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ike all other sciences, physics is based on experimental observations and quan-
titative measurements. The main objective of physics is to find the limited num-

ber of fundamental laws that govern natural phenomena and to use them to
develop theories that can predict the results of future experiments. The funda-
mental laws used in developing theories are expressed in the language of mathe-
matics, the tool that provides a bridge between theory and experiment.

When a discrepancy between theory and experiment arises, new theories must
be formulated to remove the discrepancy. Many times a theory is satisfactory only
under limited conditions; a more general theory might be satisfactory without
such limitations. For example, the laws of motion discovered by Isaac Newton
(1642–1727) in the 17th century accurately describe the motion of bodies at nor-
mal speeds but do not apply to objects moving at speeds comparable with the
speed of light. In contrast, the special theory of relativity developed by Albert Ein-
stein (1879–1955) in the early 1900s gives the same results as Newton’s laws at low
speeds but also correctly describes motion at speeds approaching the speed of
light. Hence, Einstein’s is a more general theory of motion.

Classical physics, which means all of the physics developed before 1900, in-
cludes the theories, concepts, laws, and experiments in classical mechanics, ther-
modynamics, and electromagnetism. 

Important contributions to classical physics were provided by Newton, who de-
veloped classical mechanics as a systematic theory and was one of the originators
of calculus as a mathematical tool. Major developments in mechanics continued in
the 18th century, but the fields of thermodynamics and electricity and magnetism
were not developed until the latter part of the 19th century, principally because
before that time the apparatus for controlled experiments was either too crude or
unavailable.

A new era in physics, usually referred to as modern physics, began near the end
of the 19th century. Modern physics developed mainly because of the discovery
that many physical phenomena could not be explained by classical physics. The
two most important developments in modern physics were the theories of relativity
and quantum mechanics. Einstein’s theory of relativity revolutionized the tradi-
tional concepts of space, time, and energy; quantum mechanics, which applies to
both the microscopic and macroscopic worlds, was originally formulated by a num-
ber of distinguished scientists to provide descriptions of physical phenomena at
the atomic level.

Scientists constantly work at improving our understanding of phenomena and
fundamental laws, and new discoveries are made every day. In many research
areas, a great deal of overlap exists between physics, chemistry, geology, and
biology, as well as engineering. Some of the most notable developments are 
(1) numerous space missions and the landing of astronauts on the Moon, 
(2) microcircuitry and high-speed computers, and (3) sophisticated imaging tech-
niques used in scientific research and medicine. The impact such developments
and discoveries have had on our society has indeed been great, and it is very likely
that future discoveries and developments will be just as exciting and challenging
and of great benefit to humanity.

STANDARDS OF LENGTH, MASS, AND TIME
The laws of physics are expressed in terms of basic quantities that require a clear def-
inition. In mechanics, the three basic quantities are length (L), mass (M), and time
(T). All other quantities in mechanics can be expressed in terms of these three.

1.1

L
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If we are to report the results of a measurement to someone who wishes to re-
produce this measurement, a standard must be defined. It would be meaningless if
a visitor from another planet were to talk to us about a length of 8 “glitches” if we
do not know the meaning of the unit glitch. On the other hand, if someone famil-
iar with our system of measurement reports that a wall is 2 meters high and our
unit of length is defined to be 1 meter, we know that the height of the wall is twice
our basic length unit. Likewise, if we are told that a person has a mass of 75 kilo-
grams and our unit of mass is defined to be 1 kilogram, then that person is 75
times as massive as our basic unit.1 Whatever is chosen as a standard must be read-
ily accessible and possess some property that can be measured reliably—measure-
ments taken by different people in different places must yield the same result.

In 1960, an international committee established a set of standards for length,
mass, and other basic quantities. The system established is an adaptation of the
metric system, and it is called the SI system of units. (The abbreviation SI comes
from the system’s French name “Système International.”) In this system, the units
of length, mass, and time are the meter, kilogram, and second, respectively. Other
SI standards established by the committee are those for temperature (the kelvin),
electric current (the ampere), luminous intensity (the candela), and the amount of
substance (the mole). In our study of mechanics we shall be concerned only with
the units of length, mass, and time. 

Length

In A.D. 1120 the king of England decreed that the standard of length in his coun-
try would be named the yard and would be precisely equal to the distance from the
tip of his nose to the end of his outstretched arm. Similarly, the original standard
for the foot adopted by the French was the length of the royal foot of King Louis
XIV. This standard prevailed until 1799, when the legal standard of length in
France became the meter, defined as one ten-millionth the distance from the equa-
tor to the North Pole along one particular longitudinal line that passes through
Paris.

Many other systems for measuring length have been developed over the years,
but the advantages of the French system have caused it to prevail in almost all
countries and in scientific circles everywhere. As recently as 1960, the length of the
meter was defined as the distance between two lines on a specific platinum–
iridium bar stored under controlled conditions in France. This standard was aban-
doned for several reasons, a principal one being that the limited accuracy with
which the separation between the lines on the bar can be determined does not
meet the current requirements of science and technology. In the 1960s and 1970s,
the meter was defined as 1 650 763.73 wavelengths of orange-red light emitted
from a krypton-86 lamp. However, in October 1983, the meter (m) was redefined
as the distance traveled by light in vacuum during a time of 1/299 792 458
second. In effect, this latest definition establishes that the speed of light in vac-
uum is precisely 299 792 458 m per second.

Table 1.1 lists approximate values of some measured lengths.

1 The need for assigning numerical values to various measured physical quantities was expressed by
Lord Kelvin (William Thomson) as follows: “I often say that when you can measure what you are speak-
ing about, and express it in numbers, you should know something about it, but when you cannot ex-
press it in numbers, your knowledge is of a meagre and unsatisfactory kind. It may be the beginning of
knowledge but you have scarcely in your thoughts advanced to the state of science.”
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Mass

The basic SI unit of mass, the kilogram (kg), is defined as the mass of a spe-
cific platinum–iridium alloy cylinder kept at the International Bureau of
Weights and Measures at Sèvres, France. This mass standard was established in
1887 and has not been changed since that time because platinum–iridium is an
unusually stable alloy (Fig. 1.1a). A duplicate of the Sèvres cylinder is kept at the
National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland.

Table 1.2 lists approximate values of the masses of various objects.

Time

Before 1960, the standard of time was defined in terms of the mean solar day for the
year 1900.2 The mean solar second was originally defined as of a mean
solar day. The rotation of the Earth is now known to vary slightly with time, how-
ever, and therefore this motion is not a good one to use for defining a standard.

