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Motion in One Dimension

In a moment the arresting cable will be
pulled taut, and the 140-mi/h landing of
this F/A-18 Hornet on the aircraft carrier
USS Nimitz will be brought to a sudden
conclusion. The pilot cuts power to the
engine, and the plane is stopped in less
than 2 s. If the cable had not been suc-
cessfully engaged, the pilot would have
had to take off quickly before reaching
the end of the flight deck. Can the motion
of the plane be described quantitatively
in a way that is useful to ship and aircraft
designers and to pilots learning to land
on a “postage stamp?” (Courtesy of the
USS Nimitz/U.S. Navy)
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s a first step in studying classical mechanics, we describe motion in terms of
space and time while ignoring the agents that caused that motion. This por-
tion of classical mechanics is called kinematics. (The word kinematics has the

same root as cinema. Can you see why?) In this chapter we consider only motion in
one dimension. We first define displacement, velocity, and acceleration. Then, us-
ing these concepts, we study the motion of objects traveling in one dimension with
a constant acceleration.

From everyday experience we recognize that motion represents a continuous
change in the position of an object. In physics we are concerned with three types
of motion: translational, rotational, and vibrational. A car moving down a highway
is an example of translational motion, the Earth’s spin on its axis is an example of
rotational motion, and the back-and-forth movement of a pendulum is an example
of vibrational motion. In this and the next few chapters, we are concerned only
with translational motion. (Later in the book we shall discuss rotational and vibra-
tional motions.)

In our study of translational motion, we describe the moving object as a parti-
cle regardless of its size. In general, a particle is a point-like mass having infini-
tesimal size. For example, if we wish to describe the motion of the Earth around
the Sun, we can treat the Earth as a particle and obtain reasonably accurate data
about its orbit. This approximation is justified because the radius of the Earth’s or-
bit is large compared with the dimensions of the Earth and the Sun. As an exam-
ple on a much smaller scale, it is possible to explain the pressure exerted by a gas
on the walls of a container by treating the gas molecules as particles. 

DISPLACEMENT, VELOCITY, AND SPEED
The motion of a particle is completely known if the particle’s position in space is
known at all times. Consider a car moving back and forth along the x axis, as shown
in Figure 2.1a. When we begin collecting position data, the car is 30 m to the right
of a road sign. (Let us assume that all data in this example are known to two signifi-
cant figures. To convey this information, we should report the initial position as 
3.0 � 101 m. We have written this value in this simpler form to make the discussion
easier to follow.) We start our clock and once every 10 s note the car’s location rela-
tive to the sign. As you can see from Table 2.1, the car is moving to the right (which
we have defined as the positive direction) during the first 10 s of motion, from posi-
tion � to position �. The position values now begin to decrease, however, because
the car is backing up from position � through position �. In fact, at �, 30 s after
we start measuring, the car is alongside the sign we are using as our origin of coordi-
nates. It continues moving to the left and is more than 50 m to the left of the sign
when we stop recording information after our sixth data point. A graph of this infor-
mation is presented in Figure 2.1b. Such a plot is called a position–time graph.

If a particle is moving, we can easily determine its change in position. The dis-
placement of a particle is defined as its change in position. As it moves from
an initial position xi to a final position xf , its displacement is given by We
use the Greek letter delta (�) to denote the change in a quantity. Therefore, we
write the displacement, or change in position, of the particle as

(2.1)

From this definition we see that �x is positive if xf is greater than xi and negative if
xf is less than xi . 

�x � x f � x i

x f � x i .

2.1

A

TABLE 2.1
Position of the Car at
Various Times

Position t(s) x(m)

� 0 30
� 10 52
� 20 38
� 30 0
� 40 � 37
� 50 � 53
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A very easy mistake to make is not to recognize the difference between dis-
placement and distance traveled (Fig. 2.2). A baseball player hitting a home run
travels a distance of 360 ft in the trip around the bases. However, the player’s dis-
placement is zero because his final and initial positions are identical.

Displacement is an example of a vector quantity. Many other physical quanti-
ties, including velocity and acceleration, also are vectors. In general, a vector is a
physical quantity that requires the specification of both direction and mag-
nitude. By contrast, a scalar is a quantity that has magnitude and no direc-
tion. In this chapter, we use plus and minus signs to indicate vector direction. We
can do this because the chapter deals with one-dimensional motion only; this
means that any object we study can be moving only along a straight line. For exam-
ple, for horizontal motion, let us arbitrarily specify to the right as being the posi-
tive direction. It follows that any object always moving to the right undergoes a
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Figure 2.1 (a) A car moves back
and forth along a straight line
taken to be the x axis. Because we
are interested only in the car’s
translational motion, we can treat it
as a particle. (b) Position–time
graph for the motion of the 
“particle.”
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positive displacement ��x, and any object moving to the left undergoes a negative
displacement ��x. We shall treat vectors in greater detail in Chapter 3. 

There is one very important point that has not yet been mentioned. Note that
the graph in Figure 2.1b does not consist of just six data points but is actually a
smooth curve. The graph contains information about the entire 50-s interval during
which we watched the car move. It is much easier to see changes in position from
the graph than from a verbal description or even a table of numbers. For example, it
is clear that the car was covering more ground during the middle of the 50-s interval
than at the end. Between positions � and �, the car traveled almost 40 m, but dur-
ing the last 10 s, between positions � and �, it moved less than half that far. A com-
mon way of comparing these different motions is to divide the displacement �x that
occurs between two clock readings by the length of that particular time interval �t.
This turns out to be a very useful ratio, one that we shall use many times. For conve-
nience, the ratio has been given a special name—average velocity. The average ve-
locity of a particle is defined as the particle’s displacement �x divided by
the time interval �t during which that displacement occurred:

(2.2)

where the subscript x indicates motion along the x axis. From this definition we
see that average velocity has dimensions of length divided by time (L/T)—meters
per second in SI units.

Although the distance traveled for any motion is always positive, the average ve-
locity of a particle moving in one dimension can be positive or negative, depending
on the sign of the displacement. (The time interval �t is always positive.) If the co-
ordinate of the particle increases in time (that is, if then �x is positive and

is positive. This case corresponds to motion in the positive x direction.
If the coordinate decreases in time (that is, if then �x is negative and
hence is negative. This case corresponds to motion in the negative x direction.vx

x f � x i),
vx � �x/�t

x f � x i),

vx � 
�x
�t

vx

Figure 2.2 Bird’s-eye view of a baseball
diamond. A batter who hits a home run
travels 360 ft as he rounds the bases, but his
displacement for the round trip is zero.
(Mark C. Burnett/Photo Researchers, Inc.)

Average velocity

3.2
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We can interpret average velocity geometrically by drawing a straight line be-
tween any two points on the position–time graph in Figure 2.1b. This line forms
the hypotenuse of a right triangle of height �x and base �t. The slope of this line
is the ratio �x/�t. For example, the line between positions � and � has a slope
equal to the average velocity of the car between those two times, (52 m � 30 m)/
(10 s � 0) � 2.2 m/s.

In everyday usage, the terms speed and velocity are interchangeable. In physics,
however, there is a clear distinction between these two quantities. Consider a
marathon runner who runs more than 40 km, yet ends up at his starting point. His
average velocity is zero! Nonetheless, we need to be able to quantify how fast he
was running. A slightly different ratio accomplishes this for us. The average
speed of a particle, a scalar quantity, is defined as the total distance trav-
eled divided by the total time it takes to travel that distance:

The SI unit of average speed is the same as the unit of average velocity: meters
per second. However, unlike average velocity, average speed has no direction and
hence carries no algebraic sign. 

Knowledge of the average speed of a particle tells us nothing about the details
of the trip. For example, suppose it takes you 8.0 h to travel 280 km in your car.
The average speed for your trip is 35 km/h. However, you most likely traveled at
various speeds during the trip, and the average speed of 35 km/h could result
from an infinite number of possible speed values.

Average speed �
total distance

total time
Average speed

magnitude as the supplied data. A quick look at Figure 2.1a
indicates that this is the correct answer.

It is difficult to estimate the average velocity without com-
pleting the calculation, but we expect the units to be meters
per second. Because the car ends up to the left of where we
started taking data, we know the average velocity must be
negative. From Equation 2.2,

We find the car’s average speed for this trip by adding the
distances traveled and dividing by the total time: 

2.5 m/sAverage speed �
22 m � 52 m � 53 m

50 s
�

�1.7 m/s�
�53 m � 30 m

50 s � 0 s
�

�83 m
50 s

�

vx �
�x
�t

�
x f � x i

tf � ti
�

xF � xA

tF � tA

Find the displacement, average velocity, and average speed of
the car in Figure 2.1a between positions � and �.

Solution The units of displacement must be meters, and
the numerical result should be of the same order of magni-
tude as the given position data (which means probably not 10
or 100 times bigger or smaller). From the position–time
graph given in Figure 2.1b, note that m at s
and that m at s. Using these values along
with the definition of displacement, Equation 2.1, we find
that

This result means that the car ends up 83 m in the negative
direction (to the left, in this case) from where it started. This
number has the correct units and is of the same order of

�83 m�x � xF � xA � �53 m � 30 m �

tF � 50xF � �53
tA � 0xA � 30

INSTANTANEOUS VELOCITY AND SPEED
Often we need to know the velocity of a particle at a particular instant in time,
rather than over a finite time interval. For example, even though you might want
to calculate your average velocity during a long automobile trip, you would be es-
pecially interested in knowing your velocity at the instant you noticed the police

2.2

Calculating the Variables of MotionEXAMPLE 2.1
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car parked alongside the road in front of you. In other words, you would like to be
able to specify your velocity just as precisely as you can specify your position by not-
ing what is happening at a specific clock reading—that is, at some specific instant.
It may not be immediately obvious how to do this. What does it mean to talk about
how fast something is moving if we “freeze time” and talk only about an individual
instant? This is a subtle point not thoroughly understood until the late 1600s. At
that time, with the invention of calculus, scientists began to understand how to de-
scribe an object’s motion at any moment in time.

To see how this is done, consider Figure 2.3a. We have already discussed the
average velocity for the interval during which the car moved from position � to
position � (given by the slope of the dark blue line) and for the interval during
which it moved from � to � (represented by the slope of the light blue line).
Which of these two lines do you think is a closer approximation of the initial veloc-
ity of the car? The car starts out by moving to the right, which we defined to be the
positive direction. Therefore, being positive, the value of the average velocity dur-
ing the � to � interval is probably closer to the initial value than is the value of
the average velocity during the � to � interval, which we determined to be nega-
tive in Example 2.1. Now imagine that we start with the dark blue line and slide
point � to the left along the curve, toward point �, as in Figure 2.3b. The line be-
tween the points becomes steeper and steeper, and as the two points get extremely
close together, the line becomes a tangent line to the curve, indicated by the green
line on the graph. The slope of this tangent line represents the velocity of the car
at the moment we started taking data, at point �. What we have done is determine
the instantaneous velocity at that moment. In other words, the instantaneous veloc-
ity vx equals the limiting value of the ratio �x/�t as �t approaches zero:1

(2.3)vx � lim
�t:0

 
�x
�t3.3

Figure 2.3 (a) Graph representing the motion of the car in Figure 2.1. (b) An enlargement of 
the upper left -hand corner of the graph shows how the blue line between positions � and �
approaches the green tangent line as point � gets closer to point �.

Definition of instantaneous
velocity
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1 Note that the displacement �x also approaches zero as �t approaches zero. As �x and �t become
smaller and smaller, the ratio �x/�t approaches a value equal to the slope of the line tangent to the 
x -versus-t curve.
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In calculus notation, this limit is called the derivative of x with respect to t, written
dx/dt:

(2.4)

The instantaneous velocity can be positive, negative, or zero. When the slope
of the position–time graph is positive, such as at any time during the first 10 s in
Figure 2.3, vx is positive. After point �, vx is negative because the slope is negative.
At the peak, the slope and the instantaneous velocity are zero.

