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1186 C H A P T E R  3 7 Interference of Light Waves

n the preceding chapter on geometric optics, we used light rays to examine
what happens when light passes through a lens or reflects from a mirror. Here
in Chapter 37 and in the next chapter, we are concerned with wave optics, the

study of interference, diffraction, and polarization of light. These phenomena can-
not be adequately explained with the ray optics used in Chapter 36. We now learn
how treating light as waves rather than as rays leads to a satisfying description of
such phenomena.

CONDITIONS FOR INTERFERENCE
In Chapter 18, we found that the adding together of two mechanical waves can be
constructive or destructive. In constructive interference, the amplitude of the re-
sultant wave is greater than that of either individual wave, whereas in destructive
interference, the resultant amplitude is less than that of either individual wave.
Light waves also interfere with each other. Fundamentally, all interference associ-
ated with light waves arises when the electromagnetic fields that constitute the in-
dividual waves combine.

If two lightbulbs are placed side by side, no interference effects are observed
because the light waves from one bulb are emitted independently of those from
the other bulb. The emissions from the two lightbulbs do not maintain a constant
phase relationship with each other over time. Light waves from an ordinary source
such as a lightbulb undergo random changes about once every 10�8 s. Therefore,
the conditions for constructive interference, destructive interference, or some in-
termediate state last for lengths of time of the order of 10�8 s. Because the eye
cannot follow such short-term changes, no interference effects are observed. (In
1993 interference from two separate light sources was photographed in an ex-
tremely fast exposure. Nonetheless, we do not ordinarily see interference effects
because of the rapidly changing phase relationship between the light waves.) Such
light sources are said to be incoherent.

Interference effects in light waves are not easy to observe because of the short
wavelengths involved (from 4 � 10�7 m to 7 � 10�7 m). For sustained interfer-
ence in light waves to be observed, the following conditions must be met:

• The sources must be coherent—that is, they must maintain a constant phase
with respect to each other.

• The sources should be monochromatic—that is, of a single wavelength.

We now describe the characteristics of coherent sources. As we saw when we
studied mechanical waves, two sources (producing two traveling waves) are
needed to create interference. In order to produce a stable interference pattern,
the individual waves must maintain a constant phase relationship with one
another. As an example, the sound waves emitted by two side-by-side loudspeakers
driven by a single amplifier can interfere with each other because the two speakers
are coherent—that is, they respond to the amplifier in the same way at the same
time.

A common method for producing two coherent light sources is to use one
monochromatic source to illuminate a barrier containing two small openings (usu-
ally in the shape of slits). The light emerging from the two slits is coherent because
a single source produces the original light beam and the two slits serve only to sep-
arate the original beam into two parts (which, after all, is what was done to the
sound signal from the side-by-side loudspeakers). Any random change in the light
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emitted by the source occurs in both beams at the same time, and as a result inter-
ference effects can be observed when the light from the two slits arrives at a view-
ing screen.

YOUNG’S DOUBLE-SLIT EXPERIMENT
Interference in light waves from two sources was first demonstrated by Thomas
Young in 1801. A schematic diagram of the apparatus that Young used is shown
in Figure 37.1a. Light is incident on a first barrier in which there is a slit S0 .
The waves emerging from this slit arrive at a second barrier that contains two
parallel slits S1 and S2 . These two slits serve as a pair of coherent light sources
because waves emerging from them originate from the same wave front and
therefore maintain a constant phase relationship. The light from S1 and S2 pro-
duces on a viewing screen a visible pattern of bright and dark parallel bands
called fringes (Fig. 37.1b). When the light from S1 and that from S2 both arrive
at a point on the screen such that constructive interference occurs at that loca-
tion, a bright fringe appears. When the light from the two slits combines de-
structively at any location on the screen, a dark fringe results. Figure 37.2 is a
photograph of an interference pattern produced by two coherent vibrating
sources in a water tank.
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Figure 37.1 (a) Schematic diagram of Young’s double-slit experiment. Slits S1 and S2 behave as
coherent sources of light waves that produce an interference pattern on the viewing screen
(drawing not to scale). (b) An enlargement of the center of a fringe pattern formed on the view-
ing screen with many slits could look like this.

Figure 37.2 An interference pat-
tern involving water waves is pro-
duced by two vibrating sources at
the water’s surface. The pattern is
analogous to that observed in
Young’s double-slit experiment.
Note the regions of constructive
(A) and destructive (B) interfer-
ence.

A

B
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If you were to blow smoke into the space between the second barrier and the viewing screen
of Figure 37.1a, what would you see?

Figure 37.2 is an overhead view of a shallow water tank. If you wanted to use a small ruler to
measure the water’s depth, would this be easier to do at location A or at location B?

Figure 37.3 shows some of the ways in which two waves can combine at the
screen. In Figure 37.3a, the two waves, which leave the two slits in phase, strike the
screen at the central point P. Because both waves travel the same distance, they ar-
rive at P in phase. As a result, constructive interference occurs at this location, and
a bright fringe is observed. In Figure 37.3b, the two waves also start in phase, but
in this case the upper wave has to travel one wavelength farther than the lower
wave to reach point Q . Because the upper wave falls behind the lower one by ex-
actly one wavelength, they still arrive in phase at Q , and so a second bright fringe
appears at this location. At point R in Figure 37.3c, however, midway between
points P and Q , the upper wave has fallen half a wavelength behind the lower
wave. This means that a trough of the lower wave overlaps a crest of the upper
wave; this gives rise to destructive interference at point R. For this reason, a dark
fringe is observed at this location.

We can describe Young’s experiment quantitatively with the help of Figure
37.4. The viewing screen is located a perpendicular distance L from the double-
slitted barrier. S1 and S2 are separated by a distance d, and the source is mono-
chromatic. To reach any arbitrary point P, a wave from the lower slit travels farther
than a wave from the upper slit by a distance d sin �. This distance is called the
path difference � (lowercase Greek delta). If we assume that r 1 and r 2 are paral-
lel, which is approximately true because L is much greater than d , then � is given
by

(37.1)� � r2 � r1 � d sin �

Quick Quiz 37.2

Quick Quiz 37.1

Path difference

QuickLab
Look through the fabric of an um-
brella at a distant streetlight. Can you
explain what you see? (The fringe
pattern in Figure 37.1b is from rec-
tangular slits. The fabric of the um-
brella creates a two-dimensional set of
square holes.)
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Figure 37.3 (a) Constructive interference occurs at point P when the waves combine. (b) Con-
structive interference also occurs at point Q. (c) Destructive interference occurs at R when the
two waves combine because the upper wave falls half a wavelength behind the lower wave (all fig-
ures not to scale).



The value of � determines whether the two waves are in phase when they arrive at
point P. If � is either zero or some integer multiple of the wavelength, then the
two waves are in phase at point P and constructive interference results. Therefore,
the condition for bright fringes, or constructive interference, at point P is

m � 0, � 1, � 2, . . . (37.2)

The number m is called the order number. The central bright fringe at � � 0
is called the zeroth-order maximum. The first maximum on either side,

where m � � 1, is called the first-order maximum, and so forth.
When � is an odd multiple of �/2, the two waves arriving at point P are 180°

out of phase and give rise to destructive interference. Therefore, the condition for
dark fringes, or destructive interference, at point P is

m � 0, � 1, � 2, . . . (37.3)

It is useful to obtain expressions for the positions of the bright and dark
fringes measured vertically from O to P. In addition to our assumption that

we assume that These can be valid assumptions because in practice
L is often of the order of 1 m, d a fraction of a millimeter, and � a fraction of a mi-
crometer for visible light. Under these conditions, � is small; thus, we can use the
approximation sin � � tan �. Then, from triangle OPQ in Figure 37.4, we see that

(37.4)

Solving Equation 37.2 for sin � and substituting the result into Equation 37.4, we
see that the positions of the bright fringes measured from O are given by the ex-
pression

(37.5)ybright �
�L
d

 m

y � L tan � � L sin �

d W �.L W d ,

d sin � � (m � 1
2 )�

(m � 0)

� � d sin � � m�
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Conditions for constructive
interference

Conditions for destructive
interference
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S1

S2

θ
d

r2

r1

(a)

d

S1

S2

Q

L
Viewing screen

θ

θ

P

O

δ
Source

y

r1

r2

θ

Figure 37.4 (a) Geometric construction for describing Young’s double-slit experiment (not to
scale). (b) When we assume that r 1 is parallel to r2 , the path difference between the two rays is

sin �. For this approximation to be valid, it is essential that L W d .r2 � r1 � d
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Using Equations 37.3 and 37.4, we find that the dark fringes are located at

(37.6)

As we demonstrate in Example 37.1, Young’s double-slit experiment provides a
method for measuring the wavelength of light. In fact, Young used this technique
to do just that. Additionally, the experiment gave the wave model of light a great
deal of credibility. It was inconceivable that particles of light coming through the
slits could cancel each other in a way that would explain the dark fringes.

ydark �
�L
d

 (m � 1
2)

Separating Double-Slit Fringes of Two WavelengthsEXAMPLE 37.2

Hence, the separation distance between the two fringes is

1.4 cm � 1.4 � 10�2 m �

	y � y 
3 � y3 � 9.18 � 10�2
 
 m � 7.74 � 10�2

 
 m 

y 
3 �  
�
L
d

 m � 3 
�
L
d

� 9.18 � 10�2 m
A light source emits visible light of two wavelengths: � �
430 nm and �
 � 510 nm. The source is used in a double-slit
interference experiment in which m and 

mm. Find the separation distance between the third-
order bright fringes.

