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10.1 Angular Displacement, Velocity, and Acceleration 293

hen an extended object, such as a wheel, rotates about its axis, the motion
cannot be analyzed by treating the object as a particle because at any given

time different parts of the object have different linear velocities and linear
accelerations. For this reason, it is convenient to consider an extended object as a
large number of particles, each of which has its own linear velocity and linear
acceleration.

In dealing with a rotating object, analysis is greatly simplified by assuming that
the object is rigid. A rigid object is one that is nondeformable—that is, it is an
object in which the separations between all pairs of particles remain constant. All
real bodies are deformable to some extent; however, our rigid-object model is use-
ful in many situations in which deformation is negligible.

In this chapter, we treat the rotation of a rigid object about a fixed axis, which
is commonly referred to as pure rotational motion.

ANGULAR DISPLACEMENT, VELOCITY,
AND ACCELERATION

Figure 10.1 illustrates a planar (flat), rigid object of arbitrary shape confined to
the xy plane and rotating about a fixed axis through O. The axis is perpendicular
to the plane of the figure, and O is the origin of an xy coordinate system. Let us
look at the motion of only one of the millions of “particles” making up this object.
A particle at P is at a fixed distance r from the origin and rotates about it in a circle
of radius r. (In fact, every particle on the object undergoes circular motion about
O.) It is convenient to represent the position of P with its polar coordinates (r, �),
where r is the distance from the origin to P and � is measured counterclockwise from
some preferred direction—in this case, the positive x axis. In this representation,
the only coordinate that changes in time is the angle �; r remains constant. (In
cartesian coordinates, both x and y vary in time.) As the particle moves along the
circle from the positive x axis (� � 0) to P, it moves through an arc of length s,
which is related to the angular position � through the relationship

(10.1a)

(10.1b)

It is important to note the units of � in Equation 10.1b. Because � is the ratio
of an arc length and the radius of the circle, it is a pure number. However, we com-
monly give � the artificial unit radian (rad), where

� �
s
r

s � r�

10.1

one radian is the angle subtended by an arc length equal to the radius of the
arc.

W

Because the circumference of a circle is 2�r, it follows from Equation 10.1b that
360° corresponds to an angle of 2�r/r rad � 2� rad (one revolution). Hence, 
1 rad � 360°/2� � 57.3°. To convert an angle in degrees to an angle in radians,
we use the fact that 2� rad � 360°:

For example, 60° equals �/3 rad, and 45° equals �/4 rad.

� (rad) �
�

180°
 � (deg)

Radian

Rigid object

Figure 10.1 A rigid object rotat-
ing about a fixed axis through O
perpendicular to the plane of the
figure. (In other words, the axis of
rotation is the z axis.) A particle at
P rotates in a circle of radius r cen-
tered at O.
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As the particle in question on our rigid object travels from position P to position
Q in a time �t as shown in Figure 10.2, the radius vector sweeps out an angle �� � �f
� �i . This quantity �� is defined as the angular displacement of the particle:

(10.2)

We define the average angular speed (omega) as the ratio of this angular dis-
placement to the time interval �t:

(10.3)

In analogy to linear speed, the instantaneous angular speed � is defined as
the limit of the ratio ��/�t as �t approaches zero:

(10.4)

Angular speed has units of radians per second (rad/s), or rather second�1

(s�1) because radians are not dimensional. We take � to be positive when � is in-
creasing (counterclockwise motion) and negative when � is decreasing (clockwise
motion).

If the instantaneous angular speed of an object changes from �i to �f in the
time interval �t, the object has an angular acceleration. The average angular ac-
celeration (alpha) of a rotating object is defined as the ratio of the change in
the angular speed to the time interval �t :

(10.5)� �
�f � �i

tf � ti
�

��

�t

�

� � lim
�t:0

 
��

�t
�

d�

dt

� �
�f � �i

tf � ti
�

��

�t

�

�� � �f � �i

Average angular acceleration

Instantaneous angular speed

Average angular speed

In a short track event, such as a 200-m or
400-m sprint, the runners begin from stag-
gered positions on the track. Why don’t
they all begin from the same line?
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Figure 10.2 A particle on a rotat-
ing rigid object moves from P to Q
along the arc of a circle. In the
time interval the ra-
dius vector sweeps out an angle
�� � �f � �i .

�t � tf � ti ,
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In analogy to linear acceleration, the instantaneous angular acceleration is
defined as the limit of the ratio ��/�t as �t approaches zero:

(10.6)

Angular acceleration has units of radians per second squared (rad/s2), or just sec-
ond�2 (s�2). Note that � is positive when the rate of counterclockwise rotation is
increasing or when the rate of clockwise rotation is decreasing.

When rotating about a fixed axis, every particle on a rigid object rotates
through the same angle and has the same angular speed and the same an-
gular acceleration. That is, the quantities �, �, and � characterize the rotational
motion of the entire rigid object. Using these quantities, we can greatly simplify
the analysis of rigid-body rotation.

Angular position (�), angular speed (�), and angular acceleration (�) are
analogous to linear position (x), linear speed (v), and linear acceleration (a). The
variables �, �, and � differ dimensionally from the variables x, v, and a only by a
factor having the unit of length.

We have not specified any direction for � and �. Strictly speaking, these
variables are the magnitudes of the angular velocity and the angular accelera-
tion vectors � and �, respectively, and they should always be positive. Because
we are considering rotation about a fixed axis, however, we can indicate the di-
rections of the vectors by assigning a positive or negative sign to � and �, as dis-
cussed earlier with regard to Equations 10.4 and 10.6. For rotation about a fixed
axis, the only direction that uniquely specifies the rotational motion is the di-
rection along the axis of rotation. Therefore, the directions of � and � are
along this axis. If an object rotates in the xy plane as in Figure 10.1, the direc-
tion of � is out of the plane of the diagram when the rotation is counterclock-
wise and into the plane of the diagram when the rotation is clockwise. To illus-
trate this convention, it is convenient to use the right-hand rule demonstrated in
Figure 10.3. When the four fingers of the right hand are wrapped in the direc-
tion of rotation, the extended right thumb points in the direction of �. The di-
rection of � follows from its definition d�/dt. It is the same as the direction of
� if the angular speed is increasing in time, and it is antiparallel to � if the an-
gular speed is decreasing in time.

� � lim
�t:0

 
��

�t
�

d�

dt
Instantaneous angular
acceleration

ω

ω

Figure 10.3 The right-hand rule for deter-
mining the direction of the angular velocity
vector.
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Describe a situation in which � � 0 and � and � are antiparallel.

ROTATIONAL KINEMATICS: ROTATIONAL MOTION
WITH CONSTANT ANGULAR ACCELERATION

In our study of linear motion, we found that the simplest form of accelerated mo-
tion to analyze is motion under constant linear acceleration. Likewise, for rota-
tional motion about a fixed axis, the simplest accelerated motion to analyze is mo-
tion under constant angular acceleration. Therefore, we next develop kinematic
relationships for this type of motion. If we write Equation 10.6 in the form d� �
� dt, and let ti � 0 and tf � t, we can integrate this expression directly:

(for constant �) (10.7)

Substituting Equation 10.7 into Equation 10.4 and integrating once more we
obtain

(for constant �) (10.8)

If we eliminate t from Equations 10.7 and 10.8, we obtain

(for constant �) (10.9)

Notice that these kinematic expressions for rotational motion under constant an-
gular acceleration are of the same form as those for linear motion under constant
linear acceleration with the substitutions x : �, v : �, and a : �. Table 10.1
compares the kinematic equations for rotational and linear motion.

�f 

2 � �i 

2 	 2�(�f � �i)

�f � �i 	 �it 	 1
2�t2

�f � �i 	 �t

10.2

Quick Quiz 10.1

Rotating WheelEXAMPLE 10.1
Solution Because the angular acceleration and the angu-
lar speed are both positive, we can be sure our answer must
be greater than 2.00 rad/s.

We could also obtain this result using Equation 10.9 and the
results of part (a). Try it! You also may want to see if you can
formulate the linear motion analog to this problem.

Exercise Find the angle through which the wheel rotates
between t � 2.00 s and t � 3.00 s.

Answer 10.8 rad.

9.00 rad/s�

�f � �i 	 �t � 2.00 rad/s 	 (3.50 rad/s2)(2.00 s)

A wheel rotates with a constant angular acceleration of 
3.50 rad/s2. If the angular speed of the wheel is 2.00 rad/s at
ti � 0, (a) through what angle does the wheel rotate in 2.00 s?

Solution We can use Figure 10.2 to represent the wheel,
and so we do not need a new drawing. This is a straightfor-
ward application of an equation from Table 10.1:

(b) What is the angular speed at t � 2.00 s?

1.75 rev    �
630°

360°/rev
�

630°   � 11.0 rad � (11.0 rad)(57.3°/rad) �

	 1
2 (3.50 rad/s2)(2.00 s)2

�f � �i � �it 	 1
2�t2 � (2.00 rad/s)(2.00 s)

Rotational kinematic equations

7.2
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ANGULAR AND LINEAR QUANTITIES
In this section we derive some useful relationships between the angular speed and
acceleration of a rotating rigid object and the linear speed and acceleration of an
arbitrary point in the object. To do so, we must keep in mind that when a rigid ob-
ject rotates about a fixed axis, as in Figure 10.4, every particle of the object moves
in a circle whose center is the axis of rotation.

We can relate the angular speed of the rotating object to the tangential speed
of a point P on the object. Because point P moves in a circle, the linear velocity
vector v is always tangent to the circular path and hence is called tangential velocity.
The magnitude of the tangential velocity of the point P is by definition the tangen-
tial speed v � ds/dt, where s is the distance traveled by this point measured along
the circular path. Recalling that s � r� (Eq. 10.1a) and noting that r is constant,
we obtain

Because d�/dt � � (see Eq. 10.4), we can say

(10.10)

That is, the tangential speed of a point on a rotating rigid object equals the per-
pendicular distance of that point from the axis of rotation multiplied by the angu-
lar speed. Therefore, although every point on the rigid object has the same angu-
lar speed, not every point has the same linear speed because r is not the same for
all points on the object. Equation 10.10 shows that the linear speed of a point on
the rotating object increases as one moves outward from the center of rotation, as
we would intuitively expect. The outer end of a swinging baseball bat moves much
faster than the handle.

We can relate the angular acceleration of the rotating rigid object to the tan-
gential acceleration of the point P by taking the time derivative of v:

(10.11)

That is, the tangential component of the linear acceleration of a point on a rotat-
ing rigid object equals the point’s distance from the axis of rotation multiplied by
the angular acceleration.

at � r�

at �
dv
dt

� r  
d�

dt

v � r�

v �
ds
dt

� r  
d�

dt

10.3

Relationship between linear and
angular speed

TABLE 10.1 Kinematic Equations for Rotational and Linear Motion
Under Constant Acceleration

Rotational Motion About a Fixed Axis Linear Motion

�f � �i 	 �t vf � vi 	 at
�f � �i 	 �it 	 �t2 xf � xi 	 vit 	 at2

�f
2 � �i

2 	 2�(�f � �i) vf
2 � vi

2 	 2a(xf � xi)

1
2

1
2

Relationship between linear and
angular acceleration

y

x

v

P

r

θ

O

Figure 10.4 As a rigid object ro-
tates about the fixed axis through
O, the point P has a linear velocity
v that is always tangent to the circu-
lar path of radius r.

