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If all these appliances were operating at
one time, a circuit breaker would proba-
bly be tripped, preventing a potentially
dangerous situation. What causes a cir-
cuit breaker to trip when too many elec-
trical devices are plugged into one cir-
cuit? (George Semple)
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28.1 Electromotive Force 869

his chapter is concerned with the analysis of some simple electric circuits that
contain batteries, resistors, and capacitors in various combinations. The analysis
of these circuits is simplified by the use of two rules known as Kirchhoff ’s rules,

which follow from the laws of conservation of energy and conservation of electric
charge. Most of the circuits analyzed are assumed to be in steady state, which means
that the currents are constant in magnitude and direction. In Section 28.4 we dis-
cuss circuits in which the current varies with time. Finally, we describe a variety of
common electrical devices and techniques for measuring current, potential differ-
ence, resistance, and emf.

ELECTROMOTIVE FORCE
In Section 27.6 we found that a constant current can be maintained in a closed cir-
cuit through the use of a source of emf, which is a device (such as a battery or gen-
erator) that produces an electric field and thus may cause charges to move around
a circuit. One can think of a source of emf as a “charge pump.” When an electric
potential difference exists between two points, the source moves charges “uphill”
from the lower potential to the higher. The emf � describes the work done per
unit charge, and hence the SI unit of emf is the volt.

Consider the circuit shown in Figure 28.1, consisting of a battery connected to
a resistor. We assume that the connecting wires have no resistance. The positive
terminal of the battery is at a higher potential than the negative terminal. If we ne-
glect the internal resistance of the battery, the potential difference across it (called
the terminal voltage) equals its emf. However, because a real battery always has some
internal resistance r, the terminal voltage is not equal to the emf for a battery in a
circuit in which there is a current. To understand why this is so, consider the cir-
cuit diagram in Figure 28.2a, where the battery of Figure 28.1 is represented by
the dashed rectangle containing an emf � in series with an internal resistance r.
Now imagine moving through the battery clockwise from a to b and measuring the
electric potential at various locations. As we pass from the negative terminal to the
positive terminal, the potential increases by an amount �. However, as we move
through the resistance r, the potential decreases by an amount Ir, where I is the cur-
rent in the circuit. Thus, the terminal voltage of the battery is1�V � Vb � Va

28.1

T

1 The terminal voltage in this case is less than the emf by an amount Ir. In some situations, the terminal
voltage may exceed the emf by an amount Ir. This happens when the direction of the current is opposite
that of the emf, as in the case of charging a battery with another source of emf.

+

Resistor

Battery
–

Figure 28.1 A circuit consisting of a resistor con-
nected to the terminals of a battery.
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From this expression, note that � is equivalent to the open-circuit voltage—that
is, the terminal voltage when the current is zero. The emf is the voltage labeled on a
battery—for example, the emf of a D cell is 1.5 V. The actual potential difference
between the terminals of the battery depends on the current through the battery,
as described by Equation 28.1.

Figure 28.2b is a graphical representation of the changes in electric potential
as the circuit is traversed in the clockwise direction. By inspecting Figure 28.2a, we
see that the terminal voltage �V must equal the potential difference across the ex-
ternal resistance R , often called the load resistance. The load resistor might be a
simple resistive circuit element, as in Figure 28.1, or it could be the resistance of
some electrical device (such as a toaster, an electric heater, or a lightbulb) con-
nected to the battery (or, in the case of household devices, to the wall outlet). The
resistor represents a load on the battery because the battery must supply energy to
operate the device. The potential difference across the load resistance is 
Combining this expression with Equation 28.1, we see that

(28.2)

Solving for the current gives

(28.3)

This equation shows that the current in this simple circuit depends on both the
load resistance R external to the battery and the internal resistance r. If R is much
greater than r, as it is in many real-world circuits, we can neglect r.

If we multiply Equation 28.2 by the current I, we obtain

(28.4)

This equation indicates that, because power (see Eq. 27.22), the total
power output I� of the battery is delivered to the external load resistance in the
amount I 2R and to the internal resistance in the amount I 2r. Again, if then
most of the power delivered by the battery is transferred to the load resistance.

r V R ,

� � I �V

I� � I 2R � I 2r

I �
�

R � r

� � IR � Ir

�V � IR .

�V � � � Ir
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Terminal Voltage of a BatteryEXAMPLE 28.1
(b) Calculate the power delivered to the load resistor, the

power delivered to the internal resistance of the battery, and
the power delivered by the battery.

Solution The power delivered to the load resistor is

The power delivered to the internal resistance is

Hence, the power delivered by the battery is the sum of these
quantities, or 47.1 W. You should check this result, using the
expression � � I�.

0.772 W�r � I 2r � (3.93 A)2 (0.05 �) �

46.3 W�R � I 2R � (3.93 A)2 (3.00 �) �

A battery has an emf of 12.0 V and an internal resistance of
0.05 �. Its terminals are connected to a load resistance of
3.00 �. (a) Find the current in the circuit and the terminal
voltage of the battery.

Solution Using first Equation 28.3 and then Equation
28.1, we obtain

To check this result, we can calculate the voltage across the
load resistance R :

�V � IR � (3.93 A)(3.00 �) � 11.8 V

11.8 V�V � � � Ir � 12.0 V � (3.93 A)(0.05 �) �

3.93 A I �
�

R � r
�

12.0 V
3.05 �

�

a c

(b)

Rr

db

V

IR
Ir

ε

ε

ε
a

d R

I

br
– +

c
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I

Figure 28.2 (a) Circuit diagram
of a source of emf � (in this case, a
battery), of internal resistance r,
connected to an external resistor of
resistance R . (b) Graphical repre-
sentation showing how the electric
potential changes as the circuit in
part (a) is traversed clockwise.
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Matching the LoadEXAMPLE 28.2
Show that the maximum power delivered to the load resis-
tance R in Figure 28.2a occurs when the load resistance
matches the internal resistance—that is, when R � r .

Solution The power delivered to the load resistance is
equal to I 2R , where I is given by Equation 28.3:

When is plotted versus R as in Figure 28.3, we find that 
reaches a maximum value of at We can also
prove this by differentiating with respect to R , setting the
result equal to zero, and solving for R . The details are left as
a problem for you to solve (Problem 57).

�
R � r.�2/4r

��

� � I 2R �
�2R

(R � r)2

r 2r 3r
R

�max

�

Figure 28.3 Graph of the power delivered by a battery to a load
resistor of resistance R as a function of R . The power delivered to the
resistor is a maximum when the load resistance equals the internal
resistance of the battery.

�

RESISTORS IN SERIES AND IN PARALLEL
Suppose that you and your friends are at a crowded basketball game in a sports
arena and decide to leave early. You have two choices: (1) your whole group can
exit through a single door and walk down a long hallway containing several con-
cession stands, each surrounded by a large crowd of people waiting to buy food or
souvenirs; or (b) each member of your group can exit through a separate door in
the main hall of the arena, where each will have to push his or her way through a
single group of people standing by the door. In which scenario will less time be re-
quired for your group to leave the arena?

It should be clear that your group will be able to leave faster through the separate
doors than down the hallway where each of you has to push through several groups of
people. We could describe the groups of people in the hallway as acting in series, be-
cause each of you must push your way through all of the groups. The groups of peo-
ple around the doors in the arena can be described as acting in parallel. Each member
of your group must push through only one group of people, and each member
pushes through a different group of people. This simple analogy will help us under-
stand the behavior of currents in electric circuits containing more than one resistor.

When two or more resistors are connected together as are the lightbulbs in
Figure 28.4a, they are said to be in series. Figure 28.4b is the circuit diagram for the
lightbulbs, which are shown as resistors, and the battery. In a series connection, all
the charges moving through one resistor must also pass through the second resis-
tor. (This is analogous to all members of your group pushing through the crowds
in the single hallway of the sports arena.) Otherwise, charge would accumulate be-
tween the resistors. Thus,

28.2

for a series combination of resistors, the currents in the two resistors are the
same because any charge that passes through R1 must also pass through R2 .

The potential difference applied across the series combination of resistors will di-
vide between the resistors. In Figure 28.4b, because the voltage drop2 from a to b

2 The term voltage drop is synonymous with a decrease in electric potential across a resistor and is used
often by individuals working with electric circuits.
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equals IR1 and the voltage drop from b to c equals IR2 , the voltage drop from a to
c is

Therefore, we can replace the two resistors in series with a single resistor having an
equivalent resistance Req , where

(28.5)

The resistance Req is equivalent to the series combination in the sense
that the circuit current is unchanged when R eq replaces 

The equivalent resistance of three or more resistors connected in series is

(28.6)

This relationship indicates that the equivalent resistance of a series connec-
tion of resistors is always greater than any individual resistance.

If a piece of wire is used to connect points b and c in Figure 28.4b, does the brightness of
bulb R1 increase, decrease, or stay the same? What happens to the brightness of bulb R2 ?

Now consider two resistors connected in parallel, as shown in Figure 28.5.
When the current I reaches point a in Figure 28.5b, called a junction, it splits into
two parts, with I1 going through R1 and I2 going through R2 . A junction is any
point in a circuit where a current can split ( just as your group might split up and
leave the arena through several doors, as described earlier.) This split results in
less current in each individual resistor than the current leaving the battery. Be-
cause charge must be conserved, the current I that enters point a must equal the
total current leaving that point:

I � I1 � I2

Quick Quiz 28.1

R eq � R 1 � R 2 � R 3 � ���

R 1 � R 2 .
R 1 � R 2

R eq � R 1 � R 2

�V � IR 1 � IR 2 � I(R 1 � R 2)

+ –

(a) (b)

I

R1 R2

I

∆V
+ –

a b c

Battery

R1 R2

(c)

Req

I

∆V
+ –

a c

Figure 28.4 (a) A series connection of two resistors R1 and R2 . The current in R1 is the same
as that in R2 . (b) Circuit diagram for the two-resistor circuit. (c) The resistors replaced with a sin-
gle resistor having an equivalent resistance R eq � R 1 � R 2 .

A series connection of three light-
bulbs, all rated at 120 V but having
power ratings of 60 W, 75 W, and
200 W. Why are the intensities of
the bulbs different? Which bulb
has the greatest resistance? How
would their relative intensities dif-
fer if they were connected in paral-
lel?
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As can be seen from Figure 28.5, both resistors are connected directly across
the terminals of the battery. Thus,

when resistors are connected in parallel, the potential differences across them
are the same.

Because the potential differences across the resistors are the same, the expression
gives

From this result, we see that the equivalent resistance of two resistors in parallel is
given by

(28.7)

or

An extension of this analysis to three or more resistors in parallel gives

(28.8)
1

R eq
�

1
R 1

�
1

R 2
�

1
R 3

� ���

R eq �
1

1
R 1

�
1

R 2

1
R eq

�
1

R 1
�

1
R 2

I � I1 � I2 �
�V
R 1

�
�V
R 2

� �V � 1
R 1

�
1

R 2
� �

�V
R eq

�V � IR

b

(c)
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I

∆V
+ –

+ –

(a)
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R2

Battery

(b)

I1
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∆V
+ –
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Figure 28.5 (a) A parallel connection of two resistors R1 and R2 . The potential difference
across R1 is the same as that across R2 . (b) Circuit diagram for the two-resistor circuit. (c) The
resistors replaced with a single resistor having an equivalent resistance R eq � (R 1 

�1 � R 2 

�1 )�1.

Straws in series

Straws in parallel

The equivalent resistance of
several resistors in parallel

QuickLab
Tape one pair of drinking straws end
to end, and tape a second pair side by
side. Which pair is easier to blow
through? What would happen if you
were comparing three straws taped
end to end with three taped side by
side?
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We can see from this expression that the equivalent resistance of two or more
resistors connected in parallel is always less than the least resistance in the
group.

Household circuits are always wired such that the appliances are connected in
parallel. Each device operates independently of the others so that if one is
switched off, the others remain on. In addition, the devices operate on the same
voltage.

Assume that the battery of Figure 28.1 has zero internal resistance. If we add a second resis-
tor in series with the first, does the current in the battery increase, decrease, or stay the
same? How about the potential difference across the battery terminals? Would your answers
change if the second resistor were connected in parallel to the first one?

