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Airbags have saved countless lives by
reducing the forces exerted on vehicle
occupants during collisions. How can
airbags change the force needed to
bring a person from a high speed to a
complete stop? Why are they usually
safer than seat belts alone? (Courtesy 

of Saab)
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onsider what happens when a golf ball is struck by a club. The ball is given a
very large initial velocity as a result of the collision; consequently, it is able to
travel more than 100 m through the air. The ball experiences a large accelera-

tion. Furthermore, because the ball experiences this acceleration over a very short
time interval, the average force exerted on it during the collision is very great. Ac-
cording to Newton’s third law, the ball exerts on the club a reaction force that is
equal in magnitude to and opposite in direction to the force exerted by the club
on the ball. This reaction force causes the club to accelerate. Because the club is
much more massive than the ball, however, the acceleration of the club is much
less than the acceleration of the ball.

One of the main objectives of this chapter is to enable you to understand and
analyze such events. As a first step, we introduce the concept of momentum, which is
useful for describing objects in motion and as an alternate and more general
means of applying Newton’s laws. For example, a very massive football player is of-
ten said to have a great deal of momentum as he runs down the field. A much less
massive player, such as a halfback, can have equal or greater momentum if his
speed is greater than that of the more massive player. This follows from the fact
that momentum is defined as the product of mass and velocity. The concept of
momentum leads us to a second conservation law, that of conservation of momen-
tum. This law is especially useful for treating problems that involve collisions be-
tween objects and for analyzing rocket propulsion. The concept of the center of
mass of a system of particles also is introduced, and we shall see that the motion of
a system of particles can be described by the motion of one representative particle
located at the center of mass.

LINEAR MOMENTUM AND ITS CONSERVATION
In the preceding two chapters we studied situations too complex to analyze easily
with Newton’s laws. In fact, Newton himself used a form of his second law slightly
different from (Eq. 5.2)—a form that is considerably easier to apply in
complicated circumstances. Physicists use this form to study everything from sub-
atomic particles to rocket propulsion. In studying situations such as these, it is of-
ten useful to know both something about the object and something about its mo-
tion. We start by defining a new term that incorporates this information:

�F � ma

9.1

The linear momentum of a particle of mass m moving with a velocity v is de-
fined to be the product of the mass and velocity:

(9.1)p � mv

C

Linear momentum is a vector quantity because it equals the product of a scalar
quantity m and a vector quantity v. Its direction is along v, it has dimensions
ML/T, and its SI unit is kg � m/s.

If a particle is moving in an arbitrary direction, p must have three compo-
nents, and Equation 9.1 is equivalent to the component equations

(9.2)

As you can see from its definition, the concept of momentum provides a quantita-
tive distinction between heavy and light particles moving at the same velocity. For
example, the momentum of a bowling ball moving at 10 m/s is much greater than
that of a tennis ball moving at the same speed. Newton called the product mv

px � mvx  py � mvy  pz � mvz

Definition of linear momentum of
a particle

6.2
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quantity of motion; this is perhaps a more graphic description than our present-day
word momentum, which comes from the Latin word for movement.

Two objects have equal kinetic energies. How do the magnitudes of their momenta com-
pare? (a) (b) (c) (d) not enough information to tell.

Using Newton’s second law of motion, we can relate the linear momentum of a
particle to the resultant force acting on the particle: The time rate of change of the
linear momentum of a particle is equal to the net force acting on the particle:

(9.3)

In addition to situations in which the velocity vector varies with time, we can
use Equation 9.3 to study phenomena in which the mass changes. The real value
of Equation 9.3 as a tool for analysis, however, stems from the fact that when the
net force acting on a particle is zero, the time derivative of the momentum of the
particle is zero, and therefore its linear momentum1 is constant. Of course, if 
the particle is isolated, then by necessity and p remains unchanged. This
means that p is conserved. Just as the law of conservation of energy is useful in
solving complex motion problems, the law of conservation of momentum can
greatly simplify the analysis of other types of complicated motion.

Conservation of Momentum for a Two-Particle System

Consider two particles 1 and 2 that can interact with each other but are isolated
from their surroundings (Fig. 9.1). That is, the particles may exert a force on each
other, but no external forces are present. It is important to note the impact of
Newton’s third law on this analysis. If an internal force from particle 1 (for exam-
ple, a gravitational force) acts on particle 2, then there must be a second internal
force—equal in magnitude but opposite in direction—that particle 2 exerts on
particle 1.

Suppose that at some instant, the momentum of particle 1 is p1 and that of
particle 2 is p2 . Applying Newton’s second law to each particle, we can write

where F21 is the force exerted by particle 2 on particle 1 and F12 is the force ex-
erted by particle 1 on particle 2. Newton’s third law tells us that F12 and F21 are
equal in magnitude and opposite in direction. That is, they form an action–reac-
tion pair F12 � � F21 . We can express this condition as

or as

dp1

dt
�

dp2

dt
�

d
dt

 (p1 � p2) � 0

F21 � F12 � 0

  F21 �
dp1

dt
        and         F12 �

dp2

dt

�F � 0

�F �
dp
dt

�
d(mv)

dt

p1 � p 2 ,p1 � p 2 ,p1 � p 2 ,

Quick Quiz 9.1

1In this chapter, the terms momentum and linear momentum have the same meaning. Later, in Chapter
11, we shall use the term angular momentum when dealing with rotational motion.

6.2

Newton’s second law for a particle

p2 = m2v2

m2

m1

F21

F12

p1 = m1v1

Figure 9.1 At some instant, the
momentum of particle 1 is p1 �
m1v1 and the momentum of parti-
cle 2 is p2 � m 2v2 . Note that F12 �
� F21 . The total momentum of the
system ptot is equal to the vector
sum p1 � p2 .
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Because the time derivative of the total momentum ptot � p1 � p2 is zero, we con-
clude that the total momentum of the system must remain constant:

(9.4)

or, equivalently,

(9.5)

where pli and p2i are the initial values and p1f and p2f the final values of the mo-
mentum during the time interval dt over which the reaction pair interacts. Equa-
tion 9.5 in component form demonstrates that the total momenta in the x, y, and z
directions are all independently conserved:

(9.6)

This result, known as the law of conservation of linear momentum, can be ex-
tended to any number of particles in an isolated system. It is considered one of the
most important laws of mechanics. We can state it as follows:

�
system

 pix � �
system

 pf x  �
system

 piy � �
system

 pf y  �
system

 piz � �
system

 pf z

p1i � p2i � p1f � p2f

ptot � �
system

 p � p1 � p2 � constant

Whenever two or more particles in an isolated system interact, the total momen-
tum of the system remains constant.

This law tells us that the total momentum of an isolated system at all times
equals its initial momentum.

Notice that we have made no statement concerning the nature of the forces
acting on the particles of the system. The only requirement is that the forces must
be internal to the system.

Your physical education teacher throws a baseball to you at a certain speed, and you catch
it. The teacher is next going to throw you a medicine ball whose mass is ten times the mass
of the baseball. You are given the following choices: You can have the medicine ball thrown
with (a) the same speed as the baseball, (b) the same momentum, or (c) the same kinetic
energy. Rank these choices from easiest to hardest to catch.

Quick Quiz 9.2

The Floating AstronautEXAMPLE 9.1
A SkyLab astronaut discovered that while concentrating on
writing some notes, he had gradually floated to the middle of
an open area in the spacecraft. Not wanting to wait until he
floated to the opposite side, he asked his colleagues for a
push. Laughing at his predicament, they decided not to help,
and so he had to take off his uniform and throw it in one di-
rection so that he would be propelled in the opposite direc-
tion. Estimate his resulting velocity.

Solution We begin by making some reasonable guesses of
relevant data. Let us assume we have a 70-kg astronaut who
threw his 1-kg uniform at a speed of 20 m/s. For conve-

Conservation of momentum

Figure 9.2 A hapless astronaut has discarded his uniform to get
somewhere.

v2fv1f
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IMPULSE AND MOMENTUM
As we have seen, the momentum of a particle changes if a net force acts on the
particle. Knowing the change in momentum caused by a force is useful in solving
some types of problems. To begin building a better understanding of this impor-
tant concept, let us assume that a single force F acts on a particle and that this
force may vary with time. According to Newton’s second law, or

(9.7)

We can integrate2 this expression to find the change in the momentum of a parti-
cle when the force acts over some time interval. If the momentum of the particle

dp � F dt

F � dp/dt,

9.2

Breakup of a Kaon at RestEXAMPLE 9.2
The important point behind this problem is that even though
it deals with objects that are very different from those in the
preceding example, the physics is identical: Linear momen-
tum is conserved in an isolated system.

One type of nuclear particle, called the neutral kaon (K0),
breaks up into a pair of other particles called pions (�� and
��) that are oppositely charged but equal in mass, as illus-
trated in Figure 9.3. Assuming the kaon is initially at rest,
prove that the two pions must have momenta that are equal
in magnitude and opposite in direction.

Solution The breakup of the kaon can be written

If we let p� be the momentum of the positive pion and p�

the momentum of the negative pion, the final momentum of
the system consisting of the two pions can be written

Because the kaon is at rest before the breakup, we know that
pi � 0. Because momentum is conserved, so that

or
p� � �p�

p� � p� � 0,
pi � pf � 0,

pf � p� � p�

K0 9: �� � ��

6.3
&
6.4

Figure 9.3 A kaon at rest breaks up spontaneously into a pair of
oppositely charged pions. The pions move apart with momenta that
are equal in magnitude but opposite in direction.

nience, we set the positive direction of the x axis to be the di-
rection of the throw (Fig. 9.2). Let us also assume that the x
axis is tangent to the circular path of the spacecraft.

We take the system to consist of the astronaut and the uni-
form. Because of the gravitational force (which keeps the as-
tronaut, his uniform, and the entire spacecraft in orbit), the
system is not really isolated. However, this force is directed
perpendicular to the motion of the system. Therefore, mo-
mentum is constant in the x direction because there are no
external forces in this direction.

The total momentum of the system before the throw is
zero Therefore, the total momentum af-
ter the throw must be zero; that is,

m1v1f � m2v2f � 0

(m1v1i � m2v2i � 0).

With m/s, and kg, solving for
v1f , we find the recoil velocity of the astronaut to be

The negative sign for v1f indicates that the astronaut is mov-
ing to the left after the throw, in the direction opposite the
direction of motion of the uniform, in accordance with New-
ton’s third law. Because the astronaut is much more massive
than his uniform, his acceleration and consequent velocity
are much smaller than the acceleration and velocity of the
uniform.

�0.3i m/sv1f � �
m2

m1
 v2f � �� 1 kg

70 kg �(20i m/s) �

m2 � 1v2f � 20im1 � 70 kg,

Κ
Before
decay

(at rest)

p+p–

π– π+

After decay

π π

0

2Note that here we are integrating force with respect to time. Compare this with our efforts in Chapter 7,
where we integrated force with respect to position to express the work done by the force.
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changes from pi at time ti to pf at time tf , integrating Equation 9.7 gives

(9.8)

To evaluate the integral, we need to know how the force varies with time. The
quantity on the right side of this equation is called the impulse of the force F act-
ing on a particle over the time interval Impulse is a vector defined by

(9.9)I � �tf

ti

 F dt � 	p

	t � tf � ti .

	p � pf � pi � �tf

ti
 F dt

The impulse of the force F acting on a particle equals the change in the mo-
mentum of the particle caused by that force.

This statement, known as the impulse–momentum theorem,3 is equivalent to
Newton’s second law. From this definition, we see that impulse is a vector quantity
having a magnitude equal to the area under the force–time curve, as described in
Figure 9.4a. In this figure, it is assumed that the force varies in time in the general
manner shown and is nonzero in the time interval The direction of
the impulse vector is the same as the direction of the change in momentum. Im-
pulse has the dimensions of momentum—that is, ML/T. Note that impulse is not
a property of a particle; rather, it is a measure of the degree to which an external
force changes the momentum of the particle. Therefore, when we say that an im-
pulse is given to a particle, we mean that momentum is transferred from an exter-
nal agent to that particle.

Because the force imparting an impulse can generally vary in time, it is conve-
nient to define a time-averaged force

(9.10)

where (This is an application of the mean value theorem of calculus.)
Therefore, we can express Equation 9.9 as

(9.11)

This time-averaged force, described in Figure 9.4b, can be thought of as the con-
stant force that would give to the particle in the time interval 	t the same impulse
that the time-varying force gives over this same interval.

In principle, if F is known as a function of time, the impulse can be calculated
from Equation 9.9. The calculation becomes especially simple if the force acting
on the particle is constant. In this case, and Equation 9.11 becomes

(9.12)

In many physical situations, we shall use what is called the impulse approxi-
mation, in which we assume that one of the forces exerted on a particle acts
for a short time but is much greater than any other force present. This ap-
proximation is especially useful in treating collisions in which the duration of the

I � F 	t

F � F

I � F 	t

	t � tf � ti .

F �
1
	t
�tf

t i

 F dt

	t � tf � ti .

Impulse–momentum theorem

Impulse of a force

3Although we assumed that only a single force acts on the particle, the impulse–momentum theorem is
valid when several forces act; in this case, we replace F in Equation 9.9 with �F.

t i t f

t i

F

(a)

t f
t

F

(b)

t

F

Area = F∆t

Figure 9.4 (a) A force acting on
a particle may vary in time. The im-
pulse imparted to the particle by
the force is the area under the
force versus time curve. (b) In the
time interval 	t, the time-averaged
force (horizontal dashed line)
gives the same impulse to a particle
as does the time-varying force de-
scribed in part (a).



9.2 Impulse and Momentum 257

collision is very short. When this approximation is made, we refer to the force as
an impulsive force. For example, when a baseball is struck with a bat, the time of the
collision is about 0.01 s and the average force that the bat exerts on the ball in this
time is typically several thousand newtons. Because this is much greater than the
magnitude of the gravitational force, the impulse approximation justifies our ig-
noring the weight of the ball and bat. When we use this approximation, it is impor-
tant to remember that pi and pf represent the momenta immediately before and af-
ter the collision, respectively. Therefore, in any situation in which it is proper to
use the impulse approximation, the particle moves very little during the collision.

