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n the preceding chapter we showed how to use Coulomb’s law to calculate the
electric field generated by a given charge distribution. In this chapter, we de-
scribe Gauss’s law and an alternative procedure for calculating electric fields.

The law is based on the fact that the fundamental electrostatic force between point
charges exhibits an inverse-square behavior. Although a consequence of
Coulomb’s law, Gauss’s law is more convenient for calculating the electric fields of
highly symmetric charge distributions and makes possible useful qualitative rea-
soning when we are dealing with complicated problems.

ELECTRIC FLUX
The concept of electric field lines is described qualitatively in Chapter 23. We now
use the concept of electric flux to treat electric field lines in a more quantitative
way.

Consider an electric field that is uniform in both magnitude and direction, as
shown in Figure 24.1. The field lines penetrate a rectangular surface of area A,
which is perpendicular to the field. Recall from Section 23.6 that the number of
lines per unit area (in other words, the line density) is proportional to the magni-
tude of the electric field. Therefore, the total number of lines penetrating the sur-
face is proportional to the product EA. This product of the magnitude of the elec-
tric field E and surface area A perpendicular to the field is called the electric flux
�E (uppercase Greek phi):

(24.1)

From the SI units of E and A, we see that �E has units of newton–meters squared
per coulomb Electric flux is proportional to the number of elec-
tric field lines penetrating some surface.

(N�m2/C).

�E � EA

24.1

Flux Through a SphereEXAMPLE 24.1
perpendicular to the surface of the sphere. The flux through
the sphere (whose surface area is thus

Exercise What would be the (a) electric field and (b) flux
through the sphere if it had a radius of 0.500 m?

Answer (a) N/C; (b) 1.13 � 105 N�m2/C.3.60 � 104

1.13 � 105 N�m2/C�

�E � EA � (8.99 � 103 N/C)(12.6 m2)

A � 4�r 2 � 12.6 m2)
What is the electric flux through a sphere that has a radius of
1.00 m and carries a charge of � 1.00 �C at its center?

Solution The magnitude of the electric field 1.00 m from
this charge is given by Equation 23.4,

The field points radially outward and is therefore everywhere

 � 8.99 � 103 N/C

E � ke 
q
r 2 � (8.99 � 109 N�m2/C2) 

1.00 � 10�6 C
(1.00 m)2

I

11.6

Area = A

E

Figure 24.1 Field lines repre-
senting a uniform electric field
penetrating a plane of area A per-
pendicular to the field. The electric
flux �E through this area is equal
to EA.

If the surface under consideration is not perpendicular to the field, the flux
through it must be less than that given by Equation 24.1. We can understand this
by considering Figure 24.2, in which the normal to the surface of area A is at an
angle 	 to the uniform electric field. Note that the number of lines that cross this
area A is equal to the number that cross the area A
, which is a projection of area A
aligned perpendicular to the field. From Figure 24.2 we see that the two areas are
related by cos 	. Because the flux through A equals the flux through A
, weA
 � A
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conclude that the flux through A is

(24.2)

From this result, we see that the flux through a surface of fixed area A has a maxi-
mum value EA when the surface is perpendicular to the field (in other words,
when the normal to the surface is parallel to the field, that is, in Figure
24.2); the flux is zero when the surface is parallel to the field (in other words,
when the normal to the surface is perpendicular to the field, that is, 

We assumed a uniform electric field in the preceding discussion. In more gen-
eral situations, the electric field may vary over a surface. Therefore, our definition
of flux given by Equation 24.2 has meaning only over a small element of area.
Consider a general surface divided up into a large number of small elements, each
of area �A. The variation in the electric field over one element can be neglected if
the element is sufficiently small. It is convenient to define a vector �A i whose mag-
nitude represents the area of the ith element of the surface and whose direction is
defined to be perpendicular to the surface element, as shown in Figure 24.3. The elec-
tric flux ��E through this element is

where we have used the definition of the scalar product of two vectors
By summing the contributions of all elements, we obtain the

total flux through the surface.1 If we let the area of each element approach zero,
then the number of elements approaches infinity and the sum is replaced by an in-
tegral. Therefore, the general definition of electric flux is

(24.3)

Equation 24.3 is a surface integral, which means it must be evaluated over the sur-
face in question. In general, the value of �E depends both on the field pattern and
on the surface.

We are often interested in evaluating the flux through a closed surface, which is
defined as one that divides space into an inside and an outside region, so that one
cannot move from one region to the other without crossing the surface. The sur-
face of a sphere, for example, is a closed surface.

Consider the closed surface in Figure 24.4. The vectors �Ai point in different
directions for the various surface elements, but at each point they are normal to

dA�E � lim
�Ai :0

 � Ei � �Ai � �
surface

E �

(A � B � AB cos 	).

��E � Ei �Ai cos 	 � Ei � � Ai

	 � 90).

	 � 0

�E � EA
 � EA cos 	

QuickLab
Shine a desk lamp onto a playing
card and notice how the size of the
shadow on your desk depends on the
orientation of the card with respect
to the beam of light. Could a formula
like Equation 24.2 be used to de-
scribe how much light was being
blocked by the card?

Definition of electric flux

1 It is important to note that drawings with field lines have their inaccuracies because a small area ele-
ment (depending on its location) may happen to have too many or too few field lines penetrating it.
We stress that the basic definition of electric flux is The use of lines is only an aid for visualiz-
ing the concept.

� E � dA.

A

θ

θ

A′ = A cos θ
E

Normal

θ

Figure 24.2 Field lines representing a
uniform electric field penetrating an
area A that is at an angle 	 to the field.
Because the number of lines that go
through the area A
 is the same as the
number that go through A, the flux
through A
 is equal to the flux through
A and is given by �E � EA cos 	.

∆A i

E i
θ

Figure 24.3 A small element of
surface area �Ai . The electric field
makes an angle 	 with the vector
�Ai , defined as being normal to
the surface element, and the flux
through the element is equal to
E i �Ai cos 	.
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the surface and, by convention, always point outward. At the element labeled �,
the field lines are crossing the surface from the inside to the outside and 
hence, the flux i through this element is positive. For element �,
the field lines graze the surface (perpendicular to the vector �Ai); thus, 
and the flux is zero. For elements such as �, where the field lines are crossing the
surface from outside to inside, and the flux is negative because 
cos 	 is negative. The net flux through the surface is proportional to the net num-
ber of lines leaving the surface, where the net number means the number leaving the
surface minus the number entering the surface. If more lines are leaving than entering,
the net flux is positive. If more lines are entering than leaving, the net flux is nega-
tive. Using the symbol to represent an integral over a closed surface, we can write
the net flux �E through a closed surface as

(24.4)

where En represents the component of the electric field normal to the surface.
Evaluating the net flux through a closed surface can be very cumbersome. How-
ever, if the field is normal to the surface at each point and constant in magnitude,
the calculation is straightforward, as it was in Example 24.1. The next example also
illustrates this point.

�E � � E � dA � � En dA

�

180 � 	 � 90

	 � 90
��E � E � �A

	 � 90;

∆A i

∆A i �
�

�

E

�
�

�

∆A i

E
θ

Eθ

Figure 24.4 A closed surface
in an electric field. The area vec-
tors �Ai are, by convention, nor-
mal to the surface and point out-
ward. The flux through an area
element can be positive (ele-
ment �), zero (element �), or
negative (element �).

Flux Through a CubeEXAMPLE 24.2
faces (�, �, and the unnumbered ones) is zero because E is
perpendicular to dA on these faces.

The net flux through faces � and � is

�E � �
1
 E � dA � �

2
 E � dA

Consider a uniform electric field E oriented in the x direc-
tion. Find the net electric flux through the surface of a cube
of edges �, oriented as shown in Figure 24.5.

Solution The net flux is the sum of the fluxes through all
faces of the cube. First, note that the flux through four of the

Karl Friedrich Gauss German
mathematician and astronomer
(1777 – 1855)
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GAUSS’S LAW
In this section we describe a general relationship between the net electric flux
through a closed surface (often called a gaussian surface) and the charge enclosed
by the surface. This relationship, known as Gauss’s law, is of fundamental impor-
tance in the study of electric fields.

Let us again consider a positive point charge q located at the center of a
sphere of radius r, as shown in Figure 24.6. From Equation 23.4 we know that the
magnitude of the electric field everywhere on the surface of the sphere is

As noted in Example 24.1, the field lines are directed radially outward
and hence perpendicular to the surface at every point on the surface. That is, at
each surface point, E is parallel to the vector �A i representing a local element of
area �Ai surrounding the surface point. Therefore,

and from Equation 24.4 we find that the net flux through the gaussian surface is

where we have moved E outside of the integral because, by symmetry, E is constant
over the surface and given by Furthermore, because the surface is
spherical, Hence, the net flux through the gaussian surface is

Recalling from Section 23.3 that we can write this equation in the
form

(24.5)

We can verify that this expression for the net flux gives the same result as Example
24.1: / C2/N�m2) � 1.13 � 105 N�m2/C.(8.85 � 10�12�E � (1.00 � 10�6 C)

�E �
q
�0

ke � 1/(4��0),

�E �
keq
r 2  (4�r 2) � 4�keq

� dA � A � 4�r 2.
E � keq /r 2.