QuickLab
Spin a tennis ball or basketball and
watch it gradually slow down and
stop. Estimate � and at as accurately
as you can.
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In Section 4.4 we found that a point rotating in a circular path undergoes a
centripetal, or radial, acceleration ar of magnitude v2/r directed toward the center
of rotation (Fig. 10.5). Because v � r� for a point P on a rotating object, we can
express the radial acceleration of that point as

(10.12)

The total linear acceleration vector of the point is a � at 	 ar . (at describes
the change in how fast the point is moving, and ar represents the change in its di-
rection of travel.) Because a is a vector having a radial and a tangential compo-
nent, the magnitude of a for the point P on the rotating rigid object is

(10.13)

When a wheel of radius R rotates about a fixed axis, do all points on the wheel have (a) the
same angular speed and (b) the same linear speed? If the angular speed is constant and
equal to �, describe the linear speeds and linear accelerations of the points located at 
(c) r � 0, (d) r � R/2, and (e) r � R, all measured from the center of the wheel.

Quick Quiz 10.2

a � √at 2 	 ar 

2 � √r 2�2 	 r 2�4 � r √�2 	 �4

ar �
v2

r
� r�2

CD PlayerEXAMPLE 10.2

�  5.4 
 102 rev/min

  � (56.5 rad/s)� 1
2�  rev/rad�(60 s/min)

On a compact disc, audio information is stored in a series of
pits and flat areas on the surface of the disc. The information
is stored digitally, and the alternations between pits and flat
areas on the surface represent binary ones and zeroes to be
read by the compact disc player and converted back to sound
waves. The pits and flat areas are detected by a system consist-
ing of a laser and lenses. The length of a certain number of
ones and zeroes is the same everywhere on the disc, whether
the information is near the center of the disc or near its
outer edge. In order that this length of ones and zeroes al-
ways passes by the laser– lens system in the same time period,
the linear speed of the disc surface at the location of the lens
must be constant. This requires, according to Equation 10.10,
that the angular speed vary as the laser– lens system moves ra-
dially along the disc. In a typical compact disc player, the disc
spins counterclockwise (Fig. 10.6), and the constant speed of
the surface at the point of the laser– lens system is 1.3 m/s.
(a) Find the angular speed of the disc in revolutions per
minute when information is being read from the innermost
first track (r � 23 mm) and the outermost final track (r �
58 mm).

Solution Using Equation 10.10, we can find the angular
speed; this will give us the required linear speed at the posi-
tion of the inner track,

�i �
v
ri

�
1.3 m/s

2.3 
 10�2 m
� 56.5 rad/s  

x

y

O

ar

at

P
a

Figure 10.5 As a rigid object ro-
tates about a fixed axis through O,
the point P experiences a tangen-
tial component of linear accelera-
tion at and a radial component of
linear acceleration ar . The total lin-
ear acceleration of this point is a �
at 	 ar .

23 mm

58 mm

Figure 10.6 A compact disc.
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For the outer track,

The player adjusts the angular speed � of the disc within this
range so that information moves past the objective lens at a
constant rate. These angular velocity values are positive be-
cause the direction of rotation is counterclockwise.

(b) The maximum playing time of a standard music CD
is 74 minutes and 33 seconds. How many revolutions does the
disc make during that time?

Solution We know that the angular speed is always de-
creasing, and we assume that it is decreasing steadily, with �
constant. The time interval t is (74 min)(60 s/min) 	
33 s � 4 473 s. We are looking for the angular position �f ,
where we set the initial angular position �i � 0. We can use
Equation 10.3, replacing the average angular speed with its
mathematical equivalent (�i 	 � f )/2:

2.8 
 104 rev  �

    (1 min/60 s)(4 473 s)  

  � 0 	 1
2 (540 rev/min 	 210 rev/min)

�f � �i 	 1
2 (�i 	 �f)t  

�

�  2.1 
 102 rev/min

�f �
v
rf

�
1.3 m/s

5.8 
 10�2 m
� 22.4 rad/s

(c) What total length of track moves past the objective
lens during this time?

Solution Because we know the (constant) linear velocity
and the time interval, this is a straightforward calculation:

More than 3.6 miles of track spins past the objective lens!

(d) What is the angular acceleration of the CD over the 
4 473-s time interval? Assume that � is constant.

Solution We have several choices for approaching this
problem. Let us use the most direct approach by utilizing
Equation 10.5, which is based on the definition of the term
we are seeking. We should obtain a negative number for the
angular acceleration because the disc spins more and more
slowly in the positive direction as time goes on. Our answer
should also be fairly small because it takes such a long time—
more than an hour—for the change in angular speed to be
accomplished:

The disc experiences a very gradual decrease in its rotation
rate, as expected.

�7.6 
 10�3 rad/s2�

� �
�f � �i

t
�

22.4 rad/s � 56.5 rad/s
4 473 s

5.8 
 103 mx f � vit � (1.3 m/s)(4 473 s) �

ROTATIONAL ENERGY
Let us now look at the kinetic energy of a rotating rigid object, considering the ob-
ject as a collection of particles and assuming it rotates about a fixed z axis with an
angular speed � (Fig. 10.7). Each particle has kinetic energy determined by its
mass and linear speed. If the mass of the ith particle is mi and its linear speed is vi ,
its kinetic energy is

To proceed further, we must recall that although every particle in the rigid object
has the same angular speed �, the individual linear speeds depend on the distance
ri from the axis of rotation according to the expression vi � ri� (see Eq. 10.10).
The total kinetic energy of the rotating rigid object is the sum of the kinetic ener-
gies of the individual particles:

We can write this expression in the form

(10.14)

where we have factored �2 from the sum because it is common to every particle.

KR � 1
2��

i
miri 2��2

K R � �
i

K i � �
i

1
2mivi 

2 � 1
2 �

i
miri 

2�2

Ki � 1
2mivi 

2

10.4

7.3

web
If you want to learn more about the physics
of CD players, visit the Special Interest
Group on CD Applications and Technology
at www.sigcat.org

y

x

vi

mi

ri

θ
O

Figure 10.7 A rigid object rotat-
ing about a z axis with angular
speed �. The kinetic energy of 
the particle of mass mi is 
The total kinetic energy of the ob-
ject is called its rotational 
kinetic energy.

1
2m iv i  

2.
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We simplify this expression by defining the quantity in parentheses as the moment
of inertia I:

(10.15)

From the definition of moment of inertia, we see that it has dimensions of ML2

(kg� m2 in SI units).1 With this notation, Equation 10.14 becomes

(10.16)

Although we commonly refer to the quantity I�2 as rotational kinetic energy,
it is not a new form of energy. It is ordinary kinetic energy because it is derived
from a sum over individual kinetic energies of the particles contained in the rigid
object. However, the mathematical form of the kinetic energy given by Equation
10.16 is a convenient one when we are dealing with rotational motion, provided
we know how to calculate I. 

It is important that you recognize the analogy between kinetic energy associ-
ated with linear motion and rotational kinetic energy The quantities I
and � in rotational motion are analogous to m and v in linear motion, respectively.
(In fact, I takes the place of m every time we compare a linear-motion equation
with its rotational counterpart.) The moment of inertia is a measure of the resis-
tance of an object to changes in its rotational motion, just as mass is a measure of
the tendency of an object to resist changes in its linear motion. Note, however,
that mass is an intrinsic property of an object, whereas I depends on the physical
arrangement of that mass. Can you think of a situation in which an object’s mo-
ment of inertia changes even though its mass does not?

1
2 I�2.1

2mv2

1
2

KR � 1
2I�2

I � �
i

miri 2

1 Civil engineers use moment of inertia to characterize the elastic properties (rigidity) of such struc-
tures as loaded beams. Hence, it is often useful even in a nonrotational context.

Rotational kinetic energy

Moment of inertia

The Oxygen MoleculeEXAMPLE 10.3

This is a very small number, consistent with the minuscule
masses and distances involved.

(b) If the angular speed of the molecule about the z axis is
4.60 
 1012 rad/s, what is its rotational kinetic energy?

Solution We apply the result we just calculated for the mo-
ment of inertia in the formula for KR :

2.06 
 10�21 J �

  � 1
2(1.95 
 10�46 kg�m2)(4.60 
 1012 rad/s)2

KR � 1
2 I�2  

1.95 
 10�46 kg�m2 �
Consider an oxygen molecule (O2) rotating in the xy plane
about the z axis. The axis passes through the center of the
molecule, perpendicular to its length. The mass of each oxy-
gen atom is 2.66 
 10�26 kg, and at room temperature the
average separation between the two atoms is d � 1.21 

10�10 m (the atoms are treated as point masses). (a) Calcu-
late the moment of inertia of the molecule about the z axis.

Solution This is a straightforward application of the def-
inition of I. Because each atom is a distance d/2 from the z
axis, the moment of inertia about the axis is

  � 1
2(2.66 
 10�26 kg)(1.21 
 10�10 m)2

I � �
i

mi ri 

2 � m � d
2 �

2
	 m � d

2 �
2

� 1
2md 2
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CALCULATION OF MOMENTS OF INERTIA
We can evaluate the moment of inertia of an extended rigid object by imagining
the object divided into many small volume elements, each of which has mass �m. 
We use the definition and take the limit of this sum as �m : 0. In 

this limit, the sum becomes an integral over the whole object:

(10.17)

It is usually easier to calculate moments of inertia in terms of the volume of
the elements rather than their mass, and we can easily make that change by using
Equation 1.1,  � m/V, where  is the density of the object and V is its volume. We
want this expression in its differential form  � dm/dV because the volumes we
are dealing with are very small. Solving for dm �  dV and substituting the result

I � lim
�mi :0

 �
i

ri 

2 �mi � �r 2 dm

I � �
i

r i 

2 �mi

10.5

Four Rotating MassesEXAMPLE 10.4
Therefore, the rotational kinetic energy about the y axis is

The fact that the two spheres of mass m do not enter into this
result makes sense because they have no motion about the
axis of rotation; hence, they have no rotational kinetic en-
ergy. By similar logic, we expect the moment of inertia about
the x axis to be Ix � 2mb2 with a rotational kinetic energy
about that axis of KR � mb2�2.

(b) Suppose the system rotates in the xy plane about an
axis through O (the z axis). Calculate the moment of inertia
and rotational kinetic energy about this axis.

Solution Because ri in Equation 10.15 is the perpendicular
distance to the axis of rotation, we obtain

Comparing the results for parts (a) and (b), we conclude
that the moment of inertia and therefore the rotational ki-
netic energy associated with a given angular speed depend on
the axis of rotation. In part (b), we expect the result to in-
clude all four spheres and distances because all four spheres
are rotating in the xy plane. Furthermore, the fact that the ro-
tational kinetic energy in part (a) is smaller than that in part
(b) indicates that it would take less effort (work) to set the
system into rotation about the y axis than about the z axis.

(Ma2 	 mb2)�2  KR � 1
2Iz�

2 � 1
2(2Ma2 	 2mb2)� 2 �

2Ma2 	 2mb 2I z � �
i
mi ri 

2 � Ma2 	 Ma2 	 mb2 	 mb2 �

Ma2�2KR � 1
2Iy�

2 � 1
2(2Ma2)�2 �

Four tiny spheres are fastened to the corners of a frame of
negligible mass lying in the xy plane (Fig. 10.8). We shall as-
sume that the spheres’ radii are small compared with the di-
mensions of the frame. (a) If the system rotates about the y
axis with an angular speed �, find the moment of inertia and
the rotational kinetic energy about this axis.