From here on, we use the word velocity to designate instantaneous velocity.
When it is average velocity we are interested in, we always use the adjective average.

The instantaneous speed of a particle is defined as the magnitude of its
velocity. As with average speed, instantaneous speed has no direction associated
with it and hence carries no algebraic sign. For example, if one particle has a
velocity of � 25 m/s along a given line and another particle has a velocity of 
� 25 m/s along the same line, both have a speed2 of 25 m/s.

vx � lim
�t:0

 
�x
�t

�
dx
dt

Figure 2.4 Position–time graph for a particle having an x coordi-
nate that varies in time according to the expression x � �4t � 2t2.

Average and Instantaneous VelocityEXAMPLE 2.2

These displacements can also be read directly from the posi-
tion–time graph.

�8 m �

  � [�4(3) � 2(3)2] � [�4(1) � 2(1)2]

A particle moves along the x axis. Its x coordinate varies with
time according to the expression where x is in
meters and t is in seconds.3 The position–time graph for this
motion is shown in Figure 2.4. Note that the particle moves in
the negative x direction for the first second of motion, is at rest
at the moment t � 1 s, and moves in the positive x direction
for (a) Determine the displacement of the particle in
the time intervals t � 0 to t � 1 s and t � 1 s to t � 3 s.

Solution During the first time interval, we have a negative
slope and hence a negative velocity. Thus, we know that the
displacement between � and � must be a negative number
having units of meters. Similarly, we expect the displacement
between � and � to be positive.

In the first time interval, we set and
Using Equation 2.1, with we ob-

tain for the first displacement

To calculate the displacement during the second time in-
terval, we set and 

�xB:D � x f � x i � xD � xB 

tf � tD � 3 s:ti � tB � 1 s

�2 m  �

 � [�4(1) � 2(1)2] � [�4(0) � 2(0)2]

�xA:B � x f � x i � xB � xA 

x � �4t � 2t2,tf � tB � 1 s.
ti � tA � 0

t � 1 s.

x � �4t � 2t2,

2 As with velocity, we drop the adjective for instantaneous speed: “Speed” means instantaneous speed.
3 Simply to make it easier to read, we write the empirical equation as rather than as

When an equation summarizes measurements, consider its coef-
ficients to have as many significant digits as other data quoted in a problem. Consider its coefficients to
have the units required for dimensional consistency. When we start our clocks at t � 0 s, we usually do
not mean to limit the precision to a single digit. Consider any zero value in this book to have as many
significant figures as you need.

x � (�4.00 m/s)t � (2.00 m/s2)t 2.00.
x � �4t � 2t2

10

8

6

4

2

0

–2

–4
0 1 2 3 4

t(s)

x(m)

Slope = –2 m/s

Slope = 4 m/s �

�

�

�



30 C H A P T E R  2 Motion in One Dimension

(2.5)

As with velocity, when the motion being analyzed is one-dimensional, we can
use positive and negative signs to indicate the direction of the acceleration. Be-
cause the dimensions of velocity are L/T and the dimension of time is T, accelera-

a x �
�vx

�t
�

vx f � vxi

tf � ti

The average acceleration of the particle is defined as the change in velocity �vx
divided by the time interval �t during which that change occurred:

ACCELERATION
In the last example, we worked with a situation in which the velocity of a particle
changed while the particle was moving. This is an extremely common occurrence.
(How constant is your velocity as you ride a city bus?) It is easy to quantify changes
in velocity as a function of time in exactly the same way we quantify changes in po-
sition as a function of time. When the velocity of a particle changes with time, the
particle is said to be accelerating. For example, the velocity of a car increases when
you step on the gas and decreases when you apply the brakes. However, we need a
better definition of acceleration than this.

Suppose a particle moving along the x axis has a velocity vxi at time ti and a ve-
locity vxf at time tf , as in Figure 2.5a.

2.3

Figure 2.5 (a) A “particle” mov-
ing along the x axis from � to �
has velocity vxi at t � ti and velocity
vxf at t � tf . (b) Velocity– time
graph for the particle moving in a
straight line. The slope of the blue
straight line connecting � and �
is the average acceleration in the
time interval �t � tf � ti .

Average acceleration

These values agree with the slopes of the lines joining these
points in Figure 2.4.

(c) Find the instantaneous velocity of the particle at t �
2.5 s.

Solution Certainly we can guess that this instantaneous ve-
locity must be of the same order of magnitude as our previ-
ous results, that is, around 4 m/s. Examining the graph, we
see that the slope of the tangent at position � is greater than
the slope of the blue line connecting points � and �. Thus,
we expect the answer to be greater than 4 m/s. By measuring
the slope of the position–time graph at t � 2.5 s, we find that

vx � �6 m/s

(b) Calculate the average velocity during these two time
intervals.

Solution In the first time interval, 
Therefore, using Equation 2.2 and the displacement

calculated in (a), we find that

In the second time interval, therefore,

�4 m/svx(B:D) �
�xB:D

�t
�

8 m
2 s

�

�t � 2 s;

�2 m/svx(A:B) �
�xA:B

�t
�

�2 m
1 s

�

tA � 1 s.
�t � tf � ti � t B �

�

�

�

t ft i

vxi

vxf

vx a–x
 =

∆t

∆vx

∆vx
∆t

t

(b)

ti tf

(a)

x

v = vxi v = vxf

�
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tion has dimensions of length divided by time squared, or L/T2. The SI unit of ac-
celeration is meters per second squared (m/s2). It might be easier to interpret
these units if you think of them as meters per second per second. For example,
suppose an object has an acceleration of 2 m/s2. You should form a mental 
image of the object having a velocity that is along a straight line and is increasing
by 2 m/s during every 1-s interval. If the object starts from rest, you should be 
able to picture it moving at a velocity of � 2 m/s after 1 s, at � 4 m/s after 2 s, and
so on.

In some situations, the value of the average acceleration may be different over
different time intervals. It is therefore useful to define the instantaneous acceleration
as the limit of the average acceleration as �t approaches zero. This concept is anal-
ogous to the definition of instantaneous velocity discussed in the previous section.
If we imagine that point � is brought closer and closer to point � in Figure 2.5a
and take the limit of �vx/�t as �t approaches zero, we obtain the instantaneous
acceleration:

(2.6)

That is, the instantaneous acceleration equals the derivative of the velocity
with respect to time, which by definition is the slope of the velocity– time graph
(Fig. 2.5b). Thus, we see that just as the velocity of a moving particle is the slope of
the particle’s x -t graph, the acceleration of a particle is the slope of the particle’s
vx -t graph. One can interpret the derivative of the velocity with respect to time as the
time rate of change of velocity. If ax is positive, then the acceleration is in the positive
x direction; if ax is negative, then the acceleration is in the negative x direction.

From now on we shall use the term acceleration to mean instantaneous accel-
eration. When we mean average acceleration, we shall always use the adjective
average.

Because the acceleration can also be written

(2.7)

That is, in one-dimensional motion, the acceleration equals the second derivative of
x with respect to time.

Figure 2.6 illustrates how an acceleration–time graph is related to a
velocity– time graph. The acceleration at any time is the slope of the velocity– time
graph at that time. Positive values of acceleration correspond to those points in
Figure 2.6a where the velocity is increasing in the positive x direction. The acceler-

ax �
dvx

dt
�

d
dt �

dx
dt � �

d2x
dt2

vx � dx/dt,

ax � lim
�t:0

 
�vx

�t
�

dvx

dt
Instantaneous acceleration

tA
t

tB tC

(a)

t

(b)

vx
ax

tA tB

tC

Figure 2.6 Instantaneous accel-
eration can be obtained from the
vx -t graph. (a) The velocity– time
graph for some motion. (b) The
acceleration–time graph for the
same motion. The acceleration
given by the ax -t graph for any
value of t equals the slope of the
line tangent to the vx -t graph at the
same value of t.
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ation reaches a maximum at time tA , when the slope of the velocity– time graph is
a maximum. The acceleration then goes to zero at time tB , when the velocity is a
maximum (that is, when the slope of the vx -t graph is zero). The acceleration is
negative when the velocity is decreasing in the positive x direction, and it reaches
its most negative value at time tC .

Average and Instantaneous AccelerationEXAMPLE 2.4
Solution Figure 2.8 is a vx -t graph that was created from
the velocity versus time expression given in the problem state-
ment. Because the slope of the entire vx -t curve is negative,
we expect the acceleration to be negative.

The velocity of a particle moving along the x axis varies in
time according to the expression m/s, where
t is in seconds. (a) Find the average acceleration in the time
interval t � 0 to t � 2.0 s.

vx � (40 � 5t2)

Figure 2.7 (a) Position–time graph for an object moving along
the x axis. (b) The velocity– time graph for the object is obtained by
measuring the slope of the position–time graph at each instant. 
(c) The acceleration–time graph for the object is obtained by mea-
suring the slope of the velocity– time graph at each instant.

Graphical Relationships Between x, vx , and axCONCEPTUAL EXAMPLE 2.3
The position of an object moving along the x axis varies with
time as in Figure 2.7a. Graph the velocity versus time and the
acceleration versus time for the object.

Solution The velocity at any instant is the slope of the tan-
gent to the x -t graph at that instant. Between t � 0 and 
t � tA , the slope of the x -t graph increases uniformly, and so
the velocity increases linearly, as shown in Figure 2.7b. Be-
tween tA and tB , the slope of the x -t graph is constant, and so
the velocity remains constant. At tD , the slope of the x -t graph
is zero, so the velocity is zero at that instant. Between tD and
tE , the slope of the x -t graph and thus the velocity are nega-
tive and decrease uniformly in this interval. In the interval tE

to tF , the slope of the x -t graph is still negative, and at tF it
goes to zero. Finally, after tF , the slope of the x -t graph is
zero, meaning that the object is at rest for 

The acceleration at any instant is the slope of the tangent
to the vx -t graph at that instant. The graph of acceleration
versus time for this object is shown in Figure 2.7c. The accel-
eration is constant and positive between 0 and tA, where the
slope of the vx -t graph is positive. It is zero between tA and tB

and for because the slope of the vx -t graph is zero at
these times. It is negative between tB and tE because the slope
of the vx -t graph is negative during this interval.

t � tF

t � tF .

(a)

(b)

(c)

x

t Ft Et Dt Ct Bt A

t Ft Et Dt Ct B

t
t AO

t
O

t
O t Ft Et Bt A

v x

a x

Make a velocity– time graph for the car in Figure 2.1a and use your graph to determine
whether the car ever exceeds the speed limit posted on the road sign (30 km/h).

Quick Quiz 2.1
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So far we have evaluated the derivatives of a function by starting with the defi-
nition of the function and then taking the limit of a specific ratio. Those of you fa-
miliar with calculus should recognize that there are specific rules for taking deriva-
tives. These rules, which are listed in Appendix B.6, enable us to evaluate
derivatives quickly. For instance, one rule tells us that the derivative of any con-
stant is zero. As another example, suppose x is proportional to some power of t,
such as in the expression

where A and n are constants. (This is a very common functional form.) The deriva-
tive of x with respect to t is

Applying this rule to Example 2.4, in which vx � 40 � 5t 2, we find that 
dvx/dt � �10t.

ax �

dx
dt

� nAtn�1

x � Atn

�

The negative sign is consistent with our expectations—
namely, that the average acceleration, which is represented by
the slope of the line (not shown) joining the initial and final
points on the velocity– time graph, is negative.

(b) Determine the acceleration at t � 2.0 s.

