39. The angular positions of the first-order diffraction lines are given by $d \sin \theta=\lambda$. Let λ_{1} be the shorter wavelength (430 nm) and θ be the angular position of the line associated with it. Let λ_{2} be the longer wavelength (680 nm), and let $\theta+\Delta \theta$ be the angular position of the line associated with it. Here $\Delta \theta=20^{\circ}$. Then, $d \sin \theta=\lambda_{1}$ and $d \sin (\theta+\Delta \theta)=\lambda_{2}$. We write $\sin (\theta+\Delta \theta)$ as $\sin \theta \cos \Delta \theta+\cos \theta \sin \Delta \theta$, then use the equation for the first line to replace $\sin \theta$ with λ_{1} / d, and $\cos \theta$ with $\sqrt{1-\lambda_{1}^{2} / d^{2}}$. After multiplying by d, we obtain

$$
\lambda_{1} \cos \Delta \theta+\sqrt{d^{2}-\lambda_{1}^{2}} \sin \Delta \theta=\lambda_{2}
$$

Solving for d, we find

$$
\begin{aligned}
d & =\sqrt{\frac{\left(\lambda_{2}-\lambda_{1} \cos \Delta \theta\right)^{2}+\left(\lambda_{1} \sin \Delta \theta\right)^{2}}{\sin ^{2} \Delta \theta}} \\
& =\sqrt{\frac{\left[(680 \mathrm{~nm})-(430 \mathrm{~nm}) \cos 20^{\circ}\right]^{2}+\left[(430 \mathrm{~nm}) \sin 20^{\circ}\right]^{2}}{\sin ^{2} 20^{\circ}}} \\
& =914 \mathrm{~nm}=9.14 \times 10^{-4} \mathrm{~mm}
\end{aligned}
$$

There are $1 / d=1 /\left(9.14 \times 10^{-4} \mathrm{~mm}\right)=1090$ rulings per mm .