In 1967, consequently, the second was redefined to take advantage of the high
precision obtainable in a device known as an atomic clock (Fig. 1.1b). In this device,
the frequencies associated with certain atomic transitions can be measured to a
precision of one part in 1012. This is equivalent to an uncertainty of less than one
second every 30 000 years. Thus, in 1967 the SI unit of time, the second, was rede-
fined using the characteristic frequency of a particular kind of cesium atom as the
“reference clock.” The basic SI unit of time, the second (s), is defined as 9 192
631 770 times the period of vibration of radiation from the cesium-133
atom.3 To keep these atomic clocks—and therefore all common clocks and

( 1
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24)

TABLE 1.1 Approximate Values of Some Measured Lengths

Length (m)

Distance from the Earth to most remote known quasar 1.4 � 1026

Distance from the Earth to most remote known normal galaxies 9 � 1025

Distance from the Earth to nearest large galaxy 
(M 31, the Andromeda galaxy) 2 � 1022

Distance from the Sun to nearest star (Proxima Centauri) 4 � 1016

One lightyear 9.46 � 1015

Mean orbit radius of the Earth about the Sun 1.50 � 1011

Mean distance from the Earth to the Moon 3.84 � 108

Distance from the equator to the North Pole 1.00 � 107

Mean radius of the Earth 6.37 � 106

Typical altitude (above the surface) of a satellite orbiting the Earth 2 � 105

Length of a football field 9.1 � 101

Length of a housefly 5 � 10�3

Size of smallest dust particles � 10�4

Size of cells of most living organisms � 10�5

Diameter of a hydrogen atom � 10�10

Diameter of an atomic nucleus � 10�14

Diameter of a proton � 10�15

web
Visit the Bureau at www.bipm.fr or the
National Institute of Standards at
www.NIST.gov

2 One solar day is the time interval between successive appearances of the Sun at the highest point it
reaches in the sky each day.
3 Period is defined as the time interval needed for one complete vibration.

TABLE 1.2
Masses of Various Bodies
(Approximate Values)

Body Mass (kg)

Visible � 1052

Universe
Milky Way 7 � 1041

galaxy
Sun 1.99 � 1030

Earth 5.98 � 1024

Moon 7.36 � 1022

Horse � 103

Human � 102

Frog � 10�1

Mosquito � 10�5

Bacterium � 10�15

Hydrogen 1.67 � 10�27

atom
Electron 9.11 � 10�31
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watches that are set to them—synchronized, it has sometimes been necessary to
add leap seconds to our clocks. This is not a new idea. In 46 B.C. Julius Caesar be-
gan the practice of adding extra days to the calendar during leap years so that the
seasons occurred at about the same date each year.

Since Einstein’s discovery of the linkage between space and time, precise mea-
surement of time intervals requires that we know both the state of motion of the
clock used to measure the interval and, in some cases, the location of the clock as
well. Otherwise, for example, global positioning system satellites might be unable
to pinpoint your location with sufficient accuracy, should you need rescuing.

Approximate values of time intervals are presented in Table 1.3.
In addition to SI, another system of units, the British engineering system (some-

times called the conventional system), is still used in the United States despite accep-
tance of SI by the rest of the world. In this system, the units of length, mass, and

Figure 1.1 (Top) The National Standard Kilogram No.
20, an accurate copy of the International Standard Kilo-
gram kept at Sèvres, France, is housed under a double bell
jar in a vault at the National Institute of Standards and
Technology (NIST). (Bottom) The primary frequency stan-
dard (an atomic clock) at the NIST. This device keeps
time with an accuracy of about 3 millionths of a second
per year. (Courtesy of National Institute of Standards and Technology,
U.S. Department of Commerce)
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time are the foot (ft), slug, and second, respectively. In this text we shall use SI
units because they are almost universally accepted in science and industry. We
shall make some limited use of British engineering units in the study of classical
mechanics.

In addition to the basic SI units of meter, kilogram, and second, we can also
use other units, such as millimeters and nanoseconds, where the prefixes milli- and
nano- denote various powers of ten. Some of the most frequently used prefixes 
for the various powers of ten and their abbreviations are listed in Table 1.4. For 

TABLE 1.3 Approximate Values of Some Time Intervals

Interval (s)

Age of the Universe 5 � 1017

Age of the Earth 1.3 � 1017

Average age of a college student 6.3 � 108

One year 3.16 � 107

One day (time for one rotation of the Earth about its axis) 8.64 � 104

Time between normal heartbeats 8 � 10�1

Period of audible sound waves � 10�3

Period of typical radio waves � 10�6

Period of vibration of an atom in a solid � 10�13

Period of visible light waves � 10�15

Duration of a nuclear collision � 10�22

Time for light to cross a proton � 10�24

TABLE 1.4 Prefixes for SI Units

Power Prefix Abbreviation

10�24 yocto y
10�21 zepto z
10�18 atto a
10�15 femto f
10�12 pico p
10�9 nano n
10�6 micro �
10�3 milli m
10�2 centi c
10�1 deci d
101 deka da
103 kilo k
106 mega M
109 giga G
1012 tera T
1015 peta P
1018 exa E
1021 zetta Z
1024 yotta Y
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example, 10�3 m is equivalent to 1 millimeter (mm), and 103 m corresponds 
to 1 kilometer (km). Likewise, 1 kg is 103 grams (g), and 1 megavolt (MV) is 
106 volts (V).

THE BUILDING BLOCKS OF MATTER
A 1-kg cube of solid gold has a length of 3.73 cm on a side. Is this cube nothing
but wall-to-wall gold, with no empty space? If the cube is cut in half, the two pieces
still retain their chemical identity as solid gold. But what if the pieces are cut again
and again, indefinitely? Will the smaller and smaller pieces always be gold? Ques-
tions such as these can be traced back to early Greek philosophers. Two of them—
Leucippus and his student Democritus—could not accept the idea that such cut-
tings could go on forever. They speculated that the process ultimately must end
when it produces a particle that can no longer be cut. In Greek, atomos means “not
sliceable.” From this comes our English word atom.

Let us review briefly what is known about the structure of matter. All ordinary
matter consists of atoms, and each atom is made up of electrons surrounding a
central nucleus. Following the discovery of the nucleus in 1911, the question
arose: Does it have structure? That is, is the nucleus a single particle or a collection
of particles? The exact composition of the nucleus is not known completely even
today, but by the early 1930s a model evolved that helped us understand how the
nucleus behaves. Specifically, scientists determined that occupying the nucleus are
two basic entities, protons and neutrons. The proton carries a positive charge, and a
specific element is identified by the number of protons in its nucleus. This num-
ber is called the atomic number of the element. For instance, the nucleus of a hy-
drogen atom contains one proton (and so the atomic number of hydrogen is 1),
the nucleus of a helium atom contains two protons (atomic number 2), and the
nucleus of a uranium atom contains 92 protons (atomic number 92). In addition
to atomic number, there is a second number characterizing atoms—mass num-
ber, defined as the number of protons plus neutrons in a nucleus. As we shall see,
the atomic number of an element never varies (i.e., the number of protons does
not vary) but the mass number can vary (i.e., the number of neutrons varies). Two
or more atoms of the same element having different mass numbers are isotopes
of one another. 

The existence of neutrons was verified conclusively in 1932. A neutron has no
charge and a mass that is about equal to that of a proton. One of its primary pur-
poses is to act as a “glue” that holds the nucleus together. If neutrons were not
present in the nucleus, the repulsive force between the positively charged particles
would cause the nucleus to come apart.

But is this where the breaking down stops? Protons, neutrons, and a host of
other exotic particles are now known to be composed of six different varieties of
particles called quarks, which have been given the names of up, down, strange,
charm, bottom, and top. The up, charm, and top quarks have charges of � that of
the proton, whereas the down, strange, and bottom quarks have charges of �
that of the proton. The proton consists of two up quarks and one down quark
(Fig. 1.2), which you can easily show leads to the correct charge for the proton.
Likewise, the neutron consists of two down quarks and one up quark, giving a net
charge of zero.