Solution The velocity at any time t is 
and the velocity at any later time t � �t is

Therefore, the change in velocity over the time interval �t is

Dividing this expression by �t and taking the limit of the re-
sult as �t approaches zero gives the acceleration at any time t:

Therefore, at t � 2.0 s,

What we have done by comparing the average acceleration
during the interval between � and � with the
instantaneous value at � is compare the slope of
the line (not shown) joining � and � with the slope of the
tangent at �.

Note that the acceleration is not constant in this example.
Situations involving constant acceleration are treated in Sec-
tion 2.5.

(�20 m/s2)
(�10 m/s2)

�20 m/s2ax � (�10)(2.0) m/s2 �

ax � lim
�t:0

 
�vx

�t
� lim

�t:0
 (�10t � 5�t) � �10t  m/s2

�vx � vxf � vxi � [�10t �t � 5(�t)2] m/s

vxf � 40 � 5(t � �t)2 � 40 � 5t2 � 10t �t � 5(�t)2

5t2) m/s,
vxi � (40 �

�10 m/s2

a x �
vxf � vxi

tf � ti
�

vxB � vxA

tB � tA
�

(20 � 40) m/s

(2.0 � 0) s

We find the velocities at ti � tA � 0 and tf � tB � 2.0 s by
substituting these values of t into the expression for the ve-
locity:

Therefore, the average acceleration in the specified time in-
terval is�t � tB � tA � 2.0 s

vxB � (40 � 5tB 

2) m/s � [40 � 5(2.0) 

2] m/s � �20 m/s

vxA � (40 � 5tA 

2) m/s � [40 � 5(0) 

2] m/s � �40 m/s

Figure 2.8 The velocity– time graph for a particle moving along
the x axis according to the expression m/s. The ac-
celeration at t � 2 s is equal to the slope of the blue tangent line at
that time.

vx � (40 � 5t2)
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MOTION DIAGRAMS
The concepts of velocity and acceleration are often confused with each other, but
in fact they are quite different quantities. It is instructive to use motion diagrams
to describe the velocity and acceleration while an object is in motion. In order not
to confuse these two vector quantities, for which both magnitude and direction
are important, we use red for velocity vectors and violet for acceleration vectors, as
shown in Figure 2.9. The vectors are sketched at several instants during the mo-
tion of the object, and the time intervals between adjacent positions are assumed
to be equal. This illustration represents three sets of strobe photographs of a car
moving from left to right along a straight roadway. The time intervals between
flashes are equal in each diagram. 

In Figure 2.9a, the images of the car are equally spaced, showing us that the
car moves the same distance in each time interval. Thus, the car moves with con-
stant positive velocity and has zero acceleration.

In Figure 2.9b, the images become farther apart as time progresses. In this
case, the velocity vector increases in time because the car’s displacement between
adjacent positions increases in time. The car is moving with a positive velocity and a
positive acceleration.

In Figure 2.9c, we can tell that the car slows as it moves to the right because its
displacement between adjacent images decreases with time. In this case, the car
moves to the right with a constant negative acceleration. The velocity vector de-
creases in time and eventually reaches zero. From this diagram we see that the ac-
celeration and velocity vectors are not in the same direction. The car is moving
with a positive velocity but with a negative acceleration.

You should be able to construct motion diagrams for a car that moves initially
to the left with a constant positive or negative acceleration. 

2.4

(a)

v

(b)

a

v

(c)

v

a

Figure 2.9 (a) Motion diagram for a car moving at constant velocity (zero acceleration). 
(b) Motion diagram for a car whose constant acceleration is in the direction of its velocity. The
velocity vector at each instant is indicated by a red arrow, and the constant acceleration by a vio-
let arrow. (c) Motion diagram for a car whose constant acceleration is in the direction opposite the
velocity at each instant.
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(a) If a car is traveling eastward, can its acceleration be westward? (b) If a car is slowing
down, can its acceleration be positive?

ONE-DIMENSIONAL MOTION WITH
CONSTANT ACCELERATION

If the acceleration of a particle varies in time, its motion can be complex and diffi-
cult to analyze. However, a very common and simple type of one-dimensional mo-
tion is that in which the acceleration is constant. When this is the case, the average
acceleration over any time interval equals the instantaneous acceleration at any in-
stant within the interval, and the velocity changes at the same rate throughout the
motion.

If we replace by ax in Equation 2.5 and take and tf to be any later time
t, we find that

or

(for constant ax) (2.8)

This powerful expression enables us to determine an object’s velocity at any time 
t if we know the object’s initial velocity and its (constant) acceleration. A
velocity– time graph for this constant-acceleration motion is shown in Figure
2.10a. The graph is a straight line, the (constant) slope of which is the acceleration
ax ; this is consistent with the fact that is a constant. Note that the slope
is positive; this indicates a positive acceleration. If the acceleration were negative,
then the slope of the line in Figure 2.10a would be negative.

When the acceleration is constant, the graph of acceleration versus time (Fig.
2.10b) is a straight line having a slope of zero.

Describe the meaning of each term in Equation 2.8.

Quick Quiz 2.3

ax � dvx/dt

vx f � vxi � axt

ax �
vx f � vxi

t

ti � 0a x

2.5

Quick Quiz 2.2

Figure 2.10 An object moving along the x axis with constant acceleration ax . (a) The
velocity– time graph. (b) The acceleration–time graph. (c) The position–time graph.

(a)

vxi

0

vxf

t

vxi

axt

t

(c)

x

0
t

xi

Slope = vxi

t

Slope = vxf

(b)

0
t

Slope = 0

vx ax

ax

Slope = ax

Velocity as a function of time
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Because velocity at constant acceleration varies linearly in time according to
Equation 2.8, we can express the average velocity in any time interval as the arith-
metic mean of the initial velocity vxi and the final velocity vxf :

(for constant ax) (2.9)

Note that this expression for average velocity applies only in situations in which the
acceleration is constant.

We can now use Equations 2.1, 2.2, and 2.9 to obtain the displacement of any
object as a function of time. Recalling that �x in Equation 2.2 represents xf � xi ,
and now using t in place of �t (because we take ti � 0), we can say

(for constant ax) (2.10)

We can obtain another useful expression for displacement at constant acceler-
ation by substituting Equation 2.8 into Equation 2.10:

(2.11)

The position–time graph for motion at constant (positive) acceleration shown in
Figure 2.10c is obtained from Equation 2.11. Note that the curve is a parabola. The
slope of the tangent line to this curve at equals the initial velocity vxi , and
the slope of the tangent line at any later time t equals the velocity at that time, vxf .

We can check the validity of Equation 2.11 by moving the xi term to the right-
hand side of the equation and differentiating the equation with respect to time: 

Finally, we can obtain an expression for the final velocity that does not contain
a time interval by substituting the value of t from Equation 2.8 into Equation 2.10:

(for constant ax) (2.12)

For motion at zero acceleration, we see from Equations 2.8 and 2.11 that 

That is, when acceleration is zero, velocity is constant and displacement changes
linearly with time.

In Figure 2.11, match each vx -t graph with the ax -t graph that best describes the motion.

Equations 2.8 through 2.12 are kinematic expressions that may be used to
solve any problem involving one-dimensional motion at constant accelera-

Quick Quiz 2.4

vx f � vxi � vx
x f � x i � vxt �  when ax � 0

vx f  

2 � vxi  

2 � 2ax(x f � x i)

x f � x i �
1
2

(vxi � vxf)� vx f � vxi

ax
� �

vx f  

2 � vxi  

2

2ax
    

vx f �
dxf

dt
�

d

dt
 �x i � vxi t �

1
2

axt2� � vxi � axt

t � ti � 0

x f � x i � vxit � 1
2axt2 

x f � x i � 1
2(vxi � vxi � axt)t

xf � xi � vxt � 1
2(vxi � vx f)t

vx �
vxi � vx f

2

Figure 2.11 Parts (a), (b), and
(c) are vx -t graphs of objects in
one-dimensional motion. The pos-
sible accelerations of each object as
a function of time are shown in
scrambled order in (d), (e), and
(f).

t

vx

(a)

t

ax

(d)

t

vx

(b)
t

ax

(e)

t

vx

(c)

t

ax

(f)

Displacement as a function of
velocity and time
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tion. Keep in mind that these relationships were derived from the definitions of
velocity and acceleration, together with some simple algebraic manipulations and
the requirement that the acceleration be constant.

The four kinematic equations used most often are listed in Table 2.2 for con-
venience. The choice of which equation you use in a given situation depends on
what you know beforehand. Sometimes it is necessary to use two of these equations
to solve for two unknowns. For example, suppose initial velocity vxi and accelera-
tion ax are given. You can then find (1) the velocity after an interval t has elapsed,
using and (2) the displacement after an interval t has elapsed, us-
ing You should recognize that the quantities that vary dur-
ing the motion are velocity, displacement, and time.

You will get a great deal of practice in the use of these equations by solving a
number of exercises and problems. Many times you will discover that more than
one method can be used to obtain a solution. Remember that these equations of
kinematics cannot be used in a situation in which the acceleration varies with time.
They can be used only when the acceleration is constant.

x f � x i � vxit � 1
2axt2.

vx f � vxi � axt,

TABLE 2.2 Kinematic Equations for Motion in a Straight Line 
Under Constant Acceleration

Equation Information Given by Equation

vxf � vxi � axt Velocity as a function of time
xf � xi � (vxi � vxf)t Displacement as a function of velocity and time
xf � xi � vxit � axt 2 Displacement as a function of time
vxf

2 � vxi
2 � 2ax(xf � xi) Velocity as a function of displacement

Note: Motion is along the x axis.

1
2

1
2

The Velocity of Different ObjectsCONCEPTUAL EXAMPLE 2.5
fined as �x/�t.) There is one point at which the instanta-
neous velocity is zero—at the top of the motion.

(b) The car’s average velocity cannot be evaluated unambigu-
ously with the information given, but it must be some value
between 0 and 100 m/s. Because the car will have every in-
stantaneous velocity between 0 and 100 m/s at some time
during the interval, there must be some instant at which the
instantaneous velocity is equal to the average velocity.

(c) Because the spacecraft’s instantaneous velocity is con-
stant, its instantaneous velocity at any time and its average ve-
locity over any time interval are the same.

Consider the following one-dimensional motions: (a) A ball
thrown directly upward rises to a highest point and falls back
into the thrower’s hand. (b) A race car starts from rest and
speeds up to 100 m/s. (c) A spacecraft drifts through space at
constant velocity. Are there any points in the motion of these
objects at which the instantaneous velocity is the same as the
average velocity over the entire motion? If so, identify the
point(s).

Solution (a) The average velocity for the thrown ball is
zero because the ball returns to the starting point; thus its 
displacement is zero. (Remember that average velocity is de-

Entering the Traffic FlowEXAMPLE 2.6
of ax , but that value is hard to guess directly. The other three
variables involved in kinematics are position, velocity, and
time. Velocity is probably the easiest one to approximate. Let
us assume a final velocity of 100 km/h, so that you can merge
with traffic. We multiply this value by 1 000 to convert kilome-

(a) Estimate your average acceleration as you drive up the en-
trance ramp to an interstate highway.

Solution This problem involves more than our usual
amount of estimating! We are trying to come up with a value
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yields results that are not too different from those derived
from careful measurements.

(b) How far did you go during the first half of the time in-
terval during which you accelerated?

Solution We can calculate the distance traveled during
the first 5 s from Equation 2.11:

This result indicates that if you had not accelerated, your ini-
tial velocity of 10 m/s would have resulted in a 50-m move-
ment up the ramp during the first 5 s. The additional 25 m is
the result of your increasing velocity during that interval.

