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More than 300 years ago, Isaac Newton
realized that the same gravitational force
that causes apples to fall to the Earth
also holds the Moon in its orbit. In recent
years, scientists have used the Hubble
Space Telescope to collect evidence of
the gravitational force acting even far-
ther away, such as at this protoplanetary
disk in the constellation Taurus. What
properties of an object such as a proto-
planet or the Moon determine the
strength of its gravitational attraction to
another object? (Left, Larry West/FPG

International; right, Courtesy of NASA)
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efore 1687, a large amount of data had been collected on the motions of the
Moon and the planets, but a clear understanding of the forces causing these
motions was not available. In that year, Isaac Newton provided the key that

unlocked the secrets of the heavens. He knew, from his first law, that a net force
had to be acting on the Moon because without such a force the Moon would move
in a straight-line path rather than in its almost circular orbit. Newton reasoned
that this force was the gravitational attraction exerted by the Earth on the Moon.
He realized that the forces involved in the Earth–Moon attraction and in the
Sun–planet attraction were not something special to those systems, but rather
were particular cases of a general and universal attraction between objects. In
other words, Newton saw that the same force of attraction that causes the Moon to
follow its path around the Earth also causes an apple to fall from a tree. As he put
it, “I deduced that the forces which keep the planets in their orbs must be recipro-
cally as the squares of their distances from the centers about which they revolve;
and thereby compared the force requisite to keep the Moon in her orb with the
force of gravity at the surface of the Earth; and found them answer pretty nearly.”

In this chapter we study the law of gravity. We place emphasis on describing
the motion of the planets because astronomical data provide an important test of
the validity of the law of gravity. We show that the laws of planetary motion devel-
oped by Johannes Kepler follow from the law of gravity and the concept of conser-
vation of angular momentum. We then derive a general expression for gravita-
tional potential energy and examine the energetics of planetary and satellite
motion. We close by showing how the law of gravity is also used to determine the
force between a particle and an extended object.

NEWTON’S LAW OF UNIVERSAL GRAVITATION
You may have heard the legend that Newton was struck on the head by a falling ap-
ple while napping under a tree. This alleged accident supposedly prompted him
to imagine that perhaps all bodies in the Universe were attracted to each other in
the same way the apple was attracted to the Earth. Newton analyzed astronomical
data on the motion of the Moon around the Earth. From that analysis, he made
the bold assertion that the force law governing the motion of planets was the same
as the force law that attracted a falling apple to the Earth. This was the first time
that “earthly” and “heavenly” motions were unified. We shall look at the mathe-
matical details of Newton’s analysis in Section 14.5.

In 1687 Newton published his work on the law of gravity in his treatise Mathe-
matical Principles of Natural Philosophy. Newton’s law of universal gravitation
states that

14.1

every particle in the Universe attracts every other particle with a force that is di-
rectly proportional to the product of their masses and inversely proportional to
the square of the distance between them.

B

If the particles have masses m1 and m2 and are separated by a distance r, the mag-
nitude of this gravitational force is

(14.1)Fg � G 
m1m2

r 2The law of gravity
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where G is a constant, called the universal gravitational constant, that has been mea-
sured experimentally. As noted in Example 6.6, its value in SI units is

(14.2)

The form of the force law given by Equation 14.1 is often referred to as an in-
verse-square law because the magnitude of the force varies as the inverse square
of the separation of the particles.1 We shall see other examples of this type of force
law in subsequent chapters. We can express this force in vector form by defining a
unit vector (Fig. 14.1). Because this unit vector is directed from particle 1 to
particle 2, the force exerted by particle 1 on particle 2 is

(14.3)

where the minus sign indicates that particle 2 is attracted to particle 1, and hence
the force must be directed toward particle 1. By Newton’s third law, the force ex-
erted by particle 2 on particle 1, designated F21 , is equal in magnitude to F12 and
in the opposite direction. That is, these forces form an action–reaction pair, and

Several features of Equation 14.3 deserve mention. The gravitational force is a
field force that always exists between two particles, regardless of the medium that
separates them. Because the force varies as the inverse square of the distance be-
tween the particles, it decreases rapidly with increasing separation. We can relate
this fact to the geometry of the situation by noting that the intensity of light ema-
nating from a point source drops off in the same 1/r 2 manner, as shown in Figure
14.2.

Another important point about Equation 14.3 is that the gravitational force
exerted by a finite-size, spherically symmetric mass distribution on a parti-
cle outside the distribution is the same as if the entire mass of the distribu-
tion were concentrated at the center. For example, the force exerted by the

F21 � �F12.

F12 � �G 
m1m2

r 2  r̂12

r̂12

G � 6.673 � 10�11 N�m2/kg2

Properties of the gravitational
force

QuickLab
Inflate a balloon just enough to form
a small sphere. Measure its diameter.
Use a marker to color in a 1-cm
square on its surface. Now continue
inflating the balloon until it reaches
twice the original diameter. Measure
the size of the square you have drawn.
Also note how the color of the
marked area has changed. Have you
verified what is shown in Figure 14.2?

1 An inverse relationship between two quantities x and y is one in which where k is a constant.
A direct proportion between x and y exists when y � kx.

y � k/x,

m1

m2
r

r̂

F21

F12

12

Figure 14.1 The gravitational
force between two particles is at-
tractive. The unit vector is di-
rected from particle 1 to particle 2.
Note that F21 � � F12 .

r̂12

r

2r Figure 14.2 Light radiating from a
point source drops off as 1/r2, a relation-
ship that matches the way the gravita-
tional force depends on distance. When
the distance from the light source is dou-
bled, the light has to cover four times the
area and thus is one fourth as bright.
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Earth on a particle of mass m near the Earth’s surface has the magnitude

(14.4)

where ME is the Earth’s mass and RE its radius. This force is directed toward the
center of the Earth.

We have evidence of the fact that the gravitational force acting on an object is
directly proportional to its mass from our observations of falling objects, discussed
in Chapter 2. All objects, regardless of mass, fall in the absence of air resistance at
the same acceleration g near the surface of the Earth. According to Newton’s sec-
ond law, this acceleration is given by where m is the mass of the falling
object. If this ratio is to be the same for all falling objects, then Fg must be directly
proportional to m, so that the mass cancels in the ratio. If we consider the more
general situation of a gravitational force between any two objects with mass, such
as two planets, this same argument can be applied to show that the gravitational
force is proportional to one of the masses. We can choose either of the masses in
the argument, however; thus, the gravitational force must be directly proportional
to both masses, as can be seen in Equation 14.3.

MEASURING THE GRAVITATIONAL CONSTANT
The universal gravitational constant G was measured in an important experiment
by Henry Cavendish (1731–1810) in 1798. The Cavendish apparatus consists of
two small spheres, each of mass m, fixed to the ends of a light horizontal rod sus-
pended by a fine fiber or thin metal wire, as illustrated in Figure 14.3. When two
large spheres, each of mass M, are placed near the smaller ones, the attractive
force between smaller and larger spheres causes the rod to rotate and twist the
wire suspension to a new equilibrium orientation. The angle of rotation is mea-
sured by the deflection of a light beam reflected from a mirror attached to the ver-
tical suspension. The deflection of the light is an effective technique for amplify-
ing the motion. The experiment is carefully repeated with different masses at
various separations. In addition to providing a value for G, the results show experi-
mentally that the force is attractive, proportional to the product mM, and inversely
proportional to the square of the distance r.

14.2

g � Fg/m,

Fg � G 
MEm
R E 

2

Billiards, Anyone?EXAMPLE 14.1
Solution First we calculate separately the individual forces
on the cue ball due to the other two balls, and then we find
the vector sum to get the resultant force. We can see graphi-
cally that this force should point upward and toward the

Three 0.300-kg billiard balls are placed on a table at the cor-
ners of a right triangle, as shown in Figure 14.4. Calculate the
gravitational force on the cue ball (designated m1) resulting
from the other two balls.

Mirror

r
m

M

Light
source

Figure 14.3 Schematic diagram of the Cavendish ap-
paratus for measuring G. As the small spheres of mass m
are attracted to the large spheres of mass M, the rod be-
tween the two small spheres rotates through a small an-
gle. A light beam reflected from a mirror on the rotating
apparatus measures the angle of rotation. The dashed
line represents the original position of the rod.
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FREE-FALL ACCELERATION AND THE
GRAVITATIONAL FORCE

In Chapter 5, when defining mg as the weight of an object of mass m, we referred
to g as the magnitude of the free-fall acceleration. Now we are in a position to ob-
tain a more fundamental description of g. Because the force acting on a freely
falling object of mass m near the Earth’s surface is given by Equation 14.4, we can
equate mg to this force to obtain

(14.5)

Now consider an object of mass m located a distance h above the Earth’s sur-
face or a distance r from the Earth’s center, where The magnitude of
the gravitational force acting on this object is

The gravitational force acting on the object at this position is also where
g� is the value of the free-fall acceleration at the altitude h. Substituting this expres-

Fg � mg�,

Fg � G 
MEm

r 2 � G 
MEm

(R E � h)2

r � R E � h.

 g � G 
ME

R E 

2  

mg � G 
MEm
R E 

2

14.3

right. We locate our coordinate axes as shown in Figure 14.4,
placing our origin at the position of the cue ball.

The force exerted by m2 on the cue ball is directed up-
ward and is given by

F21 � G 
m2m1

r21 

2  j 
This result shows that the gravitational forces between every-
day objects have extremely small magnitudes. The force ex-
erted by m3 on the cue ball is directed to the right:

Therefore, the resultant force on the cue ball is

and the magnitude of this force is

Exercise Find the direction of F.

Answer 29.3° counterclockwise from the positive x axis.

 � 7.65 � 10�11 N

F � √F21 

2 � F31 

2 � √(3.75)2 � (6.67)2 � 10�11

(3.75j � 6.67i) � 10�11 NF � F21 � F31 �

 � 6.67 � 10�11 i N 

 � �6.67 � 10�11 
N�m2

kg2 � 
(0.300 kg)(0.300 kg)

(0.300 m)2  i

F31 � G 
m3m1

r31 

2  i 

 � 3.75 � 10�11 j N 

 � �6.67 � 10�11 
N�m2

kg2 � 
(0.300 kg)(0.300 kg)

(0.400 m)2  j

0.400 m

m2

0.500 m

m1 0.300 m m3

F21
F

F31y

x

Figure 14.4 The resultant gravitational force acting on the cue
ball is the vector sum F21 � F31 .

Free-fall acceleration near the
Earth’s surface
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sion for Fg into the last equation shows that g� is

(14.6)

Thus, it follows that g� decreases with increasing altitude. Because the weight of a
body is mg�, we see that as its weight approaches zero.r : �,

g� �
GME

r 2 �
GME

(R E � h)2

Variation of g with Altitude hEXAMPLE 14.2
The International Space Station is designed to operate at an
altitude of 350 km. When completed, it will have a weight
(measured at the Earth’s surface) of 4.22 � 106 N. What is its
weight when in orbit?

Solution Because the station is above the surface of the
Earth, we expect its weight in orbit to be less than its weight
on Earth, 4.22 � 106 N. Using Equation 14.6 with h �
350 km, we obtain

Because g�/g � 8.83/9.80 � 0.901, we conclude that the
weight of the station at an altitude of 350 km is 90.1% of 
the value at the Earth’s surface. So the station’s weight in or-
bit is 

(0.901)(4.22 � 106 N) �

Values of g� at other altitudes are listed in Table 14.1.

