

ββαα,βαβα,αββα

}

0

βββα,ββαβ,βαββ,αβββ −1

ββββ −2

The Dirac formula for N = 4 gives:

Ŝ2 = P̂12 + P̂13 + P̂14 + P̂23 + P̂24 + P̂34.
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By constructing the matrix representative of Ŝ2 over the product functions we can find
the various spin eigenstates by diagonalizing suitable blocks of given MS � 0 (the corre-
sponding eigenstates for MS < 0 are then simply obtained by the interchange α ↔ β in the
resulting expressions). This gives the set of (normalized) linearly independent spin eigen-
states for the N = 4 problem given previously. All these formulae can be easily checked
by acting with Ŝ2 and verifying that:

Ŝ2ημ = S(S + 1)ημ, Ŝzημ = MSημ μ = 1,2, · · ·16.

We now turn to use of Löwdin projectors. The projectors selecting, respectively, the singlet
(S = 0), triplet (S = 1) and quintet (S = 2) components of the N = 4 problem are from
(123):

Ô0 = Ŝ2 − 1(1 + 1)

0(0 + 1) − 1(1 + 1)
· Ŝ2 − 2(2 + 1)

0(0 + 1) − 2(2 + 1)
= 1

12
(Ŝ2 · Ŝ2 − 8Ŝ2 + 12Î )

Ô1 = Ŝ2 − 0(0 + 1)

1(1 + 1) − 0(0 + 1)
· Ŝ2 − 2(2 + 1)

1(1 + 1) − 2(2 + 1)
= −1

8
(Ŝ2 · Ŝ2 − 6Ŝ2)

Ô2 = Ŝ2 − 0(0 + 1)

2(2 + 1) − 0(0 + 1)
· Ŝ2 − 1(1 + 1)

2(2 + 1) − 1(1 + 1)
= 1

24
(Ŝ2 · Ŝ2 − 2Ŝ2).

(i) Singlets (S = 0)

Acting with Ŝ2 and Ŝ2 · Ŝ2 (twice) on the first product function with MS = 0 and orderly
collecting all resulting terms, it is easily found (after normalizing the result):

Ô0ααββ = 1√
12

(2ααββ − αβαβ − βααβ + 2ββαα − βαβα − αββα) ≡ η2

namely, the function of the second singlet given before.
Applying Ô0 to the second product function with MS = 0, it is found after normaliza-

tion:

Ô0αβαβ = 1√
12

(−ααββ + 2αβαβ − βααβ − ββαα + 2βαβα − αββα) = η,

but now:

〈η|η2〉 = − 6

12
= −1

2
= S(�= 0)

so that η is not orthogonal to η2, and has a linear dependence. If we Schmidt-orthogonalize
η against η2, we immediately find the function of the first singlet:

η′ = η − Sη2√
1 − S2

= 1

2
(αβαβ − βααβ + βαβα − αββα) ≡ η1.
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(ii) Triplets (S = 1)

In the same way, acting with Ô1 on the first product function with MS = 0 and normal-
izing:

Ô1ααββ = 1√
2
(ααββ − ββαα) ≡ η7

which is the component with MS = 0 of the second triplet.
Acting on the second product function:

Ô1αβαβ = 1√
2
(αβαβ − βαβα) ≡ η4

the component with MS = 0 of the first triplet.
Acting on the third product function:

Ô1βααβ = 1√
2
(βααβ − αββα) ≡ η10

we find the component with MS = 0 of the third triplet. In this way, all the components
with MS = 0 of the 3 triplets have been correctly recovered.

(iii) Quintet (S = 2)

Acting with Ô2 on one of the product functions with MS = 0, say the second one αβαβ ,
and normalizing the result, we find:

Ô2αβαβ = 1√
6
(ααββ + αβαβ + βααβ + ββαα + βαβα + αββα) ≡ η14

namely, the component with MS = 0 of the quintet spin eigenstate given previously.
Proceeding in the same way with the appropriate projectors, we may find all the remain-

ing components with MS = 1 of the triplets and quintet, so completing the solution of the
problem of finding the spin eigenstates for N = 4 by the Löwdin projection method.

6.4. The Kotani standard spin functions for N = 3, S = MS = 1
2 .

For N = 3, S = 1
2 , f 3

1
2

= 2·3!
3!1! = 2, we have two linearly independent doublets with the

coupling schemes of Figure 6.4.
We then have from the Kotani formulae for S = MS = 1

2 :

(i) for k1 = ( 1
2 1) from (116):

η3
1
2

1
2 ;k1

= −
√

1
2 − 1

2 + 1

3
η2

10;k1
α +

√

1
2 + 1

2 + 1

3
η2

11;k1
β
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Figure 6.4 The two coupling schemes for N = 3, S = 1
2 .

= − 1√
3

· 1√
2
(αβ + βα)α +

√
2√
3
ααβ

= 1√
6
(2ααβ − αβα − βαα) = η′

1

(ii) for k2 = ( 1
2 0) from (117)2:

η3
1
2

1
2 ;k2

=
√

1
2 + 1

2

1
η2

00;k2
α

= 1√
2
(αβ − βα)α = 1√

2
(αβα − βαα) = η′

3.

We note that:

〈η′
1|η′

3〉 ∝ 〈2ααβ − αβα − βαα|αβα − βαα〉 = 0

so that the two doublet functions found by the Kotani synthetic method are orthogonal, i.e.
linearly independent. Since η′

1 and η′
3 are different from η1 and η3 found in Problems 6.1

and 6.2, the two sets of functions are equivalent, so that they must be related by a unitary
(orthogonal) transformation.

6.5. Orthogonal transformation connecting Löwdin to Kotani spin functions for N = 3
and S = MS = 1

2 .

2It must be recalled that all functions with |MS | > S are identically zero.
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For the two spin doublets occurring for N = 3 and S = MS = 1
2 we have obtained the

following results:

Löwdin (analytic) Kotani (synthetic)

η1 = 1√
6
(ααβ + αβα − 2βαα) η′

1 = 1√
6
(2ααβ − αβα − βαα)

η3 = 1√
2
(ααβ − αβα) η′

3 = 1√
2
(αβα − βαα)

The functions within each set are eigenfunctions of Ŝ2 with S = MS = 1
2 , orthogonal to

each other and linearly independent, so that they must be connected by some unitary trans-
formation (orthogonal, since the functions are real). A general orthogonal transformation
(rotation) can be written as:

(η1 η′′
3) = (η′

1 η′
3)

(

cos θ sin θ

− sin θ cos θ

)

giving:

η1 = η′
1 cos θ − η′

3 sin θ η′′
3 = η′

1 sin θ + η′
3 cos θ.

Upon substitution, simple inspection shows that:

Coefficient of ααβ: 1 = 2 cos θ ⇒ cos θ = 1

2

Coefficient of αβα: 1 = − cos θ − √
3 sin θ ⇒ sin θ = −

√
3

2

Coefficient of βαα: − 2 = − cos θ + √
3 sin θ = −1

2
− 3

2
= −4

2

giving:

U′ =
(

1
2 −

√
3

2√
3

2
1
2

)

.

The last transformed function, η′′
3 = − 1√

2
(αβα − ααβ), differs by an irrelevant −1 phase

factor from Löwdin’s η3. To get complete coincidence we do the further transformation:

(η1 η3) = (η1 η′′
3)

(

1 0
0 −1

)
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giving the (symmetrical) orthogonal transformation (reflection) connecting the two sets as
the matrix:

U =
(

1
2 −

√
3

2√
3

2
1
2

)

(

1 0
0 −1

)

=
(

1
2

√
3

2√
3

2 − 1
2

)

det U = −1

4
− 3

4
= −1

as it must be for an orthogonal matrix.

6.6. Elementary derivation of the spin coupling problem for N = 3 and S = MS = 1
2 .

For N = 2 there is a triplet (S = 1) and a singlet (S = 0) whose functions are well
known. We must couple the triplet functions for N = 2 (αα, 1√

2
(αβ+βα), ββ) with S3 = 1

2

for the third electron so as to form a first doublet (S = 1
2 ) corresponding to the coupling

scheme k1 = ( 1
2 1) on the branching diagram. Next, we couple the singlet function for

N = 2, 1√
2
(αβ − βα), with S3 = 1

2 for the third electron so as to form the second doublet

(S = 1
2 ) corresponding to the coupling scheme k2 = ( 1

2 0). The two doublets obtained in
this way must be linearly independent, which means orthogonal to each other.

1. Coupling the triplet for N = 2 to the doublet for N = 1:

MS

αα

1√
2
(αβ + βα)

ββ

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

α 	⇒

ααα

1√
2
(αβα + βαα)

ββα

3

2

1

2

−1

2

αα

1√
2
(αβ + βα)

ββ

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

β 	⇒

ααβ

1√
2
(αββ + βαβ)

βββ

1

2

−1

2

−3

2

To get a doublet S = 1
2 with MS = 1

2 we must take a linear combination of functions 2 and
4, and determine the coefficients so as to satisfy:

Ŝ2η′
1 = 1

2

(

1

2
+ 1

)

η′
1, Ŝzη

′
1 = 1

2
η′

1
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using for Ŝ2 the Dirac expression for N = 3:

Ŝ2 = 3

4
Î + P̂12 + P̂13 + P̂23.

Take:

η′
1 = A

1√
2
(αβα + βαα) + Bααβ.

Then:

Ŝ2η′
1 =
(

2
A√

2
+ 7

4
B

)

ααβ +
(

11

4

A√
2

+ B

)

(αβα + βαα) = 3

4
η′

1.

From the identity above it follows:

2
A√

2
+ 7

4
B = 3

4
B

11

4

A√
2

+ B = 3

4

A√
2

giving:

2
A√

2
+ B = 0 ⇒ B = −√

2A.

Hence we obtain after normalization
(

A = − 1√
3

)

:

η′
1 = 1√

6
(2ααβ − αβα − βαα)

which is the first Kotani’s function.

2. Coupling the singlet for N = 2 to the doublet for N = 1:

1√
2
(αβ − βα)α 	⇒ 1√

2
(αβα − βαα) MS = 1

2

1√
2
(αβ − βα)β 	⇒ 1√

2
(αββ − βαβ) MS = −1

2

Hence, the second doublet for N = 3, S = MS = 1
2 will be:

η′
3 = 1√

2
(αβα − βαα) Ŝ2η′

3 = 1

2

(

1

2
+ 1

)

η′
3
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Figure 6.5 The coupling schemes for N = 4. (i) Singlets (S = 0), (ii) quintet (S = 2), (iii) triplets (S = 1).

which is the second Kotani’s function. Hence, by the elementary coupling procedure we
obtained the two doublets for N = 3:

η′
1 = 1√

6
(2ααβ − αβα − βαα)

η′
3 = 1√

2
(αβα − βαα)

which are the Kotani spin standard functions. The algebraic procedure is fully equivalent
to Kotani’s technique, which is however more valuable for more complex cases.

6.7. Construction of the two singlets (S = 0) for N = 4 using the elementary way of
Problem 6.6. The coupling schemes for N = 4 and S = 2,1,0 are given in Figure 6.5.

We follow the lines of Problem 6.6 using the results obtained there. With reference to
the first row (i) of Figure 6.5, we must couple the two doublets

(

S = 1
2

)

corresponding to
the two coupling schemes k1 = ( 1

2 1 1
2

)

and k2 = ( 1
2 0 1

2

)

to the doublet for N = 1 to get
the two singlets (S = 0).
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1. Coupling the first doublet
(

S = 1
2

)

for N = 3 to the doublet for N = 1 to get the first
singlet (S = 0):

MS

1√
6
(2ααβ − αβα − βαα)

1√
6
(2ββα − βαβ − αββ)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

α 	⇒
1√
6
(2ααβα − αβαα − βααα)

1√
6
(2ββαα − βαβα − αββα)

1

0

MS

1√
6
(2ααβ − αβα − βαα)

1√
6
(2ββα − βαβ − αββ)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

β 	⇒
1√
6
(2ααββ − αβαβ − βααβ)

1√
6
(2ββαβ − βαββ − αβββ)

0

−1

To get the first singlet we must take a linear combination of functions 3 and 2 (MS = 0)

which must be eigenfunctions of Ŝ2 with eigenvalue S = 0:

Ŝ2η′
1 = 0(0 + 1)η′

1, Ŝzη
′
1 = 0η′

1

By taking:

η′
1 = A

1√
6
(2ααββ − αβαβ − βααβ) + B

1√
6
(2ββαα − βαβα − αββα)

acting with Ŝ2 on η′
1 we are led to the conclusion that:

A√
6

− B√
6

= 0 ⇒ B = A

giving, after normalization, the first singlet as:

η′
1 = 1√

12
(2ααββ − αβαβ − βααβ + 2ββαα − βαβα − αββα).
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2. Coupling the second doublet
(

S = 1
2

)

for N = 3 to the doublet for N = 1 to get the
second singlet (S = 0):

MS

1√
2
(αβα − βαα)

1√
2
(βαβ − αββ)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

α 	⇒
1√
2
(αβαα − βααα)

1√
2
(βαβα − αββα)

1

0

1√
2
(αβα − βαα)

1√
2
(βαβ − αββ)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

β 	⇒

1√
2
(αβαβ − βααβ)

1√
2
(βαββ − αβββ)

0

−1

Take:

η′
2 = A

1√
2
(αβαβ − βααβ) + B

1√
2
(βαβα − αββα)

and determine A and B so as:

Ŝ2η′
2 = 0(0 + 1)η′

2, Ŝzη
′
2 = 0η2.

Again we find that the necessary condition that must be satisfied is:

A√
2

− B√
2

= 0 ⇒ B = A

giving, after normalization, the second singlet as:

η′
2 = 1

2
(αβαβ − βααβ + βαβα − αββα).

We see that η′
1 = η2 and η′

2 = η1, so that the present results coincide with those of our
previous Löwdin and matrix method except for the interchange of the two functions. We
can proceed systematically in the same way to determine the functions belonging to the
three triplets (S = 1) and the quintet (S = 2). The results coincide with those obtained
from Kotani’s formulae. However, the triplets are different from those found previously by
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Löwdin or matrix method. As far as the three triplets are concerned, we have the compari-
son table between the different sets:

Löwdin (analytic) Algebraic (or Kotani) MS

η3 = 1

2
(αααβ + ααβα

− αβαα − βααα)

η′
3 = 1√

12
(3αααβ − ααβα

− αβαα − βααα)

1

η4 = 1√
2
(αβαβ − βαβα) η′

4 = 1√
6
(ααββ + αβαβ + βααβ

− ββαα − βαβα − αββα)

0

η6 = 1√
2
(αααβ − ααβα) η′

6 = 1√
6
(2ααβα − αβαα − βααα) 1

η7 = 1√
2
(ααββ − ββαα) η′

7 = 1√
12

(2ααββ − αβαβ − βααβ

− 2ββαα + βαβα + αββα)

0

η9 = 1√
2
(αβαα − βααα) η′

9 = 1√
2
(αβαα − βααα) 1

η10 = 1√
2
(βααβ − αββα) η′

10 = 1

2
(αβαβ − βααβ

− βαβα + αββα)

0

The two sets having MS = 1 are related by the orthogonal symmetric transformation whose
elements can be easily found by inspection:

(η3 η6 η9) = (η′
3 η′

6 η′
9)U

U =

⎛

⎜

⎜

⎝

1√
3

√
2√
3

0
√

2√
3

− 1√
3

0

0 0 1

⎞

⎟

⎟

⎠

det U = −1

3
− 2

3
= −1

The orthogonal transformation connecting the MS = 0 components of the three triplets is
a bit more complicated since it is not symmetrical. Straightforward but lengthy calculation
shows that:

(η4 η7 η10) = (η′
4 η′

7 η′
10)U

U =

⎛

⎜

⎜

⎝

1√
3

1√
3

1√
3

− 1√
6

√
2√
3

− 1√
6

1√
2

0 − 1√
2

⎞

⎟

⎟

⎠

det U = −1

3
− 2

3
= −1
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We can easily check the first transformed function. We have:

η4 = η′
4U11 + η′

7U21 + η′
10U31

= 1√
3

· 1√
6
(ααββ + αβαβ + βααβ − ββαα − βαβα − αββα)

− 1√
6

· 1√
12

(2ααββ − αβαβ − βααβ − 2ββαα + βαβα + αββα)

+ 1√
2

· 1

2
(αβαβ − βααβ − βαβα + αββα)

= 1√
2

· 1

3
(· · ·) − 1√

2
· 1

6
(· · ·) + 1√

2
· 1

2
(· · ·)

= 1√
2

· 1

6
(2ααββ + 2αβαβ + 2βααβ − 2ββαα − 2βαβα − 2αββα

− 2ααββ + αβαβ + βααβ + 2ββαα − βαβα − αββα

+ 3αβαβ − 3βααβ − 3βαβα + 3αββα)

= 1√
2
(αβαβ − βαβα)

as it must be.
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7.1 INTRODUCTION

We shall examine in this Chapter how a many-electron wavefunction satisfying the Pauli
principle can be constructed starting from an orbital basis. We shall follow the classical
work by Slater (1929), where such a wavefunction is built in terms of a determinant (Slater
det) of orthonormal spin-orbitals. Reduction from the 4N -dimensional configuration space
of the wavefunction to the ordinary 3-dimensional space + spin is then considered in terms
of 1-particle and 2-particle density matrices, whose diagonal elements determine the prob-
ability of finding clusters of one and two particles. This allows us to discuss electron and
spin densities, and the correlation problem. Hartree–Fock theory is next introduced as the
best independent particle model to treat many-electron systems, being the central step of
an ideal ladder having uncorrelated approaches below it, from Hückel’s topological the-
ory to the LCAO-MO-SCF approach by Hall (1951) and Roothaan (1951a), and corre-
lated approaches above it, such as CI and MC-SCF techniques, to many-body perturbation
methods, among which particular attention is devoted to Møller–Plesset MP2, which gives
directly a second-order evaluation of the correlation energy. Some space is deserved to
methods including explicitly the interelectronic distance r12 in the wavefunction. Finally,
a short outline of second quantization techniques is presented as alternative to Slater and
Harteee–Fock methods, and of the density functional approach which is widely used today
in the applications. Many problems are presented and discussed, as usual, at the end of the
Chapter.

7.2 ANTISYMMETRY OF THE ELECTRONIC WAVEFUNCTION AND
THE PAULI PRINCIPLE

7.2.1 Two-Electron Wavefunctions

Let x1 and x2 be two fixed points in the space-spin space, and �(x1,x2) a normalized
two-electron wavefunction. Then, because of the indistinguishability of the electrons:

|�(x1,x2)|2 dx1 dx2

= probability of finding electron 1 at dx1 and electron 2 at dx2

= |�(x2,x1)|2 dx1 dx2

= probability of finding electron 2 at dx1 and electron 1 at dx2.



7.2 Antisymmetry of the Electronic Wavefunction and the Pauli Principle 257

Therefore it follows:

|�(x2,x1)|2 = |�(x1,x2)|2 �⇒ �(x2,x1) = ±�(x1,x2) (1)

and the wavefunction must be symmetric (+ sign) or antisymmetric (− sign) in the inter-
change of the space-spin coordinates of the two electrons.

Pauli principle states that, in nature, electrons are described only by antisymmetric wave-
functions:

�(x2,x1) = −�(x1,x2), (2)

which is the Pauli antisymmetry principle in the form given by Dirac.
This formulation includes the exclusion principle for electrons in the same orbital with

the same spin:

�(x1,x2) = ψλ(x1)ψλ(x2) − ψλ(x1)ψλ(x2) = 0, (3)

where we always take electrons in dictionary order, and interchange spin-orbitals only.
Instead, it is allowable to put two electrons in the same orbital with different spin:

�(x1,x2)= ψλ(x1)ψλ(x2) − ψλ(x1)ψλ(x2)

=
∣

∣

∣

∣

ψλ(x1) ψλ(x1)

ψλ(x2) ψλ(x2)

∣

∣

∣

∣

= |ψλ(x1)ψλ(x2)| (4)

where the wavefunction is written as a 2 × 2 Slater determinant of the occupied spin-
orbitals (SOs, recall the notation where ψλ is associated to spin α, and ψλ to spin β).
Hence, the antisymmetry requirement of the Pauli principle for a pair of different SOs is
automatically met by writing the 2-electron wavefunction as a determinant having elec-
trons as rows and spin-orbitals as columns. Such a determinant is called a Slater det, since
Slater (1929, 1931) was the first who suggested this approach, avoiding in this way the
difficulties connected with older work which was mostly based on use of group theoretical
techniques.

If the SOs are orthonormal, 〈ψλ|ψλ〉 = 〈ψλ|ψλ〉 = 1 and 〈ψλ|ψλ〉 = 〈ψλ|ψλ〉 = 0, the
det is normalized by the factor 1/

√
2, and it is usually assumed to represent the normalized

det as:

�(x1,x2) = 1√
2
|ψλ ψλ| = ‖ψλ(x1)ψλ(x2)‖. (5)

7.2.2 Three-Electron Wavefunctions

The permutations of N = 3 electrons (identical particles) are 3! = 6. The permutations are:

123, 213, 321, 132, 312, 231

I P12 P13 P23 P12P13 P12P23
, (6)
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where, in the case of multiple permutations, we recall that the inner permutation must
act first, then the outer. Since for each permutation (interchange) we must change sign
in order to satisfy Pauli’s principle, we can construct the antisymmetrizing operator (the
antisymmetrizer):

Â ∝ Î − P̂12 − P̂13 − P̂23 + P̂12P̂13 + P̂12P̂23, (7)

which, acting on the product function of three SOs (a b c) transforms it into its antisymmet-
ric component. Let us take as an example the three orthonormal spin-orbitals a(x), b(x),
c(x). Acting with the antisymmetrizer Â it is obtained:

Â
1 2 3
a b c = keep SOs fixed and permute in all

possible ways the electrons among them

= 1 2 3
a b c − 2 1 3

a b c − 3 2 1
a b c − 1 3 2

a b c + 3 1 2
a b c + 2 3 1

a b c

= restore dictionary order for the electrons

= 1 2 3
a b c − b a c − c b a − a c b + b c a + c a b, (8)

so that:

Â
1 2 3
abc = a(bc − cb) − b(ac − ca) + c(ab − ba)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1
a b c

2 2 2
a b c

3 3 3
a b c

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= | 1 2 3
a b c | (9)

a Slater det of order 3. The permutation of the electrons among the spin-orbitals is hence
equivalent to the construction of a Slater determinant having space-spin electron coordi-
nates as rows and spin-orbitals as columns.

7.2.3 Many-Electron Wavefunctions and the Slater Method

For an N -electron system (atom or molecule) the wavefunction � is antisymmetric if it
is unaltered by an even number of permutations of the electrons among the SOs, while it
changes sign by an odd number of permutations. As an example:

P̂12�(x1,x2,x3 · · ·xN) = �(x2,x1,x3 · · ·xN) = −�(x1,x2,x3 · · ·xN). (10)

The N -electron wavefunctions can be constructed from a set, in principle complete, of
one-electron functions including spin (atomic or molecular spin-orbitals).
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If:

{ψi(x)} i = 1,2, . . . x = rs (11)

〈ψi |ψj 〉 =
∫

dxψ∗
i (x)ψj (x) = δij , (12)

we can write:

�(x1) =
∑

i

ψi(x1)Ci Ci = 〈ψi |�〉 (13)

�(x1,x2) =
∑

i

ψi(x1)Ci(x2) =
∑

i

∑

j

ψi(x1)ψj (x2)Cji (14)

· · ·
�(x1,x2, · · ·xN) =

∑

ij ···N
ψi(x1)ψj (x2) · · ·ψN(xN)CN ···ji . (15)

The coefficients of the linear combination of the products of spin-orbitals are determined
by the fact that the resultant � must be antisymmetric with respect to the interchange of any
pair of electrons (Pauli). The simplest way of writing such a function was introduced by
Slater (1929, 1931), as we have seen, and consists in writing � in the form of a determinant
of order N (Slater det):

�(x1,x2, · · ·xN) = 1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1
ψ1 ψ2 · · · ψN

2 2 2
ψ1 ψ2 · · · ψN

· · ·
N N N

ψ1 ψ2 · · · ψN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ‖ 1 2 N

ψ1 ψ2 · · · ψN ‖,

(16)

where:

rows = space-spin electron coordinates

columns = spin-orbital functions.
(17)

If the SOs are orthonormal:

〈ψi |ψj 〉 = δij ,

then the many-electron wavefunction (16) is normalized to 1:

〈�|�〉 = 1. (18)
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• Properties of Slater determinants

(i) The � written in the form of a Slater det is antisymmetric with respect to the inter-
change of any pair of electrons:

�(x2, x1, · · ·xN) = 1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 2 2
ψ1 ψ2 · · · ψN

1 1 1
ψ1 ψ2 · · · ψN

· · ·
N N N

ψ1 ψ2 · · · ψN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −�(x1,x2, · · ·xN), (19)

since this is equivalent to interchanging two rows of the determinant, and this changes
sign to the function.

(ii) If two spin-orbitals are equal, the determinant has two columns equal and therefore
vanishes identically:

�(x1,x2, · · ·xN) = 1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1
ψ1 ψ1 · · · ψN

2 2 2
ψ1 ψ1 · · · ψN

· · ·
N N N

ψ1 ψ1 · · · ψN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≡ 0. (20)

A function of this kind cannot exist. This is nothing but the Pauli principle in its exclu-
sion form: two atomic SOs cannot have equal the four quantum numbers |n l mms〉.
The same is true for molecular SOs, since we cannot have two spatial MOs identical
with the same spin.

(iii) The Slater det is unchanged if we orderly interchange rows with columns:

�(x1,x2, · · ·xN) = 1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 N

ψ1 ψ1 · · · ψ1
1 2 N

ψ2 ψ2 · · · ψ2

· · ·
1 2 N

ψN ψN · · · ψN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (21)

where now:

rows = spin-orbital functions

columns = space-spin electron coordinates.
(22)

(iv) The probability density (as the Hamiltonian operator) is left unchanged after any num-
ber of interchanges among the electrons:

|�(x2,x1, · · ·xN)|2 = |�(x1,x2, · · ·xN)|2. (23)
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(v) A single Slater det is sufficient as a first approximation in the case of closed shells
(with spin S = MS = 0) or open shells with |MS | = S (all spins parallel or antiparal-
lel), while in the general open-shell case to get an eigenstate of Ŝ2 with eigenvalue S

(state of definite spin) it is necessary to take a linear combination of Slater dets. The
effect of the spin operator P̂sκ sλ on a Slater det is equivalent to interchanging the two
spin functions ηκ and ηλ among the two columns of the original det, leaving unaltered
the orbital part (which is purely spatial). In such a way, the Dirac formula of Chapter
6 can equally well be applied to the Slater dets to verify or to construct determinants
which are eigenstates of spin.

(vi) Examples.

• The ground and the first excited states of the He atom are described in terms of Slater
dets by:

�(1s2, 1S) = ‖1s1s‖ S = MS = 0

�(1s 2s, 3S) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

‖1s2s‖ S = 1, MS = 1

1√
2
{‖1s2s‖ + ‖1s2s‖} 0

‖1s2s‖ −1

�(1s 2s, 1S) = 1√
2
{‖1s2s‖ − ‖1s2s‖} S = MS = 0

�(1s2p, 3P) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

‖1s2p‖ S = 1, MS = 1

1√
2
{‖1s2p‖ + ‖1s2p‖} 0

‖1s2p‖ −1

nine states (p = x, y, z),

�(1s2p, 1P) = 1√
2

{‖1s2p‖ − ‖1s2p‖} S = MS = 0

three states (p = x, y, z).

Other examples.

• Li(1s22s, 2S) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

‖1s1s2s‖ S = 1

2
, MS = 1

2

‖1s 1s 2s‖ −1

2

.
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The ground state of the Li atom is a doublet S.

• Be(1s22s2, 1S) = ‖1s1s 2s 2s‖ S = MS = 0.

The ground state of the Be atom is a singlet S.

• H2(σ
2
g , 1�+

g ) = ‖σgσg‖ S = MS = 0.

The ground state of the H2 molecule is a singlet �+
g (the bonding MO σg = a+b√

2+2S
is

doubly occupied).

• H2(σgσu,
3�+

u ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

‖σg σu‖ S = 1, MS = 1

1√
2
{‖σgσu‖ + ‖σgσu‖} 0

‖σg σu‖ −1

.

The excited triplet state of the H2 molecule has singly occupied MOs (σu = b−a√
2−2S

is the
antibonding MO).

• H2O(1a2
12a2

11b2
23a2

11b2
1,

1A1) = ‖1a11a12a12a1 · · ·1b11b1‖ S = MS = 0.

The ground state of the H2O molecule (N = 10) is described by five doubly occupied non-
degenerate MOs (see Chapter 8), where a1, b1, b2, · · · are MOs having the symmetry of
the C2v point group (the symmetry group to which the H2O molecule belongs).

We now verify using Dirac’s rule that the ground state wavefunction for H2 is a singlet
(S = 0), and that for the excited state a triplet (S = 1).

�(σ 2
g , 1�+

g ) = ‖σgσg‖
Ŝ2 = Î + P̂12

Ŝ2� = ‖σgσg‖ + ‖σgσg‖ = ‖σgσg‖ − ‖σgσg‖ = 0(0 + 1)� S = 0, singlet

�(σgσu,
3�+

u ) = 1√
2
{‖σgσu‖ + ‖σgσu‖}

Ŝ2� = 1√
2
{‖σgσu‖ + ‖σgσu‖ + ‖σgσu‖ + ‖σgσu‖}

= 2 · 1√
2
{‖σgσu‖ + ‖σgσu‖} = 1(1 + 1)� S = 1, triplet (MS = 0).

Other examples for Li(2S) and Be(1S) are given as Problems 7.1 and 7.2.
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7.3 ELECTRON DISTRIBUTION FUNCTIONS

The distribution functions determine the distribution of electron “clusters”, and allow us
to pass from the abstract 4N -dimensional space of the N -electron wavefunction to the
3-dimensional + spin physical space where experiments are done (McWeeny, 1960).

7.3.1 1-Electron Distribution Functions: General Definitions

Let:

�(x1, x2, · · ·xN) with 〈�|�〉 = 1 (24)

be a normalized N -electron wavefunction satisfying the antisymmetry requirement. Then
the first principles state that:

�(x1,x2, · · ·xN)�∗(x1, x2, · · ·xN)dx1dx2 · · ·dxN

= probability of finding electron (or particle) 1 at dx1,

2 at dx2, · · · ,N at dxN, (25)

where dx1, dx2, · · ·dxN are fixed infinitesimal space-spin volume elements in configura-
tion space.

The probability of finding electron 1 at dx1 independently of the remaining (N − 1)
electrons will be given by:

[∫

dx2 · · ·dxN��∗
]

dx1. (26)

The probability of finding any one unspecified electron at dx1 will be N times this quantity:

[

N

∫

dx2 · · ·dxN�(x1,x2, · · ·xN)�∗(x1,x2, · · ·xN)

]

dx1 = ρ1(x1;x1) dx1,

(27)

where the bilinear function:

From � �∗

ρ1(x1 ; x1) = N

∫

dx2 · · ·dxN�(x1,x2, · · ·xN)�∗(x1,x2, · · ·xN)
(28)

is called the 1-electron distribution function. It is the diagonal element (x′
1 = x1) of the

more general mathematical quantity:1

ρ1(x1;x′
1) = N

∫

dx2 · · ·dxN�(x1,x2, · · ·xN)�∗(x′
1,x2, · · ·xN) (29)

1As far as notation is concerned, we shall use ρ for the density (or density matrix) with spin, P for the density
(or density matrix) without spin.
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which is called the 1-electron density matrix. It is important to stress that (29) has no
physical meaning, while its diagonal element (28) is the function determining the physical
distribution of the electrons.

The 1-electron distribution function (28) satisfies the conservation relation:

∫

dx1ρ1(x1; x1) = N, (30)

where N is the total number of electrons.

7.3.2 Electron Density and Spin Density

The most general expression for the 1-electron distribution function as a bilinear function
of space-spin variables is:

ρ1(x1;x1)= ρ1(r1s1; r1s1)

= P1(
α α
r1 ; r1 )α(s1)α

∗(s1) + P1(
β β
r1 ; r1 )β(s1)β

∗(s1)

+ P1(
α β
r1 ; r1 )α(s1)β

∗(s1) + P1(
β α
r1 ; r1 )β(s1)α

∗(s1), (31)

where the P1s are purely spatial functions, and we shall sometimes make use of the short
notation:

P1(
α α
r1 ; r1 ) = P α

1 , etc. (32)

Integrating over the spin variable:

∫

ds1 ρ1(r1s1; r1s1) = P1(
α α
r1 ; r1 ) + P1(

β β
r1 ; r1 ), (33)

where:

P1(
α α
r1 ; r1 )dr1 = probability of finding at dr1 an electron with spin α (34)

P1(
β β
r1 ; r1 )dr1 = probability of finding at dr1 an electron with spin β. (35)

The two remaining integrals in (31) vanish because of the orthogonality of the spin func-
tions. In terms of the two spinless components P α

1 and P
β

1 we define:

P(r1; r1) = P1(
α α
r1 ; r1 ) + P1(

β β
r1 ; r1 ) = P α

1 + P
β

1 (36)
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the electron density (as measured from experiment), with:

P(r1; r1) dr1 = probability of finding at dr1 an electron with either spin; (37)

Q(r1; r1) = P1(
α α
r1 ; r1 ) − P1(

β β
r1 ; r1 ) = P α

1 − P
β

1 (38)

the spin density, with:

Q(r1; r1) dr1 = probability of finding at dr1 an excess of spin α over spin β .
(39)

We have the conservation relations:

∫

dr1P1(
α α
r1 ; r1 ) = Nα (40)

the number of electrons with spin α;

∫

dr1P1(
β β
r1 ; r1 ) = Nβ (41)

the number of electrons with spin β;

∫

dr1P(r1; r1) = Nα + Nβ = N (42)

the total number of electrons;

∫

dr1Q(r1; r1) = Nα − Nβ = 2MS, (43)

where MS is the eigenvalue of the z-component of the spin operator:

Ŝzη = MSη. (44)

As an example, consider the doubly occupied (normalized) MO φ(r). The normalized
2-electron wavefunction will be:

� = ‖φφ‖= 1√
2

∣

∣

∣

∣

∣

∣

∣

1 1
φα φβ

2 2
φα φβ

∣

∣

∣

∣

∣

∣

∣

= φ(r1)φ(r2)
1√
2

[

α(s1)β(s2) − β(s1)α(s2)
]

, (45)
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ρ1(x1; x1)= 2
∫

dx2�(x1,x2)�
∗(x1,x2)

= 2
∫

dr2 ds2

φ(r1)φ(r2)
1√
2

[

α(s1)β(s2) − β(s1)α(s2)
]

φ∗(r1)φ
∗(r2)

1√
2

[

α∗(s1)β
∗(s2) − β∗(s1)α

∗(s2)
]

= φ(r1)φ
∗(r1)

[

α(s1)α
∗(s1) + β(s1)β

∗(s1)
]

, (46)

so that:

P1(
α α
r1 ; r1 ) = P1(

β β
r1 ; r1 ) = φ(r1)φ

∗(r1) = R(r1; r1) (47)

P(r1; r1) = P α
1 + P

β

1 = 2φ(r1)φ
∗(r1) = 2|φ(r1)|2 (48)

Q(r1; r1) = P α
1 − P

β

1 = 0 (49)

provided we remember that, under the action of a differential operator (like ∇2), the opera-
tor acts only on φ and not on φ∗ (this is one of the main reasons for using density matrices,
where there is a distinction between r and r′).

In terms of an atomic basis (χA χB ), where χA and χB are normalized non-orthogonal
AOs with overlap S = 〈χA|χB〉 = 0, the MO φ(r) can be written as:

φ(r) = χA(r)cA + χB(r)cB = χA + λχB√
1 + λ2 + 2λS

, (50)

where:

λ = cB

cA

(51)

is the polarity parameter of the MO, and:

cA = (1 + λ2 + 2λS)−1/2 (52)

the normalization factor.
The electron density can be analyzed into elementary densities coming from equa-

tion (50) as:

P(r) = 2|φ(r)|2 = qAχ2
A(r) + qBχ2

B(r) + qAB

χA(r)χB(r)
S

+ qBA

χB(r)χA(r)
S

,

(53)



7.3 Electron Distribution Functions 267

where χ2
A(r),χ2

B(r) are atomic densities, χA(r)χB(r)
S

and χB(r)χA(r)
S

overlap densities, all
normalized to 1, while the coefficients:

qA = 2

1 + λ2 + 2λS
, qB = 2λ2

1 + λ2 + 2λS
(54)

are atomic charges, and:

qAB = qBA = 2λS

1 + λ2 + 2λS
(55)

overlap charges. They are normalized so that:

qA + qB + qAB + qBA = 2 + 2λ2 + 4λS

1 + λ2 + 2λS
= 2 (56)

the total number of electrons in the bond orbital φ(r).
For a homopolar bond, λ = 1:

qA = qB = 1

1 + S
, qAB = qBA = S

1 + S
. (57)

For a heteropolar bond, λ = 1, and we can define gross charges on A and B as:

QA = qA + qAB = 2 + 2λS

1 + λ2 + 2λS
(58)

QB = qB + qBA = 2λ2 + 2λS

1 + λ2 + 2λS
, (59)

and formal charges on A and B as:

δA = 1 − QA = λ2 − 1

1 + λ2 + 2λS
(60)

δB = 1 − QB = − λ2 − 1

1 + λ2 + 2λS
. (61)

If λ > 1, δA = δ > 0, δB = −δA = −δ < 0, and we have the dipole
+δ −δ
A B (e.g. LiH).

Further examples for the 1�+
g ground state and the 3�+

u excited triplet state of H2 are
given as Problems 7.3 and 7.4.
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7.3.3 2-Electron Distribution Functions: General Definitions

The 2-electron distribution function determines the distribution of the electrons in pairs,
and is defined as:

From � �∗
ρ2(x1,x2 ; x1,x2)

= N(N − 1)

∫

dx3 · · ·dxN�(x1,x2,x3, · · ·xN)�∗(x1,x2,x3, · · ·xN). (62)

Its physical meaning is:

ρ2(x1,x2;x1,x2)dx1dx2

= probability of finding an electron at dx1 and, simultaneously,

another electron at dx2. (63)

From the definition (62) of ρ2 and the normalization of � , it follows that:

∫

dx2ρ2(x1,x2;x1,x2) = (N − 1)ρ1(x1;x1) (64)

∫ ∫

dx1dx2ρ2(x1,x2;x1,x2) = N(N − 1) (65)

which is the total number of indistinct pairs of electrons. Equation (65) is the conservation
relation for ρ2, while equation (64) shows that ρ1 can be obtained from ρ2 by integration,
while, in general, the opposite is not true. As we shall see later in this Chapter, the only
exception is the Hartree–Fock theory where ρ1 determines ρ2.

7.3.4 Spinless Pair Functions and the Correlation Problem

The most general expression for the 2-electron distribution function is:

ρ2(x1,x2 ; x1,x2)= P2(
α α α α

r1, r2 ; r1, r2 )α(s1)α(s2)α
∗(s1)α

∗(s2)

+ P2(
β β β β

r1, r2 ; r1, r2 )β(s1)β(s2)β
∗(s1)β

∗(s2)

+ P2(
α β α β

r1, r2 ; r1, r2 )α(s1)β(s2)α
∗(s1)β

∗(s2)

+ P2(
β α β α

r1, r2 ; r1, r2 )β(s1)α(s2)β
∗(s1)α

∗(s2) + · · · (66)
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By integrating over spin we obtain the spinless pair function, which can be written in short
as:

P2(r1; r2) = P2(
α α
r1 ; r2 ) + P2(

β β
r1 ; r2 ) + P2(

α β
r1 ; r2 ) + P2(

β α
r1 ; r2 ), (67)

where only the diagonal elements appear in the short notation. The physical meaning of
each component is self-evident, that for the third component being:

P2(
α β
r1 ; r2 )dr1dr2

= probability of finding an electron at dr1 with spin α and, simultaneously,

another electron at dr2 with spin β, and so on. (68)

It is useful to introduce a correlation factor f (McWeeny, 1960):

P2(
α β
r1 ; r2 ) = P1(

α
r1 )P1(

β
r2 )
[

1 + f (
α β
r1 ; r2 )

]

, (69)

where f (
α β
r1 ; r2 ) describes the deviation from the independence (f = 0) in the motion of

the two electrons due to electron correlation. For antisymmetric functions, if r2 → r1:

f (
α α
r1 ; r2 ) = f (

β β
r1 ; r2 ) = −1 (70)

namely there is a 100% of negative correlation, so that electrons with the same spin cannot
be found in the same point of space. This is called “Fermi correlation”, and it represents
the most general formulation of the Pauli principle, being completely independent of the
form of the wavefunction.

Let us take as an example the component with MS = 1 of the 1s2s(3S) state of He, to
which the only non-zero component of the pair function is associated:

�(3S, MS = 1) = ‖1s 2s‖ = 1√
2
(

r1 r2
1s 2s − r1 r2

2s 1s )
s1 s2
α α (71)

ρ2(x1,x2 ; x1,x2) = 2�(x1,x2)�
∗(x1,x2)

= (
r1 r2
1s 2s

r1 r2
1s∗ 2s∗ + r1 r2

2s 1s
r1 r2

2s∗ 1s∗ − r1 r2
1s 2s

r1 r2
2s∗ 1s∗

− r1 r2
2s 1s

r1 r2
1s∗ 2s∗ )

s1 s2
α α

s1 s2
α∗ α∗ , (72)

where, in the extended notation:

P2(
β β β β

r1, r2 ; r1, r2 ) = P2(
α β α β

r1, r2 ; r1, r2 ) = P2(
β α β α

r1, r2 ; r1, r2 ) = 0 (73)
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P2(
α α α α

r1, r2 ; r1, r2 ) = 1s2s1s∗2s∗ + 2s1s2s∗1s∗ − 1s2s2s∗1s∗

− 2s1s1s∗2s∗ (74)

lim
r2→r1

P2(
α α
r1 ; r2 ) = 2 1s2(r1)2s2(r1) − 21s2(r1)2s2(r1) = 0 (75)

so that:

f (
α α
r1 ; r2 ) = −1 (76)

in the limit r2 → r1.
The same is true for the component MS = 0 of the triplet:

�(3S,MS = 0) = 1√
2
(1s2s − 2s1s)

1√
2
(αβ + βα) (77)

ρ2(x1,x2;x1,x2) = 2�(x1,x2)�
∗(x1,x2)

= 1

2
(1s2s1s∗2s∗ + 2s1s2s∗1s∗

− 1s2s2s∗1s∗ − 2s1s1s∗2s∗)

· (αβα∗β∗ + βαβ∗α∗ + · · ·), (78)

where we have indicated only the spin terms surviving after integration over spin. Then:

P2(
α α
r1 ; r2 ) = P2(

β β
r1 ; r2 ) = 0 (79)

P2(
α β
r1 ; r2 ) = P2(

β α
r1 ; r2 )

= 1

2
(1s2s1s∗2s∗ + 2s1s2s∗1s∗ − 1s2s2s∗1s∗ − 2s1s1s∗2s∗) (80)

lim
r2→r1

P2(
α β
r1 ; r2 ) = 1

2

[

2 1s2(r1)2s2(r1) − 21s2(r1)2s2(r1
]= 0 (81)

namely, �(3S, MS = 0) for the electron configuration 1s2s of He describes a 100% of

negative correlation in the limit r2 → r1 for electrons with opposed spin with f (
α β
r1 ; r2 ) =

−1. For r2 = r1, P2(
α β
r1 ; r2 ) = P1(

α
r1 )P1(

β
r2 ), so that �(3S,MS = 0) describes some

correlation between electrons with different spin in each point of space.
The situation is different for electrons with different spin occupying the same (atomic or

molecular) orbital, and one of the typical problems of advanced quantum mechanics is that

of calculating as exactly as possible the correlation factor for different spin f (
α β
r1 ; r2 ).
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In the simple one-configuration MO theory (� approximated as a single Slater det of
doubly occupied MOs), this correlation factor is equal to zero:

P2(
α β
r1 ; r2 ) = P2(

β α
r1 ; r2 ) = P1(

α
r1 )P1(

β
r2 ) = P1(

β
r1 )P1(

α
r2 ), (82)

so that the distribution function of electron pairs with different spin is simply the product
of the distribution functions of the single electrons (no correlation). This means that the
two electrons can approach each other in a completely arbitrary way, at variance with the
physical reality of the Coulomb repulsion of the two electrons which would tend to ∞
as r12 → 0. In other words, the single det MO wavefunction does not correlate at all the
motion of the electrons (independent particle model, IPM).

Let us take as an example the ground state (1�+
g ) of the H2 molecule described by the

single MO determinant wavefunction:

�MO(x1,x2) = ‖σgσg‖ = r1 r2
σg σg

1√
2
(
s1 s2
α β − s1 s2

β α ), (83)

where �MO describes a one-configuration of molecular SOs. Then:

ρ2(x1,x2;x1,x2) = 2�MO(x1,x2)�
∗
MO(x1,x2)

= σgσgσ
∗
g σ ∗

g (αβα∗β∗ + βαβ∗α∗ − αββ∗α∗ − βαα∗β∗) (84)

P2(
α α α α

r1, r2 ; r1, r2 ) = P2(
β β β β

r1, r2 ; r1, r2 ) = 0 (85)

P2(
α β α β

r1, r2 ; r1, r2 ) = P2(
β α β α

r1, r2 ; r1, r2 ) = σg(r1) σg(r2)σ
∗
g (r1)σ

∗
g (r2), (86)

so that:

P2(
α β α β

r1, r2 ; r1, r2 ) = P1(
α
r1 )P1(

β
r2 ) (87)

P1(
α
r1 ) = σg(r1)σ

∗
g (r1), P1(

β
r2 ) = σg(r2)σ

∗
g (r2), (88)

the simple product of 1-electron distributions. Therefore, �MO for a closed shell does not
describe any correlation (hence, the large error found in describing the dissociation of the
H2 molecule using the simple one-configuration MO wavefunction).

Instead, consider the Heitler–London (HL) wavefunction for ground state H2:

�HL(x1,x2) = N
{‖ab‖ + ‖ba‖}= N(ab + ba)

1√
2
(αβ − βα) (89)

a two-configuration wavefunction of atomic SOs. Then:
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ρ2(x1,x2 ; x1,x2) = 2�HL(x1,x2)�∗
HL(x1,x2)

= N2(aba∗b∗ + bab∗a∗ + abb∗a∗ + baa∗b∗)

· (αβα∗β∗ + βαβ∗α∗ − αββ∗α∗ − βαα∗β∗) (90)

P2(
α α α α

r1, r2 ; r1, r2 ) = P2(
β β β β

r1, r2 ; r1, r2 ) = 0 (91)

P2(
α β α β

r1, r2 ; r1, r2 ) = P2(
β α β α

r1, r2 ; r1, r2 )

= N2(aba∗b∗ + bab∗a∗ + abb∗a∗ + baa∗b∗)

= P1(
α
r1 )P1(

β
r2 ), (92)

where:

P1(
α
r1 )=

∫

dr2P2(
α β α β

r1, r2 ; r1, r2 ) = N2(a2 + b2 + 2Sab)

= P1(
β
r2 ) =

∫

dr1P2(
α β α β

r1, r2 ; r1, r2 ). (93)

Therefore, at variance of the �MO, �HL introduces some sort of correlation between elec-
trons with different spin. This is due to its molecular “split-shell” structure, which partially
prevents the electrons from doubly occupying the same orbital with different spin.

7.4 AVERAGE VALUES OF 1- AND 2-ELECTRON OPERATORS

The electron distribution functions we saw so far (better, their corresponding density ma-
trices) allow one to compute easily the average values of symmerical sums of 1- and 2-
electron operators, such as those occurring in evaluating the expectation value for the elec-
tronic energy in atomic and molecular systems.

7.4.1 Symmetrical Sums of 1-Electron Operators

〈

�

∣

∣

∣

∣

∣

N
∑

i=1

ĥi

∣

∣

∣

∣

∣

�

〉

=
∑

i

∫

ĥi�(x1,x2, · · ·xN)�∗(x1,x2, · · ·xN)dx1 dx2 · · ·dxN

=
∫

dx1 ĥ1

∫

dx2 · · ·dxN�(x1, x2, · · ·xN)�∗(x1, x2, · · ·xN)

+
∫

dx2 ĥ2

∫

dx1 · · ·dxN�(x2, x1, · · ·xN)�∗(x2, x1, · · ·xN)
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+ · · · N terms identical to the first one

=
∫

dx1 ĥ1

{

N

∫

dx2 · · ·dxN�(x1,x2, · · ·xN)�∗(x1,x2, · · ·xN)

}

=
∫

dx1 ĥ1ρ1(x1;x1), (94)

where we must take care that ĥ1 acts only upon the first set of variables (those coming
from �) and not on the second (those coming from �∗). It is more correct to write:

〈

�

∣

∣

∣

∣

∑

i

ĥi

∣

∣

∣

∣

�

〉

=
∫

dx1 ĥ1ρ1(x1;x′
1)|x′

1=x1
, (95)

where ρ1(x1;x′
1) is the 1-electron density matrix, and the prime is removed before the final

integration over dx1.
In this way, the 4N -dimensional integration over the N -electron wavefunction � is

replaced by a 4-dimensional integration over the 1-electron density matrix. It must be
stressed here that, for a � in the form of a single Slater det of order N such as that occurring
in the HF theory for closed shells, the matrix element (94) would involve a 4N -dimensional
integration of (N !)2 terms!

7.4.2 Symmetrical Sums of 2-Electron Operators

In the following, we make explicit reference to the electron repulsion operator, but the
same holds for any other 2-electron operator, such as those involving spin operators.2

〈

�

∣

∣

∣

∣

∑

i,j

′ 1

rij

∣

∣

∣

∣

�

〉

=
∑

ij

′
∫

1

rij
�(x1,x2, · · ·xN)�∗(x1, x2, · · ·xN)dx1 dx2 · · ·dxN

=
∫ ∫

dx1 dx2
1

r12

∫

dx3 · · ·dxN�(x1,x2, x3, · · ·xN)�∗(x1,x2,x3, · · ·xN)

+
∫ ∫

dx1 dx3
1

r13

∫

dx2 · · ·dxN�(x1,x3, x2, · · ·xN)�∗(x1,x3,x2, · · ·xN)

+ · · · N(N − 1) terms identical to the first one

=
∫ ∫

dx1 dx2
1

r12

{

N(N − 1)

∫

dx3 · · ·dxN�(x1,x2,x3, · · ·xN)

× �∗(x1,x2,x3, · · ·xN)

}

=
∫ ∫

dx1 dx2
1

r12

� �∗
ρ2(x1,x2 ; x1,x2), (96)

where the 2-electron operator 1/r12 is now a simple multiplier.

2The ′ means that the terms j = i are excluded from the summation. There are altogether N(N − 1) indistinct
terms.
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Hence, we conclude that, in general:

〈

�

∣

∣

∣

∣

∑

i

Ôi

∣

∣

∣

∣

�

〉

=
∑

i

∫

Ôi�(x1,x2, · · ·xN)�∗(x1,x2, · · ·xN)dx1 dx2 · · ·dxN

=
∫

dx1Ô1ρ1(x1;x′
1)|x′

1=x1
(97)

〈

�

∣

∣

∣

∣

∑

i,j

′
Ôij

∣

∣

∣

∣

�

〉

=
∑

i,j

′
∫

Ôij�(x1,x2,x3, · · ·xN)�∗(x1,x2,x3, · · ·xN)dx1 dx2 dx3 · · ·dxN

=
∫ ∫

dx1 dx2Ô12ρ2(x1x2;x1x2). (98)

7.4.3 Average Value of the Electronic Energy

The electronic Hamiltonian in the Born–Oppenheimer approximation (Chapter 10) con-
tains two of such symmetrical sums. Therefore, its average value over the (normalized)
many-electron wavefunction � can be written as:

Ee = 〈�|Ĥe|�〉 =
〈

�

∣

∣

∣

∣

∑

i

ĥi + 1

2

∑

i,j

′ 1

rij

∣

∣

∣

∣

�

〉

=
∫

dx1 ĥ1ρ1(x1;x′
1)|x′

1=x1
+ 1

2

∫ ∫

dx1 dx2
1

r12
ρ2(x1,x2;x1,x2) (99)

=
∫

dx1

{

−1

2
∇2

1ρ1(x1;x′
1)

}

x′
1=x1

(100)

+
∫

dx1V1ρ1(x1;x1) (101)

+ 1

2

∫ ∫

dx1 dx2
1

r12
ρ2(x1,x2;x1,x2), (102)

where:

ĥ = −1

2
∇2 + V V = −

∑

α

Zα

rα
(103)

is the one-electron bare nuclei Hamiltonian, and V the nuclear attraction.
Equation (100) is the average kinetic energy of the electron distribution ρ1 (it is the only

term which implies the 1-electron density matrix because of the presence of the differential
operator ∇2

1 which acts on � and not on �∗).
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Equation (101) expresses the average potential energy of the charge distribution ρ1 in
the field provided by all nuclei in the molecule.

Equation (102) expresses the average electronic repulsion of an electron pair described
by the pair function ρ2.

In this way, the molecular energy E in the Born–Oppenheimer approximation takes its
simplest physically transparent form as:

E = Ee + EN = Ee + 1

2

∑

α,β

′ ZαZβ

Rαβ

(104)

where the electronic energy Ee is evaluated in a given fixed nuclear configuration, and we
added nuclear repulsion as the last term.

7.5 THE SLATER RULES

Well before density matrix techniques were introduced in molecular quantum mechan-
ics (Löwdin, 1955a, 1955b; McWeeny, 1960; see, however, Lennard-Jones, 1931), Slater
(1929) gave some simple rules for the evaluation of the matrix elements of any symmetri-
cal sum of 1-electron and 2-electron operators between any pair of Slater dets built from
orthonormal spin-orbitals. These rules were later extended by Löwdin (1955a) to include
the case of Slater dets built from non-orthogonal spin-orbitals, while in the latter case
Figari and Magnasco (1985) suggested convenient mathematical techniques to deal with
the cofactors arising from n-substituted Slater dets. At variance with Löwdin’s formulae,
which go into trouble if the actual overlap matrix becomes singular, Figari and Magnasco’s
formulae go smoothly into the Slater formulae when overlap goes to zero.

Slater’s rules are as follows. Let:

� = ‖ψ1 ψ2 · · ·ψN‖ 〈ψi |ψj 〉 = δij 〈�|�〉 = 1 (105)

� ′ = ‖ψ ′
1 ψ ′

2 · · ·ψ ′
N‖ 〈ψ ′

i |ψ ′
j 〉 = δij 〈� ′|� ′〉 = 1 (106)

be a pair of normalized N -electron Slater dets built from orthonormal SOs. Then:

(i) 1-electron operators.

• Zero SO differences:

〈

�
∣

∣

∑

i Ôi

∣

∣�
〉=
∑

i

〈

ψi

∣

∣Ô1
∣

∣ψi

〉

. (107)

• One SO difference:

〈

� ′∣
∣

∑

i Ôi

∣

∣�
〉= 〈ψ ′

i

∣

∣Ô1
∣

∣ψi

〉

(108)

if � ′ differs from � for ψ ′
i = ψi .
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• Two or more SO differences:

〈

� ′∣
∣

∑

i Ôi

∣

∣�
〉= 0. (109)

(ii) 2-electron operators.

• Zero SO differences:

〈

�
∣

∣

∑

i<j Ôij

∣

∣�
〉= 1

2

∑

i

∑

j

[〈

ψiψj

∣

∣Ô12
∣

∣ψiψj

〉− 〈ψjψi

∣

∣Ô12
∣

∣ψiψj

〉]

(110)

in the Dirac notation, or:

= 1

2

∑

i

∑

j

[

(ψiψi |ψjψj ) − (ψiψj |ψjψi)
]

(111)

in the charge density notation.
• One SO difference:

〈

�
∣

∣

∑

i<j Ôij

∣

∣�
〉=
∑

j

[〈

ψ ′
iψj

∣

∣Ô12
∣

∣ψiψj

〉− 〈ψjψ
′
i

∣

∣Ô12
∣

∣ψiψj

〉]

(112)

=
∑

j

[

(ψiψ
′
i |ψjψj ) − (ψiψj |ψjψ

′
i )
]

(113)

if � ′ differs from � for ψ ′
i = ψi .

• Two SO differences:

〈

� ′∣
∣

∑

i<j Ôij

∣

∣�
〉= 〈ψ ′

iψ
′
j

∣

∣Ô12
∣

∣ψiψj

〉− 〈ψ ′
jψ

′
i

∣

∣Ô12
∣

∣ψiψj

〉

(114)

= (ψiψ
′
i |ψjψ

′
j ) − (ψiψ

′
j |ψjψ

′
i ) (115)

if � ′ differs from � for ψ ′
i = ψi , ψ ′

j = ψj .
• Three or more SO differences:

〈

� ′∣
∣

∑

i<j Ôij

∣

∣�
〉= 0. (116)

The Slater rules for the 2-electron operators are rederived in an independent way as
Problem 7.5.

7.6 POPLE’S TWO-DIMENSIONAL CHART OF QUANTUM
CHEMISTRY

During an International Symposium on Atomic and Molecular Quantum Theory at Sanibel
Island, Florida, Pople (1965) presented the interesting two-dimensional chart of Quantum
Chemistry illustrated below in Figure 7.1.
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Figure 7.1 Pople’s two-dimensional chart of Quantum Chemistry.

In the abscissae is the number N of electrons, in the ordinate the accuracy of quantum
chemical calculations. According to Pople, the tendency at that time was a continuous di-
varication between scientists doing low-level calculations on electronic systems of large
dimensions (moving along the abscissae axis, say Hückel-type), and those doing very ac-
curate calculations on systems containing few electrons (moving along the ordinate axis,
say James–Coolidge or Kołos–Wolniewicz calculations on H2). He suggested that it was
time for moving along the diagonal, in other words to present methods allowing for suf-
ficient accuracy for systems having a moderately large number of electrons. This was the
idea convincing Pople to present his semiempirical methods such as CNDO, INDO, etc.,
and the following series of GAUSSIAN programmes, where ab-initio calculations were
done using STOs systematically replaced by suitable combinations of GTOs (STO-nG, 6-
31G, 6-31G∗, 6-31G∗∗, etc.). These programmes are widely used today by the Chemical
community.

We shall follow Pople’s two-dimensional chart starting from the reference method for
quantum chemical calculations on many-electron systems, the Hartree–Fock (HF) method,
the best independent particle model (IPM) which is used to define exactly the correlation
energy:

Correlation energy

= exact energy of the non-relativistic Hamiltonian

– Hartree–Fock energy. (117)
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Figure 7.2 Accuracy scale of quantum chemical calculations.

The correlation energy is a not negligible quantity, amounting to about 1.1 eV per elec-
tron pair, which is very difficult to be calculated exactly. Taking HF as the best that can be
done using an orbital basis without including electron correlation, following Pople’s sug-
gestion we can construct the ladder of Figure 7.2, having HF theory at its middle, Hückel
theory as its bottom step, and the exact (or very accurate) results at its top.

All methods beyond HF (upper part of Figure 7.2) take into account in some way part
of the electron correlation, all methods below (lower part of Figure 7.2), all belonging
to the class of IPM methods, do not take into account electron correlation. It should be
stressed at this point that, among the semiempirical post-HF methods, should be included
all Kohn–Hohenberg–Sham density functional theory methods (DFT) and their variants,
whose best orbitals satisfy one-electron differential equations similar to the HF ones, but
take also into account some electron correlation mostly through semiempirical exchange-
correlation potentials. All DFT methods based on such potentials should be considered as
semiempirical methods giving more than HF.

In the following Sections, after introducing in some detail the Hartree–Fock theory for
closed shells and its application to some ab-initio calculations using STO or GTO bases,
we shall follow Pople’s chart, first moving along the abscissae axis (Hückel theory), then
moving along the diagonal (semiempirical methods), turning finally to the ordinate axis
(accurate methods allowing for chemical accuracy through partial ab-initio calculation of
the electron correlation).
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7.7 HARTREE–FOCK THEORY FOR CLOSED SHELLS

In this Section, we shall give a rather detailed presentation of the Hartree–Fock (HF) theory
for closed shells. The theory for open shells is rather more complicated, and its elements
can be found in a paper by Roothaan (1960). As already said, the HF theory is the best that
can be obtained within an independent particle model, and its lack of correlation follows
from the fact that the HF 2-particle density matrix is simply the 2 × 2 determinant of a
1-electron quantity ρ, called the Fock–Dirac density matrix. Lennard-Jones (1931) was
the first to make this derivation, which will be presented in this Chapter as Problem 7.6.
As a consequence of this fact, all physical properties within the HF theory will depend on
this quantity, which mathematically appears as the kernel of an integral operator having
the characteristic of a projection operator. The characterization of ρ as a projector in Fock
space will be given as Problem 7.7.

While most of the theory follows easily from the properties of the fundamental invariant
ρ, the derivation of the HF equations characterizing the best atomic or molecular orbitals is
best done in terms of the classical Roothaan work (1951a), since the orthonormality condi-
tions which must be imposed on the orbital basis appear somewhat awkward and abstract
(Löwdin, 1955b) in terms of the fundamental invariant. As a premise to such constrained
optimization of the electronic energy, we shall present as Problem 7.8 a simple but general
functional derivation of the method of Lagrange multipliers.

7.7.1 Basic Theory and Properties of the Fundamental Invariant ρ

Let:

� = ‖ψ1ψ2 · · ·ψN‖ 〈ψi |ψj 〉 = δij (118)

be a normalized single determinant many-electron wavefunction of N orthonormal atomic
or molecular spin-orbitals {ψi(x)} i = 1,2, · · ·N . Lennard-Jones (1931) has shown that, in
this case:

ρ1(x1;x′
1) = ρ(x1;x′

1) (119)

ρ2(x1,x2;x′
1,x′

2) =
∣

∣

∣

∣

ρ(x1;x′
1) ρ(x1;x′

2)

ρ(x2;x′
1) ρ(x2;x′

2)

∣

∣

∣

∣

= ρ(x1;x′
1)ρ(x2;x′

2) − ρ(x1;x′
2)ρ(x2;x′

1), (120)

where:

ρ(x1;x′
1) =

N
∑

i=1

ψi(x1)ψ
∗
i (x′

1) (121)

is the 1-electron Fock–Dirac density matrix. Equation (121) is said to offer an “orbital
representation” of the density matrix. Since the 1- and 2-electron density matrices are ex-
pressed in terms of the quantity ρ, all physical properties of the many-electron system in
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the HF approximation will depend only on ρ, which will hence be characterized as the
fundamental physical invariant of the system. It can be easily shown (Problem 7.7) that ρ

has the following properties:
(i) ρ is invariant (namely, it does not change) against a unitary transformation among its

{ψi(x)}:

ψ ′
i (x) =

∑

j

ψj (x)Uji (122)

ρ′(x1;x′
1) ≡ ρ(x1;x′

1). (123)

(ii) ρ has the properties of a projection operator (a projector) in the Fock space:

∫

dx1 ρ(x1;x1) = N (124)

∫

dx2 ρ(x1;x2)ρ(x2;x′
1) = ρ(x1;x′

1) (125)

or, symbolically (Löwdin, 1955b):

trρ = N, ρ2 = ρ. (126)

(iii) ρ is the kernel of an integral operator ρ̂ whose effect on the regular function ϕ(x) is:

ρ̂ϕ(x)=
∫

dx′ρ(x;x′)P̂xx′ϕ(x)

=
∫

dx′ρ(x;x′)ϕ(x′)

=
∑

i

ψi(x)

∫

dx′ψ∗
i (x′)ϕ(x′)

=
∑

i

|ψi〉〈ψi |ϕ〉. (127)

The projection of the function ϕ(x) onto the Fock space characterized by ρ, {ψi}, is illus-
trated schematically in Figure 7.3. The arbitrary regular function ϕ(x) is decomposed into
its N Fock component vectors |ψi〉 with coefficients 〈ψi |ϕ〉.

7.7.2 Electronic Energy for the HF Wavefunction

The general expression (99) for the electronic energy:

Ee =
∫

dx1 ĥ1ρ1(x1;x′
1)|x′

1=x1
+ 1

2

∫ ∫

dx1 dx2
1

r12
ρ2(x1,x2;x1,x2)
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Figure 7.3 Projection of a function ϕ(x) onto the Fock space.

becomes for the single determinant HF wavefunction (118):

Ee =
∫

dx1 ĥ1ρ(x1;x′
1)|x′

1=x1

+ 1

2

∫ ∫

dx1 dx2
1

r12

[

ρ(x1;x′
1)ρ(x2;x′

2)

− ρ(x1;x′
2)ρ(x2;x′

1)
]

x′
1=x1,x′

2=x2
. (128)

The 2-electron part of the HF electronic energy can be written as:

∫ ∫

dx1 dx2
1

r12

[

ρ(x1;x′
1)ρ(x2;x′

2) − ρ(x1;x′
2)ρ(x2;x′

1)
]

x′
1=x1,x′

2=x2

=
∫

dx1

[∫

dx2
ρ(x2;x2)

r12

]

ρ(x1;x′
1)

∣

∣

∣

∣

x′
1=x1

−
∫

dx1

[∫

dx2
ρ(x1;x2)

r12
P̂x1x2

]

ρ(x1;x′
1)

∣

∣

∣

∣

x′
1=x1

=
∫

dx1J (x1)ρ(x1;x1) −
∫

dx1K̂(x1)ρ(x1;x′
1)

∣

∣

∣

∣

x′
1=x1

, (129)

where we define the two potential operators linear in ρ:

J (x1) =
∫

dx2
ρ(x2;x2)

r12
(130)

the Coulomb potential (a multiplicative operator) due to all electrons of density ρ;

K̂(x1) =
∫

dx2
ρ(x1;x2)

r12
P̂x1x2 (131)

the exchange potential, an integral operator with kernel ρ(x1;x2)/r12.
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Hence, we get for Ee in the HF approximation the alternative, yet equivalent, expres-
sions:

Ee =
∫

dx1 ĥ1ρ(x1;x′
1)|x′

1=x1
+ 1

2

∫

dx1(J1 − K̂1)ρ(x1;x′
1)|x′

1=x1
(132)

=
∫

dx1F̂1ρ(x1;x′
1)|x′

1=x1
− 1

2

∫

dx1(J1 − K̂1)ρ(x1;x′
1)|x′

1=x1
, (133)

where:

F̂ = ĥ + J − K̂ = −1

2
∇2 + V + J − K̂ = −1

2
∇2 + V̂eff (134)

is the 1-electron Fock operator, and

V̂eff = V + J − K̂ (135)

the effective potential felt by all electrons of density ρ = ρ(x;x). In equations (134)
and (135):

V = −
∑

α

Zα

rα
(136)

is the bare-nuclei potential of attraction of the electron by all nuclei of charge +Zα . It
must be stressed that the average electron repulsion, added in (132), must be subtracted
in (133) to avoid counting electron repulsion twice. Following Roothaan (1951a), we shall
now give a variational derivation of the HF equations for the best SOs, using the method
of Lagrange3 multipliers presented as Problem 7.8.

7.7.3 Roothaan Variational Derivation of the HF Equations

We want to minimize the functional of the HF electronic energy Ee[ψ1,ψ2, · · ·ψN ] with
respect to infinitesimal arbitrary changes in its SOs subjected to the orthonormality con-
straints. The N2 constraints expressing orthonormality among the SOs can be conveniently
written as the functional:

U[ψ1,ψ2, · · ·ψN ] =
∑

i

∑

i′
〈ψi |ψi′ 〉εi′i , (137)

where {εi′i} is the matrix of order N of the Lagrange multipliers (Problem 7.8). Then:

δU =
∑

i

∑

i′
{〈δψi |ψi′ 〉 + 〈ψi |δψi′ 〉}εi′i

=
∑

i

∑

i′
{〈δψi |ψi′ 〉εi′i + 〈ψi′ |δψi〉εii′ }, (138)

3Lagrange Joseph-Louis 1736–1813, Italian mathematician of French origin, Professor at the École Normale
and at the École Polytechnique of Paris.
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because the summations over i, i′ are complete, and we can interchange indices i, i′ with-
out altering the final result. In this way, the second term in the last braces is the complex
conjugate (c.c.) of the first, and the matrix of the N2 Lagrange multipliers is Hermitian.

We have similarly for an infinitesimal change in the functional (132) of the electronic
energy:

δEe =
∑

i

〈δψi |ĥ1|ψi〉 +
∑

i

〈ψi |ĥ1|δψi〉 + 1

2

∑

i

〈δψi |J1 − K̂1|ψi〉

+ 1

2

∑

i

〈ψi |J1 − K̂1|δψi〉 + 1

2

∑

i

〈ψi |δJ1 − δK̂1|ψi〉 (139)

=
∑

i

〈δψi |ĥ1 + J1 − K̂1|ψi〉 + c.c. =
∑

i

〈δψi |F̂1|ψi〉 + c.c., (140)

where the 1-electron Fock operator:

F̂1 = ĥ1 + J1 − K̂1 (134)

is constant during the variation of the {ψi}. So, the Fock operator (134) appears as an es-
sential step in the functional optimization. The identity between equations (139) and (140)
is shown as Problem 7.10 for the Coulomb operator J .

We then obtain as condition for the constrained stationarity of our functionals (Prob-
lems 7.8 and 7.9):

δE′
e = δEe − δU =

∑

i

〈δψi |F̂ |ψi〉 −
∑

i

∑

i′
〈δψi |ψi′ 〉εi′i + c.c. = 0 (141)

∑

i

〈δψi |F̂ψi −
∑

i′
ψi′εi′i〉 + c.c. = 0. (142)

For the arbitrariness of the 〈δψi | the ket should identically vanish, and we obtain:

F̂ψi =
∑

i′
ψi′εi′i i, i′ = 1, 2, · · ·N, (143)

which are the Hartree–Fock equations determining the best SOs {ψi}.
Since a unitary transformation among the SOs does not alter either ρ(x1;x′

1) or F̂ (which
is linear in ρ), the Hermitian matrix {εi′i} of the Lagrange multipliers can be reduced to
diagonal form, and we finally obtain the Hartree–Fock equations in the form of eigenvalue
equations:

F̂ψi = εiψi i = 1,2, · · ·N, (144)
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where F̂ is the 1-electron integro-differential operator:

F̂ (x1)= −1

2
∇2

1 + V1 +
∑

i′

∫

dx2
ψi′(x2)ψ

∗
i′(x2)

r12

−
∑

i′

∫

dx2
ψi′(x1)ψ

∗
i′(x2)

r12
P̂x1x2 (145)

∇2
1 being a differential operator and the exchange potential K̂1 (the last term) an integral

operator.
Despite their apparent simple form (144), the HF equations are difficult integro-

differential equations that must be solved by iteration (the so called SCF method), starting
from a guessed set of SOs {ψ0

i }, and revising the form of the ψi until self-consistency is
reached. The iteration process may present problems of convergence if the starting point is
not carefully chosen.

In the applications, spin can be eliminated (Problem 7.11) giving for closed shells the
spinless Fock operator F̂ (r1), which depends on the space variable only:

F̂ (r1) = −1

2
∇2

1 + V1 + 2J (r1) − K̂(r1), (146)

where:

J (r1) =
∫

dr2
R(r2; r2)

r12
, K̂(r1) =

∫

dr2
R(r1; r2)

r12
P̂r1r2 (147)

are spinless Coulomb and exchange potentials, and we have introduced the density matrix
R for closed shells:

R(r1; r2) = ρα(r1; r2) = ρβ(r1; r2) =
occ
∑

i

φi(r1)φ
∗
i (r2), (148)

where {φi(r)} i = 1,2, · · ·n = N/2 are the doubly occupied spatial MOs for closed shells.
R has the properties:

trR = n = N/2, R2 = R (149)

and is therefore a projector in the space of the n occupied orbitals. The HF equations for
the occupied MOs become:

F̂ (r1)φi(r1) = εiφi(r1) i = 1,2, · · ·n. (150)

The quantity:

Ĝ(r1) = 2J (r1) − K̂(r1) (151)

has been called by Roothaan the total electron interaction operator.
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7.7.4 Hall–Roothaan Formulation of the LCAO-MO-SCF Equations

The LCAO-MO approximation to the HF orbitals was developed by Hall (1951) and
Roothaan (1951a) using the Ritz method. Given the atomic orbital basis of m AOs:

χ(r) = (χ1χ2 · · ·χm) m ≥ n (152)

the i-th MO is constructed by the linear combination:

φi(r) = χ(r)ci , (153)

giving the corresponding spin-orbitals as:

ψi(x) �⇒ φi(r)α(s) = φi, φi(r)β(s) = φi. (154)

The variational optimization of the linear coefficients ci yields the pseudosecular equa-
tions:

Fci = εiMci i = 1,2, · · ·n (155)

which are known as Roothaan’s LCAO-MO-SCF equations (Hall assumed M = 1). We
have introduced the m × m Hermitian matrices:

F = χ†F̂χ Fμν = 〈χμ|F̂ |χν〉 (156)

M = χ†χ Mμν = 〈χμ|χν〉 (157)

which are, respectively, the matrix representative of the Fock spinless operator and the
metric of the AO basis. The pseudosecular equation of order m:

|F − εM| = 0 (158)

must be solved by iteration through successive revisions of matrix F until self-consistency
is reached between the MOs determining F and those obtained by solution of the secular
equation. This is the iterative SCF process. The m roots:

ε1, ε2, · · · εn,
︸ ︷︷ ︸

occ

εn+1, εn+2, · · · εm
︸ ︷︷ ︸

unocc

(159)

give the orbital energies of the n (doubly occupied) spatial orbitals and of the (m − n)

unoccupied (empty) orbitals, while the corresponding eigenvectors:

c1, c2, · · · cn, cn+1, cn+2, · · · cm (160)
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give the form of the best orbitals, which are the LCAO-SCF approximation to the HF
orbitals. φn is called the HOMO (highest occupied MO), φn+1 the LUMO (lowest unoc-
cupied MO). By introducing the rectangular (m × n) matrix C of the doubly occupied
MOs:

C = (c1c2 · · · cn) (161)

it will be possible to write the whole set of pseudoeigenvalue equations in the matrix form:

F̂χC = χCε (162)

FC = MCε, (163)

where:

ε =

⎛

⎜

⎜

⎝

ε1 0 · · · 0
0 ε2 · · · 0
. . . . . . . . . .
0 0 · · · εn

⎞

⎟

⎟

⎠

(164)

is the diagonal matrix collecting the orbital energies of the n doubly occupied MOs.
It is customary at this point to introduce the matrix representative over the AO basis of

the spinless density matrix R for the doubly occupied MOs:

R(r; r′)= ρα(r; r′) = ρβ(r; r′) = φ(r)φ†(r′)

= χ(r)CC†χ†(r′) = χ(r)Rχ†(r′) (165)

where:

R = C C†

m×m m×n n×m

Rμν =
occ
∑

i

CμiC
∗
νi . (166)

It is worth noting (Problem 7.12) that the projector properties of the density matrix R over
the non-orthogonal AO basis are given by:

RMR = R, tr RM = n, (167)

where M is the metric of the AO basis.
The electronic energy in the LCAO-MO-SCF approximation takes the matrix form:

Ee = 2
∫

dr1 F̂ (r1)R(r1; r′
1)|r′

1=r1
−
∫

dr1 Ĝ(r1)R(r1; r′
1)|r′

1=r1

= 2tr FR − tr GR, (168)
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where Ĝ(r1) is the total electron interaction operator. Its AO representative G(r1) has
elements:

Gμν = 〈χμ|Ĝ|χν〉 = 〈χμ|2J (r1) − K̂(r1)|χν〉

=
∫

dr1 χ∗
μ(r1)

[

2
∫

dr2
R(r2; r2)

r12
−
∫

dr2
R(r1; r2)

r12
P̂r1r2

]

χν(r1)

=
∫

dr1 χ∗
μ(r1)

[

2
∑

λ

∑

σ

∫

dr2χλ(r2)Rλσ χ∗
σ (r2)

r12

]

χν(r1)

−
∫

dr1 χ∗
μ(r1)

[

∑

λ

∑

σ

∫

dr2χλ(r1)Rλσ χ∗
σ (r2)

r12
χν(r2)

]

=
∑

λ

∑

σ

Pλσ

[

(
1 2

χνχμ | χλχσ ) − 1

2
(

1 2
χλχμ | χνχσ )

]

, (169)

where we used the charge density notation for the 2-electron integrals, and have introduced
the matrix:

P = 2R Pλσ = 2Rλσ = 2
occ
∑

i

CλiC
∗
σ i . (170)

P has no longer the properties of a projection operator. Gμν , the μν-element of the total
electron interaction operator over the AO basis, is hence formed by the combination of
m2 2-electron many-centre integrals, while Ee will depend on well m4 of such difficult
integrals! The μν-element of the Fock matrix F over the AOs is:

Fμν = 〈χμ|F̂ |χν〉 = 〈χμ|ĥ + Ĝ|χν〉 = hμν + Gμν, (171)

where:

ĥ = −1

2
∇2 + V (172)

is the one-electron bare nuclei Hamiltonian.
From these matrix expressions, with suitable approximations and simplifications, we

can obtain all LCAO approximations belonging to the lower steps of the HF accuracy scale
(Hückel, Extended Hückel, CNDO, INDO, etc.).

An example of LCAO-MO-SCF calculation on the 1A1 ground state of the H2O mole-
cule (belonging to C2v symmetry) is given as Problem 7.13. The calculation (Pitzer and
Merrifield, 1970) is performed at the experimental geometry and is based on a minimum
set of 7 STOs. The factorization of the resulting secular equation is fully discussed in
Chapter 8. The projector properties (167) of the matrix R resulting for this calculation are
checked in detail as Problem 7.14.
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7.7.5 Mulliken Population Analysis

The analysis of the MO electron distribution in closed shells is commonly called Mulliken4

population analysis (Mulliken, 1955a, 1955b, 1955c), and is a generalization of our initial
considerations on the 2-electron bond of Section 7.3.2.

We saw in the preceding Section that the MO theory for closed shells (S = 0) gives for
the 1-electron density matrix:

ρ1(x;x′)= ρ(x;x′) =
N
∑

i=1

ψi(x)ψ∗
i (x′)

=
occ
∑

i

φi(r)φ∗
i (r′)

[

α(s)α∗(s′) + β(s)β∗(s′)
]

, (173)

where:

ρα(r; r′) = ρβ(r; r′) = R(r; r′) =
occ
∑

i

φi(r)φ∗
i (r′) (174)

the summation being over all n = N/2 doubly occupied (orthonormal) MOs φi . R(r; r′) is
the spinless 1-electron density matrix with the well-known projector properties:

R2 = R, trR = n. (175)

In the Hall–Roothaan LCAO approximation, the i-th spatial MO φi(r) is represented by
the linear combination of m basic AOs χ(r):

φi(r) = χ(r)ci (176)

giving:

R(r; r′) =
occ
∑

i

φi(r)φ∗
i (r′) = χ(r)Rχ†(r′), (177)

where:

R = C C†

m×m m×n n×m
, Rμν =

occ
∑

i

CμiC
∗
νi (178)

is the matrix representative of R over the AO basis χ . The projector properties of matrix
R over the non-orthogonal basis χ are given by equations (167).

4Mulliken Robert Sanderson 1896–1986, U.S. physicist, Professor of Physics and Chemistry at the University
of Chicago. 1966 Nobel Prize for Chemistry.
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The matrix:

P = 2R, Pμν = 2Rμν (179)

was called by Coulson (1939) the charge and bond-order matrix. Pμν gives the electronic
charge distributed according to the (un-normalized) density χμ(r)χν(r) contributed by all
doubly occupied MOs (charge for ν = μ, bond-order for ν = μ).

The Mulliken population matrix has instead elements PμνMμν , giving the electronic
charge distributed according to the (normalized) density χμ(r)χν(r)/Mμν . Then, its diag-
onal element (Mμμ = 1):

Pμμ = net orbital population on orbital χμ(r), (180)

while the off-diagonal element:

PμνMμν = overlap population between χμ(r) and χν(r). (181)

By adding over all elements of a row (or a column) of the population matrix we obtain the
gross orbital population on orbital χμ(r):

Qμ = Pμμ +
∑

ν( =μ)

PμνMμν. (182)

By further adding over all orbitals of atom A we obtain the gross atomic population of
atom A:

PA =
(A)
∑

μ

Qμ. (183)

As an example, we give below (Table 7.1) the complete Mulliken population matrix for
ground state H2O resulting from the Pitzer and Merrifield (1970) MO calculation discussed
in Problems 7.13 and 7.14.

The qualitative physical picture emerging from Table 7.1 is immediately clear. The over-
lap populations are positive between z and y oxygen AOs and h1, h2 hydrogen AOs, which
means that electron density increases between these orbitals contributing to the chemical
bonding between O and H1, H2. The negative overlap population between h1 and h2 means
that the H atoms are non-bonded. The result of the rearrangement of the electronic charge
distribution when the molecule is formed becomes apparent when the gross orbital popu-
lations onto O and H1, H2 in H2O are compared with the corresponding quantities in the
free atoms, as given below in Table 7.2.

The data in the second column were slightly rearranged in order to compensate for the
round-off errors arising from the limited number of figures used in the calculation to obtain
by adding along the column the exact value N = 10. The resulting gross atomic charges
(last column) clearly say that about 0.3254 electrons are shifted from H to O when the



290 7. Many-Electron Wavefunctions: Slater, Hartree–Fock and Related Methods

Table 7.1.

Mulliken population matrix from the Pitzer and Merrifield MO calculation on ground state H2O

PμνMμν k′ s′ z x y h1 h2

k′ 2.005 40 0 0 0 0 −0.002 13 −0.002 13
s′ 0 1.936 50 0 0 0 −0.040 79 −0.040 79
z 0 0 1.254 08 0 0 0.103 18 0.103 18
x 0 0 0 1 0 0 0
y 0 0 0 0 0.677 92 0.165 26 0.165 26
h1 −0.002 13 −0.040 79 0.103 18 0 0.165 26 0.733 36 −0.121 59
h2 −0.002 13 −0.040 79 0.103 18 0 0.165 26 −0.121 59 0.733 36

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Table 7.2.

Gross orbital electron populations in H2O compared to the corresponding quantities in the free atoms

AO Molecule Free atoms Gross atomic charges

k′ 2.0011 2
s′ 1.8549 2
z 1.4610 1 PO = 8.3254
x 2 2
y 1.0084 1

h1, h2 0.8373 1 PH = 1.6746
∑

10 10

molecule is formed. This agrees with our common expectation about the electronegativities
of the O and H atoms. We further notice a slight “promotion” of about 0.1451e from the s

orbital on oxygen to the bonding p AOs (y, z), which means that little “hybridization” has
occurred. So, the concept of hybridization stems directly from the analysis of the Mulliken
charge distributions. We shall see later (Chapter 10) that this concept is essential in the
development of the valence bond (VB) theory of directed valency in polyatomic molecules.
It is rather gratifying to see that the same concept originates from two theories, such as MO
and VB, which are apparently so different in their initial steps.

At this level of calculation,5 the x orbital on O remains unchanged when the molecule
is formed.

In terms of the formal charges δ = ±0.1627 e on the constituent atoms, the molecule
appears as a dipole with the resulting moment directed along the z symmetry axis (Fig-
ure 7.4). Unfortunately, as already said, the minimum basis set greatly underestimates the
value of the calculated dipole moment, but the elementary picture remains.

5This is not the case when suitable polarization functions onto O and H are admitted in extended basis sets.
Problem 8.9 in Chapter 8 shows that B1 symmetry mixes 3d and 4f polarization functions on O with 2p and 3d

polarization functions on the H atoms.
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Figure 7.4 The molecular dipole in H2O resulting from the formal charges ±δ on the constituent atoms.

7.7.6 Atomic Bases in Quantum Chemical Calculations

We already introduced in Chapter 4 the two kinds of atomic orbitals χ(r) mostly used
today as basis sets in quantum chemical calculations. They are orbitals having (i) an ex-
ponential decay with the radial variable r , Slater-type-orbitals or STOs, or (ii) a Gaussian
decay, Gaussian-type-orbitals or GTOs. Even if the latter are still today the most widely
used, recently there was an increasing interest in STOs, since STOs are definitely supe-
rior to GTOs either near the origin or in the tail of the atomic function. Furthermore, the
fundamental expansion theorem of quantum mechanics (Chapter 1) tells us that truncation
errors are expected when the basis set is insufficient, so that accuracy of quantum chemical
calculations will depend on quality and size of the basis set. The Literature in the field is
plagued by an avalanche of numbers that suffer for the lack of any sufficient accuracy be-
ing too far from the so called reference “benchmarks”. In the following, we shall examine
further the classification and the effect that dimension and nature of the atomic bases have
on the expected accuracy of the results of quantum chemical calculations.

A minimal basis set is made by those AOs which are occupied in the ground state of
the atoms forming the molecule: in the LCAO procedure it is not possible to construct
MOs with a less number of these AOs (m ≥ n). An extended basis set is made by a larger
number of AOs, and may, or may not, include polarization functions, namely AOs which
are not occupied in the ground state of the constituent atoms (empty or virtual AOs), such
as, for instance, 3d and 4f functions for C, N, O, F, or 2p and 3d functions for H. Such
functions, as well as AOs having even larger values of the angular quantum number l, are
essential when evaluating molecular properties, such as electric multipole moments and
polarizabilities (Chapter 11).

In general, we speak of single-zeta (SZ) for a minimal set, double-zeta (DZ) for a basis
where each AO is described by two functions, triple-zeta (TZ) when each AO is described
by three functions, and so on. If polarization functions (P) are included, we shall have DZP
and TZP bases (P only on the heavy atoms) or DZPP and TZPP (when P are on the heavy
atoms and on H as well). Such a nomenclature is due to Van Duijneveldt-Van de Rijdt and
Van Duijneveldt (1982).
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GTO-bases are usually expressed in terms of Cartesian Gaussians:

Guvw(r) = Nxuyvzw exp
(−cr2) (184)

whose number is given by the binomial coefficient
(

L+2
L

)= 1
2 (L+1)(L+2) if L = u+v+

w. For instance, for L = 0 we have a function of type 1s, for L = 1 three functions of type
2p, for L = 2 five functions of type 3d and one function 3s, for L = 3 seven functions 4f

and three functions 4p, for L = 4 nine functions 5g, five functions 5d and one function 5s.
Since several GTOs are usually needed to represent in an adequate way a single STO, it

is customary to introduce contracted GTO functions, where each function is the sum of a
certain number of GTOs, called primitives (having same L but different orbital exponent
c), each one multiplied by a fixed numerical coefficient. When such constraints are not
present, we speak of uncontracted GTO bases. The most common notation can be deduced
from this example on H2O (nearly HF cartesian GTO calculation by Lazzeretti and Zanasi,
1981), which includes polarization functions on O and H:

(14s 8p 3d 1f |10s 2p 1d) �⇒ [9s 6p 3d 1f |6s 2p 1d].
primitives contracted

(185)

The 110 primitives (14+8×3+3×6+1×10 = 66 GTOs onto O, 10+2×3+1×6 =
22 GTOs onto each H atom) give rise to 91 contracted functions (9 + 6 × 3 + 3 × 6 + 1 ×
10 = 55 GTOs onto O, 6 + 2 × 3 + 1 × 6 = 18 GTOs onto each H atom). It may be noted
that the polarization functions are left uncontracted. It is evident that, given the same set of
primitives, it will be possible to obtain different results for different contractions. The best
results will be obtained, of course, for the uncontracted basis sets.

Widely used in the different releases of GAUSSIAN programmes of Pople and cowork-
ers (Frisch et al., 2003) are the STO-nG bases (n GTOs to represent a single STO), 6-31G
(six GTOs for the inner-shell plus split-valence AOs described by two sets of contracted
GTOs, three “inner” and one “outer”), 6-31G∗ (as before, but including polarization func-
tions on the heavy atoms), 6-31G∗∗ (as before, but further including polarization functions
on the H atoms as well).

To handle the numerical problem arising from the variational optimization of a large
number of non-linear parameters (the orbital exponents ci ), Ruedenberg et al. (1973) in-
troduced the so called even-tempered (or geometrical) sequences of primitive functions,
where the orbital exponents ci are restricted by a relation such as:

ci = abi i = 1,2, · · ·m (186)

with a, b different for functions of s, p, d, f, · · · symmetry. In such a way, it becomes
necessary to optimize just two non-linear parameters within each symmetry type, indepen-
dently of the number of primitive functions.

Examples for the ground state of the first-row H–Ne atoms are given in Table 7.3
(Clementi and Roetti, 1974), for the second-row Mg atom (1S:1s2 2s2 2p6 3s2) in Table 7.4
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Table 7.3.

Electronic energies Ee and orbital energies εi (Eh) SCF/STO for the ground states of first-row atomsa

Atom/AO SZ DZ HF
1s1p 2s2p 6s4p

H(2S:1s) Ee −0.5
εi −0.5

He(1S:1s2) Ee −2.847 65 −2.861 67 −2.861 68
Li(2S:1s2 2s) Ee −7.418 48 −7.432 72 −7.432 73
1s ε1s −2.460 −2.478 −2.478
2s ε2s −0.195 −0.196 −0.196
Be(1S:1s2 2s2) Ee −14.556 74 −14.572 87 −14.573 02
1s ε1s −4.717 −4.733 −4.733
2s ε2s −0.309 −0.309 −0.309
B(2P :1s2 2s2 2p) Ee −24.498 37 −24.527 92 −24.529 06
1s ε1s −7.678 −7.694 −7.695
2s ε2s −0.484 −0.494 −0.495
2p ε2p −0.300 −0.310 −0.310
C(3P :1s2 2s2 2p2) Ee −37.622 39 −37.686 75 −37.688 61
1s ε1s −11.302 −11.323 −11.3255
2s ε2s −0.6775 −0.704 −0.706
2p ε2p −0.402 −0.433 −0.433
N(4S:1s2 2s2 2p3) Ee −54.268 90 −54.397 95 −54.400 92
1s ε1s −15.593 −15.625 −15.629
2s ε2s −0.8925 −0.943 −0.945
2p ε2p −0.503 −0.566 −0.568
O(3P :1s2 2s2 2p4) Ee −74.540 36 −74.804 32 −74.809 37
1s ε1s −20.614 −20.663 −20.669
2s ε2s −1.151 −1.240 −1.244
2p ε2p −0.503 −0.628 −0.632
F(2P :1s2 2s2 2p5) Ee −98.942 11 −99.401 31 −99.409 30
1s ε1s −26.303 −26.374 −26.383
2s ε2s −1.431 −1.567 −1.5725
2p ε2p −0.526 −0.724 −0.730
Ne(1S:1s2 2s2 2p6) Ee −127.812 2 −128.535 1 −128.547 05
1s ε1s −32.662 −32.760 −32.772
2s ε2s −1.7325 −1.922 −1.930
2p ε2p −0.562 −0.841 −0.850

aClementi and Roetti (1974).

(Clementi and Roetti, 1974; Clementi and Corongiu, 1982), and for the ground state of
the H2O molecule (1A1:1a2

1 2a2
1 1b2

2 3a2
1 1b2

1) in Table 7.5 (Pitzer and Merrifield, 1970;
Rosenberg and Shavitt, 1975; Lazzeretti, 2004).

As a general comment on Tables 7.3 and 7.4 concerning the atomic case, we can say that
the 1-term SCF approximation (SZ) is totally insufficient, giving very large errors either
for electronic energy or orbital energies. For the STO bases, the SZ error in the electronic
energy for the Mg atom is even larger than 1 atomic unit, while errors of several 10−3 Eh
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Table 7.4.

Comparison between STOa and GTOb results for the ground state of the Mg atom

STO basis/AO 3s 1p 6s 2p 8s 5p

Specification SZ DZ HF
m 6 12 23

Ee −198.857 8 −199.607 0 −199.614 6
εi/1s −48.938 5 −49.023 9 −49.031 6
2s −3.597 9 −3.764 2 −3.767 6
2p −2.031 5 −2.278 3 −2.282 1
3s −0.241 0 −0.252 3 −0.253 0

GTO basis/AO 12s 5p 13s 7p 16s 8p

Specification Small Medium Large
m 27 34 40

Ee −199.546 3 −199.600 96 −199.611 9
εi/1s −48.978 7 −49.031 7 −49.031 5
2s −3.741 6 −3.768 6 −3.767 4
2p −2.253 4 −2.283 5 −2.281 7
3s −0.211 0 −0.253 2 −0.252 8

aClementi and Roetti (1974). bClementi and Corongiu (1982).

Table 7.5.

Comparison between STO and GTO results for the ground state of the H2O molecule at the experimental
geometrya

AO/MO STOb STOc GTOd

Basis set (2s 1p|1s) (5s 4p 2d|3s 1p) [13s 10p 5d 2f |8s 4p 1d]
Specification 1-term SCF polarized extended nearly HF set
m 7 39 145

E/Eh −75.655 60 −76.064 23 −76.066 87
μ/e a0 0.564 2 0.784 9 0.780 9 (0.728)e

εi/1a1 −20.504 6 −20.560 94 −20.563 54
2a1 −1.298 1 −1.349 86 −1.351 59
1b2 −0.638 6 −0.7160 5 −0.716 55
3a1 −0.471 5 −0.583 43 −0.584 43
1b1 −0.425 1 −0.507 06 −0.510 08

Valence ionization potentials/eV
2a1 35.3 36.73 36.78 (32.20)f

1b2 17.4 19.48 19.50 (18.61)
3a1 12.8 15.88 15.90 (17.74)
1b1 11.6 13.80 13.88 (12.62)

aHerzberg (1956). bPitzer and Merrifield (1970). cRosenberg and Shavitt (1975). d Lazzeretti (2004): private
communication to V. Magnasco. eDyke and Muenter (1973) (Molecular Beam ERS). f Potts and Price (1972)
(UV-PES).
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are observed for the orbital energies. The 2-term SCF approximation (DZ) turns out to
be sensibly better, but to reach the HF level (last column of the tables) a sensibly larger
number of functions is needed.

The comparison between STO and GTO bases for the Mg atom (Table 7.4) shows how
larger the number of GTOs must be in comparison with that of STO bases of roughly the
same quality. The largest GTO basis (m = 40), containing about twice as many functions
as those of HF/STO, is however still in error by about 3×10−3 Eh in the electronic energy,
the results being better for the orbital energies.

We shall now briefly comment on the molecular case of H2O (Table 7.5). Besides molec-
ular energy in the Born–Oppenheimer approximation (Chapter 10), E = Ee +EN , electric
dipole moment μ, and orbital energies εi , in the lower part of Table 7.5 we introduced a
comparison between the ionization potentials Ii (which can be observed experimentally by
UV-photoelectron spectroscopy6) and the negative of the calculated orbital energies:

Ii ≈ −εi (187)

a relation which is known as Koopmans’ theorem. The minimum basis set calculation by
Pitzer and Merrifield (1970) is definitely poor, even if STOs are used. The molecular energy
is well 0.4113Eh (about 258.1 kcal mol−1!) above the nearly HF value of the last column.
The distribution of the electronic charge is largely unsatisfactory, giving an insufficient di-
pole moment, about 72% of the HF value and 77% of the experiment. So, the minimum ba-
sis set greatly underestimates the dipole moment, at variance with what occurs for bases of
double-zeta quality, which largely overestimate the dipole moment (Magnasco et al., 1985).
The polarized and extended STO basis set, the 39-term function of Rosenberg and Shavitt
(1975), improves sensibly energy, which is now only 2.6 × 10−3 Eh (1.66 kcal mol−1)
above HF, and dipole moment. The calculations of the last two columns were carried out
at the experimental geometry (Herzberg, 1944) O–H = 1.811 079a0, 2θ = 104.45◦.

The experimental ionization potentials, given in parenthesis in the last column, show
that Koopmans’ theorem is hardly satisfied even by the improved values, the negative of
the orbital energies in this case being 5–14% larger than the experimental ones. This shows
unequivocally the importance of electron correlation effects (not included at the HF level)
in the evaluation of molecular ionization potentials.

The estimated Hartree–Fock limit for the H2O ground state is EHF = −76.0675Eh,
with an estimated correlation energy Ecorr = −0.370Eh (Rosenberg and Shavitt, 1975).
From the corresponding values for O(3P ), the binding energy of H2O is calculated to
be 0.3397Eh for the correlated case, which is within 91% of the experimental value
of 0.3714Eh. The dissociation energy of the MO wavefunction of Pitzer and Merrifield
(1970) at 2θ = 105o, 0.1226Eh, gives no more than 1/3 of the observed experimental
value.

Concluding this Section, we stress once more that the accuracy of the results obtained
by LCAO-MO-SCF calculations depends (i) on the nature of the atomic basis set (STO or
GTO, with or without polarization functions), and (ii) on the size of the basis (originating
truncation errors).

6The “fingerprints” of the molecules, said Richard N. Dixon in 1969 at Sheffield University, U.K.
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Good quality (nearly HF) results were obtained by Clementi and Roetti (1974) for atoms
(from He to Xe with N = 54) using STO functions, an extension of the first-row atom
results given in Table 7.3.

High quality HF results, free from truncation errors, were obtained by Pekka Pyykkö
and his group (Sundholm et al., 1985) for several diatomic molecules (H2, LiH, BH, He2,
Li2, Be2, FH, N2, CO, BeO, LiF, NaH) through direct two-dimensional integration of the
Hartree–Fock equations (HF/2D). His results are the best benchmarks to date for these
systems, and compare favourably with the results of the corresponding nearly complete
LCAO-MO-SCF calculations with very extended (nearly saturated) basis sets containing
polarization functions.

7.7.7 Localization of Molecular Orbitals

The ordinary (or canonical) MOs are one-electron functions centred at the different nuclei
of the molecule, reflecting the symmetry of the point group to which the molecule belongs
(Chapter 8). They are therefore delocalized, and bear no resemblance with the conventional
chemical description of a saturated molecule in terms of inner shells, bonds and lone pairs.
A transformation among the MOs is however possible, giving orbitals which are to some
extent localized, so adhering better to chemical ideas.

As an example, let us consider the valence MOs for the 1A1 ground state of the CH4
molecule, which has Td symmetry. Considering the molecule inscribed into the cube of
Figure 8.22 of Chapter 8 (see also Figure 7.5), the four doubly occupied un-normalized
MOs can be written as:

a1 = s + λhs, t2x = x + μhx, t2y = y + μhy, t2z = z + μhz,

(188)

where:

hs = 1

2
(h1 + h2 + h3 + h4)

hx = 1

2
(h1 + h2 − h3 − h4)

(189)

hy = 1

2
(h1 − h2 + h3 − h4)

hz = 1

2
(h1 − h2 − h3 + h4)

are symmetry combinations of the four H 1s AOs centred at non-contiguous vertices of
the cube, transforming as s, x, y, z, respectively. They are normalized if we neglect the
overlap between the 1s functions. The five-centre MOs (188) can be localized if we take
the (un-normalized) linear combinations:

B1 = a1 + t2x + t2y + t2z
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Figure 7.5 The localized bond orbital B1 in CH4.

B2 = a1 + t2x − t2y − t2z

(190)
B3 = a1 − t2x + t2y − t2z

B4 = a1 − t2x − t2y + t2z.

In fact, B1 can be written as:

B1 = s + x + y + z + λ

2
(h1 + h2 + h3 + h4)

+ μ

2
(h1 + h2 − h3 − h4 + h1 − h2 + h3 − h4 + h1 − h2 − h3 + h4)

= (s + √
3p1

)+ λ + 3μ

2
h1 + λ − μ

2
(h2 + h3 + h4), (191)

where:

p1 = x + y + z√
3

(192)

is a 2p orbital on C directed at the (111) vertex of the cube, where H1 is located. So, in the
transformed MO (191), the coefficient of h1 is increased, that of (h2 +h3 +h4) decreased,
while:

s + √
3p1 = 2t1 (193)

is a sp3 hybrid on C directed towards H1. If λ ≈ μ, the un-normalized B1 becomes:

B1 ≈ t1 + λh1, (194)

a localized bond orbital (BO) describing the two-centre C–H1 bond in CH4 (Figure 7.5).
The same is true for the remaining BOs of (190), each one describing the respective C–H
bond in the molecule.
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In the localized form, the CH4 molecule is hence described in terms of four equivalent
C–H bond orbitals.

The transformation (190) between the MOs is given by the normalized matrix:

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎜
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⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (195)

Since UU† = U†U = 1, the transformation is unitary, which means that the physical in-
variant ρ of equation (121) is unchanged.

The matter was put onto a quantitative basis by Magnasco and Perico (1967, 1968), who
proposed a general procedure for a non arbitrary external localization of atomic and mole-
cular orbitals. They imposed an extremum principle on the sums of certain local orbital
populations which were required to be uniformly localized in given regions of space, in
particular around atoms or between pairs of atoms in the molecule. The orthogonal trans-
formation which maximizes the localization function is obtained through an iterative se-
quence of 2 × 2 rotations between all n(n − 1)/2 possible pairs of doubly occupied MOs.
The method was exceedingly simple, the only prerequisite being the coefficients in the
LCAO expansion of the MOs and the overlap integrals between the basic AOs. Localiza-
tion of few Ransil’s MOs (Ransil, 1960b) for the diatomic molecules LiH, BH, FH, LiF,
BF, CO, Li2, Be2, N2, F2 is given in the 1967 paper, while the polyatomic molecules CH4,
NH3, H2O, H2CO, HCN, C2H6, C2H4, C2H2 and B2H6 are studied in the 1968 paper.
Convergence was found excellent in all cases. The results are very close to those of the
energy localized orbitals obtained by Edmiston and Ruedenberg (1965) by maximizing the
sum of the orbital self-repulsion energies.

7.8 HÜCKEL THEORY

Hückel theory (HT) was originally devised by Hückel (1931a, 1931b, 1932) to deal with
the π electrons of planar conjugated and aromatic hydrocarbons (Coulson, 1961) having a
uniform charge distribution. Recently, it was used by the author to discuss an elementary
approach to a model of the chemical bond (Magnasco, 2002, 2003, 2004a).

HT amounts to a simple LCAO-MO theory of carbon π electrons, where each atom
contributes an electron in its 2pπ AO, assuming orthogonal AOs and with coefficients de-
termined by the Ritz method. The elements of the Hückel secular determinant are given
in terms of just two negative unspecified parameters, the diagonal α (the Coulomb inte-
gral) and the nearest neighbour off-diagonal β (the resonance or bond integral), simply
introduced in a topological way as:

Hμμ = α μ = 1,2, · · ·N
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Hμν = β if ν = μ ± 1, 0 othervise (196)

Sμν = δμν.