Do not be afraid to attempt making educated guesses and
doing some fairly drastic number rounding to simplify mental
calculations. Physicists engage in this type of thought analysis
all the time.

75 m� 50 m � 25 m �

x f � x i � vxit � 1
2axt2 � (10 m/s)(5 s) � 1

2(2 m/s2)(5 s)2

ters to meters and then divide by 3 600 to convert hours to
seconds. These two calculations together are roughly equiva-
lent to dividing by 3. In fact, let us just say that the final veloc-
ity is m/s. (Remember, you can get away with this
type of approximation and with dropping digits when per-
forming mental calculations. If you were starting with British
units, you could approximate 1 mi/h as roughly 
0.5 m/s and continue from there.) 

Now we assume that you started up the ramp at about one-
third your final velocity, so that m/s. Finally, we as-
sume that it takes about 10 s to get from vxi to vxf , basing this
guess on our previous experience in automobiles. We can
then find the acceleration, using Equation 2.8:

Granted, we made many approximations along the way, but
this type of mental effort can be surprisingly useful and often

2 m/s2ax �
vxf � vxi

t
�

30 m/s � 10 m/s
10 s

�

vxi � 10

vx f � 30

Carrier LandingEXAMPLE 2.7
(b) What is the displacement of the plane while it is stop-

ping?

Solution We can now use any of the other three equations
in Table 2.2 to solve for the displacement. Let us choose
Equation 2.10:

If the plane travels much farther than this, it might fall into
the ocean. Although the idea of using arresting cables to en-
able planes to land safely on ships originated at about the
time of the First World War, the cables are still a vital part of
the operation of modern aircraft carriers.

63 mx f � x i � 1
2(vxi � vx f)t � 1

2(63 m/s � 0)(2.0 s) �

A jet lands on an aircraft carrier at 140 mi/h (� 63 m/s). 
(a) What is its acceleration if it stops in 2.0 s?

Solution We define our x axis as the direction of motion
of the jet. A careful reading of the problem reveals that in ad-
dition to being given the initial speed of 63 m/s, we also
know that the final speed is zero. We also note that we are 
not given the displacement of the jet while it is slowing 
down. Equation 2.8 is the only equation in Table 2.2 that does
not involve displacement, and so we use it to find the accelera-
tion:

�31 m/s2ax �
vx f � vxi

t
�

0 � 63 m/s
2.0 s

�

Watch Out for the Speed Limit!EXAMPLE 2.8
catch up to the car. While all this is going on, the car contin-
ues to move. We should therefore expect our result to be well
over 15 s. A sketch (Fig. 2.12) helps clarify the sequence of
events.

First, we write expressions for the position of each vehicle
as a function of time. It is convenient to choose the position
of the billboard as the origin and to set as the time the
trooper begins moving. At that instant, the car has already
traveled a distance of 45.0 m because it has traveled at a con-
stant speed of vx � 45.0 m/s for 1 s. Thus, the initial position
of the speeding car is 

Because the car moves with constant speed, its accelera-
xB � 45.0 m.

tB � 0

A car traveling at a constant speed of 45.0 m/s passes a
trooper hidden behind a billboard. One second after the
speeding car passes the billboard, the trooper sets out 
from the billboard to catch it, accelerating at a constant
rate of 3.00 m/s2. How long does it take her to overtake the
car?

Solution A careful reading lets us categorize this as a con-
stant-acceleration problem. We know that after the 1-s delay
in starting, it will take the trooper 15 additional seconds to
accelerate up to 45.0 m/s. Of course, she then has to con-
tinue to pick up speed (at a rate of 3.00 m/s per second) to
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FREELY FALLING OBJECTS
It is now well known that, in the absence of air resistance, all objects dropped 
near the Earth’s surface fall toward the Earth with the same constant acceleration
under the influence of the Earth’s gravity. It was not until about 1600 that this 
conclusion was accepted. Before that time, the teachings of the great philos-
opher Aristotle (384–322 B.C.) had held that heavier objects fall faster than lighter
ones.

It was the Italian Galileo Galilei (1564 –1642) who originated our present-
day ideas concerning falling objects. There is a legend that he demonstrated the
law of falling objects by observing that two different weights dropped simultane-
ously from the Leaning Tower of Pisa hit the ground at approximately the same
time. Although there is some doubt that he carried out this particular experi-
ment, it is well established that Galileo performed many experiments on objects
moving on inclined planes. In his experiments he rolled balls down a slight in-
cline and measured the distances they covered in successive time intervals. The
purpose of the incline was to reduce the acceleration; with the acceleration re-
duced, Galileo was able to make accurate measurements of the time intervals. By
gradually increasing the slope of the incline, he was finally able to draw conclu-
sions about freely falling objects because a freely falling ball is equivalent to a
ball moving down a vertical incline. 

2.6

The trooper starts from rest at and accelerates at
3.00 m/s2 away from the origin. Hence, her position after any
time interval t can be found from Equation 2.11: 

The trooper overtakes the car at the instant her position
matches that of the car, which is position �:

This gives the quadratic equation

The positive solution of this equation is . 

(For help in solving quadratic equations, see Appendix B.2.)
Note that in this 31.0-s time interval, the trooper tra-
vels a distance of about 1440 m. [This distance can be calcu-
lated from the car’s constant speed: (45.0 m/s)(31 � 1) s �
1 440 m.]

Exercise This problem can be solved graphically. On the
same graph, plot position versus time for each vehicle, and
from the intersection of the two curves determine the time at
which the trooper overtakes the car.

31.0 st �

1.50t2 � 45.0t � 45.0 � 0

1
2(3.00 m/s2)t2 � 45.0 m � (45.0 m/s)t

 x trooper � x car 

x trooper � 0 � 0t � 1
2 axt2 � 1

2(3.00 m/s2)t2

 x f � x i � vxit � 1
2axt2 

t � 0

tion is zero, and applying Equation 2.11 (with gives
for the car’s position at any time t:

A quick check shows that at this expression gives the
car’s correct initial position when the trooper begins to
move: Looking at limiting cases to see
whether they yield expected values is a very useful way to
make sure that you are obtaining reasonable results. 

x car � xB � 45.0 m.

t � 0,

x car � xB � vx cart � 45.0 m � (45.0 m/s)t

ax � 0)

Figure 2.12 A speeding car passes a hidden police officer.

vx car = 45.0 m/s
ax car = 0
ax trooper = 3.00 m/s2

tC = ?

��

tA = �1.00 s tB = 0

�

Astronaut David Scott released a
hammer and a feather simultane-
ously, and they fell in unison to the
lunar surface. (Courtesy of NASA)



40 C H A P T E R  2 Motion in One Dimension

You might want to try the following experiment. Simultaneously drop a coin
and a crumpled-up piece of paper from the same height. If the effects of air resis-
tance are negligible, both will have the same motion and will hit the floor at the
same time. In the idealized case, in which air resistance is absent, such motion is
referred to as free fall. If this same experiment could be conducted in a vacuum, in
which air resistance is truly negligible, the paper and coin would fall with the same
acceleration even when the paper is not crumpled. On August 2, 1971, such a
demonstration was conducted on the Moon by astronaut David Scott. He simulta-
neously released a hammer and a feather, and in unison they fell to the lunar sur-
face. This demonstration surely would have pleased Galileo!

When we use the expression freely falling object, we do not necessarily refer to
an object dropped from rest. A freely falling object is any object moving
freely under the influence of gravity alone, regardless of its initial motion.
Objects thrown upward or downward and those released from rest are all
falling freely once they are released. Any freely falling object experiences
an acceleration directed downward, regardless of its initial motion.

We shall denote the magnitude of the free-fall acceleration by the symbol g. The
value of g near the Earth’s surface decreases with increasing altitude. Furthermore,
slight variations in g occur with changes in latitude. It is common to define “up” as
the � y direction and to use y as the position variable in the kinematic equations.
At the Earth’s surface, the value of g is approximately 9.80 m/s2. Unless stated 
otherwise, we shall use this value for g when performing calculations. For making
quick estimates, use 

If we neglect air resistance and assume that the free-fall acceleration does not
vary with altitude over short vertical distances, then the motion of a freely falling
object moving vertically is equivalent to motion in one dimension under constant
acceleration. Therefore, the equations developed in Section 2.5 for objects moving
with constant acceleration can be applied. The only modification that we need to
make in these equations for freely falling objects is to note that the motion is in
the vertical direction (the y direction) rather than in the horizontal (x) direction
and that the acceleration is downward and has a magnitude of 9.80 m/s2. Thus, we
always take where the minus sign means that the accelera-
tion of a freely falling object is downward. In Chapter 14 we shall study how to deal
with variations in g with altitude.

ay � �g � �9.80 m/s2,

g � 10 m/s2.

The Daring Sky DiversCONCEPTUAL EXAMPLE 2.9
�t after this instant, however, the two divers increase their
speeds by the same amount because they have the same accel-
eration. Thus, the difference in their speeds remains the
same throughout the fall. 

The first jumper always has a greater speed than the sec-
ond. Thus, in a given time interval, the first diver covers a
greater distance than the second. Thus, the separation dis-
tance between them increases.

Once the distance between the divers reaches the length
of the bungee cord, the tension in the cord begins to in-
crease. As the tension increases, the distance between the
divers becomes greater and greater.

A sky diver jumps out of a hovering helicopter. A few seconds
later, another sky diver jumps out, and they both fall along
the same vertical line. Ignore air resistance, so that both sky
divers fall with the same acceleration. Does the difference in
their speeds stay the same throughout the fall? Does the verti-
cal distance between them stay the same throughout the fall?
If the two divers were connected by a long bungee cord,
would the tension in the cord increase, lessen, or stay the
same during the fall?

Solution At any given instant, the speeds of the divers are
different because one had a head start. In any time interval

Definition of free fall

Free-fall acceleration 
m/s2g � 9.80

QuickLab
Use a pencil to poke a hole in the
bottom of a paper or polystyrene cup.
Cover the hole with your finger and
fill the cup with water. Hold the cup
up in front of you and release it. Does
water come out of the hole while the
cup is falling? Why or why not?
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Describing the Motion of a Tossed BallEXAMPLE 2.10
The ball has gone as high as it will go. After the last half of
this 1-s interval, the ball is moving at � 5 m/s. (The minus
sign tells us that the ball is now moving in the negative direc-
tion, that is, downward. Its velocity has changed from �5 m/s
to � 5 m/s during that 1-s interval. The change in velocity is
still �5 � [�5] � �10 m/s in that second.) It continues
downward, and after another 1 s has elapsed, it is falling at a
velocity of �15 m/s. Finally, after another 1 s, it has reached
its original starting point and is moving downward at 
�25 m/s. If the ball had been tossed vertically off a cliff so
that it could continue downward, its velocity would continue
to change by about �10 m/s every second.

A ball is tossed straight up at 25 m/s. Estimate its velocity at 
1-s intervals.

Solution Let us choose the upward direction to be posi-
tive. Regardless of whether the ball is moving upward or
downward, its vertical velocity changes by approximately 
�10 m/s for every second it remains in the air. It starts out at
25 m/s. After 1 s has elapsed, it is still moving upward but at
15 m/s because its acceleration is downward (downward ac-
celeration causes its velocity to decrease). After another sec-
ond, its upward velocity has dropped to 5 m/s. Now comes
the tricky part—after another half second, its velocity is zero.

Follow the Bouncing BallCONCEPTUAL EXAMPLE 2.11
changes substantially during a very short time interval, and so
the acceleration must be quite great. This corresponds to the
very steep upward lines on the velocity– time graph and to
the spikes on the acceleration–time graph.

A tennis ball is dropped from shoulder height (about 1.5 m)
and bounces three times before it is caught. Sketch graphs of
its position, velocity, and acceleration as functions of time,
with the � y direction defined as upward.

