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5.1.1 EXPERIMENTAL EVALUATION OF SOLUBILITY PARAMETERS OF
LIQUIDS

The value of solubility parameter can be calculated from the evaporation enthalpy of liquid
at given temperature:1
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where:
∆Hp latent heat of vaporization
V molar volume

5.1.1.1 Direct methods of evaluation of the evaporation enthalpy

For measurement of the evaporation enthalpy of volatile substances, adiabatic apparatuses
were developed. They require significant quantities of highly purified substances. The ac-
curacy is determined to a large degree by equipment design and precision of measurement.

Most calorimeters that measure a latent heat of vaporization work under isobaric con-
ditions. The measurement of a latent heat of vaporization requires monitoring heat input
into calorimeter and the amount of liquid evaporated during measurement time.2-4

In calorimeters of a flowing type,5-6 a liquid evaporates from a separate vessel of a cal-
orimeter. The vapors are directed into the second calorimeter where the thermal capacity of
gas is measured. The design of such calorimeters ensures a precise measurement of the
stream rate. Heaters and electrical controls permit control of heat flow with high precision
and highly sensitive thermocouples measure temperature of gas. There are no excessive



thermal losses, thus single-error corrections for the heat exchange can be used to increase
precision of measurement.

The calorimeters used for the measurement of the heat of reaction can also be used for
a measurement of the latent heat of vaporization. These are calorimeters for liquids, mi-
cro-calorimeters, mass calorimeters, and double calorimeters.7

The calorimeters with carrier gas are also used.8-9 Evaporation of substance is acceler-
ated by a stream of gas (for example, nitrogen) at reduced pressure. The heat loss by a calo-
rimeter, due to evaporation, is compensated by an electrical current to keep temperature of
calorimeter constant and equal to the temperature of the thermostating bath.

5.1.1.2 Indirect methods of evaluation of evaporation enthalpy

Because the calorimetric methods of measurement of enthalpy of vapor formation are very
difficult, the indirect methods are used, especially for less volatile substances. The applica-
tion of generalized expression of the first and second laws of thermodynamics to the hetero-
geneous equilibrium between a condensed phase in isobaric- thermal conditions is given in
the Clausius-Clapeyron equation that relates enthalpy of a vapor formation at the vapor
pressure, P, and temperature, T. For one component system, the Clausius-Clapeyron equa-
tion has the form:7

dP dT H T Vp/ /= ∆ ∆ [5.1.2]

where:
∆V difference between molar volumes of vapor and liquid

The ratio that neglects volume of a condensed phase with assumption that vapor at low
pressure is ideal can be derived from the above equation:

( )d P d T H Rpln / / /1 = −∆ [5.1.3]

After integration:

ln /P H RT constp= − +∆ [5.1.4]

Introducing compressibility factors of gas and liquids, ∆Z, the Clausius-Clapeyron
equation can be written as:

( )d P d T H R Zpln / / /1 = −∆ ∆ [5.1.5]

where:
∆Z difference between compressibility factors of gas and liquids

The value ∆Z includes corrections for volume of liquid and non-ideality of a vapor
phase. The simplifying assumptions give the equation:

ln /P A B T= + [5.1.6]

Approximate dependence of a vapor pressure on inverse temperature is frequently lin-
ear but the dependence may also be non-linear because of changing ratio of ∆Hp/∆Z on heat-
ing. The mathematical expressions of the dependence lnP on 1/T of real substances in a
wide range of temperatures should be taken into account. If ∆Hp/∆Z = a + bT, it results in an
equation with three constants:
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ln / lnP A B T C T= + + [5.1.7]

In more complicated dependancies, the number of constants may further increase.
Another convenient method is based on empirical relation of ∆Hp at 25oC with the nor-

mal boiling point, Tb, of non-polar liquids:1

∆H T Tp b b= + −2 237 2950. [5.1.8]

Methods of evaluation of vapor pressure may be divided into static, quasi-static, and
kinetic methods.

5.1.1.3 Static and quasi-static methods of evaluation of pair pressure

Manometric method10 consists of thermostating with a high precision (0.01K) and vapor
pressure measurement by a level of mercury with the help of a cathetometer or membrane
zero-manometer. The accuracy of measurement is 0.1-0.2 mm Hg.

Ebulliometric method11 is used for a simultaneous measurement of the boiling and
condensation temperature that is required for evaluation of purity of a substance and its mo-
lecular mass.

5.1.1.4 Kinetic methods

These methods were developed based on the molecular kinetic theory of gases. The
Langmuir method is based on the evaporation of substance from a free surface into a vac-
uum. The Knudsen method is based on the evaluation of the outflow rate of a vapor jet from
a mesh.

The basic expression used in Langmuir method12 is:
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where:
m mass of evaporated substance
S surface of evaporation
t time of evaporation.

The Knudsen method13 is based on a measurement of the mass rate of the vapor out-
flow through a hole. Knudsen proposed the following expression:

P
m

S t

RT

M
k

h

=











 




∆
β

π2
1 2/

[5.1.10]

where:
∆m mass output of substance
Sh surface area of the hole
t time of vaporization
β Clausing parameter
M molecular mass

The method uses special effusion cameras with holes of a definite form, maintaining
high vacuum in the system. The method is widely applied to the measurements of a vapor
pressure of low volatile substances.
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The detailed comparative evaluation of experimental techniques and designs of equip-
ment used for determination of enthalpy of evaporation can be found in the appropriate
monographs.7,14 Values of solubility parameters of solvents are presented in Subchapter 4.1.

5.1.2 METHODS OF EXPERIMENTAL EVALUATION AND CALCULATION OF
SOLUBILITY PARAMETERS OF POLYMERS

It is not possible to determine solubility parameters of polymers by direct measurement of
evaporation enthalpy. For this reason, all methods are indirect. The underlining principles
of these methods are based on the theory of regular solutions that assumes that the best mu-
tual dissolution of substances is observed at the equal values of solubility parameters (see
Chapter 4).

Various properties of polymer solutions involving interaction of polymer with solvent
are studied in a series of solvents having different solubility parameters. A value of a solu-
bility parameter is related to the maximum value of an investigated property and is equated
to a solubility parameter of polymer.

This subchapter is devoted to the evaluation of one-dimensional solubility parameters.
The methods of the evaluation of components of solubility parameters in multi-dimensional
approaches are given in the Subchapter 4.1.

According to Gee,15 a dependence of an equilibrium swelling of polymers in solvents
on their solubility parameters is expressed by a curve with a maximum where the abscissa is
equal to the solubility parameter of the polymer. For exact evaluation of δ, a swelling degree
is represented by an equation resembling the Gaussian function:

( )[ ]Q Q V= − −max exp 1 1 2

2δ δ [5.1.11]

where:
Qmax the degree of swelling at the maximum on the curve
V1 molar volume of solvent
δ δ1 2, solvent and polymer solubility parameters.

Then
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[5.1.12]

The dependence [(1/V1)ln(Qmax/Q)]1/2=f(δ1) is expressed by a direct line intersecting
the abscissa at δ δ1 2= . This method is used for calculation of the parameters of many
crosslinked elastomers.16-19

The Bristow-Watson method is based on the Huggins equation deduced from a refine-
ment of the lattice approach:20

( )( )χ β δ δ= + −V RT1 1 2

2
/ [5.1.13]

where:
β =(1/z)(1-1/m)
z a coordination number
m the chain length.

βmay be rewritten as χS entropy contribution to χ (see Chapter 4).
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Accepting that Eq. [5.1.12] represents a valid means of assignment of a constant δ2 to
polymer, the rearrangement of this equation gives:

δ χ δ
δ
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S− =
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 


 − − [5.1.14]

Now it is assumed that χS is of the or-
der of magnitude suggested above and that,
in accordance with the Huggins equation, it
is not a function of δ2. Therefore χS/V1 is
only about 3% or less of δ2

2 /RT for reason-
able values of δ2 of 10-20 (MJ/m3)1/2.
Hence Eq. [5.1.14] gives δ2 from the slope
and intercept on plot against δ1 (see Figure
5.1.1).

This method was improved21 by using
calculations that exclude strong deviations
of χ. When (χSRT/V1 ≈const), Eq. [5.1.14]
is close to linear (y = A + Bx), where
y = RT / VS 1δ χ1

2 − ( ), A = -χS(RT/V1) - δ2
2 ,

B = 2δ2, x = δ1.
But δ2 enters into expression for a tan-

gent of a slope angle and intercept which is
cut off on the ordinates axes. This can be
eliminated by introduction of a sequential

approximation of χS(RT/V1) and grouping of experimental points in areas characterized by
a definite interval of values χS(RT/V1). Inside each area χS(RT/V1) →const and Eq. [5.1.14]
becomes more precise.

The intervals of values χS(RT/V1) are reduced in the course of computations. For n ex-
perimental points, the files X (x1, x2,.... xn) and Y (y1, y2, .... yn) are gathered. Tangent of the
slope angle is defined by the method of least squares and the current value (at the given
stage) of a solubility parameter of a polymer is:
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where:
j a stage of computation

χS(RT/V1) is then calculated using the equation derived from Eqs. [5.1.13] and
[5.1.14]:

χ δ δS

j

i j i j

RT

V
y x

1

2

2

22








 = − − + [5.1.16]
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Figure 5.1.1. Dependence for equilibrium swelling of
crosslinked elastomer on the base of polyether urethane.
[Adapted, by permission, from V.Yu. Senichev in Syn-
thesis and properties of cross-linked polymers and com-
positions on their basis. Russian Academy of Sciences

Publishing, Sverdlovsk,1990, p.16]



Table 5.1.1. Modification of δ2 j values during stages of computation

Polymer
j = 1 j = 2 j = 3 j = 4

δ2j, (MJ/m3)1/2

polydiene urethane epoxide 17.64 17.88 17.78 17.8

polydiene urethane 17.72 18.17 17.93 17.82

poly(butylene glycol) urethane 19.32 18.89 18.95 18.95

poly(diethylene glycol adipate) urethane 19.42 19.44 19.44 -

where:
δ2 j value of δ2 at the given stage of computation

By sorting of all experimental points into a defined amount of intervals (for 30-50
points it is more convenient to take 5-6 intervals), it is possible to calculate δ2 for each inter-
val separately. The current average weighted value (contribution of δ2 is defined), obtained
for each interval, is proportional to the amount of points in the interval according to the fol-
lowing formula:

δ δ2 2

1

1
j k k

k

k

M
m=

=
∑ [5.1.17]

where:
k = 1,2,.... k, number of intervals
mk number of points in k-interval
M the total number of points
j stage of computation.

The shaping of subarrays of points is made in the following order, ensuring that casual
points are excluded: 1) account is made in a common array of points of δ2 and χS(RT/V1)i; 2)

partition of a common array into a popula-
tion of subarrays of χS(RT/V1) in limits de-
fined for elimination of points not included
in intervals and points which do not influ-
ence consequent stages of computation, 3)
reductions of intervals in each of the
subarrays (this stage may be repeated in
some cases).

At the each stage the sequential ap-
proximation to constant value of χS(RT/V1)
is produced in a separate form, permitting
one to take into account the maximum num-
ber of points. The procedure gives a se-
quence of values δ2 j as shown in Table
5.1.1.

In still other methods of evaluation,22

the solvents are selected so that the solubil-
ity parameter of polymer occupies an inter-
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Figure 5.1.2. Dependence of equilibrium swelling of
crosslinked elastomer of polyester urethane (1) and
polybutadiene nitrile rubber (2) on the volume fraction of
acetone in the toluene-acetone mixture. [Adapted, by per-
mission, from V.V. Tereshatov, V.Yu. Senichev,
A.I. Gemuev, Vysokomol. soed., B32, 412 (1990)]



mediate position between solubility parameters of solvents. Assumption is made that the
maximum polymer swelling occurs when the solubility parameters of the solvent mixture
and polymer are equal. This is the case when the solubility parameter of polymer is lower
than the solubility parameter of the primary solvent and the solubility parameter of the sec-
ondary solvent is higher. The dependence of the swelling ratio on the composition of sol-
vent mixture has a maximum (see Figure 5.1.2). Such mixed solvents are called symmetric
liquids. The reliability of the method is examined by a narrow interval of change of the solu-
bility parameter of a binary solvent. The data obtained by this method in various mixtures
differ by no more than 1.5% with the data obtained by other methods. Examples of results
are given in Tables 5.1.2, 5.1.3.

Table 5.1.2. Values of solubility parameters for crosslinked elastomers from swelling
in symmetric liquids. [Adapted, by permission, from V.V. Tereshatov, V.Yu. Senichev,
A.I. Gemuev, Vysokomol. soed., B32, 412 (1990).]

Elastomer Symmetric liquids ϕ 2

H at Qmax δp, (MJ/m
3
)

1/2

Polyether urethane
Toluene( 1) - acetone (2)
Cyclohexane (1) -acetone (2)

0.11
0.49

18.4
18.2

Ethylene-propylene rubber
Hexane (1) - benzene (2)
Toluene (1) - acetone (2)

0.38
0.32

16.2
18.9

Butadiene-nitrile rubber
Ethyl acetate (1) - acetone (2)
Benzene (1) - acetone (1)

0.22
0.27

19.1
19.1

Polyester-urethane
Toluene (1) - acetone (2)
o-Xylene (1) - Butanol -1(2)

0.62
0.21

19.6
19.5

Butyl rubber Octane (1) - benzene (2) 0.26 16.1

Table 5.1.3. Values of solubility parameters of crosslinked elastomers from swelling
in individual solvents and symmetric liquids. [Adapted, by permission, from
V.V. Tereshatov, V.Yu. Senichev, A.I. Gemuev, Vysokomol. soed., B32, 412 (1990).]

Elastomer

Symmetric

liquids

Individual solvents

Gee method Bristow-Watson method

(MJ/m3)1/2

Polyether-urethane 18.3±0.1 17.8, 18.4, 19.4 19.2

Ethylene-propylene rubber 16.2 16.1-16.4 -

Butadiene-nitrile rubber 19.0±0.1 18.9-19.4 18.7

Polyester-urethane 19.5-19.6 19.3, 19.9 19.5

Butyl rubber 16.1 15.9-16.6 14.9

The calculations were made using equation:

( )[ ]δ δ δ ϕ δ ϕp mix mixH V= = − ′′ + ′′ −1

2

1 2

2

1 12

1 2

1 ∆ /
/

[5.1.18]

5.1 Solubility parameters 249



where:

′′ϕ 1 volume fraction of a solvent in a binary mixture of solvents causing a maximum of
equilibrium swelling

∆Hmix experimental value of the mixing enthalpy of components of binary solvent. It can be
taken from literature.23-24

V12 the molar volume of binary solvent

If there are no volume changes, V12 can be calculated using the additivity method:

V V V12 1 1 2 2= +ϕ ϕ [5.1.19]

Attempts25 were made to relate intrinsic viscosity [η] to solubility parameters of mixed
solvents. δ2 of polymer was calculated from the equation: [η] = f(δ1). The authors assumed
that the maximum value of [η] is when δ1 = δ2 of polymer. However, studying [η] for
polymethylmethacrylate in fourteen liquids, the authors found a large scatter of experimen-
tal points through which they have drawn a curve with a diffusion maximum. Thus the pre-
cision of δ2 values was affected by 10% scatter in experimental data.

This method was widely used by Mangaray et al.26-28 The authors have presented [η] as
the Gaussian function of (δ1 - δ2)2. Therefore, dependence {( / ) ln[ ] / [ ]} ( )max

/1 1 2
1V1 η η δ= f

can be expressed by a straight line intersecting the abscissa at a point for which δ1 = δ2 . For
natural rubber and polyisobutylene, the paraffin solvents and ethers containing alkyl chains
of a large molecular mass were studied.26 For polystyrene, aromatic hydrocarbons were
used. For polyacrylates and polymethacrylates esters (acetates, propionates, butyrates)
were used.27,28 The method was used for determination of δ2 of many polymers.29-31 In all
cases, the authors observed extrema in the dependence of [η] = f(δ1), and the obtained val-
ues of δ2 coincided well with the values determined by other methods. But for some poly-
mers it was not possible to obtain extremum in dependence of [η] = f(δ1).

32

A method of the evaluation [η] in one solvent at different temperatures was used for
polyisobutylene33 and polyurethanes.34

For polymers soluble in a limited range of solvents, more complex methods utilizing
[η] relationship are described.35-37

In addition to the above methods, δ2 of polymer can be determined from a threshold of
sedimentation38 and by critical opalescence.39 In recent years the method of inverse gas-liq-
uid chromatography has been used to evaluate δ2 of polymers.40,41 One may also use some
empirical ratios relating solubility parameters of polymers with some of their physical prop-
erties, such as, surface tension42-44 and glass transition temperature.45

The solubility parameters for various polymers are given in Table 5.1.3.