3.80 � 106 N

 � 8.83 m/s2 

 �
(6.67 � 10�11 N�m2/kg2)(5.98 � 1024 kg)

(6.37 � 106 m � 0.350 � 106 m)2

g� �
GME

(R E � h)2  

The Density of the EarthEXAMPLE 14.3
Because this value is about twice the density of most rocks at
the Earth’s surface, we conclude that the inner core of the
Earth has a density much higher than the average value. It is
most amazing that the Cavendish experiment, which deter-
mines G (and can be done on a tabletop), combined with
simple free-fall measurements of g, provides information
about the core of the Earth.

Using the fact that g � 9.80 m/s2 at the Earth’s surface, find
the average density of the Earth.

Solution Using g � 9.80 m/s2 and we
find from Equation 14.5 that From this
result, and using the definition of density from Chapter 1, we
obtain

5.50 � 103 kg/m3�

�	 �

	

V	
�


	
4
3�R E 

3 �
5.96 � 1024 kg

4
3�(6.37 � 106 m)3

ME � 5.96 � 1024 kg.
R E � 6.37 � 106 m,

Variation of g with altitude

web
The official web site for the International
Space Station is www.station.nasa.gov

TABLE 14.1 Free-Fall Acceleration g �
at Various Altitudes
Above the Earth’s Surface

Altitude h (km) g� (m/s2)

1 000 7.33
2 000 5.68
3 000 4.53
4 000 3.70
5 000 3.08
6 000 2.60
7 000 2.23
8 000 1.93
9 000 1.69

10 000 1.49
50 000 0.13

� 0
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KEPLER’S LAWS
People have observed the movements of the planets, stars, and other celestial bod-
ies for thousands of years. In early history, scientists regarded the Earth as the cen-
ter of the Universe. This so-called geocentric model was elaborated and formalized
by the Greek astronomer Claudius Ptolemy (c. 100–c. 170) in the second century
A.D. and was accepted for the next 1 400 years. In 1543 the Polish astronomer
Nicolaus Copernicus (1473–1543) suggested that the Earth and the other planets
revolved in circular orbits around the Sun (the heliocentric model).

The Danish astronomer Tycho Brahe (1546–1601) wanted to determine how
the heavens were constructed, and thus he developed a program to determine the
positions of both stars and planets. It is interesting to note that those observations
of the planets and 777 stars visible to the naked eye were carried out with only a
large sextant and a compass. (The telescope had not yet been invented.)

The German astronomer Johannes Kepler was Brahe’s assistant for a short
while before Brahe’s death, whereupon he acquired his mentor’s astronomical
data and spent 16 years trying to deduce a mathematical model for the motion of
the planets. Such data are difficult to sort out because the Earth is also in motion
around the Sun. After many laborious calculations, Kepler found that Brahe’s data
on the revolution of Mars around the Sun provided the answer.

14.4

Astronauts F. Story Musgrave and Jeffrey A. Hoffman, along with the Hubble Space Telescope
and the space shuttle Endeavor, are all falling around the Earth.

Johannes Kepler German as-
tronomer (1571 – 1630) The German
astronomer Johannes Kepler is best
known for developing the laws of
planetary motion based on the careful
observations of Tycho Brahe. (Art Re-
source)

For more information about Johannes
Kepler, visit our Web site at 
www.saunderscollege.com/physics/
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Kepler’s analysis first showed that the concept of circular orbits around the
Sun had to be abandoned. He eventually discovered that the orbit of Mars could
be accurately described by an ellipse. Figure 14.5 shows the geometric description
of an ellipse. The longest dimension is called the major axis and is of length 2a,
where a is the semimajor axis. The shortest dimension is the minor axis, of
length 2b, where b is the semiminor axis. On either side of the center is a focal
point, a distance c from the center, where The Sun is located at one
of the focal points of Mars’s orbit. Kepler generalized his analysis to include the
motions of all planets. The complete analysis is summarized in three statements
known as Kepler’s laws:

a2 � b2 � c 2.

1. All planets move in elliptical orbits with the Sun at one focal point.
2. The radius vector drawn from the Sun to a planet sweeps out equal areas in

equal time intervals.
3. The square of the orbital period of any planet is proportional to the cube of

the semimajor axis of the elliptical orbit.

Most of the planetary orbits are close to circular in shape; for example, the
semimajor and semiminor axes of the orbit of Mars differ by only 0.4%. Mercury
and Pluto have the most elliptical orbits of the nine planets. In addition to the
planets, there are many asteroids and comets orbiting the Sun that obey Kepler’s
laws. Comet Halley is such an object; it becomes visible when it is close to the Sun
every 76 years. Its orbit is very elliptical, with a semiminor axis 76% smaller than its
semimajor axis.

Although we do not prove it here, Kepler’s first law is a direct consequence of
the fact that the gravitational force varies as 1/r 2. That is, under an inverse-square
gravitational-force law, the orbit of a planet can be shown mathematically to be an
ellipse with the Sun at one focal point. Indeed, half a century after Kepler devel-
oped his laws, Newton demonstrated that these laws are a consequence of the grav-
itational force that exists between any two masses. Newton’s law of universal gravi-
tation, together with his development of the laws of motion, provides the basis for
a full mathematical solution to the motion of planets and satellites.

THE LAW OF GRAVITY AND
THE MOTION OF PLANETS

In formulating his law of gravity, Newton used the following reasoning, which sup-
ports the assumption that the gravitational force is proportional to the inverse
square of the separation between the two interacting bodies. He compared the ac-
celeration of the Moon in its orbit with the acceleration of an object falling near
the Earth’s surface, such as the legendary apple (Fig. 14.6). Assuming that both ac-
celerations had the same cause—namely, the gravitational attraction of the
Earth—Newton used the inverse-square law to reason that the acceleration of the
Moon toward the Earth (centripetal acceleration) should be proportional to
1/rM

2, where rM is the distance between the centers of the Earth and the Moon.
Furthermore, the acceleration of the apple toward the Earth should be propor-
tional to 1/RE

2, where RE is the radius of the Earth, or the distance between the
centers of the Earth and the apple. Using the values m andrM � 3.84 � 108

14.5

Kepler’s laws

a

c b

F2F1

Figure 14.5 Plot of an ellipse.
The semimajor axis has a length a,
and the semiminor axis has a
length b. The focal points are lo-
cated at a distance c from the cen-
ter, where a2 � b2 � c 2.
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m, Newton predicted that the ratio of the Moon’s acceleration
aM to the apple’s acceleration g would be

Therefore, the centripetal acceleration of the Moon is

Newton also calculated the centripetal acceleration of the Moon from a knowl-
edge of its mean distance from the Earth and its orbital period, days �
2.36 � 106 s. In a time T, the Moon travels a distance 2�rM , which equals the cir-
cumference of its orbit. Therefore, its orbital speed is 2�rM/T and its centripetal
acceleration is

In other words, because the Moon is roughly 60 Earth radii away, the gravitational
acceleration at that distance should be about 1/602 of its value at the Earth’s sur-
face. This is just the acceleration needed to account for the circular motion of the
Moon around the Earth. The nearly perfect agreement between this value and the
value Newton obtained using g provides strong evidence of the inverse-square na-
ture of the gravitational force law.

Although these results must have been very encouraging to Newton, he was
deeply troubled by an assumption he made in the analysis. To evaluate the acceler-
ation of an object at the Earth’s surface, Newton treated the Earth as if its mass
were all concentrated at its center. That is, he assumed that the Earth acted as a
particle as far as its influence on an exterior object was concerned. Several years
later, in 1687, on the basis of his pioneering work in the development of calculus,
Newton proved that this assumption was valid and was a natural consequence of
the law of universal gravitation.

 � 2.72 � 10�3 m/s2 �
9.80 m/s2

602  

aM �
v2

rM
�

(2�rM/T)2

rM
�

4�2rM

T 2 �
4�2(3.84 � 108 m)

(2.36 � 106 s)2

T � 27.32

aM � (2.75 � 10�4)(9.80 m/s2) � 2.70 � 10�3 m/s2

aM

g
�

(1/rM)2

(1/R E)2 � � R E

rM
�

2
� � 6.37 � 106 m

3.84 � 108 m �
2

� 2.75 � 10�4

R E � 6.37 � 106

Acceleration of the Moon

RE

Moon

v

aM

rM

Earth

g Figure 14.6 As it revolves around the
Earth, the Moon experiences a cen-
tripetal acceleration aM directed toward
the Earth. An object near the Earth’s
surface, such as the apple shown here,
experiences an acceleration g. (Dimen-
sions are not to scale.)
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Kepler’s Third Law

It is informative to show that Kepler’s third law can be predicted from the inverse-
square law for circular orbits.2 Consider a planet of mass Mp moving around the
Sun of mass MS in a circular orbit, as shown in Figure 14.7. Because the gravita-
tional force exerted by the Sun on the planet is a radially directed force that keeps
the planet moving in a circle, we can apply Newton’s second law to the
planet:

Because the orbital speed v of the planet is simply 2�r/T, where T is its period of
revolution, the preceding expression becomes

(14.7)

where KS is a constant given by

Equation 14.7 is Kepler’s third law. It can be shown that the law is also valid
for elliptical orbits if we replace r with the length of the semimajor axis a. Note
that the constant of proportionality KS is independent of the mass of the planet.
Therefore, Equation 14.7 is valid for any planet.3 Table 14.2 contains a collection
of useful planetary data. The last column verifies that T 2/r 3 is a constant. The
small variations in the values in this column reflect uncertainties in the measured
values of the periods and semimajor axes of the planets.

If we were to consider the orbit around the Earth of a satellite such as the
Moon, then the proportionality constant would have a different value, with the
Sun’s mass replaced by the Earth’s mass.

K S �
4�2

GMS
� 2.97 � 10�19 s2/m3

T 2 � � 4�2

GMS
� r 3 � K Sr 3

GMS

r 2 �
(2�r/T)2

r

GMSMp

r 2 �
Mpv2

r

(�F � ma)

The Mass of the SunEXAMPLE 14.4

In Example 14.3, an understanding of gravitational forces en-
abled us to find out something about the density of the
Earth’s core, and now we have used this understanding to de-
termine the mass of the Sun.

1.99 � 1030 kg�
Calculate the mass of the Sun using the fact that the period
of the Earth’s orbit around the Sun is 3.156 � 107 s and its
distance from the Sun is 1.496 � 1011 m.

Solution Using Equation 14.7, we find that

MS �
4�2r 3

GT 2 �
4�2(1.496 � 1011 m)3

(6.67 � 10�11 N�m2/kg2)(3.156 � 107 s)2

2 The orbits of all planets except Mercury and Pluto are very close to being circular; hence, we do not
introduce much error with this assumption. For example, the ratio of the semiminor axis to the semi-
major axis for the Earth’s orbit is 
3 Equation 14.7 is indeed a proportion because the ratio of the two quantities T 2 and r 3 is a constant.
The variables in a proportion are not required to be limited to the first power only.

b/a � 0.999 86.

Kepler’s third law

r

MS

Mp

v

Figure 14.7 A planet of mass Mp
moving in a circular orbit around
the Sun. The orbits of all planets
except Mercury and Pluto are
nearly circular.
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Kepler’s Second Law and Conservation of Angular Momentum

Consider a planet of mass Mp moving around the Sun in an elliptical orbit (Fig.
14.8). The gravitational force acting on the planet is always along the radius vector,
directed toward the Sun, as shown in Figure 14.9a. When a force is directed to-
ward or away from a fixed point and is a function of r only, it is called a central
force. The torque acting on the planet due to this force is clearly zero; that is, be-
cause F is parallel to r,

(You may want to revisit Section 11.2 to refresh your memory on the vector prod-
uct.) Recall from Equation 11.19, however, that torque equals the time rate of
change of angular momentum: Therefore, because the gravitational� � d L/dt.