Therefore, Hückel theory distinguishes only between linear and closed (rings) chains.
It is useful to introduce the notation:

α − ε

β
= −x (197)

ε = α + xβ, �ε = ε − α = xβ,
�ε

β
= x, (198)

where x measures the π bond energy in units of β (x > 0 means bonding, x < 0 means
antibonding). We shall denote by DN a determinant of order N . There are two general DN

determinants of Hückel’s type, that for the linear chain:

DN =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−x 1 0 · · · 0 0 0
1 −x 1 · · · 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 · · · 1 −x 1
0 0 0 · · · 0 1 −x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(199)

and that for the closed chain (the ring):

DN =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−x 1 0 · · · 0 0 1
1 −x 1 · · · 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 · · · 1 −x 1
1 0 0 · · · 0 1 −x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (200)

Since elementary applications of the theory can be easily found elsewhere (among oth-
ers, Murrell et al., 1965; Salem, 1966; Karplus and Porter, 1970), in the following, after
introducing for the linear chain a simple recurrence relation allowing to express DN in
terms of DN−1 and DN−2, we shall consider the general solution for the linear polyene
chain and the closed polyene chain with N atoms (Coulson, 1938a, 1938b). An application
to the π electron system of the allyl radical (N = 3) and the benzene molecule (N = 6)
will be given next, full details being deserved to Problems 7.15 and 7.16. In Chapter 8,
the benzene π MOs in real form will be obtained as well by use of group theoretical
methods. The Section ends with a short elementary introduction to the band theory of
solids.
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7.8.1 Recurrence Relation for the Linear Chain

Coulson (1938a, 1938b) gave a recurrence relation for the linear polyene chain which
allows us to obtain the expansion of DN in terms of DN−1 and DN−2. Expanding the
determinant DN (199) according to the elements of the first row, we obtain:

DN = −xDN−1 −

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 0 0
0 −x · · · 0 0
. . . . . . . . . . . . . . . . . . .

0 0 · · · 1 −x

∣

∣

∣

∣

∣

∣

∣

∣

, (201)

where the last determinant of order (N − 1) can be expanded according to the elements of
the first column, so that Coulson’s recurrence formula is readily derived:

DN = −xDN−1 − DN−2, (202)

with the starting conditions:

D1 = −x D2 = x2 − 1. (203)

We note that Coulson’s expansion is nothing but the Cauchy expansion of DN in terms of
its first row and first column.

As an example, for N = 3:

D3 = −xD2 − D1 = −x(x2 − 1) + x = −x(x2 − 2) (204)

and we obtain the well known result for allyl.
For N = 4:

D4 = −xD3 − D2 = −x
[− x(x2 − 2)

]− (x2 − 1)

= x2(x2 − 3) + 1 = x4 − 3x2 + 1 (205)

we obtain the result for linear butadiene, and so on.

7.8.2 General Solution for the Linear Chain

Coulson (1938a, 1938b) gave the general solution for the system of homogeneous linear
equations for the linear polyene chain with N atoms:7

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−xc1 + c2 = 0

· · ·
cm−1 − xcm + cm+1 = 0

· · ·
cN−1 − xcN = 0

. (206)

7The secular equations for linear and closed polyene chains, even with different βs for single and double bonds,
were first solved by Lennard-Jones (1937a, 1937b). See also Hückel (1931a).
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The general equation is:

cm−1 − xcm + cm+1 = 0 m = 1,2, · · ·N (207)

with the boundary conditions:

c0 = cN+1 = 0. (208)

The general solution is the “standing” wave:

cm = A exp(imθ) + B exp(−imθ) (209)

provided:

x = 2 cos θ. (210)

(i) From the first boundary condition it is obtained:

c0 = A + B = 0 �⇒ B = −A (211)

cm = A
[

exp(imθ) + exp(−imθ)
]= 2iA sinmθ = C sinmθ (212)

where C = 2iA is a normalization factor.
The general equation gives:

A
{

exp[i(m − 1)θ ] − x exp(imθ) + exp[i(m + 1)θ ]}

+ B
{

exp[−i(m − 1)θ ] − x exp(−imθ) + exp[−i(m + 1)θ ]}

= A exp(imθ)[exp(−iθ) − x + exp(iθ)]
+ B exp(−imθ)[exp(−iθ) − x + exp(iθ)]

= [A exp(imθ) + B exp(−imθ)][exp(−iθ) − x + exp(iθ)]
= cm(2 cos θ − x) = 0 (213)

so that, for cm = 0:

2 cos θ − x = 0 �⇒ x = 2 cos θ (214)

as required.
(ii) From the second boundary condition it follows that:

cN+1 = C sin(N + 1)θ = 0 (215)

(N + 1)θ = kπ k = 1,2, 3, · · ·N (216)
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with k a “quantum number”:

θk = kπ

N + 1
. (217)

Angle θ is “quantized”.
Therefore, the general solution for the linear chain will be:

xk = 2 cos
kπ

N + 1
(218)

cmk = ck sinm
kπ

N + 1
, (219)

the first being the π bond energy of level k (in units of β), the second the coefficient
of the m-th AO in the k-th MO. Problem 7.15 gives the application of the general
formulae (218) and (219) to the allyl case (N = 3).

7.8.3 General Solution for the Closed Chain

In the same paper, Coulson (1938a, 1938b) gave also the general solution for the closed
chain (ring) of N atoms:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−xc1 + c2 + · · · + cN = 0

· · ·
cm−1 − xcm + cm+1 = 0

· · ·
c1 + · · · + cN−1 − xcN = 0.

(220)

The general equation for the coefficients is the same as that for the linear chain:

cm−1 − xcm + cm+1 = 0 m = 1,2, · · ·N (207)

but the boundary conditions are now different:

c0 = cN, c1 = cN+1 �⇒ cm = cm+N, (221)

the last being a periodic boundary condition.
The general solution is now the “progressive” wave:

cm = A exp(imθ), (222)

and the general equation (207) gives:

A
{

exp[i(m − 1)θ ] − x exp(imθ) + exp[i(m + 1)θ ]}= 0 (223)

A exp(imθ)[exp(−iθ) − x + exp(iθ)] = cm(2 cos θ − x) = 0 (224)
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namely, for cm = 0:

x = 2 cos θ (210)

as before.
From the periodic boundary condition it follows:

A exp(imθ) = A exp[i(m + N)θ ] (225)

exp(iNθ) = cosNθ + i sinNθ = 1 (226)

Nθ = k2π (227)

k = 0, ±1, ±2, · · ·

⎧

⎪

⎪

⎨

⎪

⎪

⎩

N

2
N = even

±N − 1

2
N = odd,

(228)

where k is the “quantum number” for the ring. In this case, all energy levels are doubly
degenerate except those for k = 0 and k = N/2 for N = even.

The general solution for the N -ring will be:

xk = 2 cos θk = 2 cosk
2π

N
(229)

cmk = Ak exp

(

im
2πk

N

)

+ ↪→ − ←↩ . (230)

The general MO in complex form will be:

φk = Ak

∑

m

χm exp

(

im
2πk

N

)

(231)

with:

cmk = Ak exp

(

im
2πk

N

)

, c∗
mk = Ak exp

(

−im
2πk

N

)

. (232)

The coefficients can be expressed in real form through the transformation:

cmk − c∗
mk

2i
= Ak sinm

2πk

N
= amk (233)

cmk + c∗
mk

2
= Ak cosm

2πk

N
= bmk, (234)
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giving the MOs in real form as:

φs
k =

∑

m

χmamk, φc
k =

∑

m

χmbmk. (235)

Problem 7.16 gives the application of the general formulae in real form to the benzene case
(N = 6).

7.8.4 Alternant Hydrocarbons

For the allyl radical (linear chain with N = 3), the Hückel secular equation gives:

D3 = −x(x2 − 2) = 0 (236)

with the ordered roots:

x1 = √
2, x2 = 0, x3 = −√

2. (237)

The corresponding MOs are (Problem 7.15):

φ1 = χ1 + √
2χ2 + χ3

2
, φ2 = χ1 − χ3√

2
, φ3 = χ1 − √

2χ2 + χ3

2
.

(238)

Figure 7.6 gives the diagram of the MO levels for the allyl radical and their occupation by
the electrons in the ground state, Figure 7.7 a sketch of the resulting MOs.

The electron configuration of the radical is φ2
1φ2, giving for the electron density:

P(r) = P α
1 + P

β

1 = χ2
1 + χ2

2 + χ2
3 (239)

Figure 7.6 MO diagram for the allyl radical (N = 3).
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Figure 7.7 The three MOs of the allyl radical (N = 3).

Figure 7.8 Electron (a) and spin density (b) MO distributions in allyl radical (N = 3).

a uniform charge distribution (one electron onto each atom), and for the spin density of the
doublet (S = 1/2) with MS = 1/2:

Q(r) = P α
1 − P

β

1 = 1

2

(

χ2
1 + χ2

3

)

. (240)

The unpaired electron (spin α) is 1/2 onto atom 1 and 1/2 onto atom 3, and zero at atom 2.
This MO result is however incorrect, and we shall see in Chapter 10 that the VB calculation
of the spin density in C3H ·

5 shows that there is a negative spin density at the central atom,
in agreement with the results from experimental ESR spectra. The error in the MO result
is due to the lack of electron correlation in the wavefunction.

Figure 7.8 gives the electron and spin density MO distributions in the allyl radical.
The π bond energy (units of β) of the allyl radical is:

�Eπ(allyl) = 2
√

2 = 2.828, (241)

while that of an ethylenic double bond is:

�Eπ(ethylene) = 2. (242)

The difference 0.828 (an attractive stabilizing energy) is called delocalization energy of
the double bond in allyl.

For the π electron system of the benzene molecule (N = 6), the Hückel secular equation
gives:

D6 = x6 − 6x4 + 9x2 − 4 = (x2 − 4)(x2 − 1)2 = 0 (243)
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with the ordered roots:

x1 = 2, x2 = x3 = 1, x4 = x5 = −1, x6 = −2. (244)

The corresponding MOs in real form are (Problems 7.16 and 8.13):

φ1 = 1√
6
(χ1 + χ2 + χ3 + χ4 + χ5 + χ6)

φ2 = 1

2
(χ1 − χ3 − χ4 + χ6) ∼ x

φ3 = 1√
12

(χ1 + 2χ2 + χ3 − χ4 − 2χ5 − χ6) ∼ y

(245)

φ4 = 1√
12

(χ1 − 2χ2 + χ3 + χ4 − 2χ5 + χ6) ∼ x2 − y2

φ5 = 1

2
(χ1 − χ3 + χ4 − χ6) ∼ xy

φ6 = 1√
6
(χ1 − χ2 + χ3 − χ4 + χ5 − χ6).

Figure 7.9 gives the diagram of the MO levels for the π electrons in benzene and their
occupation by the electrons in the ground state, Figure 7.10 a sketch of the real MOs. In
the drawings, we have reported only the signs of the upper lobes of the 2pz AOs.

The charge distribution resulting from the ground state electron configuration φ2
1 φ2

2 φ2
3

is uniform (one electron onto each carbon atom):

P(r) = P α
1 + P

β

1 = χ2
1 + χ2

2 + χ2
3 + χ2

4 + χ2
5 + χ2

6 . (246)

Figure 7.9 MO diagram for benzene (N = 6).
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Figure 7.10 The six real MOs for the benzene ring (N = 6).

As far as the delocalization energy is concerned, we have for benzene:

�Eπ(benzene) = 2 × (+2) + 4 × (+1) = 8 (247)

�Eπ(3 ethylenes) = 3 × (+2) = 6 (248)

so that:

�Eπ(benzene) − �Eπ(3 ethylenes) = 2 (249)

is the delocalization energy (units of β) for the π system of the benzene molecule, while
the stabilization energy due to the closure of the ring is (see Figure 7.11):

�Eπ(benzene) − �Eπ(hexatriene) = 8 − 6.988 = 1.012. (250)

So, the closure of the chain to the ring with N = 6 (no tensions in the σ skeleton) is
energetically favoured, while delocalization of the π bonds is the largest. This explains the
great stability of the benzene ring, where the three delocalized π bonds have a completely
different nature from three ethylenic double bonds.

Figure 7.11 shows the Hückel results for the MO levels resulting for N = 4, 6, 8, 10 in
the case of the open chain and the ring. As a matter of fact, the rings for N = 8 and N = 10
are not planar, N = 8 having a “tube” conformation (the system is not aromatic), N = 10
being unstable in view of the strong overcrowding involving trans H-atoms inside the ring,
what favours its isomerization to di-hydro-naphthalene (Figure 7.12).
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Figure 7.11 Hückel MO levels for the open chain (above) and the ring (bottom) with N = 4, 6, 8, 10.

Figure 7.12 The rings with N = 8 and N = 10.
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Figure 7.13 Alternant (a) and non-alternant (b) hydrocarbons.

We note from Figure 7.11 that the antibonding levels are all symmetrical about zero, and
correspond to the bonding levels changed in sign. So, energy levels occur in pairs, with a
π bond energy ±x, and the coefficients of the paired orbitals are either the same or sim-
ply change sign. These are the properties of alternant hydrocarbons, which are conjugated
molecules in which the carbon atoms can be divided into two sets, crossed and circled, such
that no two members of the same set are bonded together (Figure 7.13a). They are charac-
terized (as we have already seen for allyl and benzene) by a uniform charge distribution,
and do not present any dipole moment in the ground state. In non-alternant hydrocarbons
(Figure 7.13b), two circles (or two crosses) are close together, and these properties are lost.

Ground state azulene has a dipole moment of about 0.4 ea0 directed from ring 5 to 7.

7.8.5 An Introduction to Band Theory of Solids

Increasing the number of interacting AOs increases the number of resulting MOs. For the
polyene chain CN HN+2 the molecular orbital levels, which alvays range between α + 2β

and α−2β , become closer and closer up to transforming in bands (a continuous succession
of molecular levels) which are characteristic of solids.

Using the general formula derived by Coulson (1938a, 1938b) for the orbital energy of
the k-th MO in the N -atom linear polyene chain:

εk = α + 2β cos
π

N + 1
k k = 1,2, · · ·N (251)
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Figure 7.14 Origin of the electronic bands in solids as a limiting case of the infinite linear polyene chain.

the MO levels for N = 2, · · ·12 were calculated and reported in the upper diagram of
Figure 7.14. The limiting values α+2β and α−2β are reached asymptotically when N →
∞. In this case, the energy difference between two successive levels tends to zero, and we
have formation of electronic bands where the MO levels form the continuum depicted in
the lower part of Figure 7.14.

These results, apparent from Figure 7.14, are easily derived from the formula above.

(i) First level (k = 1):

ε1 = α + 2β cos
π

N + 1
lim

N→∞ ε1 = α + 2β. (252)
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(ii) Last level (k = N ):

εN = α + 2β cos
πN

N + 1
= α + 2β cos

π

1 + 1

N

lim
N→∞ εN = α − 2β. (253)

(iii) Difference between two successive levels:

�ε = εk+1 − εk = 2β

(

cos
π

N + 1
(k + 1) − cos

π

N + 1
k

)

= −4β sin
π

2

2k + 1

N + 1
sin

π

2

1

N + 1
, (254)

where use was made of the trigonometric identity:

cosα − cosβ = −2 sin
α + β

2
sin

α − β

2
. (255)

Hence, for N → ∞ �ε → 0, and we have formation of a continuous band of molec-
ular levels.

(iv) For N → ∞, therefore, the polyene chain becomes the model for the 1-dimensional
crystal. We have a bonding band with energy ranging from α + 2β to α, and an anti-
bonding band with energy ranging from α to α − 2β , which are separated by the so
called Fermi level, the top of the bonding band occupied by electrons. It is important
to notice that using just one β , equal for single and double bonds, there is no band
gap between bonding and antibonding levels (bottom left in Figure 7.14). If we admit
|βd | > |βs |, as reasonable, we have a band gap � = 2|βd − βs | (bottom right in Fig-
ure 7.14), which is of great importance in the properties of solids. Metals and covalent
solids, conductors and insulators, semiconductors, all can be traced back to the model
of the infinite polyene chain extended to three dimensions (McWeeny, 1979).

7.9 SEMIEMPIRICAL MO METHODS

The semiempirical MO methods are derived, at different levels of sophistication, from the
LCAO-MO approach by making approximations in terms of parameters whose value is
mostly determined by comparison with experimental results.

7.9.1 Extended Hückel Theory (EHT)

The extended Hückel theory (EHT) is a MO theory for hydrocarbons (even saturated)
proposed by Hoffmann (1963). It makes use of an atomic basis formed by the valence
s and p AOs of carbon and h AOs of the hydrogen atoms. The matrix elements include
now the interactions even between atoms which are not neighbours, and are given as:

Hμμ = αμ μ = s,p,h (256)



312 7. Many-Electron Wavefunctions: Slater, Hartree–Fock and Related Methods

Hμν = βμν = K
αμ + αν

2
Sμν, (257)

where Sμν is the overlap between AOs μ and ν. The α’s for the C atom are taken as the
negative of the ionization potentials of the valence state of C(sp3), namely:

αs = −21.4 eV, αp = −11.4 eV, αh = −13.6 eV. (258)

The expression (257) for the off-diagonal elements of H is called the Wolfsberg–Helmholtz
approximation, where K is a constant whose value is assumed empirically (Hoffmann uses
K = 1.75). At variance with Hückel’s original approach, all off-diagonal terms as well
as all overlaps are taken into account. As in Hückel theory, the total energy ε and the
population matrix P are given by:

ε = 2
occ
∑

i

εi

P = 2R = 2CC† Pμν = 2
occ
∑

i

cμic
∗
νi . (259)

Calculations were done on many simple saturated and conjugated hydrocarbons, espe-
cially for what concerns molecular geometry, ionization energies, and torsional barriers.
The method cannot be used as such for molecules containing heteroatoms.

7.9.2 CNDO Method

The CNDO (Complete Neglect of Differential Overlap) method was developed by Pople et
al. (1965). It is an LCAO-MO-SCF theory limited to valence electrons and a STO minimal
basis. It includes part of the electron repulsion, so that, at variance of Hückel’s theory, can
be used also with molecules containing heteroatoms.

In the Roothaan form of the SCF equations:

Ee =
∑

μ

∑

ν

(

Fμν − 1

2
Gμν

)

Pμν (260)

Pμν = 2
occ
∑

i

cμic
∗
νi (259)

Fμν = 〈χμ|F̂ |χν〉 = 〈χμ|ĥ + Ĝ|χν〉 = hμν + Gμν (261)

hμν = 〈χμ| − 1

2
�2 + V |χν〉 (262)

Gμν = 〈χμ|Ĝ|χν〉 =
∑

λ

∑

σ

Pλσ

[

(
1 2

νμ | λσ ) − 1

2
(

1 2
λμ | νσ )

]

(263)
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the following approximations are introduced:

(i) 2-electron integrals

(λμ|νσ) = γμνδμλδνσ . (264)

It is assumed to neglect completely the differential overlap in the charge density
χλ(r1)χ

∗
μ(r1), in such a way that only the Coulomb integrals survive:

γμν = (χ2
μ|χ2

ν ) =
{(

s2
A|s2

A

)= γAA

(

s2
A|s2

B

)= γAB,
(265)

where the spherical integrals are evaluated analytically using STOs.
To obtain a theory invariant under rotation of axes onto each centre, it is assumed that

the integrals γ depend only on atoms A and B.
The matrix elements of G then become:

Gμμ =
∑

λ

∑

σ

Pλσ

[

(μμ|λσ) − 1

2
(μλ|μσ)

]

=
∑

λ

∑

σ

Pλσ

[

( μμ | λσ
on A on A

or B

) − 1

2
γμμδμλδμσ

]

= −1

2
PμμγAA +

∑

λ

∑

σ

Pλσ ( μμ | λλ
on A on A

or B

)δλσ

= −1

2
PμμγAA +

(A)
∑

λ

PλλγAA +
∑

B( =A)

(B)
∑

λ

PλλγAB

= −1

2
PμμγAA + PAAγAA +

∑

B( =A)

PBB γAB, (266)

where:

PAA =
(A)
∑

λ

Pλλ, PBB =
(B)
∑

λ

Pλλ (267)

are the total electron populations on atom A or B.

Gμμ′ =
∑

λ

∑

σ

Pλσ

[

(μμ′|λσ) − 1

2
(μλ|μ′σ)

]

μ′ = μ, both on A

= −1

2

∑

λ

∑

σ

Pλσ (μμ|μ′μ′)δμλδμ′σ
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= −1

2
Pμμ′γAA. (268)

Gμν =
∑

λ

∑

σ

Pλσ

[

(μν|λσ) − 1

2
(μλ|νσ)

]

μ on A = ν on B

= −1

2

∑

λ

∑

σ

Pλσ γμνδμλδνσ = −1

2
PμνγAB. (269)

(ii) 1-electron integrals

hμμ = 〈χμ| − 1

2
∇2 + V |χν〉 = Uμμ

μ on A
+
∑

B( =A)

VAB (270)

Uμμ = −1

2
(Iμ + Aμ) −

(

ZA − 1

2

)

γAA, (271)

where:

Iμ = ionization potential (we extract an electron from χμ)

Aμ = electron affinity (we add an electron to χμ)

ZA = “core” charge

VAB = (χ2
μ|VB

)= −ZB

(

χ2
μ|χ2

ν

)

= −ZB

(

s2
A|r−1

B

)

CNDO/1 (272)

= −ZBγAB CNDO/2 (273)

hμμ′ = 0 if μ′ = μ both on A (274)

hμν = β0
ABSμν β0

AB = β0
A + β0

B

2
μ on A, ν on B. (275)

CNDO/2 parameters for atoms of the first row are given in Table 7.6.
CNDO/2 turns out to be a better approximation than CNDO/1, and was next extended

to the atoms of the second row (Na, Mg, Al, Si, P, S, Cl) using rather contracted 3d STOs
(Santry and Segal, 1967).

(iii) Matrix elements.
With the previous approximations, the elements of the Fock matrix become:

Fμμ = −1

2
(Iμ + Aμ) +

[

(PAA − ZA) − 1

2
(Pμμ − 1)

]

γAA

+
∑

B( =A)

(PBB − ZB)γAB μ on A (276)
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Table 7.6.

CNDO/2 parameters (eV) for first-row atoms

Atom H Li Be B C N O F

(i) STO orbital exponents/a−1
0

1s 1.2
2s, 2p 0.65 0.975 1.30 1.625 1.95 2.275 2.60

(ii) Ionization potentials and electron affinities/eV
1
2 (Is + As) 7.18 3.11 5.95 9.59 14.05 19.32 25.39 32.37

1
2 (Ip + Ap) 1.26 2.56 4.00 5.57 7.27 9.11 11.08

(iii) Atomic bond parameters/eV
−β0

A
9 9 13 17 21 25 31 39

Fμμ′ = Gμμ′ = −1

2
Pμμ′γAA μ′ = μ, both on A (277)

Fμν = β0
ABSμν − 1

2
PμνγAB μ on A, ν on B (278)

with the secular equation, assuming orthonormal AOs:

|F − ε1| = 0 �⇒ MO-SCF. (279)

CNDO/2 gives reasonable values for molecular geometries, valence angles, dipole mo-
ments and bending force constants. Torsional barriers are usually underestimated, and the
method is not appropriate either for the calculation of spin densities (see INDO) or for
conjugated molecules.

(iv) Molecular energy
The Born–Oppenheimer molecular energy in the CNDO/2 approximation can be written

as:

E = Ee + EN =
∑

A

EA +
∑

A<B

EAB, (280)

where:

EA =
∑

μ

PμμUμμ + 1

2

∑

μ

∑

μ′

(

PμμPμ′μ′ − 1

2
P 2

μμ′

)

γAA (281)

is the energy of atom A (μ, μ′ on A), and:

EAB =
∑

μ

∑

ν

[(

2Pμνβ
0
ABSμν − 1

2
P 2

μνγAB

)]

+
(

ZAZB

RAB

+ PAAVAB + PBBVBA + PAAPBBγAB

)

(282)
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the interaction energy between atom A and atom B (μ on A, ν on B).
When atoms A and B are a great distance apart:

γAB = −Z−1
B VAB = −Z−1

A VBA ≈ 1

RAB

, (283)

and the last term in EAB gives the Coulomb interaction between atom A of effective charge
QA = ZA −PA and atom B of effective charge QB = ZB −PB , namely QAQB/RAB . This
means that CNDO/2 gives the correct electrostatic interactions at large distances between
the atoms in the molecule, and is therefore appropriate to deal with molecules containing
heteroatoms.

7.9.3 INDO Method

In the INDO (Intermediate Neglect of Differential Overlap) method (Pople et al., 1967),
differential overlap is neglected everywhere except for 1-centre 2-electron integrals:

(s2|s2) = (s2|p2) = γAA (284)

which are evaluated analytically from STOs, whereas:

(sp|sp), (p2|p2), (x2|y2), (xy|xy) (285)

are given semiempirical values.
This method accounts better than CNDO for the separation of levels into each atomic

term, and gives reasonable values for the distribution of unpaired spins in radicals. The
method is hence appropriate for the semiempirical calculations of spin densities (ESR,
NMR).

7.9.4 ZINDO Method

The ZINDO (Zerner or spectroscopic INDO) method (Zerner et al., 1980) is a variant of
the INDO technique suitable for calculation of quantities of spectroscopic interest. In this
model, the 2-electron integrals are evaluated by calibrating at a CI-S (single) level the
constant C in the Mataga–Nishimoto expression for γAB :

γAB =
(

RAB

C
+ 2

γAA + γBB

)−1

. (286)

The method allows for good precision calculation of UV and visible spectra, ionization po-
tentials, polarizabilities and hyperpolarizabilities. Apart from rare gases, the parametriza-
tion was done for the first three rows of the periodic system and extended to the elements
of the first transition series.
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7.10 POST-HARTREE–FOCK METHODS

“Hartree–Fock is here, what next?” Alberte Pullman optimistically said during an interna-
tional meeting on Quantum Chemistry in Paris, July 1970. We saw before that in the upper
part of our scale of Figure 7.2 of Section 7.6 we placed methods going beyond Hartree–
Fock, the so called Post-Hartree–Fock methods. It is now time to move along the ordinate
axis of Pople’s two-dimensional chart of Quantum Chemistry. We shall not be exhaustive
in treating such a large subject, rather we shall emphasize some aspects of a few methods
which, mostly starting from the uncorrelated Hartree–Fock level, attempt to reach chem-
ical accuracy (1 kcal mol−1 or less) in the atomization energies. We shall outline first the
principles of configuration interaction (CI) and multiconfiguration SCF (MC-SCF) tech-
niques, then turning to the classical work by James–Coolidge and Kołos–Wolniewicz, who
gave accurate non-orbital treatments of the H2 molecule, explicitly including the inter-
electron distance in the wavefunction. Next, we shall examine in some detail the second-
order Møller–Plesset (MP2) theory, which belongs to the family of many-body perturbation
theory (MBPT) techniques. Recent improvements are the MP2-R12 explicitly correlated
methods by Kutzelnigg and Klopper, and the explicitly correlated coupled cluster methods
(CC-R12) by Kutzelnigg, Klopper and Noga. A glance at second quantization techniques,
mostly used by solid state physicists, and at the today widely used density functional theory
(DFT) of Hohenberg, Sham and Kohn, concludes this Section.

7.10.1 Configuration Interaction (CI)

For a given basis of atomic or molecular spin-orbitals, we construct all possible configura-
tions (Full-CI) in the form of many-electron Slater dets, which are then linearly combined
by the Ritz method to give the CI multiconfigurational wavefunction:

�(x1,x2, · · ·xN) =
∑

κ

�κ(x1,x2, · · ·xN)Cκ. (287)

A selection of the possible configurations can be done on symmetry grounds (molecular or
spin), because only configurations belonging to the same symmetry and to the same eigen-
values S, MS of Ŝ2 and Ŝz can have a non-vanishing interaction (Sections 8.6.1 and 8.6.2
of Chapter 8).

In molecules, the multideterminant functions built from the atomic spin-orbitals which
are eigenstates of Ŝ2 are called valence bond (VB) structures, in so far as they describe
the formation of covalent or ionic bonds between pairs of AOs (or their hybrids) of the
different atoms in the molecule. This matter will be further discussed in Chapter 10. Recent
advances for dealing with large-scale CI using the techniques of the unitary group can be
found elsewhere (McWeeny, 1989).

The central problem of any CI approach to the correlation problem is the enormous
number of configurations which are needed in the attempt to obviate to the slowness of
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convergence of the CI expansion, due to the difficulty of accounting for the cusp conditions
for each electron pair:

lim
rij →0

(

1

�0

∂�

∂rij

)

= 1

2
. (288)

The cusp conditions on the wavefunction � are needed to keep � finite even in presence
of the singularities in the Coulomb potentials present in Ĥe in the limit rij → 0. Near the
singular points we can write the expansion:

� = �0
(

1 + arij + br2
ij + cr3

ij + · · · ) (289)

for the pair of particles i and j . Then:

∂�

∂rij
= �0

(

a + 2brij + 3cr2
ij + · · · ) (290)

1

�0

∂�

∂rij
= a + 2brij + · · · (291)

lim
rij →0

(

1

�0

∂�

∂rij

)

= a, (292)

the cusp condition for the pair of particles i and j . a is a constant, given by a = 1/2 if i, j

are both electrons, a = −ZB if i is a nucleus (of charge +ZB ) and j an electron (Kato,
1957; Pack and Byers Brown, 1966).

In Table 7.7 we give some results (Kutzelnigg, 1985) showing the difference in con-
vergence between the CI corrections to the hydrogen-like energy of ground state He(1s2)
in the conventional case (upper part of Table 7.7), and in the case of a modified func-
tion satisfying the cusp condition (lower part of Table 7.7). The accurate value is E =
−2.903 724 377 033Eh (Frankowski and Pekeris, 1966), improving upon the earlier result
by Pekeris (1958) E = −2.903 724 352Eh. For the cusp-corrected function, �0(1 + 1

2 r12),
the improvement in convergence is shown by the fact that the result for l = 2 has an error
100 times less than that of the conventional expansion, while the result for l = 4 has an
error less than 1μEh with just 156 functions, instead of about 8000.

7.10.2 Multiconfiguration SCF (MC-SCF)

MC-SCF is a multideterminant theory where the orbitals in the wavefunction are optimized
simultaneously with the coefficients of the configurations (Wahl and Das, 1977). The or-
bitals of a few selected configurations (Optimized Valence Configurations, OVC) are usu-
ally adjusted iteratively until some kind of self-consistency is reached, together with the
optimization of the linear coefficients. Even if rather complicated in its implementation,
the method allows to predict a reasonable well depth in He2 (34.2 × 10−6 Eh), and reason-
ably accurate atomization energies as Table 7.8 below shows for the ground states of a few
diatomics (Wahl and Das, 1977).
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Table 7.7.

Conventional and cusp-corrected CI expansions for ground state He(1s2)

l Configurations E/Eh Error/10−3 Eh

(i) Conventional CI expansion
– �0 −2.75 153.724
0 spherical single excitations −2.861 680a 42.044b

0 +s2 −2.879 027 24.697
1 +p2 −2.900 513 3.211
2 +d2 −2.902 765 0.959
3 +f 2 −2.903 319 0.405
4 +g2 −2.903 517 0.207
5 +h2 −2.903 604 0.120
∑≥ 6 −2.903 723c 0.001

(ii) Cusp-corrected CI expansion
– �0(1 + 1

2 r12) −2.876 582d 27.142
0 +s2 −2.902 950 0.774
1 +p2 −2.903 678 0.046
2 +d2 −2.903 715 0.009
3 +f 2 −2.903 722 0.002
4 +g2 −2.903 724e 0.000
Accurate −2.903 724f

aHF result. bCorrelation energy. c8000 interconfigurational functions. d Eckart-like accuracy. e156 intercon-
figurational functions. f Pekeris (1958).

Table 7.8.

Atomization energies De (10−3 Eh) from optimized valence MC-SCF calcula-
tions for the ground states of some diatomics

Molecule Re/a0 MC-SCF Experiment

H2 1.40 170.2 174.5
Li2 5.089 36.4 37.9
O2 2.31 125.0 186.7
F2 – 61.4 61.7
CH 2.086 126.1 134.1
NH – 123.9 124.9
OH 1.840 166.5 170.2
FH 1.733 227.1 225.9

Atomization energies are reproduced to better than 2 kcal mol−1, near to chemical accu-
racy, with the exception of O2 where the error is sensibly larger.
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7.10.3 Explicitly Correlated Non-Orbital Methods

We include in this Section the classical work by James and Coolidge (1933) on the H2
molecule, the more recent work on H2 by Kołos and Wolniewicz (1964, 1965) on the
ground state and by Kołos and Rychlewski (1990) on the excited triplet state, up to the
recent extremely accurate H2 ground state calculations by Wolniewicz (1993). An attempt
to extend this approach to polyatomic molecules was made by Clementi and his group (Ur-
daneta et al., 1988) in terms of Cartesian Gaussians. These functions seem the appropriate
basis for CI calculations including explicitly r12, since in this case the many-electron inte-
grals can be calculated efficiently in the polycentric case (Largo-Cabrerizo and Clementi,
1987; Largo-Cabrerizo et al., 1987).

(i) Inui wavefunction.
To illustrate the method it is convenient to start from the Inui (1938) work on H2, where

the un-normalized 2-electron wavefunction is expressed directly in terms of the spheroidal
coordinates of the two electrons:

�± = 1

2π
exp[−δ(μ1 + μ2)]

{

exp[γ (ν1 − ν2)] ± exp[−γ (ν1 − ν2)]
}

, (293)

where δ, γ are optimizable scale factors, the + sign refers to the 1�+
g ground state, the −

sign to the 3�+
u excited triplet state, and μ, ν the usual spheroidal coordinates:

μ = rA + rB

R
, ν = rA − rB

R
. (294)

The Inui wavefunction (293) is a generalization of the well known Heitler–London wave-
function (Chapter 10) when the two basic one-centre AOs are replaced by two-centre
Guillemin–Zener AOs (Problem 7.17). This function can be considered as the first (00000)
term of an expansion in powers of the spheroidal coordinates of the two electrons and
the interelectronic distance r12, expansion which generalizes the classical wavefunction
of James and Coolidge (JC) to include in the 2-electron function the dependence on
cosh(ν1 − ν2) (1�+

g state) or sinh(ν1 − ν2) (3�+
u state). At variance with the original JC

function, this dependence allows to describe correctly the dissociation of the ground state,
and to represent in an adequate way the triplet state in the Van der Waals region.

(ii) James–Coolidge wavefunction.
The un-normalized JC function for H2 is:

�(1,2) =
∑

i

[�i(1,2) + �i(2,1)]ci, (295)

where ci are linear variational parameters, and the basis functions �i are given by:

�i = 1

2π
exp[−δ(μ1 + μ2)]μm

1 μn
2ν

j

1 νk
2ρp = (mnjkp), (296)
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with an optimizable scale factor δ, ρ = 2r12/R, mnjkp positive or zero integers with j+
k = even for the ground state. This function includes explicitly the electron correlation in
the wavefunction through the powers of r12, but, even being for that time (1933) a great
success for the accurate description of the bond energy in H2 (�E = −0.173 465Eh at
R = 1.4a0 with 13 basis functions and δ = 1), cannot describe correctly the dissociation
of the H2 molecule because the cosh term is lacking, nor the excited triplet state because
of the lacking of the sinh term.

(iii) Kołos–Wolniewicz wavefunction.
The basis functions �i are now:

�i = 1

2π
exp(−δμ1 − δμ2)[exp(γ ν1 + γ ν2)

+ exp(−γ ν1 − γ ν2)]μm
1 μn

2ν
j

1 νk
2ρp, (297)

where δ, δ, γ , γ are optimizable scale factors. Putting δ = δ, γ = −γ , we obtain the
exponential part of the Inui function, while for δ = δ, γ = γ = 0 we obtain the original
basis of James–Coolidge. This function is the best possible for H2 (when all parameters are
variationally optimized), describes correctly the dissociation of H2 and the excited triplet
state, provided we take the – sign in the hyperbolic part and j +k = odd in the powers of ν.
Table 7.9 collects the results obtained during the years with this kind of wavefunctions for
the 1�+

g ground state of H2 at Re = 1.4a0, the minimum of the potential energy curve.
It should be noted that KSM (Kołos et al., 1986) used a 249-term expansion of the form

(297) in the region 0.2 ≤ R ≤ 4.8a0 and a 72-term expansion containing 30 new terms in
the region 4.8 ≤ R ≤ 12a0, resulting in a slight discontinuity near R = 4.8a0. To avoid this

Table 7.9.

Improvements in the calculation of molecular energy for the H2 (1�+
g ) ground state for James–Coolidge gener-

alized wavefunctions

Authors N δ δ γ γ E/Eh

HL/27b 1a 0.7 0.7 0.7 0.7 −1.105 47
WANG/28c 1a 0.819 0.819 0.819 0.819 −1.139 05
INUI/38d 1a 0.852 0.852 0.672 0.672 −1.149 15
JC/33e 13 1 1 0 0 −1.173 465
KW/64f 54 1 1 0 0 −1.174 4699
MSF/93g 118 0.852 0.852 0.672 0.672 −1.174 472
KW/65h 80 1.072 1.072 0 0 −1.174 474 4
BC/78i 249 1.117 1.117 0 0 −1.174 475 65
KSM/86j 249 1.311 1.135 0.670 0.033 −1.174 475 668
W/93k 279 1.311 1.135 0.670 0.033 −1.174 475 671

aSingle term wavefunction, m = n = j = k = p = 0. bHeitler and London (1927). cWang (1928). d Inui (1938).
eJames and Coolidge (1933). f Kołos and Wolniewicz (1964). gMagnasco et al. (1993). hKołos and Wolniewicz
(1965). iBishop and Cheung (1978). j Kołos et al. (1986). kWolniewicz (1993).
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problem, Wolniewicz (1993) combined the two sets, diagonalizing the Hamiltonian for all
internuclear distances in the space spanned by the unique set of N = 279 basis functions.

7.10.4 Second-Order Møller–Plesset (MP2) Theory

MP2 belongs to the family of the so called many-body perturbation theories (MBPT)
which, starting from a HF wavefunction as a reference, take into consideration multiple
excitations from the unperturbed occupied orbitals to the unoccupied (empty) ones (Szabo
and Ostlund, 1989). In this way, energy corrections are obtained which directly account
for some electron correlation. The theory is often expressed using second quantization and
diagrammatic techniques (McWeeny, 1989) which are widely used in many-body physics.
The theory can be extended to any order of perturbation theory, the low-order terms in the
expansion having been first given by Møller and Plesset (1934). We shall briefly outline
the second-order theory using the more familiar language of Slater dets.

MP2 is a second-order perturbative theory (Chapter 11) having Ĥ = Ĥ0 + V , where:

(i) Unperturbed Hamiltonian

Ĥ0 =
∑

i

F̂i (298)

the sum of 1-electron Fock operators;

(ii) Unperturbed wavefunction

�0 = �HF
0 (299)

the single determinant HF wavefunction;

(iii) Perturbation

V = 1

2

∑

i,j

′ 1

rij
−
∑

i

(Ji − K̂i) (300)

the deviation of the instantaneous electron repulsion from its average value at the HF level.
The energy in first order (Problem 7.18):

E0 + E1 = EHF
0 (301)

is nothing but the HF energy, so that the second-order correction to the energy in the MP
theory, MP2, gives directly the correlation energy to this level of approximation. It can be
shown (Problem 7.19) that a singly excited determinant has vanishing matrix element of
the perturbation V with the Hartree–Fock �0:

〈�(ψi → ψp)|V |�HF
0 〉 = 0 (302)
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a relation which is known as Brillouin’s theorem. In equation (302), �(ψi → ψp) denotes
a Slater det where the i-th occupied orbital is replaced by the p-th unoccupied one. EMP

2 is
hence expressed in terms of biexcitations from �0 (ψi → ψp , ψj → ψq , with i, j occupied
orbitals in �0, p,q unoccupied orbitals). By adding over all possible biexcitations, it is
obtained:

E2 = 〈�1(biexcitations)|V |�HF
0 〉

= −
∑

κ

|〈�κ(ψi → ψp,ψj → ψq)|V |�HF
0 〉|2

�Eκ

= −1

4

occ
∑

i,j

unocc
∑

p,q

|〈ψpψq | 1
r12

|ψiψj 〉 − 〈ψqψp| 1
r12

|ψiψj 〉|2
(εp − εi) + (εq − εj )

= −1

4

occ
∑

i,j

unocc
∑

p,q

|( 1 2
ψiψp | ψjψq ) − (

1 2
ψiψq | ψjψp )|2

(εp − εi) + (εq − εj )
< 0, (303)

where (εp − εi) and (εq − εj ) are (positive) orbital excitation energies, the first integral
represents the Coulomb repulsion between the pair of transition densities {ψi(x1)ψ

∗
p(x1)}

and {ψj(x2)ψ
∗
q (x2)}, the second is the exchange integral. In the last row we used for the

2-electron integrals the charge density notation (Chapter 13). In expression (303) all sum-
mations are unrestricted. Table 7.10 gives some SCF and MP2 results for molecular energy
and other observable properties for ground state H2O (Bartlett et al., 1979) obtained us-
ing the (5s 4p 2d|3s 1p) 39-function STO basis set of Rosenberg and Shavitt (1975). The
nearly HF molecular energy is seen to be 2.64 × 10−3 Eh higher than the best HF cal-
culation to date for H2O (Lazzeretti, 2004), E = −76.066 87Eh, obtained with the GTO
[13s 10p 5d 2f |8s 4p 1d] contracted basis set, and which is very close to the estimated HF
limit of E = −76.067 5Eh. It is apparent from Table 7.10 the great improvement of MP2
results for the properties, but not for the correlation energy, which is only 76% of the es-

Table 7.10.

SCF and MP2 resultsa for molecular energy and other observables for ground state H2O (1A1)

Property SCF MP2 Exact

E/Eh −76.064 23 −0.2818 −0.370
Re/a0 1.776 1.811 1.809
2θe/

o 106.1 104.4 104.5
frr /105 dyne cm−1 9.79 8.55 8.45
fθθ 0.88 0.78 0.76
μ/ea0 0.785 (0.750)b 0.728

aBartlett et al. (1979). bRosenberg et al. (1976) (SD).
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timated accurate value of the last column. Higher order corrections (MP3 = −0.2850Eh,
MP4 = −0.2882Eh) improve little upon this result. For this reason, the MP method was
improved in recent years by the Kutzelnigg group, to include explicitly the r12-term in the
wavefunction, as we shall see in the next Section.

7.10.5 MP2-R12 Method

For closed-shell states of atoms and molecules, Kutzelnigg and Klopper (KK, 1991) de-
rived formulae which include linear r12-dependent terms in the MP2 or MP3 (third-order
MP theory) methods. Two variants of the method were proposed, (i) a standard approxima-
tion B which ensures that in the atomic case the error due to the truncation of the basis set
at some angular quantum number L goes as ∝ L−7, instead of L−1 as in conventional cal-
culations without r12 terms (see the final considerations of Section 7.10.1 and Table 7.7),
and (ii) another standard approximation A which has an error as ∝ L−5, but is simpler
and better balanced for basis sets of moderate size. The explicit expressions for Møller–
Plesset perturbation theory of second and third order with linear r12 terms, MP2-R12 and
MP3-R12 respectively, are given explicitly in the two standard approximations.

It must be noted that in the modified theory, in addition to traditional and new 2-electron
integrals (Chapter 13), new 3-electron and 4-electron integrals arise, like:

〈ϕ(1,2,3)|r12g13|ϕ(1,2,3)〉 g13 = 1

r13
(304)

〈ϕ(1,2,3)|r12g13r23|ϕ(1,2,3)〉 (305)

〈ϕ(1,2,3,4)|r12g23r34|ϕ(1,2,3,4)〉. (306)

Closed formulae for these integrals over STOs are available for the atomic case (Fromm
and Hill, 1987; Remiddi, 1991), but are exceedingly complicated and their evaluation is
very time consuming. The situation is even worst for molecules, where polycentric inte-
grals occur. To get out of these bottlenecks, KK suggested that, making the hypothesis of
“completeness insertion”:

〈ϕ1(1)ϕ2(2)ϕ3(3)|r12g13|ϕ1(1)ϕ2(2)ϕ3(3)〉
=
∑

pqr

〈ϕ1(1)ϕ2(2)ϕ3(3)|r12|ϕp(1)ϕq(2)ϕr(3)〉

× 〈ϕp(1)ϕq(2)ϕr(3)|g13|ϕ1(1)ϕ2(2)ϕ3(3)〉
=
∑

pqr

〈ϕ1(1)ϕ2(2)|r12|ϕp(1)ϕq(2)〉δ3r

× 〈ϕp(1)ϕr(3)|g13|ϕ1(1)ϕ3(3)〉δ2q

=
∑

p

〈ϕ1(1)ϕ2(2)|r12|ϕp(1)ϕ2(2)〉〈ϕp(1)ϕ3(3)|g13|ϕ1(1)ϕ3(3)〉, (307)
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Table 7.11.

SCF, MP2, MP2-R12 results (Eh)a for small molecules of the first row at the experimental geometry

Molecule SCF MP2 MP2-R12 Exact

H2 −0.033 4 −0.034 2 −0.040 8
CH4 −40.215 68 −0.237 90 −0.271 82
NH3 −56.222 85 −0.280 00 −0.320 65
H2O −76.065 80 −0.330 4 −0.360 50 −0.370
HF −100.070 22 −0.339 75 −0.378 84
Ne −128.546 96 −0.350 75 −0.388 55

aGTO basis sets:
H2: (14s 8p 4d 1f ) → [9s 8p 4d 1f ].
CH4, NH3: (12s 7p 3d 1f |7s 2p) → [8s 5p 3d 1f |5s 2p].
H2O: (12s 7p 4d 2f |10s 3p 1d) → [9s 7p 4d 2f |7s 3p 1d].
HF: [14s 9p 3d 1f |10s 3p 1d].
Ne: [16s 10p 7d 3f ].

the difficult 3-electron integral can be reduced to an infinite series of products between
more tractable 2-electron integrals. However, this introduces some errors, especially for
incomplete (unsaturated) basis sets. The MP2-R12 method with STO or GTO bases was
applied (Termath et al., 1991) to the ground state of the atomic closed-shell systems He,
Be, Ne, Mg, Ar, Ca, Cu+, Zn+2, Kr. STO bases with l ≤ 5 give errors not greater than
1% of the estimated limits, while about the same error is obtained with GTO bases with
l ≤ 3. The MP2-R12 method with GTO bases was applied (Klopper and Kutzelnigg, 1991)
to the ground state of the closed-shell molecules H2, LiH, HF, H2O, NH3, CH4, Be2, N2,
F2, C2H2 at their equilibrium geometries. In all cases, the correlation energies are now
evaluated within few % of the limiting values expected for these systems. For He2 a lo-
calized representation gives good results for the dispersion interaction at two internuclear
distances. At the minimum of the potential well (R = 5.6a0) the SCF repulsive energy
(+29.2 × 10−6 Eh) is corrected by MP2 to −17.7 × 10−6 Eh, and to the very accurate
value of −33.9 × 10−6 Eh by MP2-R12 in the standard approximation B. The potential
curve of Be2 vs R is also significantly improved by MP2-R12 as compared to conventional
MP2. Table 7.11 illustrates these results for H2 and for the ground state of the ten-electron
molecules of the first row, CH4, NH3, H2O, HF, and the united atom Ne. The improvement
due to the introduction of the r12 term into MP2 is evident from Table 7.11. Where com-
parison with exact or accurate estimated values is possible, we see that over 97% of the
correlation energy is accounted for H2O, while for H2 (84%) there is about a 2% improve-
ment over MP2.

7.10.6 CC-R12 Method

The explicitly correlated coupled cluster method (CC-R12) was recently developed by
Noga and Kutzelnigg (1994). It belongs to the family of the so called R12 methods we
have seen in the preceding Sections and, in its most evolute form to date, the CCSD(T)-
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Table 7.12.

Comparison between atomization energies De (10−3 Eh) obtained from different correlated-R12 calculations in
the (s p d f g h | s p d f ) GTO basis and experimental results

Molecule SCF MP2-R12 CCSD(T)-R12 Experiment

NH3 324.1 454.5 475.0 475.3
H2O 255.1 378.6 371.5 371.4
HF 159.4 233.1 226.0 225.9
N2 191.2 385.2 364.3 364.2
CO 289.7 435.6 415.1 413.9
F2 −49.3 69.4 61.8 62.2

R12 method, gives values of the atomization energies for small molecules which are almost
in perfect agreement with experiment. In CC-R12 theory, we start from the single deter-
minant HF reference function �HF

0 and construct the exponential ansatz for the variational
wavefunction:

� = exp(Ŝ)�HF
0 . (308)

In conventional CC theories, Ŝ ≡ T̂ is usually a cluster excitation operator which creates
substituted (excited) determinants by replacing the occupied MOs by unoccupied (vir-
tual or empty) ones. In CC-R12 theory, Ŝ not only includes T̂ , but also what we call
the r12-contribution to the double-excitation cluster operator, i.e. Ŝ = T̂ + R̂. The oper-
ator R̂kl

ij creates unconventionally substituted determinants in which a pair of occ orbitals
i, j is replaced by another pair of occ orbitals k, l multiplied by the interelectronic dis-
tance r12. We saw in the preceding Section that, if the 1-electron basis set is saturated
for the lower angular momenta (l), the difficult many-electron integrals, which would oth-
erwise enter the working equations, either disappear or can be neglected. The theory is
developed using diagrammatic techniques. The theory was applied (Tunega et al., 1997;
Tunega and Noga, 1998) to the calculation of accurate values of static polarizabilities
(second-order properties, see Chapter 11) for atomic Be(1S) and molecular LiH(1�+).
Table 7.12 gives a comparison of SCF, MP2-R12 and CCSD(T)-R12 calculated values
(Noga et al., 2001) with experimental results for the atomization energies of a few simple
molecules of the first row. The calculations were carried at the highly accurate geometries
optimized at the CCSD(T) level. The last column gives the experimental equilibrium non-
relativistic atomization energies at T = 0◦ K. It is seen that the CCSD(T)-R12 values are
in perfect agreement with experiment. All values are referred to the bottom of the potential
energy surface.

The performance of the explicitly correlated coupled cluster method was examined in
detail by Noga, Tunega, Klopper and Kutzelnigg (NTKK) (Noga et al., 1995) for the
four electron systems Be, Li−, LiH, and, more recently, by Bukowski, Jeziorski and Sza-
lewicz (BJS) (Bukowski et al., 1999) for the two- and four-electron systems He, Li+, H2,
Be, Li−, LiH. Table 7.13 gives some results for the atomic Be(1S) and the molecular
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Table 7.13.

Benchmark resultsa for the correlation energies (Eh) of prototype atomic and molecular four-electron systems

Be(1S) LiH(1�+)

SCF −14.573 012b −7.987 346b

(i) Conventional
MP2 −0.074 292 −0.071 006
MP3 −0.084 405 −0.079 234
MP4 −0.088 888 −0.081 353
CCSD −0.092 540 −0.082 035
CCSD(T) −0.093 190 −0.082 199

(ii) R12
MP2 −0.076 248 (−0.076 358)c −0.072 869 (−0.072 890)c

MP3 −0.085 292 (−0.085 225) −0.079 989 (−0.079 990)

MP4 −0.089 998 (−0.089 801) −0.082 307 (−0.082 232)

CCSD −0.093 661 (−0.093 665) −0.082 980 (−0.082 990)

CCSD(T) −0.094 293 −0.083 143

aGTO basis sets:
Be: 16s 10p 6d 5f 4g; Li: 11s 8p 6d 5f ; H: 9s 8p 6d 5f .
bNoga et al. (1995). cBukowski et al. (1999).

LiH(1�+, R = 3.015a0) cases taken from NTKK and BJS. The values by BJS (in paren-
thesis) are believed to be the most accurate available to date.

7.10.7 A Short Outline of Second Quantization

It seems the time for giving here a short outline of second quantization techniques, for
more details the reader being referred to elsewhere (Longuet-Higgins, 1966; McWeeny,
1989).

For an independent particle model in which spin-orbitals ψi, ψj , · · ·ψp are occupied
by electrons, a many-electron wavefunction �ij ···p(x1, x2, · · ·xN) is the Schroedinger rep-
resentation of a state vector or ket, denoted by |i j · · ·p〉, where the labels indicate the
spin-orbitals to which the electrons are assigned. The wavefunction itself is a function of
the electronic variables, and there is a one-to-one correspondence between state vector and
wavefunction:

|i j · · ·p〉 ←→ �ij ···p(x1, x2, · · ·xN). (309)

Instead of spin-orbital labels, we could alternatively give the occupation numbers (0,1)

of the whole ordered set of available spin-orbitals. For example, |011010 · · ·〉 would stand
for the 3-electron state with electrons in ψ2, ψ3 and ψ5, the corresponding Schroedinger
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wavefunction being:

�2,3,5(x1,x2,x3) = ‖ψ2(x1)ψ3(x2)ψ5(x3)‖. (310)

When a state vector is represented by a linear combination of such kets, we speak of the
occupation number representation: the corresponding vector space, whose basis vectors
comprise all possible kets, corresponding to any number of electrons, is called the Fock
space. The Fock space, thus, focuses attention on the state vectors themselves, rather than
on the wavefunctions that represent them, and extends the space to include state vectors
with any number of electrons. The approach originated in field theory, where the “particles”
are photons that are created or annihilated in emission or absorption processes, and is
largely used in solid state theoretical physics. The use of Fock space is commonly described
as the method of second quantization.

Further details can be found in McWeeny (1989; see also Longuet-Higgins, 1966), where
expressions are given for the matrix elements of the operators ĥ and g in terms of creation
and annihilation operators, a†

κ = a+
κ and aκ = a−

κ , satisfying the anticommutation rela-
tions:

a−
κ a+

λ + a−
λ a+

κ = δκλ. (311)

The expectation value of the electronic energy is:

Ee =
∑

r,s

〈a+
r a−

s 〉hrs + 1

2

∑

r,s,t,u

〈a+
r a+

s a−
u a−

t 〉( 1 2
tr | us ) (312)

whatever the number of electrons.

7.10.8 Density Functional Theory (DFT)

DFT is based on two theorems, proved by Hohenberg and Kohn (1964), and on a compu-
tational scheme proposed by Kohn and Sham (1965).

(i) The first theorem states that the electronic structure of the ground state of a system
(�0 and all derived physical observables, among which E0) is uniquely determined
by the ground state electronic density, ρ0(r).

(ii) The second theorem states a variational criterion for the determination of ρ0 and E0
starting from an arbitrary function ρ(r) constrained by the normalization condition:

∫

drρ(r) = N (313)

E[ρ] ≥ E[ρ0], E[ρ0] = E0 (314)

where N is the total number of the electrons of the system. E0 can therefore be found
by minimizing with the method of Lagrange multipliers the functional

E[ρ] = Ven + J + Ekxc + Vnn (315)
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with respect to arbitrary infinitesimal changes in the form of the function ρ(r).
In this expression, the different functionals are:

Ven[ρ] =
∫

drV (r)ρ(r) (316)

the average potential energy of ρ in the field of the nuclei, with:

V (r) = −
∑

α

Zα

|r − rα| ; (317)

J [ρ] = 1

2

∫

drJ (r)ρ(r) = 1

2

∫ ∫

drdr′ ρ(r′)
|r − r′|ρ(r) (318)

the Coulomb interaction of the ρ with itself;

Ekxc[ρ] =
∫

drG(r; [ρ]) (319)

a term which describes the kinetic (k)–exchange (x)–correlation (c) energy of the ρ

in terms of G(r), a universal functional of the ρ. The analytic form of G(r) is not
known, but it can be given different approximations (e.g. LDA, B-LYP, etc.);

Vnn = 1

2

∑

α

∑

β

ZαZβ

|rα − rβ | (320)

the nuclear repulsion.
We note that the different potentials occurring in the previous formulae are nothing

but the functional derivatives of the different terms making E[ρ] with respect to the
ρ itself:

δVen[ρ]
δρ(r)

= V (r) (321)

δJ [ρ]
δρ(r)

= J (r) =
∫

dr′ ρ(r′)
|r − r′| (322)

δT [ρ]
δρ(r)

= −1

2
∇2 (323)

the kinetic energy operator. As an example, from (318):

δJ [ρ] = 1

2

∫

drJ (r)δρ(r) + 1

2

∫

dr δJ (r)ρ(r) =
∫

drJ (r)δρ(r) (324)

since the two terms in (324) are equal (Problem 7.10). Then equation (322) follows.
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The constrained variational problem for the energy is:

δE[ρ] − λδ

[∫

drρ(r) − N

]

= 0 (325)

δE[ρ] − λ

∫

dr δρ(r) = 0, (326)

so that the Euler–Lagrange parameter will be:

λ = δE[ρ]
δρ(r)

. (327)

For the infinitesimal variation of the energy functional (315) we have:

δE[ρ] = δVen[ρ] + δJ [ρ] + δT [ρ] + δVxc[ρ]
=
∫

drV (r)δρ(r) +
∫

drJ (r)δρ(r)

+
∫

dr
[

−1

2
∇2δρ(r; r′)

]

r′=r
+
∫

drVxc(r)δρ(r), (328)

so that the functional derivative will be:

δE[ρ]
δρ(r)

= −1

2
∇2 + V (r) + J (r) + Vxc(r) = −1

2
∇2 + Veff(r), (329)

where the effective potential at r:

Veff(r) = V (r) + J (r) + Vxc(r), (330)

is the sum of the electron-nuclear attraction potential, plus the Coulomb potential of
the electrons of density ρ, plus the exchange-correlation potential for all the elec-
trons. It is seen that the effective potential (330) differs from the usual Hartree–Fock
potential by the still undetermined correlation potential in Vxc .

(iii) The Kohn–Sham method is based on the two previous theorems but allows us to cal-
culate explicitly the most important part of the kinetic energy. It consists in solving
the parallel problem for a system of N pseudo-independent electrons having the same
electron density of that of the actual system:

ρ(r) = 2
∑

i

|φi(r)|2, (331)

where the Kohn–Sham (KS) orbitals φi(r) satisfy the so called KS equations:

ĥKS(r)φi(r) = εi φi(r) i = 1,2, · · ·n, (332)
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where:

ĥKS(r) = −1

2
∇2 + V KS(r) (333)

is the 1-electron KS-hamiltonian, and:

V KS(r) = V (r) + J (r) + Vxc(r) (330)

the KS effective potential (330). The Kohn–Sham equations are solved iteratively until
self-consistency in a way similar to HF.

We can make the following considerations on the KS-DFT.

1. The KS scheme gives directly E0 and ρ0 exact for the ground state. The �KS built as
the determinant of doubly occupied KS φi has no whatever relation with the true �0,
except that it gives the same ρ0.

2. The crucial problem in the KS scheme is the definition of the exchange-correlation
potential Vxc(r):

Vxc(r) = −1

2

∫

dr′ ρ(r; r′)
|r − r′| P̂rr′ + Vc(r). (334)

Even if Vxc cannot be exactly defined, it can be given semiempirical or ab-initio eval-
uations. At variance with what occurs in the conventional quantum chemical methods,
Exc[ρ] cannot be improved in a systematic way. Usually, in DFT we start from a model
for which an exact solution exists: the uniform electron gas or local density approxima-
tion (LDA). The results are:

T [ρ] = CF

∫

drρ(r)5/3, CF = 3

10
(3π2)2/3 (335)

Ex[ρ] = −Cx

∫

drρ(r)4/3, Cx = 3

4

(

3

π

)1/3

. (336)

Ex[ρ] is given by an expression due to Vosko et al. (1980), based on a two-point Padé
approximant (Baker, 1975) in the RPA approximation.

3. One of the difficulties of DFT is that the integrals which arise in the KS equations
cannot be evaluated by analytic means because of the fractional powers of the density.
We must therefore resort to numerical quadrature techniques.

4. Given a regular density, any functional of ρ is a function of ρ and its derivatives. The
LDA approximation can then be seen as the first term in a Taylor expansion involv-
ing the gradients of the exact functionals. Therefore, Vxc[ρ] will depend on ρ(r) and
on |∇ρ(r)|. This allows us to go beyond the LDA approximation, as with the B-LYP
(Becke–Lee–Yang–Parr) correlation potential.

5. The LDA approximation is not adequate for making predictions useful in Computa-
tional Chemistry, being not better than ordinary SCF. To go further, we must include
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functionals involving ∇ρ(r). The average cost of a DFT calculation goes as m4 (same
as SCF), compared to m6 of a CI-SD calculation and m7 of a MP4 (m is the number of
basis functions). With the best functionals to date it is possible to obtain bond lengths
within 0.01 Å for diatomic molecules of the first-row atoms, and atomization energies
within 3 kcal mol−1 (SCF 78, LDA 40, MP2 7, CC-R12 0.25 kcal mol−1).

7.11 PROBLEMS 7

7.1. Show that the Li ground state is a doublet S.

Answer:

Ŝ2‖1s1s2s‖ = 1

2

(

1

2
+ 1

)

‖1s1s2s‖. S = MS = 1

2
.

Hint:
Use Dirac’s formula for N = 3:

Ŝ2 = 3

4
Î + P̂12 + P̂13 + P̂23 .

7.2. Show that the Be ground state is a singlet S.

Answer:

Ŝ2‖1s1s2s2s‖ = 0(0 + 1)‖1s1s2s2s‖ S = MS = 0.

Hint:
Use Dirac’s formula for N = 4:

Ŝ2 = P̂12 + P̂13 + P̂14 + P̂23 + P̂24 + P̂34.

7.3. Find the electron density and the spin density for the ground state of the H2 mole-
cule described by the MO wavefunction in which the bonding σg = a+b√

2+2S
MO is doubly

occupied by electrons with opposed spin.

Answer:

P(r1; r1) = 2σg(r1) σ ∗
g (r1)

Q(r1; r1) = 0.

Hint:
Follow the definitions of Section 7.3.2.
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7.4. Find the electron density and the spin densities for the triplet excited state of the H2
molecule described by the MO wavefunction in which the bonding σg = a+b√

2+2S
and the

antibonding σu = b−a√
2−2S

MOs are singly occupied by electrons with either spin.

Answer:

S = 1, MS = 1

P(r1; r1) = Q(r1; r1) = σ 2
g (r1) + σ 2

u (r1)

S = 1, MS = 0

P(r1; r1) = σ 2
g (r1) + σ 2

u (r1), Q(r1; r1) = 0

S = 1, MS = −1

P(r1; r1) = σ 2
g (r1) + σ 2

u (r1), Q(r1; r1) = −P(r1; r1).

Hint:
Same as for Problem 7.3.

7.5. Derive the Slater rules for the matrix element of the 2-electron operator.

Answer:
Equations (110)–(116) of the main text.

Hint:
Use the equivalent definition of the normalized N -electron Slater det as:

‖ψ1ψ2 · · ·ψi · · ·ψj · · ·ψN‖ = 1√
N !
∑

P

(−1)pP̂ψ1ψ2 · · ·ψi · · ·ψj · · ·ψN,

where P̂ is the permutation operator (Section 7.2.2) and p the parity of the permutation,
and the fact that the spin-orbitals are assumed to be orthonormal.

7.6. Derive the 1- and 2-electron density matrices for the normalized many-electron wave-
function constructed as a single determinant of orthonormal spin-orbitals {ψi(x)}:

� = ‖ψ1ψ2 · · ·ψN‖
〈ψi |ψj 〉 = δij , i, j = 1,2, · · ·N.

Answer:
Lennard-Jones (1931) found that, in this case:

ρ1(x1;x′
1) = ρ(x1;x′

1)
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ρ2(x1,x2;x′
1,x′

2) =
∣

∣

∣

∣

ρ(x1;x′
1) ρ(x1;x′

2)

ρ(x2;x′
1) ρ(x2;x′

2)

∣

∣

∣

∣

,

where:

ρ(x1;x′
1) =

N
∑

i=1

ψi(x1)ψ
∗
i (x′

1)

is the Fock–Dirac density matrix.
Hint:

Use the definitions (29) and the equivalent of (62) for the density matrices, and the
Cauchy expansion of the �-determinant according to its (N,N)-element.

7.7. Derive the properties of the Fock–Dirac density matrix ρ(x;x′) =∑i ψi(x)ψ∗
i (x′)

represented by a basis of N orthonormal SOs {ψi(x)}.

Answer:

(i) Invariance of ρ against the unitary transformation {Uji} among its SOs, equa-
tions (122) and (123) of the main text.

(ii) Projection operator properties of ρ:

trρ = N conservation

ρ2 = ρ idempotency

equations (124)–(126) of the main text.

Hint:
Use definition (121), and the orthogonality and normalization properties of the SO basis.

7.8. Give an elementary derivation of the method of Lagrange multipliers for a function
f (x1, x2, · · ·xN) of N variables subject to m constraints ϕr(x1, x2, · · ·xN) = 0.

Answer:
The system of N + m equations determining the extremum points of the function f and

the m Lagrange multipliers λr is:

⎧

⎪

⎨

⎪

⎩

∂f

∂xi

−
∑

r

λr

∂ϕr

∂xi

= 0 i = 1,2, · · ·N

ϕr(x1, x2, · · ·xN) = 0 r = 1,2, · · ·m.

Hint:
It is convenient to subtract from the original function f the m constraints, each one

multiplied by a suitable Lagrange multiplier λ, and to write then the extremum conditions
for the resulting unconstrained N -variable function (Problem 7.9).
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7.9. Show that the unconstrained variation of the energy functional ε = HM−1 is fully
equivalent to the result obtained by the method of Lagrange multipliers.

Answer:

δH − εδM = 0.

Hint:
Take an infinitesimal variation of the energy functional ε taking into account the nor-

malization condition M = 1.

7.10. Show the identity between equations (139) and (140) of the main text.

Answer:
Limiting ourselves to the Coulomb integral J , we have:

∑

i

〈δψi |J1|ψi〉 +
∑

i

〈ψi |J1|δψi〉 =
∑

i

〈ψi |δJ1|ψi〉.

Hint:
Use the definitions (121) and (130) of ρ and J , and interchange in the integrals summa-

tion indices i, i′ and electron labels 1,2.

7.11. Eliminate spin from the Fock operator for closed shells.

Answer:

F̂ (r1) = −1

2
∇2

1 + V1 + 2J (r1) − K̂(r1),

where:

J (r1) =
∫

dx2
R(r2; r2)

r12
,

K̂(r1) =
∫

dx2
R(r1; r2)

r12
P̂r1r2

are spinless Coulomb and exchange potentials, and R(r1; r2) the spinless density matrix
for closed shells.

Hint:
Make F̂ (x1) = F̂ (r1 s1) act on the spin-orbital function φi(r1)α(s1), say, and integrate

over the spin variable of electron 2.
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7.12. Find the projector properties of the density matrix R over the non-orthogonal AO
basis χ with metric M.

Answer:

RMR = R idempotency

tr RM = n conservation,

where n is the number of the doubly occupied MOs.

Hint:
Use the properties of the density matrix R(r; r′) over the orthogonal MOs and the LCAO

expression for the latter.

7.13. Transform the Pitzer and Merrifield minimum basis STO MO coefficients for ground
state H2O to a set where 〈k|s〉 = 0.

Answer:

A1 k s z h1 h2

1a1 1.000 42 0.018 28 0.003 38 −0.004 31 −0.004 31
2a1 −0.029 94 0.821 60 0.138 67 0.140 58 0.140 58
3a1 −0.031 11 −0.541 20 0.779 63 0.287 41 0.287 41
4a1 0.084 28 0.844 20 0.700 74 −0.745 36 −0.745 36

B2 y h1 h2

1b2 0.582 21 0.514 05 −0.514 05
2b2 0.991 62 −0.890 44 0.890 44

Hint:
Schmidt orthogonalize the original s′ STO to the inner shell AO k′.

7.14. Check the projector properties of the density matrix R over the modified AO basis
of Problem 7.13 for the Pitzer and Merrifield MO calculation on ground state H2O.
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Answer:

RMR =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1.002 71 0.010 53 −0.024 99 0 0 −0.017 46 −0.017 46
0.010 53 0.968 22 −0.307 84 0 0 −0.040 07 −0.040 07

−0.024 98 −0.307 84 0.627 01 0 0 0.243 54 0.243 54
0 0 0 1 0 0 0
0 0 0 0 0.338 98 0.299 33 −0.299 33

−0.017 46 −0.040 07 0.243 54 0 0.299 33 0.366 69 −0.161 93
−0.017 46 −0.040 07 0.243 54 0 −0.299 33 −0.161 92 0.366 69

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

compared to the directly calculated R matrix:

R =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1.002 70 0.010 53 −0.025 00 0 0 −0.017 46 −0.017 46
0.010 53 0.968 26 −0.307 90 0 0 −0.040 10 −0.040 10

−0.025 00 −0.307 90 0.627 04 0 0 0.243 54 0.243 54
0 0 0 1 0 0 0
0 0 0 0 0.338 96 0.299 31 −0.299 31

−0.017 46 −0.040 10 0.243 54 0 0.299 31 0.366 68 −0.161 91
−0.017 46 −0.040 10 0.243 54 0 −0.299 31 −0.161 91 0.366 68

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

tr R = 5.00005.

Hint:
Use the definitions given in the main text and matrix multiplication rules.

7.15. Find roots and coefficients of the AOs in the MOs for the allyl radical (N = 3) using
the general formulae for the linear chain derived in Section 7.8.2.

Answer:

x1 = √
2, x2 = 0, x3 = −√

2.

φ1 = χ1 + √
2χ2 + χ3

2
, φ2 = χ1 − χ3√

2
, φ3 = χ1 − √

2χ2 + χ3

2
.

Hint:
Use equations (218) and (219) of Coulson’s general solution for the linear chain with

N = 3.

7.16. Find roots and coefficients of the AOs in the MOs in real form for the π electrons in
benzene (N = 6) using the general formulae for the closed chain derived in Section 7.8.3.

Answer:
The results are given in equations (244) and (245).

Hint:
Use equations (229), (233), (234) and (235) of Coulson’s general solution for the closed

chain with N = 6.
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7.17. Find the relation between Heitler–London and Inui wavefunctions.

Answer:
The relations between the non-linear parameters (orbital exponents and scale factors) in

Heitler–London and Inui wavefunctions are:

δ = R

2
(cA + cB), γ = R

2
(cA − cB)

cA = δ + γ

R
, cB = δ − γ

R
.

The Heitler–London wavefunction is obtained from the Inui wavefunction by putting δ = γ

(cB = 0).

Hint:
Express the exponentials in spheroidal coordinates.

7.18. Show that the energy in first order of MP theory is the HF energy, expression (301).

Answer:

E0 + E1 = EHF
0 .

Hint:
Use Slater’s rules (107), (110) for the matrix elements of Slater dets with zero spin-

orbital differences.

7.19. Find the off-diagonal matrix elements of the perturbation V with single and double
excitations from the Hartree–Fock �0 = �HF

0 .

Answer:

Single excitation:

〈

�(i → p)
∣

∣V
∣

∣�HF
0

〉= 0 Brillouin’s theorem

Double excitations:

〈

�(i → p, j → q)
∣

∣V
∣

∣�HF
0

〉= 〈ψpψq | 1

r12
|ψiψj 〉 − 〈ψqψp| 1

r12
|ψiψj 〉.

Hint:
Use Slater’s rules for the matrix elements of Slater dets having one and two spin-orbital

differences.
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7.12 SOLVED PROBLEMS

7.1. Using Dirac’s formula for N = 3, we find for the component with MS = +1/2:

Ŝ2‖1s1s2s‖ =
(

3

4
Î + P̂12 + P̂13 + P̂23

)

‖1s1s2s‖

= 3

4
‖1s1s2s‖ + ‖1s1s2s‖ + ‖1s1s2s‖ + ‖1s1s2s‖

= 3

4
‖1s1s2s‖ = 1

2

(

1

2
+ 1

)

‖1s1s2s‖,

where the second and third determinant cancel altogether, and the last one vanishes because
of the Pauli principle.

7.2. Using Dirac’s formula for N = 4, we find:

Ŝ2‖1s1s2s2s‖ = (P̂12 + P̂13 + P̂14 + P̂23 + P̂24 + P̂34)‖1s1s2s2s‖
= ‖1s1s2s2s‖ + ‖1s1s2s2s‖ + ‖1s1s2s2s‖

+ ‖1s1s2s2s‖ + ‖1s1s2s2s‖ + ‖1s1s2s2s‖
= 0(0 + 1)‖1s1s2s2s‖,

where the first and sixth determinant are nothing but the second and fifth with minus sign,
while the third and fourth are identically zero for the exclusion principle.

7.3. The MO wavefunction for ground state H2 (1�+
g ) is:

�
(

σ 2
g , 1�+

g

)= ‖σg σg‖ = σg(r1)σg(r2)
1√
2
[α(s1)β(s2) − β(s1)α(s2)],

where we notice that the space part is symmetric and the spin part antisymmetric. Then:

ρ1(x1;x1) = 2
∫

dx2

σg(r1)σg(r2)
1√
2
[α(s1)β(s2) − β(s1)α(s2)]

σ ∗
g (r1)σ

∗
g (r2)

1√
2

[

α∗(s1)β
∗(s2) − β∗(s1)α

∗(s2)
]

P1(
α α
r1 ; r1 ) = P1(

β β
r1 ; r1 ) = R(r1; r1) = σg(r1)σ

∗
g (r1),

where R is the notation usual in the MO-LCAO theory. Then:

P(r1; r1) = P α
1 + P

β

1 = 2σg(r1)σ
∗
g (r1) = 2|σg(r1)|2



340 7. Many-Electron Wavefunctions: Slater, Hartree–Fock and Related Methods

is the electron density, and:

Q(r1; r1) = P α
1 − P

β

1 = 0

the spin density. The electron density integrates to:

∫

dr1P(r1; r1) = 2
∫

dr1[σg(r1)]2 = 2

since the bonding MO σg = a+b√
2+2S

is normalized to 1. The electron density distribution in
the H2 molecule can be further analyzed into its atomic and overlap contributions, equa-
tions (54)–(57):

P(r1; r1)= 2
(a + b)2

2 + 2S
= a2(r1) + b2(r1) + a(r1)b(r1) + b(r1)a(r1)

1 + S

= qAa2(r1) + qBb2(r1) + qAB

a(r1)b(r1)

S
+ qBA

b(r1)a(r1)

S
,

where:

qA = qB = 1

1 + S

is the fraction of electronic charge on A or B distributed with the normalized atomic den-
sities a2(r1) or b2(r1);

qAB = qBA = S

1 + S

the fraction of electronic charge distributed with the normalized overlap densities a(r1)b(r1)
S

or b(r1)a(r1)
S

.

We can check that:

qA + qB + qAB + qBA = 2

the total number of electrons in the bonding MO σg . At the equilibrium distance Re =
1.4a0, for 1s AOs:

S ≈ 3

4
: qA = qB = 4

7
≈ 0.57, qAB = qBA = 3

7
≈ 0.43

showing that in the bound H2 molecule the charge on atoms is less than that in the free
H atoms (qA = qB = 1): 0.43 electrons are shifted from each atom to the interbond re-
gion, screening internuclear repulsion. The two electrons are distributed in the molecule
according to the following scheme (Figure 7.15).
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Figure 7.15 Origin of the quadrupole moment in H2.

Such a distribution of the electronic charge (the dot means the midpoint of the bond)
determines the first non-zero electric moment of the centrosymmetric H2 molecule, its
quadrupole moment.

7.4. The three MO wavefunctions of the triplet (3�+
u ) state of H2 are:

‖σgσu‖ S = 1, MS = 1

1√
2
{‖σgσu‖ + ‖σgσu‖} 0

‖σgσu‖ −1

and can be written by separating space from spin part as:

1√
2
[σg(r1)σu(r2) − σu(r1)σg(r2)]

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

α(s1)α(s2)

1√
2
[α(s1)β(s2) + β(s1)α(s2)]

β(s1)β(s2).

We then have for the different spin components of the wavefunction:

• S = 1, MS = 1 (all electrons have spin α)

ρ1(x1 ; x1) = [σg(r1)σ
∗
g (r1) + σu(r1)σ

∗
u (r1)

]

α(s1)α
∗(s1)

P1(
α α
r1 ; r1 ) = σg(r1)σ

∗
g (r1) + σu(r1)σ

∗
u (r1)

P1(
β β
r1 ; r1 ) = 0

P(r1 ; r1) = P α
1 = σ 2

g (r1) + σ 2
u (r1) = Q(r1; r1).

In this case, the spin density coincides with the electron density.
• S = 1, MS = 0

ρ1(x1; x1) = 1

2

[

σg(r1)σ
∗
g (r1) + σu(r1)σ

∗
u (r1)

][

α(s1)α
∗(s1) + β(s1)β

∗(s1)
]
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P1(
α α
r1 ; r1 ) = P1(

β β
r1 ; r1 ) = 1

2

[

σg(r1)σ
∗
g (r1) + σu(r1)σ

∗
u (r1)

]

P(r1; r1) = P α
1 + P

β

1 = σ 2
g (r1) + σ 2

u (r1)

Q(r1; r1) = P α
1 − P

β

1 = 0.

The spin density is zero, but the electron density is the same.
• S = 1, MS = −1 (all electrons have spin β)

ρ1(x1;x1) = [σg(r1)σ
∗
g (r1) + σu(r1)σ

∗
u (r1)

]

β(s1)β
∗(s1)

P1(
β β
r1 ; r1 ) = σg(r1)σ

∗
g (r1) + σu(r1)σ

∗
u (r1)

P1(
α α
r1 ; r1 ) = 0

P(r1 ; r1) = P1(
β β
r1 ; r1 ) = σ 2

g (r1) + σ 2
u (r1)

Q(r1 ; r1) = −P
β

1 = −[σ 2
g (r1) + σ 2

u (r1)
]

.

The distribution of the electronic charge in the triplet state of H2 gives:

qA = qB = 1

1 − S2
> 1, qAB = qBA = − S2

1 + S2
< 0,

where the charge on the atoms in the molecule is now larger than that of the free atoms,
which means that the electrons escape from the bond region (qAB, qBA < 0) giving
repulsion.

In this way, a simple analysis of the electron charge distribution in the molecule
reveals at once the bonding or antibonding situations occurring between the interacting
atoms. A chemical bond is formed only for the singlet ground state 1�+

g .

7.5. Elementary derivation of the Slater rules for a symmetrical sum of 2-electron opera-
tors.

• Zero SO differences

〈‖ 1 2 i j N
ψ1 ψ2 · · · ψi · · · ψj · · · ψN ‖|

∑

i<j

Ôij |‖
1 2 i j N

ψ1 ψ2 · · · ψi · · · ψj · · · ψN ‖〉

= 1

N !
〈

∑

P

(−1)pP̂
1 2 i j N

ψ1 ψ2 · · · ψi · · · ψj · · · ψN

∣

∣

∣

∣

∑

i<j

Ôij

×
∣

∣

∣

∣

∑

P

(−1)pP̂
1 2 i j N

ψ1 ψ2 · · · ψi · · · ψj · · · ψN

〉

.
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Bring into the first two places ψi and ψj through a number of interchanges in the bra
and the ket which leaves the matrix element unchanged (electrons are always kept in
dictionary order):

= 1

N !
〈

∑

P

(−1)pP̂ψiψj · · ·ψ1 · · ·ψ2 · · ·ψN

∣

∣

∣

∣

∑

i<j

Ôij

×
∣

∣

∣

∣

∑

P

(−1)pP̂ψiψj · · ·ψ1 · · ·ψ2 · · ·ψN

〉

.

All N ! terms in the ket give the same result, so that:

=
〈

∑

P

(−1)pP̂ψiψj · · ·ψ1 · · ·ψ2 · · ·ψN

∣

∣

∣

∣

Ô12 + Ô13 + · · ·

×
∣

∣

∣

∣

ψiψj · · ·ψ1 · · ·ψ2 · · ·ψN

〉

= 〈ψiψj − ψjψi |Ô12|ψiψj 〉 + · · ·
because, for the orthogonality of the SOs, the only terms surviving in the bra are (i) the
term corresponding to the identity 〈ψiψj |, and (ii) that corresponding to the single in-
terchange 〈ψjψi |. The same is true for all N(N−1)

2 distinct Ôij , so that we obtain:

〈�|
∑

i<j

Ôij |�〉 =
∑

i<j

[〈ψiψj |Ô12|ψiψj 〉 − 〈ψjψi |Ô12|ψiψj 〉
]

.

It is possible to eliminate the restriction over j since the term j = i vanishes identically
because of the exchange term, but it is necessary in this case to introduce the factor 1/2
accounting for the number of distinct pairs, so that we finally obtain:

〈�|
∑

i<j

Ôij |�〉 = 1

2

∑

i

∑

j

[〈ψiψj |Ô12|ψiψj 〉 − 〈ψjψi |Ô12|ψiψj 〉
]

,

where the first integral is called the Coulomb term and the second the exchange term.
• One SO difference

〈‖ 1 2 i N
ψ1 ψ2 · · · ψ ′

i · · · ψN ‖|
∑

i<j

Ôij |‖
1 2 i N

ψ1 ψ2 · · · ψi · · · ψN ‖〉

= 1

N !
〈

∑

P

(−1)pP̂
1 2 i N

ψ1 ψ2 · · · ψ ′
i · · · ψN

∣

∣

∣

∣

∑

i<j

Ôij

×
∣

∣

∣

∣

∑

P

(−1)pP̂
1 2 i N

ψ1 ψ2 · · · ψi · · · ψN

〉
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= 1

N !
〈

∑

P

(−1)pP̂ψ ′
iψ2 · · ·ψ1 · · ·ψN

∣

∣

∣

∣

∑

i<j

Ôij

×
∣

∣

∣

∣

∑

P

(−1)pP̂ψiψ2 · · ·ψ1 · · ·ψN

〉

=
〈

∑

P

(−1)pP̂ψ ′
i ψ2 · · ·ψ1 · · ·ψN

∣

∣

∣

∣

Ô12 + Ô13 + · · ·
∣

∣

∣

∣

ψiψ2 · · ·ψ1 · · ·ψN

〉

= 〈ψ ′
iψ2 − ψ2ψ

′
i |Ô12|ψiψ2〉 + 〈ψ ′

iψ3 − ψ3ψ
′
i |Ô13|ψiψ3〉 + · · ·

=
∑

j ( =i)

[〈ψ ′
iψj |Ô12|ψiψj 〉 − 〈ψjψ

′
i |Ô12|ψiψj 〉

]

=
∑

j

[〈ψ ′
iψj |Ô12|ψiψj 〉 − 〈ψjψ

′
i |Ô12|ψiψj 〉

]

since the term j = i cancels identically in the complete summation.
• Two SO differences

〈‖ 1 2 i j N
ψ1 ψ2 · · · ψ ′

i · · · ψ ′
j · · · ψN ‖|

∑

i<j

Ôij |‖
1 2 i j N

ψ1 ψ2 · · · ψi · · · ψj · · · ψN ‖〉

= 1

N !
〈

∑

P

(−1)pP̂
1 2 i j N

ψ1 ψ2 · · · ψ ′
i · · · ψ ′

j · · · ψN

∣

∣

∣

∣

∑

i<j

Ôij

×
∣

∣

∣

∣

∑

P

(−1)pP̂
1 2 i j N

ψ1 ψ2 · · · ψi · · · ψj · · · ψN

〉

= 1

N !
〈

∑

P

(−1)pP̂ψ ′
iψ

′
j · · ·ψ1 · · ·ψ2 · · ·ψN

∣

∣

∣

∣

∑

i<j

Ôij

×
∣

∣

∣

∣

∑

P

(−1)pP̂ψiψj · · ·ψ1 · · ·ψ2 · · ·ψN

〉

=
〈

∑

P

(−1)pP̂ψ ′
iψ

′
j · · ·ψ1 · · ·ψ2 · · ·ψN

∣

∣

∣

∣

Ô12 + Ô13 + · · ·

×
∣

∣

∣

∣

ψi ψj · · ·ψ1 · · ·ψ2 · · ·ψN

〉

= 〈ψ ′
iψ

′
j − ψ ′

jψ
′
i |Ô12|ψiψj 〉 = 〈ψ ′

iψ
′
j |Ô12|ψiψj 〉 − 〈ψ ′

jψ
′
i |Ô12|ψiψj 〉

is the only surviving term. In this way, all formulae (110)–(115) of the main text have
been rederived. Of course, for a three substituted determinant, the matrix element of Ô12
is zero.
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7.6. 1- and 2-electron density matrices for the single det wavefunction.
We shall follow here the derivation given by C.A. Coulson in an after-dinner Lennard-

Jones Lecture during the 1963 Oxford Summer School. Let the N -electron wavefunction
be given in the form of the single Slater det of orthonormal SOs {ψi(xi )} i = 1,2, · · ·N :

� = 1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

ψ1(x1) ψ2(x1) · · · ψN(x1)

ψ1(x2) ψ2(x2) · · · ψN(x2)

· · ·
ψ1(xN) ψ2(xN) · · · ψN(xN)

∣

∣

∣

∣

∣

∣

∣

∣

.

Consider the analytic function (a determinant of order N ):

ρN = N !��∗ =

∣

∣

∣

∣

∣

∣

∣

∣

ρ(x1;x1) ρ(x1;x2) · · · ρ(x1;xN)

ρ(x2;x1) ρ(x2;x2) · · · ρ(x2;xN)

· · ·
ρ(xN ;x1) ρ(xN ;x2) · · · ρ(xN ;xN)

∣

∣

∣

∣

∣

∣

∣

∣

,

where:

ρ(x1;x2) = ψ1(x1)ψ
∗
1 (x2) + · · · + ψN(x1)ψ

∗
N(x2) =

N
∑

i=1

ψi(x1)ψ
∗
i (x2).

We used in ρN matrix multiplication rules after interchanging in �∗ rows and columns.
We now do in ρN an integration over the infinitesimal space-spin volume element dxN

using (Lennard-Jones, 1931) the Cauchy expansion (Chapter 2, Section 2.2.3) of the deter-
minant ρN in terms of the N -th row and N -th column:

ρN = ρ(xN ;xN)ρN−1 −
∑

i

∑

j

{ρ(xi;xN)ρ(xN ;xj )

× cofactor of ρ(xi;xj ) in ρN−1}.

Integrating over dxN gives:

∫

dxNρN = ρN−1

∫

dxNρ(xN ;xN)

−
∑

i

∑

j

{cofactor}
∫

dxNρ(xi;xN)ρ(xN ;xj )

= NρN−1 −
∑

i

∑

j

ρ(xi;xj ){cofactor}.
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Figure 7.16 Cauchy expansion of ρN .

But
∑N−1

j=1 ρ(xi;xj ) {cofactor} is the expansion of a determinant of order (N − 1) accord-
ing to elements of its i-th row: we add up all the columns getting ρN−1. Next, summing
over i, we simply add up (N − 1) times ρN−1. Therefore, we obtain:

∫

dxNρN = NρN−1 − (N − 1)ρN−1 = ρN−1.

Similarly, by doing repeated integrations:

∫

dxN−1ρN−1 = NρN−2 − (N − 2)ρN−2 = 2ρN−2

∫

dxN−2ρN−2 = 3ρN−3

· · ·
∫

dx3ρ3 = (N − 2)ρ2

∫

dx2ρ2 = (N − 1)ρ1

∫

dx1ρ1 = N.

By multiplying together all integrations above but the last two, it follows:

∫

dxN dxN−1 dxN−2 · · ·dx3 ρN = 1 · 2 · 3 · · · (N − 2)ρ2 = (N − 2)!ρ2,
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so that ρ2 (a determinant of order 2) is given by:

ρ2 = 1

(N − 2)!
∫

dxN dxN−1 · · ·dx3 ρN

= N !
(N − 2)!

∫

dxN dxN−1 · · ·dx3��∗

= N(N − 1)

∫

dx3 · · ·dxN��∗ = ρ2(x1,x2;x1,x2),

which is nothing but equation (62) defining the 2-particle density function.
Hence, we have shown that, for the single determinant wavefunction of orthonormal

SOs, the 2-particle density function is given by:

ρ2(x1,x2 ; x1,x2) = ρ2 =
∣

∣

∣

∣

ρ(x1;x1) ρ(x1;x2)

ρ(x2;x1) ρ(x2;x2)

∣

∣

∣

∣

,

the 2 × 2 determinant of the Fock invariant ρ, the latter coinciding with the 1-particle
density matrix:

ρ(x1;x2) =
N
∑

i=1

ψi(x1)ψ
∗
i (x2) = ρ1(x1;x2).

7.7. Properties of the fundamental invariant.
Using matrix notation and matrix multiplication rules:

ψ(x) = (ψ1 ψ2 · · · ψN) row matrix of SOs

ρ(x1;x′
1) =

∑

i

ψi(x1)ψ
∗
i (x′

1) = ψ(x1)ψ
†(x′

1),

the orthonormal properties of the SO basis {ψi(x)} and the unitary properties of the matrix
U = {Uji} give:

(i) Invariance:

ψ ′ = ψU UU† = U†U = 1

ρ′(x1;x′
1) = ψ ′(x1)ψ

′†(x′
1) = ψ(x1)UU†ψ†(x′

1) = ψ(x1)ψ
†(x′

1) = ρ(x1;x′
1).

(ii) Conservation:

trρ =
∫

dx1ρ(x1;x′
1)|x′

1=x1
=
∫

dx1ρ(x1;x1)

=
∑

i

∫

dx1ψi(x1)ψ
∗
i (x1) =

∑

i

δii = N.
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(iii) Idempotency:

ρ2 =
∫

dx2ρ(x1;x2)ρ(x2;x′
1)

=
∑

i

∑

j

∫

dx2ψi(x1)ψ
∗
i (x2)ψj (x2)ψ

∗
j (x′

1)

=
∑

i

∑

j

ψi(x1)ψ
∗
j (x′

1)

∫

dx2ψ
∗
i (x2)ψj (x2)

=
∑

i

∑

j

ψi(x1)ψ
∗
j (x′

1)δij

=
∑

i

ψi(x1)ψ
∗
i (x′

1) = ρ(x1;x′
1) = ρ.

These results show that ρ has the properties of the projection operator of Figure 7.3,
whose action on an arbitrary regular function ϕ(x) is shown in equation (127).

7.8. The method of Lagrange multipliers for a function of N variables subject to m con-
straints.

Let the N -variable function:

f (x1, x2, · · ·xN)

be subject to the m constraints (equations relating the same variables):

ϕr(x1, x2, · · ·xN) = 0 r = 1,2, · · ·m.

We construct the N -variable function:

F(x1, x2, · · ·xN) = f (x1, x2, · · ·xN) −
m
∑

r=1

λrϕr(x1, x2, · · ·xN),

where λr is a Lagrange multiplier, and minimize it without constraints obtaining as neces-
sary condition for stationarity:

dF = df −
∑

r

λrdϕr = 0.

Putting equal to zero the coefficients of dxi we obtain the N equations:

⎧

⎨

⎩

∂f

∂xi

−
∑

r

λr

∂ϕr

∂xi

= 0 i = 1,2, · · ·N
ϕr(x1, x2, · · ·xN) = 0 r = 1,2, · · ·m
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which, together with the equations defining the m constraints, form a system of N + m

equations allowing to determine the extremum points (x0
1 , x0

2 , · · ·x0
N) and the Lagrange

multipliers (λ1, λ2, · · ·λm). In our case, f and ϕr are functionals, and the variables xi are
the spin-orbitals ψi(x).

7.9. Unconstrained variation of the energy functional:

ε = HM−1.

Taking an infinitesimal arbitrary variation of ε, we have:

δε = M−1δH − HM−1−1δM = M−1(δH − εδM) = 0

namely:

δH − εδM = 0.

So, the unconstrained variation of the energy functional ε is fully equivalent to the separate
variation of H minus the separate variation of the constraint M (here, the normalization
integral) multiplied by the Lagrange multiplier ε. ε plays hence the role of the Lagrange
multiplier of Problem 7.8.

7.10. According to definitions (121) and (130) we have:

J1 =
∫

dx2
ρ(x2;x2)

r12
=
∑

i′

∫

dx2
ψi′(x2)ψ

∗
i′(x2)

r12

δJ1 =
∫

dx2
δρ(x2;x2)

r12
=
∑

i′

∫

dx2
ψi′(x2)δψ

∗
i′(x2) + δψi′(x2)ψ

∗
i′(x2)

r12
∑

i

〈ψi |δJ1|ψi〉

=
∑

i

∫

dx1ψ
∗
i (x1)

[

∑

i′

∫

dx2
ψi′(x2)δψ

∗
i′(x2) + δψi′(x2)ψ

∗
i′(x2)

r12

]

ψi(x1)

= interchange in the integrals summation indices i, i′ and electron labels 1,2

=
∑

i′

∫

dx2ψ
∗
i′(x2)

[

∑

i

∫

dx1
ψi(x1)δψ

∗
i (x1) + δψi(x1)ψ

∗
i (x1)

r12

]

ψi′(x2)

=
∑

i

∫

dx1δψ
∗
i (x1)

[

∑

i′

∫

dx2
ψi′(x2)ψ

∗
i′(x2)

r12

]

ψi(x1)

+
∑

i

∫

dx1ψ
∗
i (x1)

[

∑

i′

∫

dx2
ψi′(x2)ψ

∗
i′(x2)

r12

]

δψi(x1)

=
∑

i

〈δψi |J1|ψi〉 +
∑

i

〈ψi |J1|δψi〉
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which is the required result. The same holds for the variation of the exchange integral δK̂1.

7.11. Elimination of spin from F̂ (x1) for closed shells.

F̂ (x1)= F̂ (r1 s1) = −1

2
∇2

1 + V1

+
∫

dr2 ds2
ρ(r2s2; r2s2)

r12
−
∫

dr2 ds2
ρ(r1 s1; r2s2)

r12
P̂r1s1,r2s2

F̂ (r1s1)φi(r1)α(s1)

=
(

−1

2
∇2

1 + V1

)

φi(r1)α(s1)

+
∫

dr2 ds2
R(r2; r2)

r12

[

α(s2)α
∗(s2) + β(s2)β

∗(s2)
]

φi(r1)α(s1)

−
∫

dr2 ds2
R(r1; r2)

r12

[

α(s1)α
∗(s2) + β(s1)β

∗(s2)
]

φi(r2)α(s2)

=
(

− 1

2
∇2

1 + V1

)

φi(r1)α(s1)

+ 2
∫

dr2
R(r2; r2)

r12
φi(r1)α(s1)

−
∫

dr2
R(r1; r2)

r12
P̂r1r2φi(r1)α(s1)

=
(

− 1

2
∇2

1 + V1 + 2J (r1) − K̂(r1)

)

φi(r1)α(s1)

from which follows equation (146) of the main text.

7.12. We start from the definitions:

R(r; r′) = χ(r)Rχ†(r′) =
∑

μ

∑

ν

χμ(r)Rμνχ
∗
ν (r′)

χ†χ = M.

Then:

(i) Idempotency:
∫

dr′′R(r; r′′)R(r′′; r′) = R(r; r′)
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∫

dr′′χ(r)Rχ†(r′′) · χ(r′′)Rχ†(r′) = χ(r)RMRχ†(r′) = χ(r)Rχ†(r′),

whence it follows:

RMR = R.

(ii) Conservation:

∫

drR(r; r) =
∑

μ

∑

ν

Rμν

∫

drχ∗
ν (r)χμ(r)

=
∑

μ

∑

ν

RμνMνμ = tr RM = n,

where n = N/2 is the number of doubly occupied MOs.

7.13. The H2O molecule is chosen to lie in the yz-plane, with the oxygen atom at the
origin of a right-handed cartesian system having z as C2 symmetry axis. Among other
geometries, reported by Pitzer and Merrifield (PM, 1970), we choose the experimental
geometry, O–H = 1.810 3a0 and 2θ = 105◦ (not the best for the MO wavefunction), which
was used in the pioneering work by Ellison and Shull (1955) on H2O. The minimum basis
set of 7 STOs has orbital exponents chosen by Slater’s rules: ck = 7.7, cs = cp = 2.275,
ch = 1.0.

The obvious short notation for the AOs is: 1sO = k′, 2sO = s′, 2pzO = z, 2pxO = x,
2pyO = y, 1sH1 = h1, 1sH2 = h2. The overlap integrals for the original set given by PM
are8: 〈k′|s′〉 = 0.233 45, 〈k′|h〉 = 0.060 97, 〈s′|h〉 = 0.508 84, 〈z|h〉 = 0.211 84, 〈y|h1〉 =
0.276 07, 〈y|h2〉 = −0.276 07, 〈h1|h2〉 = 0.374 59.

The SCF-MO coefficients and the orbital energies from PM are:

A1 k′ s′ z hs = 1√
2
(h1 + h2) εi/Eh

1a1 0.996 03 0.018 80 0.003 38 −0.006 09 −20.504 6
2a1 −0.227 19 0.844 96 0.138 67 0.198 81 −1.298 1
3a1 0.098 83 −0.556 61 0.779 63 0.406 46 −0.471 5
4a1 −0.118 45 0.868 16 0.700 74 −1.054 10 0.401 3
B1 x

1b1 1.0 −0.425 1

B2 y hy = 1√
2
(h1 − h2)

1b2 0.582 21 0.726 98 −0.638 6
2b2 0.991 62 −1.259 27 0.590 9

8PM give only the value Sσh = 0.347 98, so that Szh = Sσh cos θ , Syh = Sσh sin θ .
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Negative orbital energies denote bonding MOs, positive energies antibonding MOs,
which are empty in the ground state. Within each definite symmetry type (Chapter 8),
the MOs are given in order of ascending energies, so that the electron configuration of the
1A1 ground state of the H2O molecule (N = 10, n = 5, m = 7) will be:

H2O (1A1) : 1a2
1 2a2

1 1b2
2 3a2

1 1b2
1.

The molecule will be stable since all its bonding MOs are doubly occupied by electrons
with opposed spin, but the PM minimum basis MO results for the total molecular energy
E and the dipole moment μ are disappointingly poor:

E(MO-SCF) = −75.655 6Eh, μ = 0.564 2 ea0

compared to the nearly HF results (Lazzeretti, 2004) obtained with an extended polarized
GTO set contracted to [13s 10p 5d 2f |8s 4p 1d]:

E(HF) ≈ −76.066 87Eh, μ = 0.780 9 ea0.

We now turn to the required transformation of the coefficients of the SCF MOs after the
Schmidt orthogonalization of s′ against k′. Let k′, s′ be the non-orthogonal AOs, having
S = 〈k′|s′〉 = 0, and k, s the Schmidt-orthogonalized AOs with 〈k|s〉 = 0. The transforma-
tion between normalized AOs can be written in matrix form as:

(k s ) = (k′ s′ )
(

1 −S(1 − S2)−1/2

0 (1 − S2)−1/2

)

= (k′ s′ )O,

where O is the matrix doing Schmidt orthogonalization. The inverse transformation is then:

(k′ s′ ) = (k s )O−1,

where:

O−1 = (det O)−1
(

(1 − S2)−1/2 S(1 − S2)−1/2

0 1

)

=
(

1 S

0 (1 − S2)1/2

)

is the inverse matrix.
Introducing the numerical value S = 0.233 45, it is easily obtained:

k′ = k, s′ = 0.233 45 k + 0.972 37 s.

Therefore:

1a1 = 0.996 03 k′ + 0.018 80 s′ + · · · = 1.000 42 k + 0.018 28 s + · · ·

Proceeding in this way, we construct the table given as answer to this Problem.
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7.14. From the results of the preceding Problem, the 7 × 5 rectangular matrix of the

coefficients C in the PM basis is:

C =

φ occ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1.000 42

0.018 28

0.003 4

0

0

−0.004 31

−0.004 31

1a1

−0.029 34

0.821 6

0.138 7

0

0

0.140 6

0.140 6

2a1

−0.031 11

−0.541 2

0.779 6

0

0

0.287 4

0.287 4

3a1

0

0

0

0

0.582 2

0.514 1

−0.514 1

1b2

0

0

0

1

0

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

1b1

χ

k

s

z

x

y

h1

h2

with its 5 × 7 transposed matrix:

C† =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1.000 42

−0.029 34

−0.031 11

0

0

0.0182 8

0.821 6

−0.541 2

0

0

0.003 4

0.138 7

0.779 6

0

0

0

0

0

0

1

0

0

0

0.582 2

0

−0.004 31

0.140 6

0.287 4

0.514 1

0

−0.004 31

0.140 6

0.287 4

−0.514 1

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Multiplying C by C† gives matrix R:

R =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1.002 70

0.010 53

−0.025 00

0

0

−0.017 46

−0.017 46

0.010 53

0.968 26

−0.307 90

0

0

−0.040 10

−0.040 10

−0.025 00

−0.307 90

0.627 04

0

0

0.243 54

0.243 54

0

0

0

1

0

0

0

0

0

0

0

0.338 96

0.299 31

−0.299 31

−0.017 46

−0.040 10

0.243 54

0

0.299 31

0.366 68

−0.161 91

−0.017 46

−0.040 10

0.243 54

0

−0.299 31

−0.161 91

0.366 68

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
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Using the complete metric matrix of the modified AO basis:

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

0

0

0

0

0.060 97

0.060 97

k

0

1

0

0

0

0.508 66

0.508 66

s

0

0

1

0

0

0.211 84

0.211 84

z

0

0

0

1

0

0

0

x

0

0

0

0

1

0.276 07

−0.276 07

y

0.060 97

0.508 66

0.211 84

0

0.276 07

1

0.374 59

h1

0.060 97

0.508 66

0.211 84

0

−0.276 07

0.374 59

1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

h2

k

s

z

x

y

h1

h2

matrix multiplication of R by M gives:

RM =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1.000 57

0.005 64

0.004 70

0

0

−0.004 98

−0.004 98

−0.007 23

0.927 46

−0.060 14

0

0

0.064 06

0.064 06

−0.032 40

−0.324 89

0.730 22

0

0

0.286 92

0.286 92

0

0

0

1

0

0

0

0

0

0

0

0.504 22

0.445 24

−0.445 24

0.037 19

0.372 81

0.309 46

0

0.280 77

0.418 79

−0.077 06

0.037 19

0.372 81

0.309 46

0

−0.280 77

−0.077 06

0.418 79

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

We notice that while matrices R and M are symmetric, their product is not, but it becomes
symmetric after multiplication by R. By further matrix multiplication of RM by R idem-
potency is proved, while the trace of RM is easily seen to give 5, apart from round-off
errors.

7.15. Allyl radical calculation from the general formulae for the linear chain with N = 3.
We recall that Hückel roots and coefficients are nothing but the eigenvalues and eigen-

vectors of the Hückel matrix H. We have:

N = 3 θk = k
π

4
k = 1,2, 3.

(i) Roots:

xk = 2 cosk
π

4

x1 = 2 cos
π

4
= 2√

2
= √

2

x2 = 2 cos
2π

4
= 0
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x3 = 2 cos
3π

4
= 2 cos 135o = − 2√

2
= −√

2.

