
11

Electronic and Electrical

Effects of Solvents

11.1 THEORETICAL TREATMENT OF SOLVENT EFFECTS ON
ELECTRONIC AND VIBRATIONAL SPECTRA OF COMPOUNDS
IN CONDENSED MEDIA

Mati Karelson

Department of Chemistry, University of Tartu, Tartu, Estonia

11.1.1 INTRODUCTION

The electronic-vibrational spectra of molecules can be substantially influenced by the sur-
rounding condensed medium. The resultant effects arise from a variety of intermolecular in-
teractions between the chromophoric solute and the solvent molecules in such media.
Experimentally, these effects can be observed as

• the shifts of the spectral maxima (solvatochromic shifts)
• the change in the intensity of the spectral line or band
• the change of the shape and width of the spectral band

Each of those, so-called solvent effects can be described theoretically using different model
approaches.

The solvatochromic spectral shifts are expected to arise from the difference in the sol-
vation of the ground and the excited states of the molecule. As a result of the spectroscopic
excitation, the charge distribution of the molecule changes and thus the interaction will be
different in the ground state and in the excited state of the molecule. The direction and size
of the respective spectral shift depends directly on the difference in the solvation energy of
the molecule in those two states. The larger solvation energy of the ground state (S0), as
compared to that of the excited state (S1), results in the negative solvatochromic shift (blue
shift) of the spectral maximum (cf. Figure 11.1.1a). Alternatively, the stronger solvation of
the excited state, as compared to the solvation of the ground state, leads to the decrease of
the excitation energy and is reflected by the positive solvatochromic shift (red shift) in the
spectrum of the compound (Figure 11.1.1b).

In each case, the direction and the size of the shift depends on the nature and electronic
structure of the ground and excited state. For example, in the
case of the n *→ π transition in acetone (Scheme 11.1.1) an
electron from the n-orbital (lone pair) is transferred to the
antibonding π* orbital localized on the C=O double bond. InScheme 11.1.1.



the ground state, the acetone molecule has a
significant dipole moment (2.7 D) arising
from the polarity of the C=O bond. Because
of the difference in the electronegativity of
bonded atoms, the electron distribution is
shifted towards the oxygen that could be
characterized by a negative partial charge
on this atom. However, in the excited state
the electron cloud is shifted from the oxy-
gen atom to the bond and, correspondingly,
the dipole moment of the molecule is sub-
stantially reduced. In result, the interaction
of the dipole of the solute (acetone) with the
surrounding medium in more polar solvents
is larger in the ground state as compared to
the excited state (Figure 11.1.2).

Thus, the energy of the ground state is lowered more by the electrostatic solvation than
the energy of the excited state. Consequently, the excitation energy increases and the re-
spective spectral maximum is shifted towards the blue end of spectrum (negative
solvatochromic shift). In the hydrogen-bonding solvents, the ground state of acetone is ad-
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Figure 11.1.1. The origin of two types of solvatochromic shifts in the spectra of chromophoric compounds.

Figure 11.1.2. The schematic representation of the
change of the solvation energy of the ground (S0) and ex-
cited state (S1) of acetone moving from a non-polar sol-
vent (1) to a polar non-hydrogen bonded solvent (2) to a
polar hydrogen-bonded solvent (3).



ditionally stabilized by the hydrogen bonding of the oxygen lone pair by the solvent that
leads to further increase of the excitation energy (Figure 11.1.2) and the respective blue shift
of the spectral maximum. Notably, the formation of this hydrogen bonding is impossible in
the S1(nπ*) excited state of the acetone because of the electron transfer from the oxygen lone
pair to the antibonding π* orbital.

In many cases, the dipole moment increases in
the excited state. For instance, in the nitrobenzene
(Scheme 11.1.2) the π π→ * transition leads to the
substantial redistribution of the electronic charge re-

flected by the shift of negative charge on the
nitro-group. The real excited state is given
by a combination of the La and Lb states.
Nevertheless, the dipole moment of
nitrobenzene is substantially increased in
the first excited state (S1). Because of the
substantial charge redistribution in such ex-
cited states, they are often called the
charge-transfer (CT) states. The much
larger dipole of the nitrobenzene in the
S1(ππ∗ )state is additionally stabilized by a
more polar solvents that leads to the de-
crease in the excitation energy (Figure 3)
and to the corresponding solvatochromic
red shift of the spectral maximum.

In Table 11.1.1, the solvatochromic
shifts characterizing various positively and
negatively solvatochromic compounds are
listed. In most cases, the theoretical treat-
ment of the solvatochromic shifts has been

based on the calculation of the solvation energies of the chromophoric molecule in the
ground and excited states, respectively.

Table 11.1.1. The solvatochromic shifts for various positively and negatively
solvatochromic compounds

Compound νmax (non-polar solvent), cm
-1 νmax (polar solvent), cm

-1 ∆νmax, cm
-1

Ref.

(Scheme 3) 30000 (hexane) 25760 (CF3CH2OH) +4240 (a)

(Scheme 4) 30170 (hexane) 26140 (water) +4030 (b)

(Scheme 5) 20640 (hexane) 16860 (water) +3780 (c)

(Scheme 6) 22620 (hexane) 19920 (DMSO) +2700 (d)

(Scheme 7) 20730 (hexane) 18410 (methanol) +2320 (e)

(Scheme 8) 27400 (cyclohexane) 23230 (water) +4170 (f)

(Scheme 9) 43370 (isooctane) 41220 (water) +2150 (g)

(Scheme 10) 14600 (toluene) 24100 (water) -9500 (h)

11.1 Theoretical treatment of solvent effects 641

Scheme 11.1.2.

Figure 11.1.3. The relative energies of the ground (S0)
and the first excited state (S1(ππ*)) of nitrobenzene in
non-polar (1) and polar (2) solvents.



Compound νmax (non-polar solvent), cm
-1 νmax (polar solvent), cm

-1 ∆νmax, cm
-1

Ref.

(Scheme 11) 15480 (tetrahydrofuran) 24450 (water) -8970 (i)

(Scheme 12) 20410 (chloroform) 22080 (water) -1670 (j)

(Scheme 13) 20160 (chloroform) 22370 (water) -2210 (j)

(Scheme 14) 16080 (chloroform) 22170 (water) -6090 (k)

(Scheme 15) 35870 (CCl4) 37735 (CF3CH2OH) -1865 (l)

(Scheme 16) 16390 (pyridine) 21280 (water) -4890 (m)

(Scheme 17) 19560 (chloroform) 22060 (water) -2500 (n)

(a) S. Spange, D. Keutel, Liebig’s Ann. Chim., 423 (1992).
(b) S. Dähne, F. Shob, K.-D. Nolte, R. Radeglia, Ukr. Khim. Zh., 41, 1170 (1975).
(c) J.F. Deye, T.A. Berger, A.G. Anderson, Anal. Chem., 62, 615 (1990).
(d) D.-M. Shin, K.S. Schanze, D.G. Whitten, J. Am. Chem. Soc., 111, 8494 (1989).
(e) E. Buncel, S. Rajagopal, J. Org. Chem., 54, 798 (1989).
(f) M.J. Kamlet, E.G. Kayser, J.W. Eastes, W.H. Gilligan, J. Am. Chem. Soc., 95, 5210 (1973).
(g) E.M. Kosower, J. Am. Chem. Soc., 80, 3261 (1958).
(h) L.S.G. Brooker, A.C. Craig, D.W. Heseltine, P.W. Jenkins, L.L. Lincoln, J. Am. Chem. Soc., 87, 2443

(1965).
(i) M.A. Kessler, O.S. Wolfbeis, Chem. Phys. Liquids, 50, 51 (1989).
(j) H. Ephardt, P. Fromherz, J. Phys. Chem., 97, 4540 (1993).
(k) H.W. Gibson, F.C. Bailey, Tetrahedron, 30, 2043 (1974).
(l) G.E. Bennett, K.P. Johnston, J. Phys. Chem., 98, 441 (1994).
(m) N.S. Bayliss, E.G. McRae, J. Am. Chem. Soc., 74, 5803 (1952).
(n) E.M. Kosower, B.G. Ramsay, J. Am. Chem. Soc., 81, 856 (1959).
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The solvent-induced broadening of the spectral lines and bands arises primarily from
the variation of the local environment of the chromophoric solute molecule in the con-
densed medium caused by the thermal motion of the surrounding solvent molecules. At any
given instant of time, there is a distribution of differently solvated solute molecules, each of
which has characteristic transition energy to the excited state. The respective distribution of
the transition energies leads to the broadening of the spectral band. It has to be kept in mind,
however, that the broadening of spectral lines and bands can be also originated from adjoin-
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ing the rotational and vibrational energy levels in the polyatomic molecule or from the
Doppler and natural broadening of spectral lines. Those are more significant in the case of
atoms and small molecules. The theoretical assessment of the solvent-induced spectral
broadening has thus to rely on a proper statistical treatment of the solvent distribution
around the chromophoric solute molecule, both in the ground and in the excited state of the
latter.

The surrounding solvent can also influence the intensity of the spectral transition (ab-
sorption or emission). The intensity of the spectral transition is usually characterized by the
oscillator strength f defined as follows

f
m

he
=


 




8

3 2

2π ν
| |M [11.1.1]

where m and e are the electron mass and the electron charge, respectively, h is the Planck’s
constant, M is the transition moment and ν is the mean absorption wavenumber. Following
the last equation, the intensity of the spectrum is proportionally related to transition energy,
provided that the transition moment M is independent of the surrounding medium (solvent).
This may, however, be not the case. The definition of the transition moment1

M r

i

=∑ ψ ψ0 1q i i

* [11.1.2]

includes, apart from the charges (qi) and their position-vectors (ri) in the molecule, the wave
function of the molecule in the ground state (ψ0) and in the excited state (ψ1

*), respectively.
Therefore, whenever the solvent affects the wavefunction of the molecule either in the
ground state or in the excited state, the intensity of spectral transition is further influenced
by the change of the respective transition moment.

The analysis of the solvatochromic effects on molecular absorption and emission (flu-
orescence and phosphorescence) spectra is
further complicated by the variation of time
scales for the solvent relaxation after the
spectral excitation of the solute molecule.
The spectral transition is a very fast process
that takes place within approximately 10-16

s. Thus, during this short period of time the
atomic nuclei do not practically move. The
excited state reached by the respective ver-
tical transition is often called the
Franck-Condon state (Figure 11.1.4).

The lifetime of the fluorescent excited
state may be long enough (10-7 - 10-9 s) to al-
low in addition to the intramolecular nu-
clear relaxation (10-12 s), also the solvent
orientational relaxation. The latter, which is
characterized by the relaxation times rang-
ing from 10-10 s up to infinity (in the case of
solids) may bring up the additional, sol-
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Figure 11.1.4. The Franck-Condon transitions during the
excitation and the de-excitation of the molecule.



vent-induced stabilization of the relaxed excited state as compared to the Franck-Condon
state. Thus, as a rule, the solvatochromic shifts in the absorption and fluorescence spectra
are not equal.

The theoretical treatment of the time-dependent effects on molecular spectra in con-
densed phases is extremely complicated.2 In most cases, it is assumed that only the elec-
tronic polarization of the solvent contributes to the solvation energy of the Franck-Condon
state (S1 in the case of absorption and S0 in the case of emission). In the case of long-living
states, i.e., the ground state and the relaxed excited state, a full relaxation of the solvent is as-
sumed in the field of the solute molecule. The solvation energy of different states at differ-
ent degrees of relaxation will thus be rather different that may result in rather different
dependence of the absorption and emission transition energies on the polarity of the solvent.
Some examples of solvatofluorochromical compounds are given in Table 11.1.2.