� � r � F � r � F r̂ � 0

TABLE 14.2 Useful Planetary Data

Mean Period of
Radius Revolution Mean Distance

Body Mass (kg) (m) (s) from Sun (m)

Mercury 3.18 � 1023 2.43 � 106 7.60 � 106 5.79 � 1010 2.97 � 10�19

Venus 4.88 � 1024 6.06 � 106 1.94 � 107 1.08 � 1011 2.99 � 10�19

Earth 5.98 � 1024 6.37 � 106 3.156 � 107 1.496 � 1011 2.97 � 10�19

Mars 6.42 � 1023 3.37 � 106 5.94 � 107 2.28 � 1011 2.98 � 10�19

Jupiter 1.90 � 1027 6.99 � 107 3.74 � 108 7.78 � 1011 2.97 � 10�19

Saturn 5.68 � 1026 5.85 � 107 9.35 � 108 1.43 � 1012 2.99 � 10�19

Uranus 8.68 � 1025 2.33 � 107 2.64 � 109 2.87 � 1012 2.95 � 10�19

Neptune 1.03 � 1026 2.21 � 107 5.22 � 109 4.50 � 1012 2.99 � 10�19

Pluto � 1.4 � 1022 � 1.5 � 106 7.82 � 109 5.91 � 1012 2.96 � 10�19

Moon 7.36 � 1022 1.74 � 106 — — —
Sun 1.991 � 1030 6.96 � 108 — — —

D

C

A

B
S

Sun

Figure 14.8 Kepler’s second law
is called the law of equal areas.
When the time interval required
for a planet to travel from A to B is
equal to the time interval required
for it to go from C to D, the two ar-
eas swept out by the planet’s radius
vector are equal. Note that in order
for this to be true, the planet must
be moving faster between C and D
than between A and B.

Separate views of Jupiter and of Periodic Comet
Shoemaker–Levy 9—both taken with the Hubble
Space Telescope about two months before Jupiter
and the comet collided in July 1994—were put to-
gether with the use of a computer. Their relative
sizes and distances were altered. The black spot
on Jupiter is the shadow of its moon Io.

T 2

r3  (s2/m3)
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It is important to recognize that this result, which is Kepler’s second law, is a con-
sequence of the fact that the force of gravity is a central force, which in turn im-
plies that angular momentum is constant. Therefore, Kepler’s second law applies
to any situation involving a central force, whether inverse-square or not.

force exerted by the Sun on a planet results in no torque on the planet, the
angular momentum L of the planet is constant:

(14.8)

Because L remains constant, the planet’s motion at any instant is restricted to the
plane formed by r and v.

We can relate this result to the following geometric consideration. The radius
vector r in Figure 14.9b sweeps out an area dA in a time dt. This area equals one-
half the area of the parallelogram formed by the vectors r and dr (see
Section 11.2). Because the displacement of the planet in a time dt is we
can say that

(14.9)

where L and Mp are both constants. Thus, we conclude that

dA
dt

�
L

2Mp
� constant

dA � 1
2� r � dr � � 1

2� r � v dt � �
L

2Mp
 dt

dr � vdt,
� r � dr �

L � r � p � r � Mpv � Mpr � v � constant

the radius vector from the Sun to a planet sweeps out equal areas in equal time
intervals.

Motion in an Elliptical OrbitEXAMPLE 14.5
14.10), and the maximum distance is called the apogee (indi-
cated by a). If the speed of the satellite at p is vp , what is its
speed at a?

Solution As the satellite moves from perigee toward
apogee, it is moving farther from the Earth. Thus, a compo-
nent of the gravitational force exerted by the Earth on the
satellite is opposite the velocity vector. Negative work is done
on the satellite, which causes it to slow down, according to
the work–kinetic energy theorem. As a result, we expect the
speed at apogee to be lower than the speed at perigee.

The angular momentum of the satellite relative to the
Earth is At the points a and p, v is perpen-
dicular to r. Therefore, the magnitude of the angular mo-
mentum at these positions is and Be-
cause angular momentum is constant, we see that

rp

ra
 vpva �

mvara � mvprp 

Lp � mvprp .La � mvara

mr � v.r � mv �

A satellite of mass m moves in an elliptical orbit around the
Earth (Fig. 14.10). The minimum distance of the satellite
from the Earth is called the perigee (indicated by p in Fig.

Sun
r

MS

Fg

Mp

v

(a)

Sun

(b)

r

dA

dr = vdt

Figure 14.9 (a) The gravitational
force acting on a planet is directed
toward the Sun, along the radius
vector. (b) As a planet orbits the
Sun, the area swept out by the ra-
dius vector in a time dt is equal to
one-half the area of the parallelo-
gram formed by the vectors r and
d r � vdt.

va

ra

vpp

a

rp

Figure 14.10 As a satellite moves around the Earth in an elliptical or-
bit, its angular momentum is constant. Therefore, 
where the subscripts a and p represent apogee and perigee, respectively.

mvara � mvprp ,
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How would you explain the fact that Saturn and Jupiter have periods much greater than
one year?

THE GRAVITATIONAL FIELD
When Newton published his theory of universal gravitation, it was considered a
success because it satisfactorily explained the motion of the planets. Since 1687
the same theory has been used to account for the motions of comets, the deflec-
tion of a Cavendish balance, the orbits of binary stars, and the rotation of galaxies.
Nevertheless, both Newton’s contemporaries and his successors found it difficult
to accept the concept of a force that acts through a distance, as mentioned in Sec-
tion 5.1. They asked how it was possible for two objects to interact when they were
not in contact with each other. Newton himself could not answer that question.

An approach to describing interactions between objects that are not in contact
came well after Newton’s death, and it enables us to look at the gravitational inter-
action in a different way. As described in Section 5.1, this alternative approach uses
the concept of a gravitational field that exists at every point in space. When a
particle of mass m is placed at a point where the gravitational field is g, the particle
experiences a force In other words, the field exerts a force on the parti-
cle. Hence, the gravitational field g is defined as

(14.10)

That is, the gravitational field at a point in space equals the gravitational force ex-
perienced by a test particle placed at that point divided by the mass of the test parti-
cle. Notice that the presence of the test particle is not necessary for the field to ex-
ist—the Earth creates the gravitational field. We call the object creating the field
the source particle (although the Earth is clearly not a particle; we shall discuss
shortly the fact that we can approximate the Earth as a particle for the purpose of
finding the gravitational field that it creates). We can detect the presence of the
field and measure its strength by placing a test particle in the field and noting the
force exerted on it.

Although the gravitational force is inherently an interaction between two ob-
jects, the concept of a gravitational field allows us to “factor out” the mass of one
of the objects. In essence, we are describing the “effect” that any object (in this
case, the Earth) has on the empty space around itself in terms of the force that
would be present if a second object were somewhere in that space.4

As an example of how the field concept works, consider an object of mass m
near the Earth’s surface. Because the gravitational force acting on the object has a
magnitude GMEm/r 2 (see Eq. 14.4), the field g at a distance r from the center of
the Earth is

(14.11)

where is a unit vector pointing radially outward from the Earth and the minusr̂

g �
Fg

m
� �

GME

r 2  r̂

g � 
Fg

m

Fg � mg.

14.6

Quick Quiz 14.1

Gravitational field

4 We shall return to this idea of mass affecting the space around it when we discuss Einstein’s theory of
gravitation in Chapter 39.
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sign indicates that the field points toward the center of the Earth, as illustrated in
Figure 14.11a. Note that the field vectors at different points surrounding the Earth
vary in both direction and magnitude. In a small region near the Earth’s surface,
the downward field g is approximately constant and uniform, as indicated in Fig-
ure 14.11b. Equation 14.11 is valid at all points outside the Earth’s surface, assum-
ing that the Earth is spherical. At the Earth’s surface, where g has a magni-
tude of 9.80 N/kg.

GRAVITATIONAL POTENTIAL ENERGY
In Chapter 8 we introduced the concept of gravitational potential energy, which is
the energy associated with the position of a particle. We emphasized that the gravi-
tational potential energy function is valid only when the particle is near
the Earth’s surface, where the gravitational force is constant. Because the gravita-
tional force between two particles varies as 1/r 2, we expect that a more general po-
tential energy function—one that is valid without the restriction of having to be
near the Earth’s surface—will be significantly different from 

Before we calculate this general form for the gravitational potential energy
function, let us first verify that the gravitational force is conservative. (Recall from Sec-
tion 8.2 that a force is conservative if the work it does on an object moving be-
tween any two points is independent of the path taken by the object.) To do this,
we first note that the gravitational force is a central force. By definition, a central
force is any force that is directed along a radial line to a fixed center and has a
magnitude that depends only on the radial coordinate r. Hence, a central force
can be represented by where is a unit vector directed from the origin to
the particle, as shown in Figure 14.12.

Consider a central force acting on a particle moving along the general path P
to Q in Figure 14.12. The path from P to Q can be approximated by a series of

r̂F(r)r̂,

U � mgy.

U � mgy

14.7

r � R E ,

(a) (b)

Figure 14.11 (a) The gravitational field vectors in the vicinity of a uniform spherical mass such
as the Earth vary in both direction and magnitude. The vectors point in the direction of the ac-
celeration a particle would experience if it were placed in the field. The magnitude of the field
vector at any location is the magnitude of the free-fall acceleration at that location. (b) The gravi-
tational field vectors in a small region near the Earth’s surface are uniform in both direction and
magnitude.
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steps according to the following procedure. In Figure 14.12, we draw several thin
wedges, which are shown as dashed lines. The outer boundary of our set of wedges
is a path consisting of short radial line segments and arcs (gray in the figure). We
select the length of the radial dimension of each wedge such that the short arc at
the wedge’s wide end intersects the actual path of the particle. Then we can ap-
proximate the actual path with a series of zigzag movements that alternate be-
tween moving along an arc and moving along a radial line.

By definition, a central force is always directed along one of the radial seg-
ments; therefore, the work done by F along any radial segment is

You should recall that, by definition, the work done by a force that is perpendicu-
lar to the displacement is zero. Hence, the work done in moving along any arc is
zero because F is perpendicular to the displacement along these segments. There-
fore, the total work done by F is the sum of the contributions along the radial seg-
ments:

where the subscripts i and f refer to the initial and final positions. Because the in-
tegrand is a function only of the radial position, this integral depends only on the
initial and final values of r. Thus, the work done is the same over any path from P
to Q. Because the work done is independent of the path and depends only on the
end points, we conclude that any central force is conservative. We are now assured
that a potential energy function can be obtained once the form of the central
force is specified.

Recall from Equation 8.2 that the change in the gravitational potential energy
associated with a given displacement is defined as the negative of the work done by
the gravitational force during that displacement:

(14.12)

We can use this result to evaluate the gravitational potential energy function. Con-
sider a particle of mass m moving between two points P and Q above the Earth’s
surface (Fig. 14.13). The particle is subject to the gravitational force given by
Equation 14.1. We can express this force as

where the negative sign indicates that the force is attractive. Substituting this ex-
pression for F(r) into Equation 14.12, we can compute the change in the gravita-

F(r) � �
GMEm

r 2  

U � Uf � Ui � ��rf

ri

F(r) dr

W � �rf

ri

F(r) dr

dW � F � dr � F(r) dr

Work done by a central force

O

r i

P

Q

r f

F

r̂

r̂

Radial segment

Arc

Figure 14.12 A particle moves
from P to Q while acted on by a
central force F, which is directed
radially. The path is broken into a
series of radial segments and arcs.
Because the work done along the
arcs is zero, the work done is inde-
pendent of the path and depends
only on rf and ri .