Solution For our sketch let us stretch things out horizon-
tally so that we can see what is going on. (Even if the ball
were moving horizontally, this motion would not affect its ver-
tical motion.)

From Figure 2.13 we see that the ball is in contact with the
floor at points �, �, and �. Because the velocity of the ball
changes from negative to positive three times during these
bounces, the slope of the position–time graph must change
in the same way. Note that the time interval between bounces
decreases. Why is that?

During the rest of the ball’s motion, the slope of the
velocity– time graph should be � 9.80 m/s2. The accelera-
tion–time graph is a horizontal line at these times because
the acceleration does not change when the ball is in free fall.
When the ball is in contact with the floor, the velocity

(a)

1.0

0.0

0.5

1.5
�

�

�

� � �

Figure 2.13 (a) A ball is dropped from a height of 1.5 m and
bounces from the floor. (The horizontal motion is not considered
here because it does not affect the vertical motion.) (b) Graphs of
position, velocity, and acceleration versus time.
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Not a Bad Throw for a Rookie!EXAMPLE 2.12
A stone thrown from the top of a building is given an initial
velocity of 20.0 m/s straight upward. The building is 50.0 m
high, and the stone just misses the edge of the roof on its way
down, as shown in Figure 2.14. Using as the time the
stone leaves the thrower’s hand at position �, determine 
(a) the time at which the stone reaches its maximum height,
(b) the maximum height, (c) the time at which the stone re-
turns to the height from which it was thrown, (d) the velocity
of the stone at this instant, and (e) the velocity and position
of the stone at 

Solution (a) As the stone travels from � to �, its velocity
must change by 20 m/s because it stops at �. Because gravity
causes vertical velocities to change by about 10 m/s for every
second of free fall, it should take the stone about 2 s to go
from � to � in our drawing. (In a problem like this, a sketch
definitely helps you organize your thoughts.) To calculate the
time t B at which the stone reaches maximum height, we use
Equation 2.8, noting that and setting
the start of our clock readings at 

Our estimate was pretty close.

(b) Because the average velocity for this first interval is 
10 m/s (the average of 20 m/s and 0 m/s) and because it
travels for about 2 s, we expect the stone to travel about 20 m.
By substituting our time interval into Equation 2.11, we can
find the maximum height as measured from the position of
the thrower, where we set 

Our free-fall estimates are very accurate.

(c) There is no reason to believe that the stone’s motion
from � to � is anything other than the reverse of its motion

20.4 m�

 y B � (20.0 m/s)(2.04 s) � 1
2(�9.80 m/s2)(2.04 s)2

ymax � y B � vy A t � 1
2ayt2 

y i � yA � 0:

2.04 st � tB �
20.0 m/s
9.80 m/s2 �

20.0 m/s � (�9.80 m/s2)t � 0

tA � 0:
vy B � 0vy B � vy A � ayt,

t � 5.00 s.

tA � 0

�

�

�

�

�

tD = 5.00 s
yD = –22.5 s
vyD = –29.0 m/s

tC = 4.08 s
yC = 0
vyC = –20.0 m/s

tB = 2.04 s
yB = 20.4 m
vyB = 0

50.0 m

tE = 5.83 s
yE = –50.0 m
vyE = –37.1 m/s

tA = 0
yA = 0
vyA = 20.0 m/s

�

Figure 2.14 Position and velocity versus time for a freely falling
stone thrown initially upward with a velocity m/s.vyi � 20.0

Which values represent the ball’s velocity and acceleration at points �, �, and � in Figure
2.13?

(a)
(b)
(c)
(d) vy � �9.80 m/s, ay � 0

vy � 0, ay � �9.80 m/s2
vy � 0, ay � 9.80 m/s2
vy � 0, ay � 0

Quick Quiz 2.5
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Optional Section

KINEMATIC EQUATIONS DERIVED FROM CALCULUS
This is an optional section that assumes the reader is familiar with the techniques
of integral calculus. If you have not yet studied integration in your calculus course,
you should skip this section or cover it after you become familiar with integration.

The velocity of a particle moving in a straight line can be obtained if its position
as a function of time is known. Mathematically, the velocity equals the derivative of
the position coordinate with respect to time. It is also possible to find the displace-
ment of a particle if its velocity is known as a function of time. In calculus, the proce-
dure used to perform this task is referred to either as integration or as finding the 
antiderivative. Graphically, it is equivalent to finding the area under a curve.

Suppose the vx -t graph for a particle moving along the x axis is as shown in
Figure 2.15. Let us divide the time interval into many small intervals, each of
duration �tn . From the definition of average velocity we see that the displacement
during any small interval, such as the one shaded in Figure 2.15, is given by

where is the average velocity in that interval. Therefore, the dis-
placement during this small interval is simply the area of the shaded rectangle.

vxn�xn � vxn �tn ,

tf � ti

2.7

position �. Because the elapsed time for this part of the
motion is about 3 s, we estimate that the acceleration due
to gravity will have changed the speed by about 30 m/s. 
We can calculate this from Equation 2.8, where we take

We could just as easily have made our calculation between
positions � and � by making sure we use the correct time in-
terval, 

To demonstrate the power of our kinematic equations, we
can use Equation 2.11 to find the position of the stone at

by considering the change in position between a
different pair of positions, � and �. In this case, the time is

Exercise Find (a) the velocity of the stone just before it hits
the ground at � and (b) the total time the stone is in the air.

Answer (a) � 37.1 m/s (b) 5.83 s

�22.5 m  �

  � 1
2(�9.80 m/s2)(5.00 s � 4.08 s)2

 � 0 m � (�20.0 m/s)(5.00 s � 4.08 s)

yD � yC � vy Ct � 1
2ayt2 

tD � tC :

tD � 5.00 s

 � �29.0 m/s

vy D � vyA � ayt � 20.0 m/s � (�9.80 m/s2)(5.00 s)

t � tD � tA � 5.00 s:

�29.0 m/s�

vy D � vy B � ayt � 0 m/s � (�9.80 m/s2)(5.00 s � 2.04 s)

t � tD � tB :

from � to �. Thus, the time needed for it to go from � to
� should be twice the time needed for it to go from � to �.
When the stone is back at the height from which it was
thrown (position �), the y coordinate is again zero. Using
Equation 2.11, with we obtain

This is a quadratic equation and so has two solutions for
The equation can be factored to give

One solution is corresponding to the time the stone 

starts its motion. The other solution is which is 

the solution we are after. Notice that it is double the value we
calculated for tB .

(d) Again, we expect everything at � to be the same as it
is at �, except that the velocity is now in the opposite direc-
tion. The value for t found in (c) can be inserted into Equa-
tion 2.8 to give

�

The velocity of the stone when it arrives back at its original
height is equal in magnitude to its initial velocity but oppo-
site in direction. This indicates that the motion is symmetric.

(e) For this part we consider what happens as the stone
falls from position �, where it had zero vertical velocity, to

�20.0 m/s

vy C � vy A � ayt � 20.0 m/s � (�9.80 m/s2)(4.08 s)

t � 4.08 s,

t � 0,

t(20.0 � 4.90t) � 0

t � tC .

 0 � 20.0t � 4.90t2 

yC � y A � vy A t � 1
2ayt2 

y f � yC � 0 and y i � yA � 0,
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The total displacement for the interval is the sum of the areas of all the rec-
tangles:

where the symbol � (upper case Greek sigma) signifies a sum over all terms. In
this case, the sum is taken over all the rectangles from ti to tf . Now, as the intervals
are made smaller and smaller, the number of terms in the sum increases and the
sum approaches a value equal to the area under the velocity– time graph. There-
fore, in the limit or the displacement is

(2.13)

or

Note that we have replaced the average velocity with the instantaneous velocity
vxn in the sum. As you can see from Figure 2.15, this approximation is clearly valid
in the limit of very small intervals. We conclude that if we know the vx -t graph for
motion along a straight line, we can obtain the displacement during any time in-
terval by measuring the area under the curve corresponding to that time interval.

The limit of the sum shown in Equation 2.13 is called a definite integral and
is written

(2.14)

where vx(t) denotes the velocity at any time t. If the explicit functional form of 
vx(t) is known and the limits are given, then the integral can be evaluated.

Sometimes the vx -t graph for a moving particle has a shape much simpler than
that shown in Figure 2.15. For example, suppose a particle moves at a constant ve-

lim
�tn:0

 �
n

 vxn�tn � �tf

ti
 vx(t) dt

vxn

Displacement � area under the vx -t graph

�x � lim
�tn:0

 �
n

 vxn �tn

�tn : 0,n : 	,

�x � �
n

 vxn �tn

tf � ti

Definite integral

Figure 2.15 Velocity versus time for a particle moving along the x axis. The area of the shaded
rectangle is equal to the displacement �x in the time interval �tn , while the total area under the
curve is the total displacement of the particle.

vx

t

Area = vxn ∆ tn

∆t n

t i t f

vxn
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locity vxi . In this case, the vx -t graph is a horizontal line, as shown in Figure 2.16,
and its displacement during the time interval �t is simply the area of the shaded
rectangle:

As another example, consider a particle moving with a velocity that is propor-
tional to t, as shown in Figure 2.17. Taking where ax is the constant of pro-
portionality (the acceleration), we find that the displacement of the particle dur-
ing the time interval to is equal to the area of the shaded triangle in
Figure 2.17:

Kinematic Equations

We now use the defining equations for acceleration and velocity to derive two of
our kinematic equations, Equations 2.8 and 2.11.

The defining equation for acceleration (Eq. 2.6),

may be written as or, in terms of an integral (or antiderivative), as

vx � � ax dt � C1

dvx � axdt

ax �
dvx

dt

�x � 1
2(tA)(axtA) � 1

2 a xtA 

2

t � tAt � 0

vx � axt,

�x � vxi�t  (when vx f � vxi � constant)

Figure 2.16 The velocity– time curve
for a particle moving with constant veloc-
ity vxi . The displacement of the particle
during the time interval is equal to
the area of the shaded rectangle.

tf � ti

vx = vxi = constant

t f

vxi

t

∆t

t i

vx

vxi

Figure 2.17 The velocity– time curve for a
particle moving with a velocity that is propor-
tional to the time.

t

v x = a xt

v x

a xtA

t A

�
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where C1 is a constant of integration. For the special case in which the acceleration
is constant, the ax can be removed from the integral to give

(2.15)

The value of C1 depends on the initial conditions of the motion. If we take 
when and substitute these values into the last equation, we have

Calling vx � vxf the velocity after the time interval t has passed and substituting
this and the value just found for C1 into Equation 2.15, we obtain kinematic Equa-
tion 2.8:

(for constant ax)

Now let us consider the defining equation for velocity (Eq. 2.4):

We can write this as or in integral form as

where C2 is another constant of integration. Because this ex-
pression becomes

To find C2 , we make use of the initial condition that when This gives
Therefore, after substituting xf for x, we have

(for constant ax)

Once we move xi to the left side of the equation, we have kinematic Equation 2.11.
Recall that is equal to the displacement of the object, where xi is its initial
position.

x f � x i

x f � x i � vxit � 1
2axt2

C2 � x i .
t � 0.x � x i

x � vxit � 1
2axt2 � C 2 

x � � vxi dt � ax �t dt � C2

x � � (vxi � axt)dt � C2 

vx � vx f � vxi � axt,

x � � vx dt � C2

dx � vxdt

vx �
dx
dt

vxf � vxi � axt

 C1 � vxi 

vxi � ax(0) � C1

t � 0
vx � vxi

vx � ax � dt � C1 � axt � C1
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Besides what you might expect to learn about physics concepts, a very valuable skill
you should hope to take away from your physics course is the ability to solve compli-
cated problems. The way physicists approach complex situations and break them
down into manageable pieces is extremely useful. We have developed a memory aid to
help you easily recall the steps required for successful problem solving. When working
on problems, the secret is to keep your GOAL in mind!