1
3

2
3

1.2

Quark
composition
of a proton
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nucleus
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atoms
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Neutron

Nucleus

Figure 1.2 Levels of organization
in matter. Ordinary matter consists
of atoms, and at the center of each
atom is a compact nucleus consist-
ing of protons and neutrons. Pro-
tons and neutrons are composed of
quarks. The quark composition of
a proton is shown.
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DENSITY
A property of any substance is its density � (Greek letter rho), defined as the
amount of mass contained in a unit volume, which we usually express as mass per
unit volume:

(1.1)

For example, aluminum has a density of 2.70 g/cm3, and lead has a density of 
11.3 g/cm3. Therefore, a piece of aluminum of volume 10.0 cm3 has a mass of 
27.0 g, whereas an equivalent volume of lead has a mass of 113 g. A list of densities
for various substances is given Table 1.5.

The difference in density between aluminum and lead is due, in part, to their
different atomic masses. The atomic mass of an element is the average mass of one
atom in a sample of the element that contains all the element’s isotopes, where the
relative amounts of isotopes are the same as the relative amounts found in nature.
The unit for atomic mass is the atomic mass unit (u), where 1 u � 1.660 540 2 �
10�27 kg. The atomic mass of lead is 207 u, and that of aluminum is 27.0 u. How-
ever, the ratio of atomic masses, 207 u/27.0 u � 7.67, does not correspond to the
ratio of densities, (11.3 g/cm3)/(2.70 g/cm3) � 4.19. The discrepancy is due to
the difference in atomic separations and atomic arrangements in the crystal struc-
ture of these two substances.

The mass of a nucleus is measured relative to the mass of the nucleus of the
carbon-12 isotope, often written as 12C. (This isotope of carbon has six protons
and six neutrons. Other carbon isotopes have six protons but different numbers of
neutrons.) Practically all of the mass of an atom is contained within the nucleus.
Because the atomic mass of 12C is defined to be exactly 12 u, the proton and neu-
tron each have a mass of about 1 u. 

One mole (mol) of a substance is that amount of the substance that con-
tains as many particles (atoms, molecules, or other particles) as there are
atoms in 12 g of the carbon-12 isotope. One mole of substance A contains the
same number of particles as there are in 1 mol of any other substance B. For ex-
ample, 1 mol of aluminum contains the same number of atoms as 1 mol of lead.

� �
m
V

1.3
A table of the letters in the Greek
alphabet is provided on the back
endsheet of this textbook.

TABLE 1.5 Densities of Various
Substances

Substance Density � (103 kg/m3)

Gold 19.3
Uranium 18.7
Lead 11.3
Copper 8.92
Iron 7.86
Aluminum 2.70
Magnesium 1.75
Water 1.00
Air 0.0012
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Experiments have shown that this number, known as Avogadro’s number, NA , is

Avogadro’s number is defined so that 1 mol of carbon-12 atoms has a mass of
exactly 12 g. In general, the mass in 1 mol of any element is the element’s atomic
mass expressed in grams. For example, 1 mol of iron (atomic mass � 55.85 u) has
a mass of 55.85 g (we say its molar mass is 55.85 g/mol), and 1 mol of lead (atomic
mass � 207 u) has a mass of 207 g (its molar mass is 207 g/mol). Because there
are 6.02 � 1023 particles in 1 mol of any element, the mass per atom for a given el-
ement is

(1.2)

For example, the mass of an iron atom is 

mFe �
55.85 g/mol

6.02 � 1023 atoms/mol
� 9.28 � 10�23 g/atom

matom �
molar mass

NA

NA � 6.022 137 � 1023 particles/mol

How Many Atoms in the Cube?EXAMPLE 1.1
minum (27 g) contains 6.02 � 1023 atoms:

1.2 � 1022 atomsN �
(0.54 g)(6.02 � 1023 atoms)

27 g
�

  
6.02 � 1023 atoms

27 g
�

N
0.54 g

  

  
NA

27 g
�

N
0.54 g

  

A solid cube of aluminum (density 2.7 g/cm3) has a volume
of 0.20 cm3. How many aluminum atoms are contained in the
cube?

Solution Since density equals mass per unit volume, the
mass m of the cube is

To find the number of atoms N in this mass of aluminum, we
can set up a proportion using the fact that one mole of alu-

m � �V � (2.7 g/cm3)(0.20 cm3) � 0.54 g

DIMENSIONAL ANALYSIS
The word dimension has a special meaning in physics. It usually denotes the physi-
cal nature of a quantity. Whether a distance is measured in the length unit feet or
the length unit meters, it is still a distance. We say the dimension—the physical
nature—of distance is length.

The symbols we use in this book to specify length, mass, and time are L, M,
and T, respectively. We shall often use brackets [ ] to denote the dimensions of a
physical quantity. For example, the symbol we use for speed in this book is v, and
in our notation the dimensions of speed are written As another exam-
ple, the dimensions of area, for which we use the symbol A, are The di-
mensions of area, volume, speed, and acceleration are listed in Table 1.6.

In solving problems in physics, there is a useful and powerful procedure called
dimensional analysis. This procedure, which should always be used, will help mini-
mize the need for rote memorization of equations. Dimensional analysis makes
use of the fact that dimensions can be treated as algebraic quantities. That is,
quantities can be added or subtracted only if they have the same dimensions. Fur-
thermore, the terms on both sides of an equation must have the same dimensions.

[A] � L2.
[v] � L/T.

1.4
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By following these simple rules, you can use dimensional analysis to help deter-
mine whether an expression has the correct form. The relationship can be correct
only if the dimensions are the same on both sides of the equation.

To illustrate this procedure, suppose you wish to derive a formula for the dis-
tance x traveled by a car in a time t if the car starts from rest and moves with con-
stant acceleration a. In Chapter 2, we shall find that the correct expression is

Let us use dimensional analysis to check the validity of this expression.
The quantity x on the left side has the dimension of length. For the equation to be
dimensionally correct, the quantity on the right side must also have the dimension
of length. We can perform a dimensional check by substituting the dimensions for
acceleration, L/T2, and time, T, into the equation. That is, the dimensional form
of the equation is

The units of time squared cancel as shown, leaving the unit of length.
A more general procedure using dimensional analysis is to set up an expres-

sion of the form

where n and m are exponents that must be determined and the symbol � indicates
a proportionality. This relationship is correct only if the dimensions of both sides
are the same. Because the dimension of the left side is length, the dimension of
the right side must also be length. That is,

Because the dimensions of acceleration are L/T2 and the dimension of time is T,
we have

Because the exponents of L and T must be the same on both sides, the dimen-
sional equation is balanced under the conditions and 
Returning to our original expression we conclude that This result
differs by a factor of 2 from the correct expression, which is Because the
factor is dimensionless, there is no way of determining it using dimensional
analysis.

1
2

x � 1
2at2.

x �  at2.x �  antm,
m � 2.n � 1,m � 2n � 0,

 Ln Tm�2n � L1

� L
T2 �

n
Tm � L1

[antm] � L � LT0

x �  antm

L �
L
T2 �T2 � L

x � 1
2at2

x � 1
2at2.