(ii) Coefficients:

cmk = sinm
kπ

4
.

If C is a normalization factor:

φ1 = C

3
∑

m=1

χm sinm
π

4
= C

(

χ1 sin
π

4
+ χ2 sin

2π

4
+ χ3 sin

3π

4

)

= C

(

χ1
1√
2

+ χ2 + χ3
1√
2

)

= χ1 + √
2χ2 + χ3

2

φ2 = C

3
∑

m=1

χm sinm
π

2
= χ1 − χ3√

2

φ3 = C

3
∑

m=1

χm sinm
3π

4
= χ1 − √

2χ2 + χ3

2
.

7.16. π electron benzene calculation from the general formulae (real form) for the closed
chain with N = 6.

This application is of some interest since it illustrates well some arbitrariness connected
to the numbering of the atoms (hence, of the AOs) along the benzene ring, and to the
choice of coordinate axes in the molecular plane. Our reference is that of Figure 7.9, where
atoms are numbered in an anticlockwise sense with atom 1 placed in the positive xy-
plane (the same reference chosen in Problem 8.13 where benzene is treated according to
C6v symmetry). This choice is however arbitrary, different equivalent descriptions being
connected by unitary transformations among the MOs.

We have:

N = 6 θk = k
2π

6
= k

π

3
k = 0,±1,±2, 3

(i) Roots:

xk = 2 cosk
π

3
x0 = 2

x1 = x−1 = 2 cos
π

3
= 1



356 7. Many-Electron Wavefunctions: Slater, Hartree–Fock and Related Methods

x2 = x−2 = 2 cos
2π

3
= −1

x3 = 2 cos
3π

3
= 2 cosπ = −2.

(ii) Real coefficients:

amk = A sinm
kπ

3
, bmk = A cosm

kπ

3
,

where A is a normalization factor;

φ0 = φc
0 = A

6
∑

m=1

χm cos 0 = 1√
6
(χ1 + χ2 + χ3 + χ4 + χ5 + χ6)

φs
1 = A

6
∑

m=1

χm sinm
π

3
= 1

2
(χ1 + χ2 − χ4 − χ5)

φc
1 = A

6
∑

m=1

χm cosm
π

3
= 1√

12
(χ1 − χ2 − 2χ3 − χ4 + χ5 + 2χ6)

φs
2 = A

6
∑

m=1

χm sinm
2π

3
= 1

2
(χ1 − χ2 + χ4 − χ5)

φc
2 = A

6
∑

m=1

χm cosm
2π

3
= 1√

12
(−χ1 − χ2 + 2χ3 − χ4 − χ5 + 2χ6)

φ3 = φc
3 = A

6
∑

m=1

χm cosm
3π

3
= 1√

6
(−χ1 + χ2 − χ3 + χ4 − χ5 + χ6).

The MOs obtained in this way differ from those of Figure 7.10 by a unitary transfor-
mation U. Matrix U is the result of a two-step transformation on the Coulson set, first
(i) a rotation of 60◦ of the coordinate axes about z (passive transformation, see Chap-
ter 8), so that atom 1 is replaced by 2, 2 by 3, and so on; second (ii) a transformation
restoring the order of the basic vectors of E1 and E2 symmetry as defined in Chapter 8.
So, the transformation between the two sets is:

(φ1φ2φ3φ4φ5φ6) = (φ0φ
s
1φ

c
1φ

s
2φ

c
2φ3
)

U
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U =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

1

2

√
3

2√
3

2
−1

2

0

0

√
3

2

1

2
1

2
−

√
3

2

−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

We check this result for the E1 degenerate set:

1

2
φs

1 +
√

3

2
φc

1 = χ1

(

1

4
+

√
3

2
· 1

2
√

3

)

+ χ2

(

1

4
−

√
3

2
· 1

2
√

3

)

+ χ3

(

0 −
√

3

2
· 2

2
√

3

)

+ χ4

(

− 1

4
−

√
3

2
· 1

2
√

3

)

+ χ5

(

− 1

4
+

√
3

2
· 1

2
√

3

)

+ χ6

(

0 +
√

3

2
· 2

2
√

3

)

= 1

2
(χ1 − χ3 − χ4 + χ6) = φ2 ∼ x

√
3

2
φs

1 − 1

2
φc

1 = χ1

(
√

3

2
· 1

2
− 1

2
· 1

2
√

3

)

+ χ2

(
√

3

2
· 1

2
+ 1

2
· 1

2
√

3

)

+ χ3

(

0 + 1

2
· 2

2
√

3

)

+ χ4

(

−
√

3

2
· 1

2
+ 1

2
· 1

2
√

3

)

+ χ5

(

−
√

3

2
· 1

2
− 1

2
· 1

2
√

3

)

+ χ6

(

0 − 1

2
· 2

2
√

3

)

=
√

3

4

(

2

3
χ1 + 4

3
χ2 + 2

3
χ3 − 2

3
χ4 − 4

3
χ5 − 2

3
χ6

)

= 1√
12

(χ1 + 2χ2 + χ3 − χ4 − 2χ5 − χ6) = φ3 ∼ y.

7.17. Relation between Heitler–London and Inui wavefunctions.
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The Heitler–London wavefunction for the ground state of the H2 molecule is:

�(1�+
g ) = N(ab + ba)

1√
2
(αβ − βα),

where a = 1sA and b = 1sB are 1s AOs centred at A and B. If we take for a, b the 2-centre
Guillemin–Zener AOs:

a = exp[−(cArA + cBrB)] b = exp[−(cArB + cBrA)],

introducing spheroidal coordinates for the two electrons:

rA = R

2
(μ + ν), rB = R

2
(μ − ν)

we have:

ab + ba = exp(−cArA1 − cBrB1) · exp(−cArB2 − cBrA2)

+ exp(−cArB1 − cBrA1) · exp(−cArA2 − cBrB2)

= exp

[

−cAR

2
(μ1 + ν1 + μ2 − ν2)

]

× exp

[

−cBR

2
(μ1 − ν1 + μ2 + ν2)

]

+ exp

[

−cAR

2
(μ1 − ν1 + μ2 + ν2)

]

× exp

[

−cBR

2
(μ1 + ν1 + μ2 − ν2)

]

= exp

[

−cAR

2
(μ1 + μ2)

]

· exp

[

−cAR

2
(ν1 − ν2)

]

× exp

[

−cBR

2
(μ1 + μ2)

]

· exp

[

cBR

2
(ν1 − ν2)

]

+ exp

[

−cAR

2
(μ1 + μ2)

]

· exp

[

cAR

2
(ν1 − ν2)

]

× exp

[

−cBR

2
(μ1 + μ2)

]

· exp

[

−cBR

2
(ν1 − ν2)

]

.
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Therefore:

ab + ba = exp

[

−R

2
(cA + cB)(μ1 + μ2)

]

×
{

exp

[

R

2
(cA − cB)(ν1 − ν2)

]

+ exp

[

−R

2
(cA − cB)(ν1 − ν2)

]}

= exp[−δ(μ1 + μ2)]
{

exp[γ (ν1 − ν2)] + exp[−γ (ν1 − ν2)]
}

= 2 exp[−δ(μ1 + μ2)] cosh[γ (ν1 − ν2)],

which is the Inui wavefunction for the ground state, if we pose:

δ = R

2
(cA + cB), γ = R

2
(cA − cB).

The inverse transformation between the non-linear parameters is:

cA = δ + γ

R
, cB = δ − γ

R
.

The conventional Heitler–London wavefunction in terms of 1-centre AOs can be obtained
from the Inui wavefunction by posing:

δ = γ, cB = 0.

Putting:

δ = 0, γ = 0

we obtain the exponentially decreasing part of the James–Coolidge wavefunction.

7.18. The energy in first order of Møller–Plesset (MP) theory.
If �0 is the single determinant HF wavefunction:

�0 = ‖ψ1ψ2 · · ·ψi · · ·ψN‖ = �HF
0 ,

the zeroth-order MP energy will be:

E0 = 〈�HF
0

∣

∣Ĥ0
∣

∣�HF
0

〉= 〈‖ψ1ψ2 · · ·ψN‖|
∑

i

F̂i |‖ψ1ψ2 · · ·ψN‖〉

=
∑

i

〈ψi |F̂1|ψi〉 =
∑

i

εi ,



360 7. Many-Electron Wavefunctions: Slater, Hartree–Fock and Related Methods

and the first-order MP energy:

E1 = 〈�HF
0 |V |�HF

0 〉
= 〈‖ψ1ψ2 · · ·ψN‖|1

2

∑

i,j

′ 1

rij
−
∑

i

(Ji − K̂i)|‖ψ1ψ2 · · ·ψN‖〉

= 1

2

∑

i

∑

j

[

〈ψiψj | 1

r12
|ψiψj 〉 − 〈ψjψi | 1

r12
|ψiψj 〉

]

−
∑

i

〈ψi |J1 − K̂1|ψi〉

= −1

2

∑

i

∑

j

[

〈ψiψj | 1

r12
|ψiψj 〉 − 〈ψjψi | 1

r12
|ψiψj 〉

]

= −Vee.

Hence, it follows:

E0 + E1 =∑i εi − Vee = EHF
0

which is the electronic energy in the HF approximation.

7.19. The Brillouin theorem for HF �0.
Using Slater’s rules (108) and (112) for the matrix elements of the Slater det with one

spin-orbital difference, we have:

〈�(i → p)|V |�HF
0 〉

= 〈‖ψ1ψ2 · · ·ψp · · ·ψN‖|1

2

∑

i,j

′ 1

rij
−
∑

i

(Ji − K̂i)|‖ψ1ψ2 · · ·ψi · · ·ψN‖〉

=
∑

j

[

〈 1 2
ψp ψj | 1

r12
| 1 2
ψi ψj 〉 − 〈 1 2

ψj ψp | 1

r12
| 1 2
ψi ψj 〉

]

− 〈ψp|J1 − K̂1|ψi〉

= 〈ψp|J1 − K̂1|ψi〉 − 〈ψp|J1 − K̂1|ψi〉 = 0

which is Brillouin’s theorem for single excitations. For the double excitations, from Slater’s
rules (109) and (114) for two spin-orbital differences, we obtain:
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〈�(i → p, j → q)|V |�HF
0 〉

= 〈‖ψ1ψ2 · · ·ψp · · ·ψq · · ·ψN‖|1

2

∑

i,j

′ 1

rij
−
∑

i

(Ji − K̂i)|

× ‖ψ1ψ2 · · ·ψi · · ·ψj · · ·ψN‖〉

= 〈 1 2
ψp ψq | 1

r12
| 1 2
ψi ψj 〉 − 〈 1 2

ψq ψp | 1

r12
| 1 2
ψi ψj 〉

since the integral over the 1-electron operator vanishes for the double excitation.
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8.1 INTRODUCTION

Most of the following owes much to Simon Altmann’s excellent Chapter on Group Theory
in Vol. II of Bates “Quantum Theory” (Altmann, 1962), offered as post-Doc lectures at
various Oxford Summer Schools in Theoretical Chemistry during the years 1960–1970.

363
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We start from elementary considerations, often intuitive, of the properties of symmetry
operations in Quantum Mechanics, next introducing for advanced work group theoretical
methods mostly using matrix techniques. An interesting alternative approach shifting em-
phasis from the theory of matrix representation to the theory of algebras was given by Hall
(1967), and will be occasionally followed in a few points of this work. Good presentation
is also in Landau and Lifshitz (1958), while advanced applications can be found, among
others, in Meijer and Bauer (1962) and Kaplan (1975).

Symmetry is a fundamental physical property which can never be violated, and which
offers interesting simplifications even without doing effective quantum mechanical calcu-
lations. Even if the Schroedinger wave equation cannot be solved exactly, there are several
results which depend only on the symmetry properties of the problem, and which can be
obtained exactly with the aid of that branch of linear algebra known as group theory. As
a part of Mathematics, abstract group theory was developed to some extent by the young
mathematician Galois1 well before its applications to Physics, due mostly to Weyl2 (1931)
and Wigner3 (1959), and to Chemistry by Mulliken (1933) and by Rosenthal and Murphy
(1936). The majority of applications contained in this Chapter will be concerned with finite
molecular point groups, while a short outline of continuous and permutation groups will
be given in Section 7. The Chapter ends, as usual, with a large number of problems which
are completely worked out in the last Section.

8.2 SYMMETRY AND QUANTUM MECHANICS

Let R be a symmetry operation, i.e. an operation exchanging identical particles (electrons
or nuclei). If R̂ is the linear Hermitian operator associated with R, the Hamiltonian Ĥ will
be left unchanged by any operation R so that R̂ will commute with Ĥ :

[Ĥ , R̂] = 0, (1)

and the symmetry operation R will be a constant of the motion. Now, if �i is a solution of
the Schroedinger equation belonging to the eigenvalue Ei :

Ĥ�i = Ei�i (2)

R̂(Ĥ�i) = R̂(Ei�i) (3)

Ĥ (R̂�i) = Ei(R̂�i), (4)

and we are left with two possibilities.

1Galois Evariste 1811–1832, French mathematician.
2Weyl Hermann 1885–1955, German mathematician, Professor at the Universities of Zürich, Göttingen and

Princeton.
3Wigner Eugene Paul 1902–1995, U.S. physicist, Professor of Physics at the Palmer Physical Laboratory of the

University of Princeton, New Jersey. 1963 Nobel Prize for Physics.
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(i) Let Ei be a non-degenerate eigenvalue. Then it follows from equation (4) that:

R̂�i = a�i (5)

where, apart from a phase factor:

a = ±1 (6)

if we require R̂�i to be normalized to unity. Hence, it follows that the function �i has
definite symmetry properties under the transformation with the operator R̂:

R̂�i = +�i symmetric (7)

R̂�i = −�i antisymmetric. (8)

In the language of group theory, the eigenvalues ±1 are called the characters of a
1-dimensional representation.

(ii) Otherwise, let Ei be a k-degenerate eigenvalue. Then, any linear combination of the k

linearly independent functions {�ij } j = 1,2, · · ·k with constant coefficients (subject
to normalization) will be a solution of equation (4), with coefficients satisfying the
matrix multiplication rule (Chapter 2), say:

R̂Ŝ = T̂ , D(R)D(S) = D(T )4, RS = T, (9)

and where all the matrices (order k) are unitary matrices. We then say that the func-
tions {�ij } j = 1,2, · · ·k form a basis for a k-degenerate matrix representation of the
group of symmetry operations. The characters are now the trace of the corresponding
matrices.

Symmetry allows to simplify the study of any molecular system through (i) the con-
struction of symmetry-adapted basis functions by use of suitable projection operators,
and (ii) the selection rules which allow to decide what matrix elements are zero inde-
pendently of their effective calculation. Particular importance in atomic theory has the
rotation group (a continuous group with infinite elements made by all rotations leav-
ing a sphere invariant, see Section 7) which determines the transformation properties
of angular momenta.

8.3 MOLECULAR SYMMETRY

Many polyatomic molecules have a molecular symmetry due to the existence in space of
identical nuclei (e.g. the H2O molecule). The set of all h symmetry elements of a molecule
defines the point symmetry group (order h) which characterizes that molecule.

4D(R) = R is the matrix representative of the symmetry operator R̂ in the basis {�ij } (from the German word
darstellung).
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Table 8.1.

Molecular point group, symmetry operations R, symmetry-defined types (irreps) �i , and order h of the group for
a few important groups of finite order

Group R �i h

C2v(2mm)a I,C2, σv, σ ′
v A1,A2,B1,B2 4

C3v(3m) I,2C3,3σv A1,A2,E 6
C5v(5m) I,2C5,2C2

5 ,5σv A1,A2,E1,E2 10
C6v(6mm) I,2C6,2C3,C2,3σv,3σd A1,A2,B1,B2,E1,E2 12
C2h(2/m) I,C2, i, σh Ag,Au,Bg,Bu 4
D2h(mmm) I,Cz

2,Cx
2 ,C

y
2 A1g,B1g,B2g,B3g 8

i, σxy , σyz, σzx A1u,B1u,B2u,B3u

D3h(6mm) I,2C3,3C2 A′
1,A′

2,E′ 12
σh,2S3,3σv A′′

1,A′′
2,E′′

D6h(6/mmm) I,2C6,2C3,C2,3σv,3σd A1g,A2g,B1g,B2g,E1g,E2g 24
σh,2S6,2S3, i,3C′

3,3C′′
2 A1u,A2u,B1u,B2u,E1u,E2u

D3d (3m) I,2C3,3C2 A1g,A2g,Eg 12
i,2S6,3σd A1u,A2u,Eu

Td(43m) I,8C3,3C2,6σd ,6S4 A1,A2,E,T1, T2 24
Oh(m3m) I,8C3,6C2,6C4,3C2 A1g,A2g,Eg,T1g,T2g 48

i,8S6,6S4,6σd ,3σh A1u,A2u,Eu,T1u,T2u

aCrystallographic notation (Tinkham, 1964).

In the following, we shall refer some molecules to the different symmetry groups using a
notation due to Schoenflies5, usual in Theoretical Chemistry and Spectroscopy, giving the
symmetry operations R, the symmetry-defined types (irreducible representations, or irreps,
in the language of group theory) �i , and, lastly, the order of the group h (Table 8.1). For
comparison, the crystallographic notation (Tinkham, 1964) is given in parenthesis. We may
notice from the outset that the number of symmetry operations R coincides with the order
of the group, while the number of irreps coincides with the number of classes grouping
different operations (see Section 8.5.4 on group theory).

We now list the main symmetry operations occurring in Table 8.1 either in the Schoen-
flies or in the crystallographic notation.

(i) Schoenflies notation.
I = identity.

Cn = rotation by 2π/n about an axis.
σv = reflection in a plane containing the main symmetry axis.
σh = reflection in a plane perpendicular to the main symmetry axis.
σd = reflection in a plane containing the main symmetry axis and bisecting the angle

between the binary axes perpendicular to the main symmetry axis.
Sn = rotatory reflection, a rotation by 2π/n followed by a reflection in a plane per-

pendicular to the rotation axis.

5Schoenflies Arthur 1853–1928, German mathematician, Professor of Mathematics at the University of Frank-
furt.



8.3 Molecular Symmetry 367

(ii) Crystallographic notation.
n = rotation by 2π/n about an axis.
n = roto-inversion, rotation by 2π/n followed by inversion.
1 = inversion i.
2 = binary rotation (C2) followed by inversion = reflection in a plane perpendicular

to the rotation axis.
m = reflection plane (“mirror”).

/m = horizontal reflection plane = σh.

We now list the symmetry-defined types (irreps) �i occurring in Table 8.1.

A: 1-dimensional irrep, symmetric with respect to rotation about the main
symmetry axis. If more than one: A1,A2, · · ·

B: 1-dimensional irrep, antisymmetric with respect to rotation about the
main symmetry axis. If more than one: B1,B2, · · ·

E: 2-dimensional irrep. If more than one: E1,E2, · · · (Yl1 transforms like
E1, Yl2 transforms like E2, · · ·).

T : 3-dimensional irrep. If more than one: T1, T2, · · ·
g,u: even (gerade) or odd (ungerade) with respect to the inversion i.

′ or ′′: even or odd with respect to the reflection σh.
�,�,�,	, · · ·: irreps of the axial rotation group (C∞v). Apart from �, all are 2-di-

mensional.
S,P,D,F, · · ·: irreps of the full rotation group (R3). Dimensionality: 1,3,5,7, · · ·

(2l + 1).

Finally, we summarize the notation of the molecular point groups (Table 8.1) in the
Schoenflies notation.

Cn: a single rotation axis Cn.
Cnv : Cn with n vertical symmetry planes.
Cnh: Cn with a horizontal symmetry plane.
Dn: n binary axes (C2) perpendicular to Cn.

Dnh: Dn with a horizontal symmetry plane.
Dnd : Dn with n symmetry planes σd .

Sn: a single rotation-reflection axis.
T : the group of regular tetrahedron (I,C2,C3).
Td : T with symmetry planes (T ,σd, S4).
Th: T with centre of symmetry.
O: the group of regular octahedron or cube.

Oh: O with centre of symmetry.
C∞v : (infinite) axial rotation group.
D∞h: (infinite) axial rotation group with centre of symmetry.

We end this Section by giving (Table 8.2) the point group of a few simple polyatomic
molecules.
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Table 8.2.

Point groups of a few polyatomic molecules

D∞h Homonuclear diatomics or centrosymmetric linear polyatomic molecules
H2, Li2, N2, O2, F2, C2H2, CO2

C∞v Heteronuclear diatomics or linear polyatomic molecules without centre of symmetry
LiH, CO, NO, HX, HCN, COS

C2v Bent triatomics
H2O, H2S, H2Se, H2Te, SO2, cis-C2H2X2, syn-H2O2, C5H5N (pyridine), C14H10 (phenanthrene)

C3v Pyramidal molecules
NH3, PH3, AsH3, SbH3, CH3X, CHX3, PCl3

C2h trans-C2H2X2, anti-H2O2
D2h C2H4 (ethylene), C10H8 (naphthalene), C14H10 (anthracene), B2H6 (diborane)
D3d Staggered ethane C2H6
D3h Eclipsed ethane C2H6
D6h Benzene C6H6
Td Tetrahedral molecules

CH4, SiH4, GeH4, SnH4, CX4
Oh SF6

8.4 SYMMETRY OPERATIONS AS TRANSFORMATION OF
COORDINATE AXES

8.4.1 Passive and Active Representations of Symmetry Operations

We now turn to define exactly what is meant by symmetry operation. Consider first the H2O
molecule, introducing a right-handed Cartesian system of coordinates with the molecule
in the yz-plane and the x-axis perpendicular to the molecular plane and pointing in the
appropriate direction (Figure 8.1). The symmetry axis is along z, the plane zx bisecting
the molecule.

Because of the indistinguishability of the two H nuclei, we can pass from I to II with-
out altering the energy of the molecule (we simply interchange the labels which would
arbitrarily distinguish the two H nuclei). The result of going from I to II corresponds to a
reflection of the two identical H nuclei across the zx-plane (which is a symmetry plane for
H2O): we say that we have done a symmetry operation, in this case a reflection σ ′

v across
the (vertical) plane zx. Evidently, III is identical to II, since an observer placed in O would
see in both cases two physically indistinguishable situations.

We see, therefore, that we can do the symmetry operation in either of two ways:

(1) Passive transformation: we subject the coordinate axes to the symmetry operation leav-
ing fixed the points (III).

(2) Active transformation: we subject the space points to the symmetry operation leaving
fixed the reference system (II).

In general, an operation R done on the axes can be visualized as the inverse operation, R−1,
acting on the space point. Even if more difficult to visualize, we shall always refer in the
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Figure 8.1 Reflection in the vertical plane σ ′
v bisecting the molecular plane.

Figure 8.2 Passive (left) and active (right) transformations expressing the same positive rotation C+
α .

following to a “symmetry operation as a transformation of the coordinate axes” (the passive
transformation). As a second example (Figure 8.2), consider a point P on the coordinate
plane xy. The positive rotation by +α (C+

α ) about z in the passive representation (left
part of Figure 8.2, rotation of axes by +α in the anticlockwise sense), is equivalent to the
rotation by −α (clockwise, right part of Figure 8.2) of the point in the active representation.
Positive rotations are always anticlockwise.

Identity, rotations and inversion are primitive symmetry operations, all others being com-
pounded symmetry operations. For instance, the reflection across a plane is always express-
ible as a binary rotation about an axis perpendicular to the plane followed by inversion. We
can write:

iC2 = σ, (10)

where we write on the right the operation done first. We can compound the symmetry oper-
ations, the result of more symmetry operations still being a symmetry operation (generally,
however, the commutative law does not hold, namely RS �= SR). Given an operation R we
can define its inverse, R−1, as that operation which brings anything to the initial state:

RR−1 = R−1R = I. (11)
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We then have:

I−1 = I,
(

C+
n

)−1 = C−
n ,

(

S+
n

)−1 = S−
n , i−1 = i, σ−1 = σ.

(12)

The inverse of the product of two symmetry operations R, S is:

(RS)−1 = S−1R−1. (13)

8.4.2 Symmetry Transformations in Coordinate Space

We now examine the effect of rotation and reflection of a space point P in the passive
representation.

(i) Rotation of coordinate axes.
We have the geometric relations:

x = OP cosϕ

y = OP sinϕ

̂POX′ = ϕ − α.

(14)

The transformation of the coordinates of the point P under the rotation C+
α will be:

⎧

⎨

⎩

x′ = OP cos(ϕ − α) = OP(cosϕ cosα + sinϕ sinα)

y′ = OP sin(ϕ − α) = OP(sinϕ cosα − cosϕ sinα)

(15)

Figure 8.3 Rotation of the space point P about the z-axis.
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namely:

⎧

⎨

⎩

x′ = x cosα + y sinα

y′ = −x sinα + y cosα
(16)

which can be written in matrix form6:

(

x′
y′
)

=
(

cosα sinα

− sinα cosα

)

(

x

y

)

D(C+
α )

, (17)

where D(C+
α ) is the matrix representative (darstellung) of the anticlockwise (positive) ro-

tation C+
α , with the inverse transformation:

(

x

y

)

=
(

cosα − sinα

sinα cosα

)

(

x′
y′
)

D
(

C−
α

)

(18)

D(C−
α ) being the matrix describing the clockwise (negative) rotation C−

α of the coordinate
axes. The matrices describing rotations, D(C+

α ) and D(C−
α ), are orthogonal matrices so

that:

D
(

C+
α

)

D
(

C−
α

)=
(

cosα sinα

− sinα cosα

)(

cosα − sinα

sinα cosα

)

= 1. (19)

(ii) Reflection of coordinate axes.
We have:

x = OP cosϕ

y = OP sinϕ

̂POX′ = ϕ − 2α.

(20)

The transformation of the coordinates of the point P under the reflection σα will be:

⎧

⎨

⎩

x′ = OP cos(ϕ − 2α) = OP(cosϕ cos 2α + sinϕ sin 2α)

y′ = −OP sin(ϕ − 2α) = −OP(sinϕ cos 2α − cosϕ sin 2α)

(21)

6We shall always take coordinates as columns and basis functions as rows.
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Figure 8.4 Reflection of the space point P across the plane σα .

namely:

⎧

⎨

⎩

x′ = x cos 2α + y sin 2α

y′ = x sin 2α − y cos 2α
(22)

and, in matrix form:

(

x′
y′
)

=
(

cos 2α sin 2α

sin 2α − cos 2α

)

(

x

y

)

.

D(σα)

(23)

The inverse transformation is described by the same matrix:

D
(

σ−1
α

)= D(σα). (24)

8.4.3 Symmetry Operators and Transformations in Function Space

Symmetry operations are described by linear operators R̂ having as representatives in a
given basis orthogonal matrices D(R) = R.

Now, let R̂q be the coordinate transformation of the space point P under the symmetry
operation R̂:

q ′ = R̂q, (25)

and:

f ′(q) = R̂f (q) (26)
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the transformation of the function f (q) under R̂. A transformation of the coordinate axes
must not alter the value of the function at each point of space:

f ′(q ′) = f (q) (27)

namely:

R̂f (R̂q) = f (q). (28)

Applying equation (28) to the point R−1q we obtain the fundamental relation:

R̂f (q) = f (R−1q), (29)

namely, the function transformed under a symmetry operation is nothing but the function
calculated by subjecting its argument to the inverse transformation.

In the following, we omit the caret on the operation R.

(i) Rotation of a function by C+
α .

Proceeding as in Figure 8.3, we have:

ϕ′ = C+
α ϕ = ϕ − α C−

α ϕ = ϕ + α. (30)

1. Transformation of p-functions (l = 1):

px ∝ sin θ cosϕ py ∝ sin θ sinϕ (31)

C+
α px(ϕ) = px(C

−
α ϕ) = px(ϕ + α) = sin θ cos(ϕ + α)

= sin θ(cosϕ cosα − sinϕ sinα) = px cosα − py sinα (32)

C+
α py(ϕ) = py(C

−
α ϕ) = px sinα + py cosα (33)

giving the matrix transformation (footnote 6):

C+
α (pxpy) = (

C+
α pxC

+
α py

) = (pxpy)

(

cosα sinα

− sinα cosα

)

rotated basis old basis D
(

C+
α

)

(34)

with the character:

χ
(

C+
α

)= trDp

(

C+
α

)= 2 cosα (p-basis). (35)

2. Transformation of d-functions (l = 2):

dx2−y2 ∝ sin2 θ cos 2ϕ dxy ∝ sin2 θ sin 2ϕ (36)
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C+
α dx2−y2 = dx2−y2

(

C−
α ϕ

)= sin2 θ cos(2ϕ + 2α)

= sin2 θ(cos 2ϕ cos 2α − sin 2ϕ sin 2α)

= dx2−y2 cos 2α − dxy sin 2α (37)

C+
α dxy = dxy

(

C−
α ϕ

)= sin2 θ sin(2ϕ + 2α)

= dx2−y2 sin 2α + dxy cos 2α (38)

giving the matrix transformation:

C+
α

(

dx2−y2 dxy

)= (

C+
α dx2−y2 C+

α dxy

)

= (

dx2−y2 dxy

)

(

cos 2α sin 2α

− sin 2α cos 2α

)

D
(

C+
α

)

(39)

χ
(

C+
α

)= tr Dd

(

C+
α

)= 2 cos 2α (d-basis). (40)

The matrix representative of the same operation C+
α is different in the basis (dx2−y2 dxy).

Hence, it is always necessary to specify the basis to which the representative is referred.

(ii) Reflection of a function across the plane σα .
Taking into account Figure 8.4, we have:

ϕ′ = σ−1
α ϕ = σαϕ = ϕ + 2(α − ϕ) = 2α − ϕ. (41)

Proceeding as in (i) we have the following results.

1. Transformation of p-functions (l = 1):

σαpx(ϕ) = px

(

σ−1
α ϕ

)= px(σαϕ) = px cos 2α + py sin 2α (42)

σαpy(ϕ) = py

(

σ−1
α ϕ

)= py(σαϕ) = px sin 2α − py cos 2α (43)

σα(pxpy) = (σαpxσαpy) = (pxpy)

(

cos 2α sin 2α

sin 2α − cos 2α

)

Dp(σα)

(44)

χ(σα) = tr Dp(σα) = 0 (p-basis). (45)
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2. Transformation of d-functions (l = 2):

σα

(

dx2−y2 dxy

)= (

dx2−y2 dxy

)

(

cos 4α sin 4α

sin 4α − cos 4α

)

Dd(σα)

(46)

χ(σα) = tr Dd(σα) = 0 (d-basis). (47)

Examples

1. C+
π/2px = −py C+

π/2py = px .

2. C+
π/4dx2−y2 = −dxy C+

π/4dxy = dx2−y2 .
3. Symmetry plane σ(zx) α = 0◦.

σ(α = 0◦)py = −py .

Figure 8.5 Rotation of px by α = π/2.

Figure 8.6 Rotation of dxy by α = π/4.
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Figure 8.7 Reflection of py across σ(zx).

Figure 8.8 Reflection of dxy across σ(zx).

4. σ(α = 0◦)dxy = −dxy .

8.4.4 Matrix Representatives of Symmetry Operators

We give below three theorems on the matrix representatives of symmetry operators.

Theorem 1. Given a complete set of orthonormal basis functions χk (k = 1,2, · · ·N ), the
D(R)ij -element of the matrix representative of the operator R̂ in the basis χ is given by:

D(R)ij =
∫

drχ∗
i (r)R̂χj (r) = 〈χi |R̂|χj 〉 (48)

and, in matrix form:

R̂χ = χDχ (R) (49)

χ†R̂χ = (χ†χ)Dχ (R) = Dχ (R). (50)
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Theorem 2. If RS = T in coordinate space, then R̂Ŝ = T̂ in function space. In fact:

R̂Ŝf (q) = R̂f ′(q) = f ′(R−1q) = Ŝf (R−1q) = f (S−1R−1q) = f (T −1q)

= T̂ f (q). (51)

Theorem 3. There is a one-to-one correspondence between the product of two operators
R̂, Ŝ and the product D(R)D(S) of their representatives. Namely, if:

R̂Ŝ = T̂ 
⇒ D(R)D(S) = D(T ). (52)

Proof.

Ŝχ = χD(S) R̂χ = χD(R) (53)

T̂ χ = R̂Ŝχ = R̂χD(S) = χD(R)D(S) = χD(T ) (54)

so that:

D(R)D(S) = D(T ). Q.E.D. (52)

8.4.5 Similarity Transformations

We give in this Section three further theorems concerning the transformation properties of
the matrix representatives D(R) of a symmetry operator R̂.

Theorem 1. If basis χ is changed into basis χ ′ by the transformation U, then the repre-
sentative Dχ ′(R) of R̂ in the new basis is related to the representative Dχ (R) in the old
basis by the similarity transformation (55):

χ ′ = χU 
⇒ Dχ ′(R) = U−1Dχ (R)U. (55)

Proof.

R̂χ = χDχ (R) = χ ′U−1Dχ (R) (56)

R̂χU = χ ′U−1Dχ (R)U (57)

namely:

R̂χ ′ = χ ′Dχ ′(R). Q.E.D. (58)

A similarity transformation is hence a change in the representative of an operator R̂

induced by a change in the basis.
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Theorem 2. Representatives of an operator R̂ related by a similarity transformation have
the same trace (sum of the diagonal matrix elements). This means that the trace of a matrix
representative is invariant under a similarity transformation.

Similarity transformations bear a particular importance, since it is always possible to do
a change in the basis (namely, to choose matrix U) in a way such that the new basis be
reduced to block (“sausage”) form and the corresponding matrix representatives to block-
diagonal form.

Theorem 3. If we obtain a representative of an operator R̂ in a block-diagonal form, its
basis separates into two (or more) independent sub-bases (the “sausage”), and each block
of the matrix representative is by itself a (reduced) representative of the operator.

For finding a basis which shows a characteristic behaviour under all symmetry opera-
tions R̂ of the group, whose matrix representatives cannot be further simplified by similar-
ity transformations (which are, in other words, irreducible), we must resort to more formal
group theoretical methods, as we go to discuss in the next Section.

8.5 GROUP THEORETICAL METHODS

8.5.1 Axioms of Group Theory

Def. An (abstract) group G{G1,G2, · · · ,Gh} of order h is given by a closed set of h ele-
ments satisfying the following properties:

(i) There is a composition law (usually, but not necessarily, the multiplication law) such
that GrGs = Gt still belongs to G (we say that a group is closed with respect to the
symbolic multiplication).

(ii) The law of composition is associative:

(GrGs)Gt = Gr(GsGt). (59)

(iii) There is the identity or unity (or neutral) element Gμ, such that:

GrGμ = GμGr = Gr. (60)

(iv) Each element has an inverse G−1
r , such that:

GrG
−1
r = G−1

r Gr = Gμ. (61)

(v) In general, the commutative law does not hold, i.e.:

GrGs �= GsGr. (62)

If:

GrGs = GsGr (63)
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the group is said to be Abelian7 (commutative group).

8.5.2 Examples of Groups

1. The set of integers (positive and negative) {a} forms an infinite Abelian group with
respect to addition:

a + b = c (a + b) + c = a + (b + c) a + 0 = 0 + a = a

addition associative 0 is the neutral element

a − a = 0 a + b = b + a.

−a is the inverse commutative

(64)

2. The set of numbers {1, i,−1(i2),−i(i3)} forms an Abelian group of order 4 with respect
to multiplication8. We have the multiplication table:

Multiplication
table

1 i −1 −i

1 1 i −1 −i

i i −1 −i 1
−1 −1 −i 1 i

−i −i 1 i −1

Each element of the group occurs only once along each row and each column. The
identity element is 1.

The inverse of: 1 i −1 −i

is: 1 −i −1 i

3. The set of symmetry operations transforming the equilateral triangle into itself forms a
finite group of order 6 (the point group C3v). The elements are the 6 symmetry opera-
tions: I , C+

3 , C−
3 , σ1, σ2, σ3 (Figure 8.9), having the multiplication table:

Multiplication
table

I C+
3 C−

3 σ1 σ2 σ3

I I C+
3 C−

3 σ1 σ2 σ3

C+
3 C+

3 C−
3 I σ2 σ3 σ1

C−
3 C−

3 I C+
3 σ3 σ1 σ2

σ1 σ1 σ3 σ2 I C−
3 C+

3
σ2 σ2 σ1 σ3 C+

3 I C−
3

σ3 σ3 σ2 σ1 C−
3 C+

3 I

7Abel Niels Henrik 1802–1828, Norwegian mathematician.
8i is the imaginary unit (i2 = −1).
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Figure 8.9 Symmetry elements of the equilateral triangle.

Figure 8.10 The product of two symmetry operations of the group C3v is not commutative (active representa-
tion).

Taking Figure 8.9 as reference, Figure 8.10 shows the non-commutation of the prod-
uct of the two operations σ1 and C+

3 of the group C3v (the operation on the right being
done first):

σ1C
+
3 = σ3 C+

3 σ1 = σ2. (65)
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Starting from the 3-term basis functions:

χ = (|1〉 |2〉 |3〉) (66)

we further show how to construct the matrix representatives D(C+
3 ) and D(C−

3 ). We
have:

C+
3 |1〉 = |3〉 C+

3 |2〉 = |1〉 C+
3 |3〉 = |2〉 (67)

C+
3 χ = (C+

3 |1〉 C+
3 |2〉 C+

3 |3〉) = (|1〉 |2〉 |3〉)
⎛

⎜

⎝

0 1 0

0 0 1

1 0 0

⎞

⎟

⎠

D(C+
3 )

(68)

C−
3 |1〉 = |2〉 C−

3 |2〉 = |3〉 C−
3 |3〉 = |1〉 (69)

C−
3 χ = (|1〉 |2〉 |3〉)

⎛

⎜

⎝

0 0 1

1 0 0

0 1 0

⎞

⎟

⎠
.

D(C−
3 )

(70)

Matrix multiplication then shows:

D
(

C+
3

)

D
(

C−
3

)=
⎛

⎜

⎝

0 1 0

0 0 1

1 0 0

⎞

⎟

⎠

⎛

⎜

⎝

0 0 1

1 0 0

0 1 0

⎞

⎟

⎠
= 1 (71)

in agreement with the result of the multiplication table.
4. The set of the six functions:

I (x) = x A(x) = (1 − x)−1 B(x) = 1 − x−1 (72)

C(x) = x−1 D(x) = 1 − x E(x) = x(1 − x)−1 (73)
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forms a group of order 6 with respect to the substitution of one function into the other
as a function of a function9 (Hall, 1967). The group is not Abelian. The substitution
table is given below, the details being in Problem 8.5.

Substitution
table

I A B C D E

I I A B C D E

A A B I E C D

B B I A D E C

C C D E I A B

D D E C B I A

E E C D A B I

8.5.3 Isomorphism

Let G and G′ be two finite groups of the same order h:

G{G1,G2, · · · ,Gh} (74)

G′{G′
1,G

′
2, · · · ,G′

h}. (75)

The two groups G and G′ are isomorphic if:

1. There is a one-to-one correspondence between each element Gr of G and G′
r of G′:

G′
1 ↔ G1, G′

2 ↔ G2, · · · , G′
h ↔ Gh (76)

2. The symbolic multiplication rule is preserved:

GrGs = Gt in G ↔ G′
rG

′
s = G′

t in G′. (77)

If only property 1 is valid, the two groups are called homomorphic. As an example, are
isomorphic the three groups of order 4:

(a) The numbers 1 i −1 −i

(b) The matrices

(

1 0

0 1

) (

0 1

−1 0

) (

−1 0

0 −1

) (

0 −1

1 0

)

(c) The cyclic group C4 I C1
4 = C+

4 C2
4 = C2 C3

4 = C−
4

when as composition rule is assumed the ordinary multiplication rule for (a) and (c), and
the matrix multiplication rule for (b). The easy proof is left to the reader.
As a further example, are isomorphic the three groups of order 6:

9This substitutional group is a particular finite subgroup of the continuous group of conformal transformations.
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(d) The group C3v of the symmetry operations of the equilateral triangle.
(e) The group of the 3 × 3 representative matrices of C3v in the basis of the three 1s

functions (h1h2h3).
(f) The group of the 2 × 2 matrices (E symmetry) representative of C3v in the symmetry-

adapted basis (hxhy ).

We have:

(d) C3v{I,C+
3 ,C−

3 , σ1, σ2, σ3}
(e) Dχ (I ) Dχ (C+

3 ) Dχ (C−
3 ) Dχ (σ1) Dχ (σ2) Dχ (σ3)

χ basis
(h1h2h3)

⎛

⎜

⎝

1 · ·
· 1 ·
· · 1

⎞

⎟

⎠

⎛

⎜

⎝

· 1 ·
· · 1

1 · ·

⎞

⎟

⎠

⎛

⎜

⎝

· · 1

1 · ·
· 1 ·

⎞

⎟

⎠

⎛

⎜

⎝

1 · ·
· · 1

· 1 ·

⎞

⎟

⎠

⎛

⎜

⎝

· · 1

· 1 ·
1 · ·

⎞

⎟

⎠

⎛

⎜

⎝

· 1 ·
1 · ·
· · 1

⎞

⎟

⎠

(f) Dχ ′(I ) Dχ ′(C+
3 ) Dχ ′(C−

3 ) Dχ ′(σ1) Dχ ′(σ2) Dχ ′(σ3)

χ ′ basis

(hxhy)

(

1 ·
· 1

) (

c s

s c

) (

c s

s c

)

(

1 ·
· 1

)

(

c s

s c

) (

c s

s c

)

In fact:

Dχ (σ1)Dχ

(

C+
3

)=
⎛

⎜

⎝

1 · ·
· · 1

· 1 ·

⎞

⎟

⎠

⎛

⎜

⎝

· 1 ·
· · 1

1 · ·

⎞

⎟

⎠
=
⎛

⎜

⎝

· 1 ·
1 · ·
· · 1

⎞

⎟

⎠
= Dχ (σ3)

Dχ ′(σ1)Dχ ′
(

C+
3

)=
(

1 ·
· 1

)

(

c s

s c

)

=
(

c s

s c

)

= Dχ ′(σ3)

as σ1C
+
3 = σ3 in C3v , and so on. In the above matrices we posed: c = 1

2 , c = − 1
2 , s =

√
3

2 ,

s = −
√

3
2 .

8.5.4 Conjugation and Classes

Any two elements A and B of a group G are said conjugate if they are related by a simi-
larity transformation with all other elements X of the group:

A = X−1BX. (78)

The set of all conjugate elements defines a class. Conjugate operations are always of the
same nature (rotations with rotations, reflections with reflections, never rotations with re-
flections). We can give a geometric interpretation to conjugation, by saying that A repre-
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sents the same operation as B when the reference axes are subjected to the transforma-
tion X. From the multiplication table of the group C3v , we have for instance:

I−1C+
3 I = C+

3 I−1C−
3 I = C−

3

C−
3 C+

3 C+
3 = C+

3 C−
3 C−

3 C+
3 = C−

3

C+
3 C+

3 C−
3 = C+

3 C+
3 C−

3 C−
3 = C−

3

σ−1
1 C+

3 σ1 = C−
3 σ−1

1 C−
3 σ1 = C+

3

σ−1
2 C+

3 σ2 = C−
3 σ−1

2 C−
3 σ2 = C+

3

σ−1
3 C+

3 σ3 = C−
3 σ−1

3 C−
3 σ3 = C+

3

(79)

so that we can conclude that C+
3 ,C−

3 form a class (2C3). In the same way, we can show
that σ1, σ2, σ3 form a class (3σ ).

The point group C3v has therefore three classes:

I identity
2C3 ternary rotations
3σ reflections.

(80)

The number of classes is equal to the number of the irreducible representations (irreps)
of the symmetry group, while in a commutative (Abelian) group the number of classes is
equal to the order of the group.

8.5.5 Representations and Characters

(i) Representations.
Let G{G1,G2, · · · ,Gh} be a group of h elements, and {D(G1),D(G2), · · · ,D(Gh)} a

group of matrices isomorphic to G. We then say that the group of matrices gives a repre-
sentation (darstellung) of the group G. If we have a representation of a group in the form of
a group of matrices, we also have an infinite number of representations. In fact, we can ap-
ply a similarity transformation to all matrices of a given representation, thereby obtaining
a new representation of the group, and so on:

D(Gr) → U−1D(Gr)U (81)

D(Gr)D(Gs) = D(Gt ) 
⇒ (

U−1D(Gr)U
)(

U−1D(Gs)U
)

= U−1D(Gr)D(Gs)U = U−1D(Gt )U (82)

namely, the multiplication rule is maintained during the similarity transformation.
If, by applying a similarity transformation with a unitary matrix U to a representation

of a group G in the form of a group of matrices, we obtain a new representation whose
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Figure 8.11 A similarity transformation can reduce a matrix representative (left) to block-diagonal form (right).

matrices have a block-diagonal form, we say that the representation has been reduced (Fig-
ure 8.11).

The set of functions which are needed to find a (generally reducible) representation �

of a symmetry group forms a basis for the representation. The functions forming a basis
for the irreducible representations (irreps) of a symmetry group are said to be symmetry-
adapted functions: these functions transform in the simplest and characteristic way under
the symmetry operations of the group.

(ii) Characters.
In group theory, the trace of the representative in matrix form of a symmetry operator

R̂ is called the character of the operation corresponding to R̂, and is denoted by χ(R).
Almost all books on group theory contain extensive Tables of Characters for the main point
groups (among others, see: Eyring et al., 1944; Tinkham, 1964). In the following, we shall
show for some selected groups (C3v and C6v) how to construct the complete matrices for
all symmetry operations corresponding to degenerate irreducible representations, which
are essential for constructing symmetry-adapted functions using the powerful projection
operator methods of Section 7.

The characters have the following properties:

1. The condition that two representations be equivalent is that they have the same charac-
ters.

2. The characters are invariant under any transformation of the basis.
3. The characters are the same for all symmetry operations belonging to the same class.

As an example, consider three 1s AOs (h1h2h3) at the vertices of an equilateral triangle
(Figure 8.12).

We now construct the transformation table of the three functions under C3v symme-
try, find the representatives of all operations R̂ and their corresponding characters, finally
comparing these results with those obtained by a basis of three 1s AOs transforming ac-
cording to the three coordinate axes (hxhyhz). We shall see that the two bases are related
by a unitary transformation which reduces the former basis and matrix representatives to a
block-diagonal form.

χ basis:

χ = (h1h2h3) R̂χ = χDχ (R) (83)
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Figure 8.12 Three H 1s AOs at the vertices of an equilateral triangle (symmetry C3v ).

χ ′ basis:

χ ′ = (hxhyhz) R̂χ ′ = χ ′Dχ ′(R) (84)

Dχ ′(R) = U†Dχ (R)U. (85)

(i) Transformation table under C3v :

R̂χ I C+
3 C−

3 σ1 σ2 σ3

h1 h1 h3 h2 h1 h3 h2
h2 h2 h1 h3 h3 h2 h1
h3 h3 h2 h1 h2 h1 h3

The basis χ ′ transforming according to the three coordinate axes can be immediately found
by simple inspection of Figure 8.12. We find:

hx ∝ 2h1 − h2 − h3, hy ∝ h2 − h3, hz ∝ h1 + h2 + h3 (86)

giving the normalized functions10:

hx = 2h1 − h2 − h3√
6

, hy = h2 − h3√
2

, hz = h1 + h2 + h3√
3

. (87)

Therefore, the transformation from the old to the new (symmetry-adapted) basis will be:

χ ′ = χU

10We neglect the overlap between 1s AOs.
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(hxhyhz) = (h1h2h3)

⎛

⎜

⎜

⎝

2√
6

0 1√
3

− 1√
6

1√
2

1√
3

− 1√
6

− 1√
2

1√
3

⎞

⎟

⎟

⎠

.

U

(88)

It is easily verified by direct matrix multiplication that matrix U is unitary:

UU† = U†U = 1. (89)

We now construct the matrix representatives of the operations R̂ in the two bases.

χ-basis Dχ (I ) Dχ (C+
3 ) Dχ (C−

3 ) Dχ (σ1) Dχ (σ2) Dχ (σ3)

(h1h2h3)

⎛

⎜

⎝

1 · ·
· 1 ·
· · 1

⎞

⎟

⎠

⎛

⎜

⎝

· 1 ·
· · 1

1 · ·

⎞

⎟

⎠

⎛

⎜

⎝

· · 1

1 · ·
· 1 ·

⎞

⎟

⎠

⎛

⎜

⎝

1 · ·
· · 1

· 1 ·

⎞

⎟

⎠

⎛

⎜

⎝

· · 1

· 1 ·
1 · ·

⎞

⎟

⎠

⎛

⎜

⎝

· 1 ·
1 · ·
· · 1

⎞

⎟

⎠

χ(�) 3 0 0 1 1 1

χ ′ = χU (90)

χ ′-basis Dχ ′(I ) Dχ ′(C+
3 ) Dχ ′(C−

3 ) Dχ ′(σ1) Dχ ′(σ2) Dχ ′(σ3)

(hxhy | hz)

E A1

2 × 2 1 × 1

⎛

⎝

1 ·
· 1

0

0 1

⎞

⎠

⎛

⎝

c s

s c
0

0 1

⎞

⎠

⎛

⎝

c s

s c
0

0 1

⎞

⎠

⎛

⎝

1 ·
· 1

0

0 1

⎞

⎠

⎛

⎝

c s

s c
0

0 1

⎞

⎠

⎛

⎝

c s

s c
0

0 1

⎞

⎠

χ(�′) 3 0 0 1 1 1

�′ splits into the two irreps: �′ = E + A1.
The new basis has the following transformation table.

R̂χ ′ I C+
3 C−

3 σ1 σ2 σ3

hx hx −1

2
hx −

√
3

2
hy −1

2
hx +

√
3

2
hy hx −1

2
hx −

√
3

2
hy −1

2
hx +

√
3

2
hy

hy hy

√
3

2
hx − 1

2
hy −

√
3

2
hx − 1

2
hy −hy −

√
3

2
hx + 1

2
hy

√
3

2
hx + 1

2
hy

hz hz hz hz hz hz hz

8.5.6 Irreducible Representations

We now give without proof five theorems on irreducible representations.
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Theorem 1. The number of irreducible representations is equal to the number of classes.

Theorem 2. The necessary and sufficient condition that a representation � be irreducible
is that the sum (over all the operations R̂ of the group) of the squares of the moduli of the
characters be equal to the order h of the group:

∑

R

χ∗(R)χ(R) =
∑

R

|χ(R)|2 = h. (91)

Theorem 3. The preceding theorem is a particular case of the following one. Given any
two irreducible representations �i and �j of a group:

∑

R

χi(R)∗χj (R) = hδij (92)

which is known as the orthogonality relation for the characters. We can also say that the
characters of non-equivalent irreps form a system of orthogonal vectors.

Theorem 4. Theorem 3 is a particular case of the more general orthogonality theorem for
the components (in the form of matrices) of the h elements of the group:

∑

R

Di (R)∗mnDj (R)m′n′ = h

li
δij δmm′δnn′ , (93)

where h is the order of the group, and li the dimensionality of the i-th irrep. In other words:
the components (in the form of matrices) of the h elements of the group can be considered
as the components of an h-dimensional vector, orthogonal to other vectors obtained by
a different choice of the indices m,n, and to any other vector obtained from a different
irreducible representation.

Theorem 5. Functions that belong to different irreducible representations or to different
columns of the same are orthogonal.

From the orthogonality theorems it follows immediately that the number of times (aj ) a
given irrep �j occurs in the reducible representation � can be determined as:

D�(R) =
∑

i

aiDi (R) matrices

reducible irreducible

(94)

χ�(R) =
∑

i

aiχ
i(R) characters. (95)
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Multiplying both sides of the last equation by χj (R)∗ and adding over all operations R̂ of
the group, we find immediately:

∑

R

χj (R)∗χ�(R) =
∑

i

ai

(
∑

R

χj (R)∗χi(R)
)

=
∑

i

aihδij = haj , (96)

giving:

aj = 1

h

∑

R

χj (R)∗χ�(R) (97)

as the number of times that the j -th irrep occurs in the reducible representation �.
As a further example, we shall verify all previous theorems using the example of the

three 1s AOs (h1h2h3) belonging to C3v symmetry. The character table and the symmetry-
adapted functions transforming as (x, y, z) are:

C3v I 2C3 3σ Symmetry-adapted functions

A1 1 1 1 hz = 1√
3
(h1 + h2 + h3)

A2 1 1 −1

E 2 −1 0 hx = 1√
6
(2h1 − h2 − h3), hy = 1√

2
(h2 − h3)

�
reducible

3 0 1 original basis (h1h2h3)

Then:

∑

R

|χ�(R)|2 = 9 + 1 + 1 + 1 = 12. (98)

� is a reducible representation. Using equation (97):

A1: aA1 = 1

6
(3 + 0 + 3) = 1

A2: aA2 = 1

6
(3 + 0 − 3) = 0

E: aE = 1

6
(6 + 0 + 0) = 1.

Hence, � splits into:

� = A1 + E. (99)
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8.5.7 Construction of Symmetry-Adapted Functions

An important consequence of the orthogonality theorems is the possibility of constructing
projection operators (projectors) P̂ i which, acting on a function without any symmetry,
project out the component having the definite symmetry i and transforming as the irrep �i .
For li -dimensional irreps, the projector for the component λ will be:

P̂ i
λλ = li

h

∑

R

Di (R)∗λλR̂. (100)

This powerful projector requires the complete knowledge of the matrices Di (R) and not
only of the characters. If this is not possible, we can use the simpler, but weaker, projector:

P̂ i = li

h

∑

R

χi(R)∗R̂ (101)

which is based on the characters only. We must note, however, that whereas projector
(101) works well with 1-dimensional irreps, in the case of multi-dimensional irreps it
gives symmetry-adapted functions that are not linearly independent. Subsequent Schmidt-
orthogonalization is then necessary to get the full set of linearly independent symmetry-
adapted functions. We now verify the projector properties of the operator (101) in the case
of the isosceles lamina of symmetry C2v (Figure 8.13).

The set of symmetry operations transforming the isosceles lamina into itself makes a
group of order 4 (called the C2v group). The group is commutative (Abelian), which means

Figure 8.13 Symmetry elements transforming the isosceles lamina into itself under the symmetry C2v .
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that the number of symmetry operations is equal to the number of classes and to the number
of irreps. Transformation table and character table are (Problem 8.1):

C2v I C2 σv σ ′
v

I I C2 σv σ ′
v

C2 C2 I σ ′
v σv

σv σv σ ′
v I C2

σ ′
v σ ′

v σv C2 I

C2v I C2 σv σ ′
v

A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 −1 1
B2 1 −1 1 −1

The properties characterizing (101) as a projection operator are:

P̂ i P̂ j = P̂ iδij idempotency (mutual exclusivity) (102)

∑

i

P̂ i = Î completeness (resolution of the identity). (103)

Omitting the caret for short, we have for our isosceles lamina:

A1: P A1 = 1

4

∑

R

χA1(R)R = 1

4
(I + C2 + σv + σ ′

v)

A2: P A2 = 1

4

∑

R

χA2(R)R = 1

4
(I + C2 − σv − σ ′

v)

B1: P B1 = 1

4

∑

R

χB1(R)R = 1

4
(I − C2 − σv + σ ′

v)

B2: P B2 = 1

4

∑

R

χB2(R)R = 1

4
(I − C2 + σv − σ ′

v).

(104)

Using the transformation table we immediately find:

(i) P A2P A2 = 1

16
(I + C2 − σv − σ ′

v)(I + C2 − σv − σ ′
v)

= 1

16
(4I + 4C2 − 4σv − 4σ ′

v) = 1

4
(I + C2 − σv − σ ′

v)

= P A2 idempotency (105)

(ii) P A1P A2 = 1

16
(I + C2 + σv + σ ′

v)(I + C2 − σv − σ ′
v)

= 1

16
[(I + C2 + σv + σ ′

v) + (C2 + I + σ ′
v + σv)

− (σv + σ ′
v + I + C2) − (σ ′

v + σv + C2 + I )]
= 0 mutual exclusivity (106)
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(iii)
∑

i

P i = P A1 + P A2 + P B1 + P B2

= 1

4
[(I + C2 + σv + σ ′

v) + (I + C2 − σv − σ ′
v)

+ (I − C2 − σv + σ ′
v) + (I − C2 + σv − σ ′

v)]

= 1

4
(4I ) = I completeness. (107)

Many other applications on the construction of symmetry-adapted functions for H2O, NH3,
CH4 and C6H6 are given as Problems in Section 8.

8.5.8 The Wigner Method

Once symmetry-adapted functions are obtained from a given basis using the projector
methods described in the previous Subsection, the matrix U which reduces a reducible
representation � can be easily constructed. Wigner (1959) gave however an alternative
way of finding matrix U, which is based upon diagonalization of the Galois sum of all
representative matrices belonging to a given class.

For a class of two operations A,B we have:

X−1AX = B X−1BX = A (108)

X−1AX + X−1BX = B + A

X−1(A + B)X = A + B.

Multiplying both members on the left by X:

(A + B)X = X(A + B), (109)

so that A + B (the Galois sum of all operations belonging to the given class) commutes
with all symmetry operations X. According to Wigner, the matrix U that reduces the re-
ducible representation � is given by the matrix built from the eigenvectors arising from
the diagonalization of A + B . We shall take as an example the class of ternary rotations of
C3v . We have (Section 8.5.5):

Dχ (C+
3 ) Dχ (C−

3 )
⎛

⎜

⎝

· 1 ·
· · 1

1 · ·

⎞

⎟

⎠
+
⎛

⎜

⎝

· · 1

1 · ·
· 1 ·

⎞

⎟

⎠
=
⎛

⎜

⎝

· 1 1

1 · 1

1 1 ·

⎞

⎟

⎠

⇒

∣

∣

∣

∣

∣

∣

∣

−λ 1 1

1 −λ 1

1 1 −λ

∣

∣

∣

∣

∣

∣

∣

= 0.

Galois sum Secular equation

(110)

Expanding the secular determinant we find the cubic equation:

λ3 − 3λ − 2 = (λ + 1)(λ2 − λ − 2) = (λ + 1)2(λ − 2) = 0 (111)
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giving the roots:

λ1 = λ2 = −1, λ3 = 2.

twice

(112)

The eigenvectors are calculated in the usual way by substituting each eigenvalue in turn in
the homogeneous system taking into account normalization (Chapter 2). The results are:

(i) λ1 = −1 c1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2√
6

− 1√
6

− 1√
6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(113)

(ii) λ2 = −1 c2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0

1√
2

− 1√
2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(114)

(iii) λ3 = 2 c3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1√
3

1√
3

1√
3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(115)

We therefore obtain matrix U as:

U = (c1 c2 c3) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2√
6

0
1√
3

− 1√
6

1√
2

1√
3

− 1√
6

− 1√
2

1√
3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(116)

which is seen to coincide with the result found previously.
In the same way, it can be shown that the same matrix U can be obtained from the Galois

sum of the reflections Dχ (σ1) + Dχ (σ2) + Dχ (σ3).
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8.5.9 Subgroups and Direct-Product Groups

A subgroup is a set of elements of a group which is a group in itself: for instance, C3v

is a subgroup of D3h. If two groups, G (order h) and G′ (order h′), have (i) as common
element only the identity I , and (ii) commuting elements, then the group:

G′′ = G × G′ (order hh′) (117)

is said the direct-product group of G by G′. G and G′ are said to be subgroups of G′′.
The representations (and the characters) of the direct-product group G′′ can be expressed
through the product of those of the subgroups G and G′.

As an example, given the two groups C3v (order 6) and Cs (order 2):

C3v I 2C3 3σv

A1 1 1 1
A2 1 1 −1
E 2 −1 0

Cs I σh

A′ 1 1
A′′ 1 −1

the direct-product group is:

D3h = C3v × Cs (order 6 × 2 = 12) (118)

D3h I 2C3 3σv σh 2S3 3C′
2

A′
1 1 1 1 1 1 1

A′
2 1 1 −1 1 1 −1

A′′
1 1 1 −1 −1 −1 1

A′′
2 1 1 1 −1 −1 −1

E′ 2 −1 0 2 −1 0

E′′ 2 −1 0 −2 1 0

As a second example of direct-product group, we can take the symmetry point group of
the benzene (C6H6) molecule, D6h = C6v × Cs = D6 × Ci . Most properties of the π -
electron MOs of benzene can be derived in the simplest way in terms of its subgroup C6v

(Problem 13).
We observe at this point that in the Dnh groups the centre of symmetry is lacking for

n = odd, and we can take Dnh = Cnv × Cs . For n = even, Dnh has a centre of symmetry,
and it is customary to take Dnh = Dn × Ci , where Dn is the dihedral group (n symmetry
planes intersecting at angles 2π/n) and Ci the inversion group, having as elements the
identity I and the inversion operation i. This is because, as we have already said, i is a
primitive symmetry operation (like rotations) whereas reflections are not. So, for n = even,
the irreducible representations of Dnh bear the characteristic suffixes g and u (even or odd
under inversion, from the German “gerade” and “ungerade”).
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8.6 APPLICATIONS

We now introduce the fundamental theorem of symmetry, upon which are based all appli-
cations of group theory to physical problems.

8.6.1 The Fundamental Theorem of Symmetry

The most important applications of group theoretical methods in Quantum Chemistry are
based on Theorem 5 of Section 8.5.6 concerning the orthogonality of functions belong-
ing to different irreducible representations or to different columns of the same (Altmann,
1962), and on the fact that the full Hamiltonian Ĥ or other model Hamiltonians such as F̂

(the Fock operator) or H (the Hückel Hamiltonian) are totally symmetric operators. Then,
from:

〈

ψ(i)
a

∣

∣ψ
(j)
b

〉= 0 j �= i, b �= a (119)

it follows that for Ô = Ĥ , F̂ , H :

〈

ψ(i)
a

∣

∣Ô
∣

∣ψ
(j)
b

〉= 0 (120)

which is known as fundamental theorem of symmetry. In other words, all matrix elements
of the totally symmetric operator Ô between symmetry-adapted functions belonging to
different symmetries are zero, independently of any effective calculation. This result is of
great importance for the factorization of secular determinants and for the very existence of
selection rules.

8.6.2 Selection Rules

An alternative way at looking at the same problem is the statement that the necessary
and sufficient condition for an integral such as (120) to be different from zero is that the
representation to which its integrand belongs contains the totally symmetric representation
(Altmann, 1962). Consider the general matrix element of the operator Ô:

I = 〈

ψa(�
i)
∣

∣Ô(�j )
∣

∣ψb(�
k)
〉

, (121)

where the functions ψa and ψb belong to the irreps �i and �k , and the operator Ô to the
irrep �j . The matrix element I will be different from zero if and only if the direct product
�i ×�k contains the irrep �j , or, alternatively, if �i ×�j ×�k contains the totalsymmetric
irrep (A1 for C3v). As an example, under C3v :

〈ψa(A2)|x(E)|ψb(E)〉 �= 0 (122)

because:

A2 × E = E and x ∼ E. (123)



396 8. Molecular Symmetry and Group Theoretical Methods

〈ψa(E)|z(A1)|ψb(E)〉 �= 0 (124)

because it is reducible and splits into:

E × E = A1 + A2 + E and z ∼ A1. (125)

〈ψa(A2)|z(A1)|ψb(E)〉 = 0 (126)

because:

A2 × A1 × E = E (127)

and it does not contain the irrep A1.

8.6.3 Ground State Electron Configuration of Polyatomic Molecules

Group theoretical notation is always used in the spectroscopic classification of the elec-
tronic states described by MO wavefunctions. We give below the electron configuration of
the ground state 2S+1X of a few polyatomic molecules.

(i) Ground state of homonuclear diatomics (D∞h)

H+
2

(2�+
g : 1σg

)

H2
(1�+

g : 1σ 2
g

)

He+
2

(2�+
u : 1σ 2

g 1σu

) [

He2
(1�+

g : 1σ 2
g 1σ 2

u

)]

Van der Waals molecule

Li2
(1�+

g : 1σ 2
g 1σ 2

u 2σ 2
g

) [

Be2
(1�+

g : 1σ 2
g 1σ 2

u 2σ 2
g 2σ 2

u

)]

N2
(1�+

g : 1σ 2
g 1σ 2

u 2σ 2
g 2σ 2

u 1π4
u3σ 2

g

)= [Be2]1π4
u3σ 2

g

triple bond

O2
(3�−

g : 1σ 2
g 1σ 2

u 2σ 2
g 2σ 2

u 3σ 2
g 1π4

u1π2
g

)

paramagnetic molecule

F2
(1�+

g : [Be2]1π4
u3σ 2

g 1π4
g

)

.

(ii) Ground state (1�+
g ) of centrosymmetric linear polyatomics (D∞h)

C2H2: 1σ 2
g 1σ 2

u 2σ 2
g 2σ 2

u 3σ 2
g 1π4

u N = 14
triple bond

CO2: 1σ 2
g 1σ 2

u 2σ 2
g

︸ ︷︷ ︸

core

3σ 2
g 2σ 2

u 4σ 2
g 3σ 2

u 1π4
u1π4

g
︸ ︷︷ ︸

valence

N = 22.
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(iii) Heteronuclear diatomics (C∞v)

HX
(1�+) with X = halogen

HF: 1σ 2|2σ 23σ 21π4 N = 10

HCl: 1σ 22σ 23σ 21π4|4σ 25σ 22π4 N = 18

HBr: 1σ 2 | 2σ 23σ 21π4 | 4σ 25σ 22π46σ 23π41δ4

K(2) L(8) M(18)
︸ ︷︷ ︸

core

|7σ 28σ 24π4

︸ ︷︷ ︸

valence

N = 36.

(iv) Ground state (1A1) of bent XH2 molecules (C2v)

H2O: 1a2
1 |2a2

11b2
23a2

11b2
1 N = 10

H2S: 1a2
1 |2a2

11b2
23a2

11b2
1

︸ ︷︷ ︸

core

|4a2
12b2

25a2
12b2

1
︸ ︷︷ ︸

valence

N = 18.

(v) Ground state (1A1) of pyramidal XH3 molecules (C3v)

NH3: 1a2
1 |2a2

11e43a2
1 N = 10

PH3: 1a2
1 | 2a2

1 1e43a2
1

∼ 1s2 2s2 2p6

︸ ︷︷ ︸

core

|4a2
12e45a2

1

︸ ︷︷ ︸

valence

N = 18.

(vi) Ground state (1A1) of tetrahedral XH4 molecules (Td )

CH4: 1a2
1 |2a2

11t6
2 N = 10

SiH4: 1a2
1 |2a2

11t6
2

︸ ︷︷ ︸

core

|3a2
12t6

2
︸ ︷︷ ︸

valence

N = 18.

(vii) π -electron system of benzene (D6h)

C6H6: a2
1ue

4
1g Nπ = 6.

(viii) π -electron system of naphthalene (D2h) (Murrell, 1963)

C10H8: 1b2
1u1b2

3g1b2
2g2b2

1u1a2
1u Nπ = 10.
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8.7 AN OUTLINE OF CONTINUOUS AND PERMUTATION GROUPS

8.7.1 Continuous Groups

(i) Group elements are infinite in number.
(ii) Group elements form a continuum, i.e. the individual elements can be specified by

giving the values of one or more parameters α (for instance, the three Eulerian angles
which specify an arbitrary rotation of a rigid body) which can vary in a continuous
way.

(iii) For a one-parameter group with elements A(α), the multiplication table A(γ ) =
A(β)A(α) becomes a functional relation determining γ from α and β , say γ =
f (β,α). The continuity requirement means that f (β,α) must be a continuous func-
tion of both variables. If f can be differentiated any number of times with respect to
α and β (f is then said to be analytic), then we have the Lie11 groups.

Example. The group consisting of all matrices of the form:

A(α) =
(

1 α

0 1

)

. (128)

For α = 0, A(0) = 1; [A(α)]−1 = A(−α); multiplication table: γ = α + β , that can be
differentiated any number of times:

A(β)A(α) =
(

1 β

0 1

)(

1 α

0 1

)

=
(

1 α + β

0 1

)

= A(α + β) = A(γ ) (129)

with γ = α + β .

8.7.2 Continuous Lie Groups

• GL(m) = General Linear group in m-dimensions is the infinite set of all real non-
singular m × m matrices {A}.

• SL(m) = Special Linear (or unimodular) group is the subgroup of GL(m) consisting of
all m × m matrices {A} whose determinant is unity.

• O(m) = Orthogonal group in m-dimensions is the infinite set of all real m×m matrices
A satisfying AÃ = ÃA = 1, whence A−1 = Ã.

• U(m) = Unitary group in m-dimensions is the infinite set of all m × m matrices U with
complex elements satisfying UU† = U†U = 1, whence U−1 = U†.

• SU(m) = Special Unitary group in m-dimensions is the subgroup of U(m) consisting
of all m × m matrices U whose determinant is unity.

11Lie Sophus 1842–1899, Norwegian mathematician, Professor of Mathematics at the Universities of Christiania
and Leipzig.
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In the unitary group approach to large-scale CI (McWeeny, 1989), U(2m) = U(m) ×
SU(2) is the Kronecker product of U(m) for the m-dimensional space of basis functions
{φi} by the special unitary group SU(2) in 2-dimensions concerning spin functions. All
transformations of the spin-orbital set φ1α, φ1β , φ2α, · · ·, φmα, φmβ will form the U(2m)

group.

8.7.3 Transformation Properties of Spherical Harmonics

The spherical harmonics (SHs) Ylm(θ,ϕ) form a basis to represent rotations. They trans-
form under a rotation Cα according to:

ĈαYlm(θ,ϕ) =
l
∑

m′=−l

Ylm′(θ,ϕ)D(Cα)m′m, (130)

where the coefficients D(R)m′m form a matrix representative of the rotation Cα of dimen-
sion (2l + 1). The corresponding representation is, in general, reducible, and the number
of times that each irrep is contained in the reducible one is obtained as usual. To obtain
the characters for the reducible representation, consider a rotation Ĉ+

α by α about the polar
axis z of the SH. Since, apart from a normalization factor:

Ylm(θ,ϕ) ∝ P m
l (cos θ) exp(imϕ) complex form (131)

we shall have:

Ĉ+
α Ylm′(θ,ϕ) = Ylm′(θ,ϕ+α) = P m′

l (cos θ) exp[im′(ϕ + α)] = exp(im′α)Ylm′(θ,ϕ).

(132)

Using this result for all values m′ = −l, · · · l, we obtain:

D
(

C+
α

)=

⎛

⎜

⎜

⎜

⎝

e−ilα

e−i(l−1)α

. . .

eilα

⎞

⎟

⎟

⎟

⎠

(133)

χl
(

C+
α

)=
l
∑

m=−l

eimα = sin(l + 1
2 )α

sin α
2

for α �= 0

χl
(

C+
α

)= 2l + 1 for α = 0.

(134)

In fact, the summation over m is a geometric progression, giving:

1 2 l l + 1 2l − 1 2l

−l −l + 1 −l + 2 · · · 0 1 · · · l − 1 l
x = exp(iα)
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l
∑

m=−l

(eiα)m =
∑

m

xm

= x−l + x−l+1 + x−l+2 + · · · + x−l+l + x−l+(l+1) + · · · + x−l+2l

= x−l(1 + x + x2 + · · · + x2l )
geometric progression

= x−l 1 − x2l+1

1 − x
= xl+1 − x−l

x − 1
· x−1/2

x−1/2

= xl+ 1
2 − x−(l+ 1

2 )

x1/2 − x−1/2
= ei(l+ 1

2 )α − e−i(l+ 1
2 )α

ei 1
2 α − e−i 1

2 α
= sin(l + 1

2 )α

sin α
2

(135)

lim
α→0

sin(l + 1
2 )α

sin α
2

= l + 1
2

1
2

lim
α→0

cos(l + 1
2 )α

cos α
2

= 2l + 1. (136)

Hence, we have two cases.

(i) l = integer e.g. l = 1 χ
(

C+
α

)= sin 3
2α

sin α
2

(137)

C3v α = 2π

3
χ
(

C+
3

)= sin 3
2 · 2π

3

sin 1
2 · 2π

3

= sinπ

sin π
3

= 0 (138)

as it must be for p-functions.

(ii) l = semi-integer e.g. l = 1

2
(spin) χ

(

C+
α

)= sinα

sin α
2

(139)

χ
(

C+
α+2π

)= sin(α + 2π)

sin(α
2 + π)

= − sinα

sin α
2

= −χ
(

C+
α

)= χ(Ĩ )

not the
identity
operation

(140)

χ
(

C+
α+4π

)= sin(α + 4π)

sin(α
2 + 2π)

= sinα

sin α
2

= χ
(

C+
α

)= χ(I)

the true
identity
operation.

(141)

So, the true identity operation is a rotation by 4π and not by 2π . Hence, we have double-
valued representations 
⇒ double groups (Möbius ring).

8.7.4 Rotation Groups

The group of point operations in a three-dimensional space which leaves a sphere invariant
is isomorphic with the orthogonal group O(3). The group requires three continuous para-
meters, which in terms of Euler angles are (i) the angles θ , ϕ specifying the direction of the
rotation axis, an (ii) the angle ψ which is the angle of rotation about this axis. An index ±



8.7 An Outline of Continuous and Permutation Groups 401

Figure 8.14 Symmetry operations of C∞v .

is needed to specify whether the rotation is proper (determinant of A = +1) or improper
(determinant of A = −1).

As introductory to the three-dimensional rotation group we consider the following three
groups.

(i) Axial group, consisting of all rotations Cα about a fixed axis (usually taken as the z

axis). The character table is:

C∞ I Cα

�(0) 1 1
�(m) 1 eimα

(ii) C∞v group, which contains in addition a symmetry plane σv through the x and z axes.
It is important to note that σv reverses the direction of rotation. The character table
for complex functions is:

C∞v I Cα σv

�(0+) 1 1 1

�(0−) 1 1 −1

�(m)

(

1 0

0 1

)

(

eimα 0

0 e−imα

)

(

0 (−1)m

(−1)m 0

)

�(0+) is usually denoted by �+, �(0−) by �−, while the irreps �(m) are all 2-fold
degenerate, and are usually denoted by �(1) = �, �(2) = �, �(3) = 	, · · ·

For complex p-functions p+, p− with Condon–Shortley phase:

p+ = − eiϕ

√
2π

p− = e−iϕ

√
2π

(142)
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it is important to note that, under σ̂v :

σ̂vp+ = − e−iϕ

√
2π

= −p− σ̂vp− = eiϕ

√
2π

= −p+ (143)

so that:

σ̂v(p+p−) = (p+p−)

(

0 −1

−1 0

)

Dp(σv)
complex

=
(

0 −1

−1 0

)

(144)

Since, for real p-functions: σ̂vx = x, σ̂vy = −y

σ̂v(xy) = (xy)

(

1 0

0 −1

)

Dp(σv)
real

=
(

1 0

0 −1

)

(145)

the matrices representing the same operation σ̂v are entirely different for complex or
real functions.

(iii) D∞h group, which contains in addition to C∞v the inversion ı̂ (with respect to a
centre of symmetry, e.g. homonuclear diatomics), so that:

D∞h = C∞v × Ci. (146)

The character table for complex functions is:

D∞h I 2Cα σv i 2iCα iσv

�g(0+) 1 1 1 1 1 1

�u(0+) 1 1 1 −1 −1 −1

�g(0−) 1 1 −1 1 1 −1

�u(0−) 1 1 −1 −1 −1 1

�g(m)

(

1 0

0 1

)

(

eimα 0

0 e−imα

)

(

0 (−1)m

(−1)m 0

) (

1 0

0 1

)

(

eimα 0

0 e−imα

)

(

0 (−1)m

(−1)m 0

)

�u(m)

(

1 0

0 1

)

(

eimα 0

0 e−imα

)

(

0 (−1)m

(−1)m 0

) (−1 0

0 −1

)

(

−eimα 0

0 −e−imα

) (

0 (−1)m+1

(−1)m+1 0

)

χ(Cα) = eimα + e−imα = 2 cosmα (147)

m = 1, 2, 3, 4, 5, · · ·
�, �, 	, Y, H, · · ·
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8.7.5 Permutation Group

It is also called the SN symmetric group of N ! permutations. Since the spin operators Ŝ2

and Ŝz are symmetrical in the N ! permutations of the particle labels, if ηSMS
is an eigen-

function belonging to the eigenvalues S(S +1) and MS of the spin operators, there will also
be N ! spin functions belonging to the same value of SMS . This means that any spin eigen-
function ηSMS

remains a spin eigenfunction with the same eigenvalue after permutation of
the spin variables. Thus, if there are (Wigner):

f N
S = (2S + 1)N !

(N
2 − S)!(N

2 + S + 1)! (148)

linearly independent functions of given SMS , we can then say that, for any permutation P̂

of the spin variables:

P̂ ηSMS
(s1, s2, · · · si, · · · sj , · · · sN)

= ηSMS
(s1, s2, · · · sj , · · · si , · · · sN)

=
f N

S
∑

i=1

ηSMS
(s1, s2, · · · si , · · · sj , · · · sN)Pij (149)

the result must necessarily be some linear combination of the full {ηSMS
} set. In this way,

the set {ηSMS
} provides a basis for a f N

S -irreducible representation of the symmetric group
SN of N ! permutations of the spin variables. We can write, in the usual notation:

P̂ηSMS
= ηSMS

D(P ) D(P )ij = Pij , (150)

where the f N
S × f N

S matrix representative D(P ) has as ij -element the expansion coeffi-
cient Pij .

In the theory of the symmetric group SN (Rutherford, 1948; Kaplan, 1975; McWeeny,
1989; Paldus and Wormer, 1989; Gallup, 2002), irreps are specified by Young Tableaux [λ],
where [λ] denotes a partition (or shape or diagram or pattern) of the given set of labels. For
instance, a possible tableau for N = 10 is given in Figure 8.15.

[λ] = [λ1, λ2, λ3]
λ1 = 5, λ2 = 3, λ3 = 2.

(151)

In a “standard representation”, reading along rows and down columns, the numbers must
always appear in ascending order.

From every set of standard tableaux it is possible to set up Young–Yamanouchi–Wigner
projection operators (compare equation 100):

Ŷ
[λ]
ij = fλ

N !
∑

P

D[λ](P )ij P̂ un-normalized Wigner projector (152)
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Figure 8.15 A Young tableau.

that, acting on an arbitrary function of numbered variables, will generate a set of basis
functions carrying the [λ] irrep (symmetry-adapted functions).

Similar considerations apply to the spatial wavefunctions (either exact or approximate)
which are eigenfunctions of a Hamiltonian operator which is invariant under all permu-
tations of the spatial variables, so that a g-fold degenerate set of spinless wavefunctions
should likewise carry an irrep of SN . Wigner (1959) has suggested how to construct many-
electron wavefunctions satisfying the Pauli principle, starting from orbital products, by
taking suitable “dual” or “associated” irreps of separate spatial and spin functions (for de-
tails, see McWeeny, 1989). With a spinless Hamiltonian, it is hence possible to obtain the
usual energy expectation value using either (i) a linear combination of Slater determinants,
or (ii) a linear combination of purely spatial functions of appropriate symmetry, “dual” to
the required irreps for spin, which can therefore be not considered explicitly (this is at the
origin of the so called Spin-Free Quantum Chemistry: Matsen, 1964, 1970). Modern va-
lence bond (VB) theory was also reformulated using these techniques (Goddard III, 1967a,
1967b; Gerratt, 1971; Gallup, 1973, 2002; Cooper et al., 1987; McWeeny, 1990).

8.8 PROBLEMS 8

8.1. Construct the multiplication table of the group C2v .

Answer:

C2v I C2 σv σ ′
v

I I C2 σv σ ′
v

C2 C2 I σ ′
v σv

σv σv σ ′
v I C2

σ ′
v σ ′

v σv C2 I

Hint:
Use Figure 8.13 recalling that the operation on the right must be done first.

8.2. Construct the multiplication table of the group C3v .
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Answer:

C3v I C+
3 C−

3 σ1 σ2 σ3

I I C+
3 C−

3 σ1 σ2 σ3

C+
3 C+

3 C−
3 I σ2 σ3 σ1

C−
3 C−

3 I C+
3 σ3 σ1 σ2

σ1 σ1 σ3 σ2 I C−
3 C+

3

σ2 σ2 σ1 σ3 C+
3 I C−

3

σ3 σ3 σ2 σ1 C−
3 C+

3 I

Hint:
Proceed in the same way as in Problem 8.1.

8.3. Construct the multiplication table of the cyclic group of order 4 (C4).

Answer:

C4 I C+
4 C+2

4 C+3
4

I I C+
4 C+2

4 C+3
4

C+
4 C+

4 C+2
4 C+3

4 I

C+2
4 C+2

4 C+3
4 I C+2

4

C+3
4 C+3

4 I C+
4 C+3

4

Hint:
Follow the suggestions of the previous Problems.

8.4. Find the classes of the point group C5v .

Answer:
The four classes are:

I = C+5
5

C5,C
4
5 = C+

5 ,C−
5

C2
5 ,C3

5 = C+2
5 ,C−2

5

σ1, σ2, σ3, σ4, σ5.

Hint:
Acting on the set of five functions (|1〉, |2〉, |3〉, |4〉, |5〉) with the rotations C5,C

2
5 ,C3

5 ,C4
5

show that C+
5 ,C+4

5 = C−
5 and C+2

5 ,C+3
5 = C−2

5 belong to two different classes.
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8.5. Construct the substitution table of the six functions group of example 4 in Sec-
tion 8.5.1.

Answer:

Transformation
table

I A B C D E

I I A B C D E

A A B I E C D

B B I A D E C

C C D E I A B

D D E C B I A

E E C D A B I

Hint:
Substitute each function in turn into the other.

8.6. Construct the (reducible) representatives of the symmetry operations of the group
C2v for H2O in the minimum basis set (m = 7).

Answer:

D(I ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 · · · · · ·
· 1 · · · · ·
· · 1 · · · ·
· · · 1 · · ·
· · · · 1 · ·
· · · · · 1 ·
· · · · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

D(C2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 · · · · · ·
· 1 · · · · ·
· · 1 · · · ·
· · · 1 · · ·
· · · · 1 · ·
· · · · · · 1

· · · · · 1 ·

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

D(σv) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 · · · · · ·
· 1 · · · · ·
· · 1 · · · ·
· · · 1 · · ·
· · · · 1 · ·
· · · · · 1 ·
· · · · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

D(σ ′
v) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 · · · · · ·
· 1 · · · · ·
· · 1 · · · ·
· · · 1 · · ·
· · · · 1 · ·
· · · · · · 1

· · · · · 1 ·

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Hint:
Use R̂χ = χDχ (R) and the transformation table of the basis χ under the symmetry oper-
ations of C2v .
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8.7. Construct the C2v symmetry-adapted basis for H2O in the minimum basis set
(m = 7).

Answer:

A1: k, s, z, hz = 1√
2
(h1 + h2)

A2: no function with this symmetry

B1: x

B2: y,hy = 1√
2
(h1 + h2).

Hint:
The symmetry-adapted functions for H2O can be obtained in this simple case either (i) by
direct inspection, or (ii) in a more systematic way, by use of the simplest projector P̂ i =
li
h

∑

R χi(R)∗R̂, and of the transformation and character tables of the point group C2v .

8.8. Construct the C2v symmetry-adapted basis for H2O in the extended basis set (m = 12)
including polarization functions onto the oxygen atom.

Answer:

A1: k, s, z,
3z2 − r2

2
, x2 − y2, hz = 1√

2
(h1 − h2)

A2: xy

B1: x, zx

B2: y, yz,hy = 1√
2
(h1 − h2).

Hint:
Use the direct product of the transformation properties of x, y, z under C2v .

8.9. Construct the C2v symmetry-adapted basis for H2O in the large basis set (m = 35)
including polarization functions onto the oxygen and the hydrogen atoms.

Answer:

A1: k, s, z,
3z2 − r2

2
, x2 − y2,

5z3 − 3zr2

2
, (x2 − y2)z

hz = 1√
2
(h1 + h2)
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1√
2
(z1 + z2),

1√
2
(y1 − y2)

1√
2

(

z2
1 + z2

2

)

,
1√
2

(

x2
1 − y2

1 + x2
2 − y2

2

)

,
1√
2
(y1z1 − y2z2) 13

A2: xy, xyz

1√
2
(x1 − x2)

1√
2

(

x2
1 − y2

1 − x2
2 + y2

2

)

,
1√
2
(x1y1 − x2y2),

1√
2
(z1x1 − z2x2) 6

B1: x, zx, x(x2 − 3y2), x(5z2 − r2)

1√
2
(x1 + x2)

1√
2
(x1y1 + x2y2),

1√
2
(z1x1 + z2x2) 7

B2: y, yz, y(3x2 − y2), y(5z2 − r2)

hy = 1√
2
(h1 − h2)

1√
2
(z1 − z2),

1√
2
(y1 + y2)

1√
2

(

z2
1 − z2

2

)

,
1√
2
(y1z1 + y2z2) 9

Hint:
Use the same techniques of Problem 8.8.

8.10. Construct the (reducible) matrix representatives of the symmetry operations of the
group C3v for NH3 in the minimum basis set (m = 8).

Answer:

D(I ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 · · · · · · ·
· 1 · · · · · ·
· · 1 · · · · ·
· · · 1 · · · ·
· · · · 1 · · ·
· · · · · 1 · ·
· · · · · · 1 ·
· · · · · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

D(C+
3 ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 · · · · · · ·
· 1 · · · · · ·
· · 1 · · · · ·
· · · c s · · ·
· · · s c · · ·
· · · · · · 1 ·
· · · · · · · 1

· · · · · 1 · ·

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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D(C−
3 ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 · · · · · · ·
· 1 · · · · · ·
· · 1 · · · · ·
· · · c s · · ·
· · · s c · · ·
· · · · · · · 1

· · · · · 1 · ·
· · · · · · 1 ·

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

D(σ1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 · · · · · · ·
· 1 · · · · · ·
· · 1 · · · · ·
· · · 1 · · · ·
· · · · 1 · · ·
· · · · · 1 · ·
· · · · · · · 1

· · · · · · 1 ·

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

D(σ2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 · · · · · · ·
· 1 · · · · · ·
· · 1 · · · · ·
· · · c s · · ·
· · · s c · · ·
· · · · · · · ·
· · · · · · 1 1

· · · · · 1 · ·

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

D(σ3) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 · · · · · · ·
· 1 · · · · · ·
· · 1 · · · · ·
· · · c s · · ·
· · · s c · · ·
· · · · · · 1 ·
· · · · · 1 · ·
· · · · · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Hint:
Use the suggestions of Problem 8.6.

8.11. Construct the C3v symmetry-adapted basis for NH3 in the minimum basis set
(m = 8).

Answer:

A1: k, s, z, hz = 1√
3
(h1 + h2 + h3)

A2: no function with this symmetry

E: x,hx = 1√
6
(2h1 − h2 − h3)

y,hy = 1√
2
(h2 − h3).

Hint:
Same as in Problem 8.7.

8.12. Construct the Td symmetry-adapted basis for CH4 in the minimum basis set (m = 9).
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Answer:

A1: k, s, z

A2: no function with this symmetry

T : x,hx = 1

2
(h1 + h2 − h3 − h4)

y,hy = 1

2
(h1 − h2 + h3 − h4)

z,hz = 1

2
(h1 − h2 − h3 + h4).

Hint:
Because of the high symmetry of the CH4 molecule, symmetry arguments can be used to
write at once the correct symmetry combinations of the four 1s AOs onto the H atoms
transforming as s, x, y, z.

8.13. Construct the C6v symmetry-adapted basis for the π -electron system of benzene
C6H6 in the minimum basis set (m = 6).

Answer:

A1: a1 = 1√
6
(χ1 + χ2 + χ3 + χ4 + χ5 + χ6)

A2: no function with this symmetry

B1: b1 = 1√
6
(χ1 − χ2 + χ3 − χ4 + χ5 − χ6)

B2: no function with this symmetry

E1: e1x = 1

2
(χ1 − χ3 − χ4 + χ6) ∼ x

e1y = 1√
12

(χ1 + 2χ2 + χ3 − χ4 − 2χ5 − χ6) ∼ y

E2: e2,x2−y2 = 1√
12

(χ1 − 2χ2 + χ3 + χ4 − 2χ5 + χ6) ∼ x2 − y2

e2,xy = 1

2
(χ1 − χ3 + χ4 − χ6) ∼ xy.

Hint:
Same as in Problem 8.7.
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8.14. Find the electronic states resulting from the MO configuration π2
g .

Answer:
The physically accessible 2-electron states resulting from the MO configuration π2

g are:

3�−
g , 1�+

g , 1�g.

Hint:
Write all possible 2-electron Slater determinants, and use the operators L̂z, σ̂ , ı̂, Ŝ2 to do
the classification of the resulting electronic states.

8.15. Find the classification of the MO ground state of the O2 molecule.

Answer:

�
(

1σ 2
g 1σ 2

u 2σ 2
g 2σ 2

u 3σ 2
g 1π4

u1π2
g

)= �
(3�−

g

)

.

Hint:
Use the transformation table of real 2pπ AOs onto atoms A and B, and of the resulting real
MOs, under the operations L̂z, σ̂ , ı̂, Ŝ2, and the elementary properties of determinants.

8.16. Write the VB wavefunction for ground state O2 and classify its electronic state.

Answer:
It will be shown in Chapter 10 that, in the ultrashort notation, the three components of the
triplet VB wavefunction for ground state O2 are:

�1 = 1√
2
[(xAyB) + (xByA)] S = 1,MS = 1

�2 = 1

2
[(xAyB) + (xAyB) + (xByA) + (xByA)] 0

�3 = 1√
2
[(xAyB) + (xByA)]. −1

Hint:
Write the covalent VB wavefunction for ground state O2 in the ultrashort notation spec-
ifying only the two unpaired π -electrons, and verify its symmetry properties using the
transformation table of Problem 8.15.

8.17. Verify that under C3v the state resulting from the e4 electron configuration belongs
to the symmetry A1.

Answer:

R̂‖exexeyey‖ = ‖exexeyey‖ for any R̂.
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Hint:
Act with the linear symmetry operators R̂ of the point group C3v on the Slater determinant
‖exexeyey‖, using the C3v transformation table for the functions ex, ey , and the elementary
properties of determinants.

8.18. Find the symmetry of the first few real spherical tensors under C∞v and D∞h sym-
metry.

Answer:
The results are collected in Table 8.4.

Hint:
The first few real spherical tensors are (see Chapter 11):

m = 0

R10 = z,R30 = 5z3 − 3zr2

2
= z

2
(2z2 − 3x2 − 3y2) l = odd

R50 = z

2
(8z4 + 15x4 + 15y4 − 40z2x2 − 40z2y2 + 30x2y2)

R20 = 3z2 − r2

2
= 1

2
(2z2 − x2 − y2) l = even

R40 = 1

8
(8z4 + 3x4 + 3y4 − 24z2x2 − 24z2y2 + 6x2y2)

m �= 0

(x, y) l = 1,m = 1,−1

(zx, yz) l = 2,m = 1,−1

(x2 − y2, xy) l = 2,m = 2,−2

(
√

6

4
x(4z2 − x2 − y2),

√
6

4
y(4z2 − x2 − y2)

)

l = 3,m = 1,−1

(
√

15

2
(x2 − y2)z,

√
15xyz

)

l = 3,m = 2,−2

(
√

10

4
(x2 − 3y2)x,

√
10

4
(3x2 − y2)y

)

l = 3,m = 3,−3.

Their symmetry properties can then be found in terms of the transformation properties of
Cartesian coordinates and their products.
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8.9 SOLVED PROBLEMS

8.1. In constructing a (symbolic) multiplication table, we must recall first that Rk = RiRj

is the result of the intersection of the column headed by Ri and the row headed by Rj , and
that the operation on the right must be done first. Then, with reference to Figure 8.13, we
easily find:

II = I C2I = C2 σvI = σv σ ′
vI = σ ′

v

IC2 = C2 C2C2 = I σvC2 = σ ′
v σ ′

vC2 = σv

Iσv = σv C2σv = σ ′
v σvσv = I σ ′

vσv = C2

Iσ ′
v = σ ′

v C2σ
′
v = σv σvσ

′
v = C2 σ ′

vσ
′
v = I.

8.2. Proceeding as in Problem 8.1, and taking as an example the results of equation (65)
and Figure 8.10, we obtain the table wanted.

8.3. Make reference to Figure 8.16, and proceed as in Problems 8.1 and 8.2, noting that,
if C+

4 is the anticlockwise rotation of 2π/4 = 90o (Figure 8.17):

C+2
4 = C2,C

+3
4 = C−

4 ,C+4
4 = I.

8.4. Classes of the point group C5v .
With reference to Figure 8.18, acting on the set of the five functions

(|1〉, |2〉, |3〉, |4〉, |5〉)

Figure 8.16 Reference system for the cyclic group C4.
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Figure 8.17 Successive rotations in the cyclic group C4.

Figure 8.18 Symmetry elements of the point group C5v .

we have:

C+
5 |1〉 = |5〉, C+

5 |2〉 = |1〉, C+
5 |3〉 = |2〉, C+

5 |4〉 = |3〉, C+
5 |5〉 = |4〉

C+2
5 |1〉 = |4〉, C+2

5 |2〉 = |5〉, C+2
5 |3〉 = |1〉, C+2

5 |4〉 = |2〉, C+2
5 |5〉 = |3〉

C+3
5 |1〉 = |3〉, C+3

5 |2〉 = |4〉, C+3
5 |3〉 = |5〉, C+3

5 |4〉 = |1〉, C+3
5 |5〉 = |2〉
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C+4
5 |1〉 = |2〉, C+4

5 |2〉 = |3〉, C+4
5 |3〉 = |4〉, C+4

5 |4〉 = |5〉, C+4
5 |5〉 = |1〉

C−
5 |1〉 = |2〉, C−

5 |2〉 = |3〉, C−
5 |3〉 = |4〉, C−

5 |4〉 = |5〉, C−
5 |5〉 = |1〉

C−2
5 |1〉 = |3〉, C−2

5 |2〉 = |4〉, C−2
5 |3〉 = |5〉, C−2

5 |4〉 = |1〉, C−2
5 |5〉 = |2〉

C−3
5 |1〉 = |4〉, C−3

5 |2〉 = |5〉, C−3
5 |3〉 = |1〉, C−3

5 |4〉 = |2〉, C−3
5 |5〉 = |3〉

C−4
5 |1〉 = |5〉, C−4

5 |2〉 = |1〉, C−4
5 |3〉 = |2〉, C−4

5 |4〉 = |3〉, C−4
5 |5〉 = |4〉.

Since C+
n and C−

n belong to the same class, we see that the rotations C+
5 ,C+4

5 = C−
5 and

C+2
5 ,C+3

5 = C−2
5 form two different classes, which, added to the class of reflections, make

a total of four classes (10 symmetry operations).

8.5. The group of the six functions:

I (x) = x A(x) = (1 − x)−1 B(x) = 1 − x−1

C(x) = x−1 D(x) = 1 − x E(x) = x(1 − x)−1

is a finite subgroup of order 6 of the continuous group of conformal transformations, a
fractional linear group in one variable (Hall, 1967). The set of functions forms a group
with respect to the substitution of one function into the other, as illustrated below:

AA = A[(1 − x)−1] =
(

1 − 1

1 − x

)−1

=
(

x

x − 1

)−1

= 1 − x−1 = B

AB = A(1 − x−1) = [1 − (1 − x−1)]−1 = (x−1)−1 = x = I

AC = A(x−1) = (1 − x−1)−1 =
(

x − 1

x

)−1

= x(x − 1)−1 = E

AD = A(1 − x) = [1 − (1 − x)]−1 = x−1 = C

AE = A

(

x

x − 1

)

=
(

1 − x

x − 1

)−1

=
(

1

1 − x

)−1

= 1 − x = D

BA = B(1 − x)−1 = 1 − [(1 − x)−1]−1 = 1 − (1 − x) = x = I

BB = B(1 − x−1) = 1 − (1 − x−1)−1 = x − 1 − x

x − 1
= (1 − x)−1 = A

BC = Bx−1 = 1 − (x−1)−1 = 1 − x = D

BD = B(1 − x) = 1 − (1 − x)−1 = x(x − 1)−1 = E

BE = Bx(x − 1)−1 = 1 −
(

x

x − 1

)−1

= 1 − x − 1

x
= x − x + 1

x
= x−1 = C
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CA = C(1 − x)−1 = [(1 − x)−1]−1 = 1 − x = D

CB = C(1 − x−1) = (1 − x−1)−1 =
(

x − 1

x

)−1

= x(x − 1)−1 = E

CC = Cx−1 = (x−1)−1 = x = I

CD = C(1 − x) = (1 − x)−1 = A

CE = Cx(x − 1)−1 = x−1(x − 1) = 1 − x−1 = B

DA = D(1 − x)−1 = 1 − (1 − x)−1 = 1 − x − 1

1 − x
= x(x − 1)−1 = E

DB = D(1 − x−1) = 1 −
(

1 − 1

x

)

= x−1 = C

DC = Dx−1 = 1 − x−1 = B

DD = D(1 − x) = 1 − (1 − x) = x = I

DE = Dx(x − 1)−1 = 1 − x

x − 1
= (1 − x)−1 = A

EA = E(1 − x)−1 = (1 − x)−1

(1 − x)−1 − 1
= 1

1 − x

1 − x

1 − (1 − x)
= x−1 = C

EB = E(1 − x−1) = 1 − x−1

1 − x−1 − 1
= −(x − 1) = 1 − x = D

EC = Ex−1 = x−1

x−1 − 1
= x−1x

1 − x
= (1 − x)−1 = A

ED = E(1 − x) = 1 − x

(1 − x) − 1
= x − 1

x
= 1 − x−1 = B

EE = Ex(x − 1)−1 =
x

x−1
x

x−1 − 1
= x

x − 1

x − 1

x − x + 1
= x = I.

8.6. The molecule lies in the yz-plane, z being the symmetry axis, and the zx-plane bi-
secting the molecule (Figure 8.19).

We use the short notation for the AOs:

k = 1sO, s = 2sO, x = 2pxO, y = 2pyO, z = 2pzO,

h1 = 1sH1, h2 = 1sH2 .

The transformation table of the basis χ = (ksxyzh1h2) under the symmetry operations
of the point group C2v is:
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Figure 8.19 The symmetry elements of the H2O molecule under C2v .

R̂χ I C2 σv σ ′
v

k k k k k

s s s s s

x x −x −x x

y y −y y −y

z z z z z

h1 h1 h2 h1 h2
h2 h2 h1 h2 h1

The representative matrices Dχ (R) are then readily constructed using R̂χ = χDχ (R).

8.7. We use Figure 8.19 and the transformation table of Problem 8.6. The character table
of C2v (all irreps are 1-dimensional) is:

C2v I C2 σv σ ′
v Symmetry basis

A1 1 1 1 1 k, s, z, hz = 1√
2
(h1 + h2)

A2 1 1 −1 −1

B1 1 −1 −1 1 x

B2 1 −1 1 −1 y,hy = 1√
2
(h1 − h2)

�

reducible

7 1 5 3
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In this simple case it is possible to write the characters of each operation R̂, without con-
structing the complete 7 × 7 matrices of Problem 8.6, simply by noticing that χ(R) is
nothing but the number of functions left unchanged by the operation R̂, minus the number
of functions which change sign under R̂. It is also immediately obvious that since C2 and
σ ′

v transform h1 into h2, and vice versa, the only possible symmetry combinations that are
eigenfunctions of Ĉ2 and σ̂ ′

v are hz = 1√
2
(h1 +h2) (eigenvalue +1) and hy = 1√

2
(h1 −h2)

(eigenvalue −1). The symmetry properties of the oxygen functions are also immediately
evident, so that the symmetry-adapted functions for H2O are obtained by direct inspec-
tion.

Turning to the more systematic way which makes use of group theoretical techniques,
we first observe that the representation � of the symmetry operations of C2v in the basis χ

is reducible, since:

∑

R

|χ�(R)|2 = 49 + 1 + 25 + 9 = 84 �= 4,

where the characters are the traces of the representative matrices of Problem 8.6.
From relation (97):

ai = 1

h

∑

R

χi(R)χ�(R)

we find:

A1: aA1 = 1

4
(7 + 1 + 5 + 3) = 4

A2: aA2 = 1

4
(7 + 1 − 5 − 3) = 0

B1: aB1 = 1

4
(7 − 1 − 5 + 3) = 1

B2: aB2 = 1

4
(7 − 1 + 5 − 3) = 2

so that the reducible representation � can be decomposed into:

� = 4A1 + B1 + 2B2.

Using the soft projector P̂ i ∝ ∑

R χi(R)R̂, which is sufficient since all irreps are 1-
dimensional, we obtain:

A1: P̂ A1k = k + k + k + k ∝ k

P̂ A1s = s + s + s + s ∝ s

P̂ A1z = z + z + z + z ∝ z
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P̂ A1h1 = h1 + h2 + h1 + h2 ∝ h1 + h2 ⇒ 1√
2
(h1 + h2)

after normalization (neglecting the overlap between h1 and h2).

A2: P̂ A2k = k + k − k − k = 0

with the same result for all other functions.

B1: P̂ B1x = x + x + x + x ∝ x

all others being zero.

B2: P̂ B2y = y + y + y + y ∝ y

P̂ B2h1 = h1 − h2 + h1 − h2 ∝ h1 − h2 ⇒ 1√
2
(h1 − h2)

after normalization. All remaining functions vanish under P̂ B2 .

Therefore, the symmetry-adapted basis derived by group theoretical methods is that given
at the beginning of this Problem.

8.8. Even in this case, we can proceed either with the intuitive method or with the aid
of group theoretical techniques. As an alternative easy way of obtaining the symmetry-
adapted functions onto the oxygen atom, we can make use of the direct product of the
transformation properties of x, y, z and their products. The results are those given as an-
swer to Problem 8.8.

8.9. This problem is an extension of Problem 8.8. The 35 × 35 secular equation in the
original basis is factorized into 13 × 13 (A1), 6 × 6 (A2), 7 × 7 (B1), 9 × 9 (B2) blocks
having the symmetry of the different irreps of the point group C2v , as shown in Figure 8.20.

Figure 8.20 Symmetry factorization under C2v of the secular equation in the large basis set for H2O.
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8.10. The three hydrogens are in the xy-plane, z being the symmetry axis.
The transformation table of the basis χ = (kszxyh1h2h3) under the symmetry opera-

tions of the point group C3v is (using equations (32), (33) for rotations, and equations (42),
(43) for reflections):

R̂χ I C+
3 C−

3 σ1 σ2 σ3

k k k k k k k

s s s s s s s

z z z z z z z

x x cx + sy cx + sy x cx + sy cx + sy

y y sx + cy sx + cy −y sx + cy sx + cy

h1 h1 h3 h2 h1 h3 h2
h2 h2 h1 h3 h3 h2 h1
h3 h3 h2 h1 h2 h1 h3

Then easily follow the matrices given as answer to Problem 8.10.