Solution Using Equation 37.5, with we find that
the fringe positions corresponding to these two wavelengths
are

y3 �
�L
d

 m � 3 
�L
d

� 7.74 � 10�2 m 

m � 3,

0.025
d �L � 1.5

Measuring the Wavelength of a Light SourceEXAMPLE 37.1
(b) Calculate the distance between adjacent bright

fringes.

Solution From Equation 37.5 and the results of part (a),
we obtain

Note that the spacing between all fringes is equal.

2.2 cm � 2.2 � 10�2 m �

 �
�L
d

�
(5.6 � 10�7 m)(1.2 m)

3.0 � 10�5 m

ym�1 � ym �
�L(m � 1)

d
�

�Lm
d

 

A viewing screen is separated from a double-slit source by 
1.2 m. The distance between the two slits is 0.030 mm. The
second-order bright fringe is 4.5 cm from the center
line. (a) Determine the wavelength of the light.

Solution We can use Equation 37.5, with 
and 

560 nm� 5.6 � 10�7 m �

� �
dy2

mL
�

(3.0 � 10�5 m)(4.5 � 10�2 m)
2(1.2 m)

d � 3.0 � 10�5 m:L � 1.2 m,4.5 � 10�2 m,
y2 �m � 2,

(m � 2)

INTENSITY DISTRIBUTION OF THE DOUBLE-SLIT
INTERFERENCE PATTERN

Note that the edges of the bright fringes in Figure 37.1b are fuzzy. So far we have
discussed the locations of only the centers of the bright and dark fringes on a dis-
tant screen. We now direct our attention to the intensity of the light at other
points between the positions of maximum constructive and destructive interfer-
ence. In other words, we now calculate the distribution of light intensity associated
with the double-slit interference pattern.

37.3
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Again, suppose that the two slits represent coherent sources of sinusoidal
waves such that the two waves from the slits have the same angular frequency �
and a constant phase difference �. The total magnitude of the electric field at
point P on the screen in Figure 37.5 is the vector superposition of the two waves.
Assuming that the two waves have the same amplitude E0 , we can write the magni-
tude of the electric field at point P due to each wave separately as

(37.7)

Although the waves are in phase at the slits, their phase difference � at point P depends
on the path difference � � r2 � r 1 � d sin �. Because a path difference of � (con-
structive interference) corresponds to a phase difference of 2 rad, we obtain the
ratio

(37.8)

This equation tells us precisely how the phase difference � depends on the angle �
in Figure 37.4.

Using the superposition principle and Equation 37.7, we can obtain the mag-
nitude of the resultant electric field at point P :

(37.9)

To simplify this expression, we use the trigonometric identity

Taking and we can write Equation 37.9 in the form

(37.10)

This result indicates that the electric field at point P has the same frequency � as the
light at the slits, but that the amplitude of the field is multiplied by the factor 
2 cos(�/2). To check the consistency of this result, note that if � � 0, 2, 4, . . . ,
then the electric field at point P is 2E 0 , corresponding to the condition for con-
structive interference. These values of � are consistent with Equation 37.2 for con-
structive interference. Likewise, if � � , 3, 5, . . . , then the magnitude of
the electric field at point P is zero; this is consistent with Equation 37.3 for destruc-
tive interference.

Finally, to obtain an expression for the light intensity at point P, recall from
Section 34.3 that the intensity of a wave is proportional to the square of the resultant elec-
tric field magnitude at that point (Eq. 34.20). Using Equation 37.10, we can therefore
express the light intensity at point P as

Most light-detecting instruments measure time-averaged light intensity, and the
time-averaged value of sin2(�t � �/2) over one cycle is Therefore, we can write
the average light intensity at point P as

(37.11)I � Imax cos2 � �

2 �

1
2 .

I � E P 

2 � 4E 0 

2 cos2� �

2 � sin2��t �
�

2 �

E P � 2E 0 cos� �

2 � sin��t �
�

2 �
B � �t,A � �t � �

sin A � sin B � 2 sin� A � B
2 � cos� A � B

2 �

E P � E 1 � E 2 � E 0[sin �t � sin(�t � �)]

� �
2

�
 � �

2

�
 d sin �

�

�
�

�

2
 

E 1 � E 0 sin �t  and  E 2 � E 0 sin(�t � �)

Phase difference

O

y

d
r2

r1

L

S2

S1

P

Figure 37.5 Construction for an-
alyzing the double-slit interference
pattern. A bright fringe, or inten-
sity maximum, is observed at O.
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where Imax is the maximum intensity on the screen and the expression represents
the time average. Substituting the value for � given by Equation 37.8 into this ex-
pression, we find that

(37.12)

Alternatively, because sin � � y/L for small values of � in Figure 37.4, we can write
Equation 37.12 in the form

(37.13)

Constructive interference, which produces light intensity maxima, occurs
when the quantity dy/�L is an integral multiple of , corresponding to y �
(�L/d )m . This is consistent with Equation 37.5.

A plot of light intensity versus d sin � is given in Figure 37.6. Note that the in-
terference pattern consists of equally spaced fringes of equal intensity. Remember,
however, that this result is valid only if the slit-to-screen distance L is much greater
than the slit separation, and only for small values of �.

We have seen that the interference phenomena arising from two sources de-
pend on the relative phase of the waves at a given point. Furthermore, the phase
difference at a given point depends on the path difference between the two waves.
The resultant light intensity at a point is proportional to the square of the
resultant electric field at that point. That is, the light intensity is proportional
to It would be incorrect to calculate the light intensity by adding the
intensities of the individual waves. This procedure would give which of
course is not the same as Note, however, that has the same
average value as when the time average is taken over all values of theE 1 

2 � E 2 

2
(E 1 � E 2)2(E 1 � E 2)2.

E 1 

2 � E 2 

2,
(E 1 � E 2)2.

I � Imax cos2� d
�L

 y�

I � Imax cos2� d sin �
� �

I

–2 –λ λ 2

Imax

d sin θ

λλ

Figure 37.6 Light intensity versus d sin � for a double-slit interference pattern when the screen
is far from the slits (L W d).
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phase difference between E1 and E2 . Hence, the law of conservation of energy is
not violated.

PHASOR ADDITION OF WAVES
In the preceding section, we combined two waves algebraically to obtain the resul-
tant wave amplitude at some point on a screen. Unfortunately, this analytical pro-
cedure becomes cumbersome when we must add several wave amplitudes. Because
we shall eventually be interested in combining a large number of waves, we now
describe a graphical procedure for this purpose.

Let us again consider a sinusoidal wave whose electric field component is
given by

where E0 is the wave amplitude and � is the angular frequency. This wave can be
represented graphically by a phasor of magnitude E0 rotating about the origin
counterclockwise with an angular frequency �, as shown in Figure 37.7a. Note that
the phasor makes an angle �t with the horizontal axis. The projection of the pha-
sor on the vertical axis represents E1 , the magnitude of the wave disturbance at
some time t . Hence, as the phasor rotates in a circle, the projection E1 oscillates
along the vertical axis about the origin.