TABLE 1.6 Dimensions and Common Units of Area, Volume, 
Speed, and Acceleration

Area Volume Speed Acceleration
System (L2) (L3) (L/T) (L/T2)

SI m2 m3 m/s m/s2

British engineering ft2 ft3 ft/s ft/s2
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True or False: Dimensional analysis can give you the numerical value of constants of propor-
tionality that may appear in an algebraic expression.

Quick Quiz 1.1

Analysis of an EquationEXAMPLE 1.2
Show that the expression v � at is dimensionally correct,
where v represents speed, a acceleration, and t a time inter-
val.

Solution For the speed term, we have from Table 1.6

[v] �
L
T

The same table gives us L/T2 for the dimensions of accelera-
tion, and so the dimensions of at are 

Therefore, the expression is dimensionally correct. (If the ex-
pression were given as it would be dimensionally in-
correct. Try it and see!)

v � at2,

[at] � � L
T2   �(T) �

L
T

CONVERSION OF UNITS
Sometimes it is necessary to convert units from one system to another. Conversion
factors between the SI units and conventional units of length are as follows:

A more complete list of conversion factors can be found in Appendix A.
Units can be treated as algebraic quantities that can cancel each other. For ex-

ample, suppose we wish to convert 15.0 in. to centimeters. Because 1 in. is defined
as exactly 2.54 cm, we find that

This works because multiplying by is the same as multiplying by 1, because
the numerator and denominator describe identical things.

(2.54 cm
1 in. )

15.0 in. � (15.0 in.)(2.54 cm/in.) � 38.1 cm

 1 m �  39.37 in. � 3.281 ft  1 in. �  0.025 4 m � 2.54 cm (exactly)

1 mi � 1 609 m � 1.609 km  1 ft � 0.304 8 m � 30.48 cm 

1.5

Analysis of a Power LawEXAMPLE 1.3
This dimensional equation is balanced under the conditions

Therefore n � � 1, and we can write the acceleration expres-
sion as

When we discuss uniform circular motion later, we shall see
that k � 1 if a consistent set of units is used. The constant k
would not equal 1 if, for example, v were in km/h and you
wanted a in m/s2.

a � kr �1v2 � k 
v2

r

n � m � 1  and  m � 2

Suppose we are told that the acceleration a of a particle mov-
ing with uniform speed v in a circle of radius r is proportional
to some power of r, say rn, and some power of v, say vm. How
can we determine the values of n and m?

Solution Let us take a to be

where k is a dimensionless constant of proportionality. Know-
ing the dimensions of a, r, and v, we see that the dimensional
equation must be

L/T2 � Ln(L/T)m � Ln�m/Tm

a � kr nvm

QuickLab
Estimate the weight (in pounds) of
two large bottles of soda pop. Note
that 1 L of water has a mass of about
1 kg. Use the fact that an object
weighing 2.2 lb has a mass of 1 kg.
Find some bathroom scales and
check your estimate.
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ESTIMATES AND ORDER-OF-
MAGNITUDE CALCULATIONS

It is often useful to compute an approximate answer to a physical problem even
where little information is available. Such an approximate answer can then be
used to determine whether a more accurate calculation is necessary. Approxima-
tions are usually based on certain assumptions, which must be modified if greater
accuracy is needed. Thus, we shall sometimes refer to the order of magnitude of a
certain quantity as the power of ten of the number that describes that quantity. If,
for example, we say that a quantity increases in value by three orders of magni-
tude, this means that its value is increased by a factor of 103 � 1000. Also, if a
quantity is given as 3 � 103, we say that the order of magnitude of that quantity is
103 (or in symbolic form, 3 � 103 � 103). Likewise, the quantity 8 � 107 � 108.

The spirit of order-of-magnitude calculations, sometimes referred to as
“guesstimates” or “ball-park figures,” is given in the following quotation: “Make an
estimate before every calculation, try a simple physical argument . . . before
every derivation, guess the answer to every puzzle. Courage: no one else needs to

1.6

(Left) This road sign near Raleigh, North Carolina, shows distances in miles and kilometers. How
accurate are the conversions? (Billy E. Barnes/Stock Boston). 

(Right) This vehicle’s speedometer gives speed readings in miles per hour and in kilometers per
hour. Try confirming the conversion between the two sets of units for a few readings of the dial.
(Paul Silverman/Fundamental Photographs)

The Density of a CubeEXAMPLE 1.4
The mass of a solid cube is 856 g, and each edge has a length
of 5.35 cm. Determine the density � of the cube in basic SI
units.

Solution Because 1 g � 10�3 kg and 1 cm � 10�2 m, the
mass m and volume V in basic SI units are

 m � 856 g � 10�3 kg/g � 0.856 kg

Therefore,

5.59 � 103 kg/m3� �
m
V

�
0.856 kg

1.53 � 10�4 m3 �

  � (5.35)3 � 10�6 m3 � 1.53 � 10�4 m3

V � L3 � (5.35 cm � 10�2 m/cm)3  
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know what the guess is.” 4 Inaccuracies caused by guessing too low for one number
are often canceled out by other guesses that are too high. You will find that with
practice your guesstimates get better and better. Estimation problems can be fun
to work as you freely drop digits, venture reasonable approximations for unknown
numbers, make simplifying assumptions, and turn the question around into some-
thing you can answer in your head.

Breaths in a LifetimeEXAMPLE 1.5
approximately

Notice how much simpler it is to multiply 400 � 25 than it 
is to work with the more accurate 365 � 24. These approxi-
mate values for the number of days in a year and the number
of hours in a day are close enough for our purposes. Thus, in
70 years there will be (70 yr)(6 � 105 min/yr) � 4 � 107

min. At a rate of 10 breaths/min, an individual would take

4 � 108 breaths in a lifetime.

1 yr � 400 
days
yr

� 25 
h

day
� 60 

min
h

� 6 � 105 min

Estimate the number of breaths taken during an average life
span.

Solution We shall start by guessing that the typical life
span is about 70 years. The only other estimate we must make
in this example is the average number of breaths that a per-
son takes in 1 min. This number varies, depending on
whether the person is exercising, sleeping, angry, serene, and
so forth. To the nearest order of magnitude, we shall choose
10 breaths per minute as our estimate of the average. (This is
certainly closer to the true value than 1 breath per minute or
100 breaths per minute.) The number of minutes in a year is

Estimate the number of gallons of gasoline used each year by
all the cars in the United States.

Solution There are about 270 million people in the
United States, and so we estimate that the number of cars in
the country is 100 million (guessing that there are between
two and three people per car). We also estimate that the aver-

How Much Gas Do We Use?EXAMPLE 1.7

Now we switch to scientific notation so that we can do the
calculation mentally:

So if we intend to walk across the United States, it will take us
on the order of ten million steps. This estimate is almost cer-
tainly too small because we have not accounted for curving
roads and going up and down hills and mountains. Nonethe-
less, it is probably within an order of magnitude of the cor-
rect answer.