Solution First, note that the two spheres of mass m, which
lie on the y axis, do not contribute to Iy (that is, ri � 0 for
these spheres about this axis). Applying Equation 10.15, we
obtain

2Ma2Iy � �
i

mi ri
2 � Ma2 	 Ma2 �

O

a a

b

b

m

m

M
x

y

M

Figure 10.8 The four spheres are at a fixed separation as shown.
The moment of inertia of the system depends on the axis about
which it is evaluated.

7.5
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into Equation 10.17 gives

If the object is homogeneous, then  is constant and the integral can be evaluated
for a known geometry. If  is not constant, then its variation with position must be
known to complete the integration.

The density given by  � m/V sometimes is referred to as volume density for the
obvious reason that it relates to volume. Often we use other ways of expressing
density. For instance, when dealing with a sheet of uniform thickness t, we can de-
fine a surface density � � t, which signifies mass per unit area. Finally, when mass is
distributed along a uniform rod of cross-sectional area A, we sometimes use linear
density � � M/L � A, which is the mass per unit length.

I � �r 2 dV

Uniform HoopEXAMPLE 10.5
Find the moment of inertia of a uniform hoop of mass M and
radius R about an axis perpendicular to the plane of the
hoop and passing through its center (Fig. 10.9).

Solution All mass elements dm are the same distance r �
R from the axis, and so, applying Equation 10.17, we obtain
for the moment of inertia about the z axis through O:

Note that this moment of inertia is the same as that of a sin-
gle particle of mass M located a distance R from the axis of
rotation.

MR 2I z � � r 2 dm � R 2 � dm �

y

x

R
O

dm

Figure 10.9 The mass elements dm of a uniform hoop are all the
same distance from O.

Uniform Rigid RodEXAMPLE 10.6
Substituting this expression for dm into Equation 10.17, with
r � x, we obtain

1
12ML2   �

M
L

 � x3

3 �
L/2

�L/2
�

Iy � � r 2 dm � �L/2

�L/2
 x2 

M
L

 dx �
M
L

 �L/2

�L/2
 x2 dx

Calculate the moment of inertia of a uniform rigid rod of
length L and mass M (Fig. 10.10) about an axis perpendicu-
lar to the rod (the y axis) and passing through its center of
mass.

Solution The shaded length element dx has a mass dm
equal to the mass per unit length � multiplied by dx :

dm � � dx �
M
L

dx

(a) Based on what you have learned from Example 10.5, what do you expect to find for the
moment of inertia of two particles, each of mass M/2, located anywhere on a circle of ra-
dius R around the axis of rotation? (b) How about the moment of inertia of four particles,
each of mass M/4, again located a distance R from the rotation axis?

Quick Quiz 10.3
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Table 10.2 gives the moments of inertia for a number of bodies about specific
axes. The moments of inertia of rigid bodies with simple geometry (high symme-
try) are relatively easy to calculate provided the rotation axis coincides with an axis
of symmetry. The calculation of moments of inertia about an arbitrary axis can be
cumbersome, however, even for a highly symmetric object. Fortunately, use of an
important theorem, called the parallel-axis theorem, often simplifies the calcula-
tion. Suppose the moment of inertia about an axis through the center of mass of
an object is ICM . The parallel-axis theorem states that the moment of inertia about
any axis parallel to and a distance D away from this axis is

(10.18)I � ICM 	 MD2

Uniform Solid CylinderEXAMPLE 10.7
cylindrical shells, each of which has radius r, thickness dr, and
length L, as shown in Figure 10.11. The volume dV of each
shell is its cross-sectional area multiplied by its length: dV �
dA� L � (2�r dr)L. If the mass per unit volume is , then the
mass of this differential volume element is dm � dV �
2�rL dr. Substituting this expression for dm into Equation
10.17, we obtain

Because the total volume of the cylinder is �R 2L, we see that
 � M/V � M/�R 2L. Substituting this value for  into the
above result gives

(1)

Note that this result does not depend on L, the length of the
cylinder. In other words, it applies equally well to a long cylin-
der and a flat disc. Also note that this is exactly half the value
we would expect were all the mass concentrated at the outer
edge of the cylinder or disc. (See Example 10.5.)

1
2MR 2Iz �

I z � � r 2 dm � 2�L �R

0
 r 3 dr � 1

2�LR4

A uniform solid cylinder has a radius R, mass M, and length
L. Calculate its moment of inertia about its central axis (the z
axis in Fig. 10.11).

Solution It is convenient to divide the cylinder into many

L

x

O
x

dx

y′ y

Figure 10.10 A uniform rigid rod of length L. The moment of in-
ertia about the y axis is less than that about the y� axis. The latter axis
is examined in Example 10.8.

L

dr

z

r

R

Figure 10.11 Calculating I about the z axis for a uniform solid
cylinder.

Parallel-axis theorem
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Proof of the Parallel-Axis Theorem (Optional). Suppose that an object rotates
in the xy plane about the z axis, as shown in Figure 10.12, and that the coordinates
of the center of mass are xCM , yCM . Let the mass element dm have coordinates x, y.
Because this element is a distance from the z axis, the moment of in-
ertia about the z axis is

However, we can relate the coordinates x, y of the mass element dm to the coordi-
nates of this same element located in a coordinate system having the object’s cen-
ter of mass as its origin. If the coordinates of the center of mass are xCM , yCM in
the original coordinate system centered on O, then from Figure 10.12a we see that
the relationships between the unprimed and primed coordinates are x � x� 	 xCM

I � � r 2 dm � � (x2 	 y2) dm

r � √x2 	 y2

Hoop or
cylindrical shell
I CM = MR2 R

Solid cylinder
or disk

R
I CM = 1

2
MR2

Long thin rod
with rotation axis
through center

I CM = 1
12

ML2 L

R

Solid sphere

I CM = 2
5

MR 2

Hollow cylinder

R2

Long thin
rod with
rotation axis
through end

L

Thin spherical
shell

I CM = 2
3

MR 

2

R1I CM = 1
2

M(R1
2 + R2

2)

R

Rectangular plate

I CM = 1
12

M(a2 + b2)

b

a

I = 1
3

ML2

TABLE 10.2 Moments of Inertia of Homogeneous Rigid Bodies 
with Different Geometries
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and y � y� 	 yCM . Therefore,

The first integral is, by definition, the moment of inertia about an axis that is par-
allel to the z axis and passes through the center of mass. The second two integrals
are zero because, by definition of the center of mass, The
last integral is simply MD2 because and Therefore,
we conclude that

I � ICM 	 MD2

D2 � xCM 

2 	 yCM 

2.� dm � M
� x� dm � � y� dm � 0.

  � � [(x�)2 	 (y�)2] dm 	 2xCM � x� dm 	 2yCM � y� dm 	 (xCM 

2 	 yCM 

 

2) � dm

I � � [(x� 	 xCM)2 	 (y� 	 yCM)2] dm  

Applying the Parallel-Axis TheoremEXAMPLE 10.8

So, it is four times more difficult to change the rotation of a
rod spinning about its end than it is to change the motion of
one spinning about its center.

Exercise Calculate the moment of inertia of the rod about
a perpendicular axis through the point x � L/4.

Answer I � 7
48 ML2.

1
3 ML2I � ICM 	 MD2 � 1

12 ML2 	 M � L
2 �

2
�

Consider once again the uniform rigid rod of mass M and
length L shown in Figure 10.10. Find the moment of inertia
of the rod about an axis perpendicular to the rod through
one end (the y�axis in Fig. 10.10).

Solution Intuitively, we expect the moment of inertia to
be greater than because it should be more diffi-
cult to change the rotational motion of a rod spinning about
an axis at one end than one that is spinning about its center.
Because the distance between the center-of-mass axis and the
y� axis is D � L/2, the parallel-axis theorem gives

ICM � 1
12ML2

(a)

y

x, y
dm

y′

yCM

O

D

r

y

xCM

x

xCM, yCM

x′

x

CM

(b)

Axis
through
CM

x

y

z

Rotation
axis

O CM

Figure 10.12 (a) The parallel-axis theorem: If the moment of inertia about an axis perpendic-
ular to the figure through the center of mass is ICM , then the moment of inertia about the z axis
is Iz � ICM 	 MD 2. (b) Perspective drawing showing the z axis (the axis of rotation) and the par-
allel axis through the CM.
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TORQUE
Why are a door’s doorknob and hinges placed near opposite edges of the door?
This question actually has an answer based on common sense ideas. The harder
we push against the door and the farther we are from the hinges, the more likely
we are to open or close the door. When a force is exerted on a rigid object pivoted
about an axis, the object tends to rotate about that axis. The tendency of a force to
rotate an object about some axis is measured by a vector quantity called torque �
(tau).

Consider the wrench pivoted on the axis through O in Figure 10.13. The ap-
plied force F acts at an angle � to the horizontal. We define the magnitude of the
torque associated with the force F by the expression

(10.19)

where r is the distance between the pivot point and the point of application of F
and d is the perpendicular distance from the pivot point to the line of action of F.
(The line of action of a force is an imaginary line extending out both ends of the
vector representing the force. The dashed line extending from the tail of F in Fig-
ure 10.13 is part of the line of action of F.) From the right triangle in Figure 10.13
that has the wrench as its hypotenuse, we see that d � r sin �. This quantity d is
called the moment arm (or lever arm) of F.

It is very important that you recognize that torque is defined only when a reference
axis is specified. Torque is the product of a force and the moment arm of that force,
and moment arm is defined only in terms of an axis of rotation.

In Figure 10.13, the only component of F that tends to cause rotation is F sin �,
the component perpendicular to r. The horizontal component F cos �, because it
passes through O, has no tendency to produce rotation. From the definition of
torque, we see that the rotating tendency increases as F increases and as d in-
creases. This explains the observation that it is easier to close a door if we push at
the doorknob rather than at a point close to the hinge. We also want to apply our
push as close to perpendicular to the door as we can. Pushing sideways on the
doorknob will not cause the door to rotate.

If two or more forces are acting on a rigid object, as shown in Figure 10.14,
each tends to produce rotation about the pivot at O. In this example, F2 tends to

� � r F sin � � Fd

10.6

Moment arm

Definition of torque

7.6

r

F sin φ
F

F cos φ

d

O
Line of
action

φ

φ

φ

φ O

d2

d1

F2

F1

Figure 10.13 The force F has a
greater rotating tendency about O
as F increases and as the moment
arm d increases. It is the compo-
nent F sin � that tends to rotate the
wrench about O.

Figure 10.14 The force F1 tends
to rotate the object counterclock-
wise about O, and F2 tends to ro-
tate it clockwise.
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rotate the object clockwise, and F1 tends to rotate it counterclockwise. We use the
convention that the sign of the torque resulting from a force is positive if the turn-
ing tendency of the force is counterclockwise and is negative if the turning ten-
dency is clockwise. For example, in Figure 10.14, the torque resulting from F1 ,
which has a moment arm d1 , is positive and equal to 	 F1d1 ; the torque from F2 is
negative and equal to � F2d2 . Hence, the net torque about O is

Torque should not be confused with force. Forces can cause a change in lin-
ear motion, as described by Newton’s second law. Forces can also cause a change
in rotational motion, but the effectiveness of the forces in causing this change de-
pends on both the forces and the moment arms of the forces, in the combination
that we call torque. Torque has units of force times length—newton � meters in SI
units—and should be reported in these units. Do not confuse torque and work,
which have the same units but are very different concepts.