8.11. We use Figure 8.21 and the transformation table of Problem 8.10. The character
table of C3v (E is a 2-dimensional irrep whose vectors transform like x, y) is:

C3v I C+
3 C−

3 σ1 σ2 σ3 Symmetry basis

A1 1 1 1 1 1 1 k, s, z, hz = 1√
3
(h1 + h2 + h3)

A2 1 1 1 −1 −1 −1

E

(xy)

(

1 0
0 1

) (

c s

s c

) (

c s

s c

) (

1 0
0 1

) (

c s

s c

) (

c s

s c

)
x,hx = 1√

6
(2h1 − h2 − h3)

y,hy = 1√
2
(h2 − h3)

�

reducible

8 2 2 4 4 4

The representation � is reducible. To construct the symmetry-adapted basis functions it
will be convenient to use the powerful projector (100):

P̂ i
λλ = li

h

∑

R

Di (R)∗λλR̂

using the complete table of characters given above and the transformation table of Prob-
lem 8.10. We obtain:

A1: P̂ A1k = k P̂ A1s = s P̂ A1z = z
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Figure 8.21 The symmetry elements of the NH3 molecule under C3v .

P̂ A1x = 1

6

(

x − 1

2
x −

√
3

2
y − 1

2
x +

√
3

2
y + x − 1

2
x −

√
3

2
y − 1

2
x

+
√

3

2
y

)

= 0

P̂ A1y = 1

6

(

y +
√

3

2
x − 1

2
y −

√
3

2
x − 1

2
y − y −

√
3

2
x + 1

2
y +

√
3

2
x

+ 1

2
y

)

= 0

P̂ A1h1 = 1

6
(2h1 + 2h2 + 2h3) ∝ h1 + h2 + h3 ⇒ 1√

3
(h1 + h2 + h3)

after normalization.

A2: P̂ A2k = 1

6
(k + k + k − k − k − k) = 0 P̂ A2s = P̂ A2z = 0

P̂ A2x = 1

6

(

x − 1

2
x −

√
3

2
y − 1

2
x +

√
3

2
y − x + 1

2
x +

√
3

2
y + 1

2
x

−
√

3

2
y

)

= 0
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P̂ A2y = 1

6

(

y +
√

3

2
x − 1

2
y −

√
3

2
x − 1

2
y + y +

√
3

2
x − 1

2
y −

√
3

2
x

− 1

2
y

)

= 0

P̂ A2h1 = 1

6
(h1 + h3 + h2 − h1 − h3 − h2) = 0

E: P̂ E
xxk = 2

6

(

k − 1

2
k − 1

2
k + k − 1

2
k − 1

2
k

)

= 0 P̂ E
xxs = P̂ E

xxz = 0

P̂ E
xxx= 2

6

{

x − 1

2

(

−1

2
x −

√
3

2
y

)

− 1

2

(

−1

2
x +

√
3

2
y

)

+ x

− 1

2

(

−1

2
x −

√
3

2
y

)

− 1

2

(

−1

2
x +

√
3

2
y

)}

= 1

3

(

2x + 1

4
x + 1

4
x + 1

4
x + 1

4
x

)

= x

P̂ E
xxy = 2

6

{

y − 1

2

(
√

3

2
x − 1

2
y

)

− 1

2

(

−
√

3

2
x − 1

2
y

)

− y

− 1

2

(

−
√

3

2
x + 1

2
y

)

− 1

2

(
√

3

2
x + 1

2
y

)}

= 0

P̂ E
xxh1 = 2

6

(

h1 − 1

2
h3 − 1

2
h2 + h1 − 1

2
h3 − 1

2
h2

)

= 1

3
(2h1 − h2 − h3)

⇒ 1√
6
(2h1 − h2 − h3)

P̂ E
yyk = 2

6

(

k − 1

2
k − 1

2
k − k + 1

2
k + 1

2
k

)

= 0 P̂ E
yys = P̂ E

yyz = 0

P̂ E
yyx = 2

6

{

x − 1

2

(

−1

2
x −

√
3

2
y

)

− 1

2

(

−1

2
x +

√
3

2
y

)

− x

+ 1

2

(

−1

2
x −

√
3

2
y

)

+ 1

2

(

−1

2
x +

√
3

2
y

)}

= 0

P̂ E
yyy = 2

6

{

y − 1

2

(
√

3

2
x − 1

2
y

)

− 1

2

(

−
√

3

2
x − 1

2
y

)

+ y + 1

2

(

−
√

3

2
x + 1

2
y

)

+ 1

2

(
√

3

2
x + 1

2
y

)}

= 1

3

(

2y + 1

4
y + 1

4
y + 1

4
y + 1

4
y

)

= y
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P̂ E
yyh1 = 2

6

(

h1 − 1

2
h3 − 1

2
h2 − h1 + 1

2
h3 + 1

2
h2

)

= 0

P̂ E
yyh2 = 2

6

(

h2 − 1

2
h1 − 1

2
h3 − h3 + 1

2
h2 + 1

2
h1

)

= 1

3

(

3

2
h2 − 3

2
h3

)

⇒ 1√
2
(h2 − h3).

Hence, we obtain for the symmetry basis in the minimum set for NH3 under C3v :

A1: k, s, z, hz = 1√
3
(h1 + h2 + h3)

E: x,hx = 1√
6
(2h1 − h2 − h3)

y,hy = 1√
2
(h2 − h3)

so that the reducible representation � can be decomposed into:

� = 4A1 + 2E.

8.12. We inscribe the CH4 molecule in a cube having the C atom at its centre and the four
H atoms at non-contiguous vertices of the cube (Figure 8.22).

Molecular symmetry does suggest immediately the correct symmetry combinations of
the four 1s AOs onto the H atoms transforming as s, x, y, z:

hs = 1

2
(h1 + h2 + h3 + h4)

Figure 8.22 The cube circumscribing the CH4 molecule.
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Figure 8.23 Symmetry factorization under Td of the secular equation in the minimum basis set for CH4.

hx = 1

2
(h1 + h2 − h3 − h4)

hy = 1

2
(h1 − h2 + h3 − h4)

hz = 1

2
(h1 − h2 − h3 + h4)

so that the symmetry basis under Td will be:

A1: k, s, hs

T2: (x,hx), (y,hy), (z,hz).

The reducible representation � will be decomposed into:

� = 3A1 + 2T2.

The 9×9 secular equation over the original basis will be factorized into a 3 ×3 block (A1)
and three 2 × 2 blocks (T2) transforming as (x, y, z) (Figure 8.23).

8.13. The π -electron system in benzene C6H6.
For our purposes, it will be sufficient to consider the point group C6v (h = 12), a sub-

group of the full D6h group (h = 24) to which the benzene molecule C6H6 belongs. The
principal symmetry axis will be the z-axis, perpendicular to the xy-plane of the σ -skeleton
of the molecule, which is a further σh symmetry plane. The 2pπ AOs are therefore 2pz,
and can be sketched schematically in the drawing as 1s AOs with + sign above the mole-
cular plane, and − sign below it.
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Figure 8.24 The symmetry elements of the benzene molecule C6H6 under C6v .

The transformation table of the six 2pπ AOs:

χ = (χ1χ2χ3χ4χ5χ6)

centred at the different C atoms in the planar hexagonal skeleton of the molecule, under
the 12 symmetry operations of the point group C6v (Figure 8.24), can be constructed using
equations (32), (33) (l = 1), (37), (38) (l = 2) for rotations, and equations (42), (43) (l = 1),
(46) (l = 2) for reflections, and is given below together with the complete character table
of the point group C6v .

C6v I C+
6 C−

6 C+
3 C−

3 C2

A1 1 1 1 1 1 1

A2 1 1 1 1 1 1

B1 1 −1 −1 1 1 −1

B2 1 −1 −1 1 1 −1

E1
(x, y)

(

1 0
0 1

) (

c s

s c

) (

c s

s c

) (

c s

s c

) (

c s

s c

) (

1 0
0 1

)

E2

(x2 − y2, xy)

(

1 0
0 1

) (

c s

s c

) (

c s

s c

) (

c s

s c

) (

c s

s c

) (

1 0
0 1

)

R̂|1〉 |1〉 |6〉 |2〉 |5〉 |3〉 |4〉
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C6v σ1 σ2 σ3 σ12 σ23 σ34

A1 1 1 1 1 1 1

A2 −1 −1 −1 −1 −1 −1

B1 1 1 1 −1 −1 −1

B2 −1 −1 −1 1 1 1

E1
(x, y)

(

c s

s c

) (

1 0
0 1

) (

c s

s c

) (

c s

s c

) (

c s

s c

) (

1 0
0 1

)

E2

(x2 − y2, xy)

(

c s

s c

) (

1 0
0 1

) (

c s

s c

) (

c s

s c

) (

c s

s c

) (

1 0
0 1

)

R̂|1〉 |1〉 |3〉 |5〉 |2〉 |4〉 |6〉

Using the full projector (100) we find:

A1: 1

12
(χ1 + χ6 + χ2 + χ5 + χ3 + χ4 + χ1 + χ3 + χ5 + χ2 + χ4 + χ6)

= 1

6
(χ1 + χ2 + χ3 + χ4 + χ5 + χ6) ⇒ a1

= 1√
6
(χ1 + χ2 + χ3 + χ4 + χ5 + χ6)

A2: 1

12
(χ1 + χ6 + χ2 + χ5 + χ3 + χ4 − χ1 − χ3 − χ5 − χ2 − χ4 − χ6) = 0

B1: 1

12
(χ1 − χ6 − χ2 + χ5 + χ3 − χ4 + χ1 + χ3 + χ5 − χ2 − χ4 − χ6)

= 1

6
(χ1 − χ2 + χ3 − χ4 + χ5 − χ6) ⇒ b1

= 1√
6
(χ1 − χ2 + χ3 − χ4 + χ5 − χ6)

B2: 1

12
(χ1 − χ6 − χ2 + χ5 + χ3 − χ4 − χ1 − χ3 − χ5 + χ2 + χ4 + χ6) = 0

E1x : 2

12

{(

1 + 1

2

)

χ1 +
(

1

2
− 1

2

)

χ2 +
(

−1

2
− 1

)

χ3

+
(

−1 − 1

2

)

χ4 +
(

−1

2
+ 1

2

)

χ5 +
(

1

2
+ 1

)

χ6

}

= 1

4
(χ1 − χ3 − χ4 + χ6) ⇒ e1x = 1

2
(χ1 − χ3 − χ4 + χ6) ∼ x
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E1y : 2

12

{(

1 − 1

2

)

χ1 +
(

1

2
+ 1

2

)

χ2 +
(

−1

2
+ 1

)

χ3

+
(

−1 + 1

2

)

χ4 +
(

−1

2
− 1

2

)

χ5 +
(

1

2
− 1

)

χ6

}

= 1

12
(χ1 + 2χ2 + χ3 − χ4 − 2χ5 − χ6)

⇒ e1y = 1√
12

(χ1 + 2χ2 + χ3 − χ4 − 2χ5 − χ6) ∼ y

E2,x2−y2 : 2

12

{(

1 − 1

2

)

χ1 +
(

−1

2
− 1

2

)

χ2 +
(

−1

2
+ 1

)

χ3

+
(

1 − 1

2

)

χ4 +
(

−1

2
− 1

2

)

χ5 +
(

−1

2
− 1

)

χ6

}

= 1

12
(χ1 − 2χ2 + χ3 + χ4 − 2χ5 + χ6)

⇒ e2,x2−y2 = 1√
12

(χ1 − 2χ2 + χ3 + χ4 − 2χ5 + χ6) ∼ x2 − y2

E2,xy : 2

12

{(

1 + 1

2

)

χ1 +
(

−1

2
+ 1

2

)

χ2 +
(

−1 − 1

2

)

χ3

+
(

1 + 1

2

)

χ4 +
(

−1

2
+ 1

2

)

χ5 +
(

−1

2
− 1

)

χ6

}

= 1

4
(χ1 − χ3 + χ4 − χ6) ⇒ e2,xy = 1

2
(χ1 − χ3 + χ4 − χ6) ∼ xy.

The reducible representation � splits into:

� = A1 + B1 + E1 + E2.

The 6 × 6 secular equation over the original π -electron basis will factorize into six 1 × 1
blocks (Figure 8.25).

The molecular symmetry is so high that the secular equation is completely factorized
into six one-dimensional equations, which corresponds to full diagonalization of the orig-
inal Hamiltonian matrix: symmetry AOs are already π MOs, the coefficients of the linear
combination being completely determined by symmetry. The ground state configuration of
the 6π -electrons in benzene will be:

1A1 : a2
1ue

4
1g,
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Figure 8.25 Symmetry factorization under C6v of the secular equation of the π -electron basis for benzene.

where the MOs are classified even with respect to their symmetry properties with respect
to inversion.

8.14. It is convenient to use MOs in complex form:

πg+ = −pA+ + pB+√
2

∝ eiϕ, πg− = pA− − pB−√
2

∝ e−iϕ,

where p+, p− are complex AOs with Condon–Shortley phase:

p+ ∝ − eiϕ

√
2π

, p− ∝ e−iϕ

√
2π

.

The
(4

2

)= 6 2-electron states result from all possible occupations with two electrons of the
four spin-orbitals πg+α, πg+β , πg−α, πg−β .

The operators needed for a complete classification of the resulting electronic states are:

L̂z =
∑

k

−i
∂

∂ϕk

= L̂z1 + L̂z2 (i2 = −1 is the imaginary unit)

L̂zψ = �ψ � = 0,±1,±2,±3, · · ·
States �,�,�,	, · · ·

σ̂αϕ = 2α − ϕ σ̂α(−ϕ) = ϕ − 2α

ı̂ψ = ±ψ + = gerade (even) − = ungerade (odd).

We then have:

L̂zπg+ = πg+ L̂zπg− = −πg−,
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Table 8.3.

Symmetry of (normalized) Slater determinants arising from the MO electron configuration π2
g

Slater determinant πg+α πg−α πg+β πg−β � MS Resulting states

ψ1 = ‖πg+πg−‖ 1 1 0 0 0 1 3�−

ψ2 = ‖πg+πg+‖ 1 0 1 0 2 0 1�

ψ3 = ‖πg+πg−‖ 1 0 0 1 0 0 3�, 1�
ψ4 = ‖πg−πg+‖ 0 1 1 0 0 0

ψ5 = ‖πg−πg−‖ 0 1 0 1 −2 0 1�

ψ6 = ‖πg+πg−‖ 0 0 1 1 0 −1 3�−

and, for the Slater determinants:

L̂z‖πg+πg−‖ = ‖πg+πg−‖ + ‖πg+ − πg−‖ = 0‖πg+πg−‖ State �

L̂z‖πg+πg+‖ = ‖πg+πg+‖ + ‖πg+πg+‖ = 2‖πg+πg+‖ State �.

For the reflection σ̂α :

σ̂απg+ = ei2απg− σ̂απg− = e−i2απg+

σ̂α‖πg+πg−‖ = ‖ei2απg−e−i2απg+‖ = ‖πg−πg+‖ = −‖πg+πg−‖

σ̂α‖πg+πg−‖ = ‖πg−πg+‖ σ̂α‖πg−πg+‖ = ‖πg+πg−‖.

We obtain Table 8.3.
The complete transformation table of the six Slater determinants under the symmetry

operations is then:

Ô ψ1 ψ2 ψ3 ψ4 ψ5 ψ6

L̂z 0 2ψ2 0 0 −2ψ5 0
σ̂ −ψ1 ψ5 ψ4 ψ3 ψ2 −ψ6
ı̂ ψ1 ψ2 ψ3 ψ4 ψ5 ψ6

Ŝ2 2ψ1 0 ψ3 − ψ4 −(ψ3 − ψ4) 0 2ψ6
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Figure 8.26 Electron configuration of ground state O2 (left) and the 2pπx AOs onto each O atom (right).

so that the six electronic states with definite symmetry are:

3�−
g : ψ1,

1√
2
(ψ3 − ψ4), ψ6

MS = 1 0 −1
1�+

g : 1√
2
(ψ3 + ψ4)

1�g : 1√
2
(ψ2 + ψ5),

1√
2
(ψ2 − ψ5).

These results can be easily checked by acting with the appropriate operators12.
Since 1� has MOs which are doubly occupied by two electrons with opposite spin,

Hund’s rule will ensure that the ground state arising from the π2
g configuration will be the

triplet 3�−
g (compare with the electronic ground state of the O2 molecule).

8.15. The symmetry of the electronic MO ground state of the O2 molecule is determined
by the symmetry of its πg electrons, which, according to Hund’s rule, occupy this doubly
degenerate level with parallel spin. The state is hence a triplet. All remaining 14 electrons
completely fill the σg , σu and πu MOs with paired spin, and so do not contribute to the
total spin, belonging to the totally symmetric representation � of the point group D∞h.
We use the MOs in real form (Figure 8.26).

πgx = xA − xB√
2

πgy = yA − yB√
2

.

Figure 8.27 shows the symmetry plane σ(α = 0o) passing along the internuclear axis z.

(i) We recall the relation between real and complex AOs:

p+ ∝ − eiϕ

√
2π

p− ∝ e−iϕ

√
2π

complex AOs

12The ± specification is usually omitted for states having � �= 0 (Herzberg, 1957, p. 217).
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Figure 8.27 The symmetry plane σ(α = 0◦) in the O2 molecule.

〈p+|p+〉 = 〈p−|p−〉 = 1 〈p+|p−〉 = 〈p−|p+〉 = 0

x = −p+ + p−√
2

= cosϕ√
π

y = i
p+ + p−√

2
= sinϕ√

π
real AOs

(ii) Transformation under L̂z = −i ∂
∂ϕ

:

L̂zp+ = p+

L̂zp− = −p−

so that p+,p− are eigenfunctions of L̂z with eigenvalues ±1.

L̂zx = −p+ − p−√
2

= i

(

i
p+ + p−√

2

)

= iy

L̂zy = i
p+ − p−√

2
= −i

(−p+ + p−√
2

)

= −ix

so that x, y are not eigenfunctions of L̂z.
(iii) Transformation under σ̂ = σ̂zx :

σ̂ x = x

σ̂y = −y

as it is easily seen from Figure 8.27.
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(iv) Transformation under the inversion ı̂:

ı̂x = −x ı̂y = −y (also A ↔ B).

(v) The transformation table for real AOs and MOs is then:

Ô xA xB yA yB πgx πgy

L̂z iyA iyB −ixA −ixB iπgy −iπgx

σ̂ xA xB −yA −yB πgx −πgy

ı̂ −xB −xA −yB −yA πgx πgy

(vi) Classification of the effective 2-electron MO wavefunction:

�(MO) = (πgxπgy) (· · ·) = ‖1σg1σg · · ·1πuy1πuy1πgx1πgy‖

L̂z� = �� � = 0,1,2,3, · · ·
States �,�,�,	, · · ·

• L̂z� = (L̂z1 + L̂z2)� = (L̂z1πgxπgy) + (πgxL̂z2πgy)

= (iπgyπgy) + (πgx − iπgx) = i[(πgyπgy) − (πgxπgx)] = 0 · �
as the two Slater determinants vanish by the exclusion principle. Thus, � belongs
to � (the z-component of the axial angular momentum operator is zero).

• σ̂� = (σ̂πgxσ̂πgy) = (πgx − πgy) = −�

giving the result that � is a �− state (� changes sign under reflection in a plane
containing the internuclear axis).

• ı̂� = (ı̂πgx ı̂πgy) = (πgxπgy) = �

with the result that � is a �−
g state (even → gerade).

Taking into account spin, we can conclude that the many-electron MO wavefunction de-
scribing the two unpaired electrons in the π2

g configuration of ground state O2 is a 3�−
g

state.

8.16. It will be shown in Chapter 10 that the MS = 1 component of the covalent triplet
VB wavefunction describing the two 3-electron π -bonds in ground state O2 can be written,
using the same short notation of Problem 8.15, as:

�1 = 1√
2
[(xAyAyAyBxBxB) + (xByByByAxAxA)],
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which can be further contracted into the ultrashort notation specifying only the two un-
paired π -electrons:

�1 = 1√
2
[(xAyB) + (xByA)].

Using the transformation table for real AOs of Problem 8.15, under the different symmetry
operations of D∞h we obtain the following results:

• L̂z�1 = 1√
2

[

(L̂z1xAyB) + (L̂z1xByA) + (xAL̂z2yB) + (xBL̂z2yA)
]

= 1√
2
[i(yAyB) + i(yByA) − i(xAxB) − i(xBxA)]

= 1√
2
[i(yAyB) − i(yAyB) − i(xAxB) + i(xAxB)] = 0 · �1

(� state)

• σ̂�1 = 1√
2
[(σ̂ xAσ̂yB) + (σ̂ xBσ̂ yA)]

= 1√
2
[(xA − yB) + (xB − yA)]

= 1√
2
[−(xAyB) − (xByA)] = −�1

(�− state)

• ı̂�1 = 1√
2
[(ı̂xAı̂yB) + (ı̂xB ı̂yA)]

= 1√
2
[(−xB − yA) + (−xA − yB)]

= 1√
2
[(xByA) + (xAyB)] = �1

(�−
g state).

Taking into account spin, we see that �1 properly describes the MS = 1 component of the
triplet 3�−

g characteristic of the ground state of the O2 molecule. Similarly we can proceed
with the remaining triplet components �2 (MS = 0) and �3 (MS = −1) of the covalent
VB wavefunction of O2.

Lastly, we shall show the equivalence, with respect to the symmetry operations of D∞h,
of the simple 2-electron VB wavefunction in the ultrashort notation with the full 6-electron
VB wavefunction describing in the short notation the two 3-electron π -bonds in O2. We
have:
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• L̂z�1 =
6
∑

k=1

L̂zk

{

1√
2

[

1 2 3 4 5 6
(xA yA yA yB xB xB) + (xByByByAxAxA)

]}

= 1√
2

[

i(yAyA
︸ ︷︷ ︸

· · ·) + i(yByB
︸ ︷︷ ︸

· · ·) k = 1

− i(xAxA
︸ ︷︷ ︸

· · ·) − i(xBxB
︸ ︷︷ ︸

· · ·) 2

− i(xAyAxAyBxBxB) − i(xByBxByAxAxA) 3

− i(xAyAyA xBxB
︸ ︷︷ ︸

xB) − i(xByByB xAxA
︸ ︷︷ ︸

xA) 4

+ i(xAyAyA yByB
︸ ︷︷ ︸

xB) + i(xByByB yAyA
︸ ︷︷ ︸

xA) 5

+ i(xAyAyAyBxByB) + i(xByByByAxAyA)
]= 0 · �1. 6

Out of the 12 terms resulting by the action of the one-electron operator L̂z on �1, terms 1,
2, 3, 4, 7, 8, 9, 10 vanish because of the exclusion principle (determinants with two rows or
columns equal), the 6-th and the 12-th term being reduced, after 3 interchanges, to the 5-th
and 11-th term with opposite sign, so that the whole expression in square brackets vanishes
as it must be. In fact:

(xByBxByAxAxA) → (xAyBxByAxBxA)

→ (xAyAxByBxBxA) → (xAyAxAyBxBxB) 3-interchanges

(xByByByAxAyA) → (xAyByByAxByA)

→ (xAyAyByBxByA) → (xAyAyAyBxByB) 3-interchanges

• σ̂�1 = 1√
2
[(xA − yA − yA − yBxBxB) + (xB − yB − yB − yAxAxA)]

= − 1√
2
[(xAyAyAyBxBxB) + (xByByByAxAxA)] = −�1

since (−1)3 can be factored out from each determinant.

• ı̂�1 = 1√
2
[(−xB − yB − yB − yA − xA − xA)

+ (−xA − yA − yA − yB − xB − xB)]

= 1√
2
[(xByByByAxAxA) + (xAyAyAyBxBxB)] = �1

since (−1)6 can now be factored out from each determinant. Hence, we see that manip-
ulation of the full 6-electron VB wavefunction brings to the same results as the much
simpler, and much easily tractable, 2-electron VB wavefunction. All doubly occupied AOs
(or MOs) have no effect on the symmetry operations of the point group.
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8.17. We recall that in the C3v symmetry:

ex ∼ x ey ∼ y

giving the transformation table (c = 1
2 , s =

√
3

2 ):

R̂χ I C+
3 C−

3 σ1 σ2 σ3

ex ex −cex − sey −cex + sey ex −cex − sey −cex + sey

ey ey sex − cey −sex − cey −ey −sex + cey sex + cey

We then obtain:

Ĉ+
3 ‖exexeyey‖ = ‖Ĉ+

3 exĈ
+
3 exĈ

+
3 eyĈ

+
3 ey‖

= ‖ − cex − sey − cex − sey sex − cey sex − cey‖

which can be expanded into 24 = 16 determinants using determinant rules.

Ĉ+
3 ‖exexeyey‖

= 3

16
‖exexexex‖

Pauli
−

√
3

16
‖exexexey‖

Pauli
−

√
3

16
‖exexeyex‖

Pauli

+ 1

16
‖exexeyey‖ + 3

√
3

16
‖exeyexex‖

Pauli
− 3

16
‖exeyexey‖

Pauli

− 3

16
‖exeyeyex‖
1-interchange

+
√

3

16
‖exeyeyey‖

Pauli
+3

√
3

16
‖eyexexex‖

Pauli

− 3

16
‖eyexexey‖
1-interchange

− 3

16
‖eyexeyex‖

Pauli
+

√
3

16
‖eyexeyey‖

Pauli

+ 9

16
‖eyeyexex‖
2-interchanges

−3
√

3

16
‖eyeyexey‖

Pauli
−3

√
3

16
‖eyeyeyex‖

Pauli

+ 3

16
‖eyeyeyey‖

Pauli

=
(

1

16
+ 3

16
+ 3

16
+ 9

16

)

‖exexeyey‖ = ‖exexeyey‖,

where 12 Slater determinants vanish because of the exclusion principle, and the coefficients
of the remaining 4 sum to unity after suitable interchanges of their rows and columns.
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σ̂1‖exexeyey‖ = ‖σ̂1exσ̂1exσ̂1eyσ̂1ey‖
= ‖exex − ey − ey‖ = (−1)2‖exexeyey‖ = ‖exexeyey‖.

We can do the same for the remaining symmetry operations, so that we can conclude that
the determinant ‖exexeyey‖ describing the electron configuration e4 belongs to the irre-
ducible representation A1 of C3v .

8.18. Symmetry of the first few real spherical tensors under C∞v and D∞h symmetry.
We must construct the matrix representatives of the different symmetry operations for

all irreps, particularly for the doubly degenerate ones (�, �, 	, · · ·), integrating in this
way the character tables given in all textbooks. Using direct-product group techniques
(Section 8.5.9), the symmetry operations which are of concern to us are (Tinkham, 1964)
C+

α , C−
α , C′

2, i, iC+
α , iC−

α , iC′
2, where:

C+
α = anticlockwise (positive) rotation of angle α about the internuclear z-axis.

C−
α = clockwise (negative) rotation.

C′
2 = rotation of π about the x-axis, perpendicular to the internuclear z-axis.

i = inversion about the centre of symmetry (only for D∞h).

If Rlm and Rlm are a pair of real spherical tensors (see Chapter 11), having the form:

Rlm(r) = f (r, θ) cosmϕ m > 0

Rlm(r) = f (r, θ) sinmϕ

according to the equations of Section 8.4.3 we have, taking into account only the depen-
dence on ϕ:

C+
α Rlm(ϕ) = Rlm(C−

α ϕ) = f (r, θ) cosm(ϕ + α) = Rlm cosmα − Rlm sinmα

C+
α Rlm(ϕ) = Rlm(C−

α ϕ) = f (r, θ) sinm(ϕ + α) = Rlm sinmα + Rlm cosmα.

Therefore, the 2 × 2 matrix (darstellung) describing the rotated basis will be:

Dlm

(

C+
α

)=
(

cosmα sinmα

− sinmα cosmα

)

=
(

cm sm

sm cm

)

having the character:

χlm

(

C+
α

)= tr Dlm(C+
α ) = 2cm.
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Table 8.4.

Symmetry of the real spherical tensors under D∞h
1,2

D∞h I C+
α C−

α C′
2

�+
g 1 1 1 1

�−
g 1 1 1 −1

Emg
3

(

1 0
0 1

) (

cm sm
sm cm

) (

cm sm

sm cm

) (

1 0
0 1

)

Emg
4

( ) ( ) ( ) (

1 0

0 1

)

�+
u 1 1 1 1

�−
u 1 1 1 −1

Emu
3

(

1 0
0 1

) (

cm sm
sm cm

) (

cm sm

sm cm

) (

1 0
0 1

)

Emu
4

( ) ( ) ( ) (

1 0
0 1

)

D∞h i iC+
α iC−

α iC′
2

�+
g 1 1 1 1 R(2l)0

�−
g 1 1 1 −1

Emg
3

(

1 0
0 1

) (

cm sm

sm cm

) (

cm sm

sm cm

) (

1 0
0 1

)

R(2l)m,R(2l)m

m = odd

Emg
4

( ) ( ) ( ) (

1 0
0 1

)

R(2l)m,R(2l)m

m = even

�+
u −1 −1 −1 −1

�−
u −1 −1 −1 1 R(2l+1)0

Emu
3

(

1 0
0 1

) (

cm sm

sm cm

) (

cm sm

sm cm

) (

1 0
0 1

)

R(2l+1)m,R(2l+1)m

m = odd

Emg
4

( ) ( ) ( ) (

1 0
0 1

)

R(2l+1)m,R(2l+1)m

m = even

1cm = cosmα, sm = sinmα m = 1,2,3, · · ·, a = −a.
2Matrices not given are identical with those above them.
3m = 1�, m = 3	, m = 5H .
4m = 2�, m = 4Y .
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Similarly:

Dlm

(

C−
α

)=
(

cosmα − sinmα

sinmα cosmα

)

=
(

cm sm

sm cm

)

with the same character as before.
Under C′

2, we have the simple transformation of the Cartesian coordinates:

x′ = x, y′ = −y, z′ = −z

so that:

C′
2(RlmRlm) = (RlmRlm)

(

1 0

0 1

)

for l,m both odd or even, while:

C′
2(RlmRlm) = (RlmRlm)

(

1 0

0 1

)

for l = even, m = odd, or l = odd, m = even.
The tensors Rl0 (m = 0) have 1-dimensional irreps of type �, belonging to the eigen-

value +1 with respect to C′
2 for l = even, and eigenvalue −1 for l = odd.

For D∞h (centre of symmetry), completing these operations with the inversion i, under
which:

x′ = −x, y′ = −y, z′ = −z,

we can classify the spherical tensors as g (= even under inversion) or u (= odd under
inversion).

In this way we can construct Table 8.4 for D∞h (for C∞v , we simply suppress the index
g or u). The multipole moments μl and polarizabilities αlm,l′m′ (Chapter 11, Section 5) are
proportional to the corresponding spherical tensors and their products, respectively. Their
non-vanishing components can then be found by using the selection rules of Section 8.6.2.
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9.1 INTRODUCTION

In Chapter 1 we introduced the angular momentum l of a single particle and the corre-
sponding quantum mechanical vector operator l̂1. We gave the expressions for the com-

ponents l̂x , l̂y , l̂z and the square of angular momentum operator l̂2, and their commutation
properties in Cartesian and spherical coordinates. We introduced the ladder (shift) opera-
tors l̂+ (step-up) and l̂− (step-down), which step-up (or step-down) the eigenfunctions Ylm

of the ladder specified by the quantum number l, changing m → m+ 1 (up) or m → m− 1
(down). Similar operators were studied for spin in Chapter 6, where half-integer values are
possible for the quantum number S (N = odd). In the following, we shall introduce first
the vector model for the elementary coupling of angular momenta, followed by elements of
the spin–orbit coupling for light atoms to explain the origin of atomic multiplets (Condon
and Shortley, 1963; Herzberg, 1944; Eyring et al., 1944). Then, we shall be concerned with
many-electron atomic systems and on how we can construct angular momentum eigenfunc-
tions starting from those of the individual electrons. This will allow us to build the correct
linear combinations of the many-electron functions of given M which are eigenfunctions
of L̂2, and therefore describe electronic states of definite L (L = 0,1,2,3, · · · , states S, P ,
D, F , · · ·). Besides the theory of atomic structure, this is of some importance in CI calcula-
tions on atoms. An outline of advanced methods for coupling angular momenta (Brink and

1Usually, lower case l, l̂ are deserved for angular momentum vector and vector operator for the single particle.
Instead, we used L, L̂ for the same quantities.

439
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Satchler, 1993) will be given next, problems and solved problems concluding the Chapter,
as usual.

9.2 THE VECTOR MODEL

The interpretation of atomic spectra (Herzberg, 1944) rests on the determination of the
electronic configurations of atoms, which follow the ordering of the energy levels and the
restrictions imposed by the Pauli principle. The coupling of the angular momenta of the
single electrons gives rise to atomic term values, which correspond to a given electron
configuration. We saw in Chapter 5 in the case of the excited 1s2s and 1s2p electron
configurations of He, how electron repulsion splits degenerate levels into different terms
whose fine structure is further determined by the coupling between orbital angular mo-
mentum and spin. The presence of a magnetic field (Zeeman effect) removes any further
degeneracy in the energy levels, allowing for the experimental detection of all physically
accessible states arising from a given electron configuration of the atoms or ions.

9.2.1 Coupling of Angular Momenta

The essence of the vector model is in the following. In a many-electron atom, each electron
is assumed to have a defined orbital angular momentum specified by the quantum number
lκ , where lκ is a vector of magnitude 0,1,2,3, · · ·, (s,p, d,f, · · ·) in units of h̄. We then
add vectorially the single angular momenta obtaining a resultant momentum which will
depend on the number, magnitude and orientation of the single vectors, orientation being
restricted by quantum mechanics to certain discrete values in space. For two electrons of
given l1 and l2, the possible resultant values of L are positive integers given by:

L = l1 + l2, l1 + l2 − 1, l1 + l2 − 2, · · · , |l1 − l2| (1)

namely:

|l1 − l2| ≤ L ≤ l1 + l2 (2)

in steps of unity.
As an example, the possible values for two electrons having l1 = l2 = 1 (hence belonging

to the configuration p2) are L = 2,1,0, resulting from the vector addition of Figure 9.1.
It should be noted that, because of the strong electron interaction, the direction of each

individual angular momentum is no longer constant in time, but precesses in such a way
that the resultant angular momentum L remains constant in modulus and direction (Fig-
ure 9.2). L is therefore the only “good” quantum number in the case of the many-electron
system.

The possible orientations of the resulting vector with L = 2 with respect to an external
field directed along z are illustrated in Figure 9.3, where it is seen that the vector of modulus
|L| = √

L(L + 1) = √
6 can never be oriented along the axis, its projections onto z being

ML = 2,1,0,−1,−2. In the following, we shall simply replace ML by M .
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Figure 9.1 Vector coupling of two p electrons.

Figure 9.2 Precession of l1 and l2 around the resultant L.

Figure 9.3 The five possible orientations of the angular momentum vector with L = 2.

When there are three electrons having lκ �= 0, the vector addition can be made by first
adding l1 to l2, then combining each of the resultant values of L with the l3 value of the
remaining electron, and so on.
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Figure 9.4 Vector coupling of three spin 1/2.

In the language of spectroscopists, the states of the many-electron atom having definite
L values are said to be the atomic terms corresponding to a given electron configuration.
So, the p2 configuration gives rise to the atomic terms D, P , S.

The same is true for spin angular momentum, except for possible half-integer values
of the total spin quantum number S. Figure 9.4 illustrates the example of coupling three
electron spin having s1 = s2 = s3 = 1/2. In this case, we first couple 1 with 2, getting
as possible S values S = 1 and S = 0. Next, we couple each resultant value of S with 3,
getting S = 3/2 and two distinct S = 1/2. So, the vector model is seen to give the same
result of Kotani’s branching diagram or Wigner’s formula of Chapter 6.

Figure 9.5 gives the two possible orientations with respect to the z axis of the total spin
S = 1/2 (doublet). It is worth noting that the angle the vector S = 1/2 makes with the z

axis in the two cases is, respectively, θ = 54.7◦(cos θ = 1/
√

3) and θ = 125.3◦(cos θ =
−1/

√
3), with cos θ = MS/

√
S(S + 1).

The quantum mechanical counterpart of the vector model is to find a regular function ψ

such that, for uncoupled L̂ and Ŝ, it satisfies the following equations:

L̂2ψ = L(L + 1)ψ, L̂zψ = Mψ (3)

Ŝ2ψ = S(S + 1)ψ, Ŝzψ = MSψ. (4)

In other words, in absence of LS coupling, all operators above commute with the Hamil-
tonian Ĥ (are constants of the motion) and among themselves, so that L, M , S, MS are
“good” quantum numbers for the specification of the state of the system. The situation is
quite different when L̂ and Ŝ are coupled, as we shall see below.
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Figure 9.5 The two possible orientations of the spin vector with S = 1/2.

9.2.2 LS Coupling and Multiplet Structure

We saw in Chapter 6 that an electron moving in a circular orbit has associated orbital and
spin magnetic momenta:

μ̂L = −βeL̂ (5)

μ̂S = −geβeŜ, (6)

where:

βe = eh̄

2mc
= 9.274 015 × 10−24 J Tesla−1 (7)

is the Bohr magneton, the unit of magnetic moment, and ge ≈ 2 for the single electron.
We now examine the possibility of the coupling of spin and orbital angular momentum

in the case of light atoms, the so called LS or Russell–Saunders coupling.
With reference to Figure 9.6, the nucleus at the origin creates an electric field F which

acts on the electron at r:

F = Z|e|
r3

r, (8)

which in turn for the electron moving with velocity v originates an intrinsic magnetic field
H given by:

H = F × v
c

= Z|e|
cr3

r × v = Z|e|
mcr3

L = 2

h̄
βe

Z

r3
L̂. (9)
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Figure 9.6 Origin of the spin–orbit coupling.

The energy of the spin magnetic dipole (6) in this magnetic field H will be:

Ĥ SO = −μ̂S · H = 2

h̄
geβ

2
e

Z

r3
L̂ · Ŝ. (10)

A more accurate analysis, which takes into account relativistic effects, shows that the cor-
rect expression for Ĥ SO is just half of the expression above, so that the operator describing
the LS coupling will be (h̄ = 1):

Ĥ SO = geβ
2
e

Z

r3
L̂ · Ŝ = ξ(r)(L̂ · Ŝ) (11)

and, for a many-electron atom:

Ĥ SO =
∑

i

geβ
2
e

(

1

ri

∂V

∂ri

)

(L̂i · Ŝi ). (12)

Now, in presence of LS coupling we must add vectorially L and S getting the resultant
momentum J (Figure 9.7), about which L and S precess as in the case of Figure 9.2. J is
now the “good” quantum number.

So, the vector model gives for the LS coupling the results of Figure 9.8.
The allowed values of J are:

|L − S| ≤ J ≤ L + S (13)

if L ≥ S, or:

|S − L| ≤ J ≤ S + L (14)

if S ≥ L, in steps of 1.
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Figure 9.7 Precession of L and S around the resultant J .

Figure 9.8 Vector addition of L and S in the Russell–Saunders scheme, and possible orientations of the result-
ing vector J .

For the component of J along z, the (2J + 1) allowed values of MJ are:

MJ = −J,−(J − 1),−(J − 2), · · · , (J − 1), J. (15)

Turning to equation (11), we see that:

L̂ · Ŝ = 1

2
(Ĵ 2 − L̂2 − Ŝ2) (16)

so that, taking the expectation value of Ĥ SO over the ground state wavefunction (first-order
RS perturbation theory), the relative energy of levels of given J is:

EJ = 1

2
A[J (J + 1) − L(L + 1) − S(S + 1)], (17)

where A is a constant characteristic of the atom or ion.
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Figure 9.9 Splitting of 3P under LS coupling.

As an example, for the 3P term of the 1s2p electron configuration of He, we have:

L = S = 1 J = 2,1,0 (18)

with the relative energies for the LS coupled states:

J = 2 E2 = 1

2
A(2 · 3 − 4) = A

J = 1 E1 = 1

2
A(1 · 2 − 4) = −A

J = 0 E0 = 1

2
A(0 · 1 − 4) = −2A. (19)

The splitting of the 3P term under LS coupling is shown in Figure 9.9.
The 3P2 term is 5-fold degenerate, the 3P1 3-fold degenerate, the 3P0 is non-degenerate.

To remove these degeneracies, we must introduce a magnetic field directed along z (Zee-
man effect).

The magnetic moment operator corresponding to the quantum number J resulting from
the LS coupling is:

μ̂J = −gJ βeĴ , (20)

where:

gJ = 3

2
+ S(S + 1) − L(L + 1)

2J (J + 1)
(21)

is called Landé g-factor. The derivation of gJ is given as Problem 9.1. Then, the potential
energy of the magnetic dipole in the uniform magnetic field H = kH will be:

V = −μ̂J · H = gJ βeH Ĵz, (22)
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Figure 9.10 Zeeman resolution of the 3PJ multiplet structure for He(1s2p) (not in scale).

so that the energy of the (2J + 1) sublevels in presence of the field H will be:

EMJ
= gJ βeHMJ − J ≤ MJ ≤ J (23)

which is the formula for the linear Zeeman effect. The splitting of the Zeeman levels:

�EMJ
= gJ βeH [MJ − (MJ − 1)] = gJ βeH (24)

is linear in the strength of the external field H . Figure 9.10 gives the Zeeman splitting of
the 3PJ term, where all 9 physically accessible states have now different energies.

Interesting magnetic effects are associated to the multiplet width � = hν with respect
to the temperature T . There are two extreme cases.

(i) � 	 kT .

In this case of narrow multiplets, the magnetic moment is due to pure spin:

μeff

βe

= [4S(S + 1)]1/2. (25)

This is the case of the ions of metals of the first transition series and O2, which follow
Curie’s law.

(ii) � 
 kT .

In this case of wide multiplets, almost all particles are in the state of lowest energy,
and the magnetic moments arise from LS coupling:

μeff

βe

= gJ [J (J + 1)]1/2, (26)

where gJ is the Landé g-factor. This is the case of rare earth ions, with the exception
of Sm+3 and Eu+3.

(iii) The intermediate case where � ≈ kT is the most difficult to treat, and is exemplified
by NO at room temperature, where the Curie law is not followed. This case, as well
as those of Sm+3 and Eu+3, was fully discussed by Van Vleck (1932).
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9.3 CONSTRUCTION OF STATES OF DEFINITE ANGULAR
MOMENTUM

9.3.1 The Matrix Method

For N electrons, we have for the angular momentum vector operator L̂ and its component
L̂z:

L̂ = iL̂x + jL̂y + kL̂z =
N

∑

κ=1

(iL̂xκ + jL̂yκ + kL̂zκ ) (27)

L̂z =
N

∑

κ=1

L̂zκ . (28)

Then, the square of the angular momentum operator will be:

L̂2 = L̂ · L̂ =
∑

κ

∑

λ

(

L̂xκ L̂xλ + L̂yκ L̂yλ + L̂zκ L̂zλ

)

=
∑

κ

(

L̂2
xκ + L̂2

yκ + L̂2
zκ

) + 2
∑

κ<λ

(

L̂xκ L̂xλ + L̂yκ L̂yλ + L̂zκ L̂zλ

)

. (29)

Introducing the complex ladder operators:

L̂+κ = L̂xκ + iL̂yκ , L̂−κ = L̂xκ − iL̂yκ , (30)

it follows that:

L̂+κ L̂−λ + L̂−κ L̂+λ

= (

L̂xκ + iL̂yκ

)(

L̂xλ − iL̂yλ

) + (

L̂xκ − iL̂yκ

)(

L̂xλ + iL̂yλ

)

= 2
(

L̂xκ L̂xλ + L̂yκ L̂yλ

)

. (31)

Therefore:

L̂2 =
∑

κ

L̂2
κ + 2

∑

κ<λ

L̂zκ L̂zλ +
∑

κ<λ

(

L̂+κ L̂−λ + L̂−κ L̂+λ

)

. (32)

Along the same lines seen for spin operators in Chapter 6, we have:

L̂+(lm) = [l(l + 1) − m(m + 1)]1/2(lm + 1) (33)

L̂−(lm) = [l(l + 1) − m(m − 1)]1/2(lm − 1), (34)
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where L̂+ steps up from the (normalized) eigenfunction (lm) to the (normalized) eigen-
function (lm + 1), L̂− steps down from (lm) to the (normalized) eigenfunction (lm − 1).

Acting on the N -electron Slater determinant L̂2 will give:

L̂2|| · · · (nκ lκmκsκ) · · · (nλlλmλsλ) · · · ||

=
[

N
∑

κ=1

lκ (lκ + 1) + 2
∑

κ<λ

mκmλ

]

|| · · · ||

+
∑

κ �=λ

[lκ (lκ + 1) − mκ(mκ + 1)]1/2[lλ(lλ + 1) − mλ(mλ + 1)]1/2

· || · · · (nκ lκmκ+1sκ) · · · (nλlλmλ−1sλ) · · · ||, (35)

which is the basic formula for L̂2 in the case of the many-electron system.

(i) Equivalent electrons.
As an example, let us construct the states arising out of the configuration p2 of two

equivalent electrons with l1 = l2 = 1. Figure 9.1 says that the possible states are S, P , D

corresponding to L = 0,1,2. The six spin-orbitals in complex form are:

p0α,p0β,p+1α,p+1β,p−1α,p−1β, (36)

from which we can construct
( 6

2

) = 15 states having the same principal quantum number
n. Since 1P , 3S, 3D are forbidden by the Pauli exclusion principle, we are left with the 15
Pauli allowed states:

1S, 3P, 1D. (37)

Among these 15 states arising from the p2 configuration, there are 3 states having M =
MS = 0:

ψ1 =
∣

∣

∣

∣

∣

∣

∣

∣

(

n1 0
1

2

)(

n1 0
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p0p0||

ψ2 =
∣

∣

∣

∣

∣

∣

∣

∣

(

n1 1
1

2

)(

n1 1
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p+1p−1|| (38)

ψ3 =
∣

∣

∣

∣

∣

∣

∣

∣

(

n1 1
1

2

)(

n1 1
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p−1p+1||.

Acting with L̂2 upon each function ψ , it is obtained (Problem 9.2):

L̂2ψ1 = 4ψ1 + 2ψ2 + 2ψ3

L̂2ψ2 = 2ψ1 + 2ψ2 (39)

L̂2ψ2 = 2ψ1 + 2ψ3.
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Taking into account orthonormality, the matrix representative of L̂2 over the three basis
functions will be:

L2 =
(4 2 2

2 2 0
2 0 2

)

(40)

giving the secular equation:

∣

∣

∣

∣

∣

4 − λ 2 2
2 2 − λ 0
2 0 2 − λ

∣

∣

∣

∣

∣

= 0 λ = L(L + 1) (41)

which has the roots λ = 0,2,6 or L = 0,1,2 as it must be.
The corresponding eigenvectors are found by solving the system of homogeneous linear

equations giving (41). The results are (Problem 9.3):

ψ(1S) = 1√
3
(ψ1 − ψ2 − ψ3)

ψ(3P) = 1√
2
(ψ2 − ψ3) (42)

ψ(1D) = 1√
6
(2ψ1 + ψ2 + ψ3).

We can easily check (Problem 9.4) that:

L̂2ψ(1S) = 0(0 + 1)ψ(1S), Ŝ2ψ(1S) = 0(0 + 1)ψ(1S),

L̂2ψ(3P) = 1(1 + 1)ψ(3P), Ŝ2ψ(3P) = 1(1 + 1)ψ(3P),

L̂2ψ(1D) = 2(2 + 1)ψ(1D), Ŝ2ψ(1D) = 0(0 + 1)ψ(1D)

(43)

so that the problem has been fully solved.
We show in Problem 9.5 that the singlet S function, ψ(1S), can be expressed in either of

the alternative forms:

(i) Complex form:

ψ(1S) = 1√
3

{||p0p0|| − ||p+1p−1|| − ||p−1p+1||
}

(44)

(ii) Real form:

ψ(1S) = 1√
3

{||pxpx || + ||pypy || + ||pzpz||
}

. (45)
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Further examples for the configuration np3 of three equivalent electrons are given in Prob-
lems 9.6 and 9.7.

(ii) Non-equivalent electrons.
As an example for non-equivalent electrons, we choose to build the singlet 1P state out

of the 2p3d configuration.
From the vector model we know that the possible states resulting from the coupling of

the angular momenta of the single electrons (l1 = 1, l2 = 2) are P , D, F (L = 1,2,3).
Taking into account spin, the Pauli allowed states are either singlets (S = 0) 1P , 1D, 1F , or
triplets (S = 1) 3P , 3D, 3F , for a total of (3 + 5 + 7 + 9 + 15 + 21) 60 states.

For the 1P we have the following 6 Slater determinants having M = MS = 0:

∣

∣

∣

∣

∣

∣

∣

∣

(

2 1 1
1

2

)(

3 2 1
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p+1d−1||
∣

∣

∣

∣

∣

∣

∣

∣

(

2 1 1
1

2

)(

3 2 1
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p+1d−1||
∣

∣

∣

∣

∣

∣

∣

∣

(

2 1 0
1

2

)(

3 2 0
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p0d0||
∣

∣

∣

∣

∣

∣

∣

∣

(

2 1 0
1

2

)(

3 2 0
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p0d0||
∣

∣

∣

∣

∣

∣

∣

∣

(

2 1 1
1

2

)(

3 2 1
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p−1d+1||
∣

∣

∣

∣

∣

∣

∣

∣

(

2 1 1
1

2

)(

3 2 1
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p−1d+1||, (46)

that can be grouped into the 3 singlets (S = 0):

ψ1 = 1√
2

{||p+1d−1|| + ||d−1p+1||
}

ψ2 = 1√
2

{||p0d0|| + ||d0p0||
}

ψ3 = 1√
2

{||p−1d+1|| + ||d+1p−1||
}

. (47)

Acting with L̂2 on the first determinant of ψ1:

L̂2||p+1d−1|| = 6||p+1d−1|| +
√

12||p0d0||. (48)

Similarly, for the second determinant of ψ1:

L̂2||d−1p+1|| = 6||d−1p+1|| +
√

12||d0p0||, (49)
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so that we shall have:

L̂2ψ1 = 6ψ1 + √
12ψ2

L̂2ψ2 = 8ψ2 + √
12(ψ1 + ψ3)

L̂2ψ3 = 6ψ3 + √
12ψ2. (50)

Therefore:

L2 =
( 6

√
12 0√

12 8
√

12
0

√
12 6

)

(51)

giving the secular equation:

∣

∣

∣

∣

∣

6 − λ
√

12 0√
12 8 − λ

√
12

0
√

12 6 − λ

∣

∣

∣

∣

∣

= 0 λ = L(L + 1). (52)

Expanding the determinant, we obtain the factorized secular equation:

(6 − λ)[(8 − λ)(6 − λ) − 12] − 12(6 − λ) = (6 − λ)(λ2 − 14λ + 24)

= 0, (53)

having the roots:

λ − 6 = 0 λ = 6 L = 2 State D

λ2 − 14λ + 24 = 0 λ = 2,12 L = 1,3 States P,F.

The eigenvectors are then formed in the usual elementary way by solving the homogeneous
system:

⎧

⎪

⎨

⎪

⎩

(6 − λ)c1 + √
12c2 = 0√

12c1 + (8 − λ)c2 + √
12c3 = 0√

12c2 + (6 − λ)c3 = 0

(54)

with the additional normalization condition:

c2
1 + c2

2 + c2
3 = 1. (55)

For the eigenvector we are interested in, λ = 2, corresponding to L = 1, we have:

c2 = − 2√
3
c1, c3 = −

√
3

2
c2 = c1, c1 =

√

3

10
, (56)
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so that the required singlet 1P function will be:

ψ(1P) =
√

3

10
(ψ1 + ψ3) −

√

2

5
ψ2. (57)

Using (50) and the Dirac formula for N = 2, we can easily check that:

L̂2ψ(1P) = 1(1 + 1)ψ(1P)

Ŝ2ψ(1P) = 0(0 + 1)ψ(1P) (58)

as it must be.
We then have for the 1P state arising from the 2p3d configuration of two non-equivalent

electrons the two alternative expressions:

(i) Complex form:

ψ(1P) =
√

3

10
(ψ1 + ψ3) −

√

2

5
ψ2

=
√

3

20

{||p+1d−1|| + ||d−1p+1|| + ||p−1d+1|| + ||d+1p−1||
}

− 1√
5

{||p0d0|| + ||d0p0||
}

(59)

(ii) Real form:

ψ(1P) =
√

3

20

{||2px3dzx || + ||3dzx2px || + ||2py3dyz|| + ||3dyz2py ||
}

+ 1√
5

{||2pz3dz2 || + ||3dz2 2pz||
}

=
{
√

3

20
[(

r1 r2

2px 3dzx +
r1 r2

3dzx 2px) + (2py3dyz + 3dyz2py)]

+ 1√
5
(2pz3dz2 + 3dz2 2pz)

}

1√
2

s1 s2

(α β − s1 s2
β α) (60)

after space-spin separation.

States such as ψ(1P) were used in CI studies of alkaline earth metals for calculating sta-
tic dipole polarizabilities taking partial account of correlation effects in the valence shell
(Magnasco and Amelio, 1978), and for accurate CI studies of static dipole, quadrupole
and octupole polarizabilities for the ground states of H, He, Li, Be, Na, Mg (Figari et al.,
1983). Correlation in the ground states of Be and Mg was introduced by allowing the ns2

configuration to interact with the nearly degenerate np2 configuration in a way determined
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by the variation theorem. Correlation in the excited states was introduced by allowing the
1L(sl) configuration to interact in an optimum way with the 1L(pl + 1) configuration and
by varying the non-spherical orbitals independently in the two configurations. The singlet
excited configuration npn′(l + 1) is described by the many-determinant wavefunction:

ψ(1L) =
(

l + 1

4l + 6

)1/2
{

(np0n′(l + 1)0) + (n′(l + 1)0np0)
}

+
(

l + 2

8l + 12

)1/2
{

(npcn′(l + 1)c) + (n′(l + 1)cnpc)

+ (npsn′(l + 1)s) + (n′(l + 1)snps)
}

, (61)

where (· · ·) denotes a normalized Slater determinant in real form with the doubly occupied
core orbitals omitted for short, the bar refers as usual to β spin, and the orbitals subscripts
to cosine (c), sine (s) or no (0) dependence on angle ϕ. For n = 2, n′ = 3, l = 1, l′ = 2, the
general expression (61) reduces to the expression (60) derived before.

9.3.2 The Projection Operator Method

The projection operator method due to Löwdin (see Chapter 6 on spin) can be used to
construct atomic states belonging to a definite value of L.

The operator projecting out of a function the state with L = k is:

Ôk =
∏

L( �=k)

L̂2 − L(L + 1)

k(k + 1) − L(L + 1)
, (62)

where the product includes all Ls except the particular one k we want to construct. This
operator acting on the general expansion of the function in terms of L-eigenstates will
annihilate all terms except that for which L = k, which remains unchanged. Simple appli-
cations can be found in Problems 9.8 and 9.9.

The projection operator formula for the total angular momentum J in the LS coupling
was given by Slater (1960).

9.4 AN OUTLINE OF ADVANCED METHODS FOR COUPLING
ANGULAR MOMENTA

In this last Section, we shall simply introduce some explanation for a few symbols that
are frequently met in the Literature when treating angular momentum problems, such as
Clebsch–Gordan coefficients, Wigner 3-j and 9-j symbols, Gaunt coefficients, and cou-
pling rules. Details can be found in excellent books (Rose, 1957; Brink and Satchler, 1993).
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9.4.1 Clebsch–Gordan Coefficients and Wigner 3-j and 9-j Symbols

Two angular momentum vectors, |l1m1〉 and |l2m2〉, can be coupled to a resultant |LM〉 by
the relation:

|LM〉 =
∑

m1m2

|l1m1〉|l2m2〉〈l1m1l2m2|LM〉, (63)

where 〈l1m1l2m2|LM〉 is a real number called vector coupling or Clebsch–Gordan coeffi-
cient, and we used Dirac notation. The transformation (63) is unitary, the inverse being:

|l1m1〉|l2m2〉 =
∑

LM

|LM〉〈LM|l1m1l2m2〉, (64)

where the coefficient 〈LM|l1m1l2m2〉 is the complex conjugate of the corresponding coef-
ficient 〈l1m1l2m2|LM〉.

In recent Literature, the Clebsch–Gordan coefficient is usually expressed in terms of the
more symmetric Wigner 3-j symbol through the relation (Brink and Satchler, 1993):

〈l1m1l2m2|LM〉 = (−1)l1−l2+M
√

2L + 1

(

l1 l2 L

m1 m2 −M

)

. (65)

Clebsch–Gordan 3-j

The Wigner 3-j symbol

(

l1 l2 l3
m1 m2 m3

)

is non-zero provided:

m1 + m2 + m3 = 0 (66)

|lμ − lν | ≤ lγ ≤ (lμ + lν),

and has the following general expression (Rose, 1957; Brink and Satchler, 1993):

(

l1 l2 l3
m1 m2 m3

)

= δm1+m2+m3,0 × (−1)l1+m2−m3

×
√

(l1 + l2 − l3)!(l1 − l2 + l3)!(−l1 + l2 + l3)!(l3 + m3)!(l3 − m3)!
(l1 + l2 + l3 + 1)!(l1 + m1)!(l1 − m1)!(l2 + m2)!(l2 − m2)!

×
∑

λ

(−1)λ
(l1 − m1 + λ)!(l2 + l3 + m1 − λ)!

λ!(−l1 + l2 + l3 − λ)!(l1 − l2 + m3 + λ)!(l3 − m3 − λ)! , (67)

where:

max(0, l2 − l1 − m3) ≤ λ ≤ min(l3 − m3, l2 − l1 + l3). (68)



456 9. Angular Momentum Methods for Atoms

The summation over λ is limited to all integers giving non-negative factorials. The
Wigner 3-j symbols are today available as standards on the Mathematica software (Wol-
fram, 1996), where they are evaluated in a sophisticated way in terms of hypergeometric
functions (Abramowitz and Stegun, 1965) for integer or half-integer (spin) values of (l,m).

The vector coupling of three and four angular momenta implies use of Wigner 6-j or
Wigner 9-j symbols, respectively.

A Wigner 9-j symbol is given as:

{

l1 l2 L

l′1 l′2 L′
L1 L2 λ

}

. (69)

It is invariant under interchange of rows and columns, and enjoys the property:

(

λ L L′
0 0 0

)

{

λ L L′
L1 l1 l′1
L2 l2 l′2

}

=
∑

M1M2

(

L1 L2 L

M1 M2 0

)

×
∑

m1m2

∑

m′
1m

′
2

(

l1 l2 L

m1 m2 0

)(

l′1 l′2 L′
m′

1 m′
2 0

)(

l1 l′1 L1
m1 m′

1 M1

)

×
(

l2 l′2 L2
m2 m′

2 M2

)

, (70)

that reduces to summations over Wigner 3-j symbols, more easily calculable on Mathemat-
ica. Used backwards, relation (70) is said to express the contraction of summations of 3-j
symbols to 9-j (Brink and Satchler, 1993). Expression (70) is met in the spherical tensor
expansion of the product 1

r12
· 1

r1′2′ , which occurs in the second-order theory of long-range
intermolecular forces (Ottonelli, 1998; Magnasco and Ottonelli, 1999).

9.4.2 Gaunt Coefficients and Coupling Rules

The Gaunt coefficient arises from the integration of three complex spherical harmonics
(with Condon–Shortley phase) of the same argument � = θ,ϕ:

∫

d�Y ∗
LM(�)Yl1m1(�)Yl2m2(�)

= G

(

l1 l2 L

m1 m2 −M

)

Gaunt coefficient
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= (−1)M

√

(2l1 + 1)(2l2 + 1)(2L + 1)

4π

(

l1 l2 L

m1 m2 −M

)(

l1 l2 L

0 0 0

)

,

(71)

where:

M = m1 + m2. (72)

All these results take their most simple form in terms of modified spherical harmonics,
defined as (Brink and Satchler, 1993):

Clm(�) =
√

4π

2l + 1
Ylm(�), (73)

having the ortho-normality properties:

∫

d�C∗
lm(�)Cl′m′(�) = 4π

2l + 1
δll′δmm′ . (74)

In terms of the Cs we can write:

(i) Coupling rule

Cl1m1(�)Cl2m2(�)

= 2
∑

L

CLM(�)(−1)M(2L + 1)

(

l1 l2 L

m1 m2 −M

)(

l1 l2 L

0 0 0

)

,

(75)

where: M = m1 + m2, and the finite summation is in steps of 2.
(ii) Gaunt coefficient

G

(

l1 l2 L

m1 m2 −M

)

=
∫

d�C∗
LM(�)Cl1m1(�)Cl2m2(�)

= 4π(−1)M
(

l1 l2 L

m1 m2 −M

)(

l1 l2 L

0 0 0

)

. (76)

For m1 = m2 = M = 0, l1 + l2 + L = 2g (even), it is obtained:

∫ 2π

0
dϕ

∫ 1

−1
dxPl1(x)Pl2(x)PL(x) = 4π

(

l1 l2 L

0 0 0

)2

, x = cos θ (77)

which is nothing but the symmetrical Racah’s formula:
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∫ 1

−1
dxPa(x)Pb(x)Pc(x) = 2

(

a b c

0 0 0

)2

= 2

[

(−1)g
g!

(g − a)!(g − b)!(g − c)!

√

(2g − 2a)!(2g − 2b)!(2g − 2c)!
(2g + 1)!

]2

,

(78)

where a, b, c are non-negative integers and a + b + c = 2g even.

9.5 PROBLEMS 9

9.1. Derive the Landé g-factor for LS coupling in the vector model (Herzberg, 1944)

Answer:

gJ = 3

2
+ S(S + 1) − L(L + 1)

2J (J + 1)
.

Hint:
Use the triangle of Figure 9.8 and the Carnot theorem.

9.2. Find the effect of L̂2 on the three basis functions (38) having M = MS = 0.

Answer:
The result is given as equation (39).
Hint:
Make use of the equation (35) of the main text.

9.3. Find the eigenvectors of matrix (40) corresponding to λ = 0,2,6.

Answer:

λ = 0 ψ(1S) = 1√
3
(ψ1 − ψ2 − ψ3)

λ = 2 ψ(3P) = 1√
2
(ψ2 − ψ3)

λ = 6 ψ(1D) = 1√
6
(2ψ1 + ψ2 + ψ3).

Hint:
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Insert each eigenvalue in turn into the system of linear homogeneous equations determining
the secular equation (41).

9.4. Check equations (43).

Hint:
Use equations (39) for L̂2 and the Dirac formula Ŝ2 = Î + P̂12 for spin.

9.5. Transform ψ(1S) from complex to real form.

Answer:
The result is expression (45).
Hint:
Use the unitary transformation connecting complex to real functions and the elementary
properties of determinants.

9.6. Write all microstates arising from the np3 configuration of three equivalent electrons
with l1 = l2 = l3 = 1, and construct the S quartet with MS = 1/2.

Answer:
The 20 Pauli allowed microstates are:

M MS

1.
∣

∣

∣

∣

∣

∣

∣

∣

(

n1 1
1

2

)(

n1 0
1

2

)(

n1 1
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p+p0p+|| 2
1

2

2.
∣

∣

∣

∣

∣

∣

∣

∣

(

n1 1
1

2

)(

n1 0
1

2

)(

n1 1
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p+p0p+|| 2 −1

2

3.
∣

∣

∣

∣

∣

∣

∣

∣

(

n1 1
1

2

)(

n1 1
1

2

)(

n1 1
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p+p−p+|| 1
1

2

4.
∣

∣

∣

∣

∣

∣

∣

∣

(

n1 1
1

2

)(

n1 1
1

2

)(

n1 1
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p+p−p+|| 1 −1

2

5.
∣

∣

∣

∣

∣

∣

∣

∣

(

n1 1
1

2

)(

n1 0
1

2

)(

n1 0
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p+p0p0|| 1
1

2

6.
∣

∣

∣

∣

∣

∣

∣

∣

(

n1 1
1

2

)(

n1 0
1

2

)(

n1 0
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p+p0p0|| 1 −1

2

7.

∣

∣

∣

∣

∣

∣

∣

∣

(

n1 1
1

2

)(

n1 1
1

2

)(

n1 0
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p+p−p0|| 0
3

2

8.
∣

∣

∣

∣

∣

∣

∣

∣

(

n1 1
1

2

)(

n1 1
1

2

)(

n1 0
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p+p−p0|| 0
1

2
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9.
∣

∣

∣

∣

∣

∣

∣

∣

(

n1 1
1

2

)(

n1 1
1

2

)(

n1 0
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p+p−p0|| 0
1

2

10.
∣

∣

∣

∣

∣

∣

∣

∣

(

n1 1
1

2

)(

n1 1
1

2

)(

n1 0
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p+p−p0|| 0
1

2

11.
∣

∣

∣

∣

∣

∣

∣

∣

(

n1 1
1

2

)(

n1 1
1

2

)(

n1 0
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p+p−p0|| 0 −1

2

12.
∣

∣

∣

∣

∣

∣

∣

∣

(

n1 1
1

2

)(

n1 1
1

2

)(

n1 0
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p+p−p0|| 0 −1

2

13.
∣

∣

∣

∣

∣

∣

∣

∣

(

n1 1
1

2

)(

n1 1
1

2

)(

n1 0
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p+p−p0|| 0 −1

2

14.
∣

∣

∣

∣

∣

∣

∣

∣

(

n1 1
1

2

)(

n1 1
1

2

)(

n1 0
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p+p−p0|| 0 −3

2

15.
∣

∣

∣

∣

∣

∣

∣

∣

(

n1 1
1

2

)(

n1 0
1

2

)(

n1 0
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p−p0p0|| −1 −1

2

16.
∣

∣

∣

∣

∣

∣

∣

∣

(

n1 1
1

2

)(

n1 0
1

2

)(

n1 0
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p−p0p0|| −1
1

2

17.
∣

∣

∣

∣

∣

∣

∣

∣

(

n1 1
1

2

)(

n1 1
1

2

)(

n1 1
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p−p+p−|| −1 −1

2

18.
∣

∣

∣

∣

∣

∣

∣

∣

(

n1 1
1

2

)(

n1 1
1

2

)(

n1 1
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p−p+p−|| −1
1

2

19.
∣

∣

∣

∣

∣

∣

∣

∣

(

n1 1
1

2

)(

n1 0
1

2

)(

n1 1
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p−p0p−|| −2 −1

2

20.
∣

∣

∣

∣

∣

∣

∣

∣

(

n1 1
1

2

)(

n1 0
1

2

)(

n1 1
1

2

)∣

∣

∣

∣

∣

∣

∣

∣

= ||p−p0p−|| −2
1

2

The S quartet with MS = 1/2 is:

ψ(4S) = 1√
3
(ψ8 + ψ9 + ψ10).

Hint:
Use the techniques of the previous Problems.

9.7. Construct the four 4S functions out of the np3 configuration of three equivalent elec-
trons (e.g. the ground state configuration of the N atom).
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Answer:
The four 4S functions (M = 0) are:

MS

�1(
4S) = ψ7

3

2

�2(
4S) = 1√

3
(ψ8 + ψ9 + ψ10)

1

2

�3(
4S) = 1√

3
(ψ11 + ψ12 + ψ13) −1

2

�4(
4S) = ψ14 −3

2

Hint:
Use the techniques of the previous Problems.

9.8. Construct the allowed L-states (L = 0,1,2) out of the p2 configuration of two equiv-
alent electrons by the projection method.

Answer:

ψ(1S) = 1√
3
(ψ1 − ψ2 − ψ3)

ψ(3P) = 1√
2
(ψ2 − ψ3)

ψ(1D) = 1√
6
(2ψ1 + ψ2 + ψ3).

Hint:
Act on ψ1 or ψ2 with the projector given by equation (62).

9.9. Construct the 1P state out of the 2p3d configuration of two non-equivalent electrons
by the projection method.

Answer:

ψ(1P) =
√

3

10
(ψ1 + ψ3) −

√

2

5
ψ2.

Hint:
Act on ψ1 with the projector given by equation (62) which annihilates the components with
L = 2 and 3.
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9.6 SOLVED PROBLEMS

9.1. The Landé g-factor by the vector model.
With reference to the left part of Figure 9.8, we first notice that μL, μS , μJ are in a
direction opposite to L, S, J with magnitude:

μL = −βe

√

L(L + 1)

μS = −2βe

√

S(S + 1)

μJ = −gJ βe

√

J (J + 1),

where gJ is the Landé g-factor we want to calculate. From the Carnot theorem for the
triangle of sides

√
L(L + 1),

√
S(S + 1),

√
J (J + 1) it follows:

S(S + 1) = J (J + 1) + L(L + 1) − 2
√

J (J + 1)
√

L(L + 1) cos(L,J )

L(L + 1) = J (J + 1) + S(S + 1) − 2
√

J (J + 1)
√

S(S + 1) cos(S, J ).

Then, the component of μJ in the J -direction is:

μJ = μL cos(L,J ) + μS cos(S, J )

gJ

√

J (J + 1) = √

L(L + 1) cos(L,J ) + 2
√

S(S + 1) cos(S, J ),

where we have divided both members by βe. Then it follows:

gJ =
√

L(L + 1)√
J (J + 1)

J (J + 1) + L(L + 1) − S(S + 1)

2
√

J (J + 1)
√

L(L + 1)

+2

√
S(S + 1)√
J (J + 1)

J (J + 1) + S(S + 1) − L(L + 1)

2
√

J (J + 1)
√

S(S + 1)

= J (J + 1) + L(L + 1) − S(S + 1) + 2J (J + 1) + 2S(S + 1) − 2L(L + 1)

2J (J + 1)

= 1 + J (J + 1) + S(S + 1) − L(L + 1)

2J (J + 1)

= 3

2
+ S(S + 1) − L(L + 1)

2J (J + 1)

which is the Landé g-factor for the LS coupling. For a single s-electron, L = 0, S = 1/2,
J = S, and therefore gJ = 2. This spectroscopic value should not be confused with the
intrinsic g-value of the electron.
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9.2. We apply equation (35) in turn to ψ1, ψ2, ψ3.

L̂2ψ1 = L̂2||p0p0||

= [1(1 + 1) + 1(1 + 1) + 2 · 0 · 0]||p0p0|| +
κ λ

12 + 21

= 4||p0p0|| + [1(1 + 1) − 0(0 + 1)]1/2

×[1(1 + 1) − 0(0 − 1)]1/2||p+1p−1||
+ [1(1 + 1) − 0(0 − 1)]1/2[1(1 + 1) − 0(0 + 1)]1/2||p−1p+1||

= 4ψ1 + 2ψ2 + 2ψ3.

L̂2ψ2 = L̂2||p+1p−1||

= [1(1 + 1) + 1(1 + 1) + 2(+1)(−1)]||p+1p−1|| +
κ λ

1 2 + 21

= 2||p+1p−1|| + [1(1 + 1) − (−1)(−1 + 1)]1/2

×[1(1 + 1) − 1(1 − 1)]1/2||p0p0||
= 2ψ2 + 2ψ1,

since 12 is zero because we cannot exceed the top or the bottom of the ladder with l = 1.

L̂2ψ3 = L̂2||p−1p+1||

= [1(1 + 1) + 1(1 + 1) + 2(−1)(+1)]||p−1p+1|| +
κ λ

1 2 + 2 1

= 2||p−1p+1|| + [1(1 + 1) − (−1)(−1 + 1)]1/2

×[1(1 + 1) − 1(1 − 1)]1/2||p0p0||
= 2ψ3 + 2ψ1,

and we obtain equations (39) of the main text.

9.3. Eigenvectors of matrix (40) corresponding to λ = 0,2,6.
The homogeneous system to be solved is:

{

(4 − λ)c1 + 2c2 + 2c3 = 0
2c1 + (2 − λ)c2 = 0
2c1 + (2 − λ)c3 = 0
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with the normalization condition:

c2
1 + c2

2 + c2
3 = 1.

(i) λ = 0
From 2. and 3. it follows immediately:

c2 = c3 = −c1 3c2
1 = 1

c1 = 1√
3
, c2 = c3 = − 1√

3
,

(ii) λ = 2

c1 = 0 c3 = −c2 2c2
2 = 1

c2 = 1√
2
, c3 = − 1√

2
.

(iii) λ = 6

c2 = c3 = 1

2
c1 c1 = 2√

6

c1 = 2√
6
, c2 = c3 = 1√

6
.

9.4. Check equations (43).
Making use of equations (39), it is obtained:

L̂2ψ(1S) = 1√
3
(4ψ1 + 2ψ2 + 2ψ3 − 2ψ2 − 2ψ1 − 2ψ3 − 2ψ1) (79)

= 0(0 + 1)ψ(1S) (80)

L̂2ψ(3P) = 1√
2
(2ψ2 + 2ψ1 − 2ψ3 − 2ψ1) = 1(1 + 1)ψ(3P)

L̂2ψ(1D) = 1√
6
(8ψ1 + 4ψ2 + 4ψ3 + 2ψ2 + 2ψ1 + 2ψ3 + 2ψ1)

= 1√
6
(12ψ1 + 6ψ2 + 6ψ3) = 2(2 + 1)ψ(1D),

so that functions (42) are the correct eigenfunctions of L̂2 belonging to the eigenvalues

L = 0,1,2, respectively. Using Dirac Ŝ2 = Î + P̂12, it is obtained for Ŝ
2
:

Ŝ
2
ψ(1S) = 1√

3

{||p0p0|| − ||p+1p−1|| − ||p−1p+1||
+ ||p0p0|| − ||p+1p−1|| − ||p−1p+1||

} = 0(0 + 1)ψ(1S)
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Ŝ
2
ψ(3P) = 1√

2

{||p+1p−1|| − ||p−1p+1|| + ||p+1p−1|| − ||p−1p+1||
}

= 2
1√
2

{||p+1p−1|| − ||p−1p+1||
} = 1(1 + 1)ψ(3P)

Ŝ
2
ψ(1D) = 1√

6

{

2||p0p0|| + ||p+1p−1|| + ||p−1p+1||
+ 2||p0p0|| + ||p+1p−1|| + ||p−1p+1||

} = 0(0 + 1)ψ(1D),

as it must be.

9.5. Transform ψ(1S) from complex to real form.
In order to transform to real functions, we must take into account the Condon–Shortley
phase for the complex spherical harmonics with m > 0:

Ylm = (−1)mP m
l (cos θ) exp(imϕ)

Ylm = P m
l (cos θ) exp(−imϕ).

The phase factors are chosen so as to satisfy step-up and step-down equations and the phase
of Yl0 be real and positive (Condon and Shortley, 1963). Then:

p+ = −px + ipy√
2

, p− = px − ipy√
2

and, introducing into the complex determinants of equation (44), for the properties of de-
terminants we obtain:

−||p+p−|| − ||p−p+||

= −
∣

∣

∣

∣

∣

∣

∣

∣

−px − ipy√
2

px − ipy√
2

∣

∣

∣

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

∣

∣

∣

px − ipy√
2

−px − ipy√
2

∣

∣

∣

∣

∣

∣

∣

∣

= 1

2

{||px + ipypx − ipy || + ||px − ipypx + ipy ||
}

= 1

2

{||pxpx − ipy || + i||pypx − ipy ||

+||pxpx + ipy || − i||pypx + ipy ||
}

= 1

2

{||pxpx || − i||pxpy || + i||pypx || + ||pypy ||

+||pxpx || + i||pxpy || − i||pypx || + ||pypy ||
}

= ||pxpx || + ||pypy ||.
Hence, we obtain:
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ψ(1S) = 1√
3

{||p0p0|| − ||p+p−|| − ||p−p+||} complex

= 1√
3

{||pxpx || + ||pypy || + ||pzpz||
}

. real

9.6. According to the vector model three equivalent p electrons with l1 = l2 = l3 = 1
can have L = 0,1,2,3. The state with L = 3 is however not allowed by the Pauli exclu-
sion principle. The Pauli allowed states are then

( 6
3

) = 20 with L = 0,1,2. The states are
(Herzberg, 1944):

4S: M = 0 MS = ±3

2
, ±1

2
4 states

2P : M =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1

0

−1

MS = ±1

2

±1

2

±1

2

6 states

2D: M =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2

1

0

−1

−2

MS = ±1

2

±1

2

±1

2

±1

2

±1

2

10 states

The 20 states are given as Slater determinants numbered from 1 to 20. The S quartet with
MS = 1/2 must be a linear combination of functions 8,9,10, the remaining two being the
components of the doublets 2P and 2D.
Proceeding as we did in the previous Problems, we see that:

L̂2ψ8 = 4ψ8 − 2ψ9 − 2ψ10

L̂2ψ9 = 4ψ9 − 2ψ8 − 2ψ9 = −2ψ8 + 2ψ9

L̂2ψ10 = 4ψ10 − 2ψ10 − 2ψ8 = −2ψ8 + 2ψ10.
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The matrix representative of L̂2 over these basis functions will be:

L2 =
( 4 −2 −2

−2 2 0
−2 0 2

)

giving the secular equation:

∣

∣

∣

∣

∣

4 − λ −2 −2
−2 2 − λ 0
−2 0 2 − λ

∣

∣

∣

∣

∣

= 0

with the roots:

λ = 0,2,6 ⇒ L = 0,1,2

as it must be. The eigenvectors are:

ψ(4S) = 1√
3
(ψ8 + ψ9 + ψ10)

ψ(2P) = 1√
2
(ψ9 − ψ10)

ψ(2D) = 1√
6
(2ψ8 − ψ9 − ψ10).

These results can be easily checked so that:

L̂2ψ(4S) = 0(0 + 1)ψ(4S), Ŝ
2
ψ(4S) = 3

2

(

3

2
+ 1

)

ψ(4S)

L̂2ψ(2P) = 1(1 + 1)ψ(2P), Ŝ
2
ψ(2P) = 1

2

(

1

2
+ 1

)

ψ(2P)

L̂2ψ(2D) = 2(2 + 1)ψ(2D), Ŝ
2
ψ(2D) = 1

2

(

1

2
+ 1

)

ψ(2D).

9.7. The four 4S functions out of the np3 configuration of three equivalent electrons. One
of these functions, having L = 0,MS = 1/2, was already found in Problem 9.6. It is:

�2(
4S) = 1√

3
(ψ8 + ψ9 + ψ10).

The third function, having L = 0,MS = −1/2, is given immediately as:

�3(
4S) = 1√

3
(ψ11 + ψ12 + ψ13),
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after spin was systematically changed in the Slater determinants having MS = 1/2. For the
remaining two, we start from the state of maximum spin multiplicity:

ψ7 = ||p+p−p0||

having S = MS = 3/2. Acting with L̂2 we find:

L̂2ψ7 = L̂2||p+p−p0||
= 4||p+p−p0|| + 2||p+p0p−|| + 2||p0p−p+||
= 4||p+p−p0|| − 2||p+p−p0|| − 2||p+p−p0||
= 0(0 + 1)ψ7,

so that:

�1(
4S) = ψ7

is the first function wanted. The like is true for ψ14, which differs from ψ7 for having all
spins −1/2. Hence:

�4(
4S) = ψ14

is the last function of the 4S state. We can note the one-to-one correspondence between the
four 4S functions written as Slater determinants of spin-orbitals and the pure spin states
arising from the N = 3 problem in Chapter 6:

MS

ααα

1√
3
(ααβ + αβα + βαα)

1√
3
(ββα + βαβ + αββ)

βββ

3

2

1

2

−1

2

−3

2

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

S = 3

2

9.8. Construction of the allowed L-states (L = 0,1,2) out of the p2 configuration of two
equivalent electrons by the projection method.
We saw in Section 9.3.1 that the Pauli allowed states for the p2 configuration of two equiv-
alent electrons are:

1S, 3P, 1D

L = 0, 1, 2
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We saw that there are three states with ML = MS = 0:

ψ1 = ||p0p0|| ψ2 = ||p+p−|| ψ3 = ||p−p+||.

In Problem 9.2 we found that:

L̂2ψ1 = 4ψ1 + 2ψ2 + 2ψ3

L̂2ψ2 = 2ψ1 + 2ψ2

L̂2ψ3 = 2ψ1 + 2ψ3.

Wanting the S-state (L = 0), we must annihilate the components having L = 1 and L = 2.
The corresponding projector will be:

Ô0 =
∏

L( �=0)

L̂2 − L(L + 1)

−L(L + 1)
= L̂2 − 1(1 + 1)

−1(1 + 1)
· L̂2 − 2(2 + 1)

−2(2 + 1)

= 1 − 8

12
L̂2 + 1

12
L̂2 · L̂2.

Using the relations above it is easily found:

L̂2(L̂2ψ1) = 4(L̂2ψ1) + 2(L̂2ψ2) + 2(L̂2ψ3)

= 4(4ψ1 + 2ψ2 + 2ψ3) + 2(2ψ1 + 2ψ2) + 2(2ψ1 + 2ψ3)

= 24ψ1 + 12ψ2 + 12ψ3.

Then it follows:

Ô0ψ1 = ψ1 − 8

12
(L̂2ψ1) + 1

12
L̂2(L̂2ψ1)

= ψ1 − 8

12
(4ψ1 + 2ψ2 + 2ψ3) + 1

12
(24ψ1 + 12ψ2 + 12ψ3)

= 1

3
(ψ1 − ψ2 − ψ3) ∝ 1√

3
(ψ1 − ψ2 − ψ3) S-state

which coincides with the result (i) of Problem 9.3 after normalization.
We can proceed similarly for the remaining components. Wanting the P -state (L = 1):

Ô1 =
∏

L( �=1)

L̂2 − L(L + 1)

2 − L(L + 1)
= L̂2

2
· L̂2 − 6

2 − 6
= 6

8
L̂2 − 1

8
L̂2 · L̂2

Ô1ψ1 = 6

8
(L̂2ψ1) − 1

8
L̂2(L̂2ψ1)
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= 6

8
(4ψ1 + 2ψ2 + 2ψ3) − 1

8
(24ψ1 + 12ψ2 + 12ψ3) = 0

L̂2(L̂2ψ2) = 2(L̂2ψ1) + 2(L̂2ψ2)

= 2(4ψ1 + 2ψ2 + 2ψ3) + 2(2ψ1 + 2ψ2) = 12ψ1 + 8ψ2 + 4ψ3

Ô1ψ2 = 6

8
(L̂2ψ2) − 1

8
L̂2(L̂2ψ2)

= 6

8
(2ψ1 + 2ψ2) − 1

8
(12ψ1 + 8ψ2 + 4ψ3)

= 1

2
(ψ2 − ψ3) ∝ 1√

2
(ψ2 − ψ3) P -state

after normalization.
Wanting the D-state (L = 2):

Ô2 =
∏

L( �=2)

L̂2 − L(L + 1)

6 − L(L + 1)
= L̂2

6
· L̂2 − 2

4
= 1

24
L̂2 · L̂2 − 2

24
L̂2.

Then:

Ô2ψ1 = 1

24
L̂2(L̂2ψ1) − 2

24
(L̂2ψ1)

= 1

24
(24ψ1 + 12ψ2 + 12ψ3) − 2

24
(4ψ1 + 2ψ2 + 2ψ3)

= 1

3
(2ψ1 + ψ2 + ψ3) ∝ 1√

6
(2ψ1 + ψ2 + ψ3) D-state

after normalization.
Once the effect of L̂2 on the basis functions is known, use of the projector (62) is the
simplest way of obtaining the correct combination having the desired value of L.

9.9. Construct the 1P state out of the 2p3d configuration of two non-equivalent electrons
by the projection method.
We saw in Section 9.3.1 (ii) what are the possible allowed states arising from the 2p3d con-
figuration. The basis functions are given by (47), while the effect of L̂2 on these functions
is given by (50), which we report below for convenience:

L̂2ψ1 = 6ψ1 + √
12ψ2

L̂2ψ2 = 8ψ2 + √
12(ψ1 + ψ3)

L̂2ψ3 = 6ψ3 + √
12ψ2.
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To build the 1P state out of the 2p3d configuration we must annihilate the D and F com-
ponents. The projector for k = 1 will be:

Ô1 =
∏

L( �=1)

L̂2 − L(L + 1)

2 − L(L + 1)
= L̂2 − 6

2 − 6
· L̂2 − 12

2 − 12
= 1

40
(72 − 18L̂2 + L̂2 · L̂2).

Now:

L̂2(L̂2ψ1) = L̂2(6ψ1 + √
12ψ2) = 6L̂2ψ1 + √

12L̂2ψ2

= 6(6ψ1 + √
12ψ2) + √

12(8ψ2 + √
12ψ1 + √

12ψ3)

= 48ψ1 + 14
√

12ψ2 + 12ψ3.

Acting with Ô1 on the first function, it is hence obtained:

Ô1ψ1 = 72

40
ψ1 − 18

40
(L̂2ψ1) + 1

40
L̂2(L̂2ψ1)

= 72

40
ψ1 − 18

40
(6ψ1 + √

12ψ2) + 1

40
(48ψ1 + 14

√
12ψ2 + 12ψ3)

= ψ1

(

72

40
− 108

40
+ 48

40

)

+ √
12ψ2

(

−18

40
+ 14

40

)

+ ψ3

(

12

40

)

= 3

10
(ψ1 + ψ3) −

√
3

5
ψ2 ∝

√

3

10
(ψ1 + ψ3) −

√

2

5
ψ2 P -state

after normalization. This result coincides with that of equation (57) found previously.
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10.1 INTRODUCTION

We saw in Chapter 7 how increasingly sophisticated wavefunctions can be constructed for
molecules starting from the Hartree–Fock approximation. However, the independent par-

473
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ticle model, of which Hartree–Fock is the most refined expression, treats the molecule as
a sea of uncorrelated electrons moving in the field of nuclei of given symmetry. The one-
configuration approach yields at its best a single determinant wavefunction of delocalized
molecular orbitals, whose energies bear some relation to the negative of the experimen-
tally detectable ionization potentials (the so called Koopmans’ theorem), but are otherwise
the expression of the nature and limitations of the basis set. Molecular orbitals are many-
centre one-electron functions reflecting molecular symmetry, and may change their form
depending on unitary transformations among the basic orbitals. We saw that all physical
properties of the system are embodied in the fundamental invariant ρ, the Fock–Dirac
density matrix, which has semiempirically been extended to include correlation effects in
density functional theory. What is lacking in the MO approach is any direct relation with
the chemical bond and its stereochemistry. Even if molecular geometries can be obtained
theoretically, within the correlation error, by optimizing bond lengths and bond angles,
MO theory in its first approximation fails to describe bond dissociation, even in the sim-
plest case of the 2-electron bond in H2. The conventional chemical idea of a molecule as
made by inner shells, chemical bonds and lone pairs is absent in a MO description of the
molecule, though chemical intuition might help in avoiding brute force calculations. Even
if the chemical bond is difficult to be defined exactly, we can measure experimentally the
length of the O H bonds in H2O and the angle they make in the molecule. It is certainly
more familiar to chemists and molecular physicists the idea that a molecule is made by
atoms that are bound together by some kind of forces. An interesting discussion on the
origin of the chemical bond was given by Kutzelnigg (1990).

The idea of the covalent bond stems directly from the pioneering work by Heitler and
London (1927), where they describe in a correct qualitative way bond dissociation in the
ground state of the H2 molecule. Heitler–London (HL) theory appears as the first step in
a possible perturbative improvement to the wavefunction (see Chapters 11 and 12), where
polarization and correlation corrections can easily be accounted for in second order, yield-
ing results that are almost in perfect agreement with the most advanced theoretical cal-
culations and with experimental results. HL theory can be considered as the elementary
formulation of the so called valence bond (VB) theory in terms of covalent VB structures.

These ideas were next extended by Pauling (1933) to the VB description of the π elec-
tron bonds in aromatic and conjugated hydrocarbons. The “resonance” between Kekulé
structures, a great intuition of an experimental organic chemist1, stems directly from the
quantum mechanical treatment of the interaction between VB structures describing local-
ized π bonds in benzene.

One of the greatest problems of VB theory, the preparation of suitably directed hybrids
which should then be involved in the chemical bond, was solved in recent advances of
the theory (Cooper et al., 1987), allowing for optimization of large basis sets. The other
problem is connected with the non-orthogonality of VB structures, and this still remains a
problem, especially in the evaluation of the matrix elements of the Hamiltonian.

Emphasis in this Chapter will always be on elementary VB methods and on how they
can qualitatively help in studying electronic molecular structure, in a strict correspondence
between quantum mechanical VB structures and chemical formulae.

1Kekulé, Friedrich August von Stradonitz 1829–1896, German organic chemist, Professor at the Universities
of Gand (Belgium), Heidelberg and Bonn.
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The content of this Chapter will be the following. We begin by introducing the Born–
Oppenheimer approximation, which is essential for the existence of potential energy sur-
faces and, hence, for the very concept of the chemical bond. Next, the possibility of form-
ing the 2-electron bond in H2 is examined, showing the failure of the simple MO approach
in describing dissociation. Heitler–London theory is then introduced as the simplest way
of solving the dissociation problem, and the equivalence between MO-CI and full VB
(covalent+ionic) wavefunctions for H2 is fully discussed. The orthogonality catastrophe
occurring in the covalent VB theory of H2 is examined, and the way of overcoming it
suggested in detail.

After this introduction, the general formulation of elementary VB theory is presented,
comparing VB and MO methods, then giving a qualitative VB description of many sim-
ple molecules. Pauling VB theory of π electron systems is presented in Section 5, with
applications to a few important conjugated and aromatic molecules, and its theoretical fail-
ures and possible corrections are discussed. Finally, the problem of hybridization and of
directed valency is briefly discussed, particularly with reference to the H2O molecule, with
a short outline of the most recent advances in ab-initio VB theory. Problems and solved
problems conclude the Chapter as usual.

10.2 THE BORN–OPPENHEIMER APPROXIMATION

It concerns the separation, in molecules, of the slow motion of the nuclei from the fast
motion of electrons. Let the molecular wave equation be:

Ĥ� = W�, (1)

where Ĥ is the molecular Hamiltonian2:

Ĥ =
∑

α

− 1

2Mα

∇2
α +

{

∑

i

−1

2
∇2

i + Ven + Vee

}

+ Vnn

=
∑

α

− 1

2Mα

∇2
α + Ĥe + Vnn (2)

and Ĥe the electronic Hamiltonian:

Ĥe =
∑

i

−1

2
∇2

i + Ven + Vee. (3)

The molecular wavefunction:

� = �(x,q) (4)

is a function of the electronic coordinates x and of the nuclear coordinates q.

2Mα is the mass of nucleus α in units of the electron mass.
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According to Born and Oppenheimer (1927), the heavier nuclei move so slowly that,
in the average, electrons see only the position of nuclei and not their velocity. Therefore,
Born–Oppenheimer assume that the electronic wavefunction �e will depend on the elec-
tron coordinates x, being only parametric in the q which describe the nuclear configura-
tion:

� ≈ �e(x;q)�n(q). (5)

The electronic wavefunction �e is assumed normalized and satisfying the electronic wave
equation:

Ĥe�e = Ee(q)�e (6)

〈�e|�e〉 =
∫

dx�∗
e �e = 1, (7)

where Ee(q) is the electronic energy, which depends on the configuration q of the nuclei.
Considering �e�n as a nuclear variation function with �e = fixed, Longuet-Higgins

(1961) showed that the best nuclear function satisfies the eigenvalue equation (Prob-
lem 10.1):

{

∑

α

− 1

2Mα

∇2
α + Ûe(q)

}

�n(q) = W�n(q), (8)

where Ûe(q) is a potential energy operator for the motion of the nuclei in the electron
distribution of the molecule:

Ûe(q) = Ee(q) + Vnn

−
∑

α

1

2Mα

∫

dx�∗
e ∇2

α�e

−
∑

α

1

Mα

∫

dx�∗
e ∇α�e · ∇α. (9)

The last two terms in (9) describe the coupling between the motion of the nuclei and that
of the electrons and are called vibronic terms. Since they are small in comparison with the
first two terms in (9) (being of the order of 1/Mα ≈ 10−3), they can be overlooked in a
first approximation. In this way, it is possible to define a potential energy surface for the
motion of the nuclei in the field provided by the nuclei themselves and by the molecular
electron charge distribution:

Ue(q) ≈ Ee(q) + Vnn = E(q). (10)
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We shall refer to (10) as to the molecular energy in the Born–Oppenheimer approximation.
In this approximation, the nuclear wave equation is:

{

∑

α

− 1

2Mα

∇2
α + Ue(q)

}

�n(q) = W�n(q), (11)

where Ue(q) acts as the “effective” potential for the nuclei. Equation (11) determines
the nuclear motion (e.g. molecular vibrations) in the Born–Oppenheimer approximation,
which is so familiar in spectroscopy. The adiabatic approximation includes the third term
in (9), which describes the effect on �e of the nuclear Laplacian ∇2

α , while the last term in
(9) gives the effect on �e of the nuclear linear momentum (−i∇α). Both these terms can be
included perturbatively as small corrections, and are responsible for interesting structural
effects in vibrational spectroscopy (Jahn–Teller and Renner effects). According to Jahn
and Teller (1937), a non-linear polyatomic molecule in a degenerate ground state (usually,
with high symmetry) is not stable, and the molecule necessarily distorts into a structure of
lower symmetry where degeneracy is removed. A typical example is the photoionization
of the CH4 molecule:

CH4(Td, 1A1)
hν−→ CH+

4 (Td, 2T2) −→ Jahn–Teller instability

−→ CH+
4 (D4h,

2A2u). (12)

The CH+
4 ion rearranges its geometry, through a tetragonal distortion, in a square planar

configuration where the degeneracy of the 2T2 electronic state is removed. Theoretical
calculations of the Jahn–Teller distortion in CH+

4 were done by Dixon (1971). The Jahn–
Teller effect in XH+

4 ions (X = C, Si, Ge, Sn) was observed experimentally through the
splitting of the t2 vibrational band in photoelectron spectra (Potts and Price, 1972).

Similar is the Renner effect (Renner, 1934), where the degenerate electronic states of
a linear triatomic molecule are unstable, so that the molecule bends until degeneracy is
removed.

10.3 THE CHEMICAL BOND IN H2

We shall now examine the formation of the 2-electron chemical bond in the H2 molecule
in terms of elementary MO and VB theories using a minimal basis set of AOs centred at
the two nuclei A and B. With reference to Figure 10.1, the molecular Hamiltonian for H2
in the Born–Oppenheimer approximation will be:

Ĥ = Ĥe + 1

R
= ĥ1 + ĥ2 + 1

r12
+ 1

R
, (13)

where Ĥe is the electronic Hamiltonian,

ĥ = −1

2
∇2 − 1

rA
− 1

rB
(14)
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Figure 10.1 Reference system for the H2 molecule.

Figure 10.2 The overlap between a(r) and b(r) is the dashed area.

the 1-electron molecular Hamiltonian, and atomic units (a.u.) are used throughout.
In the first approximation, the two AOs are spherical 1s orbitals a(r1) and b(r2) centred

at A and B, respectively, having an overlap S (the dashed area of Figure 10.2):

a(r1) = 1√
π

exp(−rA1) (15)

b(r2) = 1√
π

exp(−rB2) (16)

S = 〈a|b〉 =
∫

dra(r)b(r) = S(R). (17)

The orbitals (15) and (16) are normalized 1s STOs with orbital exponent c0 = 1.

10.3.1 Failure of the MO Theory for Ground State H2

The one-configuration MO description of ground state H2 is given by the 2-electron (nor-
malized) singlet Slater determinant of doubly occupied σg MOs:
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Figure 10.3 MO diagram of ground state H2.

�
(

MO, 1�+
g

) = ‖σgσg‖ = σg(r1)σg(r2)
1√
2
[α(s1)β(s2) − β(s1)α(s2)] (18)

where σg is the (normalized) bonding MO:

σg = a + b√
2 + 2S

. (19)

The corresponding (normalized) antibonding σu MO:

σu = b − a√
2 − 2S

(20)

is empty in the ground state (Figure 10.3).
We observe from Figure 10.3 that the splitting of the doubly degenerate atomic level un-

der the interaction is non-symmetric for S 
= 0, the antibonding level being more repulsive
and the bonding less attractive than the symmetric case occurring for S = 0. We further
notice that the LCAO coefficients are in this case completely determined by symmetry.
The MO energy for the ground state will be:

E
(

MO, 1�+
g

) = 〈

�
(

MO, 1�+
g

)∣

∣Ĥ
∣

∣�
(

MO, 1�+
g

)〉

=
〈

σgσg

∣

∣

∣

∣

ĥ1 + ĥ2 + 1

r12
+ 1

R

∣

∣

∣

∣

σgσg

〉

= 2hσgσg + (

σ 2
g |σ 2

g

)+ 1

R
, (21)

where:

2hσgσg = haa + hbb + hba + hab

1 + S

= 2EH + (a2|VB) + (b2|VA) + (ab|VB) + (ba|VA)

1 + S
(22)
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(σ 2
g |σ 2

g ) =
1
4 [(a2|a2) + (b2|b2)] + 1

2 (a2|b2) + (ab|ab) + (a2|ba) + (b2|ab)

(1 + S)2
.

(23)

We have used for the 2-electron integrals the charge density notation:

(

1
ab | 2

ab

)

=
∫ ∫

dr1dr2
{a(r2)b

∗(r2)}
r12

{

a(r1)b
∗(r1)

}

. (24)

The different terms in equations (22) and (23) have the following physical meaning:

(a2|VB) = (

a2| − r−1
B

)

(25)

is the attraction by the B nucleus of electron 1 distributed with the 1-centre density a2(r1);

(ab|VB) = (

ab| − r−1
B

)

(26)

the attraction by the B nucleus of electron 1 distributed with the 2-centre density
a(r1)b(r1);

(a2|a2) (27)

the 1-centre electrostatic repulsion between the densities a2(r1) and a2(r2) both on A;

(a2|b2) (28)

the 2-centre Coulomb integral, describing the electrostatic repulsion between the 1-centre
densities a2(r1) on A and b2(r2) on B;

(ab|ab) (29)

the 2-centre exchange integral, describing the electrostatic interaction between the 2-centre
densities a(r1)b(r1) and a(r2)b(r2) shared between A and B;

(a2|ab) (30)

the 2-centre ionic (or hybrid) integral, describing the electrostatic repulsion between den-
sities a2(r1) and a(r2)b(r2).

The 2-centre integrals are evaluated in spheroidal coordinates μ = rA+rB
R

, ν = rA−rB
R

,ϕ

in Chapter 13. We give here, for completeness, their analytic expression as a function of
the internuclear distance R:

S = 〈a|b〉 = 〈b|a〉 = (ab|1) = exp(−R)

(

1 + R + R2

3

)

= S(R) (31)
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(a2|r−1
B ) = 1

R
− exp(−2R)

R
(1 + R) (32)

(ab|r−1
B ) = exp(−R)(1 + R) (33)

(a2|b2) = 1

R
− exp(−2R)

R

(

1 + 11

8
R + 3

4
R2 + 1

6
R3

)

(34)

(a2|ab) = exp(−R)

R

(

5

16
+ 1

8
R + R2

)

− exp(−3R)

R

(

5

16
+ 1

8
R

)

(35)

(ab|ab) = 1

5

{

exp(−2R)

(

25

8
− 23

4
R − 3R2 − 1

3
R3

)

+ 6

R
[S2(γ + lnR) + S′2Ei(−4R) − 2SS′Ei(−2R)]

}

, (36)

where:

S′ = S(−R) = exp(−R)

(

1 − R + R2

3

)

(37)

γ = 0.577 215 664 9 · · ·
is the Euler constant, and

Ei(−x) = −
∫ ∞

x

dt
e−t

t
= −E1(x) (38)

the exponential integral function (Abramowitz and Stegun, 1965) defined for x > 0.
A few values to 7 significant figures of the 2-electron 2-centre integrals (34)–(36) are

given in Table 10.1 as a function of R. The remaining 1-electron 2-centre integrals (31)–
(33) were already given for H+

2 in Table 5.10 of Chapter 5.
The interaction energy is obtained by subtracting to the molecular energy (21) the energy

of the two ground state H atoms:

�E
(1�+

g

) = E
(1�+

g

)− 2EH = �Ecb + �Eexch-ov(1�+
g

)

, (39)

where:

�Ecb = (

a2
∣

∣VB

)+ (

b2
∣

∣VA

)+ (a2|b2) + 1

R
(40)

is the semiclassical Coulombic interaction, and

�Eexch-ov(1�+
g

) = (ab − Sa2|VB) + (ba − Sb2|VA)

1 + S
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+
{

1

4

[

(a2|a2) + (b2|b2)
]−

(

1

2
+ 2S + S2

)

(a2|b2) + (ab|ab)

+ (a2|ab) + (b2|ba)

}

/(1 + S)2 (41)

the quantum mechanical component describing the exchange-overlap interaction between
the charge distributions of the two H atoms, with its 1-electron (upper part) and 2-electron
(lower part) contributions. The exchange-overlap (or penetration) component is a purely
electronic quantum mechanical term arising from the Pauli principle: it depends on the
nature of the spin coupling and is seen to give the largest contribution to the bond energy
(the molecular energy at its minimum, in this case the energy of the chemical bond in
the MO approximation). The MO description of this term is however affected by a large
correlation error, which becomes evident at large distances, and is such that the simple MO
wavefunction (18) cannot describe correctly the dissociation of H2(

1�+
g ) into two neutral

H atoms in their ground state. Expression (39) for the MO interaction energy gives in fact:

lim
R→∞�E

(

MO, 1�+
g

) = 1

2
(a2|a2) = 5

16
Eh (42)

corresponding to the erroneous dissociation:

H2
(1�+

g

) −→ H(2S) + 1

2
H−(1S). (43)

In equation (42), (a2|a2) is the 1-centre 2-electron repulsion integral between the 1-centre
charge distributions a2(r1) and a2(r2) (both electrons on atom A) arising from the 2-
electron part of �Eexch-ov(1�+

g ). We shall see later in this Chapter that this large correlation

Table 10.1.

Numerical values (Eh) of the 2-electron 2-centre integrals occurring in the H2 calculation as a function of R

(c0 = 1)

R/a0 (a2|b2) (a2|ab) (ab|ab)

1.0 5.545 214 × 10−1 5.070 449 × 10−1 4.366 526 × 10−1

1.2 5.295 794 × 10−1 4.669 873 × 10−1 3.789 989 × 10−1

1.4 5.035 210 × 10−1 4.258 827 × 10−1 3.232 912 × 10−1

1.6 4.771 690 × 10−1 3.850 683 × 10−1 2.715 583 × 10−1

1.8 4.511 638 × 10−1 3.455 494 × 10−1 2.250 001 × 10−1

2.0 4.259 743 × 10−1 3.080 365 × 10−1 1.841 565 × 10−1

3.0 3.198 035 × 10−1 1.607 424 × 10−1 5.850 796 × 10−2

4.0 2.475 539 × 10−1 7.698 167 × 10−2 1.562 720 × 10−2

5.0 1.995 691 × 10−1 3.495 304 × 10−2 3.717 029 × 10−3

6.0 1.665 926 × 10−1 1.531 146 × 10−2 8.140 232 × 10−4

8.0 1.249 979 × 10−1 2.738 738 × 10−3 3.289 596 × 10−5
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Table 10.2.