107 steps�

(3 � 103 mi)(2.5 � 103 steps/mi) � 7.5 � 106 steps

age distance each car travels per year is 10 000 mi. If we as-
sume a gasoline consumption of 20 mi/gal or 0.05 gal/mi,
then each car uses about 500 gal/yr. Multiplying this by the
total number of cars in the United States gives an estimated 

total consumption of 5 � 1010 gal � 1011 gal.

It’s a Long Way to San JoseEXAMPLE 1.6
Estimate the number of steps a person would take walking
from New York to Los Angeles.

Solution Without looking up the distance between these
two cities, you might remember from a geography class that
they are about 3 000 mi apart. The next approximation we
must make is the length of one step. Of course, this length
depends on the person doing the walking, but we can esti-
mate that each step covers about 2 ft. With our estimated step
size, we can determine the number of steps in 1 mi. Because
this is a rough calculation, we round 5 280 ft/mi to 5 000
ft/mi. (What percentage error does this introduce?) This
conversion factor gives us

5 000 ft/mi
2 ft/step

� 2 500 steps/mi

4 E. Taylor and J. A. Wheeler, Spacetime Physics, San Francisco, W. H. Freeman & Company, Publishers,
1966, p. 60.
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SIGNIFICANT FIGURES
When physical quantities are measured, the measured values are known only to
within the limits of the experimental uncertainty. The value of this uncertainty can
depend on various factors, such as the quality of the apparatus, the skill of the ex-
perimenter, and the number of measurements performed. 

Suppose that we are asked to measure the area of a computer disk label using
a meter stick as a measuring instrument. Let us assume that the accuracy to which
we can measure with this stick is 	 0.1 cm. If the length of the label is measured to
be 5.5 cm, we can claim only that its length lies somewhere between 5.4 cm and
5.6 cm. In this case, we say that the measured value has two significant figures.
Likewise, if the label’s width is measured to be 6.4 cm, the actual value lies be-
tween 6.3 cm and 6.5 cm. Note that the significant figures include the first esti-
mated digit. Thus we could write the measured values as (5.5 	 0.1) cm and 
(6.4 	 0.1) cm.

Now suppose we want to find the area of the label by multiplying the two mea-
sured values. If we were to claim the area is (5.5 cm)(6.4 cm) � 35.2 cm2, our an-
swer would be unjustifiable because it contains three significant figures, which is
greater than the number of significant figures in either of the measured lengths. A
good rule of thumb to use in determining the number of significant figures that
can be claimed is as follows: 

1.7

When multiplying several quantities, the number of significant figures in the
final answer is the same as the number of significant figures in the least accurate
of the quantities being multiplied, where “least accurate” means “having the
lowest number of significant figures.” The same rule applies to division.

Applying this rule to the multiplication example above, we see that the answer
for the area can have only two significant figures because our measured lengths
have only two significant figures. Thus, all we can claim is that the area is 35 cm2,
realizing that the value can range between (5.4 cm)(6.3 cm) � 34 cm2 and 
(5.6 cm)(6.5 cm) � 36 cm2.

Zeros may or may not be significant figures. Those used to position the deci-
mal point in such numbers as 0.03 and 0.007 5 are not significant. Thus, there are
one and two significant figures, respectively, in these two values. When the zeros
come after other digits, however, there is the possibility of misinterpretation. For
example, suppose the mass of an object is given as 1 500 g. This value is ambigu-
ous because we do not know whether the last two zeros are being used to locate
the decimal point or whether they represent significant figures in the measure-
ment. To remove this ambiguity, it is common to use scientific notation to indicate
the number of significant figures. In this case, we would express the mass as 1.5 �
103 g if there are two significant figures in the measured value, 1.50 � 103 g if
there are three significant figures, and 1.500 � 103 g if there are four. The same
rule holds when the number is less than 1, so that 2.3 � 10�4 has two significant
figures (and so could be written 0.000 23) and 2.30 � 10�4 has three significant
figures (also written 0.000 230). In general, a significant figure is a reliably
known digit (other than a zero used to locate the decimal point).

For addition and subtraction, you must consider the number of decimal places
when you are determining how many significant figures to report.

QuickLab
Determine the thickness of a page
from this book. (Note that numbers
that have no measurement errors—
like the count of a number of
pages—do not affect the significant
figures in a calculation.) In terms of
significant figures, why is it better to
measure the thickness of as many
pages as possible and then divide by
the number of sheets?
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For example, if we wish to compute 123 � 5.35, the answer given to the correct num-
ber of significant figures is 128 and not 128.35. If we compute the sum 1.000 1 �
0.000 3 � 1.000 4, the result has five significant figures, even though one of the terms
in the sum, 0.000 3, has only one significant figure. Likewise, if we perform the sub-
traction 1.002 � 0.998 � 0.004, the result has only one significant figure even though
one term has four significant figures and the other has three. In this book, most of
the numerical examples and end-of-chapter problems will yield answers hav-
ing three significant figures. When carrying out estimates we shall typically work
with a single significant figure.

Suppose you measure the position of a chair with a meter stick and record that the center
of the seat is 1.043 860 564 2 m from a wall. What would a reader conclude from this
recorded measurement?

Quick Quiz 1.2

When numbers are added or subtracted, the number of decimal places in the
result should equal the smallest number of decimal places of any term in the
sum.

The Area of a RectangleEXAMPLE 1.8
A rectangular plate has a length of (21.3 	 0.2) cm and a
width of (9.80 	 0.1) cm. Find the area of the plate and the
uncertainty in the calculated area. 

Solution
Area � �w � (21.3 	 0.2 cm) � (9.80 	 0.1 cm)  

Because the input data were given to only three significant
figures, we cannot claim any more in our result. Do you see
why we did not need to multiply the uncertainties 0.2 cm and
0.1 cm?

(209 	 4) cm2    �

  � (21.3 � 9.80 	 21.3 � 0.1 	 0.2 � 9.80) cm2

Installing a CarpetEXAMPLE 1.9
Note that in reducing 43.976 6 to three significant figures

for our answer, we used a general rule for rounding off num-
bers that states that the last digit retained (the 9 in this exam-
ple) is increased by 1 if the first digit dropped (here, the 7) is
5 or greater. (A technique for avoiding error accumulation is
to delay rounding of numbers in a long calculation until you
have the final result. Wait until you are ready to copy the an-
swer from your calculator before rounding to the correct
number of significant figures.)

A carpet is to be installed in a room whose length is measured
to be 12.71 m and whose width is measured to be 3.46 m. Find
the area of the room.

Solution If you multiply 12.71 m by 3.46 m on your calcu-
lator, you will get an answer of 43.976 6 m2. How many of
these numbers should you claim? Our rule of thumb for mul-
tiplication tells us that you can claim only the number of sig-
nificant figures in the least accurate of the quantities being
measured. In this example, we have only three significant fig-
ures in our least accurate measurement, so we should express 

our final answer as 44.0 m2.
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SUMMARY

The three fundamental physical quantities of mechanics are length, mass, and
time, which in the SI system have the units meters (m), kilograms (kg), and sec-
onds (s), respectively. Prefixes indicating various powers of ten are used with these
three basic units. The density of a substance is defined as its mass per unit volume.
Different substances have different densities mainly because of differences in their
atomic masses and atomic arrangements.

The number of particles in one mole of any element or compound, called
Avogadro’s number, NA , is 6.02 � 1023.

