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32.1 Self-Inductance 1015

n Chapter 31, we saw that emfs and currents are induced in a circuit when the
magnetic flux through the area enclosed by the circuit changes with time. This
electromagnetic induction has some practical consequences, which we describe

in this chapter. First, we describe an effect known as self-induction, in which a time-
varying current in a circuit produces in the circuit an induced emf that opposes
the emf that initially set up the time-varying current. Self-induction is the basis of
the inductor, an electrical element that has an important role in circuits that use
time-varying currents. We discuss the energy stored in the magnetic field of an in-
ductor and the energy density associated with the magnetic field.

Next, we study how an emf is induced in a circuit as a result of a changing
magnetic flux produced by a second circuit; this is the basic principle of mutual in-
duction. Finally, we examine the characteristics of circuits that contain inductors,
resistors, and capacitors in various combinations.

SELF-INDUCTANCE
In this chapter, we need to distinguish carefully between emfs and currents that
are caused by batteries or other sources and those that are induced by changing
magnetic fields. We use the adjective source (as in the terms source emf and source
current) to describe the parameters associated with a physical source, and we use
the adjective induced to describe those emfs and currents caused by a changing
magnetic field.

Consider a circuit consisting of a switch, a resistor, and a source of emf, as
shown in Figure 32.1. When the switch is thrown to its closed position, the source
current does not immediately jump from zero to its maximum value Fara-
day’s law of electromagnetic induction (Eq. 31.1) can be used to describe this ef-
fect as follows: As the source current increases with time, the magnetic flux
through the circuit loop due to this current also increases with time. This increas-
ing flux creates an induced emf in the circuit. The direction of the induced emf is
such that it would cause an induced current in the loop (if a current were not al-
ready flowing in the loop), which would establish a magnetic field that would op-
pose the change in the source magnetic field. Thus, the direction of the induced
emf is opposite the direction of the source emf; this results in a gradual rather
than instantaneous increase in the source current to its final equilibrium value.
This effect is called self-induction because the changing flux through the circuit and
the resultant induced emf arise from the circuit itself. The emf set up in this
case is called a self-induced emf. It is also often called a back emf.

As a second example of self-induction, consider Figure 32.2, which shows a
coil wound on a cylindrical iron core. (A practical device would have several hun-
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Figure 32.1 After the switch is
thrown closed, the current pro-
duces a magnetic flux through the
area enclosed by the loop. As the
current increases toward its equilib-
rium value, this magnetic flux
changes in time and induces an
emf in the loop. The battery sym-
bol drawn with dashed lines repre-
sents the self-induced emf.

Figure 32.2 (a) A current in the coil produces a magnetic field directed to the left. (b) If the
current increases, the increasing magnetic flux creates an induced emf having the polarity shown
by the dashed battery. (c) The polarity of the induced emf reverses if the current decreases.
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Joseph Henry (1797–1878)
Henry, an American physicist, be-
came the first director of the Smith-
sonian Institution and first president
of the Academy of Natural Science.
He improved the design of the elec-
tromagnet and constructed one of the
first motors. He also discovered the
phenomenon of self-induction but
failed to publish his findings. The unit
of inductance, the henry, is named in
his honor. (North Wind Picture
Archives)
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Self-induced emf

Inductance of an N-turn coil

Inductance

dred turns.) Assume that the source current in the coil either increases or de-
creases with time. When the source current is in the direction shown, a magnetic
field directed from right to left is set up inside the coil, as seen in Figure 32.2a. As
the source current changes with time, the magnetic flux through the coil also
changes and induces an emf in the coil. From Lenz’s law, the polarity of this in-
duced emf must be such that it opposes the change in the magnetic field from the
source current. If the source current is increasing, the polarity of the induced emf
is as pictured in Figure 32.2b, and if the source current is decreasing, the polarity
of the induced emf is as shown in Figure 32.2c.

To obtain a quantitative description of self-induction, we recall from Faraday’s
law that the induced emf is equal to the negative time rate of change of the mag-
netic flux. The magnetic flux is proportional to the magnetic field due to the
source current, which in turn is proportional to the source current in the circuit.
Therefore, a self-induced emf is always proportional to the time rate of
change of the source current. For a closely spaced coil of N turns (a toroid or an
ideal solenoid) carrying a source current I, we find that

(32.1)

where L is a proportionality constant—called the inductance of the coil—that
depends on the geometry of the circuit and other physical characteristics. From
this expression, we see that the inductance of a coil containing N turns is

(32.2)

where it is assumed that the same flux passes through each turn. Later, we shall
use this equation to calculate the inductance of some special circuit geometries.

From Equation 32.1, we can also write the inductance as the ratio

(32.3)

Just as resistance is a measure of the opposition to current induc-
tance is a measure of the opposition to a change in current.

The SI unit of inductance is the henry (H), which, as we can see from Equa-
tion 32.3, is 1 volt-second per ampere:

That the inductance of a device depends on its geometry is analogous to the
capacitance of a capacitor depending on the geometry of its plates, as we found in
Chapter 26. Inductance calculations can be quite difficult to perform for compli-
cated geometries; however, the following examples involve simple situations for
which inductances are easily evaluated.

1 H � 1 
V�s
A

(R � �V/I ),

L � �
�L

dI/dt

L �
N�B

I

�L � �N 
d�B

dt
� �L 

dI
dt

�L

Inductance of a SolenoidEXAMPLE 32.1
Solution We can assume that the interior magnetic field
due to the source current is uniform and given by Equation
30.17:

Find the inductance of a uniformly wound solenoid having N
turns and length �. Assume that � is much longer than the ra-
dius of the windings and that the core of the solenoid is air.
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RL CIRCUITS
If a circuit contains a coil, such as a solenoid, the self-inductance of the coil pre-
vents the current in the circuit from increasing or decreasing instantaneously. A
circuit element that has a large self-inductance is called an inductor and has the
circuit symbol . We always assume that the self-inductance of the re-
mainder of a circuit is negligible compared with that of the inductor. Keep in
mind, however, that even a circuit without a coil has some self-inductance that can
affect the behavior of the circuit.

Because the inductance of the inductor results in a back emf, an inductor in
a circuit opposes changes in the current through that circuit. If the battery
voltage in the circuit is increased so that the current rises, the inductor opposes

32.2

13.6

where n � N/� is the number of turns per unit length. The
magnetic flux through each turn is

where A is the cross-sectional area of the solenoid. Using this
expression and Equation 32.2, we find that

(32.4)

This result shows that L depends on geometry and is propor-
tional to the square of the number of turns. Because 
we can also express the result in the form

(32.5)

where is the volume of the solenoid.V � A�

L � �0 
(n�)2

�
 A � �0n2A� � �0n2V

N � n�,

�0N 2A
�

L �
N�B

I
�

�B � BA � �0 
NA
�

 I

B � �0nI � �0 
N
�

 I Exercise What would happen to the inductance if a ferro-
magnetic material were placed inside the solenoid?

Answer The inductance would increase. For a given cur-
rent, the magnetic flux is now much greater because of the
increase in the field originating from the magnetization of
the ferromagnetic material. For example, if the material has a
magnetic permeability of 500�0 , the inductance would in-
crease by a factor of 500.

The fact that various materials in the vicinity of a coil can
substantially alter the coil’s inductance is used to great advan-
tage by traffic engineers. A flat, horizontal coil made of nu-
merous loops of wire is placed in a shallow groove cut into
the pavement of the lane approaching an intersection. (See
the photograph at the beginning of this chapter.) These
loops are attached to circuitry that measures inductance.
When an automobile passes over the loops, the change in in-
ductance caused by the large amount of iron passing over the
loops is used to control the lights at the intersection.

Calculating Inductance and emfEXAMPLE 32.2
(b) Calculate the self-induced emf in the solenoid if the

current through it is decreasing at the rate of 50.0 A/s.

Solution Using Equation 32.1 and given that 
we obtain

9.05 mV�

�L � �L 
dI
dt

� �(1.81 � 10�4 H)(�50.0 A/s)

�50.0 A/s,
dI/dt �

(a) Calculate the inductance of an air-core solenoid contain-
ing 300 turns if the length of the solenoid is 25.0 cm and its
cross-sectional area is 4.00 cm2.

Solution Using Equation 32.4, we obtain

0.181 mH � 1.81 � 10�4 T �m2/A �

 � (4	 � 10�7 T �m/A) 
(300)2(4.00 � 10�4 m2)

25.0 � 10�2 m

L �
�0N 2A

�
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this change, and the rise is not instantaneous. If the battery voltage is decreased,
the presence of the inductor results in a slow drop in the current rather than an
immediate drop. Thus, the inductor causes the circuit to be “sluggish” as it reacts
to changes in the voltage.

A switch controls the current in a circuit that has a large inductance. Is a spark more likely
to be produced at the switch when the switch is being closed or when it is being opened, or
doesn’t it matter?

Consider the circuit shown in Figure 32.3, in which the battery has negligible 
internal resistance. This is an RL circuit because the elements connected to the 
battery are a resistor and an inductor. Suppose that the switch S is thrown closed at

The current in the circuit begins to increase, and a back emf that opposes the
increasing current is induced in the inductor. The back emf is, from Equation 32.1,

Because the current is increasing, dI/dt is positive; thus, is negative. This nega-
tive value reflects the decrease in electric potential that occurs in going from a to b
across the inductor, as indicated by the positive and negative signs in Figure 32.3.

With this in mind, we can apply Kirchhoff’s loop rule to this circuit, traversing
the circuit in the clockwise direction:

(32.6)

where IR is the voltage drop across the resistor. (We developed Kirchhoff’s rules
for circuits with steady currents, but we can apply them to a circuit in which the
current is changing if we imagine them to represent the circuit at one instant of
time.) We must now look for a solution to this differential equation, which is simi-
lar to that for the RC circuit (see Section 28.4).