Figure 14.13 As a particle of mass m moves from P to
Q above the Earth’s surface, the gravitational potential
energy changes according to Equation 14.12.

P

Fg

Fg Q

m

rf

ri

ME

RE
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tional potential energy function:

(14.13)

As always, the choice of a reference point for the potential energy is completely ar-
bitrary. It is customary to choose the reference point where the force is zero. Tak-
ing at we obtain the important result

(14.14)

This expression applies to the Earth–particle system where the two masses are sep-
arated by a distance r, provided that The result is not valid for particles in-
side the Earth, where (The situation in which is treated in Section
14.10.) Because of our choice of Ui , the function U is always negative (Fig. 14.14).

Although Equation 14.14 was derived for the particle–Earth system, it can be
applied to any two particles. That is, the gravitational potential energy associated
with any pair of particles of masses m1 and m2 separated by a distance r is

(14.15)

This expression shows that the gravitational potential energy for any pair of parti-
cles varies as 1/r, whereas the force between them varies as 1/r 2. Furthermore, the
potential energy is negative because the force is attractive and we have taken the
potential energy as zero when the particle separation is infinite. Because the force
between the particles is attractive, we know that an external agent must do positive
work to increase the separation between them. The work done by the external
agent produces an increase in the potential energy as the two particles are sepa-
rated. That is, U becomes less negative as r increases.

When two particles are at rest and separated by a distance r, an external agent
has to supply an energy at least equal to � Gm1m2/r in order to separate the parti-
cles to an infinite distance. It is therefore convenient to think of the absolute value
of the potential energy as the binding energy of the system. If the external agent
supplies an energy greater than the binding energy, the excess energy of the sys-
tem will be in the form of kinetic energy when the particles are at an infinite sepa-
ration.

We can extend this concept to three or more particles. In this case, the total
potential energy of the system is the sum over all pairs of particles.5 Each pair con-
tributes a term of the form given by Equation 14.15. For example, if the system
contains three particles, as in Figure 14.15, we find that

(14.16)

The absolute value of Utotal represents the work needed to separate the particles by
an infinite distance.

U total � U12 � U13 � U23 � �G � m1m2

r12
�

m1m3

r13
�

m2m3

r23
�

U � �
Gm1m2

r

r � R Er � R E .
r � R E .

U � �
GMEm

r

ri � �,Ui � 0

Uf � Ui � �GMEm� 1
rf

�
1
ri
�

Uf � Ui � GMEm �rf

ri

 
dr
r 2 � GMEm��

1
r �

rf

ri

5 The fact that potential energy terms can be added for all pairs of particles stems from the experimen-
tal fact that gravitational forces obey the superposition principle.

Gravitational potential energy of
the Earth–particle system for
r � R E

Change in gravitational potential
energy

Earth

R E

O

GME m

U

r

R E

ME

–

Figure 14.14 Graph of the gravi-
tational potential energy U versus r
for a particle above the Earth’s sur-
face. The potential energy goes to
zero as r approaches infinity.

1

2

3r 13

r 12 r 23

Figure 14.15 Three interacting
particles.
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ENERGY CONSIDERATIONS IN PLANETARY
AND SATELLITE MOTION

Consider a body of mass m moving with a speed v in the vicinity of a massive body
of mass M, where The system might be a planet moving around the Sun, a
satellite in orbit around the Earth, or a comet making a one-time flyby of the Sun.
If we assume that the body of mass M is at rest in an inertial reference frame, then
the total mechanical energy E of the two-body system when the bodies are sepa-
rated by a distance r is the sum of the kinetic energy of the body of mass m and the
potential energy of the system, given by Equation 14.15:6

(14.17)

This equation shows that E may be positive, negative, or zero, depending on the
value of v. However, for a bound system,7 such as the Earth–Sun system, E is neces-
sarily less than zero because we have chosen the convention that as 

We can easily establish that for the system consisting of a body of mass m
moving in a circular orbit about a body of mass (Fig. 14.16). Newton’s sec-
ond law applied to the body of mass m gives

GMm
r 2 � ma �

mv2

r

M W m
E � 0

r : �.U : 0

E � 1
2mv2 �

GMm
r

E � K � U 

M W m.

14.8

The Change in Potential EnergyEXAMPLE 14.6
If both the initial and final positions of the particle are close
to the Earth’s surface, then and (Re-
call that r is measured from the center of the Earth.) There-
fore, the change in potential energy becomes

where we have used the fact that (Eq. 14.5).
Keep in mind that the reference point is arbitrary because it
is the change in potential energy that is meaningful.

g � GME/R E 

2

U �
GMEm

R E 

2  y � mg y

rir f � R E 

2.rf � ri � y
A particle of mass m is displaced through a small vertical dis-
tance y near the Earth’s surface. Show that in this situation
the general expression for the change in gravitational poten-
tial energy given by Equation 14.13 reduces to the familiar re-
lationship 

Solution We can express Equation 14.13 in the form

U � �GMEm � 1
rf

�
1
ri
� � GMEm � rf � ri

r i r f
�

U � mg y.

6 You might recognize that we have ignored the acceleration and kinetic energy of the larger body. To
see that this simplification is reasonable, consider an object of mass m falling toward the Earth. Because
the center of mass of the object–Earth system is effectively stationary, it follows that Thus,
the Earth acquires a kinetic energy equal to

where K is the kinetic energy of the object. Because this result shows that the kinetic energy
of the Earth is negligible.
7 Of the three examples provided at the beginning of this section, the planet moving around the Sun
and a satellite in orbit around the Earth are bound systems—the Earth will always stay near the Sun,
and the satellite will always stay near the Earth. The one-time comet flyby represents an unbound
system—the comet interacts once with the Sun but is not bound to it. Thus, in theory the comet can
move infinitely far away from the Sun.

ME W m,

1
2ME vE 

2 � 1
2 

m2

ME
 v2 �

m
ME

 K

mv � ME vE .

r

M

m

v

Figure 14.16 A body of mass m
moving in a circular orbit about a
much larger body of mass M.
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Multiplying both sides by r and dividing by 2 gives

(14.18)

Substituting this into Equation 14.17, we obtain

(14.19)

This result clearly shows that the total mechanical energy is negative in the
case of circular orbits. Note that the kinetic energy is positive and equal to
one-half the absolute value of the potential energy. The absolute value of E is
also equal to the binding energy of the system, because this amount of energy
must be provided to the system to move the two masses infinitely far apart.

The total mechanical energy is also negative in the case of elliptical orbits. The
expression for E for elliptical orbits is the same as Equation 14.19 with r replaced
by the semimajor axis length a. Furthermore, the total energy is constant if we as-
sume that the system is isolated. Therefore, as the body of mass m moves from P to
Q in Figure 14.13, the total energy remains constant and Equation 14.17 gives

(14.20)

Combining this statement of energy conservation with our earlier discussion of
conservation of angular momentum, we see that both the total energy and the
total angular momentum of a gravitationally bound, two-body system are
constants of the motion.

E � 1
2mvi 

2 �
GMm

ri
� 1

2mvf 

2 �
GMm

rf

E � �
GMm

2r
  

E �
GMm

2r
�

GMm
r

1
2mv2 �

GMm
2r

Changing the Orbit of a SatelliteEXAMPLE 14.7
We must also determine the initial radius (not the altitude

above the Earth’s surface) of the satellite’s orbit when it was
still in the shuttle’s cargo bay. This is simply

Now, applying Equation 14.19, we obtain, for the total initial
and final energies,

The energy required from the engine to boost the satellite is

1.19 � 1010 J�

� � 1
4.23 � 107 m

�
1

6.65 � 106 m �
 � �

(6.67 � 10�11 N�m2/kg2)(5.98 � 1024 kg)(470 kg)
2

Eengine � Ef � Ei � �
GMEm

2
 � 1

R f
�

1
R i

� 

Ei � �
GMEm

2R i
  Ef � �

GMEm
2R f

R E � 280 km � 6.65 � 106 m � R i

The space shuttle releases a 470-kg communications satellite
while in an orbit that is 280 km above the surface of the
Earth. A rocket engine on the satellite boosts it into a geosyn-
chronous orbit, which is an orbit in which the satellite stays
directly over a single location on the Earth. How much en-
ergy did the engine have to provide?

Solution First we must determine the radius of a geosyn-
chronous orbit. Then we can calculate the change in energy
needed to boost the satellite into orbit.

The period of the orbit T must be one day (86 400 s), so
that the satellite travels once around the Earth in the same
time that the Earth spins once on its axis. Knowing the pe-
riod, we can then apply Kepler’s third law (Eq. 14.7) to find
the radius, once we replace KS with 

This is a little more than 26 000 mi above the Earth’s surface. 

 r � √3 T 2

K E
� √3 (86 400 s)2

9.89 � 10�14 s2/m3 � 4.23 � 107 m � R f

T 2 � K Er 3 

9.89 � 10�14 s2/m3:
K E � 4�2/GME �

Total energy for circular orbits
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Escape Speed

Suppose an object of mass m is projected vertically upward from the Earth’s sur-
face with an initial speed vi , as illustrated in Figure 14.17. We can use energy con-
siderations to find the minimum value of the initial speed needed to allow the ob-
ject to escape the Earth’s gravitational field. Equation 14.17 gives the total energy
of the object at any point. At the surface of the Earth, and 
When the object reaches its maximum altitude, and Be-
cause the total energy of the system is constant, substituting these conditions into
Equation 14.20 gives

Solving for gives

(14.21)

Therefore, if the initial speed is known, this expression can be used to calculate
the maximum altitude h because we know that

We are now in a position to calculate escape speed, which is the minimum
speed the object must have at the Earth’s surface in order to escape from the influ-
ence of the Earth’s gravitational field. Traveling at this minimum speed, the object
continues to move farther and farther away from the Earth as its speed asymptoti-
cally approaches zero. Letting in Equation 14.21 and taking , we
obtain

(14.22)

Note that this expression for vesc is independent of the mass of the object. In 
other words, a spacecraft has the same escape speed as a molecule. Further-
more, the result is independent of the direction of the velocity and ignores air 
resistance.

If the object is given an initial speed equal to vesc , its total energy is equal to
zero. This can be seen by noting that when the object’s kinetic energy and
its potential energy are both zero. If vi is greater than vesc , the total energy is
greater than zero and the object has some residual kinetic energy as r : �.

r : �,

vesc � √ 2GME

R E

vi � vescrmax : �

h � rmax � R E

vi 

2 � 2GME � 1
R E

�
1

rmax
�

vi 

2

1
2mvi 

2 �
GMEm

R E
� �

GMEm
rmax

r � rf � rmax .v � vf � 0
r � ri � R E .v � vi

This is the energy equivalent of 89 gal of gasoline. NASA en-
gineers must account for the changing mass of the spacecraft
as it ejects burned fuel, something we have not done here.
Would you expect the calculation that includes the effect of
this changing mass to yield a greater or lesser amount of en-
ergy required from the engine?

If we wish to determine how the energy is distributed 
after the engine is fired, we find from Equation 14.18 
that the change in kinetic energy is 

(a decrease),(GMEm/2)(1/R f � 1/R i) � �1.19 � 1010 J
K �

and the corresponding change in potential energy is
(an increase).

