

In a moment the arresting cable will be pulled taut, and the $140-\mathrm{mi} / \mathrm{h}$ landing of this F/A-18 Hornet on the aircraft carrier USS Nimitz will be brought to a sudden conclusion. The pilot cuts power to the engine, and the plane is stopped in less than 2 s . If the cable had not been successfully engaged, the pilot would have had to take off quickly before reaching the end of the flight deck. Can the motion of the plane be described quantitatively in a way that is useful to ship and aircraft designers and to pilots learning to land on a "postage stamp?" (Courtesy of the USS Nimitz/U.S. Navy)

Motion in One Dimension

ChapterOutline

2.1 Displacement, Velocity, and Speed

2.2 Instantaneous Velocity and Speed
2.3 Acceleration
2.4 Motion Diagrams
2.5 One-Dimensional Motion with
Constant Acceleration

2.6 Freely Falling Objects

2.7 (Optional) Kinematic Equations Derived from Calculus
GOAL Problem-Solving Steps

A very easy mistake to make is not to recognize the difference between displacement and distance traveled (Fig. 2.2). A baseball player hitting a home run travels a distance of 360 ft in the trip around the bases. However, the player's displacement is zero because his final and initial positions are identical.

Displacement is an example of a vector quantity. Many other physical quantities, including velocity and acceleration, also are vectors. In general, a vector is a physical quantity that requires the specification of both direction and magnitude. By contrast, a scalar is a quantity that has magnitude and no direction. In this chapter, we use plus and minus signs to indicate vector direction. We can do this because the chapter deals with one-dimensional motion only; this means that any object we study can be moving only along a straight line. For example, for horizontal motion, let us arbitrarily specify to the right as being the positive direction. It follows that any object always moving to the right undergoes a

Figure 2.1 (a) A car moves back and forth along a straight line taken to be the x axis. Because we are interested only in the car's translational motion, we can treat it as a particle. (b) Position-time graph for the motion of the "particle."

Figure 2.2 Bird's-eye view of a baseball diamond. A batter who hits a home run travels 360 ft as he rounds the bases, but his displacement for the round trip is zero. (Mark C. Burnett/Photo Researchers, Inc.)

positive displacement $+\Delta x$, and any object moving to the left undergoes a negative displacement $-\Delta x$. We shall treat vectors in greater detail in Chapter 3.

There is one very important point that has not yet been mentioned. Note that the graph in Figure 2.1b does not consist of just six data points but is actually a smooth curve. The graph contains information about the entire 50-s interval during which we watched the car move. It is much easier to see changes in position from the graph than from a verbal description or even a table of numbers. For example, it is clear that the car was covering more ground during the middle of the 50 -s interval than at the end. Between positions (C) and (D), the car traveled almost 40 m , but during the last 10 s , between positions (\subseteq) and \oplus, it moved less than half that far. A common way of comparing these different motions is to divide the displacement Δx that occurs between two clock readings by the length of that particular time interval Δt. This turns out to be a very useful ratio, one that we shall use many times. For convenience, the ratio has been given a special name-average velocity. The average velocity $\overline{\boldsymbol{v}}_{x}$ of a particle is defined as the particle's displacement Δx divided by the time interval Δt during which that displacement occurred:

[^0]\[

$$
\begin{equation*}
\bar{v}_{x} \equiv \frac{\Delta x}{\Delta t} \tag{2.2}
\end{equation*}
$$

\]

where the subscript x indicates motion along the x axis. From this definition we see that average velocity has dimensions of length divided by time $(\mathrm{L} / \mathrm{T})$-meters per second in SI units.

Although the distance traveled for any motion is always positive, the average velocity of a particle moving in one dimension can be positive or negative, depending on the sign of the displacement. (The time interval Δt is always positive.) If the coordinate of the particle increases in time (that is, if $x_{f}>x_{i}$), then Δx is positive and $\bar{v}_{x}=\Delta x / \Delta t$ is positive. This case corresponds to motion in the positive x direction. If the coordinate decreases in time (that is, if $x_{f}<x_{i}$), then Δx is negative and hence \bar{v}_{x} is negative. This case corresponds to motion in the negative x direction.

We can interpret average velocity geometrically by drawing a straight line between any two points on the position-time graph in Figure 2.1b. This line forms the hypotenuse of a right triangle of height Δx and base Δt. The slope of this line is the ratio $\Delta x / \Delta t$. For example, the line between positions (A) and (B) has a slope equal to the average velocity of the car between those two times, $(52 \mathrm{~m}-30 \mathrm{~m}) /$ $(10 \mathrm{~s}-0)=2.2 \mathrm{~m} / \mathrm{s}$.

In everyday usage, the terms speed and velocity are interchangeable. In physics, however, there is a clear distinction between these two quantities. Consider a marathon runner who runs more than 40 km , yet ends up at his starting point. His average velocity is zero! Nonetheless, we need to be able to quantify how fast he was running. A slightly different ratio accomplishes this for us. The average speed of a particle, a scalar quantity, is defined as the total distance traveled divided by the total time it takes to travel that distance:

$$
\text { Average speed }=\frac{\text { total distance }}{\text { total time }}
$$

Average speed

The SI unit of average speed is the same as the unit of average velocity: meters per second. However, unlike average velocity, average speed has no direction and hence carries no algebraic sign.

Knowledge of the average speed of a particle tells us nothing about the details of the trip. For example, suppose it takes you 8.0 h to travel 280 km in your car. The average speed for your trip is $35 \mathrm{~km} / \mathrm{h}$. However, you most likely traveled at various speeds during the trip, and the average speed of $35 \mathrm{~km} / \mathrm{h}$ could result from an infinite number of possible speed values.

EXAMPLE 2.1 Calculating the Variables of Motion

Find the displacement, average velocity, and average speed of the car in Figure 2.1a between positions (A) and ©.

Solution The units of displacement must be meters, and the numerical result should be of the same order of magnitude as the given position data (which means probably not 10 or 100 times bigger or smaller). From the position-time graph given in Figure 2.1b, note that $x_{\mathrm{A}}=30 \mathrm{~m}$ at $t_{\mathrm{A}}=0 \mathrm{~s}$ and that $x_{\mathrm{F}}=-53 \mathrm{~m}$ at $t_{\mathrm{F}}=50 \mathrm{~s}$. Using these values along with the definition of displacement, Equation 2.1, we find that

$$
\Delta x=x_{\mathrm{F}}-x_{\mathrm{A}}=-53 \mathrm{~m}-30 \mathrm{~m}=-83 \mathrm{~m}
$$

This result means that the car ends up 83 m in the negative direction (to the left, in this case) from where it started. This number has the correct units and is of the same order of
magnitude as the supplied data. A quick look at Figure 2.1a indicates that this is the correct answer.

It is difficult to estimate the average velocity without completing the calculation, but we expect the units to be meters per second. Because the car ends up to the left of where we started taking data, we know the average velocity must be negative. From Equation 2.2,

$$
\begin{aligned}
\bar{v}_{x} & =\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}=\frac{x_{\mathrm{F}}-x_{\mathrm{A}}}{t_{\mathrm{F}}-t_{\mathrm{A}}} \\
& =\frac{-53 \mathrm{~m}-30 \mathrm{~m}}{50 \mathrm{~s}-0 \mathrm{~s}}=\frac{-83 \mathrm{~m}}{50 \mathrm{~s}}=-1.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

We find the car's average speed for this trip by adding the distances traveled and dividing by the total time:

$$
\text { Average speed }=\frac{22 \mathrm{~m}+52 \mathrm{~m}+53 \mathrm{~m}}{50 \mathrm{~s}}=2.5 \mathrm{~m} / \mathrm{s}
$$

2.2 INSTANTANEOUS VELOCITY AND SPE\&D

Often we need to know the velocity of a particle at a particular instant in time, rather than over a finite time interval. For example, even though you might want to calculate your average velocity during a long automobile trip, you would be especially interested in knowing your velocity at the instant you noticed the police

Figure 2.3 (a) Graph representing the motion of the car in Figure 2.1. (b) An enlargement of the upper left-hand corner of the graph shows how the blue line between positions ${ }^{(A)}$ and (B) approaches the green tangent line as point (B) gets closer to point (A).
car parked alongside the road in front of you. In other words, you would like to be able to specify your velocity just as precisely as you can specify your position by noting what is happening at a specific clock reading-that is, at some specific instant. It may not be immediately obvious how to do this. What does it mean to talk about how fast something is moving if we "freeze time" and talk only about an individual instant? This is a subtle point not thoroughly understood until the late 1600s. At that time, with the invention of calculus, scientists began to understand how to describe an object's motion at any moment in time.

To see how this is done, consider Figure 2.3a. We have already discussed the average velocity for the interval during which the car moved from position (A) to position (B) (given by the slope of the dark blue line) and for the interval during which it moved from (\mathbb{A}) to \Subset (represented by the slope of the light blue line). Which of these two lines do you think is a closer approximation of the initial velocity of the car? The car starts out by moving to the right, which we defined to be the positive direction. Therefore, being positive, the value of the average velocity during the (A) to (B) interval is probably closer to the initial value than is the value of the average velocity during the (A) to \circledast interval, which we determined to be negative in Example 2.1. Now imagine that we start with the dark blue line and slide point (B) to the left along the curve, toward point ${ }^{(A)}$, as in Figure 2.3b. The line between the points becomes steeper and steeper, and as the two points get extremely close together, the line becomes a tangent line to the curve, indicated by the green line on the graph. The slope of this tangent line represents the velocity of the car at the moment we started taking data, at point ${ }^{(A)}$. What we have done is determine the instantaneous velocity at that moment. In other words, the instantaneous velocity v_{x} equals the limiting value of the ratio $\Delta x / \Delta t$ as Δt approaches zero: ${ }^{1}$

[^1]In calculus notation, this limit is called the derivative of x with respect to t, written $d x / d t$:

$$
\begin{equation*}
v_{x} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t} \tag{2.4}
\end{equation*}
$$

The instantaneous velocity can be positive, negative, or zero. When the slope of the position-time graph is positive, such as at any time during the first 10 s in Figure 2.3, v_{x} is positive. After point $(B) v_{x}$ is negative because the slope is negative. At the peak, the slope and the instantaneous velocity are zero.

From here on, we use the word velocity to designate instantaneous velocity. When it is average velocity we are interested in, we always use the adjective average.

The instantaneous speed of a particle is defined as the magnitude of its velocity. As with average speed, instantaneous speed has no direction associated with it and hence carries no algebraic sign. For example, if one particle has a velocity of $+25 \mathrm{~m} / \mathrm{s}$ along a given line and another particle has a velocity of $-25 \mathrm{~m} / \mathrm{s}$ along the same line, both have a speed ${ }^{2}$ of $25 \mathrm{~m} / \mathrm{s}$.

EXAMPLE 2.2 Average and Instantaneous Velocity

A particle moves along the x axis. Its x coordinate varies with time according to the expression $x=-4 t+2 t^{2}$, where x is in meters and t is in seconds. ${ }^{3}$ The position-time graph for this motion is shown in Figure 2.4. Note that the particle moves in the negative x direction for the first second of motion, is at rest at the moment $t=1 \mathrm{~s}$, and moves in the positive x direction for $t>1 \mathrm{~s}$. (a) Determine the displacement of the particle in the time intervals $t=0$ to $t=1 \mathrm{~s}$ and $t=1 \mathrm{~s}$ to $t=3 \mathrm{~s}$.

Solution During the first time interval, we have a negative slope and hence a negative velocity. Thus, we know that the displacement between (A) and (B) must be a negative number having units of meters. Similarly, we expect the displacement between (B) and (D) to be positive.

In the first time interval, we set $t_{i}=t_{\mathrm{A}}=0$ and $t_{f}=t_{\mathrm{B}}=1 \mathrm{~s}$. Using Equation 2.1, with $x=-4 t+2 t^{2}$, we obtain for the first displacement

$$
\begin{aligned}
\Delta x_{\mathrm{A} \rightarrow \mathrm{~B}} & =x_{f}-x_{i}=x_{\mathrm{B}}-x_{\mathrm{A}} \\
& =\left[-4(1)+2(1)^{2}\right]-\left[-4(0)+2(0)^{2}\right] \\
& =-2 \mathrm{~m}
\end{aligned}
$$

To calculate the displacement during the second time interval, we set $t_{i}=t_{\mathrm{B}}=1 \mathrm{~s}$ and $t_{f}=t_{\mathrm{D}}=3 \mathrm{~s}$:

$$
\Delta x_{\mathrm{B} \rightarrow \mathrm{D}}=x_{f}-x_{i}=x_{\mathrm{D}}-x_{\mathrm{B}}
$$

Figure 2.4 Position-time graph for a particle having an x coordinate that varies in time according to the expression $x=-4 t+2 t^{2}$.

$$
\begin{aligned}
& =\left[-4(3)+2(3)^{2}\right]-\left[-4(1)+2(1)^{2}\right] \\
& =+8 \mathrm{~m}
\end{aligned}
$$

These displacements can also be read directly from the posi-tion-time graph.