Numerical results (Eh) for MO calculations on ground state H2(1�+
g )

c0 = 1,Re = 1.6a0
a c0 = 1.1695,Re = 1.4a0

b HF, Re = 1.4a0
c

2hσσ −1 − 1.277 02 −1 − 1.485 85
(σ 2|σ 2) 0.552 94 0.643 78
�Eh −0.724 08 −0.842 07 −0.847 47
1
R

0.625 00 0.714 29 0.714 29
�E −0.099 08 −0.127 78 −0.133 18

aHellmann (1937). bCoulson (1937). cCoulson (1938).

error, which is typical of the single determinant description of doubly occupied MOs, can
be removed by configuration interaction (CI) between the configuration σ 2

g and the doubly

excited one σ 2
u .

In Table 10.2 are collected some numerical results for MO calculations on the ground
state 1�+

g of the H2 molecule in the bond region.
The accurate theoretical value for the bond energy at Re = 1.4a0 from Kołos and Wol-

niewicz (1965) is �E(1�+
g ) = −0.174 474Eh, as seen in Chapter 7.

The first column of Table 10.2 gives the MO results corresponding to the MO wave-
function (18), a calculation first done by Hellmann (1937). It can be seen that the resulting
bond is too long (+14%) and the bond energy too small, no more than 57% of the correct
one. So, the MO description in terms of undistorted 1s AOs (c0 = 1) is largely insufficient
even in the bond region.

The second column gives the MO results by Coulson (1937a), where the orbital ex-
ponent c0 was variationally optimized at the different values at R. At the correct bond
distance, Re = 1.4a0, the AOs in the molecule are sensibly contracted (c0 ≈ 1.17, spheri-
cal polarization), the bond energy being improved to about 73% of the true. Coulson’s best
variational values are c0 = 1.197,Re = 1.38a0, �E = −0.128 184Eh, respectively 98.6%
and 73.4% of the correct values.

The third column gives the nearly HF values obtained by Coulson (1938b) using a 5-term
expansion of the MOs in spheroidal coordinates. Coulson’s calculation was later improved
by Goodisman (1963), who used nine terms for each MO expansion, getting Re = 1.4a0
and �E = −0.133 40Eh. This value is only �E = 0.000 23Eh above the correct HF/2D
one given by Pyykkö and coworkers (Sundholm et al., 1985), �E = −0.133 63Eh.

Table 10.3 gives the dependence on the internuclear distance R of the interaction energy
and its Coulombic and exchange-overlap components (10−3Eh) for the 1�+

g ground state
of H2 according to the MO wavefunction of equation (18) with c0 = 1 in the 1s AOs (15)
and (16).

Introducing the values for the 2-centre integrals, it can be seen that the Coulombic inter-
action energy has the analytic expression:

�Ecb = exp(−2R)

R

(

1 + 5

8
R − 3

4
R2 − 1

6
R3

)

, (44)
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Table 10.3.

MO interaction energy and its components (10−3Eh) for ground state H2 (c0 = 1)

R/a0 �Ecb �Eexch-ov �E(1�+
g )

1.0 95.863 −81.761 14.102
1.2 28.879 −88.267 −59.388
1.4 −2.273 −88.670 −90.943
1.6 −15.354 −83.726 −99.079
1.8 −19.385 −74.410 −93.794
2.0 −19.079 −61.725 −80.803
3.0 −6.920 24.162 17.243
4.0 −1.6074 106.25 104.64
5.0 −0.3220 166.00 165.68
6.0 −0.0596 204.92 204.86
8.0 −0.001 79 244.425 244.23

which has a minimum of �Ecb = −19.6106 × 10−3Eh at Re = 1.8725a0, that can be
found analytically by solving the quartic equation:

2R4 + 7R3 − 12R2 − 12R − 6 = 0. (45)

In the limit of the united atom, He(1S), B → A, b → a, S → 1, and the 2-centre inte-
grals tend to their 1-centre counterpart (Section 7.3 of Chapter 13). The exchange-overlap
component of the interaction energy tends to zero, so that the electronic energy becomes:

lim
R→0

Ee(MO, 1�+
g ) = 2EH + lim

R→0
�eE

cb + lim
R→0

�eE
exch-ov

= 2EH + [

2
(

a2
∣

∣r−1
A

)+ (a2|a2)
]+ 1

4
(a2|a2)

(

2

4
− 7

2
+ 3

)

= −1 − 2 + 5

8
= −3 + 5

8
= −19

8
. (46)

On the other hand, for the united atom He(1S):

Ee(He, 1S) = −Z2 + 5

8
Z = −4 + 5

4
= −22

8
(47)

so that Ee(R → 0) is in error by − 3
8 = −0.375Eh. The variational optimization of c0

(c0 = 1.6875) removes this considerable error.

10.3.2 The Heitler–London Theory for H2

The Heitler–London (HL) theory for H2 is the simplest example of valence bond (VB)
theory applied to the covalent part of the wavefunction for H2. In VB theory, derived from
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the original work by Heitler and London (1927), the formation of a covalent bond between
two atoms is possible if the atoms have, in their valence shell, orbitals containing unpaired
electrons: the pairing to a singlet coupled state of two electrons with opposite spin yields
the formation of a chemical bond between the two atoms. A basic requirement, which
must always be satisfied, is that the resultant wavefunction must satisfy Pauli’s exclusion
principle or, in other words, it must be antisymmetric with respect to electron interchange.

For the 1�+
g ground state of H2 in the minimum basis set (ab) of 1s AOs, these re-

quirements are met by the HL wavefunction written as linear combination of the two Slater
determinants:

�
(

HL, 1�+
g

) = N{‖ab‖ − ‖ab‖}

= a(r1)b(r2) + b(r1)a(r2)√
2 + 2S2

1√
2
[α(s1)β(s2) − β(s1)α(s2)]. (48)

The HL energy for the ground state will be:

E
(

HL, 1�+
g

) = 〈

�
(

HL, 1�+
g

)∣

∣Ĥ
∣

∣�
(

HL, 1�+
g

)〉

=
〈

ab + ba√
2 + 2S2

∣

∣

∣

∣

ĥ1 + ĥ2 + 1

r12
+ 1

R

∣

∣

∣

∣

ab + ba√
2 + 2S2

〉

= haa + hbb + S(hba + hab) + (a2|b2) + (ab|ab)

1 + S2
+ 1

R
. (49)

But:

haa = EA + (

a2
∣

∣VB

)

, hbb = EB + (

b2
∣

∣VA

)

hba = EAS + (ab|VB), hab = EBS + (ba|VA)
(50)

so that:

E
(

HL, 1�+
g

) = EA + EB

+ {(

a2
∣

∣VB

)+ (

b2
∣

∣VA

)+ S[(ab|VB) + (ba|VA)] + (a2|b2)

+ (ab|ab)
}/

(1 + S2) + 1

R
, (51)

where the first term is the sum of the energies of the individual ground state H atoms, and
the second the interatomic energy for the ground state. All terms in (51) have the same
meaning as for the MO expression.

The HL interaction energy is:

�E
(

HL, 1�+
g

) = E
(

HL, 1�+
g

)− 2EH = �Ecb + �Eexch-ov(1�+
g

)

, (52)
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where �Ecb is the same as that for the MO expression (40), but where �Eexch-ov now
simplifies to:

�Eexch-ov(1�+
g

) = S[(ab|VB) + (ba|VA)] + (ab|ab) − �Ecb
e S2

1 + S2

= S
(ab − Sa2|VB) + (ba − Sb2|VA)

1 + S2
+ (ab|ab) − S2(a2|b2)

1 + S2

= �Eexch-ov
1

(1�+
g

)+ �Eexch-ov
2

(1�+
g

)

. (53)

The exchange-overlap component (53) differs from the corresponding MO counterpart (41)
in two respects: (i) the 1-electron part, �Eexch-ov

1 (1�+
g ), differs from its MO counterpart

by the factor S(1 + S)(1 + S2)−1, which shows the greater importance of overlap in the
HL theory (generally, in VB theory); and (ii) the 2-electron part, �Eexch-ov

2 (1�+
g ), is now

remarkably simpler than its MO counterpart, and is characterized by the disappearance of
the ionic and the atomic 2-electron integrals. At variance with the MO wavefunction (18),
the HL wavefunction (48) allows now for a correct dissociation of the H2 molecule into
neutral ground state atoms:

lim
R→∞�E

(

HL, 1�+
g

) = 0 (54)

H2
(1�+

g

) −→ 2H(2S). (55)

In the 1-electron part, �Eexch-ov
1 (1�+

g ), appears, as already seen in the MO result (41),

the exchange-overlap density a(r1)b(r1) − Sa2(r1), which has the interesting property of
giving a zero contribution to the electronic charge:

∫

dr1
[

a(r1)b(r1) − Sa2(r1)
] = S − S = 0, (56)

even if contributing in a relevant way to the exchange-overlap energy and, therefore, to the
bond energy.

The HL function for the excited triplet state, 3�+
u , is given by three functions having the

same spatial part and differing for the spin part:

�
(

HL, 3�+
u

) = N

‖ab‖ S = 1, MS = 1

{‖ab‖ + ‖ab‖} 0

‖ab‖ −1

= a(r1)b(r2) − b(r1)a(r2)√
2 − 2S2

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

α(s1)α(s2)

1√
2

[

α(s1)β(s2) + β(s1)α(s2)
]

β(s1)β(s2).

(57)
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Figure 10.4 Schematic R-dependence of the HL interaction energies for H2 for (i) left, singlet ground state,
and (ii) right, excited triplet state.

The exchange-overlap component of the interaction energy for the triplet is different
from that of the singlet ground state, and is given by:

�Eexch-ov(3�+
u

) = −S[(ab|VB) + (ba|VA)] + (ab|ab) − �Ecb
e S2

1 − S2
> 0 (58)

so that it is repulsive for any R. Since �Eexch-ov(3�+
u ) is larger than �Ecb, the HL triplet

interaction energy is always repulsive, describing a scattering (non bonded) state. The qual-
itative behaviour of the two states for H2 is sketched in Figure 10.4.

Table 10.4 gives the dependence on the internuclear distance R of the interaction energy
and its exchange-overlap component (10−3Eh) for the 1�+

g and 3�+
u states of H2 accord-

ing to the HL wavefunctions in the minimum basis with c0 = 1. The �Ecb component is
the same as that for the MO wavefunction. In parenthesis are given the accurate theoretical
values of Kołos and Wolniewicz (1965) obtained using an 80-term wavefunction expanded
in spheroidal coordinates of the two electrons and containing explicitly r12 and the appro-
priate dependence on the hyperbolic functions of the ν-variables (see Section 7.10.3 of
Chapter 7).

It can be seen from Table 10.4 that the HL results for both states of H2 are only in qual-
itative agreement with the accurate theoretical results of Kołos and Wolniewicz (KW). For
the 1�+

g ground state, the HL value at the correct Re = 1.4a0 is only 60.5% of the KW

value, while at Re = 8a0 the HL result is only 33% of KW. For the 3�+
u excited state,

all the HL values severely overestimate the accurate KW results. This is not surprising,
however, since we have already said that the HL wavefunction can be considered only as
the first approximation describing the interaction between undistorted H atoms. Account-
ing for polarization and dispersion (correlation) effects, what can be done in second order
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Table 10.4.

HL interaction energies and their exchange-overlap components (10−3Eh) for 1�+
g and 3�+

u states of H2 (c0 =
1) compared with accurate resultsa

R/a0 �Eexch-ov �E

1�+
g

3�+
u

1�+
g

3�+
u

1.0 −92.286 609.045 3.576 (−124.54)a 704.91 (378.48)a

1.2 −100.865 478.110 −71.99 (−164.93) 506.99 (281.04)

1.4 −103.201 373.392 −105.47 (−174.47) 371.12 (215.85)

1.6 −100.356 290.217 −115.71 (−168.58) 274.86 (168.28)

1.8 −93.664 224.566 −113.05 (−155.07) 205.18 (131.71)

2.0 −84.473 173.037 −103.55 (−138.13) 153.96 (102.94)

3.0 −34.754 44.364 −41.674 (−57.31) 37.44 (27.99)

4.0 −9.678 10.397 −11.285 (−16.37) 8.790 (6.622)

5.0 −2.203 2.244 −2.525 (−3.763) 1.922 (1.315)

6.0 −0.4495 0.452 −0.5092 (−0.815) 0.392 (0.1875)

8.0 −0.0156 0.0156 −0.0174 (−0.053) 0.0138 (−0.0196)

aKołos and Wolniewicz (1965).

of Rayleigh–Schroedinger perturbation theory (Chapter 12), greatly improves agreement
with the accurate KW results, as shown by us elsewhere (Magnasco and Costa, 2005).

The results of Tables 10.3 and 10.4 for the 1�+
g ground state of H2 are plotted against

R in Figure 10.5. The qualitatively correct behaviour of the HL calculation during disso-
ciation is evident from Figure 10.5, as is the incorrect MO behaviour in the same region
of internuclear distance, with its exceedingly large correlation error, which asymptotically
reaches the value of 312.5 × 10−3Eh (horizontal dashed line in Figure 10.5).

At variance with the 1�+
g ground state, Problem 10.2 shows the complete equivalence

between MO and HL wavefunctions for the 3�+
u excited state.

10.3.3 Equivalence Between MO-CI and Full VB for Ground State H2 and
Improvements in the Wavefunction

In the minimal basis set (ab), it is possible to improve the HL covalent wavefunction for
ground state H2 by the variational mixing with the ionic wavefunction having the same
symmetry:

�
(

ION, 1�+
g

) = N{‖aa‖ + ‖bb‖}

= a(r1)a(r2) + b(r1)b(r2)√
2 + 2S2

1√
2
[α(s1)β(s2) − β(s1)α(s2)] (59)
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Figure 10.5 Plot vs R of MO, HL and KW interaction energies for the 1�+
g ground state of H2.

which describes the two equivalent ionic VB structures H−H+ and H+H−. The complete
VB wavefunction will be in general:

�
(

VB, 1�+
g

) = c1�
(

HL, 1�+
g

)+ c2�
(

ION, 1�+
g

)

, (60)

where c1 and c2 are variational coefficients to be determined by the Ritz method. At R =
1.6a0, c1/c2 ≈ 0.138, and the covalent (HL) structure gives the main contribution to the
energy of the chemical bond.

It is possible to obviate the MO error by means of configuration interaction (CI). The
possible electron configurations for H2 are given in Figure 10.6.

We can mix only functions having the same symmetry, so that the interconfigurational
wavefunction for ground state H2 will be:

�
(

MO − CI, 1�+
g

) = c1�
(

σ 2
g , 1�+

g

)+ c2�
(

σ 2
u , 1�+

g

)

. (61)

This function describes correctly the dissociation of the H2 molecule, and is completely
equivalent to the full VB (HL + ION) function (60), provided all variational parameters
are completely optimized (Problem 10.3):

�
(

MO − CI, 1�+
g

)
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= N

{

(ab + ba) + (1 − S) + λ(1 + S)

(1 − S) − λ(1 + S)
(aa + bb)

}

1√
2
(αβ − βα). (62)

For R large, λ = c2/c1 → −1 (see Figure 10.7), S ≈ 0 and �(MO − CI, 1�+
g ) →

�(HL, 1�+
g ), the covalent HL structure which dissociates correctly. For intermediate val-

ues of R, the interconfigurational function �(MO − CI) reduces the weight of the ionic
structures, which is 1 in the MO wavefunction.

Further improvements can be found by optimizing the molecular energy with respect to
the non-linear parameter c0, the orbital exponent of the 1s AOs (c0 = 1 in the original HL
theory). In such a way, it is possible to account for part of the spherical distortion of the
AOs during the formation of the bond. The HL wavefunction with optimized c0 satisfies
the virial theorem:

2〈T 〉 = −〈V 〉 − R
dE

dR
, (63)

guaranteeing the correct partition of the expectation value of the molecular energy into its
kinetic 〈T 〉 and potential energy 〈V 〉 components, which is not true for the original HL
wavefunction with c0 = 1. The dependence of c0 on R is given in Figure 10.8.

The effect of improving the quality of the basic AOs (ab) on the bond energy �E at
Re = 1.4a0 for the 1�+

g ground state of H2, and the residual error with respect to the
accurate value (Kołos and Wolniewicz, 1965), is shown in Table 10.5 for the covalent HL
and in Table 10.6 for the full VB (HL + ION) wavefunctions.

We can see from Table 10.5 that admitting part of the spherical distortion of the H or-
bitals (second row) reduces the error by 33.58mEh (1mEh = 10−3Eh), while the inclusion
of some pσ polarization (third row) improves the result by a further 8.69mEh. The best
that can be done at the HL level with two non-linear parameters is the Inui result (fourth
row of Table 10.5), where the error is reduced by another 1.41mEh.

The full VB results (Table 10.6) show a sensible improvement of 8.84mEh for the Wein-
baum wavefunction (second row), what means that admitting ionic structures partly ac-
counts for higher polarizations. It is worth noting that the error with the second function of
Table 10.6 is quite close to that of the third function of Table 10.5, where partial dipole po-
larization of the orbitals is admitted. The best bond energy value obtained by admitting the
ionic structures in the two-parameter Inui wavefunction is however still 21.14mEh above
the correct value.

Figure 10.6 Ground state and excited electron configurations in H2.
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Figure 10.7 Plot vs R of interaction energies and mixing parameter λ (right scale) for ground and excited state
of H2.

For a further comparison we give in Table 10.7 the SDCI bond energy results for ground
state H2 at Re = 1.4a0, taken from Wright and Barclay (1987), who gradually added GTO
polarization functions centred at the two nuclei to a starting (9s) → [4s] contracted GTO
basis on each H atom. It can be seen that the SDCI value with only spherical functions
is not far from the full VB Inui value (fourth row of Table 10.6), while convergence to-
wards the correct value when including polarization functions with l = 1,2,3 is rather
slow. Nonetheless, the final 4s3p2d1f result is within 0.5mEh of the accurate KW result,
and even better than the best 13-term result including r12 quoted in the classical paper by
James and Coolidge (1933), �E = −173.45 × 10−3Eh. In this last case, however, some
inaccuracy is expected in the integral values.

We end this Section by quoting the interesting work by Coulson and Fischer (1949).
They introduced the semilocalized AOs:

a′ = a + λb√
1 + λ2 + 2λS

, b′ = b + λa√
1 + λ2 + 2λS

, (64)
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Figure 10.8 Dependence on R of optimized c0 for ground state H2.

that are normalized:

〈a′|a′〉 = 〈b′|b′〉 = 1 (65)

and have a non-orthogonality S′:

S′ = 〈a′|b′〉 = 〈b′|a′〉 = Sλ2 + 2λ + S

1 + λ2 + 2λS
. (66)

If λ < 1, a′ is localized near nucleus A, and b′ near nucleus B. We note that the Coulson–
Fischer semilocalized AOs are 2-centre AOs containing a single linear variational parame-
ter, while Inui AOs (Section 10.3 of Chapter 7) are 2-centre Guillemin–Zener AOs con-
taining two non-linear variational parameters.

If we construct a HL symmetrical space function with Coulson–Fischer AOs (64), then
the suitably normalized space part (omitting spin for short) will be:

� ′ = a′(r1)b
′(r2) + b′(r1)a

′(r2)√
2 + 2S′2 , (67)
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Table 10.5.

Effect of improving the basic AOs in the covalent HL wavefunction on the bond energy �E at Re = 1.4a0 for
ground state H2, and residual error with respect to the accurate value

a Basic AO �E/10−3Eh Error/10−3Eh

1. 1sA ∝ exp(−rA) H 1sa −105.47 69.00
(c0 = 1)

2. 1sA ∝ exp(−c0rA) STO 1sb −139.05 35.42
(c0 = 1.1695)

3. 1sA + λ′2pσA Dipole polarized −147.74 26.73
(c0 = 1.19, cp = 2.38, AO (sp hybrid)c

λ′ = 0.105)

4. exp(−αrA − βrB) 2-centre GZd AOe −149.15 25.32
(α = 1.0889, β = 0.1287)

5. Accurate f −174.47 0

aHeitler and London (1927). bWang (1928). cRosen (1931). d Guillemin and Zener (GZ) (1929). eInui (1938).
f Kołos and Wolniewicz (1965).

Table 10.6.

Effect of improving the basic AOs in the full VB (HL + ION)a wavefunction on the bond energy �E at Re =
1.4a0 for ground state H2, and residual error with respect to the accurate value

a Basic AO �E/10−3Eh Error/10−3Eh

1. 1sA ∝ exp(−rA) H 1sb −106.56 67.91
(c0 = 1, λ = 0.1174a )

2. 1sA ∝ exp(−c0rA) STO 1sc −147.89 26.58
(c0 = 1.193, λ = 0.2564)

3. 1sA + λ′2pσA Dipole polarized −151.49 22.98
(c0 = 1.19, cp = 2.38, AO (sp hybrid)d

λ′ = 0.07, λ = 0.1754)
4. exp(−αrA − βrB) 2-centre GZ AOe −153.33 21.14

(α = 1.0889, β = 0.1287,
λ ≈ 1)

5. Accurate f −174.47 0

aλ is the relative weight ION/COV. bFigari (1985). cFigari (1985). d Weinbaum (1933). eOttonelli and Mag-
nasco (1995). f Kołos and Wolniewicz (1965).

where S′ is given by (66). Then:

(i) λ = 0 gives the ordinary HL wavefunction:

� ′(λ = 0) = a(r1)b(r2) + b(r1)a(r2)√
2 + 2S2

, (68)

where no ionic structures are present;
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Table 10.7.

SDCI bond energya of ground state H2 at Re = 1.4a0, and residual error with respect to the accurate valueb for
various GTO basis sets

GTO basis set Number of functions �E/10−3Eh Error/10−3Eh

4s 8 −154.32 20.15
4s3p 26 −171.83 2.64
4s3p2d 50 −173.75 0.72
4s3p2d1f 70 −173.97 0.50
Accurateb 80 −174.47 0

aWright and Barclay (1987). bKołos and Wolniewicz (1965).

(ii) λ = 1 gives the ordinary MO wavefunction:

� ′(λ = 1) = [a(r1) + b(r1)][b(r2) + a(r2)]
2 + 2S

, (69)

where the ionic structures have now the same weight of the covalent structure, which
is the origin of the correlation error;

(iii) The variational optimization of λ at any given R gives the correct mixing between
covalent and ionic structures, the same result that can be obtained by optimizing the
linear parameter in (60). So, optimization of λ removes the correlation error and im-
proves upon the HL result.

It can be shown (Magnasco and Peverati, 2004) that full optimization of c0 and λ in the
Heitler–London–Coulson–Fischer wavefunction (67) at Re = 1.4a0 (c0 = 1.2, λ = 0.135,
S = 0.6744) enhances interorbital overlap by over 18%, yielding a bond energy �E =
−0.1478Eh which is practically coincident with that resulting from the Full-VB calcu-
lation with the original basis set. This is better than Rosen dipole polarized result of Ta-
ble 10.5 and within 85% of the accurate bond energy of Kołos and Wolniewicz (1965). The
resulting Coulson–Fischer orbital:

a′ = 0.912 81sA + 0.123 11sB

is plotted in the 3-dimensional graph of Figure 10.9 with its section in the zx-plane.
The cusp at nucleus A (origin of the coordinate system) and the small cusp at nucleus
B due to delocalization are apparent from Figure 10.9. The exceptional performance of the
Coulson–Fischer orbitals will be further discussed later in Section 10.7.

10.3.4 The Orthogonality Catastrophe in the Covalent VB Theory for Ground State
H2

In 1951 Slater pointed out that the orthogonal atomic orbitals (OAOs), first introduced by
Wannier (1937) in solid state physics and next by Löwdin (1950) in molecular problems,
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(a)

(b)

Figure 10.9 Coulson–Fischer optimized AO for ground state H2 at Re = 1.4a0 (a) and its section in the
zx-plane (b).

do not give a simple way of overcoming the non-orthogonality problem in the Heitler–
London method. A HL calculation of the H2 molecule ground state using these OAOs
shows that no bond can be formed between H atoms since the molecular energy has no
energy minimum. We saw before (first column of Table 10.4) that the HL exchange-overlap
component �Eexch-ov of the bond energy is always attractive for the 1�+

g ground state of
H2, this being due to the 1-electron part of this quantum component. If we set S = 0 in
equation (53), we see that:

�Eexch-ov(1�+
g , S = 0

) = (ab|ab), (70)
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the 2-electron exchange integral, which is always positive. At the expected bond length
of Re = 1.4a0, �Ecb = −2.273 × 10−3Eh (Table 10.3), (ab|ab) = 323.3 × 10−3Eh (Ta-
ble 10.1), so that �E(1�+

g ) ≈ 321 × 10−3Eh, and we have a strong repulsion between the
H atoms. This orthogonality catastrophe can however be overcome by admitting with a
substantial weight the ionic structures in a complete VB calculation, as we shall see be-
low. Let us now, in fact, investigate in greater detail the mixing of covalent (HL) and ionic
VB structures for ground state H2, starting either from ordinary (non-orthogonal) AOs or
from Löwdin OAOs. For a correct comparison, it will be convenient to use values of the
molecular integrals correct to 9 significant figures.

(i) Normalized non-orthogonal basis.
For c0 = 1, R = 1.4a0, the 1-electron 2-centre integrals can be taken from Table 10.10

of Chapter 5 and the 2-electron ones from Table 10.1 of this Chapter, but are given below
with 9-figure accuracy. We then have:

S = 0.752 942 730

haa = hbb = −1.110 039 890, hba = hab = −0.968 304 078

(a2|b2) = 0.503 520 926, (ab|ab) = 0.323 291 175,

(a2|ab) = 0.425 882 670.

(71)

Let (space part only):

ψ1(HL) = ab + ba√
2 + 2S2

, ψ2(ION) = aa + bb√
2 + 2S2

, (72)

be the covalent (HL) and ionic VB wavefunctions for H2, respectively. They are strongly
non-orthogonal:

S12 = 〈ψ1|ψ2〉 = 2S

1 + S2
= 0.961 046 392, (73)

showing that there is a strong linear dependence between them (at R = 0, they become
identical). The matrix elements (Eh) of the molecular Hamiltonian Ĥ are:

H11 = 〈ψ1|Ĥ |ψ1〉
= (1 + S2)−1[haa + hbb + S(hba + hab)]

+ (1 + S2)−1[(a2|b2) + (ab|ab)] + 1

R

= −0.347 425 747 + 0.527 665 403 + 0.714 285 714

= −1.105 473 880, (74)
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which is the result of the third column of Table 10.4 when truncated to the fifth decimal
place.

H22 = 〈ψ2|Ĥ |ψ2〉
= (1 + S2)−1[haa + hbb + S(hba + hab)]

+ (1 + S2)−1 1

2
[(a2|a2) + (b2|b2) + 2(ab|ab)] + 1

R

= −2.347 425 747 + 0.605 192 564 + 0.714 285 714

= −1.027 947 468, (75)

so that the energy of the ionic state (H−H+ + H+H−) is higher than that of H H.

H12 = 〈ψ1|Ĥ |ψ2〉
= (1 + S2)−1[S(haa + hbb) + (hba + hab)]

+ (1 + S2)−1[(a2|ab) + (b2|ba)] + 1

R
S12

= −2.302 730 674 + 0.543 591 149 + 0.686 461 708

= −1.072 677 817, (76)

so that covalent and ionic structures are also strongly interacting.
The pseudo-secular equation for the (non-orthogonal) ionic-covalent “resonance” in

ground state H2 will hence be:

∣

∣

∣

∣

H11 − E H12 − ES12
H12 − ES12 H22 − E

∣

∣

∣

∣

= 0, (77)

which can be expanded to the quadratic equation in E:

(

1 − S2
12

)

E2 − (H11 + H22 − 2S12H12)E + (

H11H22 − H 2
12

) = 0. (78)

The lowest root E1 will be:

E1 = H11 + H22 − 2S12H12

2(1 − S2
12)

− �

2(1 − S2
12)

(79)

where:

� = {

(H22 − H11)
2 + 4(H12 − H11S12)(H12 − H22S12)

}1/2
> 0. (80)

The numerical value of E1 is:

E1 = −0.468 873 311 − 0.637 683 279 = −1.106 556 590, (81)
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corresponding to a bond energy of:

�E1 = E1 − 2EH = −0.106 556 590Eh, (82)

in agreement with the first row of Table 10.6.
The mixing coefficients in the non-orthogonal basis are calculated as usual from:

{

(H11 − E1)c1 + (H12 − E1S12)c2 = 0

c2
1 + c2

2 + 2c1c2S12 = 1
(83)

giving:

λ =
(

c2

c1

)

1
= E1 − H11

H12 − E1S12
= −0.117 359 290, (84)

so that we finally obtain:

�
(

VB, 1�+
g

) = ψ1 + λψ2
√

1 + λ2 + 2λS12

= 0.898 262 463ψ1 + 0.105 419 445ψ2.

(85)

The relative weights of the non-orthogonal structures are then:

%HL = c2
1 + c1c2S12 = 89.79%, %ION = c1c2S12 + c2

2 = 10.21%. (86)

Over the non-orthogonal basis the contribution of the two ionic structures is about
10%, as small as physically expected. It is worth noting that the single HL wavefunc-
tion built from the overlap-enhanced Coulson–Fischer AOs (64) with the optimum value
λ = 0.058 883 153 gives a molecular energy E = −1.106 556 590Eh, which coincides ex-
actly to all figures with the Full-VB result (82). As a general rule, enhancing atomic overlap
reduces the importance of the ionic structures. For the minimal basis set, we have therefore
the complete equivalence:

(87)E
(

1�+
g

) = −1.106 556 590Eh = −1.106 556 590Eh.

Full-VB (3 structures) Coulson–Fischer HL with

λ = 0.058 883 153

So, in the fully optimized Coulson–Fischer covalent wavefunction the ionic structures dis-
appear.

(ii) Normalized orthogonalized basis.
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To get the normalized orthogonal (OAO) basis, we do a Löwdin symmetrical orthogo-
nalization (Chapter 2) of the original basis set, which gives:

a = 1.383 585 021a − 0.628 290 845b

b = 1.383 585 021b − 0.628 290 845a.
(88)

We note (Slater, 1963) that Löwdin OAOs (88) are nothing but the Coulson–Fischer semi-
localized AOs (64) when λ is chosen to be a solution of the quadratic equation3:

Sλ2 + 2λ + S = 0 (89)

λ1 = −1 − (1 − S2)1/2

S
, λ2 = −1 + (1 − S2)1/2

S
. (90)

Choosing the first root, λ1, we obtain the relations (that can be checked either analytically
or numerically):

(

1 + λ2
1 + 2λ1S

)1/2 = A + B

2
, λ1

(

1 + λ2
1 + 2λ1S

)1/2 = A − B

2
, (91)

where (Löwdin)

A = (1+ S)−1/2, B = (1− S)−1/2. (92)

We now transform all integrals (71) to the OAO basis, obtaining:

S = 0, haa = −0.879 663 802, hba = −0.305 967 614

(a2|b2
) = 0.426 039 142, (ab|ab) = 0.009 878 391,

(a2|ab) = −0.005 066 793, (a2|a2) = 0.706 541 235.

(93)

Löwdin’s orthogonalization has the effect of reducing to some extent the 1-electron in-
tegrals, while drastically reducing the 2-electron integrals involving the 2-centre charge
density a(r)b(r).

The covalent (HL) and ionic VB structures in the OAO basis will be:

ψ1 = ab + ba√
2

ψ2 = aa + bb√
2

, (94)

with the matrix elements:

H 11 = 〈ψ1|Ĥ |ψ1〉
= haa + hbb + (a2|b2

) + (ab|ab) + 1

R

3We discovered a wrong sign in the denominator of equation (4-13) in Slater (1963) book.
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= −1.759 327 605 + 0.435 917 533 + 0.714 285 714

= −0.609 124 357, (95)

so that:

H 11 − 2Eh = 0.390875649 (96)

describes strong repulsion. The HL structure over the OAO basis does not allow to describe
the formation of any bond in H2.

H 22 = 〈ψ2|Ĥ |ψ2〉
= haa + hbb + 1

2
[(a2|a2) + (b

2|b2
) + 2(ab|ab)] + 1

R

= −1.759 327 605 + 0.716 419 626 + 0.714 285 714

= −0.328 622 265 (97)

H 22 − 2Eh = 0.671 377 735 (98)

so that we get an even greater repulsion for the ionic state.

H 12 = 〈ψ1|Ĥ |ψ2〉
= hba + hab + [(a2|ab) + (b

2|ba)]
= −0.611 935 227 − 0.010 133 586 = −0.622 068 813, (99)

which is sensibly smaller than the corresponding term (76) over the non-orthogonal basis.
The secular equation for the (orthogonalized) ionic-covalent “resonance” in ground state

H2 will hence be:

∣

∣

∣

∣

∣

H 11 − E H 12

H 12 H 22 − E

∣

∣

∣

∣

∣

= 0, (100)

which expands to the quadratic equation in E:

E2 − (H 11 + H 22)E + (

H 11H 22 − H
2
12

) = 0. (101)

The lowest root E1 will be:

E1 = H 11 + H 22

2
− �

2
, (102)

where:

� = {

(H 22 − H 11)
2 + 4H

2
12

}1/2
> 0. (103)
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The numerical value of E1 is now:

E1 = −0.468 873 311 − 0.637 683 279 = −1.106 556 590 (104)

�E1
(1�+

g

) = −0.106 556 590, (105)

in perfect agreement with the value (82) obtained with the non-orthogonal basis. In this
way, the chemical bond in H2 has been restored through a strong CI with the ionic state!

The CI coefficients in the orthogonal basis are calculated from:

{

(H 11 − E1)c1 + H 12c2 = 0

c2
1 + c2

2 = 1
(106)

giving:

λ =
(

c2

c1

)

1
= E1 − H 11

H 12
= 0.799 641 812, (107)

a value which is about 7 times larger than the corresponding non-orthogonal value (84).
The “resonance” between ionic and covalent VB structures in the OAO basis will be de-
scribed by the wavefunction:

�
(

VB, 1�+
g

) = ψ1 + λψ2
√

1 + λ
2

= 0.781 005 253ψ1 + 0.624 524 455ψ2, (108)

where the structures have now the relative weights:

%HL = c2
1 = 61%, %ION = c2

2 = 39%. (109)

In the orthogonalized basis, the contribution of the two ionic structures is about 4 times
larger than the true value, a mathematical effect of the variational principle which has to
restore the physical reality in the formation of the bond in H2, that is its dependence on the
effective overlap between the two H atoms4.

Exactly the same effects were observed in an ab-initio OAO calculation of the short-
range interaction in the H2–H2 system (Magnasco and Musso, 1968), where a small
amount (less than 1%) of the charge-transfer states H−

2 H+
2 and H+

2 H−
2 was seen to give

interaction energies which are in substantial agreement with those obtained from the com-
plete VB treatment (Magnasco and Musso, 1967b).

4It is worth noting that exactly the same result can be obtained in terms of just the single covalent (HL)
structure constructed from Coulson–Fischer AOs built from Löwdin OAOs (Magnasco and Peverati, 2004) for
λ̃ = 0.499 627 110. In the semilocalized Coulson–Fischer description, for this value of λ̃ the ionic structures
disappear.
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10.4 ELEMENTARY VALENCE BOND METHODS

In this Section we shall introduce elementary VB methods as an extension of the HL theory
of H2, comparing their feasibility with the corresponding MO formulation of the same
problems. The theory will be mostly used in a qualitative way, just to outline how chemical
intuition can be used to construct ad hoc VB wavefunctions for some simple representative
molecules. Deviation from the so called “perfect-pairing approximation” (Coulson, 1961)
will be discussed in terms of “resonance” between different structures. In a few cases
(allyl radical, XeF2, π electron system of the benzene molecule) symmetry arguments
will enable us to draw conclusions on bonding and electron distribution without doing any
effective calculation. The different nature of the multiple bonds in N2, CO and O2 will be
evident from the VB description of their π systems, as well as the difference between Pauli
repulsion in He2 and the relatively strong σ bond in He+

2 . The general aim of the Section
will be to show how brute force calculations can be avoided if chemical intuition can be
used from the outset to concentrate effort on the physically relevant part of the electron
bonding in molecules.

10.4.1 General Formulation of VB Theory

Originating from the work of Heitler and London (1927) on H2 we have thoroughly dis-
cussed in the previous Section, VB theory was further developed by Slater and Pauling
(1930–1940), McWeeny (1954a, 1954b), Goddard III (1967, 1968) up to the recent ad-
vances in the theory by Cooper et al. (1987). A modern group theoretical approach was
also given by Gallup (1973, 2002). The most useful formulation for us is based on use of
Slater determinants (dets).

As we have already said at the beginning of the previous Section, for describing the
formation of a covalent bond between atoms A and B, each having orbitals a and b singly
occupied by electrons with opposite spin, we start by writing the Slater det ‖ab‖5, then
interchange spin between the orbitals forming the bond, obtaining in this way a second
Slater det ‖ab‖, which must be added to the first with the minus sign (singlet)6. It can
be easily verified that in this way we obtain a molecular state where the total spin takes a
definite value, and which is therefore eigenstate of Ŝz and Ŝ2 with eigenvalues MS and S,
respectively (covalent VB structure, S = 0 for the singlet).

The corresponding VB structures will be:

�
(1�+

g

) = N{‖ab‖ − ‖ab‖} (110)

�
(3�+

u

) = N ′{‖ab‖ + ‖ab‖}, (111)

where N and N ′ are normalization factors. The first is the singlet (S = MS = 0) VB struc-
ture describing a σ chemical bond (attraction between A and B), the second the triplet

5Called the parent det since all other dets can be derived from it by suitable spin interchanges.
6The plus sign will give the corresponding triplet state (as for H2).
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state (S = 1, MS = 0) describing repulsion between A and B. By expanding the dets we
see that the singlet and triplet functions can be written in the original HL form:

�
(1�+

g

) = ab + ba√
2 + 2S2

1√
2
(αβ − βα) S = MS = 0 (112)

�
(3�+

u

) = ab − ba√
2 − 2S2

1√
2
(αβ + βα) S = 1, MS = 0 (113)

with the corresponding components with MS = ±1 for the latter (equation (57) of the
previous Section).

Functions (110)–(113) are fully antisymmetric in the interchange of the space-spin co-
ordinates of the two electrons and therefore satisfy the Pauli exclusion principle.

To each VB structure is usually assigned a Rumer diagram, which describes in a visible
way the formation of a covalent bond between the two atoms A and B:

�
(1�+

g

) ⇒ A − B (114)

the shared Lewis electron pair.
If both electrons are on A, or B, we have the ionic structures, in which doubly occupied

AOs appear, and which are described by single Slater dets, which are already eigenfunc-
tions of Ŝ2 with S = 0:

�
(1�+

g

) = ‖aa‖ = aa
1√
2
(αβ − βα) A−B+ (115)

�
(1�+

g

) = ‖bb‖ = bb
1√
2
(αβ − βα) A+B−. (116)

The relative weight of the different structures having the same symmetry is determined
by the Ritz method by solving the appropriate secular equations arising from the linear
combination of the VB structures. This may be not easy because of the possible non-
orthogonalities between the structures themselves. It is important to note, and we shall see
it later in this Section, that often VB structures are non-orthogonal even if they are built
from orthonormal spin orbitals. As nearer are the molecular energies pertaining to each
individual VB structure the mixing coefficients will tend to become nearer to each other,
becoming identical in the case of “full resonance” between equivalent structures. In the cal-
culation of the relative weights we must correctly take into account the non-orthogonality
between the structures, as we did for H2 in the previous Section of this Chapter.

We now schematize the elementary VB method and compare it with the corresponding
schematization of the MO approach.

(i) Schematization of the VB method.
Basis of (spatial) atomic orbitals (AOs) → Atomic spin-orbitals (ASOs) → Anti-

symmetrized products (APs), i.e. Slater dets of order equal to the number of electrons
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(defined MS ) → VB structures, eigenstates of Ŝ2, defined S → Symmetry combina-
tion of VB structures → Multideterminant functions describing at the Full-VB level
the electronic states of the molecule.

(ii) Schematization of the MO method.
Basis of atomic orbitals (AOs) → Molecular orbitals (MO) by the LCAO method,

classified according to symmetry-defined types → Single Slater det of doubly occu-
pied MOs (for singlet states), or combination of different dets with even singly occu-
pied MOs (for non-singlet states) → MO-CI, among all dets with the same symmetry
→ Multideterminant functions describing at the MO-CI level the electronic states of
the molecule.

Starting from the same basis of AOs, VB and MO methods are entirely equivalent
at the end of each process, but may be deeply different at the early stages of each
approach. The MO method has been more widely used, compared to the VB method,
because for closed-shell molecules (S = 0, singlet) a single Slater det may be often
sufficient as a first approximation, and for the further reasons we shall indicate below.

(iii) Advantages of the VB method.
1. The VB structures are related to the existence of chemical bonds in the molecule,

the most important corresponding to the rule of “perfect pairing”.
2. The principle of maximum overlap, better the minimum of the exchange-overlap

bond energy (Magnasco and Costa, 2005), determines the stereochemistry of the
bonds in a polyatomic molecule, hence the directed valency.

3. It allows for a correct dissociation of the chemical bonds, what is of paramount
importance in chemical reactions.

4. It gives a sufficiently accurate description of spin densities, even at the most ele-
mentary level.

5. For small molecules, it is possible to account for about 80% of electronic correla-
tion and to get bond distances within 0.02a0.

(iv) Disadvantages of the VB method.
1. Non-orthogonal basic AOs → Non-orthogonal VB structures → Difficulties in the

evaluation of the matrix elements of the Hamiltonian (Slater rules are no longer
valid).

2. The number of covalent VB structures of given S increases rapidly with the number
n (2n = N ) of the bonds, according to the Wigner formula:

f N
S =

(

2n

n − S

)

−
(

2n

n − S − 1

)

= (2S + 1)(2n)!
(n + S + 1)!(n − S)! . (117)

An example for the π electron systems of a few polycyclic hydrocarbons is given
in Table 10.8.

Table 10.8 makes it immediately evident the striking difference between the
numbers of the second (Hückel) and the last column (VB). The situation is even
worst if, besides covalent structures, we take ionic structures into account. In this
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Table 10.8.

Comparison between the order of Hückel and VB secular equations for the sin-
glet state of some polycyclic hydrocarbons

Molecule 2n n f N
0

Benzene 6 3 5
Naphthalene 10 5 42
Anthracene 14 7 429
Coronene 24 12 208 012

case, the total number of structures, covalent plus all possible ionic, is given by the
Weyl formula (Weyl, 1931; Mulder, 1966; McWeeny and Jorge, 1988):

f (N,m,S) = 2S + 1

m + 1

(

m + 1

N
2 + S + 1

)(

m + 1

N
2 − S

)

, (118)

where N is the number of electrons, m the number of basic AOs, and S the total
spin.

As an example, for the π electron system of benzene:

N = 6, m = 6, S = 0 f (6,6,0) = 175

singlet (covalent + ionic) VB structures.

N = 6, m = 6, S = 1 f (6,6,1) = 189

triplet (covalent + ionic) VB structures.
With a DZ basis set (m = 12), for N = 6 the singlet structures are:

N = 6, m = 12, S = 0 f (6,12,0) = 15730.

The total number of all possible VB structures is hence seen to increase very
rapidly with the size of the basic AOs.

(v) Advantages of the MO method.
1. As a first approximation, singlet molecular states can be described in terms of a

single Slater det of doubly occupied MOs.
2. The non-orthogonality of the basic AOs does not make any problem.
3. MOs are always orthogonal, even inside the same symmetry.
4. Electron configurations of molecules are treated on the same foot as are those for

atoms.
(vi) Disadvantages of the MO method.

1. MO are delocalized over the different nuclei in the molecule and are not suitable
for a direct chemical interpretation.
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2. The single det cannot describe correctly the dissociation of the 2-electron bond.
3. The ionic part of the wavefunction is overestimated.
4. The single det of doubly occupied MOs does not describe whatever correlation

between electrons with opposite spin.
5. MO spin densities are often inaccurate (see the allyl radical).

10.4.2 Construction of VB Structures for Multiple Bonds

It is convenient to use for the parent det (that describes which bonds are formed in the
molecule) a shorthand notation, as the following example shows for the description of the
triple bond in N2:

�
(1�+

g

) = (σAσBxAxByAyB). (119)

Equation (119) specifies the formation of a σ bond between orbitals 2pzA and 2pzB (pos-
sibly allowing for some sp hybridization, the z axis being directed from A to B along the
bond), and two π bonds (perpendicular to the z axis) between 2pxA, 2pxB , and 2pyA,
2pyB . We have omitted for short the remaining eight electrons which are assumed to make
a generalized “core” which, in the first approximation, is assumed to be “frozen” during
the formation of the bond. In such a way, attention is focused on the physically relevant
part of the triple bond. The advantage of this “short” notation (119) may be appreciated
when compared with the “full” notation, which should involve the normalized Slater det of
order 14 (the number of electrons in N2):

� = ‖1sA1sA1sB1sB2sA2sA2sB2sB
︸ ︷︷ ︸

core

|σAσBxAxByAyB
︸ ︷︷ ︸

triple bond

‖. (120)

For the moment, we shall not take into consideration hybridization, that is the mixing
between 2s and 2pσ AO onto the same centre. The parent (119) is a normalized Slater
det which is eigenstate of Ŝz with MS = 0, but not as yet eigenstate of Ŝ2. To obtain the
singlet VB structure (eigenstate of Ŝ2 with S = 0) we must do in the parent det all possible
spin interchanges between the AOs forming the bonds (σ or π ), taking into account that
for each interchange we must change the sign of the det which is being added (minus sign
for an odd number of interchanges, plus sign for an even number). The complete covalent
VB function for ground state N2 is hence made by the linear combination of the following
eight Slater dets:

�
(1�+

g

) = 1√
8

{

(σAσBxAxByAyB)

− (σAσBxAxByAyB) − (σAσBxAxByAyB) − (σAσBxAxByAyB)

+ (σAσBxAxByAyB) + (σAσBxAxByAyB) + (σAσBxAxByAyB)

− (σAσBxAxByAyB)
}

(121)
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which belongs to the eigenvalue S = 0 as can be easily shown by using Dirac’s formula
for Ŝ2. It is worth noting that all doubly occupied orbitals do not contribute to S, and can
therefore be omitted in the calculation of the total spin. The normalization factor in (121)
assumes orthonormal Slater dets. We give in the following other simple examples.

10.4.3 The Allyl Radical (N = 3)

Consider the π system of the allyl radical C3H•
5 as given in Figure 10.10, where attention

has to be focused only on the π electron system (top in Figure 10.10), and where below
each chemical structure we write the parent det.

We see that the parent is the same in the two resonant VB structures (which are fully
equivalent), but the linear combination of Slater dets is different, since in ψ1 we have a
bond between a and b, in ψ2 between b and c:

ψ1 = 1√
2

[

(abc) − (abc)
]

S = MS = 1

2
(122)

ψ2 = 1√
2

[

(abc) − (abc)
]

S = MS = 1

2
. (123)

As said before, the notation omits the description of the twenty electrons of the “frozen
core”, formed by the electrons of the three inner shells of the C atoms, the two C C bonds
and the five C H bonds. Even assuming orthonormal spin-orbitals, as we shall do, the two
covalent structures describing the doublet state of the radical are non-orthogonal:

S12 = 〈ψ1|ψ2〉 = 1

2
. (124)

It will be shown in Problem 10.4 that if we Schmidt orthogonalize ψ1 to ψ2, the result-
ing orthogonalized set is in one-to-one correspondence with the two spin doublets found

Figure 10.10 The two resonant chemical structures of the π electrons in allyl radical.
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in Chapter 6 using pure spin functions. In other words the two VB structures ψ1 and ψ2
constructed using the physically appealing elementary method are not linearly indepen-
dent, while Schmidt orthogonalization gives two linearly independent functions which,
however, have lost their simple graphical representation.

The electronic structure of the π system in the allyl radical is hence given by the resonant
VB function:

� = ψ1c1 + ψ2c2 (125)

where, because of symmetry:

c1 = c2 = 1√
3

(126)

since:

〈�|�〉 = c2
1 + c2

2 + 2c1c2S12 = 3c2
1 = 1. (127)

Knowing � from (125), we can immediately calculate the π electron and spin density
distributions in the allyl radical, an interesting example of population analysis in multide-
terminant wavefunctions. The 1-electron distribution function from (125) will be:

ρ1 = 3
∫ ∫

dx2 dx3��∗ = c2
1

[

3
∫ ∫

dx2 dx3ψ1ψ
∗
1

]

+ c2
2

[

3
∫ ∫

dx2 dx3ψ2ψ
∗
2

]

+ c1c2

[

3
∫ ∫

dx2 dx3(ψ1ψ
∗
2 + ψ2ψ

∗
1 )

]

= c2
1

[

1

2
(a2 + c2)αα∗ + 1

2
b2ββ∗ + 1

2
a2ββ∗ + 1

2
(b2 + c2)αα∗

]

+ c2
2

[

1

2
(a2 + c2)αα∗ + 1

2
b2ββ∗ + 1

2
(a2 + b2)αα∗ + 1

2
c2ββ∗

]

+ c1c2

{

2

[

1

2
(a2 + c2)αα∗ + 1

2
b2ββ∗

]}

, (128)

where we used Slater’s rules for orthonormal determinants.
We then have:

ρα
1 = coefficient of αα∗ in ρ1

= a2
(

1

2
c2

1 + c2
2 + c1c2

)

+ b2
(

1

2
c2

1 + 1

2
c2

2

)

+ c2
(

c2
1 + 1

2
c2

2 + c1c2

)

(129)

ρ
β

1 = coefficient of ββ∗ in ρ1
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Figure 10.11 π electron (top) and spin density (bottom) VB distributions in allyl radical.

= a2
(

1

2
c2

1

)

+ b2
(

1

2
c2

1 + 1

2
c2

2 + c1c2

)

+ c2
(

1

2
c2

2

)

(130)

P(r) = ρα
1 (r) + ρ

β

1 (r) = (

c2
1 + c2

2 + c1c2
)

(a2 + b2 + c2)

= a2 + b2 + c2 (131)

Q(r) = ρα
1 (r) − ρ

β

1 (r) = a2(c2
2 + c1c2

)− b2(c1c2) + c2(c2
1 + c1c2

)

= 2

3
a2 − 1

3
b2 + 2

3
c2. (132)

(131) shows that the allyl radical has a uniform charge distribution of its π electrons (as it
must be for an alternant hydrocarbon), while if atoms a and c have spin α there is some
spin β at the central atom b. At variance with MO theory (Section 8.4 of Chapter 7), VB
theory correctly predicts the existence of some β-spin at the central atom when some α-
spin is present at the external atoms, a result which agrees with the experimental ESR
spectra of the radical.

The π electron and spin density VB distributions in the allyl radical are shown in Fig-
ure 10.11.

The relative weights of the two resonant (non-orthogonal) structures in the ground state
of the allyl radical will be:

%ψ1 = c2
1 + c1c2S12 = 1

3
+ 1

3
· 1

2
= 1

2
(133)

%ψ2 = c2
2 + c2c1S12 = 1

3
+ 1

3
· 1

2
= 1

2
(134)

as expected on symmetry grounds.

10.4.4 Cyclobutadiene (N = 4)

Consider the π system of cyclobutadiene as given in Figure 10.12.
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Even in this case, the parent det is the same in either resonant VB structures but the π

bonds are different, so that the singlet (S = MS = 0) structures are:

ψ1 = 1

2

[

(abcd) − (abcd) − (abcd) + (abcd)
]

(135)

ψ2 = 1

2

[

(abcd) − (abcd) − (abcd) + (abcd)
]

. (136)

Even these VB structures are non-orthogonal, since the first and the fourth det in each
structure are equal:

S12 = 〈ψ1|ψ2〉 = 1

2
. (137)

The electronic structure of the π system in cyclobutadiene is given by the resonant VB
function:

� = ψ1c1 + ψ2c2 (138)

where again, by symmetry:

c1 = c2 = 1√
3

(139)

since:

〈�|�〉 = c2
1 + c2

2 + 2c1c2S12 = 3c2
1 = 1. (140)

A calculation similar to that in the allyl radical shows that now:

ρα
1 = (a2 + b2 + c2 + d2)

(

c2
1

4
+ c2

1

4
+ c2

2

4
+ c2

2

4
+ 2

4
c1c2

)

Figure 10.12 The two resonant chemical structures of the π electrons in cyclobutadiene.
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= (a2 + b2 + c2 + d2)
1

2
(c2

1 + c2
2 + c1c2)

= 1

2
(a2 + b2 + c2 + d2) = ρ

β

1 (141)

so that:

P(r) = ρα
1 (r) + ρ

β

1 (r) = a2 + b2 + c2 + d2 (142)

Q(r) = ρα
1 (r) − ρ

β

1 (r) = 0 (143)

and the electron charge distribution of the π electrons in cyclobutadiene is uniform, as
expected for alternant hydrocarbons, whereas the spin density is zero (singlet state).

10.4.5 VB Description of Simple Molecules

We shall now give a few further examples of the VB description of chemical bonds in
simple molecules, assuming in the first approximation that (i) only valence electrons are
considered, (ii) all electrons not directly involved in the formation of the bond of inter-
est are assumed “frozen”, and (iii) hybridization is not taken into account. This allows us
for the qualitative VB description of a few diatomic molecules and for the study of the
electronic structure and charge distribution of XeF2 and O3, while for the H2O molecule
hybridization becomes crucial in the VB study of directed valency. Quantitative calcula-
tions would imply the evaluation of the matrix elements of the Hamiltonian between these
structures and the solution of the related secular equations.

(i) LiH(1�+).

Li(2S): 1s2
Lis H(2S): h

Covalent structure Ionic structures

Li H

(s h)

Li+H− Li−H+

(hh) (s s)

(144)

where:

(s h) = ‖1sLi1sLi s h‖
(hh) = ‖1sLi1sLi hh‖
(s s) = ‖1sLi1sLi s s‖

(145)

are the short notations for the 4-electron normalized Slater dets. (s h) is the parent for the
covalent function for Li H. The full singlet VB structure describing resonance between
covalent and ionic structures in Li H will be:

�(1�+) ∝ [

(s h) − (sh)
]+ λ1(hh) + λ2(s s), (146)
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where λ1 and λ2 must be determined by the Ritz method. Because of the different elec-
tronegativities of Li and H, it is expected that λ1 � λ2.

(ii) FH(1�+).

F(2P): 1s2
F2s2

F2pπ4
F2pσF H(2S): h

Covalent structure Ionic structures

F H

(σF h)

F−H+ F+H−

(σF σ F) (hh)

(147)

�(1�+) ∝ [

(σF h) − (σ Fh)
] + λ1(σF σ F) + λ2(hh) (148)

with λ1 > λ2.

(iii) N2
(

1�+
g

)

N N triple bond.

NA(4S): 1s2
NA

2s2
NA

σAxAyA σ = 2pσ = 2pz (149)

NB(4S): 1s2
NB

2s2
NB

σBxByB x = 2pπx = 2px. (150)

Figure 10.13 Covalent σ and πx bonds in N2.
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The triple bond in N2 will be described by the parent:

(

σAσB xAxB yAyB

)

(151)

while the full singlet (S = MS = 0) VB covalent structure will be given by the combination
of the eight Slater dets of equation (121). We can likely introduce ionic VB structures
N−N+, N+N− in terms of (σAσA), (σBσB), (xAxA), (xBxB), and so on.

(iv) CO
(

1�+)

.

C(3P): 1s2
C2s2

C σCxCy0
C or x0

CyC (152)

O(3P): 1s2
O2s2

O
︸ ︷︷ ︸

core

σOxOy2
O

︸ ︷︷ ︸

valence

or x2
OyO. (153)

The three most important covalent VB structures in CO(1�+) all have a heteropolar σ

bond between σC and σO. The peculiarity of CO (isoelectronic with N2) comes from its π

system, as shown in Figure 10.14. In (a), we have a heteropolar πx bond between xC and
xO, not shown in the figure, a lone pair y2

O, while y0
C is empty. In (b), a heteropolar πy bond

between yC and yO, a lone pair x2
O, and x0

C is empty. This will induce an electron transfer
from the doubly occupied lone pair orbitals to the empty orbitals of the other atom, giving
(c) as the most probable structure showing that an ionic triple bond is formed in CO.
The bond is ionic, with polarity C−O+, since now seven electrons are on carbon, seven
electrons on oxygen. Of course, the truth will be given by the variational determination
of the mixing coefficients between the three VB structures associated with the parents
of Figure 10.14. This will reduce strongly the molecular dipole moment of CO, being
in the opposite sense of the σ and π heteropolar effects going in the sense C+O−. This

Figure 10.14 Parent dets in ground state CO.
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is experimentally observed, and the result of accurate theoretical calculations (Maroulis,
1996), which give μ(C−O+) = −0.04ea0.

Therefore, the VB function describing the mixing of the covalent structures of Fig-
ure 10.14, will be:

�1(COV, 1�+) = ψ1c1 + ψ2c2 + ψ3c3, (154)

where:

ψ1 = 1

2

[

(σCσ OxCxOyOyO) − (σ CσOxCxOyOyO)

− (σCσ OxCxOyOyO) + (σCσOxCxOyOyO)
]

(155)

ψ2 = 1

2

[

(σCσ OxOxOyCyO) − (σ CσOxOxOyCyO)

− (σCσ OxOxOyCyO) + (σCσOxOxOyCyO)
]

, (156)

while ψ3 is given by the linear combination of eight Slater dets as in (121) with A = C,
B = O .

To �1 we must add variationally the corresponding ionic function �2(ION, 1�+) de-
scribing the polarity of σ and π bonds in CO.

(v) Pauli repulsion between closed shells.
A typical example is the interaction between two ground state He atoms which, each

having the closed-shell electron configuration 1s2, cannot give any chemical bond and
therefore, in the first approximation7 (one-determinant, no correlation), must repel each
other. In this case, VB and MO descriptions coincide.

He2
(1�+

g

)

1sA = a, 1sB = b

�
(

VB, 1�+
g

) = ‖aabb‖ = ‖σgσgσuσu‖ = �
(

MO, 1�+
g

)

(157)

as can be seen immediately from the properties of determinants and the Pauli principle
(Problem 10.5). The electron density contributed by the 4 electrons of the two atoms is:

P(r) = 2σ 2
g (r) + 2σ 2

u (r)

= 2

1 − S2
(a2 + b2) − 2S

1 − S2

(

ab

S
+ ba

S

)

= qAa2(r) + qBb2(r) + qAB

a(r)b(r)
S

+ qBA

b(r)a(r)
S

(158)

7Attraction forces due to interatomic electron correlation are described at the multiconfiguration level.
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with:

qA = qB = 2

1 − S2
> 2, qAB = qBA = − 2S2

1 − S2
< 0, (159)

a result similar to that observed for triplet H2 (Problem 7.4 of Chapter 7). In He2(
1�+

g ),

as in H2(
3�+

u ), electrons escape from the bond region originating repulsion (the overlap
charge is negative). Recent ab-initio calculations of the Pauli repulsion in He2 (Magnasco
and Peverati, 2004) show that a simple optimized 1s basis set gives fair values at R = 3a0
(c0 = 1.691, �E = 12.964 × 10−3Eh) and R = 4a0 (c0 = 1.688, �E = 1.073 × 10−3Eh),
which compare favourably either with the accurate theoretical SCF calculations by Liu
and McLean (1973) (�E = 13.52×10−3Eh, �E = 1.355×10−3Eh, respectively) or even
better with the experimental results by Feltgen et al. (1982). In the latter case, however, it is
expected that our actual 1-determinant underestimation of the interaction will compensate,
in part, for the effect of the attractive London forces.

A like repulsion is observed between closed-shell molecules, or between pairs of sat-
urated bonds or electron lone pairs in molecules (Pauli repulsion). Pauli repulsion be-
tween C H bonds is at the origin of the torsional barrier in ethane C2H6, as shown by
Musso and Magnasco (1982) using an improved bond orbital wavefunction supplemented
by small correction terms accounting for electron delocalization. The theory was then an-
alyzed in terms of localized singlet VB structures revealing bonding and charge transfer
occurring between the four electrons involved in each excitation (Magnasco and Musso,
1982), and successfully extended to the study of nineteen flexible molecules possessing
a single internal rotation angle about a B N, C C, C N, C O, N N, N O, O O
central bond (Musso and Magnasco, 1984). The molecules possess 16 to 34 electrons and
a variety of functional groups differing in their chemical structure (CH3, NH2, OH, NO,
CHO, CH CH2, NH , and some of their F-derivatives).

(vi) 3-electron bonds.
While the bond in H+

2 can be considered as the prototype of the 1-electron bond, we
saw that the great part of σ or π chemical bonds is made by 2-electron bonds, agreeing
with Lewis’ idea of the bond electron pair. There are, however, cases where we observe the
formation of 3-electron bonds like, for example, in He+

2 and O2.

(a) The 3-electron σ bond in He+
2 .

At variance with the Pauli repulsion in He2(
1�+

g ), it is possible to form a rather strong

chemical bond between a neutral He(1s2) atom and a He+(1s) ion: He+
2 (2�+

u ) exists and
is fairly stable (Huber and Herzberg, 1979), �E = −90.78 × 10−3Eh at Re = 2.04a0
(compare �E = −102.6 × 10−3Eh at Re = 2a0 for ground state H+

2 ). For the VB theory,
He+

2 is the prototype of the 3-electron σ bond.

He+
2

(2�+
u

)

He(1S): 1s2 He+(2S): 1s 1sA = a, 1sB = b. (160)



516 10. Valence Bond Theory and the Chemical Bond

Figure 10.15 Parent dets in ground state He+
2 .

In this case, the parents coincide with the VB structures (they are eigenfunctions of Ŝ2

with S = MS = 1/2). By symmetry, the two structures must have equal weight, so that the
complete VB function with the correct symmetry (u under inversion) will be:

�1
(2�+

u

) = 1√
2

[‖aab‖ − ‖bba‖] S = 1

2
, MS = 1

2
(161)

�2
(2�+

u

) = 1√
2

[‖aab‖ − ‖bba‖] S = 1

2
, MS = −1

2
. (162)

It is clear that for each component of the doublet:

ı̂�1 = 1√
2

[‖bba‖ − ‖aab‖] = −�1

ı̂�2 = 1√
2

[‖bba‖ − ‖aab‖] = −�2 (163)

so that � is odd (u) under inversion. As for He2 it might be shown that:

�1
(

VB, 2�+
u

) = ‖σgσgσu‖ (164)

�2
(

VB, 2�+
u

) = ‖σgσgσu‖ (165)

so that, even in this case, VB and MO descriptions coincide.
Recent ab-initio calculations on He+

2 (2�+
u ) (Magnasco and Peverati, 2004) show that the

simple optimized 1s basis set gives a fair representation of the potential energy curve in
the bond region, with a calculated bond energy of �E = −90.50 × 10−3Eh at R = 2.06a0
(c0 = 1.832), in excellent agreement with the experimental results quoted above (Huber
and Herzberg, 1979) and the results of accurate theoretical calculations by Liu (1971).

(b) The 3-electron π bonds in O2.

O2
(3�−

g

)

One 2-electron σ bond Two 3-electron π bonds
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Figure 10.16 Parent dets in singlet ground state O2.

Figure 10.17 Parent dets in triplet ground state O2.

OA(3P): 1s2
A2s2

AσAxAy2
A or x2

AyA (166)

OB(3P): 1s2
B2s2

B
︸ ︷︷ ︸

core

σBxBy2
B

︸ ︷︷ ︸

valence

or x2
ByB. (167)

There are four possible covalent VB structures for ground state O2.

• Two equivalent singlet (S = MS = 0) structures.
The singlet VB structures associated with the parents of Figure 10.16 (a πx bond with

two y-lone pairs, a πy bond with two x-lone pairs) cannot be very stable because of the
strong Pauli repulsion between electron lone pairs having the same symmetry (the lone
pairs lie in the same yz- or zx-plane).
• Two equivalent triplet (S = 1) structures.

The triplet VB structures associated with the parents of Figure 10.17 are expected to be
much more stable, since the two lone pairs are now in perpendicular planes with a strong
reduction of repulsive effects and, what is more interesting, the possibility of forming two
equivalent 3-electron π bonds (Wheland, 1937). Omitting the doubly occupied orbitals, in
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an ultrashort notation, the VB function describing the covalent triplet state of ground state
O2 will be:

�(VB, 3�−
g ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1√
2
[(xAyB) + (xByA)] S = 1,MS = 1

1

2
[(xAyB) + (xAyB) + (xByA) + (xByA)] 0

1√
2
[(xAyB) + (xByA)]. −1

(168)

It can be verified (Problem 8.16 of Chapter 8) that � simultaneously satisfies the following
eigenvalue equations:

Ŝ2� = 1(1 + 1)�, L̂z� = 0 · �
σ̂� = −�, ı̂� = �

(169)

so that � correctly describes a 3�−
g state (σ is chosen as the symmetry zx plane). At vari-

ance with the MO wavefunction, the VB function (168) correctly describes the dissociation
of O2(

3�−
g ) into two neutral O(3P) atoms.

(c) Ionic structures in triplet O2.
For the triplet ground state of the O2 molecule we can have the O−O+ and O+O− ionic

structures shown in Figure 10.18.
These ionic structures, which we saw to have erroneously a weight equal to that of the

covalent structure in the MO wavefunction of H2, are expected to have some importance
in O2 in view of the acceptable energetic cost needed to form O−O+ (and O+O−) from
the neutral atoms. In fact:

O(3P)2p4 → O+(4S)2p3 + e− I.P. = 13.6 eV (170)

Figure 10.18 Parent dets for ionic structures in triplet O2.
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O(3P)2p4 + e− → O−(2P)2p5 E.A. = 1.5 eV (171)

so that, at the bond distance Re = 2.28a0, we have in the first approximation:

I.P. − E.A. − 1

Re

= 13.6 − 1.5 − 27.21

2.28
= 0.17 eV = 6.1 × 10−3Eh, (172)

where the last term is surely overestimated at this value of R since we do not take into
account charge-overlap effects damping the Coulomb attraction between the ions. A VB
calculation at Re (McWeeny, 1990) with a DZ-GTO basis set yields:

� = 0.59ψcov − 0.23ψion (173)

with a rather large ionic contribution to the VB wavefunction. However, this may be not
unexpected since it is well known that DZ basis sets tend to overestimate the polarity of the
molecule. The Pauli repulsion still existing between electron lone pairs even in orthogonal
planes, but on the same atom, does not certainly contribute to the stability of the ionic struc-
tures in triplet O2. The symmetry of the ionic VB structures associated with the parents of
Figure 10.18 is studied in detail in Problem 10.6.

(vii) XeF2 (D∞h).
XeF2 is a centrosymmetric linear molecule (symmetry D∞h) with an experimental

Xe F = 4a0, which has been studied by Coulson (1964).

Xe(1S): 5s25pπ45pσ 2 N = 54 electrons (174)

F(2P): 2s22pπ42pσ N = 9 electrons. (175)

The heavy rare gas Xe is easily ionizable, while F atom has a high electron affinity:

Xe(1S) → Xe+(2P) + e− I.P. = 12.1 eV (176)

F(2P) + e− → F−(1S) E.A. = 3.5 eV. (177)

As we have seen for O2, in a first approximation, the electrostatic energy needed to form
Xe+F− at Re = 4a0, will be:

I.P.(Xe) − E.A.(F) − 1

Re

= 12.1 − 3.5 − 27.21

4
= 1.8 eV = 66.1 × 10−3Eh.

(178)

This rather large energy will be recovered by the formation of a covalent Xe+ F bond on
the other part of the molecule. We have hence complete resonance between the two VB
structures: F Xe+F− ⇔ F−Xe+ − F.
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Figure 10.19 2pσ (F) and 5pσ (Xe) AOs and VB structures involved in covalent bonding in XeF2.

The two structures, normalized and orthogonal, are:

ψ1 = 1√
2

[

(abcc) − (abcc)
]

(179)

ψ2 = 1√
2

[

(aabc) − (aabc)
]

(180)

with:

〈ψ1|ψ2〉 = 0. (181)

The function describing complete resonance between the two covalent structures will there-
fore be:

� = 1√
2
(ψ1 + ψ2). (182)

It is now possible to calculate the electron charge distribution in XeF2 as we did for the
allyl radical. Using Slater rules for orthonormal det, it is easily obtained:

ρα
1 = 1

2

[

1

2
(a2 + c2) + 1

2
(b2 + c2)

]

+ 1

2

[

1

2
(a2 + b2) + 1

2
(a2 + c2)

]

from ψ1ψ
∗
1 from ψ2ψ

∗
2

(183)

ρ
β

1 = 1

2

[

1

2
(b2 + c2) + 1

2
(a2 + c2)

]

+ 1

2

[

1

2
(a2 + c2) + 1

2
(a2 + b2)

]

, (184)
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namely:

ρα
1 = ρ

β

1 = 1

4
(3a2 + 2b2 + 3c2). (185)

Therefore, according to this VB description, XeF2 has the following electron charge dis-
tribution:

P(r) = ρα
1 (r) + ρ

β

1 (r) = 3

2
a2(r) + b2(r) + 3

2
c2(r) (186)

trP(r) =
∫

drP(r) = 3

2
+ 2

2
+ 3

2
= 4. (187)

The corresponding electron and formal charge on the atoms in the molecule are given in
Figure 10.20.

In a first approximation, the formal charge δ = 1/2 gives a linear quadrupole moment
equal to:

μ2 = −1

2
|δ|(2RXeF)2 = −16ea2

0 = −2.1 × 10−25 esu cm2 (188)

which is within 10% of the experimentally observed value of −1.9 × 10−25 esu cm2. This
value of the quadrupole moment is very large when compared to that of other molecules
(for instance, CO2 has μ2 = −0.3 × 10−25 esu cm2), and is due to the fact that, in the
molecule, the fluorine atoms carry a substantial net negative charge.

Figure 10.20 Electron (top) and formal charges (bottom) in XeF2.

Figure 10.21 Resonance between ionic structures in the π electron system of ozone.



522 10. Valence Bond Theory and the Chemical Bond

A like calculation can be done for the π system of the triangular O3(
1A1) molecule

(2θ = 117◦, ROO = 2.41a0). The resonance between the equivalent ionic structures (each
containing a covalent bond) (Figure 10.21) yields a π formal charge δ = 1/2, which gives
a π contribution to the dipole moment of μπ = [2μ2

B(1 − cos 2θ)]1/2 = 2.05ea0. Since the
accurate μ value is sensibly lower than this (Xie et al., 2000), μ = μσ + μπ = −0.22ea0,
we can reasonably expect an even larger, and of opposite sign, contribution by the σ -
skeleton of the molecule.

10.5 PAULING VB THEORY FOR CONJUGATED AND AROMATIC
HYDROCARBONS

We have used so far VB theory mostly for a qualitative description of the chemical bond in
molecules. Use of symmetry arguments for the resonance of equivalent structures has al-
lowed us, in some cases, to determine the electron and spin density distributions in simple
molecules without doing any effective calculation of the relative weight of the structures.
However, to do effective, even if approximate, energy calculations we are required to eval-
uate the matrix elements between structures. This is the main object of any VB theory once
the proper wavefunctions have been prepared according to the general rules given in the
preceding Sections. The general formulation of this problem is rather difficult because of
the non-orthogonality of the atomic basis set and non-orthogonality of the VB structures
themselves. A great simplification might be reached if we assume that the basic AOs are or-
thonormal, even if this may be not true for structures. This is a very delicate point, however,
since we saw in Section 10.3.4 of this Chapter that assumed, or forced, orthogonalization
of the basic AOs yields no bonding at all for atoms described by covalent wavefunctions.
It is mostly for this reason that the interesting approach introduced long ago by Pauling
(1933) for the VB theory of conjugated and aromatic hydrocarbons has been criticized first
and then fully dismissed.

From a theoretical point of view, we saw in the simple case of H2 how the orthogonality
drawback can be removed from the treatment of the covalent bond by admitting with a
substantial weight ionic structures which restore the correct charge distribution between
the interacting atoms. This way was followed by McWeeny (1954a, 1954b) in his rigorous
mathematical reformulation of the conventional VB theory based on orthogonalized AOs
(OVB), where he extended Pauling rules to include ionic structures. This rigorous VB
treatment was also used by the author (Magnasco and Musso, 1967a, 1967b) in an ab-initio
study of the short-range interaction of two H2 molecules in their ground state. It was shown
there (Magnasco and Musso, 1967b) that the orthogonality constraint disappears when the
VB treatment is complete and all possible ionic structures are included in the calculation.

On the other hand, VB theory can be applied at its lowest semiempirical level much in the
same way as Hückel theory for MO theory. In this case, all criticism is inappropriate, since
the results are parametrized in terms of Coulomb and exchange integrals, Q and K , which
are treated as fully empirical negative parameters, much in the same way as the αs and βs
of Hückel theory. Even at this level, the theory is seen to give some interesting insights into
the electronic structure of π electron systems, and of σ systems as well. Furthermore, the
rigorous derivation of Pauling’s rules under their restrictive assumptions is an interesting
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introduction to the evaluation of Hamiltonian matrix elements between covalent structures
for the more advanced theory. For all these reasons, and for their historical importance, we
shall give some space in the following to the Pauling rules for the evaluation of the matrix
elements between singlet covalent structures and to their application to the π electron
system of some conjugated and aromatic hydrocarbons. The Section will end with a short
derivation of Pauling’s formula in the case of H2 (N = 2) and cyclobutadiene (N = 4).

10.5.1 Pauling Formula for the Matrix Elements of Singlet Covalent VB Structures

Let us restrict ourselves to the singlet (S = MS = 0) states of molecules with spin degen-
eracy only (Pauling and Wilson, 1935). Among the different ways in which valence bonds
can be drawn between pairs of orbitals, the number of independent singlet covalent bond
structures (the so called canonical structures) which can be constructed from 2n singly
occupied orbitals is given by the Wigner formula:

Number of singlet covalent VB structures = (2n)!
n!(n + 1)! , (189)

where n is the number of bonds.
For the case of four orbitals a, b, c, d arranged as a square ring (cyclobutadiene), the

bonds can be drawn by lines in three ways, as Figure 10.22 shows, but only ψ1 and ψ2,
having not intersecting lines, are canonical structures.

The lines drawn in Figure 10.22, denoting single covalent bonds between singly occu-
pied AOs, are called Rumer diagrams. From them, it is possible to construct the so called
superposition patterns of Figure 10.23.

Figure 10.22 Possible covalent bonds in the four orbital problem.
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Figure 10.23 Superposition patterns for the four orbital problem.

The superposition patterns consist of closed polygons or islands, each formed by an even
number of bonds. Based on such premises, and on the following assumptions;

1) Orthonormality of the basic AOs;
2) Consideration of singlet covalent VB structures only;
3) Consideration of single interchanges between adjacent orbitals only;

Pauling (1933) derived simple graphical rules for the evaluation of the general matrix
element between structures ψr and ψs , which are embodied in the formula:

Hrs − ESrs = 1

2n−i

{

Q − E +
∑

i,j

Kij

bonded

−1

2

∑

i,j

Kij

non-bonded

}

, (190)

where n is the number of bonds, i the number of islands in each superposition pattern,
Q(< 0) the Coulomb integral, Kij (< 0) the single interchange integral between the pair
i and j . The first summation in (190) is over all bonded orbitals in the same island, the
second over all non-bonded orbitals in different islands.

Pauling formula (190) can be derived by considering for each VB structure its complete
form in terms of Slater dets, and calculating Hrs and Srs from the appropriate Slater rules
for orthonormal determinants. As already done in Hückel theory, in solving the secular
equations it will be found convenient to put:

Q − E

K
= −x E = Q + xK, (191)

where x is the bond energy in units of parameter K, x > 0 meaning bonding. The solution
of the secular equation may be simplified by use of symmetry, if the basis of ordinary VB
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structures is replaced by a basis of symmetry-adapted VB structures, using the techniques
explained in Chapter 8. We shall now examine in some detail a few illustrative molecular
cases.

10.5.2 Cyclobutadiene

Even if the canonical VB structures and the superposition patterns for 2n = 4 were already
given in Figures 10.22 and 10.23, it will be convenient here for completeness to collect
them both in Figure 10.24, completing the superposition patterns with number of islands
and Pauling coefficients from the general formula (190).

Matrix elements are:

H11 − ES11 = H22 − ES22 = Q − E + 2K − K = Q − E + K

H12 − ES12 = H21 − ES21 = 1

2
(Q − E) + 1

2
(4K) = 1

2
(Q − E) + 2K (192)

giving the secular equation:

∣

∣

∣

∣

∣

∣

∣

−x + 1 −x

2
+ 2

−x

2
+ 2 −x + 1

∣

∣

∣

∣

∣

∣

∣

= 0
(−x + 1)2 =

(

−x

2
+ 2

)2

x2 − 4 = 0 ⇒ x = ±2.

(193)

Taking the positive root, we have for the π -energy:

1 Kekulé E = Q + K (194)

Figure 10.24 Canonical structures (top) and superposition patterns (bottom) for cyclobutadiene.
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2 Kekulé E = Q + 2K, (195)

giving an energy lowering (resonance energy):

E(2K) − E(K) = K < 0. (196)

So, resonance between the two Kekulé structures stabilizes the system.
The calculation of the coefficients proceeds as usual from the homogeneous system:

(−x + 1)c1 +
(

−x

2
+ 2

)

c2 = 0 with x = 2 (197)

c2 = x − 1

2 − x
2

c1 = c1 (198)

so that, neglecting non-orthogonality between the structures, we obtain:

c1 = c2 = 1√
2

(199)

finally giving as weights for the two Kekulé structures:

50%ψ1 50%ψ2 (200)

as it must be for completely resonant structures. A non-empirical VB calculation on the
π -electron system of cyclobutadiene was done by McWeeny (1955).

10.5.3 Butadiene

For the open chain with 2n = 4, canonical structures and superposition patterns are given
in Figure 10.25. We note that a and d are now non-adjacent atoms.

Matrix elements are:

H11 − ES11 = Q − E + 3

2
K

H22 − ES22 = Q − E (201)

H12 − ES12 = H21 − ES21 = 1

2
(Q − E) + 3

2
K

∣

∣

∣

∣

∣

∣

∣

∣

−x + 3

2
−x

2
+ 3

2

−x

2
+ 3

2
−x

∣

∣

∣

∣

∣

∣

∣

∣

= 0
−x

(

−x + 3

2

)

=
(

−x

2
+ 3

2

)2

x2 − 3 = 0 ⇒ x = ±√
3

(202)

1 Kekulé E = Q + 1.5K

K + D E = Q + 1.73K
(203)
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Figure 10.25 Canonical structures (top) and superposition patterns (bottom) for butadiene.

Figure 10.26 Different conformations of butadiene.

so that:

Conjugation energy = 0.23K < 0. (204)

We note that ψ2 has a “long” π -bond (a–d) and is called Dewar (D) structure. The con-
jugation energy stabilizes the system. We notice that the conjugation energy in open bu-
tadiene is about four times smaller than the resonance energy in the corresponding ring.
As in Hückel theory, at this level of approximation we cannot distinguish between the
different conformations of the open chain, which are all taken to have the same energy
(Figure 10.26).

The calculation of the coefficients in butadiene, assuming orthogonality between the
structures, gives:

(

−x + 3

2

)

c1 +
(

−x

2
+ 3

2

)

c2 = 0 with x = 1.73 (205)
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c2 = x − 3
2

3
2 − x

2

c1 = 0.362c1. (206)

Therefore, we obtain for the resonance between Kekulé and Dewar structures in butadiene:

� = c1(ψ1 + 0.362ψ2) = 0.94ψ1 + 0.34ψ2 (207)

88%ψ1 12%ψ2 (208)

which shows the greater importance of the Kekulé vs the Dewar structure.

10.5.4 Allyl Radical

This is an interesting example of how to apply Pauling VB theory to an odd-electron system
(N = 3, S = 1/2). We add a phantom atom (say d), treat the system as a four orbital system
and, at the end, delete the phantom orbital from the calculation. The covalent VB structures
and the corresponding superposition patterns are hence the same (including the phantom
orbital) as those of butadiene. With reference to Figure 10.25, if d is the phantom orbital,
we have:

H11 − ES11 = Q − E + K − 1

2
K + K

removed
= Q − E + 1

2
K

H22 − ES22 = Q − E + K − 1

2
K − 1

2
K

removed
= Q − E + 1

2
K

H12 − ES12 = 1

2
(Q − E + K + K + K

removed
) = 1

2
(Q − E) + K

(209)

∣

∣

∣

∣

∣

∣

∣

∣

−x + 1

2
−x

2
+ 1

−x

2
+ 1 −x + 1

2

∣

∣

∣

∣

∣

∣

∣

∣

= 0

(

−x + 1

2

)2

=
(

−x

2
+ 1

)2

3

4
x2 = 3

4
⇒ x = ±1

(210)

1 K E = Q + 1

2
K

K + D E = Q + K

(211)

Conjugation energy = 0.5K < 0. (212)

The stabilization due to the conjugation of the π -bonds in the allyl radical is hence larger
for N = 3 than for N = 4 (butadiene): �E = 0.5K instead of 0.23K .

The calculation of the coefficients gives:

(

−x + 1

2

)

c1 +
(

−x

2
+ 1

)

c2 = 0 with x = 1 (213)
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c2 = x − 1
2

1 − x
2

c1 = c1 c1 = c2 = 1√
2

(214)

if we neglect non-orthogonality between the structures. This gives for the relative weight
of the VB structures:

50%ψ1 50%ψ2 (215)

as expected for full resonance.
It is interesting to note that the same result is obtained if we correctly admit non-

orthogonality between the structures. Since:

S12 = 〈ψ1|ψ2〉 = 1

2

� = ψ1c1 + ψ2c2 = 1√
3
(ψ1 + ψ2) c1 = c2 = 1√

3

we have:

%ψ1 = c2
1 + c1c2S12 = 1

3

(

1 + 1

2

)

= 1

3
· 3

2
= 1

2

%ψ2 = c2
2 + c2c1S12 = 1

3

(

1 + 1

2

)

= 1

3
· 3

2
= 1

2

as it must be.

10.5.5 Benzene

The five canonical structures (2 Kekulé + 3 Dewar) for singlet benzene (2n = 6) are given
in the top row of Figure 10.27, while the bottom row of the same figure gives the distinct
superposition patterns.

By symmetry, all exchange integrals are equal, Kij = K . From the superposition pat-
terns of Figure 10.27, we obtain immediately all necessary matrix elements between the
structures.

H11 − ES11 = H22 − ES22 = Q − E + 3

2
K

H12 − ES12 = 1

4
(Q − E) + 3

2
K

(216)

H33 − ES33 = H44 − ES44 = H55 − ES55 = Q − E

H34 − ES34 = H35 − ES35 = H45 − ES45 = 1

4
(Q − E) + 3

2
K

(217)
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Figure 10.27 Canonical structures (top) and superposition patterns (bottom) for benzene.

H13 − ES13 = H14 − ES14 = H15 − ES15

= H23 − ES23 = H24 − ES24 = H25 − ES25

= 1

2
(Q − E) + 3

2
K. (218)

(216) are the matrix elements between Kekulé structures, (217) between Dewar structures,
(218) the cross-terms between Kekulé and Dewar structures.

We now examine the different possible cases.

(i) Resonance between Kekulé structures.

� = ψ1c1 + ψ2c2 (219)

giving the secular equation:

∣

∣

∣

∣

∣

H11 − ES11 H12 − ES12

H12 − ES12 H22 − ES22

∣

∣

∣

∣

∣

= 0, (220)

namely:

∣

∣

∣

∣

∣

∣

∣

∣

−x + 3

2
−x

4
+ 3

2

−x

4
+ 3

2
−x + 3

2

∣

∣

∣

∣

∣

∣

∣

∣

= 0

(

−x + 3

2

)2

=
(

−x

4
+ 3

2

)2

5x2 − 12x = x(5x − 12) = 0

(221)
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with the roots:

x = 0 ⇒ E = Q (222)

x = 12

5
⇒ E = Q + 12

5
K = Q + 2.4K. (223)

Taking into account the equivalence of the two Kekulé structures, and renouncing to the
excited root (x = 0), we can write immediately:

H�� − ES�� = 〈ψ1 + ψ2|Ĥ − E|ψ1 + ψ2〉
= 2(H11 − ES11) + 2(H12 − ES12)

= (−2x + 3) +
(

−1

2
x + 3

)

= −5

2
x + 6 = 0 ⇒ x = 12

5
. (224)

(ii) Resonance between Dewar structures.

� = ψ3c3 + ψ4c4 + ψ5c5 (225)

giving the secular equation:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−x −x

4
+ 3

2
−x

4
+ 3

2

−x

4
+ 3

2
−x −x

4
+ 3

2

−x

4
+ 3

2
−x

4
+ 3

2
−x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (226)

Expanding the determinant gives:

x3 + 2x2 − 4x − 8 = (x + 2)2(x − 2) = 0 (227)

with the roots:

x = −2(twice) ⇒ E = Q − 2K (228)

x = 2 ⇒ E = Q + 2K. (229)

Taking into account the fact that the three Dewar structures are equivalent by symmetry,
we get for the lowest root:

H�� − ES�� = 〈ψ3 + ψ4 + ψ5|Ĥ − E|ψ3 + ψ4 + ψ5〉
= 3(H33 − ES33) + 6(H34 − ES34)

= −3x − 6

4
x + 18

2
= −9

2
x + 9 = 0 ⇒ x = 2 (230)
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as before.
(iii) Resonance between Kekulé and Dewar structures.

Taking into account symmetry, we can write immediately:

� = c1(ψ1 + ψ2) + c2(ψ3 + ψ4 + ψ5) = c1�K + c2�D, (231)

where �K and �D are un-normalized. The secular equation is:

∣

∣

∣

∣

∣

HKK − ESKK HKD − ESKD

HKD − ESKD HDD − ESDD

∣

∣

∣

∣

∣

= 0, (232)

where:

HKK − ESKK = −5

2
x + 6

HDD − ESDD = −9

2
x + 9

(233)

were already calculated, and:

HKD − ESKD = 〈ψ1 + ψ2|Ĥ − E|ψ3 + ψ4 + ψ5〉

= 6(H13 − ES13) = 6

(

−x

2
+ 3

2

)

= −3x + 9. (234)

Therefore:

∣

∣

∣

∣

∣

∣

∣

∣

−5

2
x + 6 −3x + 9

−3x + 9 −9

2
x + 9

∣

∣

∣

∣

∣

∣

∣

∣

= 0 x2 + 2x − 12 = 0 (235)

with the roots:

x = −1 + √
13 = 2.6055 ⇒ E = Q + 2.6055K (236)

x = −1 − √
13 = −4.6055 ⇒ E = Q − 4.6055K. (237)

(iv) Full VB calculation.

� = ψ1c1 + ψ2c2 + ψ3c3 + ψ4c4 + ψ5c5. (238)
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Without use of symmetry, (238) gives the secular equation:

K − K K − D

−x + 3

2
−x

4
+ 3

2
−x

2
+ 3

2
−x

2
+ 3

2
−x

2
+ 3

2

−x

4
+ 3

2
−x + 3

2
−x

2
+ 3

2
−x

2
+ 3

2
−x

2
+ 3

2

−x

2
+ 3

2
−x

2
+ 3

2
−x −x

4
+ 3

2
−x

4
+ 3

2

−x

2
+ 3

2
−x

2
+ 3

2
−x

4
+ 3

2
−x −x

4
+ 3

2

−x

2
+ 3

2
−x

2
+ 3

2
−x

4
+ 3

2
−x

4
+ 3

2
−x

K − D D − D

= 0. (239)

Elementary, but lengthy, manipulations of the determinant (multiplication by a number,
addition or subtraction of rows and columns) give the expanded form:

x5 + 6x4 − 40x2 − 48x = x(x + 2)2(x2 + 2x − 12) = 0 (240)

giving the five real roots (in ascending order):

x = −1 + √
13, 0, −2, −2, −1 − √

13. (241)

The lowest root, x = −1 + √
13, is the energy pertaining to the ground state of the π -

electron system of benzene, described by the “resonance” between Kekulé and Dewar VB
structures.

(v) Use of C6v symmetry.
As already done for Hückel theory, we can use C6v symmetry for the complete factor-

ization of the secular equation for the five canonical structures of benzene, an interesting
application of symmetry in VB theory.

Let us, for convenience, rename the structures as:

ψ1 = A, ψ2 = B, ψ3 = C, ψ4 = D, ψ5 = E. (242)
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Figure 10.28 The benzene ring.

With reference to Figure 10.28, we keep π bonds fixed, so that R̂χ simply permutes
identical carbon nuclei in the molecule. The transformation table of the AOs in the active
representation is:

R̂χ I C+
6 C−

6 C+
3 C−

3 C2 σa σb σc σab σbc σcd

a a f b e c d a c e b d f

giving the transformation table of the VB structures (top of Figure 10.27) under C6v sym-
metry:

R̂ψ I C+
6 C−

6 C+
3 C−

3 C2 σa σb σc σab σbc σcd

A A B B A A B B B B A A A

B B A A B B A A A A B B B

C C D E E D C D C E E D C

D D E C C E D C E D D C E

E E C D D C E E D C C E D

The table of characters of the point group C6v is:
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C6v I 2C6 2C3 C2 3σv 3σd

A1 1 1 1 1 1 1

A2 1 1 1 1 −1 −1

B1 1 −1 1 −1 1 −1

B2 1 −1 1 −1 −1 1

E1 2 1 −1 −2 0 0

E2 2 −1 −1 2 0 0
χ(�) 5 0 2 3 1 3

where χ(�) are the characters of the reducible representation �. χ(�) can be written im-
mediately, without making use of the full representative matrices, simply by counting how
many structures are left unchanged in the column of the transformation table corresponding
to the operation R̂. By decomposing � into its irreducible components under C6v (Chap-
ter 8), we find:

� = 2A1 + B2 + E2. (243)

Using the full projector:

P̂ i
λλ = li

h

∑

R

Di (R)∗λλR̂, (244)

from the full table of C6v in the form of representative matrices of the operations R̂ (Prob-
lem 8.13 of Chapter 8), we find that the symmetry-adapted VB structures, in un-normalized
form, are:

A1: A + B ∝ �K, C + D + E ∝ �D

B2: A − B

E2: 2C − D − E ∝ x2 − y2, D − E ∝ xy.

(245)

In this symmetry-adapted basis, which transforms as the irreducible representations of C6v ,
the 5 × 5 secular equation (239) factorizes into a 2 × 2 block (symmetry A1), a 1 × 1 block

(B2), while the 2 × 2 E2 block further factorizes into its components E
x2−y2

2 and E
xy

2 ,
which are orthogonal and not interacting with respect to Ĥ , as shown in Figure 10.29.



536 10. Valence Bond Theory and the Chemical Bond

Figure 10.29 Factorization of the full VB secular equation into its C6v symmetry blocks.

Therefore, we have:

A1: D2 = x2 + 2x − 12 = 0

B2: D1 = −x + 3

2
+ x

4
− 3

2
= −3

4
x = 0

E
x2−y2

2 : D1 = −x + x

4
− 3

2
= −3

4
x − 3

2
= 0

E
xy

2 : D1 = −x + x

4
− 3

2
= −3

4
x − 3

2
= 0

(246)

which corresponds to the factorization (240) giving the real roots:

A1: −1 + √
13, −1 − √

13

B2: 0

E2: −2, −2 (twofold degenerate).

(247)

(vi) Weights of VB structures and resonance energies.
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The coefficients of Kekulé and Dewar structures are calculated from the homogeneous
system of equation (235):

(

−5

2
x + 6

)

c1 + (−3x + 9)c2 = 0 with x = 2.6055 (248)

c2 =
5
2x − 6

−3x + 9
c1 = 0.4341c1. (249)

Assuming orthogonality between the structures:

〈�|�〉 = 2c2
1 + 3c2

2 = 1 N = (

2c2
1 + 3c2

2

)1/2 (250)

c1 = 0.6243, c2 = 0.2710 (251)

so that we obtain:

38.9% = weight of each Kekulé structure

7.3% = weight of each Dewar structure
(252)

in surprising agreement with a recent ab-initio VB calculation by Cooper et al. (1986b)
giving for these weights 40.3% and 6.5%, respectively.

As we already saw before in this Chapter, the resonance energy is defined (Pauling)
as the difference between the π energy obtained from the linear combination of the VB
structures and that corresponding to the most stable single VB structure. It is this resonance
energy which explains, according to Pauling, the stabilization of the aromatic sextet of π

electrons in benzene (compare the delocalization energy in Hückel MO theory).
The π energies and the resonance energies corresponding to the different combinations

of VB structures in benzene are given in Table 10.9.
For a basis of non-orthogonal AOs, the introduction of the 170 ionic structures (Ger-

ratt, 1987), 60 singly polar, 90 doubly polar, 20 triply polar, for a total of 170 + 5 sin-
glet (S = MS = 0) structures, does not alter in an appreciable way these conclusions. Ta-

Table 10.9.

π energies and resonance energies for VB structures in benzene

Structure �a π energy Resonance energyb

1 Kekulé ψ1 Q + 1.5K 0
2 Kekulé ψK = ψ1 + ψ2 Q + 2.4K 0.9
1 Dewar ψ3 Q –
3 Dewar ψD = ψ3 + ψ4 + ψ5 Q + 2K 0.5
2K + 3D 0.6243ψK + 0.2710ψD Q + 2.6K 1.1

aUn-normalized. bIn units of K : �x = �E/K .
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Table 10.10.

Resonance and delocalization energies for a few conjugated and aromatic hydrocarbons

Molecule Resonance Delocalization Experimentc

energya energyb kcal mol−1

Butadiene 0.23 0.47 3.5
Hexatriene 0.48 0.99 –
Benzene 1.10 2.00 37
Naphthalene 2.04 3.68 75
Diphenyl 2.37 4.38 79
Anthracene 2.95 5.32 105
Fenanthrene 3.02 5.45 110

a In units of K . bIn units of β . cFrom heats of hydrogenation.

ble 10.10 compares resonance (VB) and delocalization (MO) energies for a few conjugated
and aromatic hydrocarbons.

MO and VB results are seen to be in fair qualitative agreement. Resonance energy is
sensibly larger for rings rather than for open chains, the reason being in the larger number
of Kekulé structures of similar energy (larger resonance energy) that we have in closed
chain (rings) molecules. The revised VB theory over OAOs was applied in non-empirical
calculations of the lower π -electron levels of benzene by McWeeny (1955).

10.5.6 Naphthalene

We shall now give a short outline of the VB theory of naphthalene (Pauling and Wheland,
1933, PW; Sherman, 1934), just to show how dramatically increases the number of allowed
structures and the difficulty of the calculation.

According to the Wigner rule for n = 5 and S = 0:

f 5
0 = (2S + 1)(2n)!

(n + S + 1)!(n − S)! = 10!
6!5! = 42 (253)

there are 42 singlet covalent VB structures for naphthalene, of which 3 are Kekulé and 39
Dewar structures involving “long” bonds. 16 of these Dewar structures involve one “long”
bond, 19 two “long” bonds, and 4 three “long” bonds, improperly called by PW singly,
doubly, and triply excited structures, respectively (Figure 2 of PW). The first VB calcula-
tion on naphthalene was done by Pauling and Wheland (1933) under certain simplifying
assumptions, while the complete secular equation for the 42 canonical structures was set
up and solved rigorously within the Pauling approximations by Sherman (1934). Sherman
used molecular symmetry to factor out the secular equation into a 16 × 16, a 14 × 14, and
two 6 × 6 blocks. For the ground state of the molecule, it was sufficient to consider only
the 16 × 16 block, whose matrix elements are fully given in Table 10.1 of his paper.
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Figure 10.30 The three Kekulé structures of naphthalene.

In the following, we shall however refer to the simpler approach by PW, who assumed
equal all structures within each block (which is not strictly true, but of sufficient accuracy).
The PW grouping of structures is hence the following:

1 + 2 + 16 + 19 + 4 = 42

ψ1 ψ2 ψ3 ψ4 ψ5
(254)

giving the VB wavefunction:

� = ψ1c1 + ψ2c2 + ψ3c3 + ψ4c4 + ψ5c5. (255)

The most important structures are of course the three Kekulé structures of Figure 10.30,
one syn and two equivalent anti.

It must be noted that, even if each structure of Figure 10.30 has the same energy, the 12′
(and 12′′) interactions are different from 2′2′′. The three Kekulé structures yield the secular
equation (Sherman, 1934):

∣

∣

∣

∣

∣

∣

∣

∣

−x + 2 −x

2
+ 13

4

−x

2
+ 13

4
−17

8
x + 43

8

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (256)

which can be expanded to give the quadratic equation:

10x2 − 34x + 1 = 0 (257)

having the lowest root:

x = 17 + 3
√

31

10
= 3.3703. (258)

The calculation of the coefficients for this root gives:

c2 = x − 2
13
4 − x

2

c1 = 0.8757c1, (259)
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Table 10.11.

π energies and resonance energies for the VB structures of naphthalenea

Structure π energy Resonance energyb

ψ1 Q + 2K 0
ψ1 + ψ2 Q + 3.37K 1.37
ψ1 + ψ2 + ψ3 Q + 3.98K 1.98 (2.004)c

�, eq. (255) Q + 4.02K 2.02 (2.04)c

aPauling and Wheland (1933). bIn units of K . cSherman (1934).

Table 10.12.

Relative weights of the VB structures of naphthalenea

Structure Coefficients Individual weight Total weight %

ψ1(1) 0.4954 24.54 24.54
ψ2(2) 0.4217 17.78 35.57
ψ3(16) 0.1499 2.247 35.95
ψ4(19) 0.04552 0.207 3.93
ψ5(4) 0.003815 0.0025 0.01

aPauling and Wheland (1933).

so that, assuming orthogonality between the structures:

� = 0.6282ψ1 + 0.5501ψ2, (260)

where (un-normalized):

ψ2 = ψ ′
2 + ψ ′′

2 , (261)

with the relative weights:

39.4%ψ1 30.3%ψ ′
2 30.3%ψ ′′

2 . (262)

This situation is however deeply modified when the large number (16) of one “long” bond
structures is admitted: PW calculations indicate that all these structures contribute to the
total by more than 1/3 (36%). The PW energies for the VB structures of naphthalene are
given in Table 10.11, while Table 10.12 gives the relative weights of the corresponding
structures whose number is indicated in parenthesis in the first column.

Table 10.12 shows how the situation is changed when Dewar structures are admitted.
There is a 15% reduction in the importance of ψ1 (Kekulé syn), whereas the weight of
ψ ′

2 + ψ ′′
2 (the two equivalent Kekulé anti) is reduced by about 25%. As a whole, about

60% is still contributed by the three Kekulé structures, but the one “long” bond Dewar
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structures, which have a moderate individual contribution (about 2.25%), contribute by
over 1/3 to the total, because their number is large (16). The contribution of the two “long”
bond structures is less than 4% of the total, while the contribution of the three “long” bond
structures is negligible.

The situation is expected to be even worst in anthracene (2n = 14), where the total num-
ber of canonical structures (429) is slightly more than 10 times the number of naphthalene
(42), and the number of one “long” bond Dewar structures increases 3 times (48 instead
of 16). The total number of “higher-excited” Dewar structures (Sherman, 1934) increases
however more than 16 times (377 instead of 19 + 4 = 23), a trend expected to explode for
larger polycyclic hydrocarbons (compare coronene!).

10.5.7 Derivation of the Pauling Formula for H2 and Cyclobutadiene

We now derive the Pauling formula (190) first for the H2 molecule (2n = 2) and, next, for
cyclobutadiene (2n = 4).

(i) The H2 molecule.

• 1�+
g ground state (S = MS = 0).

Under Pauling’s assumptions, the covalent VB structure for ground state H2 is:

ψ1 = 1√
2

[

(ab) − (ab)
] = 1√

2

[

(ab)
1

+ (ba)
2

]

(263)

with:

S11 = 〈ψ1|ψ1〉 = 1

2
(1 + 1) = 1. (264)

In what follows it will be more convenient to use for ψ1 the second form of equation (263),
where the α and β spin parts of the second Slater det are put in a corresponding order as in
the starting parent.

The VB matrix element for structure ψ1 will be:

H11 = 〈ψ1|Ĥ |ψ1〉
= 1

2

{[〈(ab)| Ĥ
11

|(ab)〉 + 〈(ba)| Ĥ
22

|(ba)〉]

“diagonal terms”

+ [〈(ab)| Ĥ
12

|(ba)〉 + 〈(ba)| Ĥ
21

|(ab)〉]

“off-diagonal terms”

}

= use Slater’s rules for orthonormal determinants

= 1

2

{[

haa + hbb +
〈

ab

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

ab

〉

−
〈

ab

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

ba

〉

+ 1

R

]
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Figure 10.31 Canonical structure and superposition pattern for ground state H2.

+
[

hbb + haa +
〈

ba

∣

∣

∣
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−
〈
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∣
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r12
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∣

∣

∣
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〉
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R

]

+
〈
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∣
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1

r12

∣

∣

∣

∣

ba

〉

−
〈
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∣

∣

∣

1

r12

∣

∣

∣

∣

ab

〉

+
〈

ba

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

ab

〉

−
〈

ba

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

ba

〉}

= eliminating spin, we have contributions only from “matching” spins

= 1

2

{

2

[

haa + hbb + (a2|b2) + 1

R

]

+ (ab|ba) + (ba|ab)

}

= 1

2
(2Q + 2K) = Q + K. (265)

In the last two rows of (265) we used the charge density notation for the spinless form of
the 2-electron integrals:

(a2|b2) =
∫ ∫

dr1 dr2
b(r2)b

∗(r2)

r12
a(r1)a

∗(r1)

(ab|ab) =
∫ ∫

dr1 dr2
a(r2)b

∗(r2)

r12
a(r1)b

∗(r1),

(266)

and put, for the Coulomb integral:

Q = haa + hbb + (a2|b2) + 1

R
. (267)

Hence, we obtain:

H11 − ES11 = Q − E + K = 0 ⇒ E
(1�+

g

) = Q + K, (268)

in agreement with the superposition pattern of Figure 10.31, corresponding to the singlet
wavefunction which describes “bonded” atoms (of course, in the sense discussed at the
beginning of this Section).