Now consider a second sinusoidal wave whose electric field component is
given by

This wave has the same amplitude and frequency as E1 , but its phase is � with re-
spect to E1 . The phasor representing E2 is shown in Figure 37.7b. We can obtain
the resultant wave, which is the sum of E1 and E2 , graphically by redrawing the
phasors as shown in Figure 37.7c, in which the tail of the second phasor is placed
at the tip of the first. As with vector addition, the resultant phasor ER runs from
the tail of the first phasor to the tip of the second. Furthermore, ER rotates along
with the two individual phasors at the same angular frequency �. The projection
of ER along the vertical axis equals the sum of the projections of the two other
phasors: 

It is convenient to construct the phasors at as in Figure 37.8. From the
geometry of one of the right triangles, we see that

which gives

Because the sum of the two opposite interior angles equals the exterior angle �,
we see that thus,

Hence, the projection of the phasor ER along the vertical axis at any time t is

E P � E R sin��t �
�

2 � � 2E 0 cos(�/2) sin��t �
�

2 �

E R � 2E 0 cos � �

2 �
� � �/2;

E R � 2E 0 cos �

cos � �
E R /2

E 0

t � 0
E P � E 1 � E 2 .

E 2 � E 0 sin(�t � �)

E 1 � E 0 sin �t

37.4
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Figure 37.7 (a) Phasor diagram
for the wave disturbance 

sin �t. The phasor 
is a vector of length E 0 rotating
counterclockwise. (b) Phasor
diagram for the wave 

sin(�t � �). (c) The distur-
bance ER is the resultant phasor
formed from the phasors of 
parts (a) and (b).

E 0

E 2 �

E 0

E 1 �

Figure 37.8 A reconstruction of
the resultant phasor ER . From the
geometry, note that � � �/2.
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This is consistent with the result obtained algebraically, Equation 37.10. The resul-
tant phasor has an amplitude 2E0 cos(�/2) and makes an angle �/2 with the first
phasor. Furthermore, the average light intensity at point P, which varies as is
proportional to cos2(�/2), as described in Equation 37.11.

We can now describe how to obtain the resultant of several waves that have the
same frequency:

• Represent the waves by phasors, as shown in Figure 37.9, remembering to main-
tain the proper phase relationship between one phasor and the next.

• The resultant phasor ER is the vector sum of the individual phasors. At each
instant, the projection of ER along the vertical axis represents the time varia-
tion of the resultant wave. The phase angle � of the resultant wave is the
angle between ER and the first phasor. From Figure 37.9, drawn for four pha-
sors, we see that the phasor of the resultant wave is given by the expression

Phasor Diagrams for Two Coherent Sources

As an example of the phasor method, consider the interference pattern produced
by two coherent sources. Figure 37.10 represents the phasor diagrams for various
values of the phase difference � and the corresponding values of the path differ-
ence �, which are obtained from Equation 37.8. The light intensity at a point is a
maximum when ER is a maximum; this occurs at � � 0, 2, 4, . . . . The light
intensity at some point is zero when ER is zero; this occurs at � � , 3, 5, . . . .
These results are in complete agreement with the analytical procedure described
in the preceding section.

E P � E R sin(�t � �).

E P 

2,

Figure 37.9 The phasor ER is the
resultant of four phasors of equal
amplitude E0 . The phase of ER
with respect to the first phasor is �.

Figure 37.10 Phasor diagrams for a double-slit interference pattern. The resultant phasor ER
is a maximum when � � 0, 2, 4, . . . and is zero when � � , 3, 5, . . . .
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Three-Slit Interference Pattern

Using phasor diagrams, let us analyze the interference pattern caused by three
equally spaced slits. We can express the electric field components at a point P on
the screen caused by waves from the individual slits as

where � is the phase difference between waves from adjacent slits. We can obtain
the resultant magnitude of the electric field at point P from the phasor diagram in
Figure 37.11.

The phasor diagrams for various values of � are shown in Figure 37.12. Note
that the resultant magnitude of the electric field at P has a maximum value of 3E0 ,
a condition that occurs when � � 0, � 2, � 4, . . . . These points are called
primary maxima. Such primary maxima occur whenever the three phasors are
aligned as shown in Figure 37.12a. We also find secondary maxima of amplitude
E0 occurring between the primary maxima at points where � � � , � 3, . . . .
For these points, the wave from one slit exactly cancels that from another slit (Fig.
37.12d). This means that only light from the third slit contributes to the resultant,
which consequently has a total amplitude of E0 . Total destructive interference oc-
curs whenever the three phasors form a closed triangle, as shown in Figure 37.12c.
These points where correspond to � � � 2/3, � 4/3, . . . . You
should be able to construct other phasor diagrams for values of � greater than .

Figure 37.13 shows multiple-slit interference patterns for a number of configu-
rations. For three slits, note that the primary maxima are nine times more intense
than the secondary maxima as measured by the height of the curve. This is be-
cause the intensity varies as ER

2. For N slits, the intensity of the primary maxima is
N 2 times greater than that due to a single slit. As the number of slits increases, the
primary maxima increase in intensity and become narrower, while the secondary
maxima decrease in intensity relative to the primary maxima. Figure 37.13 also
shows that as the number of slits increases, the number of secondary maxima also
increases. In fact, the number of secondary maxima is always where N is
the number of slits.

N � 2,

E R � 0

E 3 � E 0 sin(�t � 2�)

E 2 � E 0 sin(�t � �) 

E 1 � E 0 sin �t 

Figure 37.11 Phasor diagram for
three equally spaced slits.

Figure 37.12 Phasor diagrams for three equally spaced slits at various values of �. Note from
(a) that there are primary maxima of amplitude 3E0 and from (d) that there are secondary max-
ima of amplitude E0 .
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Using Figure 37.13 as a model, sketch the interference pattern from six slits.

CHANGE OF PHASE DUE TO REFLECTION
Young’s method for producing two coherent light sources involves illuminating
a pair of slits with a single source. Another simple, yet ingenious, arrangement
for producing an interference pattern with a single light source is known as
Lloyd’s mirror (Fig. 37.14). A light source is placed at point S close to a mirror,
and a viewing screen is positioned some distance away at right angles to the
mirror. Light waves can reach point P on the screen either by the direct path
SP or by the path involving reflection from the mirror. The reflected ray can be
treated as a ray originating from a virtual source at point S
. As a result, we can
think of this arrangement as a double-slit source with the distance between

37.5

Quick Quiz 37.3

Single
slit

N = 2

N = 3

N = 4

N = 5

N = 10

0–2λ– 2λλ λ λ λ

Primary maximum
Secondary maximum

 I
Imax

d sin θθ

Figure 37.13 Multiple-slit interference patterns. As N, the number of slits, is increased, the pri-
mary maxima (the tallest peaks in each graph) become narrower but remain fixed in position,
and the number of secondary maxima increases. For any value of N, the decrease in intensity in
maxima to the left and right of the central maximum, indicated by the blue dashed arcs, is due to
diffraction, which is discussed in Chapter 38.

Figure 37.14 Lloyd’s mirror. An
interference pattern is produced at
point P on the screen as a result of
the combination of the direct ray
(blue) and the reflected ray (red).
The reflected ray undergoes a
phase change of 180°.

S ′

S

Real
source

Viewing
screen

Mirror

P

P ′
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points S and S
 comparable to length d in Figure 37.4. Hence, at observation
points far from the source we expect waves from points S and S
 to
form an interference pattern just like the one we see from two real coherent
sources. An interference pattern is indeed observed. However, the positions of
the dark and bright fringes are reversed relative to the pattern created by two
real coherent sources (Young’s experiment). This is because the coherent
sources at points S and S
 differ in phase by 180°, a phase change produced by
reflection.

To illustrate this further, consider point P
, the point where the mirror inter-
sects the screen. This point is equidistant from points S and S
. If path difference
alone were responsible for the phase difference, we would see a bright fringe at
point P
 (because the path difference is zero for this point), corresponding to the
central bright fringe of the two-slit interference pattern. Instead, we observe a
dark fringe at point P
 because of the 180° phase change produced by reflection.
In general,

(L W d ),

Figure 37.15 (a) For a light ray traveling in medium 1 when reflected from the sur-
face of medium 2 undergoes a 180° phase change. The same thing happens with a reflected
pulse traveling along a string fixed at one end. (b) For a light ray traveling in medium
1 undergoes no phase change when reflected from the surface of medium 2. The same is true of
a reflected wave pulse on a string whose supported end is free to move.

n 1 � n 2 ,

n 1 � n 2 ,

an electromagnetic wave undergoes a phase change of 180° upon reflection
from a medium that has a higher index of refraction than the one in which the
wave is traveling.