Are automobile headlights wired in series or in parallel? How can you tell?

Quick Quiz 28.3

Quick Quiz 28.2

Find the Equivalent ResistanceEXAMPLE 28.3
We could have guessed this at the start by noting

that the current through the 3.0-� resistor has to be twice that
through the 6.0-� resistor, in view of their relative resistances
and the fact that the same voltage is applied to each of them.

As a final check of our results, note that 
and therefore,

as it must.�Vac � �Vab � �Vbc � 42 V,
�Vab � (12 �)I � 36 V;(3.0 �)I2 � 6.0 V

�Vbc � (6.0 �)I1 �

I2 � 2.0 A.Four resistors are connected as shown in Figure 28.6a. 
(a) Find the equivalent resistance between points a and c.

Solution The combination of resistors can be reduced in
steps, as shown in Figure 28.6. The 8.0-� and 4.0-� resistors
are in series; thus, the equivalent resistance between a and b
is 12 � (see Eq. 28.5). The 6.0-� and 3.0-� resistors are in
parallel, so from Equation 28.7 we find that the equivalent re-
sistance from b to c is 2.0 �. Hence, the equivalent resistance 

from a to c is 

(b) What is the current in each resistor if a potential dif-
ference of 42 V is maintained between a and c?

Solution The currents in the 8.0-� and 4.0-� resistors are
the same because they are in series. In addition, this is the
same as the current that would exist in the 14-� equivalent
resistor subject to the 42-V potential difference. Therefore,
using Equation 27.8 and the results from part
(a), we obtain

This is the current in the 8.0-� and 4.0-� resistors. When this
3.0-A current enters the junction at b , however, it splits, with
part passing through the 6.0-� resistor (I1) and part through
the 3.0-� resistor (I2). Because the potential difference is �Vbc
across each of these resistors (since they are in parallel), we see
that (6.0 �) or Using this result and
the fact that we find that andI1 � 1.0 AI1 � I2 � 3.0 A,

I2 � 2I1 .I1 � (3.0 �)I2 ,

I �
�Vac

R eq
�

42 V
14 �

� 3.0 A

(R � �V/I )

14 �.

Three lightbulbs having power rat-
ings of 25 W, 75 W, and 150 W,
connected in parallel to a voltage
source of about 100 V. All bulbs are
rated at the same voltage. Why do
the intensities differ? Which bulb
draws the most current? Which has
the least resistance?

6.0 Ω

3.0 Ω

c
b

I1

I2

4.0 Ω8.0 Ω

a

c

2.0 Ω12 Ω

ba

14 Ω

ca

(a)

(b)

(c)

I

Figure 28.6
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Three Resistors in ParallelEXAMPLE 28.4
(c) Calculate the equivalent resistance of the circuit.

Solution We can use Equation 28.8 to find Req :

Exercise Use Req to calculate the total power delivered by
the battery.

Answer 200 W.

1.6 �R eq �
18 �
11

�

 �
6

18 �
�

3
18 �

�
2

18 �
�

11
18 �

1
R eq

�
1

3.0 �
�

1
6.0 �

�
1

9.0 �

Three resistors are connected in parallel as shown in Figure
28.7. A potential difference of 18 V is maintained between
points a and b. (a) Find the current in each resistor.

Solution The resistors are in parallel, and so the potential
difference across each must be 18 V. Applying the relation-
ship to each resistor gives

(b) Calculate the power delivered to each resistor and the
total power delivered to the combination of resistors.

Solution We apply the relationship to each
resistor and obtain

This shows that the smallest resistor receives the most power.
Summing the three quantities gives a total power of 200 W.

36 W �3 �
�V 2

R 3
�

(18 V)2

9.0 �
�

54 W �2 �
�V 2

R 2
�

(18 V)2

6.0 �
�

110 W�1 �
�V 2

R 1
�

(18 V)2

3.0 �
�

� � (�V )2/R

2.0 AI3 �
�V
R 3

�
18 V
9.0 �

�

3.0 AI2 �
�V
R 2

�
18 V
6.0 �

�

6.0 AI1 �
�V
R 1

�
18 V
3.0 �

�

�V � IR

Finding Req by Symmetry ArgumentsEXAMPLE 28.5
Solution In this type of problem, it is convenient to as-
sume a current entering junction a and then apply symmetry

Consider five resistors connected as shown in Figure 28.8a.
Find the equivalent resistance between points a and b.

(c)

1/2 Ω

ba c,d

1/2 Ω

(a)

1 Ω1 Ω

1 Ω1 Ω

5 Ω
ba

c

d

1 Ω

5 Ω

1 Ω
ba c,d

1 Ω

1 Ω

(b) (d)

1 Ω

ba

Figure 28.7 Three resistors connected in parallel. The voltage
across each resistor is 18 V.

3.0 Ω 6.0 Ω 9.0 Ω18 V

b

a

I1 I2 I3

I

Figure 28.8 Because of the symmetry in this circuit, the 5-� resistor does not contribute to the resistance between points a
and b and therefore can be disregarded when we calculate the equivalent resistance.
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Operation of a Three-Way LightbulbCONCEPTUAL EXAMPLE 28.6
Exercise Determine the resistances of the two filaments
and their parallel equivalent resistance.

Answer 144 �, 192 �, 82.3 �.

Figure 28.9 illustrates how a three-way lightbulb is con-
structed to provide three levels of light intensity. The socket
of the lamp is equipped with a three-way switch for selecting
different light intensities. The bulb contains two filaments.
When the lamp is connected to a 120-V source, one filament
receives 100 W of power, and the other receives 75 W. Ex-
plain how the two filaments are used to provide three differ-
ent light intensities.

Solution The three light intensities are made possible by
applying the 120 V to one filament alone, to the other fila-
ment alone, or to the two filaments in parallel. When switch
S1 is closed and switch S2 is opened, current passes only
through the 75-W filament. When switch S1 is open and
switch S2 is closed, current passes only through the 100-W fil-
ament. When both switches are closed, current passes
through both filaments, and the total power is 175 W.

If the filaments were connected in series and one of them
were to break, no current could pass through the bulb, and
the bulb would give no illumination, regardless of the switch
position. However, with the filaments connected in parallel, if
one of them (for example, the 75-W filament) breaks, the
bulb will still operate in two of the switch positions as current
passes through the other (100-W) filament.

120 V

100-W filament

75-W filament

S1

S2

arguments. Because of the symmetry in the circuit (all 1-� re-
sistors in the outside loop), the currents in branches ac and
ad must be equal; hence, the electric potentials at points c
and d must be equal. This means that and, as a re-
sult, points c and d may be connected together without affect-
ing the circuit, as in Figure 28.8b. Thus, the 5-� resistor may

�Vcd � 0

be removed from the circuit and the remaining circuit then
reduced as in Figures 28.8c and d. From this reduction we see
that the equivalent resistance of the combination is 1 �. Note
that the result is 1 � regardless of the value of the resistor
connected between c and d .

Figure 28.9 A three-way lightbulb.

Strings of LightsAPPLICATION
In a parallel-wired string, each bulb operates at 120 V. By

design, the bulbs are brighter and hotter than those on a
series-wired string. As a result, these bulbs are inherently
more dangerous (more likely to start a fire, for instance), but
if one bulb in a parallel-wired string fails or is removed, the
rest of the bulbs continue to glow. (A 25-bulb string of 4-W
bulbs results in a power of 100 W; the total power becomes
substantial when several strings are used.)

A new design was developed for so-called “miniature”
lights wired in series, to prevent the failure of one bulb from
extinguishing the entire string. The solution is to create a
connection (called a jumper) across the filament after it fails.
(If an alternate connection existed across the filament before

Strings of lights are used for many ornamental purposes,
such as decorating Christmas trees. Over the years, both par-
allel and series connections have been used for multilight
strings powered by 120 V.3 Series-wired bulbs are safer than
parallel-wired bulbs for indoor Christmas-tree use because 
series-wired bulbs operate with less light per bulb and at a
lower temperature. However, if the filament of a single bulb
fails (or if the bulb is removed from its socket), all the lights
on the string are extinguished. The popularity of series-wired
light strings diminished because troubleshooting a failed
bulb was a tedious, time-consuming chore that involved trial-
and-error substitution of a good bulb in each socket along
the string until the defective bulb was found.

3 These and other household devices, such as the three-way lightbulb in Conceptual Example 28.6 and
the kitchen appliances shown in this chapter’s Puzzler, actually operate on alternating current (ac), to
be introduced in Chapter 33.
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KIRCHHOFF’S RULES
As we saw in the preceding section, we can analyze simple circuits using the ex-
pression �V � IR and the rules for series and parallel combinations of resistors.
Very often, however, it is not possible to reduce a circuit to a single loop. The pro-
cedure for analyzing more complex circuits is greatly simplified if we use two prin-
ciples called Kirchhoff ’s rules:

28.3

Suppose that all the bulbs in a 50-bulb miniature-light
string are operating. A 2.4-V potential drop occurs across each
bulb because the bulbs are in series. The power input to this
style of bulb is 0.34 W, so the total power supplied to the
string is only 17 W. We calculate the filament resistance at 
the operating temperature to be (2.4 V)2/(0.34 W) � 17 �.
When the bulb fails, the resistance across its terminals is re-
duced to zero because of the alternate jumper connection
mentioned in the preceding paragraph. All the other bulbs
not only stay on but glow more brightly because the total resis-
tance of the string is reduced and consequently the current in
each bulb increases.

Let us assume that the operating resistance of a bulb re-
mains at 17 � even though its temperature rises as a result of
the increased current. If one bulb fails, the potential drop
across each of the remaining bulbs increases to 2.45 V, the
current increases from 0.142 A to 0.145 A, and the power in-
creases to 0.354 W. As more lights fail, the current keeps ris-
ing, the filament of each bulb operates at a higher tempera-
ture, and the lifetime of the bulb is reduced. It is therefore a
good idea to check for failed (nonglowing) bulbs in such a
series-wired string and replace them as soon as possible, in or-
der to maximize the lifetimes of all the bulbs.

it failed, each bulb would represent a parallel circuit; in this
circuit, the current would flow through the alternate connec-
tion, forming a short circuit, and the bulb would not glow.)
When the filament breaks in one of these miniature light-
bulbs, 120 V appears across the bulb because no current is
present in the bulb and therefore no drop in potential occurs
across the other bulbs. Inside the lightbulb, a small loop cov-
ered by an insulating material is wrapped around the fila-
ment leads. An arc burns the insulation and connects the fila-
ment leads when 120 V appears across the bulb—that is,
when the filament fails. This “short” now completes the cir-
cuit through the bulb even though the filament is no longer
active (Fig. 28.10).

Filament

Jumper

Glass insulator

(a)

Figure 28.10 (a) Schematic diagram of
a modern “miniature” holiday lightbulb,
with a jumper connection to provide a cur-
rent path if the filament breaks. (b) A
Christmas-tree lightbulb.

(b)

13.4

1. The sum of the currents entering any junction in a circuit must equal the
sum of the currents leaving that junction:

(28.9)�I in � �Iout



Kirchhoff’s first rule is a statement of conservation of electric charge. All cur-
rent that enters a given point in a circuit must leave that point because charge can-
not build up at a point. If we apply this rule to the junction shown in Figure
28.11a, we obtain

Figure 28.11b represents a mechanical analog of this situation, in which water
flows through a branched pipe having no leaks. The flow rate into the pipe equals
the total flow rate out of the two branches on the right.

Kirchhoff’s second rule follows from the law of conservation of energy. Let us
imagine moving a charge around the loop. When the charge returns to the start-
ing point, the charge–circuit system must have the same energy as when the
charge started from it. The sum of the increases in energy in some circuit ele-
ments must equal the sum of the decreases in energy in other elements. The po-
tential energy decreases whenever the charge moves through a potential drop �IR
across a resistor or whenever it moves in the reverse direction through a source of
emf. The potential energy increases whenever the charge passes through a battery
from the negative terminal to the positive terminal. Kirchhoff’s second rule ap-
plies only for circuits in which an electric potential is defined at each point; this
criterion may not be satisfied if changing electromagnetic fields are present, as we
shall see in Chapter 31.