• 3�+
u triplet state (S = 1, MS = 0).
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This case is not comprised in Pauling’s formula (190), but is in some way illuminating
in explaining the origin of repulsion between “non-bonded” atoms.

ψ1
(3�+

u ,MS = 0
) = 1√

2
[(ab) + (ab)] = 1√

2
[(ab)

1
− (ba)

2
] (269)

with:

S11 = 〈ψ1|ψ1〉 = 1

2
(1 + 1) = 1. (270)

Proceeding as before, we find:

H11 = 〈

ψ1
(3�+

u

)∣

∣Ĥ
∣

∣ψ1(
3�+

u )
〉

= 1

2

{[〈(ab)| Ĥ
11

|(ab)〉 + 〈(ba)| Ĥ
22

|(ba)〉]

− [〈(ab)| Ĥ
12

|(ba)〉 + 〈(ba)| Ĥ
21

|(ab)〉]}

= Q − K, (271)

so that:

H11 − ES11 = Q − E − K = 0 ⇒ E
(3�+

u

) = Q − K. (272)

For two “non-bonded” atoms having “random” spins, we have four possible spin states
(one for singlet, three for triplet), so that the average energy will be:

E

[

1

4
E
(1�+

g

)+ 3

4
E
(3�+

u

)

]

= 1

4
(Q + K) + 3

4
(Q − K) = Q − 1

2
K, (273)

where the exchange integral appears with the coefficient typical of “non-bonded” AOs.

(ii) Cyclobutadiene.
With reference to Figure 10.24, we rewrite here the complete expressions for the two

singlet (S = MS = 0) canonical structures of cyclobutadiene, keeping the dictionary order
for the orbitals in the Slater dets:

ψ1 = 1

2

[

(abcd) − (abcd) − (abcd) + (abcd)
]

ψ2 = 1

2

[

(abcd) − (abcd) − (abcd) + (abcd)
]

(274)
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with:

S11 = 〈ψ1|ψ1〉 = 1

4
(1 + 1 + 1 + 1) = 1

S12 = 〈ψ1|ψ2〉 = 1

4
(1 + 1) = 1

2
.

(275)

As in the previous case of H2, we now evaluate the matrix elements between the VB struc-
tures, taking into account Pauling’s assumptions and Slater’s rules for orthonormal deter-
minants (details in Problem 10.7).

H11 = 〈ψ1|Ĥ |ψ1〉
= 1

4
{4Q − 2[(ac|ac) + (ad|ad) + (bc|bc) + (bd|bd)]

+ 4[(ab|ab) + (cd|cd)]}, (276)

where Q is the Coulomb integral and we used the charge density notation for the 2-electron
integrals. In (276):

(ac|ac) = (bd|bd) = 0 (277)

because exchange integrals between “non-adjacent” atoms, whereas by symmetry:

(ab|ab) = (ad|ad) = (bc|bc) = (cd|cd) = K. (278)

Hence, we finally obtain:

H11 = Q+ 2K − 1

2
(2K)

“bonded” “non-bonded”
atoms atoms

(279)

H11 − ES11 = Q − E + K (280)

in agreement with the superposition pattern of Figure 10.24. By symmetry:

H22 − ES22 = H11 − ES11. (281)

For the off-diagonal element between the structures we have similarly:

H12 = 〈ψ1|Ĥ |ψ2〉
= 1

4
{2[Q − (ac|ac) − (bd|bd)] − 2(bd|bd)

+ 2[(ab|ab) − (ac|ac) + (ad|ad) + (bc|bc) + (cd|cd)]}
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= 1

2
[Q + (ab|ab) − 2(ac|ac) + (ad|ad)

+ (bc|bc) − 2(bd|bd) + (cd|cd)]
= 1

2
(Q + 4K) (282)

H12 − ES12 = 1

2
(Q − E + 4K) (283)

as prescribed by Pauling’s formula.
Hence, using the full determinantal expressions for the canonical structures and Paul-

ing’s simplifying assumptions, use of Slater’s rules for orthonormal determinants yields
the results obtained in Section 10.5.2 for cyclobutadiene using the superposition patterns
of Figure 10.24. The same could be done for benzene (2n = 6).

10.6 HYBRIDIZATION AND DIRECTED VALENCY IN POLYATOMIC
MOLECULES

In the VB description of diatomic molecules discussed in Section 10.4.5, hybridization on
the heavy atoms was not taken into account, at least in the first approximation. This is
no longer possible in the VB description of polyatomic molecules, since the principle of
maximum overlap (which will be examined in more detail in Section 10.6.4) requires that
the covalent bond be formed between AOs properly directed one towards each other so
as to avoid the formation of bent (weaker) bonds. This point is of tantamount importance
for a correct description of directed valency and, therefore, of all bond stereochemistry.
In the following, we shall examine further this question, with special reference to the VB
calculation of the water molecule.

10.6.1 sp2 Hybridization in H2O

Considering the H2O molecule in the yz-plane (H1 in the positive part of the yz-molecular
plane, see Figure 8.19 in Problem 8.6), if the O H bond would be formed only by the 2p

AOs (2py = y and 2pz = z, for short) of oxygen and the 1s AOs (1s1 = h1 and 1s2 = h2)
of hydrogens, the principle of maximum overlap (straight bonds between O and H) would
yield a bond angle of 2θ = 90◦. The fact that the experimentally observed angle is larger
than this (2θ ≈ 105◦), would suggest the formation of sensibly bent O H bonds, with
very poor overlap between the 2p AOs of oxygen and the 1s AOs of H1 and H2. On
the other hand, 2p AOs directed towards the H atoms and making an interbond angle
equal to the experimentally observed value of 2θ = 105◦, would be non-orthogonal (see
Problem 10.8). We can restore orthogonality between the AOs on the oxygen atom by
mixing in a certain quantity of 2s (= s) with the two 2p AOs of oxygen, obtaining in this
way three sp2 hybrids of C2v symmetry (the symmetry of the H2O molecule), directed
along two equivalent O H bonds and on the rear of the molecule in a direction bisecting
the valence angle.
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Figure 10.32 The three sp2 hybrids of C2v symmetry in H2O.

The three hybrids hyi (i = 1,2,3) of Figure 10.32 allow (i) for an interbond angle greater
than 90◦ (cos 2θ < 0), preserving orthogonality between valence AOs onto the same atom,
and (ii) for orbitals directed along the bonds, satisfying in this way the principle of maxi-
mum overlap and giving stronger straight bonds.

The three sp2 (C2v) hybrids are:

hy1 = 0.4534s + 0.5426z + 0.7071y

hy2 = 0.4534s + 0.5426z − 0.7071y

hy3 = 0.7673s − 0.6412z,

(284)

giving 20.6%s and 79.4%p for hybrids engaged in the O H bonds, 58.9%s and 41.1%p

for the hybrid directed along z and forming the σ lone pair. The hybrids are easily
constructed by taking into account equivalence and orthonormality requirements (Prob-
lem 10.8).

If the hybrids are written as:

hy1 = as + bp1

hy2 = as + bp2

hy3 = cs − dz,

(285)

where p1 and p2 are two p orbitals directed towards h1 and h2, the transformation between
the original and the hybrid AO basis is given by the unitary matrix U:

(hy1 hy2 hy3) = (s z y)U (286)
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U =
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⎟

⎠

(287)

with:

UU† = U†U = 1. (288)

10.6.2 VB Description of H2O

Let us now consider the VB description of ground state H2O in terms of directed hybrid
orbitals on O, by posing:

hy1 = b1, hy2 = b2, hy3 = σ. (289)

• H2O
(1

A1
)

.

O(3P): 1s2
O2s2

O2p2
xO2pyO2pzO ⇒ k2σ 2x2b1b2 (290)

H(2S): ⇒ h1h2, (291)

where k is the inner-shell oxygen AO, σ and x the AOs describing the two lone pairs, and
b1, b2 the two equivalent sp2(C2v) hybrids on oxygen pointing towards h1 and h2.

In a first approximation, restricting ourselves to the four orbitals b1, b2, h1, h2, and treat-
ing H2O as an “effective” 4-electron problem, Weyl formula gives:

f (4,4,0) = 1

5

(

5
3

)(

5
2

)

= 20 (292)

singlet (S = MS = 0) VB structures, 2 covalent, 12 singly polar, 6 doubly polar, few of
which are given in Figure 10.33, where the parent dets are also indicated. The most impor-
tant structures are, of course, ψ1 (perfect-pairing), the two equivalent singly polar ψ3 and
ψ4 and the doubly polar ψ15. Polar structures are expected to be important in H2O because
of the greater electronegativity of the O atom compared to the H atoms.

Considering only the most important structures in the VB wavefunction:

�
(1

A1
) = ψ1c1 + 1√

2
(ψ3 + ψ4)c3 + ψ15c15, (293)
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Figure 10.33 A few of the 20 singlet VB structures for ground state H2O treated as a four-electron problem.

Figure 10.34 Estimated relative weights of covalent and polar VB structures in ground state H2O.

Coulson (1961) gave an estimate of the mixing coefficients which reproduces the value of
observed dipole moment (μ = 0.73ea0):

c1 = 0.64, c3 = c4 = 0.48, c15 = 0.36

yielding the relative weights of Figure 10.34.
Even if the importance of the ionic structures in Coulson’s VB description of H2O might

seem too large, subsequent ab-initio VB calculations by Raimondi et al. (1977) on CH4 us-
ing a minimal basis of STOs in the 1s2 “frozen” core approximation, have confirmed the
importance of mono- and bi-ionic structures in accounting for a large part of the correla-
tion energy in this molecule. Different ab-initio VB calculations on ground state H2O in
the minimum STO basis of Ellison and Shull (1953) were done by McWeeny and Ohno
(1960) and Maclagan and Schnuelle (1977), while Raimondi, Tantardini and Simonetta
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(RTS) (Raimondi et al., 1974, 1975) tested the influence on energy and dipole moment of
the quality of the orbitals and the number of structures included in the calculation. RTS
concluded that the best value of the energy is strongly dependent on the nature of the or-
bitals in the basis set, while the full-electron VB calculation in the minimum basis set
of 7 AOs (196 structures) is not significantly better than the 1s2 “frozen” core approxima-
tion involving 6 AOs (105) structures. On the other hand, the performance of the physically
appealing simple VB approximation (293) does not seem to have been fully explored in ab-
initio calculations. In more recent work, McWeeny and Jorge (1988) examined the effect
of hybridization in a VB study of H2O using a minimal set of 7 AOs expressed in STO-6G
form, keeping a k2x2 “frozen” core. They concluded that, with suitably optimized hybrids,
a few structures are capable of giving results close to those obtained in the full-CI limit of
50 structures.

Group function (GF) calculations for ground state H2O were reported by Klessinger
(1965), who studied the systematic variation of the molecular energy with the hybridization
parameters. Best energy was obtained for orthogonal sp2 bond hybrids having 18%s and
an interbond angle of 102.7◦. These values are not far from those obtained from the simple
requirement of hybrid orthogonality of equation (284) (20.6% and 2θ = 105◦).

10.6.3 Properties of Hybridization

We now summarize briefly the main properties of hybridization.

(i) Physically, hybridization describes to a certain extent the distortion of the orbitals
involved in the bond (see H2), a second-order effect which can be fully accounted for
by enlarging the basis set to include polarization functions.

(ii) Hybridization increases overlap between the AOs forming the bond, yielding a strong
bond (more correctly, it increases the exchange-overlap component of the bond en-
ergy).

(iii) Hybridization restores orthogonality of the AOs onto the same atom, allowing for
interhybrid angles greater than 90◦. The hybrid AOs can in this way reorient them-
selves in an optimum way, maximizing the overlap in the formation of the bonds and
avoiding the formation of weaker bent bonds. The proof of this statement was first
given by Coulson (1961), and will be fully given in Problem 10.9 with reference to
Figure 10.35.

(iv) Hybridization can give in this way the AOs the appropriate directional character for
forming covalent bonds, and is therefore of fundamental importance in bond stereo-
chemistry.

(v) According to Mulliken (1951), “a little hybridization goes a long way”. Even without
changes in valency (isovalent hybridization), hybridization allows for a better dispo-
sition in space of electron lone pairs, projecting them in regions of space external to
the bond region, what has a considerable effect on the electric dipole moment of the
molecule (see Coulson’s atomic dipoles).
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Figure 10.35 Resolution of the bond hybrid bj into orthogonal components.

Table 10.13.

Possible sp3 hybrids equivalent under different symmetries

Hybrid Name 2θ/◦ Number of
hybrids

Symmetry

spπ2 Digonal 180 2 D∞h

sp2π Trigonal 120 3 D3h,C3v

sp3 Tetrahedral 109.5 4 Td

(vi) For the carbon atom, promotion of an electron from 2s to 2p increases covalency from
2 to 4, so that it is possible to obtain four sp3 hybrid orbitals, each singly occupied,
symmetrically disposed in space and making interhybrid angles greater than 90◦:

s2p2 ⇒ sp3 ⇒ four hybrids of different symmetries. (294)

The analytical form of the different equivalent hybrids pointing in the i-th direction is:

bi = s + pi√
2

digonal

(

%s = 1

2

)

bi = s + √
2pi√

3
trigonal

(

%s = 1

3

)

bi = s + √
3pi

2
tetrahedral

(

%s = 1

4

)

.

(295)

Possible equivalent spn hybrids are given in Table 10.13 and Figure 10.36.
These equivalent hybrids are those describing the bonds in BeH2 and CO2 (D∞h), BH3

(D3h) and CH4 (Td ). As already seen for H2O, spn hybrids of lower symmetry are possible
as well. They are only partly equivalent, such as sp3 or sp2π (C2v) in H2O, sp3 (C3v) in
NH3 or CH3X molecules. In the case of ammonia, three equivalent hybrids form the three
N H bonds with the three H atoms, while a fourth, non equivalent, hybrid will describe
the electron lone pair directed along the symmetry z-axis. Torkington (1951) gave formulae
for sp3 hybrids equivalent under C2v and C3v symmetry, whereas Musso et al. (1973) gave
formulae for sp3 hybrids of C1 (no symmetry) and Cs (one symmetry plane) symmetry.
From the latter formulae, Torkington results for C2v (two symmetry planes) and C3v (three
symmetry planes) are easily recovered under the appropriate symmetry restrictions.
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Figure 10.36 Equivalent spn hybrids of D∞h,D3h and Td symmetries.

A striking example of point (ii) above in the case of two equivalent sp hybrids will
conclude this Section. With reference to Figure 10.37, assuming all elementary overlaps
between s and pσ AOs to be positive, the overlap between two general sp hybrids making
an angle 2θ with respect to the bond direction z will be:

Sbb = 〈bA|bB〉
= Sss cos2 ω + (

Sσσ cos2 2θ + Sππ sin2 2θ
)

sin2 ω

+ Ssσ sin 2ω cos 2θ, (296)

where ω denotes the hybridization parameter.
For hybrids directed along the bond, θ = 0◦, so that:

Sbb = Sss cos2 ω + Sσσ sin2 ω + Ssσ sin 2ω. (297)

Table 10.14 gives the hybrid overlap Sbb for different C C hybrids in ethylene, for R =
2.55a0 and elementary overlaps between STOs with cs = cp = 1.625:

Sss = 0.4322, Sσσ = 0.3262, Ssσ = 0.4225. (298)

Table 10.14 shows that hybrid overlap is sensibly larger than each elementary overlap
Sss , Sσσ and Ssσ . Considering the largest individual overlap, Sss = 0.4322, hybrid overlap
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Figure 10.37 Overlap between two sp hybrids along the bond direction.

Table 10.14.

Overlap between sp bond hybrids according to different hybridizations

Hybrid spn cosω ω/◦ Sbb

Digonal sp
1√
2

45 0.8017

Trigonal sp2 1√
3

54.7 0.7600

Tetrahedral sp3 1

2
60 0.7186

is increased by over 85.5% for sp, 75.8% for sp2, and 66.3% for sp3. The numbers show
unequivocally the phantastic increase in overlap due to sp hybridization.

10.6.4 The Principle of Maximum Overlap in VB Theory

The principle of maximum overlap was often assumed as one of the fundamental rules of
chemical bonding since the early applications of quantum mechanics to the study of the
electronic structure of molecules (Hückel, 1930; Pauling, 1931a; Coulson, 1937b). The
principle states that “bonding is stronger for AOs having maximum overlap”, and has the
important consequence that straight bonds are stronger.

We shall outline here a simple VB model, recently presented by us (Magnasco and Costa,
2005), which shows that, in the valence bond description of the chemical bond, “covalent
bonding is strongest for AOs maximizing the strength8 of the complete exchange-overlap
component of the bond energy”. This was suggested by the fact (i) that the HL description

8We recall that the bond strength is the negative of the bond energy De at the bond length Re .
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of the covalent bond seems an adequate first approximation for describing the strength of
a chemical bond and its dependence on orientation, and (ii) that Table 10.4 in this Chapter
shows that the exchange-overlap component of the first-order HL interaction energy for
ground state H2 has a sensible minimum at the bond length, Re = 1.4a0. The overlap SAB

between pA, a directed 2p orbital on A making an angle θ with the interbond axis A–B
directed from A to B along z, and sB , a spherical orbital on B a distance R apart, is:

SAB = 〈sB |pA〉 = S cos θ, (299)

where S is an overlap integral characteristic of the bond A–B, which depends on R but is
independent of θ . It is immediately evident that SAB has a maximum value when pA points
in the direction of sB (θ = 0◦). The HL 1- and 2-electron exchange-overlap components of
the bond energy, equation (53), will take the simple form:

�Eexch-ov
1 = SAB

(hsBpA
− SABhpApA

) + (hpAsB − SABhsBsB )

1 + S2
AB

(300)

�Eexch-ov
2 = (pAsB |pAsB) − S2

AB(p2
A|s2

B)

1 + S2
AB

. (301)

For the matrix elements of the “effective” 1-electron operator ĥ over the exchange-overlap
densities (pAsB −SABp2

A) and (sBpA −SABs2
B) we can make assumptions similar to those

of Hückel theory including overlap (Magnasco, 2002, 2004a):

hpApA
= (

p2
A|ĥ) = αp, hsBsB = (

s2
B |ĥ) = αs

hsBpA
= (pAsB |ĥ) = βAB = β cos θ,

(302)

where αp , αs , β are all negative quantities, and β is a bond integral, characteristic of
the bond A–B but independent of the orientation θ . When the angular dependence on θ

is singled out from expressions (300) and (301), it is easily shown that the stationarity
condition for Eexch-ov against θ is obtained from:

dEexch-ov

dθ
= sin 2θ

(1 + S2 cos2 θ)2

[

a + b cos2 θ(2 + S2 cos2 θ)
] = 0, (303)

while the second angular derivative is positive at the stationary point θ = 0:

(

d2Eexch-ov

dθ2

)

θ=0
= 2

(1 + S2)2

[

a + b(2 + S2)
]

> 0. (304)

In the equations above, a and b are positive constants involving 1- and 2-electron integrals
independent of angle θ . Equations (303) and (304) then say that the HL exchange-overlap
strength of the covalent bond formed between the AOs pA and sB has a maximum (a



554 10. Valence Bond Theory and the Chemical Bond

minimum of negative energy) for the straight bond (θ = 0◦), which has the physically
appealing expression:

Eexch-ov(θ = 0) = S[2β − S(αp + αs)] + [(σAsB |σAsB) − S2(σ 2
A|s2

B)]
1 + S2

, (305)

the exact counterpart of equation (53) for ground state H2. Here, σA and πA (involved in
the constants a, b) are the components of pA along the bond direction and perpendicular
to it.

We may conclude that the principle of maximum overlap of elementary valence the-
ory (Coulson, 1961) should more appropriately be replaced by the principle of maximum
exchange-overlap in the formation of the covalent bond. A similar conclusion is obtained
in elementary Hückel theory including overlap (Magnasco, 2005).

10.7 AN OUTLINE OF RECENT ADVANCES IN VB THEORY

In the next two Sections we shall give a short outline of some recent advances in valence
bond theory, first summarizing the main lines of research in the field (Section 10.7.1), next
giving some details of the spin-coupled VB theory.

10.7.1 Modern VB Theories

In a broad sense, we can refer to the content of this Section as to “Modern VB theories”
since we want to present here those lines of research aimed at an ab-initio VB theory after
the semiempirical Pauling’s approach given in Section 10.5. The research in the field may
be roughly summarized into six main lines as follows.

(i) As already outlined in Section 10.5, the first attempt to put the theory on a sound
basis so as to allow for ab-initio calculations was done long ago by McWeeny, who,
after a critique of the VB methods existing at that time (McWeeny, 1954a), refor-
mulated the theory (McWeeny, 1954b) in terms of Löwdin orthogonalized atomic
orbitals (OAOs) fully including polar (ionic) structures. The construction of suitable
spin eigenfunctions and the evaluation of matrix elements between structures is fully
described there, together with an extension of usual Pauling’s rules to include the
presence of ionic structures. This revised VB theory was then applied by McWeeny
(1955) in non-empirical calculations of the lower π -electron levels of cyclobutadiene
and benzene. This theory was also used by the author and coworkers (Magnasco and
Musso, 1967a, 1967b) in ab-initio studies of short-range intermolecular interactions
in H2–H2.

(ii) Direct use of Löwdin rules (Löwdin, 1955a) for the evaluation of matrix elements be-
tween Slater determinants of non-orthogonal orbitals. This was the approach mostly
followed by Simonetta’s group in Milan in the seventies. An a-priori VB theory, which
could be applied to states of any multiplicity, was formulated in a general form includ-
ing both spin and orbital degeneracy (Simonetta et al., 1968). Structures were related
to products of spin functions found by means of extended Rumer diagrams, the spin
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functions corresponding to each diagram being the product of (N − 2S) spins cou-
pled in pairs and 2S parallel coupled (“leading term”). All possible ways of coupling
electrons in pairs were considered. Calculations in the σ–π approximation using STO
bases were done for simple hydrocarbons, molecules, radicals and ions. An applica-
tion to benzyl radical with inclusion of an increasing number of ionic structures was
found to give excellent results for the hyperfine coupling constants of the radical cal-
culated from VB spin densities (Raimondi et al., 1972).

The theory was next applied at the ab-initio level to small molecules and radicals,
using minimal basis sets of STOs. Calculations were done on ground state (2�) energy,
proton and 13C hyperfine splittings of the CH radical (Tantardini and Simonetta, 1972,
1973), and on different electronic states of CH2 (Tantardini et al., 1973).

The quality of the orbitals in the basis set (Slater, Slater with optimized orbital
exponents, Hartree–Fock AOs) and the number of structures included in the calcu-
lation was then examined in minimum basis set ab-initio VB calculations on LiH,
CH, CH2, CH3, NH3 and H2O by Raimondi et al. (1974). Confirming previous re-
sults on H2 and LiH by Yokoyama (1972), it was shown there that a relatively small
number of structures could give fair results if the basic AOs were carefully chosen.
The problems arising in the VB treatment when attempting to extend the basis set
were discussed, for the same set of molecules, by Raimondi et al. (1975). They came
to the conclusion that there was the need for a general method of going beyond the
minimal basis set, then making a selection of the resulting VB structures according to
chemical intuition. In this way, connection with Gerratt’s work (Gerratt, 1971), where
use is made of “best” orbitals to build spin-coupled VB functions (next point in this
Section), arose quite naturally.

(iii) As just discussed in (ii), the classical valence bond method, considered as a sim-
ple extension of the Heitler–London theory, becomes quickly impracticable if use
of extended basis sets is needed to obtain highly accurate results. Goddard (1967a,
1967b, 1968a, 1968b) and Gerratt (1971) proposed independently a general theory
where use of group theoretical arguments is made from the outset to obtain an en-
ergy expansion corresponding to a linear combination of structures for a single orbital
configuration, then optimizing both orbitals and expansion coefficients to obtain the
best possible one-configuration approximation. The non-orthogonal orbitals resulting
therefrom were called unrestricted general valence bond (GVB) orbitals by Goddard
or spin-coupled self-consistent-field (SC-SCF) orbitals by Gerratt. Gerratt’s theory
and its further extension will be further discussed in the next Section.

As far as the numerical results are concerned, Goddard made a preliminary calcula-
tion on the magnetic hyperfine structure of the Li atom (Goddard III, 1967c), followed
by GVB calculations for several molecules, including H2 (Goddard III, 1967b), Li2,
CH3, CH4 (Goddard III, 1968b), LiH (Palke and Goddard III, 1969), LiH, H3, BH,
H2O, C2H6, O2 (Hunt et al., 1972) and O2 (Moss et al., 1975). The calculations gave
a fairly correct torsional barrier in ethane, and an accurate description of the relative
position of the 3�−

g and 1�+
g electronic states of O2. Particular attention was paid

to the shape of the optimized GVB orbitals, which show enhanced overlap over the
entire internuclear distances.
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By Gerratt, calculations were done using an extension of his original approach
on H2 (Wilson and Gerratt, 1975), LiH, BH, Li2, HF (Pyper and Gerratt, 1977),
the potential energy curves of different electronic states of BeH (Gerratt and Rai-
mondi, 1980), the dipole moment of ground state LiH (Cooper et al., 1985), the re-
action B++H2 (Cooper et al., 1986a), and a review (Cooper et al., 1987) where the
results on small molecular systems, containing up to 10 electrons, were presented.
Again it was found that the orbitals resulting from the optimized procedure are of the
Coulson–Fischer enhanced-overlap type, and that relatively short expansions usually
lead to wavefunctions of high quality. The spin-coupled functions typically yield 85%
of the observed binding energies and equilibrium bond distances accurate to 0.01Å.
200–700 structures are usually sufficient to reproduce the first 10 states of a given
symmetry to an accuracy of about 0.01 eV.

The explicit introduction of r12 into the Coulson–Fischer wavefunction was exam-
ined by Clarke et al. (1994). Similar VB-SCF and VB-CI methods were later proposed
by Van Lenthe and Balint-Kurti (1983).

(iv) Gallup, Gallup et al. (1973, 1982) largely uses group theoretical techniques with
Young idempotents to project out functions of appropriate symmetry from a set of
arbitrary orbital products, but not optimizing the orbitals. His presentation is com-
plicated to some extent by the abstract formalism of the permutation group and its
algebras, but, according to the author, this formulation allows to develop an optimal
algorithm for the evaluation of matrix elements of the Hamiltonian involving non-
orthogonal orbitals. The theory was presented in some detail by Gallup (2002) in a
recent textbook on valence bond methods, and fully implemented in a commercial
program package (CRUNCH) developed by the author and his students.

(v) McWeeny (1988b, 1990) recasted classical VB theory in a spin-free form which
seems to provide a practicable route to ab-initio calculations of molecular elec-
tronic structure even for extended basis sets. The formalism is, in part, similar to
that explained in some detail in the next Section, being based on the construction
of symmetry-adapted functions obtained by applying Wigner projectors to suitable
products of space orbitals, and coupling them with the associated “dual” spin func-
tions carrying an f N

S -dimensional irrep of the SN group. To maintain contact with
classical VB theory, however, the spin functions are chosen to be of the Weyl–
Rumer form and not of the standard Kotani’s form as those used by Gerratt et al.
(1971, 1987). The Weyl–Rumer functions for |MS | = S correspond to the lowest path
in the standard branching diagram, where (N − 2S)/2 spins are coupled in pairs
while all remaining spins are parallel coupled (see also Serber, 1934a, 1934b). A
standard variational approach allows to determine best expansion coefficients and
orbitals in the expansion of the wavefunction over all possible symmetry-adapted
orbital products. The matrix elements are easily evaluated (even within the mem-
ory of a fast personal computer) provided efficient algorithms are used for sys-
tematically generating permutations and for handling Rumer diagrams. The method
should be sufficient for dealing with molecular systems containing up to 10 elec-
trons outside a closed-shell core, and simple calculations on the H2–H2 system
(McWeeny, 1988a), and on the H2O and O2 molecules (McWeeny and Jorge, 1988;
McWeeny, 1990) seem to confirm the conclusions of Cooper et al. (1987) that, using
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strongly overlapping optimized orbitals, a small number of “classical” covalent struc-
tures can give results close to those occurring in a Full-CI calculation with the same
basis set.

(vi) We end by quoting Corongiu’s recent approach (Corongiu, 2005, 2006) which mixes
Hartree–Fock with Heitler–London theory. The method rests, essentially, in taking
as a first step a variationally optimized linear combination of traditional HF and HL
functions, followed by inclusion of valence and inner shells correlation. Using in-
creasingly accurate s,p, d,f . . . sets of Gaussian functions, results for the whole po-
tential curves, including dissociation, for the homonuclear diatomics H2, Li2, F2, and
the diatomic hydrides HeH, LiH, BeH, BH, CH, NH, OH, FH seem excellent over the
whole range of internuclear distances, and very promising for future applications to
polyatomic molecules.

It must be said that similar concepts were put forward in a qualitative way as early
as 1936, by Nordheim-Pöschl (1936a, 1936b) in her doctoral dissertation at the Fac-
ulty of Mathematical and Natural Sciences of the University of Göttingen, for ex-
plaining the apparent deviations occurring in the HL description of the chemical bond
in some diatomic and polyatomic molecules.

10.7.2 The Spin-Coupled VB Theory

The so-called spin-coupled VB theory was initially suggested by Gerratt (1971, 1976) and
later developed mostly with Cooper and Raimondi (Gerratt and Raimondi, 1980; Cooper
et al., 1987, references therein and subsequent work by these authors). In Gerratt’s original
approach, the most general approximate function obtainable from a spatial function �N is
written as a linear combination of all possible spin couplings k:

�SMS
=

f N
S

∑

k=1

�SMS ;kdSk, (306)

where �SMS ;k is the un-normalized “spin-coupled function” 9:

�SMS ;k =
(

1

f N
S

)1/2 f N
S

∑

l=1

(

Ŷ S
lk�

N
)

�S
SMS ;l . (307)

In equation (306), space and spin parts of the function are constructed separately following
a suggestion by Wigner (1959). �N is an arbitrary regular spatial function without any
permutational symmetry, chosen in the form of products of N spatial orbitals:

�N(r1, r2, · · · , rN) = φ1(r1)φ2(r2) · · ·φN(rN), (308)

9The �s of Gerratt’s work replace our ηs of Chapter 6.
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while Ŷ S
lk is the Young–Yamanouchi–Wigner projector:

Ŷ S
lk =

(

f N
S

N !
)1/2

∑

P

US
lkP̂

r (309)

projecting out of �N a basis transforming irreducibly under the operations of the symmet-
ric group SN (see Section 8.7.5 of Chapter 8).

�N
SMS ;l (s1, s2, · · · , sN ), the spin function “dual” to (Ŷ S

lk�
N) in the Wigner sense, is con-

structed by the synthetic method due to Kotani (Section 6.6 of Chapter 6) starting with
the spin functions for a single electron (� = α for MS = 1/2, � = β for MS = −1/2)
and building up the N -electron function by coupling the spins successively according to
the usual rules for angular momentum in Quantum Mechanics (Chapter 9) with reference
to the Kotani branching diagram. As already said before, indices k, l (k, l = 1,2, · · · , f N

S ,
where f N

S is the usual Wigner number of Chapter 6) can be interpreted as a series of partial

resultant spins. All �N
SMS ;k are eigenfunctions of Ŝ2 and Ŝz with eigenvalues S and MS ,

respectively, and form an orthonormal set of functions making a basis for the irrep of SN

(“dual” to the projected spatial part), which transforms under a permutation P̂ s of the spin
variables according to:

P̂ s�N
SMS ;k = εP

f N
S

∑

l=1

�N
SMS ;lU

S
lk(P ), (310)

the matrices εP US(P ) being said by Wigner to constitute the “dual” representation10. The
resultant functions (306) and (307) are, of course, exact eigenfunctions of the spin opera-
tors Ŝ2 and Ŝz with eigenvalues S and MS , respectively:

Ŝ2�SMS
= S(S + 1)�SMS

, Ŝ2
z �SMS

= MS�SMS
. (311)

The energy corresponding to function (306) is given by:

ES = 1

�

[ N
∑

μ,ν=1

D(μ|ν)〈φμ|ĥ|φν〉

+
N
∑

μ<ν

N
∑

σ<τ

D(μν|στ)〈φμφν |g|φσ φτ 〉

+
N
∑

μ<ν

N
∑

σ<τ

D(μν|τσ )〈φμφν |g|φτφσ 〉
]

, (312)

where D(μ|ν), D(μν|στ) are elements of the one- and two-electron density matrices,
〈φμ|ĥ|φν〉 and 〈φμφν |g|φσ φτ 〉 the usual one- and two-electron integrals and � the nor-

10εP is the usual parity of the permutation, equal to +1 or −1 according to whether P is even or odd.
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malization integral. The linear coefficients {dSl} or, better, their normalized counterpart
{cSl = dSl(�

S
ll)

1/2}, are found by solving a pseudosecular equation of order f N
S at most.

The variation problem is next completed by optimizing the energy (312) with respect to
the form of the orbitals. This is best and most efficiently achieved by using gradient tech-
niques (Gerratt and Raimondi, 1980). Best orbitals φμs appear as solution of a one-electron
integro-differential equation, reminiscent of the Hartree–Fock equation, but with a rather
complicated one-electron operator F̂μ, different for each orbital. The resulting orbital en-
ergy εμ can in no way be related to the experimentally observed molecular ionization
potentials, but must be simply regarded as the energy of the corresponding electron in the
field of nuclei and all other electrons. The virtual (unoccupied) orbitals resulting therefrom
have the same distorted atomic form of the occupied ones and have negative orbital ener-
gies. This is at variance with what occurs in conventional MO theory, where the excited
MOs usually correspond to positive orbital energies, being, consequently, highly diffuse
and, as such, not well suited for use in the CI procedure.

We want to stress at this point that the general expression of the spin-coupled function
�SMS ;k of equation (307) can be recast into the more familiar form in terms of Slater
determinants. In fact, using the explicit form (309) of the projector Ŷ S , we have:

�SMS ;k =
(

1

f N
S

)1/2 f N
S

∑

l=1

(

Ŷ S
lk�

N
)

�N
SMS ;l

=
(

1

N !
)1/2

∑

P

(

P̂ r�N
)

{ f N
S

∑

l=1

US
lk(P )�N

SMS ;l
}

=
(

1

N !
)1/2

∑

P

(

P̂ r�N
){

εP

(

P̂ s�N
SMS ;l

)}

= (N !)1/2Â
(

�N�N
SMS ;l

)

, (313)

where Â is the usual antisymmetrizer:

Â = 1

N !
∑

P

εP P̂ , P̂ = P̂ r P̂ s (314)

P̂ r being a permutation of spatial variables, P̂ s of spin variables only.
The original form of Gerratt’s theory, however, suffers from the limitation of being con-

structed from a single configuration and, in some cases, cannot predict the correct dissoci-
ation of the bonds. Pyper and Gerratt (1977) introduced a two-configuration wavefunction
where both orbital expansion coefficients and interconfigurational coefficients were simul-
taneously optimized, giving in this way a very accurate description of the whole potential
energy curve for the simple molecules LiH, BH, Li2 and HF. Gerratt’s theory was later
extended in two respects, (i) by considering the expansion of the spatial functions � into
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different sets of orthonormal functions for each electron coordinate, the different sets be-
ing not orthogonal to each other, and (ii) by making full use of Löwdin (1955a) techniques
for the calculation of matrix elements of the Hamiltonian between Slater determinants of
non-orthogonal orbitals using (313), in a procedure which involves the simultaneous pro-
duction of up to four-electron density matrices11. The technical problems arising from the
computation of a huge number of cofactors and the efficiency of the different strategies
for the design of ab-initio VB algorithms were fully examined by Raimondi and Gianinetti
(1988). In the last reformulation of the theory (1987), the spin-coupled wavefunction (306)
appears as the first (and more important) term in a more general expansion of � into N dis-
tinct sets of non-orthogonal orbitals. The CI stage of this work makes use of the traditional
VB spin functions as first formulated by Rumer (Section 10.5.1), in which the functions
are constructed by coupling together pairs of individual electron spins to form singlets, so
highlighting the phenomenon of bond formation in molecules.

10.8 PROBLEMS 10

10.1. Give a variational derivation of the Born–Oppenheimer equation (8) (Longuet-
Higgins, 1961).

Answer:
Equation (8) of the main text.

Hint:
Use � = �e(x;q)�n(q) as nuclear variational wavefunction and optimize �n subject to
the normalization condition.

10.2. Show the complete equivalence between MO and HL wavefunctions for the 3�+
u

excited state of H2.

Answer:

�(MO, 3�+
u ) = 1√

2
(σgσu − σuσg)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

αα

1√
2
(αβ + βα)

ββ

11In order to optimize the energy with non-orthogonal AOs, density matrices of order 1,2,3,4 are needed. These
density matrices are connected with one another, and can all be produced simultaneously, providing in this way a
highly efficient recurrence scheme for their computation.
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= ab − ba√
2 − 2S2

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

αα

1√
2
(αβ + βα)

ββ

= �
(

HL, 3�+
u

)

.

Hint:

Use the definitions, expanding σg and σu according to expressions (19) and (20) of the
main text.

10.3. Show the equivalence between the MO-CI wavefunction (61) and the full VB (HL +
ION) (60).

Answer:

�(MO − CI, 1�+
g ) = N

{

�(σ 2
g , 1�+

g ) + λ�(σ 2
u , 1�+

g )
}

= N

{

(ab + ba)

+ (1 − S) + λ(1 + S)

(1 − S) − λ(1 + S)
(aa + bb)

}

1√
2
(αβ + βα)

= c1�
(

HL, 1�+
g

)+ c2�
(

ION, 1�+
g

)

,

where λ = c2/c1.

Hint:
Use the definitions, expanding σg and σu according to expressions (19) and (20) of the
main text.

10.4. Show that the Schmidt orthogonalization of ψ1 to ψ2 in the case of the allyl radi-
cal yields two functions which are in one-to one correspondence with the two pure spin
doublets found in Problem 6.1 of Chapter 6.

Answer:

ψ ′
1 = ψ1 − S12ψ2

√

1 − S2
12

= 1√
6

[

(abc) + (abc) − 2(abc)
]

ψ ′
2 = ψ2 = 1√

2

[

(abc) − (abc)
]

,
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to be compared with the two pure spin doublet functions of Chapter 6:

η1 = 1√
6
(ααβ + αβα − 2βαα)

η3 = 1√
2
(ααβ − αβα).

Hint:
Evaluate the Schmidt transformed VB function ψ ′

1.

10.5. Show the equivalence between MO and VB wavefunctions for He2(
1�+

g ).

Answer:

�
(

MO, 1�+
g

) = ‖σgσgσuσu‖ = ‖aabb‖ = �
(

VB, 1�+
g

)

.

Hint:
Use the definitions (19) and (20) for σg and σu, and the elementary properties of determi-
nants.

10.6. Study the symmetry of the ionic structures in triplet O2.
In the ultrashort notation of Section 10.4.5 (vi) (b), the MS = 1 component of the ionic

structures in triplet O2 can be written as:

�(ION) = 1√
2

[

(xAyA) + (xByB)
]

.

Answer:
�(ION) is the MS = 1 component of the state 3�−

g .

Hint:
Use the operators Ŝ2, L̂z, σ̂zx and ı̂, commuting with the Hamiltonian Ĥ , to classify the
electronic state �(ION).

10.7. Evaluate the matrix elements between covalent VB structures for cyclobutadiene.

Answer:
Equations (279) and (282) of the main text.

Hint:
Use Slater’s rules for orthonormal dets and the elementary properties of determinants.

10.8. Construct the three sp2 hybrids of C2v symmetry for H2O.
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Answer:
If the molecule is chosen to lie in the yz-plane, the three hybrids are:

hy1 = as + bp1 hy2 = as + bp2 hy3 = cs − dz,

where, if 2θ is the interhybrid angle:

a =
√

2 sin2 θ − 1

2 sin2 θ
, b =

√

1

2 sin2 θ

c = cot θ, d =
√

2 sin2 θ − 1

sin2 θ
.

Hint:
Use equivalence and orthonormality relations between the three hybrids.

10.9. Prove that the angle made by two equivalent orthogonal hybrids is greater than 90◦.

Answer:
If 2θ is the angle between the two equivalent orthogonal hybrids bi = s cosω + pi sinω

and bj = s cosω + pj sinω (ω is the hybridization parameter), then:

cos 2θ = −
(

cosω

sinω

)2

< 0.

Hint:
Project bj onto the direction of bi , then use the orthogonality condition between the two
hybrids.

10.9 SOLVED PROBLEMS

10.1. Variational derivation of the Born–Oppenheimer equation (Longuet-Higgins, 1961).
Let:

Ĥ =
∑

α

− 1

2Mα

∇2
α + Ĥe + Vnn

Ĥe =
∑

i

−1

2
∇2

i + Ven + Vee =
∑

i

−1

2
∇2

i +
∑

i<j

1

rij
−

∑

α

∑

i

Zα

rαi

Vnn =
∑

α<β

ZαZβ

rαβ
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� = �e(x;q)�n(q)

where �n(q) is the nuclear variational function whose form must be optimized, while
�e(x;q) is kept fixed during the variation.

The molecular wave equation is:

Ĥ� = W�

and its variational approximation:

W = 〈�|Ĥ |�〉
〈�|�〉 = AB−1.

Varying W subject to the normalization condition gives:

δW = δA · B−1 − AB−1−1 · δB = 0

δA − WδB = 0

being the condition because W be stationary against infinitesimal arbitrary variations in
δ�n. Now:

A = 〈�e�n|Ĥ |�e�n〉 B = 〈�e�n|�e�n〉

∇2
α(�e�n) = ∇α · ∇α(�e�n) = ∇α · (�e∇α�n + �n∇α�e)

= �e∇2
α�n + �n∇2

α�e + 2∇α�e · ∇α�n

= {

�e∇2
α + ∇2

α�e + 2∇α�e · ∇α

}

�n,

so that:

Ĥ (�e�n) =
{

�e

∑

α

− 1

2Mα

∇2
α +

∑

α

− 1

2Mα

∇2
α�e

−
∑

α

1

Mα

∇α�e · ∇α + Ĥe�e + Vnn�e

}

�n.

Hence, it follows:

δA − WδB = δ〈�e�n|Ĥ |�e�n〉 − Wδ〈�e�n|�e�n〉
= 〈�eδ�n|Ĥ |�e�n〉 − W 〈�eδ�n|�e�n〉 + c.c.

=
∫

dq δ�∗
n

∫

dx �∗
e Ĥ (�e�n)
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− W

∫

dq δ�∗
n

∫

dx �∗
e �e · �n + c.c.

=
∫

dq δ�∗
n

{∫

dx �∗
e

1

�e

∑

α

− 1

2Mα

∇2
α

−
∑

α

1

2Mα

∫

dx �∗
e ∇2

α�e

−
∑

α

1

Mα

∫

dx �∗
e ∇α�e · ∇α +

∫

dx �∗
e

Ee

Ĥe�e

+ Vnn

∫

dx �∗
e

1

�e − W

∫

dx �∗
e

1

�e

}

�n + c.c. = 0.

Since �∗
n is arbitrary, the ket must be zero, so that:

{

∑

α

− 1

2Mα

∇2
α + Ûe(q)

}

�n(q) = W�n(q)

is the best wave equation for the nuclear motion, where:

Ûe(q) = Ee(q) + Vnn

+
∑

α

− 1

2Mα

∫

dx �∗
e ∇2

α�e

+
∑

α

1

Mα

∫

dx �∗
e (−i∇α�e) · (−i∇α)

is the “effective” potential energy operator for the nuclear motion, equation (9) of the main
text.

10.2. Equivalence between MO and HL wavefunctions for the 3�+
u excited state of H2.

The 3�+
u state of H2 is obtained by exciting one electron from the σ 2

g configuration of the
ground state (Figure 10.3) to the empty σu MO, giving the excited σgσu MO configuration.
The normalized MO wavefunction describing 3�+

u is then:

�(MO,3�+
u )

= 1√
2
{σg(r1)σu(r2) − σu(r1)σg(r2)}

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

α(s1)α(s2)

1√
2
[α(s1)β(s2) + β(s1)α(s2)]

β(s1)β(s2).
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Considering only the spatial part of the wavefunction, we have:

�(MO, 3�+
u ) = [a(r1) + b(r1)][b(r2) − a(r2)] − [b(r1) − a(r1)][a(r2) + b(r2)]

2
√

2 − 2S2

= (ab + bb − aa − ba) − (ba − aa + bb − ab)

2
√

2 − 2S2

= ab − ba√
2 − 2S2

= �
(

HL,3�+
u

)

that coincides with equation (57) of the main text.

10.3. Equivalence between MO-CI and full VB (HL + ION) wavefunctions for ground
state H2.

Let:

λ = c2

c1

be the ratio between the linear coefficients in equation (61). Then, using (19) and (20) of
the main text, we obtain:

�
(

MO − CI, 1�+
g

) = c1
{

�
(

σ 2
g ,1�+

g

)+ λ�
(

σ 2
u ,1�+

g

)}

= c1

{

(a + b)(a + b)

2 + 2S
+ λ

(b − a)(b − a)

2 − 2S

}

× SPIN

= c1

2

(

aa + ba + ab + bb

1 + S
+ λ

bb − ab − ba + aa

1 − S

)

× SPIN

= c1

2

{

(ab + ba)

(

1

1 + S
− λ

1 − S

)

+ (aa + bb)

(

1

1 + S
+ λ

1 − S

)}

× SPIN

= N

{

(ab + ba) + (aa + bb)

1
1+S

+ λ
1−S

1
1+S

− λ
1−S

}

× SPIN

= N

{

(ab + ba)

HL
+ (1 − S) + λ(1 + S)

(1 − S) − λ(1 + S)
(aa + bb)

ION

}

× SPIN

which is equation (62) of the main text, N being a normalization factor.
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10.4. Schmidt orthogonalization of ψ1 to ψ2 in the case of the allyl radical.

⎧

⎪

⎨

⎪

⎩

ψ ′
1 = ψ1 − S12ψ2

√

1 − S2
12

S12 = 1

2

ψ ′
2 = ψ2

which gives:

ψ ′
1 = 2√

3
· 1√

2

{[

(abc) − (abc)
]− 1

2

[

(abc) − (abc)
]}

= 1√
6

[

2(abc) − 2(abc) − (abc) + (abc)
]

= 1√
6

[

(abc) + (abc) − 2(abc)
]

S = 1

2
, MS = 1

2

whose associated spin structure is in a one-to-one correspondence with that previously
found in Problem 6.1 for the first doublet pure spin function:

η1 = 1√
6
(ααβ + αβα − 2βαα) S = 1

2
, MS = 1

2
.

The second VB structure:

ψ ′
2 = ψ2 = 1√

2

[

(abc) − (abc)
]

S = 1

2
, MS = 1

2

differs by an irrelevant (−1) phase factor from that for the second doublet pure spin func-
tion:

η3 = 1√
2
(ααβ − αβα) S = 1

2
, MS = 1

2
.

The doublet nature of the two VB structures for the allyl radical ground state can be verified
by applying Ŝ2 in the Dirac form for N = 3:

Ŝ2 = 3

4
Î + P̂12 + P̂13 + P̂23.

We have:

Ŝ2ψ1 = 1√
2

{

3

4
(abc) + (abc) + (abc) + (abc)

− 3

4
(abc) − (abc) − (abc) − (abc)

}
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= 3

4

{

1√
2

[

(abc) − (abc)
]

}

= 1

2

(

1

2
+ 1

)

ψ1

Ŝ2ψ2 = 1√
2

{

3

4
(abc) + (abc) + (abc) + (abc)

− 3

4
(abc) − (abc) − (abc) − (abc)

}

= 3

4

{

1√
2

[

(abc) − (abc)
]

}

= 1

2

(

1

2
+ 1

)

ψ2

as it must be for doublet S = 1/2 states.

10.5. Equivalence between MO and VB wavefunctions for He2(
1�+

g ).
The following elegant proof is due to Ottonelli (1997). We start from the single determi-

nant MO wavefunction:

�
(

MO, 1�+
g

) = ‖σgσgσuσu‖ = −‖
spin α

σgσu

spin β

σgσu ‖

= −
∥

∥

∥

∥

a + b√
2 + 2S

b − a√
2 − 2S

a + b√
2 + 2S

b − a√
2 − 2S

∥

∥

∥

∥

= −[

4(1 − S2)
]−1|a + b b − a a + b b − a|

= −[

4(1 − S2)
]−1

∣

∣

∣

∣

∣

|D| 0

0 |D|

∣

∣

∣

∣

∣

· |a b a b|

= −[

4(1 − S2)
]−1|det D|2 · |a b a b|

= −(1 − S2)−1|a b a b| = ‖a a b b‖ = �
(

VB,1�+
g

)

,

since:

D =
(

1 −1

1 1

)

, |D| = det D =
∣

∣

∣

∣

∣

1 −1

1 1

∣

∣

∣

∣

∣

= 2

|det D|2 = 4 (a + b b − a) = (a b)

(

1 −1

1 1

)

D being a linear transformation between the basic AOs.

10.6. Symmetry of the ionic structures in triplet O2.
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In the ultrashort notation, the MS = 1 component of the ionic VB structures for triplet
O2 corresponding to the parents of Figure 10.18 is described by the wavefunction:

�(ION) = 1√
2

[

(xAyA) + (xByB)
]

which can be treated as a 2-electron wavefunction (see Problem 8.16 of Chapter 8).

Ŝ2� = 2� = 1(1 + 1)�

L̂z� = 1√
2

[

(iyAyA) + (xA − ixA) + (iyByB) + (xB − ixB)
]

= i√
2

[

(yAyA) − (xAxA) + (yByB) − (xBxB)
] = 0�

since all determinants vanish because of the Pauli principle.

σ̂zx� = 1√
2

[

(xA − yA) + (xB − yB)
] = −�

ı̂� = 1√
2

[

(−xB − yB) + (−xA − yA)
] = �.

Hence, �(ION) is the component with MS = 1 of the triplet 3�−
g , as it must be.

10.7. VB matrix elements for cyclobutadiene.
With reference to (274) expressing ψ1 and ψ2 in terms of Slater dets, we have:

H11 = 〈ψ1|Ĥ |ψ1〉
= 1

4

{〈(abcd)| Ĥ
11

|(abcd)〉 + 〈(abcd)| Ĥ
22

|(abcd)〉

+ 〈(abcd)| Ĥ
33

|(abcd)〉 + 〈(abcd)| Ĥ
44

|(abcd)〉
“diagonal” elements

}

+ 2

4

{−〈(abcd) |Ĥ |
12 + 21

(abcd)〉 − 〈(abcd) |Ĥ |
13 + 31

(abcd)〉

+ 〈(abcd) |Ĥ |
14 + 41

(abcd)〉 + 〈(abcd) |Ĥ |
23 + 32

(abcd)〉

− 〈(abcd) |Ĥ |
24 + 42

(abcd)〉 − 〈(abcd) |Ĥ |
34 + 43

(abcd)〉
“off-diagonal” elements

}

= use Slater’s rules for orthonormal dets, considering only single inter-
changes and omitting for short 1/r12 in the Dirac notation
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= 1

4

{[Q − 〈ac|ca〉 − 〈bd|db〉]
11

+[Q − 〈ad|da〉 − 〈bc|cb〉]
22

+ [Q − 〈ad|da〉 − 〈bc|cb〉]
33

+[Q − 〈ac|ca〉 − 〈bd|db〉]
44

}

+ 2

4

{〈ab|ba〉
12 + 21

+〈cd|dc〉
13 + 31

+〈cd|dc〉
24 + 42

+〈ab|ba〉
34 + 43

}

= eliminate spin using charge density notation

= 1

4

{

4Q − 2[(ac|ac) + (ad|ad) + (bc|bc) + (bd|bd)]
+ 4[(ab|ab) + (cd|cd)]},

where Q is the Coulomb integral arising from the product of orbital functions (zero inter-
changes):

Q = 〈abcd|Ĥ |abcd〉
= haa + hbb + hcc + hdd

+ (a2|b2) + (a2|c2) + (a2|d2) + (b2|c2) + (b2|d2) + (c2|d2)

+ Vnn.

Since, for “non-adjacent” orbitals:

(ac|ac) = (bd|bd) = 0

and all other exchange integrals are equal by symmetry, we finally obtain:

H11 = Q + 2K − 1

2
(2K) = Q + K

which is the equation (279) in the main text.
For the off-diagonal element, we have:

H12 = 〈ψ1|Ĥ |ψ2〉
= 1

4

{〈(abcd)| Ĥ
11

|(abcd)〉 + 〈(abcd)| Ĥ
22

|(abcd)〉

+ 〈(abcd)| Ĥ
33

|(abcd)〉 + 〈(abcd)| Ĥ
44

|(abcd)〉
“diagonal” elements

}

+ 1

4

{−〈(abcd)| Ĥ
12

|(abcd)〉 − 〈(abcd)| Ĥ
13

|(abcd)〉

+ 〈(abcd)| Ĥ
14

|(abcd)〉 − 〈(abcd)| Ĥ
21

|(abcd)〉
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+ 〈(abcd)| Ĥ
23

|(abcd)〉 − 〈(abcd)| Ĥ
24

|(abcd)〉

− 〈(abcd)| Ĥ
31

|(abcd)〉 + 〈(abcd)| Ĥ
32

|(abcd)〉

− 〈(abcd)| Ĥ
34

|(abcd)〉 + 〈(abcd)| Ĥ
41

|(abcd)〉

− 〈(abcd)| Ĥ
42

|(abcd)〉 − 〈(abcd)| Ĥ
43

|(abcd)〉
“off-diagonal” elements

}

= 1

4

{[Q − 〈ac|ca〉 − 〈bd|db〉]
11

−〈bd|db〉
22

− 〈db|bd〉
33

+[Q − 〈ac|ca〉 − 〈bd|db〉]
44

}

+ 1

4

{〈ad|da〉
12

+〈cb|bc〉
13

+〈ba|ab〉
21

−〈ca|ac〉
23

+〈cd|dc〉
24

+ 〈dc|cd〉
31

−〈ac|ca〉
32

+〈ab|ba〉
34

+〈bc|cb〉
42

+〈da|ad〉
43

}

= 1

4

{

2[Q − (ac|ac) − (bd|bd)] − 2(bd|bd)

+ 2[(ab|ab) − (ac|ac) + (ad|ad) + (bc|bc) + (cd|cd)]}

= 1

2
[Q + (ab|ab) − 2(ac|ac) + (ad|ad) + (bc|bc) − 2(bd|bd) + (cd|cd)]

= 1

2
(Q + 4K)

which is equation (282) of the main text.

10.8. We first study the resolution of a pθ orbital, making an angle θ with the positive
z-axis in the yz-plane, into its orthogonal components py and pz (Figure 10.38).

We have:

−→
OP=−→

OQ + −→
QP= kz + jy = kOP cos θ + jOP sin θ

−→
OP

OP
= k cos θ + j sin θ.

k and j can be replaced by pz = z, and py = y. Therefore:

pθ = z cos θ + y sin θ,
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Figure 10.38 Resolution of a pθ AO into orthogonal components.

where cos θ and sin θ are the direction cosines of pθ in the yz-plane. Similarly, changing
θ into −θ :

p−θ = z cos θ − y sin θ,

and we have the linear transformation:

p1 = z cos θ + y sin θ

p2 = z cos θ − y sin θ

(p1p2) = (yz)L,

where:

L =
(

sin θ − sin θ

cos θ cos θ

)

.

The two transformed AOs, p1 and p2, are not orthogonal:

〈p1|p2〉 = cos2 θ − sin2 θ = cos 2θ.

The transformation matrix L has det L = sin 2θ , and is therefore unitary only for θ = π/4.
The inverse transformation is:

L−1 =

⎛

⎜

⎜

⎜

⎝

1

2 sin θ

1

2 cos θ

− 1

2 sin θ

1

2 cos θ

⎞

⎟

⎟

⎟

⎠



10.9 Solved Problems 573

giving:

y = 1

2 sin θ
(p1 − p2), z = 1

2 cos θ
(p1 + p2).

We can now pass to the construction of the three sp2 hybrids equivalent under C2v sym-
metry. We can write:

hy1 = as + bp1 = as + b cos θz + b sin θy

hy2 = as + bp2 = as + b cos θz − b sin θy

hy3 = cs − dz,

where the coefficients a, b, c, d must satisfy the orthonormality conditions:

{

a2 + b2 = 1 a2 + b2 cos 2θ = 0

c2 + d2 = 1 ac − bd cos θ = 0.

By solving it is found:

a2 = cos 2θ

cos 2θ − 1
= 1 − 1

2 sin2 θ
= 2 sin2 θ − 1

2 sin2 θ

b2 = 1 − a2 = 1

2 sin2 θ

c2 = b2

a2
(1 − c2) cos2 θ = cos2 θ

sin2 θ
= cot2 θ

d2 = 1 − c2 = 2 sin2 θ − 1

sin2 θ
,

whence, by choosing the positive roots:

a =
√

2 sin2 θ − 1

2 sin2 θ
, b =

√

1

2 sin2 θ

c = cot θ, d =
√

2 sin2 θ − 1

sin2 θ
.

The unitary matrix U doing the sp2 (C2v) hybridization is then:

(hy1hy2hy3) = (szy)U,
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where:

U =

⎛

⎜

⎜

⎜

⎜

⎝

a a c

b cos θ b cos θ −d

b sin θ −b sin θ 0

⎞

⎟

⎟

⎟

⎟

⎠

.

It is possible to express U as a function of c and d only, using:

a = 1√
2
d, b cos θ = 1√

2
c, b sin θ = 1√

2
,

so that we obtain for U the simplified form:

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1√
2
d

1√
2
d c

1√
2
c

1√
2
c −d

1√
2

− 1√
2

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

It is immediately verified that:

UU† = U†U = 1.

10.9. Angle between equivalent orthogonal hybrids.
With reference to Figure 10.35, let bi , bj be the two s,p hybrids pointing in the direc-

tions i and j , and making an interhybrid angle 2θ . If we denote by ω the single hybridiza-
tion parameter (equivalent hybrids), we can write the hybrids as:

bi = s cosω + pi sinω

bj = s cosω + pj sinω.

We resolve pj into its components in the direction of the i-th bond and the direction per-
pendicular to it:

pj = pi cos 2θ + p⊥ sin 2θ.

The condition of orthogonality between the two hybrids then gives:

〈bi |bj 〉 = cos2 ω + sin2 ω〈pi |pj 〉 = cos2 ω + sin2 ω cos 2θ = 0,
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and we therefore obtain:

cos 2θ = −
(

cosω

sinω

)2

< 0

which means that the angle 2θ between real orthogonal hybrids is greater than 90◦.
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11.1 INTRODUCTION

We already saw that the great majority of problems in molecular quantum mechanics is not
exactly soluble, so that approximation methods are needed to work out solutions at different
levels of sophistication. The most important is undoubtedly the Rayleigh variation method
which was widely treated in Chapter 5. We take now into consideration the perturbation
method due to Schroedinger, and known as Rayleigh–Schroedinger (RS) perturbation the-
ory. It consists essentially in relating the actual problem to one for which a complete solu-
tion is exactly known, and in treating the difference between their Hamiltonian operators
as a small perturbation. We shall be concerned here only with time-independent or station-
ary RS perturbation theory. Time-dependent perturbation theory is mostly of interest for
spectroscopy and related time-dependent phenomena, and appropriate presentations can
be found elsewhere (McWeeny, 1989; Stone, 1996). We shall follow in this Chapter essen-

577
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tially excellent previous work by Dalgarno (1961) and Hirschfelder et al. (1964). Pertur-
bation techniques are specially adapted for treating the electric (and magnetic) properties
of molecules (Van Vleck, 1932; Dalgarno, 1962; Davies, 1967) and molecular interactions
(Stone, 1996).

11.2 RS PERTURBATION THEORY FOR STATIONARY STATES

11.2.1 RS Perturbation Equations and Energy Corrections

Let:

(Ĥ − E)ψ = 0 (1)

by the Schroedinger eigenvalue equation to be solved, and:

(Ĥ0 − E0)ψ0 = 0 (2)

the already solved eigenvalue problem little different from (1). We treat the difference
between the Hermitian operators Ĥ and Ĥ0 as a small perturbation:

Ĥ − Ĥ0 = λĤ1, (3)

where λ is a convenient parameter giving the orders of the perturbation theory. In some
case, λ can be identified with some experimental parameter, say the strength F of a uni-
form electric field such that existing in a plane condenser, and we can speak in this case of
a physical perturbation, which can be removed in the laboratory by switching off the con-
denser. In most cases, however, the perturbation Ĥ1 is not physically accessible, as may be
the electron repulsion 1/r12 in treating the He atom as a perturbation of two hydrogen-like
electrons, or the interatomic potential V set in the interaction of two H atoms.

We expand E,ψ in a power series of λ, whose coefficients give corrections which must
be smaller and smaller with increasing powers of λ:

E = E0 + λE1 + λ2E2 + λ3E3 + · · · (4)

ψ = ψ0 + λψ1 + λ2ψ2 + · · · (5)

and substitute the expansions into the original eigenvalue equation (1):

{

(Ĥ0 − E0) + λ(Ĥ1 − E1) − λ2E2 − λ3E3 + · · ·}(ψ0 + λψ1 + λ2ψ2 + · · ·)= 0.

(6)
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If we now collect all coefficients of the same power of λ we obtain the hierarchy of RS
perturbation equations:

λ0 (Ĥ0 − E0)ψ0 = 0

λ (Ĥ0 − E0)ψ1 + (Ĥ1 − E1)ψ0 = 0

λ2 (Ĥ0 − E0)ψ2 + (Ĥ1 − E1)ψ1 − E2ψ0 = 0

λ3 (Ĥ0 − E0)ψ3 + (Ĥ1 − E1)ψ2 − E2ψ1 − E3ψ0 = 0

· · ·

(7)

The zeroth-order equation (2) has to have been solved exactly, otherwise uncontrollable
errors will affect the whole chain of equations. The first-order equation in (7) is a inho-
mogeneous differential equation that must be solved under the first-order orthogonality
condition (see next Section):

〈ψ0|ψ1〉 = 0. (8)

Once ψ0 and ψ1 are known, we can next find ψ2 by solving the second-order differential
equation in (7), and so on. We shall see, however, that ψ1 determines the energy corrections
up to the third order in λ.

The energy corrections En of the various orders are obtained by bracketing on the left
each RS equation by 〈ψ0|, taking into account the fact that in each equation the first term
on the left vanishes because the operators are Hermitian:

λ0 E0 = 〈ψ0|Ĥ0|ψ0〉
λ E1 = 〈ψ0|Ĥ1|ψ0〉
λ2 E2 = 〈ψ0|Ĥ1 − E1|ψ1〉
λ3 E3 = 〈ψ1|Ĥ1 − E1|ψ1〉

· · ·

(9)

We notice that E0 is the expectation value of the unperturbed Hamiltonian Ĥ0 over the
unperturbed function ψ0, but to avoid any error in the chain ψ0 must be the exact eigen-
function of Ĥ0. E1 is the expectation value of the perturbation Ĥ1 over ψ0. Knowledge of
ψ0 is hence sufficient to obtain the energy up to first order, which will be denoted by:

E(1) = E0 + E1. (10)

The second-order energy correction, E2, is instead given as an off-diagonal element of
(Ĥ1 − E1), which is usually known as a transition integral (from ψ0 to ψ1 under the per-
turbation Ĥ1). For E3 we can write from the last RS equation of order λ3 by bracketing
by 〈ψ0|:

〈ψ0|Ĥ1 − E1|ψ2〉 − E2〈ψ0|ψ1〉 = E3 (11)
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E3 = 〈(Ĥ1 − E1)ψ0|ψ2〉 − E2〈ψ0|ψ1〉
= −〈ψ1|Ĥ0 − E0|ψ2〉 − E2〈ψ0|ψ1〉
= 〈ψ1|Ĥ1 − E1|ψ1〉 − E2[〈ψ1|ψ0〉 + 〈ψ0|ψ1〉]
= 〈ψ1|Ĥ1 − E1|ψ1〉.

The possibility of shifting the orders of perturbation from the wavefunction to the operator,
and vice versa, is known as Dalgarno’s interchange theorem.

11.2.2 The Orthogonality Conditions

Expanding ψ to the various orders of perturbation theory (λ = 1):

ψ = ψ0 + ψ1 + ψ2 + · · · (12)

The normalization condition on the wavefunction ψ gives:

〈ψ |ψ〉 = 〈ψ0 + ψ1 + ψ2 + · · · |ψ0 + ψ1 + ψ2 + · · ·〉
= 〈ψ0|ψ0〉 + {〈ψ0|ψ1〉 + 〈ψ1|ψ0〉}

+ {〈ψ0|ψ2〉 + 〈ψ1|ψ1〉 + 〈ψ2|ψ0〉} + · · · = 1 (13)

meaning:

λ0 〈ψ0|ψ0〉 = 1 (14)

λ 〈ψ0|ψ1〉 + 〈ψ1|ψ0〉 = 0 (15)

λ2 〈ψ0|ψ2〉 + 〈ψ1|ψ1〉 + 〈ψ2|ψ0〉 = 0 (16)

· · ·

Generally, we can write:

n
∑

k=0

〈ψk|ψn−k〉 = δ0n (17)

giving orthogonality to the n-th order as:

n
∑

k=0

〈ψk|ψn−k〉 = 0 n > 0. (18)

Hence we see that we have normalization in zeroth-order, and orthogonality to all orders
n > 0.
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Considering the orthogonality condition to first order:

n = 1
1
∑

k=0

〈ψk|ψ1−k〉 = 〈ψ0|ψ1〉 + 〈ψ1|ψ0〉 = 0 (19)

we see that for real functions:

2〈ψ0|ψ1〉 = 0 (20)

gives the familiar orthogonality condition on the first-order wavefunction.
In general, let ψ1 be a complex function:

ψ1 = A + iB, A = Reψ1, B = Imψ1, (21)

where A,B are both real functions. Then, orthogonality to first order becomes:

〈ψ0|ψ1〉 + 〈ψ1|ψ0〉 = {〈ψ0|A〉 + 〈A|ψ0〉} + i{〈ψ0|B〉 − 〈B|ψ0〉}, (22)

where the last term vanishes irrespective of the value of function B . The condition of strong
orthogonality to first order takes 〈ψ0|B〉 = 0 individually, which is most simply satisfied if
the imaginary part of ψ1 (which is otherwise arbitrary) is assumed to be identically zero.

11.2.3 First-Order Perturbation Theory for Degenerate Eigenvalues

Let E0 be a g-fold degenerate eigenvalue of Ĥ0. Then there is a set {ψ0
1 ,ψ0

2 , · · ·ψ0
g } of

g different orthogonal (linearly independent) and normalized eigenfunctions belonging to
the same eigenvalue E0:

〈

ψ0
α

∣

∣ψ0
β

〉= δαβ α,β = 1,2, · · · , g. (23)

Then the first-order RS equation can be written as:

(Ĥ0 − E0)ψ1 + (Ĥ1 − E1)
∑

β

ψ0
βCβ = 0. (24)

Bracketing on the left by 〈ψ0
α | we obtain:

〈

ψ0
α

∣

∣Ĥ0 − E0
∣

∣ψ1
〉+
〈

ψ0
α

∣

∣

∣

∣

Ĥ1 − E1

∣

∣

∣

∣

∑

β

ψ0
β Cβ

〉

= 0 (25)

∑

β

[(H1)αβ − E1δαβ ]Cβ = 0 (26)

or, in matrix form:

(H1 − E11)C = 0, (27)
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where H1 is the matrix representative (order g) of the perturbation Ĥ1 over the degenerate
set. Equation (27) is the eigenvalue equation for matrix H1, the corresponding secular
equation being:

|H1 − E11| = 0 (28)

giving the g roots:

Eα
1 α = 1,2, · · · , g. (29)

Degeneracy will be fully removed in first order when all roots are different.
The most striking example of degenerate first-order perturbation theory is found in the

Hückel theory of chain hydrocarbons (linear or cyclic), where x = E1/β is the first-order
π interaction in units of β . We can write for the Hückel matrix:

H =
⎛

⎜

⎝

α β 0 0 · · ·
β α β 0 · · ·
0 β α β · · ·

· · · · ·

⎞

⎟

⎠
=
⎛

⎜

⎝

α 0 0 · · ·
0 α 0 · · ·
0 0 α · · ·

· · · · ·

⎞

⎟

⎠
+
⎛

⎜

⎝

0 β 0 · · ·
β 0 β · · ·
0 β 0 · · ·

· · · · ·

⎞

⎟

⎠

N ×N

H0 H1

,

(30)

where H0 is the diagonal matrix of the N -degenerate eigenvalue E0 = α, and H1 the trace-
less matrix of the π -interaction involving Hückel βs. Then, solution of the first-order sec-
ular equation gives directly the splitting of the 2pπ AO levels under the interaction:

|H1 − E11| =

∣

∣

∣

∣

∣

∣

∣

−E1 β 0 · · ·
β −E1 β · · ·

· · · · ·

∣

∣

∣

∣

∣

∣

∣

= 0

�⇒ DN =

∣

∣

∣

∣

∣

∣

∣

−x 1 0 · · ·
1 −x 1 · · ·

· · · · ·

∣

∣

∣

∣

∣

∣

∣

= 0. (31)

11.2.4 Properties of the Perturbation Solutions

Examination of the first few terms of the RS perturbation expansion for the ground state of
the system shows the following properties.

(i) Energy in first order is an upper bound to the true eigenvalue for the ground state.
In fact:

E(1) = E0 + E1 = 〈ψ0|Ĥ0 + Ĥ1|ψ0〉
〈ψ0|ψ0〉 = 〈ψ0|Ĥ |ψ0〉

〈ψ0|ψ0〉 ≥ Etrue (32)

since E(1) is nothing but the expectation value of the full Hamiltonian over the un-
perturbed ψ0.
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Table 11.1.

Energy corrections and energies up to second order (Eh) for the hydrogen-like
perturbation theory of He(1s2)

E0 −4 E(0) −4 +37.75%
E1 +1.25 E(1) −2.75 −5.3%
E2 −0.157 66 E(2) −2.907 66 +0.13%

(ii) The second-order energy correction is always negative (attractive) for the ground
state.

E2 = 〈ψ0|Ĥ1 − E1|ψ1〉 = 〈(Ĥ1 − E1)ψ0|ψ1〉 = −〈ψ1|Ĥ0 − E0|ψ1〉 < 0, (33)

where we have used the interchange theorem in the first-order equation and noted
that the expectation value of the excitation operator (Ĥ0 − E0) (a positive definite
operator) over the function ψ1 is always positive.

(iii) Energy in second order, E(2), is always lower than the true eigenvalue (it is not pro-
tected by any variational bound). As an example, Table 11.1 gives in Eh the first few
energy corrections, En, and the energies up to order n, E(n), for the H-like perturba-
tion theory of the He atom ground state (Dalgarno, 1961). The % error resulting
to the various orders in comparison with the accurate value E = −2.903 724Eh

(Pekeris, 1958) is given in the last column. It is worth noting that the interelectronic
repulsion 1/r12 is not a small perturbation.
E2 for He(1s2) was further analyzed into its non-expanded multipole contributions
E2l (l = 0, 1, 2, 3, · · ·) by Byron and Joachain (1967) and, more recently, by Mag-
nasco et al. (1992). It is found that convergence is very slow (E20 = −0.125 334Eh,
E21 = −0.026 495Eh, E22 = −0.003 906Eh, E23 = −0.001 077Eh).

(iv) The first-order correction to the wavefunction, ψ1, determines the energy correction
up to the third order. It is generally true that the n-th correction to ψ , ψn, determines
the energy up to E2n+1.

(v) Energy in third order is not an upper bound to the true eigenvalue, even if it will be
closer to it than energy in second order.
Consider the energy resulting from the variational principle using ψ0 + ψ1 as (un-
normalized) variational function. Then:

E = 〈ψ0 + ψ1|Ĥ0 + Ĥ1|ψ0 + ψ1〉
〈ψ0 + ψ1|ψ0 + ψ1〉

= {1 + 〈ψ1|ψ1〉}−1{E0 + E1 + [〈ψ1|Ĥ0 − E0|ψ1〉
+ 〈ψ1|Ĥ1 − E1|ψ0〉 + 〈ψ0|Ĥ1 − E1|ψ1〉]
+ 〈ψ1|Ĥ1 − E1|ψ1〉 + E0〈ψ1|ψ1〉 + E1〈ψ1|ψ1〉

}

= E0 + E1 + E2[ψ1] + E3

1 + 〈ψ1|ψ1〉 ≥ Etrue, (34)



584 11. Rayleigh–Schroedinger Perturbation Methods for Stationary States

where:

E2[ψ1] = 〈ψ1|Ĥ0 − E0|ψ1〉 + 〈ψ1|Ĥ1 − E1|ψ0〉 + 〈ψ0|Ĥ1 − E1|ψ1〉 (35)

is the second-order functional introduced by Hylleraas, which will be shown to be an
upper bound to the true E2. Expanding the denominator in (34) gives:

E = E0 + E1 + E2[ψ1] + E3 + O(λ4) (36)

so that E(3) is not an upper bound to the true eigenvalue.
(vi) The formal expansion of ψ1 into eigenstates of Ĥ0 gives the well known formula:

E2 = −
∑

k>0

|〈ψ0
k |Ĥ1 − E1|ψ0〉|2

E0
k − E0

< 0 (37)

which is known as sum-over-states expression, and is in agreement with (33). In
equation (37), {ψ0

k } is the complete set of excited eigenstates of Ĥ0, orthogonal to
ψ0, each belonging to the eigenvalue |E0

k | < |E0|. The trouble with (37) is that the
complete expansion must include not only the functions belonging to the discrete
spectrum, but also those from the continuum (see the related discussion on the dipole
polarizability of H(1s)). To stress this point, equation (37) is often written as:

E2 = −
∑

∫ |〈ψ0
k |Ĥ1 − E1|ψ0〉|2

E0
k − E0

< 0, (38)

where the additional sign means integration over the continuous part of the spectrum.
Equation (37) cannot be used as such in actual calculations.

(vii) It can be shown that, if ˜ψ1 is a variational approximation to the true first-order func-
tion ψ1, orthogonal to ψ0, the Hylleraas functional (35) gives an upper bound to the
true E2:

E2[˜ψ1] = ˜E2 ≥ E2 (39)

which gives a variational principle for the second-order energy. All practical calcula-
tions of second-order properties are based on such a bound.

11.2.5 Expansion in Eigenstates

Consider the first-order RS equation:

(Ĥ0 − E0)ψ1 + (Ĥ1 − E1)ψ0 = 0 (40)

with the orthogonality condition:

〈ψ0|ψ1〉 = 0. (8)
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We expand ψ1 into the complete set {ψ0
k } of the eigenstates of Ĥ0 (remind the comments

of the previous Section):

ψ1 =
∑

k′

∣

∣ψ0
k′
〉

Ck′ k′ > 0 (41)

(

Ĥ0 − E0
k′
)

ψ0
k′ = 0,

〈

ψ0
k

∣

∣ψ0
k′
〉= δkk′ . (42)

Then the first-order equation becomes:

∑

k′
Ck′
(

E0
k′ − E0

)

ψ0
k′ + (Ĥ1 − E1)ψ0 = 0. (43)

Bracketing (43) by 〈ψ0
k |:

∑

k′
Ck′
(

E0
k′ − E0

)

δkk′ + 〈ψ0
k

∣

∣Ĥ1 − E1
∣

∣ψ0
〉= 0. (44)

where the only surviving term will be k′ = k, giving:

Ck = −〈ψ0
k |Ĥ1 − E1|ψ0〉

E0
k − E0

k > 0. (45)

Introducing this expression for the expansion coefficient into the previous equations and
putting:

E0
k − E0 = εk > 0 (46)

we obtain the sum-over-states expressions for first-order function and second-order energy:

ψ1 = −
∑

k>0

|ψ0
k 〉 〈ψ

0
k |Ĥ1 − E1|ψ0〉

εk

(47)

E2 = −
∑

k>0

|〈ψ0
k |Ĥ1 − E1|ψ0〉|2

εk

< 0. (48)

11.2.6 Unsöld Approximation

Especially in older work it was often made use of an approximation due to Unsöld (1927)
and consisting in replacing all excitation energies εk by an average excitation energy 	E,
then using the closure property of the complete spectrum of eigenstates:

E2 = −
∑

k>0

〈ψ0|Ĥ1 − E1|ψ0
k 〉〈ψ0

k |Ĥ1 − E1|ψ0〉
εk
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∼= − 1

	E

all
∑

k

〈

ψ0
∣

∣Ĥ1 − E1
∣

∣ψ0
k

〉〈

ψ0
k

∣

∣Ĥ1 − E1
∣

∣ψ0
〉

= − 1

	E
〈ψ0|(Ĥ1 − E1)

all
∑

k

∣

∣ψ0
k

〉〈

ψ0
k

∣

∣Ĥ1 − E1
∣

∣ψ0
〉

, (49)

where the ground state ψ0 has been included in the summation. Since the set of {ψ0
k } is

now complete, the closure property gives:

all
∑

k

∣

∣ψ0
k

〉〈

ψ0
k

∣

∣= 1̂ = δ(x − x′) (50)

the identity operator (the Dirac δ-function). Hence we obtain the Unsöld formula for E2:

E2 ∼= − 1

	E

〈

ψ0
∣

∣(Ĥ1 − E1)
2
∣

∣ψ0
〉

(51)

which involves the expectation value of the square of the perturbation over the unperturbed
ψ0. This formula allows to give no more than an order of magnitude for E2, because of
the uncertainty in the choice of the average 	E. Kirkwood put on quantitative basis the
Unsöld approach, by means of the variation-perturbation method which we are going to
explain in the next Section.

11.3 VARIATIONAL APPROXIMATIONS FOR THE SECOND-ORDER
ENERGY

11.3.1 Variation-Perturbation Method

Hylleraas introduced the second-order energy functional as:

E2[ψ1] = 〈ψ1|Ĥ0 − E0|ψ1〉 + 〈ψ1|Ĥ1 − E1|ψ0〉 + 〈ψ0|Ĥ1 − E1|ψ1〉. (35)

If ψ1 is the exact first-order function, then:

E2[ψ1] = 〈ψ1|(Ĥ0 − E0)ψ1 + (Ĥ1 − E1)ψ0〉 + 〈ψ0|Ĥ1 − E1|ψ1〉
= 〈ψ0|Ĥ1 − E1|ψ1〉 = E2 (52)

since the first ket in the r.h.s. vanishes by definition. Otherwise, let ˜ψ1 be a well-behaved
variational approximation differing by the exact ψ1 by the first-order infinitesimal quantity
δψ1 (an error function):

˜ψ1 = ψ1 + δψ1. (53)



11.3 Variational Approximations for the Second-Order Energy 587

Then, introducing ˜ψ1 into (35), and taking into account the fact that ψ1 does satisfy the
first-order equation, it is readily obtained:

E2[˜ψ1] = ˜E2 = 〈δψ1|Ĥ0 − E0|δψ1〉 + 〈ψ0|Ĥ1 − E1|ψ1〉, (54)

namely:

˜E2 − E2 = 〈δψ1|Ĥ0 − E0|δψ1〉 = O(δ2) ≥ 0. (55)

Hence we conclude that not only the difference between ˜E2 and E2 is positive, giving an
upper bound to the true E2, but also it is second order in the error function δψ1. This means
that, as already seen for the Rayleigh variational principle, the error in ˜E2 is one order of
magnitude smaller than the error in the wavefunction ˜ψ1.

We now add some final variational considerations on the functional ˜E2. If we look for an
arbitrary infinitesimal change in ˜ψ1, we obtain for the change in ˜E2 to first order in δ˜ψ1:

δ˜E2 = 〈δ˜ψ1|Ĥ0 − E0|˜ψ1〉 + 〈δ˜ψ1|Ĥ1 − E1|ψ0〉 + c.c. = 0 (56)

which gives as necessary but not sufficient condition for the stationarity of the functional
˜E2 the Euler–Lagrange equation:

(Ĥ0 − E0)˜ψ1 + (Ĥ1 − E1)ψ0 = 0 (57)

which is nothing but the first-order equation for ˜ψ1. To second order in δ˜ψ1 we find:

δ2
˜E2 = 〈δ2

˜ψ1|Ĥ0 − E0|˜ψ1〉 + 〈δ2
˜ψ1|Ĥ1 − E1|ψ0〉 + c.c.

+ 2〈δ˜ψ1|Ĥ0 − E0|δ˜ψ1〉 = 2〈δ˜ψ1|Ĥ0 − E0|δ˜ψ1〉 ≥ 0 (58)

because of the Euler–Lagrange equation for ˜ψ1. So, the second variation of ˜E2 is positive,
and the stationary value for ˜E2 corresponds to a minimum for this functional. The same
result can be obtained directly in terms of functional derivatives of ˜E2.

In the context of double perturbation theory, involving static perturbations V̂ and Ŵ ,
second-order bivariational functionals were introduced for studying magnetic properties
of molecules and atomic polarizabilities (see, among others, Kolker and Karplus, 1964;
Kolker and Michels, 1965). In the context of symmetry-adapted perturbation theories
(Jeziorski and Kołos, 1977), Battezzati and Magnasco (1977) showed that, at least in prin-
ciple, the second-order MS-MA energy (Section 5.1 of Chapter 12) can be obtained from
the extrema of a single unsymmetrical functional. The matter was since then reviewed to
some extent by Battezzati (1989).

11.3.2 Kirkwood Approximation

Use of the Unsöld approximation in the first-order trial function suggests for ˜ψ1 the form:

˜ψ1 = −
∑

k>0

∣

∣ψ0
k

〉 〈ψ0
k |Ĥ1 − E1|ψ0〉

εk
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∼= − 1

	E

all
∑

k

∣

∣ψ0
k

〉〈

ψ0
k

∣

∣

︸ ︷︷ ︸

1̂

Ĥ1 − E1
∣

∣ψ0
〉

= − 1

	E
(Ĥ1 − E1)ψ0 (59)

by the closure property. Therefore, Kirkwood suggested to use as a first approximation to
the variational function ˜ψ1:

˜ψ1 = C Ĥ1 ψ0, (60)

where C is a linear coefficient and ˜ψ1 is not normalized. Using this form of ˜ψ1 in the
Hylleraas functional, optimization of the linear coefficient gives:

C = − 〈ψ0|Ĥ 2
1 |ψ0〉

〈ψ0|Ĥ1(Ĥ0 − E0)Ĥ1|ψ0〉
(61)

yielding as best second-order energy:

˜E2(best) = − |〈ψ0|Ĥ 2
1 |ψ0〉|2

〈ψ0|Ĥ1(Ĥ0 − E0)Ĥ1|ψ0〉
. (62)

Comparing with Unsöld:

˜E2(Unsöld) = − 1

	E

〈

ψ0
∣

∣Ĥ 2
1

∣

∣ψ0
〉

(63)

we obtain the Kirkwood variational estimate of the average excitation energy as:

	E(Unsöld) = 〈ψ0|Ĥ1(Ĥ0 − E0)Ĥ1|ψ0〉
〈ψ0|Ĥ 2

1 |ψ0〉
> 0. (64)

It is disappointing that the Kirkwood approximation, which suggests a ˜ψ1 proportional
to Ĥ1, cannot be used for the electron repulsion 1/r12 since in this case 	E = 0 and
equation (62) diverges (Hirschfelder et al., 1964).

11.3.3 The Ritz Method for ˜E2: Expansion in Pseudostates

The Ritz method for ˜E2 is the method of the linear combinations of a finite set of basis
functions {χ} applied to the function ˜ψ1 rather than to ψ . We expand the first-order vari-
ational function ˜ψ1 in an appropriate basis of normalized functions {χi} i = 1, 2, · · ·N ,
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Schmidt-orthogonalized among themselves and orthogonal to ψ0 (the order is brought by
the coefficients but is omitted for short):

˜ψ1 = χC (65)

χ = (χ1 χ2 · · ·χN) C =

⎛

⎜

⎜

⎝

C1
C2
· · ·
CN

⎞

⎟

⎟

⎠

(66)

with:

〈χi |χi′ 〉 = δii′ (67)

χ†ψ0 = 0. (68)

We introduce the matrices:

M = χ†(Ĥ0 − E0)χ , Mii′ = 〈χi |Ĥ0 − E0|χi′ 〉 (69)

the N × N Hermitian matrix of the excitation energies, and:

μ = χ†Ĥ1ψ0, μi = 〈χi |Ĥ1|ψ0〉 (70)

the column matrix of the N transition integrals. The second-order energy functional then
takes the matrix form:

˜E2 = C†MC + C†μ + μ†C. (71)

Optimizing ˜E2 with respect to arbitrary infinitesimal changes in the linear coefficients, we
get as stationarity condition:

δ˜E2

δC†
= MC + μ = 0, (72)

which gives the best coefficients as:

C = −M−1μ (73)

and the best second-order energy:

˜E2 = −μ†M−1μ. (74)

The Hermitian matrix M can be diagonalized by a unitary transformation with a matrix U:

ψ = χU U†MU = ε U†μ = μψ (75)
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giving ˜E2 in the form:

˜E2 = −
N
∑

i=1

|〈ψi |Ĥ1|ψ0〉|2
εi

≥ E2 (76)

which is known as sum-over-pseudostates expression. This gives an upper bound to the true
E2, with a formula that strictly parallels equation (37), but involves now a finite number of
accessible functions, the linear pseudostates, which are formally similar to the eigenstates
of Ĥ0 but have sensibly better properties of convergence, as we shall see shortly.

11.4 STATIC MULTIPOLE POLARIZABILITIES FOR H(1s)

The simplest physical example which can display the full power of RS perturbation tech-
niques is the ground state H atom in a static electric field F , as that existing between the
plates of a plane condenser. The 1s H atom looses its sphericity acquiring induced electric
moments that can be determined exactly by solving the appropriate RS first-order pertur-
bation equations. This gives a useful test on the results obtained from different variational
approximations to second-order energy and properties.

We begin by introducing the study of the dipole polarizability first, then finding the ex-
act solution of the general first-order RS differential equation for the atom in the uniform
electric field of strength F , and end this Section by doing comparison of exact with approx-
imate results obtained by variation-perturbation techniques. This will unequivocally show
the superiority of the approaches based on linear pseudostates in comparison to ordinary
expansions in eigenstates of Ĥ0.

11.4.1 Dipole Polarizability

A H atom in its ground state is distorted in a static uniform electric field (Fx = Fy = 0,
Fz = F ) F = kF acquiring an induced dipole moment μ. The interaction of μ with the
external field F is an additional potential energy term which can be treated as a perturbation
of the Hamiltonian Ĥ0 in absence of field:

Ĥ = Ĥ0 − μ · F = Ĥ0 − Fμz = Ĥ0 − Fz (77)

if the dipole is expressed in atomic units. Either energy or moment can be expanded in a
Taylor series of powers of F :

E(F) = E0 +
(

dE

dF

)

0
F + 1

2!
(

d2E

dF 2

)

0
F 2 + 1

3!
(

d3E

dF 3

)

0
F 3 + · · · (78)

〈μz〉 = μ0 + αF + 1

2! βF 2 + 1

3! γF 3 + · · · (79)
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But, by the Hellmann (1937)–Feynman (1939) theorem:

dE

dF
=
〈

dĤ

dF

〉

= −〈ψ |z|ψ〉 = −〈μz〉 (80)

which gives from (78) and (79):

dE

dF
=
(

dE

dF

)

0
+
(

d2E

dF 2

)

0
F + 1

2!
(

d3E

dF 3

)

0
F 2 + 1

3!
(

d4E

dF 4

)

0
F 3 + · · ·

= −μ0 − αF − 1

2! βF 2 − 1

3! γF 3 − · · · (81)

We see that the successive derivatives of E with respect to the external field F in the limit
of F → 0 can be related to the electric properties of the system:

−
(

dE

dF

)

0
= μ0 permanent dipole moment (82)

−
(

d2E

dF 2

)

0
= α dipole polarizability (83)

−
(

d3E

dF 3

)

0
= β first dipole hyperpolarizability (84)

−
(

d4E

dF 4

)

0
= γ second dipole hyperpolarizability (85)

· · ·

Taking the second derivative of E we have:

−d2E

dF 2
= α + βF + 1

2
γF 2 + · · · (86)

Plotting − d2E

dF 2 against F (Figure 11.1), we see that the intercept gives α, the slope β , the
curvature γ .

But equation (79) gives also:

α = lim
F→0

(

d〈μz〉
dF

)

(87)

β = lim
F→0

(

d2〈μz〉
dF 2

)

(88)
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Figure 11.1 Electric properties of the H atom from the negative of the second derivative of E against F .

Figure 11.2 Electric properties from the plot of the average induced moment against F (μ0 = 0 for H).

γ = lim
F→0

(

d3〈μz〉
dF 3

)

(89)

· · ·

This is the basis of the so called Finite-Field-Method (FFM; Cohen and Roothaan, 1965;
Werner and Meyer, 1976): the electric properties can also be derived by plotting 〈μz〉
against F (Figure 11.2). The intercept now gives μ0 (zero for H), the slope α, the curva-
ture β .

The dipole polarizability α can be evaluated by taking just two points F ± δF accord-
ing to:

α =
(

δμz

δF

)

0
= lim

F→0

μ(F + δF ) − μ(F − δF )

2 δF
. (90)
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11.4.2 Exact Solution of the General First-Order RS Differential Equation for H(1s)
in a Uniform Electric Field

The electric potential �i at the space point r due to particle i of charge qi is:

�i = qi

ri
= qi

|r − ri | , (91)

where ri is the vector position of particle i with respect to a reference system. For a set of
particles, the potential at r will be:

�(r) =
∑

i

�i. (92)

Assuming a reference coordinate system centred at the molecular centre-of-mass (the nu-
cleus for atoms), �(r) can be expanded in spherical coordinates (Gray, 1976; Gray and
Lo, 1976; Stone and Tough, 1984; Magnasco et al., 1988) as:

�(r) =
∞
∑

l=0

l
∑

m=−l

Flm Rlm(r), (93)

where Rlm is a spherical tensor in real form:

Rlm(r) = rl

√

4π

2l + 1
Y

c,s
lm (θ,ϕ) = rl

√

4π

2l + 1
P m

l (cos θ)

{

cosmϕ

sinmϕ
(94)

and the Flm are parameters collecting successive derivatives of the potential with respect
to Cartesian coordinates, say:

F00 = �0, F10 =
(

∂�

∂z

)

0
, F11 =

(

∂�

∂x

)

0
,

F11̄ =
(

∂�

∂y

)

0
, · · · (95)

For a uniform electric field of strength F directed along z:

F10 = F, F11 = F11̄ = 0 (96)

and the expansion becomes:

�(r) = F

∞
∑

l=0

Rl0(r) = F
∑

l

r l

√

4π

2l + 1
Pl(cos θ). (97)
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For the electron of the H atom in a uniform electric field F , we then have the cylindrical
multipole perturbation:

V (r, θ) = −F
∑

l

r l

√

4π

2l + 1
Pl(cos θ) =

∑

l

Vl(r, θ), (98)

where the 2l-pole perturbation is:

Vl(r, θ) = −F rl

√

4π

2l + 1
Pl(cos θ). (99)

Omitting the constant factor, the RS first-order equation for the 2l-pole perturbation of the
H atom in the field F will be:

(Ĥ0 − E0)ψ1l − F rl Pl(cos θ)ψ0 = 0. (100)

This inhomogeneous differential equation can now be solved much in the same way as
we solved the radial differential equation for the H atom. The solution was first given by
Dalgarno and Lewis (1955); see also Dalgarno (1962).

The first-order RS equation can be written:

(

∇2
r − L̂

2

r2
+ 2

r
− 1

)

ψ1l = −2F rl Pl(cos θ)ψ0. (101)

We take:

ψ1l = F Pl(cos θ)R(r) (102)

R(r) = ψ0 rl f (r) = exp(−r) rl f (r) un-normalized, (103)

where we have omitted for short the suffix l in f (r), an unknown function which must be
determined. We know that:

L̂
2
Pl = l(l + 1)Pl ∇2 = ∇2

r − L̂
2

r2
∇2

r = ∂2

∂r2
+ 2

r

∂

∂r
(104)

so that, taking the first and second radial derivatives of R(r) and substituting in the equation
above, we obtain the second-order differential equation determining f (r). Little calcula-
tion gives:

dR

dr
= exp(−r) rl{f ′(r) + (−1 + lr−1) f (r)} (105)



11.4 Static Multipole Polarizabilities for H(1s) 595

d2R

dr2
= exp(−r) rl

{

f ′′(r) + (−2 + 2lr−1) f ′(r)

+ [1 − 2lr−1 + l(l − 1) r−2]f (r)
}

(106)

∇2
r R(r) = exp(−r) rl

{

f ′′(r) + [−2 + 2l(l + 1)r−1]f ′(r)

+ [1 − 2(l + 1)r−1 + l(l + 1) r−2]f (r)
}

. (107)

Substituting in the differential equation (101) gives:

F Pl(cos θ){∇2
r − l(l + 1)r−2 + 2r−1 − 1}R = −2F Pl(cos θ)R

exp(−r) rl
{

f ′′ + [−2 + (2l + 2)r−1]f ′

+ [1 − (2l + 2)r−1 + l(l + 1) r−2]f (r)

+ [−1 + 2r−1 − l(l + 1) r−2]f (r)
}= −2 exp(−r) rl

so that the differential equation for f (r) is:

f ′′(r) + [−2 + (2l + 2)r−1]f ′(r) − 2lr−1 f (r) + 2 = 0 (108)

rf ′′(r) + [(2l + 2) − 2r]f ′(r) − 2l f (r) + 2r = 0. (109)

The last equation can be solved by expanding f (r) into the power series:

f (r) =
∞
∑

k=0

ak rk, f ′(r) =
∞
∑

k=1

kak rk−1, f ′′(r) =
∞
∑

k=2

k(k − 1)ak rk−2

(110)

giving:

∑

k=2

k(k − 1) ak rk−1 +
∑

k=1

(2l + 2)kak rk−1 −
∑

k=1

2kak rk

−2l
∑

k=0

ak rk + 2r = 0. (111)

We now obtain for the coefficients of the different powers of r :

r0: (2l + 2) a1 − 2la0 = 0 �⇒ a1 = l

l + 1
a0 a0 �= 0 (112)

r1: 2(2 − 1) a2 + (2l + 2)2a2 − 2a1 − 2la1 + 2 = 0

a2 = a1
l + 1

2l + 3
− 1

2l + 3
= 1

2l + 3
(la0 − 1) (113)
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· · ·
rk : (k + 1)k ak+1 + (2l + 2)(k + 1) ak+1 − 2kak − 2lak = 0 (114)

ak+1 = 2l + 2k

(k + 1)(2l + 2 + k)
ak k = 2, 3, · · · (115)

recurrence relation for k ≥ 2

Now:

ak+1

ak

= 2 + 2l
k

k
(

1 + 1
k

)(

1 + 2l+2
k

) (116)

lim
k→∞

ak+1

ak

≈ lim
k→∞

2

k
. (117)

But:

exp(2r) =
∞
∑

k=0

(2r)k

k! ak = 2k

k! ak+1 = 2k+1

(k + 1)! (118)

ak+1

ak

= 2k+1

(k + 1)! · k!
2k

= 2

k + 1
lim

k→∞
ak+1

ak

≈ lim
k→∞

2

k
. (119)

When k tends to infinity, the ratio of successive terms in the series (110) is thus the same
as that of successive terms in the expansion of exp(2r). Thus f (r) tends to infinity as
exp(2r), a solution which is not acceptable since exp(−r)f (r) ∼= exp(r) would diverge for
r → ∞. Therefore we must truncate the series by imposing:

ak+1 = ak+2 = · · · = 0 (120)

provided:

ak = 0 for k > 1. (121)

Since:

a2 = 0 for a0 = 1

l
, a1 = 1

l + 1
(122)

it follows:

f (r) = a0 + a1r = 1

l
+ 1

l + 1
r (123)
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giving finally:

R(r) = ψ0

(

rl

l
+ rl+1

l + 1

)

(124)

ψ1l = Fψ0

(

rl

l
+ rl+1

l + 1

)

Pl(cos θ) (125)

which is the exact first-order solution first given by Dalgarno and Lewis (1955).
We are now in the position of evaluating the exact 2l-pole static polarizability for ground

state H. It will be sufficient to recall that the second-order energy for the l-multipole is:

E2l = 〈ψ0|Vl |ψ1l〉 = −F 2
〈

ψ0

∣

∣

∣

∣

VlPl

(

rl

l
+ rl+1

l + 1

)∣

∣

∣

∣

ψ0

〉

(126)

giving the 2l-pole polarizability as:

αl = −
(

d2E2l

dF 2

)

0
= 2

〈

ψ0

∣

∣

∣

∣

VlPl

(

rl

l
+ rl+1

l + 1

)∣

∣

∣

∣

ψ0

〉

. (127)

Evaluating the integral we obtain:

αl = 2

〈

ψ0

∣

∣

∣r
lPl(cos θ)

∣

∣

∣Pl(cos θ)

(

rl

l
+ rl+1

l + 1

)

ψ0

〉

= 2 · 2π

π

∫ 1

−1
dx [Pl(x)]2

∫ ∞

0
dr r2

(

r2l

l
+ r2l+1

l + 1

)

exp(−2r)

= 4 · 2

2l + 1

[

(2l + 2)!
l · 22l+3

+ (2l + 3)!
(l + 1)22l+4

]

= (2l + 2)!
(2l + 1)22l+1

(

2

l
+ 2l + 3

l + 1

)

= (2l + 2)!
(2l + 1)22l+1

(l + 2)(2l + 1)

l(l + 1)

= (l + 2)(2l + 2)!
22l+1l(l + 1)

(128)

as it must be.
The exact values of the first five 2l-pole static polarizabilities for the ground state H-atom

are given in Table 11.2. These values are a useful reference for testing the results of varia-
tional calculations of αl .

11.4.3 Variational Approximations

In the following, we shall be mostly concerned with different variational approximations
to the dipole polarizability α1 = α. Details of the calculations are left, as usual, to Prob-
lems 11.
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Table 11.2.

Exact 2l -pole static polarizabilities (atomic units) for H(1s) up to l = 5

l 1 2 3 4 5

αl 4.5 15 131.25 2126.25 54 573.75
dipole quadrupole octupole hexadecapole 32-pole

Table 11.3.

Pseudostate approximations to α for H(1s)

ϕ c/a−1
0 μ/ea0 ε/Eh α/a3

0 %

2pz
a 1

2 = 0.5 0.7449 3
8 = 0.375 2.96 66

2pz
b 1 1 1

2 = 0.5 4.0 89

2pz
c 0.7970 0.9684 0.4191 4.48 99.5

1
√

6
6 = 0.4082 1 1

3
2pz + 3pz

d 4.5 Exact

1
√

30
6 = 0.9129 2

5 = 0.4 25
6

Nψ0

(

z + 1
2 zr
) e

1 9
2

√

2
43 = 0.9705 18

43 = 0.4186 4.5 Exact

a H-like, eigenstate of Ĥ0. b 1-term, Kirkwood. c 1-term, optimized.
d 2-term. Normalized STOs: 2pz = ψ0z, 3pz = √

2/15ψ0zr .
e 2-term, Kirkwood generalized. Single normalized pseudostate equivalent to the exact ψ1.

Table 11.4.

Expansion in discrete eigenstates of Ĥ0 (npz functions)

n c = 1
n μ/ea0 ε/Eh α/a3

0 %

2 0.5 0.7449 0.375 2.960 65.8
3 0.333 0.2983 0.4444 3.360 74.7
4 0.25 0.1758 0.4687 3.492 77.6
5 0.2 0.1205 0.48 3.552 78.9
6 0.167 0.0896 0.4861 3.585 79.7
7 0.143 0.0701 0.4898 3.606 80.1

30 0.033 0.0076 0.4994 3.660 81.3

We first begin by comparing the results of various pseudostate calculations of α for
H(1s), given in Table 11.3, with those resulting from the expansion in eigenstates of Ĥ0,
given in Table 11.4.
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Table 11.5.

Dipole pseudospectra of H(1s) for increasing values of N

i αi εi
∑

i αi

1 4.000 000 × 100 5.000 000 × 10−1 4.000 000

1 4.166 667 × 100 4.000 000 × 10−1

2 3.333 333 × 10−1 1.000 000 × 100 4.5

1 3.488 744 × 100 3.810 911 × 10−1

2 9.680 101 × 10−1 6.165 762 × 10−1

3 4.324 577 × 10−2 1.702 333 × 100 4.5

1 3.144 142 × 100 3.764 634 × 10−1

2 1.091 451 × 100 5.171 051 × 10−1

3 2.564 244 × 10−1 9.014 629 × 10−1

4 7.982 236 × 10−3 2.604 969 × 100 4.5

1 3.013 959 × 100 3.753 256 × 10−1

2 9.536 869 × 10−1 4.785 249 × 10−1

3 4.556 475 × 10−1 6.834 311 × 10−1

4 7.479 674 × 10−2 1.255 892 × 100

5 1.910 219 × 10−3 3.706 827 × 100 4.5

In this last case (Table 11.4), the transition moments are far too weak and the excitation
energies too large, since hydrogen-like npz (c = 1/n) are too diffuse with increasing the
principal quantum number n. The expansion in discrete eigenstates of Ĥ0 converges to
the asymptotic value α = 3.66 which is only 81.3% of the exact value 4.5. The remaining
18.7% is due to the contribution of the continuous part of the spectrum, which is necessary
in order to make the expansion complete.

Comments on Table 11.3. In the last column of the Table are given the % of the exact
value of α (4.5a3

0) obtained by the different approximations. It is immediately evident the
enormous improvement in the results obtained by all pseudostate approximations (last four
rows) in comparison with the extremely poor result found using the first eigenstate of Ĥ0.
Moreover:

(i) Using c = 1 (single STO pseudostate, Kirkwood) we see that the pseudostate function
is much more contracted than the eigenstate and the α value improves by about 23%,
sensibly more than the limit of the discrete part of the eigenstates of Ĥ0 (α = 3.66
with N = 30 terms).

(ii) Optimization of the orbital exponent in the single pseudostate gives an α value which
is within 0.5% of the exact value.

(iii) Two linear pseudostates (STO 2pz + 3pz with c = 1) give the exact value of α (as
expected, since exact α has two radial components).

(iv) Using N > 2 we get always the correct value of α =∑i αi , but which now results
from an increasingly sophisticated excited pseudospectrum {αi, εi} i = 1, 2, · · · ,N
(see Table 11.5).
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Table 11.6.

5-term quadrupole pseudospectra of H(1s)

i αi εi

∑

i αi

1 6.313 528 × 100 5.465 443 × 10−1

2 4.585 391 × 100 4.517 894 × 10−1

3 3.484 548 × 100 7.610 195 × 10−1

4 6.004 247 × 10−1 1.291 357 × 100

5 1.610 783 × 10−2 3.139 766 × 100 15

Table 11.7.