Table 5.1.4. Solubility parameters of some polymers36,46

Polymer
δ

Polymer
δ

(cal/cm
3
)
1/2

(MJ/m
3
)
1/2

(cal/cm
3
)
1/2

(MJ/m
3
)
1/2

Butyl rubber 7.84 16.0 Polydimethylsiloxane 9.53 19.5

Cellulose diacetate 10.9 22.2 Polydimethylphenyleneoxide 8.6 17.6

Cellulose dinitrate 10.6 21.6 Polyisobutylene 7.95 16.2

Polyamide-66 13.6 27.8 Polymethylmethacrylate 9.3 19.0
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Polymer
δ

Polymer
δ

(cal/cm
3
)
1/2

(MJ/m
3
)
1/2

(cal/cm
3
)
1/2

(MJ/m
3
)
1/2

Natural rubber 8.1 16.5 Polymethylacrylate 9.7 19.8

Neoprene 8.85 18.1 Polyoctylmethacrylate 8.4 17.2

Cellulose nitrate 11.5 23.5 Polypropylene 8.1 16.5

Polyacrylonitrile 14.5 29.6 Polypropylene oxide 7.52 15.4

Polybutadiene 8.44 17.2 Polypropylene sulphide 9.6 19.6

Poly-n-butylacrylate 8.7 17.8 Polypropylmethacrylate 8.8 18.0

Polybutylmethacrylate 8.7 17.8 Polystyrene 8.83 18.0

Polybutyl-tert-methacrylate 8.3 16.9 Polyethylene 7.94 16.2

Polyvinylacetate 9.4 19.2 Polyethyleneterephthalate 10.7 21.8

Polyvinylbromide 9.55 19.5 Polyethylmethacrylate 9.1 18.6

Polyvinylidenechloride 12.4 25.3 Polybutadienenitrile (82:18 w) 8.7 17.8

Polyvinylchloride 9.57 19.5 Polybutadienenitrile (75:25) 9.38 19.2

Polyhexyl methacrylate 8.6 17.6 Polybutadienenitrile (70:30) 9.64 19.7

Polyglycol terephthalate 10.7 21.8 Polybutadienenitrile (61:39) 10.30 21.0

Polydiamylitaconate 8.65 17.7
Polybutadienevinylpyridine

(75:25 mas.)
9.35 19.1

Polydibutylitaconate 8.9 18.2 Polybutadienestyrene (96:4) 8.1 16.5

Polysulfone 10.5 21.4
Polybutadienestyrene

(87.5:12.5)
8.31 17.0

Polytetrafluorethylene 6.2 12.7 Polybutadienestyrene (85:15) 8.5 17.4

Polychloroacrylate 10.1 20.6
Polybutadienestyrene

(71.5:28.5)
8.33 17.0

Polycyanoacrylate 14.0 28.6 Polybutadienestyrene (60:40) 8.67 17.7

Polyethylacrylate 9.3 19.0 Chlorinated rubber 9.4 19.2

Polyethylenepropylene 7.95 16.2 Ethylcellulose 10.3 21.0
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5.2 PREDICTION OF SOLUBILITY PARAMETER

Nobuyuki Tanaka

Department of Biological and Chemical Engineering
Gunma University, Kiryu, Japan

5.2.1 SOLUBILITY PARAMETER OF POLYMERS

For the purpose of searching for the solvents for a polymer, the solubility parameter of poly-
mers, δp , is defined as:1-11

( )δp h v= 0

1 2
/

/
[5.2.1]

where:
h0 the cohesive enthalpy per molar structural unit for a polymer (cal/mol)
v the volume per molar structural unit for a polymer (cm3/mol)

because δp is equivalent to the solubility parameter of solvents, δs, that shows the minimum
of the dissolution temperature7 or the maximum of the degree of swelling1,2 for the polymer.
For δs, h0 is the molar energy of vaporization that is impossible to measure for polymers de-
composed before the vaporization at elevated temperatures, and v is the molar volume of a
solvent. The measurements of the dissolution temperature and the degree of swelling are
only means to find the most suitable solvents for a polymer by trial and error.

In order to obtain easily the exact value of δp at a temperature, T, the possibil-
ity of δp prediction from the thermal transition behaviors such as the glass transition and the
melting has been discussed.9-11 Consequently, it was found that the sum of their transition
enthalpies gave h0 in equation [5.2.1] approximately:

for crystalline polymers,

h h h hg x u0 ≈ + + T ≤ Tg [5.2.2]

h h hx u0 ≈ + Tg < T < Tm [5.2.3]

for amorphous polymers,

h h hg x0 ≈ + T ≤ Tg [5.2.4]

where:
hg the glass transition enthalpy per molar structural unit for a polymer
hu the heat of fusion per molar structural unit for a polymer
hx the transition enthalpy per molar structural unit due to ordered parts in the

amorphous regions
Tg the glass transition temperature; here the onset temperature of heat

capacity jump at the glass transition
Tm the melting temperature

In the following sections, the physical meanings of hg and hx are shown in the theoreti-
cal treatments of the glass transition, and for several polymers, δp is predicted using these
thermodynamic quantities.
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5.2.2 GLASS TRANSITION IN POLYMERS

The glass transition in polymers is the same kind of physical phenomenon as observed gen-
erally for amorphous materials.12 At Tg in the cooling process, polymers are frozen glasses
and the molecular motions are restricted strictly. However, the actual states of glasses are
dependent on the cooling rate; if the cooling rate is rapid, the glasses formed should be im-
perfect, such as liquid glasses or glassy liquids.13,14 The annealing for imperfect glasses re-
sults in the enthalpy relaxation from imperfect glasses to perfect glasses. At Tg in the
heating process, the strong restriction of molecular motions by intermolecular interactions
is removed and then the broad jump of heat capacity, Cp, is observed.15 Annealing the
glasses, the Cp jump curve becomes to show a peak.15,16

5.2.2.1 Glass transition enthalpy

For polymer liquids, the partition function, Ω, normalized per unit volume is given
by:10,14,17,18

( )( ) ( ) { }Ω = −Z N mkT q v Nxh RTN Nx

f

Nx
/ ! / / exp / ( )

/ int2 2 3 2

π h [5.2.5]

with vf = qv exp{-hint/(RT)}
where:

hint the intermolecular cohesive enthalpy per molar structural unit for a polymer
h Planck’s constant
k Boltzmann’s constant
m the mass of a structural unit for a polymer
N the number of chains
q the packing factor of structural units for a polymer
R the gas constant
vf the free volume per molar structural unit for a polymer
x the degree of polymerization
Z the conformational partition function per a chain

From equation [5.2.5], the enthalpy and the entropy per molar chain for polymer liq-
uids, Hl and Sl, are derived:10

H RT d Z dT RxT RxT d v dT xhf1

2 23 2= + − +ln / ( / ) ln / int [5.2.6]

( ) ( ) ( )S R Z RTd Z dT Rx x R v RTd v dT xSf f d1 3 2= + + − + +ln ln / / ln ln / [5.2.7]

with Sd = (3R/2)ln(2πmkT/h2) - (1/x)(R/N)lnN! + Rlnq
The first terms on the right hand side of equations [5.2.6] and [5.2.7] are the

conformational enthalpy and entropy per molar chain, xhconf and xsconf, respectively.19 As-
suming that chains at Tg are in quasi-equilibrium state, the criterions on Tg are obtained:

f h T sflow flow g flow( )= − ≈0 [5.2.8]

and s flow ≈ 0 (hence hflow ≈ 0) [5.2.9]

with hflow = Hl/x - 3RTg/2 and sflow = Sl/x - 3R/2
From equations [5.2.8] and [5.2.9], which show the conditions of thermodynamic

quasi-equilibrium and freezing for polymer liquids, the conformational enthalpy and en-
tropy per molar structural unit at Tg, hg

conf and sg
conf, are derived, respectively:
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( ){ }h RT d Z dT x RT d v dT hg

conf

g g f g= = −2 2ln / ) / ln / int [5.2.10]

( ){ }s R Z RT d Z dT x R v RT d V dT Sg

conf

g f g f d= + = + −ln ln / / ln ln / [5.2.11]

Rewriting equation [5.2.10], the glass transition enthalpy per molar structural unit,
h = h hg g

int
g
conf( )+ , is obtained:

h RT d v dT RT cg g f g= ≈2 2

2ln / / [5.2.12]

with c ≈ φg/β
where:

hg
int hint at Tg

c2 the constant in the WLF equation20

β the difference between volume expansion coefficients below and above Tg

φg the fractional free volume at Tg

The WLF equation on the time - temperature superposition of viscoelastic relaxation
phenomena is given by:20

( ) ( )log /a c T T c T TT g g= − − + −1 2 [5.2.13]

where:
aT the shift factor
c1 the constant

Figure 5.2.1 shows the schematic curves of Ha and Cp for an amorphous polymer,
where Ha is the molar enthalpy for an amorphous polymer. Substituting Hl/x for Ha, Ha at Tg

corresponds to 3RTg/2, because of hflow = 0. At Tg, the energy of hg is given off in the cooling
process and absorbed in the heating process.

Table 5.2.1 shows the numerical values of hg (= hg
int + hg

conf) and c2 from equation
[5.2.12], together with Tg,

12,16 hg
int, hg

conf, and sg
conf, for several polymers. As the values of

hg
int, the molar cohesive energy of main residue in each polymer, e.g. -CONH- for N6 and
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Figure 5.2.1. Schematic curves of Ha and Cp in the vicin-
ity of Tg for an amorphous polymer. Two lines of short
and long dashes show Ha for a supercooled liquid and Cp

for a superheated glass (hypothesized), respectively. Te is
the end temperature of Cp jump. [after reference 10]

Figure 5.2.2. State models for an amor-
phous polymer in each temperature range
of (a) T≤Tg, (b) Tg<T≤Te, and (c) Te<T,
where hatching: glass parts, crosses: or-
dered parts, and blank: flow parts. The ar-
rows show the mobility of ordered parts.
[after reference 10]



N66, -CH(CH3)- for iPP, -CH(C6H5)- for iPS, and -C6H4- for PET, was used.21 The predicted
values of c2 for PS and PET are close to the experimental values, 56.6K and 55.3K, respec-
tively.20,22 The standard values of c1 and c2 in equation [5.2.13] are 17.44 and 51.6K, respec-
tively.20,23

Table 5.2.1

Polymer
Tg

K

hg
int

cal/mol

hg
conf

cal/mol

sg
conf

cal/(K mol)

hg (=hg
int

+hg
conf

)

cal/mol

c2

K

N6 313 8500 475 11.2 8980 21.7

N66 323 17000 976 22.6 17980 11.5

iPP 270 1360 180 0.98 1540 94.1

iPS 35916 4300 520 2.03
4820

(4520)
53.1

(56.6)

PET 342 3900 282 7.10
4180

(4200)
55.6

(55.3)

The numerical values in parentheses are the experimental values20,22 of c2 and hg (from c2). N6: polycaproamide
(nylon-6), N66: poly(hexamethylene adipamide) (nylon-6,6), iPP: isotactic polypropylene, iPS: isotactic polysty-
rene, PET: poly(ethylene terephthalate).

5.2.2.2 Cp jump at the glass transition

The mechanism of Cp jump at the glass transition could be illustrated by the melting of or-
dered parts released from the glassy states.10 Figure 5.2.2 shows the state models for an
amorphous polymer below and above Tg.

The ordered parts are generated near Tg in the cooling process; in the glasses, the or-
dered parts are contained. In the heating process, right after the glassy state was removed at
Tg, the melting of ordered parts starts and continues up to Te, keeping an equilibrium state
between ordered parts and flow parts. In this temperature range, the free energy per molar
structural unit for polymer liquids contained ordered parts, fm, is given by:10

( )f f X f Xm x x flow x= + −1 [5.2.14]

where:
fx the free energy per molar structural unit for ordered parts
fflow the free energy per molar structural unit for flow parts
Xx the mole fraction of ordered parts

From (dfm/dXx)p = 0, an equilibrium relation is derived:

f f fm x flow= = [5.2.15]

Whereas, Cp is defined as:

( )C dh dTp q p
= / [5.2.16]

with hq = fq - T(dfq/dT)p, q = m, x or flow
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From equations [5.2.15] and [5.2.16], it is shown that Cp of ordered parts is equal to
that of flow parts. Therefore, hx is given by:10

h h hx g≈ + ∆ [5.2.17]

with ∆ ∆h C dTpT

T

g

e= ∫ and {RTgln(Zg/Z0)}/x ≤ ∆h ≤ Tg{sg
conf - (RlnZ0)/x},

where:
∆Cp the difference in the observed Cp and the hypothesized super heated glass Cp

at the glass transition
Zg the conformational partition function per a chain at Tg

Z0 the component conformational partition function per chain regardless of
the temperature in Z

sg
conf the conformational entropy per molar structural unit at Tg

hx is also given by rewriting the modified Flory’s equation, which expresses the melting
point depression as a function of the mole fraction of major component, X, for binary ran-
dom copolymers:24-27

( )h h ax u≈ −2 1 1/ [5.2.18]

with a = - hu(1/Tm(X) - 1/Tm
0 )/(RlnX)

where:
Tm(X) the melting temperature for a copolymer with X
Tm

0 the melting temperature for a homopolymer of major component

Table 5.2.2

Polymer
hu

cal/mol

hx(eq.[5.2.17])

cal/mol

hx(eq.[5.2.17]) - hu

cal/mol

hx (eq.[5.2.18])

cal/mol

hx from δp

cal/mol

N6 5100
9590

(10070)
4490

(4970)
4830 -

N66 10300
19300

(20280)
9000

(9980)
9580 10070

iPP 1900
1600

(1780)
- 1470 1420

iPS 239012 5030
(5550)

2640
(3160)

- 2410 - 5790

PET 5500
5380

(5670)
- 6600 6790

The numerical values in parentheses were calculated using equation [5.2.17] with the second term of Tg{sg
conf -

(RlnZ0)/x}.

Table 5.2.2 shows the numerical values of hx from equations [5.2.17] and [5.2.18], and
from the reference values7,8 of δp using equations [5.2.1] ~ [5.2.4], together with the
values12,28,29 of hu, for several polymers. The second term in the right hand side of equation
[5.2.17] was calculated from {RTgln(Zg/Z0)}/x. The numerical values in parentheses, which
were calculated using equation [5.2.17] with the second term of Tg{ sg

conf - (RlnZ0)/x}, are a
little more than in the case of {RTgln(Zg/Z0)}/x. The relationship of hx(eq.[5.2.17]) f hu

found for N6 and N66 suggests two layer structure of ordered parts in the glasses, because,
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as shown in the fourth column, hx(eq.[5.2.17]) - hu is almost equal to hx (≈hu) from equation
[5.2.18] or δp (=13.6 (cal/cm3)1/2). For iPP, hx(eq.[5.2.17]) is a little more than hx from equa-
tion [5.2.18] or δp (=8.2 (cal/cm3)1/2), suggesting that the ordered parts in glasses seem to be
related closely to the helical structure. For iPS, hx(eq.[5.2.17]) and hx(eq.[5.2.17]) - hu are in
the upper and lower ranges of hx from δp (=8.5~10.3 (cal/cm3)1/2), respectively. For PET,
hx(eq.[5.2.17]) is almost equal to hu, but hx from equation [5.2.18] or δp (=10.7 (cal/cm3)1/2)
is a little more than hu, resulting from glycol bonds in bulk crystals distorted more than in or-
dered parts.10,25,30

5.2.3 δp PREDICTION FROM THERMAL TRANSITION ENTHALPIES

Table 5.2.3 shows the numerical values of δp predicted from equations [5.2.1] ~ [5.2.4] us-
ing the results of Tables 5.2.1 and 5.2.2, together with hx, hu, hg, h0, and δp

r (reference val-
ues)7,8 for several polymers. The predicted values of δp for each polymer are close to δp

r.

Table 5.2.3

Polymer
hx

cal/mol

hu

cal/mol

hg

cal/mol

h0

cal/mol

δp

(cal/cm
3
)

1/2
δp

r

(cal/cm
3
)

1/2

N6
9590*

(10070)
4830**

-
-

5100

8980
8980
8980

18570
(19050)
18910

13.4
(13.6)
13.5

-
-
-

N66
19300*
(20280)
9580**

-
-

10300

17980
17980
17980

37280
(38260)
37860

13.4
(13.6)
13.5

13.6
13.6
13.6

iPP
1600*
(1780)
1470**

1900
1900
1900

-
-
-

3500
(3680)
3370

8.4
(8.6)
8.3

8.27

8.27

8.27

iPS
5030*
(5550)

-
-

4820
4820

9850
(10370)

9.9
(10.2)

8.5 - 10.3
8.5 - 10.3

PET
5380*
(5670)
6600**

5500
5500
5500

4180
4180
4180

15060
(15350)
16280

10.2
(10.3)
10.6

10.7
10.7
10.7

The numerical values attached * and ** are hx from equations [5.2.17] and [5.2.18], respectively. The numerical
values in parentheses were calculated using equation [5.2.17] with the second term of Tg{sg

conf - (RlnZ0)/x}.

For atactic polypropylene (aPP) that could be treated as a binary random copolymer
composed of meso and racemi dyads,26,27,31 δp is predicted as follows.