In justifying our claim that Kirchhoff’s second rule is a statement of conserva-
tion of energy, we imagined carrying a charge around a loop. When applying this
rule, we imagine traveling around the loop and consider changes in electric potential,
rather than the changes in potential energy described in the previous paragraph.
You should note the following sign conventions when using the second rule:

• Because charges move from the high-potential end of a resistor to the low-
potential end, if a resistor is traversed in the direction of the current, the
change in potential �V across the resistor is �IR (Fig. 28.12a).

• If a resistor is traversed in the direction opposite the current, the change in po-
tential �V across the resistor is � IR (Fig. 28.12b).

• If a source of emf (assumed to have zero internal resistance) is traversed in the
direction of the emf (from � to �), the change in potential �V is �� (Fig.
28.12c). The emf of the battery increases the electric potential as we move
through it in this direction.

• If a source of emf (assumed to have zero internal resistance) is traversed in the
direction opposite the emf (from � to �), the change in potential �V is ��
(Fig. 28.12d). In this case the emf of the battery reduces the electric potential as
we move through it.

Limitations exist on the numbers of times you can usefully apply Kirchhoff’s
rules in analyzing a given circuit. You can use the junction rule as often as you
need, so long as each time you write an equation you include in it a current that
has not been used in a preceding junction-rule equation. In general, the number
of times you can use the junction rule is one fewer than the number of junction

I1 � I2 � I3
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2. The sum of the potential differences across all elements around any closed
circuit loop must be zero:

(28.10)�
closed
loop

 �V � 0

QuickLab
Draw an arbitrarily shaped closed
loop that does not cross over itself.
Label five points on the loop a, b, c, d,
and e, and assign a random number
to each point. Now start at a and
work your way around the loop, cal-
culating the difference between each
pair of adjacent numbers. Some of
these differences will be positive, and
some will be negative. Add the differ-
ences together, making sure you accu-
rately keep track of the algebraic
signs. What is the sum of the differ-
ences all the way around the loop?

Gustav Kirchhoff (1824– 1887)
Kirchhoff, a professor at Heidelberg,
Germany, and Robert Bunsen in-
vented the spectroscope and founded
the science of spectroscopy, which
we shall study in Chapter 40. They
discovered the elements cesium and
rubidium and invented astronomical
spectroscopy. Kirchhoff formulated
another Kirchhoff’s rule, namely, “a
cool substance will absorb light of the
same wavelengths that it emits when
hot.” (AIP ESVA/W. F. Meggers Collection)
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points in the circuit. You can apply the loop rule as often as needed, so long as a
new circuit element (resistor or battery) or a new current appears in each new
equation. In general, in order to solve a particular circuit problem, the num-
ber of independent equations you need to obtain from the two rules equals
the number of unknown currents.

Complex networks containing many loops and junctions generate great num-
bers of independent linear equations and a correspondingly great number of un-
knowns. Such situations can be handled formally through the use of matrix alge-
bra. Computer programs can also be written to solve for the unknowns.

The following examples illustrate how to use Kirchhoff’s rules. In all cases, it is
assumed that the circuits have reached steady-state conditions—that is, the cur-
rents in the various branches are constant. Any capacitor acts as an open circuit;
that is, the current in the branch containing the capacitor is zero under steady-
state conditions.

(a)

I1

I2

I3

(b)

Flow in

Flow out

(a)

I

a b∆V =  –IR

(b)

I

a b∆V =  +IR

(c)

ε
a b

∆V =  +ε
– +

(d)
a b

∆V =  –ε
–+

ε

ε

ε

Figure 28.11 (a) Kirchhoff’s
junction rule. Conservation of
charge requires that all current en-
tering a junction must leave that
junction. Therefore, 
(b) A mechanical analog of the
junction rule: the amount of water
flowing out of the branches on the
right must equal the amount flow-
ing into the single branch on the
left.

I 1 � I 2 � I 3 .
Figure 28.12 Rules for determin-
ing the potential changes across a
resistor and a battery. (The battery
is assumed to have no internal re-
sistance.) Each circuit element is
traversed from left to right.

Problem-Solving Hints
Kirchhoff’s Rules
• Draw a circuit diagram, and label all the known and unknown quantities.

You must assign a direction to the current in each branch of the circuit. Do
not be alarmed if you guess the direction of a current incorrectly; your re-
sult will be negative, but its magnitude will be correct. Although the assignment
of current directions is arbitrary, you must adhere rigorously to the assigned
directions when applying Kirchhoff’s rules.

• Apply the junction rule to any junctions in the circuit that provide new rela-
tionships among the various currents.
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A Single-Loop CircuitEXAMPLE 28.7

Solving for I and using the values given in Figure 28.13, we
obtain

The negative sign for I indicates that the direction of the cur-
rent is opposite the assumed direction.

(b) What power is delivered to each resistor? What power
is delivered by the 12-V battery?

Solution

Hence, the total power delivered to the resistors is

The 12-V battery delivers power Half of this
power is delivered to the two resistors, as we just calculated.
The other half is delivered to the 6-V battery, which is being
charged by the 12-V battery. If we had included the internal
resistances of the batteries in our analysis, some of the power
would appear as internal energy in the batteries; as a result,
we would have found that less power was being delivered to
the 6-V battery.

I�2 � 4.0 W.
�1 � �2 � 2.0 W.

1.1 W�2 � I 2R 2 � (0.33 A)2(10 �) �

0.87 W�1 � I 2R 1 � (0.33 A)2(8.0 �) �

�0.33 AI �
�1 � �2

R 1 � R 2
�

6.0 V � 12 V
8.0 � � 10 �

�

�1 � IR 1 � �2 � IR 2 � 0

 �  �V � 0A single-loop circuit contains two resistors and two batteries,
as shown in Figure 28.13. (Neglect the internal resistances of
the batteries.) (a) Find the current in the circuit.

Solution We do not need Kirchhoff’s rules to analyze this
simple circuit, but let us use them anyway just to see how they
are applied. There are no junctions in this single-loop circuit;
thus, the current is the same in all elements. Let us assume
that the current is clockwise, as shown in Figure 28.13. Tra-
versing the circuit in the clockwise direction, starting at a, we
see that a : b represents a potential change of ��1 , b : c
represents a potential change of �IR1 , c : d represents a po-
tential change of ��2 , and d : a represents a potential
change of �IR2 . Applying Kirchhoff’s loop rule gives

Applying Kirchhoff’s RulesEXAMPLE 28.8
We now have one equation with three unknowns— I1 , I2 , and
I3 . There are three loops in the circuit—abcda, befcb, and
aefda. We therefore need only two loop equations to deter-
mine the unknown currents. (The third loop equation would
give no new information.) Applying Kirchhoff’s loop rule to
loops abcda and befcb and traversing these loops clockwise, we
obtain the expressions

(2) abcda 10 V � (6 �)I1 � (2 �)I3 � 0

(3) befcb � 14 V � (6 �)I1 � 10 V � (4 �)I2 � 0

Find the currents I1 , I2 , and I3 in the circuit shown in Figure
28.14.

Solution Notice that we cannot reduce this circuit to a
simpler form by means of the rules of adding resistances in
series and in parallel. We must use Kirchhoff’s rules to ana-
lyze this circuit. We arbitrarily choose the directions of the
currents as labeled in Figure 28.14. Applying Kirchhoff’s
junction rule to junction c gives

(1) I1 � I2 � I3

• Apply the loop rule to as many loops in the circuit as are needed to solve for
the unknowns. To apply this rule, you must correctly identify the change in
potential as you imagine crossing each element in traversing the closed loop
(either clockwise or counterclockwise). Watch out for errors in sign!

• Solve the equations simultaneously for the unknown quantities.

a b
I

cd

  1 = 6.0 V

+–

R 1 = 8.0 ΩR 2 = 10 Ω

  2 = 12 V

+–
ε

ε

Figure 28.13 A series circuit containing two batteries and two re-
sistors, where the polarities of the batteries are in opposition.
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14 V
e

b

4 Ω

– +

10 V 6 Ω

–+ f

I2

c

I3

I1

2 Ω
da

Figure 28.14 A circuit containing three loops.

A Multiloop CircuitEXAMPLE 28.9

Because our value for I2 is negative, we conclude that the di-
rection of I2 is from c to f through the 3.00-� resistor. Despite

�0.364 AI2 � �
4.00 V
11.0 �

�
(a) Under steady-state conditions, find the unknown currents
I1 , I2 , and I3 in the multiloop circuit shown in Figure 28.15.

Solution First note that because the capacitor represents
an open circuit, there is no current between g and b along
path ghab under steady-state conditions. Therefore, when the
charges associated with I1 reach point g, they all go through
the 8.00-V battery to point b ; hence, Labeling the
currents as shown in Figure 28.15 and applying Equation 28.9
to junction c, we obtain

(1)

Equation 28.10 applied to loops defcd and cfgbc, traversed
clockwise, gives

(2) defcd 4.00 V � (3.00 �)I2 � (5.00 �)I3 � 0

(3) cfgbc (3.00 �)I2 � (5.00 �)I1 � 8.00 V � 0

From Equation (1) we see that which, when
substituted into Equation (3), gives

(4) (8.00 �)I2 � (5.00 �)I3 � 8.00 V � 0

Subtracting Equation (4) from Equation (2), we eliminate I3
and find that

I1 � I3 � I2 ,

I1 � I2 � I3

I gb � I1 .

Note that in loop befcb we obtain a positive value when travers-
ing the 6-� resistor because our direction of travel is opposite
the assumed direction of I1 .

Expressions (1), (2), and (3) represent three independent
equations with three unknowns. Substituting Equation (1)
into Equation (2) gives

(4) 10 V � (8 �)I1 � (2 �)I2

Dividing each term in Equation (3) by 2 and rearranging
gives

10 V � (6 �)I1 � (2 �) (I1 � I2) � 0

(5)

Subtracting Equation (5) from Equation (4) eliminates I2 ,
giving

Using this value of I1 in Equation (5) gives a value for I2 :

Finally,

The fact that I2 and I3 are both negative indicates only that
the currents are opposite the direction we chose for them.
However, the numerical values are correct. What would have
happened had we left the current directions as labeled in Fig-
ure 28.14 but traversed the loops in the opposite direction?

Exercise Find the potential difference between points b
and c .

Answer 2 V.

�1 AI3 � I1 � I2 �

�3 A I2 �

(2 �)I2 � (3 �)I1 � 12 V � (3 �) (2 A) � 12 V � �6 V

2 A I1 �

22 V � (11 �)I1

�12 V � �(3 �)I1 � (2 �)I2

4.00 V

d

c

5.00 Ω

–+

8.00 V

3.00 Ω

– + e

I3

f

I1

I2
5.00 Ω

ha

g

– +

3.00 V

–+

6.00   F

I = 0

b

I3

I1

µ

Figure 28.15 A multiloop circuit. Kirchhoff’s loop rule can be ap-
plied to any closed loop, including the one containing the capacitor.
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4 In previous discussions of capacitors, we assumed a steady-state situation, in which no current was
present in any branch of the circuit containing a capacitor. Now we are considering the case before the
steady-state condition is realized; in this situation, charges are moving and a current exists in the wires
connected to the capacitor.

RC CIRCUITS
So far we have been analyzing steady-state circuits, in which the current is con-
stant. In circuits containing capacitors, the current may vary in time. A circuit con-
taining a series combination of a resistor and a capacitor is called an RC circuit.

Charging a Capacitor

Let us assume that the capacitor in Figure 28.16 is initially uncharged. There is no
current while switch S is open (Fig. 28.16b). If the switch is closed at how-
ever, charge begins to flow, setting up a current in the circuit, and the capacitor
begins to charge.4 Note that during charging, charges do not jump across the ca-
pacitor plates because the gap between the plates represents an open circuit. In-
stead, charge is transferred between each plate and its connecting wire due to the
electric field established in the wires by the battery, until the capacitor is fully
charged. As the plates become charged, the potential difference across the capaci-
tor increases. The value of the maximum charge depends on the voltage of the
battery. Once the maximum charge is reached, the current in the circuit is zero
because the potential difference across the capacitor matches that supplied by the
battery.