�� � �1 	 �2 � F1d1 � F2d2

The Net Torque on a CylinderEXAMPLE 10.9
Solution The torque due to F1 is � R1F1 (the sign is nega-
tive because the torque tends to produce clockwise rotation).
The torque due to F2 is 	 R2F2 (the sign is positive because
the torque tends to produce counterclockwise rotation).
Therefore, the net torque about the rotation axis is

We can make a quick check by noting that if the two forces
are of equal magnitude, the net torque is negative because 
R1 � R2 . Starting from rest with both forces acting on it, the
cylinder would rotate clockwise because F1 would be more ef-
fective at turning it than would F2 .

(b) Suppose F1 � 5.0 N, R1 � 1.0 m, F2 � 15.0 N, and 
R2 � 0.50 m. What is the net torque about the rotation axis,
and which way does the cylinder rotate from rest?

Because the net torque is positive, if the cylinder starts from
rest, it will commence rotating counterclockwise with increas-
ing angular velocity. (If the cylinder’s initial rotation is clock-
wise, it will slow to a stop and then rotate counterclockwise
with increasing angular speed.)

2.5 N�m�� � �(5.0 N)(1.0 m) 	 (15.0 N)(0.50 m) �

�R 1F1 	 R 2F2�� � �1 	 �2 �

A one-piece cylinder is shaped as shown in Figure 10.15, with
a core section protruding from the larger drum. The cylinder
is free to rotate around the central axis shown in the drawing.
A rope wrapped around the drum, which has radius R1 , ex-
erts a force F1 to the right on the cylinder. A rope wrapped
around the core, which has radius R2 , exerts a force F2 down-
ward on the cylinder. (a) What is the net torque acting on the
cylinder about the rotation axis (which is the z axis in Figure
10.15)?

7.6

RELATIONSHIP BETWEEN TORQUE AND
ANGULAR ACCELERATION

In this section we show that the angular acceleration of a rigid object rotating
about a fixed axis is proportional to the net torque acting about that axis. Before
discussing the more complex case of rigid-body rotation, however, it is instructive

10.7

z

x

y

R 1

R 2

O

F1

F2

Figure 10.15 A solid cylinder pivoted about the z axis through O.
The moment arm of F1 is R1 , and the moment arm of F2 is R2 .
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first to discuss the case of a particle rotating about some fixed point under the in-
fluence of an external force.

Consider a particle of mass m rotating in a circle of radius r under the influ-
ence of a tangential force Ft and a radial force Fr , as shown in Figure 10.16. (As we
learned in Chapter 6, the radial force must be present to keep the particle moving
in its circular path.) The tangential force provides a tangential acceleration at , and

The torque about the center of the circle due to Ft is

Because the tangential acceleration is related to the angular acceleration through
the relationship at � r� (see Eq. 10.11), the torque can be expressed as

Recall from Equation 10.15 that mr 2 is the moment of inertia of the rotating parti-
cle about the z axis passing through the origin, so that

(10.20)

That is, the torque acting on the particle is proportional to its angular accel-
eration, and the proportionality constant is the moment of inertia. It is important
to note that is the rotational analog of Newton’s second law of motion, 
F � ma.

Now let us extend this discussion to a rigid object of arbitrary shape rotating
about a fixed axis, as shown in Figure 10.17. The object can be regarded as an infi-
nite number of mass elements dm of infinitesimal size. If we impose a cartesian co-
ordinate system on the object, then each mass element rotates in a circle about the
origin, and each has a tangential acceleration at produced by an external tangen-
tial force dFt . For any given element, we know from Newton’s second law that

The torque d� associated with the force dFt acts about the origin and is given by

Because at � r�, the expression for d� becomes

It is important to recognize that although each mass element of the rigid ob-
ject may have a different linear acceleration at , they all have the same angular ac-
celeration �. With this in mind, we can integrate the above expression to obtain
the net torque about O due to the external forces:

where � can be taken outside the integral because it is common to all mass ele-
ments. From Equation 10.17, we know that is the moment of inertia of the
object about the rotation axis through O, and so the expression for �� becomes

(10.21)

Note that this is the same relationship we found for a particle rotating in a circle
(see Eq. 10.20). So, again we see that the net torque about the rotation axis is pro-

�� � I�

� r 2 dm

�� � � (r 2 dm)� � � � r 2 dm

d� � (r dm)r� � (r 2 dm)�

d� � r dFt � (r dm)at

dFt � (dm)at

� � I�

� � I�

� � (mr�)r � (mr 2)�

� � Ft r � (mat)r

Ft � mat

Torque is proportional to angular
acceleration

Relationship between torque and
angular acceleration

y

x

d Ft

O

r

dm

Figure 10.17 A rigid object ro-
tating about an axis through O.
Each mass element dm rotates
about O with the same angular ac-
celeration �, and the net torque on
the object is proportional to �.

Figure 10.16 A particle rotating
in a circle under the influence of a
tangential force Ft . A force Fr in
the radial direction also must be
present to maintain the circular
motion.



10.7 Relationship Between Torque and Angular Acceleration 309

Although each point on a rigid object rotating about a fixed axis may not expe-
rience the same force, linear acceleration, or linear speed, each point experi-
ences the same angular acceleration and angular speed at any instant. There-
fore, at any instant the rotating rigid object as a whole is characterized by
specific values for angular acceleration, net torque, and angular speed.

compute the torque on the rod, we can assume that the gravi-
tational force acts at the center of mass of the rod, as shown
in Figure 10.18. The torque due to this force about an axis
through the pivot is

With �� � I�, and I � for this axis of rotation (see
Table 10.2), we obtain

All points on the rod have this angular acceleration.
To find the linear acceleration of the right end of the rod,

we use the relationship (Eq. 10.11), with r � L:

This result—that at � g for the free end of the rod—is
rather interesting. It means that if we place a coin at the tip
of the rod, hold the rod in the horizontal position, and then
release the rod, the tip of the rod falls faster than the coin
does!

Other points on the rod have a linear acceleration that 
is less than For example, the middle of the rod has 
an acceleration of 3

4  g.

3
2  g.

3
2 gat � L� �

at � r�

3g
2L

� �
�

I
�

�g  (L/2)

1�3 �L2
�

1
3   ML2

� � �g � L
2 �

A uniform rod of length L and mass M is attached at one end
to a frictionless pivot and is free to rotate about the pivot in
the vertical plane, as shown in Figure 10.18. The rod is re-
leased from rest in the horizontal position. What is the initial
angular acceleration of the rod and the initial linear accelera-
tion of its right end?

Solution We cannot use our kinematic equations to find �
or a because the torque exerted on the rod varies with its po-
sition, and so neither acceleration is constant. We have
enough information to find the torque, however, which we
can then use in the torque–angular acceleration relationship
(Eq. 10.21) to find � and then a.

The only force contributing to torque about an axis
through the pivot is the gravitational force Mg exerted on
the rod. (The force exerted by the pivot on the rod has zero
torque about the pivot because its moment arm is zero.) To

Every point has the same � and �

QuickLab
Tip over a child’s tall tower of blocks.
Try this several times. Does the tower
“break” at the same place each time?
What affects where the tower comes
apart as it tips? If the tower were
made of toy bricks that snap together,
what would happen? (Refer to Con-
ceptual Example 10.11.)

portional to the angular acceleration of the object, with the proportionality factor
being I, a quantity that depends upon the axis of rotation and upon the size and
shape of the object. In view of the complex nature of the system, it is interesting to
note that the relationship �� � I� is strikingly simple and in complete agreement
with experimental observations. The simplicity of the result lies in the manner in
which the motion is described.

Finally, note that the result �� � I� also applies when the forces acting on the
mass elements have radial components as well as tangential components. This is
because the line of action of all radial components must pass through the axis of
rotation, and hence all radial components produce zero torque about that axis.

Pivot

L/2

Mg

Figure 10.18 The uniform rod is pivoted at the left end.

Rotating RodEXAMPLE 10.10
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Angular Acceleration of a WheelEXAMPLE 10.12
A wheel of radius R, mass M, and moment of inertia I is
mounted on a frictionless, horizontal axle, as shown in Figure
10.20. A light cord wrapped around the wheel supports an
object of mass m. Calculate the angular acceleration of the
wheel, the linear acceleration of the object, and the tension
in the cord.

Solution The torque acting on the wheel about its axis
of rotation is � � TR, where T is the force exerted by the
cord on the rim of the wheel. (The gravitational force ex-
erted by the Earth on the wheel and the normal force ex-
erted by the axle on the wheel both pass through the axis
of rotation and thus produce no torque.) Because �� � I�,
we obtain

(1)

Now let us apply Newton’s second law to the motion of the
object, taking the downward direction to be positive:

(2)

Equations (1) and (2) have three unknowns, �, a,  and T. Be-
cause the object and wheel are connected by a string that
does not slip, the linear acceleration of the suspended object
is equal to the linear acceleration of a point on the rim of the

a �
mg � T

m
  

  �Fy � mg � T � ma

� �
TR
I

  

  �� � I� � TR

Falling Smokestacks and Tumbling BlocksCONCEPTUAL EXAMPLE 10.11 
When a tall smokestack falls over, it often breaks somewhere
along its length before it hits the ground, as shown in Figure
10.19. The same thing happens with a tall tower of children’s
toy blocks. Why does this happen?

Solution As the smokestack rotates around its base, each
higher portion of the smokestack falls with an increasing
tangential acceleration. (The tangential acceleration of a
given point on the smokestack is proportional to the dis-
tance of that portion from the base.) As the acceleration in-
creases, higher portions of the smokestack experience an
acceleration greater than that which could result from 
gravity alone; this is similar to the situation described in 
Example 10.10. This can happen only if these portions are
being pulled downward by a force in addition to the gravi-
tational force. The force that causes this to occur is the
shear force from lower portions of the smokestack. Eventu-
ally the shear force that provides this acceleration is greater
than the smokestack can withstand, and the smokestack
breaks.

M

O

R

T

m g

m

T

Figure 10.19 A falling smokestack.

Figure 10.20 The tension in the cord produces a torque about
the axle passing through O.
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Atwood’s Machine RevisitedEXAMPLE 10.13
Substituting Equation (6) into Equation (5), we have

Because � � a/R, this expression can be simplified to

(7)

This value of a can then be substituted into Equations (1)

(m1 � m2)g

m1 	 m2 	 2 
I

R 2

a �

  (m1 � m2)g � (m1 	 m2)a � 2I 
a

R 2   

[(m1 � m2)g � (m1 	 m2)a]R � 2I�

Two blocks having masses m1 and m2 are connected to each
other by a light cord that passes over two identical, friction-
less pulleys, each having a moment of inertia I and radius R,
as shown in Figure 10.21a. Find the acceleration of each
block and the tensions T1 , T2 , and T3 in the cord. (Assume
no slipping between cord and pulleys.)