For binary random copolymers, hg is given by:

h h h Xg g g

conf

A= +int ( ) [5.2.19]

with hg
int = hg

int(1) - ( hg
int(1) - hg

int(0))(1 - XA)
where:

hg
conf(XA) the conformational enthalpy per molar structural unit for a copolymer

with XA at Tg

hg
int(1) the intermolecular cohesive enthalpy per molar structural unit for a

homopolymer of component A (XA=1) at Tg
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hg
int(0) the intermolecular cohesive enthalpy per molar structural unit for a

homopolymer of component B (XA=0) at Tg

XA the mole fraction of component A

Further, hx is obtained from equation [5.2.17], but Zg is the conformational partition
function for a copolymer with XA at Tg and Z0 is the component conformational partition
function for a copolymer with XA regardless of the temperature in Z. Whereas for binary
random copolymers, Tg is given by:32,33

T T h h X h h Tg g g g

conf

A g g

conf

g= + + −( )( ( )) / { ( ) ( ) (int int1 1 1 1 1)( ( ) ( ))}s s Xg

conf

g

conf

A− [5.2.20]

where:
hg

conf(1) the conformational enthalpy per molar structural unit for a homopolymer
(XA=1) at Tg

sg
conf(1) the conformational entropy per molar structural unit for a homopolymer

(XA=1) at Tg

sg
conf(XA) the conformational entropy per molar structural unit for a copolymer with

XA at Tg

Tg(1) the glass transition temperature for a homopolymer (XA=1)

Thus, using equations [5.2.19] and [5.2.20], δp for binary random copolymers, in-
cluding aPP, could be predicted.

Table 5.2.4

1 - XA
Tg

K

hg

cal/mol

hx

cal/mol

h0 cal/mol δp(cal/cm
3
)
1/2

T>Tg T<Tg T>Tg T<Tg

0 270 1540
1600
(1780)

3500
(3680)

5040
(5220)

8.42
(8.62)

10.10
(10.23)

0.05 265 1480 1510 3410 4900 8.31 9.95

0.1 261 1450 1470 3370 4830 8.26 9.88

0.15 259 1440 1460 3360 4790 8.24 9.85

0.2 257 1430 1440 3340 4770 8.23 9.83

0.3 255 1420
1440
(1500)

3340
(3400)

4760
(4820)

8.22
(8.29)

9.82
(9.87)

0.4 254 1420 1450 3350 4770 8.23 9.83

0.5 255 1440 1470 3370 4810 8.26 9.86

0.6 256 1450 1490 3390 4840 8.28 9.90

0.7 258 1470 1520 3420 4890 8.32 9.95

0.8 262 1500 1560 3460 4960 8.37 10.02

0.85 264 1510 1580 3480 4990 8.39 10.05

0.9 266 1520 1600 3500 5030 8.42 10.09

0.95 268 1540 1620 3520 5060 8.45 10.12

1 270 1550
1650

(1840)
3550

(3740)
5100

(5300)
8.48

(8.69)
10.16

(10.34)

The numerical values in parentheses were calculated using equation [5.2.17] with the second term of
Tg{sg

conf(RlnZg)/x}.
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Table 5.2.4 shows the numerical values of δp for aPP, together with Tg, hg, hx, and h0,
which give the concave type curves against 1 - XA, respectively. Where XA is the mole frac-
tion of meso dyads. As hu of crystals or quasi-crystals in aPP, 1900 cal/mol was used, be-
cause hu(=1900 cal/mol) of iPP28 should be almost equal to that of syndiotactic PP (sPP);
hconf + hint ≈1900 cal/mol at each Tm for both PP, where hconf = 579.7 cal/mol at Tm = 457K28

for iPP, hconf = 536.8 cal/mol at Tm = 449K34 for sPP, and hint = 1360 cal/mol for both PP.
Here quasi-crystals are ordered parts in aPP with 1 - XA ≈ 0.30 ~ 0.75, which do not satisfy
the requirements of any crystal cell. As Tg of iPP and sPP, 270K was used for both PP.12,35

The experimental values of Tg for aPP are less than 270K.36-41 In this calculation, for aPP
with 1 - XA = 0.4, the minimum of Tg, 254K, was obtained. δp in T>Tg showed the mini-
mum, 8.22 (cal/cm3)1/2, at 1 - XA = 0.3, which is 0.20 less than 8.42 (cal/cm3)1/2 of iPP, and
δp in T<Tg showed the minimum, 9.82 (cal/cm3)1/2, at 1 - XA = 0.3 and 10.10 (cal/cm3)1/2 for
iPP. Substituting Tg{sg

conf - (RlnZ0)/x} for the second term in equation [5.2.17],42,43 the nu-
merical values of hx, h0, and δp become a little more than in the case of {RTgln(Zg/Z0)}/x, as
shown in Table 5.2.4. However, the increase of hx for iPP led Te (=375K) near the experi-
mental values,35 e.g. 362K and 376K, where Te was approximated by:

( )T h h C Te x g p g≈ − +2 0/ ∆ [5.2.21]

where:
∆Cp

0 the difference in liquid Cp and glass Cp before and after the glass transition;
4.59 cal/(K mol) for iPP12

Thus, we can browse the solvents of aPP which satisfy δp = δs.
Equations [5.2.2], [5.2.3] and [5.2.4] would be available as tools to predict δp from

thermal transition behaviors.
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5.3 METHODS OF CALCULATION OF SOLUBILITY PARAMETERS OF
SOLVENTS AND POLYMERS

Valery Yu. Senichev, Vasiliy V. Tereshatov

Institute of Technical Chemistry
Ural Branch of Russian Academy of Sciences, Perm, Russia

The methods of calculation of solubility parameters are based on the assumption that energy
of intermolecular interactions is additive. Thus, the value of an intermolecular attraction can
be calculated by addition of the contributions of cohesion energy of atoms or groups of at-
oms incorporated in the structure of a given molecule. Various authors use different physi-
cal parameters for contributions of individual atoms.

Dunkel proposed to use a molar latent heat of vaporization1 as an additive value, de-
scribing intermolecular interactions. He represented it as a sum of the contributions of latent
heat of vaporization of individual atoms or groups of atoms at room temperature.

Small’s method2 received the greatest interest. Small has used the data of Scatchard3

showing that the square root of a product of cohesion energy of substance and its volume is a
linear function of a number of carbon atoms in a molecule of substance. He also proposed
additive constants for various groups of organic molecules that permit calculation of (EV)1/2

value. He named these constants as molar attraction constants, Fi:

( )EV Fi

i

1 2/ =∑ [5.3.1]

Cohesion energy and solubility parameters could then be estimated for any molecule:
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, δ [5.3.2]

where:
V molar volume of solvent or a repeating unit of polymer

The molar attraction constants were calculated by Small based on literature data for a
vapor pressure and latent heat of vaporization of liquids. The comprehensive values of these
constants are given in Table 5.3.1.

Table 5. 3.1. Molar attraction constants

Group
Small

2
Van Krevelen

5
Hoy

7

F, (cal cm3)1/2 mol-1

>C< -93 0 32.0

>CH- 28 68.5 86.0

-CH2- 133 137 131.5

-CH3 214 205.5 148.3

-CH(CH3)- 242 274 (234.3)

-C(CH3)2- 335 411 (328.6)

>C=CH- 130 148.5 206.0

-CH=CH- 222 217 243.1

-C(CH3)=CH- (344) 354 (354.3)

Cyclopentyl - 676.5 633.0

Cyclohexyl - 813.5 720.1

Phenyl 735 741.5 683.5

1,4-Phenylene 658 673 704.9

-O- 70 125 115.0

-OH - 368.5 225.8

-CO- 275 335 263.0

-COO- 310 250 326.6

-COOH - 318.5 (488.8)

-O-CO-O- - 375 (441.6)

-CO-O-CO- - 375 567.3

-CO-NH- - 600 (443.0)

-O-CO-NH- - 725 (506.6)

-S- 225 225 209.4
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Group
Small

2
Van Krevelen

5
Hoy

7

F, (cal cm3)1/2 mol-1

-CN 410 480 354.6

-CHCN- (438) 548.5 (440.6)

-F (122) 80 41.3

-Cl 270 230 205.1

-Br 340 300 257.9

-I 425 - -

The Scatchard equation is correct only for nonpolar substances because they have only
dispersive interactions between their molecules. Small eliminated from his consideration
the substances containing hydroxyl, carboxyl and other groups able to form hydrogen
bonds.

This method has received its further development due to Fedors’ work,4 who extended
the method to polar substances and proposed to represent as an additive sum not only the at-
traction energy but also the molar volumes. The lists of such constants were published in
several works.5-8 The most comprehensive set of contributions to cohesion energy can be
found elsewhere.9

Askadskii has shown10 that Fedors’ supposition concerning the additivity of contribu-
tions of volume of atoms or groups of atoms is not quite correct because the same atom in an
environment of different atoms occupies different volume. In addition, atoms can interact
with other atoms in different ways depending on their disposition and this should be taken
into account for computation of cohesion energy. Therefore, a new scheme of the solubility
parameters calculation was proposed that takes into account the nature of an environment of
each atom in a molecule and the type of intermolecular interactions. This approach is simi-
lar to that described in the work of Rheineck and Lin.6

δ =
Ε∆

∆

i

i

A i

i

N V

∑
∑

















1 2/

[5.3.3]

where:
NA Avogadro number
∆Ei increment (contribution) to cohesion energy of atom or group of atoms
∆Vi increment to the van der Waals volume of atom

The volume increment ∆Vi of an atom under consideration is calculated as volume of
sphere of the atom minus volumes of spherical segments, which are cut off on this sphere by
the adjacent covalently-bound atoms:

( )∆V R h R hi i

i

1

3 34

3

1

3
3= − −∑π π [5.3.4]

where:
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R van der Waals (intermolecular) radius of a considered atom
hi a height of segment calculated from the formula:

h R
R d R

d
i

i i

i

= −
+ −2 2 2

2
[5.3.5]

where:
di bond length between two atoms
Ri van der Waals radius of the atom adjacent to the covalently-bonded atoms under

consideration

The increments to the van der Waals volume for more than 200 atoms in various neighbor-
hoods is available elsewhere.11

Using data from Tables 5.3.2 and 5.3.3, van der Waals volumes of various molecules
can be calculated. The increments to the cohesion energy are given in Table 5.3.4. An ad-
vantage of this method is that the polymer density that is important for estimation of proper-
ties of polymers that have not yet been synthesized does not need to be known.

The calculation methods of the solubility parameters for polymers have an advantage
over experimental methods that they do not have any prior assumptions regarding interac-
tions of polymer with solvents. The numerous examples of good correlation between calcu-
lated and experimental parameters of solubility for various solvents support the assumed
additivity of intermolecular interaction energy.

The method has further useful development in calculation of components of solubility
parameters based on principles of Hansen’s approach.12 It may be expected that useful re-
sults will also come from analysis of donor and acceptor parameters used in TDM-approach
(see Chapter 4).

In Table 5.3.5, the increments required to account for contributions to solubility pa-
rameters related to the dipole-dipole interactions and hydrogen bonds are presented.13 Table
5.3.6 contains Hansen’s parameters for some common functional groups.

Table 5.3.2. Intermolecular radii of some atoms

Atom R, � Atom R, � Atom R, � Atom R, �

C 1.80 F 1.5 Si 2.10 P 1.90

H 1.17 Cl 1.78 Sn 2.10 Pb 2.20

O 1.36 Br 1.95 As 2.00 B 1.65

N 1.57 I 2.21 S 1.8

Table 5.3.3. Lengths of bonds between atoms

Bond di, � Bond di, � Bond di, � Bond di, �

C−C 1.54 C−F 1.34 C−S 1.76 N−P 1.65

C−C 1.48 C−F 1.31 C=S 1.56 N−P 1.63

C−Carom 1,40 C−Cl 1.77 H−O 1.08 S−S 2.10

C=C 1.34 C−Cl 1.64 H−S 1.33 S−Sn 2.10
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Bond di, � Bond di, � Bond di, � Bond di, �

C≡C 1.19 C−Br 1.94 H−N 1.08 S−As 2.21

C−H 1.08 C−Br 1.85 H−B 1.08 S=As 2.08

C−O 1.50 C−I 2.21 O−S 1.76 Si−Si 2.32

C−O 1.37 C−I 2.05 O−Si 1.64 P−F 1.55

C=O 1.28 C−P 1.81 O−P 1.61 P−Cl 2.01

C−N 1.40 C−B 1.73 N−O 1.36 P−S 1.81

C−N 1.37 C−Sn 2.15 N−N 1.46 B−B 1.77

C=N 1.31 C−As 1.96 O=N 1.20 Sn−Cl 2.35

C=N 1.27 C−Pb 2.20 O=S 1.44 As−Cl 2.16

C−Narom 1.34 C−Si 1.88 O=P 1.45 As−As 2.42

C≡N 1.16 C−Si 1.68 N−Parom 1.58

Table 5.3.4. Values of ∆Ei
* for various atoms and types of intermolecular interaction

required to calculate solubility parameters according to equation [5.3.3] (Adapted
from refs. 10,11)

Atom and type of intermolecular interaction Label ∆Ei
*, cal/mol

C ∆EC
* 550.7

H ∆EH
* 47.7

O ∆EO
* 142.6

N ∆EN
* 1205.0

F ∆EF
* 24.2

S ∆ES
* 1750.0

Cl ∆ECl
* -222.7

Br ∆EBr
* 583

I ∆EI
* 1700

Double bond ∆E*
≠ -323

Dipole-dipole interaction ∆Ed
* 1623

Dipole-dipole interaction in nonpolar aprotic solvents of amide type ∆Ea,N
* 1623

Dipole-dipole interaction in nonpolar aprotic solvents as in dimethylsulfoxide ∆Ea,S
* 2600

Aromatic ring ∆Ear
* 713

Hydrogen bond ∆Eh
* 3929

Specific interactions in the presence of =CCl2 group ∆E=CCl
*

2
2600

Specific interactions in 3-5 member rings in the presence of O atom ∆EO,r
* 2430

Isomeric radicals ∆Ei
* -412
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Table 5.3.5 Increments of atoms or groups of atoms required in equation [5.3.3]

Atoms or their groups ∆Vi, �
3

Atoms or their groups ∆Vi, �
3

−CH3 23.2 (22.9) >CH2 17.1 (16.8, 16.4)

>CH 11.0 (10.7,10.4) C 5.0 (4.7,4.5)

=CH2 21.1 −CH= 15.1 (14.7)

−O− 3.4 (2.7, 2.1) −OH 10.3 (9.9)

>CO- 18.65 (18.35,18.15) −NH− 8.8 (8.5)

−NH2 16.1 −CN 25.9

−F 9.0 (8.9) −Cl 19.9 (19.5)

The values in brackets correspond to one and two neighboring aromatic carbon atoms. In other cases values are
given for the aliphatic neighboring carbon atoms.

Table 5.3.6. Hansen’s parameters12

Atom (group) ∆V, cm
3
/mol

Vδp, (cal

cm/mol)
1/2

Vδh
2, cal/mol

aliphatic aromatic

−F 18.0 12.55±1.4 ~0 ~0

−Cl 24.0 12.5±4.2 100±200 100±20

>Cl2 26.0 6.7±1.0 165±10 180±10

−Br 30.0 10.0±0.8 500±10 500±100

−I 31.5 10.3±0.8 1000±200 -

−O 3.8 53±13 1150±300 1250±300

>CO 10.8 36±1 800±250 400±125

>COO 18.0 14±1 1250±150 800±150

−CN 24.0 22±2 500±200 550±200

−NO2 33.5 15±1.5 400±50 400±50

−NH2 19.2 16±5 1350±200 2250±200

>NH 4.5 22±3 750±200 -

−OH 10.0 25±3 4650±400 4650±500

(−OH)n n 10.0 n (17±2.5) n (4650±400) n (4650±400)

−COOH 28.5 8±0.4 2750±250 2250±250
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5.4 MIXED SOLVENTS, A WAY TO CHANGE THE POLYMER
SOLUBILITY

Ligia Gargallo and Deodato Radic

Facultad de Quimica
Pontificia Universidad CatÙlica de Chile, Santiago, Chile

5.4.1 INTRODUCTION

In general, a mixture is often found to be unexpectedly potent for a particular purpose. Ex-
amples are known in several branches of Science and Technology. In the field of solubility,
the synergistic effect is, sometimes, spectacular. Innumerable cases of synergism in solvent
extraction are known.1-9

Eucaliptus oil has been found to act as a cosolvent, special type of synergistic solvent
in case of water-ethanol-gasoline.10

It has been frequently observed that certain polymers can be readily dissolved in mix-
tures of two or more solvents, whereas they are not soluble in the individual constituents of
this mixture. This phenomenon, known as cosolvency is of great practical importance.

The scientific and technological importance of polymers has led to extensive study of
their solution properties. Most techniques rely on dilute solution methods such as
viscometry, light scattering, osmometry, gel swelling or dipole moments. However, these
need solvents which completely dissolve the polymer, and many important polymers either
are not very soluble, or completely insoluble. In general, polymer solubility normally in-
creases with rising temperature, but negative temperature coefficients are also observed. In-
crease in polymer molecular weight reduces solubility. Certain combinations of two
solvents may become nonsolvents. However, mixtures of non-solvents may sometimes be-
come solvents. In this article, we will review major information for the evaluation of solu-
bility behavior of polymers in binary solvents. Experimental results are compiled and
discussed. The emphasis here is on solubility-cosolvency phenomenon, the
thermodynamical description of ternary systems and the influence of the polymer structure
on preferential adsorption. Finally, interrelationships between polymer structure and ther-
modynamic properties of the mixture will be discussed relative to the properties and confor-
mation of the dissolved polymer.
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Some new cosolvent effects will be also described particularly of polymer-supercriti-
cal CO2 mixtures.