�E � � E � dA � � E dA � E � dA

E � �Ai � E �Ai

E � keq /r 2.

24.2

y

z �

�

�
x

E

dA2

dA1

dA3

�

�

�

� dA4

For �, E is constant and directed inward but dA1 is directed
outward thus, the flux through this face is

because the area of each face is 
For �, E is constant and outward and in the same direc-

tion as dA2(	 � 0°); hence, the flux through this face is

Therefore, the net flux over all six faces is

0�E � �E�2 � E�2 � 0 � 0 � 0 � 0 �

�
2
 E � dA � �

2
 E(cos 0)dA � E �

2
 dA � �EA � E �2

A � �2.

�
1

E � dA � �
1
 E(cos 180)dA � �E �

1
 dA � �EA � �E�2

(	 � 180);

Figure 24.5 A closed surface in the shape of a cube in a uniform
electric field oriented parallel to the x axis. The net flux through the
closed surface is zero. Side � is the bottom of the cube, and side �
is opposite side �.

11.6

Gaussian
surface

r

q

dA

E
+ i

Figure 24.6 A spherical gaussian
surface of radius r surrounding a
point charge q. When the charge is
at the center of the sphere, the
electric field is everywhere normal
to the surface and constant in mag-
nitude.
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Note from Equation 24.5 that the net flux through the spherical surface is
proportional to the charge inside. The flux is independent of the radius r because
the area of the spherical surface is proportional to r 2, whereas the electric field is
proportional to 1/r 2. Thus, in the product of area and electric field, the depen-
dence on r cancels.

Now consider several closed surfaces surrounding a charge q, as shown in Fig-
ure 24.7. Surface S1 is spherical, but surfaces S2 and S3 are not. From Equation
24.5, the flux that passes through S1 has the value q/�0 . As we discussed in the pre-
vious section, flux is proportional to the number of electric field lines passing
through a surface. The construction shown in Figure 24.7 shows that the number
of lines through S1 is equal to the number of lines through the nonspherical sur-
faces S2 and S3 . Therefore, we conclude that the net flux through any closed sur-
face is independent of the shape of that surface. The net flux through any
closed surface surrounding a point charge q is given by q/�0 .

Now consider a point charge located outside a closed surface of arbitrary
shape, as shown in Figure 24.8. As you can see from this construction, any electric
field line that enters the surface leaves the surface at another point. The number
of electric field lines entering the surface equals the number leaving the surface.
Therefore, we conclude that the net electric flux through a closed surface that
surrounds no charge is zero. If we apply this result to Example 24.2, we can eas-
ily see that the net flux through the cube is zero because there is no charge inside
the cube.

Suppose that the charge in Example 24.1 is just outside the sphere, 1.01 m from its center.
What is the total flux through the sphere?

Let us extend these arguments to two generalized cases: (1) that of many
point charges and (2) that of a continuous distribution of charge. We once again
use the superposition principle, which states that the electric field due to many
charges is the vector sum of the electric fields produced by the individual
charges. Therefore, we can express the flux through any closed surface as

where E is the total electric field at any point on the surface produced by the vec-
tor addition of the electric fields at that point due to the individual charges.

� E � dA � � (E1 � E2 � ���) � dA

Quick Quiz 24.1

The net electric flux through a
closed surface is zero if there is no
charge inside

S3

S2

S1

q

q

Figure 24.7 Closed surfaces of various shapes surround-
ing a charge q. The net electric flux is the same through all
surfaces.

Figure 24.8 A point charge lo-
cated outside a closed surface. The
number of lines entering the sur-
face equals the number leaving the
surface.
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Consider the system of charges shown in Figure 24.9. The surface S surrounds
only one charge, q1 ; hence, the net flux through S is q1/�0 . The flux through S
due to charges q2 and q3 outside it is zero because each electric field line that en-
ters S at one point leaves it at another. The surface S
 surrounds charges q2 and q3 ;
hence, the net flux through it is Finally, the net flux through surface
S � is zero because there is no charge inside this surface. That is, all the electric
field lines that enter S � at one point leave at another.

Gauss’s law, which is a generalization of what we have just described, states
that the net flux through any closed surface is

(24.6)

where q in represents the net charge inside the surface and E represents the elec-
tric field at any point on the surface.

A formal proof of Gauss’s law is presented in Section 24.6. When using Equa-
tion 24.6, you should note that although the charge q in is the net charge inside the
gaussian surface, E represents the total electric field, which includes contributions
from charges both inside and outside the surface.

In principle, Gauss’s law can be solved for E to determine the electric field
due to a system of charges or a continuous distribution of charge. In practice, how-
ever, this type of solution is applicable only in a limited number of highly symmet-
ric situations. As we shall see in the next section, Gauss’s law can be used to evalu-
ate the electric field for charge distributions that have spherical, cylindrical, or
planar symmetry. If one chooses the gaussian surface surrounding the charge dis-
tribution carefully, the integral in Equation 24.6 can be simplified. You should also
note that a gaussian surface is a mathematical construction and need not coincide
with any real physical surface.

For a gaussian surface through which the net flux is zero, the following four statements
could be true. Which of the statements must be true? (a) There are no charges inside the sur-
face. (b) The net charge inside the surface is zero. (c) The electric field is zero everywhere
on the surface. (d) The number of electric field lines entering the surface equals the num-
ber leaving the surface.

Quick Quiz 24.2

�E � � E � dA �
q in

�0

(q2 � q3)/�0.

S

q1

q2

q3 S ′

S ′′

Figure 24.9 The net electric flux
through any closed surface de-
pends only on the charge inside
that surface. The net flux through
surface S is q1/�0 , the net flux
through surface S 
 is 
and the net flux through surface
S � is zero.

(q2 � q3 )/�0 ,

Gauss’s law

Gauss’s law is useful for evaluating
E when the charge distribution has
high symmetry

CONCEPTUAL EXAMPLE 24.3
lines from the charge pass through the sphere, regardless of
its radius.

(c) The flux does not change when the shape of the gauss-
ian surface changes because all electric field lines from the
charge pass through the surface, regardless of its shape.

(d) The flux does not change when the charge is moved
to another location inside that surface because Gauss’s law
refers to the total charge enclosed, regardless of where the
charge is located inside the surface.

A spherical gaussian surface surrounds a point charge q. De-
scribe what happens to the total flux through the surface if
(a) the charge is tripled, (b) the radius of the sphere is dou-
bled, (c) the surface is changed to a cube, and (d) the charge
is moved to another location inside the surface.

Solution (a) The flux through the surface is tripled 
because flux is proportional to the amount of charge inside
the surface.

(b) The flux does not change because all electric field
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APPLICATION OF GAUSS’S LAW TO
CHARGED INSULATORS

As mentioned earlier, Gauss’s law is useful in determining electric fields when the
charge distribution is characterized by a high degree of symmetry. The following
examples demonstrate ways of choosing the gaussian surface over which the sur-
face integral given by Equation 24.6 can be simplified and the electric field deter-
mined. In choosing the surface, we should always take advantage of the symmetry
of the charge distribution so that we can remove E from the integral and solve for
it. The goal in this type of calculation is to determine a surface that satisfies one or
more of the following conditions:

1. The value of the electric field can be argued by symmetry to be constant over
the surface.

2. The dot product in Equation 24.6 can be expressed as a simple algebraic prod-
uct E dA because E and dA are parallel.

3. The dot product in Equation 24.6 is zero because E and dA are perpendicular.
4. The field can be argued to be zero over the surface.

All four of these conditions are used in examples throughout the remainder of
this chapter.

24.3

The Electric Field Due to a Point ChargeEXAMPLE 24.4
Starting with Gauss’s law, calculate the electric field due to an
isolated point charge q.