Two objects are at rest on a frictionless surface. Object 1 has a greater mass than object 2.
When a force is applied to object 1, it accelerates through a distance d. The force is re-
moved from object 1 and is applied to object 2. At the moment when object 2 has acceler-
ated through the same distance d, which statements are true? (a) (b) 
(c) (d) (e) (f) K1 � K2 .K1 � K2 ,K1 � K2 ,p 1 � p 2 ,

p 1 � p 2 ,p 1 � p 2 ,

Quick Quiz 9.3

During the brief time the club is in contact with the ball, the ball gains momentum as a result of
the collision, and the club loses the same amount of momentum.

QuickLab
If you can find someone willing, play
catch with an egg. What is the best
way to move your hands so that the
egg does not break when you change
its momentum to zero?

Teeing OffEXAMPLE 9.3
the club loses contact with the ball as the ball starts on its tra-
jectory, and � to denote its landing. Neglecting air resis-
tance, we can use Equation 4.14 for the range of a projectile:

Let us assume that the launch angle 
B is 45°, the angle that
provides the maximum range for any given launch velocity.
This assumption gives sin 2
B � 1, and the launch velocity of

R � xC �
v B 

2

g
 sin 2
 B

A golf ball of mass 50 g is struck with a club (Fig. 9.5). The
force exerted on the ball by the club varies from zero, at the in-
stant before contact, up to some maximum value (at which the
ball is deformed) and then back to zero when the ball leaves
the club. Thus, the force–time curve is qualitatively described
by Figure 9.4. Assuming that the ball travels 200 m, estimate the
magnitude of the impulse caused by the collision.

Solution Let us use � to denote the moment when the
club first contacts the ball, � to denote the moment when
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How Good Are the Bumpers?EXAMPLE 9.4
The initial and final momenta of the automobile are

Hence, the impulse is

The average force exerted on the automobile is

1.76 � 105i NF �
	p
	t

�
2.64 � 104 i kg�m/s

0.150 s
�

2.64 � 104i kg�m/s I �

  � (�2.25 � 104i kg�m/s) 

I � 	p � pf � pi � 0.39 � 104i kg�m/s

pf � mvf � (1 500 kg)(2.60 i m/s) � 0.39 � 104i kg�m/s 

pi � mvi � (1 500 kg)(�15.0i m/s) � �2.25 � 104i kg�m/s

In a particular crash test, an automobile of mass 1 500 kg col-
lides with a wall, as shown in Figure 9.6. The initial and final
velocities of the automobile are m/s and

m/s, respectively. If the collision lasts for 0.150 s,
find the impulse caused by the collision and the average
force exerted on the automobile.

Solution Let us assume that the force exerted on the car
by the wall is large compared with other forces on the car so
that we can apply the impulse approximation. Furthermore,
we note that the force of gravity and the normal force ex-
erted by the road on the car are perpendicular to the motion
and therefore do not affect the horizontal momentum.

vf � 2.60i
vi � �15.0i

Figure 9.6 (a) This car’s momentum
changes as a result of its collision with
the wall. (b) In a crash test, much of the
car’s initial kinetic energy is transformed
into energy used to damage the car.

Figure 9.5 A golf ball being struck by a club. (© Harold E. Edgerton/
Courtesy of Palm Press, Inc.)

the ball is

Considering the time interval for the collision, 
and for the ball. Hence, the magnitude of the im-
pulse imparted to the ball is

Exercise If the club is in contact with the ball for a time of
4.5 � 10�4 s, estimate the magnitude of the average force ex-
erted by the club on the ball.

Answer 4.9 � 103 N, a value that is extremely large when
compared with the weight of the ball, 0.49 N.

2.2 kg�m/s�

I � 	p � mv B � mvA � (50 � 10�3 kg)(44 m/s) � 0

vf � v B

vi � vA � 0

v B � √xCg � √(200 m)(9.80 m/s2) � 44 m/s

Before

After

2.60 m/s

–15.0 m/s

(a) (b)
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Rank an automobile dashboard, seatbelt, and airbag in terms of (a) the impulse and 
(b) the average force they deliver to a front-seat passenger during a collision.

COLLISIONS
In this section we use the law of conservation of linear momentum to describe
what happens when two particles collide. We use the term collision to represent
the event of two particles’ coming together for a short time and thereby producing
impulsive forces on each other. These forces are assumed to be much greater
than any external forces present.

A collision may entail physical contact between two macroscopic objects, as de-
scribed in Figure 9.7a, but the notion of what we mean by collision must be gener-
alized because “physical contact” on a submicroscopic scale is ill-defined and
hence meaningless. To understand this, consider a collision on an atomic scale
(Fig. 9.7b), such as the collision of a proton with an alpha particle (the nucleus of
a helium atom). Because the particles are both positively charged, they never
come into physical contact with each other; instead, they repel each other because
of the strong electrostatic force between them at close separations. When two par-
ticles 1 and 2 of masses m1 and m2 collide as shown in Figure 9.7, the impulsive
forces may vary in time in complicated ways, one of which is described in Figure
9.8. If F21 is the force exerted by particle 2 on particle 1, and if we assume that no
external forces act on the particles, then the change in momentum of particle 1
due to the collision is given by Equation 9.8:

Likewise, if F12 is the force exerted by particle 1 on particle 2, then the change in
momentum of particle 2 is

From Newton’s third law, we conclude that

Because the total momentum of the system is we conclude that
the change in the momentum of the system due to the collision is zero:

This is precisely what we expect because no external forces are acting on the sys-
tem (see Section 9.2). Because the impulsive forces are internal, they do not
change the total momentum of the system (only external forces can do that).

psystem � p1 � p2 � constant

psystem � p1 � p2 ,

	p1 � 	p2 � 0 

 	p1 � �	p2

	p2 � �tf

ti
 F12 dt

	p1 � �tf

ti
 F21 dt

9.3

Quick Quiz 9.4

signs of the velocities indicated the reversal of directions.
What would the mathematics be describing if both the initial
and final velocities had the same sign?

Note that the magnitude of this force is large compared with
the weight of the car ( N), which justifies
our initial assumption. Of note in this problem is how the

mg � 1.47 � 104

p

+

+ +

He

(b)

m2
m1

(a)

F12F21

4

t

F12

F21

F

Figure 9.8 The impulse force as
a function of time for the two col-
liding particles described in Figure
9.7a. Note that F12 � � F21.

Figure 9.7 (a) The collision be-
tween two objects as the result of
direct contact. (b) The “collision”
between two charged particles.

6.5
&
6.6



As a ball falls toward the Earth, the ball’s momentum increases because its speed increases.
Does this mean that momentum is not conserved in this situation?

A skater is using very low-friction rollerblades. A friend throws a Frisbee straight at her. In
which case does the Frisbee impart the greatest impulse to the skater: (a) she catches the
Frisbee and holds it, (b) she catches it momentarily but drops it, (c) she catches it and at
once throws it back to her friend?

ELASTIC AND INELASTIC COLLISIONS
IN ONE DIMENSION

As we have seen, momentum is conserved in any collision in which external forces
are negligible. In contrast, kinetic energy may or may not be constant, depend-
ing on the type of collision. In fact, whether or not kinetic energy is the same before
and after the collision is used to classify collisions as being either elastic or inelastic.

An elastic collision between two objects is one in which total kinetic energy (as
well as total momentum) is the same before and after the collision. Billiard-ball collisions
and the collisions of air molecules with the walls of a container at ordinary temper-
atures are approximately elastic. Truly elastic collisions do occur, however, between
atomic and subatomic particles. Collisions between certain objects in the macro-
scopic world, such as billiard-ball collisions, are only approximately elastic because
some deformation and loss of kinetic energy take place.

9.4

Quick Quiz 9.6

Quick Quiz 9.5
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Therefore, we conclude that the total momentum of an isolated system just
before a collision equals the total momentum of the system just after the
collision.

Carry Collision Insurance!EXAMPLE 9.5
the entangled cars is

Equating the momentum before to the momentum after
and solving for vf , the final velocity of the entangled cars, we
have

The direction of the final velocity is the same as the velocity
of the initially moving car.

Exercise What would be the final speed if the two cars each
had a mass of 900 kg?

Answer 10.0 m/s.

6.67 m/svf �
pi

m1 � m2
�

1.80 � 104 kg�m/s
2 700 kg

�

pf � (m1 � m2)vf � (2 700 kg)vf

A car of mass 1800 kg stopped at a traffic light is struck from
the rear by a 900-kg car, and the two become entangled. If
the smaller car was moving at 20.0 m/s before the collision,
what is the velocity of the entangled cars after the collision?

Solution We can guess that the final speed is less than
20.0 m/s, the initial speed of the smaller car. The total mo-
mentum of the system (the two cars) before the collision
must equal the total momentum immediately after the colli-
sion because momentum is conserved in any type of collision.
The magnitude of the total momentum before the collision is
equal to that of the smaller car because the larger car is ini-
tially at rest:

After the collision, the magnitude of the momentum of

pi � m1v1i � (900 kg)(20.0 m/s) � 1.80 � 104 kg�m/s

Elastic collision

Momentum is conserved for any
collision

When the bowling ball and pin col-
lide, part of the ball’s momentum
is transferred to the pin. Conse-
quently, the pin acquires momen-
tum and kinetic energy, and the
ball loses momentum and kinetic
energy. However, the total momen-
tum of the system (ball and pin) re-
mains constant.
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Inelastic collision

Figure 9.9 Schematic representa-
tion of a perfectly inelastic head-on
collision between two particles: 
(a) before collision and (b) after
collision.

An inelastic collision is one in which total kinetic energy is not the same before and
after the collision (even though momentum is constant). Inelastic collisions are of two
types. When the colliding objects stick together after the collision, as happens
when a meteorite collides with the Earth, the collision is called perfectly inelastic.
When the colliding objects do not stick together, but some kinetic energy is lost, as
in the case of a rubber ball colliding with a hard surface, the collision is called in-
elastic (with no modifying adverb). For example, when a rubber ball collides with
a hard surface, the collision is inelastic because some of the kinetic energy of the
ball is lost when the ball is deformed while it is in contact with the surface.

In most collisions, kinetic energy is not the same before and after the collision
because some of it is converted to internal energy, to elastic potential energy when
the objects are deformed, and to rotational energy. Elastic and perfectly inelastic
collisions are limiting cases; most collisions fall somewhere between them.

In the remainder of this section, we treat collisions in one dimension and con-
sider the two extreme cases—perfectly inelastic and elastic collisions. The impor-
tant distinction between these two types of collisions is that momentum is con-
stant in all collisions, but kinetic energy is constant only in elastic
collisions.

Perfectly Inelastic Collisions

Consider two particles of masses m1 and m2 moving with initial velocities v1i and v2i
along a straight line, as shown in Figure 9.9. The two particles collide head-on, 
stick together, and then move with some common velocity vf after the collision. 
Because momentum is conserved in any collision, we can say that the total momen-
tum before the collision equals the total momentum of the composite system after
the collision:

(9.13)

(9.14)

Which is worse, crashing into a brick wall at 40 mi/h or crashing head-on into an oncoming
car that is identical to yours and also moving at 40 mi/h?

Elastic Collisions

Now consider two particles that undergo an elastic head-on collision (Fig. 9.10).
In this case, both momentum and kinetic energy are conserved; therefore, we have

(9.15)

(9.16)

Because all velocities in Figure 9.10 are either to the left or the right, they can be
represented by the corresponding speeds along with algebraic signs indicating di-
rection. We shall indicate v as positive if a particle moves to the right and negative

1
2m1v1i 

2 � 1
2m2v2i 

2 � 1
2m1v1f 

2 � 1
2m2v2f 

2

m1v1i � m2v2i � m1v1f � m2v2f 

Quick Quiz 9.7

 vf �
m1v1i � m2v2i

m1 � m2

m1v1i � m2v2i � (m1 � m2)vf Before collision

(a)

m1 m2
v1i v2i

After collision

(b)

vf
m1 + m2

6.6

QuickLab
Hold a Ping-Pong ball or tennis ball
on top of a basketball. Drop them
both at the same time so that the bas-
ketball hits the floor, bounces up, and
hits the smaller falling ball. What
happens and why?
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if it moves to the left. As has been seen in earlier chapters, it is common practice
to call these values “speed” even though this term technically refers to the magni-
tude of the velocity vector, which does not have an algebraic sign.

In a typical problem involving elastic collisions, there are two unknown quanti-
ties, and Equations 9.15 and 9.16 can be solved simultaneously to find these. An al-
ternative approach, however—one that involves a little mathematical manipula-
tion of Equation 9.16—often simplifies this process. To see how, let us cancel the
factor in Equation 9.16 and rewrite it as

and then factor both sides:

(9.17)

Next, let us separate the terms containing m1 and m2 in Equation 9.15 to get

(9.18)

To obtain our final result, we divide Equation 9.17 by Equation 9.18 and get

(9.19)

This equation, in combination with Equation 9.15, can be used to solve problems
dealing with elastic collisions. According to Equation 9.19, the relative speed of
the two particles before the collision equals the negative of their relative
speed after the collision, 

Suppose that the masses and initial velocities of both particles are known.
Equations 9.15 and 9.19 can be solved for the final speeds in terms of the initial
speeds because there are two equations and two unknowns:

(9.20)

(9.21)

It is important to remember that the appropriate signs for v1i and v2i must be in-
cluded in Equations 9.20 and 9.21. For example, if particle 2 is moving to the left
initially, then v2i is negative.

Let us consider some special cases: If m1 � m2 , then  and 
That is, the particles exchange speeds if they have equal masses. This is approxi-
mately what one observes in head-on billiard ball collisions—the cue ball stops,
and the struck ball moves away from the collision with the same speed that the cue
ball had.