It is useful to draw an analogy between reflected light waves and the reflec-
tions of a transverse wave pulse on a stretched string (see Section 16.6). The re-
flected pulse on a string undergoes a phase change of 180° when reflected from
the boundary of a denser medium, but no phase change occurs when the pulse is
reflected from the boundary of a less dense medium. Similarly, an electromagnetic
wave undergoes a 180° phase change when reflected from a boundary leading to
an optically denser medium, but no phase change occurs when the wave is re-
flected from a boundary leading to a less dense medium. These rules, summarized
in Figure 37.15, can be deduced from Maxwell’s equations, but the treatment is
beyond the scope of this text.

Rigid support
String analogy

180° phase change

n1

n1

n2

n2<

(a)

Free support

No phase change

n1

n1

n2

n2>

(b)
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INTERFERENCE IN THIN FILMS
Interference effects are commonly observed in thin films, such as thin layers of oil
on water or the thin surface of a soap bubble. The varied colors observed when
white light is incident on such films result from the interference of waves reflected
from the two surfaces of the film.

Consider a film of uniform thickness t and index of refraction n, as shown in
Figure 37.16. Let us assume that the light rays traveling in air are nearly normal to
the two surfaces of the film. To determine whether the reflected rays interfere
constructively or destructively, we first note the following facts:

• A wave traveling from a medium of index of refraction n1 toward a medium of
index of refraction n2 undergoes a 180° phase change upon reflection when

and undergoes no phase change if 
• The wavelength of light �n in a medium whose refraction index is n (see Section

35.5) is

(37.14)

where � is the wavelength of the light in free space.

Let us apply these rules to the film of Figure 37.16, where Re-
flected ray 1, which is reflected from the upper surface (A), undergoes a phase
change of 180° with respect to the incident wave. Reflected ray 2, which is re-
flected from the lower film surface (B), undergoes no phase change because it is
reflected from a medium (air) that has a lower index of refraction. Therefore, ray
1 is 180° out of phase with ray 2, which is equivalent to a path difference of �n/2.

n film � nair .

�n �
�

n

n2 � n1 .n2 � n1

37.6

Interference in soap bubbles. The colors are
due to interference between light rays reflected
from the front and back surfaces of the thin 
film of soap making up the bubble. The color
depends on the thickness of the film, ranging
from black where the film is thinnest to 
red where it is thickest.

The brilliant colors in a peacock’s feathers are
due to interference. The multilayer structure of
the feathers causes constructive interference for
certain colors, such as blue and green. The col-
ors change as you view a peacock’s feathers from
different angles. Iridescent colors of butterflies
and hummingbirds are the result of similar in-
terference effects.

No phase
change

Air

180° phase
change

1
2

A

t
Film

Air

B

nair < nfilm

Figure 37.16 Interference in
light reflected from a thin film is
due to a combination of rays re-
flected from the upper and lower
surfaces of the film.
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However, we must also consider that ray 2 travels an extra distance 2t before the
waves recombine in the air above surface A. If then rays 1 and 2 recom-
bine in phase, and the result is constructive interference. In general, the condition
for constructive interference in such situations is

m � 0, 1, 2, . . . (37.15)

This condition takes into account two factors: (1) the difference in path length for
the two rays (the term m�n) and (2) the 180° phase change upon reflection (the
term �n/2). Because �n � �/n, we can write Equation 37.15 as

m � 0, 1, 2, . . . (37.16)

If the extra distance 2t traveled by ray 2 corresponds to a multiple of �n , then
the two waves combine out of phase, and the result is destructive interference. The
general equation for destructive interference is

m � 0, 1, 2, . . . (37.17)

The foregoing conditions for constructive and destructive interference are
valid when the medium above the top surface of the film is the same as the
medium below the bottom surface. The medium surrounding the film may have
a refractive index less than or greater than that of the film. In either case, the
rays reflected from the two surfaces are out of phase by 180°. If the film 
is placed between two different media, one with n � n film and the other with 
n � n film , then the conditions for constructive and destructive interference are
reversed. In this case, either there is a phase change of 180° for both ray 1 re-
flecting from surface A and ray 2 reflecting from surface B, or there is no phase
change for either ray; hence, the net change in relative phase due to the reflec-
tions is zero.

In Figure 37.17, where does the oil film thickness vary the least?

Newton’s Rings

Another method for observing interference in light waves is to place a plano-
convex lens on top of a flat glass surface, as shown in Figure 37.18a. With this
arrangement, the air film between the glass surfaces varies in thickness from zero
at the point of contact to some value t at point P. If the radius of curvature R of
the lens is much greater than the distance r, and if the system is viewed from above
using light of a single wavelength �, a pattern of light and dark rings is observed,
as shown in Figure 37.18b. These circular fringes, discovered by Newton, are called
Newton’s rings.

The interference effect is due to the combination of ray 1, reflected from the
flat plate, with ray 2, reflected from the curved surface of the lens. Ray 1 under-
goes a phase change of 180° upon reflection (because it is reflected from a
medium of higher refractive index), whereas ray 2 undergoes no phase change
(because it is reflected from a medium of lower refractive index). Hence, the con-
ditions for constructive and destructive interference are given by Equations 37.16
and 37.17, respectively, with because the film is air.

The contact point at O is dark, as seen in Figure 37.18b, because ray 1 under-
goes a 180° phase change upon external reflection (from the flat surface); in con-

n � 1

Quick Quiz 37.4

2nt � m�

2nt � (m � 1
2 )�

2t � (m � 1
2 )�n

2t � �n/2,

Figure 37.17 A thin film of oil
floating on water displays interfer-
ence, as shown by the pattern of
colors produced when white light is
incident on the film. Variations in
film thickness produce the interest-
ing color pattern. The razor blade
gives one an idea of the size of the
colored bands.

Conditions for constructive
interference in thin films

Conditions for destructive
interference in thin films
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r

2 1

(a)

P O

R

Figure 37.18 (a) The combination of rays reflected from the flat plate and the curved lens sur-
face gives rise to an interference pattern known as Newton’s rings. (b) Photograph of Newton’s
rings.

(b)

trast, ray 2 undergoes no phase change upon internal reflection (from the curved
surface).

Using the geometry shown in Figure 37.18a, we can obtain expressions for the
radii of the bright and dark bands in terms of the radius of curvature R and wave-
length �. For example, the dark rings have radii given by the expression 

The details are left as a problem for you to solve (see Problem 67).
We can obtain the wavelength of the light causing the interference pattern by
measuring the radii of the rings, provided R is known. Conversely, we can use a
known wavelength to obtain R .

One important use of Newton’s rings is in the testing of optical lenses. A
circular pattern like that pictured in Figure 37.18b is obtained only when the
lens is ground to a perfectly symmetric curvature. Variations from such sym-
metry might produce a pattern like that shown in Figure 37.19. These varia-
tions indicate how the lens must be reground and repolished to remove the
imperfections.

r � !m�R/n .

QuickLab
Observe the colors appearing to swirl
on the surface of a soap bubble. What
do you see just before a bubble
bursts? Why?

Problem-Solving Hints
Thin-Film Interference
You should keep the following ideas in mind when you work thin-film interfer-
ence problems:

• Identify the thin film causing the interference.
• The type of interference that occurs is determined by the phase relationship

between the portion of the wave reflected at the upper surface of the film
and the portion reflected at the lower surface.

• Phase differences between the two portions of the wave have two causes: (1)
differences in the distances traveled by the two portions and (2) phase
changes that may occur upon reflection.

• When the distance traveled and phase changes upon reflection are both
taken into account, the interference is constructive if the equivalent path
difference between the two waves is an integral multiple of �, and it is de-
structive if the path difference is �/2, 3�/2, 5�/2, and so forth.

Figure 37.19 This asymmetrical
interference pattern indicates im-
perfections in the lens of a New-
ton’s-rings apparatus.
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Interference in a Soap FilmEXAMPLE 37.3

Exercise What other film thicknesses produce constructive
interference?

Answer 338 nm, 564 nm, 789 nm, and so on.

113 nmt �
�

4n
�

600 nm
4(1.33)

�
Calculate the minimum thickness of a soap-bubble film

that results in constructive interference in the re-
flected light if the film is illuminated with light whose wave-
length in free space is 

Solution The minimum film thickness for constructive in-
terference in the reflected light corresponds to in
Equation 37.16. This gives or2nt � �/2,

m � 0

� � 600 nm.