Solution A single charge represents the simplest possible
charge distribution, and we use this familiar case to show how
to solve for the electric field with Gauss’s law. We choose a
spherical gaussian surface of radius r centered on the point
charge, as shown in Figure 24.10. The electric field due to a
positive point charge is directed radially outward by symmetry
and is therefore normal to the surface at every point. Thus, as
in condition (2), E is parallel to dA at each point. Therefore,

and Gauss’s law gives

By symmetry, E is constant everywhere on the surface, which
satisfies condition (1), so it can be removed from the inte-
gral. Therefore,

� E dA � E � dA � E(4�r 2) �
q
�0

�E � � E � dA � � E dA �
q
�0

E � dA � E dA

Gaussian
surface

r

q

dA

E
+

Figure 24.10 The point charge q is at the center of the spherical
gaussian surface, and E is parallel to d A at every point on the
surface.

where we have used the fact that the surface area of a sphere
is 4�r 2. Now, we solve for the electric field:

This is the familiar electric field due to a point charge that we
developed from Coulomb’s law in Chapter 23.

ke 
q
r 2E �

q
4��0r 2 �

A Spherically Symmetric Charge DistributionEXAMPLE 24.5
Solution Because the charge distribution is spherically
symmetric, we again select a spherical gaussian surface of ra-
dius r, concentric with the sphere, as shown in Figure 24.11a.
For this choice, conditions (1) and (2) are satisfied, as they

An insulating solid sphere of radius a has a uniform volume
charge density � and carries a total positive charge Q (Fig.
24.11). (a) Calculate the magnitude of the electric field at a
point outside the sphere.

11.6
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(a)

Gaussian
sphere

(b)

Gaussian
spherer

a

r

a

Figure 24.11 A uniformly charged insulating sphere of radius a
and total charge Q. (a) The magnitude of the electric field at a point
exterior to the sphere is (b) The magnitude of the electric
field inside the insulating sphere is due only to the charge within the
gaussian sphere defined by the dashed circle and is ke Qr /a3.

ke Q /r 2.

E

a

E =
keQ
r2

r

a

Figure 24.12 A plot of E versus r for a uniformly charged insulat-
ing sphere. The electric field inside the sphere varies linearly
with r. The field outside the sphere is the same as that of a
point charge Q located at r � 0.

(r � a)
(r � a)

were for the point charge in Example 24.4. Following the line
of reasoning given in Example 24.4, we find that

(for 

Note that this result is identical to the one we obtained for a
point charge. Therefore, we conclude that, for a uniformly
charged sphere, the field in the region external to the sphere
is equivalent to that of a point charge located at the center of
the sphere.

(b) Find the magnitude of the electric field at a point in-
side the sphere.

Solution In this case we select a spherical gaussian surface
having radius r � a, concentric with the insulated sphere
(Fig. 24.11b). Let us denote the volume of this smaller
sphere by V 
. To apply Gauss’s law in this situation, it is im-
portant to recognize that the charge q in within the gaussian
surface of volume V 
 is less than Q . To calculate q in , we use
the fact that 

By symmetry, the magnitude of the electric field is constant
everywhere on the spherical gaussian surface and is normal

q in � �V 
 � �(4
3�r 3)

q in � �V 
:

r � a)ke 
Q
r 2E �

to the surface at each point—both conditions (1) and (2)
are satisfied. Therefore, Gauss’s law in the region gives

Solving for E gives

Because by definition and since 
this expression for E can be written as

(for r � a)

Note that this result for E differs from the one we ob-
tained in part (a). It shows that E : 0 as r : 0. Therefore,
the result eliminates the problem that would exist at r � 0 if
E varied as 1/r 2 inside the sphere as it does outside the
sphere. That is, if for r � a, the field would be infi-
nite at r � 0, which is physically impossible. Note also that
the expressions for parts (a) and (b) match when r � a.

A plot of E versus r is shown in Figure 24.12. 

E � 1/r 2

keQ
a3  rE �

Qr
4��0a3 �

ke � 1/(4��0),� � Q /4
3�a3

E �
q in

4��0r 2 �
� 4

3�r 3

4��0r 2 �
�

3�0
 r

� E dA � E � dA � E(4�r 2) �
q in

�0

r � a

The Electric Field Due to a Thin Spherical ShellEXAMPLE 24.6
the shell is equivalent to that due to a point charge Q located
at the center:

(for r � a)

(b) The electric field inside the spherical shell is zero.
This follows from Gauss’s law applied to a spherical surface of
radius r � a concentric with the shell (Fig. 24.13c). Because

ke 
Q
r 2E �

A thin spherical shell of radius a has a total charge Q distrib-
uted uniformly over its surface (Fig. 24.13a). Find the electric
field at points (a) outside and (b) inside the shell.

Solution (a) The calculation for the field outside the shell
is identical to that for the solid sphere shown in Example
24.5a. If we construct a spherical gaussian surface of radius 
r � a concentric with the shell (Fig. 24.13b), the charge in-
side this surface is Q . Therefore, the field at a point outside
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A Cylindrically Symmetric Charge DistributionEXAMPLE 24.7
Find the electric field a distance r from a line of positive
charge of infinite length and constant charge per unit length
� (Fig. 24.14a).

Solution The symmetry of the charge distribution re-
quires that E be perpendicular to the line charge and di-
rected outward, as shown in Figure 24.14a and b. To reflect
the symmetry of the charge distribution, we select a cylindri-
cal gaussian surface of radius r and length � that is coaxial
with the line charge. For the curved part of this surface, E is
constant in magnitude and perpendicular to the surface at
each point—satisfaction of conditions (1) and (2). Further-
more, the flux through the ends of the gaussian cylinder is
zero because E is parallel to these surfaces—the first applica-
tion we have seen of condition (3).

We take the surface integral in Gauss’s law over the entire
gaussian surface. Because of the zero value of for the
ends of the cylinder, however, we can restrict our attention to
only the curved surface of the cylinder.

The total charge inside our gaussian surface is ��. Apply-
ing Gauss’s law and conditions (1) and (2), we find that for
the curved surface

�E � � E � dA � E � dA � EA �
q in

�0
�

��

�0

E � dA

11.7
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E

Gaussian
surface

a a

r

a

Gaussian
surface

(a) (c)(b)

Ein = 0

r

Figure 24.13 (a) The electric field inside a uniformly charged spherical shell is zero. The field
outside is the same as that due to a point charge Q located at the center of the shell. (b) Gaussian
surface for r � a. (c) Gaussian surface for r � a.

Gaussian
surface

+
+
+

+
+
+

E

dA�

r

(a)

E

(b)

Figure 24.14 (a) An infinite line of charge surrounded by a cylin-
drical gaussian surface concentric with the line. (b) An end view
shows that the electric field at the cylindrical surface is constant in
magnitude and perpendicular to the surface.

of the spherical symmetry of the charge distribution and be-
cause the net charge inside the surface is zero—satisfaction
of conditions (1) and (2) again—application of Gauss’s law
shows that E � 0 in the region r � a.

We obtain the same results using Equation 23.6 and inte-
grating over the charge distribution. This calculation is
rather complicated. Gauss’s law allows us to determine these
results in a much simpler way.
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The area of the curved surface is therefore,

(24.7)

Thus, we see that the electric field due to a cylindrically sym-
metric charge distribution varies as 1/r, whereas the field ex-
ternal to a spherically symmetric charge distribution varies as
1/r2. Equation 24.7 was also derived in Chapter 23 (see Prob-
lem 35[b]), by integration of the field of a point charge.

If the line charge in this example were of finite length,
the result for E would not be that given by Equation 24.7. A
finite line charge does not possess sufficient symmetry for us
to make use of Gauss’s law. This is because the magnitude of

2ke 
�

r
E �

�

2��0r
�

E(2�r�) �
��

�0

A � 2�r�;

A Nonconducting Plane of ChargeEXAMPLE 24.8
Because the distance from each flat end of the cylinder to

the plane does not appear in Equation 24.8, we conclude that
E � �/2�0 at any distance from the plane. That is, the field is
uniform everywhere.

An important charge configuration related to this exam-
ple consists of two parallel planes, one positively charged and
the other negatively charged, and each with a surface charge
density � (see Problem 58). In this situation, the electric
fields due to the two planes add in the region between the
planes, resulting in a field of magnitude �/�0 , and cancel
elsewhere to give a field of zero.

Find the electric field due to a nonconducting, infinite plane
of positive charge with uniform surface charge density �.