[^2](b) Calculate the average velocity during these two time intervals.

Solution In the first time interval, $\Delta t=t_{f}-t_{i}=t_{\mathrm{B}}-$ $t_{\mathrm{A}}=1 \mathrm{~s}$. Therefore, using Equation 2.2 and the displacement calculated in (a), we find that

$$
\bar{v}_{x(\mathrm{~A} \rightarrow \mathrm{~B})}=\frac{\Delta x_{\mathrm{A} \rightarrow \mathrm{~B}}}{\Delta t}=\frac{-2 \mathrm{~m}}{1 \mathrm{~s}}=-2 \mathrm{~m} / \mathrm{s}
$$

In the second time interval, $\Delta t=2 \mathrm{~s}$; therefore,

$$
\bar{v}_{x(\mathrm{~B} \rightarrow \mathrm{D})}=\frac{\Delta x_{\mathrm{B} \rightarrow \mathrm{D}}}{\Delta t}=\frac{8 \mathrm{~m}}{2 \mathrm{~s}}=+4 \mathrm{~m} / \mathrm{s}
$$

These values agree with the slopes of the lines joining these points in Figure 2.4.
(c) Find the instantaneous velocity of the particle at $t=$ 2.5 s .

Solution Certainly we can guess that this instantaneous velocity must be of the same order of magnitude as our previous results, that is, around $4 \mathrm{~m} / \mathrm{s}$. Examining the graph, we see that the slope of the tangent at position © is greater than the slope of the blue line connecting points (B) and (D). Thus, we expect the answer to be greater than $4 \mathrm{~m} / \mathrm{s}$. By measuring the slope of the position-time graph at $t=2.5 \mathrm{~s}$, we find that

$$
v_{x}=+6 \mathrm{~m} / \mathrm{s}
$$

Average acceleration

Figure 2.5 (a) A "particle" moving along the x axis from (A) to (B) has velocity $v_{x i}$ at $t=t_{i}$ and velocity $v_{x f}$ at $t=t_{f}$. (b) Velocity-time graph for the particle moving in a straight line. The slope of the blue straight line connecting (A) and (B) is the average acceleration in the time interval $\Delta t=t_{f}-t_{i}$.

2.3 ACCELERATION

In the last example, we worked with a situation in which the velocity of a particle changed while the particle was moving. This is an extremely common occurrence. (How constant is your velocity as you ride a city bus?) It is easy to quantify changes in velocity as a function of time in exactly the same way we quantify changes in position as a function of time. When the velocity of a particle changes with time, the particle is said to be accelerating. For example, the velocity of a car increases when you step on the gas and decreases when you apply the brakes. However, we need a better definition of acceleration than this.

Suppose a particle moving along the x axis has a velocity $v_{x i}$ at time t_{i} and a velocity $v_{x f}$ at time t_{f}, as in Figure 2.5a.

The average acceleration of the particle is defined as the change in velocity Δv_{x} divided by the time interval Δt during which that change occurred:

$$
\begin{equation*}
\bar{a}_{x} \equiv \frac{\Delta v_{x}}{\Delta t}=\frac{v_{x f}-v_{x i}}{t_{f}-t_{i}} \tag{2.5}
\end{equation*}
$$

As with velocity, when the motion being analyzed is one-dimensional, we can use positive and negative signs to indicate the direction of the acceleration. Because the dimensions of velocity are L / T and the dimension of time is T , accelera-

tion has dimensions of length divided by time squared, or $\mathrm{L} / \mathrm{T}^{2}$. The SI unit of acceleration is meters per second squared $\left(\mathrm{m} / \mathrm{s}^{2}\right)$. It might be easier to interpret these units if you think of them as meters per second per second. For example, suppose an object has an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$. You should form a mental image of the object having a velocity that is along a straight line and is increasing by $2 \mathrm{~m} / \mathrm{s}$ during every 1-s interval. If the object starts from rest, you should be able to picture it moving at a velocity of $+2 \mathrm{~m} / \mathrm{s}$ after 1 s , at $+4 \mathrm{~m} / \mathrm{s}$ after 2 s , and so on.

In some situations, the value of the average acceleration may be different over different time intervals. It is therefore useful to define the instantaneous acceleration as the limit of the average acceleration as Δt approaches zero. This concept is analogous to the definition of instantaneous velocity discussed in the previous section. If we imagine that point (B) is brought closer and closer to point ${ }^{(A)}$ in Figure 2.5a and take the limit of $\Delta v_{x} / \Delta t$ as Δt approaches zero, we obtain the instantaneous acceleration:

$$
\begin{equation*}
a_{x} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta v_{x}}{\Delta t}=\frac{d v_{x}}{d t} \tag{2.6}
\end{equation*}
$$

That is, the instantaneous acceleration equals the derivative of the velocity with respect to time, which by definition is the slope of the velocity-time graph (Fig. 2.5b). Thus, we see that just as the velocity of a moving particle is the slope of the particle's $x-t$ graph, the acceleration of a particle is the slope of the particle's $v_{x}-t$ graph. One can interpret the derivative of the velocity with respect to time as the time rate of change of velocity. If a_{x} is positive, then the acceleration is in the positive x direction; if a_{x} is negative, then the acceleration is in the negative x direction.

From now on we shall use the term acceleration to mean instantaneous acceleration. When we mean average acceleration, we shall always use the adjective average.

Because $v_{x}=d x / d t$, the acceleration can also be written

$$
\begin{equation*}
a_{x}=\frac{d v_{x}}{d t}=\frac{d}{d t}\left(\frac{d x}{d t}\right)=\frac{d^{2} x}{d t^{2}} \tag{2.7}
\end{equation*}
$$

That is, in one-dimensional motion, the acceleration equals the second derivative of x with respect to time.

Figure 2.6 illustrates how an acceleration-time graph is related to a velocity-time graph. The acceleration at any time is the slope of the velocity-time graph at that time. Positive values of acceleration correspond to those points in Figure 2.6a where the velocity is increasing in the positive x direction. The acceler-

Figure 2.6 Instantaneous acceleration can be obtained from the $v_{x}-t$ graph. (a) The velocity-time graph for some motion. (b) The acceleration-time graph for the same motion. The acceleration given by the $a_{x}-t$ graph for any value of t equals the slope of the line tangent to the $v_{x}-t$ graph at the same value of t.
ation reaches a maximum at time t_{A}, when the slope of the velocity-time graph is a maximum. The acceleration then goes to zero at time t_{B}, when the velocity is a maximum (that is, when the slope of the $v_{x}-t$ graph is zero). The acceleration is negative when the velocity is decreasing in the positive x direction, and it reaches its most negative value at time t_{C}.

CONCEPTUAL EXAMPLE 2.3 Graphical Relationships Between x, v_{x}, and a_{x}

The position of an object moving along the x axis varies with time as in Figure 2.7a. Graph the velocity versus time and the acceleration versus time for the object.

Solution The velocity at any instant is the slope of the tangent to the $x-t$ graph at that instant. Between $t=0$ and $t=t_{\mathrm{A}}$, the slope of the $x-t$ graph increases uniformly, and so the velocity increases linearly, as shown in Figure 2.7b. Between t_{A} and t_{B}, the slope of the $x-t$ graph is constant, and so the velocity remains constant. At t_{D}, the slope of the $x-t$ graph is zero, so the velocity is zero at that instant. Between t_{D} and t_{E}, the slope of the $x-t$ graph and thus the velocity are negative and decrease uniformly in this interval. In the interval t_{E} to t_{F}, the slope of the $x-t$ graph is still negative, and at t_{F} it goes to zero. Finally, after t_{F}, the slope of the $x-t$ graph is zero, meaning that the object is at rest for $t>t_{\mathrm{F}}$.

The acceleration at any instant is the slope of the tangent to the $v_{x}-t$ graph at that instant. The graph of acceleration versus time for this object is shown in Figure 2.7c. The acceleration is constant and positive between 0 and t_{A}, where the slope of the $v_{x}-t$ graph is positive. It is zero between t_{A} and t_{B} and for $t>t_{\mathrm{F}}$ because the slope of the $v_{x}-t$ graph is zero at these times. It is negative between t_{B} and t_{E} because the slope of the $v_{x}-t$ graph is negative during this interval.

Figure 2.7 (a) Position-time graph for an object moving along the x axis. (b) The velocity-time graph for the object is obtained by measuring the slope of the position-time graph at each instant.
(c) The acceleration-time graph for the object is obtained by measuring the slope of the velocity-time graph at each instant.

(a)
(b)

Ouick Outz 2.1

Make a velocity-time graph for the car in Figure 2.1a and use your graph to determine whether the car ever exceeds the speed limit posted on the road sign $(30 \mathrm{~km} / \mathrm{h})$.

EXAMPLE 2.4 Average and Instantaneous Acceleration

The velocity of a particle moving along the x axis varies in time according to the expression $v_{x}=\left(40-5 t^{2}\right) \mathrm{m} / \mathrm{s}$, where t is in seconds. (a) Find the average acceleration in the time interval $t=0$ to $t=2.0 \mathrm{~s}$.

Solution Figure 2.8 is a $v_{x}-t$ graph that was created from the velocity versus time expression given in the problem statement. Because the slope of the entire $v_{x}-t$ curve is negative, we expect the acceleration to be negative.

Figure 2.8 The velocity-time graph for a particle moving along the x axis according to the expression $v_{x}=\left(40-5 t^{2}\right) \mathrm{m} / \mathrm{s}$. The acceleration at $t=2 \mathrm{~s}$ is equal to the slope of the blue tangent line at that time.

We find the velocities at $t_{i}=t_{\mathrm{A}}=0$ and $t_{f}=t_{\mathrm{B}}=2.0 \mathrm{~s}$ by substituting these values of t into the expression for the velocity:

$$
\begin{aligned}
& v_{x \mathrm{~A}}=\left(40-5 t_{\mathrm{A}}{ }^{2}\right) \mathrm{m} / \mathrm{s}=\left[40-5(0)^{2}\right] \mathrm{m} / \mathrm{s}=+40 \mathrm{~m} / \mathrm{s} \\
& v_{x \mathrm{~B}}=\left(40-5 t_{\mathrm{B}}{ }^{2}\right) \mathrm{m} / \mathrm{s}=\left[40-5(2.0)^{2}\right] \mathrm{m} / \mathrm{s}=+20 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Therefore, the average acceleration in the specified time interval $\Delta t=t_{\mathrm{B}}-t_{\mathrm{A}}=2.0 \mathrm{~s}$ is

$$
\begin{aligned}
\bar{a}_{x} & =\frac{v_{x f}-v_{x i}}{t_{f}-t_{i}}=\frac{v_{x \mathrm{~B}}-v_{x \mathrm{~A}}}{t_{\mathrm{B}}-t_{\mathrm{A}}}=\frac{(20-40) \mathrm{m} / \mathrm{s}}{(2.0-0) \mathrm{s}} \\
& =-10 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

The negative sign is consistent with our expectationsnamely, that the average acceleration, which is represented by the slope of the line (not shown) joining the initial and final points on the velocity-time graph, is negative.
(b) Determine the acceleration at $t=2.0 \mathrm{~s}$.

Solution The velocity at any time t is $v_{x i}=(40-$ $\left.5 t^{2}\right) \mathrm{m} / \mathrm{s}$, and the velocity at any later time $t+\Delta t$ is

$$
v_{x f}=40-5(t+\Delta t)^{2}=40-5 t^{2}-10 t \Delta t-5(\Delta t)^{2}
$$

Therefore, the change in velocity over the time interval Δt is

$$
\Delta v_{x}=v_{x f}-v_{x i}=\left[-10 t \Delta t-5(\Delta t)^{2}\right] \mathrm{m} / \mathrm{s}
$$

Dividing this expression by Δt and taking the limit of the result as Δt approaches zero gives the acceleration at any time t :

$$
a_{x}=\lim _{\Delta t \rightarrow 0} \frac{\Delta v_{x}}{\Delta t}=\lim _{\Delta t \rightarrow 0}(-10 t-5 \Delta t)=-10 t \mathrm{~m} / \mathrm{s}^{2}
$$

Therefore, at $t=2.0 \mathrm{~s}$,

$$
a_{x}=(-10)(2.0) \mathrm{m} / \mathrm{s}^{2}=-20 \mathrm{~m} / \mathrm{s}^{2}
$$

What we have done by comparing the average acceleration during the interval between (A) and (B) $\left(-10 \mathrm{~m} / \mathrm{s}^{2}\right)$ with the instantaneous value at (B) $\left(-20 \mathrm{~m} / \mathrm{s}^{2}\right)$ is compare the slope of the line (not shown) joining ${ }^{(A)}$ and ${ }^{(B)}$ with the slope of the tangent at (B).

Note that the acceleration is not constant in this example. Situations involving constant acceleration are treated in Section 2.5.