(n � 1.33)

Nonreflective Coatings for Solar CellsEXAMPLE 37.4
and the required thickness is

A typical uncoated solar cell has reflective losses as high as
30%; a SiO coating can reduce this value to about 10%. This
significant decrease in reflective losses increases the cell’s effi-
ciency because less reflection means that more sunlight en-
ters the silicon to create charge carriers in the cell. No coat-
ing can ever be made perfectly nonreflecting because the
required thickness is wavelength-dependent and the incident
light covers a wide range of wavelengths.

Glass lenses used in cameras and other optical instru-
ments are usually coated with a transparent thin film to re-
duce or eliminate unwanted reflection and enhance the
transmission of light through the lenses.

94.8 nmt �
�

4n
�

550 nm
4(1.45)

�

2t � �/2n,Solar cells—devices that generate electricity when exposed
to sunlight—are often coated with a transparent, thin film of
silicon monoxide (SiO, to minimize reflective
losses from the surface. Suppose that a silicon solar cell

is coated with a thin film of silicon monoxide for
this purpose (Fig. 37.20). Determine the minimum film
thickness that produces the least reflection at a wavelength of
550 nm, near the center of the visible spectrum.

Solution The reflected light is a minimum when rays 1
and 2 in Figure 37.20 meet the condition of destructive inter-
ference. Note that both rays undergo a 180° phase change
upon reflection—ray 1 from the upper SiO surface and ray 2
from the lower SiO surface. The net change in phase due to
reflection is therefore zero, and the condition for a reflection
minimum requires a path difference of �n/2. Hence,

(n � 3.5)

n � 1.45)

Si

180° phase
change

1 2

SiO

Air

n = 3.5

n = 1.45

n = 1

180° phase
change

This camera lens has several coatings (of different thicknesses)
that minimize reflection of light waves having wavelengths near
the center of the visible spectrum. As a result, the little light that
is reflected by the lens has a greater proportion of the far ends of
the spectrum and appears reddish-violet. 

Figure 37.20 Reflective losses from a silicon solar cell are mini-
mized by coating the surface of the cell with a thin film of silicon
monoxide.
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Interference in a Wedge-Shaped FilmEXAMPLE 37.5
the thickness satisfies Equation 37.16, corre-
sponding to thicknesses of �/4n, 3�/4n, 5�/4n, and so on.

If white light is used, bands of different colors are ob-
served at different points, corresponding to the different
wavelengths of light (see Fig. 37.21b). This is why we see dif-
ferent colors in soap bubbles.

2nt � (m � 1
2 )�,A thin, wedge-shaped film of refractive index n is illuminated

with monochromatic light of wavelength �, as illustrated in
Figure 37.21a. Describe the interference pattern observed for
this case.

Solution The interference pattern, because it is created
by a thin film of variable thickness surrounded by air, is a se-
ries of alternating bright and dark parallel fringes. A dark
fringe corresponding to destructive interference appears at
point O, the apex, because here the upper reflected ray un-
dergoes a 180° phase change while the lower one undergoes
no phase change.

According to Equation 37.17, other dark minima appear
when thus, and
so on. Similarly, the bright maxima appear at locations where

t3 � 3�/2n,t2 � �/n,t1 � �/2n,2nt � m�;

t1

O

t2

t3

Incident
light

(a)

n

(b)

Figure 37.21 (a) Interference bands in re-
flected light can be observed by illuminating a
wedge-shaped film with monochromatic light.
The darker areas correspond to regions where
rays tend to cancel each other because of inter-
ference effects. (b) Interference in a vertical
film of variable thickness. The top of the film
appears darkest where the film is thinnest.

Optional Section

THE MICHELSON INTERFEROMETER
The interferometer, invented by the American physicist A. A. Michelson
(1852–1931), splits a light beam into two parts and then recombines the parts to
form an interference pattern. The device can be used to measure wavelengths or
other lengths with great precision.

A schematic diagram of the interferometer is shown in Figure 37.22. A ray of
light from a monochromatic source is split into two rays by mirror M, which is in-
clined at 45° to the incident light beam. Mirror M, called a beam splitter, transmits
half the light incident on it and reflects the rest. One ray is reflected from M verti-
cally upward toward mirror M1 , and the second ray is transmitted horizontally
through M toward mirror M2 . Hence, the two rays travel separate paths L1 and L2 .
After reflecting from M1 and M2 , the two rays eventually recombine at M to pro-
duce an interference pattern, which can be viewed through a telescope. The glass
plate P, equal in thickness to mirror M, is placed in the path of the horizontal ray
to ensure that the two returning rays travel the same thickness of glass.

37.7
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L1

M
Light source

L2

P
M2

Telescope

Beam
splitter

Adjustable mirror

Image of M2

M1

M2′

Figure 37.22 Diagram of the Michelson interferometer. A single ray of light is split into two
rays by mirror M, which is called a beam splitter. The path difference between the two rays is var-
ied with the adjustable mirror M1 . As M1 is moved toward M, an interference pattern moves
across the field of view.

The interference condition for the two rays is determined by their path length
differences. When the two rays are viewed as shown, the image of M2 produced by
the mirror M is at which is nearly parallel to M1 . (Because M1 and M2 are not
exactly perpendicular to each other, the image is at a slight angle to M1 .)
Hence, the space between and M1 is the equivalent of a wedge-shaped air film.
The effective thickness of the air film is varied by moving mirror M1 parallel to it-
self with a finely threaded screw adjustment. Under these conditions, the interfer-
ence pattern is a series of bright and dark parallel fringes as described in Example
37.5. As M1 is moved, the fringe pattern shifts. For example, if a dark fringe ap-
pears in the field of view (corresponding to destructive interference) and M1 is
then moved a distance �/4 toward M, the path difference changes by �/2 (twice
the separation between M1 and What was a dark fringe now becomes a bright
fringe. As M1 is moved an additional distance �/4 toward M, the bright fringe be-
comes a dark fringe. Thus, the fringe pattern shifts by one-half fringe each time
M1 is moved a distance �/4. The wavelength of light is then measured by counting
the number of fringe shifts for a given displacement of M1 . If the wavelength is ac-
curately known (as with a laser beam), mirror displacements can be measured to
within a fraction of the wavelength.

M
2 ).

M
2

M
2

M
2 ,
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SUMMARY

Interference in light waves occurs whenever two or more waves overlap at a given
point. A sustained interference pattern is observed if (1) the sources are coherent
and (2) the sources have identical wavelengths.

In Young’s double-slit experiment, two slits S1 and S2 separated by a distance d
are illuminated by a single-wavelength light source. An interference pattern con-
sisting of bright and dark fringes is observed on a viewing screen. The condition
for bright fringes (constructive interference) is

m � 0, � 1, � 2, . . . (37.2)

The condition for dark fringes (destructive interference) is

m � 0, � 1, � 2, . . . (37.3)

The number m is called the order number of the fringe.
The intensity at a point in the double-slit interference pattern is

(37.12)

where Imax is the maximum intensity on the screen and the expression represents
the time average.

A wave traveling from a medium of index of refraction n1 toward a medium of
index of refraction n2 undergoes a 180° phase change upon reflection when

and undergoes no phase change when 
The condition for constructive interference in a film of thickness t and refrac-

tive index n surrounded by air is

m � 0, 1, 2, . . . (37.16)

where � is the wavelength of the light in free space.
Similarly, the condition for destructive interference in a thin film is

m � 0, 1, 2, . . . (37.17)2nt � m�

2nt � (m � 1
2 )l

n2 � n1 .n2 � n1

I � Imax cos2� d sin �
� �

d sin � � (m � 1
2 )�

d sin � � m�

QUESTIONS

7. In our discussion of thin-film interference, we looked at
light reflecting from a thin film. Consider one light ray, the
direct ray, that transmits through the film without reflect-
ing. Consider a second ray, the reflected ray, that trans-
mits through the first surface, reflects from the second,
reflects again from the first, and then transmits out into
the air, parallel to the direct ray. For normal incidence,
how thick must the film be, in terms of the wavelength of
light, for the outgoing rays to interfere destructively? Is it
the same thickness as for reflected destructive interfer-
ence?

8. Suppose that you are watching television connected to an
antenna rather than a cable system. If an airplane flies
near your location, you may notice wavering ghost images
in the television picture. What might cause this?