Table 11.1.2. The solvatofluorochromic shifts for various positively and negatively
solvatochromic compounds

Compound νmax (non-polar solvent), cm
-1 νmax (polar solvent), cm

-1 ∆νmax, cm
-1

Ref.

(Scheme 18) 24400 (hexane) 16500 (water) +7900 (a)

(Scheme 19) 21980 (cyclohexane) 18210 (water) +3770 (b)

(Scheme 20) ~20000 (cyclohexane) ~17000 (CH3CN) +3000 (c)

(Scheme 21) 23530 (pentane) 22730 (water) +800 (d)

(Scheme 22) 24150 (hexane) 21850 (methanol) +2300 (e)

(a) I.A. Zhmyreva, V.V. Zelinskii, V.P. Kolobkov, N.D. Krasnitskaya, Dokl. Akad. Nauk SSSR, Ser. Khim.,
129, 1089 (1959).

(b) M. Maroncelli, G.R. Fleming, J. Chem. Phys., 86, 6221 (1987).
(c) A. Safarzadeh-Amini, M. Thompson, U.J. Krall, J. Photochem. Photobiol., Part A., 49, 151 (1989).
(d) M.S.A. Abdel-Mottaleb, F.M. El-Zawawi, M.S. Antonious, M.M. Abo-Aly, M. El-Feky, J. Photochem.

Photobiol., Part A., 46, 99 (1989).
(e) J. Catalán, C. Díaz, V. López, P. Pérez, J. Phys. Chem., 100, 18392 (1996).
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All theoretical treatments of solvatochromic shifts proceed from modelling the
solvational interactions in the liquids and solutions. Theoretically, the interaction potential
between a solute molecule and the surrounding solvent molecules Φ is given by the follow-
ing integral

( ) ( )Φ =
∞

∫C R g R R dRϕ
0

2 [11.1.3]

where ϕ (R) and g(R) are the pair interaction potential between the solute and the solvent
molecule and the solvent radial distribution function around the solute molecule, respec-
tively, and C is a constant depending on the density of the system. The integration in the last
formula is carried out over the distance between the solute and the solvent molecule, R. The
equation [11.1.3] is derived proceeding from the assumption that the intermolecular forces
in the condensed medium are additive. This assumption may be, however, violated because
of possible three- and many-body interactions between the molecules in the solution. For
most of the real systems, the application of Eq. [11.1.3] directly is rather impractical be-
cause of the low precision of ϕ (R) and g(R), particularly in the case of many-atomic mole-
cules. Moreover, this equation will be strictly valid only for the solute-solvent systems in
thermodynamic equilibrium and thus not applicable for the Franck-Condon states. Thus, al-
most all theoretical calculations of solvatochromic effects proceed from different physical
models describing the intermolecular interactions in liquids and solutions.

Traditionally, the solvation energy of a molecule Esolv in a given solvent can be divided
into the following terms3

E E E E Esolv cav disp elst H bond= + + + − [11.1.4]

each of which corresponds to a certain type of intermolecular interaction in the condensed
media. Thus, Ecav denotes the energy of the cavity formation for the solute in the solvent,
Edisp is the dispersion energy and Eelst the electrostatic energy of the interaction of the solute
with the surrounding solvent molecules. The term EH-bond accounts for the energy of the hy-
drogen bond formation between the solute and solvent molecules. The value of each of the
above terms will change as a result of the Franck-Condon excitation of the solute molecule.
First, the size of the molecule increases, as a rule, during the excitation. However, as the ex-
citation process is practically instantaneous, the position and orientation of the solvent mol-
ecules in the solvation sheath of the chromophoric solute will not change. This means that
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the average distance between the surface of the solute and the solvent molecules will de-
crease in the Franck-Condon excited state of the former that normally causes the enhanced
solute-solvent repulsion in that state. At the same time, the dispersion energy that stabilizes
the solute-solvent system will also increase in the absolute value, but to the opposite direc-
tion. In consequence, both effects may cancel each other and the net effect will be close to
zero. For the polar solutes, both in the ground and in the excited state, the electrostatic solva-
tion energy is therefore often considered as the most important term in Eq. [11.1.4].

During the excitation or de-excitation of the molecule, the molecular electronic
wavefunction and the electron distribution may change significantly. In result, substantial
differences are expected in the electrostatic and dispersion solvation energies of the ground
and the excited state, respectively. In addition, the hydrogen bonding between the solute
and solvent molecules may be affected by the excitation of the solute molecule that will be
reflected as another contribution to the difference in the solvation energy of solute in the
ground and in the excited state, respectively. In the following, we proceed with the system-
atic presentation of the theoretical methods developed for the description of the
solvatochromic effects on molecular electronic and vibrational spectra in condensed disor-
dered media (liquids, solutions, glasses etc.).

11.1.2 THEORETICAL TREATMENT OF SOLVENT CAVITY EFFECTS ON
ELECTRONIC-VIBRATIONAL SPECTRA OF MOLECULES

As described above, the change (increase) in the size of the molecule during the excitation
will result in increased van-der-Waals repulsion between the electron clouds of the
chromophoric solute and the solvent molecules. Alternatively, the size of the molecule is
expected to shrink as a result of the de-excitation of the molecule back to the ground state. In
such case, the repulsion between the solute and solvent molecules will be reduced corre-
spondingly. The respective energetic effect may be modeled as the difference in the cavity
formation energies for the solute molecule in two states. The dependence of the cavity for-
mation energy on the cavity size has been derived using several different model concepts.

The simplest approach is based on the concept of microscopic surface tension on the
boundary between the solute cavity and the solvent. Within this approach, the free energy of
cavity formation is assumed simply proportional to the surface of the solute cavity, SM:

∆G Scav M= σ [11.1.5]

where σ is the surface tension of the solvent. This formula has been applied for the evalua-
tion of the free energy of transfer of electroneutral solutes between different solvents.4 It has
been extended to account for the size of the solvent molecule as follows:

( )∆G S RT V ncav M s s= − −σ ln 1 [11.1.6]

where VS is the intrinsic volume of a solvent molecule and nS is the number density of the
solvent. In order to account for the chemical individuality of constituent atoms, it has been
suggested to use different surface tension values σ i for different atomic types in the solute
molecule.5 Thus,

∆G C Acav i i

i

= + ∑ σ [11.1.7]
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where Ai are the solvent-accessible surface areas of different atoms in the solute molecule
and C is an empirically adjustable parameter. The quality of the description of experimental
data has been, however, not significantly improved by the introduction of individual atomic
surface tension characteristics.

Another theoretical approach for the calculation of the free energy of cavity formation
proceeds from the theory of microscopic curved surfaces. According to this theory,6

∆G k
V

V
Scav s

g S

M

=








 σ [11.1.8]

where S is the area of the cavity and k (V / V )s
g

S M is a correction factor, characteristic of a
given solvent and depending on the ratio of molecular volumes of the solvent and solute.
This factor has been approximated by the following formula
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[11.1.9]

where k (1s
g ) is estimated from the solubility of a given solute in a given solvent. The main

deficiency of this approach is connected with the introduction of additional empirical infor-
mation, often not readily available.

The free energy of cavity formation has been also estimated from the data on isother-
mal compressibility, βT, as follows7

∆G
V

Ccav
cav

T

= +
β

[11.1.10]

where Vcav is the volume of the cavity and C is a constant term. However, the microscopic
isothermal compressibility of water, calculated from the slope of Eq. [11.1.10], was found
to be about an order higher than the respective experimental value for water (βT(calc) = 23.5
vs.βT(exp) = 3.14). Therefore, the use of the macroscopic surface tension or compressibility
of the solvent for the respective microscopic model quantities is questionable.

An entropic approach to the calculation of the free energy of cavity formation pro-
ceeds from the scaled particle theory (SPT).8,9 The free energy of the formation of a spheri-
cal cavity in a solvent, ∆Gcav, can be calculated proceeding within the framework of SPT as
follows
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[11.1.11]

where

y
as=

4

3

2πρ
[11.1.12]
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is the reduced number density of the solvent. In the two last equations, aM and aS denote the
intrinsic radii of the solute and solvent molecules, respectively, and ρ is the number density
of the solvent. In the case of an ellipsoidal solute cavity, the SPT cavity formation energy
has been given by the following equation10
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y
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[11.1.13]

where α β, and γdenote the geometrical coefficients and a is the characteristic length of the
ellipsoid (the major semi-axis). The scaled particle theory has been extended to dilute solu-
tions of arbitrary shaped solutes and has been successfully applied for the calculation of the
solvation free energy of hydrocarbons in aqueous solutions.11

For most practical applications that involve the lowest excited states of the molecules,
the increase in the cavity size during the excitation of the solute molecule would not be ac-
companied with a significant energetic effect. However, it may be important to account for
the so-called Pauli repulsion between the solute electronic system and the surrounding me-
dium. This interaction will force the solute electrons to stay inside the cavity and not to pen-
etrate into the dielectric continuum (consisted of electrons, too) that surrounds it. The Pauli
repulsion has been modeled by the respective model potentials, e.g., by expanding the po-
tential in spherical Gaussian shells as follows:12

( )[ ]V b r rPR i i o i

i

= − −∑ exp ,β 2
[11.1.14]

where bi are the weight factors,βi the exponents and r0,i the radii of spherical shell functions.
In general, the electrons in the solvent cavity could be treated as confined many-electron
systems.13

11.1.3 THEORETICAL TREATMENT OF SOLVENT ELECTROSTATIC
POLARIZATION ON ELECTRONIC-VIBRATIONAL SPECTRA OF
MOLECULES

The origin of the solvatochromic shifts in the electronic spectra is related to the change in
the electrostatic and dispersion forces between the solvent and the chromophoric solute
molecule in the ground and in the excited state, respectively. The semiclassical approach to
the treatment of the respective effects is based on the assumption that the solute and the sol-
vent molecules are sufficiently separated to neglect the overlap between the electron distri-
bution of these two molecular systems. The wave function for the whole system can then be
approximated as the product of the wavefunctions of each individual system, i.e., the solute
and individual solvent molecules:

Ψ = ψ ψ ψ ψ ν
s s s n a( ) ( ) ( )

( )

1

0

2

0 0
L [11.1.15]

where ψ ψ ψs( s(2) s(n)
0

1
0 0

) , ,L , etc. are the wavefunctions of the respective solvent molecules in
the ground state and ψ ν

a
( ) is the wavefunction of the solute molecule in the ν-th state. The

antisymmetry of the total electronic wavefunction is ignored as the individual molecules are
assumed separated enough not to allow the electron exchange. This approximation may not
be valid in the case of strong semichemical interactions between the solute and the solvent
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molecules such as the hydrogen bonding or the formation of charge-transfer complexes. In
such cases, the system consisting of the central solute molecule and the adjacent solvent
molecules has to be treated as a supermolecule.