If particle 2 is initially at rest, then and Equations 9.20 and 9.21 be-
come

(9.22)

(9.23)

If m1 is much greater than m2 and , we see from Equations 9.22 and
9.23 that and That is, when a very heavy particle collides head-
on with a very light one that is initially at rest, the heavy particle continues its mo-

v2f � 2v1i .v1f � v1i

v2i � 0

v2f � � 2m1

m1 � m2
�v1i

v1f � � m1 � m2

m1 � m2
�v1i

v2i � 0

v2f � v1i .v1f � v2i

v2f � � 2m1

m1 � m2
�v1i � � m2 � m1

m1 � m2
�v2i

v1f � � m1 � m2

m1 � m2
�v1i � � 2m2

m1 � m2
�v2i

�(v1f � v2f ).
v1i � v2i

v1i � v2i � �(v1f � v2f)

v1i � v1f � v2f � v2i 

m1(v1i � v1f) � m2(v2f � v2i)

m1(v1i � v1f)(v1i � v1f) � m2(v2f � v2i)(v2f � v2i)

m1(v1i 

2 � v1f 

2) � m2(v2f 

2 � v2i 

2)

1
2

Elastic collision: particle 2 initially
at rest

Elastic collision: relationships
between final and initial velocities

Figure 9.10 Schematic represen-
tation of an elastic head-on colli-
sion between two particles: (a) be-
fore collision and (b) after
collision.

m1 m2
v1i

Before collision

v2i

v1f v2f

After collision

(a)

(b)
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tion unaltered after the collision, and the light particle rebounds with a speed
equal to about twice the initial speed of the heavy particle. An example of such a
collision would be that of a moving heavy atom, such as uranium, with a light
atom, such as hydrogen.

If m2 is much greater than m1 and particle 2 is initially at rest, then 
and That is, when a very light particle collides head-on with a very
heavy particle that is initially at rest, the light particle has its velocity reversed and
the heavy one remains approximately at rest.

v2f � v2i � 0.
v1f � �v1i

The Ballistic PendulumEXAMPLE 9.6
Exercise In a ballistic pendulum experiment, suppose that
h � 5.00 cm, m1 � 5.00 g, and m2 � 1.00 kg. Find (a) the
initial speed of the bullet and (b) the loss in mechanical en-
ergy due to the collision.

Answer 199 m/s; 98.5 J.

The ballistic pendulum (Fig. 9.11) is a system used to mea-
sure the speed of a fast-moving projectile, such as a bullet.
The bullet is fired into a large block of wood suspended from
some light wires. The bullet embeds in the block, and the en-
tire system swings through a height h. The collision is per-
fectly inelastic, and because momentum is conserved, Equa-
tion 9.14 gives the speed of the system right after the
collision, when we assume the impulse approximation. If we
call the bullet particle 1 and the block particle 2, the total ki-
netic energy right after the collision is

(1)

With Equation 9.14 becomes

(2)

Substituting this value of vf into (1) gives

Note that this kinetic energy immediately after the collision is
less than the initial kinetic energy of the bullet. In all the en-
ergy changes that take place after the collision, however, the
total amount of mechanical energy remains constant; thus,
we can say that after the collision, the kinetic energy of the
block and bullet at the bottom is transformed to potential en-
ergy at the height h:

Solving for v1i , we obtain

This expression tells us that it is possible to obtain the initial
speed of the bullet by measuring h and the two masses.

Because the collision is perfectly inelastic, some mechani-
cal energy is converted to internal energy and it would be in-
correct to equate the initial kinetic energy of the incoming 
bullet to the final gravitational potential energy of the
bullet–block combination.

v1i � � m1 � m2

m1
�√2gh

m1 

2v1i 

2

2(m1 � m2)
� (m1 � m2)gh

Kf �
m1 

2v1i 

2

2(m1 � m2)

vf �
m1v1i

m1 � m2

v2i � 0,

Kf � 1
2(m1 � m2)vf 

2

m1
v1i vf

m1 + m2

m2 h

(a)

Figure 9.11 (a) Diagram of a ballistic pendulum. Note that v1i is
the velocity of the bullet just before the collision and vf � v1f � v2f
is the velocity of the bullet � block system just after the perfectly in-
elastic collision. (b) Multiflash photograph of a ballistic pendulum
used in the laboratory.

(b)
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A Two-Body Collision with a SpringEXAMPLE 9.7
Solution To determine the distance that the spring is
compressed, shown as x in Figure 9.12b, we can use the con-
cept of conservation of mechanical energy because no fric-
tion or other nonconservative forces are acting on the system.
Thus, we have

Substituting the given values and the result to part (a) into
this expression gives

It is important to note that we needed to use the principles of
both conservation of momentum and conservation of me-
chanical energy to solve the two parts of this problem.

Exercise Find the velocity of block 1 and the compression
in the spring at the instant that block 2 is at rest.

Answer 0.719 m/s to the right; 0.251 m.

0.173 mx �

1
2m1v1i 

2 � 1
2m2v2i 

2 � 1
2m1v1f 

2 � 1
2m2v2f 

2 � 1
2kx2

A block of mass m1 � 1.60 kg initially moving to the right with
a speed of 4.00 m/s on a frictionless horizontal track collides
with a spring attached to a second block of mass m2 � 2.10 kg
initially moving to the left with a speed of 2.50 m/s, as shown
in Figure 9.12a. The spring constant is 600 N/m. (a) At the in-
stant block 1 is moving to the right with a speed of 3.00 m/s, 
as in Figure 9.12b, determine the velocity of block 2.

Solution First, note that the initial velocity of block 2 is
� 2.50 m/s because its direction is to the left. Because mo-
mentum is conserved for the system of two blocks, we have

The negative value for v2f means that block 2 is still moving to
the left at the instant we are considering.

(b) Determine the distance the spring is compressed at
that instant.

�1.74 m/s  v2f �

 � (1.60 kg)(3.00 m/s) � (2.10 kg)v2f

(1.60 kg)(4.00 m/s) � (2.10 kg)(�2.50 m/s) 

 m1v1i � m2v2i � m1v1f � m2v2f 

Slowing Down Neutrons by CollisionsEXAMPLE 9.8
Solution Let us assume that the moderator nucleus of
mass mm is at rest initially and that a neutron of mass mn and
initial speed vni collides with it head-on. 

Because these are elastic collisions, the first thing we do is
recognize that both momentum and kinetic energy are con-
stant. Therefore, Equations 9.22 and 9.23 can be applied to
the head-on collision of a neutron with a moderator nucleus.
We can represent this process by a drawing such as Figure
9.10.

The initial kinetic energy of the neutron is

In a nuclear reactor, neutrons are produced when a 
atom splits in a process called fission. These neutrons are
moving at about 107 m/s and must be slowed down to about
103 m/s before they take part in another fission event. They
are slowed down by being passed through a solid or liquid
material called a moderator. The slowing-down process involves
elastic collisions. Let us show that a neutron can lose most of
its kinetic energy if it collides elastically with a moderator
containing light nuclei, such as deuterium (in “heavy water,”
D2O) or carbon (in graphite).

 92
235U

x

k

v1f = (3.00i) m/s v2f

m1
m2m1

m2

k

v1i = (4.00i) m/s v2i = (–2.50i) m/s

(a)

(b)

Figure 9.12
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An ingenious device that illustrates conservation of momentum and kinetic energy is shown
in Figure 9.13a. It consists of five identical hard balls supported by strings of equal lengths.
When ball 1 is pulled out and released, after the almost-elastic collision between it and ball
2, ball 5 moves out, as shown in Figure 9.13b. If balls 1 and 2 are pulled out and released,
balls 4 and 5 swing out, and so forth. Is it ever possible that, when ball 1 is released, balls 4
and 5 will swing out on the opposite side and travel with half the speed of ball 1, as in Fig-
ure 9.13c?

Quick Quiz 9.8

Figure 9.13 An executive stress reliever.

Hence, the fraction fm of the initial kinetic energy transferred
to the moderator nucleus is

(2)

Because the total kinetic energy of the system is conserved,
(2) can also be obtained from (1) with the condition that

so that 
Suppose that heavy water is used for the moderator. For

collisions of the neutrons with deuterium nuclei in D2O
and That is, 89% of the

neutron’s kinetic energy is transferred to the deuterium nu-
cleus. In practice, the moderator efficiency is reduced be-
cause head-on collisions are very unlikely.

How do the results differ when graphite (12C, as found in
pencil lead) is used as the moderator?

fm � 8/9.fn � 1/9(mm � 2mn),

fm � 1 � fn .fn � fm � 1,

fm �
Kmf

Kni
�

4mnmm

(mn � mm)2

Kmf � 1
2 mmvmf 

2 �
2mn 

2mm

(mn � mm)2  vni 

2

After the collision, the neutron has kinetic energy 
and we can substitute into this the value for vnf given by 
Equation 9.22:

Therefore, the fraction fn of the initial kinetic energy pos-
sessed by the neutron after the collision is

(1)

From this result, we see that the final kinetic energy of the
neutron is small when mm is close to mn and zero when mn �
mm .

We can use Equation 9.23, which gives the final speed of
the particle that was initially at rest, to calculate the kinetic
energy of the moderator nucleus after the collision:

fn �
Knf

Kni
� � mn � mm

mn � mm
�

2

Knf � 1
2 mnvnf 

2 �
mn

2
 � mn � mm

mn � mm
�

2
vni 

2

1
2 mnvnf 

2,

Kni � 1
2 mnvni 

2

This can happen.

(b)

vv

4 5

2 3 4 5 1 2 3 4

1 5

2 3 4 5 1 2 3

1

v/2v
Can this happen?

(c)

(a)
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TWO-DIMENSIONAL COLLISIONS
In Sections 9.1 and 9.3, we showed that the momentum of a system of two particles
is constant when the system is isolated. For any collision of two particles, this result
implies that the momentum in each of the directions x, y, and z is constant. How-
ever, an important subset of collisions takes place in a plane. The game of billiards
is a familiar example involving multiple collisions of objects moving on a two-
dimensional surface. For such two-dimensional collisions, we obtain two compo-
nent equations for conservation of momentum:

Let us consider a two-dimensional problem in which particle 1 of mass m1 col-
lides with particle 2 of mass m2 , where particle 2 is initially at rest, as shown in Fig-
ure 9.14. After the collision, particle 1 moves at an angle 
 with respect to the hori-
zontal and particle 2 moves at an angle � with respect to the horizontal. This is
called a glancing collision. Applying the law of conservation of momentum in com-
ponent form, and noting that the initial y component of the momentum of the
two-particle system is zero, we obtain

(9.24)

(9.25)

where the minus sign in Equation 9.25 comes from the fact that after the collision,
particle 2 has a y component of velocity that is downward. We now have two inde-
pendent equations. As long as no more than two of the seven quantities in Equa-
tions 9.24 and 9.25 are unknown, we can solve the problem.

If the collision is elastic, we can also use Equation 9.16 (conservation of kinetic
energy), with to give

(9.26)

Knowing the initial speed of particle 1 and both masses, we are left with four un-
knowns . Because we have only three equations, one of the four re-
maining quantities must be given if we are to determine the motion after the colli-
sion from conservation principles alone.

If the collision is inelastic, kinetic energy is not conserved and Equation 9.26
does not apply.

(v1f , v2f , 
, �)

1
2 m1v1i 

2 � 1
2 m1v1f 

2 � 1
2 m2v2f 

2

v2i � 0,

 0 � m1v1f sin 
 � m2v2f sin �

m1v1i � m1v1f cos 
 � m2v2f cos �

m1v1iy � m2v2iy � m1v1fy � m2v2fy

m1v1ix � m2v2ix � m1v1fx � m2v2 fx

9.5

(a) Before the collision

v1i

(b) After the collision

θ

φ
v2f cos

v1f cos

v1f sin

v1f

v2f
–v2f sin

φ

φ

θ

θ

Figure 9.14 An elastic glancing collision between two particles.
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Problem-Solving Hints
Collisions
The following procedure is recommended when dealing with problems involv-
ing collisions between two objects:

• Set up a coordinate system and define your velocities with respect to that sys-
tem. It is usually convenient to have the x axis coincide with one of the ini-
tial velocities.

• In your sketch of the coordinate system, draw and label all velocity vectors
and include all the given information.

• Write expressions for the x and y components of the momentum of each ob-
ject before and after the collision. Remember to include the appropriate
signs for the components of the velocity vectors.

• Write expressions for the total momentum in the x direction before and af-
ter the collision and equate the two. Repeat this procedure for the total mo-
mentum in the y direction. These steps follow from the fact that, because
the momentum of the system is conserved in any collision, the total momen-
tum along any direction must also be constant. Remember, it is the momen-
tum of the system that is constant, not the momenta of the individual objects.

• If the collision is inelastic, kinetic energy is not conserved, and additional in-
formation is probably required. If the collision is perfectly inelastic, the final
velocities of the two objects are equal. Solve the momentum equations for
the unknown quantities.

• If the collision is elastic, kinetic energy is conserved, and you can equate the
total kinetic energy before the collision to the total kinetic energy after the
collision to get an additional relationship between the velocities.

Collision at an IntersectionEXAMPLE 9.9

Similarly, the total initial momentum of the system in the
y direction is that of the van, and the magnitude of this mo-
mentum is (2 500 kg)(20.0 m/s). Applying conservation of

A 1 500-kg car traveling east with a speed of 25.0 m/s collides
at an intersection with a 2 500-kg van traveling north at a
speed of 20.0 m/s, as shown in Figure 9.15. Find the direc-
tion and magnitude of the velocity of the wreckage after the
collision, assuming that the vehicles undergo a perfectly in-
elastic collision (that is, they stick together).

Solution Let us choose east to be along the positive x di-
rection and north to be along the positive y direction. Before
the collision, the only object having momentum in the x di-
rection is the car. Thus, the magnitude of the total initial mo-
mentum of the system (car plus van) in the x direction is

Let us assume that the wreckage moves at an angle 
 and
speed vf after the collision. The magnitude of the total mo-
mentum in the x direction after the collision is

Because the total momentum in the x direction is constant,
we can equate these two equations to obtain

(1) 3.75 � 104 kg�m/s � (4 000 kg)vf cos 


�pxf � (4 000 kg)vf cos 


�pxi � (1 500 kg)(25.0 m/s) � 3.75 � 104 kg�m/s

θ
(25.0i) m/s

y

x

vf

(20.0j) m/s

Figure 9.15 An eastbound car colliding with a northbound van.
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Proton – Proton CollisionEXAMPLE 9.10
Solving these three equations with three unknowns simulta-
neously gives

Note that 
 � � � 90°. This result is not accidental. When-
ever two equal masses collide elastically in a glancing
collision and one of them is initially at rest, their final
velocities are always at right angles to each other. The
next example illustrates this point in more detail.