To analyze this circuit quantitatively, let us apply Kirchhoff’s loop rule to the
circuit after the switch is closed. Traversing the loop clockwise gives

(28.11)

where q/C is the potential difference across the capacitor and IR is the potential

� �
q
C

� IR � 0

t � 0,

28.4

this interpretation of the direction, however, we must con-
tinue to use this negative value for I2 in subsequent calcula-
tions because our equations were established with our origi-
nal choice of direction.

Using in Equations (3) and (1) gives

(b) What is the charge on the capacitor?

Solution We can apply Kirchhoff’s loop rule to loop bghab
(or any other loop that contains the capacitor) to find the po-
tential difference �Vcap across the capacitor. We enter this po-
tential difference in the equation without reference to a sign
convention because the charge on the capacitor depends
only on the magnitude of the potential difference. Moving
clockwise around this loop, we obtain

 �Vcap � 11.0 V

�8.00 V � �Vcap � 3.00 V � 0 

1.02 AI3 �1.38 AI1 �

I2 � �0.364 A

Because (see Eq. 26.1), the charge on the capac-
itor is

Why is the left side of the capacitor positively charged?

Exercise Find the voltage across the capacitor by traversing
any other loop.

Answer 11.0 V.

Exercise Reverse the direction of the 3.00-V battery and an-
swer parts (a) and (b) again.

Answer (a) 
(b) 30 	C.

I3 � 1.02 A;I2 � �0.364 A,I1 � 1.38 A,

66.0 	CQ � (6.00 	F)(11.0 V) �

Q � C �Vcap
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difference across the resistor. We have used the sign conventions discussed earlier
for the signs on � and IR . For the capacitor, notice that we are traveling in the di-
rection from the positive plate to the negative plate; this represents a decrease in
potential. Thus, we use a negative sign for this voltage in Equation 28.11. Note that
q and I are instantaneous values that depend on time (as opposed to steady-state val-
ues) as the capacitor is being charged.

We can use Equation 28.11 to find the initial current in the circuit and the
maximum charge on the capacitor. At the instant the switch is closed the
charge on the capacitor is zero, and from Equation 28.11 we find that the initial
current in the circuit I0 is a maximum and is equal to

(current at (28.12)

At this time, the potential difference from the battery terminals appears entirely
across the resistor. Later, when the capacitor is charged to its maximum value Q ,
charges cease to flow, the current in the circuit is zero, and the potential differ-
ence from the battery terminals appears entirely across the capacitor. Substituting

into Equation 28.11 gives the charge on the capacitor at this time:

(maximum charge) (28.13)

To determine analytical expressions for the time dependence of the charge
and current, we must solve Equation 28.11—a single equation containing two vari-
ables, q and I. The current in all parts of the series circuit must be the same. Thus,
the current in the resistance R must be the same as the current flowing out of and
into the capacitor plates. This current is equal to the time rate of change of the
charge on the capacitor plates. Thus, we substitute into Equation 28.11
and rearrange the equation:

To find an expression for q , we first combine the terms on the right-hand side:

dq
dt

�
C�
RC

�
q

RC
� �

q � C�
RC

dq
dt

�
�
R

�
q

RC

I � dq /dt

Q � C�
I � 0

t � 0)I0 �
�
R

(t � 0),

Maximum current

Maximum charge on the capacitor

+ –

Resistor

Battery

Capacitor

Switch

(a)

ε
(b)

S

t < 0

R

C

(c) t > 0

ε

R

S

I
q–

+ q

Figure 28.16 (a) A capacitor in series with a resistor, switch, and battery. (b) Circuit diagram
representing this system at time before the switch is closed. (c) Circuit diagram at time

after the switch has been closed.t 
 0,
t � 0,
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Now we multiply by dt and divide by q � C� to obtain

Integrating this expression, using the fact that at , we obtain

From the definition of the natural logarithm, we can write this expression as

(28.14)

where e is the base of the natural logarithm and we have made the substitution
from Equation 28.13.

We can find an expression for the charging current by differentiating Equa-
tion 28.14 with respect to time. Using we find that

(28.15)

Plots of capacitor charge and circuit current versus time are shown in Figure
28.17. Note that the charge is zero at and approaches the maximum value
C� as t : �. The current has its maximum value at and decays ex-
ponentially to zero as t : �. The quantity RC , which appears in the exponents of
Equations 28.14 and 28.15, is called the time constant  of the circuit. It repre-
sents the time it takes the current to decrease to 1/e of its initial value; that is, in a
time , In a time 2, and so forth. Like-
wise, in a time , the charge increases from zero to 

The following dimensional analysis shows that  has the units of time:

[] � [RC] � � �V
I

�
Q
�V � � � Q

Q /�t � � [�t] � T

C� (1 � e�1) � 0.632C�.
I � e�2I0 � 0.135I0 ,I � e�1I0 � 0.368I0 .

t � 0I0 � �/R
t � 0

I(t ) �
�
R

 e�t /RC

I � dq /dt,

C� � Q

q(t ) � C� (1 � e�t/RC) � Q(1 � e�t /RC )

ln� q � C�
�C� � � �

t
RC

 

 �q

0
 

dq
q � C� � �

1
RC

 �t

0
 dt

t � 0q � 0

dq
q � C� � �

1
RC

 dt

Charge versus time for a capacitor
being charged

Current versus time for a charging
capacitor

q

=RC

τ t

C

0.632

(a)

I

τ t

0.368I0

(b)

I0 I0 =
R

ε

Cε τ

ε

Figure 28.17 (a) Plot of capacitor charge versus time for the circuit shown in Figure 28.16. Af-
ter a time interval equal to one time constant  has passed, the charge is 63.2% of the maximum
value C�. The charge approaches its maximum value as t approaches infinity. (b) Plot of current
versus time for the circuit shown in Figure 28.16. The current has its maximum value 
at and decays to zero exponentially as t approaches infinity. After a time interval equal to
one time constant  has passed, the current is 36.8% of its initial value.

t � 0
I 0 � �/R
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Because has units of time, the combination t /RC is dimensionless, as it
must be in order to be an exponent of e in Equations 28.14 and 28.15.

The energy output of the battery as the capacitor is fully charged is
After the capacitor is fully charged, the energy stored in the capacitor

is which is just half the energy output of the battery. It is left as a
problem (Problem 60) to show that the remaining half of the energy supplied by
the battery appears as internal energy in the resistor.

Discharging a Capacitor

Now let us consider the circuit shown in Figure 28.18, which consists of a capaci-
tor carrying an initial charge Q , a resistor, and a switch. The initial charge Q is
not the same as the maximum charge Q in the previous discussion, unless the dis-
charge occurs after the capacitor is fully charged (as described earlier). When the
switch is open, a potential difference Q /C exists across the capacitor and there is
zero potential difference across the resistor because If the switch is closed
at the capacitor begins to discharge through the resistor. At some time t
during the discharge, the current in the circuit is I and the charge on the capaci-
tor is q (Fig. 28.18b). The circuit in Figure 28.18 is the same as the circuit in Fig-
ure 28.16 except for the absence of the battery. Thus, we eliminate the emf �
from Equation 28.11 to obtain the appropriate loop equation for the circuit in
Figure 28.18:

(28.16)

When we substitute into this expression, it becomes

Integrating this expression, using the fact that at gives

(28.17)

Differentiating this expression with respect to time gives the instantaneous current
as a function of time:

(28.18)

where is the initial current. The negative sign indicates that the cur-
rent direction now that the capacitor is discharging is opposite the current direc-
tion when the capacitor was being charged. (Compare the current directions in
Figs. 28.16c and 28.18b.) We see that both the charge on the capacitor and the
current decay exponentially at a rate characterized by the time constant  � RC .

Q /RC � I0

I(t) �
dq
dt

�
d
dt

 (Qe�t /RC ) � �
Q

RC
 e�t /RC

q(t ) � Qe�t /RC

ln� q
Q � � �

t
RC

 

 �q

Q
 
dq
q

� �
1

RC
 �t

0
 dt

t � 0,q � Q

 
dq
q

� �
1

RC
 dt

�R 
dq
dt

�
q
C

 

I � dq /dt

�
q
C

� IR � 0

t � 0,
I � 0.

1
2Q� � 1

2C�2,
Q� � C�2.

 � RC

Charge versus time for a
discharging capacitor

Current versus time for a
discharging capacitor

(a)

S

RC

t < 0

–Q

+Q

R

S

I
–q

+q
C

(b)

t > 0

Figure 28.18 (a) A charged ca-
pacitor connected to a resistor and
a switch, which is open at 
(b) After the switch is closed, a cur-
rent that decreases in magnitude
with time is set up in the direction
shown, and the charge on the ca-
pacitor decreases exponentially
with time.

t � 0.
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Intermittent Windshield WipersCONCEPTUAL EXAMPLE 28.10
through a multiposition switch. As it increases with time, the
voltage across the capacitor reaches a point at which it trig-
gers the wipers and discharges, ready to begin another charg-
ing cycle. The time interval between the individual sweeps of
the wipers is determined by the value of the time constant.

Many automobiles are equipped with windshield wipers that
can operate intermittently during a light rainfall. How does
the operation of such wipers depend on the charging and dis-
charging of a capacitor?

Solution The wipers are part of an RC circuit whose time
constant can be varied by selecting different values of R

Charging a Capacitor in an RC CircuitEXAMPLE 28.11
Exercise Calculate the charge on the capacitor and the cur-
rent in the circuit after one time constant has elapsed.

Answer 37.9 	C, 5.52 	A.

An uncharged capacitor and a resistor are connected in se-
ries to a battery, as shown in Figure 28.19. If 

and find the time constant
of the circuit, the maximum charge on the capacitor, the
maximum current in the circuit, and the charge and current
as functions of time.

Solution The time constant of the circuit is 
The maximum

charge on the capacitor is 
The maximum current in the circuit is

Using these
values and Equations 28.14 and 28.15, we find that

Graphs of these functions are provided in Figure 28.20.

(15.0 	A) e�t/4.00 sI(t) �

(60.0 	C)(1 � e�t/4.00 s )q(t) �

I0 � �/R � (12.0 V)/(8.00 � 105 �) � 15.0 	A.
60.0 	C.

(12.0 V) �Q � C� � (5.00 	F)
(8.00 � 105 �)(5.00 � 10�6 F) � 4.00 s.

 � RC �

R � 8.00 � 105 �,C � 5.00 	F,
� � 12.0 V,

R

ε
C

+ – S

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

q(µC)

Q = 60.0 µC

t(s)

0 1 2 3 4 5 6 7
0

5

10

15

I(µA)

I 0 = 15.0 µA

t(s)

(a)

(b)

t   = τ

µ

µ

µ

µ

τ

t   = ττ

Figure 28.19 The switch of this series RC circuit, open for times
is closed at t � 0.t � 0,

Figure 28.20 Plots of (a) charge versus time and (b) current ver-
sus time for the RC circuit shown in Figure 28.19, with 

, and C � 5.00 	F.R � 8.00 � 105 �
� � 12.0 V,

Discharging a Capacitor in an RC CircuitEXAMPLE 28.12
Solution The charge on the capacitor varies with time ac-
cording to Equation 28.17, To find the time
it takes q to drop to one-fourth its initial value, we substitute

into this expression and solve for t :q(t) � Q /4

q(t) � Qe�t /RC.
Consider a capacitor of capacitance C that is being dis-
charged through a resistor of resistance R , as shown in Figure
28.18. (a) After how many time constants is the charge on the
capacitor one-fourth its initial value?
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Taking logarithms of both sides, we find

(b) The energy stored in the capacitor decreases with
time as the capacitor discharges. After how many time con-
stants is this stored energy one-fourth its initial value?

Solution Using Equations 26.11 and 28.17,
we can express the energy stored in the capacitor at any time
t as

(U � Q2/2C)

1.39 t � RC(ln 4) � 1.39RC �

�ln 4 � �
t

RC
 

 14 � e�t /RC 

Q
4

� Qe�t /RC

where is the initial energy stored in the capaci-
tor. As in part (a), we now set and solve for t :

Again, taking logarithms of both sides and solving for t gives

Exercise After how many time constants is the current in
the circuit one-half its initial value?