5.4.2 SOLUBILITY-COSOLVENCY PHENOMENON

The addition of a second liquid to a binary liquid-polymer system to produce a ternary sys-
tem is used widely for a variety of purposes. If the second liquid is a poor solvent, or a pre-
cipitant for the polymer, the dissolving potential of the liquid medium can be reduced and
eventually phase separation may even occur. This does not necessarily take place in every
case and sometimes mixtures of two relatively poor solvents can even produce an enhance-
ment of the solvent power.11-16 The mixed solvent is then said to exhibit a synergistic ef-
fect.17

Cosolvency usually refers to a certain range of temperatures of practical use. Within
that range, the polymer dissolves in the mixed solvent but not in the pure liquids. The term,
“true cosolvency” has been coined to designate those more strict cases, in which the poly-
mer does not dissolve in the pure liquids at any temperature, not just in a given range.18

An analysis of the phase behavior in terms of the free volume theory of polymer solu-
tions has revealed that cosolvency has enthalpic origin.19 In a classic cosolvent system, the
single liquids are both very poor solvents for the polymer and the number of polymer-liquid
contacts formed in each binary system are not enough to stimulate dissolution of the poly-
mer, except at very short chain lengths. Mixing to produce a ternary system results in a com-
bination of liquid(1)/polymer(3) and liquid(2)/polymer(3) contacts, which according to
Cowie et al.20 is sufficient to cause the polymer to dissolve if these contacts are of a different
nature, i.e., if the two liquids tend to solvate the polymer at different sites along the chain
and so lead to a reinforcement of solvation. If this occurs then, it is also likely that the ex-
panded coil will allow further liquid-polymer contacts to develop even though these may be
energetically weak.

This idea of a favorable solvation sheath is in agreement with observations made dur-
ing preferential adsorption studies in ternary systems exhibiting cosolvency.21 Maximum
coil expansion is usually found to occur at a mixed solvent composition where there is not
preferential adsorption. In other words, the driving force is an attempt to maintain the most
favorable composition, thereby minimizing polymer-polymer contacts. However, the bal-
ance of interactions giving rise to cosolvency and to inversion in preferential sorption are
different, so that both phenomena have to be studied separately. This has been exemplified
by a series of systems in which the molecular sizes of the liquid solvents and the nature of
their interactions are varied and each plays its role in determining maximum sorption and
inversion in preferential sorption.22-25

The interesting phenomenon where a mixture of two poor solvents or nonsolvents for
a polymer provides a medium that acts as a good solvent for the polymers26,27 has been the
objective of many studies, by light scattering,21,29,30-34 viscometry,35,36 sorption equilib-
rium,37 and fluorescence.38 From these techniques, it has been possible to appreciate how the
second virial coefficient A2

39,17,40-42 and the intrinsic viscosity [η]13,43-45 preferential adsorp-
tion coefficient λ and excimer and monomer emission ratio IE/IM are involved by changing
solvent composition. They present ([η], A2) a maximum or a variation at a certain solvent
composition where the polymer behaves as through it were dissolved in a good solvent.

The quality of solvent or the cosolvent action has been established by determining the
magnitude of the miscibility range between the two critical temperatures, UCST and
LCST.19,45-58 The application of pressure can widen the miscibility range.59,60
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The cosolvency phenomenon was dis-
covered in 1920’s experimentally for cellu-
lose nitrate solution systems.61 Thereafter
cosolvency has been observed for numer-
ous polymer/mixed solvent systems. Poly-
styrene (PS) and polymethylmethacrylate
(PMMA) are undoubtedly the most studied
polymeric solutes in mixed solvents.62,63

Horta et al.64 have developed a theo-
retical expression to calculate a coefficient
expressing quantitatively the cosolvent
power of a mixture (dTc/dx)0, where Tc is
the critical temperature of the system and x
is the mole fraction of liquid 2 in the solvent
mixture, and subscript zero means x→0.
This derivative expresses the initial slope of
the critical line as a function of solvent
composition (Figure 5.4.1).65 Large nega-
tive values of (dTc/dx) are the characteristic
feature of the powerful cosolvent systems
reported.65 The theoretical expression de-
veloped for (dTc/dx)0 has been written in
terms of the interaction parameters χi for
the binary systems:
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where:
Vi the volume fraction of polymer and solvent, respectively

All the magnitudes on the right hand side of this equation are to be evaluated at the
critical temperature corresponding to x = 0.

The expression provides a criterion to predict whether or not the mixed solvent is ex-
pected to be a cosolvent of the polymer. When Tc1, is a UCST (as is the case in these phase
separation studies), -dχ13/dT > 0 and (dTc/dx)0 has the same sign as the numerator of the
equation. Choosing solvent 1 such that Tc2 < Tc1, then (dTc/dx)0 < 0 guarantees that the sys-
tem will be a cosolvent one. Since χ23 - χ13 > 0, at Tc1, the numerator in the equation [5.4.1] is
negative (cosolvent system) if the unfavorable interaction between the two liquids is large
enough to compensate for their different affinity towards the polymer. The equation pro-
posed gives a more detailed criterion for cosolvency than the simple criterion of GE > 0. The
information needed to predict (dTc/dx)0 from equation [5.4.1] includes the binary interac-
tion parameters of the polymer in each one of the two solvents as a function of temperature,
and χ12(G

E) for the mixed solvent too. Table 5.4.1 summarizes results reported by Horta et
al.64 for some cosolvents of polymethylmethacrylate (PMMA).65
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Figure 5.4.1. Phase separation temperature (Tp), as a
function of solvent mixture composition, determined on
the system PMMA-acetonitrile + chlorobutane, at sev-
eral polymer concentrations, x(x 102/g cm-3): (a): c = ∆,
12.2; O, 9.17;o 7.14; ∆, 4.36: l, 2.13. (b): c = O, 9.47;
£, 8.22; ∆, 5.89; o, 3.69; ∆, 2.17; l, 0.442. From
Fernandez-Pierola and Horta.65 (Copyright by Hòthig &
Wepf Verlag (Basel), used with permission).



Table 5.4.1. Comparison between theory and experiment in cosolvents of PMMA.

From Fernandez-Pierola.65 (Copyright by Hòthig & Wepf Verlag (Basel), used with
permission)

Solvent 1 Solvent 2
Experiment

(dTp/dx)0 x 10
-2

K

Theory

(dTc/dx)0 x 10
-2

K

Acetonitrile Amylacetate -11.1 -18.0

Acetonitrile Chlorobutane -9.4 -9.4

Acetonitrile CCl4 -12.3 -7.2

Acetonitrile BuOH -7. 6 -12.5

4-Chloro-n-butane Acetonitrile -3.2 -4.6

1-Chloro-n-butane BuOH -17.0 -14.0

Table 5.4.2 Liquid mixtures which are cosolvents of PMMA. From Horta and
Fernandez Pierola.64 (Copyright by Butterworth-Heineman Ltd., used with permission)

Acetonitrile (AcN) + 4-Heptanone (Hna)a) Formamide (FA) + Ethanol (EtOH)a)

Acetonitrile (AcN) + Isopentyl acetate (iPac)a) 1-Chlorobutane (BuCl) + Isopentyl alcohol (iPOH)a)

Acetonitrile (AcN) + Pentylacetate (Pac)a) 1-Chlorobutane (BuCl) + Pentyl alcohol (POH)a)

Acetonitrile (AcN) + 1-Chlorobutane (BuCl)a) 1-Chlorobutane (BuCl) + 2-Butanol (sBuOH)b)

Acetonitrile (AcN) + Carbon tetrachloride (CCl4)
a) 1-Chlorobutane (BuCl) + Isopropyl alcohol (iPrOH)a)

Acetonitrile (AcN) + Isopentyl alcohol (iPOH)a) Carbon tetrachloride (CCl4) + 1-Butanol (BuOH)c)

Acetonitrile (AcN) + Pentyl alcohol (POH)a) Carbon tetrachloride (CCl4) + Ethanol (EtOH)c)

Acetonitrile (AcN) + 1-Butanol (BuOH)a) Carbon tetrachloride (CCl4) + Methanol (MeOH)c)

Acetonitrile (AcN) + Isopropyl alcohol (iPrOH)a)

a) Ref. 65, b) Ref. 47, c) Ref. 6 6

In the case of PMMA, several powerful cosolvent mixtures have been reported.65,46,47

In such systems, a small proportion of liquid 2, added to the polymer-liquid 1 solution, is
enough to produce a large decrease in Tp, these cosolvents are accessible to phase separation
determinations.

In Table 5.4.2, a number of liquid mixtures are listed to act as cosolvents of
polymethylmethacrylate (PMMA).65,47,64,67 Intrinsic viscosity [η] has been reported in
cosolvent mixtures containing CCl4: CC14/methanol,42,66 ethanol,66 1-propanol,66

1-butanol,66 1-chlorobutane,67 and acetonitrile,68 and acetonitrile/methanol.68 It was also re-
ported the [η] of PMMA in the cosolvent mixture acetonitrile/1-chlorobutane.42 The last
system is a powerful cosolvent. Acetonitrile forms powerful cosolvents for PMMA too with
other liquids having a wide variety of chemical groups.65 [η] has been reported for PMMA in
acetonitrile/pentylacetate as a powerful cosolvent.44 On the contrary, the mixture of
1-chlorobutane/pentyl acetate is a co-nonsolvent of the polymer.44 Mixing acetonitrile, with
pentylacetate or mixing acetonitrile with 1-butanol greatly increases solubility and pro-
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duces a large increase in [η]. This large increase of [η] in the cosolvents contrasts with the
approximate constancy of [η] in the l-chlorobutane/pentylacetate mixture.

The increase of [η] in a mixed solvent over its weighed mean value in the pure liquids
is usually expressed as:

∆[ ] = [ ] − [ ] 1η η η φ η φ1 2 2− [ ] [5.4.2]

where [η]1 and [η]2 refer to values in the pure liquids 1 and 2, and [η] refers to the value in the
mixture. This increase in [η] has been attributed to the existence of unfavorable interactions
between the two liquids .39 For a given molecular weight, ∆[η] is usually taken to be propor-
tional to the excess in Gibbs function of the mixture: ∆[η](φ) ~ GE(φ)/RT.39

The values of GE and SE for these cosolvent mixtures69,70 at equimolecular composi-
tion, and 25°C, are given in Table 5.4.3.

Table 5.4.3. Thermodynamic properties of the liquid mixtures used as cosolvents of
PMMA. Excess Gibbs function GE, and excess entropy SE, of the binary mixtures at
equimolecular composition (at 25°C). From Prolongo et al.44 (Copyright by
Butterworth-Heineman Ltd., used with permission)

Cosolvent mixture G
E
, J mol

-1
S

E
, J mol

-1
K

-1

MeCN + BuOH 1044 3.70

MeCN + PAc 646 -0.58

MeCN + ClBu 1032 -

The values of GEs have allowed for a qualitative interpretation of the relative values of
[η] in these three cosolvent systems studied.44

Mixing cosolvents is much more effective in expanding the polymer coil than increas-
ing temperature.44 In fact, the same increase in [η] experienced by one sample in pure
acetonitrile in going from 25°C to 45°C is reached at 25°C by adding just 9% pentyl acetate
or 8% 1-butanol or 6% in the case of 1-chlorobutane,71 for polymethylmethacrylate.

The sign of ∆[η] was in contradiction with the cononsolvent character attributed to this
mixture by cloud point studies.72 This apparent inconsistency could be due to the different
range of concentrations in which [η] and cloud point temperature were determined.44

Systematic study of the cosolvency phenomenon has been practically limited to
polymethylmethacrylate42,46,64-68,72-81 and polystyrene.45,82,83 The cosolvency is usually ex-
plained in terms of the molecular characteristics of the system, specially in terms of molecu-
lar interactions. In the powerful cosolvents of PMMA described in the literature72,65,42,44,46,64

one of the liquid components is always either acetonitrile or an alcohol. These are non-ran-
dom liquids with a certain degree of order in their structure. Two important characteristics
seem to be present in these polymer cosolvent systems: the liquid order structure and the
tendency of the polymer towards association.65,14,66 The roles of these two factors were con-
sidered to interpret solvation of PMMA chains in cosolvent systems.43,14 The mechanisms of
cosolvent action have been discussed in terms of the competitive interactions between liq-
uid components and one liquid component and the polymer.44 The best example is the case
of acetonitrile and a second liquid having a high proportion of methylene units in its mole-
cule, the unfavorable nitrile-methylene interactions between acetonitrile and PMMA favor
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the nitrile ester group interaction and an extensive polymer solvation becomes possible. Ac-
cording to Prolongo et a1.,44 the number of methylene units or length of the n-alkyl chain is
very important for reaching cosolvency when the second liquid is an ester (acetate). An-
other factor GE of the acetonitrile + acetate mixtures is larger for long alkyl chains such as in
pentyl acetate, favors cosolvency.

In the majority of cases, the cosolvent mixtures for PMMA contain either CCl4
73,77,80,81

or acetonitrile13,42-44,67 as one of the liquid components. A study of the mixture formed by
these two liquids and a comparison with the results obtained in the other cosolvents studied
before has been also reported.84 The total sorption of the coil (PMMA) was calculated from
second virial coefficient and intrinsic viscosity data. According to these authors,
acetonitrile can interact favorably with the ester group of PMMA and is unfavorable with its
methylene backbone. The role of these opposing interactions and of liquid order in
acetonitrile are taken into account to explain the dilute solution properties of PMMA in this
cosolvent system.84

On the other hand, in the case of PMMA, in powerful cosolvents, a small proportion of
liquid 2, added to the polymer/liquid 1 solution, is enough to produce a large decrease in the
phase separation temperature (Tp).

64

Katime et al.85 have studied the influence of cosolvency on stereo-complex formation
of isotactic and syndiotactic PMMA. The formation of PMMA stereo-complex has been at-
tributed to the interactions between the ester group of the isotactic form and the α-methyl
group of the syndiotactic form.86

The stereo-complex was obtained at different compositions of the cosolvent mixtures
acetonitrile/carbon tetrachloride, acetonitrile/butyl chloride and butyl chloride/carbon tet-
rachloride. The results show a high yield of complex formation in pure solvents and when
approaches its solvency maximum a decrease of the yield of stereo-complex was observed,
indicating that the interactions are impeded.85

The dilute solution viscosity of PMMA in the cosolvent mixture formed by
acetonitrile (MeCN) and 1-chloro-n-butane (ClBu) at 25°C has been studied.42,87 The
cosolvent effect in this system is extremely large. It has been observed a large increase in the
hydrodynamic volume of the macromolecule in solution,42,17 and a step depression in the
critical temperature of phase separation (UCST).64,88 The quantitative determination of the
magnitude of these effects has been reported.42,64,88 Horta et al.,71 have compared a relative
capacities of temperature and of cosolvent mixing on expanding the macromolecular coils
and the tendency of the polymer to associate in poor solvents. They have also shown that
there is a connection which relates the dependencies of [η] on temperature and solvent com-
position with the depression in critical temperature (UCST) caused by cosolvency.71 The ac-
tion of the cosolvent was much more effective in expanding the macromolecule than
temperature was.71 These authors have concluded that the comparison between the tempera-
ture and solvent composition variations of [η] allows for a correct prediction of the
cosolvent depression of the UCST. The comparison between cloud points and [η] - T gives,
in general, inconsistent results, but the combination of [η] - T and [η] - φcompensates such
inconsistency and establishes a valid link between Tc and [η].

It was found that when the cosolvent power of the binary mixture increases, the
complexing capacity decreases. These results were explained by taking into account the ex-
cess Gibbs free energy, GE, and the order of the liquid.
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5.4.3 NEW COSOLVENTS EFFECTS. SOLUBILITY BEHAVIOR

Cosolvent effect of alkyl acrylates on the phase behaviour of poly(alkyl acrylate)supercriti-
cal CO2 mixtures has been reported.89 Cloud-point data to 220 and 2000 bar are presented
for ternary mixtures of poly(butyl acrylate)-CO2-butyl acrylate (BA) and poly(ethylhexyl
acrylate)-CO2-ethylhexyl acrylate) (EHA). The addition of either BA or EHA to the respec-
tive polymer-solvent mixtures decreases the cloud-point pressures by as much as 1000 bar
and changes the pressure-temperature slope of the cloud-point curves from negative to posi-
tive, which significantly increases the single-phase region.

The literature presents many studies on coil dimensions of synthetic polymers in
mixed solvents. Most investigations involve liquid mixtures composed of a good and a poor
solvents for the polymer. The action of mixed solvents has been reported to change coil di-
mensions, not only because of excluded volume effect or due to the interactions existing be-
tween the two liquids90,91 but also due to the preferential adsorption of one of the solvent by
the polymer.

Recently, the behavior of polysiloxanes with amino end-groups in tolu-
ene/nitromethane mixtures has been reported.92 This mixture is solvent/non-solvent for the
polymer.

The transition concentrations separating the concentration domain93 chain flexibility
aspects, excluded volume effects94 and total and preferential adsorption coefficients95 of the
same system have been discussed.