The method of dimensional analysis is very powerful in solving physics prob-
lems. Dimensions can be treated as algebraic quantities. By making estimates and
making order-of-magnitude calculations, you should be able to approximate the
answer to a problem when there is not enough information available to completely
specify an exact solution.

When you compute a result from several measured numbers, each of which
has a certain accuracy, you should give the result with the correct number of signif-
icant figures.

QUESTIONS

1. In this chapter we described how the Earth’s daily rotation
on its axis was once used to define the standard unit of
time. What other types of natural phenomena could serve
as alternative time standards?

2. Suppose that the three fundamental standards of the met-
ric system were length, density, and time rather than
length, mass, and time. The standard of density in this sys-
tem is to be defined as that of water. What considerations
about water would you need to address to make sure that
the standard of density is as accurate as possible?

3. A hand is defined as 4 in.; a foot is defined as 12 in. Why
should the hand be any less acceptable as a unit than the
foot, which we use all the time?

4. Express the following quantities using the prefixes given in

Table 1.4: (a) 3 � 10�4 m (b) 5 � 10�5 s
(c) 72 � 102 g.

5. Suppose that two quantities A and B have different dimen-
sions. Determine which of the following arithmetic opera-
tions could be physically meaningful: (a) A � B (b) A/B
(c) B � A (d) AB.

6. What level of accuracy is implied in an order-of-magnitude
calculation?

7. Do an order-of-magnitude calculation for an everyday situ-
ation you might encounter. For example, how far do you
walk or drive each day?

8. Estimate your age in seconds.
9. Estimate the mass of this textbook in kilograms. If a scale is

available, check your estimate.

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

Section 1.3 Density
1. The standard kilogram is a platinum–iridium cylinder

39.0 mm in height and 39.0 mm in diameter. What is
the density of the material?

2. The mass of the planet Saturn (Fig. P1.2) is 5.64 �
1026 kg, and its radius is 6.00 � 107 m. Calculate its
density.

3. How many grams of copper are required to make a hol-
low spherical shell having an inner radius of 5.70 cm
and an outer radius of 5.75 cm? The density of copper
is 8.92 g/cm3.

4. What mass of a material with density � is required to
make a hollow spherical shell having inner radius r1 and
outer radius r2 ?

5. Iron has molar mass 55.8 g/mol. (a) Find the volume
of 1 mol of iron. (b) Use the value found in (a) to de-
termine the volume of one iron atom. (c) Calculate
the cube root of the atomic volume, to have an esti-
mate for the distance between atoms in the solid. 
(d) Repeat the calculations for uranium, finding its
molar mass in the periodic table of the elements in
Appendix C.
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6. Two spheres are cut from a certain uniform rock. One
has radius 4.50 cm. The mass of the other is five times
greater. Find its radius.

7. Calculate the mass of an atom of (a) helium, (b) iron,
and (c) lead. Give your answers in atomic mass units
and in grams. The molar masses are 4.00, 55.9, and 
207 g/mol, respectively, for the atoms given.

8. On your wedding day your lover gives you a gold ring of
mass 3.80 g. Fifty years later its mass is 3.35 g. As an av-
erage, how many atoms were abraded from the ring
during each second of your marriage? The molar mass
of gold is 197 g/mol.

9. A small cube of iron is observed under a microscope.
The edge of the cube is 5.00 � 10�6 cm long. Find (a)
the mass of the cube and (b) the number of iron atoms
in the cube. The molar mass of iron is 55.9 g/mol, and
its density is 7.86 g/cm3.

10. A structural I-beam is made of steel. A view of its cross-
section and its dimensions are shown in Figure P1.10.

(a) What is the mass of a section 1.50 m long? (b) How
many atoms are there in this section? The density of
steel is 7.56 � 103 kg/m3.

11. A child at the beach digs a hole in the sand and, using a
pail, fills it with water having a mass of 1.20 kg. The mo-
lar mass of water is 18.0 g/mol. (a) Find the number of
water molecules in this pail of water. (b) Suppose the
quantity of water on the Earth is 1.32 � 1021 kg and re-
mains constant. How many of the water molecules in
this pail of water were likely to have been in an equal
quantity of water that once filled a particular claw print
left by a dinosaur?

Section 1.4 Dimensional Analysis
12. The radius r of a circle inscribed in any triangle whose

sides are a, b, and c is given by 

where s is an abbreviation for Check this
formula for dimensional consistency.

13. The displacement of a particle moving under uniform
acceleration is some function of the elapsed time and
the acceleration. Suppose we write this displacement

where k is a dimensionless constant. Show by
dimensional analysis that this expression is satisfied if 
m � 1 and n � 2. Can this analysis give the value of k?

14. The period T of a simple pendulum is measured in time
units and is described by

where � is the length of the pendulum and g is the free-
fall acceleration in units of length divided by the square
of time. Show that this equation is dimensionally correct.

15. Which of the equations below are dimensionally cor-
rect?
(a)
(b)

16. Newton’s law of universal gravitation is represented by

Here F is the gravitational force, M and m are masses,
and r is a length. Force has the SI units kg� m/s2. What
are the SI units of the proportionality constant G ?

17. The consumption of natural gas by a company satisfies
the empirical equation where V
is the volume in millions of cubic feet and t the time in
months. Express this equation in units of cubic feet and
seconds. Put the proper units on the coefficients. As-
sume a month is 30.0 days.

Section 1.5 Conversion of Units
18. Suppose your hair grows at the rate 1/32 in. per day.

Find the rate at which it grows in nanometers per sec-
ond. Since the distance between atoms in a molecule is

V � 1.50t � 0.008 00t2,

F �
GMm

r 2

y � (2 m) cos(kx), where k � 2 m�1
v � v0 � ax

T � 2
 √ �

g

s � kamtn,

/2.(a � b � c)

(s � c)/s]1/2r � [(s � a)(s � b)

15.0 cm

1.00 cm

1.00 cm

36.0 cm

Figure P1.10

Figure P1.2 A view of Saturn from Voyager 2. (Courtesy of NASA)

WEB
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on the order of 0.1 nm, your answer suggests how
rapidly layers of atoms are assembled in this protein syn-
thesis.

19. A rectangular building lot is 100 ft by 150 ft. Determine
the area of this lot in m2.

20. An auditorium measures 40.0 m � 20.0 m � 12.0 m.
The density of air is 1.20 kg/m3. What are (a) the vol-
ume of the room in cubic feet and (b) the weight of air
in the room in pounds?

21. Assume that it takes 7.00 min to fill a 30.0-gal gasoline
tank. (a) Calculate the rate at which the tank is filled in
gallons per second. (b) Calculate the rate at which the
tank is filled in cubic meters per second. (c) Determine
the time, in hours, required to fill a 1-cubic-meter vol-
ume at the same rate. (1 U.S. gal � 231 in.3)

22. A creature moves at a speed of 5.00 furlongs per fort-
night (not a very common unit of speed). Given that 
1 furlong � 220 yards and 1 fortnight � 14 days, deter-
mine the speed of the creature in meters per second.
What kind of creature do you think it might be?

23. A section of land has an area of 1 mi2 and contains 
640 acres. Determine the number of square meters in 
1 acre.

24. A quart container of ice cream is to be made in the
form of a cube. What should be the length of each edge
in centimeters? (Use the conversion 1 gal � 3.786 L.)