Answer 0.693RC � 0.693.

0.693t � 1
2RC(ln 4) � 0.693RC �

 14 � e�2t /RC 

U0

4
� U0e�2t /RC

U � U0/4
U0 � Q2/2C

U �
q 2

2C
�

(Q e�t /RC)2

2C
�

Q2

2C
 e�2t /RC � U0e�2t /RC

Energy Delivered to a ResistorEXAMPLE 28.13

To evaluate this integral, we note that the initial current is
equal to and that all parameters except t are constant.
Thus, we find

(1)

This integral has a value of RC/2; hence, we find

which agrees with the result we obtained using the simpler
approach, as it must. Note that we can use this second ap-
proach to find the total energy delivered to the resistor at any
time after the switch is closed by simply replacing the upper
limit in the integral with that specific value of t.

Exercise Show that the integral in Equation (1) has the
value RC/2.

Energy � 1
2C�2

Energy �
�2

R
 ��

0
 e�2t/RC dt

�/R
I0

Energy � ��

0
 I 2R dt � ��

0
 (I0e�t /RC)2 R dt

A 5.00-	F capacitor is charged to a potential difference of
800 V and then discharged through a 25.0-k� resistor. How
much energy is delivered to the resistor in the time it takes to
fully discharge the capacitor?

Solution We shall solve this problem in two ways. The first
way is to note that the initial energy in the circuit equals the
energy stored in the capacitor, C�2/2 (see Eq. 26.11). Once
the capacitor is fully discharged, the energy stored in it is
zero. Because energy is conserved, the initial energy stored in
the capacitor is transformed into internal energy in the resis-
tor. Using the given values of C and �, we find

The second way, which is more difficult but perhaps more
instructive, is to note that as the capacitor discharges through
the resistor, the rate at which energy is delivered to the resis-
tor is given by I 2R, where I is the instantaneous current given
by Equation 28.18. Because power is defined as the time rate
of change of energy, we conclude that the energy delivered to
the resistor must equal the time integral of I 2R dt:

1.60 JEnergy � 1
2 C�2 � 1

2(5.00 � 10�6 F)(800 V)2 �

Optional Section

ELECTRICAL INSTRUMENTS

The Ammeter

A device that measures current is called an ammeter. The current to be measured
must pass directly through the ammeter, so the ammeter must be connected in se-

28.5



ries with other elements in the circuit, as shown in Figure 28.21. When using an
ammeter to measure direct currents, you must be sure to connect it so that current
enters the instrument at the positive terminal and exits at the negative terminal.

Ideally, an ammeter should have zero resistance so that the current be-
ing measured is not altered. In the circuit shown in Figure 28.21, this condition
requires that the resistance of the ammeter be much less than Because
any ammeter always has some internal resistance, the presence of the ammeter in
the circuit slightly reduces the current from the value it would have in the meter’s
absence.

The Voltmeter

A device that measures potential difference is called a voltmeter. The potential
difference between any two points in a circuit can be measured by attaching the
terminals of the voltmeter between these points without breaking the circuit, as
shown in Figure 28.22. The potential difference across resistor R2 is measured by
connecting the voltmeter in parallel with R2 . Again, it is necessary to observe the
polarity of the instrument. The positive terminal of the voltmeter must be con-
nected to the end of the resistor that is at the higher potential, and the negative
terminal to the end of the resistor at the lower potential.

An ideal voltmeter has infinite resistance so that no current passes
through it. In Figure 28.22, this condition requires that the voltmeter have a resis-
tance much greater than R2 . In practice, if this condition is not met, corrections
should be made for the known resistance of the voltmeter.

The Galvanometer

The galvanometer is the main component in analog ammeters and voltmeters.
Figure 28.23a illustrates the essential features of a common type called the 
D’Arsonval galvanometer. It consists of a coil of wire mounted so that it is free to ro-
tate on a pivot in a magnetic field provided by a permanent magnet. The basic op-

R 1 � R 2 .
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R1

ε

–

+

R2

A

R1

ε

V

R2

Figure 28.21 Current can be
measured with an ammeter con-
nected in series with the resistor
and battery of a circuit. An ideal
ammeter has zero resistance.

Figure 28.22 The potential dif-
ference across a resistor can be
measured with a voltmeter con-
nected in parallel with the resistor.
An ideal voltmeter has infinite re-
sistance.

Spring

S

Coil

Scale

N

(a)

Figure 28.23 (a) The principal components of a D’Arsonval galvanometer. When the coil situ-
ated in a magnetic field carries a current, the magnetic torque causes the coil to twist. The angle
through which the coil rotates is proportional to the current in the coil because of the counter-
acting torque of the spring. (b) A large-scale model of a galvanometer movement. Why does the
coil rotate about the vertical axis after the switch is closed?

(b)
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eration of the galvanometer makes use of the fact that a torque acts on a current
loop in the presence of a magnetic field (Chapter 29). The torque experienced by
the coil is proportional to the current through it: the larger the current, the
greater the torque and the more the coil rotates before the spring tightens
enough to stop the rotation. Hence, the deflection of a needle attached to the coil
is proportional to the current. Once the instrument is properly calibrated, it can
be used in conjunction with other circuit elements to measure either currents or
potential differences.

A typical off-the-shelf galvanometer is often not suitable for use as an ammeter,
primarily because it has a resistance of about 60 �. An ammeter resistance this
great considerably alters the current in a circuit. You can understand this by con-
sidering the following example: The current in a simple series circuit containing a
3-V battery and a 3-� resistor is 1 A. If you insert a 60-� galvanometer in this cir-
cuit to measure the current, the total resistance becomes 63 � and the current is
reduced to 0.048 A!

A second factor that limits the use of a galvanometer as an ammeter is the fact
that a typical galvanometer gives a full-scale deflection for currents of the order of
1 mA or less. Consequently, such a galvanometer cannot be used directly to mea-
sure currents greater than this value. However, it can be converted to a useful am-
meter by placing a shunt resistor Rp in parallel with the galvanometer, as shown in
Figure 28.24a. The value of Rp must be much less than the galvanometer resis-
tance so that most of the current to be measured passes through the shunt resistor.

A galvanometer can also be used as a voltmeter by adding an external resistor
Rs in series with it, as shown in Figure 28.24b. In this case, the external resistor
must have a value much greater than the resistance of the galvanometer to ensure
that the galvanometer does not significantly alter the voltage being measured.

The Wheatstone Bridge

An unknown resistance value can be accurately measured using a circuit known as
a Wheatstone bridge (Fig. 28.25). This circuit consists of the unknown resistance
Rx , three known resistances R1 , R2 , and R3 (where R1 is a calibrated variable resis-
tor), a galvanometer, and a battery. The known resistor R1 is varied until the gal-
vanometer reading is zero—that is, until there is no current from a to b. Under
this condition the bridge is said to be balanced. Because the electric potential at

60 Ω

Rp

Galvanometer

(a)

60 Ω

Galvanometer

Rs

(b)

Figure 28.24 (a) When a galvanometer is to be used as an ammeter, a shunt resistor Rp is con-
nected in parallel with the galvanometer. (b) When the galvanometer is used as a voltmeter, a re-
sistor Rs is connected in series with the galvanometer.

Figure 28.25 Circuit diagram for
a Wheatstone bridge, an instru-
ment used to measure an unknown
resistance Rx in terms of known re-
sistances R1 , R2 , and R3 . When the
bridge is balanced, no current is
present in the galvanometer. The
arrow superimposed on the circuit
symbol for resistor R1 indicates that
the value of this resistor can be var-
ied by the person operating the
bridge.

G

R1 R2

R3 Rx

+

–
a b

I1 I2
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point a must equal the potential at point b when the bridge is balanced, the poten-
tial difference across R1 must equal the potential difference across R2 . Likewise,
the potential difference across R3 must equal the potential difference across Rx .
From these considerations we see that

(1)

(2)

Dividing Equation (1) by Equation (2) eliminates the currents, and solving for R x ,
we find that

(28.19)

A number of similar devices also operate on the principle of null measure-
ment (that is, adjustment of one circuit element to make the galvanometer read
zero). One example is the capacitance bridge used to measure unknown capaci-
tances. These devices do not require calibrated meters and can be used with any
voltage source.

Wheatstone bridges are not useful for resistances above 105 �, but modern
electronic instruments can measure resistances as high as 1012 �. Such instru-
ments have an extremely high resistance between their input terminals. For exam-
ple, input resistances of 1010 � are common in most digital multimeters, which are
devices that are used to measure voltage, current, and resistance (Fig. 28.26).

The Potentiometer

A potentiometer is a circuit that is used to measure an unknown emf �x by com-
parison with a known emf. In Figure 28.27, point d represents a sliding contact
that is used to vary the resistance (and hence the potential difference) between
points a and d. The other required components are a galvanometer, a battery of
known emf �0 , and a battery of unknown emf �x .

With the currents in the directions shown in Figure 28.27, we see from Kirch-
hoff’s junction rule that the current in the resistor Rx is where I is the cur-
rent in the left branch (through the battery of emf �0) and Ix is the current in the
right branch. Kirchhoff’s loop rule applied to loop abcda traversed clockwise gives

Because current Ix passes through it, the galvanometer displays a nonzero reading.
The sliding contact at d is now adjusted until the galvanometer reads zero (indicat-
ing a balanced circuit and that the potentiometer is another null-measurement de-
vice). Under this condition, the current in the galvanometer is zero, and the po-
tential difference between a and d must equal the unknown emf �x :

Next, the battery of unknown emf is replaced by a standard battery of known
emf �s , and the procedure is repeated. If Rs is the resistance between a and d
when balance is achieved this time, then

where it is assumed that I remains the same. Combining this expression with the
preceding one, we see that

(28.20)�x �
R x

R s
 �s

�s � IR s

�x � IR x

��x � (I � Ix)R x � 0

I � Ix ,

R x �
R 2R 3

R 1

I1R 3 � I2R x

I1R 1 � I2R 2

The strain gauge, a device used for
experimental stress analysis, con-
sists of a thin coiled wire bonded to
a flexible plastic backing. The
gauge measures stresses by detect-
ing changes in the resistance of the
coil as the strip bends. Resistance
measurements are made with this
device as one element of a Wheat-
stone bridge. Strain gauges are
commonly used in modern elec-
tronic balances to measure the
masses of objects.

Figure 28.26 Voltages, currents,
and resistances are frequently mea-
sured with digital multimeters like
this one.
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If the resistor is a wire of resistivity �, its resistance can be varied by using the
sliding contact to vary the length L, indicating how much of the wire is part of the
circuit. With the substitutions and Equation 28.20 be-
comes

(28.21)

where Lx is the resistor length when the battery of unknown emf �x is in the cir-
cuit and Ls is the resistor length when the standard battery is in the circuit.

The sliding-wire circuit of Figure 28.27 without the unknown emf and the 
galvanometer is sometimes called a voltage divider. This circuit makes it possible to
tap into any desired smaller portion of the emf �0 by adjusting the length of the
resistor.

Optional Section

HOUSEHOLD WIRING AND ELECTRICAL SAFETY
Household circuits represent a practical application of some of the ideas pre-
sented in this chapter. In our world of electrical appliances, it is useful to under-
stand the power requirements and limitations of conventional electrical systems
and the safety measures that prevent accidents. 

In a conventional installation, the utility company distributes electric power to
individual homes by means of a pair of wires, with each home connected in paral-
lel to these wires. One wire is called the live wire,5 as illustrated in Figure 28.28, and
the other is called the neutral wire. The potential difference between these two
wires is about 120 V. This voltage alternates in time, with the neutral wire con-
nected to ground and the potential of the live wire oscillating relative to ground.
Much of what we have learned so far for the constant-emf situation (direct cur-
rent) can also be applied to the alternating current that power companies supply
to businesses and households. (Alternating voltage and current are discussed in
Chapter 33.)