53.0°  � �

2.11 � 105 m/sv2f �

2.80 � 105 m/sv1f �

Proton 1 collides elastically with proton 2 that is initially at
rest. Proton 1 has an initial speed of 3.50 � 105 m/s and
makes a glancing collision with proton 2, as was shown in Fig-
ure 9.14. After the collision, proton 1 moves at an angle of
37.0° to the horizontal axis, and proton 2 deflects at an angle
� to the same axis. Find the final speeds of the two protons
and the angle �.

Solution Because both particles are protons, we know that
m1 � m2 . We also know that 
 � 37.0° and 

m/s. Equations 9.24, 9.25, and 9.26 become

 v1f 

2 � v2f 

2 � (3.50 � 105 m/s)2

 v1f  sin 37.0° � v2f  sin � � 0 

v1f  cos 37.0° � v2f  cos � � 3.50 � 105 m/s 

105
v1i � 3.50 �

When this angle is substituted into (2), the value of vf is

It might be instructive for you to draw the momentum vectors
of each vehicle before the collision and the two vehicles to-
gether after the collision.

15.6 m/svf �
5.00 � 104 kg�m/s
(4 000 kg)sin 53.1°

�

53.1°  
 �
momentum to the y direction, we have

(2)

If we divide (2) by (1), we get

sin 
 

cos 
 
 �  tan 
 �

5.00 � 104

3.75 � 104 � 1.33 

5.00 � 104 kg�m/s � (4 000 kg)vf sin 


 (2 500 kg)(20.0 m/s) � (4 000 kg)vf sin 


 �pyi � �pyf 

Billiard Ball CollisionEXAMPLE 9.11
In a game of billiards, a player wishes to sink a target ball 2 in
the corner pocket, as shown in Figure 9.16. If the angle to the
corner pocket is 35°, at what angle 
 is the cue ball 1 de-
flected? Assume that friction and rotational motion are unim-
portant and that the collision is elastic.

Solution Because the target ball is initially at rest, conser-
vation of energy (Eq. 9.16) gives

But m1 � m2 , so that

(1)

Applying conservation of momentum to the two-dimensional
collision gives

(2)

Note that because m1 � m2 , the masses also cancel in (2). If
we square both sides of (2) and use the definition of the dot

v1i � v1f � v2f

v1i 

2 � v1f 

2 � v2f 

2

1
2 m1v1i 

2 � 1
2 m1v1f 

2 � 1
2 m2v2f 

2

Cue ball

v2f

v1f

v1i

θ

y

x
35°

Figure 9.16
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THE CENTER OF MASS
In this section we describe the overall motion of a mechanical system in terms of a
special point called the center of mass of the system. The mechanical system can
be either a system of particles, such as a collection of atoms in a container, or an
extended object, such as a gymnast leaping through the air. We shall see that the
center of mass of the system moves as if all the mass of the system were concen-
trated at that point. Furthermore, if the resultant external force on the system is
�Fext and the total mass of the system is M, the center of mass moves with an accel-
eration given by a � �Fext /M. That is, the system moves as if the resultant exter-
nal force were applied to a single particle of mass M located at the center of mass.
This behavior is independent of other motion, such as rotation or vibration of the
system. This result was implicitly assumed in earlier chapters because many exam-
ples referred to the motion of extended objects that were treated as particles.

Consider a mechanical system consisting of a pair of particles that have differ-
ent masses and are connected by a light, rigid rod (Fig. 9.17). One can describe the
position of the center of mass of a system as being the average position of the system’s
mass. The center of mass of the system is located somewhere on the line joining the

9.6

This result shows that whenever two equal masses undergo a
glancing elastic collision and one of them is initially at rest,
they move at right angles to each other after the collision.
The same physics describes two very different situations, pro-
tons in Example 9.10 and billiard balls in this example.

55°
 � 35° � 90°  or  
 �

 0 � cos(
 � 35°) product of two vectors from Section 7.2, we get

Because the angle between v1f and v2f is 
 � 35°,
cos(
 � 35°), and so

(3)

Subtracting (1) from (3) gives

 0 � 2v1f v2f cos(
 � 35°) 

v1i 

2 � v1f 

2 � v2f 

2 � 2v1f v2f cos(
 � 35°)

v1f � v2f � v1f v2f

v1i 

2 � (v1f � v2f) � (v1f � v2f) � v1f 

2 � v2f 

2 � 2v1f � v2f

Figure 9.17 Two particles of un-
equal mass are connected by a
light, rigid rod. (a) The system ro-
tates clockwise when a force is ap-
plied between the less massive par-
ticle and the center of mass. 
(b) The system rotates counter-
clockwise when a force is applied
between the more massive particle
and the center of mass. (c) The sys-
tem moves in the direction of the
force without rotating when a force
is applied at the center of mass.

CM

(a)

(b)

(c)

CM

CM

This multiflash photograph shows that as the acrobat executes a somersault, his center of mass
follows a parabolic path, the same path that a particle would follow.

6.7



270 C H A P T E R  9 Linear Momentum and Collisions

particles and is closer to the particle having the larger mass. If a single force is ap-
plied at some point on the rod somewhere between the center of mass and the less
massive particle, the system rotates clockwise (see Fig. 9.17a). If the force is applied
at a point on the rod somewhere between the center of mass and the more massive
particle, the system rotates counterclockwise (see Fig. 9.17b). If the force is applied
at the center of mass, the system moves in the direction of F without rotating (see
Fig. 9.17c). Thus, the center of mass can be easily located.

The center of mass of the pair of particles described in Figure 9.18 is located
on the x axis and lies somewhere between the particles. Its x coordinate is

(9.27)

For example, if and we find that That is, the
center of mass lies closer to the more massive particle. If the two masses are equal,
the center of mass lies midway between the particles.

We can extend this concept to a system of many particles in three dimensions.
The x coordinate of the center of mass of n particles is defined to be

(9.28)

where xi is the x coordinate of the ith particle. For convenience, we express the to-
tal mass as where the sum runs over all n particles. The y and z coordi-
nates of the center of mass are similarly defined by the equations

(9.29)

The center of mass can also be located by its position vector, rCM . The carte-
sian coordinates of this vector are xCM , yCM , and zC M , defined in Equations 9.28
and 9.29. Therefore,

(9.30)

where ri is the position vector of the ith particle, defined by

Although locating the center of mass for an extended object is somewhat
more cumbersome than locating the center of mass of a system of particles, the ba-
sic ideas we have discussed still apply. We can think of an extended object as a sys-
tem containing a large number of particles (Fig. 9.19). The particle separation is
very small, and so the object can be considered to have a continuous mass distribu-
tion. By dividing the object into elements of mass 	mi , with coordinates xi , yi , zi ,
we see that the x coordinate of the center of mass is approximately

with similar expressions for yCM and zCM . If we let the number of elements n ap-
proach infinity, then xCM is given precisely. In this limit, we replace the sum by an

xCM �
�
i
xi 	mi

M

ri � xi i � yi j � zik

rCM �
�
i
miri

M
 

  �
�
i
mixi i � �

i
miyi j � �

i
mizik

M

rCM � xCMi � yCM j � zCMk 

yCM �
�
i
 miyi

M
  and  zCM �

�
i
 mizi

M

M � �
i
mi ,

xCM �
m1x1 � m2x2 � m3x3 � ��� � mnxn

m1 � m2 � m3 � ��� � mn
�

�
i
mixi

�
i
mi

xCM � 2
3d.m2 � 2m1 ,x2 � d,x1 � 0,

xCM �
m1x1 � m2x2

m1 � m2

Vector position of the center of
mass for a system of particles

Figure 9.18 The center of mass
of two particles of unequal mass on
the x axis is located at xCM , a point
between the particles, closer to the
one having the larger mass.

Figure 9.19 An extended object
can be considered a distribution of
small elements of mass 	mi . The
center of mass is located at the vec-
tor position rCM , which has coordi-
nates xCM , yCM , and zCM .

y

m1

x1

x 2

CM

m 2

x

x CM

y

x

z

ri

∆mi

rCM

CM
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integral and 	mi by the differential element dm:

(9.31)

Likewise, for yCM and zCM we obtain

(9.32)

We can express the vector position of the center of mass of an extended object
in the form

(9.33)

which is equivalent to the three expressions given by Equations 9.31 and 9.32.
The center of mass of any symmetric object lies on an axis of symmetry

and on any plane of symmetry.4 For example, the center of mass of a rod lies in
the rod, midway between its ends. The center of mass of a sphere or a cube lies at
its geometric center.

One can determine the center of mass of an irregularly shaped object by sus-
pending the object first from one point and then from another. In Figure 9.20, a
wrench is hung from point A, and a vertical line AB (which can be established with
a plumb bob) is drawn when the wrench has stopped swinging. The wrench is then
hung from point C, and a second vertical line CD is drawn. The center of mass is
halfway through the thickness of the wrench, under the intersection of these two
lines. In general, if the wrench is hung freely from any point, the vertical line
through this point must pass through the center of mass.

Because an extended object is a continuous distribution of mass, each small
mass element is acted upon by the force of gravity. The net effect of all these
forces is equivalent to the effect of a single force, Mg, acting through a special
point, called the center of gravity. If g is constant over the mass distribution,
then the center of gravity coincides with the center of mass. If an extended object
is pivoted at its center of gravity, it balances in any orientation.

If a baseball bat is cut at the location of its center of mass as shown in Figure 9.21, do the
two pieces have the same mass?

Quick Quiz 9.9

rCM �
1
M

 � r dm

yCM �
1
M

 �y dm  and  zCM �
1
M

 �z dm

xCM � lim
	mi:0

 
�
i
xi 	mi

M
�

1
M

 �x dm

4This statement is valid only for objects that have a uniform mass per unit volume.

A

B

C

A
B

C

D

Center of
mass

Figure 9.20 An experimental
technique for determining the cen-
ter of mass of a wrench. The
wrench is hung freely first from
point A and then from point C.
The intersection of the two lines
AB and CD locates the center of
mass.

Figure 9.21 A baseball bat cut at the location of its center of mass.

QuickLab
Cut a triangle from a piece of card-
board and draw a set of adjacent
strips inside it, parallel to one of the
sides. Put a dot at the approximate lo-
cation of the center of mass of each
strip and then draw a straight line
through the dots and into the angle
opposite your starting side. The cen-
ter of mass for the triangle must lie
on this bisector of the angle. Repeat
these steps for the other two sides.
The three angle bisectors you have
drawn will intersect at the center of
mass of the triangle. If you poke a
hole anywhere in the triangle and
hang the cardboard from a string at-
tached at that hole, the center of
mass will be vertically aligned with the
hole.
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The Center of Mass of Three ParticlesEXAMPLE 9.12
A system consists of three particles located as shown in Figure
9.22a. Find the center of mass of the system.

Solution We set up the problem by labeling the masses of
the particles as shown in the figure, with 
and Using the basic defining equations for the
coordinates of the center of mass and noting that 
we obtain

The position vector to the center of mass measured from the
origin is therefore

We can verify this result graphically by adding together
and dividing the vector sum by M, the

total mass. This is shown in Figure 9.22b.
m1r1 � m2r2 � m3r3

0.75i m � 1.0 j mrCM � xCMi � yCM j �

 �
4.0 kg�m

4.0 kg
� 1.0 m 

 �
(1.0 kg)(0) � (1.0 kg)(0) � (2.0 kg)(2.0 m)

4.0 kg
 

yCM �
�
i
 miyi

M
�

m1y1 � m2y2 � m3y3

m1 � m2 � m3
  

 �
3.0 kg�m

4.0 kg
� 0.75 m 

  �
(1.0 kg)(1.0 m) � (1.0 kg)(2.0 m) � (2.0 kg)(0 m)

1.0 kg � 1.0 kg � 2.0 kg

xCM �
�
i
 mixi

M
�

m1x1 � m2x2 � m3x3

m1 � m2 � m3
  

zCM � 0,
m3 � 2.0 kg.

m1 � m2 � 1.0 kg

The Center of Mass of a RodEXAMPLE 9.13
Because this reduces to

One can also use symmetry arguments to obtain the same re-
sult.

(b) Suppose a rod is nonuniform such that its mass per unit
length varies linearly with x according to the expression � �
�x, where � is a constant. Find the x coordinate of the center
of mass as a fraction of L.

Solution In this case, we replace dm by �dx where � is not
constant. Therefore, xCM is

L
2

xCM �
L2

2M
 � M

L � �

� � M/L,(a) Show that the center of mass of a rod of mass M and
length L lies midway between its ends, assuming the rod has a
uniform mass per unit length.

Solution The rod is shown aligned along the x axis in Fig-
ure 9.23, so that Furthermore, if we call the
mass per unit length � (this quantity is called the linear mass
density), then � � M/L for the uniform rod we assume here.
If we divide the rod into elements of length dx, then the mass
of each element is dm � � dx. For an arbitrary element lo-
cated a distance x from the origin, Equation 9.31 gives

xCM �
1
M

 � x dm �
1
M

 �L

0
 x� dx �

�

M
 
x2

2 �L

0
�

�L2

2M

yCM � zCM � 0.

Figure 9.22 (a) Two 1-kg masses and a single 2-kg mass are lo-
cated as shown. The vector indicates the location of the system’s cen-
ter of mass. (b) The vector sum of m iri .
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0 21
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3

y(m)

x(m)3

m1 m2
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(a)

rCMm3r3

MrCM
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rCM
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MOTION OF A SYSTEM OF PARTICLES
We can begin to understand the physical significance and utility of the center of
mass concept by taking the time derivative of the position vector given by Equation
9.30. From Section 4.1 we know that the time derivative of a position vector is by

9.7

The Center of Mass of a Right TriangleEXAMPLE 9.14
With this substitution, xCM becomes

By a similar calculation, we get for the y coordinate of the
center of mass

These values fit our original estimates.