Solution We shall define the downward direction as posi-
tive for m1 and upward as the positive direction for m2 . This
allows us to represent the acceleration of both masses by a
single variable a and also enables us to relate a positive a to a
positive (counterclockwise) angular acceleration �. Let us
write Newton’s second law of motion for each block, using
the free-body diagrams for the two blocks as shown in Figure
10.21b:

(1)

(2)

Next, we must include the effect of the pulleys on the mo-
tion. Free-body diagrams for the pulleys are shown in Figure
10.21c. The net torque about the axle for the pulley on the
left is (T1 � T2)R, while the net torque for the pulley on the
right is (T2 � T3)R. Using the relation �� � I� for each pul-
ley and noting that each pulley has the same angular acceler-
ation �, we obtain

(3)

(4)

We now have four equations with four unknowns: a, T1 ,
T2 , and T3 . These can be solved simultaneously. Adding
Equations (3) and (4) gives

(5)

Adding Equations (1) and (2) gives

(6) T1 � T3 � (m1 � m2)g � (m1 	 m2)a

  T3 � T1 	 m1g � m2g � (m1 	 m2)a

(T1 � T3)R � 2I�

(T2 � T3)R � I�

(T1 � T2)R � I�

T3 � m2g � m2a

m1g � T1 � m1a

wheel. Therefore, the angular acceleration of the wheel and
this linear acceleration are related by a � R�. Using this fact
together with Equations (1) and (2), we obtain

(3)

(4)

Substituting Equation (4) into Equation (2), and solving for
a and �, we find that

mg

1 	
mR 2

I

  T �

a � R� �
TR2

I
�

mg � �

m

Exercise The wheel in Figure 10.20 is a solid disk of M �
2.00 kg, R � 30.0 cm, and I � 0.090 0 kg� m2. The suspended
object has a mass of m � 0.500 kg. Find the tension in the
cord and the angular acceleration of the wheel.

Answer 3.27 N; 10.9 rad/s2.

g
R 	 I/mR

� �
a
R

�

g
1 	 I/mR 2a �

T2 T2

T1 T3

T2

T1 T3

m1g

(a)

m2g

(b)

n1

T1 mpg

n2

T3
mpg

(c)

m1

m1

m2

m2

+

+

Figure 10.21 (a) Another look at Atwood’s machine. 
(b) Free-body diagrams for the blocks. (c) Free-body diagrams for
the pulleys, where mpg represents the force of gravity acting on each
pulley.
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WORK, POWER, AND ENERGY
IN ROTATIONAL MOTION

In this section, we consider the relationship between the torque acting on a rigid
object and its resulting rotational motion in order to generate expressions for the
power and a rotational analog to the work–kinetic energy theorem. Consider the
rigid object pivoted at O in Figure 10.22. Suppose a single external force F is ap-
plied at P, where F lies in the plane of the page. The work done by F as the object
rotates through an infinitesimal distance ds � r d� in a time dt is

where F sin � is the tangential component of F, or, in other words, the component
of the force along the displacement. Note that the radial component of F does no work
because it is perpendicular to the displacement.

Because the magnitude of the torque due to F about O is defined as rF sin �
by Equation 10.19, we can write the work done for the infinitesimal rotation as

(10.22)

The rate at which work is being done by F as the object rotates about the fixed axis is

Because dW/dt is the instantaneous power � (see Section 7.5) delivered by the
force, and because d�/dt � �, this expression reduces to

(10.23)

This expression is analogous to in the case of linear motion, and the ex-
pression dW � � d� is analogous to dW � Fx dx.

Work and Energy in Rotational Motion

In studying linear motion, we found the energy concept—and, in particular, the
work–kinetic energy theorem—extremely useful in describing the motion of a
system. The energy concept can be equally useful in describing rotational motion.
From what we learned of linear motion, we expect that when a symmetric object
rotates about a fixed axis, the work done by external forces equals the change in
the rotational energy.

To show that this is in fact the case, let us begin with �� � I�. Using the chain
rule from the calculus, we can express the resultant torque as

�� � I� � I 
d�

dt
� I 

d�

d�
 
d�

dt
� I 

d�

d�
 �

� � Fv

� �
dW
dt

� ��

dW
dt

� � 
d�

dt

dW � � d�

dW � F�ds � (F sin �)r d�

10.8

Power delivered to a rigid object

Figure 10.22 A rigid object ro-
tates about an axis through O un-
der the action of an external force
F applied at P.

and (2) to give T1 and T3 . Finally, T2 can be found from
Equation (3) or Equation (4). Note that if m1 � m 2 , the ac-
celeration is positive; this means that the left block acceler-
ates downward, the right block accelerates upward, and both

pulleys accelerate counterclockwise. If m1 � m 2 , then all the
values are negative and the motions are reversed. If m1 � m 2 ,
then no acceleration occurs at all. You should compare these
results with those found in Example 5.9 on page 129.

O

P

r
d

ds

φ

F

θ
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Rearranging this expression and noting that �� d� � dW, we obtain

Integrating this expression, we get for the total work done by the net external
force acting on a rotating system

(10.24)

where the angular speed changes from �i to �f as the angular position changes
from �i to �f . That is,

�W � ��f

�i

 �� d� � ��f

�i

 I� d� � 1
2I�f 

2 � 1
2I�i 

2

�� d� � dW � I� d�

the net work done by external forces in rotating a symmetric rigid object about
a fixed axis equals the change in the object’s rotational energy.

Work–kinetic energy theorem for
rotational motion

Table 10.3 lists the various equations we have discussed pertaining to rota-
tional motion, together with the analogous expressions for linear motion. The last
two equations in Table 10.3, involving angular momentum L, are discussed in
Chapter 11 and are included here only for the sake of completeness.

For a hoop lying in the xy plane, which of the following requires that more work be done by
an external agent to accelerate the hoop from rest to an angular speed �: (a) rotation
about the z axis through the center of the hoop, or (b) rotation about an axis parallel to z
passing through a point P on the hoop rim?

Quick Quiz 10.4

	 	

TABLE 10.3 Useful Equations in Rotational and Linear Motion

Rotational Motion
About a Fixed Axis Linear Motion

Angular speed � � d�/dt Linear speed v � dx/dt
Angular acceleration � � d�/dt Linear acceleration a � dv/dt
Resultant torque � � I� Resultant force F � ma

If �f � �i 	 �t If vf � vi 	 at
� � constant �f � �i � �it 	 �t2 a � constant xf � xi � vit 	 at2

�f
2 � �i

2 	 2�(�f � �i) vf
2 � vi

2 	 2a(xf � xi)

Work Work 

Rotational kinetic energy Kinetic energy 
Power Power 
Angular momentum L � I� Linear momentum p � mv
Resultant torque � � dL/dt Resultant force F � dp/dt��

� � Fv� � ��
K � 1

2mv2KR � 1
2I�2

W � �xf

xi 
 Fx dxW � ��f

�i

 � d�

1
2

1
2

��
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Connected CylindersEXAMPLE 10.15
inertia I about its axis of rotation. The string does not slip
on the pulley, and the system is released from rest. Find the
linear speeds of the cylinders after cylinder 2 descends
through a distance h, and the angular speed of the pulley at
this time.

Solution We are now able to account for the effect of a
massive pulley. Because the string does not slip, the pulley ro-
tates. We neglect friction in the axle about which the pulley
rotates for the following reason: Because the axle’s radius is
small relative to that of the pulley, the frictional torque is
much smaller than the torque applied by the two cylinders,
provided that their masses are quite different. Mechanical en-
ergy is constant; hence, the increase in the system’s kinetic en-
ergy (the system being the two cylinders, the pulley, and the
Earth) equals the decrease in its potential energy. Because 
Ki � 0 (the system is initially at rest), we have

where vf is the same for both blocks. Because vf � R�f , this
expression becomes

�K � 1
2�m1 	 m2 	

I
R 2 �vf 

2

�K � K f � K i � (1
2m1vf 

2 	 1
2m2vf 

2 	 1
2I�f 

2) � 0

Consider two cylinders having masses m1 and m2 , where m1 �
m2 , connected by a string passing over a pulley, as shown in
Figure 10.24. The pulley has a radius R and moment of 

Rotating Rod RevisitedEXAMPLE 10.14
energy is entirely rotational energy, where I is the mo-
ment of inertia about the pivot. Because (see Table
10.2) and because mechanical energy is constant, we have 
Ei � Ef or

(b) Determine the linear speed of the center of mass and
the linear speed of the lowest point on the rod when it is in
the vertical position.

Solution These two values can be determined from the re-
lationship between linear and angular speeds. We know �
from part (a), and so the linear speed of the center of mass is

Because r for the lowest point on the rod is twice what it is for
the center of mass, the lowest point has a linear speed equal
to

√3gL2vCM �

1
2 √3gLvCM � r� �

L
2

 � �

√ 3g
L

  � �

1
2  MgL � 1

2  I�2 � 1
2  (1

3  ML2)�2

I � 1
3  ML2

1
2  I�2,A uniform rod of length L and mass M is free to rotate on a

frictionless pin passing through one end (Fig 10.23). The rod
is released from rest in the horizontal position. (a) What is its
angular speed when it reaches its lowest position?

Solution The question can be answered by considering
the mechanical energy of the system. When the rod is hori-
zontal, it has no rotational energy. The potential energy rela-
tive to the lowest position of the center of mass of the rod
(O�) is MgL/2. When the rod reaches its lowest position, the

O ′

O

L/2

Ei = U = MgL/2

Ef  = KR = –1
2

Iω2ω

h

h

m2

m1

R

Figure 10.23 A uniform rigid rod pivoted at O rotates in a vertical
plane under the action of gravity.

Figure 10.24
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SUMMARY

If a particle rotates in a circle of radius r through an angle � (measured in radi-
ans), the arc length it moves through is s � r�.

The angular displacement of a particle rotating in a circle or of a rigid ob-
ject rotating about a fixed axis is

(10.2)

The instantaneous angular speed of a particle rotating in a circle or of a
rigid object rotating about a fixed axis is

(10.4)

The instantaneous angular acceleration of a rotating object is

(10.6)

When a rigid object rotates about a fixed axis, every part of the object has the
same angular speed and the same angular acceleration.

If a particle or object rotates about a fixed axis under constant angular accel-
eration, one can apply equations of kinematics that are analogous to those for lin-
ear motion under constant linear acceleration:

(10.7)

(10.8)

(10.9)

A useful technique in solving problems dealing with rotation is to visualize a linear
version of the same problem.

When a rigid object rotates about a fixed axis, the angular position, angular
speed, and angular acceleration are related to the linear position, linear speed,
and linear acceleration through the relationships

(10.1a)

(10.10)

(10.11)at � r�

  v � r�

  s � r u

�f 

2 � �i 

2 	 2�(�f � �i)

  �f � �i 	 �it 	 1
2�t2  

  �f � �i 	 �t  

� �
d�

dt

� �
d�

dt

�� � �f � �i

From Figure 10.24, we see that the system loses potential en-
ergy as cylinder 2 descends and gains potential energy as
cylinder 1 rises. That is, and Ap-
plying the principle of conservation of energy in the form

gives

vf � �
2(m2 � m1)gh

�m1 	 m2 	
I

R 2 � �
1/2

1
2�m1 	 m2 	

I
R 2 �vf 

2 	 m1gh � m2gh � 0

�K 	 �U1 	 �U 2 � 0

�U1 � m1gh.�U 2 � �m2gh

Because the angular speed of the pulley at this in-
stant is

Exercise Repeat the calculation of vf , using �� � I� ap-
plied to the pulley and Newton’s second law applied to the
two cylinders. Use the procedures presented in Examples
10.12 and 10.13.