A mathematical solution of Equation 32.6 represents the current in the circuit
as a function of time. To find this solution, we change variables for convenience, 

letting , so that With these substitutions, we can write Equa-

tion 32.6 as

Integrating this last expression, we have

where we take the integrating constant to be � ln x0 and x0 is the value of x at
time t � 0. Taking the antilogarithm of this result, we obtain

x � x0e�Rt /L

ln 
x
x0

� �
R
L

 t

 
dx
x

� �
R
L

 dt

x 

L
R

 
dx
dt

� 0 

dx � �dI.x �
�
R

� I

� � IR � L 
dI
dt

� 0

�L

�L � �L 
dI
dt

t � 0.

Quick Quiz 32.1
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Figure 32.3 A series RL circuit.
As the current increases toward its
maximum value, an emf that op-
poses the increasing current is in-
duced in the inductor.
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Because at we note from the definition of x that Hence,
this last expression is equivalent to

This expression shows the effect of the inductor. The current does not in-
crease instantly to its final equilibrium value when the switch is closed but instead
increases according to an exponential function. If we remove the inductance in
the circuit, which we can do by letting L approach zero, the exponential term be-
comes zero and we see that there is no time dependence of the current in this
case—the current increases instantaneously to its final equilibrium value in the
absence of the inductance.

We can also write this expression as

(32.7)

where the constant � is the time constant of the RL circuit:

(32.8)

Physically, � is the time it takes the current in the circuit to reach 
of its final value The time constant is a useful parameter for comparing the
time responses of various circuits.

Figure 32.4 shows a graph of the current versus time in the RL circuit. Note
that the equilibrium value of the current, which occurs as t approaches infinity, is

We can see this by setting dI/dt equal to zero in Equation 32.6 and solving for
the current I. (At equilibrium, the change in the current is zero.) Thus, we see
that the current initially increases very rapidly and then gradually approaches the
equilibrium value as t approaches infinity.

Let us also investigate the time rate of change of the current in the circuit.
Taking the first time derivative of Equation 32.7, we have

(32.9)

From this result, we see that the time rate of change of the current is a maximum
(equal to at and falls off exponentially to zero as t approaches infinity
(Fig. 32.5).

Now let us consider the RL circuit shown in Figure 32.6. The circuit contains
two switches that operate such that when one is closed, the other is opened. Sup-
pose that S1 has been closed for a length of time sufficient to allow the current to
reach its equilibrium value In this situation, the circuit is described com-
pletely by the outer loop in Figure 32.6. If S2 is closed at the instant at which S1 is
opened, the circuit changes so that it is described completely by just the upper
loop in Figure 32.6. The lower loop no longer influences the behavior of the cir-
cuit. Thus, we have a circuit with no battery If we apply Kirchhoff’s loop
rule to the upper loop at the instant the switches are thrown, we obtain

IR 
 L 
dI
dt

� 0

(� � 0).

�/R .

t � 0�/L)

dI
dt

�
�
L

 e�t /�

�/R

�/R.

�/R .
(1 � e�1) � 0.63

� � L/R

I �
�
R

 (1 � e�t /�)

 I �
�
R

 (1 � e�Rt /L)

�
R

� I �
�
R

 e�Rt /L 

x0 � �/R.t � 0,I � 0
I

tτ

τ   L/R =R0.63

/R

τ

ε

ε

Figure 32.4 Plot of the current
versus time for the RL circuit
shown in Figure 32.3. The switch is
thrown closed at and the
current increases toward its maxi-
mum value The time con-
stant � is the time it takes I to reach
63% of its maximum value.

�/R.

t � 0,

dI
dt

/L

t

ε

Figure 32.5 Plot of dI/dt versus
time for the RL circuit shown in
Figure 32.3. The time rate of
change of current is a maximum at

which is the instant at which
the switch is thrown closed. The
rate decreases exponentially with
time as I increases toward its maxi-
mum value.

t � 0,

Time constant of an RL circuit
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It is left as a problem (Problem 18) to show that the solution of this differential
equation is

(32.10)

where is the emf of the battery and is the current at the instant
at which S2 is closed as S1 is opened. 

If no inductor were present in the circuit, the current would immediately de-
crease to zero if the battery were removed. When the inductor is present, it acts to
oppose the decrease in the current and to maintain the current. A graph of the
current in the circuit versus time (Fig. 32.7) shows that the current is continuously
decreasing with time. Note that the slope dI/dt is always negative and has its maxi-
mum value at The negative slope signifies that is now posi-
tive; that is, point a in Figure 32.6 is at a lower electric potential than point b.

Two circuits like the one shown in Figure 32.6 are identical except for the value of L . In cir-
cuit A the inductance of the inductor is LA , and in circuit B it is LB . Switch S1 is thrown
closed at while switch S2 remains open. At switch S1 is opened and switch S2
is closed. The resulting time rates of change for the two currents are as graphed in Figure
32.8. If we assume that the time constant of each circuit is much less than 10 s, which of the
following is true? (a) LA � LB ; (b) LA  LB ; (c) not enough information to tell.

t � 10 s,t � 0,

Quick Quiz 32.2

�L � �L (dI/dt)t � 0.

t � 0,I0 � �/R�

I �
�
R

 e�t /� � I0e�t /�

R a L b

S2

S1

+−

ε

Figure 32.6 An RL circuit con-
taining two switches. When S1 is
closed and S2 open as shown, the
battery is in the circuit. At the in-
stant S2 is closed, S1 is opened, and
the battery is no longer part of the
circuit.

I

t

/Rε

Figure 32.7 Current versus time
for the upper loop of the circuit
shown in Figure 32.6. For 
t  0, S1 is closed and S2 is open.
At S2 is closed as S1 is
opened, and the current has its
maximum value �/R.

t � 0,

0

I

5 10 15

A

B

t(s)
Figure 32.8
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ENERGY IN A MAGNETIC FIELD
Because the emf induced in an inductor prevents a battery from establishing an in-
stantaneous current, the battery must do work against the inductor to create a cur-
rent. Part of the energy supplied by the battery appears as internal energy in the
resistor, while the remaining energy is stored in the magnetic field of the inductor.
If we multiply each term in Equation 32.6 by I and rearrange the expression, we
have

(32.11)I� � I 2R 
 LI 
dI
dt

32.3

Time Constant of an RL CircuitEXAMPLE 32.3
A plot of Equation 32.7 for this circuit is given in Figure

32.9b.

(c) Compare the potential difference across the resistor
with that across the inductor.

Solution At the instant the switch is closed, there is no
current and thus no potential difference across the resistor.
At this instant, the battery voltage appears entirely across the
inductor in the form of a back emf of 12.0 V as the inductor
tries to maintain the zero-current condition. (The left end of
the inductor is at a higher electric potential than the right
end.) As time passes, the emf across the inductor decreases
and the current through the resistor (and hence the poten-
tial difference across it) increases. The sum of the two poten-
tial differences at all times is 12.0 V, as shown in Figure 32.10.

Exercise Calculate the current in the circuit and the volt-
age across the resistor after a time interval equal to one time
constant has elapsed.

Answer 1.26 A, 7.56 V.

The switch in Figure 32.9a is thrown closed at (a) Find
the time constant of the circuit.

Solution The time constant is given by Equation 32.8:

(b) Calculate the current in the circuit at 

Solution Using Equation 32.7 for the current as a func-
tion of time (with t and � in milliseconds), we find that at

0.659 AI �
�
R

 (1 � e�t /� ) �
12.0 V
6.00 �

 (1 � e�0.400) �

t � 2.00 ms

t � 2.00 ms.

5.00 ms� �
L
R

�
30.0 � 10�3 H

6.00 �
�

t � 0.

t(ms)2 4 6 8 10
0

1

2

I(A)

(b)

(a)

30.0 mH

12.0 V 6.00 Ω

S

2 4 6 8
0

2

4

6

8

10

12

∆VL

∆VR

∆V(V)

t(ms)
10

Figure 32.9 (a) The switch in this RL circuit is thrown closed at
(b) A graph of the current versus time for the circuit in part (a).t � 0.

Figure 32.10 The sum of the potential differences across the re-
sistor and inductor in Figure 32.9a is 12.0 V (the battery emf) at all
times.

13.6
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This expression indicates that the rate at which energy is supplied by the battery
equals the sum of the rate at which energy is delivered to the resistor, ,

and the rate at which energy is stored in the inductor, Thus, Equation
32.11 is simply an expression of energy conservation. If we let U denote the energy
stored in the inductor at any time, then we can write the rate dU/dt at which en-
ergy is stored as

To find the total energy stored in the inductor, we can rewrite this expression as
and integrate:

(32.12)

where L is constant and has been removed from the integral. This expression rep-
resents the energy stored in the magnetic field of the inductor when the current is
I. Note that this equation is similar in form to Equation 26.11 for the energy stored
in the electric field of a capacitor, In either case, we see that energy is
required to establish a field.

We can also determine the energy density of a magnetic field. For simplicity,
consider a solenoid whose inductance is given by Equation 32.5:

The magnetic field of a solenoid is given by Equation 30.17:

Substituting the expression for L and into Equation 32.12 gives

(32.13)

Because A� is the volume of the solenoid, the energy stored per unit volume in the
magnetic field surrounding the inductor is

(32.14)

Although this expression was derived for the special case of a solenoid, it is
valid for any region of space in which a magnetic field exists. Note that Equation
32.14 is similar in form to Equation 26.13 for the energy per unit volume stored in
an electric field, . In both cases, the energy density is proportional to
the square of the magnitude of the field.

uE � 1
2�0E 2

uB �
U

A�
�

B2

2�0

U � 1
2 LI 2 � 1

2�0n2A�� B
�0n �

2
�

B2

2�0
 A�

I � B/�0n

B � �0nI

L � �0n2A�

U � Q2/2C .

U � 1
2LI 2

U � �dU � �I

0
LI dI � L �I

0
I dI

dU � LI dI

dU
dt

� LI 
dI
dt

LI(dI /dt).
I 2R(I�)

What Happens to the Energy in the Inductor?EXAMPLE 32.4
where is the initial current in the circuit and � �
L/R is the time constant. Show that all the energy initially
stored in the magnetic field of the inductor appears as inter-
nal energy in the resistor as the current decays to zero.