So far we have evaluated the derivatives of a function by starting with the definition of the function and then taking the limit of a specific ratio. Those of you familiar with calculus should recognize that there are specific rules for taking derivatives. These rules, which are listed in Appendix B.6, enable us to evaluate derivatives quickly. For instance, one rule tells us that the derivative of any constant is zero. As another example, suppose x is proportional to some power of t, such as in the expression

$$
x=A t^{n}
$$

where A and n are constants. (This is a very common functional form.) The derivative of x with respect to t is

$$
\frac{d x}{d t}=n A t^{n-1}
$$

Applying this rule to Example 2.4, in which $v_{x}=40-5 t^{2}$, we find that $a_{x}=$ $d v_{x} / d t=-10 t$.

2.4 MOTION DIAGRAMS

The concepts of velocity and acceleration are often confused with each other, but in fact they are quite different quantities. It is instructive to use motion diagrams to describe the velocity and acceleration while an object is in motion. In order not to confuse these two vector quantities, for which both magnitude and direction are important, we use red for velocity vectors and violet for acceleration vectors, as shown in Figure 2.9. The vectors are sketched at several instants during the motion of the object, and the time intervals between adjacent positions are assumed to be equal. This illustration represents three sets of strobe photographs of a car moving from left to right along a straight roadway. The time intervals between flashes are equal in each diagram.

In Figure 2.9a, the images of the car are equally spaced, showing us that the car moves the same distance in each time interval. Thus, the car moves with constant positive velocity and has zero acceleration.

In Figure 2.9b, the images become farther apart as time progresses. In this case, the velocity vector increases in time because the car's displacement between adjacent positions increases in time. The car is moving with a positive velocity and a positive acceleration.

In Figure 2.9c, we can tell that the car slows as it moves to the right because its displacement between adjacent images decreases with time. In this case, the car moves to the right with a constant negative acceleration. The velocity vector decreases in time and eventually reaches zero. From this diagram we see that the acceleration and velocity vectors are not in the same direction. The car is moving with a positive velocity but with a negative acceleration.

You should be able to construct motion diagrams for a car that moves initially to the left with a constant positive or negative acceleration.

Figure 2.9 (a) Motion diagram for a car moving at constant velocity (zero acceleration). (b) Motion diagram for a car whose constant acceleration is in the direction of its velocity. The velocity vector at each instant is indicated by a red arrow, and the constant acceleration by a violet arrow. (c) Motion diagram for a car whose constant acceleration is in the direction opposite the velocity at each instant.

Quick Quiz 2.2

(a) If a car is traveling eastward, can its acceleration be westward? (b) If a car is slowing down, can its acceleration be positive?

2.5 ONE-DIMENSIONAL MOTION WITH CONSTANT ACCELERATION

If the acceleration of a particle varies in time, its motion can be complex and difficult to analyze. However, a very common and simple type of one-dimensional motion is that in which the acceleration is constant. When this is the case, the average acceleration over any time interval equals the instantaneous acceleration at any instant within the interval, and the velocity changes at the same rate throughout the motion.

If we replace \bar{a}_{x} by a_{x} in Equation 2.5 and take $t_{i}=0$ and t_{f} to be any later time t, we find that

$$
a_{x}=\frac{v_{x f}-v_{x i}}{t}
$$

or

$$
\begin{equation*}
v_{x f}=v_{x i}+a_{x} t \quad\left(\text { for constant } a_{x}\right) \tag{2.8}
\end{equation*}
$$

Velocity as a function of time
This powerful expression enables us to determine an object's velocity at any time t if we know the object's initial velocity and its (constant) acceleration. A velocity-time graph for this constant-acceleration motion is shown in Figure 2.10a. The graph is a straight line, the (constant) slope of which is the acceleration a_{x}; this is consistent with the fact that $a_{x}=d v_{x} / d t$ is a constant. Note that the slope is positive; this indicates a positive acceleration. If the acceleration were negative, then the slope of the line in Figure 2.10a would be negative.

When the acceleration is constant, the graph of acceleration versus time (Fig. 2.10 b) is a straight line having a slope of zero.

Quick Puiz 2.3

Describe the meaning of each term in Equation 2.8.

Figure 2.10 An object moving along the x axis with constant acceleration a_{x}. (a) The velocity-time graph. (b) The acceleration-time graph. (c) The position-time graph.

Displacement as a function of
velocity and time

Figure 2.11 Parts (a), (b), and (c) are $v_{x}-t$ graphs of objects in one-dimensional motion. The possible accelerations of each object as a function of time are shown in scrambled order in (d), (e), and (f).

Because velocity at constant acceleration varies linearly in time according to Equation 2.8, we can express the average velocity in any time interval as the arithmetic mean of the initial velocity $v_{x i}$ and the final velocity $v_{x f}$:

$$
\begin{equation*}
\bar{v}_{x}=\frac{v_{x i}+v_{x f}}{2} \quad\left(\text { for constant } a_{x}\right) \tag{2.9}
\end{equation*}
$$

Note that this expression for average velocity applies only in situations in which the acceleration is constant.

We can now use Equations 2.1, 2.2, and 2.9 to obtain the displacement of any object as a function of time. Recalling that Δx in Equation 2.2 represents $x_{f}-x_{i}$, and now using t in place of Δt (because we take $t_{i}=0$), we can say

$$
\begin{equation*}
x_{f}-x_{i}=\bar{v}_{x} t=\frac{1}{2}\left(v_{x i}+v_{x f}\right) t \quad\left(\text { for constant } a_{x}\right) \tag{2.10}
\end{equation*}
$$

We can obtain another useful expression for displacement at constant acceleration by substituting Equation 2.8 into Equation 2.10:

$$
\begin{align*}
x_{f}-x_{i} & =\frac{1}{2}\left(v_{x i}+v_{x i}+a_{x} t\right) t \\
x_{f}-x_{i} & =v_{x i} t+\frac{1}{2} a_{x} t^{2} \tag{2.11}
\end{align*}
$$

The position-time graph for motion at constant (positive) acceleration shown in Figure 2.10c is obtained from Equation 2.11. Note that the curve is a parabola. The slope of the tangent line to this curve at $t=t_{i}=0$ equals the initial velocity $v_{x i}$, and the slope of the tangent line at any later time t equals the velocity at that time, $v_{x f}$.

We can check the validity of Equation 2.11 by moving the x_{i} term to the righthand side of the equation and differentiating the equation with respect to time:

$$
v_{x f}=\frac{d x_{f}}{d t}=\frac{d}{d t}\left(x_{i}+v_{x i} t+\frac{1}{2} a_{x} t^{2}\right)=v_{x i}+a_{x} t
$$

Finally, we can obtain an expression for the final velocity that does not contain a time interval by substituting the value of t from Equation 2.8 into Equation 2.10:

$$
\begin{align*}
x_{f}-x_{i} & =\frac{1}{2}\left(v_{x i}+v_{x f}\right)\left(\frac{v_{x f}-v_{x i}}{a_{x}}\right)=\frac{v_{x f}^{2}-v_{x i}^{2}}{2 a_{x}} \\
v_{x f}^{2} & =v_{x i}^{2}+2 a_{x}\left(x_{f}-x_{i}\right) \quad\left(\text { for constant } a_{x}\right) \tag{2.12}
\end{align*}
$$

For motion at zero acceleration, we see from Equations 2.8 and 2.11 that

$$
\left.\begin{array}{c}
v_{x f}=v_{x i}=v_{x} \\
x_{f}-x_{i}=v_{x} t
\end{array}\right\} \quad \text { when } a_{x}=0
$$

That is, when acceleration is zero, velocity is constant and displacement changes linearly with time.

Ouick Ouiz 2.4

In Figure 2.11, match each $v_{x}-t$ graph with the $a_{x}-t$ graph that best describes the motion.

Equations 2.8 through 2.12 are kinematic expressions that may be used to solve any problem involving one-dimensional motion at constant accelera-

TABLE 2.2 Kinematic Equations for Motion in a Straight Line Under Constant Acceleration

Equation Information Given by Equation

$$
\begin{array}{ll}
v_{x f}=v_{x i}+a_{x} t & \text { Velocity as a function of time } \\
x_{f}-x_{i}=\frac{1}{2}\left(v_{x i}+v_{x f}\right) t & \text { Displacement as a function of velocity and time } \\
x_{f}-x_{i}=v_{x x} t+\frac{1}{2} a_{x} t^{2} & \text { Displacement as a function of time } \\
v_{x f}^{2}=v_{x i}^{2}+2 a_{x}\left(x_{f}-x_{i}\right) & \text { Velocity as a function of displacement }
\end{array}
$$

Note: Motion is along the x axis.
tion. Keep in mind that these relationships were derived from the definitions of velocity and acceleration, together with some simple algebraic manipulations and the requirement that the acceleration be constant.

The four kinematic equations used most often are listed in Table 2.2 for convenience. The choice of which equation you use in a given situation depends on what you know beforehand. Sometimes it is necessary to use two of these equations to solve for two unknowns. For example, suppose initial velocity $v_{x i}$ and acceleration a_{x} are given. You can then find (1) the velocity after an interval t has elapsed, using $v_{x f}=v_{x i}+a_{x} t$, and (2) the displacement after an interval t has elapsed, using $x_{f}-x_{i}=v_{x i} t+\frac{1}{2} a_{x} t^{2}$. You should recognize that the quantities that vary during the motion are velocity, displacement, and time.

You will get a great deal of practice in the use of these equations by solving a number of exercises and problems. Many times you will discover that more than one method can be used to obtain a solution. Remember that these equations of kinematics cannot be used in a situation in which the acceleration varies with time. They can be used only when the acceleration is constant.

CONCEPTUAL EXAMPLE 2.5 The Velocity of Different Objects

Consider the following one-dimensional motions: (a) A ball thrown directly upward rises to a highest point and falls back into the thrower's hand. (b) A race car starts from rest and speeds up to $100 \mathrm{~m} / \mathrm{s}$. (c) A spacecraft drifts through space at constant velocity. Are there any points in the motion of these objects at which the instantaneous velocity is the same as the average velocity over the entire motion? If so, identify the point(s).

Solution (a) The average velocity for the thrown ball is zero because the ball returns to the starting point; thus its displacement is zero. (Remember that average velocity is de-
fined as $\Delta x / \Delta t$.) There is one point at which the instantaneous velocity is zero - at the top of the motion.
(b) The car's average velocity cannot be evaluated unambiguously with the information given, but it must be some value between 0 and $100 \mathrm{~m} / \mathrm{s}$. Because the car will have every instantaneous velocity between 0 and $100 \mathrm{~m} / \mathrm{s}$ at some time during the interval, there must be some instant at which the instantaneous velocity is equal to the average velocity.
(c) Because the spacecraft's instantaneous velocity is constant, its instantaneous velocity at any time and its average velocity over any time interval are the same.

EXAMPLE 2.6 Entering the Traffic Flow

(a) Estimate your average acceleration as you drive up the entrance ramp to an interstate highway.

Solution This problem involves more than our usual amount of estimating! We are trying to come up with a value
of a_{x}, but that value is hard to guess directly. The other three variables involved in kinematics are position, velocity, and time. Velocity is probably the easiest one to approximate. Let us assume a final velocity of $100 \mathrm{~km} / \mathrm{h}$, so that you can merge with traffic. We multiply this value by 1000 to convert kilome-
ters to meters and then divide by 3600 to convert hours to seconds. These two calculations together are roughly equivalent to dividing by 3 . In fact, let us just say that the final velocity is $v_{x f} \approx 30 \mathrm{~m} / \mathrm{s}$. (Remember, you can get away with this type of approximation and with dropping digits when performing mental calculations. If you were starting with British units, you could approximate $1 \mathrm{mi} / \mathrm{h}$ as roughly $0.5 \mathrm{~m} / \mathrm{s}$ and continue from there.)

Now we assume that you started up the ramp at about onethird your final velocity, so that $v_{x i} \approx 10 \mathrm{~m} / \mathrm{s}$. Finally, we assume that it takes about 10 s to get from $v_{x i}$ to $v_{x f}$, basing this guess on our previous experience in automobiles. We can then find the acceleration, using Equation 2.8:

$$
a_{x}=\frac{v_{x f}-v_{x i}}{t} \approx \frac{30 \mathrm{~m} / \mathrm{s}-10 \mathrm{~m} / \mathrm{s}}{10 \mathrm{~s}}=2 \mathrm{~m} / \mathrm{s}^{2}
$$

Granted, we made many approximations along the way, but this type of mental effort can be surprisingly useful and often
yields results that are not too different from those derived from careful measurements.
(b) How far did you go during the first half of the time interval during which you accelerated?

Solution We can calculate the distance traveled during the first 5 s from Equation 2.11:

$$
\begin{aligned}
x_{f}-x_{i} & =v_{x i} t+\frac{1}{2} a_{x} t^{2} \approx(10 \mathrm{~m} / \mathrm{s})(5 \mathrm{~s})+\frac{1}{2}\left(2 \mathrm{~m} / \mathrm{s}^{2}\right)(5 \mathrm{~s})^{2} \\
& =50 \mathrm{~m}+25 \mathrm{~m}=75 \mathrm{~m}
\end{aligned}
$$

This result indicates that if you had not accelerated, your initial velocity of $10 \mathrm{~m} / \mathrm{s}$ would have resulted in a $50-\mathrm{m}$ movement up the ramp during the first 5 s . The additional 25 m is the result of your increasing velocity during that interval.