In the absence of strong semichemical interactions between the solute and solvent
molecules, the interaction energy between them can be derived using the perturbation the-
ory.14 In the first approximation, the interaction between the nonionic molecules can be re-
duced to the dipole-dipole interaction between the molecules. The following perturbation
operator can describe this interaction

$
$ $ $

( )

( )′ =∑H
µ µα

v

ai s i

aii R

Θ
3

[11.1.16]

where $
( )µ α
ν and $µ s(i) are the dipole moment operators for the solute a in the ν-th state and for

the i-th solvent molecule in the ground state, respectively, Rai is the distance between the
charge centroids of the interacting molecules and

$ $Θai ai aiR R= −
→ →

1 3 [11.1.17]

is the angular term describing the relative orientation of these two molecules in the space.
The subsequent application of the perturbation theory to derive the energy of interaction be-
tween a pair of a solute and a set of N solvent molecules gives the following result15
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with the following notations:

µ ψ µ ψν ν ν
a a a a

( ) ( ) ( )
$= [11.1.19]

is the dipole moment of the solute in the ν-th state,

µ ψ µ ψ
s i s i s s i( ) ( ) ( )

$= 0 0 [11.1.20]

is the dipole moment of the i-th solvent molecule in the ground state,

α
ψ µ ψ ψ µ ψ

ν

ν λ λ ν

ν λλ ν
a

a a a a a a

E E

( )

( ) ( ) ( ) ( )
$ $

=
−≠

∑2 [11.1.21]

is the polarizability tensor of the solute molecule in the ν-th state,
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[11.1.22]

is the polarizability tensor of the solvent molecule in the ground state, respectively, and

µ ψ µ ψ
s i

p

s i a s i

p

( )

( )

( ) ( )

( )
$

0 0= [11.1.23]

and

µ ψ µ ψλν λ ν
a a a a

( ) ( ) ( )
$= [11.1.24]

are the transition dipoles between the two states (0 → p) in the solvent and in the solute
(λ ν)→ molecules, respectively. In the last formulae, Eν and Eλ denote the energy of the sol-
ute molecule in the respective (ν-th and λ-th) states, and Eps and E0s - the energy of a solvent
molecule in the p-th and in the ground state, respectively. The first term in equation
[11.1.18] represents therefore the electrostatic interaction of the unperturbed charge distri-
bution of the two molecules, given as the interaction between the respective permanent
point dipoles. The second term in this equation corresponds to the interaction of the perma-
nent dipole of the solute with the dipole induced in the solvent whereas the third term re-
flects the interaction of the permanent dipole of the solvent with the induced dipole of the
solute. The last term represents the second-order interaction of both molecules in excited
states and quantifies thus effectively the dispersion interaction in the solute-solvent system.

The equation [11.1.18] refers, of course, to a single fixed configuration of the solute
and the solvent molecules. In order to find the effective interaction energy in the liquid me-
dium, an appropriate statistical averaging over all configurations has to be carried out. In
most practical applications, this procedure is very complicated and thus the semiclassical
continuum approaches are employed to describe the solvent. The description of the electro-
static interactions between the solute and the solvent has been based on the Onsager’s reac-
tion field model. According to this model, the energy of electrostatic interaction between an
arbitrary charge distribution inside the solute molecule and the surrounding polarizable di-
electric medium is given by the following equation16

( )E dVel

V

= −∫
1

8
1

π
εE E

s o
[11.1.25]

where Eo is the electrostatic field of the charges in the molecule in vacuo and Es is the modi-
fied field in the presence of dielectric medium. Notably, within the formalism of the last
[11.1.25], the dielectric constant εof the medium is still a function of the space coordinates,
i.e., both the interior of the molecule and the surrounding medium are treated by the same
equation. However, the integral in the last equation cannot be found analytically and even
the numerical integration over the space presents a difficult mathematical task. Therefore,
the electrostatic equation is usually simplified by the application of the Gauss divergence
theorem. According to this theorem, the volume integral in [11.1.25] is transformed into a
surface integral over some boundary
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E E dSel S o

S

= −
∫

ε
π
1

8
Φ

r
n [11.1.26]

where S is the boundary surface,
r
n the outward normal unit vector on S and the reaction po-

tential Φs is defined as follows: Es = -grad ΦS. Depending on the shape of solute molecular
cavity, different approaches have been applied for the calculation of the electrostatic solva-
tion energies of compounds in liquids. Within the classical reaction field theory of
Kirkwood and Onsager,17,18 the solute molecule is represented by a set of point charges fixed
inside of sphere of a radius a 0 and the electrostatic equation [11.1.26] is solved by applying
the appropriate boundary conditions inside and outside the sphere. It is also assumed that
the dielectric constant inside the cavity (sphere) is equal to unity (vacuum) and outside the
cavity has a constant value, corresponding to the macroscopic dielectric constant of the me-
dium studied. In that case, the energy of the electrostatic interaction between the solute
charge distribution and the surrounding dielectric medium is given by the following infinite
expansion

( )( )
( ) ( )E

l

l a
Pel i j

i

l

j

l

l l ij

l

=
+ −

+ +








 +

=

1

2

1 1

1 1
0

2 1
e e

r rε
ε

θcos
0

∞

∑∑
i j,

[11.1.27]

where ei and ej are the charges inside the sphere at positions ri and rj, respectively, and θij is
the angle at the center of the sphere between the vectors ri and rj. In the last equation, the
summation proceeds over all charged particles (nuclei and electrons) of the solute and
P1(cosθij) are the Legendre polynomials of l-th order. By expressing the Legendre polyno-
mials as the products of the respective spherical harmonics of order m (-l ≤m ≤ l), equation
[11.1.27] can be rewritten as

E el l

m

l

m

m

l

l

= −
=−=

∞

∑∑1

2 10

R M [11.1.28]

where

R Ml

m

l l

mf= [11.1.29]

and

( )( )
( )

f
l

l a
l l

=
+ −
+ + +

1 1

1 1

1

0

2 1

ε
ε

[11.1.30]

In these equations, Ml
m and R l

m represent the electrical momentum and the respective
reaction field component. The first term (l = 0) in the expansion [11.1.27] gives the interac-
tion of the excess (ionic) charge of the solute with the respective reaction field created in the
dielectric medium (Born term)

E
Q

a
Born = −1

2

2

0

ε
ε

[11.1.31]
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where Q is the numerical value of the ionic charge. The next term (l = 0) corresponds to the
total dipole interaction with the corresponding reaction field (Onsager dipolar term)

E
a

Onsager = −
+

( )

( )

1

2 1

2

0

3

ε
ε

µr
[11.1.32]

where
rµ is the dipole moment of the solute. In most applications, only these two terms that

are the largest by size are considered in the calculation of the electrostatic interaction en-
ergy. However, depending on system studied, the interaction of higher electrical moments
with the corresponding reaction field may become also significant and the terms corre-
sponding to higher moments of order 2l (quadruple, octuple, hexadecuple, etc.) should be
taken into account.

In many cases, the shape of the solute molecule may be very different from the sphere
and therefore, it is necessary to develop the methods of calculation of the electrostatic solva-
tion energy for more complex cavities. In the case of the ellipsoidal cavity with main
semiaxes a, b, and c, the analytical formulas are still available for the calculation of the
charge and dipolar terms of the electrostatic interaction with the reaction field. The charge
term is simply

E
Q

Born

ell = −( )1

2

2ε
ε abc

[11.1.33]

whereas in the respective dipolar term19

EOnsager

ell = R
rµ [11.1.34]

the reaction field R is presented using a special tensor as follows
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abc
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[11.1.35]

where Aa, Ab and Ac are the standard ellipsoidal shape factor integrals, and µa, µb and µc are
the dipole moment components along the main semiaxes of the ellipsoid. Several methods
have been developed to define the semiaxes of the ellipsoidal cavity. For instance, these
have been taken collinear with the axes of the solute dipole polarizability tensor, and their
lengths proportional to the respective eigenvalues.20 Another definition proceeds from the
inertia tensor of the van-der-Waals solid, i.e., a solid or uniform density composed of inter-
locking van-der-Waals spheres.21 Also, the ellipsoidal surface has been defined in terms of
the best fitting of a given molecular electrostatic isopotential surface.22

The above-discussed theoretical formulation of the electrostatic solute-solvent inter-
action is applicable for the fixed charge distribution inside the solute molecule. However,
the solvent reaction field may cause a redistribution of the charge inside the solute. The
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magnitude of this redistribution depends on both the dielectric constant of the solvent and
the polarizability of the solute molecule. Within the approximations of the spherical solute
cavity and the point dipole interactions between the solute and solvent, the dynamically
changed Onsager reaction field can be expressed by the following formula14

( )
( )

R
R

l

a a l

a
=

+ −
+

µ α ε
ε

ν ν( ) ( )

0

3

2 1

2 1
[11.1.36]

Notably, the use of the macroscopic dielectric constant ε = ε0 in the last formula is jus-
tified only when the lifetime of the solute molecule in a given (ν-th) state is much longer
than the rotational-vibrational relaxation time of the solvent at given temperature. This is
not a valid assumption in the case of the Franck-Condon states, which have the lifetime
much shorter than the rotational-vibrational relaxation time of the solvent. Therefore, the
solvent is only partially relaxed for these states and the corresponding reaction field is char-
acterized by the dielectric constant at infinite frequency of external electric field, ε∞ . By in-
serting the expression for the reaction field [11.1.36] into the equation [11.1.18] and
assuming that the static polarizability of the solute molecule is approximately equal to the
one third of the cube of Onsager’s cavity radius

α ν
a

a( ) ≈ 0

3

3
[11.1.37]

the following semiclassical equation can be obtained for the solvation energy of the ν-th
(Franck-Condon) state of the solute molecule14
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The solvatochromic shift due to the difference in the electrostatic solvation energy of
the ground state and the excited state of the solute, respectively, is thus given as follows:
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The last expression represents the solvent effect on the transition energy of the 0-0 band of
the solute molecule.

McRae15,23 has given a different derivation of the electrostatic solvation energy based
on semiclassical reaction field approach. The final result is however similar to the above
equation for the solvatochromic shift in the electronic transition:15
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where Ea
0 and Ea

( )ν are the solvent fields due to the permanent dipole moments of the solvent
molecules applying to the ground state and to the excited state of the solute molecule, re-
spectively. The terms Da

0 and Da
( )ν denote the solute-solvent intermolecular dispersion ener-

gies in the corresponding states.
Abe24 has developed an alternative semiclassical theory of the solvent effects on elec-

tronic spectra. This theory is based on the averaging of the intermolecular interaction en-
ergy over all solute-solvent configurations within the approximation of pair interactions.
The theory involves the dipole moments and polarizabilities of the solute molecule and
takes into account the temperature dependence arising from the Boltzmann factor.

In all above-listed theoretical approaches, the response of the solute charge distribu-
tion to the solvent field is expressed by using the static polarizability of the solute molecule.
However, it would be plausible to account for this response directly within the quantum me-
chanical theoretical framework. The quantum-chemical approaches to the calculation of the
solvation effects on the ground and excited states of the molecules in the solution can be
classified using two possible ways. First, it can be based on the traditional division of the
quantum chemistry into the non-empirical (ab initio) and the semiempirical methods.
Within both those classes of methods, the Hartree-Fock method based on the independent
particle model and the methods accounting for the static and dynamic electron correlation
are usually distinguished. The second way of classification of methods can be based on the
differences of the models used for the description of solute-solvent interactions. In general,
these interactions can be taken into account in the framework of continuum representation
of the solvent or using the resolution of solute-solvent interactions at molecular level. In the
following, we first proceed with the review of models used for the solute-solvent interac-
tions, with the subsequent elaboration of the quantum-chemical methodology for the calcu-
lation of the solvent effects on spectra.

The simplest continuum model is based on the classical Onsager reaction field theory
assuming the spherical or ellipsoidal form of cavities for the solute molecules in dielectric
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media. The respective interaction energy is accounted for as a perturbation $ , )V (a 0 ε of the
Hamiltonian of the isolated solute molecule, $H

0 .

( )$ $ $ ,H H V= +0

0a ε [11.1.41]

Within the approximation of electrostatic interaction between the solute dipole and the re-
spective reaction field, the perturbation term is simply

( )$ , $V a a0 ε µ 2= Γ [11.1.42]

where

( )
( )

Γ =
−

+

2 1

2 1 0

3

ε

ε a
[11.1.43]

In the case of ellipsoidal cavities, the last coefficient has to be substituted by the tensor
given in equation [11.1.35].