A meter is connected in series with the live wire entering the house to record
the household’s usage of electricity. After the meter, the wire splits so that there
are several separate circuits in parallel distributed throughout the house. Each cir-
cuit contains a circuit breaker (or, in older installations, a fuse). The wire and cir-
cuit breaker for each circuit are carefully selected to meet the current demands
for that circuit. If a circuit is to carry currents as large as 30 A, a heavy wire and an
appropriate circuit breaker must be selected to handle this current. A circuit used
to power only lamps and small appliances often requires only 15 A. Each circuit
has its own circuit breaker to accommodate various load conditions.

As an example, consider a circuit in which a toaster oven, a microwave oven,
and a coffee maker are connected (corresponding to R1 , R2 , and R 3 in Figure
28.28 and as shown in the chapter-opening photograph). We can calculate the cur-
rent drawn by each appliance by using the expression The toaster oven,
rated at 1 000 W, draws a current of 1 000 W/120 V � 8.33 A. The microwave
oven, rated at 1 300 W, draws 10.8 A, and the coffee maker, rated at 800 W, draws
6.67 A. If the three appliances are operated simultaneously, they draw a total cur-

� � I �V.

28.6

�x �
Lx

Ls
 �s

R x � �Lx /A,R s � �Ls /A

G

x

a b

d
c

ε0
Rx

I – Ix

I Ix

ε ε

Figure 28.27 Circuit diagram for
a potentiometer. The circuit is used
to measure an unknown emf �x .

R1

Live
120 V

Neutral

0 V

R2

Circuit
breaker

Meter

R3

Figure 28.28 Wiring diagram for
a household circuit. The resistances
represent appliances or other elec-
trical devices that operate with an
applied voltage of 120 V.

5 Live wire is a common expression for a conductor whose electric potential is above or below ground
potential.
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rent of 25.8 A. Therefore, the circuit should be wired to handle at least this much
current. If the rating of the circuit breaker protecting the circuit is too small—say,
20 A—the breaker will be tripped when the third appliance is turned on, prevent-
ing all three appliances from operating. To avoid this situation, the toaster oven
and coffee maker can be operated on one 20-A circuit and the microwave oven on
a separate 20-A circuit.

Many heavy-duty appliances, such as electric ranges and clothes dryers, require
240 V for their operation (Fig. 28.29). The power company supplies this voltage by
providing a third wire that is 120 V below ground potential. The potential differ-
ence between this live wire and the other live wire (which is 120 V above ground
potential) is 240 V. An appliance that operates from a 240-V line requires half the
current of one operating from a 120-V line; therefore, smaller wires can be used in
the higher-voltage circuit without overheating.

Electrical Safety

When the live wire of an electrical outlet is connected directly to ground, the cir-
cuit is completed and a short-circuit condition exists. A short circuit occurs when al-
most zero resistance exists between two points at different potentials; this results in
a very large current. When this happens accidentally, a properly operating circuit
breaker opens the circuit and no damage is done. However, a person in contact
with ground can be electrocuted by touching the live wire of a frayed cord or
other exposed conductor. An exceptionally good (although very dangerous)
ground contact is made when the person either touches a water pipe (normally at
ground potential) or stands on the ground with wet feet. The latter situation rep-
resents a good ground because normal, nondistilled water is a conductor because
it contains a large number of ions associated with impurities. This situation should
be avoided at all cost.

Electric shock can result in fatal burns, or it can cause the muscles of vital or-
gans, such as the heart, to malfunction. The degree of damage to the body de-
pends on the magnitude of the current, the length of time it acts, the part of the
body touched by the live wire, and the part of the body through which the current
passes. Currents of 5 mA or less cause a sensation of shock but ordinarily do little
or no damage. If the current is larger than about 10 mA, the muscles contract and
the person may be unable to release the live wire. If a current of about 100 mA
passes through the body for only a few seconds, the result can be fatal. Such a
large current paralyzes the respiratory muscles and prevents breathing. In some
cases, currents of about 1 A through the body can produce serious (and some-
times fatal) burns. In practice, no contact with live wires is regarded as safe when-
ever the voltage is greater than 24 V.

Many 120-V outlets are designed to accept a three-pronged power cord such as
the one shown in Figure 28.30. (This feature is required in all new electrical instal-
lations.) One of these prongs is the live wire at a nominal potential of 120 V. The
second, called the “neutral,” is nominally at 0 V and carries current to ground.
The third, round prong is a safety ground wire that normally carries no current
but is both grounded and connected directly to the casing of the appliance. If the
live wire is accidentally shorted to the casing (which can occur if the wire insula-
tion wears off), most of the current takes the low-resistance path through the ap-
pliance to ground. In contrast, if the casing of the appliance is not properly
grounded and a short occurs, anyone in contact with the appliance experiences an
electric shock because the body provides a low-resistance path to ground.

Figure 28.29 A power connec-
tion for a 240-V appliance. 

Figure 28.30 A three-pronged
power cord for a 120-V appliance.
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Special power outlets called ground-fault interrupters (GFIs) are now being used
in kitchens, bathrooms, basements, exterior outlets, and other hazardous areas of
new homes. These devices are designed to protect persons from electric shock by
sensing small currents (� 5 mA) leaking to ground. (The principle of their opera-
tion is described in Chapter 31.) When an excessive leakage current is detected,
the current is shut off in less than 1 ms.

Is a circuit breaker wired in series or in parallel with the device it is protecting?

SUMMARY

The emf of a battery is equal to the voltage across its terminals when the current is
zero. That is, the emf is equivalent to the open-circuit voltage of the battery.

The equivalent resistance of a set of resistors connected in series is

(28.6)

The equivalent resistance of a set of resistors connected in parallel is 

(28.8)

If it is possible to combine resistors into series or parallel equivalents, the preced-
ing two equations make it easy to determine how the resistors influence the rest of
the circuit.

Circuits involving more than one loop are conveniently analyzed with the use
of Kirchhoff ’s rules:

1. The sum of the currents entering any junction in an electric circuit must equal
the sum of the currents leaving that junction:

(28.9)

2. The sum of the potential differences across all elements around any circuit
loop must be zero:

(28.10)

The first rule is a statement of conservation of charge; the second is equivalent to
a statement of conservation of energy.

When a resistor is traversed in the direction of the current, the change in po-
tential �V across the resistor is �IR . When a resistor is traversed in the direction
opposite the current, When a source of emf is traversed in the direc-
tion of the emf (negative terminal to positive terminal), the change in potential is
��. When a source of emf is traversed opposite the emf (positive to negative),
the change in potential is ��. The use of these rules together with Equations 28.9
and 28.10 allows you to analyze electric circuits.

If a capacitor is charged with a battery through a resistor of resistance R , the
charge on the capacitor and the current in the circuit vary in time according to

�V � �IR .

�
closed
loop

 �V � 0

�I in � �Iout

1
R eq

�
1

R 1
�

1
R 2

�
1

R 3
� ���

R eq � R 1 � R 2 � R 3 � ���

Quick Quiz 28.4
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the expressions

(28.14)

(28.15)

where is the maximum charge on the capacitor. The product RC is called
the time constant  of the circuit. If a charged capacitor is discharged through a
resistor of resistance R , the charge and current decrease exponentially in time ac-
cording to the expressions

(28.17)

(28.18)

where Q is the initial charge on the capacitor and is the initial current
in the circuit. Equations 28.14, 28.15, 28.17, and 28.18 permit you to analyze the
current and potential differences in an RC circuit and the charge stored in the cir-
cuit’s capacitor.

Q /RC � I0

I(t) � �
Q

RC
 e�t/RC

q(t) � Qe�t/RC 

Q � C�

I(t) �
�
R

 e�t /RC 

q(t) � Q(1 � e�t /RC)

QUESTIONS

13. Describe what happens to the lightbulb shown in Figure
Q28.13 after the switch is closed. Assume that the capaci-
tor has a large capacitance and is initially uncharged, and
assume that the light illuminates when connected directly
across the battery terminals.

1. Explain the difference between load resistance in a cir-
cuit and internal resistance in a battery.

2. Under what condition does the potential difference
across the terminals of a battery equal its emf ? Can the
terminal voltage ever exceed the emf ? Explain.

3. Is the direction of current through a battery always from
the negative terminal to the positive one? Explain.

4. How would you connect resistors so that the equivalent
resistance is greater than the greatest individual resis-
tance? Give an example involving three resistors.

5. How would you connect resistors so that the equivalent
resistance is less than the least individual resistance? Give
an example involving three resistors.

6. Given three lightbulbs and a battery, sketch as many dif-
ferent electric circuits as you can.

7. Which of the following are the same for each resistor in a
series connection—potential difference, current, power?

8. Which of the following are the same for each resistor in a
parallel connection—potential difference, current,
power?

9. What advantage might there be in using two identical re-
sistors in parallel connected in series with another identi-
cal parallel pair, rather than just using a single resistor?

10. An incandescent lamp connected to a 120-V source with a
short extension cord provides more illumination than the
same lamp connected to the same source with a very long
extension cord. Explain why.

11. When can the potential difference across a resistor be
positive?

12. In Figure 28.15, suppose the wire between points g and h
is replaced by a 10-� resistor. Explain why this change
does not affect the currents calculated in Example 28.9.

14. What are the internal resistances of an ideal ammeter? of
an ideal voltmeter? Do real meters ever attain these
ideals?

15. Although the internal resistances of all sources of emf
were neglected in the treatment of the potentiometer
(Section 28.5), it is really not necessary to make this as-
sumption. Explain why internal resistances play no role in
the measurement of �x .

Switch
Battery
+ –

C

Figure Q28.13
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16. Why is it dangerous to turn on a light when you are in the
bathtub?

17. Suppose you fall from a building, and on your way down
you grab a high-voltage wire. Assuming that you are hang-
ing from the wire, will you be electrocuted? If the wire
then breaks, should you continue to hold onto an end of
the wire as you fall?

18. What advantage does 120-V operation offer over 240 V ?
What are its disadvantages compared with 240 V?

19. When electricians work with potentially live wires, they of-
ten use the backs of their hands or fingers to move the
wires. Why do you suppose they employ this technique?

20. What procedure would you use to try to save a person
who is “frozen” to a live high-voltage wire without endan-
gering your own life?

21. If it is the current through the body that determines the
seriousness of a shock, why do we see warnings of high
voltage rather than high current near electrical equipment?

22. Suppose you are flying a kite when it strikes a high-
voltage wire. What factors determine how great a shock
you receive?

23. A series circuit consists of three identical lamps that are
connected to a battery as shown in Figure Q28.23. When
switch S is closed, what happens (a) to the intensities of
lamps A and B, (b) to the intensity of lamp C, (c) to the
current in the circuit, and (d) to the voltage across the
three lamps? (e) Does the power delivered to the circuit
increase, decrease, or remain the same?

24. If your car’s headlights are on when you start the igni-
tion, why do they dim while the car is starting?

25. A ski resort consists of a few chair lifts and several inter-
connected downhill runs on the side of a mountain, with
a lodge at the bottom. The lifts are analogous to batteries,
and the runs are analogous to resistors. Describe how two
runs can be in series. Describe how three runs can be in
parallel. Sketch a junction of one lift and two runs. State
Kirchhoff’s junction rule for ski resorts. One of the skiers,
who happens to be carrying an altimeter, stops to warm
up her toes each time she passes the lodge. State Kirch-
hoff’s loop rule for altitude.

Figure Q28.23

A

S

B C

ε

PROBLEMS

4. An automobile battery has an emf of 12.6 V and an in-
ternal resistance of 0.080 0 �. The headlights have a to-
tal resistance of 5.00 � (assumed constant). What is the
potential difference across the headlight bulbs (a) when
they are the only load on the battery and (b) when the
starter motor, which takes an additional 35.0 A from the
battery, is operated?

Section 28.2 Resistors in Series and in Parallel
5. The current in a loop circuit that has a resistance of R1

is 2.00 A. The current is reduced to 1.60 A when an ad-
ditional resistor is added in series with R1 .
What is the value of R1 ?

6. (a) Find the equivalent resistance between points a and
b in Figure P28.6. (b) Calculate the current in each re-
sistor if a potential difference of 34.0 V is applied be-
tween points a and b.