Do not be afraid to attempt making educated guesses and doing some fairly drastic number rounding to simplify mental calculations. Physicists engage in this type of thought analysis all the time.

EXAMPLE 2.7 Carrier Landing

A jet lands on an aircraft carrier at $140 \mathrm{mi} / \mathrm{h}(\approx 63 \mathrm{~m} / \mathrm{s})$. (a) What is its acceleration if it stops in 2.0 s?

Solution We define our x axis as the direction of motion of the jet. A careful reading of the problem reveals that in addition to being given the initial speed of $63 \mathrm{~m} / \mathrm{s}$, we also know that the final speed is zero. We also note that we are not given the displacement of the jet while it is slowing down. Equation 2.8 is the only equation in Table 2.2 that does not involve displacement, and so we use it to find the acceleration:

$$
a_{x}=\frac{v_{x f}-v_{x i}}{t} \approx \frac{0-63 \mathrm{~m} / \mathrm{s}}{2.0 \mathrm{~s}}=-31 \mathrm{~m} / \mathrm{s}^{2}
$$

(b) What is the displacement of the plane while it is stopping?

Solution We can now use any of the other three equations in Table 2.2 to solve for the displacement. Let us choose Equation 2.10:

$$
x_{f}-x_{i}=\frac{1}{2}\left(v_{x i}+v_{x f}\right) t=\frac{1}{2}(63 \mathrm{~m} / \mathrm{s}+0)(2.0 \mathrm{~s})=63 \mathrm{~m}
$$

If the plane travels much farther than this, it might fall into the ocean. Although the idea of using arresting cables to enable planes to land safely on ships originated at about the time of the First World War, the cables are still a vital part of the operation of modern aircraft carriers.

EXAMPLE 2.8 Watch Out for the Speed Limit!

A car traveling at a constant speed of $45.0 \mathrm{~m} / \mathrm{s}$ passes a trooper hidden behind a billboard. One second after the speeding car passes the billboard, the trooper sets out from the billboard to catch it, accelerating at a constant rate of $3.00 \mathrm{~m} / \mathrm{s}^{2}$. How long does it take her to overtake the car?

Solution A careful reading lets us categorize this as a con-stant-acceleration problem. We know that after the 1-s delay in starting, it will take the trooper 15 additional seconds to accelerate up to $45.0 \mathrm{~m} / \mathrm{s}$. Of course, she then has to continue to pick up speed (at a rate of $3.00 \mathrm{~m} / \mathrm{s}$ per second) to
catch up to the car. While all this is going on, the car continues to move. We should therefore expect our result to be well over 15 s. A sketch (Fig. 2.12) helps clarify the sequence of events.

First, we write expressions for the position of each vehicle as a function of time. It is convenient to choose the position of the billboard as the origin and to set $t_{\mathrm{B}} \equiv 0$ as the time the trooper begins moving. At that instant, the car has already traveled a distance of 45.0 m because it has traveled at a constant speed of $v_{x}=45.0 \mathrm{~m} / \mathrm{s}$ for 1 s . Thus, the initial position of the speeding car is $x_{\mathrm{B}}=45.0 \mathrm{~m}$.

Because the car moves with constant speed, its accelera-

Figure 2.12 A speeding car passes a hidden police officer.
tion is zero, and applying Equation 2.11 (with $a_{x}=0$) gives for the car's position at any time t :

$$
x_{\mathrm{car}}=x_{\mathrm{B}}+v_{x \text { car }} t=45.0 \mathrm{~m}+(45.0 \mathrm{~m} / \mathrm{s}) t
$$

A quick check shows that at $t=0$, this expression gives the car's correct initial position when the trooper begins to move: $x_{\text {car }}=x_{\mathrm{B}}=45.0 \mathrm{~m}$. Looking at limiting cases to see whether they yield expected values is a very useful way to make sure that you are obtaining reasonable results.

The trooper starts from rest at $t=0$ and accelerates at $3.00 \mathrm{~m} / \mathrm{s}^{2}$ away from the origin. Hence, her position after any time interval t can be found from Equation 2.11:

$$
\begin{aligned}
x_{f} & =x_{i}+v_{x i} t+\frac{1}{2} a_{x} t^{2} \\
x_{\text {trooper }} & =0+0 t+\frac{1}{2} a_{x} t^{2}=\frac{1}{2}\left(3.00 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}
\end{aligned}
$$

The trooper overtakes the car at the instant her position matches that of the car, which is position (C):

$$
\begin{aligned}
x_{\text {trooper }} & =x_{\text {car }} \\
\frac{1}{2}\left(3.00 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2} & =45.0 \mathrm{~m}+(45.0 \mathrm{~m} / \mathrm{s}) t
\end{aligned}
$$

This gives the quadratic equation

$$
1.50 t^{2}-45.0 t-45.0=0
$$

The positive solution of this equation is $t=31.0 \mathrm{~s}$.
(For help in solving quadratic equations, see Appendix B.2.) Note that in this 31.0 -s time interval, the trooper travels a distance of about 1440 m . [This distance can be calculated from the car's constant speed: $(45.0 \mathrm{~m} / \mathrm{s})(31+1) \mathrm{s}=$ 1440 m.$]$

Exercise This problem can be solved graphically. On the same graph, plot position versus time for each vehicle, and from the intersection of the two curves determine the time at which the trooper overtakes the car.

2.6 FRE\&LY FALLING OBJECTS

It is now well known that, in the absence of air resistance, all objects dropped near the Earth's surface fall toward the Earth with the same constant acceleration under the influence of the Earth's gravity. It was not until about 1600 that this conclusion was accepted. Before that time, the teachings of the great philosopher Aristotle (384-322 B.C.) had held that heavier objects fall faster than lighter ones.

It was the Italian Galileo Galilei (1564-1642) who originated our presentday ideas concerning falling objects. There is a legend that he demonstrated the law of falling objects by observing that two different weights dropped simultaneously from the Leaning Tower of Pisa hit the ground at approximately the same time. Although there is some doubt that he carried out this particular experiment, it is well established that Galileo performed many experiments on objects moving on inclined planes. In his experiments he rolled balls down a slight incline and measured the distances they covered in successive time intervals. The purpose of the incline was to reduce the acceleration; with the acceleration reduced, Galileo was able to make accurate measurements of the time intervals. By gradually increasing the slope of the incline, he was finally able to draw conclusions about freely falling objects because a freely falling ball is equivalent to a ball moving down a vertical incline.

Astronaut David Scott released a hammer and a feather simultaneously, and they fell in unison to the lunar surface. (Courtesy of NASA)

QuickLab

Use a pencil to poke a hole in the bottom of a paper or polystyrene cup. Cover the hole with your finger and fill the cup with water. Hold the cup up in front of you and release it. Does water come out of the hole while the cup is falling? Why or why not?

Definition of free fall

Free-fall acceleration
$g=9.80 \mathrm{~m} / \mathrm{s}^{2}$

You might want to try the following experiment. Simultaneously drop a coin and a crumpled-up piece of paper from the same height. If the effects of air resistance are negligible, both will have the same motion and will hit the floor at the same time. In the idealized case, in which air resistance is absent, such motion is referred to as free fall. If this same experiment could be conducted in a vacuum, in which air resistance is truly negligible, the paper and coin would fall with the same acceleration even when the paper is not crumpled. On August 2, 1971, such a demonstration was conducted on the Moon by astronaut David Scott. He simultaneously released a hammer and a feather, and in unison they fell to the lunar surface. This demonstration surely would have pleased Galileo!

When we use the expression freely falling object, we do not necessarily refer to an object dropped from rest. A freely falling object is any object moving freely under the influence of gravity alone, regardless of its initial motion. Objects thrown upward or downward and those released from rest are all falling freely once they are released. Any freely falling object experiences an acceleration directed downward, regardless of its initial motion.

We shall denote the magnitude of the free-fall acceleration by the symbol g. The value of g near the Earth's surface decreases with increasing altitude. Furthermore, slight variations in g occur with changes in latitude. It is common to define "up" as the $+y$ direction and to use y as the position variable in the kinematic equations. At the Earth's surface, the value of g is approximately $9.80 \mathrm{~m} / \mathrm{s}^{2}$. Unless stated otherwise, we shall use this value for g when performing calculations. For making quick estimates, use $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

If we neglect air resistance and assume that the free-fall acceleration does not vary with altitude over short vertical distances, then the motion of a freely falling object moving vertically is equivalent to motion in one dimension under constant acceleration. Therefore, the equations developed in Section 2.5 for objects moving with constant acceleration can be applied. The only modification that we need to make in these equations for freely falling objects is to note that the motion is in the vertical direction (the y direction) rather than in the horizontal (x) direction and that the acceleration is downward and has a magnitude of $9.80 \mathrm{~m} / \mathrm{s}^{2}$. Thus, we always take $a_{y}=-g=-9.80 \mathrm{~m} / \mathrm{s}^{2}$, where the minus sign means that the acceleration of a freely falling object is downward. In Chapter 14 we shall study how to deal with variations in g with altitude.

Conceptual Example 2.9 The Daring Sky Divers

A sky diver jumps out of a hovering helicopter. A few seconds later, another sky diver jumps out, and they both fall along the same vertical line. Ignore air resistance, so that both sky divers fall with the same acceleration. Does the difference in their speeds stay the same throughout the fall? Does the vertical distance between them stay the same throughout the fall? If the two divers were connected by a long bungee cord, would the tension in the cord increase, lessen, or stay the same during the fall?

Solution At any given instant, the speeds of the divers are different because one had a head start. In any time interval
Δt after this instant, however, the two divers increase their speeds by the same amount because they have the same acceleration. Thus, the difference in their speeds remains the same throughout the fall.

The first jumper always has a greater speed than the second. Thus, in a given time interval, the first diver covers a greater distance than the second. Thus, the separation distance between them increases.

Once the distance between the divers reaches the length of the bungee cord, the tension in the cord begins to increase. As the tension increases, the distance between the divers becomes greater and greater.

EXAMPLE 2.10 Describing the Motion of a Tossed Ball

A ball is tossed straight up at $25 \mathrm{~m} / \mathrm{s}$. Estimate its velocity at 1 -s intervals.

Solution Let us choose the upward direction to be positive. Regardless of whether the ball is moving upward or downward, its vertical velocity changes by approximately $-10 \mathrm{~m} / \mathrm{s}$ for every second it remains in the air. It starts out at $25 \mathrm{~m} / \mathrm{s}$. After 1 s has elapsed, it is still moving upward but at $15 \mathrm{~m} / \mathrm{s}$ because its acceleration is downward (downward acceleration causes its velocity to decrease). After another second, its upward velocity has dropped to $5 \mathrm{~m} / \mathrm{s}$. Now comes the tricky part—after another half second, its velocity is zero.

The ball has gone as high as it will go. After the last half of this 1 -s interval, the ball is moving at $-5 \mathrm{~m} / \mathrm{s}$. (The minus sign tells us that the ball is now moving in the negative direction, that is, downward. Its velocity has changed from $+5 \mathrm{~m} / \mathrm{s}$ to $-5 \mathrm{~m} / \mathrm{s}$ during that $1-\mathrm{s}$ interval. The change in velocity is still $-5-[+5]=-10 \mathrm{~m} / \mathrm{s}$ in that second.) It continues downward, and after another 1 s has elapsed, it is falling at a velocity of $-15 \mathrm{~m} / \mathrm{s}$. Finally, after another 1 s , it has reached its original starting point and is moving downward at $-25 \mathrm{~m} / \mathrm{s}$. If the ball had been tossed vertically off a cliff so that it could continue downward, its velocity would continue to change by about $-10 \mathrm{~m} / \mathrm{s}$ every second.

Conceptual Example 2.11 Follow the Bouncing Ball

A tennis ball is dropped from shoulder height (about 1.5 m) and bounces three times before it is caught. Sketch graphs of its position, velocity, and acceleration as functions of time, with the $+y$ direction defined as upward.

Solution For our sketch let us stretch things out horizontally so that we can see what is going on. (Even if the ball were moving horizontally, this motion would not affect its vertical motion.)

From Figure 2.13 we see that the ball is in contact with the floor at points © $(\mathbb{D}$, and \Subset. Because the velocity of the ball changes from negative to positive three times during these bounces, the slope of the position-time graph must change in the same way. Note that the time interval between bounces decreases. Why is that?

During the rest of the ball's motion, the slope of the velocity-time graph should be $-9.80 \mathrm{~m} / \mathrm{s}^{2}$. The accelera-tion-time graph is a horizontal line at these times because the acceleration does not change when the ball is in free fall. When the ball is in contact with the floor, the velocity

(a)

Figure 2.13 (a) A ball is dropped from a height of 1.5 m and bounces from the floor. (The horizontal motion is not considered here because it does not affect the vertical motion.) (b) Graphs of position, velocity, and acceleration versus time.
changes substantially during a very short time interval, and so the acceleration must be quite great. This corresponds to the very steep upward lines on the velocity-time graph and to the spikes on the acceleration-time graph.