25. A solid piece of lead has a mass of 23.94 g and a volume
of 2.10 cm3. From these data, calculate the density of
lead in SI units (kg/m3).

26. An astronomical unit (AU) is defined as the average dis-
tance between the Earth and the Sun. (a) How many as-
tronomical units are there in one lightyear? (b) Deter-
mine the distance from the Earth to the Andromeda
galaxy in astronomical units.

27. The mass of the Sun is 1.99 � 1030 kg, and the mass of
an atom of hydrogen, of which the Sun is mostly com-
posed, is 1.67 � 10�27 kg. How many atoms are there in
the Sun?

28. (a) Find a conversion factor to convert from miles per
hour to kilometers per hour. (b) In the past, a federal
law mandated that highway speed limits would be 
55 mi/h. Use the conversion factor of part (a) to find
this speed in kilometers per hour. (c) The maximum
highway speed is now 65 mi/h in some places. In kilo-
meters per hour, how much of an increase is this over
the 55-mi/h limit?

29. At the time of this book’s printing, the U. S. national
debt is about $6 trillion. (a) If payments were made at
the rate of $1 000/s, how many years would it take to pay
off a $6-trillion debt, assuming no interest were charged?
(b) A dollar bill is about 15.5 cm long. If six trillion dol-
lar bills were laid end to end around the Earth’s equator,
how many times would they encircle the Earth? Take the
radius of the Earth at the equator to be 6 378 km. 
(Note: Before doing any of these calculations, try to 
guess at the answers. You may be very surprised.)

30. (a) How many seconds are there in a year? (b) If one
micrometeorite (a sphere with a diameter of 1.00 �
10�6 m) strikes each square meter of the Moon each
second, how many years will it take to cover the Moon
to a depth of 1.00 m? (Hint: Consider a cubic box on
the Moon 1.00 m on a side, and find how long it will
take to fill the box.)

31. One gallon of paint (volume � 3.78 � 10�3 m3) covers
an area of 25.0 m2. What is the thickness of the paint on
the wall?

32. A pyramid has a height of 481 ft, and its base covers an
area of 13.0 acres (Fig. P1.32). If the volume of a pyra-
mid is given by the expression where B is the
area of the base and h is the height, find the volume of
this pyramid in cubic meters. (1 acre � 43 560 ft2)

V � 1
3Bh,

Figure P1.32 Problems 32 and 33.

33. The pyramid described in Problem 32 contains approxi-
mately two million stone blocks that average 2.50 tons
each. Find the weight of this pyramid in pounds.

34. Assuming that 70% of the Earth’s surface is covered
with water at an average depth of 2.3 mi, estimate the
mass of the water on the Earth in kilograms.

35. The amount of water in reservoirs is often measured in
acre-feet. One acre-foot is a volume that covers an area
of 1 acre to a depth of 1 ft. An acre is an area of 
43 560 ft2. Find the volume in SI units of a reservoir
containing 25.0 acre-ft of water.

36. A hydrogen atom has a diameter of approximately 
1.06 � 10�10 m, as defined by the diameter of the
spherical electron cloud around the nucleus. The hy-
drogen nucleus has a diameter of approximately 
2.40 � 10�15 m. (a) For a scale model, represent the di-
ameter of the hydrogen atom by the length of an Amer-
ican football field (100 yards � 300 ft), and determine
the diameter of the nucleus in millimeters. (b) The
atom is how many times larger in volume than its
nucleus?

37. The diameter of our disk-shaped galaxy, the Milky Way,
is about 1.0 � 105 lightyears. The distance to Messier
31—which is Andromeda, the spiral galaxy nearest to
the Milky Way—is about 2.0 million lightyears. If a scale
model represents the Milky Way and Andromeda galax-

WEB
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ies as dinner plates 25 cm in diameter, determine the
distance between the two plates.

38. The mean radius of the Earth is 6.37 � 106 m, and that
of the Moon is 1.74 � 108 cm. From these data calcu-
late (a) the ratio of the Earth’s surface area to that of
the Moon and (b) the ratio of the Earth’s volume to
that of the Moon. Recall that the surface area of a
sphere is 4
r 2 and that the volume of a sphere is 

39. One cubic meter (1.00 m3) of aluminum has a mass of
2.70 � 103 kg, and 1.00 m3 of iron has a mass of 
7.86 � 103 kg. Find the radius of a solid aluminum
sphere that balances a solid iron sphere of radius 2.00
cm on an equal-arm balance.

40. Let �A1 represent the density of aluminum and �Fe that
of iron. Find the radius of a solid aluminum sphere that
balances a solid iron sphere of radius rFe on an equal-
arm balance.

Section 1.6 Estimates and Order-of-
Magnitude Calculations

41. Estimate the number of Ping-Pong balls that would fit
into an average-size room (without being crushed). In
your solution state the quantities you measure or esti-
mate and the values you take for them.

42. McDonald’s sells about 250 million packages of French
fries per year. If these fries were placed end to end, esti-
mate how far they would reach.

43. An automobile tire is rated to last for 50 000 miles. Esti-
mate the number of revolutions the tire will make in its
lifetime.

44. Approximately how many raindrops fall on a 1.0-acre
lot during a 1.0-in. rainfall?

45. Grass grows densely everywhere on a quarter-acre plot
of land. What is the order of magnitude of the number
of blades of grass on this plot of land? Explain your rea-
soning. (1 acre � 43 560 ft2.)

46. Suppose that someone offers to give you $1 billion if
you can finish counting it out using only one-dollar
bills. Should you accept this offer? Assume you can
count one bill every second, and be sure to note that
you need about 8 hours a day for sleeping and eating
and that right now you are probably at least 18 years
old.

47. Compute the order of magnitude of the mass of a bath-
tub half full of water and of the mass of a bathtub half
full of pennies. In your solution, list the quantities you
take as data and the value you measure or estimate for
each.

48. Soft drinks are commonly sold in aluminum containers.
Estimate the number of such containers thrown away or
recycled each year by U.S. consumers. Approximately
how many tons of aluminum does this represent?

49. To an order of magnitude, how many piano tuners are
there in New York City? The physicist Enrico Fermi was
famous for asking questions like this on oral Ph.D. qual-

4
3 
 r 3.

ifying examinations and for his own facility in making
order-of-magnitude calculations.

Section 1.7 Significant Figures
50. Determine the number of significant figures in the fol-

lowing measured values: (a) 23 cm (b) 3.589 s
(c) 4.67 � 103 m/s (d) 0.003 2 m.

51. The radius of a circle is measured to be 10.5 	 0.2 m.
Calculate the (a) area and (b) circumference of the cir-
cle and give the uncertainty in each value.

52. Carry out the following arithmetic operations: (a) the
sum of the measured values 756, 37.2, 0.83, and 2.5; 
(b) the product 0.003 2 � 356.3; (c) the product 
5.620 � 
.

53. The radius of a solid sphere is measured to be (6.50 	
0.20) cm, and its mass is measured to be (1.85 	 0.02)
kg. Determine the density of the sphere in kilograms
per cubic meter and the uncertainty in the density.