1
3

 byCM �

2
3

 a�

xCM �
2
ab

 �a

0
 x � b

a
 x�dx �

2
a2  �a

0
 x2 dx �

2
a2 � x3

3 �
a

0

An object of mass M is in the shape of a right triangle whose
dimensions are shown in Figure 9.24. Locate the coordinates
of the center of mass, assuming the object has a uniform mass
per unit area.

Solution By inspection we can estimate that the x coordi-
nate of the center of mass must be past the center of the
base, that is, greater than a/2, because the largest part of the
triangle lies beyond that point. A similar argument indicates
that its y coordinate must be less than b/2. To evaluate the x
coordinate, we divide the triangle into narrow strips of width
dx and height y as in Figure 9.24. The mass dm of each strip is

Therefore, the x coordinate of the center of mass is

To evaluate this integral, we must express y in terms of x.
From similar triangles in Figure 9.24, we see that

y
x

�
b
a
  or  y �

b
a

 x

xCM �
1
M

 �x dm �
1
M

 �a

0
 x � 2M

ab �y dx �
2
ab

 �a

0
 xy dx

 �
M

1/2ab
(y dx) � � 2M

ab �y dx

dm �
total mass of object
total area of object

� area of strip

We can eliminate � by noting that the total mass of the rod is
related to � through the relationship

Substituting this into the expression for xCM gives

2
3

LxCM �
�L3

3�L2/2
�

M � �dm � �L

0
 � dx � �L

0
 �x dx �

�L2

2

 �
�

M
 �L

0
 x2 dx �

�L3

3M
 

xCM �
1
M

 � x dm �
1
M

 �L

0
 x� dx �

1
M

 �L

0
 x�x dx

L

x

dm = λdx
y

dx

O
x

λ

Figure 9.24

Figure 9.23 The center of mass of a uniform rod of length L is lo-
cated at xCM � L/2.
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definition a velocity. Assuming M remains constant for a system of particles, that is,
no particles enter or leave the system, we get the following expression for the ve-
locity of the center of mass of the system:

(9.34)

where vi is the velocity of the ith particle. Rearranging Equation 9.34 gives

(9.35)

Therefore, we conclude that the total linear momentum of the system equals
the total mass multiplied by the velocity of the center of mass. In other words, the
total linear momentum of the system is equal to that of a single particle of mass M
moving with a velocity vCM .

If we now differentiate Equation 9.34 with respect to time, we get the acceler-
ation of the center of mass of the system:

(9.36)

Rearranging this expression and using Newton’s second law, we obtain

(9.37)

where Fi is the net force on particle i.
The forces on any particle in the system may include both external forces

(from outside the system) and internal forces (from within the system). However,
by Newton’s third law, the internal force exerted by particle 1 on particle 2, for ex-
ample, is equal in magnitude and opposite in direction to the internal force ex-
erted by particle 2 on particle 1. Thus, when we sum over all internal forces in
Equation 9.37, they cancel in pairs and the net force on the system is caused only
by external forces. Thus, we can write Equation 9.37 in the form

(9.38)

That is, the resultant external force on a system of particles equals the total mass
of the system multiplied by the acceleration of the center of mass. If we compare
this with Newton’s second law for a single particle, we see that

�Fext � MaCM �
dptot

dt

MaCM � �
i

miai � �
i

Fi

aCM �
dvCM

dt
�

1
M

 �
i

mi 
dvi

dt
�

1
M

 �
i

 miai

MvCM � �
i

mivi � �
i

pi � ptot

vCM �
drCM

dt
�

1
M

 �
i

mi 
dri

dt
�

�
i
mivi

M

The center of mass of a system of particles of combined mass M moves like an
equivalent particle of mass M would move under the influence of the resultant
external force on the system.

Newton’s second law for a system
of particles

Acceleration of the center of mass

Total momentum of a system of
particles

Velocity of the center of mass

Finally, we see that if the resultant external force is zero, then from Equation
9.38 it follows that

dptot

dt
� MaCM � 0
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so that

(9.39)

That is, the total linear momentum of a system of particles is conserved if no net
external force is acting on the system. It follows that for an isolated system of parti-
cles, both the total momentum and the velocity of the center of mass are constant
in time, as shown in Figure 9.25. This is a generalization to a many-particle system
of the law of conservation of momentum discussed in Section 9.1 for a two-particle
system.

Suppose an isolated system consisting of two or more members is at rest. The
center of mass of such a system remains at rest unless acted upon by an external
force. For example, consider a system made up of a swimmer standing on a raft,
with the system initially at rest. When the swimmer dives horizontally off the raft,
the center of mass of the system remains at rest (if we neglect friction between raft
and water). Furthermore, the linear momentum of the diver is equal in magnitude
to that of the raft but opposite in direction.

As another example, suppose an unstable atom initially at rest suddenly breaks
up into two fragments of masses MA and MB , with velocities vA and vB , respectively.
Because the total momentum of the system before the breakup is zero, the total
momentum of the system after the breakup must also be zero. Therefore,

If the velocity of one of the fragments is known, the recoil ve-
locity of the other fragment can be calculated.
MAvA � MBvB � 0.

ptot � MvCM � constant  (when �Fext � 0)

The Sliding BearEXAMPLE 9.15
noting your location. Take off your spiked shoes and pull on
the rope hand over hand. Both you and the bear will slide
over the ice until you meet. From the tape, observe how far
you have slid, xp , and how far the bear has slid, xb . The point
where you meet the bear is the constant location of the cen-
ter of mass of the system (bear plus you), and so you can de-
termine the mass of the bear from (Unfortu-
nately, you cannot get back to your spiked shoes and so are in
big trouble if the bear wakes up!)

mbxb � mpxp .

Suppose you tranquilize a polar bear on a smooth glacier as
part of a research effort. How might you estimate the bear’s
mass using a measuring tape, a rope, and knowledge of your
own mass?

Solution Tie one end of the rope around the bear, and
then lay out the tape measure on the ice with one end at the
bear’s original position, as shown in Figure 9.26. Grab hold
of the free end of the rope and position yourself as shown,

Figure 9.25 Multiflash photograph showing an overhead view of a wrench moving on a hori-
zontal surface. The center of mass of the wrench moves in a straight line as the wrench rotates
about this point, shown by the white dots.
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Figure 9.26 The center of mass of an isolated system remains at rest unless acted on by an external
force. How can you determine the mass of the polar bear?

xp xb

CM

Exploding ProjectileCONCEPTUAL EXAMPLE 9.16
A projectile fired into the air suddenly explodes into several
fragments (Fig. 9.27). What can be said about the motion of

Motion
of center
of mass

the center of mass of the system made up of all the fragments
after the explosion?

Solution Neglecting air resistance, the only external force
on the projectile is the gravitational force. Thus, if the projec-
tile did not explode, it would continue to move along the
parabolic path indicated by the broken line in Figure 9.27.
Because the forces caused by the explosion are internal, they
do not affect the motion of the center of mass. Thus, after
the explosion the center of mass of the system (the frag-
ments) follows the same parabolic path the projectile would
have followed if there had been no explosion.

Figure 9.27 When a projectile explodes into several fragments,
the center of mass of the system made up of all the fragments follows
the same parabolic path the projectile would have taken had there
been no explosion.

The Exploding RocketEXAMPLE 9.17
Solution Let us call the total mass of the rocket M; hence,
the mass of each fragment is M/3. Because the forces of the
explosion are internal to the system and cannot affect its total
momentum, the total momentum pi of the rocket just before
the explosion must equal the total momentum pf of the frag-
ments right after the explosion.

A rocket is fired vertically upward. At the instant it reaches an
altitude of 1 000 m and a speed of 300 m/s, it explodes into
three equal fragments. One fragment continues to move up-
ward with a speed of 450 m/s following the explosion. The
second fragment has a speed of 240 m/s and is moving east
right after the explosion. What is the velocity of the third
fragment right after the explosion?
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Optional Section

ROCKET PROPULSION
When ordinary vehicles, such as automobiles and locomotives, are propelled, the
driving force for the motion is friction. In the case of the automobile, the driving
force is the force exerted by the road on the car. A locomotive “pushes” against the
tracks; hence, the driving force is the force exerted by the tracks on the locomo-
tive. However, a rocket moving in space has no road or tracks to push against.
Therefore, the source of the propulsion of a rocket must be something other than
friction. Figure 9.28 is a dramatic photograph of a spacecraft at liftoff. The opera-
tion of a rocket depends upon the law of conservation of linear momentum
as applied to a system of particles, where the system is the rocket plus its
ejected fuel.

Rocket propulsion can be understood by first considering the mechanical sys-
tem consisting of a machine gun mounted on a cart on wheels. As the gun is fired,

9.8

What does the sum of the momentum vectors for all the frag-
ments look like?

Exercise Find the position of the center of mass of the sys-
tem of fragments relative to the ground 3.00 s after the explo-
sion. Assume the rocket engine is nonoperative after the ex-
plosion.

Answer The x coordinate does not change; yCM � 1.86 km.

(�240i � 450j) m/svf �
Before the explosion:

After the explosion:

where vf is the unknown velocity of the third fragment.
Equating these two expressions (because pi � pf) gives

M
3

 vf � M(80 i) m/s � M(150 j) m/s � M(300 j) m/s

pf �
M
3

 (240 i) m/s �
M
3

 (450 j) m/s �
M
3

 vf

pi � Mvi � M(300 j) m/s

Figure 9.28 Liftoff of the space shuttle
Columbia. Enormous thrust is generated
by the shuttle’s liquid-fuel engines, aided
by the two solid-fuel boosters. Many physi-
cal principles from mechanics, thermody-
namics, and electricity and magnetism are
involved in such a launch.



278 C H A P T E R  9 Linear Momentum and Collisions

each bullet receives a momentum mv in some direction, where v is measured with
respect to a stationary Earth frame. The momentum of the system made up of cart,
gun, and bullets must be conserved. Hence, for each bullet fired, the gun and cart
must receive a compensating momentum in the opposite direction. That is, the re-
action force exerted by the bullet on the gun accelerates the cart and gun, and the
cart moves in the direction opposite that of the bullets. If n is the number of bul-
lets fired each second, then the average force exerted on the gun is Fav � nmv.

In a similar manner, as a rocket moves in free space, its linear momentum
changes when some of its mass is released in the form of ejected gases. Because
the gases are given momentum when they are ejected out of the engine, the
rocket receives a compensating momentum in the opposite direction. There-
fore, the rocket is accelerated as a result of the “push,” or thrust, from the exhaust
gases. In free space, the center of mass of the system (rocket plus expelled gases)
moves uniformly, independent of the propulsion process.5

Suppose that at some time t, the magnitude of the momentum of a rocket plus
its fuel is (M � 	m)v, where v is the speed of the rocket relative to the Earth (Fig.
9.29a). Over a short time interval 	t, the rocket ejects fuel of mass 	m, and so at
the end of this interval the rocket’s speed is where 	v is the change in
speed of the rocket (Fig. 9.29b). If the fuel is ejected with a speed ve relative to the
rocket (the subscript “e” stands for exhaust, and ve is usually called the exhaust
speed), the velocity of the fuel relative to a stationary frame of reference is 
Thus, if we equate the total initial momentum of the system to the total final mo-
mentum, we obtain

where M represents the mass of the rocket and its remaining fuel after an amount
of fuel having mass 	m has been ejected. Simplifying this expression gives

We also could have arrived at this result by considering the system in the cen-
ter-of-mass frame of reference, which is a frame having the same velocity as the
center of mass of the system. In this frame, the total momentum of the system is
zero; therefore, if the rocket gains a momentum M 	v by ejecting some fuel, the
exhausted fuel obtains a momentum ve 	m in the opposite direction, so that M 	v �
ve If we now take the limit as goes to zero, we get and

Futhermore, the increase in the exhaust mass dm corresponds to an
equal decrease in the rocket mass, so that Note that dM is given a neg-
ative sign because it represents a decrease in mass. Using this fact, we obtain

(9.40)

Integrating this equation and taking the initial mass of the rocket plus fuel to be
Mi and the final mass of the rocket plus its remaining fuel to be Mf , we obtain

(9.41)vf � vi � ve ln� Mi

Mf
�

�vf

vi

 dv � �ve �Mf

Mi

 
dM
M

M dv � ve dm � �ve dM

dm � �dM.
	m : dm.

	v : dv	t	m � 0.

M 	v � ve 	m

(M � 	m)v � M(v � 	v) � 	m(v � ve)

v � ve .

v � 	v,

Expression for rocket propulsion

5It is interesting to note that the rocket and machine gun represent cases of the reverse of a perfectly
inelastic collision: Momentum is conserved, but the kinetic energy of the system increases (at the ex-
pense of chemical potential energy in the fuel).

The force from a nitrogen-pro-
pelled, hand-controlled device al-
lows an astronaut to move about
freely in space without restrictive
tethers.

Figure 9.29 Rocket propulsion.
(a) The initial mass of the rocket
plus all its fuel is M � 	m at a time
t, and its speed is v. (b) At a time t
� 	t, the rocket’s mass has been re-
duced to M and an amount of fuel
	m has been ejected. The rocket’s
speed increases by an amount 	v.

(a)

(b)

M + ∆m

pi = (M + ∆m)v

M
∆m

v

v + ∆v



9.8 Rocket Propulsion 279

This is the basic expression of rocket propulsion. First, it tells us that the increase in
rocket speed is proportional to the exhaust speed of the ejected gases, ve . Therefore,
the exhaust speed should be very high. Second, the increase in rocket speed is pro-
portional to the natural logarithm of the ratio Mi/Mf . Therefore, this ratio should
be as large as possible, which means that the mass of the rocket without its fuel
should be as small as possible and the rocket should carry as much fuel as possible.

The thrust on the rocket is the force exerted on it by the ejected exhaust
gases. We can obtain an expression for the thrust from Equation 9.40:

(9.42)

This expression shows us that the thrust increases as the exhaust speed increases
and as the rate of change of mass (called the burn rate) increases.

Thrust � M 
dv
dt

� �ve 
dM
dt �

Firefighters attack a burning house with a hose line.