The solubility curves, the cloud point curves and vitrification boundaries for several
poly(lactide)-solvent-nonsolvent systems have been reported.96 The liquid-liquid miscibil-
ity gap for the systems with the semicrystalline poly(L-lactide) (PLLA) were located in a
similar composition range as the corresponding systems with the amorphous
poly(DL-lactide) (PDLLA). The solvent-nonsolvent mixtures used for the experiments
were: dioxane/water, N-methyl pyrrolidone (NMP)/water, chloroform/methanol and
dioxane/methanol. For all PLLA solvent-nonsolvent systems studied solid-liquid demixing
was preferred thermodynamically over liquid-liquid demixing. Attempts were made to cor-
relate the experimental finding with predictions on the basis of the Flory-Huggins theory for
ternary polymer solutions using interaction parameters derived from independent experi-
ments. Qualitative agreement was found for the relative locations of the liquid-liquid misci-
bility gaps. The Flory-Huggins description of the solubility curves was less satisfactory.

The phase separation processes occurring in poly(L-lactide) (PLLA)-chloro-
form-methanol mixtures and poly(DL-lactide) (PDLLA)-chloroform-methanol mixtures
have been also studied using differential scanning calorimetry, cloud point measurements
and optical microscopy.97 It was demonstrated that liquid-liquid demixing occurs in ternary
solutions of PDLLA at sufficient high methanol concentrations. For PLLA-containing-so-
lutions, both liquid-liquid demixing processes and soli-liquid demixing processes occur.
Only a low cooling rates and high polymer concentration does solid-liquid demixing take
place without the interference of liquid-liquid demixing.97

Another interesting effects are the changes of a polyelectrolyte in binary solvents. The
complex inter and intramolecular interactions that take place due to the presence of hydro-
philic and hydrophobic structural units in the macroion can modify the balance of the inter-
actions and for this reason can change the solubility.98
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5.4.4 THERMODYNAMICAL DESCRIPTION OF TERNARY SYSTEMS.
ASSOCIATION EQUILIBRIA THEORY OF PREFERENTIAL
ADSORPTION

Polymers dissolved in mixed solvents show the phenomenon of Preferential Adsorption.
Experimentally, the preferential adsorption coefficient, λ, is determined. λ is the volume of
one of the liquids sorbed in excess by the polymer (per unit mass of polymer). In general, the
Flory-Huggins model of polymer solutions is used to describe the Preferential Adsorption.
More recently, equation of state theories have been applied.13,43,99-101

Description of experimental results of λ (and another properties as intrinsic viscosi-
ties, second virial coefficients, etc.) necessitates the use of correcting terms in the form of
ternary interaction parameters. Using equation of state theory it has been shown that such
correcting terms can in part be explained by free volume and molecular surface effect.100

Non-random interactions are important in many systems (hydrogen bonding, complex for-
mation, etc.) (see Table 5.4.1). Strongly interacting species can be described taking into ac-
count the formation of associates in equilibrium with unassociated molecules (Association
Equilibria Theory).

Experimental results102 for polymethylmethacrylates in 1,4-dioxane/methanol have
been reported , which indicate that the size of the substituent in the polymer ester group ex-
erts an influence on the specific interaction between the methanol molecule and the car-
bonyl of the ester. In fact, the preferential adsorption of methanol is completely hindered
when the lateral group is bulky enough. Similar results have been reported for substituted
poly(phenyl methacrylate)s in the mixture tetrahydrofuran/water.

The description of these systems was not in agreement with predictions of classical
thermodynamic theories.39,103-105

This behavior was analyzed in terms of specific interactions among the components of
the ternary system. If the oxygen atoms of 1,4-dioxane can interact specifically with metha-
nol by accepting a proton, then, methanol hydrogen bonds not only to poly(methacrylate)s
but also to 1,4-dioxane. The new theoretical formation takes into account the case of solvent
which is self-associated and interacts specifically with sites in the polymer chain and with
sites in the other solvent molecule. Therefore, it must consider association constants of the
solvent molecule and association constants of the self-associated-solvent (2) with (3) the
polymer. It was assumed that the polymer molecule has one site for specific interactions
with 2, that the constant for such specific interaction between one 2 molecule and one sites
isη1 and that the self-association of 2 over the 2 molecule attached to a site in 3 is character-
ized by constant σ2,η2 or σ2 values, or both, should vary from polymer to polymer depending
on the size of the substituent pending from the ester group. In addition, also association con-
stants of 2 with the other solvent molecule (1) have been postulated. These are: η1 and σ1.
The number of sites on molecule 1 was called t. The constant for the specific interaction of
one 2 molecule with one site in 1 isη1, and the self-association of 2 over the already attached
2 molecule is σ1. With all these constants a quantitative description of the experimental re-
sults for the three poly(alkyl methacrylates) (alkyl + Me, Et, iBu) in 1,4-dioxane/methanol
was reported.106 In conclusion, the theory applied by Pouchly and Zivny to the simpler case
in which one of the liquids is inert, was extended to more complex mixture.106

Table 5.4.4 summarizes the glossary of association constants and interaction parame-
ters used in the theory in the case of poly(alkyl methacrylates). The results that are obtained
for the minimum standard deviation in each case are shown on Table 5.4.4.
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Table 5.4.4. Parameter values giving the minimum deviation (δ) between theory and
experiment, for the preferential adsorption coefficient, λ, calculated according to the
Association Equilibria Theory. Reprinted with permission from Horta et al.106

(Copyright (1989) American Chemical Society)

Polymer σ gBA’ ηa σc
gAC’-r

rAgBC’
ηc δ

1 PMMA 400 0.85 244 400 0.0 5.7 0.034

2 PEMA 400 0.85 244 400 -1.2 59.3 0.028

3 PiBMA 400 0.85 244 400 -2.3 129.5 0.018

4 PMMA 400 0.30 100 400 -3.4 243.2 0.013

5 PEMA 400 0.30 100 400 -2.75 169.2 0.014

6 PiBMA 400 0.30 100 400 -1.6 188.2 0.009

7 PMMA 400 0.85 244 375 -0.1 11.2 0.034

8 PEMA 400 0.85 244 375 -2.2 145.4 0.028

9 PiBMA 400 0.85 244 375 -1.6 100.7 0.035

10 PMMA 400 0.30 100 375 -2.45 195.5 0.013

11 PEMA 400 0.30 100 375 -1.75 125.0 0.016

12 PiBMA 400 0.30 100 375 -0.5 45.6 0.016

The results obtained are a good description of the experimental data on these ternary
systems. Effectively, the shape of the variation of λ with solvent composition was well re-
produced by the association equilibria theory, as it is shown in Figure 5.4.2.

It has extended the same theoretical treatment to other closely related systems, a fam-
ily of poly(dialkyl itaconates).107 Preferential adsorption coefficient λ was determined and
calculated according to the association equilibria theory, and using classical thermody-
namic theories.108,103,104,105

The dependence of the preferential adsorption coefficient for poly(dimethyl itaconate)
(PDMI), poly(diethyl itaconate) (PDEI), poly(dipropyl itaconate) (PDPI) and poly(dibutyl
itaconate) (PDBI), in 1,4-dioxane/methanol mixtures, as a function of the methanol compo-
sition (uBO) is shown in Figure 5.4.3. The results are very similar to those of poly(alkyl
methacrylates) in the same solvent.106

Comparison between theory and experimental for λ, by using classical thermody-
namic theories103-105,108 are shown in Figure 5.4.4.

The results obtained are a good description of the experimental data on these ternary
systems. Effectively, the shape of the variation of λ with solvent composition was well re-
produced by the association equilibria theory. It can be concluded that the association equi-
libria theory of preferential adsorption in systems with solvent-solvent and solvent-polymer
interactions describe in a quantitative way the experimental results of λ. Although, the sys-
tems in which the theory has been applied are closely related. More recently, there was no
other systems studied to apply this theory.
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Figure 5.4.2. Comparison of theory and experiment for preferential adsorption coefficient, λ, of poly(alkyl
methacrylate)s in 1,4-dioxane-methanol. (uBO=methanol volume fraction). Points: Experimental results from ref.6.
(O) PMMA (alkyl = Me); (∆) PEMA (Et); (o) PiBMA (iBu). Association equilibria theory. (8A) Calculated with
the parameter values shown in Table 5.4.4 and numbered as 4-6. Curves: (a) PMMA; (b) PEMA; c) PiBMA. (7B)
Calculated with the parameter values shown in Table 5.4.4 and numbered as 10-12. Curves: (a) PMMA; (b)
PEMA; c) PiBMa. Reprinted with permission from Horta et al.106 (Copyright (1989) American Chemical Society).

Figure 5.4.3. Variation of preferential adsorption co-
efficient, λ, as function of methanol volume fraction
uBO, for PDMI (O), PDEI (∆), PDPI (o), and PDBI
(l), at 298 K. Reprinted with permission from Horta
et al.107 (Copyright (1990) American Chemical Soci-
ety).

Figure 5.4.4. Comparison between theory and exper-
iment for the preferential adsorption coefficient, λ,
by using classical thermodynamic theories.103 Points:
experimental result of λ. Curves: classical thermody-
namic theories.108 Reprinted with permission from
Horta et al.107 (Copyright (1990) American Chemical
Society).



5.4.5 POLYMER STRUCTURE OF THE POLYMER DEPENDENCE OF
PREFERENTIAL ADSORPTION. POLYMER MOLECULAR WEIGHT AND
TACTICITY DEPENDENCE OF PREFERENTIAL ADSORPTION

There are some important structural aspects of the polymer which are necessary to take into
account in the analysis of the polymer behavior in mixture solvents, such as its polarity,
chemical structure, microtacticity, molecular weight. The analysis of these properties
shows that they are determinant factors in preferential adsorption phenomena involved. It
has been pointed out73 that the effect of tacticity, and particularly the molecular weight, is a
complex problem. In the case of poly(2-vinylpyridine), when the polar solvent is preferen-
tially adsorbed, preferential solvation is independent of molecular weight; but when the
non-polar solvent is adsorbed, there is a dependence on the molecular weight.62

The reported experimental evidence109-111,67,73,77 seems to show that the coefficient of
preferential adsorption λ, for a given polymer in a mixed solvent of fixed composition de-
pends on molecular weight of the polymer sample. It is important to remember, however,
that this dependence of λ on M has not been always detected. Particularly for molecular
weights lower than a certain value.100,111,91

According to Dondos and Benoit,109 Read,104 and Hertz and Strazielle,112 the depend-
ence of preferential adsorption coefficient λ, with molecular weight or with segment density
can be expressed empirically as:

λ λ= +∞
−AM 1 2/ [5.4.4]

or

λ λ η= +∞
−K[ ] 1 [5.4.5]

where:
λ∞ the value of λ extrapolated to M→ ∞
[η] the intrinsic viscosity
A and K constants

It is interesting to note that the variation of λ with M is more pronounced. A in equa-
tion [5.4.4] is larger in mixtures which are poor solvents close to θ-conditions than in mix-
tures with excluded volume.109,111,112

Apparently, there will not be exhaustive results either with the chemical structure of
the polymer on the preferential adsorption,113 or the influence of the tacticity on the prefer-
ential adsorption. In the last years, investigations regarding the effect of ortho-substituents
in polymers with aromatic bulky side groups on the preferential adsorption and viscometric
behavior have been reported for poly(phenyl methacrylate) and its dimethyl and diisopropyl
ortho derivatives in tetrahydrofuran/water.114 Figure 5.4.5 from ref.114 shows the λvalues for
three polymers in THF/water.

The λ values diminish when the volume of the side groups increases and there is a
strong water adsorption. The behavior reported114 indicates that the cosolvent effect de-
creases or disappears when the preferential adsorption is very small or is not observed.114

In another publication,102 the systems studied were a series of poly(alkyl methacry-
lates) including the methyl (PMMA), ethyl (PEMA), isobutyl (PiBMA) and cyclohexyl
(PCHMA) substituents in the mixture solvent 1,4-dioxane/methanol. The experimental
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results113 indicate that the size of the sub-
stituents on the polymer ester group exerts
an influence on the specific interaction be-
tween the methanol molecule and the car-
bonyl of the ester. It has been shown that
the preferential adsorption of methanol is
completely hindered when the lateral
groups are bulky enough.

Several attempts have been made to
take into account the geometrical character
of the polymer segment and the solvent
molecule. None of them seems to give a
unique explanation for the experimental re-
sults about the cosolvent effect.

The most important task in the field of
research on ternary systems polymer in bi-
nary solvents is to examine the state of the

macromolecular chain in solution and the analysis of the changes in solubility and then in
composition involved in the total system itself.

The goal of this review was to present aspects of the preferential adsorption phenom-
ena of solvents and polymers with a focus on their thermodynamic aspects. The idea behind
this was to attract the attention of polymeric physico-chemists to this area, which is suffi-
ciently related to a lot of different effects. In fact, preferential adsorption occupies a special
place in the solubility of polymers in mixed solvents.
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5.5 THE PHENOMENOLOGICAL THEORY OF SOLVENT EFFECTS
IN MIXED SOLVENT SYSTEMS

Kenneth A. Connors

School of Pharmacy, University of Wisconsin, Madison, USA

5.5.1 INTRODUCTION

We do not lack theories dealing with solvent effects on chemical and physical processes, as
is made clear by other sections and authors in the present book. Some of these theories are
fundamental in the sense that they invoke detailed physical descriptions of molecular phe-
nomena (electrostatic interactions or the dispersion interaction, for example) whereas oth-
ers are extensively empirical (such as the UNIQUAC and UNIFAC schemes for estimating
activity coefficients, or extrathermodynamic correlations with model processes, exempli-
fied by the Dimroth-Reichardt ET value). Given the abundance of theoretical and empirical
approaches, it might seem that new attacks on the general problem of solvent effects would
be superfluous. Yet when a solvent effect problem (in particular a solubility problem)
arises, the extant theories often are in some measure inadequate. The empirical approaches
tend to constitute special rather than general methods of attack, and the physical theories are
either too complexly detailed or must be overly simplified to be usable. (It should be noted
that our present concern is dominated by an interest in pharmaceutical systems, and there-
fore by aqueous and mixed aqueous solvents). The consequence is that a chemist or pharma-
cist confronted with a solubility problem (and such problems usually arise in situations
allowing little commitment of time to the problem) often finds it more fruitful to solve the
problem experimentally rather than theoretically. This is perfectly valid, but seldom does
the solution lead to deeper understanding, and moreover the time required for the experi-
mental effort may be excessive. Another factor is the frequent availability of only milligram
quantities of material. It is these considerations that led to the development of this
phenomenological theory of solvent effects in mixed aqueous-organic solvent systems. The
theory is termed “phenomenological” because it includes elements of description such as
equilibrium constants whose evaluation is carried out experimentally, yet it is based on
physicochemical ideas.

5.5.2 THEORY

In the following development, the symbol x represents mole fraction, c is the molar concen-
tration, component 1 is water, component 2 is a water-miscible organic cosolvent, and com-
ponent 3 is the solute.

5.5.2.1 Principle

Before we can carry out any solution chemistry we must have a solution, and so we begin
with the process of dissolution of a solid solute in a liquid solvent (which may itself be a
mixture), the system being at equilibrium at constant temperature T.1 The experimentally
measured equilibrium solubility of the solute is x3. Eq. [5.5.1] gives the free energy of solu-
tion per molecule, where k is the Boltzmann constant.

∆G kT xsoln

* ln= 3 [5.5.1]
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Conventionally the standard free energy of solution is given by eq. [5.5.2],

∆G kT asoln

0 = ln 3
[5.5.2]

where a3 is the mole fraction solute activity. Since we can write a3 = f3x3, eq. [5.5.3] relates
∆Gsoln

* and ∆Gsoln
0 .

∆ = ∆G G kT fsoln

*

soln

0 + ln 3
[5.5.3]

The traditional approach would be to develop a theory for the activity coefficient f3,
which measures the extent of nonideal behavior. This seems to be a very indirect manner in
which to proceed, so we will henceforth make no use of activity coefficients, but instead
will develop an explicit model for ∆Gsoln

* .
The general principle is to treat ∆Gsoln

* as the sum of contributions from the three types
of pairwise interactions: solvent-solvent interactions, which give rise to the general medium

effect; solvent-solute interactions, or the solvation effect; and solute-solute interactions (the
intersolute effect in the present context). Thus we write.

∆ ∆ ∆ ∆G G G Ggen med solvsoln

*

intersol= + + [5.5.4]

Our problem is to develop explicit expressions for the solvent-dependent quantities on
the right-hand side of eq. [5.5.4].

5.5.2.2 The intersolute effect: solute-solute interactions

There are two contributions to the intersolute effect. One of these comes from solute-solute
interactions in the pure solute, which for solid solutes constitutes the crystal lattice energy.
We will make the assumption that this contribution is independent of the nature (identity
and composition) of the solvent. Usually this is a valid assumption, but exceptions are
known in which the composition of the solid depends upon the composition of the solvent.
Theophylline, for example, forms a hydrate in water-rich solvents, but exists as the anhy-
drous form in water-poor solvents; thus its crystal energy varies with the solvent composi-
tion.2-4 Although the final theory is capable of empirically describing the solubility of such
systems, it lacks a valid physical interpretation in these cases. Fortunately such solid solute
behavior is not common, and our assumption that the pure solute interaction energy is sol-
vent-independent is usually a good one.