I0 � �/RConsider once again the RL circuit shown in Figure 32.6, in
which switch S2 is closed at the instant S1 is opened (at

Recall that the current in the upper loop decays expo-
nentially with time according to the expression I � I0e�t /�,
t � 0).

Energy stored in an inductor

Magnetic energy density
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The Coaxial CableEXAMPLE 32.5
père’s law (see Section 30.3) tells us that the magnetic field in
the region between the shells is where r is mea-
sured from the common center of the shells. The magnetic
field is zero outside the outer shell (r � b) because the net
current through the area enclosed by a circular path sur-
rounding the cable is zero, and hence from Ampère’s law,

. The magnetic field is zero inside the inner shell
because the shell is hollow and no current is present within a
radius r  a.

The magnetic field is perpendicular to the light blue rec-
tangle of length � and width the cross-section of inter-
est. Because the magnetic field varies with radial position
across this rectangle, we must use calculus to find the total
magnetic flux. Dividing this rectangle into strips of width dr,
such as the dark blue strip in Figure 32.11, we see that the
area of each strip is �dr and that the flux through each strip is

Hence, we find the total flux through the en-
tire cross-section by integrating:

Using this result, we find that the self-inductance of the cable
is

(b) Calculate the total energy stored in the magnetic field
of the cable.

Solution Using Equation 32.12 and the results to part (a)
gives

�0�I 2

4	
 ln� b

a �U � 1
2 LI 2 �

�0�

2	
 ln � b

a �L �
�B

I
�

�B � �B dA � �b

a

�0I
2	r

 � dr �
�0I�

2	
 �b

a

dr
r

�
�0I�

2	
 ln� b

a �

B dA � B� dr.

b � a,

�B � ds � 0

B � �0I/2	r,
Coaxial cables are often used to connect electrical devices,
such as your stereo system and a loudspeaker. Model a long
coaxial cable as consisting of two thin concentric cylindrical
conducting shells of radii a and b and length �, as shown in
Figure 32.11. The conducting shells carry the same current I
in opposite directions. Imagine that the inner conductor car-
ries current to a device and that the outer one acts as a return
path carrying the current back to the source. (a) Calculate
the self-inductance L of this cable.

Solution To obtain L , we must know the magnetic flux
through any cross-section in the region between the two
shells, such as the light blue rectangle in Figure 32.11. Am-

I

�

bdr

B

rI

a

Figure 32.11 Section of a long coaxial cable. The inner and outer
conductors carry equal currents in opposite directions.

Solution The rate dU/dt at which energy is delivered to
the resistor (which is the power) is equal to where I is
the instantaneous current:

To find the total energy delivered to the resistor, we solve for
dU and integrate this expression over the limits to 
t : � (the upper limit is infinity because it takes an infinite
amount of time for the current to reach zero):

(1) U � ��

0
I0 

2Re�2Rt /Ldt � I0 

2R ��

0
e�2Rt /Ldt

t � 0

dU
dt

� I 2R � (I0e�Rt /L)2R � I0 

2Re�2Rt /L

I 2R,
The value of the definite integral is L/2R (this is left for the
student to show in the exercise at the end of this example),
and so U becomes

Note that this is equal to the initial energy stored in the mag-
netic field of the inductor, given by Equation 32.13, as we set
out to prove.

Exercise Show that the integral on the right-hand side of
Equation (1) has the value L/2R .

U � I0 

2R � L
2R � �

1
2

 LI0 

2
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Definition of mutual inductance

MUTUAL INDUCTANCE
Very often, the magnetic flux through the area enclosed by a circuit varies with
time because of time-varying currents in nearby circuits. This condition induces an
emf through a process known as mutual induction, so called because it depends on
the interaction of two circuits.

Consider the two closely wound coils of wire shown in cross-sectional view in
Figure 32.12. The current I1 in coil 1, which has N1 turns, creates magnetic field
lines, some of which pass through coil 2, which has N2 turns. The magnetic flux
caused by the current in coil 1 and passing through coil 2 is represented by �1 2 .
In analogy to Equation 32.2, we define the mutual inductance M12 of coil 2 with
respect to coil 1:

(32.15)

Referring to Figure 32.12, tell what happens to M12 (a) if coil 1 is brought closer to coil 2
and (b) if coil 1 is rotated so that it lies in the plane of the page.

Quick Quiz 32.3 demonstrates that mutual inductance depends on the geometry
of both circuits and on their orientation with respect to each other. As the circuit
separation distance increases, the mutual inductance decreases because the flux
linking the circuits decreases.

If the current I1 varies with time, we see from Faraday’s law and Equation
32.15 that the emf induced by coil 1 in coil 2 is

(32.16)

In the preceding discussion, we assumed that the source current is in coil 1.
We can also imagine a source current I2 in coil 2. The preceding discussion can be
repeated to show that there is a mutual inductance M21 . If the current I2 varies
with time, the emf induced by coil 2 in coil 1 is

(32.17)

In mutual induction, the emf induced in one coil is always proportional
to the rate at which the current in the other coil is changing. Although the

�1 � �M21 
dI2

dt

�2 � �N 2 
d�12

dt
� �N 2 

d
dt

 � M12I1

N 2
� � �M12 

dI1

dt

Quick Quiz 32.3

M12 �
N2�12

I1

32.4

Coil 1 Coil 2

N1 I1

N2 I2

Figure 32.12 A cross-sectional view of two adjacent
coils. A current in coil 1 sets up a magnetic flux, part of
which passes through coil 2.
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proportionality constants M12 and M21 appear to have different values, it can be
shown that they are equal. Thus, with Equations 32.16 and 32.17
become

and

These two equations are similar in form to Equation 32.1 for the self-induced
emf The unit of mutual inductance is the henry.

(a) Can you have mutual inductance without self-inductance? (b) How about self-induc-
tance without mutual inductance?

Quick Quiz 32.4

� � �L(dI/dt).

�1 � �M 
dI2

dt
�2 � �M 

dI1

dt

M12 � M21 � M,

“Wireless” Battery ChargerEXAMPLE 32.6
Solution Because the base solenoid carries a source cur-
rent I, the magnetic field in its interior is

Because the magnetic flux �BH through the handle’s coil
caused by the magnetic field of the base coil is BA, the mu-
tual inductance is

Exercise Calculate the mutual inductance of two solenoids
with turns, m2, m, and

turns.

Answer 7.5 mH.

NH � 800
� � 0.02A � 1.0 � 10�4NB � 1 500

�0 
N HN BA

�
M �

NH�BH

I
�

NHBA
I

�

B �
�0NBI

�

An electric toothbrush has a base designed to hold the tooth-
brush handle when not in use. As shown in Figure 32.13a, the
handle has a cylindrical hole that fits loosely over a matching
cylinder on the base. When the handle is placed on the base,
a changing current in a solenoid inside the base cylinder in-
duces a current in a coil inside the handle. This induced cur-
rent charges the battery in the handle.

We can model the base as a solenoid of length � with NB
turns (Fig. 32.13b), carrying a source current I, and having a
cross-sectional area A. The handle coil contains NH turns.
Find the mutual inductance of the system.

QuickLab
Tune in a relatively weak station on a
radio. Now slowly rotate the radio
about a vertical axis through its cen-
ter. What happens to the reception?
Can you explain this in terms of the
mutual induction of the station’s
broadcast antenna and your radio’s
antenna?

(b)

NB

NH

Coil 1(base)

Coil 2(handle)

�

Figure 32.13 (a) This electric toothbrush uses the mutual induction of solenoids as part of its battery-charging
system. (b) A coil of NH turns wrapped around the center of a solenoid of NB turns.

(a)
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OSCILLATIONS IN AN LC CIRCUIT
When a capacitor is connected to an inductor as illustrated in Figure 32.14, the
combination is an LC circuit. If the capacitor is initially charged and the switch is
then closed, both the current in the circuit and the charge on the capacitor oscil-
late between maximum positive and negative values. If the resistance of the circuit
is zero, no energy is transformed to internal energy. In the following analysis, we
neglect the resistance in the circuit. We also assume an idealized situation in which
energy is not radiated away from the circuit. We shall discuss this radiation in
Chapter 34, but we neglect it for now. With these idealizations—zero resistance
and no radiation—the oscillations in the circuit persist indefinitely.

Assume that the capacitor has an initial charge Q max (the maximum charge)
and that the switch is thrown closed at Let us look at what happens from an
energy viewpoint.

When the capacitor is fully charged, the energy U in the circuit is stored in the
electric field of the capacitor and is equal to (Eq. 26.11). At this time,
the current in the circuit is zero, and thus no energy is stored in the inductor. Af-
ter the switch is thrown closed, the rate at which charges leave or enter the capaci-
tor plates (which is also the rate at which the charge on the capacitor changes) is
equal to the current in the circuit. As the capacitor begins to discharge after the
switch is closed, the energy stored in its electric field decreases. The discharge of
the capacitor represents a current in the circuit, and hence some energy is now
stored in the magnetic field of the inductor. Thus, energy is transferred from the
electric field of the capacitor to the magnetic field of the inductor. When the ca-
pacitor is fully discharged, it stores no energy. At this time, the current reaches its
maximum value, and all of the energy is stored in the inductor. The current con-
tinues in the same direction, decreasing in magnitude, with the capacitor eventu-
ally becoming fully charged again but with the polarity of its plates now opposite
the initial polarity. This is followed by another discharge until the circuit returns to
its original state of maximum charge Q max and the plate polarity shown in Figure
32.14. The energy continues to oscillate between inductor and capacitor.

The oscillations of the LC circuit are an electromagnetic analog to the me-
chanical oscillations of a block–spring system, which we studied in Chapter 13.
Much of what we discussed is applicable to LC oscillations. For example, we investi-
gated the effect of driving a mechanical oscillator with an external force, which
leads to the phenomenon of resonance. We observe the same phenomenon in the
LC circuit. For example, a radio tuner has an LC circuit with a natural frequency,
which we determine as follows: When the circuit is driven by the electromagnetic
oscillations of a radio signal detected by the antenna, the tuner circuit responds
with a large amplitude of electrical oscillation only for the station frequency that
matches the natural frequency. Thus, only the signal from one station is passed on
to the amplifier, even though signals from all stations are driving the circuit at the
same time. When you turn the knob on the radio tuner to change the station, you
are changing the natural frequency of the circuit so that it will exhibit a resonance
response to a different driving frequency.