Thus, the change in mechanical energy of the system is
as we already calculated.

The firing of the engine results in an increase in the total me-
chanical energy of the system. Because an increase in poten-
tial energy is accompanied by a decrease in kinetic energy, we
conclude that the speed of an orbiting satellite decreases as
its altitude increases.

1.19 � 1010 J,E � K � U �

U � �GMEm(1/R f � 1/R i) � 2.38 � 1010 J

h

m

v i

rmax

vf = 0

M E

R E

Figure 14.17 An object of mass
m projected upward from the
Earth’s surface with an initial speed
vi reaches a maximum altitude h.

Escape speed



442 C H A P T E R  1 4 The Law of Gravity

Equations 14.21 and 14.22 can be applied to objects projected from any
planet. That is, in general, the escape speed from the surface of any planet of mass
M and radius R is

Escape speeds for the planets, the Moon, and the Sun are provided in Table
14.3. Note that the values vary from 1.1 km/s for Pluto to about 618 km/s for the
Sun. These results, together with some ideas from the kinetic theory of gases (see
Chapter 21), explain why some planets have atmospheres and others do not. As we
shall see later, a gas molecule has an average kinetic energy that depends on the
temperature of the gas. Hence, lighter molecules, such as hydrogen and helium,
have a higher average speed than heavier species at the same temperature. When
the average speed of the lighter molecules is not much less than the escape speed
of a planet, a significant fraction of them have a chance to escape from the planet.

This mechanism also explains why the Earth does not retain hydrogen mole-
cules and helium atoms in its atmosphere but does retain heavier molecules, such
as oxygen and nitrogen. On the other hand, the very large escape speed for
Jupiter enables that planet to retain hydrogen, the primary constituent of its at-
mosphere.

If you were a space prospector and discovered gold on an asteroid, it probably would not be
a good idea to jump up and down in excitement over your find. Why?

Figure 14.18 is a drawing by Newton showing the path of a stone thrown from a mountain-
top. He shows the stone landing farther and farther away when thrown at higher and higher
speeds (at points D, E, F, and G), until finally it is thrown all the way around the Earth. Why
didn’t Newton show the stone landing at B and A before it was going fast enough to com-
plete an orbit?

Quick Quiz 14.3

Quick Quiz 14.2

vesc � √ 2GM
R

Escape Speed of a RocketEXAMPLE 14.8

This corresponds to about 25 000 mi/h.
The kinetic energy of the spacecraft is

This is equivalent to about 2 300 gal of gasoline.

3.14 � 1011 J�

K � 1
2mv2

esc � 1
2(5.00 � 103 kg)(1.12 � 104 m/s)2

1.12 � 104 m/s�
Calculate the escape speed from the Earth for a 5 000-kg
spacecraft, and determine the kinetic energy it must have at
the Earth’s surface in order to escape the Earth’s gravita-
tional field.

Solution Using Equation 14.22 gives

 � √ 2(6.67 � 10�11 N�m2/kg2)(5.98 � 1024 kg)
6.37 � 106 m

vesc � √ 2GME

R E
 

TABLE 14.3
Escape Speeds from the
Surfaces of the Planets,
Moon, and Sun

Body vesc (km/s)

Mercury 4.3
Venus 10.3
Earth 11.2
Moon 2.3
Mars 5.0
Jupiter 60
Saturn 36
Uranus 22
Neptune 24
Pluto 1.1
Sun 618
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Optional Section

THE GRAVITATIONAL FORCE BETWEEN AN
EXTENDED OBJECT AND A PARTICLE

We have emphasized that the law of universal gravitation given by Equation 14.3 is
valid only if the interacting objects are treated as particles. In view of this, how can
we calculate the force between a particle and an object having finite dimensions?
This is accomplished by treating the extended object as a collection of particles
and making use of integral calculus. We first evaluate the potential energy func-
tion, and then calculate the gravitational force from that function.

We obtain the potential energy associated with a system consisting of a particle
of mass m and an extended object of mass M by dividing the object into many ele-
ments, each having a mass Mi (Fig. 14.19). The potential energy associated with
the system consisting of any one element and the particle is 
where ri is the distance from the particle to the element Mi . The total potential
energy of the overall system is obtained by taking the sum over all elements as 
Mi : 0. In this limit, we can express U in integral form as

(14.23)

Once U has been evaluated, we obtain the force exerted by the extended object
on the particle by taking the negative derivative of this scalar function (see Section
8.6). If the extended object has spherical symmetry, the function U depends only
on r, and the force is given by � dU/dr. We treat this situation in Section 14.10. In
principle, one can evaluate U for any geometry; however, the integration can be
cumbersome.

An alternative approach to evaluating the gravitational force between a parti-
cle and an extended object is to perform a vector sum over all mass elements of
the object. Using the procedure outlined in evaluating U and the law of universal
gravitation in the form shown in Equation 14.3, we obtain, for the total force ex-
erted on the particle

(14.24)

where is a unit vector directed from the element dM toward the particle (see Fig.
14.19) and the minus sign indicates that the direction of the force is opposite that
of This procedure is not always recommended because working with a vector
function is more difficult than working with the scalar potential energy function.
However, if the geometry is simple, as in the following example, the evaluation of
F can be straightforward.

r̂.

r̂

Fg � �Gm � 
dM
r 2  r̂

U � �Gm � 
dM
r

U � �Gm Mi/ri ,

14.9

Figure 14.18 “The greater the velocity . . . with which [a
stone] is projected, the farther it goes before it falls to the Earth.
We may therefore suppose the velocity to be so increased, that it
would describe an arc of 1, 2, 5, 10, 100, 1000 miles before it ar-
rived at the Earth, till at last, exceeding the limits of the Earth, it
should pass into space without touching.” Sir Isaac Newton, System
of the World.

M

∆Mi

r i

m

r̂

Figure 14.19 A particle of mass
m interacting with an extended ob-
ject of mass M. The total gravita-
tional force exerted by the object
on the particle can be obtained by
dividing the object into numerous
elements, each having a mass Mi ,
and then taking a vector sum over
the forces exerted by all elements.

Total force exerted on a particle by
an extended object
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Optional Section

THE GRAVITATIONAL FORCE BETWEEN A
PARTICLE AND A SPHERICAL MASS

We have already stated that a large sphere attracts a particle outside it as if the to-
tal mass of the sphere were concentrated at its center. We now describe the force
acting on a particle when the extended object is either a spherical shell or a solid
sphere, and then apply these facts to some interesting systems.

Spherical Shell

Case 1. If a particle of mass m is located outside a spherical shell of mass M at,
for instance, point P in Figure 14.21a, the shell attracts the particle as though the
mass of the shell were concentrated at its center. We can show this, as Newton did,
with integral calculus. Thus, as far as the gravitational force acting on a particle
outside the shell is concerned, a spherical shell acts no differently from the solid
spherical distributions of mass we have seen.

Case 2. If the particle is located inside the shell (at point P in Fig. 14.21b), the
gravitational force acting on it can be shown to be zero.

We can express these two important results in the following way:

(14.25a)

(14.25b)

The gravitational force as a function of the distance r is plotted in Figure 14.21c. 

Fg � 0  for r � R 

Fg � �
GMm

r 2  r̂  for r � R

14.10

Gravitational Force Between a Particle and a BarEXAMPLE 14.9
of lengths dx/L, and so In this problem, the
variable r in Equation 14.24 is the distance x shown in Figure
14.20, the unit vector is and the force acting on the
particle is to the right; therefore, Equation 14.24 gives us

We see that the force exerted on the particle is in the positive
x direction, which is what we expect because the gravitational
force is attractive.

Note that in the limit L : 0, the force varies as 1/h2,
which is what we expect for the force between two point
masses. Furthermore, if the force also varies as 1/h2.
This can be seen by noting that the denominator of the ex-
pression for Fg can be expressed in the form 
which is approximately equal to h2 when Thus, when
bodies are separated by distances that are great relative to
their characteristic dimensions, they behave like particles.

h W L .
h2(1 �  L/h),

h W L,

GmM
h(h � L)

 i Fg �
GmM

L
 ��

1
x �

h�L

h
 i �

Fg � �Gm �h�L

h
 
Mdx

L
 

1
x2  (� i) � Gm 

M
L

 �h�L

h
 
dx
x2  i

r̂ � � i,r̂

dM � (M/L) dx.The left end of a homogeneous bar of length L and mass M
is at a distance h from a particle of mass m (Fig. 14.20). Calcu-
late the total gravitational force exerted by the bar on the
particle.

Solution The arbitrary segment of the bar of length dx
has a mass dM. Because the mass per unit length is constant,
it follows that the ratio of masses dM/M is equal to the ratio

Force on a particle due to a
spherical shell

x
O

mm

y

h L

dx

x

Figure 14.20 The gravitational force exerted by the bar on the
particle is directed to the right. Note that the bar is not equivalent to
a particle of mass M located at the center of mass of the bar.
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The shell does not act as a gravitational shield, which means that a particle in-
side a shell may experience forces exerted by bodies outside the shell.

Solid Sphere

Case 1. If a particle of mass m is located outside a homogeneous solid sphere of
mass M (at point P in Fig. 14.22), the sphere attracts the particle as though the

(a)

M Q

Q ′

P

m
FQ ′P

FQP

M

P m

FTop, P

FBottom, P

(b)

(c)

O
r

R

Fg

Figure 14.21 (a) The nonradial components of the gravitational forces exerted on a particle of
mass m located at point P outside a spherical shell of mass M cancel out. (b) The spherical shell
can be broken into rings. Even though point P is closer to the top ring than to the bottom ring,
the bottom ring is larger, and the gravitational forces exerted on the particle at P by the matter
in the two rings cancel each other. Thus, for a particle located at any point P inside the shell,
there is no gravitational force exerted on the particle by the mass M of the shell. (c) The magni-
tude of the gravitational force versus the radial distance r from the center of the shell.
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mass of the sphere were concentrated at its center. We have used this notion at sev-
eral places in this chapter already, and we can argue it from Equation 14.25a. A
solid sphere can be considered to be a collection of concentric spherical shells.
The masses of all of the shells can be interpreted as being concentrated at their
common center, and the gravitational force is equivalent to that due to a particle
of mass M located at that center.

Case 2. If a particle of mass m is located inside a homogeneous solid sphere of
mass M (at point Q in Fig. 14.22), the gravitational force acting on it is due only to
the mass M� contained within the sphere of radius shown in Figure 14.22.
In other words,

(14.26a)

(14.26b)

This also follows from spherical-shell Case 1 because the part of the sphere that is

Fg � �
GmM �

r 2  r̂  for r � R

Fg � �
GmM

r 2  r̂  for r � R

r � R,

Force on a particle due to a solid
sphere

m

P

R

M

Q
r

M ′

r

RO

Fg

Fg

Figure 14.22 The gravitational force acting on a particle when it is outside a uniform solid
sphere is GMm/r2 and is directed toward the center of the sphere. The gravitational force acting
on the particle when it is inside such a sphere is proportional to r and goes to zero at the center.
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farther from the center than Q can be treated as a series of concentric spherical
shells that do not exert a net force on the particle because the particle is inside
them. Because the sphere is assumed to have a uniform density, it follows that the
ratio of masses M�/M is equal to the ratio of volumes V �/V, where V is the total vol-
ume of the sphere and V � is the volume within the sphere of radius r only:

Solving this equation for M� and substituting the value obtained into Equation
14.26b, we have

(14.27)

This equation tells us that at the center of the solid sphere, where the gravi-
tational force goes to zero, as we intuitively expect. The force as a function of r is
plotted in Figure 14.22.