5-term octupole pseudospectra of H(1s)

i αi εi

∑

i αi

1 5.948 006 × 101 5.930 732 × 10−1

2 4.062 757 × 101 8.080 625 × 10−1

3 2.332 499 × 101 4.905 187 × 10−1

4 7.603 273 × 100 1.296 404 × 100

5 2.140 986 × 10−1 2.784 163 × 100 131.25

(v) The single normalized pseudostate equivalent to the exact ψ1 (last row of Table 11.3)
gives a transition moment μ and an excitation energy ε differing very little from those
of the 1-term optimized pseudostate (third row).

5-term quadrupole (l = 2) and octupole (l = 3) pseudospectra of H(1s) are given in Ta-
bles 11.6 and 11.7. 5-term pseudospectra allow for a calculation of C6, C8, C10 dispersion
coefficients for the long range H–H interaction (Chapter 12) accurate to more than 6 sig-
nificant figures.

All data of Tables 11.5–11.7 were taken from the PhD thesis of Massimo Ottonelli
(1998).

Further techniques for evaluating atomic polarizabilities were discussed by Dalgarno
(1962) and, among others, by Langhoff and Hurst (1965). Several examples of construction
of dipole pseudospectra for the ground state H atom are given in Problems 11.1–11.8, while
the more difficult problem of the diatomic molecule H2 is examined in Problem 11.9.

11.5 ELECTRIC PROPERTIES OF MOLECULES

The considerations of Section 4 on the H atom can be readily extended to molecules. The
Hamiltonian of a molecule in an external electric field F is:

Ĥ = Ĥ0 +
∑

i

qi�i, (129)
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Table 11.8.

Real spherical tensors up to l = 3

R00 = 1 R10 = z R11 = x R11̄ = y

R20 = 3z2 − r2

2 R21 = √
3zx R21̄ = √

3yz

R22 =
√

3
2 (x2 − y2) R22̄ = √

3xy

R30 = 5z2 − 3r2

2 z R31 =
√

3
8 (5z2 − r2) x R31̄ =

√

3
8 (5z2 − r2) y

R32 =
√

15
2 (x2 − y2) z R32̄ = √

15xyz

R33 =
√

5
8 (x2 − 3y2) x R33̄ =

√

5
8 (3x2 − y2) y

where:

�i = �(xi, yi, zi) = �(ri ) (130)

is the electric potential at the space point ri where the i-th particle (electron/nucleus) of
charge qi is located. Taking as reference the molecular centre-of-mass, we saw that the
potential � can be expanded in real spherical tensors Rlm(r) as:

�(r) =
∞
∑

l=0

l
∑

m=−l

Flm Rlm(r), (131)

where the expansion coefficients are related to Cartesian derivatives of the potential evalu-
ated at the origin of the coordinate system.

The first few spherical tensors (regular solid harmonics) up to l = 3 are given in Ta-
ble 11.8.

The perturbation due to the external electric field can hence be written:

∑

i

qi�i =
∑

l

∑

m

Flm

∑

i

qiRlm(ri ) =
∑

l

∑

m

FlmQlm, (132)

where:

Qlm =
∑

i

qiRlm(ri ) (133)

is the m-component of the one-electron 2l-pole electric moment operator of the molecule.
For a molecule A with unperturbed wavefunction A0 and i-th excited pseudostate Ai in the
static electric field F we have:

μlm(00) = 〈A0|Qlm|A0〉 (134)
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Figure 11.3 Frequency dependence of the imaginary FDP.

the m-component of the permanent 2l-pole electric moment of A;

μlm(0i) = 〈Ai |Qlm|A0〉 (135)

the m-component of the transition 2l-pole moment of A;

αlm,l′m′(i) = 2μlm(0i)μl′m′(i0)

εi

(136)

the i-th pseudostate component of the static 2l-pole 2l′ -pole molecular polarizability;

αlm,l′m′ =
N
∑

i=1

αlm,l′m′(i) (137)

the static multipole polarizability of molecule A. In spherical tensor notation α is generally
specified by the four indices lm, l′m′ = a.

The static polarizability can be considered as the limit to zero frequency of the corre-
sponding frequency-dependent, or dynamic, polarizability (FDP):

lim
u→0

αlm,l′m′(iu) = αlm,l′m′ (138)

αlm,l′m′(iu) =
∑

i

εi

2μlm(0i)μl′m′(i0)

ε2
i + u2

. (139)

The FDP at imaginary frequency iu (u = real) is plotted against u in Figure 11.3.
The number of non-zero electric properties μ and α depends on the symmetry of the

molecule.
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• Atoms in state S.
All permanent moments μ are zero in the ground state.

Polarizabilities αl are isotropic, i.e. do depend only on l and not on m.
• Linear molecules.

They have only axial (m = 0) permanent moments.
Polarizabilities are restricted to αlm,l′m′ = αll′m with 0 ≤ m ≤ min(l, l′), and therefore
depend only on three indices.

Example:

l = l′ = 1

α10,10 = α110 = α‖ parallel (or longitudinal) polarizability

α11,11 = α111 = α⊥ perpendicular (or transverse) polarizability

α‖ + 2α⊥
3

= α isotropic polarizability

α‖ − α⊥ = 	α polarizability anisotropy.

• Centrosymmetric molecules.
All odd moments are zero.

• Tetrahedral molecules.
First non-zero moment is the octupole moment.

In the alternative expansion of the potential � in Cartesian coordinates (Buckingham,
1967; McLean and Yoshimine, 1967), the electric properties of a molecule have different
notations.

• Permanent moments.

Charge q, dipole μ, quadrupole �, octupole �, . . . (140)

• Polarizabilities.

Dipole–dipole α, dipole–quadrupole A,

dipole–octupole E, quadrupole–quadrupole C,

quadrupole–octupole H, octupole–octupole R

· · ·

(141)

In Cartesian notation it is sensibly more difficult to see at once which are the non-zero
components, since there are linear dependences among them, which may be rather compli-
cated for tensors of higher rank. Formulae relating spherical to Cartesian polarizabilities
(and vice versa) can be found in (Stone, 1996).
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11.6 PROBLEMS 11

11.1 Find the dipole polarizability α of H(1s) from the expectation value of the induced
dipole moment.

Answer:

α = 9

2
.

Hint:
Evaluate 〈ψ |z|ψ〉 using ψ = ψ0 + ψ1 and expand the result to first order in the electric
field F .

11.2 Evaluate α for H(1s) using the single linear pseudostate ˜ψ1 = CFχ , where χ is a
normalized 2pz STO.

Answer:

α = 2
μ2

ε
, μ = 〈χ |z|ψ0〉, ε = 〈χ |Ĥ0 − E0|χ〉. (142)

Hint:
Introduce the variational function ˜ψ1 into the Hylleraas functional ˜E2 and optimize the
linear coefficient C.

11.3 Evaluate the transition moment μ and the excitation energy ε of Problem 11.2.

Answer:

μ =
(

2c1/2

c + 1

)5

, ε = 1

2
(c2 − c + 1). (143)

Hint:
Evaluate the integrals in spherical coordinates.

11.4 Optimize the single pseudostate result of Problem 11.2 with respect to the non-linear
parameter c (the orbital exponent).

Answer:
The required value of c (= 0.7970) is the real root of the cubic equation:

7c3 − 9c2 + 9c − 5 = 0. (144)

Hint:
Find the stationarity condition for ˜E2(c) using logarithmic derivatives of μ and ε.
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11.5 Find normalization factor, non-orthogonality, transition moment and element of the
excitation energy matrix for the n-power STO dipole function χ ′

n = N ′
nzr

n−1ψ0 with c = 1.

Answer:

N ′
n =

(

3 · 22n+1

(2n + 2)!
)1/2

, Snm = N ′
nN

′
m

(n + m + 2)!
3 · 2n+m+1

μ′
n = N ′

n

(n + 3)!
3 · 2n+2

, M ′
nm = N ′

nN
′
m

(n + m)!
3 · 2n+m

(2 + nm).

(145)

Hint:
Use the basic integrals (p,q ≥ 0 integers):

〈

ψ0
∣

∣z2rp
∣

∣ψ0
〉= (p + 4)!

3 · 2p+3
,

〈

ψ0zr
p
∣

∣Ĥ0
∣

∣ψ0zr
q
〉= − (p + q + 2)!

3 · 2p+q+4
{p(p − q + 3) + q(q − p + 3)}.

(146)

11.6 Find the single normalized pseudostate equivalent to the exact ψ1 for H(1s) .

11.7 Evaluate α for H(1s) using the two normalized linear STO functions 2pz and 3pz

(c = 1), and construct the corresponding dipole pseudospectrum for N = 2.

Answer:

α = α1 + α2 = 9

2

i αi εi

1 2
6 1

2 25
6

2
5

Hint:
After having orthogonalized 3pz to 2pz, construct matrices M and N over the orthonormal
basis, then diagonalize the resultant 2 × 2 Hermitian matrix M.

11.8 Evaluate α for H(1s) using the three normalized linear STO functions 2pz, 3pz and
4pz (c = 1), and construct the N = 3 pseudospectrum.



606 11. Rayleigh–Schroedinger Perturbation Methods for Stationary States

Answer:

α = α1 + α2 + α3 = 9

2

i αi εi

1 3.488 744 × 100 3.810 911 × 10−1

2 9.680 101 × 10−1 6.165 762 × 10−1

3 4.324 577 × 10−2 1.702 333 × 100

Hint:
Follow the technique suggested in Problem 11.7.

11.9 Construct approximate 4-term and 2-term pseudospectra for the dipole polarizabilities
of ground state H2(

1�+
g ) at R = 1.4a0.

Answer:

α‖ α⊥

i α
‖
i ε

‖
i α⊥

i ε⊥
i

1 4.567 0.473 2.852 0.494
2 1.481 0.645 1.350 0.699
3 0.319 0.973 0.335 1.157
4 0.011 1.701 0.022 2.207
∑

i αi 6.378 4.559

Hint:
Select, respectively, the four and two most important contributions out of the 34-term
pseudospectra of 1�+

u and 1�u symmetry obtained by Magnasco and Ottonelli (1996)
using as ψ0 the Kołos–Wolniewicz 54-term wavefunction for ground state H2.

11.7 SOLVED PROBLEMS

11.1 The expectation value of the induced dipole moment can be written as:

〈ψ |z|ψ〉 = 〈ψ0 + ψ1|z|ψ0 + ψ1〉
1 + 〈ψ1|ψ1〉 = 2〈ψ0|z|ψ1〉

1 + 〈ψ1|ψ1〉
∼= 2〈ψ0|z|ψ1〉{1 − 〈ψ1|ψ1〉} ∼= 2〈ψ0|z|ψ1〉 (147)



11.7 Solved Problems 607

to first order in F (contained in ψ1). Since:

ψ1 = Fψ0z
(

1 + r

2

)

= Fψ0 cos θ

(

r + r2

2

)

, ψ0 = exp(−r)√
π

(148)

〈ψ0|z|ψ1〉 = F

〈

ψ0

∣

∣

∣

∣

cos2 θ

(

r2 + r3

2

)∣

∣

∣

∣

ψ0

〉

= F
4

3

∫ ∞

0
dr

(

r4 + r5

2

)

exp(−2r) = F

(

1 + 5

4

)

= 9

4
F, (149)

giving for the expectation value of the induced dipole moment:

〈ψ |z|ψ〉 ∼= 2〈ψ0|z|ψ1〉 = 9

2
F. (150)

The expansion:

〈μz〉 = μ0 + αF + 1

2! βF 2 + · · · = αF + 1

2! βF 2 + · · · (151)

gives then α = 9
2 as the coefficient of the term linear in F .

11.2 The single 2pz linear pseudostate.

˜ψ1 = CFχ χ = 2pz =
(

c5

π

)1/2

exp(−cr) r cos θ (152)

˜E2 = 〈˜ψ1|Ĥ0 − E0|˜ψ1〉 + 2〈˜ψ1| − Fz|ψ0〉
= F 2{C2〈χ |Ĥ0 − E0|χ〉 − 2C〈χ |z|ψ0〉

}

. (153)

d˜E2
dC

= 0 gives:

C = 〈χ |z|ψ0〉
〈χ |Ĥ0 − E0|χ〉 = μ

ε
(154)

as the best value for the linear coefficient C. Then:

˜E2(best) = F 2
(

μ2

ε2
· ε − 2

μ

ε
· μ
)

= −F 2 μ2

ε
(155)

−d2
˜E2

dF 2
= 2

μ2

ε
= α. (156)
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Figure 11.4 Dipole pseudostate transition from ψ0 to χ for H(1s).

11.3 Evaluation of μ and ε in spherical coordinates.

μ = 〈χ |z|ψ0〉 = (ψ0χ |z) = c5/2

π
2π

∫ 1

−1
dx x2

∫ ∞

0
dr r4 exp[−(c + 1)r]

= 4

3
c5/2 4 · 3 · 2

(c + 1)5
=
(

2c1/2

c + 1

)5

. (157)

ε = 〈χ |Ĥ0 − E0|χ〉 =
〈

χ

∣

∣

∣

∣

(

−1

2
∇2 − 2c

r

)

+ 2c − 1

r
− E0

∣

∣

∣

∣

χ

〉

= − c2

2
+ (2c − 1)

c

2
+ 1

2
= 1

2
(c2 − c + 1). (158)

11.4 Optimization of the non-linear parameter c in the single pseudostate approximation.
Since:

˜E2 ∝ μ2ε−1, (159)

taking the first c-derivative:

d˜E2

dc
= 2με−1 dμ

dc
− μ2ε−2 dε

dc
(160)

gives as stationarity condition:

2
d lnμ

dc
= d ln ε

dc
. (161)

Now, from (157) and (158) it follows:

d lnμ

dc
= 5

2

1 − c

c(c + 1)
(162)

d ln ε

dc
= 2c − 1

c2 − c + 1
. (163)
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Substituting in (161) then gives the cubic equation:

5(1 − c)

c(c + 1)
= 2c − 1

c2 − c + 1
�⇒ 7c3 − 9c2 + 9c − 5 = 0 (164)

which has the real root c = 0.7970.

11.5 Using the basic integrals given in (146), it is easily found:

(i) Normalization factor:

〈χ ′
n|χ ′

n〉 = N
′2
n 〈ψ0|z2r2n−2|ψ0〉 = N

′2
n

(2n + 2)!
3 · 22n+1

= 1

�⇒ N ′
n =

(

3 · 22n+1

(2n + 2)!
)1/2

. (165)

(ii) Non-orthogonality:

Snm = 〈χ ′
n|χ ′

m〉 = N ′
nN

′
m〈ψ0|z2rn+m−2|ψ0〉

= N ′
nN

′
m

(n + m + 2)!
3 · 2n+m+1

. (166)

(iii) Transition moment:

μ′
n = 〈χ ′

n|z|ψ0〉 = N ′
n〈ψ0|z2rn−1|ψ0〉 = N ′

n

(n + 3)!
3 · 2n+2

. (167)

(iv) Element of the excitation energy matrix:

M ′
nm = 〈χ ′

n|Ĥ0 − E0|χ ′
m〉 = N ′

nN
′
m〈ψ0zr

n−1|Ĥ0 − E0|ψ0zr
m−1〉

= N ′
nN

′
m

(n + m)!
3 · 2n+m

(2 + nm). (168)

We recall that the dipole functions χ ′
n are normalized and orthogonal to ψ0 by symmetry,

but not orthogonal to each other.

11.6 We take:

˜ψ1 = CFψ (169)

where ψ is the exact first-order function normalized to 1:

ψ = Nψ0

(

z + r

2
z
)

. (170)
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The normalization factor will be:

〈ψ |ψ〉 = N2
〈

ψ0

∣

∣

∣

∣

(

z + r

2
z
)2
∣

∣

∣

∣

ψ0

〉

= N2
〈

ψ0

∣

∣

∣

∣

z2 + z2r + 1

4
z2r2

∣

∣

∣

∣

ψ0

〉

= N2
(

1 + 5

2
+ 15

8

)

= 43

8
N2 = 1 �⇒ N =

(

8

43

)1/2

. (171)

Transition moment:

μ = 〈ψ |z|ψ0〉 = N

〈

ψ0

∣

∣

∣

∣

z2 + 1

2
z2r

∣

∣

∣

∣

ψ0

〉

= N

(

1 + 1

2
· 5

2

)

= 9

4
N = 9

2

(

2

43

)1/2

. (172)

Excitation energy:

ε = 〈ψ |Ĥ0 − E0|ψ〉 = N2
〈

ψ0

(

z + r

2
z
) ∣

∣

∣Ĥ0

∣

∣

∣ψ0

(

z + r

2
z
)〉

+ 1

2

= N2
{

〈ψ0z|Ĥ0|ψ0z〉 + 1

4
〈ψ0zr|Ĥ0|ψ0zr〉 + 〈ψ0z|Ĥ0|ψ0zr〉

}

+ 1

2
p = q = 0 p = q = 1 p = 0, q = 1

= N2
(

0 − 1

4
· 4!

3 · 26
· 6 − 3!

3 · 25
· 4

)

+ 1

2
= − 7

16
N2 + 1

2
= 18

43
, (173)

where use was made of the general results given in (146).

11.7 2-term dipole pseudospectrum of H(1s).

˜ψ1 = Fχ ′C χ ′ = (χ ′
1 χ ′

2) (174)

where χ ′
1 and χ ′

2 are normalized 2pz and 3pz STOs with c = 1:

χ ′
1 = N ′

1ψ0z χ ′
2 = N ′

2ψ0zr ψ0 = exp(−r)√
π

. (175)

The two basis functions are normalized, orthogonal to ψ0, but non-orthogonal to each
other. We have from (165) and (166):

N ′
1 = 1, N ′

2 =
√

2

15
, S = 〈χ ′

1|χ ′
2〉 =

√

5

6
. (176)
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(i) We now Schmidt-orthogonalize χ ′
2 to χ ′

1:

χ1 = χ ′
1, χ2 = χ ′

2 − Sχ ′
1√

1 − S2
= √

6χ ′
2 − √

5χ ′
1. (177)

The transformed basis χ is now orthonormal:

〈χ1|χ1〉 = 〈χ2|χ2〉 = 1, 〈χ1|χ2〉 = 〈χ2|χ1〉 = 0. (178)

We calculate the elements of matrices M and μ over the orthonormal basis χ :

M11 = 〈χ1|Ĥ0 − E0|χ1〉 = 1

2
(179)

M12 = 〈χ1|Ĥ0 − E0|χ2〉 = −
√

5

10
(180)

M22 = 〈χ2|Ĥ0 − E0|χ2〉 = 9

10
(181)

μ1 = 〈χ1| − Fz|ψ0〉 = −F (182)

μ2 = 〈χ2| − Fz|ψ0〉 = 0. (183)

The matrices over the orthonormal basis χ are then:

M =

⎛

⎜

⎜

⎝

5

10
−

√
5

10

−
√

5

10

9

10

⎞

⎟

⎟

⎠

μ = −F

(

1
0

)

. (184)

Then follows:

M−1 =

⎛

⎜

⎜

⎝

9

4

√
5

4√
5

4

5

4

⎞

⎟

⎟

⎠

(185)

so that:

˜E2 = −μ†M−1μ = −F 2

4
(1 0)

(

9
√

5√
5 5

)

(

1

0

)

= −F 2

4
(9

√
5)

(

1

0

)

= −F 2 9

4
(186)
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α = −
(

d2
˜E2

dF 2

)

0
= 9

2
= 4.5 (187)

which is the exact dipole solution.

(ii) The two pseudostates are then obtained by diagonalizing matrix M through the secular
equation:

|M − ε1| =

∣

∣

∣

∣

∣

∣

∣

∣

5

10
− ε −

√
5

10

−
√

5

10

9

10
− ε

∣

∣

∣

∣

∣

∣

∣

∣

= 0 �⇒ 5ε2 − 7ε + 2 = 0 (188)

having the roots:

ε1 = 1, ε2 = 2

5
. (189)

Eigenvectors are:

•

⎧

⎪

⎨

⎪

⎩

(

5

10
− ε1

)

c1 −
√

5

10
c2 = 0 ε1 = 1

c2
1 + c2

2 = 1

c2 = −√
5 c1 �⇒ c1 = 1√

6
, c2 = −

√
5√
6
. (190)

•

⎧

⎪

⎨

⎪

⎩

(

5

10
− ε2

)

c1 −
√

5

10
c2 = 0 ε2 = 2

5

c2
1 + c2

2 = 1

c2 = 1√
5

c1 �⇒ c1 =
√

5√
6
, c2 = 1√

6
. (191)

The 2-term dipole pseudostates are then:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ψ1 = 1√
6

χ1 −
√

5√
6

χ2 ε1 = 1

ψ2 =
√

5√
6

χ1 + 1√
6

χ2 ε2 = 2

5
.

(192)
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(iii) Construction of the 2-term dipole pseudospectrum.

ψ = χU U =

⎛

⎜

⎜

⎜

⎝

1√
6

√
5√
6

−
√

5√
6

1√
6

⎞

⎟

⎟

⎟

⎠

. (193)

Since UU† = U†U = 1, U is a unitary matrix. Over the pseudostate basis ψ :

Mψ = U†MU = ε =
(

1 0

0 2
5

)

diagonal (194)

μψ = U†μ = −F

6

( √
6√
30

)

. (195)

˜E2 in the ψ basis can be written as the sum-over-pseudostates:

˜E2 = −μ
†
ψM−1

ψ μψ = −F 2

36
(
√

6
√

30)

(

1 0

0 5
2

)( √
6√

30

)

= −F 2

36
(6 + 75) = −F 2

(

1

6
+ 25

12

)

= −F 2 9

4
, (196)

so that the 2-term dipole pseudospectrum will be:

α = α1 + α2 = 2

6
+ 25

6
= 4.5

7.4% 92.6%
(197)

giving the table:

i αi εi

1
2

6
1

2
25

6

2

5

(198)

{αi, εi} i = 1,2 is the 2-term dipole pseudospectrum for H(1s), which will be used for the
calculation of the C6 dispersion coefficient for the H–H interaction in Chapter 12.

11.8 3-term dipole pseudospectrum for H(1s).

˜ψ1 = Fχ ′C χ ′ = (χ ′
1 χ ′

2 χ ′
3) (199)
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where χ ′
1, χ ′

2, χ ′
3 are now normalized 2pz, 3pz, 4pz STOs with c = 1:

χ ′
1 = N ′

1ψ0z χ ′
2 = N ′

2ψ0zr χ ′
3 = N ′

3ψ0zr
2. (200)

Proceeding in the same way as in Problem 11.7 we must now do the calculation numeri-
cally, and we finally find:

α = α1 + α2 + α3 (201)

yielding the 3-term dipole pseudospectrum for H(1s) already given as answer to this Prob-
lem. The exact value of α for H(1s) is obtained this time as the sum of 3 pseudostate con-
tributions, α =∑3

i=1 αi , while the 3-term dipole pseudospectrum {αi, εi} i = 1,2,3 will
give an improved evaluation of the dispersion constant C11 for the biatomic system H–H.
More refined dipole pseudospectra for H(1s) were collected in Table 11.5, while 5-term
quadrupole and octupole pseudospectra are given in Tables 11.6 and 11.7, respectively.

11.9 Dipole polarizabilities of ground state H2.

Magnasco and Ottonelli (1996) gave a pseudostate decomposition of the accurate Kołos–
Wolniewicz (KW) (Kołos and Wolniewicz, 1967) static dipole polarizabilities for ground
state H2. They chose as unperturbed ψ0 the 54-term 1�+

g KW wavefunction (Kołos and
Wolniewicz, 1964) giving E0 = −1.174 470Eh at R = 1.4a0 (the bottom of the potential
energy curve), and for the excited states the 34-term 1�+

u and 1�u functions selected by
KW as a basis for their polarizability calculation. The polarizability data reported in Table I
of Kołos–Wolniewicz work cannot be used as such for computing the C6 dispersion coef-
ficients in the homodimer, because of the lack of the excitation energies corresponding
to each polarizability contribution. Magnasco and Ottonelli hence independently devel-
oped explicit expressions for all necessary matrix elements, following the original James-
Coolidge work (1933), and using the basic integrals developed in their previous work on
H2 (Magnasco et al., 1993). The linear coefficients in ψ0 were obtained by minimization
of the molecular energy by the Ostrowski method (Kołos and Wolniewicz, 1964), while the
coefficients in the excited pseudostates were obtained by the Givens–Householder diago-
nalization of (Ĥ0 −E0) after Schmidt orthogonalization of the basis functions. The results
are collected in Table 2 of their 1996 paper (Magnasco and Ottonelli, 1996).

Out of these very accurate results, the 4-term pseudospectra given as answer in Prob-
lem 11.9 were obtained by simple selection of the most important four contributions to the
dipole polarizabilities. The results of these reduced 4-term pseudospectra are remarkably
good, the calculated value for the parallel component, α‖ = 6.378, being 99.9% of the ac-
curate value (6.383), and that for the perpendicular component, α⊥ = 4.559, 99.6% of the
accurate value (4.577) reported in the original paper. As a completeness test, the sum-rule
gives S(0) =∑i αiε

2
i = 1.972 for α‖, and 1.911 for α⊥, instead of N = 2 as obtained for

the complete pseudospectrum.
The reduced 2-term pseudospectra are obtained by just taking the first two rows in the

previous 4-term values. The dipole polarizabilities for H2 obtained in this simple way are
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still rather satisfactory, at least in a first approximation, being about 95% for α‖ (6.048 in-
stead of 6.378) and 92% for α⊥ (4.202 instead of 4.577). The loss in accuracy in the 2-term
calculation is greater for the perpendicular component, where the contributions are more
“disperse”. We observe that both reduced spectra were not optimized. These results will be
used in Chapter 12 to evaluate the corresponding C6 dispersion coefficients for the H2–H2
dimer.



– 12 –

Atomic and Molecular Interactions

12.1. Introduction 617
12.2. Interatomic Interactions 618
12.3. RS Perturbation Theory of the H–H+ Interaction 618

12.3.1. Non-Expanded Interaction Energies up to Second Order 618
12.3.2. Expanded Interaction Energies up to Second Order 622

12.4. RS Perturbation Theory of the H–H Interaction 623
12.4.1. Non-Expanded Interaction Energies up to Second Order 623
12.4.2. Expanded Interaction Energies up to Second Order 626
12.4.3. HL Theory as a First-Order Perturbation Theory Including Exchange 629
12.4.4. Accurate Theoretical Results for Simple Molecular Systems 633

12.5. An Outline of a Perturbation Theory for Molecular Interactions 635
12.5.1. MS-MA Perturbation Theory of Molecular Interactions 635
12.5.2. First-Order Exchange-Overlap Energy 638
12.5.3. Non-Expanded RS Intermolecular Energies 640
12.5.4. Expanded Dispersion Interactions Between Molecules 644
12.5.5. Angle-Dependent C6 Dispersion Coefficients for Simple Molecular Systems 645
12.5.6. Isotropic C6 Dispersion Coefficients from Dipole Polarizability Pseudospectra 648

12.6. The Van der Waals Bond 650
12.7. Problems 12 655
12.8. Solved Problems 656

12.1 INTRODUCTION

The energies occurring when two molecules interact are extremely small, their ratio with
respect to the energy E0 of the individual molecules being of the order of 10−5. The appro-
priate energy units are therefore small fractions of the atomic unit of energy, say 10−3Eh

for interactions in the region of the chemical bond, and 10−6Eh in that of the Van der Waals
bond. Any attempt to calculate intermolecular energies from the energy of the whole sys-
tem A + B from which we must then subtract the energies of the separate molecules is
expected to meet enormous difficulties, even at the simplest level. It is also difficult to han-
dle errors due to: (i) truncation of the basis set, (ii) lack of correlation if each molecule
is described at the Hartree–Fock level, and (iii) basis set superposition. It seems therefore
preferable to treat the interaction between two molecules as a small perturbation, extending
Rayleigh–Schroedinger (RS) perturbation theory to include exchange and overlap effects,
at least in first order. In the following Sections, after introducing elementary RS perturba-
tion theory by taking as first-order perturbation the interatomic potential V for the H–H+

617
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and H–H interactions, we shall introduce elements of Murrell–Shaw–Musher–Amos (MS-
MA) perturbation theory for the interaction between molecules, mostly with the aim of
investigating the physical nature of the interaction up to second order in the intermolecular
potential V .

12.2 INTERATOMIC INTERACTIONS

In the next two Sections we shall examine from the standpoint of perturbation theory the
interatomic interactions occurring between the two simplest atomic systems, (i) the in-
teraction between a ground state H atom and a proton (H–H+), and (ii) the interaction
between two ground state H atoms (H–H). We shall start by considering up to second or-
der the RS perturbation theory of a ground state H atom perturbed (i) by a proton H+, or
(ii) by another ground state H atom, taking as first-order perturbation the interatomic po-
tential V and as unperturbed Hamiltonian Ĥ0 the sum of the Hamiltonians of the separate
systems. This partition is unsymmetrical as far as nuclear and electron interchange are con-
cerned, the problems connected with this lack of symmetry being considered in Section 4
by taking the Heitler–London (HL) theory as a first-order RS perturbation theory including
exchange. This gives an introduction to MS-MA perturbation theory allowing to cover the
region of the chemical bond. RS Coulombic interatomic energies are first considered with
non-expanded V , then by expanding V into inverse powers of the internuclear distance R,
giving what is known as the multipolar expansion of the potential. Second-order energies
are treated in terms of linear pseudostates.

12.3 RS PERTURBATION THEORY OF THE H–H+ INTERACTION

With the aim of studying the effectiveness of linear pseudostate techniques in the calcula-
tion of non-expanded molecular interactions, we shall consider in this Section the second-
order Coulombic interaction in the simplest molecular system, the hydrogen molecular-
ion H+

2 . From this point of view, the system can be considered as the resultant of the
interaction between a ground state H atom and a proton a distance R apart. Effects due to
nuclear symmetry will not be considered here, a short outline of the problem being given
in the context of the H–H interaction.

12.3.1 Non-Expanded Interaction Energies up to Second Order

Let r, rB be the distances of the electron from the nuclei A and B, with A chosen as origin
of the coordinate system, R the internuclear distance measured along z from A to B, and θ

the angle between r and R.
Then:

Ĥ0 = −1

2
∇2 − 1

r
(1)
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Figure 12.1 Interatomic reference system for the H–H+ interaction.

is the unperturbed Hamiltonian of atom A in atomic units, with:

ψ0 = exp(−r)√
π

(2)

the unperturbed AO describing the ground state of the H atom, with the unperturbed ground
state energy:

E0 = −1

2
. (3)

The proton at B originates a perturbation which is the interatomic potential:

V = 1

R
− 1

rB
= 1

R
+ UB, (4)

where UB = −1/rB is the molecular electrostatic potential (MEP).
The Coulombic energy in first order (the electrostatic energy) is always repulsive:

Ecb
1 = Ees

1 = 〈ψ0|V |ψ0〉 = exp(−2R)

R
(1 + R), (5)

so that the only attractive contribution (not taking into consideration nuclear interchange)
results in second order of RS perturbation theory from the induction (or polarization) en-
ergy:

Ecb
2 = EP

2 = 〈

ψ0
∣

∣V
∣

∣ψP
1

〉 = Eind
2 (6)

which describes the distortion of the spherical charge distribution of the H atom by the
electric field originated by the proton at B.

ψP
1 is the so-called first-order polarization function (Chipman et al., 1973) which satis-

fies the RS inhomogeneous differential equation:

(Ĥ0 − E0)ψ
P
1 + (

V − EP
1

)

ψ0 = 0 (7)
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which must be solved under the orthogonality condition:

〈ψ0|ψP
1 〉 = 0. (8)

In a short notation, we shall omit in the following the apex P in our notation.
Variational approximations to E2 (Chapter 11) can be found in terms of the usual Hyller-

aas functional and, using the Ritz method in terms of the finite set of N linear pseudostates
{ψi} i = 1,2, · · ·N normalized and orthogonal among themselves and to ψ0, the approxi-
mate ˜E2 is given by the sum-over-pseudostates expression:

˜E2 = −
N

∑

i=1

|〈ψi |V |ψ0〉|2
εi

≥ E2. (9)

Posing:

ψ0 = a0, ψi = ai (monoexcitations on A)

〈ai |a0〉 = δ0i , (10)

the variational approximation ˜E2 to the induction energy can be written in a charge density
notation as:

˜Eind
2 = −

N
∑

i=1

|(a0ai |UB)|2
εi

. (11)

To investigate on the nature of the excited pseudostates on A it is convenient to expand
UB for large R (Section 12.3.2):

UB = −
∞
∑

l=0

Rl0(r)
Rl+1

R � r (12)

giving for the transition integral the expanded form:

(a0ai |UB) = −
∞
∑

l=0

(a0ai |Rl0)

Rl+1
. (13)

The coefficients of the power R−l−1 represent the 2l-pole transition moments induced on
atom A by the presence of B. In order that they be different from zero, it is hence necessary
that each excited pseudostate ai has the same transformation properties of the spherical
tensor Rl0(r) = rlPl(cos θ), or, respectively, of the angular part of pz, dz, fz, gz, · · · (l =
1,2,3,4, · · ·) orbitals. The second-order expanded induction energy is therefore:

˜Eind
2 = −

∞
∑

l=0

˜Eind
2l = −

∞
∑

l=0

C2l+2

R2l+2
, (14)
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where the induction coefficients are given by:

C2 = 0 l = 0

C2l+2 = 1

2
αl l ≥ 1

(15)

with:

αl =
N

∑

i=1

αl(i) =
N

∑

i=1

2|(a0ai |rlPl)|2
εi

(16)

the static 2l-pole polarizability of the H-atom ground state resolved into the contributions
of N pseudostates. The long-range induction in H+

2 is hence expressible in terms of a
second-order electric property of the H atom, its static 2l-pole polarizability. It is interesting
to note that the calculation of each multipole component of the induction energy requires
the whole static polarizability of the atom, a quantity that can be measured by experiment.

The convergence of the one-centre non-expanded multipolar contributions (Eh) to the
second-order induction energy in H+

2 at the distance of the chemical bond (R = 2a0) and
of the Wan der Waals bond (R = 12.5a0) is shown in Table 12.1 (Siciliano, 1993) as a
function of the number N of the linear STO pseudostates (c = 1) forming the pseudo-
spectrum of H(1s).

We can see that while two one-centre pseudostates on A are already sufficient to give
practically exact values for all multipole components of the induction energy with l > 0

Table 12.1.

Convergence of non-expanded multipole contributions (Eh) to ˜Eind
2 for H+

2 as a function of the number N of
linear STO pseudostates (c = 1)a

N l = 0 1 2 3

R = 2a0

1 −4.193 × 10−3 −4.733 × 10−2 −6.122 × 10−3 −8.042 × 10−4

5 −7.942 × 10−3 −4.897 × 10−2 −8.406 × 10−3 −2.407 × 10−3

10 −7.964 × 10−3 −4.905 × 10−2 −8.553 × 10−3 −2.505 × 10−3

30 −7.9701 × 10−3 −4.9073 × 10−2 −8.587 × 10−3 −2.530 × 10−3

40 −7.9704 × 10−3 −4.9074 × 10−2 −8.5881 × 10−3 −2.532 × 10−3

Exactb −7.9705 × 10−3 −4.9075 × 10−2 −8.589 × 10−3 −2.5335 × 10−3

R = 12.5a0

1 −6.519 × 10−20 −8.192 × 10−5 −1.769 × 10−6 −1.007 × 10−7

2 −3.204 × 10−18 −9.216 × 10−5 −1.966 × 10−6 −1.101 × 10−7

10 −1.340 × 10−13 −9.216 × 10−5 −1.966 × 10−6 −1.101 × 10−7

20 −1.4843 × 10−13 −9.216 × 10−5 −1.966 × 10−6 −1.101 × 10−7

Exactb −1.513 × 10−13 −9.216 × 10−5 −1.966 × 10−6 −1.101 × 10−7

a Siciliano (1993). b Magnasco and Figari (1987a).
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at the Van der Waals minimum (R = 12.5a0), a sensibly larger number of pseudostates is
needed in order to describe with a sufficient accuracy the same non-expanded multipoles
at the bond distance (R = 2a0). This difficulty of convergence is due to the fact that UB

is a Coulomb potential localized near nucleus B, which modifies a0 in its tail near B, so
that, even including a large number of excited states localized on A, it is very difficult to
reproduce the cusp on B that exists in the correct first-order function.

12.3.2 Expanded Interaction Energies up to Second Order

In the long-range region, (R � r) the interatomic potential V :

V = 1

R
− 1

rB
= 1

R
− {

x2 + y2 + (z − R)2}−1/2 = 1

R
− 1

R

(

1 − 2z

R
+ r2

R2

)−1/2

(17)

can be expanded into multipoles on A, using the Taylor series (u = small):

(1 + u)−1/2 ∼= 1 − 1

2
u + 3

8
u2 − 5

16
u3 + O(u4) (18)

Factor

u = −2z

R
+ r2

R2
−1

2

u2 = 4z2

R2
− 4zr2

R3
+ r4

R4

3

8

u3 = −8z3

R3
+ 12z2r2

R4
− 5

16

Collecting all terms in the same power in R−n up to R−3 gives:

(1 + u)−1/2 ∼= 1 + z

R
+ 3z2 − r2

2R2
+ 5z3 − 3zr2

2R3
+ O(R−4) (19)

giving the first three terms of the multipole expansion for the interatomic potential V in
long range:

V ∼= − z

R2
− 3z2 − r2

2R3
− 5z3 − 3zr2

2R4
+ O(R−5) = −

∞
∑

l=1

Rl0(r)
Rl+1

(20)

which is the result used in the previous Section. All expansion coefficients of the multipole
series for induction are given exactly in terms of the multipole static polarizabilities αl of
ground state H.
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12.4 RS PERTURBATION THEORY OF THE H–H INTERACTION

In this Section, we shall mostly consider the Coulombic interaction between two ground
state H atoms, leaving in the last part a short discussion of the very important effects due
to nuclear and electron interchange.

12.4.1 Non-Expanded Interaction Energies up to Second Order

With reference to Figure 12.2, representing the trapezium of the interparticle distances, we
again choose R as the internuclear distance measured along z.

In atomic units, the unperturbed Hamiltonian (two separate H atoms) will be:

Ĥ0 = ĤA
0 + ĤB

0 (21)

while the perturbation V is the interatomic potential:

V = − 1

rB1
− 1

rA2
+ 1

r12
+ 1

R
. (22)

We recall that the partition of the total Hamiltonian Ĥ , which is symmetrical in the
interchange of identical nuclei and identical electrons, into unsymmetrical Ĥ0 and V gives
rise to what is known as the symmetry problem. At the end of this Section we shall briefly
digress on how to take symmetry effects into account, at least in first order, considering the
Heitler–London theory as a first-order RS perturbation theory including exchange.

For the moment, we shall limit ourselves to an ordinary RS perturbation theory up to
second order, by considering as unperturbed ψ0 the simple two-electron product function:

ψ0 =
1
a0

2
b0, (23)

Figure 12.2 Interatomic reference system for the H–H interaction.
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where a0 = 1sA, b0 = 1sB are the AOs describing the unperturbed ground states of the
separate atoms, with the unperturbed energy:

E0 = EA
0 + EB

0 (24)

the sum of the ground state energies of the individual atoms A and B (E0 = −1Eh).
If we introduce a set of excited linear pseudostates {ai} for A and {bj } for B (i, j 
= 0)

normalized and orthogonal to the respective unperturbed functions, the RS perturbation
expansion up to second order in V gives:

E0 = 〈

ψ0
∣

∣Ĥ0
∣

∣ψ0
〉 = 〈a0b0|ĤA

0 + ĤB
0 |a0b0〉 = EA

0 + EB
0 (25)

Ecb
1 = 〈ψ0|V |ψ0〉 = 〈a0b0|V |a0b0〉 = Ees

1 (26)

Ecb
2 = −

∑

i

|〈aib0|V |a0b0〉|2
εi

−
∑

j

|〈a0bj |V |a0b0〉|2
εj

−
∑

i

∑

j

|〈aibj |V |a0b0〉|2
εi + εj

= Eind
2 + E

disp
2 . (27)

Ees
1 is the electrostatic first-order interaction between undistorted H atoms (the semiclas-

sical term of the HL theory).
Ecb

2 is given by two contributions, (i) the induction (distortion or polarization) energy

Eind
2 = E

ind,A
2 + E

ind,B
2 which describes the distortion of A (B) by the undistorted electric

field of B (A) and involves, respectively, single excitations on A (or B), and (ii) the disper-
sion energy (interatomic electron correlation) E

disp
2 which describes the mutual distortions

induced by A on B and vice versa, and which involves the coupling of simultaneous double
excitations on A and B.

Introducing the explicit form for the interatomic potential V , we get for the transition
integrals:

〈
1
ai

2
b0 |V |

1
a0

2
b0〉 =

〈 1
ai

2
b0

∣

∣

∣

∣

− 1

rB1
− 1

rA2
+ 1

r12
+ 1

R

∣

∣

∣

∣

1
a0

2
b0

〉

=
〈

ai

∣

∣

∣

∣

− 1

rB1
+

∫

dr2
[b0(r2)]2

r12

∣

∣

∣

∣

a0

〉

= (

a0ai |UB
)

, (28)

where we have introduced the charge density notation, and UB is the electrostatic potential
at r1 on A due to nucleus and undistorted electron of B, having the explicit form:

UB(r1) = −exp(−2rB1)

rB1
(1 + rB1) (29)
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which shows the charge-overlap nature of this potential which is localized near nucleus B
and vanishes exponentially far from it. We get similarly for A polarizing B:

〈
1
a0

2
bj |V |

1
a0

2
b0〉 =

〈

bj

∣

∣

∣

∣

− 1

rA2
+

∫

dr1
[a0(r1)]2

r12

∣

∣

∣

∣

b0

〉

= (b0bj |UA) (30)

UA(r2) = −exp(−2rA2)

rA2
(1 + rA2). (31)

For the transition integral involving biexcitations we have:

〈
1
ai

2
bj |V |

1
a0

2
b0〉 =

〈 1
ai

2
bj

∣

∣

∣

∣

1

rB1
− 1

rA2
+ 1

r12
+ 1

R

∣

∣

∣

∣

1
a0

2
b0

〉

=
〈

aibj

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

a0b0

〉

= (a0ai |b0bj )

=
∫ ∫

dr1 dr2
P A(0i|r1; r1)P

B(0j |r2; r2)

r12
, (32)

so that we see that it represents the electrostatic repulsion of the two electrons described
by the transition densities {a0(r1) ai(r1)} = P A(0i|r1; r1) on A and {b0(r2) bj (r2)} =
P B(0j |r2; r2) on B.

We then finally get for the first few orders of unexpanded RS perturbation theory in
charge density notation:

(i) Ecb
1 = Ees

1 = (

a2
0

∣

∣ − r−1
B

) + (

b2
0

∣

∣ − r−1
A

) + (

a2
0

∣

∣b2
0

) + 1

R
(33)

which is nothing but the semiclassical energy result of Heitler–London theory;

(ii) ˜E
ind,A
2 = −

(A)
∑

i

|(a0ai |UB)|2
εi

(34)

where the electric field due to the unperturbed atom B distorts atom A from its spherical
symmetry, the like being true for ˜E

ind,B
2 with A, i ↔ B,j ;

(iii) ˜E
disp
2 = −

(A)
∑

i

(B)
∑

j

|(a0ai |b0bj )|2
εi + εj

(35)

is the non-expanded dispersion energy due to the mutual polarization of A and B, where the
two transition densities on A and B are coupled by the interatomic electron repulsion 1/r12

(interelectron correlation).
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12.4.2 Expanded Interaction Energies up to Second Order

As we did for the H–H+ interaction, we now consider for the interatomic potential V the
analytical form (see Figure 12.2):

V = 1

R
− 1

rB1
− 1

rA2
+ 1

r12

= 1

R
− {

x2
1 + y2

1 + (z1 − R)2}−1/2 − {

x2
2 + y2

2 + (z2 + R)2}−1/2

+ {

(x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2 − R)2}−1/2
. (36)

Expanding in long range (R � r1, r2) each interparticle distance and adding altogether
terms up to O(R−4):

− 1

rB1
= − 1

R
− z1

R2
− 3z2

1 − r2
1

2R3
+ O(R−4) (37)

− 1

rA2
= − 1

R
+ z2

R2
− 3z2

2 − r2
2

2R3
+ O(R−4) (38)

1

r12
= 1

R
+ z1 − z2

R2
+ 3z2

1 − r2
1

2R3
+ 3z2

2 − r2
2

2R3

+ x1x2 + y1y2 − 2z1z2

R3
+ O(R−4) (39)

we see that there is a lot of cancellation between lower order terms, and we obtain for V

the expanded multipole form:

V ∼= 1

R3
(x1x2 + y1y2 − 2z1z2) + O(R−4) (40)

so that the first non-vanishing contribution to the expanded interatomic potential for neutral
H atoms is the dipole–dipole interaction which goes as R−3 (compare Coulson, 1958).

It is easily seen that with such an expanded V :

Ecb
1 = Ees

1 = 0 (41)

˜E
ind,A
2 = ˜E

ind,B
2 = 0, (42)

so that the leading surviving term in long range is the London dispersion attraction:

˜E
disp
2 = − 1

R6

(A)
∑

i

(B)
∑

j

|〈aibj |x1x2 + y1y2 − 2z1z2|a0b0〉|2
εi + εj
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= − 6

R6

(A)
∑

i

(B)
∑

j

|(a0ai |z1)|2|(b0bj |z2)|2
εi + εj

, (43)

where we have taken into account the spherical symmetry of atoms A and B, which gives:

(a0ai |x1) = (a0ai |y1) = (a0ai |z1) on A (44)

(b0bj |x2) = (b0bj |y2) = (b0bj |z2) on B. (45)

The latter expression for the expanded dispersion energy can be written in the well-known
London form:

˜E
disp
2 = − 6

R6
· 1

4

(A)
∑

i

(B)
∑

j

εiεj

εi + εj

αA
i αB

j = − 6

R6
C11 = −C6

R6
, (46)

where:

C11 = 1

4

∑

i

∑

j

εiεj

εi + εj

αA
i αB

j (47)

is the London dispersion constant for the induced dipole–induced dipole interaction. Recall
that:

αA
i = 2

|(a0ai |z1)|2
εi

(48)

is the contribution of the i-th excited pseudostate to the static dipole polarizability of
atom A:

αA =
∑

i

αA
i . (49)

Including the interaction of higher multipoles, we can generalize the London formula to
the expression for the 2la -pole 2lb -pole dispersion coefficients for the H–H interaction:

C2n(la, lb) =
(

2la + 2lb
2la

)

1

4

(A)
∑

i

(B)
∑

j

εA
la
(i)εB

lb
(j)

εA
la
(i) + εB

lb
(j)

αA
la
(i)αB

lb
(j) (50)

so that the H–H dispersion coefficient for a given n = la + lb + 1 is given by:

C2n =
n−2
∑

la=1

C2n(la, n − la − 1). (51)
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Table 12.2.

The first three London dispersion coefficients for H–H

N C6/Eha6
0 C8/Eha8

0 C10/Eha10
0

1 6 115.7143 2016a 1063.125b

2 6.4821 124.0932 2145.819 1132.610
3 6.4984 124.3865 2150.391 1135.107
4 6.49900 124.3984 2150.602 1135.209
5 6.49902 124.3990 2150.6135 1135.214

a Dipole–octupole. b Quadrupole–quadrupole.

Table 12.3.

Relative importance of the Coulombic components of non-expanded induction and dispersion energies for H–H
and comparison with the multipolar expansion of Ecb

2 up to the R−10 term (10−3 Eh)

R/a0 Eind
2 E

disp
2

Eind
2

E
disp
2

− C6

R6
− C8

R8
− C10

R10
Region

a b b

1 −129.40 −17.30 7.5 Chemical
1.4 −68.02 −11.78 5.8 bond
2 −25.58 −7.44 3.4 −3796

3 −4.33 −3.14 1.4 −83.52 Medium
4 −0.63 −1.26 0.5 −6.62 range

6 −0.011 −0.19 0.06 −0.27 Van der Waals
8 −0.2 × 10−3 −33.80 × 10−3 0.006 −35.30 × 10−3 region

10 −0.004 × 10−3 −8.04 × 10−3 0.0005 −8.07 × 10−3

aExact non-expanded calculation by Chałasinski and Jeziorski (1974).
bAccurate variational calculations by Kreek and Meath (1969).

In Table 12.2 (Magnasco and Figari, 1987b) we give the first three London dispersion coef-
ficients up to 2n = 10 calculated as a function of the number N of linear STO pseudostates
(c = 1).

The results with N = 5 pseudostates are exact to all figures given. The results for N = 1
coincide with Kirkwood, while those for N = 2 are already better than those of the single
non-linear optimized pseudostate.

Table 12.3 gives the comparison of non-expanded second-order energies with the ex-
panded results up to the R−10 term in different regions of the internuclear distances R. It
is evident from Table 12.3 that the expanded energies diverge at small R.
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12.4.3 HL Theory as a First-Order Perturbation Theory Including Exchange

Consider the Born–Oppenheimer Hamiltonian for the H2 molecule:

Ĥ = ĥ1 + ĥ2 + 1

r12
+ 1

R
, ĥ = −1

2
∇2 − 1

rA
− 1

rB
. (52)

Ĥ is symmetric under the interchanges 1 ↔ 2 and A ↔ B (electron and nuclear inter-
change). Take the two non-orthogonal spatial functions:

χ1 =
1
a0

2
b0 χ2 = 1

b0

2
a0 (53)

S12 = 〈χ1|χ2〉 = 〈a0b0|b0a0〉 = S2
00, S00 = 〈a0|b0〉 = 〈b0|a0〉. (54)

Each function, separately, does not possess any symmetry with respect to either electron
or nuclear interchange, and cannot, therefore, represent an approximation to a physically
observable electronic state, which must reflect the symmetry of the Hamiltonian Ĥ (be-
ing hence either symmetric or antisymmetric with respect to the quantum mechanical ex-
change operator, say P̂ , which commutes with Ĥ ). Since Ĥ does not contain spin, spin can
be omitted at the moment, restricting our analysis to the space-part of the wavefunction,
being added at the end to get a function satisfying the Pauli principle. Partitioning Ĥ into
unsymmetrical Ĥ0 and V , the commutation relation:

[Ĥ , P̂ ] = [P̂ , Ĥ ] (55)

implies the paradoxical relation:

[Ĥ0, P̂ ] = [P̂ , V̂ ] (56)

where the perturbation orders are mixed. To get out of this paradox we have two ways:

(i) Set up first the secular equation involving the full symmetrical Hamiltonian and the

two spatially non-orthogonal functions
1
a0

2
b0 and

1
b0

2
a0 (electrons always in dictionary

order) giving the same expectation value of Ĥ (Ĥ11 = Ĥ22); or
(ii) Start from the beginning using a fully symmetrized (un-normalized) ψ0:

ψ0 = a0b0 + b0a0

2
= P̂ a0b0 (for 1	+

g ground state), (57)

where the projector P̂ satisfies the usual properties:

P̂ = 1

2
(Î + P̂12) P̂ 2 = P̂ , P̂ † = P̂ (58)

and later dissecting Ĥ into Ĥ0 + V .
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We now examine separately these two approaches.

(i) The Hermitian matrix yielding to the secular equation is:

⎛

⎝

H11 − E H12 − ES12

H12 − ES12 H22 − E

⎞

⎠ =
⎛

⎝

H11 − E H12 − ES12

H12 − ES12 H11 − E

⎞

⎠ (59)

since:

H11 =
〈

a0b0

∣

∣

∣

∣

ĥ1 + ĥ2 + 1

r12
+ 1

R

∣

∣

∣

∣

a0b0

〉

= ha0a0 + hb0b0 + (a2
0 |b2

0) + 1

R
(60)

H22 =
〈

b0a0

∣

∣

∣

∣

ĥ1 + ĥ2 + 1

r12
+ 1

R

∣

∣

∣

∣

b0a0

〉

= hb0b0 + ha0a0 + (b2
0|a2

0) + 1

R
= H11 (61)

H12 =
〈

a0b0

∣

∣

∣

∣

ĥ1 + ĥ2 + 1

r12
+ 1

R

∣

∣

∣

∣

b0a0

〉

= ha0b0S00 + hb0a0S00 + (a0b0|a0b0) + 1

R
S2

00 (62)

S12 = 〈a0b0|b0a0〉 = S2
00. (63)

Dissecting now the full Hamiltonian into the unsymmetrical components Ĥ0 + V , with:

Ĥ0 = ĤA
0 + ĤB

0 =
(

−1

2
∇2

1 − 1

rA1

)

+
(

−1

2
∇2

2 − 1

rB2

)

(64)

E0 = εA + εB = 2ε0 (65)

V = − 1

rB1
− 1

rA2
+ 1

r12
+ 1

R
, (66)

we obtain:

V11 = 〈a0b0|V |a0b0〉 = (

a2
0

∣

∣ − r−1
B

) + (

b2
0

∣

∣ − r−1
A

) + (

a2
0

∣

∣b2
0

) + 1

R
(67)

V12 = 〈a0b0|V |b0a0〉
= (

b0a0
∣

∣ − r−1
B

)

S00 + (

a0b0
∣

∣ − r−1
A

)

S00 + (a0b0|a0b0) + 1

R
S2

00, (68)
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so that:

H11 = E0 + V11 (69)

H12 = E0S
2
00 + V12. (70)

Writing:

E = E0 + E1, (71)

our starting matrix becomes:

(

(E0 + V11) − (E0 + E1) (E0S
2
00 + V12) − (E0 + E1)S

2
00

(E0S
2
00 + V12) − (E0 + E1)S

2
00 (E0 + V11) − (E0 + E1)

)

=
(

E0 − E0 E0S
2
00 − E0S

2
00

E0S
2
00 − E0S

2
00 E0 − E0

)

+
(

V11 − E1 V12 − E1S
2
00

V12 − E1S
2
00 V11 − E1

)

, (72)

where the first matrix is the null matrix and the second the correct first-order matrix in-
cluding exchange.

The first-order secular equation including exchange is therefore:

∣

∣

∣

∣

∣

∣

V11 − E1 V12 − E1S
2
00

V12 − E1S
2
00 V11 − E1

∣

∣

∣

∣

∣

∣

= 0 (73)

whose roots give directly the first-order energies including exchange for the singlet (1	+
g )

and triplet (3	+
u ) states of the H2 molecule.

Expanding the determinant we have:

V11 − E1 = ±(V12 − E1S
2
00). (74)

• Lowest root:

E1(
1	+

g ) = V11 + V12

1 + S2
00

= V11 + V12 − S2
00V11

1 + S2
00

, (75)

where:

V11 = (

a2
0

∣

∣ − r−1
B

) + (

b2
0

∣

∣ − r−1
A

) + (

a2
0

∣

∣b2
0

) + 1

R
= Ecb

1 = Ees
1 (76)
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is the semiclassical term of the HL theory (the non-expanded first-order Coulombic or
electrostatic energy); and:

V12 − S2
00V11

1 + S2
00

= S00

1 + S2
00

{

S00
[(

a0b0 − S00a
2
0

∣

∣ − r−1
B

) + (

b0a0 − S00b
2
0

∣

∣ − r−1
A

)]

+ [(

a0b0
∣

∣a0b0
) − S2

00

(

a2
0

∣

∣b2
0

)]}

(77)

the quantum term of HL theory (first-order exchange-overlap or penetration energy), which
is a strongly attractive term determining the chemical bond.

• Highest root:

E1(
3	+

u ) = V11 − V12

1 − S2
00

= V11 − V12 − S2
00V11

1 − S2
00

(78)

he second term being the quantum component for the excited triplet state, a strongly repul-
sive term in short range.

(ii) If we write for convenience:

ϕ0 =
1
a0

2
b0 (79)

for the unsymmetrical product function, we can use the fully symmetrized ψ0 (for the 1	+
g

state):

ψ0 = P̂ ϕ0 = a0b0 + b0a0

2
(80)

as a variational function with the full Ĥ :

E = 〈ψ0|Ĥ |ψ0〉
〈ψ0|ψ0〉 = 〈P̂ ϕ0|Ĥ |P̂ ϕ0〉

〈P̂ ϕ0|P̂ ϕ0〉
= 〈P̂ ϕ0|Ĥ |ϕ0〉

〈P̂ ϕ0|ϕ0〉
(81)

and, dissecting Ĥ into Ĥ0 + V :

E = 〈P̂ ϕ0|Ĥ0 + V |ϕ0〉
〈P̂ ϕ0|ϕ0〉

= 〈P̂ ϕ0|(Ĥ0 − E0) + E0 + V |ϕ0〉
〈P̂ ϕ0|ϕ0〉

= E0 + E1 + �, (82)

where:

E1 = 〈P̂ ϕ0|V |ϕ0〉
〈P̂ ϕ0|ϕ0〉

(83)
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is the HL first-order interaction including exchange, and the last term:

� = 〈P̂ ϕ0|Ĥ0 − E0|ϕ0〉
〈P̂ ϕ0|ϕ0〉

(84)

vanishes if the unsymmetrized ϕ0 is an exact eigenfunction of Ĥ0 with eigenvalue E0 (what
is the case for H2). For approximate wavefunctions, we must hence consider the correction
term:

� = �A + �B (85)

�A = 〈P̂ ϕ0|ĤA
0 − EA

0 |ϕ0〉
〈P̂ ϕ0|ϕ0〉

(86)

�B = 〈P̂ ϕ0|ĤB
0 − EB

0 |ϕ0〉
〈P̂ ϕ0|ϕ0〉

, (87)

where:

EA
0 = 〈a0|ĤA

0 |a0〉
〈a0|a0〉 (88)

is the expectation value of ĤA
0 over the approximate a0 (not necessarily an eigenfunction

of ĤA
0 ). The �-term depends in this case on the interatomic (or intermolecular) overlap

and may be quite large in short range.
This last approach, which makes use of a symmetrized ψ0, is known as Murrell–Shaw–

Musher–Amos (MS-MA: Murrell and Shaw, 1967; Musher and Amos, 1967) perturbation
theory, and was fully analyzed by Chipman et al. (1973).

12.4.4 Accurate Theoretical Results for Simple Molecular Systems

In the theory of atomic or molecular interactions it is often assumed as a first reasonable
approximation (Magnasco and McWeeny, 1991) to add to Ees

1 the first-order exchange-
overlap (penetration) Eexch-ov

1 term, which can be evaluated using just a0 and b0, and
adding further the Ecb

2 term (without second-order exchange), which introduces the main
Coulombic second-order effects describing distortion and correlation between the atomic
(or molecular) charge distributions.

As an example, the main contributions to the energies of the chemical bond and to the
Van der Waals (VdW) bond in H+

2 and H2 are reported in Table 12.4.
Table 12.4 deserves the following comments.

(i) H+
2 molecule-ion.

The main correction to the attractive HL bond energy for the 2	+
g ground state is

the (attractive) distortion energy (mostly dipole) of the charge distribution. The main
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Table 12.4.

Main contributions to the energies of the chemical bond (10−3 Eh) and the VdW bond (10−6 Eh) in H+
2 and H2

H+
2 molecule-ion

(i) R = 2a0 Chemical bond

E1(2	+
g ) −53.8

E
ind,a

21 −49.0
–———
−102.8 Accurate −102.6

(ii) R = 12.5a0 VdW bond

E1(2	+
u ) +31

Eind
21 −92

——
−61 Accurate −60.8

H2 molecule

(i) R = 1.4a0 Chemical bond

E1(1	+
g ) −105.5

E
ind,b

2 −68.0
–———
−173.5 Accurate −174.5

(ii) R = 8a0 VdW bond

E1(3	+
u ) +14

E
disp,c

2 −34
——
−20 Accurate −20.1

aDipole contribution. Assuming cancellation between the remaining attractive multipole contributions and the
repulsive second-order exchange effects.
bExact induction. Assuming cancellation between attractive dispersion (−11.8) and repulsive second-order ex-
change effects.
cNon-expanded dispersion.

correction to the repulsive HL energy for the 2	+
u excited state is the (attractive) dis-

tortion energy (mostly dipole) of the charge distribution. At variance with H2 (neutral
molecule), induction is a long-range effect in H+

2 (charged molecule-ion).
(ii) H2 molecule.

The main correction to the attractive HL bond energy for the 1	+
g ground state is still

the (attractive) distortion energy of the charge distribution. The main correction to the
repulsive HL energy for the 3	+

u excited state of H2 is the (attractive) dispersion due
to interatomic electron correlation. At the distance of the VdW minimum, induction is
negligible for the neutral molecule.

The values reported as accurate in Table 12.4 are taken from Peek (1965) for H+
2 , Kołos

and Wolniewicz (1965) for H2(
1	+

g ), and Kołos and Rychlewski (1990) for H2(
3	+

u ).
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We notice that the expanded dispersion up to 2n = 10 gives at R = 8a0 for H2 (Kreek
and Meath, 1969):

˜E
disp
2 −24.4 −6.9 −1.6 −0.9 = −33.8 × 10−6 Eh

Multipoles 1,1 1,2 + 2,1 1,3 + 3,1 2,2

a value which is in very good agreement with the corresponding non-expanded value of
−34 × 10−6 Eh.

12.5 AN OUTLINE OF A PERTURBATION THEORY FOR MOLECULAR
INTERACTIONS

As we said previously (Magnasco and McWeeny, 1991), in the perturbation theory of mole-
cular interactions the majority of the physically meaningful effects can be described in sec-
ond order, provided the Coulombic energies (electrostatic, induction, dispersion) are sup-
plemented by terms arising from symmetry and intermolecular electron exchange. First-
order effects, which are dominant in short range, can be described by antisymmetrizing
the product ψ0 of the (individually antisymmetric) unperturbed wavefunctions of the sep-
arate molecules (say A0 and B0). The small second-order effects can then be calculated by
seeking variational approximations to induction and dispersion energies (as we did for H+

2
and H2) eventually including later second-order exchange, using, for instance, MS-MA
perturbation theory. Even if MS-MA is just one of the possible exchange perturbation the-
ories, it owes its simplicity to the fact that the energy corrections can be calculated without
solving perturbation equations involving the antisymmetrizer Â (an operator which implies
interchange of electrons between different molecules). We sketch briefly in the following
the relevant equations, while for details the reader is referred to the original work (Mag-
nasco and McWeeny, 1991, and references therein).

12.5.1 MS-MA Perturbation Theory of Molecular Interactions

If V is the intermolecular potential and Ĥ0 the unperturbed Hamiltonian (sum of the Hamil-
tonians ĤA

0 and ĤB
0 of the isolated molecules), then it is assumed that the unperturbed

product ψ0 of isolated-molecule functions:

ψ0 = A0B0 (89)

will satisfy the zeroth order (unperturbed) equation:

(Ĥ0 − E0)ψ0 = 0. (90)
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The interaction energy in second order of the MS-MA expansion is obtained directly1, after
antisymmetrizing ψ0, as:

Eint = E1 + E2, (91)

where:

E1 = 〈Âψ0|V |ψ0〉
〈Âψ0|ψ0〉

= Ecb
1 + Eexch-ov

1 (92)

is the first-order interaction with its Coulombic and exchange-overlap (penetration) com-
ponents:

Ecb
1 = 〈ψ0|V |ψ0〉 (93)

Eexch-ov
1 = 〈P̂ψ0|V − Ecb

1 |ψ0〉
1 + 〈P̂ψ0|ψ0〉

, (94)

and E2 the second order interaction:

E2 = 〈ÂψP
1 |V − E1|ψ0〉
〈Âψ0|ψ0〉

= Ecb
2 + Eexch-ov

2 (95)

with:

Ecb
2 = 〈

ψP
1

∣

∣V
∣

∣ψ0
〉 = Eind

2 + E
disp
2 (96)

Eexch-ov
2 = 〈P̂ψP

1 |V − E1|ψ0〉 − Ecb
2 〈P̂ψ0|ψ0〉

1 + 〈P̂ψ0|ψ0〉
. (97)

In these formulae, Â is the partial (idempotent) antisymmetrizer:

Â = Q−1(1 + P̂ ) (98)

Q−1 = NA!NB !
N ! , (99)

P̂ the operator interchanging electrons between different molecules:

P̂ = −
(A)
∑

i

(B)
∑

j

P̂ij +
(A)
∑

i<i′

(B)
∑

j<j ′
P̂ij P̂i′j ′ + · · · (100)

1That is not taking the small difference of two very large quantities as in the variational calculation of the whole
system A + B.
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and ψP
1 the first-order polarization function satisfying the inhomogeneous differential

equation:

(Ĥ0 − E0)ψ
P
1 + (

V − Ecb
1

)

ψ0 = 0 (101)

with the constraint:

〈

ψ0
∣

∣ψP
1

〉 = 0. (102)

Variational approximations to (101) can be given by minimizing the corresponding Hyller-
aas functional in terms of the first-order variational function ˜ψP

1 :

˜Ecb
2 = 〈

˜ψP
1

∣

∣Ĥ0 − E0
∣

∣˜ψP
1

〉 + 〈

˜ψP
1

∣

∣V
∣

∣ψ0
〉 + 〈

ψ0
∣

∣V
∣

∣˜ψP
1

〉 ≥ Ecb
2 . (103)

This problem has already been fully discussed for the simpler cases of the H–H+ and the
H–H interaction.

The main difficulty with the application of MS-MA theory to large molecular systems
lies in the evaluation of the matrix elements occurring in (94) and (97), since the usual rules
based on Slater determinants are not directly applicable, and we must resort to the difficult
evaluation of the different electron interchanges (mostly, single and double) by means of
the expansion (100).

A simpler result is obtained if we make the assumptions (i) that the approximate free-
molecule functions are available in the form of single Slater determinants of Hartree–Fock
wavefunctions for A and B, and (ii) that suitable pseudostates can be generated by separate
diagonalization of the excitation energy operators (ĤA

0 −EA
0 ) and (ĤB

0 −EB
0 ) over a basis

of excited functions, individually antisymmetrized, {Ai} for A and {Bj } for B. In this case,
(i) the first-order term, E1 in (92), must be corrected by the addition of the term:

� = 〈Âψ0|Ĥ0 − E0|ψ0〉
〈Âψ0|ψ0〉

= �A + �B (104)

which must be added to the exchange-overlap component in (94) and is at least of or-
der O(S2), if S is an overlap integral between an occupied orbital of A and one of B, but is
of order O(S4) for the Hartree–Fock wavefunctions of A and B; and (ii) the second-order
RS term (96) is replaced by the upper bound:

˜Ecb
2 = −

(A)
∑

i

(B)
∑

j

|〈AiBj |V |A0B0〉|2
εi + εj

≥ Ecb
2 .

(not both zero)

(105)

Under these assumptions, explicit general formulae were given (Magnasco and McWeeny,
1991) for equations (93), (94), (96) and (104) in terms of appropriate static and transition
density matrices on A and B.
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12.5.2 First-Order Exchange-Overlap Energy

The exchange overlap-energy is a quantum mechanical contribution which depends on
the nature of the spin coupling of the interacting molecules (for a general discussion see
Dacre and McWeeny, 1970). For closed-shell molecules the resultant total spin is zero, and
the first-order contribution to the exchange-overlap component of the interaction can be
expressed in closed form if Âψ0 is approximated as a single determinant of Hartree–Fock
spin-orbitals of the individuals molecules.

First-order exchange overlap can then be expressed in terms of two contributions of
opposite sign.

(i) The attractive contribution is due to pure 2-electron exchange between A and B:

K = −1

2

∫ ∫

dr1 dr2
P B(00|r1; r2)

r12
P A(00|r2; r1)

= −1

2

∫

dr1K̂
B(00|r1)P

A(00|r1; r′
1), (106)

where the prime on r′
1 must be removed after the action of the operator and before integra-

tion, and K̂B is the undistorted exchange potential operator:

K̂B(00|r1) =
∫

dr2K
B(00|r1; r2)P̂r1r2 (107)

an integral operator with kernel:

KB(00|r1; r2) = P B(00|r1; r2)

r12
;

(ii) The repulsive contribution is due to the Pauli repulsion between the overlapping static
electron distributions of the two molecules, and is given by:

Eov =
∫

dr1

[

−UB(r1) − 1

2
K̂B(00|r1)

]

P A
ov(00|r1; r′

1)

+ 1

2

∫ ∫

dr1dr2
P B

ov(00|r2; r2) − 1
2P B

ov(00|r1; r2)P̂r1r2

r12
P A

ov(00|r1; r′
1)

+ (A ↔ B,1 ↔ 2), (108)

where:

UB(r) = −V B(r) − JB(00|r) (109)
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is the Coulomb potential (MEP) at r due to nuclei and undistorted electrons of molecule B,
and:

Pov(00|r; r′) = P A
ov(00|r; r′) + P B

ov(00|r; r′) (110)

is the overlap density, whose partition between A and B is only apparently additive, since
each component contains the effect of the whole intermolecular overlap. The two overlap
components are defined as:

P A
ov(00|r; r′) = 2

(A)
∑

i

all
∑

p

�i(r)�ip�∗
p(r′) (111)

P B
ov(00|r; r′) = 2

(B)
∑

j

all
∑

q

�j (r)�jq�∗
q(r′), (112)

and have diagonal elements with the property2 (Problem 12.1):

∫

drP A
ov(00|r; r) =

∫

drP B
ov(00|r; r) = 0. (113)

In equation (111), i runs over the occupied MOs of A, p over all occupied MOs of A
and B, and �ip is an element of the matrix:

� = −S(1 + S)−1 (114)

which depends in a complicated way on the intermolecular overlap between the occupied
MOs of A and B (the like being true for P B

ov).
The overlap energy, Eov of equation (108), expresses the interaction of the overlap den-

sity of one molecule with the Coulomb-exchange potential of the other, plus the Coulomb-
exchange interaction of the overlap densities of the two molecules (Magnasco, 1982). All
terms in Eov are rigorously zero for non-overlapping molecules. For clusters of many in-
teracting molecules the overlap energy is the source of first-order non-additivity observed
for intermolecular forces.

Partition (110) allows for the precise definition of (i) the additional density which must
supplement the ordinary and exchange electron densities of each molecule when overlap
occurs, and (ii) the error � occurring when A0 and B0 are not the exact eigenstates of
Ĥ0, but rather approximations satisfying the eigenvalue equation for some model Hamil-
tonian Ĥ0 (e.g. the one constructed in terms of the usual one-electron Fock operators of the
isolated molecule). It can be shown that, if F̂ A(00|r) is the Fock operator for A, the �A

contribution to � in (104) is given by:

�A =
∫

dr1F̂
A(00|r1)P

A
ov(00|r1; r′

1)

2A generalization of what found in the Heitler–London theory of H2.
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+ 1

2

∫ ∫

dr1dr2
P A

ov(00|r2; r2) − 1
2P A

ov(00|r1; r2)P̂r1r2

r12
P A

ov(00|r1; r′
1).

(115)

Since P A
ov is at least of order O(S2), it can be seen that the first term in (115) is of or-

der O(S2) and vanishes for Hartree–Fock A0 (Magnasco et al., 1990; see Problem 12.2),
while the second term is of order O(S4) and survives in any case.

12.5.3 Non-Expanded RS Intermolecular Energies

The non-expanded intermolecular potential V between molecules A and B in terms of
interparticle distances takes the simple form:

V =
∑

i

∑

j

qiqj

rij
, (116)

where rij is the distance between particle i (nucleus or electron) of charge qi of A and
particle j of charge qj of B (Figure 12.3).

As we already did in treating the exchange-overlap component of the interaction energy
in the preceding Section, reduction from the many-electron wavefunctions occurring in the
RS terms (93) and (96) is best dealt with in terms of static and transition charge density ma-
trices, that allow to write for the general transition matrix element of V (Longuet-Higgins,
1956; compare equation (32) of Section 12.4.1):

〈AiBj |V |A0B0〉 =
∫ ∫

dr1dr2
γ A(0i|r1; r1)γ

B(0j |r2; r2)

r12
, (117)

where:

γ A(0i|r) = δ0i

∑

α

Zαδ(r − rα) − P A(0i|r; r) (118)

is the transition charge density (nuclei + electrons) operator at r associated to the transition
0 → i on molecule A.

Figure 12.3 Interparticle distances in the intermolecular potential V .



12.5 An Outline of a Perturbation Theory for Molecular Interactions 641

Using the properties of the Dirac δ-function (Problem 12.3, see Chapter 1) it is easily
found:

〈AiBj |V |A0B0〉 = −δ0j

∑

β

Zβ

∫

dr1
P A(0i|r1; r1)

r1β

− δ0i

∑

α

Zα

∫

dr2
P B(0j |r2; r2)

r2α

+
∫ ∫

dr1dr2
P A(0i|r1; r1)P

B(0j |r2; r2)

r12

+ δ0iδ0j

∑

α

∑

β

ZαZβ

rαβ

, (119)

so that the following general results are obtained for the Coulombic component of the
intermolecular energy up to second order:

(i) First-order Coulombic (electrostatic) energy:

Ecb
1 = Ees

1 = 〈A0B0|V |A0B0〉

=
∫ ∫

dr1dr2
γ A(00|r1; r1)γ

B(00|r2; r2)

r12
(120)

= −
∑

β

Zβ

∫

dr1
P A(00|r1; r1)

r1β

−
∑

α

Zα

∫

dr2
P B(00|r2; r2)

r2α

+
∫ ∫

dr1dr2
P A(00|r1; r1)P

B(00|r2; r2)

r12

+
∑

α

∑

β

ZαZβ

rαβ

(121)

is the interaction between nuclei and undistorted electron charge distribution of A
and B.

(ii) Second-order distortion (polarization) of A by B:

E
ind,A
2 = −

∑

i

|〈AiB0|V |A0B0〉|2
εi

= −
∑

i

| ∫ dr1U
B(00|r1)P

A(0i|r1; r1)|2
εi

, (122)
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where:

UB(00|r1) = −
∑

β

Zβ

r1β

+
∫

dr2
P B(00|r2; r2)

r12
(123)

is the MEP at r1 due to nuclei and undistorted electrons of B (compare with equa-
tions (28) and (29) of Section 12.4).

(iii) Second-order distortion (polarization) of B by A:

E
ind,B
2 = −

∑

j

|〈A0Bj |V |A0B0〉|2
εj

= −
∑

j

∣

∣

∫

dr2U
A(00|r2)P

B(0j |r2; r2)
∣

∣

2

εj

, (124)

where:

UA(00|r2) = −
∑

α

Zα

r2α

+
∫

dr1
P A(00|r1; r1)

r12
(125)

is the MEP at r2 due to undistorted fields of A.
(iv) Second-order dispersion (intermolecular electron correlation):

E
disp
2 = −

∑

i

∑

j

|〈AiBj |V |A0B0〉|2
εi + εj

= −
∑

i

∑

j

∣

∣

∫∫

dr1dr2
PA(0i|r1;r1)P

B(0j |r2;r2)
r12

∣

∣

2

εi + εj

(126)

is the second-order contribution arising from the instantaneous interaction of the elec-
tron density fluctuations mutually induced in the two molecules.

Now, let us define:

�A(r1; r′
1|iu) =

∑

i

εi

2P A(0i|r1; r1)P
A(i0|r′

1; r′
1)

ε2
i + u2

(127)

as the A-dynamic propagator which determines the linear response of the charge density
at r1 to an oscillating perturbation (at imaginary frequency iu, with u a real quantity)
applied at r′

1. Then equation (126) can be rewritten as the coupling of two electrostatic
interactions (1/r12 and 1/r1′2′ ) involving four space points in the two molecules with a
strength factor which depends on how readily density fluctuations propagate from r′

1 to r1
on A, r′

2 to r2 on B (Figure 12.4).
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Figure 12.4 Origin of intermolecular dispersion.

Non-expanded dispersion can then be written in the two fully equivalent general forms:

E
disp
2 = −

∑

i

∑

j

1

εi + εj

∫ ∫

dr1dr2
P A(0i|r1; r1)P

B(0j |r2; r2)

r12

×
∫ ∫

dr′
1dr′

2
P A(i0|r′

1; r′
1)P

B(j0|r′
2; r′

2)

r1′2′

= −
∫ ∫

dr1dr2
1

r12

∫ ∫

dr′
1dr′

2
1

r1′2′

× 1

4

∑

i

∑

j

εiεj

εi + εj

�A(r1; r′
1|i)�B(r2; r′

2|j) (128)

= −
∫ ∫

dr1dr2
1

r12

∫ ∫

dr′
1dr′

2
1

r1′2′

× 1

2π

∫ ∞

0
du�A(r1; r′

1|iu)�B(r2; r′
2|iu), (129)

where use was made of the integral transform (Problem 12.4):

1

εi + εj

= 2

π

∫ ∞

0
du

εi

ε2
i + u2

· εj

ε2
j + u2

εi, εj > 0. (130)

We shall refer to (128) and (129) as of generalizations of the London formula (London,
1930) and the Casimir–Polder formula (Casimir and Polder, 1948), respectively.

In equation (128), �A(r1; r′
1|i) is the i-th pseudostate component of the limit to zero

frequency of the dynamic propagator (127):

lim
u→0

�A(r1; r′
1|iu) = �A(r1; r′

1) =
∑

i

�A(r1; r′
1|i). (131)

In analogy with what happens for polarizabilities, we shall call �A(r1; r′
1) the “static prop-

agator” of molecule A, a quantity that should replace polarizabilities in non-expanded in-
teractions.
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The general polarization propagator (127), and the corresponding frequency dependent
polarizabilities (FDPs) that it determines, can be calculated by time-dependent perturba-
tion techniques (TDHF or MC-TDHF, see McWeeny, 1989). General formulae in terms of
two-electron integrals between elementary charge distributions on A and B, and the corre-
sponding elements of the transition density matrices have been developed in terms of an
atomic orbital basis, but will not be reported here where we are simply interested in the
physical interpretation of molecular dispersion.

The consequence of expanding in long range the interelectron distances 1/r12 and 1/r1′2′
in (128) and (129) will be examined in the last two Sections.

12.5.4 Expanded Dispersion Interactions Between Molecules

An important difference occurring between atomic and molecular interactions is that the
former depend only on the internuclear distance R, while the latter depend on the distance
R between their centres-of-mass as well as on the relative orientation of the two mole-
cules. This orientation is, in general, specified by the six Euler angles (�A = αA,βA,γA;
�B = αB,βB, γB ) that bring a body-fixed (intramolecular) reference frame into self-
coincidence with the space-fixed (intermolecular or laboratory) coordinate system by suc-
cessive rotations about definite axes3 (Brink and Satchler, 1993). It is often convenient to
specify the relative orientation of the two molecules in terms of just five independent angles
(θA, θB,ϕ,χA,χB ) related to the Euler angles, giving the orientation of the axis of highest
symmetry (principal axis) in each molecule and the torsional angles χA and χB about these
axes (Figure 12.5).

We shall mostly restrict ourselves to consideration of the long-range dispersion interac-
tion between two axially symmetric linear molecules, whose relative orientation is speci-
fied by the three angles θA, θB,ϕ (Figure 12.6), related to Euler’s angles by:

αA = 0, βA = −θA, γA = 0 αB = 0, βB = −θB, γB = ϕ. (132)

Figure 12.5 Relative angles specifying the orientation of the two molecules.

3The transformation from a set of orthogonal axes (x y z) to the rotated set (x′ y′ z′) is made in three steps:
(i) the original set is first transformed into (x1 y1 z) by rotation over an angle α about the z-axis, next (ii) to
(x′

1 y1 z′) by rotation of β about the y1-axis, and finally (iii) to (x′ y′ z′) by a rotation through angle γ about the
z′-axis.



12.5 An Outline of a Perturbation Theory for Molecular Interactions 645

Figure 12.6 Relative angles specifying the orientation of two linear molecules.

Spherical tensor expansion of (r12 · r1′2′)−1 in long range4 (Wormer, 1975; Ottonelli,
1998) explicitates the dependence of the dispersion energy on intermolecular distance R

and molecular orientation �A,�B . Introducing the expansion into the dispersion energy
expressions (128) and (129) and turning to real spherical harmonics, the long-range dis-
persion interaction between two linear molecules can be written as:

E
disp
2 = −

∑

n

R−nCn(θA, θB,ϕ), (133)

where:

n = la + lb + l′a + l′b + 2 (134)

(la, l′a), (lb, l′b) being the angular quantum numbers specifying the elementary multi-
pole polarizabilities of A and B. The Cns are angle-dependent dispersion coefficients
whose general expression can be found elsewhere (Spelsberg et al., 1993; Ottonelli, 1998;
Magnasco and Ottonelli, 1999). Explicit expressions for n = 6 are examined in the next
Section, together with a short account of the simpler case of the atom–linear molecule
interaction.

An elementary two-state model of expanded second-order energies based on classical
electrostatics has been recently derived by the author for atom–atom and atom–linear mole-
cule interactions (Magnasco, 2004a, 2004b). The orientation dependence of these interac-
tions was singled out avoiding explicit calculation of matrix elements and any use of RS
perturbation theory.

12.5.5 Angle-Dependent C6 Dispersion Coefficients for Simple Molecular Systems

A real spherical tensor approach to the expanded molecular coefficients for general mole-
cules in long range was proposed by Magnasco et al. (1988; see also Stone and Tough,

4An asymptotic expansion in the sense of Erdèlyi (1956).
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1984), and several cases explicitly considered in Magnasco et al. (1990). Partial expres-
sions in Cartesian coordinates were earlier derived by Buckingham (1967). The expression
for the angle-dependent C6 dispersion coefficient for two linear molecules was first given
by Hirschfelder et al. (1954; see also Briggs et al., 1971). For the homodimer it takes the
form:

C6(θA, θB,ϕ) = (2B + 4D) + 3(B − D)
(

cos2 θA + cos2 θB

)

+ (A − 2B + D)(sin θA sin θB cosϕ − 2 cos θA cos θB)2, (135)

where A,B = C,D are the three dispersion constants, which in Casimir–Polder form are:

A = 1

2π

∫ ∞

0
duαA

110(iu)αB
110(iu) (136)

B = 1

2π

∫ ∞

0
duαA

110(iu)αB
111(iu) (137)

C = 1

2π

∫ ∞

0
duαA

111(iu)αB
110(iu) = B (138)

D = 1

2π

∫ ∞

0
duαA

111(iu)αB
111(iu). (139)

Magnasco et al. (1990) gave an alternative, yet equivalent (Ottonelli, 1998), expres-
sion in terms of frequency-dependent isotropic polarizabilities α(iu) and polarizability
anisotropies �α(iu) of the two molecules:

C6(θA, θB,ϕ) = 1

2π

∫ ∞

0
du

{

6αAαB

+ [(

3 cos2 θB − 1
)

αA�αB + (

3 cos2 θA − 1
)

�αAαB
]

+ [

4 cos2 θA cos2 θB − (

cos2 θA + cos2 θB

)

− sin 2θA sin 2θB cosϕ

+ sin2 θA sin2 θB cos2 ϕ
]

�αA�αB
}

. (140)

The angle-dependent dispersion coefficients Cn are however most conveniently expressed
in terms of associated Legendre polynomials (Meyer, 1976; Spelsberg et al., 1993;
Magnasco and Ottonelli, 1999) as:

Cn(θA, θB,ϕ) =
∑

LALBM

CLALBM
n P M

LA
(cos θA)P M

LB
(cos θB) cosMϕ (141)

=
∑

LALBM

Cnγ
LALBM
n P M

LA
(cos θA)P M

LB
(cos θB) cosMϕ, (142)
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Table 12.5.

The LALBM-components of the C6 dispersion coefficients for (i) two identi-
cal linear molecules (B = C), and (ii) an atom and a linear molecule

LA LB M (i) (ii)

0 0 0
2

3
(A + 4B + 4D) 2A + 4B

0 2 0
2

3
(A + B − 2D) 2A − 2B

2 0 0
2

3
(A + B − 2D)

2 2 0 2(A − 2B + D)

2 2 1 − 4

9
(A − 2B + D)

2 2 2
1

18
(A − 2B + D)

where the expansion has a finite number of terms, Cn = C000
n is an isotropic dispersion

coefficient and γ
LALBM
n = C

LALBM
n /Cn an anisotropy coefficient.

In this formula, the elementary contributions (la, l
′
a) on A and (lb, l

′
b) on B were coupled

to resultant LA on A and LB on B according to:

|la − l′a| ≤ LA ≤ la + l′a
|lb − l′b| ≤ LB ≤ lb + l′b in steps of 2

0 ≤ M ≤ min(LA,LB)

n = la + l′a + lb + l′b + 2.

(143)

The coefficients C
LALBM
n are given in terms of Wigner 3-j symbols (Brink and Satchler,

1993) and irreducible dispersion constants5 by a rather complicated formula that can be
found elsewhere (Magnasco and Ottonelli, 1999). The LALBM-components of the C6

dispersion coefficients for (i) two identical linear molecules, and (ii) an atom and a linear
molecule are given in Table 12.5.

The elementary dispersion constants A,B = C,D have been defined in equations (136)–
(139). For identical molecules, the (020) and (200) coefficients are equal, while coefficients
with M 
= 0 are not independent but related to that with M = 0 by the relations:

C221
6 = −2

9
C220

6 , C222
6 = 1

36
C220

6 . (144)

5A linear combination of elementary dispersion constants Cab determined by symmetry.
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12.5.6 Isotropic C6 Dispersion Coefficients from Dipole Polarizability
Pseudospectra

In this Section, we shall examine some results of the calculation of isotropic C6 dispersion
coefficients from dipole polarizability pseudospectra of the individual molecules. Once the
orientation dependence (the geometrical part of the calculation of a dispersion coefficient)
of the C6 coefficients has been singled out in terms of anisotropy coefficients (Table 12.5),
the typically quantum mechanical part of the calculation concerns the evaluation of the
elementary dispersion constant Cab , whose general expression is given in terms of the
equivalent London (static) or Casimir–Polder (FDPs) forms:

Cab = 1

4

∑

i

∑

j

εa(i)εb(j)

εa(i) + εb(j)
αa(i)αb(j) (145)

= 1

2π

∫ ∞

0
duαa(iu)αb(iu), (146)

where a = (lama, l
′
am

′
a) and b = (lbmb, l

′
bm

′
b) are labels specifying the polarizabilities

of A and B.
Anisotropy coefficients, because of their smaller value, are usually more difficult to cal-

culate than isotropic coefficients.
It seems pertinent to summarize here how the London dispersion constants can be cal-

culated from monomer polarizability pseudospectra. We give the receipt in eight points.

1. Choose an appropriate basis of normalized functions χ ′ orthogonal to ψ0.
2. Schmidt-orthogonalize the functions among themselves obtaining the basis χ .
3. Construct matrices M and N over the orthonormal basis χ .
4. Diagonalize (Jacobi or Givens–Householder) the Hermitian matrix M by a unitary

transformation: the (positive) non-zero eigenvalues give the excitation energies of each
pseudostate.

5. The corresponding eigenvectors are the required linear pseudostates ψ .
6. Matrix transformations giving linear pseudostates are:

orthonormal non-orthogonal
basis basis

↓ ↓
ψ = χ U = χ ′ O U χ†ψ0 = χ ′†ψ0 = 0.

↑ ↑
unitary matrix Schmidt-

of the eigenvectors orthogonalization
matrix

(147)

7. Construct the N -term polarizability pseudospectrum:

α = 2N†
ψM−1

ψ Nψ =
N

∑

i=1

2μ2
i

εi

=
N

∑

i=1

αi �⇒ {αi, εi}i = 1,2, · · ·N. (148)
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Table 12.6.

Accurate values of isotropic C6 dispersion coefficients (Eha6
0 ) from best

dipole monomer pseudospectra1

System H He H+
2 H2

H 6.499
He 2.820 1.460
H+

2 4.591 2.085 3.284
H2 8.502 3.898 6.096 11.32

1H+
2 (2	+

g ) at R = 2a0, H2(1	+
g ) at R = 1.4a0.

Table 12.7.

Isotropic C6 dispersion coefficients (Eha6
0 ) from effective 2-term dipole

monomer pseudospectra1 compared with accurate results

System H He H2

H 6.453 (6.499)
99.3

He 2.815 (2.820) 1.430 (1.460)
99.8 97.9

H2 8.733 (8.782) 3.985 (4.011) 12.02 (12.05)
99.4 99.3 99.7

1H2(1	+
g ) at R = 1.449a0.

8. Calculate London dispersion constants following equation (145).

A few examples of this technique are discussed below, while the N = 2 term calculation
is detailed in Problems 11.7 and 12.5. Fairly accurate 4-term results for the C6 dispersion
coefficients for H2–H2 are discussed in Problem 11.6. Other techniques for evaluating
dispersion coefficients for atoms can be found in Dalgarno and Davison (1966).

Accurate values of isotropic C6 dispersion coefficients from best monomer dipole
pseudospectra of the simplest one- and two-electron atomic and molecular systems are
given in Table 12.6 (Magnasco and Ottonelli, 1999). The results are accurate to all figures
given in Table 12.6.

The best dipole pseudospectra for static polarizabilities involve, respectively, N = 2 for
H(2S), 15 for H+

2 (2	+
g ), 40 for He(1S), 34 for H2(

1	+
g ). Reduced N -term pseudospectra

with N = 2 or 4 would be extremely useful in allowing a uniform tabulation of atomic
or molecular data for the successive evaluation of C6 dispersion coefficients between all
different species. Effective 2-term dipole pseudospectra were evaluated by Spelsberg et al.
(1993) for H, Li, Na, K, He, H−, H2, Li2, Na2, K2 in their ground states. The resulting
isotropic C6 dispersion coefficients for all interactions involving H, He, H2 are compared
in Table 12.7 with accurate results (Ottonelli, 1998). The values resulting from the reduced
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Table 12.8.

Dipole static polarizabilities α (a3
0 ) and C6 dispersion coefficients (Eha6

0 ) for
a few atomic homodimers from reduced 2-term pseudospectra

Atom α Dimer C6

H 4.501 H–H 6.453
Li 163.7 Li–Li 1385
Na 162.2 Na–Na 1527
K 286.1 K–K 3637
He 1.388 He–He 1.430
H− 210.99 H−–H− 10 001

spectra are always smaller than the correct ones, with a % error from 0.2 to 0.7 (aver-
age 0.5), but well 2.1 % for He2. This means that 2-term pseudospectra are insufficient
to give at least four figures accuracy in the results. 4-term pseudospectra, involving much
the same number of terms as those resulting as best in a recently proposed interpolation
technique on FDPs by Figari and Magnasco (2003), would probably do better, but are not
disposable for the time being.

Even if the results are not expected to be particularly good, we give in Table 12.8 (taken
from Spelsberg et al., 1993) the C6 dispersion coefficients for a few atomic homodimers
resulting from the 2-term dipole pseudospectra of the atoms.

12.6 THE VAN DER WAALS BOND

Weakly bound complexes with large-amplitude vibrational structure were called by Buck-
ingham (1982) Van der Waals (VdW) molecules. Complexes of the heavier rare gases, such
as Ar2, Kr2, Xe2, or weak complexes between centrosymmetrical molecules like (H2)2
or (N2)2, fit well into this definition; but complexes between proton donor and proton
acceptor molecules, like (HF)2 or (H2O)2, which involve hydrogen bonding, are in the
border-line between VdW molecules and “good” molecules. In the latter complexes, bond-
ing is essentially electrostatic in nature. However, all complexes above are characterized by
having closed-shell monomers6 which are held together by weak forces, say with a binding
energy comparable to kT = 0.95 × 10−3 Eh at T = 300 K.

The nature of the VdW bond has been discussed at different times by the author and his
group (Magnasco and McWeeny, 1991; Magnasco et al., 1992; Magnasco, 2004a, Mag-
nasco, 2004b). Attraction due to electrostatic, induction and dispersion energies offsets
in long range the weak Pauli repulsion due to exchange-overlap of the closed-shells (see
Section 12.5.2).

For spherical atoms in S states (ground state rare gases or H and Li dimers in excited
3	+

u states), only dispersion can offset, in second order, Pauli repulsion, leading to the
typical R−6 attraction first postulated by London (1930).

6With each monomer maintaining its original structure.
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Figure 12.7 VdW bond in He2 (1	+
g ).

This is shown in Figure 12.7 for the He–He interaction in the VdW region, where the
bottom curve, which results from adding to first-order E1 (mostly exchange-overlap repul-
sion at these distances) second-order E2 (mostly dispersion), fits well with accurate data
from experiment (Feltgen et al., 1982). A weak VdW bond with De = −33.4 × 10−6 Eh is
observed at the rather large interatomic distance Re = 5.6a0, at the bottom of the potential
energy curve, as the result of the balance in long range of the weak repulsive E1 with the
weak attractive E2.

The situation is quite different for the long-range interaction of two H2O molecules
(Figure 12.8), since now the dipolar monomers already attract each other in first order
(E1 = Ees

1 +Eexch-ov
1 ) mostly with an R−3 interaction, and the resultant minimum is deep-

ened by second-order induction and dispersion. The minimum is now much deeper (about
7 × 10−3 Eh at R = 5.50a0, roughly 200 times larger than that of He2 at about the same
distance), which means that the hydrogen bond is essentially electrostatic in nature.

The structures of VdW dimers are studied at low temperatures by far infrared spec-
tra, high resolution rotational spectroscopy or molecular beams techniques. Distances Re

between centres-of-mass and bond strengths |De| at the VdW minimum for some homod-
imers of atoms and molecules are given in Table 12.9. Notice that the energy units chosen
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Figure 12.8 H-bond in (H2O)2 at θ = 0◦ (not the absolute minimum).

Table 12.9.

Bond distances Re and bond strengths |De| (atomic units) at the minimum of the potential energy surface for
some homodimers of atoms and molecules

Atom Re/a0 De/10−6 Eh Molecule Re/a0 De/10−3 Eh

H2(3	+
u ) 7.8 20.1 (H2)2 6.5 0.12

He2 5.6 33.4 (N2)2 8.0 0.39
Ne2 5.8 133 (CH4)2 7.3 0.69
Ar2 7.1 449 (NH3)2 6.2 6.47
Kr2 7.6 633 (H2O)2 5.4 10.3
Xe2 8.2 894 (HF)2 5.1 11.4
Li2(3	+

u ) 8.0 1332 (BeH2)2 52.2
Be2 4.7 2964 (LiH)2 4.0 75.8

for molecules (last column of Table 12.9) are 10−3 Eh while those chosen for atoms (third
column) are 10−6 Eh. Structures for molecular homodimers (Pople, 1982) as well as com-
plete references can be found elsewhere (Magnasco, 2004b).

We may notice from Table 12.9 how large Re and how small |De| values characterize
VdW dimers with respect to the values occurring for ordinary “chemically bonded” atoms.
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Ending this Section, we notice that the distortion (induction) energy is zero for atoms,
which do not have permanent moments, and mostly always smaller than the dispersion
energy for molecules, with the exception of (LiH)2, where the isotropic C6 induction coef-
ficient is 297Eha

6
0 compared to a C6 dispersion coefficient of 125Eha

6
0 (Bendazzoli et al.,

2000). This large value of the former coefficient (C6 = 2αμ2) is due to the combined large
values of μ and α for LiH(1	+), 2.29 ea0 and 28.3a3

0 , respectively (Tunega and Noga,
1998).

Lastly, we must say that much before London work, Keesom (1921) pointed out that if
two molecules possessing a permanent dipole moment undergo thermal motions, they will
on the average assume orientations leading to attraction, with a T -dependent C6 coefficient
given by:

C6(T ) = 2μ2
Aμ2

B

3kT
, (149)

where μA, μB are the strengths of the dipoles, and k the Boltzmann constant. The corre-
sponding attractive energies are the isotropic electrostatic contributions to the interaction
energy and are temperature-dependent.

If (θA, θB,ϕ) = � are the angles describing the orientation of the dipoles μA and μB ,
the long-range (electrostatic) interaction between the dipoles at a distance R between their
centres is given by (Coulson, 1958):

V (�,R) = μAμB

R3
F(�) (150)

F(�) = sin θA sin θB cosϕ − 2 cos θA cos θB. (151)

Averaged over all possible free orientations � assumed by the dipoles, 〈V 〉� = 0 (the
same being also true for all higher permanent multipole moments of the molecules), but its
thermal average is not zero and leads to attraction. Averaging the quantity V exp(−V/kT )

over all possible orientations �:

〈V exp(−V/kT )〉� = μAμB

R3

∫

�
d�F(�) exp[aF(�)]
∫

�
d� exp[aF(�)] = μAμB

R3

d

da
lnK(a),

(152)

where:

a = −μAμB

R3kT
< 0 (153)

is a dimensionless parameter depending on R,T ,μA,μB , and the quantity:

K(a) =
∫

�

d� exp[aF(�)] (154)

is called the Keesom integral.
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Evaluation of the Keesom integral for small values of a is straightforward (Keesom,
1921), and gives:

K(a) ∼= K1(a) = 8π

(

1 + a2

3

)

, (155)

which are the first two terms (n = 0,1) in the expansion of the exponential in even powers
of a:

L1(a) = d lnK1(a)

da
= 2

3
a

(

1 + a2

3

)−1 ∼= 2

3
a (156)

yielding the C6(T ) Keesom coefficient of equation (149). Deviations occurring for large
values of |a| can be accounted by including higher terms in the expansion of the exponen-
tial. Recent work (Magnasco et al., 2006), where Keesom calculations were extended up
to the R−10 term, shows that deviations of the Keesom approximation from the full se-
ries expansion are less important than consideration of the higher-order terms in the R−2n

expansion of the intermolecular potential. An asymptotic 2-term expansion in inverse pow-
ers of (−a) for very large values of |a| was recently derived by Battezzati and Magnasco
(2004) in the simple form7:

K∞(a) ∼= 4π

3

exp(−2a)

a2

(

1 − 2

3a

)

. (157)

The three long-range C6 isotropic coefficients for some homodimers at T = 293 K8

are compared in Table 12.10. It is seen that Keesom C6(T ) is negligible compared to

Table 12.10.

Comparison between isotropic dispersion and induction coefficients and Keesom C6(T ) coefficients for some
homodimers in the gas phase at T = 293 K

Molecule μ/ea0 α/a3
0
a C6/Eha6

0

Keesom Dispersiona Induction

CO 0.04 13.1 0.002 81.4 0.04
NO 0.06 11.5 0.009 69.8 0.08
N2O 0.07 19.7 0.017 184.9 0.19
NH3 0.58 14.6 81.30 89.1 9.82
HF 0.70 5.60 172.5 19.0 5.49
H2O 0.73 9.64 204.0 45.4 10.3
LiH 2.29 28.3b 8436 125c 297

a Buckingham et al. (1988). b Tunega and Noga (1998). c Bendazzoli et al. (2000).

7This formula works particularly well for the halides of alkaline metals.
8kT = 9.28 × 10−4Eh .
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dispersion and induction only for the first three homodimers, while for (NH3)2, (HF)2,
(H2O)2 dipole orientation forces become increasingly dominant at room temperature, and
cannot be neglected in assessing collective gas properties such as the equation of state
for real gases and virial coefficients. For (HF)2 and (H2O)2 small corrections over the
original Keesom formula (149) are needed to avoid overestimation of C6(T ), while (LiH)2
is conveniently treated by the asymptotic formula (157).

12.7 PROBLEMS 12

12.1. Show that the exchange-overlap density matrix of molecule A vanishes when inte-
grated over all space.

Answer:
∫

drP A
ov(00|r; r) = 0,

which shows that, even contributing to the first-order interaction energy, P A
ov does not con-

tribute to the integral of the total electron density, a property shared with the transition
densities occurring in higher orders of perturbation theory.

Hint:
Use definitions (111) and (114) and interchange summation indices, remembering that the
overlap matrix S is traceless.

12.2. Show that for a Hartree–Fock wavefunction of molecule A:
∫

drF̂ A(00|r)P A
ov(00|r; r′)|r′=r = 0.

Hint:
Use the same suggestions of Problem 1 and notice that all diagonal elements of S are
individually zero.

12.3. Verify expression (119) for the general transition matrix element 〈AiBj |V |A0B0〉.

Hint:
Use the very properties of the Dirac δ-function given in Chapter 1.

12.4. Derive by elementary integration the integral transform (130).

Answer:
Evaluate the integral:

I =
∫ ∞

0
du

1

a2 + u2
· 1

b2 + u2
= π

2

1

ab(a + b)



656 12. Atomic and Molecular Interactions

with a, b > 0, where a = εi , b = εj .

Hint:
Use elementary integration techniques and change of the integration variable.

12.5. Evaluate the C6 dispersion coefficient for the H–H interaction from the 2-term
pseudospectrum of the dipole polarizability of H(1s).

Answer:

C6 = 363

56
.

Hint:
Use the 2-term dipole pseudospectrum derived in Problem 11.7.

12.6. Evaluate the C6 dispersion coefficients for the H2–H2 interaction.

Answer:
The dispersion constants are:

A = 2.683, B = C = 2.018, D = 1.522

giving:

(i) Isotropic dispersion coefficient

C6 = 11.23

(ii) Anisotropic coefficients

γ 020
6 = 0.098, γ 220

6 = 0.030.

Hint:
Use the 4-term dipole pseudospectrum for H2(1	+

g ) at R = 1.4a0 found in Problem 11.9.

12.8 SOLVED PROBLEMS

12.1. Recall that the metric matrix M of the non-orthogonal basis φ of occupied MOs is:

M = 1 + S
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so that its inverse can be written as:

M−1 = (1 + S)−1 = 1 − S(1 + S)−1 = 1 + �,

where the overlap matrix S is traceless and has each diagonal element individually zero.
Using definitions (111) and (114) we find that:

∫

drP A
ov(00|r; r) = 2

(A)
∑

i

all
∑

p

�ip(1 + S)pi

= −2
(A)
∑

i

all
∑

p

all
∑

q

Siq(1 + S)−1
qp (1 + S)pi

= −2
(A)
∑

i

all
∑

q

Siq

( all
∑

p

(1 + S)−1
qp (1 + S)pi

)

= −2
(A)
∑

i

all
∑

q

Siqδqi = −2
(A)
∑

i

Sii = 0.

12.2. Much in the same way as in Problem 12.1:

∫

drF̂ A(00|r)P A
ov(00|r; r′)|r′=r = 2

(A)
∑

i

all
∑

p

�ip

∫

drφ∗
p(r)F̂ A(00|r)φi(r)

= −2
(A)
∑

i

all
∑

p

�ipεi(1 + S)pi

= −2
(A)
∑

i

εi

all
∑

p

all
∑

q

Siq(1 + S)−1
qp (1 + S)pi

= −2
(A)
∑

i

εi

all
∑

q

Siqδqi = −2
(A)
∑

i

εiSii = 0.

12.3. We recall from Chapter 1 the very property of the Dirac δ-function:

∫

dx′δ(x − x′)f (x′) = f (x).