A Rocket in SpaceEXAMPLE 9.18

(b) What is the thrust on the rocket if it burns fuel at the rate
of 50 kg/s?

Solution

2.5 � 105 N�

Thrust � �ve 
dM
dt � � (5.0 � 103 m/s)(50 kg/s)

6.5 � 103 m/s  �

 � 3.0 � 103 m/s � (5.0 � 103 m/s)ln� Mi

0.5 Mi
�A rocket moving in free space has a speed of 3.0 � 103 m/s

relative to the Earth. Its engines are turned on, and fuel is
ejected in a direction opposite the rocket’s motion at a speed
of 5.0 � 103 m/s relative to the rocket. (a) What is the speed
of the rocket relative to the Earth once the rocket’s mass is re-
duced to one-half its mass before ignition?

Solution We can guess that the speed we are looking for
must be greater than the original speed because the rocket is
accelerating. Applying Equation 9.41, we obtain

vf � vi � ve ln� Mi

Mf
� 

Fighting a FireEXAMPLE 9.19
their hands, the movement of the hose due to the thrust it re-
ceives from the rapidly exiting water could injure the fire-
fighters.

Two firefighters must apply a total force of 600 N to steady a
hose that is discharging water at 3 600 L/min. Estimate the
speed of the water as it exits the nozzle.

Solution The water is exiting at 3 600 L/min, which is 
60 L/s. Knowing that 1 L of water has a mass of 1 kg, we can
say that about 60 kg of water leaves the nozzle every second.
As the water leaves the hose, it exerts on the hose a thrust
that must be counteracted by the 600-N force exerted on the
hose by the firefighters. So, applying Equation 9.42 gives

Firefighting is dangerous work. If the nozzle should slip from

10 m/s  ve �

 600 N � � ve(60 kg/s) �

Thrust � �ve 
dM
dt � 
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SUMMARY

The linear momentum p of a particle of mass m moving with a velocity v is

(9.1)

The law of conservation of linear momentum indicates that the total mo-
mentum of an isolated system is conserved. If two particles form an isolated sys-
tem, their total momentum is conserved regardless of the nature of the force be-
tween them. Therefore, the total momentum of the system at all times equals its
initial total momentum, or

(9.5)

The impulse imparted to a particle by a force F is equal to the change in the
momentum of the particle:

(9.9)

This is known as the impulse–momentum theorem.
Impulsive forces are often very strong compared with other forces on the sys-

tem and usually act for a very short time, as in the case of collisions.
When two particles collide, the total momentum of the system before the colli-

sion always equals the total momentum after the collision, regardless of the nature
of the collision. An inelastic collision is one for which the total kinetic energy is
not conserved. A perfectly inelastic collision is one in which the colliding bodies
stick together after the collision. An elastic collision is one in which kinetic en-
ergy is constant.

In a two- or three-dimensional collision, the components of momentum in
each of the three directions (x, y, and z) are conserved independently.

The position vector of the center of mass of a system of particles is defined as

(9.30)

where is the total mass of the system and ri is the position vector of the
ith particle.

The position vector of the center of mass of a rigid body can be obtained from
the integral expression

(9.33)

The velocity of the center of mass for a system of particles is

(9.34)

The total momentum of a system of particles equals the total mass multiplied
by the velocity of the center of mass.

Newton’s second law applied to a system of particles is

(9.38)

where aCM is the acceleration of the center of mass and the sum is over all external
forces. The center of mass moves like an imaginary particle of mass M under the

�Fext � MaCM �
dptot

dt

vCM �
�
i
mi vi

M
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1
M

 �r dm

M � �
i
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�
i
miri

M

I � �tf

ti
 F dt � 	p

p1i � p2i � p1f � p2f
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influence of the resultant external force on the system. It follows from Equation
9.38 that the total momentum of the system is conserved if there are no external
forces acting on it.

QUESTIONS

17. Early in this century, Robert Goddard proposed sending a
rocket to the Moon. Critics took the position that in a vac-
uum, such as exists between the Earth and the Moon, the
gases emitted by the rocket would have nothing to push
against to propel the rocket. According to Scientific Ameri-
can ( January 1975), Goddard placed a gun in a vacuum
and fired a blank cartridge from it. (A blank cartridge
fires only the wadding and hot gases of the burning gun-
powder.) What happened when the gun was fired?

18. A pole-vaulter falls from a height of 6.0 m onto a foam
rubber pad. Can you calculate his speed just before he
reaches the pad? Can you estimate the force exerted on
him due to the collision? Explain.

19. Explain how you would use a balloon to demonstrate the
mechanism responsible for rocket propulsion.

20. Does the center of mass of a rocket in free space acceler-
ate? Explain. Can the speed of a rocket exceed the ex-
haust speed of the fuel? Explain.

21. A ball is dropped from a tall building. Identify the system
for which linear momentum is conserved.

22. A bomb, initially at rest, explodes into several pieces. 
(a) Is linear momentum conserved? (b) Is kinetic energy
conserved? Explain.

23. NASA often uses the gravity of a planet to “slingshot” a
probe on its way to a more distant planet. This is actually
a collision where the two objects do not touch. How can
the probe have its speed increased in this manner?

24. The Moon revolves around the Earth. Is the Moon’s lin-
ear momentum conserved? Is its kinetic energy con-
served? Assume that the Moon’s orbit is circular.

25. A raw egg dropped to the floor breaks apart upon impact.
However, a raw egg dropped onto a thick foam rubber
cushion from a height of about 1 m rebounds without
breaking. Why is this possible? (If you try this experi-
ment, be sure to catch the egg after the first bounce.)

26. On the subject of the following positions, state your own
view and argue to support it: (a) The best theory of mo-
tion is that force causes acceleration. (b) The true mea-
sure of a force’s effectiveness is the work it does, and the
best theory of motion is that work on an object changes
its energy. (c) The true measure of a force’s effect is im-
pulse, and the best theory of motion is that impulse 
injected into an object changes its momentum.

1. If the kinetic energy of a particle is zero, what is its linear
momentum? 

2. If the speed of a particle is doubled, by what factor is its
momentum changed? By what factor is its kinetic energy
changed?

3. If two particles have equal kinetic energies, are their mo-
menta necessarily equal? Explain.

4. If two particles have equal momenta, are their kinetic en-
ergies necessarily equal? Explain.

5. An isolated system is initially at rest. Is it possible for parts
of the system to be in motion at some later time? If so, ex-
plain how this might occur.

6. If two objects collide and one is initially at rest, is it possi-
ble for both to be at rest after the collision? Is it possible
for one to be at rest after the collision? Explain.

7. Explain how linear momentum is conserved when a ball
bounces from a floor.

8. Is it possible to have a collision in which all of the kinetic
energy is lost? If so, cite an example.

9. In a perfectly elastic collision between two particles, does
the kinetic energy of each particle change as a result of
the collision?

10. When a ball rolls down an incline, its linear momentum
increases. Does this imply that momentum is not con-
served? Explain.

11. Consider a perfectly inelastic collision between a car and
a large truck. Which vehicle loses more kinetic energy as
a result of the collision?

12. Can the center of mass of a body lie outside the body? If
so, give examples.

13. Three balls are thrown into the air simultaneously. What
is the acceleration of their center of mass while they are
in motion?

14. A meter stick is balanced in a horizontal position with the
index fingers of the right and left hands. If the two fin-
gers are slowly brought together, the stick remains bal-
anced and the two fingers always meet at the 50-cm mark
regardless of their original positions (try it!). Explain.

15. A sharpshooter fires a rifle while standing with the butt of
the gun against his shoulder. If the forward momentum
of a bullet is the same as the backward momentum of the
gun, why is it not as dangerous to be hit by the gun as by
the bullet?

16. A piece of mud is thrown against a brick wall and sticks to
the wall. What happens to the momentum of the mud? Is
momentum conserved? Explain.
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PROBLEMS

7. (a) A particle of mass m moves with momentum p. Show
that the kinetic energy of the particle is given by K �
p2/2m. (b) Express the magnitude of the particle’s mo-
mentum in terms of its kinetic energy and mass.

Section 9.2 Impulse and Momentum
8. A car is stopped for a traffic signal. When the light turns

green, the car accelerates, increasing its speed from
zero to 5.20 m/s in 0.832 s. What linear impulse and av-
erage force does a 70.0-kg passenger in the car experi-
ence?

9. An estimated force–time curve for a baseball struck by
a bat is shown in Figure P9.9. From this curve, deter-
mine (a) the impulse delivered to the ball, (b) the aver-
age force exerted on the ball, and (c) the peak force ex-
erted on the ball.

Section 9.1 Linear Momentum and Its Conservation
1. A 3.00-kg particle has a velocity of (3.00i � 4.00j) m/s.

(a) Find its x and y components of momentum. 
(b) Find the magnitude and direction of its momentum.

2. A 0.100-kg ball is thrown straight up into the air with an
initial speed of 15.0 m/s. Find the momentum of the
ball (a) at its maximum height and (b) halfway up to its
maximum height.

3. A 40.0-kg child standing on a frozen pond throws a
0.500-kg stone to the east with a speed of 5.00 m/s. Ne-
glecting friction between child and ice, find the recoil
velocity of the child.

4. A pitcher claims he can throw a baseball with as much
momentum as a 3.00-g bullet moving with a speed of 
1 500 m/s. A baseball has a mass of 0.145 kg. What must
be its speed if the pitcher’s claim is valid?

5. How fast can you set the Earth moving? In particular,
when you jump straight up as high as you can, you give
the Earth a maximum recoil speed of what order of
magnitude? Model the Earth as a perfectly solid object.
In your solution, state the physical quantities you take as
data and the values you measure or estimate for them.

6. Two blocks of masses M and 3M are placed on a hori-
zontal, frictionless surface. A light spring is attached to
one of them, and the blocks are pushed together with
the spring between them (Fig. P9.6). A cord initially
holding the blocks together is burned; after this, the
block of mass 3M moves to the right with a speed of
2.00 m/s. (a) What is the speed of the block of mass M ?
(b) Find the original elastic energy in the spring if M �
0.350 kg.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

10. A tennis player receives a shot with the ball (0.060 0 kg)
traveling horizontally at 50.0 m/s and returns the shot
with the ball traveling horizontally at 40.0 m/s in the
opposite direction. (a) What is the impulse delivered to
the ball by the racket? (b) What work does the racket
do on the ball?

11. A 3.00-kg steel ball strikes a wall with a speed of 
10.0 m/s at an angle of 60.0° with the surface. It
bounces off with the same speed and angle (Fig. P9.11).
If the ball is in contact with the wall for 0.200 s, what is
the average force exerted on the ball by the wall?

12. In a slow-pitch softball game, a 0.200-kg softball crossed
the plate at 15.0 m/s at an angle of 45.0° below the hor-
izontal. The ball was hit at 40.0 m/s, 30.0° above the
horizontal. (a) Determine the impulse delivered to the
ball. (b) If the force on the ball increased linearly for
4.00 ms, held constant for 20.0 ms, and then decreased
to zero linearly in another 4.00 ms, what was the maxi-
mum force on the ball?

Before

(a)

After

(b)

M

v 2.00 m/s

M 3M

3M
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19. A 45.0-kg girl is standing on a plank that has a mass of
150 kg. The plank, originally at rest, is free to slide on a
frozen lake, which is a flat, frictionless supporting sur-
face. The girl begins to walk along the plank at a con-
stant speed of 1.50 m/s relative to the plank. (a) What
is her speed relative to the ice surface? (b) What is the
speed of the plank relative to the ice surface?

20. Gayle runs at a speed of 4.00 m/s and dives on a sled,
which is initially at rest on the top of a frictionless snow-
covered hill. After she has descended a vertical distance
of 5.00 m, her brother, who is initially at rest, hops on
her back and together they continue down the hill.
What is their speed at the bottom of the hill if the total
vertical drop is 15.0 m? Gayle’s mass is 50.0 kg, the sled
has a mass of 5.00 kg and her brother has a mass of 
30.0 kg.

21. A 1 200-kg car traveling initially with a speed of 
25.0 m/s in an easterly direction crashes into the rear
end of a 9 000-kg truck moving in the same direction at
20.0 m/s (Fig. P9.21). The velocity of the car right after
the collision is 18.0 m/s to the east. (a) What is the ve-
locity of the truck right after the collision? (b) How
much mechanical energy is lost in the collision? Ac-
count for this loss in energy.

22. A railroad car of mass 2.50 � 104 kg is moving with a
speed of 4.00 m/s. It collides and couples with three
other coupled railroad cars, each of the same mass as
the single car and moving in the same direction with an
initial speed of 2.00 m/s. (a) What is the speed of the
four cars after the collision? (b) How much energy is
lost in the collision?

inside the block. The speed of the bullet-plus-wood
combination immediately after the collision is measured
as 0.600 m/s. What was the original speed of the bullet?

18. As shown in Figure P9.18, a bullet of mass m and speed
v passes completely through a pendulum bob of mass
M. The bullet emerges with a speed of v/2. The pendu-
lum bob is suspended by a stiff rod of length � and neg-
ligible mass. What is the minimum value of v such that
the pendulum bob will barely swing through a complete
vertical circle?

14. A professional diver performs a dive from a platform 
10 m above the water surface. Estimate the order of
magnitude of the average impact force she experiences
in her collision with the water. State the quantities you
take as data and their values.

Section 9.3 Collisions
Section 9.4 Elastic and Inelastic Collisions 
in One Dimension

15. High-speed stroboscopic photographs show that the
head of a golf club of mass 200 g is traveling at 55.0 m/s
just before it strikes a 46.0-g golf ball at rest on a tee. Af-
ter the collision, the club head travels (in the same di-
rection) at 40.0 m/s. Find the speed of the golf ball just
after impact.

16. A 75.0-kg ice skater, moving at 10.0 m/s, crashes into a
stationary skater of equal mass. After the collision, the
two skaters move as a unit at 5.00 m/s. Suppose the av-
erage force a skater can experience without breaking a
bone is 4 500 N. If the impact time is 0.100 s, does a
bone break?