A graphical description of the energy transfer between the inductor and the
capacitor in an LC circuit is shown in Figure 32.15. The right side of the figure
shows the analogous energy transfer in the oscillating block–spring system studied
in Chapter 13. In each case, the situation is shown at intervals of one-fourth the
period of oscillation T. The potential energy stored in a stretched spring is
analogous to the electric potential energy stored in the capacitor. The
kinetic energy of the moving block is analogous to the magnetic energy 12 LI 21

2 mv2
Q 2

max/2C

1
2 kx2

Q 2
max/2C

t � 0.

32.5

13.7

S

L
C

Q max

+

–

Figure 32.14 A simple LC cir-
cuit. The capacitor has an initial
charge Q max , and the switch is
thrown closed at t � 0.
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m

m

m

m

Q = 0

I = 0

t = 0

t = T
2

+Q max

–Q max

E

C

L

C

LQ = 0

I =Imax

I = 0

–Q max

+Q max

B

C

L

t = T
4

C

L

I =Imax

t = 3
4 T

I = 0

+Q max

–Q max

E

C

t =T
L

(a)

k

x = 0

x = 0

v = 0

A

(b)
x = 0

vmax

(c)
x = 0

v = 0

A

(e)
x = 0

m

v = 0

A

x = 0

(d)
x = 0

vmax

– – – –

+ + + +

– – – –

– – – –

B

+ + + +

+ + + +

S

E

Figure 32.15 Energy transfer in a resistanceless, non-radiating LC circuit. The capacitor has a
charge Q max at the instant at which the switch is thrown closed. The mechanical analog of
this circuit is a block–spring system.

t � 0,
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stored in the inductor, which requires the presence of moving charges. In Figure
32.15a, all of the energy is stored as electric potential energy in the capacitor at

In Figure 32.15b, which is one fourth of a period later, all of the energy is
stored as magnetic energy in the inductor, where Imax is the maximum cur-
rent in the circuit. In Figure 32.15c, the energy in the LC circuit is stored com-
pletely in the capacitor, with the polarity of the plates now opposite what it was in
Figure 32.15a. In parts d and e the system returns to the initial configuration over
the second half of the cycle. At times other than those shown in the figure, part of
the energy is stored in the electric field of the capacitor and part is stored in the
magnetic field of the inductor. In the analogous mechanical oscillation, part of the
energy is potential energy in the spring and part is kinetic energy of the block.

Let us consider some arbitrary time t after the switch is closed, so that the ca-
pacitor has a charge and the current is At this time, both ele-
ments store energy, but the sum of the two energies must equal the total initial en-
ergy U stored in the fully charged capacitor at 

(32.18)

Because we have assumed the circuit resistance to be zero, no energy is trans-
formed to internal energy, and hence the total energy must remain constant in time.
This means that Therefore, by differentiating Equation 32.18 with re-
spect to time while noting that Q and I vary with time, we obtain

(32.19)

We can reduce this to a differential equation in one variable by remembering that
the current in the circuit is equal to the rate at which the charge on the capacitor
changes: From this, it follows that Substitution of
these relationships into Equation 32.19 gives

(32.20)

We can solve for Q by noting that this expression is of the same form as the analo-
gous Equations 13.16 and 13.17 for a block–spring system:

where k is the spring constant, m is the mass of the block, and The solu-
tion of this equation has the general form

where � is the angular frequency of the simple harmonic motion, A is the ampli-
tude of motion (the maximum value of x), and � is the phase constant; the values
of A and � depend on the initial conditions. Because it is of the same form as the
differential equation of the simple harmonic oscillator, we see that Equation 32.20
has the solution

(32.21)Q � Q max cos(�t 
 �)

x � A cos(�t 
 �)

� � !k/m.

d2x
dt2 � �

k
m

 x � ��2x

 
d2Q
dt2 � �

1
LC

 Q

Q
C


 L 
d 2Q
dt2 � 0 

dI/dt � d 2Q /dt2.I � dQ /dt .

dU
dt

�
d
dt

 � Q2

2C



1
2

LI 2� �
Q
C

 
dQ
dt


 LI 
dI
dt

� 0

dU/dt � 0.

U � UC 
 UL �
Q2

2C



1
2

LI 2

t � 0:

I  Imax .Q  Q max

1
2 LI max

2
t � 0.

Total energy stored in an LC
circuit

The total energy in an ideal LC
circuit remains constant;
dU/dt � 0

Charge versus time for an ideal LC
circuit
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where Q max is the maximum charge of the capacitor and the angular frequency �
is

(32.22)

Note that the angular frequency of the oscillations depends solely on the induc-
tance and capacitance of the circuit. This is the natural frequency of oscillation of
the LC circuit.

Because Q varies sinusoidally, the current in the circuit also varies sinusoidally.
We can easily show this by differentiating Equation 32.21 with respect to time:

(32.23)

To determine the value of the phase angle �, we examine the initial condi-
tions, which in our situation require that at and Setting

at in Equation 32.23, we have

which shows that This value for � also is consistent with Equation 32.21 and
with the condition that at Therefore, in our case, the expressions
for Q and I are

(32.24)

(32.25)

Graphs of Q versus t and I versus t are shown in Figure 32.16. Note that the
charge on the capacitor oscillates between the extreme values Q max and �Q max ,
and that the current oscillates between Imax and �Imax . Furthermore, the current
is 90° out of phase with the charge. That is, when the charge is a maximum, the
current is zero, and when the charge is zero, the current has its maximum value.

What is the relationship between the amplitudes of the two curves in Figure 32.16?

Let us return to the energy discussion of the LC circuit. Substituting Equations
32.24 and 32.25 in Equation 32.18, we find that the total energy is

(32.26)

This expression contains all of the features described qualitatively at the beginning
of this section. It shows that the energy of the LC circuit continuously oscillates be-
tween energy stored in the electric field of the capacitor and energy stored in the
magnetic field of the inductor. When the energy stored in the capacitor has its
maximum value the energy stored in the inductor is zero. When the en-
ergy stored in the inductor has its maximum value the energy stored in
the capacitor is zero.

Plots of the time variations of UC and UL are shown in Figure 32.17. The sum
is a constant and equal to the total energy or . Analyti-

cal verification of this is straightforward. The amplitudes of the two graphs in Fig-
ure 32.17 must be equal because the maximum energy stored in the capacitor

LI 2
max/2Q 2

max/2CUC 
 UL

1
2 LI 2

max ,
Q 2

max/2C ,

U � UC 
 UL �
Q 2

max

2C
 cos2 �t 


LI 2
max

2
 sin2 �t

Quick Quiz 32.5

I � ��Q max sin �t � �Imax sin �t

Q � Q max cos �t 

t � 0.Q � Q max

� � 0.

0 � � �Q max sin �

t � 0I � 0
Q � Q max .I � 0t � 0,

(�t 
 �)I �
dQ
dt

� ��Q max sin 

� �
1

!LC

Q

Q max

I max

I

t

t

0 T 2TT
2

3T
2

Figure 32.16 Graphs of charge
versus time and current versus time
for a resistanceless, nonradiating
LC circuit. Note that Q and I are
90° out of phase with each other.

Figure 32.17 Plots of UC versus t
and UL versus t for a resistanceless,
nonradiating LC circuit. The sum
of the two curves is a constant and
equal to the total energy stored in
the circuit.

Angular frequency of oscillation

Current versus time for an ideal
LC current

t

Q 2
max

2C

t
0 T

4
T
2

3T
4

T

UL

UC

LI 2
max

2
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(when must equal the maximum energy stored in the inductor (when
This is mathematically expressed as

Using this expression in Equation 32.26 for the total energy gives

(32.27)

because cos2 �t 
 sin2 �t � 1.
In our idealized situation, the oscillations in the circuit persist indefinitely;

however, we remember that the total energy U of the circuit remains constant only
if energy transfers and transformations are neglected. In actual circuits, there is 
always some resistance, and hence energy is transformed to internal energy. 
We mentioned at the beginning of this section that we are also ignoring radiation
from the circuit. In reality, radiation is inevitable in this type of circuit, and the to-
tal energy in the circuit continuously decreases as a result of this process.

U �
Q 2

max

2C
 (cos2 �t 
 sin2 �t) �

Q 2
max

2C

Q 2
max

2C
�

LI 2
max

2

Q � 0).
I � 0)

An Oscillatory LC CircuitEXAMPLE 32.7
(b) What are the maximum values of charge on the capac-

itor and current in the circuit?

Solution The initial charge on the capacitor equals the
maximum charge, and because we have

From Equation 32.25, we can see how the maximum current
is related to the maximum charge:

(c) Determine the charge and current as functions of
time.

Solution Equations 32.24 and 32.25 give the following ex-
pressions for the time variation of Q and I :

Exercise What is the total energy stored in the circuit?

Answer 6.48 � 10�10 J.

(�6.79 � 10�4 A) sin[(2	 � 106 rad/s)t ]�

I � �Imax sin �t

(1.08 � 10�10 C) cos[(2	 � 106 rad/s)t]�

Q � Q max cos �t

6.79 � 10�4 A �

 � (2	 � 106 s�1)(1.08 � 10�10 C)

Imax � �Q max � 2	fQ max 

1.08 � 10�10 CQ max � C� � (9.00 � 10�12 F)(12.0 V) �

C � Q /�,

In Figure 32.18, the capacitor is initially charged when switch
S1 is open and S2 is closed. Switch S1 is then thrown closed at
the same instant that S2 is opened, so that the capacitor is
connected directly across the inductor. (a) Find the fre-
quency of oscillation of the circuit.