The second contribution to the intersolute effect comes from solute-solute interactions
in the solution phase. In pharmaceutics our motivation for incorporating organic solvents
into an aqueous system commonly arises from an unacceptably low equilibrium solubility
of a drug in pure water. This means that in water and in water-rich mixed solvents the extent
of solution phase solute-solute interactions will be negligible because the solute concentra-
tion is in the extremely dilute range. At higher concentrations of the organic cosolvent it is
true that the solute concentration may rise well above the dilute range, but in some degree
this is offset by the diminished tendency for solute-solute interaction in such systems. Thus
the hydrophobic interaction is sharply decreased by incorporating organic cosolvents. We
will recognize these solution phase solute-solute interactions as a possible source of pertur-
bation in our theory because of our assumption either that they are negligible, or that they do
not vary with solvent composition.
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5.5.2.3 The solvation effect: solute-solvent interaction

Our approach is to treat solvation as a stoichiometric equilibrium process. Let W symbolize
water, M an organic cosolvent, and R the solute. Then we postulate the 2-step (3-state) sys-
tem shown below.

[5.5.5]

[5.5.6]

In this scheme K1 and K2 are dimensionless solvation equilibrium constants, the concentra-
tions of water and cosolvent being expressed in mole fractions. The symbols RW2, RWM,
RM2 are not meant to imply that exactly two solvent molecules are associated with each sol-
ute molecule; rather RW2 represents the fully hydrated species, RM2 the fully cosolvated
species, and RWM represents species including both water and cosolvent in the solvation
shell. This description obviously could be extended, but experience has shown that a 3-state
model is usually adequate, probably because the mixed solvate RWM cannot be algebra-
ically (that is, functionally) differentiated into sub-states with data of ordinary precision.

Now we further postulate that the solvation free energy is a weighted average of con-
tributions by the various states, or

∆ ∆ ∆ ∆G G F G F G Fsolv WW WW WM WM MM MM= + + [5.5.7]

where FWW, FWM, and FMM are fractions of solute in the RW2, RWM, and RM2 forms, respec-
tively. Eq. [5.5.7] can be written

( ) ( )∆ ∆ ∆ ∆ ∆ ∆G G G F G G F Gsolv WM WW WM MM WW MM WW= − + − + [5.5.8]

By combining definitions of K1, K2, FWM, and FMM we get

F
K x x

x K x x K K x
F

K K x

x K x x
WM MM=

+ +
=

+ +
1 1 2

1

2

1 1 2 1 2 2

2

1 2 2

2

1

2

1 1 2 K K x1 2 2

2
[5.5.9]

for use in eq. [5.5.8]
Now observe this thermodynamic cycle [5.5.10]:

From this cycle we get

∆ ∆ ∆G G G kT KWM WW1 1= − = − ln [5.5.11]
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A similar cycle yields eq. [5.5.12].

∆ ∆ ∆G G G kT K KMM WW2 1 2= − = − ln [5.5.12]

Combination of eqs. [5.5.8] - [5.5.12] then gives

( ) ( )
∆G

kT K K x x kT K K K K x

x K x x K
solv =

− + −

+ +

ln ln1 1 1 2 1 2 1 2 2

2

1

2

1 1 2 1K x
Gww

2 2

2
+ ∆ [5.5.13]

Obviously when x2 = 0, ∆Gsolv = ∆GWW.5 Eq. [5.5.13] is the desired expression relating
the solvation energy to the solvent composition.

5.5.2.4 The general medium effect: solvent-solvent interactions

Here we make use of Uhlig’s model,6 writing eq. [5.5.14] as the energy required to create a
molecular-sized cavity in the solvent.

∆G gAgen med = γ [5.5.14]

In eq. [5.5.14] g is a curvature correction factor, an empirical quantity that corrects the
conventional surface tension γfor the curvature of the cavity needed to contain a solute mol-
ecule. A is the surface area of this cavity in �2 molecule-1; in Sections 5.5.3 and 5.5.4 we
treat the meaning of A in more detail, but here we only make the assumption that it is essen-
tially constant, that is, independent of x2.

There is a subtlety in assigning the value of γ, for implicit in our model (but treated
more fully in reference 1) is the condition that the γof eq. [5.5.14] is the surface tension of
the cavity surface at its equilibrium composition. But this is the composition of the solvation
shell immediately adjacent to the molecule, and this is in general different from the compo-
sition (x1, x2) of the bulk solvent mixture. Let f1 and f2 be the equilibrium mean fractional
concentrations of water and cosolvent, respectively, in the solvation shell, so f1 + f2 = 1.
These fractions are defined

( )f F FWW WM1

1

2
2= + [5.5.15]

( )f F FWM MM2

1

2
2= + [5.5.16]

Now we define, for use in eq. [5.5.14],

γ γ γ= +1 1 2 2f f [5.5.17]

( )γ γ γ γ= + −1 2 1 2f [5.5.18]

where γ1 and γ2 are the surface tensions of pure component 1 (water) and 2, respectively.
Combining eqs. [5.5.14, 5.5.16, and 5.5.18] gives for the general medium effect

∆G gA
gA K x x gA K K x

x K x x K
gen med = +

′ + ′
+ +

γ
γ γ

1

1 1 2 1 2 2

2

1

2

1 1 2 1

2

K x2 2

2
[5.5.19]
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where ′ = −γ γ γ( ) /2 1 2. Notice that the general medium and solvation effects are coupled
through the solvation constants K1 and K2.

When x2 = 0, eq. [5.5.19] yields ∆Ggen med = gAγ1. We interpret this as a quantitative ex-
pression for the hydrophobic effect. In general, eq. [5.5.19] describes the solvophobic ef-
fect. This is a phenomenological description, not a detailed structural description.

5.5.2.5 The total solvent effect

The solution free energy is now obtained by inserting eqs. [5.5.13] and [5.5.19] into eq.
[5.5.4]. We obtain

∆ ∆ ∆G x gA G GWWsoln

*

intersol( )2 1= + +γ

( ) ( )
+

′ − + ′ −

+

gA kT K K x x gA kT K K K K x

x K x x

γ γln ln1 1 1 2 1 2 1 2 2

2

1

2

1 1 2

2

+ K K x1 2 2

2
[5.5.20]

When x2 = 0, eq. [5.5.20] gives

( )∆ ∆ ∆G x gA G GWWsoln

*

intersol2 10= = + +γ [5.5.21]

With the Leffler-Grunwald delta operator symbolism7 we define

( ) ( )δM G G x G x∆ ∆ ∆* = − =soln

*

soln

*

2 2 0 [5.5.22]

which, applied to eqs. [5.5.20] and [5.5.21], gives our final result:

( ) ( )
δ

γ γ
M soG

gA kT K K x x gA kT K K K K x

x
∆ ln

*
ln ln

=
′ − + ′ −1 1 1 2 1 2 1 2 2

22

1

2

1 1 2 1 2 2

2+ +K x x K K x
[5.5.23]

The quantity δM solnG∆ * can be read “the solvent effect on the solution free energy.” Because
of eq. [5.5.1], δM G∆ * is proportional to the “relative solubility,” log[( ) / ( ) ]x xx x3 3 02 2 = , that
is, the logarithm of the solubility in the mixed solvent of composition x2 relative to the solu-
bility in pure water. The subtraction that yields eq. [5.5.23], a workable equation with just
three unknown parameters (gA, K1, and K2), has also prevented us from dealing with abso-
lute solubilities.

5.5.3 APPLICATIONS

5.5.3.1 Solubility

It will be no surprise that the first use of eq. [5.5.23] was to describe the equilibrium solubil-
ity of solid nonelectrolytes in mixed aqueous-organic solvents.1 Equilibrium solubility in
mol L-1, c3, is converted to mole fraction, x3, with eq. [5.5.24], whereρ is the saturated solu-
tion density, w is the wt/wt percentage of organic cosolvent, and M1, M2, M3 are the molecu-
lar weights of water, cosolvent, and solute.8

( ) ( )
x

c

c c M
w

M

w

M

3

3

3 3 3

2 1

1000
1

=

− +
−







ρ

[5.5.24]
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The free energy of solution per molecule is then calculated with eq. [5.5.1], δM G∆ * is
found with eq. [5.5.22], and δM G∆ * as a function of x2 is fitted to eq. [5.5.23] by nonlinear
regression, with gA, K1, and K2 being treated as adjustable parameters.9 Figures 5.5.1 and
5.5.2 show some results.1

Clearly eq. [5.5.24] possesses the functional flexibility to describe the data. (In some
systems a 1-step (2-state) equation is adequate. To transform eq. [5.5.24] to a 1-step version,
set K2 = 0 and let ′ = −γ γ γ2 1.) The next step is to examine the parameter values for their pos-
sible physical significance. It seems plausible that K1 and K2 should be larger than unity, but
not “very large,” on the basis that the solutes are organic and so are the cosolvents, but the
cosolvents are water-miscible so they are in some degree “water-like.” In fact, we find that
nearly all K1 and K2 values fall between 1 and 15. Likewise the gA values seem, in the main,
to be physically reasonable. Earlier estimates of g (reviewed in ref.1) put it in the range of
0.35-0.5. A itself can be estimated as the solvent-accessible surface area of the solute, and
many of the gA values found were consistent with such estimates, though some were con-
siderably smaller than expected. Since gA arises in the theory as a hydrophobicity parame-
ter, it seemed possible that A in the equation represents only the nonpolar surface area of the
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Figure 5.5.1. Solvent effect on the solubility of
diphenylhydantoin. Cosolvents, top to bottom: glyc-
erol, methanol, ethanol. The smooth lines were drawn
with eq. 5.5.23. (Reproduced with permission from the
Journal of Pharmaceutical Sciences reference 1.)

Figure 5.5.2. Solvent effect on the solubilities of barbi-
turic acid derivatives in ethanol-water mixtures. Top to
bottom: metharbital, butabarbital, amobarbital. The
smooth lines were drawn with eq. 5.5.23. (Reproduced
with permission from the Journal of Pharmaceutical

Sciences, reference 1.)



molecule. An experiment whose results are summarized in Table 5.5.1 was designed to ex-
amine this possibility.10

Table 5.5.1. Surface area estimates of biphenyls10

Compound Atotal Anonpolar gA

Biphenyl 179 (3) 179 (3) 74 (0.6)

4-Hydroxybiphenyl 185 (4) 155 (7) 69 (0.3)

4,4’-Dihydroxybiphenyl 203 (5) 126 (7) 53 (0.5)

4-Bromobiphenyl 217 (7) 217 (7) 87 (1.4)

Areas in �2 molecule; standard deviations in parentheses. The cosolvent was methanol.

Evidently the experimental gA estimate is correlated with Anonpolar rather than with
Atotal, and the linear relationship yields the estimate g = 0.37. On the other hand, there was
evidence1 that g depends upon cosolvent identity (for a given solute), and LePree and
Mulski8,11 examined this possibility. Their findings led to an empirical but quite general cor-
relation between gA and properties of the cosolvent and solute:

gA P PM R= − +42 11log log [5.5.25]

In eq. [5.5.25] PM is the 1-octanol/water partition coefficient of the pure organic
cosolvent and PR is the partition coefficient of the solute. Table 5.5.2 gives examples of the
application of eq. [5.5.25].

Table 5.5.2 Experimental and calculated gA values8,11

Solute Solvent
gA, �2

molecule
-1

Calculated Observed

Naphthalene Methanol 66 63

Naphthalene Ethanol 48 54

Naphthalene 2-Propanol 35 43

Naphthalene 1,2-Propanediol 92 71

Naphthalene 1,2-Ethanediol 116 102

Naphthalene Acetone 45 69

Naphthalene DMSO 120 127

4-Nitroaniline Methanol 46 35

4-Nitroaniline Ethanol 29 21

4-Nitroaniline 2-Propanol 15 11

4-Nitroaniline 1,2-Ethanediol 96 84

4-Nitroaniline Acetone 25 37
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Solute Solvent
gA, �2

molecule
-1

Calculated Observed

4-Nitroaniline DMSO 101 86

4-Nitroaniline Acetonitrile 30 29

We now encounter a curious observation. The parameter gA is constrained, in the non-
linear regression fitting program, to be constant as x2 varies over its entire range from 0 to 1.
We have identified A as the nonpolar surface area of the solute (though it may actually be
the corresponding area of the solvent cavity, and so may show some cosolvent dependency,
which we have ignored). The quantity g can then be estimated. For example, from Table
5.5.2 for naphthalene (A = 147 �2 molecule-1), g varies from 0.29 (for 2-propanol) to 0.86
(for DMSO). Yet how can g possess these different values in different cosolvents, maintain
its constancy as x2 varies, and then collapse to the unique value it must possess in water, the
reference solvent for all systems? An independent calculation gives g = 0.41±0.03 in water.8

Some tentative explanations for this puzzle have been offered,8 and we return to this issue in
Section 5.5.4.

Turning to the K1 and K2 parameters, we have observed that these are relatively insen-
sitive to the identity of the solute, but that they depend upon the cosolvent, whose polarity is
a controlling factor. Table 5.5.3 gives some empirical correlations that provide routes to the
prediction of K1 and K1K2. In Table 5.5.3, PM is the 1-octanol/water partition coefficient of
the pure cosolvent,12 and ET is the Dimroth-Reichardt solvatochromic polarity parameter.13

We thus have the capability of predicting gA, K1, and K1K2, which extends the utility of eq.
[5.5.23] from the merely descriptive to the predictive.

Table 5.5.3. Empirical relationships for estimating solvation constants

Equation n r Restrictions

log K1 = -0.0316 ET + 2.24 10 0.91 -

log (K1/K2) = 0.0171 ET - 9.23 4 0.98 ET > 51

log (K1/K2) = -0.0959 ET + 4.60 6 0.85 ET < 52

log K1K2 = 1.31 log PM + 1.81 6 0.91 log PM > -1.0

5.5.3.2 Surface tension

In the development of the basic phenomenological model, eq. [5.5.23], we derived a rela-
tionship for the surface tension of the solvation shell. Combining eqs. [5.5.16] and [5.5.18]
yields

γ γ γ= + ′ +
+ +









1

1 1 2 1 2 2

2

1

2

1 1 2 1 2 2

2

2K x x K K x

x K x x K K x
[5.5.26]

where ′ = −γ γ γ( ) /2 1 2. Now if we identify the solute-solvation shell system with the air-sol-
vent interface, we are led to test eq. [5.5.26] as a description of the composition dependence
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of surface tension in mixed solvent systems, air playing the role of the solute. Figures 5.5.3
and 5.5.4 show examples of these curve-fits.14

When K2 = 0, eq [5.5.26] gives the 1-step model, eq. [5.5.27], where ′ = −γ γ γ2 1.

γ γ γ= + ′
+









1

1 2

1 1 2

K x

x K x
[5.5.27]

We had earlier15 published an equation describing the dependence of surface tension
on composition, and a comparison of the two approaches has been given;14 here we will re-
strict attention to eqs. [5.5.26] and [5.5.27].

Suppose we set K1 = 2 and K2 = 1/2 in eq. [5.5.26]. This special condition converts eq.
[5.5.26] to

γ γ γ= +1 1 2 2x x [5.5.28]

which corresponds to ideal behavior; the surface tension is a linear function of x2. The re-
striction K1 = 2, K2 = 1/2 is, however, a unique member of a less limited special case in
which K1 = 4K2. This important condition (except when it happens to occur fortuitously)
implies the existence of two identical and independent binding sites.16 Inserting K2 = K1/4
into eq. [5.5.26] yields, upon simplification, eq. [5.5.29], where ′ = −γ γ γ2 1.
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Figure 5.5.3. Surface tension of 2-propanol-water mix-
tures. The smooth line is drawn with eq. 5.5.26. (Re-
produced with permission from the Journal of Solution

Chemistry. reference 14.)

Figure 5.5.4. Surface tension of glycerol-water mix-
tures. The smooth line is drawn with eq. 5.5.26. (Repro-
duced with permission from the Journal of Solution

Chemistry. reference 14.)
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γ γ γ= + ′
+







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1 2

1 1 2
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2

K x

x K x
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/
[5.5.29]

Eq. [5.5.29] will be recognized as equivalent to eq. [5.5.27] for the 1-step model. The
interpretation is as follows: the 2-step model, eq. [5.5.26], can always be applied, but if the
result is that K1 ≈ 4K2 the 1-step model will suffice to describe the data. Moreover, if K1 ≈
4K2 from the 2-step treatment, no physical significance is to be assigned to the second pa-
rameter.

These considerations are pertinent to real systems. Table 5.5.4 lists K1 and K2 values
obtained by applying eq. [5.5.26] to literature data.15 Several systems conform reasonably to
the K1 ≈4K2 condition. Recall that ideal behavior requires the special case K1 = 2, K2 = 1/2.
The less restrictive condition K1 ≈ 4K2 we call “well-behaved.” Figure 5.5.3 shows a
well-behaved system; Figure 5.5.4 shows one that is not well-behaved. The distinction is
between a hyperbolic dependence on x2 (well-behaved) and a non-hyperbolic dependence.

Table 5.5.4. Solvation parameter estimates for surface tension data according to eq.
[5.5.26]

Cosolvent K1 K2 K1/K2

Methanol 19.8 2.9 6.8

2-Propanol 130 29.4 4.4

1-Propanol 232 50 4.6

t-Butanol 233 65 3.6

Acetic acid 115 2.7 42.6

Acetone 138 7.1 19.4

Acetonitrile 33.4 14.5 2.3

Dioxane 62.1 7.4 8.4

THF 136 25.9 5.3

Glycerol 22.7 0.80 28.4

DMSO 12.3 1.43 8.6

Formamide 5.52 2.57 2.1

Ethylene glycol 9.4 2.62 3.6

A further observation from these results is that some of the K1 values are much larger
than those encountered in solubility studies. Correlations with log PM have been shown.14

5.5.3.3 Electronic absorption spectra

The energy of an electronic transition is calculated from the familiar equation

E hv
hc

T = =
λ

[5.5.30]
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where h is Planck’s constant, c is the velocity of light, v is frequency, and λ is wavelength. If
λ is expressed in nm, eq. [5.5.31] yields ET in kcal mol-1.