A self-consistent reaction field method (SCRF) has been developed at the level of
Hartree-Fock theory to solve the respective Schrödinger equation25

$HΨ Ψ=E [11.1.44]

Proceeding from the classical expression for the electrostatic solvation energy of a sol-
ute molecule in a dielectric medium in the dipole-dipole interaction approximation, the total
energy of the solute is presented as follows26

( )E Eo

nuc nuc= − + +1

2
2 2Γ ψ µ ψ ψ µ ψ µ ψ µ ψ µ$ $ $

r r
[11.1.45]

where Eo = <ψ|H
∧

0|ψ>, H
∧

0 is the Hamiltonian for the reaction field unperturbed solute mole-
cule and ψ is the molecular electronic wave function. From the last equation, one can con-
struct the variational functional

( ) ( )L E Wo

nuc nuc= − + + − −1

2
2 12Γ ψ µ ψ ψ µ ψ µ ψ µ ψ µ ψ ψ$ $ $ |

r r
[11.1.46]

where W is the Lagrange multiplier ensuring the normalization of the variational wave
function. The variation of the last equation with respect to the parameters of the wave func-
tion yields

( ) ( )δ δ δψ µ ψ ψ µ ψ µ ψ µ ψ δ ψ ψL E Wo

nuc= − + −Γ $ $ $ |
r

= − − + =δψ ψ δψ µ ψ µ δψ ψ$ $ | . .H0 0Γ
r

tot W c c [11.1.47]

where $ $µ µtot nuc= +<ψ |
rµ el |ψ > is the total dipole moment of the solute molecule. The latter

is calculated during the SCRF procedure simultaneously with the total energy of the system.
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From equation [11.1.47], the following Schrödinger equation is obtained for the electronic
state |ψ > of the solute molecule

$ $ $ |H0 − =Γ ψµ ψ µ ψtot el W [11.1.48]

W plays the role of the quantum mechanical motif that is directly obtained from the
Schrödinger equation as follows

W tot el tot el= − = −ψ ψ µ ψ µ ψ ψ ψ ψ µ ψ ψ µ ψ$ $ $ $ $ $H H0 0Γ Γ [11.1.49]

By adding the part for the interaction of the nuclear component of the solute dipole with the
total reaction field and assuming

ψ ψ ψ ψ$ $H H0 0 0 0≈ [11.1.50]

where ψ 0 is the wavefunction of the solute molecule, unperturbed by the reaction field, one
obtains that

( )E E Eel rf el nuc tot= − = − + − ≈ −0

0
2

0 0 0 2

ψ ψ ψµ ψ µ ψ ψ µ$ $ $H HΓ Γ
r r

[11.1.51]

The comparison of the last equation with the starting equation [11.1.44] reveals a dif-
ference by the factor of two in the final result. Of course, the approximation [11.1.50] brings
up a certain error and it has been therefore proposed25,27 to correct the last formula by the ad-
dition of the “solvent cost”, i.e., the additional work required to reorganize the solvent due
to the electrostatic field of the solute

E E Eel rf tot= − +0

21

2
Γ rµ [11.1.52]

Alternatively, the electrostatic solvation energy can be derived proceeding from the follow-
ing variational functional27

( ) ( )L E Wnuc nuc= − + + − −0 21

4
2 1Γ ψ µ ψ ψ µ ψ µ ψ µ ψ µ ψ ψ$ $ $ |

r r
[11.1.53]

This leads to a Schrödinger equation which eigenvalue is directly related to the total
electrostatic (dipolar) solvation energy, Eel,

$ $ $ | |
( )

H0 1

2
−


 


 =Γ ψµ ψ µ ψ ψtot el el

e
E [11.1.54]

E E Eel rf

e

nuc tot= − −( ) 1

2
0Γ r rµ µ [11.1.55]
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For the solution of equation [11.1.54], the molecular wavefunction can be presented as a
proper spin-projected antisymmetrized product of molecular (or atomic) orbitals27

|ψ§ = [ ]O As nφ φ1, ,L [11.1.56]

Recalling that the dipole moment operator is a one-electron operator (as are all electric mo-
ment operators), the following orbital equations are obtained

( ) ( ) ( )f k k ki i iφ ε φ= [11.1.57]

with

( ) ( ) ( )f fk k ktot el= −0 Γ ψµ ψ µ$ $ [11.1.58]

or

( ) ( ) ( )f fk k ktot el= −0

1

2
Γ ψµ ψ µ$ $ [11.1.59]

where f0(k) is the usual Fock operator for the isolated molecule, ε i is the molecular orbital
energy for |φi> and $µ el(k) is the electronic part of the dipole moment operator. Both equa-
tions are solved iteratively, using the usual SCF procedure and the expectation value of the
total dipole moment from the previous SCF cycle.

A scheme for the treatment of the solvent effects on the electronic absorption spectra
in solution had been proposed in the framework of the electrostatic SCRF model and quan-
tum chemical configuration interaction (CI) method.27 Within this approach, the absorption
of the light by chromophoric molecules was considered as an instantaneous process. There-
fore, during the photon absorption no change in the solvent orientational polarization was
expected. Only the electronic polarization of solvent would respond to the changed electron
density of the solute molecule in its excited (Franck-Condon) state. Consequently, the sol-
vent orientation for the excited state remains the same as it was for the ground state, the sol-
vent electronic polarization, however, must reflect the excited state dipole and other electric
moments of the molecule. Considering the SCRF Hamiltonian

$ $ $ $H H= +0 Γ φµ φ µtot [11.1.60]

it is possible to write for the state |ψI ¦ the following expression

HII I I I I I I= + = −ψ ψ µ ψ µ ψ ψ ψ ψ µ ψ ψ µ ψ$ $ $ $ $ $H H0 0

0 0Γ Γ [11.1.61]

that is the zeroth order estimate of the energy of the state |ψI ¦. Then, for a single excitation,
I A→ , the excitation energy is given as follows
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where Jia and Kia are the respective Coulomb’ and exchange matrix elements and Γ is the re-
action field tensor at the dipole level. The terms ε i

0 are the eigenvalues of the Fock operator
for the k-th electron in the isolated solute molecule. The off-diagonal CI matrix elements are
given by

HIJ I J I J I J= + = −ψ ψ µ ψ µ ψ ψ ψ ψ µ ψ ψ µ ψ$ $ $ $ $ $H H0 0

0 0Γ Γ [11.1.63]

Equations [11.1.60] - [11.1.63] demonstrate that some part of the solvent effect is al-
ready included in the ordinary CI treatment when proceeding from the SCRF Fock matrix. It
has to be noticed that the terms ¢ψ 0 | $µ|ψ 0 ¦ should represent the ground-state dipole moment
after CI, and therefore, an iterative procedure would be required to obtain a proper solution.
However, at the CIS (CI single excitations) level, commonly used for the spectroscopic cal-
culations, this is no concern because of Brillouin’s theorem, which implies that the CI does
not change the dipole moment of the molecule. Even at higher levels of excitation in CI, this
effect should not be large and might be estimated from the respective perturbation opera-
tor.27

There are two approaches to address the instantaneous electronic polarization of the
solvent during the excitation of the solute molecule. In the first case, the following correc-
tion term has to be added to the CI excitation energy

( )∆ ΓE I I I I I= −



∞

1

2
0 0

2

ε ψ µ ψ ψ µ ψ ψ µ ψ$ $ $ [11.1.64]

where Γ ( )ε∞ is the reaction field tensor for the optical relative dielectric permittivity of the
solvent, ε∞ . In the last equation, the first term removes the incorrect term arising from the
SCRF orbitals and energies in forming the CI matrix whereas the second term adds the re-
sponse of the electronic polarization of the solvent to the dipole of the excited state. Equa-
tion [11.1.64] is first order in electron relaxation. Higher orders can be examined by
defining the perturbation

( )[ ]
X

I I I( )
$ $

=
−

∞λ ε
ψ µ ψ ψ µ ψ

Γ
0 0

2
[11.1.65]

which is clearly different for each excited state and would, if pursued, lead to a set of excited
states that were nonorthogonal. In principle, these corrections need not to be small.

Depending on the Fock operator used (equation [11.1.58] or [11.1.59]), the excitation
energy from the ground state |ψ 0 ¦ to the excited state |ψI ¦ of a solute molecule in a dielectric
medium is given as follows

[ ]W WI

A A

I I I I− = − + − −0 0 0 0 0 0

1

2
ψ ψ ψ ψ ψ µ ψ ψ µ ψ ψ µ ψ0

$ $ $ $ $H H Γ
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( ) [ ]− −∞
1

2
0 0Γ ε ψ µ ψ ψ µ ψ ψ µ ψI I I I

$ $ $ [11.1.66]

in the first case, and

( ) [ ]W WI

B B

I I I I I− = − − −∞0 0 0 0 0

1

2
ψ ψ ψ ψ ε ψ µ ψ ψ µ ψ ψ µ ψΙ

$ $ $ $ $H H Γ [11.1.67]

in the second case. The last two equations are first order in electron polarization of the sol-
vent.

The second approach to the calculation of spectra in solutions is based on the assump-
tion that the ground and excited states are intimately coupled in an instantaneous absorption
process.28,29 In this model, the solute ground state electron distribution responds to the elec-
tron distribution in the excited state through the instantaneous polarization of the solvent. In
such a case, the energy of the absorbing (ground) state is shifted by the following amount

( ) ( )1

2

1

2

1

2
0 0 0 0 0 0 0Γ Γε ψ µ ψ ψ µ ψ ε ψ µ ψ ψ µ ψ ψ µ ψ0∞ ∞− − −





$ $ $ $ $
I i  [11.1.68]

In the last equation, the first term removes the first order in the electron polarization
part of the dielectric relaxation included in the SCRF of the ground state, and the second
term adds back the appropriate interaction of the ground state with the “mean” reaction
field, created by the excited state, |ψI ¦ . This leads to the following equation for the excita-
tion energy

[ ]W WI

A A

I I I I− = − + − +0 0 0 0 0 0

1

2
ψ ψ ψ ψ ψ µ ψ ψ µ ψ ψ µ ψ0

$ $ $ $ $H H Γ

( ) [ ]− −∞
1

4
0 0

2

Γ ε ψ µ ψ ψ µ ψ ψ µ ψI I I I
$ $ $ [11.1.69]

for the Fock operator [11.1.58] and

( )[ ]W WI

B B

I I I I− = − + −∞0 0 0 0 0

21

4
ψ ψ ψ ψ ε ψ µ ψ ψ µ ψ$ $ $ $H H Γ [11.1.70]

for the Fock operator [11.1.59]. However, it should be noticed that all four equations for
spectral transition energies [[11.1.66], [11.1.67], [11.1.69] and [11.1.70]] yield very similar
results when π π→ * and n → π* transition solvatochromic shifts have been compared be-
tween the nonpolar and polar solvents.27 In Table 11.1.3, the results of the INDO/S
(ZINDO)30,31 SCRF CIS calculated spectroscopic transition energies are given for some
solvatochromic dyes. The relative shifts due to the solvent are reproduced theoretically in
most cases. Even the absolute values of the spectroscopic transition energies are in satisfac-
tory agreement with the respective experimental values, which demonstrates the applicabil-
ity of the spectroscopic INDO/S parameterization for the spectra in solutions.
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Table 11.1.3. INDO/S SCRF CI calculated and experimental spectroscopic transition
energies of some dyes in different solvents27

Molecule Solvent νcalc, cm
-1 νexp, cm

-1

(Scheme 23)
Gas phase
Cyclohexane
Water

29,700
26,300
22,500

-
27,400
23,300

(Scheme 24)
Gas phase
n-Hexane
Water

36,900
34,800
31,100

-
30,200
26,100

(Scheme 25)
Gas phase
Chloroform
Water

20,200
21,800
24,600

-
19,600
22,100

The INDO/S SCRF CI method has been also successfully applied for the prediction of
the solvatochromic shifts in various nitro-substituted porphyrins.32