1
R

 �
2(m2 � m1)gh

�m1 	 m2 	
I

R 2 � �
1/2

�f �
vf

R
�

vf � R�f ,
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You must be able to easily alternate between the linear and rotational variables
that describe a given situation.

The moment of inertia of a system of particles is

(10.15)

If a rigid object rotates about a fixed axis with angular speed �, its rotational
energy can be written

(10.16)

where I is the moment of inertia about the axis of rotation.
The moment of inertia of a rigid object is

(10.17)

where r is the distance from the mass element dm to the axis of rotation. 
The magnitude of the torque associated with a force F acting on an object is

(10.19)

where d is the moment arm of the force, which is the perpendicular distance from
some origin to the line of action of the force. Torque is a measure of the tendency
of the force to change the rotation of the object about some axis. 

If a rigid object free to rotate about a fixed axis has a net external torque act-
ing on it, the object undergoes an angular acceleration �, where

(10.21)

The rate at which work is done by an external force in rotating a rigid object
about a fixed axis, or the power delivered, is

(10.23)

The net work done by external forces in rotating a rigid object about a fixed
axis equals the change in the rotational kinetic energy of the object:

(10.24)�W � 1
2I�f 

2 � 1
2I�i 

2

� � ��

�� � I�

� � Fd

I � �r 2 dm

KR � 1
2I�2

I  � �
i

miri 

2

QUESTIONS

the moment of inertia have the smallest value? the largest
value?

6. Suppose the rod in Figure 10.10 has a nonuniform mass
distribution. In general, would the moment of inertia
about the y axis still equal ML2/12? If not, could the mo-
ment of inertia be calculated without knowledge of the
manner in which the mass is distributed?

7. Suppose that only two external forces act on a rigid body,
and the two forces are equal in magnitude but opposite
in direction. Under what condition does the body rotate?

8. Explain how you might use the apparatus described in
Example 10.12 to determine the moment of inertia of the
wheel. (If the wheel does not have a uniform mass den-
sity, the moment of inertia is not necessarily equal to

.)1
2MR 2

1. What is the angular speed of the second hand of a clock?
What is the direction of � as you view a clock hanging
vertically? What is the magnitude of the angular accelera-
tion vector � of the second hand?

2. A wheel rotates counterclockwise in the xy plane. What is
the direction of �? What is the direction of � if the angu-
lar velocity is decreasing in time?

3. Are the kinematic expressions for �, �, and � valid when
the angular displacement is measured in degrees instead
of in radians?

4. A turntable rotates at a constant rate of 45 rev/min. What
is its angular speed in radians per second? What is the
magnitude of its angular acceleration?

5. Suppose a � b and M � m for the system of particles de-
scribed in Figure 10.8. About what axis (x, y, or z) does



Problems 317

9. Using the results from Example 10.12, how would you cal-
culate the angular speed of the wheel and the linear
speed of the suspended mass at t � 2 s, if the system is re-
leased from rest at t � 0? Is the expression v � R� valid
in this situation?

10. If a small sphere of mass M were placed at the end of the
rod in Figure 10.23, would the result for � be greater
than, less than, or equal to the value obtained in Example
10.14?

11. Explain why changing the axis of rotation of an object
changes its moment of inertia.

12. Is it possible to change the translational kinetic energy of
an object without changing its rotational energy?

13. Two cylinders having the same dimensions are set into ro-
tation about their long axes with the same angular speed.

One is hollow, and the other is filled with water. Which
cylinder will be easier to stop rotating? Explain your 
answer.

14. Must an object be rotating to have a nonzero moment of
inertia?

15. If you see an object rotating, is there necessarily a net
torque acting on it?

16. Can a (momentarily) stationary object have a nonzero an-
gular acceleration?

17. The polar diameter of the Earth is slightly less than the
equatorial diameter. How would the moment of inertia of
the Earth change if some mass from near the equator
were removed and transferred to the polar regions to
make the Earth a perfect sphere?

PROBLEMS

7. The angular position of a swinging door is described by
� � 5.00 	 10.0t 	 2.00t 2 rad. Determine the angular
position, angular speed, and angular acceleration of the
door (a) at t � 0 and (b) at t � 3.00 s.

8. The tub of a washer goes into its spin cycle, starting
from rest and gaining angular speed steadily for 8.00 s,
when it is turning at 5.00 rev/s. At this point the person
doing the laundry opens the lid, and a safety switch
turns off the washer. The tub smoothly slows to rest in
12.0 s. Through how many revolutions does the tub
turn while it is in motion?

9. A rotating wheel requires 3.00 s to complete 37.0 revo-
lutions. Its angular speed at the end of the 3.00-s inter-
val is 98.0 rad/s. What is the constant angular accelera-
tion of the wheel?

10. (a) Find the angular speed of the Earth’s rotation on its
axis. As the Earth turns toward the east, we see the sky
turning toward the west at this same rate.
(b) The rainy Pleiads wester

And seek beyond the sea
The head that I shall dream of

That shall not dream of me.

A. E. Housman (© Robert E. Symons)

Cambridge, England, is at longitude 0°, and Saskatoon,
Saskatchewan, is at longitude 107° west. How much
time elapses after the Pleiades set in Cambridge until
these stars fall below the western horizon in Saskatoon?

Section 10.3 Angular and Linear Quantities
11. Make an order-of-magnitude estimate of the number of

revolutions through which a typical automobile tire

Section 10.2 Rotational Kinematics: Rotational 
Motion with Constant Angular Acceleration

1. A wheel starts from rest and rotates with constant angu-
lar acceleration and reaches an angular speed of 
12.0 rad/s in 3.00 s. Find (a) the magnitude of the an-
gular acceleration of the wheel and (b) the angle (in
radians) through which it rotates in this time.

2. What is the angular speed in radians per second of 
(a) the Earth in its orbit about the Sun and (b) the
Moon in its orbit about the Earth?

3. An airliner arrives at the terminal, and its engines are
shut off. The rotor of one of the engines has an initial
clockwise angular speed of 2 000 rad/s. The engine’s
rotation slows with an angular acceleration of magni-
tude 80.0 rad/s2. (a) Determine the angular speed after
10.0 s. (b) How long does it take for the rotor to come
to rest?

4. (a) The positions of the hour and minute hand on a
clock face coincide at 12 o’clock. Determine all other
times (up to the second) at which the positions of the
hands coincide. (b) If the clock also has a second hand,
determine all times at which the positions of 
all three hands coincide, given that they all coincide 
at 12 o’clock.

5. An electric motor rotating a grinding wheel at 
100 rev/min is switched off. Assuming constant negative
acceleration of magnitude 2.00 rad/s2, (a) how long
does it take the wheel to stop? (b) Through how many
radians does it turn during the time found in part (a)?

6. A centrifuge in a medical laboratory rotates at a rota-
tional speed of 3 600 rev/min. When switched off, it ro-
tates 50.0 times before coming to rest. Find the constant
angular acceleration of the centrifuge.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB
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turns in 1 yr. State the quantities you measure or esti-
mate and their values.

12. The diameters of the main rotor and tail rotor of a sin-
gle-engine helicopter are 7.60 m and 1.02 m, respec-
tively. The respective rotational speeds are 450 rev/min
and 4 138 rev/min. Calculate the speeds of the tips of
both rotors. Compare these speeds with the speed of
sound, 343 m/s.

sume the discus moves on the arc of a circle 1.00 m in
radius. (a) Calculate the final angular speed of the dis-
cus. (b) Determine the magnitude of the angular accel-
eration of the discus, assuming it to be constant. 
(c) Calculate the acceleration time.

17. A car accelerates uniformly from rest and reaches a
speed of 22.0 m/s in 9.00 s. If the diameter of a tire is
58.0 cm, find (a) the number of revolutions the tire
makes during this motion, assuming that no slipping oc-
curs. (b) What is the final rotational speed of a tire in
revolutions per second?

18. A 6.00-kg block is released from A on the frictionless
track shown in Figure P10.18. Determine the radial and
tangential components of acceleration for the block 
at P.

WEB

Figure P10.12 (Ross Harrrison Koty/Tony Stone Images)

Figure P10.16 (Bruce Ayers/Tony Stone Images)

Figure P10.18

13. A racing car travels on a circular track with a radius of
250 m. If the car moves with a constant linear speed of
45.0 m/s, find (a) its angular speed and (b) the magni-
tude and direction of its acceleration.

14. A car is traveling at 36.0 km/h on a straight road. The
radius of its tires is 25.0 cm. Find the angular speed of
one of the tires, with its axle taken as the axis of rota-
tion.

15. A wheel 2.00 m in diameter lies in a vertical plane 
and rotates with a constant angular acceleration of 
4.00 rad/s2. The wheel starts at rest at t � 0, and the
radius vector of point P on the rim makes an angle of
57.3° with the horizontal at this time. At t � 2.00 s, find
(a) the angular speed of the wheel, (b) the linear speed
and acceleration of the point P, and (c) the angular
position of the point P.

16. A discus thrower accelerates a discus from rest to a
speed of 25.0 m/s by whirling it through 1.25 rev. As-

19. A disc 8.00 cm in radius rotates at a constant rate of 
1 200 rev/min about its central axis. Determine (a) its
angular speed, (b) the linear speed at a point 3.00 cm
from its center, (c) the radial acceleration of a point on
the rim, and (d) the total distance a point on the rim
moves in 2.00 s.

20. A car traveling on a flat (unbanked) circular track accel-
erates uniformly from rest with a tangential acceleration
of 1.70 m/s2. The car makes it one quarter of the way
around the circle before it skids off the track. Deter-
mine the coefficient of static friction between the car
and track from these data.

21. A small object with mass 4.00 kg moves counterclock-
wise with constant speed 4.50 m/s in a circle of radius
3.00 m centered at the origin. (a) It started at the point
with cartesian coordinates (3 m, 0). When its angular
displacement is 9.00 rad, what is its position vector, in
cartesian unit-vector notation? (b) In what quadrant is
the particle located, and what angle does its position
vector make with the positive x axis? (c) What is its ve-
locity vector, in unit–vector notation? (d) In what direc-
tion is it moving? Make a sketch of the position and ve-
locity vectors. (e) What is its acceleration, expressed in
unit–vector notation? (f) What total force acts on the
object? (Express your answer in unit vector notation.)

R  =  2.00 m

P

A

h  =  5.00 m



Problems 319

WEB

Figure P10.23

Section 10.5 Calculation of Moments of Inertia
28. Three identical thin rods, each of length L and mass m,

are welded perpendicular to each other, as shown in
Figure P10.28. The entire setup is rotated about an axis

27. Two masses M and m are connected by a rigid rod of
length L and of negligible mass, as shown in Figure
P10.27. For an axis perpendicular to the rod, show 
that the system has the minimum moment of inertia
when the axis passes through the center of mass. Show
that this moment of inertia is I � �L2, where � �
mM/(m 	 M).

24. The center of mass of a pitched baseball (3.80-cm ra-
dius) moves at 38.0 m/s. The ball spins about an axis
through its center of mass with an angular speed of 
125 rad/s. Calculate the ratio of the rotational energy
to the translational kinetic energy. Treat the ball as a
uniform sphere.

25. The four particles in Figure P10.25 are connected by
rigid rods of negligible mass. The origin is at the center
of the rectangle. If the system rotates in the xy plane
about the z axis with an angular speed of 6.00 rad/s, cal-
culate (a) the moment of inertia of the system about
the z axis and (b) the rotational energy of the system.