Solution Using Equation 32.22 gives for the frequency

1.00 � 106 Hz�

 �
1

2	[(2.81 � 10�3 H)(9.00 � 10�12 F)]1/2

f �
�

2	
�

1

2	!LC

9.00 pF

2.81 mH

S2

S1

   = 12.0 Vε

Figure 32.18 First the capacitor is fully charged with the switch S1
open and S2 closed. Then, S1 is thrown closed at the same time that
S2 is thrown open.
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Optional Section

THE RLC CIRCUIT
We now turn our attention to a more realistic circuit consisting of an inductor, a
capacitor, and a resistor connected in series, as shown in Figure 32.19. We let the
resistance of the resistor represent all of the resistance in the circuit. We assume
that the capacitor has an initial charge Q max before the switch is closed. Once the
switch is thrown closed and a current is established, the total energy stored in the
capacitor and inductor at any time is given, as before, by Equation 32.18. However,
the total energy is no longer constant, as it was in the LC circuit, because the resis-
tor causes transformation to internal energy. Because the rate of energy transfor-
mation to internal energy within a resistor is I 2R, we have

where the negative sign signifies that the energy U of the circuit is decreasing in
time. Substituting this result into Equation 32.19 gives

(32.28)

To convert this equation into a form that allows us to compare the electrical oscil-
lations with their mechanical analog, we first use the fact that and move
all terms to the left-hand side to obtain

Now we divide through by I :

(32.29)

The RLC circuit is analogous to the damped harmonic oscillator discussed in
Section 13.6 and illustrated in Figure 32.20. The equation of motion for this me-
chanical system is, from Equation 13.32,

(32.30)

Comparing Equations 32.29 and 32.30, we see that Q corresponds to the position x
of the block at any instant, L to the mass m of the block, R to the damping coeffi-
cient b, and C to 1/k, where k is the force constant of the spring. These and other
relationships are listed in Table 32.1.

Because the analytical solution of Equation 32.29 is cumbersome, we give only
a qualitative description of the circuit behavior. In the simplest case, when 
Equation 32.29 reduces to that of a simple LC circuit, as expected, and the charge
and the current oscillate sinusoidally in time. This is equivalent to removal of all
damping in the mechanical oscillator.

When R is small, a situation analogous to light damping in the mechanical os-
cillator, the solution of Equation 32.29 is

(32.31)Q � Q maxe�Rt /2L cos �d t

R � 0,

m 
d2x
dt2 
 b 

dx
dt


 kx � 0

L 
d2Q
dt2 
 R 

dQ
dt



Q
C

� 0

L  
d 2Q
dt2 


Q
C

  
 IR � 0

LI  
d 2Q
dt2 


Q
C

  I 
 I 2R � 0

I � dQ /dt

LI 
dI
dt



Q
C

 
dQ
dt

� �I 2R

dU
dt

� �I 2R

32.6

C+

– L

R

S

Q max

Figure 32.19 A series RLC cir-
cuit. The capacitor has a charge
Q max at the instant at which
the switch is thrown closed.

t � 0,

m

13.7

Figure 32.20 A block–spring sys-
tem moving in a viscous medium
with damped harmonic motion is
analogous to an RLC circuit.
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where

(32.32)

is the angular frequency at which the circuit oscillates. That is, the value of the
charge on the capacitor undergoes a damped harmonic oscillation in analogy with
a mass–spring system moving in a viscous medium. From Equation 32.32, we see
that, when (so that the second term in the brackets is much smaller
than the first), the frequency �d of the damped oscillator is close to that of the un-
damped oscillator, Because it follows that the current also un-
dergoes damped harmonic oscillation. A plot of the charge versus time for the
damped oscillator is shown in Figure 32.21a. Note that the maximum value of Q
decreases after each oscillation, just as the amplitude of a damped block–spring
system decreases in time.

Figure 32.21a has two dashed blue lines that form an “envelope” around the curve. What is
the equation for the upper dashed line?

When we consider larger values of R , we find that the oscillations damp out
more rapidly ; in fact, there exists a critical resistance value above
which no oscillations occur. A system with is said to be critically damped.
When R exceeds Rc , the system is said to be overdamped (Fig. 32.22).

R � R c

R c � !4L/C

Quick Quiz 32.6

I � dQ /dt,1/!LC .

R V !4L/C

�d � � 1
LC

� � R
2L �

2

�
1/2

TABLE 32.1 Analogies Between Electrical and Mechanical Systems

One-Dimensional 
Electric Circuit Mechanical System

Charge Displacement
Current Velocity
Potential difference Force
Resistance Viscous damping

coefficient
Capacitance (k � spring

constant)
Inductance Mass

Energy in inductor

Energy in capacitor

RLC circuit Damped mass on a spring
L 

d 2Q
dt2 
 R 

dQ
dt



Q
C

� 0 4 m 
d 2x
dt2 
 b 

dx
dt


 kx � 0

Rate of energy loss due to friction
I 2R 4 bv2Rate of energy loss due to resistance

Potential energy stored in a spring
UC � 1

2 
Q2

C
4 U � 1

2 kx2

Kinetic energy of moving mass
UL � 1

2 LI 2 4 K � 1
2 mv2

Acceleration � second time derivative of position

dI
dt

�
d 2Q
dt2 4 ax �

dvx

dt
�

d 2x
dt2

Rate of change of current � second time derivative of charge

Velocity � time derivative of position
I �

dQ
dt

4 vx �
dx
dt

Current � time derivative of charge

L 4 m

C 4 1/k

R 4 b
 �V 4 Fx 

I 4 vx

Q 4 x



Summary 1033

SUMMARY

When the current in a coil changes with time, an emf is induced in the coil accord-
ing to Faraday’s law. The self-induced emf is

(32.1)

where L is the inductance of the coil. Inductance is a measure of how much oppo-
sition an electrical device offers to a change in current passing through the device.
Inductance has the SI unit of henry (H), where 1 H � 1 V � s/A.

The inductance of any coil is

(32.2)

where �B is the magnetic flux through the coil and N is the total number of turns.
The inductance of a device depends on its geometry. For example, the inductance
of an air-core solenoid is

(32.4)

where A is the cross-sectional area, and � is the length of the solenoid.
If a resistor and inductor are connected in series to a battery of emf and if a

switch in the circuit is thrown closed at then the current in the circuit varies
in time according to the expression

(32.7)

where is the time constant of the RL circuit. That is, the current in-
creases to an equilibrium value of after a time that is long compared with �. If
the battery in the circuit is replaced by a resistanceless wire, the current decays ex-
ponentially with time according to the expression

(32.10)

where is the initial current in the circuit.�/R

I �
�
R

 e�t /�

�/R
� � L/R

I �
�
R

 (1 � e�t /�)

t � 0,
�,

L �
�0N 2A

�

L �
N �B

I

�L � �L 
dI
dt

Q max

Q

0 t

Figure 32.21 (a) Charge versus time for a damped RLC circuit. The charge 
decays in this way when The Q -versus-t curve represents a plot
of Equation 32.31. (b) Oscilloscope pattern showing the decay in the oscilla-
tions of an RLC circuit. The parameters used were �, mH,
and �F.C � 0.19

L � 10R � 75

R V  !4L/C  .

Q

t

R >   4L/CQ max

(a) (b) Figure 32.22 Plot of Q versus t
for an overdamped RLC circuit,
which occurs for values of
R � !4L/C  .
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The energy stored in the magnetic field of an inductor carrying a current I is

(32.12)

This energy is the magnetic counterpart to the energy stored in the electric field
of a charged capacitor.

The energy density at a point where the magnetic field is B is

(32.14)

The mutual inductance of a system of two coils is given by

(32.15)

This mutual inductance allows us to relate the induced emf in a coil to the chang-
ing source current in a nearby coil using the relationships

and (32.16, 32.17)

In an LC circuit that has zero resistance and does not radiate electromagneti-
cally (an idealization), the values of the charge on the capacitor and the current in
the circuit vary in time according to the expressions

(32.21)

(32.23)

where Q max is the maximum charge on the capacitor, � is a phase constant, and �
is the angular frequency of oscillation:

(32.22)

The energy in an LC circuit continuously transfers between energy stored in the
capacitor and energy stored in the inductor. The total energy of the LC circuit at
any time t is

(32.26)

At all of the energy is stored in the electric field of the capacitor
. Eventually, all of this energy is transferred to the inductor

. However, the total energy remains constant because energy trans-
formations are neglected in the ideal LC circuit.
(U � LI 2

max/2)
(U � Q max

2 /2C )
t � 0,

U � UC 
 UL �
Q 2

max

2C
 cos2 �t 


LI 2
max

2
 sin2 �t

� �
1

!LC

(�t 
 �)I �
dQ
dt

� ��Q max sin

(�t 
 �)Q � Q max cos 

�1 � �M21 
dI2

dt
�2 � �M12 

dI1

dt

M12 �
N 2�12

I1
� M21 �

N1�21

I2
� M

uB �
B2

2�0

U � 1
2 LI 2

QUESTIONS

4. How can a long piece of wire be wound on a spool so that
the wire has a negligible self-inductance?

5. A long, fine wire is wound as a solenoid with a self-
inductance L . If it is connected across the terminals of a
battery, how does the maximum current depend on L ?

6. For the series RL circuit shown in Figure Q32.6, can the
back emf ever be greater than the battery emf? Explain.

1. Why is the induced emf that appears in an inductor
called a “counter” or “back” emf?

2. The current in a circuit containing a coil, resistor, and
battery reaches a constant value. Does the coil have an in-
ductance? Does the coil affect the value of the current?

3. What parameters affect the inductance of a coil? Does the
inductance of a coil depend on the current in the coil?
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PROBLEMS

7. A 10.0-mH inductor carries a current 
with and Hz. What is the
back emf as a function of time?

8. An emf of 24.0 mV is induced in a 500-turn coil at an in-
stant when the current is 4.00 A and is changing at the
rate of 10.0 A/s. What is the magnetic flux through
each turn of the coil?