GOAL PROBLEM-SOLVING STEPS

Gather information
The first thing to do when approaching a problem is to understand the situation.
Carefully read the problem statement, looking for key phrases like “at rest” or
“freely falls.” What information is given? Exactly what is the question asking? Don’t
forget to gather information from your own experiences and common sense. What
should a reasonable answer look like? You wouldn’t expect to calculate the speed
of an automobile to be 5 � 106 m/s. Do you know what units to expect? Are there
any limiting cases you can consider? What happens when an angle approaches 0°
or 90° or when a mass becomes huge or goes to zero? Also make sure you carefully
study any drawings that accompany the problem.

Organize your approach
Once you have a really good idea of what the problem is about, you need to think
about what to do next. Have you seen this type of question before? Being able to
classify a problem can make it much easier to lay out a plan to solve it. You should
almost always make a quick drawing of the situation. Label important events with
circled letters. Indicate any known values, perhaps in a table or directly on your
sketch. 

Analyze the problem
Because you have already categorized the problem, it should not be too difficult to
select relevant equations that apply to this type of situation. Use algebra (and cal-
culus, if necessary) to solve for the unknown variable in terms of what is given.
Substitute in the appropriate numbers, calculate the result, and round it to the
proper number of significant figures.

Learn from your efforts
This is the most important part. Examine your numerical answer. Does it meet
your expectations from the first step? What about the algebraic form of the re-
sult—before you plugged in numbers? Does it make sense? (Try looking at the
variables in it to see whether the answer would change in a physically meaningful
way if they were drastically increased or decreased or even became zero.) Think
about how this problem compares with others you have done. How was it similar?
In what critical ways did it differ? Why was this problem assigned? You should have
learned something by doing it. Can you figure out what?

When solving complex problems, you may need to identify a series of subprob-
lems and apply the GOAL process to each. For very simple problems, you probably
don’t need GOAL at all. But when you are looking at a problem and you don’t
know what to do next, remember what the letters in GOAL stand for and use that
as a guide. 

47
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SUMMARY

After a particle moves along the x axis from some initial position xi to some final
position xf, its displacement is

(2.1)

The average velocity of a particle during some time interval is the displace-
ment �x divided by the time interval �t during which that displacement occurred:

(2.2)

The average speed of a particle is equal to the ratio of the total distance it
travels to the total time it takes to travel that distance.

The instantaneous velocity of a particle is defined as the limit of the ratio
�x/�t as �t approaches zero. By definition, this limit equals the derivative of x with
respect to t, or the time rate of change of the position:

(2.4)

The instantaneous speed of a particle is equal to the magnitude of its velocity.
The average acceleration of a particle is defined as the ratio of the change in

its velocity �vx divided by the time interval �t during which that change occurred:

(2.5)

The instantaneous acceleration is equal to the limit of the ratio �vx/�t as
�t approaches 0. By definition, this limit equals the derivative of vx with respect to
t, or the time rate of change of the velocity:

(2.6)

The equations of kinematics for a particle moving along the x axis with uni-
form acceleration ax (constant in magnitude and direction) are

(2.8)

(2.10)

(2.11)

(2.12)

You should be able to use these equations and the definitions in this chapter to an-
alyze the motion of any object moving with constant acceleration.

An object falling freely in the presence of the Earth’s gravity experiences a
free-fall acceleration directed toward the center of the Earth. If air resistance is ne-
glected, if the motion occurs near the surface of the Earth, and if the range of the
motion is small compared with the Earth’s radius, then the free-fall acceleration g
is constant over the range of motion, where g is equal to 9.80 m/s2.

Complicated problems are best approached in an organized manner. You
should be able to recall and apply the steps of the GOAL strategy when you need
them.

  vx f  

2 � vxi  

2 � 2ax(x f � x i)

 x f � x i � vxit � 1
2axt2 

x f � x i � vxt � 1
2(vxi � vx f)t

 vx f � vxi � axt 

ax � lim
�t:0

 
�vx

�t
�

dvx

dt

a x �
�vx

�t
�

vx f � vxi

tf � ti

vx � lim
�t:0

 
�x
�t

�
dx
dt

vx �
�x
�t

�x � x f � x i
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QUESTIONS

building. At what time was the plant one-fourth the
height of the building?

13. Two cars are moving in the same direction in parallel lanes
along a highway. At some instant, the velocity of car A ex-
ceeds the velocity of car B. Does this mean that the acceler-
ation of car A is greater than that of car B? Explain.

14. An apple is dropped from some height above the Earth’s
surface. Neglecting air resistance, how much does the ap-
ple’s speed increase each second during its descent?

15. Consider the following combinations of signs and values
for velocity and acceleration of a particle with respect to a
one-dimensional x axis:

1. Average velocity and instantaneous velocity are generally
different quantities. Can they ever be equal for a specific
type of motion? Explain.

2. If the average velocity is nonzero for some time interval,
does this mean that the instantaneous velocity is never
zero during this interval? Explain.

3. If the average velocity equals zero for some time interval �t
and if vx(t) is a continuous function, show that the instan-
taneous velocity must go to zero at some time in this inter-
val. (A sketch of x versus t might be useful in your proof.)

4. Is it possible to have a situation in which the velocity and
acceleration have opposite signs? If so, sketch a
velocity– time graph to prove your point.

5. If the velocity of a particle is nonzero, can its acceleration
be zero? Explain.

6. If the velocity of a particle is zero, can its acceleration be
nonzero? Explain.

7. Can an object having constant acceleration ever stop and
stay stopped?

8. A stone is thrown vertically upward from the top of a build-
ing. Does the stone’s displacement depend on the location
of the origin of the coordinate system? Does the stone’s ve-
locity depend on the origin? (Assume that the coordinate
system is stationary with respect to the building.) Explain.

9. A student at the top of a building of height h throws one
ball upward with an initial speed vyi and then throws a
second ball downward with the same initial speed. How
do the final speeds of the balls compare when they reach
the ground?

10. Can the magnitude of the instantaneous velocity of an ob-
ject ever be greater than the magnitude of its average ve-
locity? Can it ever be less?

11. If the average velocity of an object is zero in some time in-
terval, what can you say about the displacement of the ob-
ject for that interval?

12. A rapidly growing plant doubles in height each week. At
the end of the 25th day, the plant reaches the height of a

Velocity Acceleration

a. Positive Positive
b. Positive Negative
c. Positive Zero
d. Negative Positive
e. Negative Negative
f. Negative Zero
g. Zero Positive
h. Zero Negative

Figure Q2.16

Describe what the particle is doing in each case, and
give a real-life example for an automobile on an east-west
one-dimensional axis, with east considered to be the posi-
tive direction.

16. A pebble is dropped into a water well, and the splash is
heard 16 s later, as illustrated in Figure Q2.16. Estimate the
distance from the rim of the well to the water’s surface.

17. Average velocity is an entirely contrived quantity, and
other combinations of data may prove useful in other
contexts. For example, the ratio �t/�x, called the “slow-
ness” of a moving object, is used by geophysicists when
discussing the motion of continental plates. Explain what
this quantity means.
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WEB

6. A person first walks at a constant speed v1 along a
straight line from A to B and then back along the line
from B to A at a constant speed v2 . What are (a) her av-
erage speed over the entire trip and (b) her average ve-
locity over the entire trip?

Section 2.2 Instantaneous Velocity and Speed
7. At a particle moving with constant velocity is

located at and at the particle is
located at (a) From this information, plot
the position as a function of time. (b) Determine the
velocity of the particle from the slope of this graph.

8. The position of a particle moving along the x axis varies
in time according to the expression where x is
in meters and t is in seconds. Evaluate its position (a) at

and (b) at 3.00 s � �t. (c) Evaluate the limit
of �x/�t as �t approaches zero to find the velocity at

9. A position–time graph for a particle moving along the
x axis is shown in Figure P2.9. (a) Find the average 
velocity in the time interval to 
(b) Determine the instantaneous velocity at by
measuring the slope of the tangent line shown in the
graph. (c) At what value of t is the velocity zero?

t � 2.0 s
t � 4.0 s.t � 1.5 s

t � 3.00 s.

t � 3.00 s

x � 3t2,

x � 5.00 m.
t � 6.00 sx � �3.00 m,

t � 1.00 s,

Figure P2.9

Figure P2.3 Problems 3 and 11.

x (m) 0 2.3 9.2 20.7 36.8 57.5
t (s) 0 1.0 2.0 3.0 4.0 5.0

1 2 3 4 5 6 7 8
t(s)

–6

–4

–2

0

2

4

6

8

10

x(m)

10

12

6

8

2

4

0
t(s)

x(m)

1 2 3 4 5 6

2. A motorist drives north for 35.0 min at 85.0 km/h and
then stops for 15.0 min. He then continues north, trav-
eling 130 km in 2.00 h. (a) What is his total displace-
ment? (b) What is his average velocity?

3. The displacement versus time for a certain particle mov-
ing along the x axis is shown in Figure P2.3. Find the av-
erage velocity in the time intervals (a) 0 to 2 s, (b) 0 to
4 s, (c) 2 s to 4 s, (d) 4 s to 7 s, (e) 0 to 8 s.

4. A particle moves according to the equation ,
where x is in meters and t is in seconds. (a) Find the av-
erage velocity for the time interval from 2.0 s to 3.0 s.
(b) Find the average velocity for the time interval from
2.0 s to 2.1 s.

5. A person walks first at a constant speed of 5.00 m/s
along a straight line from point A to point B and then
back along the line from B to A at a constant speed of
3.00 m/s. What are (a) her average speed over the entire
trip and (b) her average velocity over the entire trip?

x � 10t2

10. (a) Use the data in Problem 1 to construct a smooth
graph of position versus time. (b) By constructing tan-
gents to the x(t) curve, find the instantaneous velocity
of the car at several instants. (c) Plot the instantaneous
velocity versus time and, from this, determine the aver-
age acceleration of the car. (d) What was the initial ve-
locity of the car?

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

Section 2.1 Displacement, Velocity, and Speed
1. The position of a pinewood derby car was observed at

various times; the results are summarized in the table
below. Find the average velocity of the car for (a) the
first second, (b) the last 3 s, and (c) the entire period 
of observation.
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11. Find the instantaneous velocity of the particle described
in Figure P2.3 at the following times: (a) t � 1.0 s, 
(b) t � 3.0 s, (c) t � 4.5 s, and (d) t � 7.5 s.

Section 2.3 Acceleration
12. A particle is moving with a velocity of 60.0 m/s in the

positive x direction at t � 0. Between t � 0 and t �
15.0 s, the velocity decreases uniformly to zero. What 
was the acceleration during this 15.0-s interval? What is
the significance of the sign of your answer?

13. A 50.0-g superball traveling at 25.0 m/s bounces off a
brick wall and rebounds at 22.0 m/s. A high-speed cam-
era records this event. If the ball is in contact with the
wall for 3.50 ms, what is the magnitude of the average
acceleration of the ball during this time interval? (Note:
1 ms � 10�3 s.)

14. A particle starts from rest and accelerates as shown in
Figure P2.14. Determine: (a) the particle’s speed at 
t � 10 s and at t � 20 s, and (b) the distance traveled in
the first 20 s.

numerical values of x and ax for all points of inflection.
(c) What is the acceleration at t � 6 s? (d) Find the po-
sition (relative to the starting point) at t � 6 s. (e) What
is the moped’s final position at t � 9 s?