54. How many significant figures are in the following num-
bers: (a) 78.9 	 0.2, (b) 3.788 � 109, (c) 2.46 � 10�6,
and (d) 0.005 3?

55. A farmer measures the distance around a rectangular
field. The length of the long sides of the rectangle is
found to be 38.44 m, and the length of the short sides is
found to be 19.5 m. What is the total distance around
the field?

56. A sidewalk is to be constructed around a swimming 
pool that measures (10.0 	 0.1) m by (17.0 	 0.1) m. 
If the sidewalk is to measure (1.00 	 0.01) m wide by 
(9.0 	 0.1) cm thick, what volume of concrete is needed,
and what is the approximate uncertainty of this volume?

ADDITIONAL PROBLEMS

57. In a situation where data are known to three significant
digits, we write 6.379 m � 6.38 m and 6.374 m �
6.37 m. When a number ends in 5, we arbitrarily choose
to write 6.375 m � 6.38 m. We could equally well write
6.375 m � 6.37 m, “rounding down” instead of “round-
ing up,” since we would change the number 6.375 by
equal increments in both cases. Now consider an order-
of-magnitude estimate, in which we consider factors
rather than increments. We write 500 m � 103 m be-
cause 500 differs from 100 by a factor of 5 whereas it dif-
fers from 1000 by only a factor of 2. We write 437 m �
103 m and 305 m � 102 m. What distance differs from
100 m and from 1000 m by equal factors, so that we
could equally well choose to represent its order of mag-
nitude either as � 102 m or as � 103 m?

58. When a droplet of oil spreads out on a smooth water
surface, the resulting “oil slick” is approximately one
molecule thick. An oil droplet of mass 9.00 � 10�7 kg
and density 918 kg/m3 spreads out into a circle of ra-
dius 41.8 cm on the water surface. What is the diameter
of an oil molecule?

WEB
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59. The basic function of the carburetor of an automobile
is to “atomize” the gasoline and mix it with air to pro-
mote rapid combustion. As an example, assume that
30.0 cm3 of gasoline is atomized into N spherical
droplets, each with a radius of 2.00 � 10�5 m. What is
the total surface area of these N spherical droplets?

60. In physics it is important to use mathematical approxi-
mations. Demonstrate for yourself that for small angles
(� 20°)

tan � � sin � � � � 
�/180°

where � is in radians and � is in degrees. Use a calcula-
tor to find the largest angle for which tan � may be ap-
proximated by sin � if the error is to be less than 10.0%.

61. A high fountain of water is located at the center of a cir-
cular pool as in Figure P1.61. Not wishing to get his feet
wet, a student walks around the pool and measures its
circumference to be 15.0 m. Next, the student stands at
the edge of the pool and uses a protractor to gauge the
angle of elevation of the top of the fountain to be 55.0°.
How high is the fountain?

64. A crystalline solid consists of atoms stacked up in a re-
peating lattice structure. Consider a crystal as shown in
Figure P1.64a. The atoms reside at the corners of cubes
of side L � 0.200 nm. One piece of evidence for the
regular arrangement of atoms comes from the flat sur-
faces along which a crystal separates, or “cleaves,” when
it is broken. Suppose this crystal cleaves along a face di-
agonal, as shown in Figure P1.64b. Calculate the spac-
ing d between two adjacent atomic planes that separate
when the crystal cleaves.

Figure P1.64

Figure P1.61

55.0˚

62. Assume that an object covers an area A and has a uni-
form height h. If its cross-sectional area is uniform over
its height, then its volume is given by (a) Show
that is dimensionally correct. (b) Show that the
volumes of a cylinder and of a rectangular box can be
written in the form identifying A in each case.
(Note that A, sometimes called the “footprint” of the
object, can have any shape and that the height can be
replaced by average thickness in general.)

63. A useful fact is that there are about 
 � 107 s in one
year. Find the percentage error in this approximation,
where “percentage error” is defined as

� Assumed value � true value �
True value

� 100%

V � Ah,

V � Ah
V � Ah.

L

(b)

(a)

d

65. A child loves to watch as you fill a transparent plastic
bottle with shampoo. Every horizontal cross-section of
the bottle is a circle, but the diameters of the circles all
have different values, so that the bottle is much wider in
some places than in others. You pour in bright green
shampoo with constant volume flow rate 16.5 cm3/s. At
what rate is its level in the bottle rising (a) at a point
where the diameter of the bottle is 6.30 cm and (b) at a
point where the diameter is 1.35 cm?

66. As a child, the educator and national leader Booker T.
Washington was given a spoonful (about 12.0 cm3) of
molasses as a treat. He pretended that the quantity in-
creased when he spread it out to cover uniformly all of
a tin plate (with a diameter of about 23.0 cm). How
thick a layer did it make?

67. Assume there are 100 million passenger cars in the
United States and that the average fuel consumption is
20 mi/gal of gasoline. If the average distance traveled
by each car is 10 000 mi/yr, how much gasoline would
be saved per year if average fuel consumption could be
increased to 25 mi/gal?

68. One cubic centimeter of water has a mass of 1.00 �
10�3 kg. (a) Determine the mass of 1.00 m3 of water.
(b) Assuming biological substances are 98% water, esti-



1.1 False. Dimensional analysis gives the units of the propor-
tionality constant but provides no information about its
numerical value. For example, experiments show that
doubling the radius of a solid sphere increases its mass
8-fold, and tripling the radius increases the mass 27-fold.
Therefore, its mass is proportional to the cube of its ra-
dius. Because we can write Dimen-
sional analysis shows that the proportionality constant k
must have units kg/m3, but to determine its numerical
value requires either experimental data or geometrical
reasoning.

m � kr 3.m   �    r 3,
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mate the mass of a cell that has a diameter of 1.0 �m, a
human kidney, and a fly. Assume that a kidney is
roughly a sphere with a radius of 4.0 cm and that a 
fly is roughly a cylinder 4.0 mm long and 2.0 mm in 
diameter.

69. The distance from the Sun to the nearest star is 4 �
1016 m. The Milky Way galaxy is roughly a disk of diame-
ter � 1021 m and thickness � 1019 m. Find the order of
magnitude of the number of stars in the Milky Way. As-
sume the distance between the Sun and the
nearest star is typical.

70. The data in the following table represent measurements
of the masses and dimensions of solid cylinders of alu-

4 � 1016-m

minum, copper, brass, tin, and iron. Use these data to
calculate the densities of these substances. Compare
your results for aluminum, copper, and iron with those
given in Table 1.5.

ANSWERS TO QUICK QUIZZES

1.2 Reporting all these digits implies you have determined
the location of the center of the chair’s seat to the near-
est 	 0.000 000 000 1 m. This roughly corresponds to
being able to count the atoms in your meter stick be-
cause each of them is about that size! It would probably
be better to record the measurement as 1.044 m: this in-
dicates that you know the position to the nearest mil-
limeter, assuming the meter stick has millimeter mark-
ings on its scale.

Diameter
Substance Mass (g) (cm) Length (cm)

Aluminum 51.5 2.52 3.75
Copper 56.3 1.23 5.06
Brass 94.4 1.54 5.69
Tin 69.1 1.75 3.74
Iron 216.1 1.89 9.77