Solution By symmetry, E must be perpendicular to the
plane and must have the same magnitude at all points
equidistant from the plane. The fact that the direction of E is
away from positive charges indicates that the direction of E
on one side of the plane must be opposite its direction on the
other side, as shown in Figure 24.15. A gaussian surface that
reflects the symmetry is a small cylinder whose axis is perpen-
dicular to the plane and whose ends each have an area A and
are equidistant from the plane. Because E is parallel to the
curved surface—and, therefore, perpendicular to dA every-
where on the surface—condition (3) is satisfied and there is
no contribution to the surface integral from this surface. For
the flat ends of the cylinder, conditions (1) and (2) are satis-
fied. The flux through each end of the cylinder is EA; 
hence, the total flux through the entire gaussian surface is
just that through the ends, 

Noting that the total charge inside the surface is q in � �A,
we use Gauss’s law and find that

(24.8)
�

2�0
E �

�E � 2EA �
q in
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�E � 2EA.
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Figure 24.15 A cylindrical gaussian surface penetrating an infi-
nite plane of charge. The flux is EA through each end of the gauss-
ian surface and zero through its curved surface.

the electric field is no longer constant over the surface of
the gaussian cylinder—the field near the ends of the line
would be different from that far from the ends. Thus, condi-
tion (1) would not be satisfied in this situation. Further-
more, E is not perpendicular to the cylindrical surface at all
points—the field vectors near the ends would have a compo-
nent parallel to the line. Thus, condition (2) would not be
satisfied. When there is insufficient symmetry in the charge
distribution, as in this situation, it is necessary to use Equa-
tion 23.6 to calculate E.

For points close to a finite line charge and far from the
ends, Equation 24.7 gives a good approximation of the value
of the field.

It is left for you to show (see Problem 29) that the electric
field inside a uniformly charged rod of finite radius and infi-
nite length is proportional to r.

CONCEPTUAL EXAMPLE 24.9
Explain why Gauss’s law cannot be used to calculate the electric field near an electric di-
pole, a charged disk, or a triangle with a point charge at each corner.
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CONDUCTORS IN ELECTROSTATIC EQUILIBRIUM
As we learned in Section 23.2, a good electrical conductor contains charges (elec-
trons) that are not bound to any atom and therefore are free to move about within
the material. When there is no net motion of charge within a conductor, the con-
ductor is in electrostatic equilibrium. As we shall see, a conductor in electrosta-
tic equilibrium has the following properties:

1. The electric field is zero everywhere inside the conductor.
2. If an isolated conductor carries a charge, the charge resides on its surface.
3. The electric field just outside a charged conductor is perpendicular to the sur-

face of the conductor and has a magnitude �/�0 , where � is the surface charge
density at that point.

4. On an irregularly shaped conductor, the surface charge density is greatest at lo-
cations where the radius of curvature of the surface is smallest.

We verify the first three properties in the discussion that follows. The fourth
property is presented here without further discussion so that we have a complete
list of properties for conductors in electrostatic equilibrium.

We can understand the first property by considering a conducting slab placed
in an external field E (Fig. 24.16). We can argue that the electric field inside the
conductor must be zero under the assumption that we have electrostatic equilib-
rium. If the field were not zero, free charges in the conductor would accelerate
under the action of the field. This motion of electrons, however, would mean that
the conductor is not in electrostatic equilibrium. Thus, the existence of electro-
static equilibrium is consistent only with a zero field in the conductor.

Let us investigate how this zero field is accomplished. Before the external field
is applied, free electrons are uniformly distributed throughout the conductor.
When the external field is applied, the free electrons accelerate to the left in Fig-
ure 24.16, causing a plane of negative charge to be present on the left surface. The
movement of electrons to the left results in a plane of positive charge on the right
surface. These planes of charge create an additional electric field inside the con-
ductor that opposes the external field. As the electrons move, the surface charge
density increases until the magnitude of the internal field equals that of the exter-
nal field, and the net result is a net field of zero inside the conductor. The time it
takes a good conductor to reach equilibrium is of the order of 10�16 s, which for
most purposes can be considered instantaneous.

We can use Gauss’s law to verify the second property of a conductor in electro-
static equilibrium. Figure 24.17 shows an arbitrarily shaped conductor. A gaussian
surface is drawn inside the conductor and can be as close to the conductor’s sur-
face as we wish. As we have just shown, the electric field everywhere inside the con-
ductor is zero when it is in electrostatic equilibrium. Therefore, the electric field
must be zero at every point on the gaussian surface, in accordance with condition
(4) in Section 24.3. Thus, the net flux through this gaussian surface is zero. From
this result and Gauss’s law, we conclude that the net charge inside the gaussian sur-

24.4

Properties of a conductor in
electrostatic equilibrium

Solution The charge distributions of all these configurations do not have sufficient
symmetry to make the use of Gauss’s law practical. We cannot find a closed surface sur-
rounding any of these distributions that satisfies one or more of conditions (1) through
(4) listed at the beginning of this section.
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E E

Figure 24.17 A conductor of ar-
bitrary shape. The broken line rep-
resents a gaussian surface just in-
side the conductor.

Figure 24.16 A conducting slab
in an external electric field E. The
charges induced on the two sur-
faces of the slab produce an elec-
tric field that opposes the external
field, giving a resultant field of zero
inside the slab.

Gaussian
surface
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face is zero. Because there can be no net charge inside the gaussian surface (which
is arbitrarily close to the conductor’s surface), any net charge on the conductor
must reside on its surface. Gauss’s law does not indicate how this excess charge
is distributed on the conductor’s surface.

We can also use Gauss’s law to verify the third property. We draw a gaussian
surface in the shape of a small cylinder whose end faces are parallel to the surface
of the conductor (Fig. 24.18). Part of the cylinder is just outside the conductor,
and part is inside. The field is normal to the conductor’s surface from the condi-
tion of electrostatic equilibrium. (If E had a component parallel to the conduc-
tor’s surface, the free charges would move along the surface; in such a case, the
conductor would not be in equilibrium.) Thus, we satisfy condition (3) in Section
24.3 for the curved part of the cylindrical gaussian surface—there is no flux
through this part of the gaussian surface because E is parallel to the surface.
There is no flux through the flat face of the cylinder inside the conductor because
here E � 0—satisfaction of condition (4). Hence, the net flux through the gauss-
ian surface is that through only the flat face outside the conductor, where the field
is perpendicular to the gaussian surface. Using conditions (1) and (2) for this
face, the flux is EA, where E is the electric field just outside the conductor and A is
the area of the cylinder’s face. Applying Gauss’s law to this surface, we obtain

where we have used the fact that q in � �A. Solving for E gives

(24.9)E �
�

�0

�E � � E dA � EA �
q in

�0
�

�A
�0

Electric field just outside a
charged conductor
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Figure 24.18 A gaussian surface
in the shape of a small cylinder is
used to calculate the electric field
just outside a charged conductor.
The flux through the gaussian sur-
face is EnA . Remember that E is
zero inside the conductor.

Electric field pattern surrounding a charged conducting
plate placed near an oppositely charged conducting cylin-
der. Small pieces of thread suspended in oil align with the
electric field lines. Note that (1) the field lines are perpen-
dicular to both conductors and (2) there are no lines inside
the cylinder (E � 0).

A Sphere Inside a Spherical ShellEXAMPLE 24.10
Solution First note that the charge distributions on both
the sphere and the shell are characterized by spherical sym-
metry around their common center. To determine the elec-
tric field at various distances r from this center, we construct a
spherical gaussian surface for each of the four regions of in-
terest. Such a surface for region � is shown in Figure 24.19.

To find E inside the solid sphere (region �), consider a

A solid conducting sphere of radius a carries a net positive
charge 2Q . A conducting spherical shell of inner radius b
and outer radius c is concentric with the solid sphere and car-
ries a net charge �Q . Using Gauss’s law, find the electric
field in the regions labeled �, �, �, and � in Figure 24.19
and the charge distribution on the shell when the entire sys-
tem is in electrostatic equilibrium.
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How would the electric flux through a gaussian surface surrounding the shell in Example
24.10 change if the solid sphere were off-center but still inside the shell?

Optional Section

EXPERIMENTAL VERIFICATION OF
GAUSS’S LAW AND COULOMB’S LAW

When a net charge is placed on a conductor, the charge distributes itself on the
surface in such a way that the electric field inside the conductor is zero. Gauss’s
law shows that there can be no net charge inside the conductor in this situation. In
this section, we investigate an experimental verification of the absence of this
charge.

We have seen that Gauss’s law is equivalent to Equation 23.6, the expression
for the electric field of a distribution of charge. Because this equation arises
from Coulomb’s law, we can claim theoretically that Gauss’s law and Coulomb’s
law are equivalent. Hence, it is possible to test the validity of both laws by at-
tempting to detect a net charge inside a conductor or, equivalently, a nonzero
electric field inside the conductor. If a nonzero field is detected within the con-
ductor, Gauss’s law and Coulomb’s law are invalid. Many experiments, including

24.5

Quick Quiz 24.3

–Q

r
a

b

c

2Q

�

��

�

Figure 24.19 A solid conducting sphere of radius a and carrying a
charge 2Q surrounded by a conducting spherical shell carrying a
charge �Q.

gaussian surface of radius r � a. Because there can be no
charge inside a conductor in electrostatic equilibrium, we see
that q in � 0; thus, on the basis of Gauss’s law and symmetry,

for r � a.
In region �—between the surface of the solid sphere and

the inner surface of the shell—we construct a spherical
gaussian surface of radius r where a � r � b and note that the
charge inside this surface is � 2Q (the charge on the solid
sphere). Because of the spherical symmetry, the electric field

E1 � 0

lines must be directed radially outward and be constant in
magnitude on the gaussian surface. Following Example 24.4
and using Gauss’s law, we find that

(for a � r � b)

In region �, where r � c, the spherical gaussian surface
we construct surrounds a total charge of 

Therefore, application of Gauss’s law to
this surface gives

(for r � c)

In region �, the electric field must be zero because the
spherical shell is also a conductor in equilibrium. If we con-
struct a gaussian surface of radius r where b � r � c, we see
that q in must be zero because From this argument, we
conclude that the charge on the inner surface of the spheri-
cal shell must be � 2Q to cancel the charge � 2Q on the solid
sphere. Because the net charge on the shell is � Q , we con-
clude that its outer surface must carry a charge � Q .