9. If we are to observe interference in a thin film, why must
the film not be very thick (on the order of a few wave-
lengths)?

10. A lens with outer radius of curvature R and index of re-

1. What is the necessary condition on the path length differ-
ence between two waves that interfere (a) constructively
and (b) destructively?

2. Explain why two flashlights held close together do not
produce an interference pattern on a distant screen.

3. If Young’s double-slit experiment were performed under
water, how would the observed interference pattern be af-
fected?

4. In Young’s double-slit experiment, why do we use mono-
chromatic light? If white light is used, how would the pat-
tern change?

5. Consider a dark fringe in an interference pattern, at
which almost no light is arriving. Light from both slits is
arriving at this point, but the waves are canceling. Where
does the energy go?

6. An oil film on water appears brightest at the outer re-
gions, where it is thinnest. From this information, what
can you say about the index of refraction of oil relative to
that of water?
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fraction n rests on a flat glass plate, and the combination
is illuminated with white light from above. Is there a dark
spot or a light spot at the center of the lens? What does it
mean if the observed rings are noncircular?

11. Why is the lens on a high-quality camera coated with a
thin film?

12. Why is it so much easier to perform interference experi-
ments with a laser than with an ordinary light source?

PROBLEMS

5. Young’s double-slit experiment is performed with 
589-nm light and a slit-to-screen distance of 2.00 m. The
tenth interference minimum is observed 7.26 mm from
the central maximum. Determine the spacing of the slits.

6. The two speakers of a boom box are 35.0 cm apart. 
A single oscillator makes the speakers vibrate in phase
at a frequency of 2.00 kHz. At what angles, measured
from the perpendicular bisector of the line joining the
speakers, would a distant observer hear maximum
sound intensity? minimum sound intensity? (Take the
speed of sound as 340 m/s.)

7. A pair of narrow, parallel slits separated by 0.250 mm
are illuminated by green light (� � 546.1 nm). The in-
terference pattern is observed on a screen 1.20 m away
from the plane of the slits. Calculate the distance 
(a) from the central maximum to the first bright region
on either side of the central maximum and (b) between
the first and second dark bands.

8. Light with a wavelength of 442 nm passes through 
a double-slit system that has a slit separation 

mm. Determine how far away a screen must be
placed so that a dark fringe appears directly opposite
both slits, with just one bright fringe between them.

9. A riverside warehouse has two open doors, as illustrated
in Figure P37.9. Its walls are lined with sound-absorbing
material. A boat on the river sounds its horn. To person
A, the sound is loud and clear. To person B, the sound
is barely audible. The principal wavelength of the sound
waves is 3.00 m. Assuming that person B is at the posi-
tion of the first minimum, determine the distance be-
tween the doors, center to center.

0.400
d �

Section 37.1 Conditions for Interference
Section 37.2 Young’s Double-Slit Experiment

1. A laser beam (� � 632.8 nm) is incident on two slits
0.200 mm apart. How far apart are the bright interfer-
ence fringes on a screen 5.00 m away from the slits?

2. A Young’s interference experiment is performed with
monochromatic light. The separation between the slits
is 0.500 mm, and the interference pattern on a screen
3.30 m away shows the first maximum 3.40 mm from
the center of the pattern. What is the wavelength?

3. Two radio antennas separated by 300 m as shown in 
Figure P37.3 simultaneously broadcast identical signals
at the same wavelength. A radio in a car traveling due
north receives the signals. (a) If the car is at the posi-
tion of the second maximum, what is the wavelength of
the signals? (b) How much farther must the car travel
to encounter the next minimum in reception? (Note: Do
not use the small-angle approximation in this problem.)

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB

400 m

1000 m
300 m

Figure P37.3
20.0 m

150 m

A

B

Figure P37.9

4. In a location where the speed of sound is 354 m/s, a 
2 000-Hz sound wave impinges on two slits 30.0 cm
apart. (a) At what angle is the first maximum located?
(b) If the sound wave is replaced by 3.00-cm microwaves,
what slit separation gives the same angle for the first
maximum? (c) If the slit separation is 1.00 �m, what fre-
quency of light gives the same first maximum angle?

WEB
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10. Two slits are separated by 0.320 mm. A beam of 500-nm
light strikes the slits, producing an interference pattern.
Determine the number of maxima observed in the an-
gular range � 30.0° � � � 30.0°.

11. In Figure 37.4 let m and mm, and
assume that the slit system is illuminated with mono-
chromatic 500-nm light. Calculate the phase difference
between the two wavefronts arriving at point P when 
(a) � � 0.500° and (b) mm. (c) What is the
value of � for which the phase difference is 0.333 rad?
(d) What is the value of � for which the path difference
is �/4?

12. Coherent light rays of wavelength � strike a pair of slits
separated by distance d at an angle of �1 , as shown in
Figure P37.12. If an interference maximum is formed at
an angle of �2 a great distance from the slits, show that

where m is an integer.d(sin �2 � sin �1) � m�,

y � 5.00

d � 0.120L � 1.20

17. Two narrow parallel slits separated by 0.850 mm are illu-
minated by 600-nm light, and the viewing screen is 
2.80 m away from the slits. (a) What is the phase differ-
ence between the two interfering waves on a screen at a
point 2.50 mm from the central bright fringe? (b) What
is the ratio of the intensity at this point to the intensity
at the center of a bright fringe?

18. Monochromatic coherent light of amplitude E0 and an-
gular frequency � passes through three parallel slits
each separated by a distance d from its neighbor. 
(a) Show that the time-averaged intensity as a function
of the angle � is

(b) Determine the ratio of the intensities of the primary
and secondary maxima.

Section 37.4 Phasor Addition of Waves
19. Marie Cornu invented phasors in about 1880. This

problem helps you to see their utility. Find the ampli-
tude and phase constant of the sum of two waves repre-
sented by the expressions

and

(a) by using a trigonometric identity (see Appendix B)
and (b) by representing the waves by phasors. (c) Find
the amplitude and phase constant of the sum of the
three waves represented by

and

20. The electric fields from three coherent sources are de-
scribed by sin �t, sin(�t � �), and

sin(�t � 2�). Let the resultant field be repre-
sented by sin(�t � �). Use phasors to find ER
and � when (a) � � 20.0°, (b) � � 60.0°, and (c) � �
120°. (d) Repeat when � � (3/2) rad.

21. Determine the resultant of the two waves 
6.0 sin(100 t) and sin(100 t � /2).

22. Suppose that the slit openings in a Young’s double-slit
experiment have different sizes so that the electric
fields and the intensities from each slit are different. If

sin(�t) and sin(�t � �), show that
the resultant electric field is sin(�t � �), where

and

E 0 � !E 01 

2 � E 02 

2 � 2E 01 E 02 cos �

E � E 0

E 2 � E 02E 01E 1 �

E 2 � 8.0
E 1 �

E P � E R

E 3 � E 0

E 2 � E 0E 1 � E 0

E 3 � (17.0 kN/C) sin(15x � 4.5t � 160�)

E 2 � (15.5 kN/C) sin(15x � 4.5t � 80�)

E 1 � (12.0 kN/C) sin(15x � 4.5t � 70�)

E 2 � (12.0 kN/C) sin(15x � 4.5t � 70�)

E 1 � (12.0 kN/C) sin(15x � 4.5t)

I(�) � Imax�1 � 2 cos� 2d sin �
� ��

2

1

d

2

θ

θ

Figure P37.12

13. In the double-slit arrangement of Figure 37.4, 
0.150 mm, cm, nm, and cm.
(a) What is the path difference � for the rays from the
two slits arriving at point P ? (b) Express this path differ-
ence in terms of �. (c) Does point P correspond to a
maximum, a minimum, or an intermediate condition?

Section 37.3 Intensity Distribution of the Double-Slit 
Interference Pattern

14. The intensity on the screen at a certain point in a dou-
ble-slit interference pattern is 64.0% of the maximum
value. (a) What minimum phase difference (in radians)
between sources produces this result? (b) Express this
phase difference as a path difference for 486.1-nm light.

15. In Figure 37.4, let cm and cm. The
slits are illuminated with coherent 600-nm light. Calcu-
late the distance y above the central maximum for
which the average intensity on the screen is 75.0% of
the maximum.

16. Two slits are separated by 0.180 mm. An interference
pattern is formed on a screen 80.0 cm away by 656.3-nm
light. Calculate the fraction of the maximum intensity
0.600 cm above the central maximum.

d � 0.250L � 120

y � 1.80� � 643L � 140
d �

WEB

WEB
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d

Figure P37.35

Figure P37.37 Problems 37 and 38.