9. An inductor in the form of a solenoid contains 420
turns, is 16.0 cm in length, and has a cross-sectional
area of 3.00 cm2. What uniform rate of decrease of 
current through the inductor induces an emf of 
175 �V?

10. An inductor in the form of a solenoid contains N turns,
has length �, and has cross-sectional area A. What uni-
form rate of decrease of current through the inductor
induces an emf ?

11. The current in a 90.0-mH inductor changes with time as
(in SI units). Find the magnitude of the

induced emf at (a) and (b) (c) At
what time is the emf zero?

12. A 40.0-mA current is carried by a uniformly wound air-
core solenoid with 450 turns, a 15.0-mm diameter, and
12.0-cm length. Compute (a) the magnetic field inside
the solenoid, (b) the magnetic flux through each turn,

t � 4.00 s.t � 1.00 s
I � t 2 � 6.00t

�

�/2	 � 60.0Imax � 5.00 A
I � Imax sin �t,Section 32.1 Self-Inductance

1. A coil has an inductance of 3.00 mH, and the current
through it changes from 0.200 A to 1.50 A in a time of
0.200 s. Find the magnitude of the average induced emf
in the coil during this time.

2. A coiled telephone cord forms a spiral with 70 turns, a
diameter of 1.30 cm, and an unstretched length of 
60.0 cm. Determine the self-inductance of one conduc-
tor in the unstretched cord.

3. A 2.00-H inductor carries a steady current of 0.500 A.
When the switch in the circuit is thrown open, the cur-
rent is effectively zero in 10.0 ms. What is the average
induced emf in the inductor during this time?

4. A small air-core solenoid has a length of 4.00 cm and
a radius of 0.250 cm. If the inductance is to be 
0.060 0 mH, how many turns per centimeter are
required?

5. Calculate the magnetic flux through the area enclosed
by a 300-turn, 7.20-mH coil when the current in the coil
is 10.0 mA.

6. The current in a solenoid is increasing at a rate of 
10.0 A/s. The cross-sectional area of the solenoid is 
	 cm2, and there are 300 turns on its 15.0-cm length.
What is the induced emf opposing the increasing
current?

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB

ε

R

L

Switch

7. Consider this thesis: “Joseph Henry, America’s first pro-
fessional physicist, changed the view of the Universe dur-
ing a school vacation at the Albany Academy in 1830. Be-
fore that time, one could think of the Universe as
consisting of just one thing: matter. In Henry’s experi-
ment, after a battery is removed from a coil, the energy
that keeps the current flowing for a while does not be-
long to any piece of matter. This energy belongs to the
magnetic field surrounding the coil. With Henry’s discov-
ery of self-induction, Nature forced us to admit that the
Universe consists of fields as well as matter.” What in your
view constitutes the Universe? Argue for your answer.

8. Discuss the similarities and differences between the en-
ergy stored in the electric field of a charged capacitor and
the energy stored in the magnetic field of a current-
carrying coil.

9. What is the inductance of two inductors connected in se-
ries? Does it matter if they are solenoids or toroids?

10. The centers of two circular loops are separated by a fixed
distance. For what relative orientation of the loops is their
mutual inductance a maximum? a minimum? Explain.

11. Two solenoids are connected in series so that each carries
the same current at any instant. Is mutual induction pres-
ent? Explain.

12. In the LC circuit shown in Figure 32.15, the charge on
the capacitor is sometimes zero, even though current is in
the circuit. How is this possible?

13. If the resistance of the wires in an LC circuit were not
zero, would the oscillations persist? Explain.

14. How can you tell whether an RLC circuit is overdamped
or underdamped?

15. What is the significance of critical damping in an RLC
circuit?

16. Can an object exert a force on itself? When a coil induces
an emf in itself, does it exert a force on itself?

Figure Q32.6
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and (c) the inductance of the solenoid. (d) Which of
these quantities depends on the current?

13. A solenoid has 120 turns uniformly wrapped around a
wooden core, which has a diameter of 10.0 mm and a
length of 9.00 cm. (a) Calculate the inductance of the
solenoid. (b) The wooden core is replaced with a soft
iron rod that has the same dimensions but a magnetic
permeability What is the new inductance?

14. A toroid has a major radius R and a minor radius r, and
it is tightly wound with N turns of wire, as shown in Fig-
ure P32.14. If the magnetic field within the re-
gion of the torus, of cross-sectional area is es-
sentially that of a long solenoid that has been bent into
a large circle of radius R. Using the uniform field of a
long solenoid, show that the self-inductance of such a
toroid is approximately

(An exact expression for the inductance of a toroid with
a rectangular cross-section is derived in Problem 64.)

L � �0N 2A/2	R

A � 	r 2,
R W r,

�m � 800�0 .

the inductive time constant of the circuit? (b) Calculate
the current in the circuit 250 �s after the switch is
closed. (c) What is the value of the final steady-state cur-
rent? (d) How long does it take the current to reach
80.0% of its maximum value?

WEB

26. A series RL circuit with H and a series RC cir-
cuit with �F have equal time constants. If the
two circuits contain the same resistance R, (a) what is
the value of R and (b) what is the time constant?

C � 3.00
L � 3.00

20. In the circuit shown in Figure P32.19, let 
�, and What is the self-induced

emf 0.200 s after the switch is closed?
21. For the RL circuit shown in Figure P32.19, let 

H, �, and (a) Calculate
the ratio of the potential difference across the resistor
to that across the inductor when A. (b) Calcu-
late the voltage across the inductor when A.

22. A 12.0-V battery is connected in series with a resistor
and an inductor. The circuit has a time constant of 
500 �s, and the maximum current is 200 mA. What is
the value of the inductance?

23. An inductor that has an inductance of 15.0 H and a
resistance of 30.0 � is connected across a 100-V 
battery. What is the rate of increase of the current 
(a) at and (b) at 

24. When the switch in Figure P32.19 is thrown closed, the
current takes 3.00 ms to reach 98.0% of its final value. If

�, what is the inductance?
25. The switch in Figure P32.25 is closed at time Find

the current in the inductor and the current through the
switch as functions of time thereafter.

t � 0.
R � 10.0

t � 1.50 s?t � 0

I � 4.50
I � 2.00

� � 36.0 V.R � 8.00L � 3.00

� � 120 V.R � 9.00
L � 7.00 H,

15. An emf self-induced in a solenoid of inductance L
changes in time as Find the total charge
that passes through the solenoid, if the charge is finite.

Section 32.2 RL Circuits

16. Calculate the resistance in an RL circuit in which
H and the current increases to 90.0% of its fi-

nal value in 3.00 s.
17. A 12.0-V battery is connected into a series circuit con-

taining a 10.0-� resistor and a 2.00-H inductor. How
long will it take the current to reach (a) 50.0% and 
(b) 90.0% of its final value?

18. Show that is a solution of the differential
equation

where and I0 is the current at 
19. Consider the circuit in Figure P32.19, taking

and �. (a) What isR � 4.00L � 8.00 mH,� � 6.00 V,

t � 0.� � L/R

IR 
 L 
dI
dt

� 0

I � I0e�t /�

L � 2.50

� � �0e�kt.

R Area
A

r

1.00 H4.00 Ω

4.00 Ω 8.00 Ω

10.0 V

S

L

R

S

ε

Figure P32.14

Figure P32.19 Problems 19, 20, 21, and 24.

Figure P32.25
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27. A current pulse is fed to the partial circuit shown in Fig-
ure P32.27. The current begins at zero, then becomes
10.0 A between and �s, and then is zero
once again. Determine the current in the inductor as a
function of time.

t � 200t � 0

single ideal inductor having 
(c) Now consider two inductors L1 and L2 that have
nonzero internal resistances R1 and R2 , respectively. As-
sume that they are still far apart so that their magnetic
fields do not influence each other. If these inductors
are connected in series, show that they are equivalent to
a single inductor having and 

(d) If these same inductors are now con-
nected in parallel, is it necessarily true that they are
equivalent to a single ideal inductor having 

and Explain 
your answer.

Section 32.3 Energy in a Magnetic Field
31. Calculate the energy associated with the magnetic field

of a 200-turn solenoid in which a current of 1.75 A pro-
duces a flux of 3.70 � 10�4 T� m2 in each turn.

32. The magnetic field inside a superconducting solenoid is
4.50 T. The solenoid has an inner diameter of 6.20 cm
and a length of 26.0 cm. Determine (a) the magnetic
energy density in the field and (b) the energy stored in
the magnetic field within the solenoid.

33. An air-core solenoid with 68 turns is 8.00 cm long and
has a diameter of 1.20 cm. How much energy is stored
in its magnetic field when it carries a current of 0.770 A?

34. At an emf of 500 V is applied to a coil that has an
inductance of 0.800 H and a resistance of 30.0 �. 
(a) Find the energy stored in the magnetic field when
the current reaches half its maximum value. (b) After
the emf is connected, how long does it take the current
to reach this value?

35. On a clear day there is a 100-V/m vertical electric field
near the Earth’s surface. At the same place, the Earth’s
magnetic field has a magnitude of 0.500 � 10�4 T.
Compute the energy densities of the two fields.

36. An RL circuit in which H and � is
connected to a 22.0-V battery at (a) What energy
is stored in the inductor when the current is 0.500 A?
(b) At what rate is energy being stored in the inductor
when A? (c) What power is being delivered to
the circuit by the battery when A?

37. A 10.0-V battery, a 5.00-� resistor, and a 10.0-H inductor
are connected in series. After the current in the circuit

I � 0.500
I � 1.00

t � 0.
R � 5.00L � 4.00

t � 0,

1/R eq � 1/R 1 
 1/R 2 ?1/L1 
 1/L 2

1/L eq �

R 1 
 R 2 .
R eq �Leq � L1 
 L2

1/Leq � 1/L1 
 1/L2 .

WEB 29. A 140-mH inductor and a 4.90-� resistor are connected
with a switch to a 6.00-V battery, as shown in Figure
P32.29. (a) If the switch is thrown to the left (connect-
ing the battery), how much time elapses before the cur-
rent reaches 220 mA? (b) What is the current in the in-
ductor 10.0 s after the switch is closed? (c) Now the
switch is quickly thrown from A to B. How much time
elapses before the current falls to 160 mA?