(b)

Quick Quiz 2.5

Which values represent the ball's velocity and acceleration at points (A), © , and (E) in Figure 2.13?
(a) $v_{y}=0, a_{y}=0$
(b) $v_{y}=0, a_{y}=9.80 \mathrm{~m} / \mathrm{s}^{2}$
(c) $v_{y}=0, a_{y}=-9.80 \mathrm{~m} / \mathrm{s}^{2}$
(d) $v_{y}=-9.80 \mathrm{~m} / \mathrm{s}, a_{y}=0$

EXAMPLE 2.12 Not a Bad Throw for a Rookie!

A stone thrown from the top of a building is given an initial velocity of $20.0 \mathrm{~m} / \mathrm{s}$ straight upward. The building is 50.0 m high, and the stone just misses the edge of the roof on its way down, as shown in Figure 2.14. Using $t_{\mathrm{A}}=0$ as the time the stone leaves the thrower's hand at position (A), determine (a) the time at which the stone reaches its maximum height, (b) the maximum height, (c) the time at which the stone returns to the height from which it was thrown, (d) the velocity of the stone at this instant, and (e) the velocity and position of the stone at $t=5.00 \mathrm{~s}$.

Solution (a) As the stone travels from (A) to © ${ }^{(B)}$, its velocity must change by $20 \mathrm{~m} / \mathrm{s}$ because it stops at (B). Because gravity causes vertical velocities to change by about $10 \mathrm{~m} / \mathrm{s}$ for every second of free fall, it should take the stone about 2 s to go from (A) to (B) in our drawing. (In a problem like this, a sketch definitely helps you organize your thoughts.) To calculate the time t_{B} at which the stone reaches maximum height, we use Equation 2.8, $v_{y \mathrm{~B}}=v_{y \mathrm{~A}}+a_{y} t$, noting that $v_{y \mathrm{~B}}=0$ and setting the start of our clock readings at $t_{\mathrm{A}} \equiv 0$:

$$
\begin{aligned}
& 20.0 \mathrm{~m} / \mathrm{s}+\left(-9.80 \mathrm{~m} / \mathrm{s}^{2}\right) t=0 \\
& t=t_{\mathrm{B}}=\frac{20.0 \mathrm{~m} / \mathrm{s}}{9.80 \mathrm{~m} / \mathrm{s}^{2}}=2.04 \mathrm{~s}
\end{aligned}
$$

Our estimate was pretty close.
(b) Because the average velocity for this first interval is $10 \mathrm{~m} / \mathrm{s}$ (the average of $20 \mathrm{~m} / \mathrm{s}$ and $0 \mathrm{~m} / \mathrm{s}$) and because it travels for about 2 s , we expect the stone to travel about 20 m . By substituting our time interval into Equation 2.11, we can find the maximum height as measured from the position of the thrower, where we set $y_{i}=y_{\mathrm{A}}=0$:

$$
\begin{aligned}
y_{\max } & =y_{\mathrm{B}}=v_{y \mathrm{~A}} t+\frac{1}{2} a_{y} t^{2} \\
y_{\mathrm{B}} & =(20.0 \mathrm{~m} / \mathrm{s})(2.04 \mathrm{~s})+\frac{1}{2}\left(-9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(2.04 \mathrm{~s})^{2} \\
& =20.4 \mathrm{~m}
\end{aligned}
$$

Our free-fall estimates are very accurate.
(c) There is no reason to believe that the stone's motion from (B) to © is anything other than the reverse of its motion

Figure 2.14 Position and velocity versus time for a freely falling stone thrown initially upward with a velocity $v_{y i}=20.0 \mathrm{~m} / \mathrm{s}$.
from (A) to (B). Thus, the time needed for it to go from (A) to (C) should be twice the time needed for it to go from (A) to (B). When the stone is back at the height from which it was thrown (position (C), the y coordinate is again zero. Using Equation 2.11, with $y_{f}=y_{\mathrm{C}}=0$ and $y_{i}=y_{\mathrm{A}}=0$, we obtain

$$
\begin{aligned}
y_{\mathrm{C}}-y_{\mathrm{A}} & =v_{y \mathrm{~A}} t+\frac{1}{2} a_{y} t^{2} \\
0 & =20.0 t-4.90 t^{2}
\end{aligned}
$$

This is a quadratic equation and so has two solutions for $t=t_{\mathrm{C}}$. The equation can be factored to give

$$
t(20.0-4.90 t)=0
$$

One solution is $t=0$, corresponding to the time the stone starts its motion. The other solution is $t=4.08 \mathrm{~s}$, which is the solution we are after. Notice that it is double the value we calculated for t_{B}.
(d) Again, we expect everything at © to be the same as it is at ${ }^{(}$, except that the velocity is now in the opposite direction. The value for t found in (c) can be inserted into Equation 2.8 to give

$$
\begin{aligned}
v_{y \mathrm{C}} & =v_{y \mathrm{~A}}+a_{y} t=20.0 \mathrm{~m} / \mathrm{s}+\left(-9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(4.08 \mathrm{~s}) \\
& =-20.0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The velocity of the stone when it arrives back at its original height is equal in magnitude to its initial velocity but opposite in direction. This indicates that the motion is symmetric.
(e) For this part we consider what happens as the stone falls from position (B), where it had zero vertical velocity, to
position (D). Because the elapsed time for this part of the motion is about 3 s , we estimate that the acceleration due to gravity will have changed the speed by about $30 \mathrm{~m} / \mathrm{s}$. We can calculate this from Equation 2.8, where we take $t=t_{\mathrm{D}}-t_{\mathrm{B}}$:

$$
\begin{aligned}
v_{y \mathrm{D}} & =v_{y \mathrm{~B}}+a_{y} t=0 \mathrm{~m} / \mathrm{s}+\left(-9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(5.00 \mathrm{~s}-2.04 \mathrm{~s}) \\
& =-29.0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

We could just as easily have made our calculation between positions (A) and (D) by making sure we use the correct time interval, $t=t_{\mathrm{D}}-t_{\mathrm{A}}=5.00 \mathrm{~s}$:

$$
\begin{aligned}
v_{y \mathrm{D}}=v_{y \mathrm{~A}}+a_{y} t & =20.0 \mathrm{~m} / \mathrm{s}+\left(-9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(5.00 \mathrm{~s}) \\
& =-29.0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

To demonstrate the power of our kinematic equations, we can use Equation 2.11 to find the position of the stone at $t_{\mathrm{D}}=5.00 \mathrm{~s}$ by considering the change in position between a different pair of positions, © and (D). In this case, the time is $t_{\mathrm{D}}-t_{\mathrm{C}}$:

$$
\begin{aligned}
y_{\mathrm{D}}= & y_{\mathrm{C}}+v_{y \mathrm{C}} t+\frac{1}{2} a_{y} t^{2} \\
= & 0 \mathrm{~m}+(-20.0 \mathrm{~m} / \mathrm{s})(5.00 \mathrm{~s}-4.08 \mathrm{~s}) \\
& +\frac{1}{2}\left(-9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(5.00 \mathrm{~s}-4.08 \mathrm{~s})^{2} \\
= & -22.5 \mathrm{~m}
\end{aligned}
$$

Exercise Find (a) the velocity of the stone just before it hits the ground at © $(\mathbb{C}$ and (b) the total time the stone is in the air.

Answer (a) $-37.1 \mathrm{~m} / \mathrm{s} \quad$ (b) 5.83 s

Optional Section

2.7 KINEMATIC عQUATIONS DERIVED FROM CALCULUS

This is an optional section that assumes the reader is familiar with the techniques of integral calculus. If you have not yet studied integration in your calculus course, you should skip this section or cover it after you become familiar with integration.

The velocity of a particle moving in a straight line can be obtained if its position as a function of time is known. Mathematically, the velocity equals the derivative of the position coordinate with respect to time. It is also possible to find the displacement of a particle if its velocity is known as a function of time. In calculus, the procedure used to perform this task is referred to either as integration or as finding the antiderivative. Graphically, it is equivalent to finding the area under a curve.

Suppose the $v_{x}-t$ graph for a particle moving along the x axis is as shown in Figure 2.15. Let us divide the time interval $t_{f}-t_{i}$ into many small intervals, each of duration Δt_{n}. From the definition of average velocity we see that the displacement during any small interval, such as the one shaded in Figure 2.15, is given by $\Delta x_{n}=\bar{v}_{x n} \Delta t_{n}$, where $\bar{v}_{x n}$ is the average velocity in that interval. Therefore, the displacement during this small interval is simply the area of the shaded rectangle.

Figure 2.15 Velocity versus time for a particle moving along the x axis. The area of the shaded rectangle is equal to the displacement Δx in the time interval Δt_{n}, while the total area under the curve is the total displacement of the particle.

The total displacement for the interval $t_{f}-t_{i}$ is the sum of the areas of all the rectangles:

$$
\Delta x=\sum_{n} \bar{v}_{x n} \Delta t_{n}
$$

where the symbol Σ (upper case Greek sigma) signifies a sum over all terms. In this case, the sum is taken over all the rectangles from t_{i} to t_{f}. Now, as the intervals are made smaller and smaller, the number of terms in the sum increases and the sum approaches a value equal to the area under the velocity-time graph. Therefore, in the limit $n \rightarrow \infty$, or $\Delta t_{n} \rightarrow 0$, the displacement is

$$
\begin{equation*}
\Delta x=\lim _{\Delta t_{n} \rightarrow 0} \sum_{n} v_{x n} \Delta t_{n} \tag{2.13}
\end{equation*}
$$

or

$$
\text { Displacement }=\text { area under the } v_{x}-t \text { graph }
$$

Note that we have replaced the average velocity $\bar{v}_{x n}$ with the instantaneous velocity $v_{x n}$ in the sum. As you can see from Figure 2.15, this approximation is clearly valid in the limit of very small intervals. We conclude that if we know the $v_{x}-t$ graph for motion along a straight line, we can obtain the displacement during any time interval by measuring the area under the curve corresponding to that time interval.

The limit of the sum shown in Equation 2.13 is called a definite integral and is written

$$
\begin{equation*}
\lim _{\Delta t_{n} \rightarrow 0} \sum_{n} v_{x n} \Delta t_{n}=\int_{t_{i}}^{t_{y}} v_{x}(t) d t \tag{2.14}
\end{equation*}
$$

where $v_{x}(t)$ denotes the velocity at any time t. If the explicit functional form of $v_{x}(t)$ is known and the limits are given, then the integral can be evaluated.

Sometimes the $v_{x}-t$ graph for a moving particle has a shape much simpler than that shown in Figure 2.15. For example, suppose a particle moves at a constant ve-

Figure 2.16 The velocity-time curve for a particle moving with constant velocity $v_{x i}$. The displacement of the particle during the time interval $t_{f}-t_{i}$ is equal to the area of the shaded rectangle.
locity $v_{x i}$. In this case, the $v_{x}-t$ graph is a horizontal line, as shown in Figure 2.16, and its displacement during the time interval Δt is simply the area of the shaded rectangle:

$$
\Delta x=v_{x i} \Delta t \quad\left(\text { when } v_{x f}=v_{x i}=\text { constant }\right)
$$

As another example, consider a particle moving with a velocity that is proportional to t, as shown in Figure 2.17. Taking $v_{x}=a_{x} t$, where a_{x} is the constant of proportionality (the acceleration), we find that the displacement of the particle during the time interval $t=0$ to $t=t_{\mathrm{A}}$ is equal to the area of the shaded triangle in Figure 2.17:

$$
\Delta x=\frac{1}{2}\left(t_{\mathrm{A}}\right)\left(a_{x} t_{\mathrm{A}}\right)=\frac{1}{2} a_{x} t_{\mathrm{A}}^{2}
$$

Kinematic Equations

We now use the defining equations for acceleration and velocity to derive two of our kinematic equations, Equations 2.8 and 2.11.