The SCRF methodology has been employed also for the prediction of the
solvatochromic shifts on emission spectra.33,34 A satisfactory agreement was obtained be-
tween the calculated and experimental fluorescence energies of
p-N,N-dimethylaminobenzonitrile in different solvents. Finally, the solvent-induced shifts
in the vibrational spectra of molecules have been also calculated using the SCRF theory.35

The SCRF approach has been also implemented for the treatment of solute-continuum
solvent systems at the ab initio Hartree-Fock level of theory.36,37 In addition, a general SCRF
(GSCRF) approach has been proposed to account for the interaction of the solvent reaction
field with the arbitrary charge distribution of the solute molecule. According to this the-
ory,38,39 the effective Hamiltonian of the solute in the solvent has the following form

( ) ( ) ( ) ( ) $ $H H r r r r r,r rs s s m sd V d G= + + ′ ′ ′∫∫0 0Ω Ω [11.1.71]

where Ω s ( )r is the solute charge density operator given by

( ) ( ) ( )Ωs i a a

ai

Zr r r r R= − − + −∑∑ δ δ [11.1.72]
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where ri stands for the i-th electron position vector operator, Ra is the position vector of the
a-th nucleus with the charge Za in the solute and δ(r) is the Dirac’s delta function. The first
term in square brackets in Eq. [11.1.71], Vm

0 ( )r , represents the electrostatic potential created
by the solvent in the absence of the solute and the second, integral term corresponds to the
reaction potential response function of the polarizable solvent. Together these terms pro-
duce the reaction field potential applying to the solvent molecule in the polarizable dielec-
tric medium. Notably, a principal part of the Hamiltonian [11.1.71] is the solute charge
density that can be represented using different approximations of which the multipolar ex-
pansion has been mostly applied. By using the distributed multipole model, it is possible to
obtain the GSCRF equations for the molecules of a complex shape. However, it has been
mentioned that the use of multipole expansions of the solvent electrostatic and reaction po-
tentials in Eq. [11.1.71] may cause this Hamiltonian to become unbound and special damp-
ing procedures have been invented to overcome this difficulty.

The GSCRF total energy of the solute is given by the following equation

( ) ( ) ( ) ( ) ( )E d V d d GGSCRF s m s s= + + ′ ′ ′∫ ∫ ∫ψ ψ ψ ψ ψ ψ$ ,H r r r r r r r r r0 0 1

2
Ω Ω Ω [11.1.73]

This energy expression can be used to build up the respective variational functional to get
the molecular orbitals [above]. A crucial step in the general self-consistent reaction field
procedure is the estimation of the solvent charge density needed to obtain the response func-
tion G(r,r') and the reaction potential. The use of Monte Carlo or molecular dynamics simu-
lations of the system consisting the solute and surrounding solvent molecules has been
proposed to find the respective solvent static and polarization densities.

Several methods have been developed to account for the solute cavities of arbitrary
shape in the solution. The polarizable continuum model (PCM) is based on the numerical
integration of the relevant electrostatic equations describing the electrostatic interaction be-
tween the molecular charge distribution and the charge created on the boundary surface be-
tween the solute molecule and surrounding dielectric continuum.40-45 Within this method,
the solute cavity is usually constructed from the overlapping van der Waals spheres of con-
stituent atoms in the solute molecule and the solvent reaction field arising from the solute
charge distribution is calculated numerically. Alternatively, the cavity can be defined as
constructed from the electron isodensity surface around the solute molecule (IPCM).46 Ac-
cording to the classical electrostatics, the electrostatic potential at any point in the space can
be described in terms of the apparent charge distribution, σ, on the cavity surface. It consists
of two terms

Φ Φ Φs M= + σ [11.1.74]

the first of which (ΦM) corresponds to the electrostatic potential created by the charge distri-
bution of the solute and the second (Φσ) is due to the reaction potential by the solvent. The
latter is directly connected with the apparent charge distribution on the surface of the cavity
as follows:

( ) ( )
Φ

Σ
σ

σ
r

s

r s
s=

−∫ d 2 [11.1.75]
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where Σ is the cavity surface and s vector defines a point on Σ. The Σ surface is usually di-
vided into appropriate number of triangular small areas (tesserea), each of which has an area
∆Sk and contains the charge qk in some internal point sk. Thus, according to this, so-called
boundary element method, the reaction potential is found as the following sum over all
tesserea

( )Φσ r
r s

=
−∑ q k

kk

[11.1.76]

with

( )q Sk k k= ∆ σ s [11.1.77]

In the application of the boundary element method, it is crucial to select appropriate
boundary surface for the solute cavity and to proceed as accurate as possible tessellation
(triangulation) of this surface. For instance, it has been proposed that in the case of the cav-
ity formation from overlapping van-der-Waals spheres, the atomic van-der-Waals radii
should be multiplied by a coefficient equal to 1.2. Other possibilities of the surface defini-
tion include the closed envelope obtained by rolling a spherical probe of adequate diameter
on the van-der-Waals surface of the solute molecule and the surface obtained from the posi-
tions of the center of such spherical probe around the solute.

Within the quantum-mechanical theory, the PCM model proceeds from the following
Schrödinger equation for a solute molecule in the dielectric continuum

( )$ $H0 + =V EPCM Ψ Ψ [11.1.78]

where the reaction field potential is given by equation [11.1.76] as follows

$V
q

PCM

k

kk

=
−∑

r s
[11.1.79]

The charges on the boundary are found from the electrostatic polarization of the di-
electric medium on the surface of the cavity due to the potential derived from the charge dis-
tribution of the solute and from other (induced) charges on the surface. The induced surface
charge is evaluated iteratively at each step of the SCF procedure to solve the Schrödinger
equation [11.1.78]. It has been reported that a simultaneous iteration of the surface charge
with the Fock procedure reduces substantially the computation time without the loss in the
precision of calculations.

Also, it has been shown that the expressions which determine the charges qk may be
given as a set of linear equations. In the matrix form42

Dq E0 f

in= [11.1.80]

where D is a square nonsymmetric and nondiagonal matrix with the dimension equal to the
number of surface elements, derived from the curvature of the surface and q0f is a column
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vector, containing the unknown surface charges. Ein is also a column vector collecting the
effective components of the solute electric field multiplied by the surface elements

( )E Sin k k M in k k, ,

0 = − ∇∆ Φ
r

s n [11.1.81]

The D matrix depends only on the shape of the cavity and the dielectric constant of the
medium. Therefore, when the system of linear equations [11.1.80] has to be solved several
times with different Ein, as in the case of the polarizable solute, it may be convenient to work
with the single inversion matrix D-1.

The PCM model has been implemented for the calculation of the electronic excitation
energies of solvated molecules within the quantum-mechanical configuration interaction
method.47,48 The respective final expression for the excitation energy from the ground state
(0) to the I-th state has the following form

( ) ( )[ ]
( )

∆ ∆W EI

CI

I

I I

I

( ) ( )0 0

20 0 0 0 0

2 0

1

2
1

2

= − − + − +

+ − +∞

J P P P T P P

J P P P ( )[ ]I IT P P∞ − 0

[11.1.82]

where PI and P0 are the electronic density matrices of the solute in the excited state and in
the ground state, respectively,

( ) ( ) ( )[ ]∆E E ECI

I

I I I I

( )0

0 0 0 0 0 10 20 0

1

2
2= − + − + − + −P P T P P P J J P P [11.1.83]

are the diagonal elements of CI matrix, and

T W= −C Ct 1∂ $ [11.1.84]

J W MZ1

1= −C ∂ $ [11.1.85]

J Z M W2

1= −t t C∂ $ [11.1.86]

B Z M W MZ= −t t 1∂ $ [11.1.87]

In the last equations, C and ∂$Care the matrices representing the electrostatic potential
and the electric field generated from the electron distribution in the solute molecule, respec-
tively. The matrices M and ∂ $Mare the matrices representing the electrostatic potential and
the electric field generated from the nuclear charges in the solute molecule, respectively.
The diagonal elements of the matrix W are defined as the following function of the dielec-
tric constant of the solvent

Wii = +
−

ε
ε

1

1
[11.1.88]

The subscripts 0 and ∞ in the J1, J2, and T matrices in equation [11.1.82] correspond to
the static and optical dielectric constant of the solvent. Equation [11.1.82] can be considered
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as an analog of equation [11.1.66] for the case of arbitrary cavity shape. The PCM-CI
method has been applied for the calculation of solvatochromic shifts in the spectrum
4-[(4’-hydroxyphenyl)azo]-N-methylpyridine in a variety of solvents.48

An integral equation formalism (IEF) has been developed as particularly suitable for
the description of solvent effects on spectral transition energies within the PCM model.49

The respective theoretical equations have been applied for the calculation of
solvatochromic shifts of several carbonyl-group containing molecules at the self-consistent
field (SCF), configuration interaction (CI) and multiconfiguration self-consistent (MC
SCF) field level of theory. The calculated spectral shifts accompanying the transfer of a
solvatochromic compound from the gas phase to water were comparable with the experi-
mental data. In Table 11.1.4, the results of calculations are presented for three carbonyl
compounds, formaldehyde, acetaldehyde and acetone.

Table 11.1.4. The calculated and experimental solvatochromic shifts (from the gas
phase to water) in the spectra of some carbonyl compounds (cm-1)49

Compound ∆SCF CI(SDT) CAS SCF Exp.

Formaldehyde 1889 839 944 1700-1900a

Acetaldehyde 1854 979 1049 1700-1900a

Acetone 2273 1574 1259 1539-1889

aan estimate from other compounds

The advantage of the PCM method is in that it is applicable to the solute cavity of prac-
tically any shape in the solution. However, it is not clear how precisely should the molecular
cavity be defined bearing in mind the classical (quasi-macroscopic) representation of the
solvent. It is difficult to perceive that the solvent, e.g., the water molecules, can produce the
electrical polarization corresponding to the statistically average distribution in the macro-
scopic liquid at infinitely small regions on the cavity surface. However, it is conceivable
that larger chemical groups in the molecules may possess their own reaction field created by
their charge distribution and the reaction fields of other groups in the solute molecule. A
multi-cavity self-consistent reaction field (MCa SCRF) has been proposed50 for the descrip-
tion of rotationally flexible molecules in condensed dielectric media. It proceeds from the
observation that the interaction of the charge and higher electrical moments of a charge dis-
tribution in a spherical cavity with the corresponding reaction fields localized in the center
of the cavity does not depend on the position of charge or (point) multipole centers in this
cavity. Therefore, it is possible to divide a rotationally flexible solute molecule or a hydro-
gen-bonded molecular complex between two or more spherical cavities that embed the
rotationally separated fragments of the solute or solute and solvent molecules, respectively.
Assuming the classical Born-Kirkwood-Onsager charge density expansion (Eq. 11.1.27)
for each of these fragments, the total energy of the solute in a dielectric medium can be ex-
pressed as a sum of terms that correspond to the energies arising from the interaction of the
partial charge and the electric moments of a given molecular fragment with the reaction
field of its own and the reaction fields of other fragments, as well as from the interaction be-
tween the reaction fields of different fragments. The Hartree-Fock-type equations derived
from the variational functional for the total energy E can then be solved iteratively using the
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SCRF procedure. The PCM approach has been further refined to account for the curvature
of surface elements.4 Also, this approach has been applied within different quantum-chemi-
cal frameworks.47

An alternative method for the description of solute-continuum electrostatic interaction
has been developed as based on the notion that the electrostatic equations referring to the
boundary surface between the solute and dielectric medium can be substantially simplified
if to assume that the solvent is a homogeneous ideally conducting medium. Within this
method (called the COSMO method), the electrostatic screening energy of a solute is given
by the following equation (in matrix form)51

∆E = − −1

2

1QBA BQ [11.1.89]

with the following matrix elements

b ik k i≈ − −
t r

1
[11.1.90]

for the point charges and

( ) ( )
b dik

ki

≈
−∈

∫
χ χµ ν

µ ν

r r

t r
r

,

3 [11.1.91]

for the continuous charge distribution, and

a k l a Skl k l kk k≈ − ≠ ≈− −
t t

1 1 2
38, , .