Case 3. If a particle is located inside a solid sphere having a density � that is
spherically symmetric but not uniform, then M� in Equation 14.26b is given by an
integral of the form where the integration is taken over the volume
contained within the sphere of radius r in Figure 14.22. We can evaluate this inte-
gral if the radial variation of � is given. In this case, we take the volume element dV
as the volume of a spherical shell of radius r and thickness dr, and thus

For example, if � where A is a constant, it is left to a problem
(Problem 63) to show that 

Hence, we see from Equation 14.26b that F is proportional to r2 in this case and is
zero at the center.

A particle is projected through a small hole into the interior of a spherical shell. Describe

Quick Quiz 14.4

M� � �Ar 4.
� Ar,dV � 4�r 2 dr.

M� � � � dV,

r � 0,

Fg � �
GmM

R3  r r̂  for r � R

M�

M
�

V�

V
�

4
3�r 3

4
3 �R3 �

r 3

R3

A Free Ride, Thanks to GravityEXAMPLE 14.10
The y component of the gravitational force on the object

is balanced by the normal force exerted by the tunnel wall,
and the x component is

Because the x coordinate of the object is we can
write

Applying Newton’s second law to the motion along the x di-
rection gives

Fx � �
GmME

R E 

3  x � max

Fx � �
GmME

R E 

3  x

x � r cos �,

Fx � �
GmME

R E 

3  r cos �

An object of mass m moves in a smooth, straight tunnel dug
between two points on the Earth’s surface (Fig. 14.23). Show
that the object moves with simple harmonic motion, and find
the period of its motion. Assume that the Earth’s density is
uniform.

Solution The gravitational force exerted on the object
acts toward the Earth’s center and is given by Equation 14.27:

We receive our first indication that this force should result in
simple harmonic motion by comparing it to Hooke’s law, first
seen in Section 7.3. Because the gravitational force on the ob-
ject is linearly proportional to the displacement, the object
experiences a Hooke’s law force.

Fg � �
GmM

R3  r r̂
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the motion of the particle inside the shell.

SUMMARY

Newton’s law of universal gravitation states that the gravitational force of at-
traction between any two particles of masses m1 and m2 separated by a distance r
has the magnitude

(14.1)

where is the universal gravitational constant. This
equation enables us to calculate the force of attraction between masses under a
wide variety of circumstances.

An object at a distance h above the Earth’s surface experiences a gravitational
force of magnitude mg�, where g� is the free-fall acceleration at that elevation:

(14.6)g � �
GME

r 2 �
GME

(R E � h)2

G � 6.673 � 10�11 N�m2/kg2

Fg � G 
m1m2

r 2

y

x

θ

x

O

r

mFg

Figure 14.23 An object moves along a tunnel dug through the
Earth. The component of the gravitational force Fg along the x axis is
the driving force for the motion. Note that this component always
acts toward O.

Solving for ax , we obtain

If we use the symbol �2 for the coefficient of x —GME /RE
3 �

— we see that

an expression that matches the mathematical form of Equa-
tion 13.9, which gives the acceleration of a particle in simple
harmonic motion: Therefore, Equation (1),ax � ��2x.

(1)  ax � ��2x

�2

ax � �
GME

R E 

3  x

which we have derived for the acceleration of our object in
the tunnel, is the acceleration equation for simple harmonic
motion at angular speed � with

Thus, the object in the tunnel moves in the same way as a
block hanging from a spring! The period of oscillation is

This period is the same as that of a satellite traveling in a cir-
cular orbit just above the Earth’s surface (ignoring any trees,
buildings, or other objects in the way). Note that the result is
independent of the length of the tunnel.

A proposal has been made to operate a mass-transit system
between any two cities, using the principle described in this
example. A one-way trip would take about 42 min. A more
precise calculation of the motion must account for the fact
that the Earth’s density is not uniform. More important,
there are many practical problems to consider. For instance,
it would be impossible to achieve a frictionless tunnel, and so
some auxiliary power source would be required. Can you
think of other problems?

84.3 min � 5.06 � 103 s �

 � 2� √ (6.37 � 106 m)3

(6.67 � 10�11 N�m2/kg2)(5.98 � 1024 kg)

T �
2�

�
� 2� √ R E 

3

GME
 

� � √ GME

R E 

3
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In this expression, ME is the mass of the Earth and RE is its radius. Thus, the weight
of an object decreases as the object moves away from the Earth’s surface.

Kepler’s laws of planetary motion state that

1. All planets move in elliptical orbits with the Sun at one focal point.
2. The radius vector drawn from the Sun to a planet sweeps out equal areas in

equal time intervals.
3. The square of the orbital period of any planet is proportional to the cube of the

semimajor axis of the elliptical orbit.

Kepler’s third law can be expressed as

(14.7)

where MS is the mass of the Sun and r is the orbital radius. For elliptical orbits,
Equation 14.7 is valid if r is replaced by the semimajor axis a. Most planets have
nearly circular orbits around the Sun. 

The gravitational field at a point in space equals the gravitational force expe-
rienced by any test particle located at that point divided by the mass of the test 
particle:

(14.10)

The gravitational force is conservative, and therefore a potential energy func-
tion can be defined. The gravitational potential energy associated with two par-
ticles separated by a distance r is

(14.15)

where U is taken to be zero as The total potential energy for a system of
particles is the sum of energies for all pairs of particles, with each pair represented
by a term of the form given by Equation 14.15.

If an isolated system consists of a particle of mass m moving with a speed v in
the vicinity of a massive body of mass M, the total energy E of the system is the sum
of the kinetic and potential energies:

(14.17)

The total energy is a constant of the motion. If the particle moves in a circular or-
bit of radius r around the massive body and if the total energy of the sys-
tem is

(14.19)

The total energy is negative for any bound system.
The escape speed for an object projected from the surface of the Earth is

(14.22)vesc � √ 2GME

R E

E � �
GMm

2r

M W m,

E � 1
2mv2�

GMm
r

r : �.

U � �
Gm1m2

r

g �
Fg

m

T 2 � � 4�2

GMS
�r 3
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PROBLEMS

mote ones) can the 50.0-kg mass be placed so as to ex-
perience a net force of zero?

3. Three equal masses are located at three corners of a
square of edge length �, as shown in Figure P14.3. Find
the gravitational field g at the fourth corner due to
these masses.

4. Two objects attract each other with a gravitational force
of magnitude 1.00 � 10�8 N when separated by 
20.0 cm. If the total mass of the two objects is 5.00 kg,
what is the mass of each?

5. Three uniform spheres of masses 2.00 kg, 4.00 kg, and
6.00 kg are placed at the corners of a right triangle, as
illustrated in Figure P14.5. Calculate the resultant gravi-

Section 14.1 Newton’s Law of Universal Gravitation
Section 14.2 Measuring the Gravitational Constant
Section 14.3 Free-Fall Acceleration and the 
Gravitational Force

1. Determine the order of magnitude of the gravitational
force that you exert on another person 2 m away. In
your solution, state the quantities that you measure or
estimate and their values.

2. A 200-kg mass and a 500-kg mass are separated by 
0.400 m. (a) Find the net gravitational force exerted by
these masses on a 50.0-kg mass placed midway between
them. (b) At what position (other than infinitely re-

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

QUESTIONS

tional force is acting on the planet. What is the net work
done on a planet during each revolution as it moves
around the Sun in an elliptical orbit?

11. Explain why the force exerted on a particle by a uniform
sphere must be directed toward the center of the sphere.
Would this be the case if the mass distribution of the
sphere were not spherically symmetric?

12. Neglecting the density variation of the Earth, what would
be the period of a particle moving in a smooth hole dug
between opposite points on the Earth’s surface, passing
through its center?

13. At what position in its elliptical orbit is the speed of a
planet a maximum? At what position is the speed a mini-
mum?

14. If you were given the mass and radius of planet X, how
would you calculate the free-fall acceleration on the sur-
face of this planet?

15. If a hole could be dug to the center of the Earth, do you
think that the force on a mass m would still obey Equa-
tion 14.1 there? What do you think the force on m would
be at the center of the Earth?

16. In his 1798 experiment, Cavendish was said to have
“weighed the Earth.” Explain this statement.

17. The gravitational force exerted on the Voyager spacecraft
by Jupiter accelerated it toward escape speed from the
Sun. How is this possible?

18. How would you find the mass of the Moon?
19. The Apollo 13 spaceship developed trouble in the oxygen

system about halfway to the Moon. Why did the spaceship
continue on around the Moon and then return home,
rather than immediately turn back to Earth?

1. Use Kepler’s second law to convince yourself that the
Earth must move faster in its orbit during December,
when it is closest to the Sun, than during June, when it is
farthest from the Sun.

2. The gravitational force that the Sun exerts on the Moon
is about twice as great as the gravitational force that the
Earth exerts on the Moon. Why doesn’t the Sun pull the
Moon away from the Earth during a total eclipse of the
Sun?

3. If a system consists of five particles, how many terms ap-
pear in the expression for the total potential energy? How
many terms appear if the system consists of N particles?

4. Is it possible to calculate the potential energy function as-
sociated with a particle and an extended body without
knowing the geometry or mass distribution of the ex-
tended body?

5. Does the escape speed of a rocket depend on its mass?
Explain.

6. Compare the energies required to reach the Moon for a
105-kg spacecraft and a 103-kg satellite.

7. Explain why it takes more fuel for a spacecraft to travel
from the Earth to the Moon than for the return trip. Esti-
mate the difference.

8. Why don’t we put a geosynchronous weather satellite in
orbit around the 45th parallel? Wouldn’t this be more
useful for the United States than such a satellite in orbit
around the equator?

9. Is the potential energy associated with the Earth–Moon
system greater than, less than, or equal to the kinetic en-
ergy of the Moon relative to the Earth?

10. Explain why no work is done on a planet as it moves in a
circular orbit around the Sun, even though a gravita-
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tational force on the 4.00-kg mass, assuming that the
spheres are isolated from the rest of the Universe.

6. The free-fall acceleration on the surface of the Moon is
about one-sixth that on the surface of the Earth. If the
radius of the Moon is about 0.250RE , find the ratio of
their average densities, �Moon/�Earth .

7. During a solar eclipse, the Moon, Earth, and Sun all lie
on the same line, with the Moon between the Earth and
the Sun. (a) What force is exerted by the Sun on the
Moon? (b) What force is exerted by the Earth on the
Moon? (c) What force is exerted by the Sun on the
Earth?

8. The center-to-center distance between the Earth and
the Moon is 384 400 km. The Moon completes an orbit
in 27.3 days. (a) Determine the Moon’s orbital speed.
(b) If gravity were switched off, the Moon would move
along a straight line tangent to its orbit, as described by
Newton’s first law. In its actual orbit in 1.00 s, how far
does the Moon fall below the tangent line and toward
the Earth?

9. When a falling meteoroid is at a distance above the
Earth’s surface of 3.00 times the Earth’s radius, what is
its acceleration due to the Earth’s gravity?

10. Two ocean liners, each with a mass of 40 000 metric
tons, are moving on parallel courses, 100 m apart. What
is the magnitude of the acceleration of one of the liners
toward the other due to their mutual gravitational at-
traction? (Treat the ships as point masses.)

11. A student proposes to measure the gravitational con-
stant G by suspending two spherical masses from the
ceiling of a tall cathedral and measuring the deflection
of the cables from the vertical. Draw a free-body dia-
gram of one of the masses. If two 100.0-kg masses are
suspended at the end of 45.00-m-long cables, and the
cables are attached to the ceiling 1.000 m apart, what is
the separation of the masses?