E3 � 0.

keQ
r 2E4 �

2Q � (�Q ) � Q.
q in �

2keQ
r 2 E2 �

2Q
4��0r 2 �

E2A � E2(4�r 2) �
q in

�0
�

2Q
�0
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early work by Faraday, Cavendish, and Maxwell, have been performed to detect
the field inside a conductor. In all reported cases, no electric field could be de-
tected inside a conductor.

Here is one of the experiments that can be performed.2 A positively charged
metal ball at the end of a silk thread is lowered through a small opening into an
uncharged hollow conductor that is insulated from ground (Fig. 24.20a). The pos-
itively charged ball induces a negative charge on the inner wall of the hollow con-
ductor, leaving an equal positive charge on the outer wall (Fig. 24.20b). The pres-
ence of positive charge on the outer wall is indicated by the deflection of the
needle of an electrometer (a device used to measure charge and that measures
charge only on the outer surface of the conductor). The ball is then lowered and
allowed to touch the inner surface of the hollow conductor (Fig. 24.20c). Charge
is transferred between the ball and the inner surface so that neither is charged af-
ter contact is made. The needle deflection remains unchanged while this happens,
indicating that the charge on the outer surface is unaffected. When the ball is re-
moved, the electrometer reading remains the same (Fig. 24.20d). Furthermore,
the ball is found to be uncharged; this verifies that charge was transferred between
the ball and the inner surface of the hollow conductor. The overall effect is 
that the charge that was originally on the ball now appears on the hollow conduc-
tor. The fact that the deflection of the needle on the electrometer measuring the
charge on the outer surface remained unchanged regardless of what was happen-
ing inside the hollow conductor indicates that the net charge on the system always
resided on the outer surface of the conductor.

If we now apply another positive charge to the metal ball and place it near the
outside of the conductor, it is repelled by the conductor. This demonstrates that

outside the conductor, a finding consistent with the fact that the conductor
carries a net charge. If the charged metal ball is now lowered into the interior of
the charged hollow conductor, it exhibits no evidence of an electric force. This
shows that E � 0 inside the hollow conductor.

This experiment verifies the predictions of Gauss’s law and therefore verifies
Coulomb’s law. The equivalence of Gauss’s law and Coulomb’s law is due to the
inverse-square behavior of the electric force. Thus, we can interpret this experi-
ment as verifying the exponent of 2 in the 1/r 2 behavior of the electric force. Ex-
periments by Williams, Faller, and Hill in 1971 showed that the exponent of r in
Coulomb’s law is (2 � �), where 

In the experiment we have described, the charged ball hanging in the hollow
conductor would show no deflection even in the case in which an external electric
field is applied to the entire system. The field inside the conductor is still zero.
This ability of conductors to “block” external electric fields is utilized in many
places, from electromagnetic shielding for computer components to thin metal
coatings on the glass in airport control towers to keep radar originating outside
the tower from disrupting the electronics inside. Cellular telephone users riding
trains like the one pictured at the beginning of the chapter have to speak loudly to
be heard above the noise of the train. In response to complaints from other pas-
sengers, the train companies are considering coating the windows with a thin
metallic conductor. This coating, combined with the metal frame of the train car,
blocks cellular telephone transmissions into and out of the train.

� � (2.7 � 3.1) � 10�16!

E � 0

2 The experiment is often referred to as Faraday’s ice-pail experiment because Faraday, the first to perform
it, used an ice pail for the hollow conductor.
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Figure 24.20 An experiment
showing that any charge trans-
ferred to a conductor resides on its
surface in electrostatic equilibrium.
The hollow conductor is insulated
from ground, and the small metal
ball is supported by an insulating
thread.

QuickLab
Wrap a radio or cordless telephone in
aluminum foil and see if it still works.
Does it matter if the foil touches the
antenna?
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Optional Section

FORMAL DERIVATION OF GAUSS’S LAW
One way of deriving Gauss’s law involves solid angles. Consider a spherical surface
of radius r containing an area element �A. The solid angle �� (uppercase Greek
omega) subtended at the center of the sphere by this element is defined to be

From this equation, we see that has no dimensions because �A and r2 both have
dimensions L2. The dimensionless unit of a solid angle is the steradian. (You may
want to compare this equation to Equation 10.1b, the definition of the radian.) Be-
cause the surface area of a sphere is 4�r2, the total solid angle subtended by the
sphere is

Now consider a point charge q surrounded by a closed surface of arbitrary
shape (Fig. 24.21). The total electric flux through this surface can be obtained by
evaluating for each small area element �A and summing over all elements.
The flux through each element is

where r is the distance from the charge to the area element, 	 is the angle between
the electric field E and �A for the element, and for a point charge. In
Figure 24.22, we see that the projection of the area element perpendicular to the
radius vector is �A cos 	. Thus, the quantity �A cos 	/r2 is equal to the solid angle
�� that the surface element �A subtends at the charge q. We also see that �� is
equal to the solid angle subtended by the area element of a spherical surface of ra-
dius r. Because the total solid angle at a point is 4� steradians, the total flux

E � keq /r 2

��E � E � �A � E �A cos 	 � keq 
�A cos 	

r 2

E � �A

� �
4�r 2

r 2 � 4� steradians

��

�� �
�A
r 2

24.6
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Figure 24.21 A closed surface of
arbitrary shape surrounds a point
charge q. The net electric flux
through the surface is independent
of the shape of the surface.

Figure 24.22 The area element �A subtends a solid angle at the 
charge q.

�� � (�A cos 	)/r 2
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through the closed surface is

Thus we have derived Gauss’s law, Equation 24.6. Note that this result is indepen-
dent of the shape of the closed surface and independent of the position of the
charge within the surface.

SUMMARY

Electric flux is proportional to the number of electric field lines that penetrate a
surface. If the electric field is uniform and makes an angle 	 with the normal to a
surface of area A, the electric flux through the surface is

(24.2)

In general, the electric flux through a surface is

(24.3)

You need to be able to apply Equations 24.2 and 24.3 in a variety of situations, par-
ticularly those in which symmetry simplifies the calculation.

Gauss’s law says that the net electric flux �E through any closed gaussian sur-
face is equal to the net charge inside the surface divided by �0 :

(24.6)

Using Gauss’s law, you can calculate the electric field due to various symmetric
charge distributions. Table 24.1 lists some typical results.

�E � � E � dA �
q in

�0

�E � �
surface

E � dA

�E � EA cos 	

�E � keq � 
dA cos 	

r 2 � keq �d� � 4�keq �
q
�0

TABLE 24.1 Typical Electric Field Calculations Using Gauss’s Law

Charge Distribution Electric Field Location

Insulating sphere of radius
R, uniform charge density,
and total charge Q

Thin spherical shell of radius
R and total charge Q

Line charge of infinite length Outside the
and charge per unit length � line

Nonconducting, infinite Everywhere
charged plane having outside
surface charge density � the plane

Conductor having surface Just outside
charge density � the conductor

Inside the
conductor

ke 
Q
R3  r

ke 
Q
r 2

r � R

r � R

0

ke 
Q
r 2

r � R

r � R�
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A conductor in electrostatic equilibrium has the following properties:

1. The electric field is zero everywhere inside the conductor.
2. Any net charge on the conductor resides entirely on its surface.
3. The electric field just outside the conductor is perpendicular to its surface and

has a magnitude �/�0 , where � is the surface charge density at that point.
4. On an irregularly shaped conductor, the surface charge density is greatest

where the radius of curvature of the surface is the smallest.