/
[11.1.92]

In the last equations, tk denotes the position vectors of the centers of small surface elements
k on the arbitrary cavity surface; ri are the position vectors of the point charges in the solute
molecule; r is the vector for electronic charge position described on the atomic basis
{χ µ ( )r } and Sk are the areas of the surface elements. In equation [11.1.82], Q is the matrix
of source charges in the solute.

The COSMO model has been extended to account for the solvents with any dielectric
constant.52-54 Within the respective GCOSMO method,53 the surface charges σ(r) on the
boundary between the solute and continuum solvent are first determined for the medium
with the infinite dielectric constant under the assumption that the electrostatic potential on
the surface S is zero. For a dielectric medium specified by the dielectric constant ε, the ac-
tual surface charges are then calculated by scaling the screening conductor surface charge
σ(r) by a factor of f(ε) = (ε - 1)/ε. This scaling preserves the validity of the Gauss theorem for
the total surface charge. The boundary element method is applied for the calculation of the
surface charge density, with the boundary divided into small areas and the surface charge
approximated as the point charge in the center of this area. The charges are calculated either
using the charge distribution in the molecule or by minimizing variationally of the total
electrostatic solvation energy. The total free energy of the system of solute and surface
charges is then calculated within the Hartree-Fock theory as
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( ) ( ) ( )E P H H G G ftot

s s= + + +





− ++ + −
µν µν µν µν µν ε0 0 11

2

1

2
Z B A BZ E Enn nes+ [11.1.93]

where Enn is solute nuclear-nuclear repulsion and Enes is the solvation energy related to the
dispersion and repulsion between the solute and solvent, and cavity formation; Hµν

0 and Gµν
0

are the one-electron and two-electron parts of the Fock matrix for the isolated solute, re-
spectively, and Pµν are the density matrix elements. The solvent perturbations to the corre-
sponding operators have been expressed as

( )H fs

µν µνε= − + + −Z B A BL1 [11.1.94]

and

( )G f Ps

µν λσ λσ
λ σ

µνε= − 

 


+ −∑ L A L

,

1 [11.1.95]

where A and B are the N x N square matrices (N - number of atomic nuclei in the solute mol-
ecule) with the elements defined by equations [11.1.90] and [11.1.92]. The matrices Lµν
consist of the one-electron integrals [11.1.91]. The first and second derivatives needed for
the calculation of the molecular potential surfaces and the respective solvent effects on vi-
brational spectra have been also supplied within the framework of GCOSMO approach.53 A
semi-quantitative agreement between the computational and experimental results has been
obtained for the vibrational frequencies of acetone in water.

Several approaches have been developed to account for the electron correlation effects
on the solvation energy of both the ground and the excited states of the molecule in the solu-
tion. A multiconfigurational self-consistent reaction field (MC SCRF) theory has been pro-
posed as based on the classical Onsager’s reaction field model.55 Notably, the higher order
electrical moments of the solute molecule and the respective reaction field in the solvent
were taken into account within this method. Thus, the dielectric solvation energy of a solute
in a given state embedded into a linear isotropic medium has been calculated as the product
of the expectation values for the reaction field ¢R l

m ¦ and the respective multipole charge mo-
ments ¢Ml

m ¦ of the solute55-58

E el l

m

l

m

l m

= −
+∑1

2
R M

,

[11.1.96]

where

( )M l

m

k l

m

k l

m

k

Z S R S= −∑ [11.1.97]

R Ml

m

l

mf= [11.1.98]

and
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( )( )
( )

f
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l a
l l

=
+ −
+ + − +

1 1

1 1

1
2 1

ε
ε ( )

[11.1.99]

( ) ( )S
l

Yl

m l

lmr r=
+







4

2 1

1 2π θ ϕ
/

, [11.1.100]

where Ylm(θ ϕ, ) are the Legendre’ polynomials.
Interestingly, it had been suggested that the dispersion interaction energy between the

solute and the solvent could be accounted for, in principle, in the framework of this ap-
proach as related to the full distribution of dielectric relaxation frequencies of the solvent.
Thus, the formula for the MC SCRF solvation energy has been expressed as follows

( )E f Tel l lm

l m

= − ∑1

2

2

,

[11.1.101]

with the terms Tlm obtained from the expectation values of the nuclear and electronic solvent
operators

T T Tlm lm

n

lm

e= − [11.1.102]

( )T Z Rlm

n

a

lm

a

a

=∑ R [11.1.103]

( )T Rlm

e lm= r [11.1.104]

where Rlm are the special solvent effect integrals.55

The solvent contributions have been developed also for the multiconfigurational en-
ergy gradient and Hessian, necessary for the solution of the MC SCRF equations. Notably,
the results of the model calculations on water molecule implied that the higher multipole
terms might play a significant role in the total electrostatic solvation energy of the molecule.
Thus, the quadrupole term consisted approximately 20% of the dipolar term whereas the
4-th order term was even more significant (~ 30% of the dipolar term). The MC SCRF
method has been applied for the calculation of the solvent effects on the spectral transitions
of water and formaldehyde in different media.59 The MC SCRF methodology has been fur-
ther refined in the framework of the response theory approach.60 This development de-
scribes the response of the solute or the solute-solvent complex to a time-independent or
time-dependent high-frequency perturbation such as the spectral excitation.

In order to take into account the electron correlation effects, another combination of
the self-consistent reaction field theory with the configuration interaction formalism has
been introduced as follows.61 Within this approach, the usual CI wavefunction has been
constructed as follows

ΨCI a a

a

N

C D=
=

∑
1

[11.1.105]
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where Ca are the CI expansion coefficients and Da are the basis functions (Slater determi-
nants or their linear combinations). In the case of orthogonal basis functions, the normaliza-
tion condition of the function ΨCI is given as

Ca

a

N
2

1

1=
=

∑ [11.1.106]

and the coefficients Ca are determined from the following equation

( )$ $H0 + =V Erf Ψ Ψ [11.1.107]

where $H
0 is the Hamiltonian for the molecule, unperturbed by the reaction field and $Vrf is

the reaction field perturbation. The latter can be presented, for example, in the framework of
the boundary element method as follows (cf. Eq. [11.1.75])

( )$V drf =
′

− ′∫ 2r
r

r r

σ
[11.1.108]

where σ( )′r is the charge density on the surface of the cavity.
For the spectroscopic applications, it would be again instructive to separate the

noninertial and inertial components of the electrostatic polarization of the dielectric me-
dium. The first of them corresponds to the electrostatic polarization of the electron charge
distribution in the solvent that is supposedly instantaneous as compared to any electronic or
conformational transition of the solute. The second component arises from the orientational
polarization of the solvent molecules in the electrostatic field of the solute. The noninertial
polarization can be described by the optical dielectric permittivity of the solvent that corre-
sponds to the infinite frequency of external electromagnetic field (ε∞ ≈ n D

2 ) whereas the in-
ertial polarization represents the slow, orientational part of the total dielectric constant of
the solvent, ε. In order to separate the noninertial polarization, it is helpful to determine the
solute charge density as the sum of the respective nuclear and electronic parts

( ) ( )ρ ρ ρ δ ρ= + = − + ′ =∑∑∑n e A A a b a b ab

a ba bA

Z C C ab C Cr r r r| ,
,,

[11.1.109]

where δ(r - rA) is the Dirac’s delta function and (ab|r,r') are the elements of the single-de-
terminant matrices of transitions between the configurations. Notably, the values of

( )ρ δ ρ ρab ab n ab= − ′| ,r r [11.1.110]

do not depend on the coefficients Ca and Cb. The noninertial component of the polarization
field, Φ∞ ( )r , is always in equilibrium and thus it can be represented as follows

( ) ( )Φ Φ∞
∞=∑r rC Ca b ab

a b

( )

,

[11.1.111]

where Φab
( ) ( )∞

r is the solution of equation [11.1.107] for the basic charge distribution ρab.
Since the latter does not depend on the coefficients Ca and Cb, the values of Φab

( ) ( )∞
r can be
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determined before the calculation of the wavefunction ΨCI [11.1.105]. The coefficients Ca

can be calculated, as usual, from the matrix equation

H|C¦ = E|C¦ [11.1.112]

where |C¦ denotes the column-vector of the coefficients and the elements of the matrix H are
given as follows61

H D D C C d dab a b a b ab ab ab

a b

= + +∞ ∫∫∑$ ( )

,

H r r0 3 3

0ρ ρΦ Φ [11.1.113]

where Φ0 is inertial (nuclear) part of the polarization field. For a given Φ0, the set of equa-
tions [11.1.98) can be solved iteratively. Implicitly, the last equations describe both the
electron subsystems of the solute and solvent, the latter being taken into account as the field
of noninertial (electron) polarization of the solvent, Φ( )∞ .

The electron correlation effects on the solvation energy of a solute have been also ac-
counted for within the framework of the perturbation theory.62,63 By starting from the
Hamiltonian of the solute molecule as follows

$ $H H= − ′
′0 M f Ml

m

l

m

l

mψ ψ [11.1.114]

where ψ denotes the exact (correlated) wavefunction, the Hartree-Fock operator may be
written as

F F= − ′
′0

0 0M f Ml

m

l

m

l

mψ ψ [11.1.115]

where ψ 0 denotes the electronic wavefunction at the Hartree-Fock level. The Hamiltonian
may be then written as a perturbed expression of the Hartree-Fock operator

( ) ( )$ $H F H F= + − + −′
′

′
′0 0

0 0M f M Ml

m

l

m

l

m

l

mψ ψ ψ ψ [11.1.116]

The perturbation has two contributions, the standard Møller-Plesset perturbation and
the non-linear perturbation due to the solute-solvent interaction. If Cj

(i) denotes the coeffi-
cient of the eigenstate |J¦ in the corrections of ψ to the i-th order, then the perturbation opera-
tors H(i) of the i-th order are given by the following formulae

$ $( )
H H F

1 0 0= − [11.1.117]
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The calculation is performed, as usual, by comparing the coefficients of the
Schrödinger equation to successive orders.

The first order energy is the same as given by the usual Møller-Plesset treatment,
< >0 00| $ |H and the first order electrostatic contribution to the free energy of solvation is
identical to the result obtained at the Hartree-Fock level of theory. The second order correc-
tion to the free energy is given as

∆G C M S M C C DM Ds S l

m

l

m

l

m

D D l

m( ) ( ) ( ) ( )2 2 1 12 0 0 0= + ′′
′

′
′

′ ′
′

f fl

m

l

m

DDS

M0 0
000

′
′

′≠≠≠
∑∑∑ [11.1.120]

where |S¦ stands for the singly excited states, and |D¦ and |D'¦ for a pair of doubly excited
states different by just one orbital. Without excessive difficulty, it is possible to derive the
correction terms to the electrostatic free energy of solvation of higher orders.