26. The hour hand and the minute hand of Big Ben, the fa-
mous Parliament tower clock in London, are 2.70 m
long and 4.50 m long and have masses of 60.0 kg and
100 kg, respectively. Calculate the total rotational ki-
netic energy of the two hands about the axis of rotation.
(You may model the hands as long thin rods.)

22. A standard cassette tape is placed in a standard cassette
player. Each side plays for 30 min. The two tape wheels
of the cassette fit onto two spindles in the player. Sup-
pose that a motor drives one spindle at a constant angu-
lar speed of 
 1 rad/s and that the other spindle is free
to rotate at any angular speed. Estimate the order of
magnitude of the thickness of the tape.

Section 10.4 Rotational Energy
23. Three small particles are connected by rigid rods of

negligible mass lying along the y axis (Fig. P10.23). If
the system rotates about the x axis with an angular
speed of 2.00 rad/s, find (a) the moment of inertia
about the x axis and the total rotational kinetic energy
evaluated from and (b) the linear speed of each
particle and the total kinetic energy evaluated from 

.�1
2mivi 

2
 

1
2I�2

3.00 kg 2.00 kg

4.00 kg2.00 kg

6.00 m

4.00 m

y(m)

x(m)
O

x
O

y  =  3.00 m4.00 kg

3.00 kg

2.00 kg

y

y  =  –2.00 m

y  =  –4.00 m

Figure P10.25

Figure P10.26 Problems 26 and 74. ( John Lawrence/Tony Stone Images)

Figure P10.27

L

L – xx
M m
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that passes through the end of one rod and is parallel to
another. Determine the moment of inertia of this
arrangement.

29. Figure P10.29 shows a side view of a car tire and its ra-
dial dimensions. The rubber tire has two sidewalls of
uniform thickness 0.635 cm and a tread wall of uniform
thickness 2.50 cm and width 20.0 cm. Suppose its den-
sity is uniform, with the value 1.10 
 103 kg/m3. Find
its moment of inertia about an axis through its center
perpendicular to the plane of the sidewalls.

31. Attention! About face! Compute an order-of-magnitude es-
timate for the moment of inertia of your body as you
stand tall and turn around a vertical axis passing
through the top of your head and the point halfway be-
tween your ankles. In your solution state the quantities
you measure or estimate and their values.

Section 10.6 Torque
32. Find the mass m needed to balance the 1 500-kg truck

on the incline shown in Figure P10.32. Assume all pul-
leys are frictionless and massless.

WEB

34. The fishing pole in Figure P10.34 makes an angle of
20.0° with the horizontal. What is the torque exerted by

33. Find the net torque on the wheel in Figure P10.33
about the axle through O if a � 10.0 cm and b �
25.0 cm.

30. Use the parallel-axis theorem and Table 10.2 to find the
moments of inertia of (a) a solid cylinder about an axis
parallel to the center-of-mass axis and passing through
the edge of the cylinder and (b) a solid sphere about an
axis tangent to its surface.

Figure P10.28

10.0 N

30.0° a

O

b
12.0 N

9.00 N

r

3r

θ = 45°

1500 kg
m

θ

Sidewall

Tread

33.0 cm

30.5 cm

16.5 cm

Axis of
rotation

Figure P10.29

Figure P10.32

Figure P10.33
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the fish about an axis perpendicular to the page and
passing through the fisher’s hand?

35. The tires of a 1 500-kg car are 0.600 m in diameter, and
the coefficients of friction with the road surface are 
�s � 0.800 and �k � 0.600. Assuming that the weight is
evenly distributed on the four wheels, calculate the
maximum torque that can be exerted by the engine on
a driving wheel such that the wheel does not spin. If you
wish, you may suppose that the car is at rest.

36. Suppose that the car in Problem 35 has a disk brake sys-
tem. Each wheel is slowed by the frictional force be-
tween a single brake pad and the disk-shaped rotor. On
this particular car, the brake pad comes into contact
with the rotor at an average distance of 22.0 cm from
the axis. The coefficients of friction between the brake
pad and the disk are �s � 0.600 and �k � 0.500. Calcu-
late the normal force that must be applied to the rotor
such that the car slows as quickly as possible.

Section 10.7 Relationship Between 
Torque and Angular Acceleration

37. A model airplane having a mass of 0.750 kg is tethered
by a wire so that it flies in a circle 30.0 m in radius. The
airplane engine provides a net thrust of 0.800 N per-
pendicular to the tethering wire. (a) Find the torque
the net thrust produces about the center of the circle.
(b) Find the angular acceleration of the airplane when
it is in level flight. (c) Find the linear acceleration of
the airplane tangent to its flight path.

38. The combination of an applied force and a frictional
force produces a constant total torque of 36.0 N� m on a
wheel rotating about a fixed axis. The applied force acts
for 6.00 s; during this time the angular speed of the
wheel increases from 0 to 10.0 rad/s. The applied force
is then removed, and the wheel comes to rest in 60.0 s.
Find (a) the moment of inertia of the wheel, (b) the
magnitude of the frictional torque, and (c) the total
number of revolutions of the wheel.

39. A block of mass m1 � 2.00 kg and a block of mass m2 �
6.00 kg are connected by a massless string over a pulley

in the shape of a disk having radius R � 0.250 m and
mass M � 10.0 kg. These blocks are allowed to move on
a fixed block–wedge of angle � � 30.0°, as shown in
Figure P10.39. The coefficient of kinetic friction for
both blocks is 0.360. Draw free-body diagrams of both
blocks and of the pulley. Determine (a) the acceleration
of the two blocks and (b) the tensions in the string on
both sides of the pulley.

40. A potter’s wheel—a thick stone disk with a radius of
0.500 m and a mass of 100 kg—is freely rotating at 
50.0 rev/min. The potter can stop the wheel in 6.00 s by
pressing a wet rag against the rim and exerting a radi-
ally inward force of 70.0 N. Find the effective coefficient
of kinetic friction between the wheel and the rag.

41. A bicycle wheel has a diameter of 64.0 cm and a mass of
1.80 kg. Assume that the wheel is a hoop with all of its
mass concentrated on the outside radius. The bicycle is
placed on a stationary stand on rollers, and a resistive
force of 120 N is applied tangent to the rim of the tire.
(a) What force must be applied by a chain passing over
a 9.00-cm-diameter sprocket if the wheel is to attain an
acceleration of 4.50 rad/s2? (b) What force is required
if the chain shifts to a 5.60-cm-diameter sprocket?

Section 10.8 Work , Power, and 
Energy in Rotational Motion

42. A cylindrical rod 24.0 cm long with a mass of 1.20 kg
and a radius of 1.50 cm has a ball with a diameter of
8.00 cm and a mass of 2.00 kg attached to one end. The
arrangement is originally vertical and stationary, with
the ball at the top. The apparatus is free to pivot about
the bottom end of the rod. (a) After it falls through 90°,
what is its rotational kinetic energy? (b) What is the an-
gular speed of the rod and ball? (c) What is the linear
speed of the ball? (d) How does this compare with the
speed if the ball had fallen freely through the same dis-
tance of 28 cm?

43. A 15.0-kg mass and a 10.0-kg mass are suspended by a
pulley that has a radius of 10.0 cm and a mass of 3.00 kg
(Fig. P10.43). The cord has a negligible mass and
causes the pulley to rotate without slipping. The pulley
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rotates without friction. The masses start from rest 
3.00 m apart. Treating the pulley as a uniform disk, de-
termine the speeds of the two masses as they pass each
other.

44. A mass m1 and a mass m2 are suspended by a pulley that
has a radius R and a mass M (see Fig. P10.43). The cord
has a negligible mass and causes the pulley to rotate
without slipping. The pulley rotates without friction.
The masses start from rest a distance d apart. Treating
the pulley as a uniform disk, determine the speeds of
the two masses as they pass each other.

v. Show that the moment of inertia I of the equipment
(including the turntable) is mr 2(2gh/v2 � 1).

48. A bus is designed to draw its power from a rotating
flywheel that is brought up to its maximum rate of rota-
tion (3 000 rev/min) by an electric motor. The flywheel
is a solid cylinder with a mass of 1 000 kg and a diame-
ter of 1.00 m. If the bus requires an average power of 
10.0 kW, how long does the flywheel rotate?

49. (a) A uniform, solid disk of radius R and mass M is free
to rotate on a frictionless pivot through a point on its
rim (Fig. P10.49). If the disk is released from rest in the
position shown by the blue circle, what is the speed of
its center of mass when the disk reaches the position in-
dicated by the dashed circle? (b) What is the speed of
the lowest point on the disk in the dashed position? 
(c) Repeat part (a), using a uniform hoop.

50. A horizontal 800-N merry-go-round is a solid disk of ra-
dius 1.50 m and is started from rest by a constant horizon-
tal force of 50.0 N applied tangentially to the cylinder.
Find the kinetic energy of the solid cylinder after 3.00 s.

ADDITIONAL PROBLEMS

51. Toppling chimneys often break apart in mid-fall (Fig.
P10.51) because the mortar between the bricks cannot

45. A weight of 50.0 N is attached to the free end of a light
string wrapped around a reel with a radius of 0.250 m
and a mass of 3.00 kg. The reel is a solid disk, free to ro-
tate in a vertical plane about the horizontal axis passing
through its center. The weight is released 6.00 m above
the floor. (a) Determine the tension in the string, the
acceleration of the mass, and the speed with which the
weight hits the floor. (b) Find the speed calculated in
part (a), using the principle of conservation of energy.

46. A constant torque of 25.0 N� m is applied to a grind-
stone whose moment of inertia is 0.130 kg� m2. Using
energy principles, find the angular speed after the
grindstone has made 15.0 revolutions. (Neglect fric-
tion.)

47. This problem describes one experimental method of
determining the moment of inertia of an irregularly
shaped object such as the payload for a satellite. Figure
P10.47 shows a mass m suspended by a cord wound
around a spool of radius r, forming part of a turntable
supporting the object. When the mass is released from
rest, it descends through a distance h, acquiring a speed

Pivot R
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m1 = 15.0 kg
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Figure P10.43 Problems 43 and 44.
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withstand much shear stress. As the chimney begins to
fall, shear forces must act on the topmost sections to ac-
celerate them tangentially so that they can keep up with
the rotation of the lower part of the stack. For simplic-
ity, let us model the chimney as a uniform rod of length
� pivoted at the lower end. The rod starts at rest in a
vertical position (with the frictionless pivot at the bot-
tom) and falls over under the influence of gravity. What
fraction of the length of the rod has a tangential accel-
eration greater than g sin �, where � is the angle the
chimney makes with the vertical?

exerts on the wheel. (a) How long does the wheel take
to reach its final rotational speed of 1 200 rev/min? 
(b) Through how many revolutions does it turn while
accelerating?

54. The density of the Earth, at any distance r from its cen-
ter, is approximately

where R is the radius of the Earth. Show that this density
leads to a moment of inertia I � 0.330MR2 about an axis
through the center, where M is the mass of the Earth.