ET = ×2859 104. / λ [5.5.31]

The phenomenological theory has been applied by Skwierczynski to the ET values of
the Dimroth-Reichardt betaine,13 a quantity sensitive to the polarity of the medium.17 The
approach is analogous to the earlier development. We need only consider the solvation ef-
fect. The solute is already in solution at extremely low concentration, so solute-solute inter-
actions need not be accounted for. The solvent cavity does not alter its size or shape during
an electronic transition (the Franck-Condon principle), so the general medium effect does
not come into play. We write ET of the mixed solvent as a weighted average of contributions
from the three states:

( ) ( ) ( ) ( )E x F E WW F E WM F E MMT WW T WM T MM T2 = + + [5.5.32]

where the symbolism is obvious. Although ET(WW) can be measured in pure water and
ET(MM) in pure cosolvent, we do not know ET(WM), so provisionally we postulate that ET

(WM) = [ET(WW) + ET(MM)]/2. Defining a quantity Γ by

( ) ( )
( ) ( )

Γ =
−
−

E x E WW

E MM E WW

T T

T T

2
[5.5.33]

we find, by combining eqs. [5.5.9], [5.5.10], and [5.5.32],

Γ =
+

+ +
K x x K K x

x K x x K K x

1 1 1 1 2 2

2

1

2

1 1 2 1 2 2

2

2/
[5.5.34]

The procedure is to fit Γ to x2. As before, a 1-parameter version can be obtained by setting
K2 = 0:

Γ =
+
K x

x K x

1 2

1 1 2

[5.5.35]

Figure 5.5.5 shows a system that can be satisfactorily described by eq. [5.5.35],
whereas the system in Figure 5.5.6 requires eq. [5.5.34]. The K1 values are similar in magni-
tude to those observed from solubility systems, with a few larger values; K2, for those sys-
tems requiring eq. [5.5.34], is always smaller than unity. Some correlations were obtained
of K1 and K2 values with solvent properties. Figure 5.5.7 shows log K1 as a function of log
PM, where PM is the partition coefficient of the pure organic solvent.

5.5.3.4 Complex formation.

We now inquire into the nature of solvent effects on chemical equilibria, taking noncovalent
molecular complex formation as an example. Suppose species S (substrate) and L (ligand)
interact in solution to form complex C, K11 being the complex binding constant.

[5.5.36]
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It is at once evident that this constitutes
a more complicated problem than those we
have already considered inasmuch as here
we have three solutes. We begin with the
thermodynamic cycles shown as Figure
5.5.8; these cycles describe complex forma-
tion in the solid, solution, and gas phases
horizontally, and the energy changes associ-
ated with the indicated processes. ∆Glatt cor-
responds to the crystal lattice energy
(solute-solute interactions), ∆Gcav represents
the energy of cavity formation (identical
with the general medium effect of Section
5.5.2). ∆Gcomp is the free energy of complex
formation, which in the solution phase is
given by eq. [5.5.37].

∆G l kT Kcomp ( ) ln= − 11 [5.5.37]

Eq. [5.5.37] gives the free energy with
respect to a 1M standard state, because the unit of K11 is M-1. To calculate the unitary (mole
fraction) free energy change we write, instead of eq. [5.5.37], eq. [5.5.38]:

( ) ( )∆G l kT K Mcomp = − ln *

11 ρ [5.5.38]

where M* is the number of moles of solvent per kg of solvent and ρ is the solution density.
The unitary free energy does not include the entropy of mixing.

From cycle gl in Figure 5.5.8 we obtain eq. [5.5.39].
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Figure 5.5.5. Dependence of ET on composition for the
methanol-water system. The smooth line was drawn
with eq. 5.5.35. (Reproduced with permission from the
Journal of the Chemical Society. Perkin Transactions

2, reference 17.)

Figure 5.5.6. Dependence of ET on composition for the
acetone-water system. The smooth line was drawn
with eq. 5.5.34. (Reproduced with permission from the
Journal of the Chemical Society. Perkin Transactions

2,. reference 17.)

Figure 5.5.7. A plot of log K1 from the ET data against
log PM; the circles represent 1-step solvents (eq. 5.5.35)
and the squares, 2-step solvents (eq. 5.5.34). (Repro-
duced with permission from the Journal of the Chemi-

cal Society, Perkin Transactions 2, reference 17.)



( ) ( ) ( )∆ ∆ ∆ ∆G g G G G lcomp cav

C

solv
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comp+ + −

( ) ( )− + − + =∆ ∆ ∆ ∆G G G Gcav

L

solv

L

cav
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solv
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We apply the δM operator to eq. [5.5.39]

δ δ δ δ δM cav

C

M cav

S

M cav

L

M solv

C

M solv

SG G G G G∆ ∆ ∆ ∆ ∆− − + −

( )− =δ δM solv

L

M compG G l∆ ∆ [5.5.40]

where we have assumed δM∆Gcomp (g) = 0, which is equivalent to supposing that the structure
of the complex (the spatial relationship of S and L) does not depend upon solvent composi-
tion, or that the intersolute effect is composition independent.

Also applying the δM treatment to eq. [5.5.4] gives

δ δ δM M cav M solvG G G∆ ∆ ∆soln = + [5.5.41]

for each species; recall that ∆Ggen med and ∆Gcav are identical. Use eq. [5.5.41] in [5.5.40]:

( )δ δ δ δM comp M M MG l G G G∆ ∆ ∆ ∆= − −soln

C

soln

L

soln

S [5.5.42]

Eq. [5.5.42] says that the solvent effect on complex formation is a function solely of the sol-
vent effects on the solubilities of reactants (negative signs) and product (positive sign). This
is a powerful result, because we already have a detailed expression, eq. [5.5.23], for each of
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Figure 5.5.8. Thermodynamic cycles for bimolecular association. The symbols s, l, g represent solid, liquid, and
gas phases; the superscripts refer to substrate S, ligand L, and complex C. (Reproduced with permission from the
Journal of Solution Chemistry, reference 18.)



the three quantities on the right-hand side of eq. [5.5.42]. Thus the problem is solved in
principle.18

In practice, of course, there are difficulties. Each of the δM∆Gsoln terms contains three
adjustable parameters, for nine in all, far too many for eq. [5.5.42] to be practicable in that
form. We therefore introduce simplifications in terms of some special cases. The first thing
to do is to adopt a 1-step model by setting K2 = 0. This leaves a six-parameter equation,
which, though an approximation, will often be acceptable, especially when the experimen-
tal study does not cover a wide range in solvent composition (as is usually the case). This
simplification gives eq. [5.5.43].

δ
γ γ

M comp

C C C

C

S

G
gA kT K K x

x K x

gA kT
∆ * ( ln ) ( ln

=
′ −

+
−

′ −1 1 2

1 1 2

K K x

x K x

S S

S

1 1 2

1 1 2

)

+

−
′ −

+
( ln )gA kT K K x

x K x

L L L

L

γ 1 1 2

1 1 2

[5.5.43]

Next, in what is labeled the full cancellation approximation, we assume K1
C = K1

S = K1
L =

K1 and we write ∆gA = gAC - gAS - gAL. The result is

( )
δ

γ
M compG

kT K gA K x

x K x
∆

∆
*

ln
=

+ ′

+
1 1 2

1 1 2

[5.5.44]

and we now have a 2-parameter model. The assumption of identical solvation constants is
actually quite reasonable; recall from the solubility studies that K1 is not markedly sensitive
to the solute identity.

The particular example of cyclodextrin complexes led to the identification of another
special case as the partial cancellation approximation; in this case we assume K1

C = K1
S <

K1
L, and the result is, approximately.19

( )
δ

γ
M compG

kT K gA K x

x K x
∆ *

ln
=

− ′

+
1 1 2

1 1 2

[5.5.45]

Functionally eqs. [5.5.44] and [5.5.45] are identical; the distinction is made on the ba-
sis of the magnitudes of the parameters found. Note that gA in eq. [5.5.45] is a positive
quantity whereas ∆gA in eq. [5.5.44] is a negative quantity. In eq. [5.5.45] it is understood
that gA and K1 refer to L. Eqs. [5.5.44] and [5.5.45] both have the form

( )
δ

γ
M compG

kT K G K x

x K x
∆ *

ln
=

+ ′

+
1 1 2

1 1 2

[5.5.46]

where G = ∆gA in eq. [5.5.44] and G = -gA in eq. [5.5.45]. Table 5.5.5 shows G and K1 val-
ues obtained in studies of α-cyclodextrin complexes.19,20 The assignments are made on the
basis of the magnitude of K1; those values substantially higher than typical solubility K1 val-
ues suggest that the full cancellation condition is not satisfied. After the assignments are
made, G can be interpreted as either ∆gA (full cancellation) or -gA (partial cancellation).
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Notice in Table 5.5.5 that all full cancellation systems give substantial negative ∆gA values.
If g is constant, ∆gA = g∆A, and the negative ∆A value leads to a solvophobic driving force
of g∆Aγfor complex formation. (The dioxane system in Table 5.5.5 is unassigned because
its K1 value suggests partial cancellation whereas its G value suggests full cancellation).

Table 5.5.5. Parameter values of the 4-nitroaniline/α-cyclodextrin and methyl orange/
α-cyclodextrin systems19,20

Cosolvent K1 G
a

Cancellation assignment

4-Nitroaniline

Acetonitrile 55 +3 Partial

2-Propanol 46 -3 Partial

Ethanol 29 -9 Partial

Acetone 10 -57 Full

Methanol 3.1 -68 Full

Methyl orange

Acetone 46 -3 Partial

2-Propanol 43 -11 Partial

Acetonitrile 40 -13 Partial

Dioxane 31 -38 (Unassigned)

Ethylene glycol 7.7 -58 Full

DMSO 6.4 -66 Full

Methanol 4.9 -43 Full

aUnits are �2 molecule-1

5.5.3.5 Chemical kinetics

Treatment of the solvent effect on chemical reaction rates by means of the
phenomenological theory is greatly facili-
tated by the transition state theory, which
postulates that the initial and transition
states are in (virtual) equilibrium. Thus the
approach developed for complex formation
is applicable also to chemical kinetics.
Again we begin with a thermodynamic cy-
cle, Figure 5.5.9, where R represents the re-
actant (initial state) in a unimolecular
reaction, R� is the transition state, and P is
the product. From Figure 5.5.9 we write eq.
[5.5.47], where ∆G�

rxn(1) subsequently writ-
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Figure 5.5.9. Thermodynamic cycle for a unimolecular
reaction. (Reproduced with permission from the Journal

of Pharmaceutical Sciences, reference 21.)



ten ∆G�
rxn, is the free energy of activation in the solution phase.

∆G�
rxn(1) = ∆G�

rxn(g) + (∆G�
gen med + ∆G�

solv) − (∆ ∆G Ggen med

R

solv

R+ ) [5.5.47]

Applying the δM operation gives eq. [5.5.48]:

δM ∆G�
rxn = ∆G�

rxn(x
2
) − ∆G�

rxn(x2=0) [5.5.48]

The quantity ∆G�
rxn(g), disappears in this subtraction, as do other composition-inde-

pendent quantities. We make use of eq. [5.5.13] and eq. [5.5.19] to obtain a function having
six parameters, namely K1

R, K2
R, K�

1, gAR, and gA�. This function is made manageable by
adopting the full cancellation approximation, setting K1

R = K�
1 = K1 and K2

R = K�
2 = K2. We

then obtain

δM∆G
�

rxn = (∆gA
� ′γ K1x1x2 + 2∆gA

� ′γ K1K2x2

2)/(x1

2 + K1x1x2 + K1K2x2

2) [5.5.49]

where ∆gA� = gA� - gAR; this is the difference between the curvature-corrected molecular
surface areas of the cavities containing the transition state and the reactant. This quantity
may be positive or negative.

LePree21 tested eq. [5.5.49] with the decarboxylative dechlorination of N-chloroamino
acids in mixed solvents

RCH(NHCl)COOH + H2O → RCHO + NH3 + HCl + CO2 [5.5.50]
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Figure 5.5.10. Solvent effect on the decomposition of
N-chloroaniline in acetonitrile-water mixtures. The
smooth curve is drawn with eq. 5.5.49. (Reproduced
with permission from the Journal of Pharmaceutical

Sciences, reference 21.)

Figure 5.5.11. Solvent effect on the decomposition of
N-chloroleucine in 2-propanol-water mixtures. The
smooth curve is drawn with eq. 5.5.49. (Reproduced
with permission from the Journal of Pharmaceutical

Sciences, reference 21.)



For this test, the reaction possesses these very desirable features: (1) the kinetics are
first order, and the rate-determining step is unimolecular; (2) the reaction rate is independ-
ent of pH over the approximate range 4-13; (3) the rate-determining step of the process is
not a solvolysis, so the concentration of water does not appear in the rate equation; and (4)
the reaction is known to display a sensitivity to solvent composition. Figures [5.5.10] and
[5.5.11] show curve-fits, and Tables 5.5.6 and 5.5.7 give the parameter values obtained in
the curve-fitting regression analysis. Observe that ∆gA� is positive. This means that the
transition state occupies a larger volume than does the reactant. This conclusion has been
independently confirmed by studying the pressure dependence of the kinetics.21,22

Table 5.5.6. Model parameters for solvent effects on the decomposition of
N-chloroalanine21

Cosolvent K1 K2 ∆gA
�
, �2

molecule
-1

Methanol 2.8 3.1 16.8

Ethanol 5.7 2.8 23.8

1-Propanol 13.0 3.2 22.0

2-Propanol 5.9 11 20.6

Ethylene glycol 4.4 1.7 34.8

Propylene glycol 5.2 6.0 27.0

Acetonitrile 7.0 2.0 42

Dioxane 8.9 4.3 55

Table 5.5.7. Model parameters for solvent effects on the decomposition of
N-chloroleucine21

Cosolvent K1 K2 ∆gA
�
, �2

molecule
-1

Methanol 2.5 4.0 19.3

2-Propanol 2.7 40 24.2

Ethylene glycol 4.4 3.2 38

Acetonitrile 7.5 3.9 43

The success shown by this kinetic study of a unimolecular reaction unaccompanied by
complications arising from solvent effects on pH or water concentration (as a reactant)
means that one can be confident in applying the theory to more complicated systems. Of
course, an analysis must be carried out for such systems, deriving the appropriate functions
and making chemically reasonable approximations. One of the goals is to achieve a practi-
cal level of predictive ability, as for example we have reached in dealing with solvent effects
on solubility.

5.5 The phenomenological theory of solvent effects 297



5.5.3.6 Liquid chromatography

In reverse phase high-pressure liquid chromatography (RP HPLC), the mobile phase is usu-
ally an aqueous-organic mixture, permitting the phenomenological theory to be applied.
LePree and Cancino23 carried out this analysis. The composition-dependent variable is the
capacity factor ′k , defined by eq. [5.5.51],

′ =
−

=
−

k
V V

V

t t

t

R M

M

R M

M

[5.5.51]

where VR is the retention volume of a solute, tR is the retention time, VM is the column dead
volume (void volume), and tM is the dead time. It is seldom possible in these systems to use
pure water as the mobile phase, so LePree reversed the usual calculational procedure, in
which water is the reference solvent, by making the pure organic cosolvent the reference.
This has the effect of converting the solvation constants K1 and K2 to their reciprocals, but
the form of the equations is unchanged. For some solvent systems a 1-step model was ade-
quate, but others required the 2-step model. Solvation constant values (remember that these
are the reciprocals of the earlier parameters with these labels) were mostly in the range 0.1
to 0.9, and the gA values were found to be directly proportional to the nonpolar surface ar-
eas of the solutes. This approach appears to offer advantages over earlier theories in this ap-
plication because of its physical significance and its potential for predicting retention
behavior.

5.5.4 INTERPRETATIONS

The very general success of the phenomenological theory in quantitatively describing the
composition dependence of many chemical and physical processes arises from the treat-
ment of solvation effects by a stoichiometric equilibrium model. It is this model that pro-
vides the functional form of the theory, which also includes a general medium effect
(interpreted as the solvophobic effect) that is functionally coupled to the solvation effect.
The parameters of the theory appear to have physical significance, and on the basis of much
experimental work they can be successfully generated or predicted by means of empirical
correlations. The theory does not include molecular parameters (such as dipole moments or
polarizabilities), and this circumstance deprives it of any fundamental status, yet at the same
time enhances its applicability to the solution of practical laboratory problems. Notwith-
standing the widespread quantitative success of the theory, however, some of the observed
parameter values have elicited concern about their physical meaning, and it is to address
these issues, one of which is mentioned in 5.5.3.1, that the present section is included.