7. A television repairman needs a 100-� resistor to repair
a malfunctioning set. He is temporarily out of resistors

R 2 � 3.00 �

Section 28.1 Electromotive Force
1. A battery has an emf of 15.0 V. The terminal voltage of

the battery is 11.6 V when it is delivering 20.0 W of
power to an external load resistor R. (a) What is the
value of R? (b) What is the internal resistance of the
battery?

2. (a) What is the current in a 5.60-� resistor connected to
a battery that has a 0.200-� internal resistance if the ter-
minal voltage of the battery is 10.0 V ? (b) What is the
emf of the battery?

3. Two 1.50-V batteries—with their positive terminals in
the same direction—are inserted in series into the bar-
rel of a flashlight. One battery has an internal resistance
of 0.255 �, the other an internal resistance of 0.153 �.
When the switch is closed, a current of 600 mA occurs
in the lamp. (a) What is the lamp’s resistance? (b) What
percentage of the power from the batteries appears in
the batteries themselves, as represented by an increase
in temperature?

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB
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WEB

16. Two resistors connected in series have an equivalent re-
sistance of 690 �. When they are connected in parallel,
their equivalent resistance is 150 �. Find the resistance
of each resistor.

17. In Figures 28.4 and 28.5, let �, let 
and let the battery have a terminal voltage of

33.0 V. (a) In the parallel circuit shown in Figure 28.5,
which resistor uses more power? (b) Verify that the sum
of the power (I 2R) used by each resistor equals the
power supplied by the battery (I �V ). (c) In the series
circuit, which resistor uses more power? (d) Verify that
the sum of the power (I 2R) used by each resistor equals

22.0 �,
R 2 �R 1 � 11.0

15. Calculate the power delivered to each resistor in the cir-
cuit shown in Figure P28.15.

10. Four copper wires of equal length are connected in se-
ries. Their cross-sectional areas are 1.00 cm2, 2.00 cm2,
3.00 cm2, and 5.00 cm2. If a voltage of 120 V is applied
to the arrangement, what is the voltage across the 
2.00-cm2 wire?

11. Three 100-� resistors are connected as shown in Figure
P28.11. The maximum power that can safely be deliv-
ered to any one resistor is 25.0 W. (a) What is the maxi-
mum voltage that can be applied to the terminals a and
b? (b) For the voltage determined in part (a), what is

of this value. All he has in his toolbox are a 500-� resis-
tor and two 250-� resistors. How can he obtain the de-
sired resistance using the resistors he has on hand?

8. A lightbulb marked “75 W [at] 120 V” is screwed into a
socket at one end of a long extension cord in which
each of the two conductors has a resistance of 0.800 �.
The other end of the extension cord is plugged into a
120-V outlet. Draw a circuit diagram, and find the actual
power delivered to the bulb in this circuit.

9. Consider the circuit shown in Figure P28.9. Find (a) the
current in the 20.0-� resistor and (b) the potential dif-
ference between points a and b.

the power delivered to each resistor? What is the total
power delivered?

12. Using only three resistors—2.00 �, 3.00 �, and 
4.00 �—find 17 resistance values that can be obtained
with various combinations of one or more resistors. Tab-
ulate the combinations in order of increasing resistance.

13. The current in a circuit is tripled by connecting a 500-�
resistor in parallel with the resistance of the circuit. De-
termine the resistance of the circuit in the absence of
the 500-� resistor.

14. The power delivered to the top part of the circuit shown
in Figure P28.14 does not depend on whether the switch
is opened or closed. If R � 1.00 �, what is R �? Neglect
the internal resistance of the voltage source.

9.00 Ω4.00 Ω

10.0 Ω

7.00 Ω

ba

2.00 Ω

18.0 V
3.00 Ω

4.00 Ω

1.00 Ω

ε

S R ′

R

R ′

a

100 Ω

100 Ω

100 Ω

b

20.0 Ω

a 10.0 Ω

10.0 Ω 25.0 V

5.00 Ω

b

5.00 Ω

Figure P28.6

Figure P28.9

Figure P28.11

Figure P28.14

Figure P28.15
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the power supplied by the battery 
(e) Which circuit configuration uses more power?

Section 28.3 Kirchhoff’s Rules
Note: The currents are not necessarily in the direction shown
for some circuits.

18. The ammeter shown in Figure P28.18 reads 2.00 A.
Find I 1 , I 2 , and �.

(� � I �V ). 22. (a) Using Kirchhoff’s rules, find the current in each re-
sistor shown in Figure P28.22 and (b) find the potential
difference between points c and f. Which point is at the
higher potential?

WEB

25. A dead battery is charged by connecting it to the live
battery of another car with jumper cables (Fig. P28.25).
Determine the current in the starter and in the dead
battery.

24. In the circuit of Figure P28.24, determine the current
in each resistor and the voltage across the 200-� resis-
tor.

23. If and in Figure P28.23, deter-
mine the direction and magnitude of the current in the
horizontal wire between a and e.

� � 250 VR � 1.00 k�

20. In Figure P28.19, show how to add just enough amme-
ters to measure every different current that is flowing.
Show how to add just enough voltmeters to measure the
potential difference across each resistor and across each
battery.

21. The circuit considered in Problem 19 and shown in Fig-
ure P28.19 is connected for 2.00 min. (a) Find the en-
ergy supplied by each battery. (b) Find the energy deliv-
ered to each resistor. (c) Find the total amount of
energy converted from chemical energy in the battery
to internal energy in the circuit resistance.

19. Determine the current in each branch of the circuit
shown in Figure P28.19.

80 Ω200 Ω 20 Ω 70 Ω

40 V 360 V 80 V

ε

R

a

b
2R

3R4R

c d

e

+
–

+
– ε2

60.0 V70.0 V 80.0 V

R2

a f e

R3

3.00 kΩ

2.00 kΩ

4.00 kΩcb d

ε1ε ε2ε ε3ε

R1

3.00 Ω

1.00 Ω

5.00 Ω

1.00 Ω

4.00 V
+

8.00 Ω

12.0 V
+

�

�

7.00 Ω 15.0 V

5.00 Ω

2.00 Ω ε
I2

I1

A

Figure P28.18

Figure P28.19 Problems 19, 20, and 21.

Figure P28.22

Figure P28.23

Figure P28.24
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26. For the network shown in Figure P28.26, show that the
resistance R ab � 27

17 �.

Section 28.4 RC Circuits
29. Consider a series RC circuit (see Fig. 28.16) for which

and Find 
(a) the time constant of the circuit and (b) the maxi-
mum charge on the capacitor after the switch is closed.
(c) If the switch is closed at find the current in
the resistor 10.0 s later.

30. A 2.00-nF capacitor with an initial charge of 5.10 	C is
discharged through a 1.30-k� resistor. (a) Calculate the
current through the resistor 9.00 	s after the resistor is
connected across the terminals of the capacitor. 
(b) What charge remains on the capacitor after 8.00 	s?
(c) What is the maximum current in the resistor?

31. A fully charged capacitor stores energy U0 . How much
energy remains when its charge has decreased to half its
original value?

32. In the circuit of Figure P28.32, switch S has been open
for a long time. It is then suddenly closed. Determine
the time constant (a) before the switch is closed and
(b) after the switch is closed. (c) If the switch is closed
at , determine the current through it as a function
of time.

t � 0

t � 0,

� � 30.0 V.C � 5.00 	F,R � 1.00 M�,
WEB

34. A 4.00-M� resistor and a 3.00-	F capacitor are con-
nected in series with a 12.0-V power supply. (a) What is
the time constant for the circuit? (b) Express the cur-
rent in the circuit and the charge on the capacitor as
functions of time.

33. The circuit shown in Figure P28.33 has been connected
for a long time. (a) What is the voltage across the capac-
itor? (b) If the battery is disconnected, how long does it
take the capacitor to discharge to one-tenth its initial
voltage?

28. Calculate the power delivered to each of the resistors
shown in Figure P28.28.

27. For the circuit shown in Figure P28.27, calculate (a) the
current in the 2.00-� resistor and (b) the potential dif-
ference between points a and b.

10.0 V

1.00 Ω 8.00 Ω

2.00 Ω4.00 Ω

1.00 µFµ

50.0 kΩ

100 kΩ

10.0 V
S

10.0 Fµ

2.0 Ω

20 V50 V

2.0 Ω

4.0 Ω 4.0 Ω

4.00 Ω

b

a

2.00 Ω

6.00 Ω8.00 V

12.0 V

0.01 Ω

Live
battery

+

–

+

–

1.00 Ω
0.06 Ω
Starter

Dead
battery

12 V 10 V

1.0 Ω

1.0 Ω 1.0 Ω

5.0 Ω3.0 Ω

a b

Figure P28.25
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Figure P28.27

Figure P28.28

Figure P28.32

Figure P28.33
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35. Dielectric materials used in the manufacture of capaci-
tors are characterized by conductivities that are small
but not zero. Therefore, a charged capacitor slowly
loses its charge by “leaking” across the dielectric. If a
certain 3.60-	F capacitor leaks charge such that the po-
tential difference decreases to half its initial value in
4.00 s, what is the equivalent resistance of the dielectric?

36. Dielectric materials used in the manufacture of capaci-
tors are characterized by conductivities that are small
but not zero. Therefore, a charged capacitor slowly
loses its charge by “leaking” across the dielectric. If a ca-
pacitor having capacitance C leaks charge such that the
potential difference decreases to half its initial value in
a time t, what is the equivalent resistance of the dielec-
tric?

37. A capacitor in an RC circuit is charged to 60.0% of its
maximum value in 0.900 s. What is the time constant of
the circuit?

(Optional)
Section 28.5 Electrical Instruments

38. A typical galvanometer, which requires a current of 
1.50 mA for full-scale deflection and has a resistance of
75.0 �, can be used to measure currents of much
greater values. A relatively small shunt resistor is wired
in parallel with the galvanometer (refer to Fig. 28.24a)
so that an operator can measure large currents without
causing damage to the galvanometer. Most of the cur-
rent then flows through the shunt resistor. Calculate the
value of the shunt resistor that enables the galvanome-
ter to be used to measure a current of 1.00 A at full-
scale deflection. (Hint: Use Kirchhoff’s rules.)

39. The galvanometer described in the preceding problem
can be used to measure voltages. In this case a large re-
sistor is wired in series with the galvanometer in a way
similar to that shown in Figure 28.24b. This arrange-
ment, in effect, limits the current that flows through the
galvanometer when large voltages are applied. Most of
the potential drop occurs across the resistor placed in
series. Calculate the value of the resistor that enables
the galvanometer to measure an applied voltage of 
25.0 V at full-scale deflection.

40. A galvanometer with a full-scale sensitivity of 1.00 mA
requires a 900-� series resistor to make a voltmeter
reading full scale when 1.00 V is measured across the
terminals. What series resistor is required to make the
same galvanometer into a 50.0-V (full-scale) voltmeter?

41. Assume that a galvanometer has an internal resistance
of 60.0 � and requires a current of 0.500 mA to pro-
duce full-scale deflection. What resistance must be con-
nected in parallel with the galvanometer if the combina-
tion is to serve as an ammeter that has a full-scale
deflection for a current of 0.100 A?

42. A Wheatstone bridge of the type shown in Figure 28.25
is used to make a precise measurement of the resistance
of a wire connector. If and the bridge is
balanced by adjusting R1 such that what is
Rx ?

43. Consider the case in which the Wheatstone bridge
shown in Figure 28.25 is unbalanced. Calculate the cur-
rent through the galvanometer when 

and Assume that the
voltage across the bridge is 70.0 V, and neglect the gal-
vanometer’s resistance.

44. Review Problem. A Wheatstone bridge can be used to
measure the strain of a wire (see Section 12.4),
where Li is the length before stretching, L is the length
after stretching, and Let 
Show that the resistance is for
any length, where Assume that the resistiv-
ity and volume of the wire stay constant.