55. A 4.00-m length of light nylon cord is wound around a
uniform cylindrical spool of radius 0.500 m and mass
1.00 kg. The spool is mounted on a frictionless axle and
is initially at rest. The cord is pulled from the spool with
a constant acceleration of magnitude 2.50 m/s2. 
(a) How much work has been done on the spool when
it reaches an angular speed of 8.00 rad/s? (b) Assuming
that there is enough cord on the spool, how long does it
take the spool to reach this angular speed? (c) Is there
enough cord on the spool?

56. A flywheel in the form of a heavy circular disk of diame-
ter 0.600 m and mass 200 kg is mounted on a friction-
less bearing. A motor connected to the flywheel acceler-
ates it from rest to 1 000 rev/min. (a) What is the
moment of inertia of the flywheel? (b) How much work
is done on it during this acceleration? (c) When the an-
gular speed reaches 1 000 rev/min, the motor is disen-
gaged. A friction brake is used to slow the rotational
rate to 500 rev/min. How much energy is dissipated as
internal energy in the friction brake?

57. A shaft is turning at 65.0 rad/s at time zero. Thereafter,
its angular acceleration is given by

where t is the elapsed time. (a) Find its angular speed at
t � 3.00 s. (b) How far does it turn in these 3 s?

58. For any given rotational axis, the radius of gyration K of a
rigid body is defined by the expression K 2 � I/M,
where M is the total mass of the body and I is its mo-
ment of inertia. Thus, the radius of gyration is equal to
the distance between an imaginary point mass M and
the axis of rotation such that I for the point mass about
that axis is the same as that for the rigid body. Find the
radius of gyration of (a) a solid disk of radius R, (b) a
uniform rod of length L, and (c) a solid sphere of ra-
dius R, all three of which are rotating about a central
axis.

59. A long, uniform rod of length L and mass M is pivoted
about a horizontal, frictionless pin passing through one
end. The rod is released from rest in a vertical position,
as shown in Figure P10.59. At the instant the rod is hori-
zontal, find (a) its angular speed, (b) the magnitude of
its angular acceleration, (c) the x and y components of
the acceleration of its center of mass, and (d) the com-
ponents of the reaction force at the pivot.

� � �10 rad/s2 � 5t rad/s3

 � [14.2 � 11.6 r/R] 
 103 kg/m3

52. Review Problem. A mixing beater consists of three
thin rods: Each is 10.0 cm long, diverges from a central
hub, and is separated from the others by 120°. All turn
in the same plane. A ball is attached to the end of each
rod. Each ball has a cross-sectional area of 4.00 cm2 and
is shaped so that it has a drag coefficient of 0.600. Cal-
culate the power input required to spin the beater at 
1 000 rev/min (a) in air and (b) in water.

53. A grinding wheel is in the form of a uniform solid disk
having a radius of 7.00 cm and a mass of 2.00 kg. It
starts from rest and accelerates uniformly under the ac-
tion of the constant torque of 0.600 N� m that the motor

Figure P10.51 A building demolition site in Baltimore,
MD. At the left is a chimney, mostly concealed by the building,
that has broken apart on its way down. Compare with Figure
10.19. ( Jerry Wachter/Photo Researchers, Inc.)
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60. A bicycle is turned upside down while its owner repairs
a flat tire. A friend spins the other wheel, of radius
0.381 m, and observes that drops of water fly off tangen-
tially. She measures the height reached by drops moving
vertically (Fig. P10.60). A drop that breaks loose from
the tire on one turn rises h � 54.0 cm above the tan-
gent point. A drop that breaks loose on the next turn
rises 51.0 cm above the tangent point. The height to
which the drops rise decreases because the angular
speed of the wheel decreases. From this information,
determine the magnitude of the average angular accel-
eration of the wheel.

61. A bicycle is turned upside down while its owner repairs
a flat tire. A friend spins the other wheel of radius R
and observes that drops of water fly off tangentially. She
measures the height reached by drops moving vertically
(see Fig. P10.60). A drop that breaks loose from the tire
on one turn rises a distance h1 above the tangent point.

A drop that breaks loose on the next turn rises a dis-
tance h2 � h1 above the tangent point. The height to
which the drops rise decreases because the angular
speed of the wheel decreases. From this information,
determine the magnitude of the average angular accel-
eration of the wheel.

62. The top shown in Figure P10.62 has a moment of inertia
of 4.00 
 10�4 kg� m2 and is initially at rest. It is free to
rotate about the stationary axis AA�. A string, wrapped
around a peg along the axis of the top, is pulled in such
a manner that a constant tension of 5.57 N is main-
tained. If the string does not slip while it is unwound
from the peg, what is the angular speed of the top after
80.0 cm of string has been pulled off the peg?

63. A cord is wrapped around a pulley of mass m and of ra-
dius r. The free end of the cord is connected to a block
of mass M. The block starts from rest and then slides
down an incline that makes an angle � with the horizon-
tal. The coefficient of kinetic friction between block
and incline is �. (a) Use energy methods to show that
the block’s speed as a function of displacement d down
the incline is

(b) Find the magnitude of the acceleration of the block
in terms of �, m, M, g, and �.

64. (a) What is the rotational energy of the Earth about its
spin axis? The radius of the Earth is 6 370 km, and its
mass is 5.98 
 1024 kg. Treat the Earth as a sphere of
moment of inertia . (b) The rotational energy of
the Earth is decreasing steadily because of tidal friction.
Estimate the change in one day, given that the rota-
tional period increases by about 10 �s each year.

65. The speed of a moving bullet can be determined by al-
lowing the bullet to pass through two rotating paper
disks mounted a distance d apart on the same axle (Fig.
P10.65). From the angular displacement �� of the two

2
5MR 2

v � [4gdM(m 	 2M)�1(sin � � � cos �)]1/2
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Figure P10.60 Problems 60 and 61.

Figure P10.62



Problems 325

bullet holes in the disks and the rotational speed of the
disks, we can determine the speed v of the bullet. Find
the bullet speed for the following data: d � 80 cm, 
� � 900 rev/min, and �� � 31.0°.

66. A wheel is formed from a hoop and n equally spaced
spokes extending from the center of the hoop to its
rim. The mass of the hoop is M, and the radius of the
hoop (and hence the length of each spoke) is R. The
mass of each spoke is m. Determine (a) the moment of
inertia of the wheel about an axis through its center
and perpendicular to the plane of the wheel and 
(b) the moment of inertia of the wheel about an axis
through its rim and perpendicular to the plane of the
wheel.

67. A uniform, thin, solid door has a height of 2.20 m, a
width of 0.870 m, and a mass of 23.0 kg. Find its mo-
ment of inertia for rotation on its hinges. Are any of the
data unnecessary?

68. A uniform, hollow, cylindrical spool has inside radius
R/2, outside radius R , and mass M (Fig. P10.68). It is
mounted so that it rotates on a massless horizontal axle.
A mass m is connected to the end of a string wound
around the spool. The mass m falls from rest through a
distance y in time t. Show that the torque due to the
frictional forces between spool and axle is 

69. An electric motor can accelerate a Ferris wheel of
moment of inertia I � 20 000 kg� m2 from rest to 

�f � R[m(g � 2y/t2) � M(5y/4t2)]

10.0 rev/min in 12.0 s. When the motor is turned off,
friction causes the wheel to slow down from 10.0 to 
8.00 rev/min in 10.0 s. Determine (a) the torque gener-
ated by the motor to bring the wheel to 10.0 rev/min
and (b) the power that would be needed to maintain
this rotational speed.

70. The pulley shown in Figure P10.70 has radius R and
moment of inertia I. One end of the mass m is con-
nected to a spring of force constant k, and the other
end is fastened to a cord wrapped around the pulley.
The pulley axle and the incline are frictionless. If the
pulley is wound counterclockwise so that the spring is
stretched a distance d from its unstretched position and
is then released from rest, find (a) the angular speed of
the pulley when the spring is again unstretched and 
(b) a numerical value for the angular speed at this
point if I � 1.00 kg � m2, R � 0.300 m, k � 50.0 N/m, 
m � 0.500 kg, d � 0.200 m, and � � 37.0°.

71. Two blocks, as shown in Figure P10.71, are connected
by a string of negligible mass passing over a pulley of ra-
dius 0.250 m and moment of inertia I. The block on the
frictionless incline is moving upward with a constant ac-
celeration of 2.00 m/s2. (a) Determine T1 and T2 , the
tensions in the two parts of the string. (b) Find the mo-
ment of inertia of the pulley.

72. A common demonstration, illustrated in Figure P10.72,
consists of a ball resting at one end of a uniform board
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ANSWERS TO QUICK QUIZZES

rotational motion. (b) No, not all points on the wheel
have the same linear speed. (c) 
(d) , (at is zero
at all points because � is constant).(e) .

10.3 (a) I � MR 2. (b) I � MR 2. The moment of inertia of a
system of masses equidistant from an axis of rotation is
always the sum of the masses multiplied by the square of
the distance from the axis.

10.4 (b) Rotation about the axis through point P requires
more work. The moment of inertia of the hoop about
the center axis is ICM � MR 2, whereas, by the parallel-
axis theorem, the moment of inertia about the axis
through point P is IP � ICM 	 MR 2 � MR 2 	 MR 2 �
2MR 2 .

v � R�, a � R�2
a � ar � v2/(R/2) � R�2/2v � R�/2

v � 0, a � 0.
10.1 The fact that � is negative indicates that we are dealing

with an object that is rotating in the clockwise direction.
We also know that when � and � are antiparallel, �
must be decreasing—the object is slowing down. There-
fore, the object is spinning more and more slowly (with
less and less angular speed) in the clockwise, or nega-
tive, direction. This has a linear analogy to a sky diver
opening her parachute. The velocity is negative—down-
ward. When the sky diver opens the parachute, a large
upward force causes an upward acceleration. As a result,
the acceleration and velocity vectors are in opposite di-
rections. Consequently, the parachutist slows down.

10.2 (a) Yes, all points on the wheel have the same angular
speed. This is why we use angular quantities to describe

this limiting angle and the cup is placed at

(c) If a ball is at the end of a 1.00-m stick at this critical
angle, show that the cup must be 18.4 cm from the mov-
ing end.

73. As a result of friction, the angular speed of a wheel
changes with time according to the relationship

where �0 and � are constants. The angular speed
changes from 3.50 rad/s at t � 0 to 2.00 rad/s at 
t � 9.30 s. Use this information to determine � and �0 .
Then, determine (a) the magnitude of the angular ac-
celeration at t � 3.00 s, (b) the number of revolutions
the wheel makes in the first 2.50 s, and (c) the number
of revolutions it makes before coming to rest.

74. The hour hand and the minute hand of Big Ben, the fa-
mous Parliament tower clock in London, are 2.70 m
long and 4.50 m long and have masses of 60.0 kg and
100 kg, respectively (see Fig. P10.26). (a) Determine
the total torque due to the weight of these hands about
the axis of rotation when the time reads (i) 3:00, 
(ii) 5:15, (iii) 6:00, (iv) 8:20, and (v) 9:45. (You may
model the hands as long thin rods.) (b) Determine all
times at which the total torque about the axis of rota-
tion is zero. Determine the times to the nearest second,
solving a transcendental equation numerically.

d�/dt � �0e��t

rc �
2 �

3 cos �

of length �, hinged at the other end, and elevated at an
angle �. A light cup is attached to the board at rc so that
it will catch the ball when the support stick is suddenly

removed. (a) Show that the ball will lag behind the
falling board when � is less than 35.3° ; and that (b) the
ball will fall into the cup when the board is supported at
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Figure P10.72