17. A 10.0-g bullet is fired into a stationary block of wood
(m � 5.00 kg). The relative motion of the bullet stops

13. A garden hose is held in the manner shown in Figure
P9.13. The hose is initially full of motionless water.
What additional force is necessary to hold the nozzle
stationary after the water is turned on if the discharge
rate is 0.600 kg/s with a speed of 25.0 m/s?

Figure P9.18

Figure P9.13

Figure P9.11
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23. Four railroad cars, each of mass 2.50 � 104 kg, are cou-
pled together and coasting along horizontal tracks at a
speed of vi toward the south. A very strong but foolish
movie actor, riding on the second car, uncouples the
front car and gives it a big push, increasing its speed to
4.00 m/s southward. The remaining three cars continue
moving toward the south, now at 2.00 m/s. (a) Find the
initial speed of the cars. (b) How much work did the ac-
tor do? (c) State the relationship between the process
described here and the process in Problem 22.

24. A 7.00-kg bowling ball collides head-on with a 2.00-kg
bowling pin. The pin flies forward with a speed of 
3.00 m/s. If the ball continues forward with a speed of
1.80 m/s, what was the initial speed of the ball? Ignore
rotation of the ball.

25. A neutron in a reactor makes an elastic head-on colli-
sion with the nucleus of a carbon atom initially at rest.
(a) What fraction of the neutron’s kinetic energy is
transferred to the carbon nucleus? (b) If the initial ki-
netic energy of the neutron is 1.60 � 10�13 J, find its fi-
nal kinetic energy and the kinetic energy of the carbon
nucleus after the collision. (The mass of the carbon nu-
cleus is about 12.0 times greater than the mass of the
neutron.)

26. Consider a frictionless track ABC as shown in Figure
P9.26. A block of mass m1 � 5.00 kg is released from A.
It makes a head-on elastic collision at B with a block of
mass m 2 � 10.0 kg that is initially at rest. Calculate the
maximum height to which m 1 rises after the collision.

0.650, what was the speed of the bullet immediately be-
fore impact?

28. A 7.00-g bullet, when fired from a gun into a 1.00-kg
block of wood held in a vise, would penetrate the block
to a depth of 8.00 cm. This block of wood is placed on a
frictionless horizontal surface, and a 7.00-g bullet is
fired from the gun into the block. To what depth will
the bullet penetrate the block in this case?

Section 9.5 Two-Dimensional Collisions
29. A 90.0-kg fullback running east with a speed of 5.00 m/s

is tackled by a 95.0-kg opponent running north with a
speed of 3.00 m/s. If the collision is perfectly inelastic,
(a) calculate the speed and direction of the players just
after the tackle and (b) determine the energy lost as a
result of the collision. Account for the missing energy.

30. The mass of the blue puck in Figure P9.30 is 20.0%
greater than the mass of the green one. Before collid-
ing, the pucks approach each other with equal and op-
posite momenta, and the green puck has an initial
speed of 10.0 m/s. Find the speeds of the pucks after
the collision if half the kinetic energy is lost during the
collision.

WEB

31. Two automobiles of equal mass approach an intersec-
tion. One vehicle is traveling with velocity 13.0 m/s to-
ward the east and the other is traveling north with a
speed of v2i . Neither driver sees the other. The vehicles
collide in the intersection and stick together, leaving
parallel skid marks at an angle of 55.0° north of east.
The speed limit for both roads is 35 mi/h, and the dri-
ver of the northward-moving vehicle claims he was
within the speed limit when the collision occurred. Is
he telling the truth?

27. A 12.0-g bullet is fired into a 100-g wooden block ini-
tially at rest on a horizontal surface. After impact, the
block slides 7.50 m before coming to rest. If the coeffi-
cient of friction between the block and the surface is

Figure P9.30

Figure P9.26

Figure P9.21
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32. A proton, moving with a velocity of vii, collides elasti-
cally with another proton that is initially at rest. If the
two protons have equal speeds after the collision, find
(a) the speed of each proton after the collision in terms
of vi and (b) the direction of the velocity vectors after
the collision.

33. A billiard ball moving at 5.00 m/s strikes a stationary
ball of the same mass. After the collision, the first ball
moves at 4.33 m/s and at an angle of 30.0° with respect
to the original line of motion. Assuming an elastic colli-
sion (and ignoring friction and rotational motion), find
the struck ball’s velocity.

34. A 0.300-kg puck, initially at rest on a horizontal, fric-
tionless surface, is struck by a 0.200-kg puck moving ini-
tially along the x axis with a speed of 2.00 m/s. After the
collision, the 0.200-kg puck has a speed of 1.00 m/s at
an angle of 
 � 53.0° to the positive x axis (see Fig.
9.14). (a) Determine the velocity of the 0.300-kg puck
after the collision. (b) Find the fraction of kinetic en-
ergy lost in the collision.

35. A 3.00-kg mass with an initial velocity of 5.00i m/s col-
lides with and sticks to a 2.00-kg mass with an initial ve-
locity of � 3.00j m/s. Find the final velocity of the com-
posite mass.

36. Two shuffleboard disks of equal mass, one orange and
the other yellow, are involved in an elastic, glancing col-
lision. The yellow disk is initially at rest and is struck by
the orange disk moving with a speed of 5.00 m/s. After
the collision, the orange disk moves along a direction
that makes an angle of 37.0° with its initial direction of
motion, and the velocity of the yellow disk is perpendic-
ular to that of the orange disk (after the collision). De-
termine the final speed of each disk.

37. Two shuffleboard disks of equal mass, one orange and
the other yellow, are involved in an elastic, glancing col-
lision. The yellow disk is initially at rest and is struck by
the orange disk moving with a speed vi . After the colli-
sion, the orange disk moves along a direction that
makes an angle 
 with its initial direction of motion,
and the velocity of the yellow disk is perpendicular to
that of the orange disk (after the collision). Determine
the final speed of each disk.

38. During the battle of Gettysburg, the gunfire was so in-
tense that several bullets collided in midair and fused
together. Assume a 5.00-g Union musket ball was mov-
ing to the right at a speed of 250 m/s, 20.0° above the
horizontal, and that a 3.00-g Confederate ball was mov-
ing to the left at a speed of 280 m/s, 15.0° above the
horizontal. Immediately after they fuse together, what is
their velocity?

39. An unstable nucleus of mass 17.0 � 10�27 kg initially at
rest disintegrates into three particles. One of the parti-
cles, of mass 5.00 � 10�27 kg, moves along the y axis
with a velocity of 6.00 � 106 m/s. Another particle, of
mass 8.40 � 10�27 kg, moves along the x axis with a
speed of 4.00 � 106 m/s. Find (a) the velocity of the

third particle and (b) the total kinetic energy increase
in the process.

Section 9.6 The Center of Mass
40. Four objects are situated along the y axis as follows: A

2.00-kg object is at � 3.00 m, a 3.00-kg object is at
� 2.50 m, a 2.50-kg object is at the origin, and a 4.00-kg
object is at � 0.500 m. Where is the center of mass of
these objects?

41. A uniform piece of sheet steel is shaped as shown in Fig-
ure P9.41. Compute the x and y coordinates of the cen-
ter of mass of the piece.

WEB

42. The mass of the Earth is 5.98 � 1024 kg, and the mass of
the Moon is 7.36 � 1022 kg. The distance of separation,
measured between their centers, is 3.84 � 108 m. Lo-
cate the center of mass of the Earth–Moon system as
measured from the center of the Earth.

43. A water molecule consists of an oxygen atom with two
hydrogen atoms bound to it (Fig. P9.43). The angle be-
tween the two bonds is 106°. If the bonds are 0.100 nm
long, where is the center of mass of the molecule?

Figure P9.43

Figure P9.41
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44. A 0.400-kg mass m1 has position r1 � 12.0j cm. A 0.800-
kg mass m2 has position r2 � � 12.0i cm. Another
0.800-kg mass m3 has position r3 � (12.0i � 12.0j) cm.
Make a drawing of the masses. Start from the origin
and, to the scale 1 cm � 1 kg� cm, construct the vector
m1r1 , then the vector m1r1 � m2r2 , then the vector m1r1
� m2r2 � m3r3 , and at last rCM � (m1r1 � m2r2 �
m3r3)/(m1 � m2 � m3). Observe that the head of the
vector rCM indicates the position of the center of mass.

45. A rod of length 30.0 cm has linear density (mass-per-
length) given by

where x is the distance from one end, measured in me-
ters. (a) What is the mass of the rod? (b) How far from
the x � 0 end is its center of mass?

Section 9.7 Motion of a System of Particles
46. Consider a system of two particles in the xy plane: 

m1 � 2.00 kg is at r1 � (1.00i � 2.00j) m and has ve-
locity (3.00i � 0.500j) m/s; m2 � 3.00 kg is at r2 �
(� 4.00i � 3.00j) m and has velocity (3.00i � 2.00j) m/s.
(a) Plot these particles on a grid or graph paper. Draw
their position vectors and show their velocities. (b) Find
the position of the center of mass of the system and mark
it on the grid. (c) Determine the velocity of the center of
mass and also show it on the diagram. (d) What is the to-
tal linear momentum of the system?

47. Romeo (77.0 kg) entertains Juliet (55.0 kg) by playing
his guitar from the rear of their boat at rest in still wa-
ter, 2.70 m away from Juliet who is in the front of the
boat. After the serenade, Juliet carefully moves to the
rear of the boat (away from shore) to plant a kiss on
Romeo’s cheek. How far does the 80.0-kg boat move to-
ward the shore it is facing?

48. Two masses, 0.600 kg and 0.300 kg, begin uniform mo-
tion at the same speed, 0.800 m/s, from the origin at 
t � 0 and travel in the directions shown in Figure P9.48.
(a) Find the velocity of the center of mass in unit–
vector notation. (b) Find the magnitude and direction

� � 50.0 g/m � 20.0x g/m2

of the velocity of the center of mass. (c) Write the posi-
tion vector of the center of mass as a function of time.

49. A 2.00-kg particle has a velocity of (2.00i � 3.00j) m/s,
and a 3.00-kg particle has a velocity of (1.00i � 6.00j)
m/s. Find (a) the velocity of the center of mass and 
(b) the total momentum of the system.

50. A ball of mass 0.200 kg has a velocity of 1.50i m/s; a ball
of mass 0.300 kg has a velocity of � 0.400i m/s. They
meet in a head-on elastic collision. (a) Find their veloci-
ties after the collision. (b) Find the velocity of their cen-
ter of mass before and after the collision.

(Optional)
Section 9.8 Rocket Propulsion

51. The first stage of a Saturn V space vehicle consumes
fuel and oxidizer at the rate of 1.50 � 104 kg/s, with an
exhaust speed of 2.60 � 103 m/s. (a) Calculate the
thrust produced by these engines. (b) Find the initial
acceleration of the vehicle on the launch pad if its ini-
tial mass is 3.00 � 106 kg. [Hint: You must include the
force of gravity to solve part (b).]

52. A large rocket with an exhaust speed of ve � 3 000 m/s
develops a thrust of 24.0 million newtons. (a) How
much mass is being blasted out of the rocket exhaust
per second? (b) What is the maximum speed the rocket
can attain if it starts from rest in a force-free environ-
ment with ve � 3.00 km/s and if 90.0% of its initial mass
is fuel and oxidizer?

53. A rocket for use in deep space is to have the capability
of boosting a total load (payload plus rocket frame and
engine) of 3.00 metric tons to a speed of 10 000 m/s.
(a) It has an engine and fuel designed to produce an
exhaust speed of 2 000 m/s. How much fuel plus oxi-
dizer is required? (b) If a different fuel and engine de-
sign could give an exhaust speed of 5 000 m/s, what
amount of fuel and oxidizer would be required for the
same task?

54. A rocket car has a mass of 2 000 kg unfueled and a mass
of 5 000 kg when completely fueled. The exhaust veloc-
ity is 2 500 m/s. (a) Calculate the amount of fuel used
to accelerate the completely fueled car from rest to 
225 m/s (about 500 mi/h). (b) If the burn rate is con-
stant at 30.0 kg/s, calculate the time it takes the car to
reach this speed. Neglect friction and air resistance.

ADDITIONAL PROBLEMS

55. Review Problem. A 60.0-kg person running at an ini-
tial speed of 4.00 m/s jumps onto a 120-kg cart initially
at rest (Fig. P9.55). The person slides on the cart’s top
surface and finally comes to rest relative to the cart. The
coefficient of kinetic friction between the person and
the cart is 0.400. Friction between the cart and ground
can be neglected. (a) Find the final velocity of the per-
son and cart relative to the ground. (b) Find the fric-
tional force acting on the person while he is slidingFigure P9.48
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45.0° 45.0°
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across the top surface of the cart. (c) How long does
the frictional force act on the person? (d) Find the
change in momentum of the person and the change in
momentum of the cart. (e) Determine the displace-
ment of the person relative to the ground while he is
sliding on the cart. (f) Determine the displacement of
the cart relative to the ground while the person is slid-
ing. (g) Find the change in kinetic energy of the per-
son. (h) Find the change in kinetic energy of the cart.
(i) Explain why the answers to parts (g) and (h) differ.
(What kind of collision is this, and what accounts for
the loss of mechanical energy?)

58. A bullet of mass m is fired into a block of mass M that is
initially at rest at the edge of a frictionless table of
height h (see Fig. P9.57). The bullet remains in the
block, and after impact the block lands a distance d
from the bottom of the table. Determine the initial
speed of the bullet.

59. An 80.0-kg astronaut is working on the engines of his
ship, which is drifting through space with a constant ve-
locity. The astronaut, wishing to get a better view of the
Universe, pushes against the ship and much later finds
himself 30.0 m behind the ship and at rest with respect
to it. Without a thruster, the only way to return to the
ship is to throw his 0.500-kg wrench directly away from
the ship. If he throws the wrench with a speed of 
20.0 m/s relative to the ship, how long does it take the
astronaut to reach the ship?

60. A small block of mass m1 � 0.500 kg is released from
rest at the top of a curve-shaped frictionless wedge of
mass m2 � 3.00 kg, which sits on a frictionless horizon-
tal surface, as shown in Figure P9.60a. When the block
leaves the wedge, its velocity is measured to be 4.00 m/s
to the right, as in Figure P9.60b. (a) What is the velocity
of the wedge after the block reaches the horizontal sur-
face? (b) What is the height h of the wedge?