12. On the way to the Moon, the Apollo astronauts reached
a point where the Moon’s gravitational pull became
stronger than the Earth’s. (a) Determine the distance of
this point from the center of the Earth. (b) What is the
acceleration due to the Earth’s gravity at this point?

Section 14.4 Kepler’s Laws
Section 14.5 The Law of Gravity and the 
Motion of Planets

13. A particle of mass m moves along a straight line with
constant speed in the x direction, a distance b from the
x axis (Fig. P14.13). Show that Kepler’s second law is
satisfied by demonstrating that the two shaded triangles
in the figure have the same area when t4 � t3 � t2 � t1 .

�
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y

2.00 kg

F24
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6.00 kg

(– 4.00, 0) m

F64 4.00 kg

x

t 1 t 2 t 3 t 4

y

b

O

v0

m

Figure P14.3

Figure P14.5

Figure P14.13

14. A communications satellite in geosynchronous orbit re-
mains above a single point on the Earth’s equator as the
planet rotates on its axis. (a) Calculate the radius of its
orbit. (b) The satellite relays a radio signal from a trans-
mitter near the north pole to a receiver, also near the
north pole. Traveling at the speed of light, how long is
the radio wave in transit?

15. Plaskett’s binary system consists of two stars that revolve
in a circular orbit about a center of mass midway be-
tween them. This means that the masses of the two stars
are equal (Fig. P14.15). If the orbital velocity of each
star is 220 km/s and the orbital period of each is 
14.4 days, find the mass M of each star. (For compari-
son, the mass of our Sun is 1.99 � 1030 kg.)

16. Plaskett’s binary system consists of two stars that revolve
in a circular orbit about a center of gravity midway be-
tween them. This means that the masses of the two stars
are equal (see Fig. P14.15). If the orbital speed of each
star is v and the orbital period of each is T, find the
mass M of each star.

WEB
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17. The Explorer VIII satellite, placed into orbit November 3,
1960, to investigate the ionosphere, had the following
orbit parameters: perigee, 459 km; apogee, 2 289 km
(both distances above the Earth’s surface); and period,
112.7 min. Find the ratio vp /va of the speed at perigee
to that at apogee.

18. Comet Halley (Fig. P14.18) approaches the Sun to
within 0.570 AU, and its orbital period is 75.6 years (AU
is the symbol for astronomical unit, where 1 AU �
1.50 � 1011 m is the mean Earth–Sun distance). How
far from the Sun will Halley’s comet travel before it
starts its return journey?

20. Two planets, X and Y, travel counterclockwise in circular
orbits about a star, as shown in Figure P14.20. The radii
of their orbits are in the ratio 3:1. At some time, they
are aligned as in Figure P14.20a, making a straight line
with the star. During the next five years, the angular dis-
placement of planet X is 90.0°, as shown in Figure
P14.20b. Where is planet Y at this time?

WEB

Figure P14.15 Problems 15 and 16.

21. A synchronous satellite, which always remains above the
same point on a planet’s equator, is put in orbit around
Jupiter so that scientists can study the famous red spot.
Jupiter rotates once every 9.84 h. Use the data in Table
14.2 to find the altitude of the satellite.

22. Neutron stars are extremely dense objects that are
formed from the remnants of supernova explosions.
Many rotate very rapidly. Suppose that the mass of a cer-
tain spherical neutron star is twice the mass of the Sun
and that its radius is 10.0 km. Determine the greatest
possible angular speed it can have for the matter at the
surface of the star on its equator to be just held in orbit
by the gravitational force.

23. The Solar and Heliospheric Observatory (SOHO)
spacecraft has a special orbit, chosen so that its view of
the Sun is never eclipsed and it is always close enough
to the Earth to transmit data easily. It moves in a near-
circle around the Sun that is smaller than the Earth’s
circular orbit. Its period, however, is not less than 1 yr
but is just equal to 1 yr. It is always located between the
Earth and the Sun along the line joining them. Both ob-
jects exert gravitational forces on the observatory. Show
that the spacecraft’s distance from the Earth must be
between 1.47 � 109 m and 1.48 � 109 m. In 1772
Joseph Louis Lagrange determined theoretically the
special location that allows this orbit. The SOHO space-
craft took this position on February 14, 1996. (Hint: Use
data that are precise to four digits. The mass of the
Earth is 5.983 � 1024 kg.)

Section 14.6 The Gravitational Field
24. A spacecraft in the shape of a long cylinder has a length

of 100 m, and its mass with occupants is 1 000 kg. It has

19. Io, a satellite of Jupiter, has an orbital period of 
1.77 days and an orbital radius of 4.22 � 105 km. From
these data, determine the mass of Jupiter.

220 km/s

M
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M
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Sun

0.570 AU

2a

x

(a)

Y X
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X

(b)

Figure P14.18

Figure P14.20
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strayed too close to a 1.0-m-radius black hole having a
mass 100 times that of the Sun (Fig. P14.24). The nose
of the spacecraft is pointing toward the center of the
black hole, and the distance between the nose and the
black hole is 10.0 km. (a) Determine the total force on
the spacecraft. (b) What is the difference in the gravita-
tional fields acting on the occupants in the nose of the
ship and on those in the rear of the ship, farthest from
the black hole?

25. Compute the magnitude and direction of the gravita-
tional field at a point P on the perpendicular bisector of
two equal masses separated by a distance 2a, as shown in
Figure P14.25.

equal to the radius of the Earth. Calculate (a) the aver-
age density of the white dwarf, (b) the acceleration due
to gravity at its surface, and (c) the gravitational poten-
tial energy associated with a 1.00-kg object at its surface.

30. At the Earth’s surface a projectile is launched straight
up at a speed of 10.0 km/s. To what height will it rise?
Ignore air resistance.

31. A system consists of three particles, each of mass 5.00 g,
located at the corners of an equilateral triangle with
sides of 30.0 cm. (a) Calculate the potential energy of
the system. (b) If the particles are released simultane-
ously, where will they collide?

32. How much work is done by the Moon’s gravitational
field as a 1 000-kg meteor comes in from outer space
and impacts the Moon’s surface?

Section 14.8 Energy Considerations in 
Planetary and Satellite Motion

33. A 500-kg satellite is in a circular orbit at an altitude of
500 km above the Earth’s surface. Because of air fric-
tion, the satellite is eventually brought to the Earth’s
surface, and it hits the Earth with a speed of 2.00 km/s.
How much energy was transformed to internal energy
by means of friction?

34. (a) What is the minimum speed, relative to the Sun, that
is necessary for a spacecraft to escape the Solar System if
it starts at the Earth’s orbit? (b) Voyager 1 achieved a max-
imum speed of 125 000 km/h on its way to photograph
Jupiter. Beyond what distance from the Sun is this speed
sufficient for a spacecraft to escape the Solar System?

35. A satellite with a mass of 200 kg is placed in Earth orbit
at a height of 200 km above the surface. (a) Assuming a
circular orbit, how long does the satellite take to com-
plete one orbit? (b) What is the satellite’s speed? 
(c) What is the minimum energy necessary to place this
satellite in orbit (assuming no air friction)?

36. A satellite of mass m is placed in Earth orbit at an altitude
h. (a) Assuming a circular orbit, how long does the satel-
lite take to complete one orbit? (b) What is the satellite’s
speed? (c) What is the minimum energy necessary to
place this satellite in orbit (assuming no air friction)?

37. A spaceship is fired from the Earth’s surface with an ini-
tial speed of 2.00 � 104 m/s. What will its speed be
when it is very far from the Earth? (Neglect friction.)

38. A 1 000-kg satellite orbits the Earth at a constant alti-
tude of 100 km. How much energy must be added to
the system to move the satellite into a circular orbit at
an altitude of 200 km?

39. A “treetop satellite” moves in a circular orbit just above
the surface of a planet, which is assumed to offer no air
resistance. Show that its orbital speed v and the escape
speed from the planet are related by the expression

40. The planet Uranus has a mass about 14 times the
Earth’s mass, and its radius is equal to about 3.7 Earth

vesc � √2v.

WEB

26. Find the gravitational field at a distance r along the axis
of a thin ring of mass M and radius a.

Section 14.7 Gravitational Potential Energy
Note: Assume that as 

27. A satellite of the Earth has a mass of 100 kg and is at an
altitude of 2.00 � 106 m. (a) What is the potential en-
ergy of the satellite–Earth system? (b) What is the mag-
nitude of the gravitational force exerted by the Earth
on the satellite? (c) What force does the satellite exert
on the Earth?

28. How much energy is required to move a 1 000-kg mass
from the Earth’s surface to an altitude twice the Earth’s
radius?

29. After our Sun exhausts its nuclear fuel, its ultimate fate
may be to collapse to a white-dwarf state, in which it has
approximately the same mass it has now but a radius

r : �.U � 0

10.0 km100 m

Black hole

a

M

Pr

M

Figure P14.24

Figure P14.25
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radii. (a) By setting up ratios with the corresponding
Earth values, find the acceleration due to gravity at the
cloud tops of Uranus. (b) Ignoring the rotation of the
planet, find the minimum escape speed from Uranus.

41. Determine the escape velocity for a rocket on the far
side of Ganymede, the largest of Jupiter’s moons. The
radius of Ganymede is 2.64 � 106 m, and its mass is
1.495 � 1023 kg. The mass of Jupiter is 1.90 � 1027 kg,
and the distance between Jupiter and Ganymede is
1.071 � 109 m. Be sure to include the gravitational ef-
fect due to Jupiter, but you may ignore the motions of
Jupiter and Ganymede as they revolve about their cen-
ter of mass (Fig. P14.41).

(Optional)
Section 14.10 The Gravitational Force Between 
a Particle and a Spherical Mass

46. (a) Show that the period calculated in Example 14.10
can be written as

where g is the free-fall acceleration on the surface of the
Earth. (b) What would this period be if tunnels were
made through the Moon? (c) What practical problem
regarding these tunnels on Earth would be removed if
they were built on the Moon?

47. A 500-kg uniform solid sphere has a radius of 0.400 m.
Find the magnitude of the gravitational force exerted
by the sphere on a 50.0-g particle located (a) 1.50 m
from the center of the sphere, (b) at the surface of the
sphere, and (c) 0.200 m from the center of the sphere.

48. A uniform solid sphere of mass m1 and radius R1 is in-
side and concentric with a spherical shell of mass m2
and radius R 2 (Fig. P14.48). Find the gravitational force
exerted by the spheres on a particle of mass m located
at (a) (b) and (c) where r is mea-
sured from the center of the spheres.

r � c,r � b,r � a,

T � 2�√ R E

g

42. In Robert Heinlein’s The Moon is a Harsh Mistress, the
colonial inhabitants of the Moon threaten to launch
rocks down onto the Earth if they are not given inde-
pendence (or at least representation). Assuming that a
rail gun could launch a rock of mass m at twice the lu-
nar escape speed, calculate the speed of the rock as it
enters the Earth’s atmosphere. (By lunar escape speed we
mean the speed required to escape entirely from a sta-
tionary Moon alone in the Universe.)

43. Derive an expression for the work required to move an
Earth satellite of mass m from a circular orbit of radius
2RE to one of radius 3RE .