Then:

UB(00|r1) =
∫

dr2
γ B(00|r2)

r12
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=
∫

dr2

∑

β Zβδ(r2 − rβ) − P B(00|r2; r2)

r12

=
∑

β

Zβ

1

r1β

−
∫

dr2
P B(00|r2; r2)

r12
,

so that we can write for Ees
1 :

Ees
1 =

∫ ∫

dr1dr2
γ A(00|r1)γ

B(00|r2)

r12

=
∫

dr1

[∫

dr2
γ B(00|r2)

r12

]

γ A(00|r1)

=
∫

dr1

[

∑

β

Zβ

r1β

−
∫

dr2
P B(00|r2; r2)

r12

]

×
[

∑

α

Zαδ(r1 − rα) − P A(00|r1; r1)

]

=
∑

α

∑

β

ZαZβ

rαβ

−
∑

β

Zβ

∫

dr1
P A(00|r1; r1)

r1β

−
∑

α

Zα

∫

dr2
P B(00|r2; r2)

r2α

+
∫ ∫

dr1dr2
P A(00|r1; r1)P

B(00|r2; r2)

r12

which is the expression given in (121). The same can be done for the transition density
matrices of equation (117), which are only electronic, since first, second and last term of
equation (119) disappear for i, j 
= 0.

12.4. In the integral:

I =
∫ ∞

0
du

1

a2 + u2
· 1

b2 + u2
a, b > 0

we can decompose the product in the integrand according to:

A

a2 + u2
+ B

b2 + u2
= A(b2 + u2) + B(a2 + u2)

(a2 + u2)(b2 + u2)

with the condition that:

A(b2 + u2) + B(a2 + u2) = 1
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(Ab2 + Ba2) + (A + B)u2 = 1

giving:

A + B = 0 B = −A

Ab2 + Ba2 = 1 A(b2 − a2) = 1.

We therefore obtain:

A = (b2 − a2)−1, B = −(b2 − a2)−1

1

(a2 + u2)(b2 + u2)
= (b2 − a2)−1

(

1

a2 + u2
− 1

b2 + u2

)

.

For the first of the two resulting integrals we have:

∫ ∞

0
du

1

a2 + u2
= 1

a2

∫ ∞

0
du

1

1 + (

u
a

)2
= 1

a

∫ ∞

0
dx

1

1 + x2

= 1

a
tan−1 x

∣

∣

∣

∣

∞

0
= π

2a
,

where we have posed u/a = x, du = adx, the integration limits being unchanged. Pro-
ceeding similarly with the remaining integral, we finally obtain:

I =
∫ ∞

0
du

1

a2 + u2
· 1

a2 + b2

= (b2 − a2)−1
∫ ∞

0
du

(

1

a2 + u2
− 1

b2 + u2

)

= (b2 − a2)−1
(

π

2a
− π

2b

)

= (b2 − a2)−1 π

2

b − a

ab
= π

2

1

ab(a + b)

which is the required value. Hence, we get the integral transform:

1

a + b
= 2

π

∫ ∞

0
du

a

a2 + u2
· b

b2 + u2
a, b > 0.

12.5. C6 dispersion coefficient for H(1s)–H(1s) from the 2-term dipole polarizability
pseudospectrum of H(1s).
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We evaluate first the dipole dispersion constant:

C11 = 1

4

2
∑

i=1

2
∑

j=1

αiαj

εiεj

εi + εj

= 1

8
α2

1ε1 + 1

2
α1α2

ε1ε2

ε1 + ε2
+ 1

8
α2

2ε2.

Then the pseudospectrum of Problem 11.7 gives:

C11 = 1

8
· 4

36
· 1 + 1

2
· 50

36
· 2

5
· 5

7
+ 1

8
· 625

36
· 2

5
= 1

72
+ 25

126
+ 125

144
= 121

112
,

and the C6 dispersion coefficient will be:

C6 = 6C11 = 363

56
= 6.482 142 857 142 86 · · ·

The C6 dispersion coefficient is obtained as a fraction of simple not divisible integers.
Using a non-variational technique in momentum space, Koga and Matsumoto (1985; see

also Koga and Ujiie, 1986) gave the 3-term C6 for H–H as the ratio of not divisible integers
as:

C6 = 12529

1928
= 6.498 443 983 402 49 · · ·

and, for the 4-term:

C6 = 6313807

971504
= 6.499 002 577 446 93 · · ·

The last value is accurate to four decimal figures, the best C6 value, accurate to fifteen
decimal figures, being (Ottonelli, 1998, N = 25; Magnasco et al., 1998):

C6 = 6.499 026 705 405 839 · · ·
12.6. C6 dispersion coefficients for H2–H2.

An accurate evaluation of C6 dispersion coefficients for H2–H2, based on the pseudostate
decomposition of Kołos and Wolniewicz (1967) static dipole polarizabilities for ground
state H2, can be found in a paper by Magnasco and Ottonelli (1996). We shall be content
here with a less accurate evaluation based on the 4-term dipole pseudospectra of H2(1	+

g )
at R = 1.4a0 described in Problem 11.9.

We first calculate the three independent dipole-dipole dispersion constants A, B = C, D

of equations (136)–(139), which in London form are:

A = 1

4

∑

i

∑

j

α
‖
i α

‖
j

ε
‖
i ε

‖
j

ε
‖
i + ε

‖
j
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Table 12.11.

4-term numerical values for the LALBM-components of the
C6 dispersion coefficients for H2–H2 (R = 1.4a0)

LA LB M C
LALBM

6 /Eha6
0

0 0 0 11.23
0 2 0 1.105
2 0 0 1.105
2 2 0 0.338
2 2 1 −0.075
2 2 2 0.009

B = C = 1

4

∑

i

∑

j

α
‖
i α

⊥
j

ε
‖
i ε

⊥
j

ε
‖
i + ε⊥

j

for the homodimer

D = 1

4

∑

i

∑

j

α⊥
i α⊥

j

ε⊥
i ε⊥

j

ε⊥
i + ε⊥

j

.

The 4-term pseudospectrum gives:

Dispersion constant = 1

4

4
∑

i=1

4
∑

j=1

αiαj

εiεj

εi + εj

.

Using the 4-term values of Problem 11.9, we obtain for H2–H2 the following numerical
results:

A = 1.422 + 1.261 = 2.683 99.8% of 2.689
diagonal cross-term

B = C = 0.969+ 0.629 +0.420 = 0.969 + 1.049 = 2.018
i = j i < j i > j diagonal cross-term 99.3% of 2.032

D = 0.677 + 0.845 = 1.522 98.7% of 1.542.
diagonal cross-term

The results for the three dispersion constants are excellent, all being within 99% of the
accurate values (1996) or more.

Using the results of Table 12.5, we finally obtain for the LALBM-components of the
C6 dispersion coefficients for H2–H2 (R = 1.4a0) the numerical results collected in Ta-
ble 12.11.

The 4-term results of Table 12.11 compare favourably with the results of the accurate
calculations (Magnasco and Ottonelli, 1996; Ottonelli, 1998) reported in Table 12.6 of the
main text:
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(i) The isotropic dispersion coefficient, C000
6 = C6 = 11.23, is within 99.2% of the accu-

rate value 11.32;
(ii) The anisotropy coefficients, defined as:

γ
LALBM
6 = C

LALBM
6

C6

are also in good agreement with the accurate data:

γ 020
6 = 0.098 instead of 0.096

γ 220
6 = 0.030 instead of 0.029.
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13.1 INTRODUCTION

We introduced in Chapter 4 some 1-centre 1-electron integrals over STOs or GTOs. In
this last Chapter, we shall take into consideration also 2-electron integrals, mostly 2-centre
integrals over STOs. From a mathematical standpoint the 2-electron integrals are multiple
integrals over six variables, the position coordinates in space of the two interacting elec-
trons. They are best dealt with by finding first the electrostatic potential due to one charge
distribution, say that of the second electron, followed by integration of the resulting po-
tential with the charge distribution of the first. In this way, all 2-electron integrals can be

663
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reduced to just 1-electron integrals in three variables. The molecular 2-electron integrals1

may be classified into 1-, 2-, 3-, and 4-centre integrals, according to the number of nuclei
to which the AOs are referred. The difficulty in their analytical evaluation increases greatly
with the number of centres involved, 3- and 4-centre integrals being necessarily evalu-
ated by numerical techniques. In the context of some particularly refined molecular energy
calculations, which involve the interelectronic distance r12 directly into the wavefunction
(Kutzelnigg and Klopper, 1991; see Chapter 7), still more difficult 3- and 4-electron many-
centre integrals may occur.

In this Chapter, we shall mostly consider an elementary approach to the evaluation
of some 1- and 2-centre 2-electron integrals over STOs when the integrand is expressed
in spherical or spheroidal coordinates, respectively. In particular, we shall derive in Sec-
tion 13.7 the explicit expressions for all 2-centre molecular integrals over 1s STOs occur-
ring in the study of the H2 molecule, while Section 13.8 illustrates two different strategies
for the evaluation of 2-centre integrals over general STOs. A short outline of a possible
way of evaluating multicentre integrals over 1s STOs is then given in Section 13.9, while
problems and solved problems conclude the Chapter as usual.

13.2 THE BASIC INTEGRALS

13.2.1 The Indefinite Integral

The basic indefinite integral occurring in all atomic or molecular calculations involving
STOs with exponential decay is (Gradshteyn and Ryzhik, 1980):

∫

dx exp(ax)xn = exp(ax)

n
∑

k=0

(−1)k
n!

(n − k)!
xn−k

ak+1
(1)

with n = non-negative integer and a = real, a result that can be obtained by repeated inte-
gration by parts. The case of interest in molecular quantum mechanics is:

a = −ρ Re(ρ) > 0 (2)

∫

dx exp(−ρx)xn

= exp(−ρx)

n
∑

k=0

(−1)k
n!

(n − k)!
xn−k

(−ρ)k+1

= − n!
ρn+1

exp(−ρx)

{

(ρx)n

n! + (ρx)n−1

(n − 1)! + · · · + (ρx)2

2! + ρx + 1

}

11-electron integrals involve at most three centres.
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= − n!
ρn+1

exp(−ρx)

n
∑

k=0

(ρx)k

k! = Fn(x), (3)

where Fn(x) is the primitive function. This result can be checked by taking the first deriv-
ative of Fn(x). Then:

dFn

dx
= − n!

ρn+1
exp(−ρx)

{

ρ

[

1 + 2(ρx)

2! + 3(ρx)2

3! + · · · + n(ρx)n−1

n!
]

− ρ

[

1 + ρx + (ρx)2

2! + · · · + (ρx)n

n!
]}

= − n!
ρn

exp(−ρx)

{[

1 + ρx + (ρx)2

2! + · · · + (ρx)n−1

(n − 1)!
]

−
[

1 + ρx + (ρx)2

2! + · · · + (ρx)n−1

(n − 1)! + (ρx)n

n!
]}

= − n!
ρn

exp(−ρx)

[

− (ρx)n

n!
]

= exp(−ρx)xn. (4)

There is a term by term cancellation with the exception of the last term in the second sum.
We now turn to the definite integrals of interest to us.

13.2.2 Definite Integrals and Auxiliary Functions

For atomic (1-centre) problems:

∫ ∞

0
dx exp(−ρx)xn = n!

ρn+1
(5)

∫ u

0
dx exp(−ρx)xn = n!

ρn+1

{

1 − exp(−ρu)

n
∑

k=0

(ρu)k

k!

}

(6)

∫ ∞

u

dx exp(−ρx)xn = n!
ρn+1

exp(−ρu)

n
∑

k=0

(ρu)k

k! . (7)

Adding (6) to (7) gives (5).
For molecular (2-centre) problems:

∫ ∞

1
dx exp(−ρx)xn = n!

ρn+1
exp(−ρ)

n
∑

k=0

ρk

k! = An(ρ) (8)

∫ u

1
dx exp(−ρx)xn = An(ρ) − n!

ρn+1
exp(−ρu)

n
∑

k=0

(ρu)k

k! (9)
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∫ ∞

u

dx exp(−ρx)xn = n!
ρn+1

exp(−ρu)

n
∑

k=0

(ρu)k

k! (10)

∫ 1

−1
dx exp(−ρx)xn = Bn(ρ) = (−1)n+1An(−ρ) − An(ρ). (11)

Adding (9) to (10) gives (8).
In the calculation of 2-centre molecular integrals, the two integrals (8) and (11) are

known as auxiliary functions (Rosen, 1931 and Roothaan, 1951b). It should be noted that:

Bn(−ρ) = (−1)nBn(ρ) (12)

Bn(0) = 2

n + 1
δen e = even. (13)

The explicit form for the first few auxiliary functions is:

A0(ρ) = exp(−ρ)

ρ

A1(ρ) = exp(−ρ)

ρ2
(1 + ρ)

A2(ρ) = 2 exp(−ρ)

ρ3

(

1 + ρ + ρ2

2

)

(14)

A3(ρ) = 6 exp(−ρ)

ρ4

(

1 + ρ + ρ2

2
+ ρ3

6

)

A4(ρ) = 24 exp(−ρ)

ρ5

(

1 + ρ + ρ2

2
+ ρ3

6
+ ρ4

24

)

(15)

B0(ρ) = exp(ρ)

ρ
− exp(−ρ)

ρ
= exp(ρ)

ρ
[1 − exp(−2ρ)] (16)

B1(ρ) = exp(ρ)

ρ2
(1 − ρ) − exp(−ρ)

ρ2
(1 + ρ)

= exp(ρ)

ρ2
[(1 − ρ) − exp(−2ρ)(1 + ρ)] (17)

B2(ρ) = 2 exp(ρ)

ρ3

[(

1 − ρ + ρ2

2

)

− exp(−2ρ)

(

1 + ρ + ρ2

2

)]

(18)
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B3(ρ) = 6 exp(ρ)

ρ4

[(

1 − ρ + ρ2

2
− ρ3

6

)

− exp(−2ρ)

(

1 + ρ + ρ2

2
+ ρ3

6

)]

(19)

B4(ρ) = 24 exp(ρ)

ρ5

[(

1 − ρ + ρ2

2
− ρ3

6
+ ρ4

24

)

− exp(−2ρ)

(

1 + ρ + ρ2

2
+ ρ3

6
+ ρ4

24

)]

. (20)

Recurrence relations are often used in numerical calculations. We give as an example
those for An(ρ). From the definition (8) it follows:

An−1(ρ) = (n − 1)!
ρn

exp(−ρ)

n−1
∑

k=0

ρk

k! . (21)

Hence follows the recurrence relation:

An(ρ) = n!
ρn+1

exp(−ρ)

n−1
∑

k=0

ρk

k! + n!
ρn+1

exp(−ρ)
ρn

n!

= n

ρ

[

(n − 1)!
ρn

exp(−ρ)

n−1
∑

k=0

ρk

k!

]

+ exp(−ρ)

ρ

= 1

ρ
[nAn−1(ρ) + ρA0(ρ)]. (22)

13.3 1-CENTRE INTEGRALS

13.3.1 1-Electron Integrals

Non-orthogonality, Coulomb, and Laplacian integrals are calculated directly in spherical
coordinates starting from the general definition of STO orbitals in real form, equation (116)
of Chapter 4. We obtain the following.

(i) Non-orthogonality.

Sn′l′m′,nlm = 〈n′l′m′|nlm〉

= δll′δmm′
(n + n′)!√
(2n)!(2n′)!

(

c

c′

) n−n′
2
(

2(cc′)1/2

c + c′

)n+n′+1

. (23)
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Since the spherical harmonics are orthonormal, it will be sufficient to integrate over the
radial part:

〈Rn′(r)|Rn(r)〉 = NnNn′
∫ ∞

0
dr rn+n′

exp[−(c + c′)r]

=
(

(2c)2n+1(2c′)2n′+1

(2n)!(2n′)!
)1/2

(n + n′)!
(c + c′)n+n′+1

= (n + n′)!√
(2n)!(2n′)!

(

c

c′

) n−n′
2
(

2(cc′)1/2

c + c′

)n+n′+1

(24)

as can be easily verified. In fact:

(22n+1+2n′+1)1/2 = 2
2n+2n′+2

2 = 2n+n′+1

(cn−n′+n+n′+1 · c′n′−n+n+n′+1)1/2 = (c2n+1 · c′2n′+1)1/2

as it must be.
In the following, we put for short R = Rn, Y = Ylm, R′ = Rn′ , Y ′ = Yl′m′ .

(ii) Coulomb.

〈n′l′m′|r−1|nlm〉 = 〈R′Y ′|r−1|RY 〉
= δll′δmm′ 〈R′|r−1|R〉
= δll′δmm′NnNn′

∫ ∞

0
dr rn+n′−1 exp[−(c + c′)r]

= δll′δmm′NnNn′
(n + n′ − 1)!
(c + c′)n+n′

=
(

δll′δmm′NnNn′
(n + n′)!

(c + c′)n+n′+1

)

c + c′

n + n′

= c + c′

n + n′ Sn′l′m′,nlm. (25)

So, the 1-centre Coulomb integral over STOs is proportional to the non-orthogonality in-
tegral S, and vanishes for orthogonal STOs. The nuclear attraction integral is obtained by
multiplying (25) by minus the nuclear charge Z.

(iii) Laplacian.

〈n′l′m′|∇2|nlm〉 =
〈

R′Y ′
∣

∣

∣

∣

∇2
r − L̂2

r2

∣

∣

∣

∣

RY

〉

(26)
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but:

L̂2Ylm = l(l + 1)Ylm 〈Yl′m′ |Ylm〉 = δll′δmm′

∇2
r = d2

dr2
+ 2

r

d

dr
R(r) = rn−1 exp(−cr)

dR

dr
= exp(−cr){(n − 1)rn−2 − crn−1}

d2R

dr2
= exp(−cr){(n − 1)(n − 2)rn−3 − 2c(n − 1)rn−2 + c2rn−1}

∇2
r R = exp(−cr){n(n − 1)rn−3 − 2ncrn−2 + c2rn−1}

(27)

so that:

∇2(RY ) = Y
(∇2

r R
)− l(l + 1)r−2(RY )

= Y exp(−cr){[n(n − 1) − l(l + 1)]rn−3 − 2ncrn−2 + c2rn−1} (28)

〈R′Y ′|∇2|RY 〉 = δll′δmm′NnNn′
∫ ∞

0
dr rn′+1 exp[−(c + c′)r]

× {[n(n − 1) − l(l + 1)]rn−3 − 2ncrn−2 + c2rn−1}

= δll′δmm′NnNn′
{

[n(n − 1) − l(l + 1)] (n + n′ − 2)!
(c + c′)n+n′−1

− 2nc
(n + n′ − 1)!
(c + c′)n+n′ + c2 (n + n′)!

(c + c′)n+n′+1

}

= δll′δmm′NnNn′
(n + n′)!

(c + c′)n+n′+1

{

n(n − 1) − l(l + 1)

(n + n′)(n + n′ − 1)

× (c + c′)2 − 2nc

n + n′ (c + c′) + c2
}

= Sn′l′m′,nlm

{

n(n − 1) − l(l + 1)

(n + n′)(n + n′ − 1)
(c + c′)2

− 2nc

n + n′ (c + c′) + c2
}

(29)

so that even the off-diagonal matrix element of the 1-centre Laplacian operator over STOs
is proportional to the non-orthogonality integral S. This is not true for GTOs.
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For the diagonal element we have:

n′ = n, l′ = l, m′ = m, c′ = c, S = 1

〈nlm|∇2|nlm〉 = −n + 2l(l + 1)

n(2n − 1)
c2.

(30)

13.3.2 2-Electron Integrals

Putting |a〉 = |nlm〉, we recall the two equivalent notations:

〈

1
a′ 2

a′′′
∣

∣

∣

∣

1
r12

∣

∣

∣

∣

1
a

2
a′′
〉

=
(

1
aa′

∣

∣

∣

2
a′′a′′′

)

.

Dirac Charge density

(31)

The charge density notation is most used in molecular calculations. The general 2-electron
repulsion integral (31) is reduced to a 1-electron integral by evaluating first the electrostatic
potential Ja′′a′′′ at point r1 due to electron 2 of density {a′′(r2)a

′′′(r2)}:

Ja′′a′′′(r1) =
∫

dr2
{a′′(r2)a

′′′(r2)}
r12

. (32)

Hence:

(aa′|a′′a′′′) =
∫

dr1Ja′′a′′′(r1){a(r1)a
′(r1)}, (33)

where either the potential or the final integral are evaluated in spherical coordinates. We
take as simple examples the evaluation of the potential J1s due to a spherical {1s2} charge
distribution, and the two-electron repulsion integral (1s2|1s2).

13.4 EVALUATION OF THE ELECTROSTATIC POTENTIAL J1s

13.4.1 Spherical Coordinates

With reference to Figure 13.1, [1s(r2)]2dr2 is the element of electronic charge (in atomic
units) at dr2 due to electron 2 in state 1s. Then (electric potential = charge/distance):

[1s(r2)]2dr2

r12

is the element of electrostatic potential at space point r1 due to the electron charge at r2;

J1s(r1) =
∫

dr2
[1s(r2)]2

r12
(34)
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Figure 13.1 Infinitesimal volume elements for electrostatic potential calculation.

the resultant of all elementary electrostatic potential contributions at r1 due to the continu-
ously varying charge distribution of electron 2, that is the electrostatic potential at point r1.

To evaluate the electrostatic potential (34) in a general way, it is convenient to use the
one-centre Neumann expansion (Eyring et al., 1944) for the inverse of the interelectronic
distance r12:

1

r12
=

∞
∑

l=0

4π

2l + 1

rl
<

rl+1
>

l
∑

m=−l

Ylm(�1)Ylm(�2), (35)

where:

r< = min(r1, r2)

r> = max(r1, r2)
(36)

and Ylm are spherical harmonics in real form, having the properties:

∫

d�Ylm(�)Yl′m′(�) = δll′δmm′ . (37)

Here � stands for the angular variables θ,ϕ.
Taking into account integrals (6) and (7), we can easily evaluate the electrostatic poten-

tial J1s(r1) in spherical coordinates. The interval of variation of r2 must be divided into the
two regions of Figure 13.2.

It is convenient to choose 1s AOs separately normalized in the form:

1s(r) = (4c3)1/2 exp(−cr)Y00 Y00 = 1√
4π

. (38)



672 13. Evaluation of Molecular Integrals over STOs

Figure 13.2 The two regions occurring in the integration over r2.

Introducing the Neumann expansion into the expression for the potential gives:

J1s(r1) =
∫

dr2 r2
2d�2 4c3 exp(−2cr2)(Y00)

2

×
∑

l

∑

m

4π

2l + 1
Ylm(�1)Ylm(�2)

rl
<

rl+1
>

=
∑

l

∑

m

4c3 4π

2l + 1
Ylm(�1)Y00(�1)

∫

d�2 Ylm(�2)Y00(�2)

×
{

1

rl+1
1

∫ r1

0
dr2 r2

2 exp(−2cr2)r
l
2 + rl

1

∫ ∞

r1

dr2 r2
2 exp(−2cr2)

1

rl+1
2

}

= 4c3 · 4π

(

1√
4π

)2{ 1

r1

∫ r1

0
dr2 exp(−2cr2)r

2
2

+
∫ ∞

r1

dr2 exp(−2cr2)r2

}

(39)

since only the term l = m = 0 survives in the expansion because of the spherical symmetry
of 1s2. Evaluating the integrals over r2 with the aid of (6) and (7) gives:

J1s(r1) = 4c3
{

1

r1

[

2!
(2c)3

(

1 − exp(−2cr1)

(

1 + 2cr1 + (2cr1)
2

2!
))]

+ exp(−2cr1)

(2c)2
(1 + 2cr1)

}

= 1

r1
− exp(−2cr1)

r1
(1 + cr1) = J (r1) (40)

showing that the potential J1s due to the spherical density 1s2 has only a radial dependence
on the distance r1 of the electron from the nucleus.
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Figure 13.3 A confocal spheroidal coordinate system for the evaluation of J1s .

13.4.2 Spheroidal Coordinates

We can evaluate the potential J1s in spheroidal coordinates as well. Since the distance of
electron 1 from the nucleus is fixed during the evaluation of the potential, we may use a
system of spheroidal coordinates in the form (Figure 13.3):

μ = r2 + r12

r
, ν = r2 − r12

r
, ϕ

r2 = r

2
(μ + ν), r12 = r

2
(μ − ν)

dr2 =
(

r

2

)3

(μ2 − ν2)dμdν dϕ.

(41)

By posing ρ = cr , we find (r1 = r):

J1s(r1) =
∫

dr2
{1s(r2)}2

r12
= c3

π

∫

dr2
exp(−2cr2)

r12

= c3

π

(

r

2

)3 ∫ 2π

0
dϕ

∫ 1

−1
dν

∫ ∞

1
dμ(μ2 − ν2)

exp[−ρ(μ + ν)]
r
2 (μ − ν)

= 2π

π

(

ρ

2

)3(2

r

){∫ 1

−1
dν exp(−ρν)

∫ ∞

1
dμ exp(−ρμ)μ

+
∫ 1

−1
dν exp(−ρν)ν

∫ ∞

1
dμ exp(−ρμ)

}

= 2c

(

ρ

2

)2

{A1(ρ)B0(ρ) + A0(ρ)B1(ρ)}
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= 2c

(

ρ

2

)2{exp(−ρ)

ρ2
(1 + ρ)

exp(ρ)

ρ
[1 − exp(−2ρ)]

+ exp(−ρ)

ρ

exp(ρ)

ρ2
[(1 − ρ) − exp(−2ρ)(1 + ρ)]

}

= c

2ρ
{2 − 2 exp(−2ρ)(1 + ρ)} = 1

r
− exp(−2cr)

r
(1 + cr) (42)

which is the result (40) found previously.

13.5 THE (1s2|1s2) ELECTRON REPULSION INTEGRAL

13.5.1 Same Orbital Exponent

The 2-electron integral (1s2|1s2) in charge density notation can then be written as:

(1s2|1s2) =
∫ ∫

dr1 dr2
[1s(r2)]2

r12
[1s(r1)]2

=
∫

dr1J1s(r1)[1s(r1)]2. (43)

The integral is easily calculated using the expression just found for the potential J1s(r1).
We obtain immediately:

(1s2|1s2) = c3

π
· 4π

∫ ∞

0
drr2

[

1

r
− exp(−2cr)

r
(1 + cr)

]

exp(−2cr)

= 4c3
[∫ ∞

0
dr exp(−2cr)r −

∫ ∞

0
dr exp(−4cr)(r + cr2)

]

= 4c3
[

1

(2c)2
− 1

(4c)2
− 2c

(4c)3

]

= 5

8
c. (44)

13.5.2 Different Orbital Exponents

Write the 2-electron integral as (
1

ϕ1ϕ1 | 2
ϕ2ϕ2), where ϕ1 = 1s1 (orbital exponent c1) and

ϕ2 = 1s2 (orbital exponent c2). The electrostatic potential due to electron 2 is now (r1 = r,
r1 = r):

Jϕ2ϕ2 =
∫

dr2
[ϕ2(r2)]2

r12
= 1

r
− exp(−2c2r)

r
(1 + c2r) (45)
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giving for the 2-electron integral:

(ϕ2
1 |ϕ2

2) =
∫

drJϕ2ϕ2(r)[ϕ1(r)]2

= 4c3
1

∫ ∞

0
dr exp(−2c1r)

{

r − exp(−2c2r)(r + c2r
2)
}

= 4c3
1

{

1

(2c1)2
− 1

(2c1 + 2c2)2
− 2c2

(2c1 + 2c2)3

}

= c3
1

{

c2
1 + c2

2 + 2c1c2 − c2
1

c2
1(c1 + c2)2

− c2

(c1 + c2)3

}

= c1c
2
2 + 2c2

1c2

(c1 + c2)2
− c3

1c2

(c1 + c2)3
= c1c2

c1 + c2

{

2c1 + c2

c1 + c2
− c2

1

(c1 + c2)2

}

= c1c2

c1 + c2

{

1 + c1c2

(c1 + c2)2

}

. (46)

For c1 = c2 = c, we recover our previous expression (44).

13.6 GENERAL FORMULA FOR 1-CENTRE 2-ELECTRON
INTEGRALS

The product of two STOs onto the same centre originates a density, say {a(r)a′(r)}, that
can be reduced to a finite linear combination of elementary (or basic) charge distributions
DNLM(r) (Roothaan, 1951b):

DNLM(r) =
√

2L + 1

4π
RNL(r)YLM(θ,ϕ) (47)

RNL(r) = 2L(2ζ )N+2

(N + L + 1)! r
N−1 exp(−2ζ r), (48)

where:

ζ = ca + ca′

2
(49)

N = na + na′ − 1 (50)

|la − la′ | ≤ L ≤ la + la′ (L + la + la′ = even). (51)

DNLM(r) behaves as a single STO of quantum numbers (NLM) and orbital exponent 2ζ ,
acting at large distances as a multipole of order 2L and magnitude ζ−L. The complete ex-
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pression of {a(r)a′(r)} in terms of the DNLM s involves the Clebsch–Gordan vector cou-
pling coefficients (Brink and Satchler, 1993) arising from the coupling of the angular mo-
menta of the individual AOs (Guidotti et al., 1962; Figari et al., 1990). A compact general
formula for the 2-electron integral between any two of such basic charge distributions was
given by Gianinetti et al. (1959) as:

( 1
DNLM

∣

∣

2
DN ′L′M ′

) = δLL′δMM ′
(ζ1ζ2)

L+122L+1

(ζ1 + ζ2)N+N ′+1

×
{

(N − L)!ζN+N ′−2L
2

(N + L + 1)!
N−L−1
∑

k=0

(

N + N ′ + 1

k

)(

ζ1

ζ2

)k

+ (N ′ − L)!ζN+N ′−2L
1

(N ′ + L + 1)!
N ′−L−1
∑

k=0

(

N + N ′ + 1

k

)(

ζ2

ζ1

)k

+ (N + N ′ + 1)!ζN−L
1 ζN ′−L

2

(N + L + 1)!(N ′ + L + 1)!
}

. (52)

The 2-electron integrals (aa′|a′′a′′′) are then easily obtained once the decomposition of the
densities {a(r1)a

′(r1)} and {a′′(r2)a
′′′(r2)} in terms of the DNLM s is known. Gianinetti et

al. (1959) gave Tables containing the explicit coefficients for all expansions of s,p, d Slater
AOs in terms of such fundamental charge distributions.

13.7 2-CENTRE INTEGRALS OVER 1s STOS

These are the integrals occurring in the elementary MO and HL theories for the H2 mole-
cule. They can be evaluated using the system of spheroidal coordinates described in Chap-
ter 1 (Figure 13.4) and the auxiliary functions An and Bn of Section 2 of this Chapter.
For the sake of simplicity, we shall take identical orbital exponents (c′ = c) onto the two

Figure 13.4 The system of confocal spheroidal coordinates for the evaluation of 2-centre integrals.
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centres. We have:

μ = rA + rB

R
, ν = rA − rB

R
, ϕ

rA = R

2
(μ + ν), rB = R

2
(μ − ν) (53)

dr =
(

R

2

)3

(μ2 − ν2)dμdν dϕ.

13.7.1 1-Electron Integrals

(i) Overlap.

Sba = 〈b|a〉 = (ab|1) = c3

π

∫

dr exp[−c(rA + rB)] ρ = cR

= c3

π

(

R

2

)3 ∫ 2π

0
dϕ

∫ 1

−1
dν

∫ ∞

1
dμ(μ2 − ν2) exp(−ρμ)

= 2

(

ρ

2

)3{∫ 1

−1
dν

∫ ∞

1
dμ exp(−ρμ)μ2

−
∫ 1

−1
dνν2

∫ ∞

1
dμ exp(−ρμ)

}

= 2

(

ρ

2

)3{

2A2(ρ) − 2

3
A0(ρ)

}

= 4

3

(

ρ

2

)3

(3A2 − A0)

= 4

3

(

ρ

2

)3 exp(−ρ)

ρ3
(6 + 6ρ + 3ρ2 − ρ2)

= exp(−ρ)

(

1 + ρ + ρ2

3

)

. (54)

(ii) Exchange.

(

ab
∣

∣r−1
B

) =
∫

dr
a(r)b(r)

rB
= c3

π

∫

dr
1

rB
exp[−c(rA + rB)]

= c3

π

(

R

2

)3

2π

∫ 1

−1
dν

∫ ∞

1
dμ

μ2 − ν2

R
2 (μ − ν)

exp(−ρμ)

= 2c

(

ρ

2

)2{∫ 1

−1
dν

∫ ∞

1
dμ exp(−ρμ)μ
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+
∫ 1

−1
dνν

∫ ∞

1
dμ exp(−ρμ)

}

= 2c

(

ρ

2

)2

{2A1(ρ)} = c exp(−ρ)(1 + ρ). (55)

(iii) Coulomb.
This integral was already calculated in Section 13.4 of this Chapter, equation (42), if we

take r2 = rA, r12 = rB , r1 = R. The result is:

(

a2
∣

∣r−1
B

)= c

ρ
{1 − exp(−2ρ)(1 + ρ)}. (56)

(iv) Laplacian.

(∇2)ba = 〈b|∇2|a〉 = (ab|∇2) (57)

a =
(

c3

π

)1/2

exp

[

−ρ

2
(μ + ν)

]

b =
(

c3

π

)1/2

exp

[

−ρ

2
(μ − ν)

]

(58)

∇2 = c2

ρ2

4 (μ2 − ν2)

{

∇2
μ + ∇2

ν + μ2 − ν2

(μ2 − 1)(1 − ν2)

∂2

∂ϕ2

}

(59)

∇2
μ = (μ2 − 1)

∂2

∂μ2
+ 2μ

∂

∂μ
, ∇2

ν = (1 − ν2)
∂2

∂ν2
− 2ν

∂

∂ν
, (60)

where the last factor involving ∂2

∂ϕ2 can be omitted for spherical AOs. Evaluating the deriv-
atives gives:

∇2
μ exp

(

−ρ

2
μ

)

=
(

ρ2

4
μ2 − ρμ − ρ2

4

)

exp

(

−ρ

2
μ

)

(61)

∇2
ν exp

(

−ρ

2
ν

)

=
(

−ρ2

4
ν2 + ρν + ρ2

4

)

exp

(

−ρ

2
ν

)

(62)

∇2 exp

[

−ρ

2
(μ + ν)

]

= c2 exp[−ρ
2 (μ + ν)]

ρ2

4 (μ2 − ν2)

{

ρ2

4
(μ2 − ν2) − ρ(μ − ν)

}

.

(63)

Hence:

〈b|∇2|a〉 = c3

π

(

R

2

)3

2π

∫ 1

−1
dν

∫ ∞

1
dμ

c2(μ2 − ν2)

ρ2

4 (μ2 − ν2)
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×
{

ρ2

4
(μ2 − ν2) − ρ(μ − ν)

}

exp(−ρμ)

= c2ρ

{

ρ2

4

[∫ 1

−1
dν

∫ ∞

1
dμ exp(−ρμ)μ2

−
∫ 1

−1
dνν2

∫ ∞

1
dμ exp(−ρμ)

]

− ρ

∫ 1

−1
dν

∫ ∞

1
dμμ exp(−ρμ)

}

= c2ρ

{

ρ2

4

(

2A2 − 2

3
A0

)

− 2ρA1

}

= 1

6
c2ρ

{

ρ2(3A2 − A0) − 12ρA1
}

. (64)

Evaluating the terms in brackets gives:

ρ2(3A2 − A0) − 12ρA1

= ρ2 exp(−ρ)

ρ3
(6 + 6ρ + 3ρ2 − ρ2) − 12ρ

exp(−ρ)

ρ2
(1 + ρ)

= 6
exp(−ρ)

ρ

(

−1 − ρ + ρ2

3

)

, (65)

so that the integral results:

〈b|∇2|a〉 = c2 exp(−ρ)

(

−1 − ρ + ρ2

3

)

(66)

which coincides with the result given by Roothaan (1951b).

13.7.2 2-Electron Integrals

The integrals are evaluated in spheroidals by finding first the potential due to the charge
distribution of one electron, say electron 2.

(i) Coulomb.

(a2|b2) =
∫

dr1JB(r1)a
2(r1) (67)

JB(r1) =
∫

dr2
b2(r2)

r12
= 1

rB1
{1 − (1 + crB1) exp(−2crB1)}

= c
ρ
2 (μ − ν)

{

1 −
(

1 + ρ

2
(μ − ν)

)

exp[−ρ(μ − ν)]
}

(68)
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so that:

(a2|b2) = c3

π

(

R

2

)3

2π

∫ 1

−1
dν

∫ ∞

1
dμ

c(μ2 − ν2)
ρ
2 (μ − ν)

×
{

1 −
(

1 + ρ

2
(μ − ν)

)

exp[−ρ(μ − ν)]
}

exp[−ρ(μ + ν)]

= 2c

(

ρ

2

)2 ∫ 1

−1
dν

∫ ∞

1
dμ(μ + ν)

×
{

exp[−ρ(μ + ν)] − exp(−2ρμ) − ρ

2
(μ − ν) exp(−2ρμ)

}

= 2c

(

ρ

2

)2{

[A1(ρ)B0(ρ) + A0(ρ)B1(ρ)]

−
[

2A1(2ρ) + ρA2(2ρ) − 1

3
ρA0(2ρ)

]}

. (69)

Evaluating the terms in brackets gives:

A1(ρ)B0(ρ) + A0(ρ)B1(ρ)

= exp(−ρ)

ρ2
(1 + ρ)

exp(ρ)

ρ
[1 − exp(−2ρ)]

+ exp(−ρ)

ρ

exp(ρ)

ρ2
[(1 − ρ) − exp(−2ρ)(1 + ρ)]

= 1

ρ3

{(

1 + ρ

1 − ρ

)

− exp(−2ρ)

(

1 + ρ

1 + ρ

)}

= 2

ρ3
{1 − exp(−2ρ)(1 + ρ)}

2A1(2ρ) + ρA2(2ρ) − 1

3
ρA0(2ρ)

= 1

3
{6A1(2ρ) + 3ρA2(2ρ) − ρA0(2ρ)}

= 1

3

{

6
exp(−2ρ)

(2ρ)2
(1 + 2ρ) + 3

2ρ

2

2 exp(−2ρ)

(2ρ)3
(1 + 2ρ + 2ρ2)

− ρ
exp(−2ρ)

(2ρ)2
(2ρ)

}

= 1

3

exp(−2ρ)

(2ρ)2

⎛

⎝

6 + 12ρ

+ 3 + 6ρ + 6ρ2

− 2ρ2

⎞

⎠= 3

4

exp(−2ρ)

ρ2

(

1 + 2ρ + 4

9
ρ2
)
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so that:

{· · ·} = 2

ρ3
− exp(−2ρ)

ρ3

⎛

⎝

2 + 2ρ

+ 3

4
ρ + 3

2
ρ2 + 1

3
ρ3

⎞

⎠

= 2

ρ3
− exp(−2ρ)

ρ3

(

2 + 11

4
ρ + 3

2
ρ2 + 1

3
ρ3
)

finally giving:

(a2|b2) = c

ρ

{

1 − exp(−2ρ)

(

1 + 11

8
ρ + 3

4
ρ2 + 1

6
ρ3
)}

. (70)

For c = 1, ρ = R:

(a2|b2)= 1

R
−

Coulomb
part

exp(−2R)

R

(

1 + 11

8
R + 3

4
R2 + 1

6
R3
)

.

Charge–overlap part

(71)

(ii) Hybrid (or ionic)

(ab|b2) =
∫

dr1JB(r1){a(r1)b(r1)}

= c3

π

(

R

2

)3

2π

∫ 1

−1
dν

∫ ∞

1
dμ

c(μ2 − ν2)
ρ
2 (μ − ν)

×
{

1 −
(

1 + ρ

2
(μ − ν)

)

exp[−ρ(μ − ν)]
}

exp(−ρμ)

= 2c

(

ρ

2

)2 ∫ 1

−1
dν

∫ ∞

1
dμ(μ + ν)

×
{

exp(−ρμ) − exp(−2ρμ) exp(ρν)

− ρ

2
(μ − ν) exp(−2ρμ) exp(ρν)

}

= 2c

(

ρ

2

)2{

[2A1(ρ) − A1(2ρ)B0(−ρ) − A0(2ρ)B1(−ρ)]

− ρ

2
[A2(2ρ)B0(−ρ) − A0(2ρ)B2(−ρ)]

}

. (72)
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Taking into account the parity (12) of the auxiliary functions Bn(ρ), evaluating the terms
in brackets gives:

2
exp(−ρ)

ρ2
(1 + ρ)

− exp(−2ρ)

(2ρ)2
(1 + 2ρ)

exp(ρ)

ρ
[1 − exp(−2ρ)]

+ exp(−2ρ)

2ρ

exp(ρ)

ρ2
[(1 − ρ) − exp(−2ρ)(1 + ρ)]

− ρ

2

2 exp(−2ρ)

(2ρ)3
(1 + 2ρ + 2ρ2)

exp(ρ)

ρ
[1 − exp(−2ρ)]

+ ρ

2

exp(−2ρ)

2ρ

2 exp(ρ)

ρ3

[(

1 − ρ + ρ2

2

)

− exp(−2ρ)

(

1 + ρ + ρ2

2

)]

= exp(−ρ)

ρ3

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2ρ + 2ρ2

− 1

4
− 1

2
ρ

+ 1

2
− 1

2
ρ

− 1

8
− 1

4
ρ − 1

4
ρ2

+ 1

2
− 1

2
ρ + 1

4
ρ2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ exp(−3ρ)

ρ3

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

4
+ 1

2
ρ

− 1

2
− 1

2
ρ

+ 1

8
+ 1

4
ρ + 1

4
ρ2

− 1

2
− 1

2
ρ − 1

4
ρ2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= exp(−ρ)

ρ3

(

5

8
+ 1

4
ρ + 2ρ2

)

+ exp(−3ρ)

ρ3

(

−5

8
− 1

4
ρ

)

so that we finally obtain:

(ab|b2) = c

ρ

{

exp(−ρ)

(

5

16
+ 1

8
ρ + ρ2

)

− exp(−3ρ)

(

5

16
+ 1

8
ρ

)}

. (73)

For c = 1, ρ = R:

(ab|b2) = exp(−R)

R

(

5

16
+ 1

8
R + R2

)

− exp(−3R)

R

(

5

16
+ 1

8
R

)

. (74)

The hybrid integral over 1s STOs is a pure charge-overlap term.

(iii) Exchange.
This rather difficult integral can be evaluated in two steps: (i) by finding first the 2-

centre exchange potential at r1 due to the density {a(r2)b(r2)}, which requires calculation
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of three characteristic parametric integrals depending on the variable μ (Tauber, 1958),
(ii) then followed by a repeated partial integration over this variable to get the final result.
Therefore:

(
1

ab | 2
ab) =

∫

dr1Kab(r1){a(r1)b(r1)} (75)

Kab(r1) =
∫

dr2
a(r2)b(r2)

r12
2-centre exchange potential at r1. (76)

Expanding 1/r12 in spheroidal coordinates (real form) according to Neumann (1887)
gives:

1

r12
= 2

R

∞
∑

l=0

l
∑

m=0

DlmQm
l (μ>)P m

l (μ<)P m
l (ν1)P

m
l (ν2) cosm(ϕ1 − ϕ2) (77)

Dlm = (−1)m2(2l + 1)

{

(l − m)!
(l + m)!

}2

m > 0, Dl0 = 2l + 1 m = 0, (78)

where P m
l , Qm

l are associated Legendre functions of first and second kind (Hobson, 1965),
respectively. For spherical 1s AOs with equal orbital exponent, only the terms l = 0,2
survive upon integration over ϕ2 (that gives 2π for m = 0, zero otherwise), so that after
integration over ν2 the series truncates to:

Kab(r1) = 4

R

(

ρ

2

)3{∫ ∞

1
dμ2 exp(−ρμ2)

(

2μ2
2 − 2

3

)

Q0(μ>)

− 4

3
P2(ν1)

∫ ∞

1
dμ2 exp(−ρμ2)Q2(μ>)P2(μ<)

}

, (79)

where:

Q0(x) = 1

2
ln

x + 1

x − 1
, Q2(x) = P2(x)Q0(x) − 3

2
P1(x) (80)

P1(x) = x, P2(x) = 3x2 − 1

2
. (81)

Splitting the integration range over μ2 in two regions (Figure 13.5):

Figure 13.5 The two regions occurring in the integration over μ2.
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the exchange potential (which has cylindrical symmetry) can be written as (μ1 = μ,
ν1 = ν):

Kab(μ, ν) = 16

3R

(

ρ

2

)3

[A(μ) − P2(ν)B(μ)], (82)

where:

A(μ) = Q0(μ)I2(μ) + K2(μ) (83)

B(μ) = Q2(μ)I2(μ) + P2(μ)K2(μ) − 3

2
J1(μ)P2(μ) (84)

having defined (Tauber, 1958):

In(μ) =
∫ μ

1
dx exp(−ρx)Pn(x) (85)

Jn(x) =
∫ ∞

μ

dx exp(−ρx)Pn(x) (86)

Kn(x) =
∫ ∞

μ

dx exp(−ρx)Pn(x)Q0(x). (87)

Integration by parts gives for the integrals of interest:

I2(μ) = −exp(−ρμ)

ρ

(

3

ρ2
+ 3

ρ
μ + 3μ2 − 1

2

)

+ 3

ρ3
S (88)

J1(μ) = exp(−ρμ)

ρ

(

1

ρ
+ μ

)

(89)

K2(μ) = − 3

2ρ2
exp(−ρμ) − 3

2ρ3
S′Ei[−ρ(μ + 1)] + 3

2ρ3
SEi[−ρ(μ − 1)]

+ exp(−ρμ)

ρ
Q0(μ)

(

3

ρ2
+ 3

ρ
μ + 3μ2 − 1

2

)

, (90)

where:

S = S(ρ) = exp(−ρ)

(

1 + ρ + ρ2

3

)

,

S′ = S(−ρ) = exp(ρ)

(

1 − ρ + ρ2

3

) (91)

Ei(−x) = −
∫ ∞

x

dt
exp(−t)

t
= −E1(x)

dEi(−x)

dx
= exp(−x)

x
(92)
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the exponential integral function (Abramowitz and Stegun, 1965):

γ = lim
x→0

{− lnx + Ei(−x)} = 0.577 215 665 · · · Euler’s constant.

Introducing the expression for the exchange potential in the exchange integral (75) we
obtain, upon integration over angle ϕ and noting that

∫ 1
−1 dνP2(ν) = 0:

(ab|ab) = c3

π

(

R

2

)3

2π
16

3R

(

ρ

2

)3 ∫ 1

−1
dν

∫ ∞

1
dμ(μ2 − ν2)

× [A(μ) − P2(ν)B(μ)] exp(−ρμ)

= ρ6

6R

{∫ 1

−1
dν

∫ ∞

1
dμ exp(−ρμ)μ2A(μ)

−
∫ 1

−1
dνν2

∫ ∞

1
dμ exp(−ρμ)A(μ)

−
∫ 1

−1
dνP2(ν)

∫ ∞

1
dμ exp(−ρμ)μ2B(μ)

+
∫ 1

−1
dνP2(ν)ν2

∫ ∞

1
dμ exp(−ρμ)B(μ)

}

= ρ6

6R

{

2
∫ ∞

1
dμ exp(−ρμ)

(

μ2 − 1

3

)

A(μ)

+
∫ 1

−1
dνP2(ν)

[

2

3
P2(ν) + 1

3
P0(ν)

]∫ ∞

1
dμ exp(−ρμ)B(μ)

}

= ρ6

3R

{∫ ∞

1
dμ exp(−ρμ)

2

3
P2(μ)A(μ) + 1

3
· 2

5

∫ ∞

1
dμ exp(−ρμ)B(μ)

}

= 2

45

ρ6

R

∫ ∞

1
dμ exp(−ρμ){5P2(μ)A(μ) + B(μ)}

= 2

45

ρ6

R

∫ ∞

1
dμ exp(−ρμ)

{

6P2(K2 + I2Q0) − 3

2
(P1I2 + J1P2)

}

. (93)
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Repeated integration by parts then gives:

∫ ∞

1
dμ exp(−ρμ)(P1I2 + J1P2) factor − 3

2

= exp(−2ρ)

ρ5

(

15

8
+ 15

4
ρ + 3ρ2 + ρ3

)

∫ ∞

1
dμ exp(−ρμ)P2(K2 + I2Q0) factor + 6

= exp(−2ρ)

ρ5

(

45

16
− 27

8
ρ − 3

2
ρ2
)

+ 9

2ρ6

{

S2(γ + lnρ)+S′2Ei(−4ρ)−2SS′Ei(−2ρ)
}

. logarithmic

part

(94)

Collecting all terms altogether we finally obtain:

(ab|ab) = c

5

{

exp(−2ρ)

(

25

8
− 23

4
ρ − 3ρ2 − 1

3
ρ3
)

+ 6

ρ

[

S2(γ + lnρ) + S′2Ei(−4ρ) − 2SS′Ei(−2ρ)
]

}

(95)

which, for c = 1, ρ = R, coincides with the result first given by Sugiura (1927).
An alternative, more general, way of evaluating the exchange integral was suggested by

Rosen (1931) in terms of the generalized double integral:

Hl(m,n,ρ) = Hl(n,m,ρ)

=
∫ ∞

1
dμ1

∫ ∞

1
dμ2 exp[−ρ(μ1 + μ2)]μm

1 μn
2Ql(μ>)Pl(μ<).

(96)

This method can be easily extended to calculations involving James–Coolidge or Kołos–
Wolniewicz wavefunctions and is suitable for implementation on electronic computers.
A further generalization is due to Ruedenberg (1951), and will be recalled later on in Sec-
tion 13.8.

13.7.3 Limiting Values of 2-Centre Integrals

All 2-centre integrals for H2 we saw so far go to zero as ρ → ∞. In the limit of the united
atom (ρ → 0), we shall give for completeness the coefficients of the non-vanishing terms
going to zero as ρ2. We shall use the small ρ-expansions for exponential and exponential



13.7 2-Centre Integrals over 1s STOs 687

integral functions (Abramowitz and Stegun, 1965):

exp(−x) ≈ 1 − x + 1

2
x2 − 1

6
x3 + 1

24
x4 (97)

Ei(−x) ≈ (γ + lnx) +
(

−x + 1

4
x2 − 1

18
x3 + 1

96
x4
)

. (98)

To illustrate how the calculation must be organized, we shall give the example of the 2-
electron Coulomb integral (a2|b2), while the more difficult 2-electron exchange integral
(ab|ab) will be treated in detail.

In the first case, we have the multiplication table:

1 − 2ρ + 2ρ2 − 4

3
ρ3 + 2

3
ρ4

1 + 11

8
ρ + 3

4
ρ2 + 1

6
ρ3

1 − 2ρ + 2ρ2 − 4

3
ρ3 + 2

3
ρ4

+ 11

8
ρ − 11

4
ρ2 + 11

4
ρ3 − 11

6
ρ4

+ 3

4
ρ2 − 3

2
ρ3 + 3

2
ρ4

+ 1

6
ρ3 − 1

3
ρ4

1 − 5

8
ρ · + 1

12
ρ3 ·

exp(−2ρ)

(99)

We then have:

1 − exp(−2ρ)

(

1 + 11

8
ρ + 3

4
ρ2 + 1

6
ρ3
)

≈ 1 −
(

1 − 5

8
ρ + 1

12
ρ3
)

= ρ

(

5

8
− 1

12
ρ2
)

(100)

finally giving:

(a2|b2) ≈ c

ρ
· ρ
(

5

8
− 1

12
ρ2
)

= c

(

5

8
− 1

12
ρ2
)

, (101)

where the Coulomb singularity was cancelled by the expansion.
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For the 2-electron exchange integral, we have similarly:

1 − 2ρ + 2ρ2 − 4

3
ρ3 + 2

3
ρ4

25

8
− 23

4
ρ − 3ρ2 − 1

3
ρ3

25

8
− 25

4
ρ + 25

4
ρ2 − 25

6
ρ3 + 25

12
ρ4

− 23

4
ρ + 23

2
ρ2 − 23

2
ρ3 + 23

3
ρ4

− 3ρ2 + 6ρ3 − 6ρ4

− 1

3
ρ3 + 2

3
ρ4

25

8
− 12ρ + 59

4
ρ2 − 10ρ3 + 53

12
ρ4

exp(−2ρ)

(102)

as the expansion for the first analytic term of equation (95).
For the logarithmic part (non-analytic at R = 0), we now expand each individual term

inside the square bracket of (95). We give below only the expansion for S2, which is seen
to be equal to the expansions for S′2 and SS′:

1 − 2ρ + 2ρ2 − 4

3
ρ3 + 2

3
ρ4 exp(−2ρ)

1 + 2ρ + 5

3
ρ2 + 2

3
ρ3 + 1

9
ρ4

1 − 2ρ + 2ρ2 − 4

3
ρ3 + 2

3
ρ4

+ 2ρ − 4ρ2 + 4ρ3 − 8

3
ρ4

+ 5

3
ρ2 − 10

3
ρ3 + 10

3
ρ4

+ 2

3
ρ3 − 4

3
ρ4

+ 1

9
ρ4

1 · − 1

3
ρ2 · + 1

9
ρ4 ≈ S2 = S′2 = SS′.

(103)
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Next, using expansion (98) for the exponential integral functions:

Ei(−2ρ) ≈ (γ + ln 2ρ) +
(

−2ρ + ρ2 − 4

9
ρ3 + 1

6
ρ4
)

Ei(−4ρ) ≈ (γ + ln 4ρ) +
(

−4ρ + 4ρ2 − 32

9
ρ3 + 8

3
ρ4
)

we obtain:

S2(γ + lnρ) ≈ (γ + lnρ)

(

1 − 1

3
ρ2 + 1

9
ρ4
)

S′2Ei(−4ρ) ≈ (γ + ln 4ρ)

(

1 − 1

3
ρ2 + 1

9
ρ4
)

+
(

−4ρ + 4ρ2 − 20

9
ρ3 + 4

3
ρ4
)

− 2SS′Ei(−2ρ) ≈ (γ + ln 2ρ)

(

−2 + 2

3
ρ2 − 2

9
ρ4
)

+
(

4ρ − 2ρ2 − 4

9
ρ3 + 2

3
ρ4
)

. (104)

By adding all such terms we see that the logarithmic parts cancel altogether:

S2(γ + lnρ) + S′2Ei(−4ρ) − 2SS′Ei(−2ρ)

≈ (γ + lnρ) + (γ + lnρ + ln 4) − 2(γ + lnρ + ln 2)

+
(

2ρ2 − 8

3
ρ3 + 2ρ4

)

= 2ρ2
(

1 − 4

3
ρ + ρ2

)

,

so that we obtain for the terms in brackets in (95):

{· · ·} ≈
(

25

8
− 12ρ + 59

4
ρ2 − 10ρ3 + 53

12
ρ4
)

+ 12ρ

(

1 − 4

3
ρ + ρ2

)

= 25

8
− 5

4
ρ2 + 2ρ3, (105)

finally giving as limiting value for the 2-electron exchange integral:

(ab|ab) ≈ c

(

5

8
− 1

4
ρ2
)

. (106)
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The limiting values of the remaining integrals are:

S(ρ) = S(−ρ) ≈ 1 − 1

6
ρ2

(

ab|r−1
B

)≈ c

(

1 − 1

2
ρ2
)

(

a2|r−1
B

)≈ c

(

1 − 2

3
ρ2
)

(ab|∇2) ≈ −c2
(

1 − 5

6
ρ2
)

(ab|b2) ≈ c

(

5

8
− 7

48
ρ2
)

.

(107)

13.8 ON THE GENERAL FORMULAE FOR 2-CENTRE INTEGRALS

General formulae for 1- and 2-electron 2-centre integrals over STOs were obtained by us
by generalizing the techniques described in the previous Sections. All expressions were
tested (i) with the similar results by Roothaan (1951b), and (ii) by numerical computations
based on use of the Mathematica software or by the QCPE program DERIC2.

Figure 13.6 gives the coordinate systems used by us (Roothaan) and by DERIC (James-
Coolidge). Roothaan uses two Cartesian coordinate systems, one right-handed centred at A,
the other left-handed centred at B, while DERIC uses a unique reference system centred at
A (James and Coolidge, 1933). Great care is needed in choosing the correct sign resulting
for integrals involving 2pσ functions when comparing results from different sources.

13.8.1 Spheroidal Coordinates

Compact analytical formulae for 1- and 2-electron 2-centre integrals over complex STOs
were recently derived by our group (Casanova, 1997; Magnasco et al., 1998) after ex-
pressing in spheroidals the charge distributions on the two centres (see Wahl et al., 1964).
1-electron integrals can all be expressed in terms of the auxiliary functions Tjm and Gjm,
while Coulomb, hybrid and exchange 2-electron integrals are described by a unified for-
mula containing the two functions Bm

lj and Hlmpq introduced by Ruedenberg (1951). The
accuracy in the value of these integrals depends on the accuracy with which such auxiliary
functions are calculated.

The generalized auxiliary functions are defined as:

Tjm(ρ) =
∫ ∞

1
dx xj (x2 − 1)m exp(−ρx) (108)

2DERIC (Diatomic Electron Repulsion Integral Code), N. 252 of the Quantum Chemistry Program Exchange
(QCPE) of the Indiana University (Hagstrom, 1974). The program evaluates 1-electron integrals as well.
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Figure 13.6 Reference systems for the calculation of 2-centre molecular integrals.

Gjm(ρ) =
∫ 1

−1
dx xj (1 − x2)m exp(−ρx) (109)

Bm
lj (ρ) =

∫ 1

−1
dx xj (1 − x2)mPm

l (x) exp(−ρx) (110)

Hlmpq(ρ1, ρ2) =
∫ ∞

1
dx

∫ ∞

1
dy xpyq [(x2 − 1)(y2 − 1)]m/2

×Qm
l (x>)Pm

l (x<) exp(−ρ1x) exp(−ρ2y), (111)

where j, l,m,p,q are non-negative integers, Re(ρ) > 0, and Pm
l , Qm

l normalized asso-
ciated Legendre functions of first and second kind (Hobson, 1965), respectively. Tjm and
Gjm are generalizations of the elementary auxiliary functions Aj(ρ) and Bj (ρ), defined
in equations (8) and (11), while (110) and (111) are defined by Ruedenberg (1951), (111)
being a generalization of integral (96) to include order m and different values for ρ1 and
ρ2. It is easily seen that (108) and (109) can be written as finite sums involving An and Bn

functions:

Tjm(ρ) =
m
∑

k=0

(−1)m+k

(

m

k

)

Aj+2k(ρ) (112)
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Gjm(ρ) =
m
∑

k=0

(−1)k
(

m

k

)

Bj+2k(ρ). (113)

While evaluation of Tjm by equation (112) is straightforward through use of recurrence
relations, for some values of the indices j,m Gjm is affected by strong numerical insta-
bilities due to cancellation of numbers of similar magnitude. Stability in the calculation
of Gjm with high numerical accuracy (up to 14–15 figures) is obtained by use of a series
expansion of the exponential in (109).

Similar problems were met with the evaluation of (110), and again stable numerical
consistency to about 14–15 figures for all values of the indices was achieved by the series
expansion of the exponential. The functions Hlmpq represent the main time-consuming
factor in the calculation of the 2-centre integrals, owing to the considerable difficulty of
their accurate evaluation.

We shall not give the final formulae for the 2-centre integrals, full details being found
in the original paper3. We simply outline here that exchange (resonance) and Laplacian
1-electron integrals are all expressed in terms of suitably scaled overlap integrals, while
using the complex form of the Neumann expansion (Neumann, 1887) for 1

r12
:

1

r12
= 4

R

∞
∑

l=0

l
∑

m=−l

(−1)m
(l − m)!
(l + m)!

×Qm
l (μ>)Pm

l (μ<)Pm
l (ν1)Pm

l (ν2) exp[im(ϕ1 − ϕ2)] (114)

a unified formula was derived for the general 2-electron integral. Similar formulae for real
STOs were derived by Yasui and Saika (1982) and Guseinov and Yassen (1995). As a
simple example, we give in Problem 13.4 the calculation of the overlap integral (54) from
the general formula.

13.8.2 Spherical Coordinates

If a STO on centre B is expressed in spherical coordinates (r, θ,ϕ) referred to centre A
(taken as origin of the coordinate system), one–centre integration over these variables
would be straigthforward either for 1-electron or 2-electron integrals. This can be done
by an exact translation of the regular solid harmonic part of the orbital (Barnett and Coul-
son, 1951; Löwdin, 1956) followed by the series expansion of the residual spherical part
in powers of the radial variable. Using complex STOs with their angular part expressed
in terms of normalized Racah spherical harmonics with Condon–Shortley phase, this
method was successfully tested in high accuracy calculations of overlap (Rapallo, 1997;
Magnasco et al., 1999) and 2-centre 2-electron molecular integrals (Magnasco and Rapallo,
2000). Good rate of convergence in the expansion and great numerical stability under wide
changes in the molecular parameters (orbital exponents and internuclear distances) was
obtained in both cases. The calculation of Coulomb and hybrid integrals is carried out by

3We regret that the CPL (1998) Letter is full of typographical misprints.
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means of suitable 1-centre 1-electron potentials, while the exchange integral requires trans-
lation of two spherical residues, related to two displaced orbitals referred to the different
electrons, and use of two serie expansions. At variance with what we did for H2 following
Tauber, 1-electron potentials were not used in this last case.

Angular coefficients, unique for all 2-centre 2-electron integrals, arise from integration
over angular variables, and are expressed in terms of Gaunt coefficients related in turn to
Clebsch–Gordan coupling coefficients (see Chapter 9; Brink and Satchler, 1993). They can
be stored and re-used during the integral evaluation.

Radial coefficients arise from integration over the radial variable, and are particularly
involved for the exchange integral. They need calculation of further auxiliary functions and
of En, the generalized exponential integral function of order n (Abramowitz and Stegun,
1965):

En(ρ) =
∫ ∞

1
dx exp(−ρx)x−n (115)

with n a non-negative integer and Re(ρ) > 0.
High accuracy (10–12 digits) in the final numerical results is achieved through multiple

precision arithmetic calculations using recurrence relations and accurate Gaussian integra-
tion techniques (Ralston, 1965) to get reliable values for the starting terms of the recursion.
This spherical approach seems quite promising for its possible extension to the calculation
of multicentre integrals. An alternative way involving spheroidal coordinates is shortly ex-
amined in the next Section for 1s STOs.

13.9 A SHORT NOTE ON MULTICENTRE INTEGRALS

Multicentre integrals over STOs are very difficult to evaluate for more than two cen-
tres. They are the 3-centre 1-electron (ab|r−1

C ) Coulomb integral, the 3-centre 2-electron
Coulomb (bc|a2) and exchange (ab|ac) integrals, and the 4-centre 2-electron (ab|cd) in-
tegral. They are still today the bottleneck of any ab-initio calculation in terms of accu-
rate functions showing correct cusp behaviour and exponential decay. Rather than giving
a general survey of the subject, that in recent years enjoyed increased popularity among
quantum chemists, we shall treat briefly here in some detail the evaluation of the 3-centre
1-electron integral (ab|r−1

C ) and of the 4-centre 2-electron integral (ab|cd) when a, b, c, d

are 1s STOs centred at different nuclei in the molecule. These integrals were evaluated in
the early sixties by the pioneering work of the author’s group (Magnasco and Dellepiane,
1963, 1964; Musso and Magnasco, 1971) using 3-dimensional numerical integration tech-
niques in spheroidal coordinates following previous work by Magnusson and Zauli (1961).
This avoids any convergence problem in the series expansions over the radial variables
which are typical of all approaches involving 1-centre expansions in spherical coordinates.

13.9.1 3-Centre 1-Electron Integral over 1s STOs

With reference to the right-handed Cartesian system centred at the midpoint of AB (Fig-
ure 13.7), centre C is always chosen in the zx-plane, with its position specified by the two



694 13. Evaluation of Molecular Integrals over STOs

Figure 13.7 Coordinate system for the evaluation of the 3-centre 1-electron integral.

coordinates XC , ZC . In the system of confocal spheroidal coordinates μ, ν, ϕ with foci in
A, B, the 3-centre 1-electron integral for two STOs with different orbital exponents ca and
cb can be written as:

(

ab|r−1
C

) = (cacb)
3/2

π

(

R

2

)2 ∫ ∞

1
dμ

∫ 1

−1
dν (μ2 − ν2)

× exp

[

−R

2
(ca + cb)μ − R

2
(ca − cb)ν

]

×
∫ 2π

0
dϕ
[

X2
C + Z2

C − 1 + μ2 + ν2

− 2ZCμν − 2XC(μ2 − 1)1/2(1 − ν2)1/2 cosϕ
]−1/2

. (116)

Since the integration variables are not separable, a 3-dimensional integration by the Gauss–
Legendre method (Kopal, 1961) was used to get the numerical value of the integral by
conveniently choosing the integration points in those regions where the integrand is larger.
This allows for a reduction of the number of integration points. Since 3-dimensional inte-
gration is today standard with the Mathematica software (Wolfram, 1996), this technique
seems quite interesting even today.

13.9.2 4-Centre 2-Electron Integral over 1s STOs

With reference to the right-handed Cartesian system centred at the midpoint of AB
(Figure 13.8), centre C was chosen in the zx-plane, the geometry of the system being
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Figure 13.8 Coordinate system for the evaluation of the 4-centre 2-electron integral.

completely specified by giving (in atomic units) the distance R between centres A and B,
and the coordinates (units of R/2) XC , ZC of centre C, and XD , YD , ZD of centre D. The
4-centre 2-electron integral between 1s STOs is then given by:

(ab|cd) =
∫

dr2Kab(r2){c(r2)d(r2)}, (117)

where Kab(r2) is the 2-centre potential at r2:

Kab(r2) =
∫

dr1
a(r1)b(r1)

r12
. (118)

When the orbital exponents on centres A and B are the same (cb = ca), this 2-centre po-
tential was already calculated in the case of the 2-centre exchange integral (ab|ab) using
Tauber method in equations (79)–(90) of Section 13.7. We thereby obtain for the 4-centre
integral:

(ab|cd) = (cccd)3/2 R3

8π

∫ ∞

1
dμ

∫ 1

−1
dν (μ2 − ν2)Kab(μ, ν)

×
∫ 2π

0
dϕ exp

{

−R

2
cc

[

X2
C + Z2

C − 1 + μ2 + ν2 − 2ZCμν

− 2XC(μ2 − 1)1/2(1 − ν2)1/2 cosϕ
]1/2
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− R

2
cd

[

X2
D + Y 2

D + Z2
D − 1 + μ2 + ν2 − 2ZDμν

− 2(μ2 − 1)1/2(1 − ν2)1/2(XD cosϕ + YD sinϕ)
]1/2

}

. (119)

This integral is again evaluated using 3-dimensional Gauss–Legendre numerical integra-
tion, and is obviously more time consuming than integral (116).

When the orbital exponents on A and B are different (cb �= ca), Tauber method origi-
nates for Kab an infinite series expansion in terms of associated Legendre functions of the
first and second kind (Hobson, 1965) multiplied by suitable coefficients. In this last case,
the 4-centre integral was fully evaluated by Musso and Magnasco (1971) using appropriate
recursion formulae for the auxiliary functions. The evaluation of the integral implies now
a 4-dimensional numerical integration (a 3-dimensional integration for each term of the
series). The convergence of the series was found to be satisfactory as far as accuracy and
computing time were concerned. Examples and further details can be found in the original
paper.

13.10 PROBLEMS 13

13.1. Give an alternative way of evaluating 2-centre Laplacian integrals over STOs.

Answer:
The result is the same as that obtained by direct use of the Laplacian operator in spher-
oidals.

Hint:
Use matrix elements of the hydrogenic Hamiltonian and the fact that 1s and 2pσ are eigen-
functions when Z = c and Z = 2c, respectively.

13.2. Apply the same technique to the evaluation of the 2-centre Laplacian integral over
s STOs.

Answer:

(sAsB |∇2) = c2(sAsB |1) − 4c
(

sAsB
∣

∣r−1
A

)+ 2
√

3

3
c
(

1sAsB
∣

∣r−1
A

)

for c′ �= c.

Hint:
Use a suitable linear combination of sA and 1sA (same orbital exponent c) which is eigen-
function of the hydrogenic Hamiltonian with Z = 2c and eigenvalue −c2/2.
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13.3. Evaluate by direct calculation in spheroidals the integral (2pσA2pσ ′
A|r−1

B ).

Answer:
c′ �= c

(

2pσA
c

2pσ ′
A

c′

∣

∣r−1
B

)

= 3

2
(c + c′)

(

2(cc′)1/2

c + c′

)5 1

σ 3

{(

1 + 1

3
σ 2
)

− exp(−2σ)

(

1 + 2σ + 7

3
σ 2 + 11

6
σ 3 + σ 4 + 1

3
σ 5
)}

c′ = c

(

2pσ 2
A

∣

∣r−1
B

)

= 3c
1

ρ3

{(

1 + 1

3
ρ2
)

− exp(−2ρ)

(

1 + 2ρ + 7

3
ρ2 + 11

6
ρ3 + ρ4 + 1

3
ρ5
)}

,

where:

σ = c + c′

2
R, ρ = cR.

Hint:
Express the integrand in spheroidals and use the definitions of the auxiliary functions An

and Bn.

13.4. Calculate the overlap integral (1sA1sB |1) for c′ = c from the general formula given
in Magnasco et al. (1998).

Answer:
The same as in equation (54).

Hint:
Identify all necessary parameters, finding the explicit expressions for coefficients, summa-
tion limits and integrals Tjm(ρ) and Gjm(0) for 1s STOs as given in Appendix B of that
paper.

13.11 SOLVED PROBLEMS

13.1. An alternative way of evaluating 2-centre Laplacian integrals.
An interesting simple way of calculating 2-centre Laplacian integrals over STOs, alter-

native to the direct calculation of the Laplacian operator in spheroidals, uses the matrix
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element of the hydrogenic Hamiltonian between AOs which are eigenfunctions of this
Hamiltonian with the appropriate nuclear charge Z, say 1s and 2pσ STOs with Z = c and
Z = 2c, respectively. As the simplest example, let us take the integral:

(1sA
c

1sB
c′

|∇2).

We start from the matrix element:

〈

1sB

∣

∣

∣

∣

−1

2
∇2 − Z

rA

∣

∣

∣

∣

1sA

〉

and use the fact that 1sA is an eigenfunction of the hydrogenic Hamiltonian having Z = c

with eigenvalue −c2/2:

〈

1sB

∣

∣

∣

∣

−1

2
∇2 − Z

rA

∣

∣

∣

∣

1sA

〉

=
〈

1sB

∣

∣

∣

∣

(

−1

2
∇2 − c

rA

)

+ (c − Z)
1

rA

∣

∣

∣

∣

1sA

〉

= −c2

2
(1sA1sB |1) + (c − Z)

(

1sA1sB
∣

∣r−1
A

)

giving, after simplification and multiplication by −2:

(

1sA1sB
∣

∣∇2)= c2(1sA1sB |1) − 2c
(

1sA1sB
∣

∣r−1
A

)

.

The Laplacian integral is hence expressible in terms of the overlap and the Coulomb inte-
grals involving the same density {1sA(r)1sB(r)}.

If c′ = c:

(1sA1sB |1) = exp(−ρ)

(

1 + ρ + 1

3
ρ2
)

(

1sA1sB
∣

∣r−1
A

)= c exp(−ρ)(1 + ρ)

giving:

(

1sA
c

1sB
c′

∣

∣∇2) = c2 exp(−ρ)

(

1 + ρ + 1

3
ρ2

− 2 − 2ρ

)

= c2 exp(−ρ)

(

−1 − ρ + 1

3
ρ2
)

which coincides with our previous result (66).
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Figure 13.9 Plot of (2pσA2pσB |1) vs R for c = 0.5.

The same can be easily done for the integral (2pσA2pσB |∇2), obtaining the result:

c′ �= c

(

2pσA2pσB

∣

∣∇2)= c2(2pσA2pσB |1) − 4c
(

2pσA2pσB

∣

∣r−1
A

)

c′ = c

(2pσA2pσB |1) = − exp(−ρ)

(

1 + ρ + 1

5
ρ2 − 2

15
ρ3 − 1

15
ρ4
)

(2pσA2pσB |r−1
A ) = − c

2
exp(−ρ)

(

1 + ρ − 1

3
ρ3
)

giving:

(2pσA2pσB |∇2) = c2 exp(−ρ)

(

1 + ρ − 1

5
ρ2 − 8

15
ρ3 + 1

15
ρ4
)

.

The overlap integral (2pσA2pσB |1) is plotted vs R in Figure 13.9 for c = 0.5. It is seen
that S is negative up to R ≈ 5a0, then becomes positive with a maximum at about R = 9a0,
then goes asymptotically to zero from above.
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13.2. Evaluation of (sAsB |∇2) by the alternative method.
The same method cannot be applied directly to the integral:

(sA
c

sB
c′

|∇2)

since the 2s STO sA is not an eigenfunction of the appropriate hydrogenic Hamiltonian.
We notice however that the normalized linear combination (same orbital exponent c):

2sA = 1sA − √
3sA

is an eigenfunction of the hydrogenic Hamiltonian with Z = 2c and eigenvalue −c2/2. In
fact (same c, S = √

3/2):

h2s2s =
〈

1s − √
3s

∣

∣

∣

∣

−1

2
∇2 − Z

r

∣

∣

∣

∣

1s − √
3s

〉

= h1s1s + 3hss − 2
√

3hs1s

=
(

c2

2
− Zc

)

+ 3

(

c2

6
− 1

2
Zc

)

− 2
√

3

3
S

[

2c(c − Z) − 3

2
c2
]

= 1

2
(c2 − Zc)

which, for Z = 2c, gives:

h2s2s = 1

2
(c2 − 2c2) = −c2

2
.

Therefore, we can express the STO sA through the inverse transformation:

sA = 1√
3
(1sA − 2sA)

as a linear combination of two eigenfunctions of the hydrogenic Hamiltonian. We then
have:

〈

sB
c′

∣

∣

∣

∣

−1

2
∇2 − Z

rA

∣

∣

∣

∣

sA
c

〉

=
〈

sB

∣

∣

∣

∣

−1

2
∇2 − Z

rA

∣

∣

∣

∣

1sA − 2sA√
3

〉

= 1√
3

{〈

sB

∣

∣

∣

∣

(

−1

2
∇2 − c

rA

)

+ (c − Z)
1

rA

∣

∣

∣

∣

1sA

〉

−
〈

sB

∣

∣

∣

∣

(

−1

2
∇2 − 2c

rA

)

+ (2c − Z)
1

rA

∣

∣

∣

∣

2sA

〉}

= 1√
3

{

−c2

2
(1sAsB |1) + (c − Z)

(

1sAsB
∣

∣r−1
A

)

−
[

−c2

2
(2sAsB |1) + (2c − Z)

(

2sAsB
∣

∣r−1
A

)

]}

.
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The last term can be rearranged to:

c2

2

[

(1sAsB |1) − √
3(sAsB |1)

]− (2c − Z)
[(

1sAsB
∣

∣r−1
A

)− √
3
(

sAsB
∣

∣r−1
A

)]

giving, upon substitution and simplification:

〈

sB

∣

∣

∣

∣

−1

2
∇2 − Z

rA

∣

∣

∣

∣

sA

〉

= −c2

2
(sAsB |1) + (2c − Z)

(

sAsB
∣

∣r−1
A

)

−
√

3

3
c
(

1sAsB
∣

∣r−1
A

)

from which it follows:

(

sAsB | − 1

2
∇2
)

= −c2

2
(sAsB |1) + 2c

(

sAsB
∣

∣r−1
A

)−
√

3

3
c
(

1sAsB
∣

∣r−1
A

)

.

Hence we finally obtain:

(sA
c

sB
c′

|∇2) = c2(sAsB |1) − 4c
(

sAsB
∣

∣r−1
A

)+ 2
√

3

3
c
(

1sAsB
∣

∣r−1
A

)

.

For c′ = c:

(sAsB |1) = exp(−ρ)

(

1 + ρ + 4

9
ρ2 + 1

9
ρ3 + 1

45
ρ4
)

(

sAsB
∣

∣r−1
A

)= c

2
exp(−ρ)

(

1 + ρ + 4

9
ρ2 + 1

9
ρ3
)

(

1sAsB
∣

∣r−1
A

)=
√

3

3
c exp(−ρ)

(

1 + ρ + 2

3
ρ2
)

and, adding the three terms altogether:

(sAsB |∇2) = 1

3
c2 exp(−ρ)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

3 + 3ρ + 4

3
ρ2 + 1

3
ρ3 + 1

15
ρ4

− 6 − 6ρ − 8

3
ρ2 − 2

3
ρ3

+ 2 + 2ρ + 4

3
ρ2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 1

3
c2 exp(−ρ)

(

−1 − ρ − 1

3
ρ3 + 1

15
ρ4
)

which is the result given by Roothaan (1951b).
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13.3. Direct evaluation of (2pσA2pσ ′
A|r−1

B ).
There is no difficulty in evaluating this integral in spheroidals, but it is of some interest

to see how to organize the computations in such a rather heavy case.

(

2pσA
c

2pσ ′
A

c′

∣

∣r−1
B

)

= (cc′)5/2

π

∫

dr
1

rB
· zA exp(−crA) · zA exp(−c′rA)

= (cc′)5/2

π

(

R

2

)3

2π

∫ 1

−1
dν

∫ ∞

1
dμ

μ2 − ν2

R
2 (μ − ν)

· R

2
(1 + μν)

× exp

[

−c
R

2
(μ + ν)

]

R

2
(1 + μν) exp

[

−c′ R
2

(μ + ν)

]

= 2(cc′)5/2
(

R

2

)4 ∫ 1

−1
dν

∫ ∞

1
dμ(1 + μν)2(μ + ν) exp(−σμ) exp(−σν)

= 2(cc′)5/2
(

R

2

)4 ∫ 1

−1
dν

∫ ∞

1
dμ{ν + μ(1 + 2ν2) + μ2(2ν + ν3) + μ3ν2}

× exp(−σμ) exp(−σν)

= 2(cc′)5/2
(

R

2

)4

{A0(σ )B1(σ ) + A1(B0 + 2B2) + A2(2B1 + B3) + A3B2}

= 48(cc′)5/2
(

R

2

)4 1

σ 7

{(

1 + 1

3
σ 2
)

− exp(−2σ)

(

1 + 2σ + 7

3
σ 2 + 11

6
σ 3 + σ 4 + 1

3
σ 5
)}

= 3

2
(c + c′)

(

2(cc′)1/2

c + c′

)5

× 1

σ 3

{(

1 + 1

3
σ 2
)

− exp(−2σ)

(

1 + 2σ + 7

3
σ 2 + 11

6
σ 3 + σ 4 + 1

3
σ 5
)}

since:

σ = c + c′

2
R,

R

2
= σ

c + c′

(

R

2

)4

= σ 4

(c + c′)4
= (c + c′) σ 4

(c + c′)5

48(cc′)5/2
(

R

2

)4

= 3

2
(c + c′)

(

2(cc′)1/2

c + c′

)5

σ 4.
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The calculation of the different contributions arising from the auxiliary functions can be
organized as follows. First we evaluate the contributions of the B-functions:

2B2 + B0 = 2 exp(σ )

σ 3
[(2 − 2σ + σ 2) − exp(−2σ)(2 + 2σ + σ 2)]

+ 2 exp(σ )

σ 3

(

1

2
σ 2 − exp(−2σ)

1

2
σ 2
)

= 2 exp(σ )

σ 3

⎧

⎨

⎩

⎛

⎝

2 − 2σ + σ 2

+ 1

2
σ 2

⎞

⎠− exp(−2σ)

⎛

⎝

2 + 2σ + σ 2

+ 1

2
σ 2

⎞

⎠

⎫

⎬

⎭

= 2 exp(σ )

σ 3

{(

2 − 2σ + 3

2
σ 2
)

− exp(−2σ)

(

2 + 2σ + 3

2
σ 2
)}

B3 + 2B1 = 2 exp(σ )

σ 4

⎧

⎨

⎩

⎛

⎝

3 − 3σ + 3

2
σ 2 − 1

2
σ 3

+ σ 2 − σ 3

⎞

⎠

− exp(−2σ)

⎛

⎝

3 + 3σ + 3

2
σ 2 + 1

2
σ 3

+ σ 2 + σ 3

⎞

⎠

⎫

⎬

⎭

= 2 exp(σ )

σ 4

{(

3 − 3σ + 5

2
σ 2 − 3

2
σ 3
)

− exp(−2σ)

(

3 + 3σ + 5

2
σ 2 + 3

2
σ 3
)}

.

Then we include the products with the A-functions:

A3B2 = 6 exp(−σ)

σ 4

(

1 + σ + 1

2
σ 2 + 1

6
σ 3
)

× 2 exp(σ )

σ 3

[(

1 − σ + 1

2
σ 2
)

− exp(−2σ)

(

1 + σ + 1

2
σ 2
)]

= 2

σ 7 (6 + 6σ + 3σ 2 + σ 3)

[(

1 − σ + 1

2
σ 2
)

− exp(−2σ)

(

1 + σ + 1

2
σ 2
)]
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= 2

σ 7

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎛

⎜

⎜

⎝

6 + 6σ + 3σ 2 + σ 3

− 6σ − 6σ 2 − 3σ 3 − σ 4

+ 3σ 2 + 3σ 3 + 3

2
σ 4 + 1

2
σ 5

⎞

⎟

⎟

⎠

− exp(−2σ)

⎛

⎜

⎜

⎝

6 + 6σ + 3σ 2 + σ 3

+ 6σ + 6σ 2 + 3σ 3 + σ 4

+ 3σ 2 + 3σ 3 + 3

2
σ 4 + 1

2
σ 5

⎞

⎟

⎟

⎠

⎫

⎪

⎪

⎬

⎪

⎪

⎭

= 2

σ 7

{(

6 + σ 3 + 1

2
σ 4 + 1

2
σ 5
)

− exp(−2σ)

(

6 + 12σ + 12σ 2 + 7σ 3 + 5

2
σ 4 + 1

2
σ 5
)}

A1(2B2 + B0) = exp(−σ)

σ 2
(1 + σ)

× 2 exp(σ )

σ 3

[(

2 − 2σ + 3

2
σ 2
)

− exp(−2σ)

(

2 + 2σ + 3

2
σ 2
)]

= 2

σ 5

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎝

2 − 2σ + 3

2
σ 2

+ 2σ − 2σ 2 + 3

2
σ 3

⎞

⎟

⎠
− exp(−2σ)

⎛

⎜

⎝

2 + 2σ + 3

2
σ 2

+ 2σ + 2σ 2 + 3

2
σ 3

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

= 2

σ 5

{(

2 − 1

2
σ 2 + 3

2
σ 3
)

− exp(−2σ)

(

2 + 4σ + 7

2
σ 2 + 3

2
σ 3
)}

= 2

σ 7

{(

2σ 2 − 1

2
σ 4 + 3

2
σ 5
)

− exp(−2σ)

(

2σ 2 + 4σ 3 + 7

2
σ 4 + 3

2
σ 5
)}

A2(B3 + 2B1)

= 2 exp(−σ)

σ 3

(

1 + σ + 1

2
σ 2
)

× 2 exp(σ )

σ 4

[(

3 − 3σ + 5

2
σ 2 − 3

2
σ 3
)

− exp(−2σ)

(

3 + 3σ + 5

2
σ 2 + 3

2
σ 3
)]
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= 2

σ 7

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎛

⎜

⎜

⎝

6 − 6σ + 5σ 2 − 3σ 3

+ 6σ − 6σ 2 + 5σ 3 − 3σ 4

+ 3σ 2 − 3σ 3 + 5

2
σ 4 − 3

2
σ 5

⎞

⎟

⎟

⎠

− exp(−2σ)

⎛

⎜

⎜

⎝

6 + 6σ + 5σ 2 + 3σ 3

+ 6σ + 6σ 2 + 5σ 3 + 3σ 4

+ 3σ 2 + 3σ 3 + 5

2
σ 4 + 3

2
σ 5

⎞

⎟

⎟

⎠

⎫

⎪

⎪

⎬

⎪

⎪

⎭

= 2

σ 7

{(

6 + 2σ 2 − σ 3 − 1

2
σ 4 − 3

2
σ 5
)

− exp(−2σ)

(

6 + 12σ + 14σ 2 + 11σ 3 + 11

2
σ 4 + 3

2
σ 5
)}

A0B1 = exp(−σ)

σ

exp(σ )

σ 2
[(1 − σ) − exp(−2σ)(1 + σ)]

= 1

σ 3
[(1 − σ) − exp(−2σ)(1 + σ)]

= 2

σ 7

[(

1

2
σ 4 − 1

2
σ 5
)

− exp(−2σ)

(

1

2
σ 4 + 1

2
σ 5
)]

.

By adding all contributions altogether, we finally obtain:

A3B2 + A2(B3 + 2B1) + A1(2B2 + B0) + A0B1

= 2

σ 7

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

6 + σ 3 + 1

2
σ 4 + 1

2
σ 5

6 + 2σ 2 − σ 3 − 1

2
σ 4 − 3

2
σ 5

+ 2σ 2 − 1

2
σ 4 + 3

2
σ 5

+ 1

2
σ 4 − 1

2
σ 5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

− exp(−2σ)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

6 + 12σ + 12σ 2 + 7σ 3 + 5

2
σ 4 + 1

2
σ 5

6 + 12σ + 14σ 2 + 11σ 3 + 11

2
σ 4 + 3

2
σ 5

+ 2σ 2 + 4σ 3 + 7

2
σ 4 + 3

2
σ 5

+ 1

2
σ 4 + 1

2
σ 5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭
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= 2

σ 7 {(12 + 4σ 2) − exp(−2σ)(12 + 24σ + 28σ 2 + 22σ 3 + 12σ 4 + 4σ 5)}

= 24

σ 7

{(

1 + 1

3
σ 2
)

− exp(−2σ)

(

1 + 2σ + 7

3
σ 2 + 11

6
σ 3 + σ 4 + 1

3
σ 5
)}

which is the result given by Roothaan (1951b).
The result for c′ = c follows immediately by taking σ = cR = ρ.

13.4. Calculation of the overlap (1sA1sB |1) from the general formulae.
According to Magnasco et al. (1998) the general 2-centre overlap integral between STOs

is given by:

Sba = (nalama,nblbmb|1) = δmamb

(

R

2

)N+1

NnaNnb
a

ma

la
a

mb

lb

×
∑

p

∑

j

aab
pj Gjm(τab)TN−L−2p−j,m(σab),

where:

N = na + nb, L = la + lb

Nn =
[

(2c)2n+1

(2n)!
]1/2

am
l =

[

2l + 1

2

(l − m)!
(l + m)!

]1/2

m = |m| = ma + mb

σab = R

2
(ca + cb), τab = R

2
(ca − cb)

and explicit expressions for the coefficients aab
pj and the summation limits are given in

Appendix B of that paper. For 1s STOs:

na = nb = 1, la = lb = ma = mb = m = 0, N = 2, L = 0

Na = Nb = (4c3)1/2, a0
0 =

(

1

2

)1/2

p ∈ [0,L − M] = 0

j ∈ [max(0,0,0),min(2,2,2)] = [0,2] = 0,1,2
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and we obtain, for ca = cb = c, cR = ρ:

Sba = (100,100|1) =
(

R

2

)3

(Na)
2(a0

0

)2
2
∑

j=0

aab
0j Gj0(0)T2−j,0(ρ)

= ρ3

4

[

aab
00 G00(0)T20(ρ) + aab

01 G01(0)T10(ρ) + aab
02 G20(0)T00(ρ)

]

Coefficients and integrals are seen to be:

j aab
0j

0 1

1 0

2 −1

G integrals

G00 2

G10 0

G20
2

3

T integrals

T00 exp(−ρ)/ρ

T10 exp(−ρ)ρ−2(1 + ρ)

T20 exp(−ρ)ρ−3(2 + 2ρ + ρ2)

so that we finally obtain:

Sba = (100,100|1) = 〈1sA|1sB〉

= ρ3

4

{

2
exp(−ρ)

ρ3
(2 + 2ρ + ρ2) − 2

3

exp(−ρ)

ρ

}

= ρ3

4

exp(−ρ)

ρ3

⎛

⎝

4 + 4ρ + 2ρ2

− 2

3
ρ2

⎞

⎠

= exp(−ρ)

4

(

4 + 4ρ + 4

3
ρ2
)

= exp(−ρ)

(

1 + ρ + 1

3
ρ2
)

as it must be.
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533–536
Galois sum, 392
irreducible representations (irreps), 385, 387–

389
isomorphism, 382
permutation or symmetric group, 403
representations, 384
rotation groups, 400
spherical tensors, 412, 436–438, 601
subgroups and direct-product groups, 394
symmetry-adapted functions, 390
Wigner method, 392

Guillemin–Zener wavefunction, 195, 196, 320

harmonic oscillator, 201, 205–209
harmonics

Condon–Shortley phase, 134
irregular solid, 133
modified spherical, 133, 457
Racah, 692
regular solid, 133, 601
spherical (complex), 133
tesseral (real), 135
transformation of spherical, 399

Hartree–Fock
basic theory for closed shells, 279–287
Coulomb potential, 281, 284, 349
electronic energy, 280–282
electron interaction operator, 284, 287
equations, 283, 284
exchange potential, 281, 284
Fock operator, 282, 283, 287, 350
fundamental invariant, 279, 280, 333, 345–348
Hall–Roothaan LCAO equations, 285–287
Hartree–Fock 2D, 296
Mulliken population analysis, 288, 350–354
self-consistent field (SCF), 285
variational derivation, 282–284, 348, 349

Hellmann–Feynman theorem, 591
HOMO–LUMO, 286
Hückel

allyl radical, 304, 354
alternant hydrocarbons, 304–309
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azulene, 309
band theory of solids, 309
benzene, 305–307, 355–357
closed chain (ring), 302
extended theory (EHT), 311
linear chain, 300
model for the chemical bond, 298
recurrence relation for the linear chain, 300
theoretical backgrounds, 298, 299

hybridization
angle between orthogonal hybrids, 549, 563, 574
equivalent hybrids, 550, 551

in H2, 493
in H2O, 545, 562, 571–574

hybrids of different symmetries, 550
non-equivalent hybrids, 545, 550
properties of, 549

hydrogen-like system
atom in an electric field, 593
angular equations, 128
angular solutions, 128, 132
continuous spectrum, 124
discrete spectrum, 127, 137, 138
eigenvalue equation, 121
electron density, 137
energy levels, 137, 138
Hamiltonian, 5, 119–121
orbitals, 132–135
properties of states, 138–140
radial eigenfunctions, 127
radial equation, 123–128
solution in spheroidals, 118
variational approximations, 168–174

hydrogen molecule H2
bond energy, 493
chemical bond, 477–501
correlation error, 482
Coulombic interaction, 481, 483, 484
Coulson–Fischer AOs, 491, 492, 494, 495, 498,

501
covalent wavefunction, 484, 502, 503
exchange–overlap density, 486
exchange–overlap interaction, 481, 482, 486,

487
excited triplet state, 486–488
Heitler–London (HL) theory, 484–488
Inui wavefunction, 320
ionic wavefunction, 488, 503
James–Coolidge wavefunction, 320
Kołos–Wolniewicz wavefunction, 321
London dispersion attraction, 626, 627
London dispersion coefficients, 627, 628
MO–CI, 488–490
molecular energy, 321

MO theory, 478–484
non-expanded dispersion, 625
non-expanded electrostatic, 481, 483, 484
non-expanded polarization, 625
non-orbital methods, 320
orthogonality catastrophe, 494
singlet ground state, 478–486
two-centre integrals, 480, 481, 676–690
valence bond (VB) theory, 488
virial theorem, 490
Wolniewicz wavefunction, 321, 322

hydrogen molecule-ion H+
2

bond energies, 194, 196
Coulombic energy, 192–194
exchange–overlap, 192–194
ground and excited states, 192
interaction energies, 192, 194, 195
MO (or VB) description, 189–196
two-centre integrals, 192, 193, 676–679

independent particle model (see Hartree–Fock)
indicial equation, 157
internal rotation, 515
Inui wavefunction for H2, 320

Jahn–Teller effect, 477
James–Coolidge wavefunction for H2, 320

Keesom coefficients, 653, 654
Kirkwood approximation, 587
Kołos–Wolniewicz wavefunction for H2, 321
Koopmans’ theorem, 295

Lagrange multipliers, 282, 328, 348, 349
Laplacian

Cartesian, 3, 4, 27, 31
generalized, 30
radial, 5
spherical, 31
spheroidal, 33

Legendre polynomials, 160, 161
Lennard-Jones density matrix, 279, 345–348
linear-combination-of-atomic-orbitals (LCAO),

178, 285, 287, 298, 311–316
local density approximation (LDA), 331

matrices
analytic functions, 69
canonical form, 70
Cayley–Hamilton theorem, 71
characteristic or secular equation, 66
definitions, 58
diagonalization, 67
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eigenvalue problem, 64–67, 73, 79–82
eigenvalues, 66, 78, 95
eigenvectors, 66, 67, 79–82, 95–99
functions, 69
Hermitian, 63, 72, 78, 79
inverse, 62, 74, 76, 77, 85, 91, 94
Lagrange interpolation formula, 70
linear equations, 64
projectors, 70, 74, 83–85
properties, 58
pseudoeigenvalue problem, 68, 77, 95–99
representatives of, 26
special matrices, 61–64
square root, 74, 85, 91, 92
transformation of, 27

metric, 22
molecular integrals

auxiliary functions, 665–667, 690–692
basic integrals, 664
electrostatic potential, 670–674
4-centre 2-electron, 694
Gauss–Legendre quadrature, 694, 696
general formulae for 2-centre, 690–693
limiting values of, 686
1-centre 1-electron, 667–670
1-centre 2-electron, 670, 674–676
3-centre 1-electron, 693
2-centre 1-electron, 677–679
2-centre 2-electron, 679–686

molecular interactions
anisotropy coefficients, 647
atom–linear molecule, 647
Casimir–Polder formula, 643
charge–density operator, 640
dispersion coefficients, 645–650
exchange–overlap energy, 636, 638–640, 655–

657
expanded dispersion, 644
expanded electrostatic, 653
isotropic coefficients, 647–650
Keesom coefficients, 654
linear molecule–linear molecule, 645–647
London formula, 643
molecular electrostatic potential (MEP), 638,

639, 642
MS–MA theory, 635
non-expanded dispersion, 642, 643
non-expanded electrostatic, 641
non-expanded polarization, 641, 642
non-expanded RS energies, 640
overlap density, 639
overlap energy, 638, 639
perturbation theory for, 635–637
polarization propagators, 642

pseudostate evaluation of dispersion
coefficients, 648–650, 656, 659–662

transition densities, 625, 640
molecular orbital theory (see Hartree–Fock)
multiplet structure, 443–447

non-alternant hydrocarbons, 309
non-orthogonality

deviations from Slater’s rules, 275
intermolecular, 638–640, 656, 657
in VB theory, 474, 504, 554–560
orbital, 20, 496

operators
adjoint, 62
annihilation, 328
anticommutator, 23, 328
anti-Hermitian, 25, 39, 51
antisymmetrizer, 258, 559
average (expectation) value of, 8
commutator, 23
complex conjugate, 62
creation, 328
Hamiltonian, 2, 4–7
Hermitian (or self-adjoint), 23–25, 39, 40, 51–

54
integral, 26, 280, 281
ladder, 37, 38, 44, 45, 47–49, 221, 439, 448, 449
Laplacian, 3, 4, 30–33
Legendrian, 5
linear, 22
matrix representative of, 26, 57
orthogonal, 63
product of, 23
projection, 70, 83, 234, 280, 336, 347, 348, 350,

391, 392, 454
sum of, 22
unitary, 63

optimization
CI coefficients, 317, 318
linear parameters (Ritz), 178–183
non-linear parameters, 168–177, 209
orbital (SCF, MC–SCF, VB), 282–287, 318,

554–560
Ransil method, 209
second-order energies, 586–590

orbitals
atomic, 2
bonding and antibonding, 285
canonical, 296
Gaussian GTO, 144, 291–295
Hartree–Fock, 285, 296
hybrid, 545, 549–552, 562, 563, 571–575
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hydrogen-like, 132–135
Kohn–Sham, 330
localized, 296–298
model, 1
molecular, 1, 266, 285–287, 298–311
occupied and unoccupied (empty), 285, 559
orbital energies, 285, 293–295
orthogonalized, 21, 39, 49, 50, 75, 88, 89, 498
semilocalized or Coulson–Fischer, 491, 492,

494, 495
Slater STO, 142
virtual or empty, 285, 559

orthogonal coordinates
Cartesian, 28, 30, 31, 35, 41, 56
generalized, 29
spherical, 28, 31, 41, 56
spheroidal, 28, 32, 33, 54, 118

orthogonality
definition, 20
Löwdin symmetrical orthogonalization, 68, 75,

87–89, 499–501
Schmidt unsymmetrical orthogonalization, 21,

39, 49, 50
overlap

Coulson–Fischer, 492, 494
definition, 478
density, 639
integral, 189, 192, 480, 677, 697, 706
non-orthogonality, 20, 492, 496–498
principle of maximum overlap, 504, 545, 552

Padé approximants, 331
particle in quantum mechanics

boxes of finite height, 108
boxes with impenetrable walls, 106, 200, 201,

203–205
free, 4, 103
in an electromagnetic field, 5
variational approximations, 203–205

Pauli
exclusion principle, 257, 260–262, 404, 629
matrices, 225

Pauli repulsion
closed-shell molecules, 514, 638, 650
electron lone pairs, 515, 517, 519
He atoms, 514
saturated bonds, 515

perfect pairing approximation, 502, 547
polarizabilities

frequency-dependent (FDP), 602
static, 590–592

Pople
GAUSSIAN bases, 292

semiempirical methods, 312–316
two-dimensional chart, 276–278

population analysis, 266, 288, 508
post-Hartree–Fock methods

CC-R12, 325
configuration interaction (CI), 317, 488
cusp condition, 318
density functional theory (DFT), 328–332
Møller–Plesset (MP2) theory, 322, 338, 359
MP2-R12, 324
multiconfiguration SCF (MC-SCF), 318
non-orbital methods, 320
second quantization, 327

quantum mechanics
action (or phase) integral, 200, 202, 203, 213
atomicity of matter, 12
Born interpretation, 16
correspondence principle, 3
fundamental postulates of, 2–9
Heisenberg uncertainty principle, 12–15, 136
mathematics of, 19–33
observables, 3, 17
physical principles of, 9–19
probability interpretation, 2, 7, 16
regular functions, 8
Schroedinger eigenvalue equation, 2, 9
Schroedinger time–dependent equation, 8
Schroedinger wave equation, 15
state function, 7
wave–particle dualism, 9

Racah’s formula, 457, 458
Ransil optimization method, 209
Rayleigh ratio, 164
Rayleigh–Schroedinger (RS) perturbation theory

discrete pseudospectra, 599, 600, 605, 606, 610–
615, 648–650

energy corrections, 579
Euler–Lagrange equation, 587
expansion in eigenstates, 584
expansion in pseudostates, 588, 607–615
first-order theory for degenerate eigenvalues,

581
Hylleraas functional, 586
Kirkwood approximation, 587
orthogonality conditions, 580
perturbative equations, 579
properties of perturbative solutions, 582
Ritz method for second-order energies, 588
symmetry-adapted theories, 587
Unsöld approximation, 585

Rayleigh variational principles, 164
Renner effect, 477
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resonance energy (see VB methods)
Riccati differential equation, 198

Schoenflies notation, 366
semiempirical methods

CNDO, 312
EHT, 311
INDO, 316
ZINDO, 316

singular points, 156
Slater

determinants, 259
method, 258–262
orbitals (STOs), 142
orthogonality catastrophe, 494
rules, 275

solids (elementary band theory of), 309
spin

branching diagram, 232
commutation properties, 222, 226
Dirac formula, 228–231
eigenstates, 220, 229, 231, 236, 237, 502, 558
electron, 215–254
Kotani synthetic method, 233
ladder operators, 221
Landé g-factor, 217, 446, 458, 462
Löwdin projectors, 234
matrix representation, 225
nuclear, 219
origin of an ESR line, 219
origin of a proton NMR absorption, 219
Pauli equations, 220
Pauli matrices, 225
spin–orbit interaction, 443–447
states, 217
symmetric or permutation group, 403
Zeeman splitting, 216–219, 447
Wigner formula, 231, 504, 523

spin density (see density functions)
spin free quantum chemistry, 404
symmetric or permutation group, 403
symmetry

active and passive representations, 368
electron configuration of molecules, 396
fundamental theorem, 395
matrix representation, 376
molecular, 365–368
operations, 368
operators, 372
selection rules, 395
similarity transformations, 377
transformations in coordinate space, 370
transformations in function space, 372

transition densities, 323, 608, 620, 625, 640–644
transition integrals, 579, 589
transition moments, 602, 608–613
two-dimensional chart of quantum chemistry, 276

Uhlenbeck and Goudsmit hypothesis, 215
Unsöld approximation, 585
upper bounds

to second-order energy, 587
to total energy, 164

valence bond (VB) methods
allyl radical, 528
benzene, 529–538
butadiene, 526
canonical structures, 523, 525, 527, 530, 539,

545
construction of VB structures, 502, 506, 511–

522
cyclobutadiene, 525
elementary VB methods, 502–522
HF–HL method, 557
modern VB theories, 554–560
naphthalene, 538
non-orthogonality between structures, 496, 504,

507, 510, 529, 554
Pauling theory for hydrocarbons, 522–545
resonance energy, 526, 530–533, 537, 538, 540
Rumer diagrams, 503, 523, 554, 556
schematization, 503
spin-coupled VB theory, 557–560
superposition patterns, 523–530, 542, 545
symmetry in benzene, 533–536
water molecule, 547
Weyl formula, 505, 547
Wigner formula, 504, 523

Van der Waals bond
hydrogen bond, 651
Keesom (electrostatic) coefficients, 654
London attraction, 643
model of, 645
Pauli repulsion, 650
Van der Waals molecules, 650, 652

variation method
atomic applications, 168, 171, 174, 183–187
harmonic oscillator, 205–209
linear parameters (Ritz), 178–183
molecular applications, 188–196
non-linear parameters, 168–177
particle in the box, 203–205
perturbation-variation methods, 586
properties of variational solutions, 165
variational approximations, 166
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variational parameters, 167
variational principles, 164

vector coupling coefficients (see Clebsch–Gordan)
virial theorem, 141, 490

Wentzel–Kramers–Brillouin method, 197–200,
202, 203, 212–214

Weyl formula, 505, 547
Wigner

dual spin functions, 404, 558

formula, 231, 403, 504, 523
method, 392
spin projector, 403, 558
3-j and 9-j symbols, 455, 456

Wolniewicz wavefunction (see hydrogen molecule)

Young tableaux, 403, 404

Zeeman effect, 216–220, 446, 447
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