45. Consider the potentiometer circuit shown in Figure
28.27. If a standard battery with an emf of 1.018 6 V is
used in the circuit and the resistance between a and d is
36.0 �, the galvanometer reads zero. If the standard
battery is replaced by an unknown emf, the galvanome-
ter reads zero when the resistance is adjusted to 48.0 �.
What is the value of the emf ?

46. Meter loading. Work this problem to five-digit precision.
Refer to Figure P28.46. (a) When a 180.00-� resistor is
put across a battery with an emf of 6.000 0 V and an in-
ternal resistance of 20.000 �, what current flows in the
resistor? What will be the potential difference across 
it? (b) Suppose now that an ammeter with a resistance
of 0.500 00 � and a voltmeter with a resistance of 

R i � �Li/Ai .
R � R i(1 � 2� � �2)

� � �L/Li .�L � L � Li .

(�L/Li)

R 1 � 14.0 �.R 2 � 21.0 �,7.00 �,
R x � R 3 �

R 1 � 2.50R 2 ,
R 3 � 1.00 k�

(a)

180.00 Ω

20.000 Ω
6.000 0 V

(b)

AV

(c)

AV

Figure P28.46
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20 000 � are added to the circuit, as shown in Figure
P28.46b. Find the reading of each. (c) One terminal of
one wire is moved, as shown in Figure P28.46c. Find the
new meter readings.

(Optional)
Section 28.6 Household Wiring and Electrical Safety

47. An electric heater is rated at 1 500 W, a toaster at 
750 W, and an electric grill at 1 000 W. The three appli-
ances are connected to a common 120-V circuit. 
(a) How much current does each draw? (b) Is a 25.0-A
circuit breaker sufficient in this situation? Explain your
answer.

48. An 8.00-ft extension cord has two 18-gauge copper
wires, each with a diameter of 1.024 mm. What is the
I 2R loss in this cord when it carries a current of 
(a) 1.00 A? (b) 10.0 A?

49. Sometimes aluminum wiring has been used instead of
copper for economic reasons. According to the Na-
tional Electrical Code, the maximum allowable current
for 12-gauge copper wire with rubber insulation is 20 A.
What should be the maximum allowable current in a
12-gauge aluminum wire if it is to have the same I 2R
loss per unit length as the copper wire?

50. Turn on your desk lamp. Pick up the cord with your
thumb and index finger spanning its width. (a) Com-
pute an order-of-magnitude estimate for the current
that flows through your hand. You may assume that at a
typical instant the conductor inside the lamp cord next
to your thumb is at potential and that the con-
ductor next to your index finger is at ground potential
(0 V). The resistance of your hand depends strongly on
the thickness and moisture content of the outer layers
of your skin. Assume that the resistance of your hand
between fingertip and thumb tip is  . You may
model the cord as having rubber insulation. State the
other quantities you measure or estimate and their val-
ues. Explain your reasoning. (b) Suppose that your
body is isolated from any other charges or currents. In
order-of-magnitude terms, describe the potential of
your thumb where it contacts the cord and the potential
of your finger where it touches the cord.

ADDITIONAL PROBLEMS

51. Four 1.50-V AA batteries in series are used to power a
transistor radio. If the batteries can provide a total
charge of 240 C, how long will they last if the radio has
a resistance of 200 �?

52. A battery has an emf of 9.20 V and an internal resis-
tance of 1.20 �. (a) What resistance across the battery
will extract from it a power of 12.8 W? (b) a power of
21.2 W ?

53. Calculate the potential difference between points a and
b in Figure P28.53, and identify which point is at the
higher potential.

�104 �

�102 V

54. A 10.0-	F capacitor is charged by a 10.0-V battery
through a resistance R . The capacitor reaches a poten-
tial difference of 4.00 V at a time 3.00 s after charging
begins. Find R .

55. When two unknown resistors are connected in series
with a battery, 225 W is delivered to the combination
with a total current of 5.00 A. For the same total cur-
rent, 50.0 W is delivered when the resistors are con-
nected in parallel. Determine the values of the two resis-
tors.

56. When two unknown resistors are connected in series
with a battery, a total power is delivered to the com-
bination with a total current of I. For the same total cur-
rent, a total power is delivered when the resistors are
connected in parallel. Determine the values of the two
resistors.

57. A battery has an emf � and internal resistance r. A vari-
able resistor R is connected across the terminals of the
battery. Determine the value of R such that (a) the po-
tential difference across the terminals is a maximum,
(b) the current in the circuit is a maximum, (c) the
power delivered to the resistor is a maximum.

58. A power supply has an open-circuit voltage of 40.0 V
and an internal resistance of 2.00 �. It is used to charge
two storage batteries connected in series, each having
an emf of 6.00 V and internal resistance of 0.300 �. If
the charging current is to be 4.00 A, (a) what additional
resistance should be added in series? (b) Find the
power delivered to the internal resistance of the supply,
the I 2R loss in the batteries, and the power delivered to
the added series resistance. (c) At what rate is the chem-
ical energy in the batteries increasing?

59. The value of a resistor R is to be determined using the
ammeter-voltmeter setup shown in Figure P28.59. The
ammeter has a resistance of 0.500 �, and the voltmeter
has a resistance of 20 000 �. Within what range of ac-
tual values of R will the measured values be correct, to
within 5.00%, if the measurement is made using (a) the
circuit shown in Figure P28.59a? (b) the circuit shown
in Figure P28.59b?

�p

�s

2.00 Ω

4.00 Ω

10.0 Ω

4.00 V

12.0 V

a

b

WEB

Figure P28.53
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64. Design a multirange voltmeter capable of full-scale de-
flection for 20.0 V, 50.0 V, and 100 V. Assume that the
meter movement is a galvanometer that has a resistance
of 60.0 � and gives a full-scale deflection for a current
of 1.00 mA.

65. Design a multirange ammeter capable of full-scale de-
flection for 25.0 mA, 50.0 mA, and 100 mA. Assume
that the meter movement is a galvanometer that has a
resistance of 25.0 � and gives a full-scale deflection for
1.00 mA.

66. A particular galvanometer serves as a 2.00-V full-scale
voltmeter when a 2 500-� resistor is connected in series
with it. It serves as a 0.500-A full-scale ammeter when a
0.220-� resistor is connected in parallel with it. Deter-
mine the internal resistance of the galvanometer and
the current required to produce full-scale deflection.

67. In Figure P28.67, suppose that the switch has been
closed for a length of time sufficiently long for the ca-
pacitor to become fully charged. (a) Find the steady-
state current in each resistor. (b) Find the charge Q on
the capacitor. (c) The switch is opened at Write
an equation for the current in R2 as a function of
time, and (d) find the time that it takes for the charge
on the capacitor to fall to one-fifth its initial value.

IR 2

t � 0.

63. Three 60.0-W, 120-V lightbulbs are connected across a
120-V power source, as shown in Figure P28.63. Find 
(a) the total power delivered to the three bulbs and 
(b) the voltage across each. Assume that the resistance
of each bulb conforms to Ohm’s law (even though in
reality the resistance increases markedly with current).

60. A battery is used to charge a capacitor through a resis-
tor, as shown in Figure 28.16. Show that half the energy
supplied by the battery appears as internal energy in the
resistor and that half is stored in the capacitor.

61. The values of the components in a simple series RC cir-
cuit containing a switch (Fig. 28.16) are 

and At the instant 10.0 s
after the switch is closed, calculate (a) the charge on
the capacitor, (b) the current in the resistor, (c) the
rate at which energy is being stored in the capacitor,
and (d) the rate at which energy is being delivered by
the battery.

62. The switch in Figure P28.62a closes when 
and opens when The voltmeter reads a
voltage as plotted in Figure P28.62b. What is the period
T of the waveform in terms of RA , RB , and C ?

�Vc � �V/3.
�Vc 
 2�V/3

� � 10.0 V.R � 2.00 � 106 �,
C � 1.00 	F,
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72. The circuit in Figure P28.72 contains two resistors,
and and two capacitors,
and connected to a battery

with emf If no charges exist on the capaci-
tors before switch S is closed, determine the charges q1
and q2 on capacitors C1 and C2 , respectively, after the
switch is closed. (Hint: First reconstruct the circuit so
that it becomes a simple RC circuit containing a single
resistor and single capacitor in series, connected to the
battery, and then determine the total charge q stored in
the equivalent circuit.)

� � 120 V.
C2 � 3.00 	F,C1 � 2.00 	F
R 2 � 3.00 k�,R 1 � 2.00 k�

71. Three 2.00-� resistors are connected as shown in Figure
P28.71. Each can withstand a maximum power of 
32.0 W without becoming excessively hot. Determine
the maximum power that can be delivered to the com-
bination of resistors.

70. The student engineer of a campus radio station wishes
to verify the effectiveness of the lightning rod on the an-

69. (a) Using symmetry arguments, show that the current
through any resistor in the configuration of Figure
P28.69 is either I/3 or I/6. All resistors have the same
resistance r. (b) Show that the equivalent resistance be-
tween points a and b is (5/6)r.

68. The circuit shown in Figure P28.68 is set up in the labo-
ratory to measure an unknown capacitance C with the
use of a voltmeter of resistance and a bat-
tery whose emf is 6.19 V. The data given in the table be-
low are the measured voltages across the capacitor as a
function of time, where represents the time at
which the switch is opened. (a) Construct a graph of
ln(�/�V ) versus t , and perform a linear least-squares
fit to the data. (b) From the slope of your graph, obtain
a value for the time constant of the circuit and a value
for the capacitance.

t � 0

R � 10.0 M�

tenna mast (Fig. P28.70). The unknown resistance R x is
between points C and E . Point E is a true ground but is
inaccessible for direct measurement since this stratum is
several meters below the Earth’s surface. Two identical
rods are driven into the ground at A and B, introducing
an unknown resistance Ry . The procedure is as follows.
Measure resistance R1 between points A and B, then
connect A and B with a heavy conducting wire and mea-
sure resistance R2 between points A and C . (a) Derive a
formula for Rx in terms of the observable resistances R1
and R2 . (b) A satisfactory ground resistance would be

Is the grounding of the station adequate if
measurements give and R 2 � 6.00 �?R 1 � 13.0 �
R x � 2.00 �.

2.00 Ω

2.00 Ω

2.00 Ω

Ry Rx

A BC

Ry

E

b I

aI

S

C

R
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ε

Figure P28.68

Figure P28.69

Figure P28.70

Figure P28.71

�V (V) t (s) ln(�/�V )

6.19 0
5.55 4.87
4.93 11.1
4.34 19.4
3.72 30.8
3.09 46.6
2.47 67.3
1.83 102.2
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ANSWERS TO QUICK QUIZZES

If the second resistor were connected in parallel, the
total resistance of the circuit would decrease, and an in-
crease in current through the battery would result. The
potential difference across the terminals would decrease
because the increased current results in a greater volt-
age decrease across the internal resistance.

28.3 They must be in parallel because if one burns out, the
other continues to operate. If they were in series, one
failed headlamp would interrupt the current through-
out the entire circuit, including the other headlamp.

28.4 Because the circuit breaker trips and opens the circuit
when the current in that circuit exceeds a certain preset
value, it must be in series to sense the appropriate cur-
rent (see Fig. 28.28).

28.1 Bulb R1 becomes brighter. Connecting b to c “shorts
out” bulb R2 and changes the total resistance of the cir-
cuit from to just R1 . Because the resistance has
decreased (and the potential difference supplied by the
battery does not change), the current through the bat-
tery increases. This means that the current through bulb
R1 increases, and bulb R1 glows more brightly. Bulb R2
goes out because the new piece of wire provides an al-
most resistance-free path for the current; hence, essen-
tially zero current exists in bulb R2 .

28.2 Adding another series resistor increases the total resis-
tance of the circuit and thus reduces the current in the
battery. The potential difference across the battery ter-
minals would increase because the reduced current re-
sults in a smaller voltage decrease across the internal re-
sistance. 

R 1 � R 2

73. Assume that you have a battery of emf � and three
identical lightbulbs, each having constant resistance R .
What is the total power from the battery if the bulbs are
connected (a) in series? (b) in parallel? (c) For which
connection do the bulbs shine the brightest?

ε
+    –

R2

R1 C1

C2

a

b c

f

S

d e

Figure P28.72