Problem-Solving Hints
Gauss’s law, as we have seen, is very powerful in solving problems involving
highly symmetric charge distributions. In this chapter, you encountered three
kinds of symmetry: planar, cylindrical, and spherical. It is important to review
Examples 24.4 through 24.10 and to adhere to the following procedure when
using Gauss’s law:

• Select a gaussian surface that has a symmetry to match that of the charge
distribution and satisfies one or more of the conditions listed in Section
24.3. For point charges or spherically symmetric charge distributions, the
gaussian surface should be a sphere centered on the charge as in Examples
24.4, 24.5, 24.6, and 24.10. For uniform line charges or uniformly charged
cylinders, your gaussian surface should be a cylindrical surface that is coax-
ial with the line charge or cylinder as in Example 24.7. For planes of charge,
a useful choice is a cylindrical gaussian surface that straddles the plane, as
shown in Example 24.8. These choices enable you to simplify the surface in-
tegral that appears in Gauss’s law and represents the total electric flux
through that surface.

• Evaluate the q in/�0 term in Gauss’s law, which amounts to calculating the to-
tal electric charge q in inside the gaussian surface. If the charge density is
uniform (that is, if �, �, or � is constant), simply multiply that charge density
by the length, area, or volume enclosed by the gaussian surface. If the
charge distribution is nonuniform, integrate the charge density over the re-
gion enclosed by the gaussian surface. For example, if the charge is distrib-
uted along a line, integrate the expression where dq is the charge
on an infinitesimal length element dx. For a plane of charge, integrate

where dA is an infinitesimal element of area. For a volume of
charge, integrate where dV is an infinitesimal element of volume.

• Once the terms in Gauss’s law have been evaluated, solve for the electric
field on the gaussian surface if the charge distribution is given in the prob-
lem. Conversely, if the electric field is known, calculate the charge distribu-
tion that produces the field.

dq � � dV,
dq � � dA,

dq � � dx,

QUESTIONS

3. If more electric field lines are leaving a gaussian surface
than entering, what can you conclude about the net
charge enclosed by that surface?

4. A uniform electric field exists in a region of space in
which there are no charges. What can you conclude
about the net electric flux through a gaussian surface
placed in this region of space?

1. The Sun is lower in the sky during the winter than it is in
the summer. How does this change the flux of sunlight
hitting a given area on the surface of the Earth? How
does this affect the weather?

2. If the electric field in a region of space is zero, can you
conclude no electric charges are in that region? 
Explain.
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5. If the total charge inside a closed surface is known but
the distribution of the charge is unspecified, can you use
Gauss’s law to find the electric field? Explain.

6. Explain why the electric flux through a closed surface
with a given enclosed charge is independent of the size or
shape of the surface.

7. Consider the electric field due to a nonconducting infi-
nite plane having a uniform charge density. Explain why
the electric field does not depend on the distance from
the plane in terms of the spacing of the electric field
lines.

8. Use Gauss’s law to explain why electric field lines must be-
gin or end on electric charges. (Hint: Change the size of
the gaussian surface.)

9. On the basis of the repulsive nature of the force between
like charges and the freedom of motion of charge within
the conductor, explain why excess charge on an isolated
conductor must reside on its surface.

10. A person is placed in a large, hollow metallic sphere that
is insulated from ground. If a large charge is placed on
the sphere, will the person be harmed upon touching the
inside of the sphere? Explain what will happen if the per-

son also has an initial charge whose sign is opposite that
of the charge on the sphere.

11. How would the observations described in Figure 24.20
differ if the hollow conductor were grounded? How
would they differ if the small charged ball were an insula-
tor rather than a conductor?

12. What other experiment might be performed on the ball
in Figure 24.20 to show that its charge was transferred to
the hollow conductor?

13. What would happen to the electrometer reading if the
charged ball in Figure 24.20 touched the inner wall of the
conductor? the outer wall?

14. You may have heard that one of the safer places to be dur-
ing a lightning storm is inside a car. Why would this be
the case?

15. Two solid spheres, both of radius R , carry identical total
charges Q . One sphere is a good conductor, while the
other is an insulator. If the charge on the insulating
sphere is uniformly distributed throughout its interior
volume, how do the electric fields outside these two
spheres compare? Are the fields identical inside the two
spheres?

PROBLEMS

6. A uniform electric field intersects a surface of
area A. What is the flux through this area if the surface
lies (a) in the yz plane? (b) in the xz plane? (c) in the xy
plane?

7. A point charge q is located at the center of a uniform
ring having linear charge density � and radius a, as
shown in Figure P24.7. Determine the total electric flux

a i � b j

Section 24.1 Electric Flux
1. An electric field with a magnitude of 3.50 kN/C is ap-

plied along the x axis. Calculate the electric flux
through a rectangular plane 0.350 m wide and 0.700 m
long if (a) the plane is parallel to the yz plane; (b) the
plane is parallel to the xy plane; and (c) the plane con-
tains the y axis, and its normal makes an angle of 40.0°
with the x axis.

2. A vertical electric field of magnitude 2.00 � 104 N/C
exists above the Earth’s surface on a day when a thun-
derstorm is brewing. A car with a rectangular size of ap-
proximately 6.00 m by 3.00 m is traveling along a road-
way sloping downward at 10.0°. Determine the electric
flux through the bottom of the car.

3. A 40.0-cm-diameter loop is rotated in a uniform electric
field until the position of maximum electric flux is
found. The flux in this position is measured to be 
5.20 � 105 N� m2/C. What is the magnitude of the elec-
tric field?

4. A spherical shell is placed in a uniform electric field.
Find the total electric flux through the shell.

5. Consider a closed triangular box resting within a hori-
zontal electric field of magnitude N/C,
as shown in Figure P24.5. Calculate the electric flux
through (a) the vertical rectangular surface, (b) the
slanted surface, and (c) the entire surface of the box.

E � 7.80 � 104

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems
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WEB

through a sphere centered at the point charge and hav-
ing radius R , where 

8. A pyramid with a 6.00-m-square base and height of 
4.00 m is placed in a vertical electric field of 52.0 N/C.
Calculate the total electric flux through the pyramid’s
four slanted surfaces.

9. A cone with base radius R and height h is located on a
horizontal table. A horizontal uniform field E pene-
trates the cone, as shown in Figure P24.9. Determine
the electric flux that enters the left-hand side of the
cone.

R � a.
located a very small distance from the center of a very
large square on the line perpendicular to the square and
going through its center. Determine the approximate
electric flux through the square due to the point
charge. (c) Explain why the answers to parts (a) and
(b) are identical.

14. Calculate the total electric flux through the parabo-
loidal surface due to a constant electric field of magni-
tude E 0 in the direction shown in Figure P24.14.

16. A point charge of 12.0 �C is placed at the center of a
spherical shell of radius 22.0 cm. What is the total elec-
tric flux through (a) the surface of the shell and 
(b) any hemispherical surface of the shell? (c) Do the
results depend on the radius? Explain.

17. A point charge of 0.046 2 �C is inside a pyramid. Deter-
mine the total electric flux through the surface of the
pyramid.

18. An infinitely long line charge having a uniform charge
per unit length � lies a distance d from point O, as
shown in Figure P24.18. Determine the total electric
flux through the surface of a sphere of radius 
R centered at O resulting from this line charge. 
(Hint: Consider both cases: when and when
R � d.)

R � d,

15. A point charge Q is located just above the center of the
flat face of a hemisphere of radius R , as shown in Figure
P24.15. What is the electric flux (a) through the curved
surface and (b) through the flat face?

13. (a) A point charge q is located a distance d from an infi-
nite plane. Determine the electric flux through the
plane due to the point charge. (b) A point charge q is

Section 24.2 Gauss’s Law
10. The electric field everywhere on the surface of a thin

spherical shell of radius 0.750 m is measured to be
equal to 890 N/C and points radially toward the center
of the sphere. (a) What is the net charge within the
sphere’s surface? (b) What can you conclude about the
nature and distribution of the charge inside the spheri-
cal shell?

11. The following charges are located inside a submarine:
and (a) Calcu-

late the net electric flux through the submarine. 
(b) Is the number of electric field lines leaving the sub-
marine greater than, equal to, or less than the number
entering it?

12. Four closed surfaces, S1 through S4 , together with the
charges � 2Q , Q , and �Q are sketched in Figure
P24.12. Find the electric flux through each surface.

�84.0 �C.27.0 �C,5.00 �C, �9.00 �C,

h

R

E

Figure P24.9

Figure P24.12

Figure P24.14

Figure P24.15
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19. A point charge is located at the center of a
cube of side In addition, six other identi-
cal point charges having are positioned
symmetrically around Q , as shown in Figure P24.19. De-
termine the electric flux through one face of the cube.

20. A point charge Q is located at the center of a cube of
side L . In addition, six other identical negative point
charges are positioned symmetrically around Q , as
shown in Figure P24.19. Determine the electric flux
through one face of the cube.

q � �1.00 �C
L � 0.100 m.