(Optional)
Section 14.9 The Gravitational Force Between 
an Extended Object and a Particle

44. Consider two identical uniform rods of length L and
mass m lying along the same line and having their clos-
est points separated by a distance d (Fig. P14.44). Show
that the mutual gravitational force between these rods
has a magnitude

45. A uniform rod of mass M is in the shape of a semicircle
of radius R (Fig. P14.45). Calculate the force on a point
mass m placed at the center of the semicircle.

F �
Gm2

L2  ln � (L � d)2

d(2L � d) �

d
LL

mm

Ganymede

v

Jupiter

m 2

c

ba
R 2

R 1

m 1

m

M

R

Figure P14.41

Figure P14.44

Figure P14.45

Figure P14.48
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ADDITIONAL PROBLEMS

49. Let gM represent the difference in the gravitational
fields produced by the Moon at the points on the
Earth’s surface nearest to and farthest from the Moon.
Find the fraction gM/g, where g is the Earth’s gravita-
tional field. (This difference is responsible for the oc-
currence of the lunar tides on the Earth.)

50. Two spheres having masses M and 2M and radii R and
3R, respectively, are released from rest when the dis-
tance between their centers is 12R. How fast will each
sphere be moving when they collide? Assume that the
two spheres interact only with each other.

51. In Larry Niven’s science-fiction novel Ringworld, a rigid
ring of material rotates about a star (Fig. P14.51). The
rotational speed of the ring is 1.25 � 106 m/s, and its
radius is 1.53 � 1011 m. (a) Show that the centripetal
acceleration of the inhabitants is 10.2 m/s2. (b) The in-
habitants of this ring world experience a normal con-
tact force n. Acting alone, this normal force would pro-
duce an inward acceleration of 9.90 m/s2. Additionally,
the star at the center of the ring exerts a gravitational
force on the ring and its inhabitants. The difference be-
tween the total acceleration and the acceleration pro-
vided by the normal force is due to the gravitational at-
traction of the central star. Show that the mass of the
star is approximately 1032 kg.

(c) Evaluate this difference for m, a typical
height for a two-story building.

53. A particle of mass m is located inside a uniform solid
sphere of radius R and mass M, at a distance r from its
center. (a) Show that the gravitational potential energy
of the system is 
(b) Write an expression for the amount of work done
by the gravitational force in bringing the particle from
the surface of the sphere to its center.

54. Voyagers 1 and 2 surveyed the surface of Jupiter’s moon
Io and photographed active volcanoes spewing liquid
sulfur to heights of 70 km above the surface of this
moon. Find the speed with which the liquid sulfur left
the volcano. Io’s mass is 8.9 � 1022 kg, and its radius is 
1 820 km.

55. As an astronaut, you observe a small planet to be spheri-
cal. After landing on the planet, you set off, walking al-
ways straight ahead, and find yourself returning to your
spacecraft from the opposite side after completing a lap
of 25.0 km. You hold a hammer and a falcon feather at
a height of 1.40 m, release them, and observe that they
fall together to the surface in 29.2 s. Determine the
mass of the planet.

56. A cylindrical habitat in space, 6.00 km in diameter and
30 km long, was proposed by G. K. O’Neill in 1974.
Such a habitat would have cities, land, and lakes on the
inside surface and air and clouds in the center. All of
these would be held in place by the rotation of the
cylinder about its long axis. How fast would the cylinder
have to rotate to imitate the Earth’s gravitational field at
the walls of the cylinder?

57. In introductory physics laboratories, a typical Cavendish
balance for measuring the gravitational constant G uses
lead spheres with masses of 1.50 kg and 15.0 g whose
centers are separated by about 4.50 cm. Calculate the
gravitational force between these spheres, treating each
as a point mass located at the center of the sphere.

58. Newton’s law of universal gravitation is valid for dis-
tances covering an enormous range, but it is thought to
fail for very small distances, where the structure of space
itself is uncertain. The crossover distance, far less than
the diameter of an atomic nucleus,  is called the Planck
length. It is determined by a combination of the con-
stants G, c, and h, where c is the speed of light in vac-
uum and h is Planck’s constant (introduced briefly in
Chapter 11 and discussed in greater detail in Chapter
40) with units of angular momentum. (a) Use dimen-
sional analysis to find a combination of these three uni-
versal constants that has units of length. (b) Determine
the order of magnitude of the Planck length. (Hint: You
will need to consider noninteger powers of the con-
stants.)

59. Show that the escape speed from the surface of a planet
of uniform density is directly proportional to the radius
of the planet.

60. (a) Suppose that the Earth (or another object) has den-
sity �(r), which can vary with radius but is spherically

U � (GmM/2R3)r 2 � 3GmM/2R.

h � 6.00

WEB

52. (a) Show that the rate of change of the free-fall acceler-
ation with distance above the Earth’s surface is

This rate of change over distance is called a gradient.
(b) If h is small compared to the radius of the Earth,
show that the difference in free-fall acceleration be-
tween two points separated by vertical distance h is

� g � �
2GMEh

R E 

3

dg
dr

� �
2GME

R E 

3
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Fg
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Figure P14.51
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symmetric. Show that at any particular radius r inside
the Earth, the gravitational field strength g(r) will in-
crease as r increases, if and only if the density there ex-
ceeds 2/3 the average density of the portion of the
Earth inside the radius r. (b) The Earth as a whole has
an average density of 5.5 g/cm3, while the density at the
surface is 1.0 g/cm3 on the oceans and about 3 g/cm3

on land. What can you infer from this?
61. Two hypothetical planets of masses m1 and m2 and radii

r1 and r2 , respectively, are nearly at rest when they are
an infinite distance apart. Because of their gravitational
attraction, they head toward each other on a collision
course. (a) When their center-to-center separation is d,
find expressions for the speed of each planet and their
relative velocity. (b) Find the kinetic energy of each
planet just before they collide, if m1 � 2.00 � 1024 kg,
m2 � 8.00 � 1024 kg, r1 � 3.00 � 106 m, and r2 �
5.00 � 106 m. (Hint: Both energy and momentum are
conserved.)

62. The maximum distance from the Earth to the Sun (at
our aphelion) is 1.521 � 1011 m, and the distance of
closest approach (at perihelion) is 1.471 � 1011 m. If
the Earth’s orbital speed at perihelion is 30.27 km/s,
determine (a) the Earth’s orbital speed at aphelion, 
(b) the kinetic and potential energies at perihelion,
and (c) the kinetic and potential energies at aphelion.
Is the total energy constant? (Neglect the effect of the
Moon and other planets.)

63. A sphere of mass M and radius R has a nonuniform
density that varies with r, the distance from its center,
according to the expression � � Ar, for 0 � r � R. 
(a) What is the constant A in terms of M and R ? 
(b) Determine an expression for the force exerted on a
particle of mass m placed outside the sphere. (c) Deter-
mine an expression for the force exerted on the parti-
cle if it is inside the sphere. (Hint: See Section 14.10
and note that the distribution is spherically symmetric.)

64. (a) Determine the amount of work (in joules) that must
be done on a 100-kg payload to elevate it to a height of
1 000 km above the Earth’s surface. (b) Determine the
amount of additional work that is required to put the
payload into circular orbit at this elevation.

65. X-ray pulses from Cygnus X-1, a celestial x-ray source,
have been recorded during high-altitude rocket flights.
The signals can be interpreted as originating when a
blob of ionized matter orbits a black hole with a period
of 5.0 ms. If the blob is in a circular orbit about a black
hole whose mass is 20MSun , what is the orbital radius?

66. Studies of the relationship of the Sun to its galaxy—the
Milky Way—have revealed that the Sun is located near
the outer edge of the galactic disk, about 30 000
lightyears from the center. Furthermore, it has been
found that the Sun has an orbital speed of approxi-
mately 250 km/s around the galactic center. (a) What is
the period of the Sun’s galactic motion? (b) What is the
order of magnitude of the mass of the Milky Way
galaxy? Suppose that the galaxy is made mostly of stars,

of which the Sun is typical. What is the order of magni-
tude of the number of stars in the Milky Way?

67. The oldest artificial satellite in orbit is Vanguard I,
launched March 3, 1958. Its mass is 1.60 kg. In its initial
orbit, its minimum distance from the center of the
Earth was 7.02 Mm, and its speed at this perigee point
was 8.23 km/s. (a) Find its total energy. (b) Find the
magnitude of its angular momentum. (c) Find its speed
at apogee and its maximum (apogee) distance from the
center of the Earth. (d) Find the semimajor axis of its
orbit. (e) Determine its period.

68. A rocket is given an initial speed vertically upward of
at the surface of the Earth, which has radius R

and surface free-fall acceleration g. The rocket motors are
quickly cut off, and thereafter the rocket coasts under the
action of gravitational forces only. (Ignore atmospheric
friction and the Earth’s rotation.) Derive an expression
for the subsequent speed v as a function of the distance r
from the center of the Earth in terms of g, R, and r.

69. Two stars of masses M and m, separated by a distance d,
revolve in circular orbits about their center of mass
(Fig. P14.69). Show that each star has a period given by

(Hint: Apply Newton’s second law to each star, and note
that the center-of-mass condition requires that

where r1 � r2 � d.)Mr2 � mr1 ,

T 2 �
4�2d3

G(M � m)

vi � 2√Rg
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70. (a) A 5.00-kg mass is released 1.20 � 107 m from the
center of the Earth. It moves with what acceleration rel-
ative to the Earth? (b) A 2.00 � 1024 kg mass is released
1.20 � 107 m from the center of the Earth. It moves
with what acceleration relative to the Earth? Assume
that the objects behave as pairs of particles, isolated
from the rest of the Universe.

71. The acceleration of an object moving in the gravita-
tional field of the Earth is

a � �
GME

r 3 r
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ANSWERS TO QUICK QUIZZES

14.4 The gravitational force is zero inside the shell (Eq.
14.25b). Because the force on it is zero, the particle
moves with constant velocity in the direction of its origi-
nal motion outside the shell until it hits the wall oppo-
site the entry hole. Its path thereafter depends on the
nature of the collision and on the particle’s original di-
rection.

14.1 Kepler’s third law (Eq. 14.7), which applies to all the
planets, tells us that the period of a planet is propor-
tional to r3/2. Because Saturn and Jupiter are farther
from the Sun than the Earth is, they have longer peri-
ods. The Sun’s gravitational field is much weaker at Sat-
urn and Jupiter than it is at the Earth. Thus, these plan-
ets experience much less centripetal acceleration than
the Earth does, and they have correspondingly longer
periods.

14.2 The mass of the asteroid might be so small that you
would be able to exceed escape velocity by leg power
alone. You would jump up, but you would never come
back down!

14.3 Kepler’s first law applies not only to planets orbiting the
Sun but also to any relatively small object orbiting an-
other under the influence of gravity. Any elliptical path
that does not touch the Earth before reaching point G
will continue around the other side to point V in a com-
plete orbit (see figure in next column).

where r is the position vector directed from the center
of the Earth to the object. Choosing the origin at the
center of the Earth and assuming that the small object
is moving in the xy plane, we find that the rectangular
(cartesian) components of its acceleration are

Use a computer to set up and carry out a numerical pre-

ax � �
GMEx

(x2 � y2)3/2   ay � �
GMEy

(x2 � y2)3/2

diction of the motion of the object, according to Euler’s
method. Assume that the initial position of the object is

and where RE is the radius of the Earth.
Give the object an initial velocity of 5 000 m/s in the x
direction. The time increment should be made as small
as practical. Try 5 s. Plot the x and y coordinates of the
object as time goes on. Does the object hit the Earth?
Vary the initial velocity until you find a circular orbit.

y � 2R E ,x � 0