The defining equation for acceleration (Eq. 2.6),

$$
a_{x}=\frac{d v_{x}}{d t}
$$

may be written as $d v_{x}=a_{x} d t$ or, in terms of an integral (or antiderivative), as

$$
v_{x}=\int a_{x} d t+C_{1}
$$

Figure 2.17 The velocity-time curve for a particle moving with a velocity that is proportional to the time.
where C_{1} is a constant of integration. For the special case in which the acceleration is constant, the a_{x} can be removed from the integral to give

$$
\begin{equation*}
v_{x}=a_{x} \int d t+C_{1}=a_{x} t+C_{1} \tag{2.15}
\end{equation*}
$$

The value of C_{1} depends on the initial conditions of the motion. If we take $v_{x}=v_{x i}$ when $t=0$ and substitute these values into the last equation, we have

$$
\begin{aligned}
& v_{x i}=a_{x}(0)+C_{1} \\
& C_{1}=v_{x i}
\end{aligned}
$$

Calling $v_{x}=v_{x f}$ the velocity after the time interval t has passed and substituting this and the value just found for C_{1} into Equation 2.15, we obtain kinematic Equation 2.8:

$$
v_{x f}=v_{x i}+a_{x} t \quad\left(\text { for constant } a_{x}\right)
$$

Now let us consider the defining equation for velocity (Eq. 2.4):

$$
v_{x}=\frac{d x}{d t}
$$

We can write this as $d x=v_{x} d t$ or in integral form as

$$
x=\int v_{x} d t+C_{2}
$$

where C_{2} is another constant of integration. Because $v_{x}=v_{x f}=v_{x i}+a_{x} t$, this expression becomes

$$
\begin{gathered}
x=\int\left(v_{x i}+a_{x} t\right) d t+C_{2} \\
x=\int v_{x i} d t+a_{x} \int t d t+C_{2} \\
x=v_{x i} t+\frac{1}{2} a_{x} t^{2}+C_{2}
\end{gathered}
$$

To find C_{2}, we make use of the initial condition that $x=x_{i}$ when $t=0$. This gives $C_{2}=x_{i}$. Therefore, after substituting x_{f} for x, we have

$$
x_{f}=x_{i}+v_{x i} t+\frac{1}{2} a_{x} t^{2} \quad\left(\text { for constant } a_{x}\right)
$$

Once we move x_{i} to the left side of the equation, we have kinematic Equation 2.11. Recall that $x_{f}-x_{i}$ is equal to the displacement of the object, where x_{i} is its initial position.

B
 esides what you might expect to learn about physics concepts, a very valuable skill you should hope to take away from your physics course is the ability to solve complicated problems. The way physicists approach complex situations and break them down into manageable pieces is extremely useful. We have developed a memory aid to help you easily recall the steps required for successful problem solving. When working on problems, the secret is to keep your GOAL in mind!

GOAL Problem-Solving Steps

Gather information

The first thing to do when approaching a problem is to understand the situation. Carefully read the problem statement, looking for key phrases like "at rest" or "freely falls." What information is given? Exactly what is the question asking? Don't forget to gather information from your own experiences and common sense. What should a reasonable answer look like? You wouldn't expect to calculate the speed of an automobile to be $5 \times 10^{6} \mathrm{~m} / \mathrm{s}$. Do you know what units to expect? Are there any limiting cases you can consider? What happens when an angle approaches 0° or 90° or when a mass becomes huge or goes to zero? Also make sure you carefully study any drawings that accompany the problem.

Organize your approach

Once you have a really good idea of what the problem is about, you need to think about what to do next. Have you seen this type of question before? Being able to classify a problem can make it much easier to lay out a plan to solve it. You should almost always make a quick drawing of the situation. Label important events with circled letters. Indicate any known values, perhaps in a table or directly on your sketch.

Analyze the problem

Because you have already categorized the problem, it should not be too difficult to select relevant equations that apply to this type of situation. Use algebra (and calculus, if necessary) to solve for the unknown variable in terms of what is given. Substitute in the appropriate numbers, calculate the result, and round it to the proper number of significant figures.

Learn from your efforts

This is the most important part. Examine your numerical answer. Does it meet your expectations from the first step? What about the algebraic form of the re-sult-before you plugged in numbers? Does it make sense? (Try looking at the variables in it to see whether the answer would change in a physically meaningful way if they were drastically increased or decreased or even became zero.) Think about how this problem compares with others you have done. How was it similar? In what critical ways did it differ? Why was this problem assigned? You should have learned something by doing it. Can you figure out what?

When solving complex problems, you may need to identify a series of subproblems and apply the GOAL process to each. For very simple problems, you probably don't need GOAL at all. But when you are looking at a problem and you don't know what to do next, remember what the letters in GOAL stand for and use that as a guide.

SUMMARY

After a particle moves along the x axis from some initial position x_{i} to some final position x_{f}, its displacement is

$$
\begin{equation*}
\Delta x \equiv x_{f}-x_{i} \tag{2.1}
\end{equation*}
$$

The average velocity of a particle during some time interval is the displacement Δx divided by the time interval Δt during which that displacement occurred:

$$
\begin{equation*}
\bar{v}_{x} \equiv \frac{\Delta x}{\Delta t} \tag{2.2}
\end{equation*}
$$

The average speed of a particle is equal to the ratio of the total distance it travels to the total time it takes to travel that distance.

The instantaneous velocity of a particle is defined as the limit of the ratio $\Delta x / \Delta t$ as Δt approaches zero. By definition, this limit equals the derivative of x with respect to t, or the time rate of change of the position:

$$
\begin{equation*}
v_{x} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t} \tag{2.4}
\end{equation*}
$$

The instantaneous speed of a particle is equal to the magnitude of its velocity.
The average acceleration of a particle is defined as the ratio of the change in its velocity Δv_{x} divided by the time interval Δt during which that change occurred:

$$
\begin{equation*}
\bar{a}_{x} \equiv \frac{\Delta v_{x}}{\Delta t}=\frac{v_{x f}-v_{x i}}{t_{f}-t_{i}} \tag{2.5}
\end{equation*}
$$

The instantaneous acceleration is equal to the limit of the ratio $\Delta v_{x} / \Delta t$ as Δt approaches 0 . By definition, this limit equals the derivative of v_{x} with respect to t, or the time rate of change of the velocity:

$$
\begin{equation*}
a_{x} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta v_{x}}{\Delta t}=\frac{d v_{x}}{d t} \tag{2.6}
\end{equation*}
$$

The equations of kinematics for a particle moving along the x axis with uniform acceleration a_{x} (constant in magnitude and direction) are

$$
\begin{align*}
v_{x f} & =v_{x i}+a_{x} t \tag{2.8}\\
x_{f}-x_{i} & =\bar{v}_{x} t=\frac{1}{2}\left(v_{x i}+v_{x f}\right) t \tag{2.10}\\
x_{f}-x_{i} & =v_{x i} t+\frac{1}{2} a_{x} t^{2} \tag{2.11}\\
v_{x f}^{2} & =v_{x i}^{2}+2 a_{x}\left(x_{f}-x_{i}\right) \tag{2.12}
\end{align*}
$$

You should be able to use these equations and the definitions in this chapter to analyze the motion of any object moving with constant acceleration.

An object falling freely in the presence of the Earth's gravity experiences a free-fall acceleration directed toward the center of the Earth. If air resistance is neglected, if the motion occurs near the surface of the Earth, and if the range of the motion is small compared with the Earth's radius, then the free-fall acceleration g is constant over the range of motion, where g is equal to $9.80 \mathrm{~m} / \mathrm{s}^{2}$.

Complicated problems are best approached in an organized manner. You should be able to recall and apply the steps of the GOAL strategy when you need them.

Questions

1. Average velocity and instantaneous velocity are generally different quantities. Can they ever be equal for a specific type of motion? Explain.
2. If the average velocity is nonzero for some time interval, does this mean that the instantaneous velocity is never zero during this interval? Explain.
3. If the average velocity equals zero for some time interval Δt and if $v_{x}(t)$ is a continuous function, show that the instantaneous velocity must go to zero at some time in this interval. (A sketch of x versus t might be useful in your proof.)
4. Is it possible to have a situation in which the velocity and acceleration have opposite signs? If so, sketch a velocity-time graph to prove your point.
5. If the velocity of a particle is nonzero, can its acceleration be zero? Explain.
6. If the velocity of a particle is zero, can its acceleration be nonzero? Explain.
7. Can an object having constant acceleration ever stop and stay stopped?
8. A stone is thrown vertically upward from the top of a building. Does the stone's displacement depend on the location of the origin of the coordinate system? Does the stone's velocity depend on the origin? (Assume that the coordinate system is stationary with respect to the building.) Explain.
9. A student at the top of a building of height h throws one ball upward with an initial speed $v_{y i}$ and then throws a second ball downward with the same initial speed. How do the final speeds of the balls compare when they reach the ground?
10. Can the magnitude of the instantaneous velocity of an object ever be greater than the magnitude of its average velocity? Can it ever be less?
11. If the average velocity of an object is zero in some time interval, what can you say about the displacement of the object for that interval?
12. A rapidly growing plant doubles in height each week. At the end of the 25th day, the plant reaches the height of a
building. At what time was the plant one-fourth the height of the building?
13. Two cars are moving in the same direction in parallel lanes along a highway. At some instant, the velocity of car A exceeds the velocity of car B. Does this mean that the acceleration of car A is greater than that of car B? Explain.
14. An apple is dropped from some height above the Earth's surface. Neglecting air resistance, how much does the apple's speed increase each second during its descent?
15. Consider the following combinations of signs and values for velocity and acceleration of a particle with respect to a one-dimensional x axis:

Velocity	Acceleration
a. Positive	Positive
b. Positive	Negative
c. Positive	Zero
d. Negative	Positive
e. Negative	Negative
f. Negative	Zero
g. Zero	Positive
h. Zero	Negative

Describe what the particle is doing in each case, and give a real-life example for an automobile on an east-west one-dimensional axis, with east considered to be the positive direction.
16. A pebble is dropped into a water well, and the splash is heard 16 s later, as illustrated in Figure Q2.16. Estimate the distance from the rim of the well to the water's surface.
17. Average velocity is an entirely contrived quantity, and other combinations of data may prove useful in other contexts. For example, the ratio $\Delta t / \Delta x$, called the "slowness" of a moving object, is used by geophysicists when discussing the motion of continental plates. Explain what this quantity means.

Figure $\mathbf{0 2 . 1 6}$

Problems

1, 2, 3 = straightforward, intermediate, challenging $\quad \square=$ full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ $\square=$ Computer useful in solving problem $\mathcal{Z}^{2}=$ Interactive Physics \square = paired numerical/symbolic problems

Section 2.1 Displacement, Velocity, and Speed

1. The position of a pinewood derby car was observed at various times; the results are summarized in the table below. Find the average velocity of the car for (a) the first second, (b) the last 3 s , and (c) the entire period of observation.

$x(\mathrm{~m})$	0	2.3	9.2	20.7	36.8	57.5
$t(\mathrm{~s})$	0	1.0	2.0	3.0	4.0	5.0

2. A motorist drives north for 35.0 min at $85.0 \mathrm{~km} / \mathrm{h}$ and then stops for 15.0 min . He then continues north, traveling 130 km in 2.00 h . (a) What is his total displacement? (b) What is his average velocity?
3. The displacement versus time for a certain particle moving along the x axis is shown in Figure P2.3. Find the average velocity in the time intervals (a) 0 to 2 s , (b) 0 to 4 s , (c) 2 s to 4 s , (d) 4 s to 7 s , (e) 0 to 8 s .

Figure P2.3 Problems 3 and 11.
4. A particle moves according to the equation $x=10 t^{2}$, where x is in meters and t is in seconds. (a) Find the average velocity for the time interval from 2.0 s to 3.0 s . (b) Find the average velocity for the time interval from 2.0 s to 2.1 s .
5. A person walks first at a constant speed of $5.00 \mathrm{~m} / \mathrm{s}$ along a straight line from point A to point B and then back along the line from B to A at a constant speed of $3.00 \mathrm{~m} / \mathrm{s}$. What are (a) her average speed over the entire trip and (b) her average velocity over the entire trip?
6. A person first walks at a constant speed v_{1} along a straight line from A to B and then back along the line from B to A at a constant speed v_{2}. What are (a) her average speed over the entire trip and (b) her average velocity over the entire trip?

Section 2.2 Instantaneous Velocity and Speed

7. At $t=1.00 \mathrm{~s}$, a particle moving with constant velocity is located at $x=-3.00 \mathrm{~m}$, and at $t=6.00 \mathrm{~s}$ the particle is located at $x=5.00 \mathrm{~m}$. (a) From this information, plot the position as a function of time. (b) Determine the velocity of the particle from the slope of this graph.
8. The position of a particle moving along the x axis varies in time according to the expression $x=3 t^{2}$, where x is in meters and t is in seconds. Evaluate its position (a) at $t=3.00 \mathrm{~s}$ and (b) at $3.00 \mathrm{~s}+\Delta t$. (c) Evaluate the limit of $\Delta x / \Delta t$ as Δt approaches zero to find the velocity at $t=3.00 \mathrm{~s}$.
9. A position-time graph for a particle moving along the x axis is shown in Figure P2.9. (a) Find the average velocity in the time interval $t=1.5 \mathrm{~s}$ to $t=4.0 \mathrm{~s}$.
(b) Determine the instantaneous velocity at $t=2.0 \mathrm{~s}$ by measuring the slope of the tangent line shown in the graph. (c) At what value of t is the velocity zero?

Figure P2.9
10. (a) Use the data in Problem 1 to construct a smooth graph of position versus time. (b) By constructing tangents to the $x(t)$ curve, find the instantaneous velocity of the car at several instants. (c) Plot the instantaneous velocity versus time and, from this, determine the average acceleration of the car. (d) What was the initial velocity of the car?
11. Find the instantaneous velocity of the particle described in Figure P2.3 at the following times: (a) $t=1.0 \mathrm{~s}$, (b) $t=3.0 \mathrm{~s}$, (c) $t=4.5 \mathrm{~s}$, and (d) $t=7.5 \mathrm{~s}$.