56. A golf ball (m � 46.0 g) is struck a blow that makes an
angle of 45.0° with the horizontal. The ball lands 200 m
away on a flat fairway. If the golf club and ball are in
contact for 7.00 ms, what is the average force of impact?
(Neglect air resistance.)

57. An 8.00-g bullet is fired into a 2.50-kg block that is ini-
tially at rest at the edge of a frictionless table of height
1.00 m (Fig. P9.57). The bullet remains in the block,
and after impact the block lands 2.00 m from the bot-
tom of the table. Determine the initial speed of the
bullet. Figure P9.60

Figure P9.57 Problems 57 and 58.

Figure P9.55

60.0 kg 4.00 m/s

120 kg

1.00 m

8.00 g

2.50 kg

2.00 m

m1

(a)

h

(b)

v2
4.00 m/s

m2m2
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61. Tarzan, whose mass is 80.0 kg, swings from a 3.00-m vine
that is horizontal when he starts. At the bottom of his
arc, he picks up 60.0-kg Jane in a perfectly inelastic col-
lision. What is the height of the highest tree limb they
can reach on their upward swing?

62. A jet aircraft is traveling at 500 mi/h (223 m/s) in hori-
zontal flight. The engine takes in air at a rate of 
80.0 kg/s and burns fuel at a rate of 3.00 kg/s. If the ex-
haust gases are ejected at 600 m/s relative to the air-
craft, find the thrust of the jet engine and the delivered
horsepower.

63. A 75.0-kg firefighter slides down a pole while a constant
frictional force of 300 N retards her motion. A horizon-
tal 20.0-kg platform is supported by a spring at the bot-
tom of the pole to cushion the fall. The firefighter starts
from rest 4.00 m above the platform, and the spring
constant is 4 000 N/m. Find (a) the firefighter’s speed
just before she collides with the platform and (b) the
maximum distance the spring is compressed. (Assume
the frictional force acts during the entire motion.)

64. A cannon is rigidly attached to a carriage, which can
move along horizontal rails but is connected to a post
by a large spring, initially unstretched and with force
constant , as shown in Figure
P9.64. The cannon fires a 200-kg projectile at a velocity
of 125 m/s directed 45.0° above the horizontal. (a) If
the mass of the cannon and its carriage is 5 000 kg, find
the recoil speed of the cannon. (b) Determine the max-
imum extension of the spring. (c) Find the maximum
force the spring exerts on the carriage. (d) Consider
the system consisting of the cannon, carriage, and shell.
Is the momentum of this system conserved during the
firing? Why or why not?

k � 2.00 � 104 N/m

66. Two gliders are set in motion on an air track. A spring
of force constant k is attached to the near side of one
glider. The first glider of mass m1 has a velocity of v1 ,
and the second glider of mass m2 has a velocity of v2 , as
shown in Figure P9.66 (v1 � v2). When m1 collides with
the spring attached to m2 and compresses the spring to
its maximum compression xm , the velocity of the gliders
is v. In terms of v1 , v2 , m1 , m2 , and k, find (a) the veloc-
ity v at maximum compression, (b) the maximum com-
pression xm , and (c) the velocities of each glider after
m1 has lost contact with the spring.

Figure P9.66

Figure P9.65

Figure P9.64

67. Sand from a stationary hopper falls onto a moving con-
veyor belt at the rate of 5.00 kg/s, as shown in Figure
P9.67. The conveyor belt is supported by frictionless
rollers and moves at a constant speed of 0.750 m/s un-
der the action of a constant horizontal external force
Fext supplied by the motor that drives the belt. Find 
(a) the sand’s rate of change of momentum in the hori-
zontal direction, (b) the force of friction exerted by the
belt on the sand, (c) the external force Fext, (d) the
work done by Fext in 1 s, and (e) the kinetic energy ac-
quired by the falling sand each second due to the
change in its horizontal motion. (f) Why are the an-
swers to parts (d) and (e) different?

65. A chain of length L and total mass M is released from
rest with its lower end just touching the top of a table,
as shown in Figure P9.65a. Find the force exerted by the
table on the chain after the chain has fallen through a
distance x, as shown in Figure P9.65b. (Assume each
link comes to rest the instant it reaches the table.)

45.0°

L – x

x

L

(a) (b)

v 1

v 2

m 1

m 2
k
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tween the boat and the water, (a) describe the subse-
quent motion of the system (child plus boat). (b) Where
is the child relative to the pier when he reaches the far end
of the boat? (c) Will he catch the turtle? (Assume he can
reach out 1.00 m from the end of the boat.)

70. A student performs a ballistic pendulum experiment,
using an apparatus similar to that shown in Figure
9.11b. She obtains the following average data: h �
8.68 cm, m1 � 68.8 g, and m2 � 263 g. The symbols re-
fer to the quantities in Figure 9.11a. (a) Determine the
initial speed v1i of the projectile. (b) In the second part
of her experiment she is to obtain v1i by firing the same
projectile horizontally (with the pendulum removed
from the path) and measuring its horizontal displace-
ment x and vertical displacement y (Fig. P9.70). Show
that the initial speed of the projectile is related to x and
y through the relationship

What numerical value does she obtain for v1i on the ba-
sis of her measured values of x � 257 cm and y �
85.3 cm? What factors might account for the difference
in this value compared with that obtained in part (a)?

v1i �
x

√2y/g

68. A rocket has total mass Mi � 360 kg, including 330 kg
of fuel and oxidizer. In interstellar space it starts from
rest, turns on its engine at time t � 0, and puts out ex-
haust with a relative speed of ve � 1 500 m/s at the con-
stant rate k � 2.50 kg/s. Although the fuel will last for
an actual burn time of 330 kg/(2.5 kg/s) � 132 s, de-
fine a “projected depletion time” as Tp � Mi/k �
360 kg/(2.5 kg/s) � 144 s. (This would be the burn
time if the rocket could use its payload, fuel tanks, and
even the walls of the combustion chamber as fuel.) 
(a) Show that during the burn the velocity of the rocket
is given as a function of time by

(b) Make a graph of the velocity of the rocket as a func-
tion of time for times running from 0 to 132 s. (c) Show
that the acceleration of the rocket is

(d) Graph the acceleration as a function of time. 
(e) Show that the displacement of the rocket from its
initial position at t  � 0 is

(f) Graph the displacement during the burn.
69. A 40.0-kg child stands at one end of a 70.0-kg boat that

is 4.00 m in length (Fig. P9.69). The boat is initially
3.00 m from the pier. The child notices a turtle on a
rock near the far end of the boat and proceeds to walk
to that end to catch the turtle. Neglecting friction be-

x(t) � ve(Tp � t)ln(1 � t/Tp) � ve t

a(t) � ve/(Tp � t)

v(t) � �ve ln(1 � t/Tp)

Figure P9.70

Figure P9.69

Figure P9.67

0.750 m/s

Fext

4.00 m
3.00 m

y

v1i

x

71. A 5.00-g bullet moving with an initial speed of 400 m/s
is fired into and passes through a 1.00-kg block, as
shown in Figure P9.71. The block, initially at rest on a
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ANSWERS TO QUICK QUIZZES

ball is hardest to catch when it has the same speed as the
baseball.

9.3 (c) and (e). Object 2 has a greater acceleration because
of its smaller mass. Therefore, it takes less time to travel
the distance d. Thus, even though the force applied to
objects 1 and 2 is the same, the change in momentum is
less for object 2 because 	t is smaller. Therefore, be-
cause the initial momenta were the same (both zero), 
p 1 � p 2 . The work W � Fd done on both objects is the
same because both F and d are the same in the two
cases. Therefore, K1 � K2 .

9.4 Because the passenger is brought from the car’s initial
speed to a full stop, the change in momentum (the im-
pulse) is the same regardless of whether the passenger is
stopped by dashboard, seatbelt, or airbag. However, the
dashboard stops the passenger very quickly in a front-
end collision. The seatbelt takes somewhat more time.
Used along with the seatbelt, the airbag can extend the
passenger’s stopping time further, notably for his head,
which would otherwise snap forward. Therefore, the

9.1 (d). Two identical objects (m1 � m2) traveling in the
same direction at the same speed (v1 � v2) have the
same kinetic energies and the same momenta. However,
this is not true if the two objects are moving at the same
speed but in different directions. In the latter case, K1 �
K2 , but the differing velocity directions indicate that

because momentum is a vector quantity.
It also is possible for particular combinations of

masses and velocities to satisfy K1 � K2 but not p 1 � p 2 .
For example, a 1-kg object moving at 2 m/s has the
same kinetic energy as a 4-kg object moving at 1 m/s,
but the two clearly do not have the same momenta.

9.2 (b), (c), (a). The slower the ball, the easier it is to catch.
If the momentum of the medicine ball is the same as the
momentum of the baseball, the speed of the medicine
ball must be 1/10 the speed of the baseball because the
medicine ball has 10 times the mass. If the kinetic ener-
gies are the same, the speed of the medicine ball must
be the speed of the baseball because of the
squared speed term in the formula for K. The medicine

1/√10

p1 � p 2

Figure P9.71

72. Two masses m and 3m are moving toward each other
along the x axis with the same initial speeds vi . Mass m is
traveling to the left, while mass 3m is traveling to the
right. They undergo a head-on elastic collision and
each rebounds along the same line as it approached.
Find the final speeds of the masses.

73. Two masses m and 3m are moving toward each other
along the x axis with the same initial speeds vi . Mass m is
traveling to the left, while mass 3m is traveling to the
right. They undergo an elastic glancing collision such

frictionless, horizontal surface, is connected to a spring
of force constant 900 N/m. If the block moves 5.00 cm
to the right after impact, find (a) the speed at which the
bullet emerges from the block and (b) the energy lost
in the collision.

v5.00 cm

400 m/s

that mass m is moving downward after the collision at
right angles from its initial direction. (a) Find the final
speeds of the two masses. (b) What is the angle 
 at
which the mass 3m is scattered?

74. Review Problem. There are (one can say) three co-
equal theories of motion: Newton’s second law, stating
that the total force on an object causes its acceleration;
the work–kinetic energy theorem, stating that the total
work on an object causes its change in kinetic energy;
and the impulse–momentum theorem, stating that the
total impulse on an object causes its change in momen-
tum. In this problem, you compare predictions of the
three theories in one particular case. A 3.00-kg object
has a velocity of 7.00j m/s. Then, a total force 12.0i N
acts on the object for 5.00 s. (a) Calculate the object’s fi-
nal velocity, using the impulse–momentum theorem.
(b) Calculate its acceleration from a � (vf � vi)/t. 
(c) Calculate its acceleration from a � �F/m. (d) Find
the object’s vector displacement from 
(e) Find the work done on the object from W � F � r.
(f) Find the final kinetic energy from 
(g) Find the final kinetic energy from 

75. A rocket has a total mass of Mi � 360 kg, including 
330 kg of fuel and oxidizer. In interstellar space it starts
from rest. Its engine is turned on at time t � 0, and it
puts out exhaust with a relative speed of ve � 1 500 m/s
at the constant rate 2.50 kg/s. The burn lasts until the
fuel runs out at time 330 kg/(2.5 kg/s) � 132 s. Set up
and carry out a computer analysis of the motion accord-
ing to Euler’s method. Find (a) the final velocity of the
rocket and (b) the distance it travels during the burn.

1
2 mvi 

2 � W.

1
2 mvf 

2 � 1
2 mvf � vf .

r � vit � 1
2a t2.
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dashboard applies the greatest force, the seatbelt an in-
termediate force, and the airbag the least force. Airbags
are designed to work in conjunction with seatbelts.
Make sure you wear your seatbelt at all times while in a
moving vehicle.

9.5 If we define the ball as our system, momentum is not
conserved. The ball’s speed—and hence its momen-
tum—continually increase. This is consistent with the
fact that the gravitational force is external to this cho-
sen system. However, if we define our system as the ball
and the Earth, momentum is conserved, for the Earth
also has momentum because the ball exerts a gravita-
tional force on it. As the ball falls, the Earth moves up
to meet it (although the Earth’s speed is on the order
of 1025 times less than that of the ball!). This upward
movement changes the Earth’s momentum. The
change in the Earth’s momentum is numerically equal
to the change in the ball’s momentum but is in the op-
posite direction. Therefore, the total momentum of the
Earth–ball system is conserved. Because the Earth’s
mass is so great, its upward motion is negligibly small.

9.6 (c). The greatest impulse (greatest change in momen-
tum) is imparted to the Frisbee when the skater reverses
its momentum vector by catching it and throwing it
back. Since this is when the skater imparts the greatest
impulse to the Frisbee, then this also is when the Frisbee
imparts the greatest impulse to her.

9.7 Both are equally bad. Imagine watching the collision
from a safer location alongside the road. As the “crush
zones” of the two cars are compressed, you will see that

the actual point of contact is stationary. You would see
the same thing if your car were to collide with a solid
wall.

9.8 No, such movement can never occur if we assume the
collisions are elastic. The momentum of the system be-
fore the collision is mv, where m is the mass of ball 1 and
v is its speed just before the collision. After the collision,
we would have two balls, each of mass m and moving
with a speed of v/2. Thus, the total momentum of the
system after the collision would be m(v/2) � m(v/2) �
mv. Thus, momentum is conserved. However, the kinetic
energy just before the collision is and that 

after the collision is 
Thus, kinetic energy is not conserved. Both momentum
and kinetic energy are conserved only when one ball
moves out when one ball is released, two balls move out
when two are released, and so on.

9.9 No they will not! The piece with the handle will have less
mass than the piece made up of the end of the bat. To
see why this is so, take the origin of coordinates as the
center of mass before the bat was cut. Replace each cut
piece by a small sphere located at the center of mass for
each piece. The sphere representing the handle piece is
farther from the origin, but the product of lesser mass
and greater distance balances the product of greater
mass and lesser distance for the end piece:

K f � 1
2 m(v/2)2 � 1

2 m(v/2)2 � 1
4mv2.

K i � 1
2 mv2,