23. Use phasors to find the resultant (magnitude and phase
angle) of two fields represented by sin �t and

sin(�t � 60°). (Note that in this case the am-
plitudes of the two fields are unequal.)

24. Two coherent waves are described by the expressions

Determine the relationship between x1 and x2 that pro-
duces constructive interference when the two waves are
superposed.

25. When illuminated, four equally spaced parallel slits act
as multiple coherent sources, each differing in phase
from the adjacent one by an angle �. Use a phasor dia-
gram to determine the smallest value of � for which the
resultant of the four waves (assumed to be of equal am-
plitude) is zero.

26. Sketch a phasor diagram to illustrate the resultant of
sin �t and sin(�t � �), where

and /6 � � � /3. Use the sketch and
the law of cosines to show that, for two coherent waves,
the resultant intensity can be written in the form 

27. Consider N coherent sources described by 
sin(�t � �), sin(�t � 2�), 
sin(�t � 3�), . . . , sin(�t � N�). Find

the minimum value of � for which 
is zero.

Section 37.5 Change of Phase Due to Reflection
Section 37.6 Interference in Thin Films

28. A soap bubble is floating in air. If the thick-
ness of the bubble wall is 115 nm, what is the wave-
length of the light that is most strongly reflected?

29. An oil film floating on water is illuminated
by white light at normal incidence. The film is 280 nm
thick. Find (a) the dominant observed color in the re-
flected light and (b) the dominant color in the trans-
mitted light. Explain your reasoning.

30. A thin film of oil is located on a smooth, wet
pavement. When viewed perpendicular to the pave-
ment, the film appears to be predominantly red 
(640 nm) and has no blue color (512 nm). How thick is
the oil film?

31. A possible means for making an airplane invisible to
radar is to coat the plane with an antireflective polymer.
If radar waves have a wavelength of 3.00 cm and the in-
dex of refraction of the polymer is how thick
would you make the coating?

32. A material having an index of refraction of 1.30 is used

n � 1.50,

(n � 1.25)

(n � 1.45)

(n � 1.33)

E 3 � . . . �  E N

E R � E 1 � E 2 �
E N � E 0E 0

E 3 �E 2 � E 0E 0

E 1 �
IR � I1 � I2 � 2!I1I2 cos �.

E 02 � 1.50E 01

E 2 � E 02E 1 � E 01

E 2 � E 0 sin� 2x2

�
� 2ft �



8 �

E 1 � E 0 sin� 2x1

�
� 2ft �



6 �

E 2 � 18
E 1 � 12

sin � �
E 02 sin �

E 0

to coat a piece of glass What should be the
minimum thickness of this film if it is to minimize re-
flection of 500-nm light?

33. A film of MgF2 having a thickness of
is used to coat a camera lens. Are any

wavelengths in the visible spectrum intensified in the re-
flected light?

34. Astronomers observe the chromosphere of the Sun with
a filter that passes the red hydrogen spectral line of
wavelength 656.3 nm, called the H� line. The filter con-
sists of a transparent dielectric of thickness d held be-
tween two partially aluminized glass plates. The filter is
held at a constant temperature. (a) Find the minimum
value of d that produces maximum transmission of per-
pendicular H� light, if the dielectric has an index of re-
fraction of 1.378. (b) Assume that the temperature of
the filter increases above its normal value and that its in-
dex of refraction does not change significantly. What
happens to the transmitted wavelength? (c) The dielec-
tric will also pass what near-visible wavelength? One of
the glass plates is colored red to absorb this light.

35. A beam of 580-nm light passes through two closely
spaced glass plates, as shown in Figure P37.35. For what
minimum nonzero value of the plate separation d is the
transmitted light bright?

1.00 � 10�5 cm
(n � 1.38)

(n � 1.50).

36. When a liquid is introduced into the air space between
the lens and the plate in a Newton’s-rings apparatus, 
the diameter of the tenth ring changes from 1.50 to
1.31 cm. Find the index of refraction of the liquid.

37. An air wedge is formed between two glass plates sepa-
rated at one edge by a very fine wire, as shown in Figure
P37.37. When the wedge is illuminated from above by
600-nm light, 30 dark fringes are observed. Calculate
the radius of the wire.

WEB
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38. Two rectangular flat glass plates are in con-
tact along one end and separated along the other end
by a sheet of paper 4.00 � 10�3 cm thick (see Fig.
P37.37). The top plate is illuminated by monochro-
matic light Calculate the number of
dark parallel bands crossing the top plate (include the
dark band at zero thickness along the edge of contact
between the two plates).

39. Two glass plates 10.0 cm long are in contact at one end
and separated at the other end by a thread 0.050 0 mm
in diameter. Light containing the two wavelengths 
400 nm and 600 nm is incident perpendicularly. At what
distance from the contact point is the next dark fringe?

(Optional)
Section 37.7 The Michelson Interferometer

40. Light of wavelength 550.5 nm is used to calibrate a
Michelson interferometer, and mirror M1 is moved
0.180 mm. How many dark fringes are counted?

41. Mirror M1 in Figure 37.22 is displaced a distance 	L .
During this displacement, 250 fringe reversals (forma-
tion of successive dark or bright bands) are counted.
The light being used has a wavelength of 632.8 nm. Cal-
culate the displacement 	L .

42. Monochromatic light is beamed into a Michelson inter-
ferometer. The movable mirror is displaced 0.382 mm;
this causes the interferometer pattern to reproduce it-
self 1 700 times. Determine the wavelength and the
color of the light.

43. One leg of a Michelson interferometer contains an
evacuated cylinder 3.00 cm long having glass plates on
each end. A gas is slowly leaked into the cylinder until a
pressure of 1 atm is reached. If 35 bright fringes pass on
the screen when light of wavelength 633 nm is used,
what is the index of refraction of the gas?

44. One leg of a Michelson interferometer contains an
evacuated cylinder of length L having glass plates on
each end. A gas is slowly leaked into the cylinder until a
pressure of 1 atm is reached. If N bright fringes pass on
the screen when light of wavelength � is used, what is
the index of refraction of the gas?

ADDITIONAL PROBLEMS

45. One radio transmitter A operating at 60.0 MHz is 
10.0 m from another similar transmitter B that is 180°
out of phase with transmitter A. How far must an ob-
server move from transmitter A toward transmitter B
along the line connecting A and B to reach the nearest
point where the two beams are in phase?

46. Raise your hand and hold it flat. Think of the space be-
tween your index finger and your middle finger as one
slit, and think of the space between middle finger and
ring finger as a second slit. (a) Consider the interfer-
ence resulting from sending coherent visible light per-
pendicularly through this pair of openings. Compute an
order-of-magnitude estimate for the angle between adja-

(� � 546.1 nm).

(n � 1.52) cent zones of constructive interference. (b) To make the
angles in the interference pattern easy to measure with a
plastic protractor, you should use an electromagnetic
wave with frequency of what order of magnitude? How is
this wave classified on the electromagnetic spectrum?

47. In a Young’s double-slit experiment using light of wave-
length �, a thin piece of Plexiglas having index of re-
fraction n covers one of the slits. If the center point on
the screen is a dark spot instead of a bright spot, what is
the minimum thickness of the Plexiglas?

48. Review Problem. A flat piece of glass is held stationary
and horizontal above the flat top end of a 10.0-cm-long
vertical metal rod that has its lower end rigidly fixed.
The thin film of air between the rod and glass is ob-
served to be bright by reflected light when it is illumi-
nated by light of wavelength 500 nm. As the tempera-
ture is slowly increased by 25.0°C, the film changes from
bright to dark and back to bright 200 times. What is the
coefficient of linear expansion of the metal?

49. A certain crude oil has an index of refraction of 1.25. 
A ship dumps 1.00 m3 of this oil into the ocean, and the
oil spreads into a thin uniform slick. If the film pro-
duces a first-order maximum of light of wavelength 
500 nm normally incident on it, how much surface area
of the ocean does the oil slick cover? Assume that the
index of refraction of the ocean water is 1.34.

50. Interference effects are produced at point P on a screen
as a result of direct rays from a 500-nm source and re-
flected rays off the mirror, as shown in Figure P37.50. If
the source is 100 m to the left of the screen and 1.00 cm
above the mirror, find the distance y (in millimeters) to
the first dark band above the mirror.