A many-body perturbation theory (MBPT) approach has been combined with the
polarizable continuum model (PCM) of the electrostatic solvation.64-66 The first approxima-
tion called by authors the perturbation theory at energy level (PTE) consists of the solution
of the PCM problem at the Hartree-Fock level to find the solvent reaction potential and the
wavefunction for the calculation of the MBPT correction to the energy. In the second ap-
proximation, called the perturbation theory at the density matrix level only (PTD), the cal-
culation of the reaction potential and electrostatic free energy is based on the MBPT
corrected wavefunction for the isolated molecule. At the next approximation (perturbation
theory at the energy and density matrix level, PTED), both the energy and the wave function
are solvent reaction field and MBPT corrected. The self-consistent reaction field model has
been also applied within the complete active space self-consistent field (CAS SCF)
theory12,67 and the complete active space second-order perturbation theory.12,67,68

Several groups69-73 have also proposed the quantum mechanical density functional the-
ory (DFT) based methods for the calculation of the electrostatic solvation energy in dielec-
tric media. However, the application of this theory for excited states is not
straightforward.74,75

11.1.4 THEORETICAL TREATMENT OF SOLVENT DISPERSION EFFECTS
ON ELECTRONIC-VIBRATIONAL SPECTRA OF MOLECULES

The dispersion interaction between two atomic or molecular systems can be theoretically
presented at different levels of theory.76-78 The modelling of the dispersion interactions in
condensed media is more complicated and proceeds either from the discrete molecular de-
scription of the liquid or from the continuum model. According to a contemporary classifi-
cation,4 the theoretical approaches to the dispersion effect in solutions can be divided into
following classes:

• pair-potential approaches
• reaction field based approaches
• cavity surface-dispersion energy relationship approaches
The pair-potential approach is based on the discrete representation of the pairs of sol-

vent and solute molecules or some fragments of them. The respective dispersion potentials
are expressed as truncated asymptotic expansions in powers of 1/r, the reciprocal of the dis-
tance between the interacting entities4

( )U disp d rms ms

k

ms

k

k

= −

=
∑
6 8 10, ,

[11.1.121]
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where the indexes m and s denote the structural entities (atoms, bonds, chemical groups) be-
longing to the solute and solvent molecules, respectively. The powers in expansion
[11.1.121] are based on the formal theory of two-body interactions. In the practical calcula-
tions, only the first term of the expansion (k = 6) is frequently applied. The expansion coef-
ficient d ms

(6) can be calculated using the London formula

d
I I

I I
ms m s

m s

m s

( )6 3

2
= −

+
α α [11.1.122]

where αm and αs are the isotropic polarizabilities for interacting systems and Im and Is are the
mean excitation energies of these systems. This approximate formula is, in principle, valid
only for interacting atoms. In the case of molecular systems, the atomic or group
polarizabilities and local excitation energies are, as a rule, not isotropic and require the use
of the respective tensor quantities. The absence of information about of accurate solute-sol-
vent atom-atom distribution functions in dense media complicates further the accurate treat-
ment of the dispersion interaction. These distribution functions can be calculated either
using the molecular dynamics or Monte Carlo computer simulations or from the experimen-
tal scattering data on the respective systems. However, almost all these methods give only
the averaged distribution functions and lack, therefore, the information about the local ani-
sotropy of the atom-atom distributions.

Similarly to the treatment of electrostatic effects, the dispersion potential can be lim-
ited to the dipole-dipole term and the mean excitation energies are approximated by the re-
spective ionization potentials for the solute and solvent molecules. Thus, when a small
cluster of solvent molecules surrounds the solute molecule, the first approximation of the
dispersion energy can be presented by the following formula:79
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B SM
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==
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6

11

T A T A [11.1.123]

where BM and BS are the number of bonds in the solute and in the solvent molecules, respec-
tively, Im and Is are the corresponding mean excitation energies, Tuv is the tensor

T
r r

uv
uv

uv

uv= ⊗ −3 1
r ruv

[11.1.124]

where ruv and ruv are the distance and the radius-vector between the bonds u and v, respec-
tively, and Au is the polarizability tensor for bond u. The factor x in equation [11.1.123] is
introduced to achieve the agreement between the molecule-molecule pair dispersion poten-
tial and a simpler expression derived on the basis of assumption that the dispersion energy
between two molecules may be reduced to the sum of independent atom-atom
contributions80

( )U disp d rMS ms ms

sm

= −∑∑ ( )6 6 [11.1.125]
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A scheme has been developed that reduces the spatial representation of the dispersion
interaction into a surface representation of this interaction.4 According to this approach, the
average dispersion-repulsion energy of a solute-solvent system has been written as follows:

( ) ( )E U g ddisp rep− = ∫∫L Ω Ω Ω [11.1.126]

where Ω stands for the set of all coordinates of the molecules involved, g(Ω) is the sol-
ute-solvent pair distribution function and U(Ω) is expressed as a sum of two-body disper-
sion-repulsion potentials. In the case of the fixed geometry of the solute molecule

( )E n N d r g drdisp rep S S ms

k

ms

k

ms ms ms

km Ms S

−
∈∈

= ∫∑∑∑ ( ) ( )
r 3 [11.1.127]

The integrals in the last formula can be limited only to a certain minimum distance de-
fined, for instance, by the van-der-Waals envelopes of interacting molecules. By introduc-
ing the auxiliary vector functions A ( )ms

(k)
msr such that

( ) ( )
r
∇ = −A r d gms

k

ms ms

k

ms

k

ms ms

( ) ( )
r r [11.1.128]

the average dispersion-repulsion energy between the solute and solvent molecules in solu-
tion may be written as follows

E n N ddisp rep S S ms

k

km Ms S
s

−
∈∈

= ∫∑∑∑ A n
( )

σ σ
Σ

[11.1.129]

where nσ is the outer normal to the surface Σs at the position σ. The integral in the last equa-
tion may be calculated numerically using an appropriate partitioning (tessellation) of the
surface.

A quantum-mechanical method of calculation of the dispersion energy has been de-
veloped on the basis of the above-cited semiclassical Abe’s theory.81 According to this
method, the dispersion energy, Edisp , for a solute molecule in a spherical cavity is given as
follows

( ) ( )
E

a a E E E E
disp

S M

IJ
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S
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S
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S
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M

I

M
K OJ I
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− + −≠≠

∑∑2

3

1
3 3

2 2

µ µ
[11.1.130]

where the superscript S refers to the solvent molecule and the superscript M to the solute
molecule. Thus, µ IJ

M and µKO
S are the transition dipoles between the respective states of the

solute (I and J) and the solvent (K and O) molecules. In equation [11.1.130], E , EK
S

O
S and

E , EJ
M

I
M denote the energies of the K-th and O-th state of the solvent and of the J-th and I-th

state of the solute molecule, respectively. The cavity radii for the solvent and solute mole-
cules are denoted as aS and aM, respectively.
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Table 11.1.5. The INDO/CI calculated solvatochromic shifts ∆ν (from the gas phase to
cyclohexane) of some aromatic compounds and the respective experimental data in
low polarity solvents (cm-1)81

Compound Transition ∆ν (calc) ∆ν (exp)

Benzene 1B2u -316 -209a

Naphthalene
1Lb(x)
1Lb(y)

-332
-879

-300b; -275a

-950b; -902a

Chrysene

1Lb(
1Bu)

1La(
1Bu)

1Bb(
1Bu)

-243
-733
-1666

-252a

-1030a

-1620a

Azulene

1Lb(y)
1La(x)
1Kb(y)
1Bb(x)

+162
-288
-446
-1475

+164c

-333c

-285c

-1650c

ain n-pentane, bin cyclohexane, cin 2-chloropropane

The equation [11.1.130] has been used within the semiempirical quantum-chemical
INDO/CI formalism to calculate the solvent shifts of some aromatic compounds in cyclo-
hexane.81 The results compare favorably with the experimental data for some nonpolar sol-
vents (cf. Table 11.1.5).

11.1.5 SUPERMOLECULE APPROACH TO THE INTERMOLECULAR
INTERACTIONS IN CONDENSED MEDIA

The supermolecule approach to the calculation of solute-solvent interaction energies is
based on the discrete molecular representation of the solvent. The supermolecule can be
treated quantum-mechanically as a complex consisting of the central solute molecule and
the surrounding closest solvent molecules. This supermolecule complex can be treated indi-
vidually or as submerged into the dielectric continuum.82 In the last case, some continuum
theory (SCRF, PCM) is applied to the supermolecule complex consisting of the solute mol-
ecule and the solvent molecules in its first coordination sphere.83-86 Therefore, the
short-range solute-solvent electron correlation, dispersion and exchange-repulsion interac-
tions are taken into account explicitly at the quantum level of theory as the electrons and nu-
clei both from the solute and solvent are included explicitly in the respective Schrödinger
equation. The long-range electrostatic polarization of the solvent outside the first coordina-
tion sphere is, however, treated according to the dielectric continuum theory. Thus, the en-
ergy of solvation of a solute molecule can be expressed as follows:

E nsol SM SM

S

SM SM M SM SM S SM= − −Ψ Ψ Ψ Ψ Ψ Ψ$ $ $( ) ( ) ( )
H H H

0 0 [11.1.131]

where $H SM
(S) is the Hamiltonian for the supermolecule in the solution, and $H M

(0) and $H S
(0) are

the Hamiltonians for the isolated solute and the solvent molecules, respectively. In the last
equation, n denotes the number of the solvent molecules applied in the supermolecule, ΨSM

is the total wavefunction of the supermolecule immersed into dielectric medium, and ΨM

and ΨS are the wavefunctions for isolated solute and solvent molecules, respectively.
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For instance, the n *→ π electronic transition (11A1 →11A2) of formaldehyde solvated
by varying number of water molecules has been investigated using multi-reference CI cal-
culations.87 This simple supermolecule approach has given already satisfactory results as
compared to experimental shifts in liquid water. However, it has been shown that in general,
both the short-range quantum mechanical effects and the long-range solvent polarization
play important role in determining the spectral shifts in liquid media. Thus, the INDO/S
SCRF CIS theory alone has explained the solvatochromic shifts of azoles in different sol-
vents, except those observed in water (Table 11.1.6).85 In both the water and acetonitrile, the
compounds are predicted to have practically the same shift that is not the case in experi-
ment. The explicit bonding of two water molecules to the nitrogen lone pairs leads in the
cases of pyrimidine and pyridazine to the calculated large red shift instead of the experimen-
tally observed solvatochromic blue shift. However, by treating the complex of an azole and
two water molecules quantum-mechanically in the surrounding reaction field leads to quan-
titatively correct blue shifts.

Table 11.1.6. The INDO/S SCRF/CI calculated and experimental spectral transition
energies in different solvents for azoles (cm-1)85

Molecule Solvent νcalc, cm
-1 νexp, cm

-1

Pyrimidine

gas phase
isooctane
diethyl ether
acetonitrile
water
2H2O
water + 2H2O

32966
33559
34127
34697
34743
30982
36572

-
34200
34400
34800
36900
36900
36900

Pyridazine

gas phase
isooctane
diethyl ether
acetonitrile
water
2H2O
water + 2H2O

28329
29460
30382
31296
31368
26490
33927

-
29740
30150
31080
33570
33570
33570

Pyrazine

gas phase
isooctane
diethyl ether
acetonitrile
water
2H2O
water + 2H2O

30387
30387
30387
30387
30387
32900
33301

-
31610
31610
31740
33160
33160
33160

As a general remark, in the calculations of the intermolecular interactions using the
supermolecule approach, the “size-extensivity”88 of the methods applied is of crucial impor-
tance. Furthermore, the interaction energies calculated in the supermolecule approach usu-
ally suffer from what is called the basis set superposition error (BSSE),89 a spurious energy
improvement resulting from the use of truncated basis sets. This error seems to be unavoid-
able in most practical calculations except for very small systems.90
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The intermolecular interactions that correspond to the fixed geometry of the sol-
ute-solvent complex can be also studied by a perturbation approach.91,92 It has been sug-
gested that the perturbation theory has some advantages over the supermolecule approach
and may therefore be considered conceptually more appropriate for the calculation of
intermolecular interaction energies. In this case, the interaction energy is calculated directly
and it may be separated into components of well-defined physical meaning.