Q � 5.00 �C

23. A charge of 170 �C is at the center of a cube of side
80.0 cm. (a) Find the total flux through each face of the
cube. (b) Find the flux through the whole surface of
the cube. (c) Would your answers to parts (a) or 
(b) change if the charge were not at the center? Ex-
plain.

24. The total electric flux through a closed surface in the
shape of a cylinder is (a) What is
the net charge within the cylinder? (b) From the infor-
mation given, what can you say about the charge within
the cylinder? (c) How would your answers to parts 
(a) and (b) change if the net flux were

25. The line ag is a diagonal of a cube (Fig. P24.25). A
point charge q is located on the extension of line ag ,
very close to vertex a of the cube. Determine the elec-
tric flux through each of the sides of the cube that meet
at the point a.

�8.60 � 104 N�m2/C?

8.60 � 104 N�m2/C.

WEB

Section 24.3 Application of Gauss’s Law to 
Charged Insulators

26. Determine the magnitude of the electric field at the sur-
face of a lead-208 nucleus, which contains 82 protons
and 126 neutrons. Assume that the lead nucleus has a
volume 208 times that of one proton, and consider a
proton to be a sphere of radius 1.20 � 10�15 m.

27. A solid sphere of radius 40.0 cm has a total positive
charge of 26.0 �C uniformly distributed throughout its
volume. Calculate the magnitude of the electric field
(a) 0 cm, (b) 10.0 cm, (c) 40.0 cm, and (d) 60.0 cm
from the center of the sphere.

28. A cylindrical shell of radius 7.00 cm and length 240 cm
has its charge uniformly distributed on its curved surface.
The magnitude of the electric field at a point 19.0 cm ra-
dially outward from its axis (measured from the midpoint
of the shell) is 36.0 kN/C. Use approximate relationships
to find (a) the net charge on the shell and (b) the electric
field at a point 4.00 cm from the axis, measured radially
outward from the midpoint of the shell.

29. Consider a long cylindrical charge distribution of radius
R with a uniform charge density �. Find the electric
field at distance r from the axis where r � R .

21. Consider an infinitely long line charge having uniform
charge per unit length �. Determine the total electric
flux through a closed right circular cylinder of length L
and radius R that is parallel to the line charge, if the dis-
tance between the axis of the cylinder and the line
charge is d. (Hint: Consider both cases: when 
and when 

22. A 10.0-�C charge located at the origin of a cartesian co-
ordinate system is surrounded by a nonconducting hol-
low sphere of radius 10.0 cm. A drill with a radius of
1.00 mm is aligned along the z axis, and a hole is drilled
in the sphere. Calculate the electric flux through the
hole.

R � d.)
R � d,

Figure P24.18
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30. A nonconducting wall carries a uniform charge density
of 8.60 �C/cm2. What is the electric field 7.00 cm in
front of the wall? Does your result change as the dis-
tance from the wall is varied?

31. Consider a thin spherical shell of radius 14.0 cm with a
total charge of 32.0 �C distributed uniformly on its sur-
face. Find the electric field (a) 10.0 cm and (b) 20.0 cm
from the center of the charge distribution.

32. In nuclear fission, a nucleus of uranium-238, which con-
tains 92 protons, divides into two smaller spheres, each
having 46 protons and a radius of 5.90 � 10�15 m. What
is the magnitude of the repulsive electric force pushing
the two spheres apart?

33. Fill two rubber balloons with air. Suspend both of them
from the same point on strings of equal length. Rub
each with wool or your hair, so that they hang apart with
a noticeable separation between them. Make order-of-
magnitude estimates of (a) the force on each, (b) the
charge on each, (c) the field each creates at the center
of the other, and (d) the total flux of electric field cre-
ated by each balloon. In your solution, state the quanti-
ties you take as data and the values you measure or esti-
mate for them.

34. An insulating sphere is 8.00 cm in diameter and carries
a 5.70-�C charge uniformly distributed throughout its
interior volume. Calculate the charge enclosed by a
concentric spherical surface with radius (a) r � 2.00 cm
and (b) r � 6.00 cm.

35. A uniformly charged, straight filament 7.00 m in length
has a total positive charge of 2.00 �C. An uncharged
cardboard cylinder 2.00 cm in length and 10.0 cm in ra-
dius surrounds the filament at its center, with the fila-
ment as the axis of the cylinder. Using reasonable ap-
proximations, find (a) the electric field at the surface of
the cylinder and (b) the total electric flux through the
cylinder.

36. The charge per unit length on a long, straight filament
is � 90.0 �C/m. Find the electric field (a) 10.0 cm, 
(b) 20.0 cm, and (c) 100 cm from the filament, where
distances are measured perpendicular to the length of
the filament.

37. A large flat sheet of charge has a charge per unit area of
9.00 �C/m2. Find the electric field just above the sur-
face of the sheet, measured from its midpoint.

Section 24.4 Conductors in Electrostatic Equilibrium
38. On a clear, sunny day, a vertical electrical field of about

130 N/C points down over flat ground. What is the sur-
face charge density on the ground for these conditions?

39. A long, straight metal rod has a radius of 5.00 cm and a
charge per unit length of 30.0 nC/m. Find the electric
field (a) 3.00 cm, (b) 10.0 cm, and (c) 100 cm from the
axis of the rod, where distances are measured perpen-
dicular to the rod.

40. A very large, thin, flat plate of aluminum of area A has a
total charge Q uniformly distributed over its surfaces. If

the same charge is spread uniformly over the upper
surface of an otherwise identical glass plate, compare
the electric fields just above the center of the upper sur-
face of each plate.

41. A square plate of copper with 50.0-cm sides has no net
charge and is placed in a region of uniform electric
field of 80.0 kN/C directed perpendicularly to the
plate. Find (a) the charge density of each face of the
plate and (b) the total charge on each face.

42. A hollow conducting sphere is surrounded by a larger
concentric, spherical, conducting shell. The inner
sphere has a charge � Q , and the outer sphere has a
charge 3Q. The charges are in electrostatic equilibrium.
Using Gauss’s law, find the charges and the electric
fields everywhere.

43. Two identical conducting spheres each having a radius
of 0.500 cm are connected by a light 2.00-m-long con-
ducting wire. Determine the tension in the wire if 
60.0 �C is placed on one of the conductors. (Hint: As-
sume that the surface distribution of charge on each
sphere is uniform.)

44. The electric field on the surface of an irregularly
shaped conductor varies from 56.0 kN/C to 28.0 kN/C.
Calculate the local surface charge density at the point
on the surface where the radius of curvature of the sur-
face is (a) greatest and (b) smallest.

45. A long, straight wire is surrounded by a hollow metal
cylinder whose axis coincides with that of the wire. The
wire has a charge per unit length of �, and the cylinder
has a net charge per unit length of 2�. From this infor-
mation, use Gauss’s law to find (a) the charge per unit
length on the inner and outer surfaces of the cylinder
and (b) the electric field outside the cylinder, a distance
r from the axis.

46. A conducting spherical shell of radius 15.0 cm carries a
net charge of � 6.40 �C uniformly distributed on its
surface. Find the electric field at points (a) just outside
the shell and (b) inside the shell.

47. A thin conducting plate 50.0 cm on a side lies in the xy
plane. If a total charge of 4.00 � 10�8 C is placed on
the plate, find (a) the charge density on the plate, 
(b) the electric field just above the plate, and (c) the
electric field just below the plate.

48. A conducting spherical shell having an inner radius of 
a and an outer radius of b carries a net charge Q . If a
point charge q is placed at the center of this shell, 
determine the surface charge density on (a) the inner
surface of the shell and (b) the outer surface of the
shell.

49. A solid conducting sphere of radius 2.00 cm has a
charge 8.00 �C. A conducting spherical shell of inner
radius 4.00 cm and outer radius 5.00 cm is concentric
with the solid sphere and has a charge � 4.00 �C. Find
the electric field at (a) r � 1.00 cm, (b) r � 3.00 cm,
(c) r � 4.50 cm, and (d) r � 7.00 cm from the center of
this charge configuration.

WEB
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50. A positive point charge is at a distance of R/2 from the
center of an uncharged thin conducting spherical shell
of radius R. Sketch the electric field lines set up by this
arrangement both inside and outside the shell.

(Optional)
Section 24.5 Experimental Verification of 
Gauss’s Law and Coulomb’s Law

Section 24.6 Formal Derivation of Gauss’s Law
51. A sphere of radius R surrounds a point charge Q , lo-

cated at its center. (a) Show that the electric flux
through a circular cap of half-angle 	 (Fig. P24.51) is

What is the flux for (b) 	 � 90° and (c) 	 � 180°?