17. A particle moves along the x axis according to the equa-
tion where x is in meters and t is
in seconds. At t � 3.00 s, find (a) the position of the
particle, (b) its velocity, and (c) its acceleration.

18. An object moves along the x axis according to the equa-
tion m. Determine 
(a) the average speed between t � 2.00 s and t � 3.00 s,
(b) the instantaneous speed at t � 2.00 s and at t �
3.00 s, (c) the average acceleration between t � 2.00 s
and t � 3.00 s, and (d) the instantaneous acceleration
at t � 2.00 s and t � 3.00 s.

19. Figure P2.19 shows a graph of vx versus t for the motion
of a motorcyclist as he starts from rest and moves along
the road in a straight line. (a) Find the average acceler-
ation for the time interval t � 0 to t � 6.00 s. (b) Esti-
mate the time at which the acceleration has its greatest
positive value and the value of the acceleration at that
instant. (c) When is the acceleration zero? (d) Estimate
the maximum negative value of the acceleration and
the time at which it occurs.

x � (3.00t2 � 2.00t � 3.00)

x � 2.00 � 3.00t � t2,

Figure P2.14

2.0

ax(m/s2)

0

1.0

–3.0

–2.0

5.0 10.0 15.0 20.0
t(s)

–1.0

Figure P2.15

5
t(s)

6
8

2
4

–4
–2

–8
–6

10 15 20

vx(m/s)

15. A velocity– time graph for an object moving along the x
axis is shown in Figure P2.15. (a) Plot a graph of the ac-
celeration versus time. (b) Determine the average accel-
eration of the object in the time intervals t � 5.00 s to 
t � 15.0 s and t � 0 to t � 20.0 s.

16. A student drives a moped along a straight road as de-
scribed by the velocity– time graph in Figure P2.16.
Sketch this graph in the middle of a sheet of graph pa-
per. (a) Directly above your graph, sketch a graph of
the position versus time, aligning the time coordinates
of the two graphs. (b) Sketch a graph of the accelera-
tion versus time directly below the vx -t graph, again
aligning the time coordinates. On each graph, show the

Figure P2.16
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Section 2.4 Motion Diagrams
20. Draw motion diagrams for (a) an object moving to the

right at constant speed, (b) an object moving to the
right and speeding up at a constant rate, (c) an object
moving to the right and slowing down at a constant
rate, (d) an object moving to the left and speeding up
at a constant rate, and (e) an object moving to the left
and slowing down at a constant rate. (f) How would
your drawings change if the changes in speed were not
uniform; that is, if the speed were not changing at a
constant rate?

Section 2.5 One-Dimensional Motion with 
Constant Acceleration

21. Jules Verne in 1865 proposed sending people to the
Moon by firing a space capsule from a 220-m-long can-
non with a final velocity of 10.97 km/s. What would
have been the unrealistically large acceleration experi-
enced by the space travelers during launch? Compare
your answer with the free-fall acceleration, 9.80 m/s2.

22. A certain automobile manufacturer claims that its super-
deluxe sports car will accelerate from rest to a speed of
42.0 m/s in 8.00 s. Under the (improbable) assumption
that the acceleration is constant, (a) determine the ac-
celeration of the car. (b) Find the distance the car trav-
els in the first 8.00 s. (c) What is the speed of the car
10.0 s after it begins its motion, assuming it continues to
move with the same acceleration?

23. A truck covers 40.0 m in 8.50 s while smoothly slowing
down to a final speed of 2.80 m/s. (a) Find its original
speed. (b) Find its acceleration.

24. The minimum distance required to stop a car moving at
35.0 mi/h is 40.0 ft. What is the minimum stopping dis-
tance for the same car moving at 70.0 mi/h, assuming
the same rate of acceleration?

25. A body moving with uniform acceleration has a velocity
of 12.0 cm/s in the positive x direction when its x coor-
dinate is 3.00 cm. If its x coordinate 2.00 s later is � 5.00
cm, what is the magnitude of its acceleration?

26. Figure P2.26 represents part of the performance data
of a car owned by a proud physics student. (a) Calcu-
late from the graph the total distance traveled. 
(b) What distance does the car travel between the
times t � 10 s and t � 40 s? (c) Draw a graph of its ac-

celeration versus time between t � 0 and t � 50 s. 
(d) Write an equation for x as a function of time for
each phase of the motion, represented by (i) 0a, (ii)
ab, (iii) bc. (e) What is the average velocity of the car
between t � 0 and t � 50 s?

27. A particle moves along the x axis. Its position is given by
the equation with x in meters
and t in seconds. Determine (a) its position at the in-
stant it changes direction and (b) its velocity when it re-
turns to the position it had at t � 0.

28. The initial velocity of a body is 5.20 m/s. What is its veloc-
ity after 2.50 s (a) if it accelerates uniformly at 3.00 m/s2

and (b) if it accelerates uniformly at � 3.00 m/s2?
29. A drag racer starts her car from rest and accelerates at

10.0 m/s2 for the entire distance of 400 m mi). (a) How
long did it take the race car to travel this distance? 
(b) What is the speed of the race car at the end of the run?

30. A car is approaching a hill at 30.0 m/s when its engine
suddenly fails, just at the bottom of the hill. The car
moves with a constant acceleration of � 2.00 m/s2 while
coasting up the hill. (a) Write equations for the position
along the slope and for the velocity as functions of time,
taking x � 0 at the bottom of the hill, where vi �

30.0 m/s. (b) Determine the maximum distance the car
travels up the hill. 

31. A jet plane lands with a speed of 100 m/s and can accel-
erate at a maximum rate of � 5.00 m/s2 as it comes to
rest. (a) From the instant the plane touches the runway,
what is the minimum time it needs before it can come
to rest? (b) Can this plane land at a small tropical island
airport where the runway is 0.800 km long?

32. The driver of a car slams on the brakes when he sees a
tree blocking the road. The car slows uniformly with an
acceleration of � 5.60 m/s2 for 4.20 s, making straight
skid marks 62.4 m long ending at the tree. With what
speed does the car then strike the tree?

33. Help! One of our equations is missing! We describe con-
stant-acceleration motion with the variables and para-
meters vxi , vxf , ax , t, and xf � xi . Of the equations in
Table 2.2, the first does not involve The second
does not contain ax , the third omits vxf , and the last

x f � x i .

(1
4

x � 2.00 � 3.00t � 4.00t2

Figure P2.26
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(a) What is the speed of the ball at the bottom of the
first plane? (b) How long does it take to roll down 
the first plane? (c) What is the acceleration along the
second plane? (d) What is the ball’s speed 8.00 m along
the second plane?

40. Speedy Sue, driving at 30.0 m/s, enters a one-lane tun-
nel. She then observes a slow-moving van 155 m ahead
traveling at 5.00 m/s. Sue applies her brakes but can ac-
celerate only at �2.00 m/s2 because the road is wet.
Will there be a collision? If so, determine how far into
the tunnel and at what time the collision occurs. If not,
determine the distance of closest approach between
Sue’s car and the van.

Section 2.6 Freely Falling Objects
Note: In all problems in this section, ignore the effects of air
resistance.

41. A golf ball is released from rest from the top of a very
tall building. Calculate (a) the position and (b) the ve-
locity of the ball after 1.00 s, 2.00 s, and 3.00 s.

42. Every morning at seven o’clock
There’s twenty terriers drilling on the rock.
The boss comes around and he says, “Keep still
And bear down heavy on the cast-iron drill
And drill, ye terriers, drill.” And drill, ye terriers, drill.
It’s work all day for sugar in your tea . . .
And drill, ye terriers, drill.

One day a premature blast went off
And a mile in the air went big Jim Goff. And drill . . .

Then when next payday came around
Jim Goff a dollar short was found.
When he asked what for, came this reply:
“You were docked for the time you were up in the sky.” And
drill . . .

—American folksong

What was Goff’s hourly wage? State the assumptions you
make in computing it.
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leaves out t. So to complete the set there should be an
equation not involving vxi . Derive it from the others.
Use it to solve Problem 32 in one step.

34. An indestructible bullet 2.00 cm long is fired straight
through a board that is 10.0 cm thick. The bullet strikes
the board with a speed of 420 m/s and emerges with a
speed of 280 m/s. (a) What is the average acceleration
of the bullet as it passes through the board? (b) What is
the total time that the bullet is in contact with the
board? (c) What thickness of board (calculated to 
0.1 cm) would it take to stop the bullet, assuming 
the bullet’s acceleration through all parts of the board
is the same?

35. A truck on a straight road starts from rest, accelerating
at 2.00 m/s2 until it reaches a speed of 20.0 m/s. Then
the truck travels for 20.0 s at constant speed until the
brakes are applied, stopping the truck in a uniform
manner in an additional 5.00 s. (a) How long is the
truck in motion? (b) What is the average velocity of the
truck for the motion described?

36. A train is traveling down a straight track at 20.0 m/s
when the engineer applies the brakes. This results in an
acceleration of � 1.00 m/s2 as long as the train is in mo-
tion. How far does the train move during a 40.0-s time
interval starting at the instant the brakes are applied?

37. For many years the world’s land speed record was held
by Colonel John P. Stapp, USAF (Fig. P2.37). On March
19, 1954, he rode a rocket-propelled sled that moved
down the track at 632 mi/h. He and the sled were safely
brought to rest in 1.40 s. Determine (a) the negative ac-
celeration he experienced and (b) the distance he trav-
eled during this negative acceleration.

38. An electron in a cathode-ray tube (CRT) accelerates
uniformly from 2.00 � 104 m/s to 6.00 � 106 m/s over
1.50 cm. (a) How long does the electron take to travel
this 1.50 cm? (b) What is its acceleration?

39. A ball starts from rest and accelerates at 0.500 m/s2

while moving down an inclined plane 9.00 m long.
When it reaches the bottom, the ball rolls up another
plane, where, after moving 15.0 m, it comes to rest. 

Figure P2.37 (Left) Col. John Stapp on rocket sled. (Courtesy of the U.S. Air Force)
(Right) Col. Stapp’s face is contorted by the stress of rapid negative acceleration. (Photri, Inc.)
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43. A student throws a set of keys vertically upward to her
sorority sister, who is in a window 4.00 m above. The
keys are caught 1.50 s later by the sister’s outstretched
hand. (a) With what initial velocity were the keys
thrown? (b) What was the velocity of the keys just be-
fore they were caught?

44. A ball is thrown directly downward with an initial speed
of 8.00 m/s from a height of 30.0 m. How many sec-
onds later does the ball strike the ground?

45. Emily challenges her friend David to catch a dollar bill as
follows: She holds the bill vertically, as in Figure P2.45,
with the center of the bill between David’s index finger
and thumb. David must catch the bill after Emily releases
it without moving his hand downward. If his reaction
time is 0.2 s, will he succeed? Explain your reasoning.

49. A daring ranch hand sitting on a tree limb wishes to
drop vertically onto a horse galloping under the tree.
The speed of the horse is 10.0 m/s, and the distance
from the limb to the saddle is 3.00 m. (a) What must be
the horizontal distance between the saddle and limb
when the ranch hand makes his move? (b) How long is
he in the air?

50. A ball thrown vertically upward is caught by the thrower
after 20.0 s. Find (a) the initial velocity of the ball and
(b) the maximum height it reaches.

51. A ball is thrown vertically upward from the ground with
an initial speed of 15.0 m/s. (a) How long does it take
the ball to reach its maximum altitude? (b) What is its
maximum altitude? (c) Determine the velocity and ac-
celeration of the ball at t � 2.00 s.

52. The height of a helicopter above the ground is given by
h � 3.00t3, where h is in meters and t is in seconds. Af-
ter 2.00 s, the helicopter releases a small mailbag. How
long after its release does the mailbag reach the
ground?