5.5.4.1 Ambiguities and anomalies

Consider a study in which the solubility of a given solute (naphthalene is the example to be
given later) is measured in numerous binary aqueous-organic mixed solvent systems, and
eq. [5.5.23] is applied to each of the mixed solvent systems, the solvent effect δM soln

*G∆ be-
ing calculated relative to water (component 1) in each case. According to hypothesis, the pa-
rameter gA is independent of solvent composition. This presumably means that it has the
same value in pure solvent component 1 and in pure solvent component 2, since it is sup-
posed not to change as x2 goes from 0 to 1. And in fact the nonlinear regression analyses
support the conclusion that gA is a parameter of the system, independent of composition.
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But in the preceding paragraph no restriction has been placed on the identity of solvent
component 2, so the conclusion must apply to any cosolvent 2 combined with the common
solvent 1, which is water. This means that all mixed solvent systems in this study as de-
scribed should yield the same value of gA. But this is not observed. Indeed, the variation in
gA can be extreme, in a chemical sense; see Table 5.5.2. This constitutes a logical diffi-
culty.

There is another anomaly to be considered. In nearly all of the nonelectrolyte solubil-
ity data that have been subjected to analysis according to eq. [5.5.23] the solute solubility in-
creases as x2, the organic cosolvent concentration, increases, and gA is positive, the
physically reasonable result. But in the sucrose-water-ethanol system, the sucrose solubility
decreases as x2 increases, and gA is negative. There appears to be no physically reasonable
picture of a negative gA value.

A further discrepancy was noted in 5.5.3.2, where we saw that some of the solvation
constants evaluated from surface tension data did not agree closely with the corresponding
numbers found in solubility studies.

5.5.4.2 A modified derivation

Recognizing that the original condition that g and A are independent of composition was
unnecessarily restrictive, we replace eq. [5.5.18] with eq. [5.5.52], where the subscripts 1
and 2 indicate values in the pure solvents 1 and 2.

á�γ = ( )g A g A g A f1 1 1 2 2 2 1 1 1 2γ γ γ+ − [5.5.52]

It is important for the moment to maintain a distinction between gA in the original for-
mulation, a composition-independent quantity, and áÂ in eq. [5.5.52], a composition-de-
pendent quantity. Eq. [5.5.52] combines the composition dependence of three entities into a
single grouping, áÂγ, which is probably an oversimplification, but it at least generates the
correct values at the limits of x2 = 0 and x2 = 1; and it avoids the unmanageable algebraic
complexity that would result from a detailed specification of the composition dependence
of the three entities separately. Eq. [5.5.14] now is written ∆Ggen med = áÂγand development
as before yields eq. [5.5.53] as the counterpart to eq. [5.5.23], where δMgAγ = g2A2γ2 -
g1A1γ1.

( ) ( )δ
δ γ δ γ

M

M M
G

gA kT K K x x gA kT K K K K x
∆ soln

* =
− + −/ ln ln2 1 1 1 2 1 2 1 2 2

2

1

2

1 1 2 1 2 2

2x K x x K K x+ +
[5.5.53]

Comparison of eqs. [5.5.23] and [5.5.53] gives eq. [5.5.54], which constitutes a specifica-
tion of the meaning of gA in the original formulation in terms of the modified theory.

( )gA g A g Aγ γ γ γ2 1 2 2 2 1 1 1− = − [5.5.54]

Now, the right-hand side of eq. [5.5.54] is a constant for given solute and solvent system, so
the left-hand side is a constant. This shows why gA in the original theory (eq. [5.5.23]), is a
composition-independent parameter of the system. Of course, in the derivation of eq.
[5.5.23] gA had been assumed constant, and in effect this assumption led to any composi-
tion dependence of gA being absorbed into γ. In the modified formulation we acknowledge
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that the composition dependence of the product áÂγ is being accounted for without claim-
ing that we can independently assign composition dependencies to the separate factors in
the product.

5.5.4.3 Interpretation of parameter estimates

Eq. [5.5.54] constitutes the basis for the resolution of the logical problem, described earlier,
in which different cosolvents, with a given solute, yield different gA values, although gA
had been assumed to be independent of composition. As eq. [5.5.54] shows, gA is deter-
mined by a difference of two fixed quantities, thus guaranteeing its composition independ-
ence, and at the same time permitting gA to vary with cosolvent identity.

Eq. [5.5.53] is therefore conceptually sounder and physically more detailed than is eq.
[5.5.23]. Eq. [5.5.53] shows, however, that in the absence of independent additional infor-
mation (that is, information beyond that available from the solubility study alone) it is not
possible to dissect the quantity (g2γ2A2 - g1γ1A1) into its separate terms. In some cases such
additional information may be available, and here we discuss the example of naphthalene
solubility in mixed aqueous-organic binary mixtures. Table 5.5.8 lists the values of
gA(γ2-γ1) obtained by applying eq. [5.5.23] to solubility data in numerous mixed solvent
systems.8 In an independent calculation, the solubility of naphthalene in water was written
as eq. [5.5.55],

( )∆ ∆G x G g Acrystsoln

*

2 1 1 10= = + γ [5.5.55]

which is equivalent to eq. [5.5.4]. ∆Gcryst was estimated by conventional thermodynamic ar-
guments and ∆Gsolv was omitted as negligible,24 yielding the estimate g1A1γ1 = 4.64 x 10-20 J
molecule-1. With eq. [5.5.54] estimates of g2A2γ2 could then be calculated, and these are
listed in Table 5.5.8.

Table 5.5.8. Parameter estimates and derived quantities for naphthalene solubility in
water-cosolvent mixtures at 25oCa

Cosolvent γ2, erg cm
-2

10
20

gA(γ2-γ1), J molecule
-1

10
20

g2A2γ2, J molecule
-1

Methanol 22.4 -3.11 +1.53

Ethanol 21.8 -2.70 1.94

Isopropanol 20.8 -2.19 2.45

Propylene glycol 37.1 -2.46 2.18

Ethylene glycol 48.1 -2.24 2.22

Acetone 22.9 -3.37 1.27

Dimethylsulfoxide 42.9 -3.67 0.97

aData from ref. (8); γ1 = 71.8 erg cm-2, g1A1γ1 = 4.64 x 10-20 J molecule-1.

Observe that g1A1γ1 and g2A2γ2 are positive quantities, as expected; gA(γ2-γ1) is nega-
tive because of the surface tension difference. It is tempting to divide each of these quanti-
ties by its surface tension factor in order to obtain estimates of gA, g1A1, and g2A2, but this
procedure may be unsound, as proposed subsequently.
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5.5.4.4 Confounding effects

Solute-solute interactions

It is very commonly observed, in these mixed solvent systems, that the equilibrium solubil-
ity rises well above the dilute solution condition over some portion of the x2 range. Thus so-
lution phase solute-solute interactions must make a contribution to ∆Gsoln

* . To some extent
these may be eliminated in the subtraction according to eq. [5.5.22], but this operation can-
not be relied upon to overcome this problem. Parameter estimates may therefore be contam-
inated by this effect. On the other hand, Khossravi25 has analyzed solubility data for
biphenyl in methanol-water mixtures by applying eq. [5.5.23] over varying ranges of x2; he
found that gA(γ2-γ1) was not markedly sensitive to the maximum value of x2 chosen to de-
fine the data set. In this system the solubility varies widely, from x3 = 7.1 x 10-7 (3.9 x 10-5

M) at x2 = 0 to x3 = 0.018 (0.43 M) at x2 = 1.

Coupling of general medium and solvation effects

In this theory the general medium and solvation effects are coupled through the solvation
exchange constants K1 and K2, which determine the composition of the solvation shell sur-
rounding the solute, and thereby influence the surface tension in the solvation shell. But the
situation is actually more complicated than this, for if surface tension-composition data are
fitted to eq. [5.5.26] the resulting equilibrium constants are not numerically the same as the
solvation constants K1 and K2 evaluated from a solubility study in the same mixed solvent.
Labeling the surface tension-derived constants ′K1 and ′K 2, it is usually found that ′K1>K1

and ′K 2>K2. The result is that a number attached to γat some x2 value as a consequence of a
nonlinear regression analysis according to eq. [5.5.23] will be determined by K1 and K2, and
this number will be different from the actual value of surface tension, which is described by

′K1 and ′K 2. But of course the actual value of γ is driving the general medium effect, so the
discrepancy will be absorbed into gA. The actual surface tension (controlled by ′K1 and ′K 2)
is smaller (except when x2 = 0 and x2 = 1) than that calculated with K1 and K2. Thus gapparent =
gtrue x γ( ′K1, ′K 2)/γ(K1,K2). This effect will be superimposed on the curvature correction factor
that g represents, as well as the direct coupling effect of solvation mentioned above.

The cavity surface area

In solubility studies of some substituted biphenyls, it was found (see 5.5.3.1) that gA evalu-
ated via eq. [5.5.23] was linearly correlated with the nonpolar surface area of the solutes
rather than with their total surface area; the correlation equation was gA = 0.37 Anonpolar. It
was concluded that the A in the parameter gA is the nonpolar surface area of the solute. This
conclusion, however, was based on the assumption that g is fixed. But the correlation equa-
tion can also be written gA = 0.37 FnonpolarAtotal, where Fnonpolar = Anonpolar/Atotal is the fraction of
solute surface area that is nonpolar. Suppose it is admitted that g may depend upon the sol-
ute (more particularly, it may depend upon the solute’s polarity); then the correlation is con-
sistent with the identities A = Atotal and g = 0.37 Fnonpolar.

Thus differences in gA may arise from differences in solute polarity, acting through g.
But A may itself change, rather obviously as a result of solute size, but also as a conse-
quence of change of solvent, for the solvent size and geometry will affect the shape and size
of the cavity that houses the solute.
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The role of interfacial tension

In all the preceding discussion of terms having the gAγform, γhas been interpreted as a sur-
face tension, the factor g serving to correct for the molecular-scale curvature effect. But a
surface tension is measured at the macroscopic air-liquid interface, and in the solution case
we are actually interested in the tension at a molecular scale solute-solvent interface. This
may be more closely related to an interfacial tension than to a surface tension. As a conse-
quence, if we attempt to find (say) g2A2 by dividing g2A2γ2 by γ2, we may be dividing by the
wrong number.

To estimate numbers approximating to interfacial tensions between a dissolved solute
molecule and a solvent is conjectural, but some general observations may be helpful. Let γX

and γY be surface tensions (vs. air) of pure solvents X and Y, and γXY the interfacial tension at
the X-Y interface. Then in general,

γ γ γXY X Y XY YXW W= + − − [5.5.56]

where WXY is the energy of interaction (per unit area) of X acting on Y and WYX is the energy
of Y acting on X. When dispersion forces alone are contributing to the interactions, this
equation becomes26

( )γ γ γ γ γXY X Y X

d

Y

d= + −2
1 2/

[5.5.57]

where γX
d and γY

d are the dispersion force components of γX and γY. In consequence, γXY is al-
ways smaller than the larger of the two surface tensions, and it may be smaller than either of
them.

Referring now to Table 5.5.8, if we innocently convert g2A2γ2 values to estimates of
g2A2 by dividing by γ2, we find a range in g2A2 from 23 Å2 molecule-1 (for
dimethylsulfoxide) to 118 Å2 molecule-1 (for isopropanol). But if the preceding argument is
correct, in dividing by γ2 we were dividing by the wrong value. Taking benzene (γ= 28 erg
cm-2) as a model of supercooled liquid naphthalene, we might anticipate that those
cosolvents in Table 5.5.8 whose γ2 values are greater than this number will have interfacial
tensions smaller than γ2, hence should yield g2A2 estimates larger than those calculated with
γ2, and vice versa. Thus, the considerable variability observed in g2A2 will be reduced.

On the basis of the preceding arguments it is recommended that gAγ terms (exempli-
fied by g1A1γ1, g2A2γ2, and gA(γ2-γ1)) should not be factored into gA quantities through divi-
sion by γ, the surface tension, (except perhaps to confirm that magnitudes are roughly as
expected). This conclusion arises directly from the interfacial tension considerations.

Finally let us consider the possibility of negative gA values in eq. [5.5.23]. Eq.
[5.5.54] shows that a negative gA is indeed a formal possibility, but how can it arise in prac-
tice? We take the water-ethanol-sucrose system as an example; gA was reported to be nega-
tive for this system. Water is solvent 1 and ethanol is solvent 2. This system is unusual
because of the very high polarity of the solute. At the molecular level, the solute in contact
with these solvents is reasonably regarded as supercooled liquid sucrose, whose surface ten-
sion is unknown, but might be modeled by that of glycerol (γ= 63.4 erg cm-2). In these very
polar systems capable of hydrogen-bonding eq. [5.5.57] is not applicable, but we can antici-
pate that the sucrose-water interaction energies (the WXY and WXY terms in eq. [5.5.56] are
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greater than sucrose-ethanol energies. We may expect that the sucrose-water interfacial
tension is very low.

Now, gA turned out to be negative because gA(γ2-γ1), a positive quantity as generated
by eq. [5.5.23], was divided by (γ2-γ1), a difference of surface tensions that is negative. Inev-
itably gA was found to be negative. The interfacial tension argument, however, leads to the
conclusion that division should have been by the difference in interfacial tensions. We have
seen that the interfacial tension between sucrose and water may be unusually low. Thus the
factor (γ2-γ1), when replaced by a difference of interfacial tensions, namely [γ(sucrose/etha-
nol) - γ(sucrose/water)], is of uncertain magnitude and sign. We therefore do not know the
sign of gA; we only know that the quantity we label gA(γ2-γ1) is positive. This real example
demonstrates the soundness of the advice that products of the form gAγnot be separated into
their factors.27,28

5.5.5 NOTES AND REFERENCES

1 D. Khossravi and K.A. Connors, J. Pharm. Sci., 81, 371 (1992).
2 R.R. Pfeiffer, K.S. Yang, and M.A. Tucker, J. Pharm. Sci., 59, 1809 (1970).
3 J.B. Bogardus, J. Pharm. Sci., 72, 837 (1983).
4 P.L. Gould, J.R. Howard, and G.A. Oldershaw, Int. J. Pharm., 51, 195 (1989).
5 Also, when K1 = 1 and K2 = 1, eq. [5.5.13] shows that ∆Gsolv = ∆GWW; in this special case the solvation

energy is composition-independent.
6 H.H. Uhlig, J. Phys. Chem., 41, 1215 (1937).
7 J.E. Leffler and E. Grunwald, Rates and Equilibria of Organic Reactions, J. Wiley & Sons, New York,

1963, p. 22.
8 J.M. LePree, M.J. Mulski, and K.A. Connors, J. Chem. Soc., Perkin Trans. 2, 1491 (1994).
9 The curvature correction factor g is dimensionless, as are the solvation constants K1 and K2. The parameter

gA is expressed in Å2 molecule-1 by giving the surface tension the units J Å-2 (where 1 erg cm-2 = 1 x 10-23 J
Å-2).

10 D. Khossravi and K.A. Connors, J. Pharm. Sci., 82, 817 (1993).
11 J.M. LePree, Ph.D. Dissertation, University of Wisconsin-Madison, 1995, p. 29.
12 A. Leo, C. Hansch, and D. Elkins, Chem. Revs., 71, 525 (1971).
13 C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, VCH, Weinheim, 1988.
14 D. Khossravi and K.A. Connors, J. Solution Chem., 22, 321 (1993).
15 K.A. Connors and J.L. Wright, Anal. Chem., 61, 194 (1989).
16 K.A. Connors, Binding Constants, Wiley-Interscience, New York, 1987, pp. 51, 78.
17 R.D. Skwierczynski and K.A. Connors, J. Chem. Soc., Perkin Trans. 2, 467 (1994).
18 K.A. Connors and D. Khossravi, J. Solution Chem., 22, 677 (1993).
19 M.J. Mulski and K.A. Connors, Supramol, Chem., 4, 271 (1995).
20 K.A. Connors, M.J. Mulski, and A. Paulson, J. Org. Chem., 57, 1794 (1992).
21 J.M. LePree and K.A. Connors, J. Pharm. Sci., 85, 560 (1996).
22 M.C. Brown, J.M. LePree, and K.A. Connors, Int. J. Chem. Kinetics, 28, 791 (1996).
23 J.M. LePree and M.E. Cancino, J. Chromatogr. A, 829, 41 (1998).
24 The validity of this approximation can be assessed. The free energy of hydration of benzene is given as -0.77

kJ mol-1 (E. Grunwald, Thermodynamics of Molecular Species, Wiley-Interscience, New York, 1997,
p. 290). Doubling this to -1.5 kJ mol-1 because of the greater surface area of naphthalene and repeating the
calculation gives g1A1γ1 = 4.88 x 10-20 J molecule-1, not sufficiently different from the value given in the text
to change any conclusions.

25 D. Khossravi, Ph.D. Dissertation, University of Wisconsin-Madison, 1992, p. 141.
26 F.M. Fowkes, Chemistry and Physics of Interfaces; American Chemical Society: Washington, D.C., 1965,

Chap. 1.
27 The introduction of the interfacial tension into the cavity term was first done by Yalkowsky et al.,28 who also

argue that a separate solute-solvent interaction term is unneeded, as the solute-solvent interaction is already
embodied in the interfacial tension. In our theory we explicitly show the coupling between the solute-solvent
and solvent-solvent interactions (eq. [5.5.19]), but this is in addition to the solute-solvent interaction (eq.
[5.5.13]). This difference between the two theories is a subtle issue that requires clarification.

28 S.H. Yalkowsky, G.L. Amidon, G. Zografi, and G.L. Flynn, J. Pharm. Sci., 64, 48 (1975).

5.5 The phenomenological theory of solvent effects 303