�E �
Q

2�0
 (1 � cos 	)

net charge enclosed by this surface, as a function of r.
Note that the charge inside this surface is less than 3Q .
(i) Find the electric field in the region r � a. ( j) Deter-
mine the charge on the inner surface of the conducting
shell. (k) Determine the charge on the outer surface of
the conducting shell. (l) Make a plot of the magnitude
of the electric field versus r.

54. Consider two identical conducting spheres whose sur-
faces are separated by a small distance. One sphere is
given a large net positive charge, while the other is
given a small net positive charge. It is found that the
force between them is attractive even though both
spheres have net charges of the same sign. Explain how
this is possible.

55. A solid, insulating sphere of radius a has a uniform
charge density � and a total charge Q . Concentric with
this sphere is an uncharged, conducting hollow sphere
whose inner and outer radii are b and c, as shown in Fig-
ure P24.55. (a) Find the magnitude of the electric field
in the regions and r � c. 
(b) Determine the induced charge per unit area on the
inner and outer surfaces of the hollow sphere.

b � r � c,r � a, a � r � b,

WEB

56. For the configuration shown in Figure P24.55, suppose
that a � 5.00 cm, b � 20.0 cm, and c � 25.0 cm.
Furthermore, suppose that the electric field at a point
10.0 cm from the center is 3.60 � 103 N/C radially in-
ward, while the electric field at a point 50.0 cm from the
center is 2.00 � 102 N/C radially outward. From this in-
formation, find (a) the charge on the insulating sphere,

ADDITIONAL PROBLEMS

52. A nonuniform electric field is given by the expression
where a, b, and c are constants.

Determine the electric flux through a rectangular sur-
face in the xy plane, extending from x � 0 to x � w and
from y � 0 to y � h.

53. A solid insulating sphere of radius a carries a net positive
charge 3Q , uniformly distributed throughout its vol-
ume. Concentric with this sphere is a conducting spheri-
cal shell with inner radius b and outer radius c, and hav-
ing a net charge �Q , as shown in Figure P24.53. 
(a) Construct a spherical gaussian surface of radius 
r � c and find the net charge enclosed by this surface. 
(b) What is the direction of the electric field at r � c?
(c) Find the electric field at r � c. (d) Find the electric
field in the region with radius r where c � r � b. 
(e) Construct a spherical gaussian surface of radius r ,
where c � r � b, and find the net charge enclosed by
this surface. (f) Construct a spherical gaussian surface
of radius r, where b � r � a, and find the net charge en-
closed by this surface. (g) Find the electric field in the
region b � r � a. (h) Construct a spherical gaussian
surface of radius r � a, and find an expression for the

E � ay i � bz j � cxk,

Figure P24.51

Figure P24.53

Figure P24.55 Problems 55 and 56.
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(b) the net charge on the hollow conducting sphere,
and (c) the total charge on the inner and outer surfaces
of the hollow conducting sphere.

57. An infinitely long cylindrical insulating shell of inner ra-
dius a and outer radius b has a uniform volume charge
density � (C/m3). A line of charge density � (C/m) is
placed along the axis of the shell. Determine the elec-
tric field intensity everywhere.

58. Two infinite, nonconducting sheets of charge are paral-
lel to each other, as shown in Figure P24.58. The sheet
on the left has a uniform surface charge density �, and
the one on the right has a uniform charge density � �.
Calculate the value of the electric field at points (a) to
the left of, (b) in between, and (c) to the right of the
two sheets. (Hint: See Example 24.8.)

the size of the cavity with a uniform negative charge
density � �.)

61. Review Problem. An early (incorrect) model of the
hydrogen atom, suggested by J. J. Thomson, proposed
that a positive cloud of charge �e was uniformly distrib-
uted throughout the volume of a sphere of radius R ,
with the electron an equal-magnitude negative point
charge �e at the center. (a) Using Gauss’s law, show
that the electron would be in equilibrium at the center
and, if displaced from the center a distance 
would experience a restoring force of the form

where K is a constant. (b) Show that
(c) Find an expression for the frequency f

of simple harmonic oscillations that an electron of mass
me would undergo if displaced a short distance (� R )
from the center and released. (d) Calculate a numerical
value for R that would result in a frequency of electron
vibration of 2.47 � 1015 Hz, the frequency of the light
in the most intense line in the hydrogen spectrum.

62. A closed surface with dimensions and
is located as shown in Figure P24.62. The

electric field throughout the region is nonuniform and
given by N/C, where x is in meters.
Calculate the net electric flux leaving the closed sur-
face. What net charge is enclosed by the surface?

E � (3.0 � 2.0x2) i

c � 0.600 m
a � b � 0.400 m

K � ke e2/R3.
F � �Kr,

r � R ,

59. Repeat the calculations for Problem 58 when both
sheets have positive uniform surface charge densities of
value �.

60. A sphere of radius 2a is made of a nonconducting mate-
rial that has a uniform volume charge density �. (As-
sume that the material does not affect the electric
field.) A spherical cavity of radius a is now removed
from the sphere, as shown in Figure P24.60. Show that
the electric field within the cavity is uniform and is
given by and (Hint: The field
within the cavity is the superposition of the field due to
the original uncut sphere, plus the field due to a sphere

Ey � �a/3�0 .Ex � 0

Figure P24.58

Figure P24.60

Figure P24.62
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63. A solid insulating sphere of radius R has a nonuniform
charge density that varies with r according to the expres-
sion where A is a constant and is meas-
ured from the center of the sphere. (a) Show that the
electric field outside the sphere is

(b) Show that the electric field inside
the sphere is (Hint: Note that the

total charge Q on the sphere is equal to the integral of 
� dV, where r extends from 0 to R ; also note that the
charge q within a radius r � R is less than Q. To evaluate
the integrals, note that the volume element dV for a
spherical shell of radius r and thickness dr is equal to

64. A point charge Q is located on the axis of a disk of ra-
dius R at a distance b from the plane of the disk (Fig.
P24.64). Show that if one fourth of the electric flux
from the charge passes through the disk, then R � !3b.

4�r 2 dr.)

E � Ar 3/5�0 .(r � R)
E � AR5/5�0r 2.

(r � R )

r � R� � Ar 2,

WEB
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ANSWERS TO QUICK QUIZZES

24.3 Any gaussian surface surrounding the system encloses
the same amount of charge, regardless of how the com-
ponents of the system are moved. Thus, the flux
through the gaussian surface would be the same as it is
when the sphere and shell are concentric.

24.1 Zero, because there is no net charge within the surface.
24.2 (b) and (d). Statement (a) is not necessarily true be-

cause an equal number of positive and negative charges
could be present inside the surface. Statement (c) is not
necessarily true, as can be seen from Figure 24.8: A
nonzero electric field exists everywhere on the surface,
but the charge is not enclosed within the surface; thus,
the net flux is zero.

a frequency described by the expression

f �
1

2�
 ! �e

me �0

Figure P24.64

Figure P24.67 Problems 67 and 68.

65. A spherically symmetric charge distribution has a
charge density given by where a is constant.
Find the electric field as a function of r. (Hint: Note that
the charge within a sphere of radius R is equal to the in-
tegral of � dV, where r extends from 0 to R . To evaluate
the integral, note that the volume element dV for a
spherical shell of radius r and thickness dr is equal to

66. An infinitely long insulating cylinder of radius R has a
volume charge density that varies with the radius as

where �0 , a, and b are positive constants and r is the dis-
tance from the axis of the cylinder. Use Gauss’s law to
determine the magnitude of the electric field at radial
distances (a) r � R and (b) r � R.

67. Review Problem. A slab of insulating material (infi-
nite in two of its three dimensions) has a uniform posi-
tive charge density �. An edge view of the slab is shown
in Figure P24.67. (a) Show that the magnitude of the
electric field a distance x from its center and inside the
slab is (b) Suppose that an electron of
charge �e and mass me is placed inside the slab. If it is
released from rest at a distance x from the center, show
that the electron exhibits simple harmonic motion with

E � �x/�0 .

� � �0�a �
r
b �

4�r 2 dr.)

� � a/r,

R

Q

b

x

y

O

d

68. A slab of insulating material has a nonuniform positive
charge density where x is measured from the
center of the slab, as shown in Figure P24.67, and C is a
constant. The slab is infinite in the y and z directions.
Derive expressions for the electric field in (a) the exte-
rior regions and (b) the interior region of the slab

69. (a) Using the mathematical similarity between
Coulomb’s law and Newton’s law of universal gravita-
tion, show that Gauss’s law for gravitation can be written
as

where m in is the mass inside the gaussian surface and
represents the gravitational field at any point

on the gaussian surface. (b) Determine the gravita-
tional field at a distance r from the center of the Earth
where r � R E , assuming that the Earth’s mass density is
uniform.

g � Fg /m

�g � dA � �4�Gm in

(�d/2 � x � d/2).

� � Cx2,