30. Consider two ideal inductors, L1 and L2 , that have zero
internal resistance and are far apart, so that their mag-
netic fields do not influence each other. (a) If these in-
ductors are connected in series, show that they are
equivalent to a single ideal inductor having

(b) If these same two inductors are
connected in parallel, show that they are equivalent to a
Leq � L1 
 L2 .

28. One application of an RL circuit is the generation of
time-varying high voltage from a low-voltage source, as
shown in Figure P32.28. (a) What is the current in the
circuit a long time after the switch has been in position
A? (b) Now the switch is thrown quickly from A to B.
Compute the initial voltage across each resistor and the
inductor. (c) How much time elapses before the voltage
across the inductor drops to 12.0 V?

10.0 mH100 Ω

10.0 A

I(t )

I(t )

200    sµ

A

ε

B

L

R

S

12.0 V
1 200 Ω

12.0 Ω

2.00 H

B

SA

Figure P32.27

Figure P32.28

Figure P32.29

WEB
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has reached its maximum value, calculate (a) the power
being supplied by the battery, (b) the power being de-
livered to the resistor, (c) the power being delivered to
the inductor, and (d) the energy stored in the magnetic
field of the inductor.

38. A uniform electric field with a magnitude of 680 kV/m
throughout a cylindrical volume results in a total energy
of 3.40 �J. What magnetic field over this same region
stores the same total energy?

39. Assume that the magnitude of the magnetic field out-
side a sphere of radius R is where B0 is a
constant. Determine the total energy stored in the mag-
netic field outside the sphere and evaluate your result
for and values
appropriate for the Earth’s magnetic field.

Section 32.4 Mutual Inductance
40. Two coils are close to each other. The first coil carries a

time-varying current given by
At the

voltage measured across the second coil is � 3.20 V.
What is the mutual inductance of the coils?

41. Two coils, held in fixed positions, have a mutual induc-
tance of 100 �H. What is the peak voltage in one when
a sinusoidal current given by

flows in the other?
42. An emf of 96.0 mV is induced in the windings of a coil

when the current in a nearby coil is increasing at the
rate of 1.20 A/s. What is the mutual inductance of the
two coils?

43. Two solenoids A and B, spaced close to each other and
sharing the same cylindrical axis, have 400 and 
700 turns, respectively. A current of 3.50 A in coil A pro-
duces an average flux of 300 �T � m2 through each turn
of A and a flux of 90.0 �T � m2 through each turn of B.
(a) Calculate the mutual inductance of the two sole-
noids. (b) What is the self-inductance of A? (c) What
emf is induced in B when the current in A increases at
the rate of 0.500 A/s?

44. A 70-turn solenoid is 5.00 cm long and 1.00 cm in diam-
eter and carries a 2.00-A current. A single loop of wire,
3.00 cm in diameter, is held so that the plane of the
loop is perpendicular to the long axis of the solenoid,
as illustrated in Figure P31.18 (page 1004). What is the
mutual inductance of the two if the plane of the loop
passes through the solenoid 2.50 cm from one end?

45. Two single-turn circular loops of wire have radii R and 
r, with The loops lie in the same plane and 
are concentric. (a) Show that the mutual inductance 
of the pair is (Hint: Assume that the
larger loop carries a current I and compute the result-
ing flux through the smaller loop.) (b) Evaluate M for

cm and cm.
46. On a printed circuit board, a relatively long straight

conductor and a conducting rectangular loop lie in the
same plane, as shown in Figure P31.9 (page 1003). If

R � 20.0r � 2.00

M � �0	r 2/2R .

R W r.

I(t) � (10.0 A) sin(1 000t)

t � 0.800 s,I(t) � (5.00 A) e�0.025 0t sin(377t).

R � 6.00 � 106 m,B0 � 5.00 � 10�5 T

B � B0(R/r)2,

mm, mm, and mm, what
is their mutual inductance?

47. Two inductors having self-inductances L1 and L2 are
connected in parallel, as shown in Figure P32.47a. The
mutual inductance between the two inductors is M. De-
termine the equivalent self-inductance Leq for the sys-
tem (Fig. P32.47b).

L � 2.70w � 1.30h � 0.400

51. A fixed inductance �H is used in series with a
variable capacitor in the tuning section of a radio. What
capacitance tunes the circuit to the signal from a station
broadcasting at 6.30 MHz?

52. Calculate the inductance of an LC circuit that oscillates
at 120 Hz when the capacitance is 8.00 �F.

53. An LC circuit like the one shown in Figure 32.14 con-
tains an 82.0-mH inductor and a 17.0-�F capacitor that
initially carries a 180-�C charge. The switch is thrown
closed at (a) Find the frequency (in hertz) of the
resulting oscillations. At ms, find (b) the charge
on the capacitor and (c) the current in the circuit.

t � 1.00
t � 0.

L � 1.05

Section 32.5 Oscillations in an LC Circuit

48. A 1.00-�F capacitor is charged by a 40.0-V power supply.
The fully-charged capacitor is then discharged through
a 10.0-mH inductor. Find the maximum current in the
resulting oscillations.

49. An LC circuit consists of a 20.0-mH inductor and a
0.500-�F capacitor. If the maximum instantaneous cur-
rent is 0.100 A, what is the greatest potential difference
across the capacitor?

50. In the circuit shown in Figure P32.50, 
�, and �F. The switch S is closed for

a long time, and no voltage is measured across the ca-
pacitor. After the switch is opened, the voltage across
the capacitor reaches a maximum value of 150 V. What
is the inductance L?

C � 0.500R � 250
� � 50.0 V,

R

ε L C

S

L1

I(t )

LeqL2M

(a) (b)

I(t )

Figure P32.47

Figure P32.50
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54. The switch in Figure P32.54 is connected to point a for
a long time. After the switch is thrown to point b, what
are (a) the frequency of oscillation of the LC circuit,
(b) the maximum charge that appears on the capacitor,
(c) the maximum current in the inductor, and (d) the
total energy the circuit possesses at s?t � 3.00

The capacitor initially has no charge. Determine (a) the
voltage across the inductor as a function of time, 
(b) the voltage across the capacitor as a function of
time, and (c) the time when the energy stored in the
capacitor first exceeds that in the inductor.

62. An inductor having inductance L and a capacitor hav-
ing capacitance C are connected in series. The current
in the circuit increases linearly in time as described by

The capacitor is initially uncharged. Determine
(a) the voltage across the inductor as a function of time,
(b) the voltage across the capacitor as a function of
time, and (c) the time when the energy stored in the ca-
pacitor first exceeds that in the inductor.

63. A capacitor in a series LC circuit has an initial charge Q
and is being discharged. Find, in terms of L and C , the
flux through each of the N turns in the coil, when the
charge on the capacitor is Q /2.

64. The toroid in Figure P32.64 consists of N turns and has
a rectangular cross-section. Its inner and outer radii are
a and b, respectively. (a) Show that

(b) Using this result, compute the self-inductance of a
500-turn toroid for which cm, cm,
and cm. (c) In Problem 14, an approximate
formula for the inductance of a toroid with was
derived. To get a feel for the accuracy of that result, use
the expression in Problem 14 to compute the approxi-
mate inductance of the toroid described in part (b).
Compare the result with the answer to part (b).

R W r
h � 1.00

b � 12.0a � 10.0

L �
�0N 2h

2	
 ln 

b
a

I � Kt .

65. (a) A flat circular coil does not really produce a uniform
magnetic field in the area it encloses, but estimate the
self-inductance of a flat circular coil, with radius R and N
turns, by supposing that the field at its center is uniform
over its area. (b) A circuit on a laboratory table consists
of a 1.5-V battery, a 270-� resistor, a switch, and three 30-
cm-long cords connecting them. Suppose that the circuit
is arranged to be circular. Think of it as a flat coil with
one turn. Compute the order of magnitude of its self-
inductance and (c) of the time constant describing how
fast the current increases when you close the switch.

66. A soft iron rod is used as the core of a
solenoid. The rod has a diameter of 24.0 mm and is

(�m � 800 �0)

55. An LC circuit like that illustrated in Figure 32.14 con-
sists of a 3.30-H inductor and an 840-pF capacitor, ini-
tially carrying a 105-�C charge. At the switch is
thrown closed. Compute the following quantities at

ms: (a) the energy stored in the capacitor; 
(b) the energy stored in the inductor; (c) the total en-
ergy in the circuit.

(Optional)
Section 32.6 The RLC Circuit

56. In Figure 32.19, let �, mH, and
�F. (a) Calculate the frequency of the damped

oscillation of the circuit. (b) What is the critical resis-
tance?

57. Consider an LC circuit in which mH and
�F. (a) What is the resonant frequency �0 ?

(b) If a resistance of 1.00 k� is introduced into this cir-
cuit, what is the frequency of the (damped) oscillations?
(c) What is the percent difference between the two fre-
quencies?

58. Show that Equation 32.29 in the text is Kirchhoff’s loop
rule as applied to Figure 32.19.

59. Electrical oscillations are initiated in a series circuit con-
taining a capacitance C , inductance L , and resistance R .
(a) If (weak damping), how much time
elapses before the amplitude of the current oscillation
falls off to 50.0% of its initial value? (b) How long does
it take the energy to decrease to 50.0% of its initial
value?

ADDITIONAL PROBLEMS

60. Initially, the capacitor in a series LC circuit is charged. A
switch is closed, allowing the capacitor to discharge, and
after time t the energy stored in the capacitor is one-
fourth its initial value. Determine L if C is known.