(Optional)
2.7 Kinematic Equations Derived from Calculus

53. Automotive engineers refer to the time rate of change
of acceleration as the “jerk.” If an object moves in one
dimension such that its jerk J is constant, (a) determine
expressions for its acceleration ax, velocity vx, and posi-
tion x, given that its initial acceleration, speed, and posi-
tion are axi , vxi , and xi , respectively. (b) Show that

54. The speed of a bullet as it travels down the barrel of a ri-
fle toward the opening is given by the expression

where v is in me-
ters per second and t is in seconds. The acceleration of
the bullet just as it leaves the barrel is zero. (a) Deter-
mine the acceleration and position of the bullet as a
function of time when the bullet is in the barrel. 
(b) Determine the length of time the bullet is acceler-
ated. (c) Find the speed at which the bullet leaves the
barrel. (d) What is the length of the barrel?

55. The acceleration of a marble in a certain fluid is pro-
portional to the speed of the marble squared and is
given (in SI units) by a � � 3.00v2 for If the mar-
ble enters this fluid with a speed of 1.50 m/s, how long
will it take before the marble’s speed is reduced to half
of its initial value?

ADDITIONAL PROBLEMS

56. A motorist is traveling at 18.0 m/s when he sees a deer
in the road 38.0 m ahead. (a) If the maximum negative
acceleration of the vehicle is � 4.50 m/s2, what is the
maximum reaction time �t of the motorist that will al-
low him to avoid hitting the deer? (b) If his reaction
time is actually 0.300 s, how fast will he be traveling
when he hits the deer?

v � 0.

v � (�5.0 � 107)t2 � (3.0 � 105)t,

ax 

2 � axi 

2 � 2J(vx � vxi).

WEB

Figure P2.45 (George Semple)

WEB

46. A ball is dropped from rest from a height h above the
ground. Another ball is thrown vertically upward from
the ground at the instant the first ball is released. Deter-
mine the speed of the second ball if the two balls are to
meet at a height h/2 above the ground.

47. A baseball is hit so that it travels straight upward after
being struck by the bat. A fan observes that it takes 
3.00 s for the ball to reach its maximum height. Find
(a) its initial velocity and (b) the maximum height it
reaches.

48. A woman is reported to have fallen 144 ft from the 17th
floor of a building, landing on a metal ventilator box,
which she crushed to a depth of 18.0 in. She suffered
only minor injuries. Calculate (a) the speed of the
woman just before she collided with the ventilator box,
(b) her average acceleration while in contact with the
box, and (c) the time it took to crush the box.
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1 cm. Compute an order-of-magnitude estimate for 
the maximum acceleration of the ball while it is in con-
tact with the pavement. State your assumptions, the
quantities you estimate, and the values you estimate for
them.

65. A teenager has a car that speeds up at 3.00 m/s2 and
slows down at � 4.50 m/s2. On a trip to the store, he ac-
celerates from rest to 12.0 m/s, drives at a constant
speed for 5.00 s, and then comes to a momentary stop
at an intersection. He then accelerates to 18.0 m/s, 
drives at a constant speed for 20.0 s, slows down for 
2.67 s, continues for 4.00 s at this speed, and then
comes to a stop. (a) How long does the trip take? 
(b) How far has he traveled? (c) What is his average
speed for the trip? (d) How long would it take to walk
to the store and back if he walks at 1.50 m/s?

66. A rock is dropped from rest into a well. (a) If the sound
of the splash is heard 2.40 s later, how far below the top
of the well is the surface of the water? The speed of
sound in air (at the ambient temperature) is 336 m/s.
(b) If the travel time for the sound is neglected, what
percentage error is introduced when the depth of the
well is calculated?

67. An inquisitive physics student and mountain climber
climbs a 50.0-m cliff that overhangs a calm pool of wa-
ter. He throws two stones vertically downward, 1.00 s
apart, and observes that they cause a single splash. The
first stone has an initial speed of 2.00 m/s. (a) How
long after release of the first stone do the two stones hit
the water? (b) What was the initial velocity of the sec-
ond stone? (c) What is the velocity of each stone at the
instant the two hit the water?

68. A car and train move together along parallel paths at
25.0 m/s, with the car adjacent to the rear of the train.
Then, because of a red light, the car undergoes a uni-
form acceleration of � 2.50 m/s2 and comes to rest. It
remains at rest for 45.0 s and then accelerates back to a
speed of 25.0 m/s at a rate of 2.50 m/s2. How far be-
hind the rear of the train is the car when it reaches the
speed of 25.0 m/s, assuming that the speed of the train
has remained 25.0 m/s?

69. Kathy Kool buys a sports car that can accelerate at the
rate of 4.90 m/s2. She decides to test the car by racing
with another speedster, Stan Speedy. Both start from
rest, but experienced Stan leaves the starting line 1.00 s
before Kathy. If Stan moves with a constant acceleration
of 3.50 m/s2 and Kathy maintains an acceleration of
4.90 m/s2, find (a) the time it takes Kathy to overtake
Stan, (b) the distance she travels before she catches up
with him, and (c) the speeds of both cars at the instant
she overtakes him.

70. To protect his food from hungry bears, a boy scout
raises his food pack with a rope that is thrown over a
tree limb at height h above his hands. He walks away
from the vertical rope with constant velocity v boy , hold-
ing the free end of the rope in his hands (Fig. P2.70).

57. Another scheme to catch the roadrunner has failed. A
safe falls from rest from the top of a 25.0-m-high cliff to-
ward Wile E. Coyote, who is standing at the base. Wile
first notices the safe after it has fallen 15.0 m. How long
does he have to get out of the way?

58. A dog’s hair has been cut and is now getting longer by
1.04 mm each day. With winter coming on, this rate of
hair growth is steadily increasing by 0.132 mm/day
every week. By how much will the dog’s hair grow dur-
ing five weeks?

59. A test rocket is fired vertically upward from a well. A cat-
apult gives it an initial velocity of 80.0 m/s at ground
level. Subsequently, its engines fire and it accelerates
upward at 4.00 m/s2 until it reaches an altitude of 
1000 m. At that point its engines fail, and the rocket
goes into free fall, with an acceleration of � 9.80 m/s2.
(a) How long is the rocket in motion above the ground?
(b) What is its maximum altitude? (c) What is its veloc-
ity just before it collides with the Earth? (Hint: Consider
the motion while the engine is operating separate from
the free-fall motion.)

60. A motorist drives along a straight road at a constant
speed of 15.0 m/s. Just as she passes a parked motorcy-
cle police officer, the officer starts to accelerate at 
2.00 m/s2 to overtake her. Assuming the officer main-
tains this acceleration, (a) determine the time it takes
the police officer to reach the motorist. Also find 
(b) the speed and (c) the total displacement of the 
officer as he overtakes the motorist.

61. In Figure 2.10a, the area under the velocity– time curve
between the vertical axis and time t (vertical dashed
line) represents the displacement. As shown, this area
consists of a rectangle and a triangle. Compute their ar-
eas and compare the sum of the two areas with the ex-
pression on the righthand side of Equation 2.11.

62. A commuter train travels between two downtown sta-
tions. Because the stations are only 1.00 km apart, the
train never reaches its maximum possible cruising
speed. The engineer minimizes the time t between the
two stations by accelerating at a rate a1 � 0.100 m/s2

for a time t1 and then by braking with acceleration 
a2 � � 0.500 m/s2 for a time t2 . Find the minimum
time of travel t and the time t1 .

63. In a 100-m race, Maggie and Judy cross the finish line in
a dead heat, both taking 10.2 s. Accelerating uniformly,
Maggie took 2.00 s and Judy 3.00 s to attain maximum
speed, which they maintained for the rest of the race.
(a) What was the acceleration of each sprinter? 
(b) What were their respective maximum speeds? 
(c) Which sprinter was ahead at the 6.00-s mark, and by
how much?

64. A hard rubber ball, released at chest height, falls to 
the pavement and bounces back to nearly the same
height. When it is in contact with the pavement, the
lower side of the ball is temporarily flattened. Suppose
the maximum depth of the dent is on the order of 
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ANSWERS TO QUICK QUIZZES

2.1 Your graph should look something like the one in (a).
This vx-t graph shows that the maximum speed is 
about 5.0 m/s, which is 18 km/h (� 11 mi/h), and 
so the driver was not speeding. Can you derive the accel-
eration–time graph from the velocity– time graph? It
should look something like the one in (b).

2.2 (a) Yes. This occurs when the car is slowing down, so that
the direction of its acceleration is opposite the direction
of its motion. (b) Yes. If the motion is in the direction

(a) Show that the speed v of the food pack is
v boy , where x is the distance he has

walked away from the vertical rope. (b) Show that the
acceleration a of the food pack is 
(c) What values do the acceleration and velocity have
shortly after he leaves the point under the pack 
(x � 0)? (d) What values do the pack’s velocity and ac-
celeration approach as the distance x continues to in-
crease?

71. In Problem 70, let the height h equal 6.00 m and the
speed v boy equal 2.00 m/s. Assume that the food pack
starts from rest. (a) Tabulate and graph the speed–time
graph. (b) Tabulate and graph the acceleration–time
graph. (Let the range of time be from 0 to 5.00 s and
the time intervals be 0.500 s.)

72. Astronauts on a distant planet toss a rock into the air.
With the aid of a camera that takes pictures at a steady
rate, they record the height of the rock as a function of
time as given in Table P2.72. (a) Find the average veloc-
ity of the rock in the time interval between each mea-
surement and the next. (b) Using these average veloci-

h2(x2 � h2)�3/2 vboy 

2.

x(x2 � h2)�1/2

ties to approximate instantaneous velocities at the mid-
points of the time intervals, make a graph of velocity as
a function of time. Does the rock move with constant
acceleration? If so, plot a straight line of best fit on the
graph and calculate its slope to find the acceleration.

73. Two objects, A and B, are connected by a rigid rod that
has a length L. The objects slide along perpendicular
guide rails, as shown in Figure P2.73. If A slides to the
left with a constant speed v, find the speed of B when 

 � 60.0°.

Figure P2.73

α

L

y

x

v

A

B

xO

y

chosen as negative, a positive acceleration causes a de-
crease in speed.

2.3 The left side represents the final velocity of an object.
The first term on the right side is the velocity that the ob-
ject had initially when we started watching it. The second
term is the change in that initial velocity that is caused by
the acceleration. If this second term is positive, then the
initial velocity has increased If this term is neg-
ative, then the initial velocity has decreased (vxf � vx i).

(vxf � vx i).

TABLE P2.72 Height of a Rock versus Time

Time (s) Height (m) Time (s) Height (m)

0.00 5.00 2.75 7.62
0.25 5.75 3.00 7.25
0.50 6.40 3.25 6.77
0.75 6.94 3.50 6.20
1.00 7.38 3.75 5.52
1.25 7.72 4.00 4.73
1.50 7.96 4.25 3.85
1.75 8.10 4.50 2.86
2.00 8.13 4.75 1.77
2.25 8.07 5.00 0.58
2.50 7.90
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h

m

�

vboy

av

Figure P2.70
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2.4 Graph (a) has a constant slope, indicating a constant ac-
celeration; this is represented by graph (e).

Graph (b) represents a speed that is increasing con-
stantly but not at a uniform rate. Thus, the acceleration must
be increasing, and the graph that best indicates this is (d).

Graph (c) depicts a velocity that first increases at a
constant rate, indicating constant acceleration. Then the
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velocity stops increasing and becomes constant, indicat-
ing zero acceleration. The best match to this situation is
graph (f).

2.5 (c). As can be seen from Figure 2.13b, the ball is at rest for
an infinitesimally short time at these three points.
Nonetheless, gravity continues to act even though the ball
is instantaneously not moving.

(a) (b)


