- 37. (a) Maxima of a diffraction grating pattern occur at angles θ given by $d \sin \theta = m\lambda$, where d is the slit separation, λ is the wavelength, and m is an integer. The two lines are adjacent, so their order numbers differ by unity. Let m be the order number for the line with $\sin \theta = 0.2$ and m + 1 be the order number for the line with $\sin \theta = 0.3$. Then, $0.2d = m\lambda$ and $0.3d = (m+1)\lambda$. We subtract the first equation from the second to obtain $0.1d = \lambda$, or $d = \lambda/0.1 = (600 \times 10^{-9} \text{ m})/0.1 = 6.0 \times 10^{-6} \text{ m}$.
 - (b) Minima of the single-slit diffraction pattern occur at angles θ given by $a \sin \theta = m\lambda$, where a is the slit width. Since the fourth-order interference maximum is missing, it must fall at one of these angles. If a is the smallest slit width for which this order is missing, the angle must be given by $a \sin \theta = \lambda$. It is also given by $d \sin \theta = 4\lambda$, so $a = d/4 = (6.0 \times 10^{-6} \text{ m})/4 = 1.5 \times 10^{-6} \text{ m}$.
 - (c) First, we set $\theta = 90^{\circ}$ and find the largest value of m for which $m\lambda < d\sin\theta$. This is the highest order that is diffracted toward the screen. The condition is the same as $m < d/\lambda$ and since $d/\lambda = (6.0 \times 10^{-6} \text{ m})/(600 \times 10^{-9} \text{ m}) = 10.0$, the highest order seen is the m = 9 order. The fourth and eighth orders are missing, so the observable orders are m = 0, 1, 2, 3, 5, 6, 7, and 9.