Section 2.3 Acceleration

12. A particle is moving with a velocity of $60.0 \mathrm{~m} / \mathrm{s}$ in the positive x direction at $t=0$. Between $t=0$ and $t=$ 15.0 s , the velocity decreases uniformly to zero. What was the acceleration during this 15.0 -s interval? What is the significance of the sign of your answer?
13. A $50.0-\mathrm{g}$ superball traveling at $25.0 \mathrm{~m} / \mathrm{s}$ bounces off a brick wall and rebounds at $22.0 \mathrm{~m} / \mathrm{s}$. A high-speed camera records this event. If the ball is in contact with the wall for 3.50 ms , what is the magnitude of the average acceleration of the ball during this time interval? (Note: $1 \mathrm{~ms}=10^{-3} \mathrm{~s}$.)
14. A particle starts from rest and accelerates as shown in Figure P2.14. Determine: (a) the particle's speed at $t=10 \mathrm{~s}$ and at $t=20 \mathrm{~s}$, and (b) the distance traveled in the first 20 s .

Figure P2.14
15. A velocity-time graph for an object moving along the x axis is shown in Figure P2.15. (a) Plot a graph of the acceleration versus time. (b) Determine the average acceleration of the object in the time intervals $t=5.00 \mathrm{~s}$ to $t=15.0 \mathrm{~s}$ and $t=0$ to $t=20.0 \mathrm{~s}$.
16. A student drives a moped along a straight road as described by the velocity-time graph in Figure P2.16. Sketch this graph in the middle of a sheet of graph paper. (a) Directly above your graph, sketch a graph of the position versus time, aligning the time coordinates of the two graphs. (b) Sketch a graph of the acceleration versus time directly below the $v_{x}-t$ graph, again aligning the time coordinates. On each graph, show the

Figure P2.15

Figure P2. 16
numerical values of x and a_{x} for all points of inflection. (c) What is the acceleration at $t=6 \mathrm{~s}$? (d) Find the position (relative to the starting point) at $t=6 \mathrm{~s}$. (e) What is the moped's final position at $t=9 \mathrm{~s}$?
wes 17. A particle moves along the x axis according to the equation $x=2.00+3.00 t-t^{2}$, where x is in meters and t is in seconds. At $t=3.00 \mathrm{~s}$, find (a) the position of the particle, (b) its velocity, and (c) its acceleration.
18. An object moves along the x axis according to the equation $x=\left(3.00 t^{2}-2.00 t+3.00\right) \mathrm{m}$. Determine
(a) the average speed between $t=2.00 \mathrm{~s}$ and $t=3.00 \mathrm{~s}$, (b) the instantaneous speed at $t=2.00 \mathrm{~s}$ and at $t=$ 3.00 s , (c) the average acceleration between $t=2.00 \mathrm{~s}$ and $t=3.00 \mathrm{~s}$, and (d) the instantaneous acceleration at $t=2.00 \mathrm{~s}$ and $t=3.00 \mathrm{~s}$.
19. Figure P2.19 shows a graph of v_{x} versus t for the motion of a motorcyclist as he starts from rest and moves along the road in a straight line. (a) Find the average acceleration for the time interval $t=0$ to $t=6.00 \mathrm{~s}$. (b) Estimate the time at which the acceleration has its greatest positive value and the value of the acceleration at that instant. (c) When is the acceleration zero? (d) Estimate the maximum negative value of the acceleration and the time at which it occurs.

Figure P2. 19

Figure P2.26
celeration versus time between $t=0$ and $t=50 \mathrm{~s}$.
(d) Write an equation for x as a function of time for each phase of the motion, represented by (i) $0 a$, (ii) $a b$, (iii) $b c$. (e) What is the average velocity of the car between $t=0$ and $t=50 \mathrm{~s}$?
27. A particle moves along the x axis. Its position is given by the equation $x=2.00+3.00 t-4.00 t^{2}$ with x in meters and t in seconds. Determine (a) its position at the instant it changes direction and (b) its velocity when it returns to the position it had at $t=0$.
28. The initial velocity of a body is $5.20 \mathrm{~m} / \mathrm{s}$. What is its velocity after 2.50 s (a) if it accelerates uniformly at $3.00 \mathrm{~m} / \mathrm{s}^{2}$ and (b) if it accelerates uniformly at $-3.00 \mathrm{~m} / \mathrm{s}^{2}$?
29. A drag racer starts her car from rest and accelerates at $10.0 \mathrm{~m} / \mathrm{s}^{2}$ for the entire distance of $400 \mathrm{~m}\left(\frac{1}{4} \mathrm{mi}\right)$. (a) How long did it take the race car to travel this distance?
(b) What is the speed of the race car at the end of the run?
30. A car is approaching a hill at $30.0 \mathrm{~m} / \mathrm{s}$ when its engine suddenly fails, just at the bottom of the hill. The car moves with a constant acceleration of $-2.00 \mathrm{~m} / \mathrm{s}^{2}$ while coasting up the hill. (a) Write equations for the position along the slope and for the velocity as functions of time, taking $x=0$ at the bottom of the hill, where $v_{i}=$ $30.0 \mathrm{~m} / \mathrm{s}$. (b) Determine the maximum distance the car travels up the hill.
31. A jet plane lands with a speed of $100 \mathrm{~m} / \mathrm{s}$ and can accelerate at a maximum rate of $-5.00 \mathrm{~m} / \mathrm{s}^{2}$ as it comes to rest. (a) From the instant the plane touches the runway, what is the minimum time it needs before it can come to rest? (b) Can this plane land at a small tropical island airport where the runway is 0.800 km long?
32. The driver of a car slams on the brakes when he sees a tree blocking the road. The car slows uniformly with an acceleration of $-5.60 \mathrm{~m} / \mathrm{s}^{2}$ for 4.20 s , making straight skid marks 62.4 m long ending at the tree. With what speed does the car then strike the tree?
33. Help! One of our equations is missing! We describe con-stant-acceleration motion with the variables and parameters $v_{x i}, v_{x f}, a_{x}, t$, and $x_{f}-x_{i}$. Of the equations in Table 2.2, the first does not involve $x_{f}-x_{i}$. The second does not contain a_{x}, the third omits $v_{x f}$, and the last

Figure P2. 37 (Left) Col. John Stapp on rocket sled. (Courtesy of the U.S. Air Force) (Right) Col. Stapp's face is contorted by the stress of rapid negative acceleration. (Photri, Inc.)
leaves out t. So to complete the set there should be an equation not involving $v_{x i}$. Derive it from the others. Use it to solve Problem 32 in one step.
34. An indestructible bullet 2.00 cm long is fired straight through a board that is 10.0 cm thick. The bullet strikes the board with a speed of $420 \mathrm{~m} / \mathrm{s}$ and emerges with a speed of $280 \mathrm{~m} / \mathrm{s}$. (a) What is the average acceleration of the bullet as it passes through the board? (b) What is the total time that the bullet is in contact with the board? (c) What thickness of board (calculated to 0.1 cm) would it take to stop the bullet, assuming the bullet's acceleration through all parts of the board is the same?
35. A truck on a straight road starts from rest, accelerating at $2.00 \mathrm{~m} / \mathrm{s}^{2}$ until it reaches a speed of $20.0 \mathrm{~m} / \mathrm{s}$. Then the truck travels for 20.0 s at constant speed until the brakes are applied, stopping the truck in a uniform manner in an additional 5.00 s. (a) How long is the truck in motion? (b) What is the average velocity of the truck for the motion described?
36. A train is traveling down a straight track at $20.0 \mathrm{~m} / \mathrm{s}$ when the engineer applies the brakes. This results in an acceleration of $-1.00 \mathrm{~m} / \mathrm{s}^{2}$ as long as the train is in motion. How far does the train move during a 40.0 -s time interval starting at the instant the brakes are applied?
37. For many years the world's land speed record was held by Colonel John P. Stapp, USAF (Fig. P2.37). On March 19, 1954, he rode a rocket-propelled sled that moved down the track at $632 \mathrm{mi} / \mathrm{h}$. He and the sled were safely brought to rest in 1.40 s . Determine (a) the negative acceleration he experienced and (b) the distance he traveled during this negative acceleration.
38. An electron in a cathode-ray tube (CRT) accelerates uniformly from $2.00 \times 10^{4} \mathrm{~m} / \mathrm{s}$ to $6.00 \times 10^{6} \mathrm{~m} / \mathrm{s}$ over 1.50 cm . (a) How long does the electron take to travel this 1.50 cm ? (b) What is its acceleration?
39. A ball starts from rest and accelerates at $0.500 \mathrm{~m} / \mathrm{s}^{2}$ while moving down an inclined plane 9.00 m long. When it reaches the bottom, the ball rolls up another plane, where, after moving 15.0 m , it comes to rest.
(a) What is the speed of the ball at the bottom of the first plane? (b) How long does it take to roll down the first plane? (c) What is the acceleration along the second plane? (d) What is the ball's speed 8.00 m along the second plane?
40. Speedy Sue, driving at $30.0 \mathrm{~m} / \mathrm{s}$, enters a one-lane tunnel. She then observes a slow-moving van 155 m ahead traveling at $5.00 \mathrm{~m} / \mathrm{s}$. Sue applies her brakes but can accelerate only at $-2.00 \mathrm{~m} / \mathrm{s}^{2}$ because the road is wet. Will there be a collision? If so, determine how far into the tunnel and at what time the collision occurs. If not, determine the distance of closest approach between Sue's car and the van.

Section 2.6 Freely Falling Objects

Note: In all problems in this section, ignore the effects of air resistance.
41. A golf ball is released from rest from the top of a very tall building. Calculate (a) the position and (b) the velocity of the ball after $1.00 \mathrm{~s}, 2.00 \mathrm{~s}$, and 3.00 s .
42. Every morning at seven o'clock

There's twenty terriers drilling on the rock. The boss comes around and he says, "Keep still And bear down heavy on the cast-iron drill And drill, ye terriers, drill." And drill, ye terriers, drill. It's work all day for sugar in your tea . . . And drill, ye terriers, drill.

One day a premature blast went off And a mile in the air went big Jim Goff. And drill . . .

Then when next payday came around Jim Goff a dollar short was found.
When he asked what for, came this reply:
"You were docked for the time you were up in the sky." And drill . . .
-American folksong
What was Goff's hourly wage? State the assumptions you make in computing it.
43. A student throws a set of keys vertically upward to her sorority sister, who is in a window 4.00 m above. The keys are caught 1.50 s later by the sister's outstretched hand. (a) With what initial velocity were the keys thrown? (b) What was the velocity of the keys just before they were caught?

44. A ball is thrown directly downward with an initial speed of $8.00 \mathrm{~m} / \mathrm{s}$ from a height of 30.0 m . How many seconds later does the ball strike the ground?
45. Emily challenges her friend David to catch a dollar bill as follows: She holds the bill vertically, as in Figure P2.45, with the center of the bill between David's index finger and thumb. David must catch the bill after Emily releases it without moving his hand downward. If his reaction time is 0.2 s , will he succeed? Explain your reasoning.

Figure P2.45 (George Semple)
46. A ball is dropped from rest from a height h above the ground. Another ball is thrown vertically upward from the ground at the instant the first ball is released. Determine the speed of the second ball if the two balls are to meet at a height $h / 2$ above the ground.
47. A baseball is hit so that it travels straight upward after being struck by the bat. A fan observes that it takes 3.00 s for the ball to reach its maximum height. Find (a) its initial velocity and (b) the maximum height it reaches.
48. A woman is reported to have fallen 144 ft from the 17 th floor of a building, landing on a metal ventilator box, which she crushed to a depth of 18.0 in . She suffered only minor injuries. Calculate (a) the speed of the woman just before she collided with the ventilator box, (b) her average acceleration while in contact with the box, and (c) the time it took to crush the box.
web 49. A daring ranch hand sitting on a tree limb wishes to drop vertically onto a horse galloping under the tree. The speed of the horse is $10.0 \mathrm{~m} / \mathrm{s}$, and the distance from the limb to the saddle is 3.00 m . (a) What must be the horizontal distance between the saddle and limb when the ranch hand makes his move? (b) How long is he in the air?
50. A ball thrown vertically upward is caught by the thrower after 20.0 s . Find (a) the initial velocity of the ball and (b) the maximum height it reaches.
51. A ball is thrown vertically upward from the ground with an initial speed of $15.0 \mathrm{~m} / \mathrm{s}$. (a) How long does it take the ball to reach its maximum altitude? (b) What is its maximum altitude? (c) Determine the velocity and acceleration of the ball at $t=2.00 \mathrm{~s}$.
52. The height of a helicopter above the ground is given by $h=3.00 t^{3}$, where h is in meters and t is in seconds. After 2.00 s , the helicopter releases a small mailbag. How long after its release does the mailbag reach the ground?