61. A 1.00-mH inductor and a 1.00-�F capacitor are con-
nected in series. The current in the circuit is described
by where t is in seconds and I is in amperes.I � 20.0t,

R V !4L/C

C � 0.100
L � 500

C � 1.80
L � 2.20R � 7.60

t � 2.00

t � 0

h

a

b

1.00 µF

10.0 Ω

S

ba

µ

0.100 H

12.0 V

Figure P32.54

Figure P32.64

WEB
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10.0 cm long. A 10.0-m piece of 22-gauge copper wire
(diameter � 0.644 mm) is wrapped around the rod in a
single uniform layer, except for a 10.0-cm length at each
end, which is to be used for connections. (a) How many
turns of this wire can wrap around the rod? (Hint: The
diameter of the wire adds to the diameter of the rod in
determining the circumference of each turn. Also, the
wire spirals diagonally along the surface of the rod.) 
(b) What is the resistance of this inductor? (c) What is
its inductance?

67. A wire of nonmagnetic material with radius R carries
current uniformly distributed over its cross-section. If
the total current carried by the wire is I, show that the
magnetic energy per unit length inside the wire is

.
68. An 820-turn wire coil of resistance 24.0 � is placed

around a 12 500-turn solenoid, 7.00 cm long, as shown
in Figure P32.68. Both coil and solenoid have cross-
sectional areas of 1.00 � 10�4 m2. (a) How long does it
take the solenoid current to reach 63.2 percent of its
maximum value? Determine (b) the average back emf
caused by the self-inductance of the solenoid during
this interval, (c) the average rate of change in magnetic
flux through the coil during this interval, and (d) the
magnitude of the average induced current in the coil.

�0I 2/16	

72. The switch in Figure P32.72 is thrown closed at 
Before the switch is closed, the capacitor is uncharged,
and all currents are zero. Determine the currents in L ,
C , and R and the potential differences across L , C , and
R (a) the instant after the switch is closed and (b) long
after it is closed.

t � 0.

closed for a long time, the current in the inductor
drops to 0.250 A in 0.150 s. What is the inductance of
the inductor?

71. In Figure P32.71, the switch is closed for and
steady-state conditions are established. The switch is
thrown open at (a) Find the initial voltage 
across L just after Which end of the coil is at the
higher potential: a or b? (b) Make freehand graphs of
the currents in R1 and in R2 as a function of time, treat-
ing the steady-state directions as positive. Show values
before and after (c) How long after does
the current in R2 have the value 2.00 mA?

t � 0t � 0.

t � 0.
�0t � 0.

t  0,

69. At the switch in Figure P32.69 is thrown closed.
Using Kirchhoff’s laws for the instantaneous currents
and voltages in this two-loop circuit, show that the cur-
rent in the inductor is

where 
70. In Figure P32.69, take V, �, and

�. The inductor has negligible resistance.
When the switch is thrown open after having been
R 2 � 1.00

R 1 � 5.00� � 6.00
R� � R 1R 2/(R 1 
 R 2).

I(t) �
�
R 1

 [1 � e�(R�/L)t]

t � 0,
L

R

C

S 0ε

S

6.00 kΩ ε 0.400 HL18.0 V

2.00 kΩ

R1

R2

a

b

R1

S

R2 Lε

12500
 turns

14.0 Ω

60.0 V

S

+

–

24.0 Ω
820 turns

Figure P32.68

Figure P32.69 Problems 69 and 70.

Figure P32.71

Figure P32.72
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of this type of lead-in is

where a is the radius of the wires and w is their center-
to-center separation.

Note: Problems 76 through 79 require the application of ideas
from this chapter and earlier chapters to some properties of
superconductors, which were introduced in Section 27.5.

76. Review Problem. The resistance of a superconductor. In an
experiment carried out by S. C. Collins between 1955
and 1958, a current was maintained in a superconduct-
ing lead ring for 2.50 yr with no observed loss. If the in-
ductance of the ring was 3.14 � 10�8 H and the sensitiv-
ity of the experiment was 1 part in 109, what was the
maximum resistance of the ring? (Hint: Treat this as a
decaying current in an RL circuit, and recall that

for small x.)
77. Review Problem. A novel method of storing electrical

energy has been proposed. A huge underground super-
conducting coil, 1.00 km in diameter, would be fabri-
cated. It would carry a maximum current of 50.0 kA
through each winding of a 150-turn Nb3Sn solenoid. 
(a) If the inductance of this huge coil were 50.0 H, what
would be the total energy stored? (b) What would be
the compressive force per meter length acting between
two adjacent windings 0.250 m apart?

78. Review Problem. Superconducting Power Transmission.
The use of superconductors has been proposed for the
manufacture of power transmission lines. A single coax-
ial cable (Fig. P32.78) could carry 1.00 � 103 MW (the
output of a large power plant) at 200 kV, dc, over a dis-
tance of 1 000 km without loss. An inner wire with a ra-
dius of 2.00 cm, made from the superconductor Nb3Sn,
carries the current I in one direction. A surrounding su-
perconducting cylinder, of radius 5.00 cm, would carry
the return current I. In such a system, what is the mag-
netic field (a) at the surface of the inner conductor and
(b) at the inner surface of the outer conductor? (c) How
much energy would be stored in the space between the
conductors in a 1 000-km superconducting line? 
(d) What is the pressure exerted on the outer conductor?

e�x � 1 � x

L �
�0x
	

 ln� w � a
a �

74. An air-core solenoid 0.500 m in length contains 1 000
turns and has a cross-sectional area of 1.00 cm2. (a) If
end effects are neglected, what is the self-inductance?
(b) A secondary winding wrapped around the center of
the solenoid has 100 turns. What is the mutual induc-
tance? (c) The secondary winding carries a constant
current of 1.00 A, and the solenoid is connected to a
load of 1.00 k�. The constant current is suddenly
stopped. How much charge flows through the load re-
sistor?

75. The lead-in wires from a television antenna are often
constructed in the form of two parallel wires (Fig.
P32.75). (a) Why does this configuration of conductors
have an inductance? (b) What constitutes the flux loop
for this configuration? (c) Neglecting any magnetic flux
inside the wires, show that the inductance of a length x

TV set
I

I

TV antenna

7.50 Ω

450 mH

10.0 V
12.0 V

Armature

R

Figure P32.73

Figure P32.75 Figure P32.78

I

a = 2.00 cm

b = 5.00 cm
a

I

b

73. To prevent damage from arcing in an electric motor, a
discharge resistor is sometimes placed in parallel with
the armature. If the motor is suddenly unplugged while
running, this resistor limits the voltage that appears
across the armature coils. Consider a 12.0-V dc motor
with an armature that has a resistance of 7.50 � and an
inductance of 450 mH. Assume that the back emf in the
armature coils is 10.0 V when the motor is running at
normal speed. (The equivalent circuit for the armature
is shown in Fig. P32.73.) Calculate the maximum resis-
tance R that limits the voltage across the armature to
80.0 V when the motor is unplugged.
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ANSWERS TO QUICK QUIZZES

32.3 (a) M12 increases because the magnetic flux through
coil 2 increases. (b) M12 decreases because rotation of
coil 1 decreases its flux through coil 2.

32.4 (a) No. Mutual inductance requires a system of coils,
and each coil has self-inductance. (b) Yes. A single coil
has self-inductance but no mutual inductance because it
does not interact with any other coils.

32.5 From Equation 32.25, Thus, the ampli-
tude of the graph is � times the amplitude of the 

graph.
32.6 Equation 32.31 without the cosine factor. The dashed

lines represent the positive and negative amplitudes
(maximum values) for each oscillation period, and it is
the part of Equation 32.31 that gives
the value of the ever-decreasing amplitude.

Q � Q maxe�Rt /2L

Q - t
I - t

Imax � �Q max .

32.1 When it is being opened. When the switch is initially
open, there is no current in the circuit; when the switch
is then closed, the inductor tends to maintain the no-
current condition, and as a result there is very little
chance of sparking. When the switch is initially closed,
there is current in the circuit; when the switch is then
opened, the current decreases. An induced emf is set up
across the inductor, and this emf tends to maintain the
original current. Sparking can occur as the current
bridges the air gap between the poles of the switch.

32.2 (b). Figure 32.8 shows that circuit B has the greater time
constant because in this circuit it takes longer for the
current to reach its maximum value and then longer 
for this current to decrease to zero after switch S2 is
closed. Equation 32.8 indicates that, for equal resis-
tances RA and RB , the condition means that
LA  LB .

�B � �A 

P32.79c. (d) The field of the solenoid exerts a force on
the current in the superconductor. Identify the direc-
tion of the force on the bar. (e) Calculate the magni-
tude of the force by multiplying the energy density of
the solenoid field by the area of the bottom end of the
superconducting bar.

(a) (b) (c)

B0

Btot

I

Figure P32.79

79. Review Problem. The Meissner Effect. Compare this
problem with Problem 63 in Chapter 26 on the force at-
tracting a perfect dielectric into a strong electric field.
A fundamental property of a Type I superconducting
material is perfect diamagnetism, or demonstration of the
Meissner effect, illustrated in the photograph on page 855
and again in Figure 30.34, and described as follows: The
superconducting material has everywhere inside
it. If a sample of the material is placed into an exter-
nally produced magnetic field, or if it is cooled to be-
come superconducting while it is in a magnetic field,
electric currents appear on the surface of the sample.
The currents have precisely the strength and orienta-
tion required to make the total magnetic field zero
throughout the interior of the sample. The following
problem will help you to understand the magnetic force
that can then act on the superconducting sample.

Consider a vertical solenoid with a length of 120 cm
and a diameter of 2.50 cm consisting of 1 400 turns of
copper wire carrying a counterclockwise current of 
2.00 A, as shown in Figure P32.79a. (a) Find the mag-
netic field in the vacuum inside the solenoid. (b) Find
the energy density of the magnetic field, and note that
the units J/m3 of energy density are the same as the
units of pressure. (c) A superconducting
bar 2.20 cm in diameter is inserted partway into the so-
lenoid. Its upper end is far outside the solenoid, where
the magnetic field is small. The lower end of the bar is
deep inside the solenoid. Identify the direction re-
quired for the current on the curved surface of the bar
so that the total magnetic field is zero within the bar.
The field created by the supercurrents is sketched in
Figure P32.79b, and the total field is sketched in Figure

N/m2(�Pa)

B � 0