Within the direct reaction field (DRF) method,93-96 the classical part of the solute-sol-
vent system (solvent) is treated as a distribution of the polarizable point dipoles, interacting
with each other. The DRF Hamiltonian of the solute-solvent system is thus given by the fol-
lowing formula:

$ $

,,

H H F FDRF ip pq jq

p qi j

= − +∑∑0 1

2
α [11.1.132]

where indices i an j correspond to the solute particles (electrons and nuclei) and p and q run
over the external polarizable points. Fip is the field of the particle i at the position p, and αpq

gives the induced dipole at point q by a field applied at point p. The respective Schrödinger
equation can be solved directly, without the iterative adjustment of the solvent charge distri-
bution and the respective reaction field potential. The DRF method proceeds from the direct
reaction field obtained as the linear solute-solvent interaction operator, proportional to the
square of the electric field operator while the GSCRF approach uses the average reaction
field model. It has been suggested that the additional energy contributions can be inter-
preted as due to the dispersion interaction between the solute and solvent molecules.97 More
recently, the DRF approach has been combined with the continuum approach by dividing
the space around the solute into a closer surrounding treated by direct reaction field method
and to more distant space represented by the macroscopic dielectric properties of the sol-
vent.98,99 A good quantitative agreement has been obtained between the experimental and
DRF calculated solvatochromic shifts of the n *→ π transition of acetone in different sol-
vents.100,101

Nevertheless, even at the highest theoretical level accessible for practical calculations,
the static approach is strictly valid only for the description of the molecular clusters of fixed
geometry. However, in the cases of strong and weak intermolecular interactions, the energy
of interaction in the molecular cluster in the gas phase or on the inert-gas matrix is substan-
tially different from the total solvation energy in the condensed phase.102 A direct solution of
a time-dependent Schrödinger equation for the condensed low-order bulk matter, needed to
overcome this problem, is premature. Therefore, the molecular dynamics method
(MD)103-105 based on the computer modelling of a system of molecules which interact by the
known model potential to each other and undergoes the rotational and translational move-
ment in the field caused by this interaction according to the classical (Newtonian) mechan-
ics is widely applied for this purpose. By applying various boundary conditions and
performing the calculation of the potential energies and forces for hundreds of thousands
configurations obtained by step-by-step time evolution the time - averages such as internal
energy (or enthalpy) can be obtained. An alternative is the stochastic Monte Carlo method
that is based on the ergodic theorem and provides the ensemble averages calculated from
randomly generated and weighted configurations. These methods suffer from several short-
comings, of which the problem of the applicability of the ergodic theorem (i.e., the identity
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of the time-averaged and ensemble-averaged thermodynamic and dynamic observables),
the path sampling and difficulties to obtain precise intermolecular interaction potentials are
most serious. Also, the real dense systems, i.e., liquids and solutions are intrinsically quanti-
fied systems and therefore a quantum molecular dynamics should be developed which ac-
counts for the quantum effects in the microscopic system from the first principles. The
combined quantum-mechanical/molecular dynamics (QM/MD) or quantum-mechani-
cal/molecular mechanics (QM/MM) approaches have been used for the calculation of
solvatochromic shifts in different media.106-108

Numerous computational schemes have been developed to calculate the total molecu-
lar solvation energy or free energy using the combination of different theoretical solute-sol-
vent interaction models. From these, one of the most popular is the SMx methodology.109,110

This methodology proceeds from the division of the total molecular solvation energy into
the solute-solvent electrostatic and inductive polarization terms, standard-state free energy
of cavity creation in the solvent plus the solute-solvent dispersion interaction, and an empir-
ical part of the nuclear motion free energy. The solvent polarization term is presented using
the generalized Born formula:

G q qp k k kk

k

N

k

N

= − −

 


 ′ ′

′==
∑∑1

2
1

1

11ε
γ [11.1.133]

where the double summation is performed over all atomic partial charges qk in the solute
molecule, ε is the relative dielectric permittivity of the solvent and γkk’ - the Coulomb’ inte-
gral between two centers k and k’, parameterized for the interactions with the solvent. The
cavity creation plus dispersion term is calculated as

G ACD k k

k

N
0

1

=
=

∑ σ [11.1.134]

where N is the number of atoms in the solute, Ak is the solvent accessible surface area of a
given atom and σk is the parameter for this atom that is called the accessible surface tension.
The latter is obtained from the fit with the experimental data and is, thus, essentially an em-
pirical parameter for a given type of atom. Thus, in essence the SMx methodology repre-
sents a semiempirical approach to the calculation of solvent effects.
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11.2 DIELECTRIC SOLVENT EFFECTS ON THE INTENSITY OF LIGHT
ABSORPTION AND THE RADIATIVE RATE CONSTANT

Tai-ichi Shibuya

Faculty of Textile Science and Technology
Shinshu University, Ueda, Japan

11.2.1 THE CHAKO FORMULA OR THE LORENTZ-LORENZ CORRECTION

The intensity of light absorption by a molecule is generally altered when the molecule is im-
mersed in a solvent or transferred from one solvent to another. The change may be small if
the solvents are inert and non-polar, but often a significant increase or decrease is observed.
The first attempt to correlate such effects with the nature of the solvent was made by Chako1

in 1934. Chako’s formula reads as

( )′′
=

+f

f

n

n

2 2

2

9
[11.2.1]

where:
f oscillator strength of an absorption band of a molecule

′′f apparent oscillator strength of the molecule in solution
n refractive index of the solution at the absorbing frequency

The apparent oscillator strength is proportional to the integrated intensity under the
molar absorption curve. To derive the formula, Chako followed the classical dispersion the-
ory with the Lorentz-Lorenz relation (also known as the Clausius-Mosotti relation), assum-
ing that the solute molecule is located at the center of the spherical cavity in the continuous
dielectric medium of the solvent. Hence, the factor derived by Chako is also called the Lo-
rentz-Lorenz correction. Similar derivation was also presented by Kortòm.2 The same for-
mula was also derived by Polo and Wilson3 from a viewpoint different from Chako.

Chako’s formula always predicts an increase of the absorption intensity with the re-
fractive index. This does not hold, for instance, for the allowed π π→ * electronic transi-
tions of cyclohexadiene and cyclopentadiene,4 and monomethyl substituted butadienes.5

11.2.2 THE GENERALIZED LOCAL-FIELD FACTOR FOR THE ELLIPSOIDAL
CAVITY

A natural generalization of the Chako formula was made by generalizing the spherical cav-
ity to an ellipsoidal cavity. Such a generalization was shown by Shibuya6 in 1983. The gen-
eralized formula derived by him reads as

( )[ ]′′
=

− +f

f

s n

n

2
2

1 1
[11.2.2]

where:
s shape parameter which takes a value between 0 and 1

This parameter s is more generally known as the depolarization factor, whose values are
listed for special cases in general textbooks.7 For the spherical cavity, s = 1/3 in any axis; for
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a thin slab cavity, s = 1 in the normal direc-
tion and s = 0 in plane; and for a long cylin-
drical cavity, s = 0 in the longitudinal axis
and s = 1/2 in the transverse direction. The
shape of the ellipsoidal cavity is supposed
to be primarily determined by the shape of
the solute molecule. Typical cases are long
polyenes and large planar aromatic hydro-
carbons. One can assume s = 0 for the
strong π π→ * absorption bands of these
molecules. For smaller molecules, how-
ever, one should assume s ≈ 1/3 regardless
of the shape of the solute molecule, as the
cavity shape then may be primarily deter-
mined by the solvent molecules rather than
the solute molecule. Note that Eq. [11.2.2]
gives the Chako formula for s = 1/3, i.e., for
the spherical cavity.

For transitions whose moments are in the longitudinal axis of a long cylindrical cavity
or in the plain of a thin slab cavity, Eq. [11.2.2] with s = 0 leads to ′′ =f / f 1/ n, so that the ab-
sorption intensity always decreases with the refractive index. If the transition moment is
normal to a thin slab cavity, Eq. [11.2.2] with s = 1 leads to ′′ =f / f n 3. The dependence of
the ratio ′′f /f on the refractive index n according to Eq. [11.2.2] is illustrated for different
values of s in Figure 11.2.1. The slope of the ratio is always positive for s > 1/4. For 0 < s <
1/4, it is negative in the region 1 n (1 s) / 3s≤ ≤ − and positive in the other region.

Eq. [11.2.2] can be also written as the following form:

( ) ( )nf fs n f′′ = − +2 1 [11.2.3]

This equation shows a linear relationship between (nf )′′ and (n2 - 1). If a set of measured
values of ′′f vs. n are provided for a solute, the least-squares fitting to Eq. [11.2.3] of (nf )′′
against (n2 - 1) gives the values of f and s for the solute molecule. Note that ′′f and f in Eq.
[11.2.3] can be replaced by any quantities proportional to the oscillator strengths. Thus, they
can be replaced by the integrated intensities or by their relative quantities.

Figure 11.2.2 shows such plots for the π π→ * absorption bands of β-carotene and the
n *→ π absorption bands of pyrazine measured8 in various organic solvents. Here, the rela-
tive intensities ′′ ′′f / fc , where ′′fc is the absorption intensity measured in cyclohexane as the
reference solvent, are considered, and y nf / fc= ′′ ′′ is plotted against x = n2 - 1. The
least-squares fittings give s = 0 for the allowed π π→ * transition of β-carotene and s = 0.29
for the vibronic n *→ π transition of pyrazine. Note that in this case the least-squares fitted
line gives f / fc

′′ as its intercept and s f / fc
′′as its slope so that s is given as the ratio of the

slope divided by the intercept. A similar study was made9 on the n *→ π absorption bands
of acetone and cyclopentanone, giving the results s = 0.88 and f = 1.8×10-4 for acetone and
s=0.72 and f = 2.2×10-4 for cyclopentanone.

A similar generalization was also made by Buckingham.10 He followed Kirkwood’s
idea11 in deriving the electric moment of a dielectric specimen produced by a fixed mole-
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Figure 11.2.1. Dependence of ′′f / f on the refractive in-
dex n for different values of s. [After reference 6]



cule in its interior and Scholte’s
extension12 of the cavity field and the
reaction field in the
Onsager-BØttcher theory13,14 to an el-
lipsoidal cavity. Buckingham’s for-
mula involves the polarizability of
the solute molecule and appears
quite different from Eq. [11.2.2]. It
was shown6 that the Buckingham
formula reduces to Eq. [11.2.2].

11.2.3 DIELECTRIC SOLVENT
EFFECT ON THE
RADIATIVE RATE
CONSTANT

The radiative rate constant is related
to the absorption intensity of the transition from the ground state to the excited state under
consideration. The application of Eq. [11.2.2] leads15 to

( )[ ]′′ = − +k k n s nr r/ 2
2

1 1 [11.2.4]

where:

′′kr apparent radiative rate constant of the solute molecule measured in a solvent of the
refractive index n

kr radiative rate constant of the molecule in its isolated state

Note that the local-field correction factor n[s(n2 - 1) + 1]2 varies from n to n5 as s var-
ies from 0 to 1. For 9,10-diphenylanthracene (DPA), the correction factor was given15 as
n[(0.128)(n2 - 1) +1]2, which lies between n and n2. This agrees with the observed data16 of
fluorescence lifetimes of DPA in various solvents.
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Figure 11.2.2. Plots of y nf / f c= ′′ ′′ vs. x = n2 - 1 for the π π→ *
absorption bands of β-carotene (crosses) and the n *→ π ab-
sorption bands of pyrazine (solid circles). [After reference 6]