O

Source
P

Viewing screen

Mirror

�

y

Figure P37.50

51. Astronomers observed a 60.0-MHz radio source both di-
rectly and by reflection from the sea. If the receiving
dish is 20.0 m above sea level, what is the angle of the
radio source above the horizon at first maximum?

52. The waves from a radio station can reach a home re-
ceiver by two paths. One is a straight-line path from
transmitter to home, a distance of 30.0 km. The second
path is by reflection from the ionosphere (a layer of ion-
ized air molecules high in the atmosphere). Assume that
this reflection takes place at a point midway between the
receiver and the transmitter. The wavelength broadcast
by the radio station is 350 m. Find the minimum height
of the ionospheric layer that produces destructive inter-
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ference between the direct and reflected beams. (As-
sume that no phase changes occur on reflection.)

53. Measurements are made of the intensity distribution in
a Young’s interference pattern (see Fig. 37.6). At a par-
ticular value of y, it is found that when
600-nm light is used. What wavelength of light should
be used if the relative intensity at the same location is to
be reduced to 64.0%?

54. In a Young’s interference experiment, the two slits are
separated by 0.150 mm, and the incident light includes
light of wavelengths �1 � 540 nm and �2 � 450 nm.
The overlapping interference patterns are formed on a
screen 1.40 m from the slits. Calculate the minimum
distance from the center of the screen to the point
where a bright line of the �1 light coincides with a
bright line of the �2 light.

55. An air wedge is formed between two glass plates in con-
tact along one edge and slightly separated at the oppo-
site edge. When the plates are illuminated with mono-
chromatic light from above, the reflected light has 85
dark fringes. Calculate the number of dark fringes that
would appear if water were to replace the air
between the plates.

56. Our discussion of the techniques for determining con-
structive and destructive interference by reflection from
a thin film in air has been confined to rays striking the
film at nearly normal incidence. Assume that a ray is in-
cident at an angle of 30.0° (relative to the normal) on a
film with an index of refraction of 1.38. Calculate the
minimum thickness for constructive interference if the
light is sodium light with a wavelength of 590 nm.

57. The condition for constructive interference by reflec-
tion from a thin film in air as developed in Section 37.6
assumes nearly normal incidence. Show that if the light
is incident on the film at a nonzero angle �1 (relative to
the normal), then the condition for constructive inter-
ference is 2nt cos where �2 is the angle
of refraction.

58. (a) Both sides of a uniform film that has index of refrac-
tion n and thickness d are in contact with air. For nor-
mal incidence of light, an intensity minimum is ob-
served in the reflected light at �2 , and an intensity
maximum is observed at �1 , where If no inten-
sity minima are observed between �1 and �2 , show that
the integer m in Equations 37.16 and 37.17 is given by

(b) Determine the thickness of the
film if nm, and nm.

59. Figure P37.59 shows a radio wave transmitter and a re-
ceiver separated by a distance d and located a distance h
above the ground. The receiver can receive signals both
directly from the transmitter and indirectly from signals
that reflect off the ground. Assume that the ground is
level between the transmitter and receiver and that a
180° phase shift occurs upon reflection. Determine the
longest wavelengths that interfere (a) constructively
and (b) destructively.

�2 � 370�1 � 500n � 1.40,
m � �1/2(�1 � �2).

�1 � �2 .

�2 � (m � 1
2 )�,

(n � 1.33)

I/Imax � 0.810

60. Consider the double-slit arrangement shown in Figure
P37.60, where the separation d is 0.300 mm and the dis-
tance L is 1.00 m. A sheet of transparent plastic

0.050 0 mm thick (about the thickness of
this page) is placed over the upper slit. As a result, the
central maximum of the interference pattern moves up-
ward a distance y
. Find y
.

(n � 1.50)

Transmitter Receiver

d

h

Figure P37.59

61. Consider the double-slit arrangement shown in Figure
P37.60, where the slit separation is d and the slit to
screen distance is L. A sheet of transparent plastic having
an index of refraction n and thickness t is placed over the
upper slit. As a result, the central maximum of the inter-
ference pattern moves upward a distance y
. Find y
.

62. Waves broadcast by a 1 500-kHz radio station arrive at a
home receiver by two paths. One is a direct path, and
the other is from reflection off an airplane directly
above the receiver. The airplane is approximately 100 m
above the receiver, and the direct distance from station
to home is 20.0 km. What is the precise height of the
airplane if destructive interference is occurring? (As-
sume that no phase change occurs on reflection.)

63. In a Newton’s-rings experiment, a plano-convex glass
lens having a diameter of 10.0 cm is placed

on a flat plate, as shown in Figure 37.18a. When 650-nm
light is incident normally, 55 bright rings are observed,
with the last ring right on the edge of the lens. (a) What
is the radius of curvature of the convex surface of the
lens? (b) What is the focal length of the lens?

64. A piece of transparent material having an index of re-

(n � 1.52)

θ

m =0 Zero order

Viewing screen

Plastic
sheet

L

d

∆r

y′

Figure P37.60 Problems 60 and 61.
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fraction n is cut into the shape of a wedge, as shown in
Figure P37.64. The angle of the wedge is small, and
monochromatic light of wavelength � is normally inci-
dent from above. If the height of the wedge is h and the
width is �, show that bright fringes occur at the posi-
tions and that dark fringes occur at
the positions where m � 0, 1, 2, . . .
and x is measured as shown.

x � ��m/2hn,
x � ��(m � 1

2 )/2hn

where m is an integer and r is much less than R .
68. A soap film is contained within a rectangular

wire frame. The frame is held vertically so that the film
drains downward and becomes thicker at the bottom
than at the top, where the thickness is essentially zero.
The film is viewed in white light with near-normal inci-
dence, and the first violet interference
band is observed 3.00 cm from the top edge of the film.
(a) Locate the first red interference
band. (b) Determine the film thickness at the positions
of the violet and red bands. (c) What is the wedge angle
of the film?

69. Interference fringes are produced using Lloyd’s mirror
and a 606-nm source, as shown in Figure 37.14. Fringes
1.20 mm apart are formed on a screen 2.00 m from the
real source S. Find the vertical distance h of the source
above the reflecting surface.

70. Slit 1 of a double slit is wider than slit 2, so that the light
from slit 1 has an amplitude 3.00 times that of the light
from slit 2. Show that Equation 37.11 is replaced by the
equation for this situa-
tion.

(4Imax/9)(1 � 3 cos2 �/2)I �

(� � 680 nm)

(� � 420 nm)

(n � 1.33)

r � !m�R/n film

R

r

Figure P37.66

 I
Imax

0–2λ– 2λλ λ λ λ
d sin θθ

�

x

h

Figure P37.64

65. Use phasor addition to find the resultant amplitude and
phase constant when the following three harmonic
functions are combined: 

66. A plano-convex lens having a radius of curvature of
m is placed on a concave reflecting surface

whose radius of curvature is m, as shown in
Figure P37.66. Determine the radius of the 100th bright
ring if 500-nm light is incident normal to the flat sur-
face of the lens.

67. A plano-convex lens has index of refraction n . The
curved side of the lens has radius of curvature R and
rests on a flat glass surface of the same index of refrac-
tion, with a film of index nfilm between them. The lens
is illuminated from above by light of wavelength �.
Show that the dark Newton’s rings have radii given ap-
proximately by

R � 12.0
r � 4.00

E 3 � 6.0 sin(�t � 4/3).E 2 � 3.0 sin(�t � 7/2),
E 1 � sin(�t � /6),

ANSWERS TO QUICK QUIZZES

of the photograph and at the bottom right corner of the
razor blade. Thus, the thickness of the oil film changes
most slowly with position in these areas.

37.1 Bands of light along the orange lines interspersed with
dark bands running along the dashed black lines.

37.2 At location B. At A, which is on a line of constructive in-
terference, the water surface undulates so much that you
probably could not determine the depth. Because B is on
a line of destructive interference, the water level does not
change, and you should be able to read the ruler easily.

37.3 The graph is shown in Figure QQA37.1. The width of
the primary maxima is slightly narrower than the 
primary width but wider than the primary width.
Because the secondary maxima are as intense
as the primary maxima.

37.4 The greater the variation in thickness, the narrower the
bands of color (like the lines on a topographic map).
The widest bands are the gold ones along the left edge

1
36N � 6,

N � 10
N � 5

Figure QQA37.1