(Optional)

2.7 Kinematic Equations Derived from Calculus

53. Automotive engineers refer to the time rate of change of acceleration as the "jerk." If an object moves in one dimension such that its jerk J is constant, (a) determine expressions for its acceleration a_{x}, velocity v_{x}, and position x, given that its initial acceleration, speed, and position are $a_{x i}, v_{x i}$, and x_{i}, respectively. (b) Show that $a_{x}{ }^{2}=a_{x i}{ }^{2}+2 J\left(v_{x}-v_{x i}\right)$.
54. The speed of a bullet as it travels down the barrel of a rifle toward the opening is given by the expression $v=\left(-5.0 \times 10^{7}\right) t^{2}+\left(3.0 \times 10^{5}\right) t$, where v is in meters per second and t is in seconds. The acceleration of the bullet just as it leaves the barrel is zero. (a) Determine the acceleration and position of the bullet as a function of time when the bullet is in the barrel.
(b) Determine the length of time the bullet is accelerated. (c) Find the speed at which the bullet leaves the barrel. (d) What is the length of the barrel?
55. The acceleration of a marble in a certain fluid is proportional to the speed of the marble squared and is given (in SI units) by $a=-3.00 v^{2}$ for $v>0$. If the marble enters this fluid with a speed of $1.50 \mathrm{~m} / \mathrm{s}$, how long will it take before the marble's speed is reduced to half of its initial value?

ADDITIONAL PROBLEMS

56. A motorist is traveling at $18.0 \mathrm{~m} / \mathrm{s}$ when he sees a deer in the road 38.0 m ahead. (a) If the maximum negative acceleration of the vehicle is $-4.50 \mathrm{~m} / \mathrm{s}^{2}$, what is the maximum reaction time Δt of the motorist that will allow him to avoid hitting the deer? (b) If his reaction time is actually 0.300 s , how fast will he be traveling when he hits the deer?
57. Another scheme to catch the roadrunner has failed. A safe falls from rest from the top of a $25.0-\mathrm{m}$-high cliff toward Wile E. Coyote, who is standing at the base. Wile first notices the safe after it has fallen 15.0 m . How long does he have to get out of the way?
58. A dog's hair has been cut and is now getting longer by 1.04 mm each day. With winter coming on, this rate of hair growth is steadily increasing by $0.132 \mathrm{~mm} /$ day every week. By how much will the dog's hair grow during five weeks?
59. A test rocket is fired vertically upward from a well. A catapult gives it an initial velocity of $80.0 \mathrm{~m} / \mathrm{s}$ at ground level. Subsequently, its engines fire and it accelerates upward at $4.00 \mathrm{~m} / \mathrm{s}^{2}$ until it reaches an altitude of 1000 m . At that point its engines fail, and the rocket goes into free fall, with an acceleration of $-9.80 \mathrm{~m} / \mathrm{s}^{2}$.
(a) How long is the rocket in motion above the ground? (b) What is its maximum altitude? (c) What is its velocity just before it collides with the Earth? (Hint: Consider the motion while the engine is operating separate from the free-fall motion.)
60. A motorist drives along a straight road at a constant speed of $15.0 \mathrm{~m} / \mathrm{s}$. Just as she passes a parked motorcycle police officer, the officer starts to accelerate at $2.00 \mathrm{~m} / \mathrm{s}^{2}$ to overtake her. Assuming the officer maintains this acceleration, (a) determine the time it takes the police officer to reach the motorist. Also find (b) the speed and (c) the total displacement of the officer as he overtakes the motorist.
61. In Figure 2.10a, the area under the velocity-time curve between the vertical axis and time t (vertical dashed line) represents the displacement. As shown, this area consists of a rectangle and a triangle. Compute their areas and compare the sum of the two areas with the expression on the righthand side of Equation 2.11.
62. A commuter train travels between two downtown stations. Because the stations are only 1.00 km apart, the train never reaches its maximum possible cruising speed. The engineer minimizes the time t between the two stations by accelerating at a rate $a_{1}=0.100 \mathrm{~m} / \mathrm{s}^{2}$ for a time t_{1} and then by braking with acceleration $a_{2}=-0.500 \mathrm{~m} / \mathrm{s}^{2}$ for a time t_{2}. Find the minimum time of travel t and the time t_{1}.
63. In a $100-\mathrm{m}$ race, Maggie and Judy cross the finish line in a dead heat, both taking 10.2 s. Accelerating uniformly, Maggie took 2.00 s and Judy 3.00 s to attain maximum speed, which they maintained for the rest of the race.
(a) What was the acceleration of each sprinter?
(b) What were their respective maximum speeds?
(c) Which sprinter was ahead at the 6.00 -s mark, and by how much?
64. A hard rubber ball, released at chest height, falls to the pavement and bounces back to nearly the same height. When it is in contact with the pavement, the lower side of the ball is temporarily flattened. Suppose the maximum depth of the dent is on the order of

1 cm . Compute an order-of-magnitude estimate for the maximum acceleration of the ball while it is in contact with the pavement. State your assumptions, the quantities you estimate, and the values you estimate for them.
65. A teenager has a car that speeds up at $3.00 \mathrm{~m} / \mathrm{s}^{2}$ and slows down at $-4.50 \mathrm{~m} / \mathrm{s}^{2}$. On a trip to the store, he accelerates from rest to $12.0 \mathrm{~m} / \mathrm{s}$, drives at a constant speed for 5.00 s , and then comes to a momentary stop at an intersection. He then accelerates to $18.0 \mathrm{~m} / \mathrm{s}$, drives at a constant speed for 20.0 s , slows down for 2.67 s , continues for 4.00 s at this speed, and then comes to a stop. (a) How long does the trip take?
(b) How far has he traveled? (c) What is his average speed for the trip? (d) How long would it take to walk to the store and back if he walks at $1.50 \mathrm{~m} / \mathrm{s}$?
66. A rock is dropped from rest into a well. (a) If the sound of the splash is heard 2.40 s later, how far below the top of the well is the surface of the water? The speed of sound in air (at the ambient temperature) is $336 \mathrm{~m} / \mathrm{s}$. (b) If the travel time for the sound is neglected, what percentage error is introduced when the depth of the well is calculated?
67. An inquisitive physics student and mountain climber climbs a $50.0-\mathrm{m}$ cliff that overhangs a calm pool of water. He throws two stones vertically downward, 1.00 s apart, and observes that they cause a single splash. The first stone has an initial speed of $2.00 \mathrm{~m} / \mathrm{s}$. (a) How long after release of the first stone do the two stones hit the water? (b) What was the initial velocity of the second stone? (c) What is the velocity of each stone at the instant the two hit the water?
68. A car and train move together along parallel paths at $25.0 \mathrm{~m} / \mathrm{s}$, with the car adjacent to the rear of the train. Then, because of a red light, the car undergoes a uniform acceleration of $-2.50 \mathrm{~m} / \mathrm{s}^{2}$ and comes to rest. It remains at rest for 45.0 s and then accelerates back to a speed of $25.0 \mathrm{~m} / \mathrm{s}$ at a rate of $2.50 \mathrm{~m} / \mathrm{s}^{2}$. How far behind the rear of the train is the car when it reaches the speed of $25.0 \mathrm{~m} / \mathrm{s}$, assuming that the speed of the train has remained $25.0 \mathrm{~m} / \mathrm{s}$?
69. Kathy Kool buys a sports car that can accelerate at the rate of $4.90 \mathrm{~m} / \mathrm{s}^{2}$. She decides to test the car by racing with another speedster, Stan Speedy. Both start from rest, but experienced Stan leaves the starting line 1.00 s before Kathy. If Stan moves with a constant acceleration of $3.50 \mathrm{~m} / \mathrm{s}^{2}$ and Kathy maintains an acceleration of $4.90 \mathrm{~m} / \mathrm{s}^{2}$, find (a) the time it takes Kathy to overtake Stan, (b) the distance she travels before she catches up with him, and (c) the speeds of both cars at the instant she overtakes him.
70. To protect his food from hungry bears, a boy scout raises his food pack with a rope that is thrown over a tree limb at height h above his hands. He walks away from the vertical rope with constant velocity $v_{\text {boy }}$, holding the free end of the rope in his hands (Fig. P2.70).

Figure P2.70
(a) Show that the speed v of the food pack is $x\left(x^{2}+h^{2}\right)^{-1 / 2} v_{\text {boy }}$, where x is the distance he has walked away from the vertical rope. (b) Show that the acceleration a of the food pack is $h^{2}\left(x^{2}+h^{2}\right)^{-3 / 2} v_{\text {boy }}{ }^{2}$.
(c) What values do the acceleration and velocity have shortly after he leaves the point under the pack $(x=0)$? (d) What values do the pack's velocity and acceleration approach as the distance x continues to increase?
71. In Problem 70, let the height h equal 6.00 m and the speed $v_{\text {boy }}$ equal $2.00 \mathrm{~m} / \mathrm{s}$. Assume that the food pack starts from rest. (a) Tabulate and graph the speed-time graph. (b) Tabulate and graph the acceleration-time graph. (Let the range of time be from 0 to 5.00 s and the time intervals be 0.500 s .)
72. Astronauts on a distant planet toss a rock into the air. With the aid of a camera that takes pictures at a steady rate, they record the height of the rock as a function of time as given in Table P2.72. (a) Find the average velocity of the rock in the time interval between each measurement and the next. (b) Using these average veloci-

TABLE P2.72 Height of a Rock versus Time

Time (s)	Height (m)	Time (s)	Height (m)
0.00	5.00	2.75	7.62
0.25	5.75	3.00	7.25
0.50	6.40	3.25	6.77
0.75	6.94	3.50	6.20
1.00	7.38	3.75	5.52
1.25	7.72	4.00	4.73
1.50	7.96	4.25	3.85
1.75	8.10	4.50	2.86
2.00	8.13	4.75	1.77
2.25	8.07	5.00	0.58
2.50	7.90		

ties to approximate instantaneous velocities at the midpoints of the time intervals, make a graph of velocity as a function of time. Does the rock move with constant acceleration? If so, plot a straight line of best fit on the graph and calculate its slope to find the acceleration.
73. Two objects, A and B, are connected by a rigid rod that has a length L. The objects slide along perpendicular guide rails, as shown in Figure P2.73. If A slides to the left with a constant speed v, find the speed of B when $\alpha=60.0^{\circ}$.

Answers to Quick Quizzes

2.1 Your graph should look something like the one in (a). This $v_{x}-t$ graph shows that the maximum speed is about $5.0 \mathrm{~m} / \mathrm{s}$, which is $18 \mathrm{~km} / \mathrm{h}(=11 \mathrm{mi} / \mathrm{h})$, and so the driver was not speeding. Can you derive the accel-eration-time graph from the velocity-time graph? It should look something like the one in (b).
2.2 (a) Yes. This occurs when the car is slowing down, so that the direction of its acceleration is opposite the direction of its motion. (b) Yes. If the motion is in the direction
chosen as negative, a positive acceleration causes a decrease in speed.
2.3 The left side represents the final velocity of an object. The first term on the right side is the velocity that the object had initially when we started watching it. The second term is the change in that initial velocity that is caused by the acceleration. If this second term is positive, then the initial velocity has increased ($v_{x f}>v_{x i}$). If this term is negative, then the initial velocity has decreased ($v_{x f}<v_{x i}$).

(a)
2.4 Graph (a) has a constant slope, indicating a constant acceleration; this is represented by graph (e).

Graph (b) represents a speed that is increasing constantly but not at a uniform rate. Thus, the acceleration must be increasing, and the graph that best indicates this is (d).

Graph (c) depicts a velocity that first increases at a constant rate, indicating constant acceleration. Then the

(b)
velocity stops increasing and becomes constant, indicating zero acceleration. The best match to this situation is graph (f).
2.5 (c). As can be seen from Figure 2.13b, the ball is at rest for an infinitesimally short time at these three points.
Nonetheless, gravity continues to act even though the ball is instantaneously not moving.

[^0]: Average velocity

[^1]: ${ }^{1}$ Note that the displacement Δx also approaches zero as Δt approaches zero. As Δx and Δt become smaller and smaller, the ratio $\Delta x / \Delta t$ approaches a value equal to the slope of the line tangent to the x-versus- t curve.

[^2]: ${ }^{2}$ As with velocity, we drop the adjective for instantaneous speed: "Speed" means instantaneous speed.
 ${ }^{3}$ Simply to make it easier to read, we write the empirical equation as $x=-4 t+2 t^{2}$ rather than as $x=(-4.00 \mathrm{~m} / \mathrm{s}) t+\left(2.00 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2.00}$. When an equation summarizes measurements, consider its coefficients to have as many significant digits as other data quoted in a problem. Consider its coefficients to have the units required for dimensional consistency. When we start our clocks at $t=0 \mathrm{~s}$, we usually do not mean to limit the precision to a single digit. Consider any zero value in this book to have as many significant figures as you need.

